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Abstract 
The literature review of proposed doctoral thesis summarizes knowledge of both present-day 

biomaterials and the new type of “smart” biomaterials such as thermosensitive copolymers. 

Among those copolymers whose aqueous solutions are liquid at laboratory temperature but 

turn into a solid gel as the temperature rises to 37 °C belong e.g. amphiphilic triblock 

copolymers based on the biodegradable hydrophobic polylactide, polyglycolide and 

hydrophilic poly(ethylene glycol) (PLGA ̶ PEG ̶ PLGA). Commercially available 

thermosensitive PLGA ̶ PEG ̶ PLGA copolymers, known as ReGel or OncoGel are used as 

injectable controlled drug delivery systems for diabetes or cancer treatment, respectively. 

However, PLGA ̶ PEG ̶ PLGA copolymers might be used as well as inorganic drug delivery 

carries and biodegradable implants for regenerative medicine in orthopedic and dental 

applications. For this reason the biocompatible hydroxyapatite (HAp), utilized in the bone 

remodeling process, was employed because of its majority representation in hard tissue.  

The experimental part of this work is focused on the preparation of HAp/PLGA ̶ PEG ̶ PLGA 

composites, where used HAp was in the form of either nano- (n-HAp) or core-shell (CS) 

particles. Novel core-shell particles, prepared by double emulsion method, were consisted of 

“rigid” n-HAp core covered by PLGA ̶ PEG ̶ PLGA shell additionally end-functionalized by 

itaconic acid (ITA/PLGA ̶ PEG ̶ PLGA/ITA). ITA modification brought crosslinkable both 

double bonds and functional carboxylic groups to the ends of copolymer chains. 

Consequently, the ITA/PLGA ̶ PEG ̶ PLGA/ITA copolymer shell was chemically crosslinked 

to form life-time controlled 3D polymer network surrounded HAp core resulting in 

crosslinked core-shell particles (CS-x). The ATR-FTIR spectroscopy proved the presence of 

“new” ester bonds in polymer shell at 1021 cm-1 arising from the carbodiamide coupling 

reaction between -OH and -COOH groups. As mentioned above, both n-HAp and CS-x 

particles were mixed with the copolymer thermosensitive PLGA ̶ PEG ̶ PLGA matrix and 

flow/gelation behavior important for injectable materials were evaluated by rheological 

measurement. . It was found, that the addition of less than 5 wt.% of n-HAp particles or 10 

wt.% of CS-x particles into the PLGA ̶ PEG ̶ PLGA polymer matrix retains its 

thermosensitive properties. However, adding higher amount of either n-HAp particles or CS-x 

particles in copolymer matrix changed the aqueous sol to permanent stiff gel while the 

temperature increases above 37 °C. Based on the ICP-OES analysis, the release of CS-x 

particles from 10 w/v % PLGA ̶ PEG  ̶PLGA gel matrix to the incubation medium at 37 °C 

was faster than in case of n-HAp particles (6 % vs. 3% in 9 days, respectively) which are 

more strongly bonded to matrix micellar structure. As a conclusion, composite based on n-

HAP particles in copolymer matrix exhibiting stiff permanent gel at body temperature is 

suitable more as biodegradable bone adhesive while composite consisting of CS-x particles in 

thermosensitive copolymer matrix is useful as injectable drug delivery carrier. 
 
Keywords 
thermosensitive triblock copolymers, hydroxyapatite, drug release, rheology, core-shell 
particles 
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Abstrakt 
Literární rešerše předložené dizertační práce shrnuje poznatky jak o současně používaných 

biomateriálech, tak i o tzv. „chytrých“ biomedicínských materiálech mezi které patří 

termocitlivé kopolymery. Mezi tyto kopolymery, jejichž vodné roztoky gelují při teplotě 

lidského těla (37 °C), řadíme amfifilní triblokové kopolymery skládající se z hydrofobního 

laktidu, glykolidu a hydrofilního polyethylen glykolu (PLGA ̶ PEG ̶ PLGA). Komerčně 

dostupné termocitlivé kopolymery známé pod názvem ReGel or OncoGel jsou v současné 

době využívány jako injekčně aplikovatelné nosiče s postupným uvolňováním léčiv, zejména 

při léčbě cukrovky nebo onkologického onemocnění. Nicméně PLGA ̶ PEG ̶ PLGA 

triblokový kopolymer může být použit I jako polymerní nosič anorganického léčiva případně 

jako  biodegradabilní implantát v  dentálních či ortopedickýchých aplikacích. Z toho důvodu 

byl vybrán anorganický biokompatibilní hydroxyapatit (HAp) pro své majoritní zastoupení 

v tvrdých tkáních. 

Experimentální část je zaměřena na přípravu HAp/PLGA ̶ PEG ̶ PLGA kompozitů, ve kterých 

je HAp buď ve formě nano- (n-HAp) nebo „core-shell“ částic (CS). Nové CS částice, 

připravené dvouemulzní metodou, jsou složeny z „tuhého“ HAp jádra obaleného 

termocitlivým kopolymerem, který je navíc funkcionalizován kyselinou itakonovou  

(ITA/PLGA ̶ PEG ̶ PLGA/ITA). Funkcionalizace pomocí ITA vnáší do původní struktury 

kopolymeru jak síťovatelné dvojné vazby, tak i koncové karboxylové skupiny. Volné 

karboxylové skupiny na koncích ITA/PLGA ̶ PEG ̶ PLGA/ITA kopolymerního obalu byly 

dále zesíťovány za vzniku 3D chemické sítě (CS-x), jejíž životnost je řízena a kontrolována. 

ATR-FTIR spektroskopie prokázala přítomnost „nových“ esterových vazeb vzniklých 

karbodiimidovou reakcí –OH a –COOH skupin, kterým náleží adsorpční pásy ve vlnové délce 

1021 cm-1.. n-HAp a CS-x částice byly přidány do kopolymerní termocitlivé matrice 

(PLGA ̶ PEG ̶ PLGA) za účelem charakterizace jejich reologického chování. Bylo zjištěno, že 

pokud bylo do polymerní matrice přidáno méně než 10 hm. % CS-x částic a jen 5 hm.% n-

HAp kompozit si zachoval své termocitlivé vlastnosti. Na druhou stranu, přídavek vyššího 

množství HAp částic do polymerní matrice zajistil změnu vodného polymerního solu 

v permanentní gel při teplotě nad 37 °C. Analýza ICP-OES prokázala rychlejší uvolňování 

CS-x částic z 10 hm/obj. % PLGA ̶ PEG ̶ PLGA polymerní matrice do inkubačního média 

(6 % 9. den) než tomu bylo u n-HAp částic (jen 3 %), které jsou vázány více v micelární 

struktuře kopolymeru. Proto, kompozit na bázi n-HAP částic tvořící tuhý trvalý gel při tělesné 

teplotě, je vhodný více jako biologicky rozložitelné kostní lepidlo, zatímco kompozit z CS-x 

částic a termocitlivého kopolymeru je vhodný jako nosič léčiv pro injekční aplikace. 

 

Klí čová slova 
termocitlivé triblokové kopolymery, hydroxyapatit, uvolňování léčiv, reologie, core-shell 

částice 
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1 INTRODUCTION  

 In  1986  the  Consensus  Conference  of  the  European  Society  for  Biomaterials  defined  
a biomaterial  as  "a  nonviable  material  used  in  a  medical  device  intended  to  interact  
with biological systems" [1]. Biomaterials include a large and diverse array of materials that 
range from metallic orthopedic implants to polymeric materials which could be from natural 
or synthetic sources.  
 Advantage of biodegradable synthetic copolymers/polymers compared to natural polymers 
is the ability to tailor copolymer composition, mechanical properties, degradation kinetics of 
polymer and so control release of agents [2]. These synthetic polymers as resorbable sutures 
were firstly presented in 1960s [3]. The most studied groups are poly(α-hydroxy acids) such 
as poly(D,L or L-lactic acid) (PLA), poly(glycolic acid) (PGA), polycaprolactone (PCL) and 
their copolymers. Copolymerization of hydrophobic PLA, PGA or PCL with hydrophilic 
poly(ethylene glycol) forms the amphiphilic copolymer with thermo-sensitive properties 
which undergoes phase transitions (sol-gel and gel-suspension) depending on the surrounding 
temperature. The sol-gel transition is very attractive for medical applications because the 
bioactive agents (e.g. inorganic components, drug and other healing medicaments) can be 
mixed in the aqueous copolymer solutions at laboratory temperature (sol phase). After 
injection of copolymer into the body the “flowing” sol converts to stiff gel having entrapped 
drugs in its 3D hydrogel network [2, 4]. Synthetic copolymer may be tailored by functional 
groups or peptides and so provide rate-controlled release or target specificity in cancer 
treatment, especially. 
Nowadays, on the market is unmet demand for new products in bone regenerative medicine. 
The lack of materials can be solved by thermosensitive copolymer. The goal of presented 
thesis was preparation of the hydroxyapatite/thermosensitive copolymer composites which are 
liquid at laboratory temperate and gels at body temperature in situ. The resulted 
hydroxyapatite composite with paste-like viscosity may be used in treatment of comminuted 
fracture or as filling material for bone cavity. The second aim of this inorganic-polymer 
composite was preparation of drug delivery carries in form of core-shell particles (CS-x). The 
CS-x/copolymer composite is able to form a temporary biodegradable implant in situ. By the 
degradation of copolymer matrix release the CS-x and treat directly at the site of the diseased 
tissue. 
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2 THEORETICAL PART 

2.1 Biomaterials for medical applications 

 Biomaterials are those materials intended to interface with biological systems to replace, 
reconstruct, enhance or support either tissues or tissue function. Biomaterials have typically 
been inorganic materials such as metal, ceramic, glass, bioceramics and organic materials 
(e.g. polymers/copolymers) [5]. Bioceramics, especially hydroxyapatite, is widespread in 
bone regenerative medicine. The calcium cations are necessary for remodeling of damaged 
bone. At first, calcium crystals are removed from the bone skeleton by osteoclast cells and 
subsequently are used via osteoblast cells to produce new bone tissue. One have proved that 
the materials for bone tissue engineering having calcium-compounds in its structure shorten 
the recovery time [6].   
 

2.2 Inorganic materials  

 Metals are more suitable for load-bearing applications compared with ceramics or 
polymeric materials due to their combination of high mechanical strength and fracture 
toughness. The most widely used metal material is stainless steel, titanium and cobalt–
chromium-based alloys. A limitation of these current metallic biomaterials is the possible 
release of toxic metallic ions and/or particles through corrosion or wear processes (metal 
implants in medicine) [7, 8]. 
Ceramics and bioglass can be manufactured in porous scaffolds, powders and granules or in 
the form of coatings. Although the ceramics’ implants are biocompatible, the body will react 
against them for their foreign nature and these ceramics are surrounded by collagen capsule 
which is isolated from the body [9]. The most commonly used inorganic material is 
hydroxyapatite (HAp).  

2.2.1 Hydroxyapatite  

 Hydroxyapatite (HAp) - Ca10(PO4)6(OH)2 belongs to the family of calcium phosphate 
cements (CPCs) which were discovered in the 1980s by Brown and Chow [10] and LeGeros 
[11].  All CPCs are formed by combination of one or more calcium orthophosphate powder. 
CPCs developed up to now have only two different products, precipitated hydroxyapatite 
(HAp) or brushite (dicalcium phosphate dihydrade - DCPD) (Fig. 1) [12].  
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Fig. 1.  Classification of calcium phosphate cements [12]. 
  
 HAp can be prepared from biological sources (animal bones and corals) or can be 
synthetized from appropriate substrates [13, 14, 15]. Nowadays CPCs are widely used for 
reconstruction or regeneration in bone tissue engineering or coating of metal materials due 
their degradability, bioactivity, excellent biocompatibility, osteoconductivity and potential 
osteoinductivity. The first commercial CPCs products were introduced in the 1990s for 
treatment of maxillo-facial defects as well as for treatment of fracture [16, 17]. 
 Synthetically produced HAp is preferable for their controlled microstructure and uniform 
composition. Extensive researches have been carried out to prepare HAP in powder form, thin 
films and by using gel-casting techniques to obtain pieces with complex shapes 

2.2.1.1 Hydroxyapatite in medical applications  

 Hydroxyapatite is one of the most used bioceramic materials in the field of biomaterials and 
tissue engineering, because it is major mineral constituent of the bone matrix. Hydroxyapatite 
particles can be synthetized by variety of methods including solid state methods [18], wet 
chemical methods [19] or can be prepared by hydrothermal process [20] Preparation 
conditions have significant influence on crystallinity, Ca/P ratio and stoichiometric value of 
HAp [21]. Hydroxyapatite is used in combination with polymer matrices (biodegradable or 
non-degradable). The attention is paid to preparation on composites with individual 
(nano)particles without aggregation. To overcome the problem with agglomeration of HAp is 
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surface modification. The purpose of the surface treatment is not only to guarantee the even 
distribution of HAp particles but also to prevent or delay the debonding process of HAp 
particles from the polymer matrix [22]. It is very important to controlled interphase between 
polymer matrix and inorganic bioactive filler. However, surface modifiers must satisfy several 
requirements such biocompatibility or non-toxicity [23]. Table 1 summarized several 
modification of HAp. 
 
Table 1. Surface modification of HAp 
 

Surface modification  References 
Hexanoic decanoic acid 
Oleic acid  
Stearic acid  

Tanaka et al. [24] 
Kim et al. [25] 
Li et al. [26] 

Hexamethyldisilazane (HMDS) 
Vinyl triethoxy silane  
γ-aminopropyltriethoxysilane,   
γ-methacryloxytrimethylsilane 
3-trimethoxysilylpropylmethacrylate 

Tanaka [27] 
Wen at al. [28] 
Furuzono et al. [9] 
Damia et al. [29, 30] 
Wang et al. [31] 

L-lactide  Hong et al. [32] 
Polyacrylic acid (PAA) Liu et al [33] 

 
 In most of these techniques, the modified agents were reacted with the hydroxyl groups (P-
OH) on the surface of the HAp crystals [24 ̶ 30]. The surface of HAp is often treated by 
polymer grafting (PAA, L-LA) to improve the interfacial condition [32, 33]. The surface of 
HAp containing OH-, Ca2+, PO4

3- is attractive due their ability to form ionic interaction with 
drugs.  

2.3 Polymers  

 The next group which is often used in biomaterials devices is polymer or copolymer. 
Polymers used in tissue engineering have to be biocompatible with low toxicity to the human 
(or animal) body. These polymers could be classified based on their biodegradability as fully 
or partially resorbable and nonresorable. Resorbable polymers (or copolymers) could be used 
for internal fracture fixation applications with degradation inside the body in a controllable 
rate or such as drug delivery carriers (polyesters). Partially resorbable polymers could be 
composed of a non-absorbable reinforcing materials and fully resorbable matrix materials 
(e.g. PLA with HAp, poly(hydroxybutyrate (PHB)/alumina or calcium carbonate). Non-
resorbable biocomposites provide specific mechanical properties and stability (knee joint 
prostheses, dental posts, stems of hip) (e. g. carbon fiber/poly (ether ether ketone)) [9, 34]. 
 The advantages of polymeric biomaterials, compared to metallic or ceramics materials, are 
simple manufacturing of orthopedics products in various shapes, adequate cost and wide 
range of physical and mechanical properties [12].  
  



11 
 

2.4 Biodegradable polymers 

  This class of polymeric materials can be synthetic or natural origin. They are capable of 
being cleaved into biocompatible byproducts through chemical or enzyme-catalyzed 
hydrolysis. This biodegradable property makes it possible to implant them into the body 
without the need of subsequent removal by the surgical operation. Biodegradable polymeric 
materials have been found to present innumberable applications, from surgical sutures and 
surgical glues to contact lenses, heart valves or drug delivery carriers [36, 37]. The release 
rates of the drugs from biodegradable polymers can be controlled by a number of factors, such 
as biodegradation kinetics of the polymers [16, 38] physicochemical properties of the 
polymers and drugs [39, 40], thermodynamic compatibility between the polymers and drugs 
[41] and the shape of the devices [42, 43]. 

2.4.1 Natural polymer 

 Natural polymer materials are derived from the proteins such as collagen, gelatin, silk 
fibroin and the polysaccharides such as cellulose, hyaluronate, chitosan or alginate. Although 
of natural polymer are known as biocompatible, but there are same disadvantages such 
degradation rate or deficiency in bulk quantity. They have been used as scaffolds for repair of 
nerves, cartilage or bones [19]. 
 Collagen occurs as major component of connective tissue (such as bones, cartilage or blood 
vessels), giving strength and flexibility. It is one of the most applied scaffolds for tissue 
engineering and it is used in vitro for the culture of many different types of cells. The 
composite of collagen and hydroxyapatite is used as biodegradable synthetic bone graft 
replacement [44]. Hyaluronic acid is a glycosaminoglycan found in nearly every mammalian 
tissue and fluid. This material can be chemically cross-linked or combined with other 
materials in order to obtain the desired mechanical properties. It has been used in many 
different applications (cosmetics industry or for the treatment of osteoarthritis). Alginate is 
a polysaccharide obtained primarily from seaweed. It is widely used as cell transplantation 
vehicles to grow new tissues as well as wound dressing or drug stabilization for delivery 
applications. Chitosan is derived from chitin. This polysaccharide and its derivate is suitable 
candidate for scaffold materials for various tissue engineering including cartilage, skin, and 
bone [45]. 
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2.4.2 Synthetic polymer 

 Synthetic polymers are suitable for tissue engineering. They can be reproducibly produced 
with specific molecular weights, composition of block structures, degradable linkages and 
cross-linking modes. These properties in turn, determine gel formation dynamics, cross-
linking density and material mechanical and degradation properties. 
 Aliphatic polyesters have attracted significant interest as drug carriers. This class of 
polymers degrades via the hydrolytic cleavage of the ester bonds in their backbone. The 
degradation rate strongly depends on the crystallinity, hydrophobicity and molecular weight 
of the polymer. For aliphatic polyester is typical bulk erosion. This group includes polymers 
(or copolymers) such as poly(lactic acid) (L-LA or D,L-LA), poly(ethylene glycol) (PEG), 
poly(glycolic acid) (PGA), poly(ε-caprolactone) (PCL) [46, 47, 48]. 
 Polyanhydrides are the hydrophobic polymers with hydrolytically labile anhydride 
linkages. In general, this class of polymers show minimal inflammatory reaction in vivo  and  
degrade  into  monomeric  acids  as  non-mutagenic  and  non-cytotoxic  products [49]. 
 Another group of synthethic polymers which are commonly used in medical applications 
are polyphosphazenes. They  are  typically  synthesized  as  linear  polymers,  composed  of  
an  inorganic backbone  with  nitrogen  and  phosphorous  atoms. They can degrade by both 
surface and bulk erosion, depending on the lability of the bond and hydrophobicity of the 
polymer [50] (Fig. 2). 
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Fig. 2. Formulas of polyesters, polyanhydrides, polyphosphazenes. 
 
 Design of prepared polymers/copolymers strongly dependents on the applications use and 
environment into which the scaffold will be placed. Nowadays are known shapes as foams, 
hydrogels, films, porous scaffolds, wounds, fibrous scaffolds, etc. For example, hydrogel 
(prepared from polyesters) was designed as the drug carries, biological glue or cells-carries, 
therefore must be capable of being gelled without damage of entrapped cells, degradation 
products have to be nontoxic, has appropriate diffusion and require mechanical integrity and 
strength [51]. 

2.4.3 Temperature-responsive hydrogel 

  Hydrogel is three-dimensional network composed of a polymer backbone and do not 
dissolve in water at physiological temperature and pH. Hydrophilic polar groups such as -OH 
(hydroxylic), -COOH (carboxylic), -CONH (amidic), -CONH2 (primary amidic), -SO3H 
(sulphonic) present in hydrogel are capable of absorbing water (or body fluids) without 
undergoing dissolution. They swell considerably in an aqueous medium and quantity of water 
into polymeric network structure moving over 20 % [52, 53, 54]. Responsive hydrogels are 
a class of hydrogels with swelling  properties  dependent  on  environmental  factors  like  pH, 
temperature, ionic strength, electric current and are known as “stimuli-responsive” or “smart” 
gels [55, 56, 57, 58]. The thermo-responsive hydrogels are mainly prepared from synthetic 



13 
 

polymers, but some natural polymers like xyloglucan may also form thermoreversible gels 
[59]. Hydrogels do offer several advantageous properties such as biocompatibility, 
biodegradability and biologically recognizable moieties that support cellular activities. 
Biodegradable products as well as their metabolites have to be non-toxic and non-
carcinogenic. 
 Hydrogels have many different functions in the fields of tissue engineering e.g as space 
filling agents, as delivery vehicles for bioactive molecules (or drugs), and as three-
dimensional structures that organize cells. Hydrogel is especially attractive due to their 
minimally invasive delivery procedure, providing reduced healing time, decreased risk 
of infection and ease of delivery compared with surgically implanted materials [60]. 

2.4.3.1 Composition of temperature-responsive hydrogel 

 Multiblocks temperature-responsive synthetic hydrogels are often consisting 
of a hydrophilic block A (PEG) and hydrophobic block B (PLLA, D,L-LA, PCL). Molecules 
having both hydrophilic and hydrophobic segments are known as amphiphilic molecules. 
Hydrophobic blocks are separated from the aqueous surrounding to form an inner core and 
hydrophilic segments consist of a wall around it [61, 62] (see Fig. 3).  
 

 
Fig. 3. Amphiphilic molecules in aqueous solution [63]. 
 
 Temperature-sensitive hydrogels are probably the most commonly studied class of 
environment-sensitive polymer systems in drug delivery research. These hydrogels are able to 
swell or deswell as a result of change in the temperature of the surrounding fluid. The 
polymer solution is a free-flowing liquid at lower temperature and displayed low viscosity. As 
the temperature increases polymers undergo sol-gel transition, after that can be observed a gel 
(transparent, opaque or white) which exhibited viscoelastic behavior. At higher temperature 
occur gel-suspension phase transition and the gel loss elasticity (polymer are separated from 
the water) (Fig. 4) 
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Fig. 4. A typical phase diagram of ABA-type PLGA-block-PEG-block-PLGA triblock 
copolymer in water [64]. 
 
 The blocks of copolymers may have different architectures such as AB diblock or 
ABA/BAB triblock. Lee and co-workers prepared thermo-responsive copolymers consisting 
of PEG/PLLA (AB) and study their rheological properties using dynamical rheological 
analysis and by test tube inverting method. This copolymer exhibited a reverse thermal 
gelation in a temperature range from 30 to 45 °C [65]. 
 The ABA-type triblock copolymers with central PEG demonstrated an interesting 
reversible sol-gel and gel-suspension transition in aqueous solution (see  Fig. 5). Lee and 
Shim [64, 65] studied the solubility of these triblock copolymers with central PEG 
(Mn = 1000 g·mol-1) block with different molecular weight of PLGA block (from 
900 to 1600 g·mol-1). The PLGA with higher mol. weight was insoluble in water, while 
triblock copolymer with PLGA block (Mn = 900 g·mol-1) and lower was soluble in water but 
do not form hydrogel in water. The solubility of polymer depends strongly on the molecular 
weight of PLGA block.  
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Fig. 5. Formula of ABA-type triblock copolymer PLGA—PEG—PLGA; x, y, z are numbers of 
poly(ethylene glycol), lactide and glycolide. 
 
Effects of precipitated agents (methanol, hexane, diethyl ether) on copolymer (PLGA-PEG-
PLGA) were investigated by Yu and co-worker. Option of precipitated agents exhibit changes 
in elastic modulus (G´), critical micelles concentration (CMC), micellar size and macroscopic 
states in water (some were sols, some were precipitates and some underwent sol-gel transition 
upon heating) [66]. 
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 Not only molecular weight, precipitated agents, but temperatures of polymerization change 
properties of PLGA-PEG-PLGA. The synthesis was performed at 130 °C or 160 °C and 
degradation rates were studied in phosphate buffer saline (PBS). Thermogels exhibited two 
optical states (transparent or opaque) and have similar mol. weight and the same ratio of PGA 
and PLA. However, the different gel strength and their change ways with degradation time 
were found [67]. 
 Habbas et al. investigated rheological properties of triblock copolymers consisting 
of poly(ethylene glycol)-poly(propylene oxide)-poly(ethylene glycol) (PEG-PPO-PEG) 
(BAB). These copolymers are able to form micelles at higher temperature and concentration 
up to 30 wt % [68]. 

2.4.1 Crosslinking of Biodegradable Copolymers  

 Hydrogels are often used in controlled delivery systems and therefore is very important to 
control their degradation rate by crosslinking, composition (ratio of hydrophilic and 
hydrophobic blocks) and molecular weight. As mentioned, hydrogel is polymeric network, 
which absorb and retain large amounts of water due to the present of hydrophilic polymer 
chains in their backbone. Hydrogels are biodegradable and have labile bonds which can be 
broken under physiological conditions by hydrolysis.  
 Functional groups added in polymer chains have to be capable of crosslinking and the 
polymer network became denser. Polymer/copolymer precursors containing double bonds can 
be cured by thermal, redox- or photoinitiation to form crosslinked product. The final 
crosslinked polymer is stable in comparison with polymer without crosslinkable bonds. The 
Table 2 summarized the functional groups useable in polymer or copolymer modification. 
 
Table 2. Crosslinkable agent used in functionalization of biodegradable polymers. 
 

Polymer/Copolymer Funcionalization by Reference 
D,L-LA isocynates, methacrylates Storey [69, 70] 
PEG-PGA acrylates, methacrylates 2-isocyanatoethyl 

methacrylates 
Bencherif [71] 

PEG-PCL itaconic anhydride Ramos and Huang [72] 
PPF acrylates, epoxides Peter [73] 

PCL (3-isocyanatopropyl)triethoxysilane  Matsuda [74, 75] 

PCL itaconic anhydride Turunen [76] 
PLGA-PEG-PLGA itaconic anhydride  Michlovská [77] 
 
 Aliphatic polyester have been widely investigated for biomedical applications, therefore 
they are tailored by introducing functional groups as carboxyl, hydroxyl, amino or double 
bonds [77]. Block of copolymers containing more functional crosslinkable groups on the 
hydrophobic block (PLA, PGA, PCL) allow for crosslinking the core of the micelles, while 
when the functional groups are situated on the hydrophilic block (PEG) they might form 
crosslinked shell (see Fig. 6) [78] . 
  



 

Fig. 6. Schematic representation of the three different classes of functional amphiphilic block 
copolymers - shell crosslinked micelles, core crosslinked micelles or surface functionalized 
micelles [79]. 
 
 Chemical fixation of micelles by
a number of reason such as increasing the stability of the micelles, circularization times, allow
drugs to be administered over longer periods of time 

2.4.1.1 Functionalization by Itaconic 

 Functionalization of triblock copolymer (PLGA
published by our group [77]
distillation of citric acid or by pyrolysis of 2
which can be prepared by the large
Aspergilus terreus. The degradation of ITA 
were detected as acetate, lactate and carbon dioxide 
double bond in their structure. Carboxyl groups at the end of ITA/PLGA
can cause physical crosslinking and double bonds can be 
covalent bonding (e.g. using 
crosslinking produce a new strength high density 3D
 

Fig. 7. Formula of ITA/ PLGA
  

 
representation of the three different classes of functional amphiphilic block 

shell crosslinked micelles, core crosslinked micelles or surface functionalized 

Chemical fixation of micelles by crosslinking of either core or shell is very interest
such as increasing the stability of the micelles, circularization times, allow

red over longer periods of time [79].  

Functionalization by Itaconic Anhydride (ITA) 

Functionalization of triblock copolymer (PLGA-PEG-PLGA) by ITA was recently 
[77]. ITA can be obtained from renewable resources, either by 
or by pyrolysis of 2-methylidenebutanedioic acid (

which can be prepared by the large-scale fermentation of polysaccharides (e.g. molasses
degradation of ITA was studied by Adler and degradation products 

detected as acetate, lactate and carbon dioxide [80]. ITA introduces carboxyl groups and 
double bond in their structure. Carboxyl groups at the end of ITA/PLGA
can cause physical crosslinking and double bonds can be further crosslinked chemically by 

using photopolymerization) (Fig. 7). Both chemical and physical 
new strength high density 3D-hydrogel network [81, 82].

ITA/ PLGA-PEG-PLG/ITA triblock copolymer. 
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2.5 Controlled drug delivery  

 The first idea of controlled release from polymers dates to the 1960s through the 
employment of silicone rubber and polyethylene [83], but the lack of biodegradability in 
presented systems implies the requirement of eventual surgical removal and limits their 
applicability. In the 1970s biodegradable polymers were suggested as appropriate drug 
delivery materials circumventing the requirement of removal [84]. Over the past 25 years a lot 
of researches have also been focused on degradable polymer microspheres for drug delivery. 
In present day hydrogel seems to be a suitable candidate for drug delivery system. 
 Present conventional oral drug administration does not usually provide rate-controlled 
release or target specificity. Moreover, these drugs provide sharp increase of drug 
concentration at potentially toxic levels, following a relatively short period at the therapeutic 
level and finally rapid decrease in concentration (Fig. 8). The drug activity has to remain 
between a maximum represent a toxic level and a minimum value below which the drug is no 
longer effective. 
 

 
Fig. 8. Therapeutic band showing impact of burst release, pulsatile release, and controlled 
release relative to effective and toxic concentration [85].  
 
 Controlled administration is constant between the desired maximum and minimum for an 
extended period of time. Controlled drug carriers often combine polymer/copolymer with a 
drug or active agent. Degradation of polymer/copolymer part of drug carries to ensure 
gradually release of active agents [85]. 

2.5.1 Mechanism of Drug Release from Polymer Matrix 

The term “release mechanism” has been defined as a description of the way in which drug 
molecules are transported or released. Knowledge of the release mechanisms and the physico-
chemical processes that influence the release is vital in order to develop controlled-release 
drug delivery systems (DDSs). The drug has many of possible ways to be released from 
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delivery system. The release mechanisms of PLGA-based DDSs were studied by Fredenberg 
at el. Water is absorbed by polymer immediately upon immersion in water or administrative 
in vivo. Fig. 9 shows physico-chemical process in PLGA matrices [86]. Hydrolysis starts 
immediately upon contact with water, cleave the ester bonds and subsequent decrease in Mw. 
Hydrolysis creates acids, which catalyzed hydrolysis (auto-catalytic phenomena) [87] and 
caused faster degradation especially inside of the polymer than at the surface [88]. Erosion 
starts when the dissolved polymer degradation products are able to diffuse into the release 
medium. In this way polymer lose their mass.  

 

 
Fig. 9. The complex pictures of physico-chemical processes taking place within PLGA 
matrices [86]. 

 
The encapsulated drug may affect many of the process in polymer matrix. Properties of drug 
(hydrophilicity/hydrophobicity) can change the original properties of polymer. Incorporated 
drug enhanced or inhibited water absorption and hydrolysis, increased/decreased rate of 
hydrolysis due to acid or base neutralization, drug-drug interaction and degree of encapsulated 
substance. The release of drug depends on properties of polymer, drug and their interactions. 
The Fig. 10 shows the complex factors that influence drug release from PLGA matrices. 
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Fig. 10. The complex factors which influence drug release from PLGA matrix in the presence 
of drugs [86]. 

2.5.2 Release Profiles of Drugs 

 Fredenburg at al. described release profiles consisting of different phases. Mono-phasic 
release is very rare, however bi-phasic or triphasic profile is most common (see Fig. 11). 
Large particles often exhibit tri-phase system due to heterogeneous degradation. Small 
particles or coated particles exhibit often bi-phasic release profile. 

  
 

Fig. 11. Release profiles. Open square: burst and rapid phase II. Filled circles: tri-phasic 
release with a short phase II. Crosses: burst and zero-order release. Filled diamonds: tri-
phasic release. dashes: bi-phasic release - similar to tri-phasic but without burst release [86]. 
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Phase I in the tri-phasic release profile is usually connected with burst release and has been 
attributed to non-encapsulated drug particles on the surface and so they are accessible to 
hydration [85]. Phase II is often a slow release phase, during which the drug diffuse slowly. 
In this phase polymer starts to degrade or hydrate. Phase III is usually a period of faster 
release, often attributed to the onset of erosion. This phase is sometimes called the second 
burst [89]. For the analysis of released drugs and characterization of release profile high-
performance liquid chromatography (HPLC) or ultraviolet–visible spectroscopy (UV-VIS) 
were used. In the Table 3 there are shown the analytical methods for different drugs 
incorporated in PLGA-PEG-PLGA. 
 
Table 3. Methods used for analysis of released drug. 
 

copolymer drugs analysis references 
PLGA–PEG–PLGA doxorubicin UV-VIS spectroscopy Yu et al. [90] 
PLGA–PEG–PLGA isoniazid UV-VIS spectroscopy Gajendiran  [91] 
PLGA–PEG–PLGA ganclicovir  HPLC Duvvuri [92] 

2.6 Type of Drug Delivery Carriers  

 In present days, drug carriers such as core-shell particles, spheres, micelles, dendritic 
polymers (see Fig. 12) are known. Core-shell nanoparticles and nanospheres have spherical 
structures ranging around 100 nm in size. Core-shell nanoparticles have drug entrapped inside 
the core. When the drug is entrapped in or adsorbed on the surface of a matrix it forms 
“nanospheres”. A wide variety of medicines can be delivered using nanoparticles such as 
drugs, vaccines and biological macromolecules [87, 88].  
  

 
Fig. 12. Schema of (A) denrimers [93], (B) core-shell spheres [94], (C) polymer micelles 
[63].. 

 
 The polymer micelles consist of copolymer blocks, which are self-assemble into spherical 
micelles in water. A polymer micelle is amphiphilic and has usually a diameter of about 20 -
 50 nm [95]. The drug molecules can be trapped in the inner hydrophobic core while the outer 
shell is hydrophilic and soluble in aqueous media. However, below a critical micelle 
concentration (CMC), the polymeric aggregates dissociate into free chains, leading to the 
sudden release of the drug [96]. Dendrimers are synthetic, highly branched, spherical, mono-
disperse macromolecules of nanometer dimension. The most studied class of dendrimers 
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investigated for drug delivery is the polyamidoamine (PAMAM). Dendritic polymers were 
first synthetized by Tomalia and Newkome in 1980s. These dendritic micelles contain 
hydrophobic interior and hydrophilic surface functionality to overcome problem with CMC 
[97]. 
 The major problems of some drugs are their low solubility in aqueous solution. Therefore 
their encapsulation in the PLGA-PEG-PLGA copolymer was crucial [98]. Gajendiran at el. 
have used hydrogel of poly(ε-caprolactone-co-glycolide)-poly-(ethylene glycol)-poly(ε-
caprolactone-co-glycolide) [P(CL-GL)-PEG-P(CL)] triblock for in vitro release of isoniazid 
(INH) [91]. INH was encapsulated in shell based on PLGA-PEG-PLGA using W/O/W 
emulsion method by Lin et al. 

2.6.1.1  Target specificity useable in cancer chemotheraphy 

  The surface of drug delivery carriers can be functionalized by „receptors“ e.g. peptides, 
antibodies, proteins, polysaccharides, glycolipids and glycoproteins (Fig. 13). Particles 
functionalized by receptors are known as targeting and have been used in chemotherapy. 
Chemotherapeutic agents damage healthy tissues, leading to systemic toxicity and adverse 
effects that greatly limit the maximum tolerated dose of anti-cancer drugs and thus restricts 
their therapeutic efficiency [98, 99]. 
 

 
 

Fig. 13. Schema of multifunctional polymeric nanohybrid devices for targeted drug delivery 
[99]. 
 
 Gold nanorods or rod-shaped gold nanoparticles are often used in cancer treatment - as 
contrast agents for in vivo bioimagination and as thermal converters for photothermal due 
therapy photothermal effect [100]. The present of gold nanoparticles in human body cause 
immunogenic reaction and are captured by specific cells of the body. Therefore, the drug is 
coated with polymeric materials that do not cause an immunogenic response [101]. 
 
. 
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2.6.2 Biological barriers for drug carries 

 The common types of drugs are often detected in body like foreign substances and are 
cleared by the reticuloendothelial system (RES). RES are known as Kupffer cells in liver and 
they are primary cellular component of the scavenging system of the body and very 
effectively clear bacteria, colloidal particles and foreign from the body [102]. Therefore, drug 
entrapped into hydrophilic/amphiphilic polymer have “invisible” manner for RES and thus 
prolonged circulatory in the body.  
 For example, in mice intravenously injected with unprotected colloidal gold nanoparticles 
(gold particles containing drugs on its surface), was observed that 90-95 % of these gold 
nanoparticles are cleared from the circulation in 5-10 min after injection [103].  

2.6.1 Storage of (nano)particles 

The particles made from degradable polymers/copolymers are often stored in dry form for 
greater stability. Thus, the nanosuspensions are lyophilized and kept at low temperature (in 
frigde). Sometimes it is necessary to control the relative humidity to avoid hydrolysis [104]. 
Particles which are retained in the solution should be stabilized by a suitable stabilizing agent, 
because colloidal dispersions are unstable system due their high interfacial energy [105]. 

2.7 Determination of DDC parameters    

 It is necessary to known parameters (pacticles size, distribution, shape or thickness of the 
shell) of prepared DDC for biodistribution. Microscopy is suitable for determination of shape, 
but cannot be a method for the accurate determination of average shell thicknesses, it only 
gives an estimate. Microscopy is appropriate to supplement the method as dynamic light 
scattering (DLS) or small angle neutron scattering (SANS), which provide statistically 
averaged values. Combination of both methods gives comprehensive information about 
investigated materials. The Table 4 is the overview of used equipments for characterization of 
DDC. 
 
Table 4. Equipments used for determination of DDC parameters. 
 

device type of DDc polymer references 
SEM particles 

core-shell 
PLGA 

PLGA-PLA 
Arnold [106] 
Zhao [107] 

TEM particles 
micelles 

PLGA-PEG-PLGA 
PLGA-PEG-PLGA 

Gajendiran [91] 
Song  [98] 

FESEM 
 
 

particles 
core-shell 
particles 

PLGA-PEG-PLGA 
PLGA 
PLGA 

Gajendiran [91] 
Vukomanovic [108] 

Falco [109] 

SANS capsules PLA  Rübe [110] 
DLS capsules PLA Rübe [110] 
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2.7.1 1H NMR relaxometry 

Relaxometry is based on the relaxation time of water hydrogen, which is strongly dependent 
on the environmental conditions. This method it is possible to study water in the pores, 
swelling or solid-water interaction. It seems to be suitable method for studium of 
nanocomposites or CS particles. The relaxation parameter allows evaluation of the 
(nano)particles and molecular interaction between both nanocomposite components and its 
surroundings.  
Almeida studied composites of poly(L-lactid acid) (PLLA)/silica or clay by 1H NMR 
relaxometry. Silica promoted an increase in rigitidy, due to the strong intramolecular forces in 
comparison of clay which did not cause any significant change in the molecular mobility in 
the nanocomposites, probably due to non-affinity of the chemical structure [111]. However, 
this method has been used to study non-invasively the gel microstructure and gelation 
dynamics of alginates. Relaxation time (T2) of the water protons in gels is a sensitive indicator 
of the state of gelation. The changes of relaxation time indicate the changes in structure like 
gelation, swelling or degradation [112]. 
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2.8 Copolymer/HAp drug delivery carriers 

 The strategy to prolong drug release has been the preparation of calcium phosphate cements 
(CPC)/copolymer composites. The amount of HAp is in the range between 0.5 - 6 wt.%  
Release of the drug depends on the bond between hydroxyapatite and also on the properties of 
hydrogel (such as crosslinking of hydrogel network, composition of copolymer, molecular 
weight and degradation kinetic). The possibility to use HAp is not only as carriers for local 
and controlled supply of drugs carriers but also bone substitutes. Combination of bioactive 
inorganic material with the sol phase (polymer solution) form viscous moldable paste which 
in some instances can be injected with minimally invasive procedure (Fig. 14). In this way, 
they can be filled large or small bone defects, which can be caused by disease, tumor, 
infections or fractures [113, 114]. 
 

 
 
Fig. 14. Drug delivery from calcium phosphate cements [11]. 
 
 The polymer with the weak mechanical properties changes their original properties with the 
adding of CPC. Laurencin studied mechanical properties and degradation rate of pure PLGA 
and PLGA/HAp composites. PLGA exhibited elastic modulus of about 293 MPa, while 
copolymer modified by 50 wt.% of HAp exhibited 1459 MPa. After six weeks of degradation 
under physiological conditions, the reinforcing effect had diminished. Elastic modulus of pure 
copolymer was 10 MPa after six weeks [115]. The advantage of HAp/copolymer is 
fabrication in various shapes.  
 Kim et al prepared porous composite (PLGA/HAp) scaffolds by the gas foaming/particulate 
leaching (GF/PL) and solvent casting/particulate leaching (SC/PL) methods. The fabricated 
scaffolds were seeded by cells onto the tops of scaffolds. Histological analysis showed bone 
formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds due higher 
exposure of HA nanoparticles on the scaffold surface [116]. Composites for bone tissue 
engineering are commonly fabricated in form of the fiber. PLGA/HAp fibers content 
DNA/chitosan nanoparticles were prepared by electrospinning method. HAp as additive could 
aid the release of DNA from fibers, enhances cell attachment and protects cells [117].  
 PLGA/HAp nanoparticles (or suspension) composites have been extensively investigated 
due their biocompatibility and high drug encapsulating. Wand and co-workers prepared 
poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres as injectable 
depot for sustained delivery of antibiotic Doxycycline (Doxy). Encapsulation of HAp into the 
PLGA shell decreased burst release of antibiotics [118]. Table 5 summarized different CPCs 
formulation and drugs which have been used in medical applications. All of them exhibited 
burst release.  
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Table 5. Low molecular weight drugs incorporated in CPC. 
 

Drugs kind of drugs Type of CPC Liquid phase References 
antibiotics gentamicin B 0,9 % NaCl, water 119, 120, 121 
  A water, PAA 122, 123 
 vancomycin B citric cid 124, 125 
  A solution A 126 
 cephalexin B Na2HPO4, water 127, 128 
anti-inflammatory ibuprofen 

indomethacin  
B  
B 

Ca(OH)2, H3PO4 
(11-20mN) H3PO4 

129 
130, 131 

anticancer cisplatin B solution A 132 
 doxorubicin  B solution A 133 
 methotrexate B 0,05 % H3PO4 134 
anti-osteoporotic alendronate B Na2HPO4 135 
other caffeine B  water 136 

 clorhexidine A 800 mM citric acid 137 

A and B apatite and brushite CPC, solution A: 5 % sodium chondroitin succinate, 0.3 % NaHSO4, 82,7 % H2O   

  

2.8.1 Mechanisms of HAp-based Drug Delivery Carriers  

 Calcium phosphate cements provide some benefits for bone tissue engineering such as 
biocompatibility, proliferation and ability to harden in vivo. When liquid phase (water or 
polymer solution containing drugs) and powder are mixed, progressive dissolution of the 
ceramic particles takes place and a new mineral phase precipitates. The drug dissolving into 
the liquid phase is not expected inside in the crystalline lattice of the precipitated crystals, but 
is entrapped between the entangled crystals (Fig. 15). 
 

 
 
Fig. 15. Schematic presentation of the different ways a drug can be found in CPC matrix (a) 
as individual molecules dissolved in the liquid within pores (b) absorbed or chemically 
bonded to the crystal structures (c) drug crystal or aggregates [12]. 
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CPCs (such as hydroxyapatite) can be used as drug carriers. Incorporation of drugs to the 
CPC strongly dependents on size of incorporated drug, microstructures of CPC porosity, 
surface area, permeability and interaction between drugs and CPC [11]. 
 There are some methods of incorporation of the drug into the CPCs. Usually drugs are 
incorporated to CPCs by blending drug powder with the solid phase or dissolving it within the 
liquid phase. In both cases the drug is incorporated throughout the whole volume of the 
material, although a more homogenous distribution will be achieved when incorporated in the 
liquid phase. A different approach is to incorporate the drug by impregnation of pre-set CPC 
solid blocks or granulates with a drug solution.  

2.8.2 Thermoresponsive Copolymers/CPC Composites  

 Some thermosensitive copolymers behave like sol at laboratory temperature and gel at body 
temperature. Thus polymer aqueous solution could be is easily mixed with drugs, proteins, 
cells or bioactive substances at lower temperature. While the temperature increases the sol 
changed into gel and the substances are entrapped in the gel. The physical properties of 
original thermosensitive copolymers changed significantly with adding of CPC, therefore it is 
very important to evaluate the changes in viscosity or elasticity. 
 In 2004 HAp/Fisiograft composite was prepared in three forms: powder, gel and sponge 
block. Fisiograft is commercial name for copolymer based on the PEG and PLGA (ratio 
75:25). It was proved that the most suitable form of material for application in bone defects is 
a combination of gel and powder, in a weight pro-portion of 50:50 [138]. 
 Lin characterized diblock copolymer (PLGA-PEG) by rheology and investigated the 
changes in storage modulus (G´) and viscosity of pure hydrogel and hydrogel/HAp 
composites. HAp significantly affected the magnitude on increasing of G´. The storage 
modulus of hydrogels increased with increasing HAp content [16]. 
Triblock copolymer of poly(ethylene glycol) - poly(ε- caprolactone) - poly(ethylene glycol) 
(PEG-PCL-PEG, PECE) was modified by n-HAp (up to 30 wt %. The present of n-HAp 
caused the shift of gelation temperature to the higher temperature in comparison with original 
copolymer solution without n-HAp (from 32°C to 40°C). The morphologies observed using 
SEM of n-HAp/PECE hydrogel nanocomposites exhibited interconnected pores with irregular 
shapes. With the addition of n-HAp the pores changed slightly and became less 
interconnected pores [139]. 
An important drawback of synthetic polymers is their acidic degradation products can lower 
the local solution pH. The resultant acidic medium accelerates further degradation in an 
autocatalytic manner, which triggers inflammatory and foreign body reactions in vivo. The 
addition of HAp (or generally CPC) to the polymer increased pH of polymer solution [83]. 
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2.9 The Common Techniques Used in Preparation of Drug Carriers  

 Controlled release drug delivery employs devices such as polymer-based disks, rods, 
pellets, or microparticles which encapsulate drug that release at controlled rates for relatively 
long periods of time. While a variety of devices have been used for controlled release drug 
delivery, biodegradable polymer microspheres are one of the most common types and hold 
several advantages. Microspheres can encapsulate many types of drugs including small 
molecules proteins, nucleic acids or bioactive inorganic materials and are easily administered 
through a syringe needle. Microspheres can be prepared in a large number of ways e.g. by 
emulsion method, spraying techniques, etc. Emulsion processes may be controlled by stirring 
rate, solvent and/or by particles size adding to the primary solution [140]. 

2.9.1 Single Emulsion Process (W/O method) 

 Polymer is dissolved in volatile organic solvent (e.g. dichloromethane) in order to prepare a 
single phase solution. The particles of drug (or other healing medicament) are added to the 
solution to produce dispersion in the solution (Fig. 16). 

 
 

Fig. 16. Spheres formation by W/O process [2]. 
 
The polymer/drug suspension is then emulsified in large volume of water in the presence of 
emulsifier (polyvinyl alcohol (PVAl)) in appropriate temperature with stirring. The organic 
solvent is then allowed to evaporate or extracted to harden the oil droplets under applicable 
conditions. W/O emulsion method is ideal for water-insoluble drugs like steroids [141, 142]. 

2.9.2 Double Emulsion Process  

2.9.2.1 Water-in-oil-in-water process (W/O/W) 

 Water-in-oil-in-water emulsion methods are best suited to encapsulate water-soluble drugs 
like peptides, proteins, and vaccines. At first the drug is dissolved in aqueous phase 
(deionized water) and then this drug solution is added to organic phase consisting of organic 
solvent and some copolymer (or polymer). These two phases are stirred to form water-in-oil 
emulsion (W/O). Emulsion prepared like these way is added to PVAl (concentration is about 
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0.5 wt.%) aqueous solution and further emulsified (W/O/W) (Fig. 17). The organic solvent is 
then allowed to evaporate or is extracted in the same manner as oil-in-water emulsion 
techniques [143, 144, 145].  
 

 
Fig. 17. Preparation of nanospheres by W/O/W method [146].] 
Chyba! Nenalezen zdroj odkazů. 

2.9.2.2 Solid-in-oil-in-water (S/O/W) 2.9.2.2 Solid-in-oil-in-water (S/O/W) 

 The emulsion system consists of two processes. Solid-in-oil (S/O) phase is prepared by 
dispersing solid phase in polymer solution to form oil phase. Then the S/O phase is dropped 
in the water phase containing emulsifier and stirred vigorously to obtain S/O/W emulsion 
[146, 147, 148]. S/O/W method is an alternative encapsulation procedure for W/O/W.  
 Protein solution exposed in an organic phase containing polymer could resulted in protein 
denaturation. In S/O/W method dehydrated protein is in the form of powder and being used to 
create a suspension in an organic phase, followed by emulsification in aqueous solution to 
allow microspheres formation. This procedure eliminates W/O emulsion step and because the 
absence water/organic solvent interface, it might in turn increase protein stability within 
encapsulation procedure [149]. 

2.9.3 Spray-drying Techniques 

 Spray-drying (SD) can be defined as the transformation of a material from a fluid state into 
a dried particulate form by spraying the feed into a hot drying gas medium. This process is 
very rapid, convenient and with few processing parameters makes it suitable for industrial 
scalable processing. The main disadvantage of this process is the adhesion of the 
microparticles to the inner walls of the spray-dryer. Using SD drug/protein/peptide 
microspheres might be prepared [150]. 

2.9.4 The preparation methods used for amphiphilic copolymer  

The presented methods are focus on the structure types of thermosensitive copolymers 
(PLGA-PEG, respectively) and their structure-influenced applications in drug delivery.  
These polymeric micelles have a number of significant advantages, for example it is a 
thermo-dynamically stable system, the solubilization of insoluble drugs is possible by their 
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encapsulation into hydrophobic cores the particle size of micelles is between 10 nm and 
100 nm and therefore  it is relatively easy for micelles (on nanoparticles) to pass through 
tumor leaky vasculature. The DDS based on the micellar structure can be prepared by dialysis 
(penetration of solvent through membrane), film-casting (evaporation of organic solvent to 
form dry polymer film), freeze drying or co-solvent evaporation.  
Preparation of thermosensitive (nano, micro) particles is mostly the same as for another 
“non-thermosensitive” biocompatible polymers/copolymers (PLGA). The particles size 
strongly depends on the chosen method, amount of drug-loading, the length of polymer 
hydrophobic/hydrophilic blocks, molecular weight, etc. 
Thermosensitive hydrogels have enormous advantages to gel in situ upon injection into the 
body and the encapsulation of proteins or drugs. A new method called ring-opening 
polymerization, using microwave radiation to synthesize PLGA–PEG–PLGA, has many 
significant advantages compared with traditional methods; for example, no solvent is required 
during the synthesis and purification process [151] (Fig. 18). 
 

 
 
Fig. 18. The preparation methods for various types of thermosensitive DDS. 

2.10 Rheology 

 The term rheology was first used in physics and chemistry by E. C. Bingham and M. Reiner 
at 1929 when the American Society of Rheology was founded in Columbus. Since then the 
rheology is desired tools for materials characterization [152]. Rheological testing includes 
materials from water-like liquid over paste and composite to solid materials. Especially in 
(micro or nano)composites materials rheology can predict filler and matrix interactions a 
therefore this method was chosen. 
 Nanocomposites represent system, where the specific filler surface area is around 100 g/m2 
(microfiller have surface area usually less than 10 g/m2). Moreover, the nanofiller particles 
dimension is comparable with dimension of polymer chains. Incorporating randomly 
nanoparticles into the copolymer matrix leads to the interaction of polymer chain and causes 
conformational restrictions of them [153] (Fig. 19).  
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Fig. 19. Schematic approach the size of nanoparticles, microparticles and polymer chain 
[153]. 
 
 Rheological properties of particulate suspension change significantly with favorable 
particles-matrix interactions compared to non-interaction system or strong particle-particle 
interactions [154].  
 Many research groups have been investigated the aggregation/flocculation process in shear 
flow condition. The process of aggregation or dislocation of nanoparticles in solution under 
shear flow by perikinetic/orthokinetic conditions is controlled. Perikinetic aggregation is due 
the Brownian motions (Fig. 20a). On the other hand, orthokinetics aggregation is due higher 
shear rate that tends to bring particles close each other (hydrodynamic parameter). High 
applied shear rate leads to the thickening of nanofluid (Fig. 20c) [155]. 
But almost of rheological flow measurements are in the range from 10-2 to 103 s-1. The motion 
of the particles with the fluid flow in a nonuniform field of velocity will lead to a shear 
thinning caused by the fact that the nanoparticles will adopt a more flow oriented arrangement 
(Fig. 20b). 

 
Fig. 20 Perikinetics aggregation (a), shear thinning of nanofluids (b) and orthokinetics 
aggregation - high shear rate [154]. 



31 
 

 
The nanofluid, containing spherical SiO2 nanoparticles, was submitted to strong shear rates 
(250·103 s-1). Increase in volume fraction of nanoparticles in the system tends to the present of 
agglomerates. The smaller particles (9 and 11 nm) have the stronger tendency to agglomerate 
due Van der Waals forces [156]. Existence of particles aggregations in the liquid suspension 
is indicated generally by pseudoplastic behavior. Nanosuspension of TiO2 suspension 
exhibited pseudoplastic behaviorand for the determination of yield stress various empiric 
model were used (Bigham, Casson, Herschel-Bulkley model) [157]. 
 The aggregation process can be study also by dynamic light scattering or microscopy 
(TEM, SEM). However, rheological properties can provide the knowledge on the structure 
within the nanofluids, under both static and dynamic conditions. After that one can anticipate 
nanoparticles behavior in fluid and its tendency to agglomeration/aggregation. 
 The reinforcement mechanisms and the influence of n-HAp and CS particles in 
thermosensitive copolymer matrix by rheological measurements were investigated. It is 
necessary to characterize nanocomposite behavior in flow condition (at higher shear rate) for 
its future application such an injectable bone adhesive, drug delivery carriers.   
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3 MAIN AIMS OF DISSERTATION WORK 

 The main goal of presented doctoral thesis was preparation of the nano-

hydroxyapatite/thermosensitive copolymer composites which are liquid at laboratory 

temperate and gels at body temperature.  

The first type of composite consists of rigid hydroxyapatite particles and thermosensitive 

copolymer matrix (PLGA ̶ PEG ̶ PLGA). In the second case, the core-shell particles are 

incorporated in thermosensitive copolymer matrix. The in the core are situated the n-HAp 

particles which are covered by copolymer shell of thermosensitive triblock copolymer 

functionalized by itaconic anhydride to form α, ω-itakonyl[(polylactid-co-polyglycolid)-b-

polyethylenglycol-b-(polylactid-co-polyglycolid)] (ITA/PLGA ̶ PEG ̶ PLGA/ITA). The 

carboxyl-end groups are able to further chemical crosslinking.  

 

The individual steps of the proposed doctoral thesis can be summarized in following steps: 

1.   Synthesis thermosensitive PLGA–PEG–PLGA and novel functionalized ITA/PLGA–

  PEG– PLGA/ITA copolymers. 

2.  Clarification of temperature-dependent micellization behavior of both thermosensitive 

  triblock copolymers. 

2.   Preparation of “core-shell” structure (CS), including chemical crosslinking (CS-x).  

3.   Rheological characterization of CS-x and n-HAp particles in thermosensitive copolymer 

   matrix. 

4. The release study of CS-x and n-HAp particles from thermosensitive matrix into the 

 water incubation medium. 
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4 EXPERIMENTAL PART 

4.1 Chemicals 

PEG (Mn = 1 500 g·mol-1), Sn (II)2-ethylhexanoate (95 %), N-Ethyl-N′-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC), poly(vinyl alcohol) (PVAl) 
(Mw = 130 000, 99 % hydrolyzed) were purchased from Sigma-Aldrich (Germany), d,l-
lactide (LA, 99.9%) and glycolide (GA, 99.9%) were supplied from Polysciences 
(Pennsylvania, USA). Itaconic anhydride (ITA 97 %) was obtained from FLUKA 
(Switzerland). Ultrapure water (ultrapure water of type II according to ISO 3696) was 
prepared on our Elix 5 UV Water Purification System (Millipore, Merck spol. s r. o.). 
Acetone was purchased from Lach-ner (Czech Republic). Nano-hydroxyapatite (n-Hap) was 
prepared by Ing. Klára Částková, Ph.D. (CEITEC VUT, Brno).  

4.2 Materials and Methods 

4.2.1 Polymer synthesis  

The PLGA—PEG—PLGA triblock copolymer with weight ratio of PLGA/PEG equal 
to 2.4 and molar ratio of LA/GA equal to 2.9 (PDI = 1.15, Mn = 5 050 g·mol-1 for PLGA—
PEG—PLGA, Mn = 5 200 g·mol-1 for ITA/PLGA—PEG—PLGA/ITA) was synthesized via 
ring opening polymerization method in a bulk under nitrogen atmosphere according to 
Michlovska et. al [77] and was used pro polymer matrix. Briefly, PEG was degassed 
and dewatered at 130 °C for 3 h under the vacuum and D,L-lactide and glycolide monomers 
were added against the nitrogen outflow. After the homogenization by stirring, Sn(II)2-
ethylhexanoate as organic catalyst was injected in order to start up the copolymerization 
at 130 °C for 3 hours (PLGA ̶ PEG ̶ PLGA). Functionalization with ITA proceeded at 110 °C 
for 1 hour (ITA/PLGA ̶ PEG ̶ PLGA/ITA). The content of end-capped ITA was 65 %.  
Both copolymers were purified from unreacted monomers by dissolving in cold ultrapure 
water and heating the solution up to 80 °C. Precipitated polymer was separated by decantation 
and dried in freezer dryer until the constant weight. The purifying process was repeated three 
times. ITA/PLGA ̶ PEG ̶ PLGA/ITA copolymer was further used for double emulsion method 
to from polymer shell of a core from hydroxyapatite particles.  
 

4.2.2 Nano-hydroxyapatite particles  

 The needle-shaped nano-hydroxyapatite particles (n-HAp) were obtained from Ing. Klára 
Částková. Ph.D. (Institute of Materials Science and Engineering, Brno and CEITEC BUT, 
CZ). Briefly, the nanoparticles were prepared by precipitation method of calcium nitrate and 
ammonium phosphate in the presence of ammonium hydroxide. The particles were treated 
hydrothermally at 150 °C for 1 hour and ground on a planet mill for 4 hours.  

4.2.3 Core-shell particles   

This part had to be removed due to papent priority.  
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4.3 Characterization of Materials 

4.3.1 Proton Nuclear Magnetic Resonance (1H NMR)  

Molecular weight, PLGA/PEG and LA/GA ratios were confirmed using 1H NMR 
spectroscopy on 500 MHz Bruker AVANCE III instrument using 128 scans in CDCl3 solvent. 

4.3.2 Gel Permeation Chromatography (GPC) 

Number average molecular weights (Mn) and polydispersity index (Mw/Mn) of the copolymers 
were determined by GPC method using Agilent Technologies 1100 Series instrument 
equipped with isocratic pump, autosampler, RI and UV-VIS detector, fraction collector, 
column thermostat up to 80 °C and 300 × 7.5 mm PLgel 5 µm MIXED E column with THF as 
the eluent at a flow rate of 1 mL·min-1 against linear polystyrene standards.  

4.3.3 Dynamic Rheological Analysis 

 The thermosensitive and mechanical properties of the pure copolymer solution, n-HAp and 
CS modified were investigated by a dynamic stress-controlled rheometer (AR-2 TA 
Instruments) with Cone Plate geometry (angle 2°, diameter 40 mm and gap 60 µm).  
Cold polymer solution (600 µL) was transferred to the Peltier (temperature control system) by 
micropipette. Before each measurement the solvent trap was filled with distilled water and the 
liquids were used to prevent evaporation of the sample.  
 Thermosensitive properties were study by dynamic oscillatory mode. Dynamic oscillatory 
mode was set at constant angular frequency of 1 rad·s-1 with temperature ramp from 15 to 
60 °C (with temperature increments of 0.5 °C·min-1) and shear stress at 0.4 Pa. All 
measurements lie in within linear region and in which dynamic moduli are independent on 
measurement conditions. Before measurements were the samples equilibrated for 2 minutes. 
 The dependence of neat copolymer solution and n-HAp and/or CS viscosity in copolymer 
matrix on the shear rate and influence of the system composition was studied. The shear rate 
range was carried out from 10-2 to 102 rad·s-1. The samples were equilibrated for 2 minutes at 
first step conditioning and in the second step conditioning following 10 minutes to ensure 
sufficiently isothermal conditions into the entire sample volume. 

4.3.3.1 Kinetics of crosslinking 

The kinetic of crosslinking by oscillatory mode was study. The experiments were carried out 
at 23 °C (sol phase). The rheological study of crosslinking is necessary for core-
shell(crosslinked) preparation. ITA-modified copolymer solution and crosslinked agent were 
transferred on Peltier and measured immediately. The measurement was switched on without 
pre-shear test. 

4.3.1 Fourier Transformed Infra-Red spectroscopy (ATR-FTIR) 

Infra-Red spectra of triblock copolymers and chemical functionalization with ITA were 
confirmed by FT-IR spectrometer (Bruker Tensor 27) in range of 4000 ̶ 650 cm-1 using 
attenuated total reflectance (ATR) sampling technique.  
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4.3.2 Environmental scanning electron microscopy/Energy Dispersive X-ray 
(ESEM/EDX) 

 The CS structure was investigated by environmental scanning electron microscopy (FEI 
Quanta 250). Samples were prepared by placing a droplet of CS aqueous suspension onto 
aluminium stub. The samples were dried at laboratory temperature and then measured at the 
operating voltage of 30 kV (spot size 2.5) and working distance of 10.00 mm.  
The presence of the calcium and phosphorus ions (n-HAp) in the copolymer core can be 
detected by Energy Dispersive X-ray (EDX) analysis.  

4.3.3 Transmission electron microscopy (TEM) 

CS particles and n-HAp particles were observed using transmission electron microscopy 
(Tecnai Sphera 20 and Tecnai G2, both FEI). The samples was dissolved in 50 µl 
of 50/50 vol. % (ethanol/miliQ water), treated by Vortex, 4 ul of suspension was applied on 
grid (Cu 400 mesh + continous carbon - 50; glow discharge 10 s at 15 mA), the excess of 
samples was washed away.  

4.3.4 Dynamic light scattering (DLS) and zeta potential  

 Dynamic light scattering (DLS, DynaPro Nanostar, Wyatt) (laser wavelength 658 nm) 
using digital autocorrelator was carried out to determine the size distribution of micelles in the 
aqueous copolymer system. Measurements were then performed at increasing temperatures 
from 25 °C to 55 °C. The DLS device (Zetasizer Nano ZS, Malvern) was employed for 
measuring of zeta potential at 4 mV by He-He laser.  

4.3.5 Brunauer-Emmet-Teller method (BET method) 

BET method is based on the adsorption/desorption of nitrogen gas molecules on the material 
surface and is suitable for determination of specific surface area (g·m-2) of gained n-HAp 
particles. The measurement was performed on Quantachrome NovaWin 2200e Instrument. 
The sample was degassed under vacuum at 300 °C for 20 hours.  

4.3.6 Particles size of HAp powder 

The mean size and particles size distribution by HELOS Particles Size Analysis (Sympatec) 
was determinated. HELOS is powerful instrument for measuring of the particles in wet/dry 
form and thus can predict new interactions in aqueous environment tend to agglomeration 
and/or aggregation. 

4.3.7 Inductively coupled plasma optical emission spectrometry (ICP-OES) 

ICP-OES analytical technique was selected for the detection of released calcium (phosphorus) 
ions from hydroxyapatite. Homogenuous n-HAp/copolymer composite (a) was kept at 37 °C 
in incubator for 1 hour to form a gel. The gel was poured 2 ml of water (b).  After 0, 3, 6, 9 
and 12 days the water was decanted and added to 2 ml of 1M HCl for ICP-OES analysis. 
Analysis was performed on ICP-OES (Ultima 2, Horiba Jobin Yvon, France) equipped with 
Mainhard type nebuliser and cyclonic spray chamber. The plasma gas flow (Ar) was 12 l/min, 
auxiliary gas flow (Ar) 0.5 l/min, generator power 1200 W and nebuliser pressure 0,29 MPa. 
The measured spectral lines were 213,667 nm (P) and 422,673 nm (Ca), integration time was 



36 
 

0.5 s for both spectral lines. The calibration solutions of P and Ca for the ICP-OES were 
prepared by dissolution of knowing amount of hydroxyapatite in 0.1 M hydrochloric acid.  
 
Before analysis, the HAp particles had to be dissolved in 1 M HCl (equat. 1) to give calcium 
cations. For each analysis, the separate vial with the composite was prepared. The amount of 
released ions was calculated according to calibration curve.  
  

        ( ) ( ) −−+ ++→ 2OH6PO10CaOHPOCa 3
4

2
26410       (1) 

 

4.3.8 1H nuclear magnetic resonance relaxometry (1H NMR relaxometry) 

 Nuclear magnetic resonance measurement for the analysis of the relaxation time of 
hydrogen proton on Minispec (Bruker, Germany) was used. Device was operating at the 
Lamour frequency of 7.5 MHz for protons. T2 (spin-spin relaxation time) decay were obtained 
by applying the CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence and the results were 
fitted by RIWinFIT software (Version 2.4, Resonance Instrument Ltd. Oxfordshire, UK). The 
relaxation delay was 12 s, number of echoes (6000), scan (32) and interecho constant 
spacing 2 ms. The measurement of newly-formed CS particles and (another components used 
for CS particles preparation) as n-HAp particles and water were carried out in glass NMR 
tube. All experiments were carried out at 23 °C. 
 
 

5 CONCLUSION 

In the first experimental part, PLGA ̶ PEG ̶ PLGA (ABA, Mn = 5 050 g·mol-1) and ITA/ 

PLGA ̶ PEG ̶ PLGA/ITA (ITA/ABA/ITA,  Mn = 5 200 g·mol-1) copolymers with PLGA/PEG 

ratio 2.4 and LA/GA ratio 2.9 were synthetized by ring-opening polymerization and purified. 

The copolymer structure, molecular weights and the amount of ITA bonded to original ABA 

copolymer were confirmed by 1H NMR. Both copolymers exhibited narrow polydispersity 

index (1.15).  
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5.1 List of Abbreviations 

A1, A2, A3 water content in individual domains, in 1H NMR relaxometry 
ABA viz. PLGA ̶ PEG ̶ PLGA 
ATR-FTIR  Attenuated Total Reflectance Fourier Transform Infrared 
 spectroscopy 
BET method  Brunauer-Emmet-Teller method  
Ca(OH)2 calcium hydroxide 
CMC critical micellar concentration 
CPCs calcium phosphate cements  
CS  core-shell particles (with physically shell) 
CS-x core-shell particles (with chemically crosslinked shell) 
DCPD  dicalcium phosphate dihydrade 
DDC   drug delivery carries 
DLS dynamic light scattering 
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DNA deoxyribonucleic acid 
EDC N-Ethyl-N′-(3-dimethylaminopropyl) carbodiimide 
 hydrochloride 
G´, G´´ elastic and viscous shear modulus 
GCV ganclicovir 
GF/PL gas foaming/particulate leaching method 
GPC gel permeation chromatography  
D,L-LA D,L-lactide 
DDSs drug delivery systems 
HAp hydroxyapatite 
1H NMR proton nuclear magnetic resonance 
H3PO4 phosphoric acid 
HPLC high-performance liquid chromatography  
IHN isoniazid 
ICP-OES inductively coupled plasma optical emission spectrometry 
ITA itaconic anhydride 
ITA/ABA/ITA viz. ITA/PLGA ̶ PEG ̶PLGA/ITA 
ITA/PLGA ̶ PEG ̶PLGA/ITA α, ω-itakonyl[(polylactid-co-polyglycolid)-b-  
  polyethylenglycol-b-(polylactid-co-polyglycolid)] 
 
L-LA L-lactide 
MEEP  poly[di(methoxyethoxy-ethoxy)phosphazene 
Mw/Mn polydispersity index 
n-HAp nano-hydroxyapatite  
Na2HPO4 sodium dihydrogen phosphate 

NaCl sodium chloride 
NMR nuclear magnetic resonance 
1H NMR relaxometry nuclear magnetic resonance relaxometry 
PAA polyacrylic acid 
PAMAM  polyamidoamine  
PBS phosphate buffer saline 
PCL poly(ε-caprolactone) 
PCPP  poly[di(carboxylatophen-oxy)phosphazene] 
PDI polydispersity index 
PEG poly(ethylene glycol) 
PGA poly(glycolic acid) 
PHB poly(hydroxybutyrate) 
PLGA poly(lactic-co-glycolic acid) 
PLGA ̶ PEG ̶ PLGA poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-
 b- poly(D,L-lactic acid-co-glycolic acid) 
PPO poly(propylene oxide) 
PVAl polyvinyl alcohol  
SA sebatic anhydride  
SANS  small angle neutron scattering 
SC/PL solvent casting/particulate leaching method 
SD spray-drying technique 



51 
 

SEM scanning electron microscope 
SEM/EDX scanning electron microscopy with energy-dispersive X-ray 
 spectroscopy 
S/O/W solid in oil in water method 
tan δ  tan delta 
TAH, TBH, TCH the relaxation times of water protons used in relaxometry 
method 
TEM  transmission electron microscopy 
TTIM  test tube inverting method 
UV-VIS ultraviolet–visible spectroscopy 
W/O water in oil method 
W/O/W water in oil in water method  
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