
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SYNTHESIZING NON-TERMINATION PROOFS
FROM TEMPLATES
SYNTÉZA DŮKAZŮ NEKONEČNOSTI BĚHU PROGRAMŮ S VYUŽITÍM ŠABLON

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. ŠTEFAN MARTIČEK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Master's Thesis Specification/13436/2016/xmarti62

Brno Univers i ty of Techno logy - Faculty of I n fo rmat ion Technology

Department of Intelligent Sys tems Academic year 2016/2017

Master's Thesis Specification
For: M a r t i č e k Š t e f a n , B e .
Branch of study: Intelligent Sys tems
Tit le: S y n t h e s i z i n g N o n - T e r m i n a t i o n P r o o f s f r o m T e m p l a t e s
Category: Formal Verification

Instructions for project work:
1. Study and discuss existing approaches for proving non-terminat ion.
2. Get acquainted with the source code of the 2LS tool and its mechanisms for synthesizing

abstractions from templates .
3 . Propose a solution for describing recurrence relations for proving non-terminat ion of programs

by means of templates , an algorithm for synthesiz ing recurrence relations from these
templates , and a way to extract witnesses for non-terminat ing executions.

4. Implement the generation of the templates and the synthesis algorithm within the 2LS too l .
5. Evaluate on the benchmarks of the termination category of the Software Verification

Competi t ion.
6. Discuss the advantages and l imitations of the approach as well as possibilities of its future

development.

Basic references:
• Podelski , A . , Rybalchenko, A , : Transition Invariants and Transition Predicate Abstraction for

Program Terminat ion, In: Proc. of T A C A S ' l l , LNCS 6 6 0 5 , Springer, 2 0 1 1 .
• Gupta , A . , Henzinger, T .A. , Majumdar, R., Rybalchenko, A . , X u , R . -G . : Proving

Non-Terminat ion, In: Proc. of POPL'08, ACM Press, 2008 .
• Chen , H.-Y., Cook, B., Fuhs, C , Nimkar , K., OHearn , P.: Proving Nontermination via Safety ,

In: Proc. of TACAS '14 , LNCS 8 4 1 3 , Springer, 2 0 1 4 .
• David, C , Kroening, D., Lewis, M. : Unrestricted Termination and Non-terminat ion Arguments

for Bi t -Vector Programs, In: Proc. of ESOP'15, LNCS 9 0 3 2 , Springer, 2015 .

Requirements for the semestrai defense:
• The first two items of the subject specification plus at least the design phase from the third

i tem,

Detailed formal specif ications can be found at http://www.fit.vutbr.cz/info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical
background relevant to the problems solved, and specify what parts have been used from earlier projects or have been
taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats common
at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

P h . D . , DITS FIT BUT Superv isor : V o j n a r T o m á š , p r o f . I n g .
Consultant: Schrammel Peter, UOx

Beginning of work: N o v e m b e r f c á f l f l Á l C E I l f TECHNICKÉ V M N Ě
May 24 , 2 0 1 7 F a k u l t a |nformaenícrt.technotoQ(f

Ústav Inteligentních systémů
612 66 Brno, Boíetflchova 2

L S .

Date of del ivery:

Petr Hanáček
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
One of the properties that are most difficult to verify in the area of formal analysis is live-
ness. P rov ing non-termination of programs also belongs to the methods that verify this
property. O u r work describes the design and implementat ion of two algorithms checking
non-termination. We inspire ourselves by already existing approaches, such as recurrence
sets and over-approximation of loops wi th the use of invariants i n the form of recurrence re
lations. The ma in challenge for us was an adaptat ion of these algorithms to the S S A (single
static assignment) representation used i n 2LS and the overall integration i n our frame
work. We were able to unify the mentioned approaches into analysis of non-termination,
which achieves the best results i n comparison to the other tools that were compared at the
S V - C O M P 2017 competi t ion.

Abstrakt
Jednou z nejsložitěji verifikovaných v l a s tnos t í p r o g r a m ů v oblasti formáln í a n a l ý z y je živost .
K j e d n é z metod ověřujících tuto vlastnost p a t ř í i dokazován í neukonč i t e lnos t i p r o g r a m ů .
Naše p r á c e popisuje n á v r h a implementaci dvou a l g o r i t m ů ověřujících neukonč i t e lnos t . In
spirujeme se již exis tuj íc ími př í s tupy , jako jsou r e k u r e n t n í m n o ž i n y a nadaproximace cyklů
s v y u ž i t í m inva r i an tů ve tvaru r e k u r e n t n í c h relací . H lavn í výzvu pro n á s p ředs tavova lo
p ř i způsoben í t ě ch to a lgo r i tmů S S A (single static assignment) reprezentaci p o u ž i t é v 2LS a
jejich celková integrace v n a š e m frameworku. V z p o m í n a n é p ř í s t u p y se n á m poda ř i l o spojit
do ana lýzy neukonč i t e lnos t i , k t e r á dosahuje nejlepší výs ledky v p o r o v n á n í s exis tuj íc ími
nás t ro j i , k t e r é byly s r o v n a n é na soutěž i S V - C O M P 2017.

Keywords
termination, non-termination, 2 L S , bit-vectors, singleton recurrence set, periodical recur
rence set

Klíčová slova
ukonč i te lnos t , neukonč i t e lnos t , 2LS , b i tové vektory, j e d n o p r v k o v á r e k u r e n t n í m n o ž i n a , pe
r iodická r e k u r e n t n í m n o ž i n a

Reference
M A R T I C E K , Stefan. Synthesizing Non-Termination Proofs
from Templates. Brno , 2017. Master 's thesis. Brno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor Vojnar Tomas.

Synthesizing Non-Termination Proofs
from Templates

Declaration
Hereby I declare that this Term project was prepared as an original author's work under
the supervision of Prof. Ing. Tomas Vojnar P h . D . . The supplementary information was
provided by Dipl . - Ing . D r . Peter Schrammel. A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Štefan M a r t i č e k
M a y 24, 2017

Acknowledgements
I would like to thank my supervisor Prof. Ing. Tomas Vojnar P h D . for his willingness
to help, his flexibil i ty and providing advice whenever I needed i t . Great thanks belong to
my internship mentor Dipl . - Ing . D r . Peter Schrammel, who provided technical advice and
assistance i n conducting this thesis. M y thanks belongs also to Be. V i k t o r M a l i k , who was
very helpful i n regards to my understanding of the 2LS tool . Last , but not least, I want to
say a special thanks to my friend D a v i d H a l l F C C A , who helped me wi th reviewing my use
of the Engl i sh language.

Contents

1 Introduction 3

2 T h e 2LS Tool 5
2.1 Abst rac t Interpretation i n 2LS 5
2.2 Template-based Approach i n 2LS 6
2.3 SSA-based Representation 6

3 Terminat ion Analysis 11
3.1 Well-foundedness and Rank ing Functions 11
3.2 Intra-procedural Terminat ion Analys is in 2LS 11

4 Non-terminat ion Analysis 13
4.1 Lasso-based Approach for P rov ing Non-terminat ion 13
4.2 Bi t - level Non-terminat ion Analys is w i th a Lasso-based

Approach 15
4.3 Integer Non-terminat ion Analys is w i th Lasso-based

Approach 16
4.4 Non-terminat ion Analys is v ia Safety 16

5 Singleton Recurrence Set Search A l g o r i t h m 18
5.1 SSA-based P rogram Representation for Non-terminat ion Checking 18
5.2 SSA-based Non-terminat ion Checking 20

6 Periodical Recurrence Set Search A l g o r i t h m 24
6.1 Detect ion of Linear ly Changed P h i Nodes i n a Loop 25
6.2 Checking Existence of a Per iodica l Recurrence Set in a Loop 26
6.3 General izat ion of the Per iodica l Recurrence Set Search 28
6.4 Implementation of Per iodica l Recurrence Set Search A l g o r i t h m 28

6.4.1 Implementation of Detect ion of Linear ly Changed P h i Nodes 29
6.4.2 Implementation of The Non-terminat ion Check 29

7 Implementation 32

8 Experiments 34
8.1 Benchmarking of the Singleton Recurrence Set M e t h o d 35
8.2 Benchmarking of the Per iodica l Recurrence Set M e t h o d 37
8.3 Compar ison wi th the Other Tools 38
8.4 B u g Report 41

1

9 Conclusion

Bibl iography

Chapter 1

Introduction

Various fully automatic methods of static formal analysis play an increasingly important
role i n assuring software quality. Nevertheless, this concerns mainly checking relatively
simple properties and often using analyses that, in order to gain scalability, give up not
only completeness but even soundness. Scalable and sound methods of static analysis of
complex properties of real-life programs do s t i l l pose a lot of research challenges. Th is is
part icularly true for analyses of program terminat ion and non-termination. There exists
continuous research i n these fields, but the community working on these issues is not as
large as i n other areas of static analysis, especially i n the case of non-termination.

One of the promising tools for formal analysis and verification of C programs is 2 L S ,
supported by the DiffBlue company. The 2LS tool is based on the C P R O V E R infrastruc
ture. 2LS combines bounded model checking, k- induct ion and abstract interpretation to
implement a new efficient method called k-invariants k- induct ion [3]. The k-invariants k-
induct ion algori thm uses abstract interpretation to infer inductive invariants. To restrict
the space in which possible invariants are to be sought, 2LS uses templates in the forms of
parameterized constraints on program variables. For instance, a template for a variable i
that has values from the interval (C2 , C I) is i < C I A — i < C 2 . Searching for invariants is
then reduced to searching for suitable values of the parameters of the chosen template. In
the example, that would mean searching for the values of the parameters C I and C 2 .

2LS also includes a module for verification of termination, based on using lexico
graphic ranking functions [12]. Th i s terminat ion analysis is currently able to check never-
terminat ion (i.e., checking that there does not exist any run from the beginning of a proce
dure to its end), but the more demanding non-termination analysis, which checks whether
there is some non-terminating run of the given procedure, is missing. The goal of this work
is to propose, implement, and experimentally evaluate a non-termination analysis i n 2LS.

The 2LS tool uses a representation of programs based on the S S A (Single Static A s
signment) form, which is the transformation of a program, where every variable is assigned
once at most.

The most common technique to check program non-termination is to search for recur
rence sets. A recurrence set is a set of program states where at least one state is reachable
from the set of in i t i a l states, and, for every state in the recurrence set, we are able to
get back to the recurrence set by executing the program. In this work, since 2 L S uses
bit-vectors to represent program states, we use a notion of recurrence sets specialized for
the domain of bit-vectors as described by []. Hence, we look for one program state that
is reachable at some loop head from some in i t i a l program state and that can be reached
repeatedly from this loop head.

3

The main challenge that we address is to apply the aforementioned idea on the program
representation used in 2LS , which is specific S S A , form encoded as a single bit-vector
formula. The S S A form uses ph i nodes jo ining program states, flowing to loop heads from
before loops wi th those flowing back from the loops. The latter states are i n 2 L S over-
approximated by a free variable that can be constrained by gradually refined invariants.
These invariants can, however, s t i l l over-approximate reachable states. Hence, when using
them, we would not be able to prove non-termination. Therefore, we proposed a simple,
yet, as our experiments show, quite efficient approach, in which we use incremental loop
unwinding, and restricting the S S A form to never use over-approximated back-edges of
program loops.

Moreover, we also propose another method for checking non-termination of programs
where the above approach tends to be very inefficient. A s introduced by [11], we replace the
recurrence relations defined by loops w i t h their solutions using loop invariants and thus, we
describe arbi t rar i ly many loop iterations in one formula. Contrary to [11], where the loop
exit conditions are taken into account, we consider every loop being nonterminating and the
loop exit conditions are investigated separately. The effectiveness of this approach lies in
the representation of a periodical recurrence set by single formula. A periodical recurrence
set is a recurrence set, where the transi t ion from a state i n the recurrence set back to the
set is defined as an addi t ion of some constant C.

We have implemented and combined both of the approaches i n 2 L S . We tested our
approach on the set of benchmarks used at S V - C O M P 2017 (International Compet i t ion on
Software Verification). 2LS part icipated in this competi t ion in 2016 and 2017. In 2017,
it gained 899 points, which our approach is able to improve to 1489 points. Moreover,
our method for checking non-termination performed the best when compared to the non-
terminat ion analyses of a l l other tools that part icipated i n S V - C O M P 2017.

The rest of the thesis is structured as follows. Chapter 2 describes the principles of the
2LS tool , main ly abstract interpretation, the template-based approach, and the S S A form
used for the program representation. Chapter 3 provides an introduct ion to intra-procedural
terminat ion analysis i n 2LS . It introduces the notion of ranking functions and includes
some essential definitions. Basic principles of non-termination analysis are presented in
Chapter 4. Our method of searching for a singleton recurrence set and its implementat ion
is presented in Chapter 5. We describe the search for periodical recurrence sets and their
implementat ion i n Chapter 6. O u r experiments done on the set of benchmarks from S V -
C O M P 2017 are described in Chapter 8. F ina l ly , Chapter 9 gives a summary of our results
and contains suggestions for prospective improvements.

4

Chapter 2

The 2LS Tool

2LS is a static analysis and verification tool for C programs []. It performs interprocedural
abstract interpretation, verification and refutation of assertions and terminat ion analysis.
The too l works on bit-vectors.

2LS uses G O T O programs as an intermediate representation [6]. It performs static
analysis to derive the data flow equations for each function of the G O T O program. The
result is an S S A form, which is an over-approximation of the G O T O program, because the
loops are cut so that the variables modified inside them are havocked at the loop head (see
Section 2.3).

For the fast incremental solving 2LS uses S A T solvers, concretely M i n i S A T 2.2.1. A n
S S A equation is translated into a C N F formula by bit-precise modeling of a l l expressions
plus the Boolean guards. The formula is incrementally extended to perform an invariant
generation using template-based synthesis, to add further loop unwindings and assertions
for property checks. If a property check is satisfiable and the model computed by the S A T
solver does not take a path through an invariant, then it corresponds to a path violat ing
at least one of the assertions in the verified program. A human-readable counterexample
is provided by translating the model back to a sequence of assignments. A n unsatisfiable
property check means that the assertions are proven.

The 2LS combines incremental bounded model checking, k- induct ion and abstract in
terpretation to create a new k-invariant k- induct ion algori thm ['!]. The content of the
following sections is mainly taken from []. For the following text we have a notat ion that
x represents a vector and x scalar.

2.1 Abs t r ac t Interpretat ion in 2LS

One of the main verification methods used in 2LS is an abstract interpretation []. For
the vector of variables x, we describe the start states by the predicate ira£(x) and the
transi t ion relation by the predicate Trans(x, x'). The transi t ion relation is a formula which
describes the progression relation from one state to another after executing some program
statement. We use inductive invariants to describe the set of states that is a fixed-point
for the transi t ion relation Trans(x, x') as follows:

Definition 2 . 1 . 1 . (Inductive invariant) Inv is an inductive invariant i f it has the following
property:

(2.1)

5

The abstract interpretation i n 2LS is used to compute inductive invariants AInv which
include start states i m t (x) :

32AInv £ A : V x , x ' : (i r a i (x) => AInv(x))A . .
(AZnv(x) A Trans(x, x ') =>- A Z n u (x ')) ^ ' '

.A is the chosen abstract domain of the formulas. The result of the abstract interpretation is
an over-approximation of the set of reachable states. The check for safety is then performed
in the following way:

V x : ATnu(x)) ->Err(x) (2.3)

If the formula 2.3 does not have a model, this means that the system is safe. Otherwise,
we have to find more restrictive AInv or choose the more expressive abstract domain A.
In 2LS the template-based approach is used to choose the abstract interpretation domain,
i.e. A contains only the formulas described by a template.

2.2 Template-based A p p r o a c h in 2LS

In 2LS the state space for the invariants is restricted by a template of the form 7~(x, d),
where x are program variables and 8 are the template parameters. The second-order search
for an invariant described by formula (2.2) can thus be replaced by the first-order search
for the parameters of the template:

36 : V x , x ' : (ira*(x) T (x , 6))A . ,
(T (x , <5) A Trans(x, x ') T(x ' ,5)) K]

The quantifier alternation 3V i n the formula (2.4) is a challenge for today's S M T solvers.
Therefore the formula is negated and the parameters 8 are searched iteratively for different
choices of constants d:

3 x , x ' : - . (i r a i (x) T (x , d)) V
- i (T (x , d) A Trans(x, x ') T (x ' , d)) 1 °>

The abstract value d represents the set of a l l x that satisfy the formula 7~(x, d) . The
abstract value _L denotes empty set and T stands for the whole domain. Hence we get
T (x , _L) = false and T (x , T) = false.

2.3 SSA-based Representat ion

A program verified by 2LS is at first translated into G O T O representation. In the G O T O
version of a program, loop heads have a form of conditions and goto statements. The G O T O
representation is then converted to SSA-based representation, which w i l l be further called
the S S A form [7]. We explain our approach on a simple program below. We further provide
the corresponding G O T O program and the S S A form. We also employ C F G (Contro l F low
Graph) to explain the use of the specific constructs of the S S A form.

L i s t ing 2.1: The example part of a program in C

i n t i = 1;
w h i l e (i > 0)

r e t u r n 0 ;

(i

Lis t ing 2.2: The corresponding G O T O program to the code 2.1

s i g n e d i n t i ;

i = l ;
1 IF ! (i >= 1) THEN GOTO 2

i = -1 + i ;
GOTO 1

2 r e t u r n _ v a l u e = 0;
dead i ;

Lis t ing 2.3: The S S A form of the code 2.1

$guard#0 = == TRUE
i # l == 1
i # p h i 2 == ($guard# l s4 ? i # l b 4 : i # l)
$cond#2 == = ! (i # p h i 2 >= 1)
$guard#2 = == $guard#0
i#3 == -1 + i # p h i 2
$guard#3 = == (!$cond#2 && $guard#2)
$cond#4 == = TRUE
m a i n # r e t u r n _ v a l u e # 5 == 0
$guard#5 = == ($cond#2 & & $guard#2)

$guard#0
1
I
j

int i = 1;

i#1

i--; return 0;

Figure 2.1: C F G wi th the corresponding parts of the S S A form

The parts of the generated S S A from 2.3 correspond to G O T O program statements.
The ma in difference is the use of guard variables, which encode reachability of some pro
gram locations (see Figure 2.1). $guard#0 represents the reachability of the function entry
point. It is set to TRUE, because we do intra-procedural analysis. $guard#2 represents the

7

reachability of the loop head. $guard#3 holds when the reachable loop has the satisfiable
condit ion $cond#2. Because of the different types of loops i n C there are 2 conditions for
every loop i n the S S A form. $cond#2 represents a condit ion at the loop head (for, while)
and $cond#4 is a condit ion at the loop end (do-while). The last guard - $guard#5 holds
when the location after the loop is reached. Accord ing to the equation i n the S S A form in
Li s t ing 2.3, this happens when the loop condit ion is not satisfied and the loop is reachable.

Notice the equation i#phi2 == ($guard#ls4 ? i#lb4 : i # l) , where we use in
stead of i#3 a free variable i#lb4. This is shown in C F G i n Figure 2.1 where we cut the
back edge variable i#3 and replace it w i th i#lb4. Even though the C F G s t i l l depicts a loop,
there is no dependency between i#3 and i#lb4. The latter is a free variable representing
an abstraction. Also , instead of a guard at the loop back, which is not even created (it
must encompass $cond#4), we use another free variable $guard#ls4. Th is is an abstraction
that covers the effect of any number of loop iterations because i#lb4 is a free variable and
the choice between i#lb4 and i # l is nondeterministic. A s you can see, there is no loop in
the generated S S A , and so it became an acyclic over-approximation of the program. If the
property holds for both i # l and i#3, it can be assumed to hold for i#lb4. A n invariant is
computed in the form of constraints for i#lb4.

The way we can make the analysis more precise is to employ a loop unwinding. It is
performed by repeating the conversion of a loop and renaming the variables. The variables
from different loop exits are then merged at the end. The separate loop bodies created
from one loop are called loop unwindings. G u a r d variables of loop heads of different loop
unwindings are used as conditions for variable selection. We w i l l demonstrate the unwinding
procedure on the same program as we used above in L i s t ing 2.1. The following is the
unwound program i n C :

L i s t ing 2.4: The example part of a program in C

i n t i = 1;
w h i l e (i > 0)
{

i - - ;
i f (! (i > 0)) goto BREAK;
i - - ;

>
BREAK:
r e t u r n 0;

The corresponding S S A form becomes complicated and hardly readable as shown in L i s t ing
2.5.

L i s t ing 2.5: The S S A form of the code from Lis t ing 2.1 wi th every loop unwound one time

$guard#0 == TRUE
i # l == 1
i # p h i 2 ° / „ l == ($ g u a r d # l s 4 ° / „ l ? i # l b 4 ° / „ l : i # l)
$cond#2° /„0 == ! (i # p h i 2 ° / „ 0 >= 1)
$ g u a r d # 2 ° / „ 0 == ($guard#3°/„l && $cond#4%l)
$cond#2%l == ! (i # p h i 2 ° / . l >= 1)
$ g u a r d # 2 ° / „ l == $guard#0
i#3°/„l == -1 + i # p h i 2 ° / „ l
i # p h i 2 ° / „ 0 == i#3°/„l

8

i#3°/„0 == -1 + i # p h i 2 ° / „ 0
$ g u a r d # 3 ° / „ l == (! $ c o n d # 2 ° / „ l && $ g u a r d # 2 ° / „ l)
$ g u a r d # 3 ° / „ 0 == (! $cond#2° /„0 && $ g u a r d # 2 ° / 0 0)
$ c o n d # 4 ° / „ l == TRUE
$cond#4° /„0 == TRUE
$cond#2 == ($ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? $ c o n d # 2 ° / „ l : $cond#2*/,0)
$guard#2 == ($ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? $ g u a r d # 2 ° / „ l : $ g u a r d # 2 ° / „ 0)
i #ph i2 == ($ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? i # p h i 2 ° / „ l : i # p h i 2 ° / „ 0)
m a i n # r e t u r n _ v a l u e # 5 == 0
$guard#5 == ($cond#2 && $guard#2)

We add the corresponding C F G i n Figure 2.2 which assigns guards to program locations.

ts.

Sguard#0

int i = 1;

i#1

Figure 2.2: C F G wi th the corresponding parts of the S S A form

We can see some already known parts that were described in L i s t ing 2.3. To differentiate
two loop unwindings of the same loop body, 2 L S uses suffix °/0i. It is important to mention
that °/0l denotes the first i teration and °/00 denotes the second. The loop unwinding that gets
the highest number in its suffix always represents the first loop i teration. Contrariwise, an
instance of the loop body wi th the suffix °/„0 is always the last instance.

The unwound version has some addi t ional program locations. A s we can see differ
ent instances of the loop are bound together by the equations i#phi2°/„0 == i#3°/0l and
$guard#2°/,0 == ($guard#3°/0l && $cond#4°/0l). The first equation binds the output vari
able of the first instance to the input variable of the second one. We can see i n the second
equation that $guard#2°/ 00, which represents the locat ion of the second loop unwinding,

9

holds only when the loop body of the previous instance has been entered and the loop end
condit ion of the first unwinding holds. Results from different loop instances are merged
together and suffix °/„i is removed. Thus the loop result can be later used as if there was
only one loop instance - $guard#5 == ($cond#2 && $guard#2).

10

Chapter 3

Termination Analysis

This chapter is devoted to the description of terminat ion analysis implemented in 2LS . It
was the stepping stone of our further studies. The non-termination analysis itself would be
useless without integration of terminat ion analysis into the cooperating model. Therefore,
we describe the theoretical principles of the algori thm implemented i n 2LS checking ter
minat ion. 2LS contains the implementat ion of intra-procedural as well as inter-procedural
analysis. Inter-procedural aspect is not relevant here and w i l l not be presented, because it
was not used i n our work. O u r methods and also terminat ion analysis used i n this thesis
are intra-procedural. It is ensured by in l in ing a l l function calls, and as we know, recursion
in 2LS is not supported. The content of the following sections is predominantly drawn from

3.1 Well-foundedness and R a n k i n g Funct ions

Definition 3.1.1. (Well-founded Rela t ion [12]) A relation R C X x X is well-founded iff
every non-empty subset of X has an i? -min imal element.

L e m m a 1. A binary relation R is well-founded i f and only i f there exists a ranking function
for R.

Definitions of Rank ing function 3.1.2 and the following lemma are taken from [8].

Definition 3.1.2. (Ranking Function) Suppose (D, -C) is a well-founded, s tr ict ly part ia l ly
ordered set, and R C U x U is a relation over a non-empty set U. A ranking function for
R is a function m : U —>• D such that:

L e m m a 2. If a (global) ranking function exists for the transi t ion relation R of a program
f3, then /3 terminates.

3.2 Intra-procedural Termina t ion Ana lys i s i n 2LS

The linear lexicographic ranking functions are used in 2LS to efficiently solve the termina
t ion problem, because monoli thic ranking functions, however they are complete, are much
more difficult to solve by existing S M T solvers.

[]•

(3.1)

11

Definition 3.2.1. (Lexicographic R a n k i n g Function) A lexicographic ranking function R
for a t ransi t ion relation Trans(x, x ') is an n-tuple of expressions (Rn, Rn-i, Ri) such
that

3 A > 0 : V x , x ' : Transit, x ') A 3i G [1, n] : i ^ (x) > 0
Ai2i(x) - i2i(x') > A (3.2)
A V j > * : iij-(x) - i? j (x ') > 0

The existence of A > 0 and the condit ion -Rj(x) > 0 guarantee that the relation > is
well-founded. Since 2LS works on bit-vectors, the condit ion i?«(x) > 0 is t r iv ia l ly satisfied.
Bit-vectors are also discrete so we replace the condit ion -Rj(x) — -Rj(x') > A w i th i?j(x) —
i? i (x ') > 0. The condit ion that (Rn,Rn-i, . . . , i ? i) is a lexicographic ranking function wi th
n components over bit-vectors is necessary and sufficient for the val idi ty of the following
LR formula:

L i T (x , x ') = V?=i (i ? i (x) - i2 i (x ') > 0 A A " = i + i (^ (x) - i ^ (x ') > 0)) (3.3)

The procedure / may be composed of several loops, where each of the loops has a guard
g that expresses the reachability of the loop head. For k loops i n the procedure / the
lexicographic ranking function has the form:

i ? i T (x , x ') = A t i 5i(x) = > L i ? « (x , x ') (3.4)

To synthesize lexicographic ranking functions the function -Rj(x) is specified to be the
product l i X where U is the template parameter vector. The resulting constraints for a loop
i are £7£™ l(x, x ' , L" 1) , where L " 1 is the vector (1 ^ , l " 1) . The constraints for the whole
procedure are 72.72.(x, x ' , L n) , where L n is the vector L " 1 , L £ k . W h e n no ranking function
has been found, the special value T is used. The in i t i a l value of the template is _L which
means that the ranking function has not been computed yet. Us ing these values we get
£ 7 2 " i (x , x ' , T) = true and £72™ i(x, x ' , _L) = false. F ina l ly , the reduction of the ranking
function synthesis to a first-order quantifier e l iminat ion problem over templates is Formula
3.5:

3 L n : V x , x ' : Inv(x) A Trans(x, x ') = ^ 7272(x, x ' , L n) (3.5)

12

Chapter 4

Non-termination Analysis

Since the terminat ion analysis i n 2LS computes only the sufficient terminat ion precondition,
which is a subset of the weakest precondition, the negation of this precondition could s t i l l
encompass a terminat ing path. Therefore, we need to find another way to prove non-
terminat ion than just negating the terminat ion analysis results. In this chapter we look at
the most commonly used approach to prove non-termination, which are the recurrence sets
as described by [4, 10]. Informally a recurrence set RSet is a set of states at the head of a
loop that satisfies the following properties [10]:

1. RSet entails the loop condit ion.

2. Some reachable state x satisfies RSet.

3. For every state x satisfying RSet, some successor of x , after executing the loop body,
is again in RSet.

We introduce a theoretical principles of the lasso-based approach mentioned in []. A n d
finally we provide a short description of the method that transforms a property check from
liveness to safety.

4.1 Lasso-based A p p r o a c h for P r o v i n g Non- te rmina t ion

A method working on lassos is described i n [10]. The lasso consists of a finite program path
called stem followed by a finite program path named loop. The loop must form a syntactic
cycle in the control-flow or cal l graph of the program. If the stem can be followed by an
infinite number of executions of the loop, the lasso is feasible.

The method works i n two phases. In the first phase lassos are generated. The second
phase then checks the feasibility of a given lasso.

Definition 4 . 1 . 1 . (Feasibility of the Lasso) A lasso is feasible i f and only i f there exists
a recurrence set of states visi ted infinitely often along the infinite path that results from
unroll ing the lasso.

Using the convention from Chapter 3, we define the relations Transstem and Transioop

on the program states as follows:

Trans Stem{-XQ, x f c) = i r a i (xo) A A t o * Trans fa, x i + i) (4.1)

13

Transioop(xk,xm) = A^Lfc 1 Trans where m > k (4.2)

W i t h the previous representation of the stem and loop transitions, we w i l l now specify
the notions of open and closed recurrence sets according to the definitions of [1]. We
consider it necessary to give the exact definition of the recurrence set:

Definition 4 .1 .2 . (Open Recurrence Set) A transi t ion relation Transioop w i th in i t i a l states
Init has an (open) recurrence set of states RSet iff Formulas 4.3 hold.

3 x , x ' : Transstem(x,x') A RSet{x!) . .
V x 3 x ' : RSet{-x) T r a n s Z o o p (x , x ') A RSet(x') [' '

Definition 4 .1 .3. (Closed Recurrence Set) A set RSet is a closed recurrence set for a
transi t ion relation Transioop w i th in i t i a l states Init iff the Formulas 4.4 hold.

3x, x ' : TransS(em(x, x ') A RSet(x!)
V x 3 x ' : RSet(x) Transioop(x, x ') (4.4)
V x V x ' : i ?5ei (x) A T r a n s Z o o p (x , x ') RSet{id)

Unlike the open recurrence set, the closed recurrence set requires that every successor
of the state i n RSet must be the member of RSet. The following theorems make clearer
the relationship between a recurrence set and closed recurrence sets.

Theorem 3. (Closed Recurrence Sets are Recurrence Sets []) Let RSet be a closed recur
rence set for Transioop w i th in i t i a l states Init. Then RSet is also an open recurrence set for
RSet w i th in i t i a l states Init.

Theorem 4. (Open Recurrence Sets Always Con ta in Closed Recurrence Sets []) There
exists a recurrence set RSet for a t ransi t ion relation Transioop w i th in i t i a l states Init iff
there exists an under-approximation Trans'loop w i th in i t i a l states Init' and RSet' C RSet
such that RSet' is a closed recurrence set for Trans'lo0p w i th in i t i a l states Init'.

Regarding the algori thm, the search for a lasso consists of two phases. In the first phase,
the C F G (control flow graph) is searched for a lasso. In the next step, the lasso is checked
for non-termination. The whole process is nondeterministic (i.e. each next program state
is chosen randomly from the set of accessible states, and when there are more loops i n the
C F G , the a lgori thm randomly selects one of them). Backtracking is used to pick a l l feasible
lassos.

Recal l that 2LS is acyclic, so we cannot search for lassos i n our method, thus instead
we check a l l loops i n a program for non-termination. The most important part of the lasso-
based approach for our analysis is checking non-termination of the loop, which is discussed
below.

Definit ion 3.1.1 can be used to define non-well-foundedness. We use the informal def
in i t ion of [10] - the relation Trans(x, x ') over the program states is not-well-founded i f it
induces an infinite sequence of states. The goal of this analysis is to find the in i t i a l states
of such sequences.

Definition 4 .1 .4. (Infinite Execut ion of the Lasso) A lasso induces an infinite execution
if the following relation is not-we 11-founded:

3 x , x ' , x " : Transstem(x,x') A Trans;oop(x/',x") (4.5)

14

Proposi t ion 1 taken from [10] relates the property non-well-foundedness and the recur
rence sets.

Proposit ion 1. (Non-well-foundedness and Recurrence Sets) A relation Trans / o o p (x , x') is
not-well-founded i f and only if there exists a non-empty recurrence set of states, i.e., i f for
some RSet(x), we have:

3 x : RSet(x)
V x 3 x ' : RSet(x) = ^ Trans Z o o p (x , x') A RSet(x!) 1 ' ;

A n d finally we define the infinite lasso execution using the recurrence sets by the fol
lowing proposit ion taken from [10].

Proposit ion 2. (Non-well-foundedness and Recurrence Sets) A lasso induces an infinite ex
ecution if and only if there exists a recurrence set RSet(x!) for the relation Trans/00p(x',x")
such that:

3 x 3 x ' : Transsiem(x,x') A RSet(x') (4.7)

4.2 B i t - l eve l Non- te rmina t ion Ana lys i s w i t h a Lasso-based
A p p r o a c h

This analysis represents the core of our work since it works on bit-vectors such as the
whole 2LS tool . It assumes finite state space, and thus for an infinite program execution,
there exists a state which is repeated an infinite number of times. Therefore we look for a
recurrence set w i th exactly one state. Th is can be formally expressed by the formula:

3x , x', x" : Trans s i e m (x , x') A Trans Z o o p (x' , x") A (x' = x") (4.8)

In Formula 4.8 Transstem represents a transi t ion from the in i t i a l states to a state at the
loop head of a lasso and Transioop is the predicate for the execution of the loop body.

In some cases we need to apply loop unwinding to find a singleton recurrence set as
demonstrated by the following example:

w h i l e (x = = y) { x = ! x ; y = ! y ; }

The program does not terminate i f x equals y at the beginning. B y applying Formula 4.8
we get the expression (x = y) A (x = ->x A y = ->y), which is unsatisfiable. We need to
unwind the loop once to satisfy the formula for the singleton recurrence set:

w h i l e (x == y) { x = ! x ; y = ! y ; i f (x = = y) { x = ! x ; y = ! y ; > >

Now we get (x = y) A (-*x = ->y) A (x = -i->x A y = ->->y) which is a satisfiable formula.
This method does not require us to solve the problem of quantifier alternation. It s imply

allows us to use a S A T solver and can be very effective wi th some program representations as
shown by our implementat ion in 2LS (see Section 5.2). However, for some program instances
this might be a very ineffective solution even though they are t r iv ia l . For example a simple
program:

f o r (i n t i ; 1; i++) ;

w i l l take as many unwindings as is the size of the integer type in C to satisfy Formula 4.8.
We later introduce a method that is able to handle a smal l class of such program instances.

15

4.3 Integer Non- te rmina t ion Ana lys i s w i t h Lasso-based
A p p r o a c h

The program transitions can be represented by linear inequalities. The constraint-based
approach has been used by [] to synthesize recurrence sets. The authors have chosen
templates consisting of linear inequalities that describe a transi t ion relation and a recurrence
set (see Equations 4.9).

RSet = T x < t
loopguard = G x < g (4.9)

x ' = C/x + u

B y using the template x ' = Ux + u as a subst i tut ion for x ' i n formula 4.6, the authors
moved existential quantification from the next program state to the template parameters:

V x : RSet(x) Trans(x, Ux + u) A RSet(Ux + u) (4.10)

However, there is s t i l l a universal quantifier i n the formula. To avoid this, authors util ize
L e m m a 5.

L e m m a 5. (Farkas' Lemma) A satisfiable system of linear inequalities Ax < b implies an
inequality cx < 5 if and only i f there exists a non-negative vector A such that XA = c and
A6 < 5.

After the use of Templates 4.9 for Formula 4.10 we get a l l parameters we need to util ize
the L e m m a 5.

V x : T x < t Gx < g A TUx <t-Tu (4.11)

In the general case we have more such implications as described by the previous lemma
and instead of a search for vector A it is the search for matr ix A . In this case the employment
of L e m m a 5 to Formula 4.11 produces the following formula:

3 A ^ ° - - A T = { f u) A A t ^ { t - T u) <4"12)

A similar approach can be used to transform Formula 4.7. The solution for these
constraints gives us a recurrence set. Th is would be an elegant and simple solution for some
class of non-terminating loops. Unfortunately Farkas ' lemma is applicable for integers, but
there is no such approach to handle quantifier alternation wi th bit-vectors.

4.4 Non- te rmina t ion Ana lys i s v i a Safety

Another approach based on recurrence sets is designed by []. Authors apply notion of
closed recurrence sets i n the form of under-approximation of an existing program using
assumptions and assertions. Thus checking a liveness property is transformed into checking
a safety property, which is that a program never terminates.

The principle of the method is as follows. We put an assumption assume (true) at the
beginning of a program. Such assumptions are also placed after each use of nondeterministic
values. A n assert (false) statement is put in every place where a loop may exit. Th is
program transformation is i l lustrated in Figure 4.1 taken from [].

16

if (k >= 0)
skip;

else
i = - 1 ;

while (i >= 0) {
i = nondet();

}
i = 2;

assume(true);
if(k >= 0)

skip;
else

while (i >= 0) {
i = nondet();
assume(true);

}
assert(false);
i = 2;

Figure 4.1: P rogram transformation

A s we can see, every path that violates the added assertion is terminat ing. The task of
this method is to find the restrictive conditions for these assumptions so that no assertion
is violated (see Figure 4.2).

assume(k >= 0 && i >= 0);
if(k >= 0)

skip;
else

i = - 1 ;
while (i >= 0) {

i = nondet();
assume(i >= 0);

}
assert(false);
i = 2;

Figure 4.2: P rogram wi th restrictions specifying the closed recurrence set

The restrictive conditions specify a closed recurrence set as soon as no assertion can be
violated. To ensure soundness, the loop reachability is checked after computing assump
tions, which is transformed to a safety check, by adding assert (false) before the loop.
Final ly , assertions inside the loop must be checked for satisfiability.

Authors use precondition computat ion to define error states that violate the added
assertions. A crucial part of this method is to use an accurate approach that w i l l not
lead to divergence or to an empty recurrence set. The restrictive conditions are computed
iteratively, where after computing a precondition, refinement is applied to a condit ion.

A great advantage of this method is the reduction of liveness to safety, which creates the
possibili ty to use existing effective methods to prove safety properties. However, there is
s t i l l many programs where it w i l l diverge or fail , because of insufficient or undue refinement.

17

Chapter 5

Singleton Recurrence Set Search
Algorithm

In Chapter 4, we have presented the recurrence set method for proving non-termination
of programs. The description was based on an abstract representation of the behavior of
programs v i a the Trans(x, x ') relation. To recall, this relation represents any single step
between any two consecutive program locations in any run of the program. Note that even
the program counter is included among the variables i n x . A sequence of n steps of the
program is then represented using the conjunction AILo Trans(x.i, Xj+i) w i th a fresh copy
of each program variable for each step.

In what follows, we use a different representation of the behavior of programs that is
based on the S S A representation of programs heavily exploited in 2 L S . Remember that the
S S A representation, common in 2 L S , over-approximates the behavior of programs by using a
phi node at each loop head, which non-deterministically chooses (using a free guard variable)
between values flowing into the loop and values flowing through the back edge (abstracted
away using another free variable). This way, 2LS covers the effect of any number of loop
iterations, but even i f loop invariants are introduced to reduce the non-determinism, some
over-approximation typical ly happens. We cannot afford to have this over-approximation
and be able to reliably detect non-termination, and so we w i l l prohibit execution of the
back edges i n the following, and instead, we w i l l use (exact) loop unwinding.

Below, we first explain our representation of program execution in more detail using an
example. We w i l l also explain in a closer way the correspondence between this representa
t ion and the representation based on the Trans relation, providing a basis for understanding
the correctness of our construction. Subsequently, we propose a way that our program rep
resentation can be used for non-termination checking.

5.1 SSA-based P r o g r a m Representat ion for Non- te rmina t ion
Check ing

In order to explain our SSA-based program representation suitable for non-termination
checking, we use the following example:

11: i n t i = 1;
12: w h i l e (i < 10)
13: i++;
14: r e t u r n 0;

18

The transi t ion relation Trans for this program looks as follows:

Ifams(x, x ') = x = (init, i) A x ' = (11, i) V
x = (11,t) A x ' = (12,1)V
x = (12,t) A i < 10 A x ' = (13,i)V . ,
x = (12, t) A i > = 10 A x ' = (14, t)V ^ ' '
x = (1 3 , i) A x ' = (12,t + l) V
x = (14,t) A x ' = ((end ,0) , l) ,

O n the other hand, the corresponding S S A form without unwinding is:

$guard#0 == TRUE
i # l == 1
$guard#2 == $guard#0
i #ph i2 == ($guard# l s4 ? i # l b 4 : i # l)
$cond#2 == i # p h i 2 >= 10
$guard#3 == (!$cond#2 && $guard#2)
i#3 == 1 + i # p h i 2
$guard#5 == ($cond#2 && $guard#2)
m a i n # r e t u r n _ v a l u e # 5 == 0

The variable $guard#ls4 represents a nondeterministic choice between the back edge vari
able i#lb4 and the incoming variable i # l . B y this over-approximation we cover an arbi trary
number of loop iterations, but we include the loop results that are not feasible. Now let
the free variable $guard#ls4 be 0. So instead of the equation i#phi2 == ($guard#ls4 ?
i#lb4 : i # l) we get i#phi2 == i # l . Th is w i l l completely destroy a loop and the S S A
w i l l only contain the information about its first i teration. Instead of over-approximation,
now we get an under-approximation of a program. We w i l l use loop unwinding as described
in Section 2.3 to obtain more precise program behavior.

The program without unwinding corresponds to the Trans relation applied four times on
the in i t i a l state (i n i t , i) . We get the same result for the variable i that we obtain from the
solver for the variable i#3. Every state reached by applying the Trans relation, up to four
times is encoded i n the S S A form. The in i t i a l state (init, i) is the very beginning. $guard#0
== TRUE represents the state (11, i). B y adding the line i # l == 1 we get a representation
of the state (12,1). The state (13, i) is represented by a l l the S S A equations except the last
three. F ina l ly , if we add i#3 == 1 + i#phi2 we get a representation of the state (12, i +1) .
The value of i#3 is not passed back to the loop head, hence the information about the loop
is lost here.

Let us now take the simplified S S A form, without guards and conditions where the loop
is unwound once:

i # l == 1
i # p h i 2 ° / „ l = = (0 ? i # l b 4 ° / „ l i # l)
i#3° /„ l = = 1 + i # p h i 2 ° / „ l
i # p h i 2 ° / „ 0 = = i#3° /„ l
i#3°/„0 = = 1 + i#ph.i2%0

We see that the value of the variable i#3°/ 00 is equivalent to the value of the variable i
after Trans is applied 6 times. We continue unwinding unt i l we have 10 copies of the loop.

19

Now, the S S A form unwound 9 times encodes a l l the states that are reachable by the Trans
relation. In this case, the S S A form represents an n-ary relation on program states, since
it encodes every state along the execution path by a separate equation. Here, we have to
consider that this representation is not equivalent to A I L o Transfa, xj+i). The reason is
that the Trans relation and the S S A form do not use common variables.

A s it was demonstrated i n our example, an arbi trary state reachable by Trans has its
representation i n the S S A form unwound sufficiently many times. O n the other hand, the
S S A form unwound k times represents some finite number n of iterations of the Trans
relation. A formal proof of this would be rather technical and long. We consider it to be
beyond the scope of this thesis, and we suppose that its presence is not necessary to believe
it.

The formula AILo Trans (xj, X j + i) is further represented by the formula SSAk (the S S A
form unwound k times). Note that the relationship between these parameters is exponential
if we consider the unwinding of nested loops. Let us take this simple program:

11: i n t i = 1;
12: w h i l e (i < 10)
13: w h i l e (i < 10)
14: i++;
15: r e t u r n 0;

The unwinding procedure w i l l at first create k loop bodies of the inner loop and then k
loop bodies of the outer loop, so at the end, the number of the inner loop bodies is k2.

5.2 SSA-based Non- te rmina t ion Check ing

Now, we w i l l ut i l ize the representation presented i n the previous section to describe our
method for non-termination checking. We iteratively employ loop unwinding and we com
pare the new state we get w i th the states in the loop heads reached previously. The state in
this section does not encompass the program location, since we use the S S A representation.
Also remember that we must avoid over-approximation using the back edges here. Th is
simple check is depicted in Figure 5.1.

We w i l l use %i as a suffix for the symbols from a specific loop unwinding, loop is a set
of a l l variables of every unwinding in a loop. loop_guard%0 represents the guard of a loop
head from the last loop body created by unwinding.

The solver is implemented as a stack. It means that we can push and pop some formulas
to and from the solver depending on our needs. A s a base for our solution, the solver must
always contain the S S A formula updated according to the current unwinding k. Since we
do not use over-approximation in our method, we need to add some restrictions to the
S S A formula. A s we know from Section 2.3, what creates this over-approximation are
free variables that replace the back edge variables and the special guards that serve for
nondeterministic choice in phi node between incoming variables and back edge variables.
Therefore, we create a conjunction of the negations of a l l these guards, which means that
the back edge variables are completely omit ted and we under-approximate the program
behavior:

l\ioop&LOOPS ^ 9 u a r d _ l s i o o p

20

step 1 step 2 step 3

Figure 5.1: I l lustrat ion of the method

Now, we describe a simple phi node comparison which represents the search for a sin
gleton recurrence set. We compare variables from different loop unwindings i n order to
detect a state repetit ion i n the loop. It is important to mention that we compare only the
variables modified i n the loop, the so called ph i nodes of the loop. A s our method proceeds
iteratively, we make comparison only for the last loop i terat ion i n every step (see Figure
5.1). Other iterations have already been compared to each other in the previous steps. To
ensure the feasibility of the verified loop unwinding, we must also add a loop guard of the
last i teration into the formula. Below, we introduce a singleton recurrence set check for one
specific loop unwinding:

loop_guard%0 A l\phi_var%moopphi_var%i = phi_var%0 (5.3)

Final ly , we put a l l previously described pieces of our a lgori thm together and create a
complex formula to check one i teration of every loop i n the C program. The formula looks
as follows:

SSAk A Aloop€LOOPS ^guard_lsioop A

VioopeLOOPS V i = i (loop_guard%0 A A p h i _ v a r % m o o p phi_var%i = phi_var%0^

This formula is fed into the solver at every step of our algori thm, and, i f satisfiable, it is
sufficient to prove the existence of a non-terminating program execution. Recal l , that it is
not equivalent to Formula 4.8. They are not equivalent, because the S S A formula does not
use a fresh copy of a l l variables at each step and also the unwinding procedure may create
branches which are not reachable by i teration of the Trans relation. However, the formulas
are indeed equisatisfiable as we showed in the example i n Section 5.1, that we can create

21

a mapping between the states reachable by the Trans relation and the states expressed
by the formula SSAk A f\ioop&LooPS^9uard—lsioop (S S A unwound k times without over-
approximation) . A formal proof of this fact would be rather long and complicated and is
beyond the scope of this thesis.

A l g o r i t h m 1 exactly describes the steps of the presented method i n pseudocode. The
application of Formula 5.4 on an example in L i s t ing 2.5 looks as follows:

A ^guard#ls4%l A guard#2%0 A i#phi2%l = i#phi2%0 (5.5)

We discuss some facts that should be mentioned, but are less important i n the following
paragraph.

Loops in the C language can be terminated by unsatisfying the loop condit ion or by a
goto statement or break statement inside the loop body. Ult imately, a l l the places where a
loop can terminate have corresponding conditions and guards in the S S A formula. If we use
unwinding, we do not have to add such conditions to the formula for every loop iteration.
This is possible, because every loop i teration has its own guard and so i f the last loop guard
holds, a l l the loop exit conditions from the previous iterations are unsatisfiable. A loop
may be terminated also by an assertion. Assertions are not part of the loop exit conditions
in 2LS , but they are handled as a separate program entity. We can describe a check for the
satisfiability of every assertion i n a program by the formula:

AassertionePROGRAM assertion (5.6)

In this way, we include the problem of assertion satisfiability into our non-termination
check. To avoid this, we replace assertions wi th assumptions and thus we check only the
paths that w i l l not lead to an assertion violat ion.

We believe now, that regarding the relationship of Trans and SSAk described in this
chapter and the non-termination checking method presented above, it is intui t ively clear
that formulas 5.4 and 4.8 are equisatisfiable. Therefore, our approach can be used to verify
non-termination. Referring to what was stated i n Section 5.1, we underline that these
formulas are equisatisfiable but not equivalent.

22

A l g o r i t h m 1 Singleton Recurrence Set Search
Input: acyclic SSA form of the program, l imi t iV for unwinding
Output: non-terminating error trace or empty
M e t h o d :

1: for all assertion in SSA do
2: replace assertion w i t h assumtion
3: end for
4: k := 1
5: while true do
6: let SSAk be an SSA form unwound k times
7: let £ be a set of a l l loops i n the SSAk
8: tp := True
9: for all loop £ C do

10: ip := V> A -^guardlsi00p
11: end for
12: <p := False
13: for all ^oop G £ do
14: i := 1
15: while i < fe do
16: x : = loop_guard%0
17: for all phi_var%i € Zoop do
18: x '•= X Aphi_var%ii = phi_varVoO
19: end for
20: tp := if V (x)
21: i:=i + l
22: end while
23: end for
24: solve SSAk Aip A
25: if S A T then
26: return error trace
27: else
28: if k < N then
29: k := k + 1
30: else
31: return empty
32: end if
33: end if
34: end while

2:$

Chapter 6

Periodical Recurrence Set Search
Algorithm

In this chapter we introduce the derivative a lgori thm of a known concept [11] in order to
cover the smal l class of programs that require too many loop unwindings to be able to
prove the existence of a recurrence set using the method i n Chapter 5. The ma in task of
the method introduced i n [11] is to prevent a bounded model checker from enumerating
a large number of spurious counterexamples, while traversing a loop body. W h i l e authors
i n [11] use under-approximation of a loop i n the form of auxi l iary paths, we use an over-
approximation of loop paths, because we do not consider loop exit conditions. However,
they use the same technique, using solution of recurrence relations describing the effect of
arbi t rar i ly many loop iterations. In this work we use it to accelerate non-termination check.
We designed a method which allows us to reduce a very large number of loop unwindings
and solver calls into just one loop unwinding and a few solver calls, for some programs.
Our analysis is restricted to study the loops that change the values of variables in every
loop i teration according to the pattern of the recurrence relation defined below:

x „ = x „ _ i + c (6.1)

Note that c is a constant here. The solution of the recurrence relation above has a form:

xn = x0 + c • n (6.2)

If we are able to prove that a loop defines a recurrence relat ion of the specified form, we
attempt to accelerate A l g o r i t h m 1.

We provide a graphical representation of the new method in Figure 6.1. It is the
simplified graphical representation of the following program:

u n s i g n e d i n t i = = n o n d e t _ i n t () 0 2 ;
w h i l e (i != 5)

i += 2,

Let us for s implic i ty restrict the size of the integer to 6. The circles on the figure marked
wi th S are start states, where i = 0 or i = 1. The constant C equals 2, according to our
program. The addi t ion operation on unsigned integer of the size 6 in the C language has
the same behavior as the addi t ion i n modular ari thmetic i n the set Zq . O u r program has
two candidates for a periodical recurrence set. One is the set {0 ,2 ,4} and the second is the

24

Figure 6.1: C F G wi th the corresponding parts of the S S A form

set {1, 3, 5}. We w i l l prove that to check every such candidate takes one solver cal l i n our
method and we further present this method in detail .

We introduce a definition of periodic recurrence set whose existence is a non-termination
proof in this method.

Definition 6.0.1. (Periodical Recurrence Set) A transi t ion relation Transioop w i th in i t i a l
states Init has a periodical recurrence set of states RSet iff Formulas 6.3 hold.

3x , x ' : T r a n s s i e m (x , x ') A RSet{x!) . .
V x 3 x ' 3 ! C : RSet(x) T r a n s Z o o p (x , x ') A RSet{n!) A x ' = x + C 1 j

6.1 Detec t ion of L inea r ly Changed P h i Nodes in a L o o p

In this section we use simplified abstract representation of a loop and program states in
order to pla inly present the principle of our approach. Let us consider every loop body
being a function / (x) : Z ^ —>• Z ^ over the program variables that takes a vector of bit-
vectors and returns a vector of the same type or has an undefined result. The vector only
contains the program variables. In terms of this analysis we are interested i n loops wi th
/ (x) constrained by the formula:

Vx3!c : / (x) / U N D E F => / (x) = x + c (6.4)

For cases where / (x) is undefined a program cannot reach the end of a loop body. This
can be caused by a terminat ion from inside a loop body or by non-termination wi th in a
loop body.

25

Because the S A T solver is unable to deal w i th a quantifier 3! (there exists one and only
one), we check the property i n Formula 6.4 i n two steps. A t first we check the formula
below:

3x, c : /(x) = x + c (6.5)

If Formula 6.5 is satisfiable, it gives us a model M. = {(x, X) , (c, C)}. We use it for the
second check:

The constant vector C i n formula 6.6 is taken from the model in Formula 6.5. The
unsatisfiable result of the previous formula means that either C is the only constant vector
to satisfy the formula or /(x) is undefined. A s w i l l be shown later we can specify a l l the
cases when the result of /(x) is undefined and thus the previous two checks are sufficient
to detect a loop which l inearly changes its phi nodes and can be analysed.

6.2 Check ing Exis tence of a Pe r iod ica l Recurrence Set i n a
L o o p

In this section, we introduce the abstract principle of the non-termination check designed in
our method and we present a formal proof that our template covers the whole, potential ly
non-terminating program path, regarding bit-vectors. We assume that this method receives
an input which passed the first check for linearity. We use simplified abstract representation
in this section, as was used i n Chapters 3 and 4. Note that the vectors here represent the
program states and they contain the program counter as well . We use a special notat ion
(k) for a vector, where a l l elements have the same value k. The constant vector C p c is
created from the vector C i n the previous section by resizing wi th 0 in place of the program
counter, which means that we get back to the loop head and potential ly never stop looping.
The formula to check non-termination of a loop looks as follows:

3x, x 'V(k) : Trans s i e m (x , x') A x" = x' + C p c • (k) A TransZoop(x", x" + C p c) (6.7)

The in i t i a l loop input x' was generalized for every loop i teration as x" and it was restricted
by the invariant that says the original value of x' can be increased only by the Hadamard
product C • k. Th is invariant represents the base of the method. We uti l ize Transioop to
express that from every state x", along the non-terminating program path, we can reach
the loop head again.

We show here, that i f we work wi th bit-vectors, x" represents every state reachable from
x', i.e. verifying the values specified by the invariant is the same as verifying every state
along a non-terminating program path. In this way we also show the completeness of our
method. We know that unsigned integers cannot overflow from the C99 s tandard 1 §6 .2 .5 /9 :

A computation involving unsigned operands can never overflow, because a result that
cannot be represented by the resulting unsigned integer type is reduced modulo the number
that is one greater than the largest value that can be represented by the resulting type.

The standard says that the definitions of addi t ion and mul t ip l ica t ion on unsigned inte
gers creates a well known r ing (Z N , + , 0, —, •, 1).

xhttp: //www. open- std.org/jtcl/sc22/wgl4/www/docs/nl570.pdi

(6.6)

26

http://std.org/jtcl/

We want to prove that our formula covers a l l the states along a potential ly non-
terminat ing program path. For s implic i ty we use a single bit-vector to prove a property
that t r iv ia l ly holds for a vector of bit-vectors. The paths we study may be terminat ing for
some state and i n that case the relation Transioop i n formula 6.7 does not hold for some x " .
If it holds for every state, we need to prove there is no state left that has not been checked.
The following equation is defined for the r ing (^ U I N T _ M A X + 1) +> 0, —, •, 1) and it says that
the range of the unsigned integer is sufficient to cover every non-terminating path of a loop
where a l l variables are changed by some constant C i n every i teration.

x + C • U I N T _ M A X = x - C (6.8)

The formal proof of Equa t ion 6.8 for unsigned bit-vectors looks as follows:

x + C - U I N T _ M A X = x - C / + (-x)
C - U I N T _ M A X = -C l + C

C • U I N T _ M A X + C = 0 /distributivity (6.9)
C • (U I N T _ M A X + 1) = 0

C-0 = 0

Returning to Formula 6.7, we face the major problem of methods checking non-termination
which is quantifier alternation. We have to avoid the use of the quantifier V and replace
it w i th 3. In our case V(k) describes every state on the program path. If we use 3(k)
here, we describe only one state that is chosen from the whole path. In this way we can
change our search for a non-terminating path to a search for terminat ing paths, where the
sufficient condit ion is an existing state x " for which the predicate Transi00p{x">x" + C p c)
does not hold. B y alternating the quantifier i n the formula, we can iteratively enumerate
al l terminat ing paths and bu i ld a constraint. If we are not able to find a new terminat ing
path, we s imply check that a path s t i l l exists and i f so, it must be non-terminating. Thus
we split the check into two steps. In the first step we bu i ld a constraint that w i l l exclude
al l terminat ing paths by iteratively evaluating the following formula:

3x, x '3(k) : Transstem(x, x') A x" = x' + C p c • (k) A - . Transioop(x", x" + C p c) A
constraints^)

(6.10)
We update the predicate constraints^) i n every i teration using the model we get from

Formula 6.10. Let X " be a model of x". We want to add some constraint to the formula
so that i n the next i teration x" w i l l get a different value. The constraint could have a
simple form x" 7^ X " . However, we know that if a loop potential ly reaches the state, where
x" = X " , then a l l the states that lead to that given state and also a l l the states which w i l l
follow from that state can be excluded. The invariant x" = x' + C p c • (k) is used to describe
al l such states. We may use a larger restriction that w i l l exclude every value of x" such that
x" = X " + C p c • (k). Since x" is computed from x' in the same way, we can interchange a
value of x' and x". To exclude a l l specified values would lead to quantifier alternation again.
Therefore we do a compromise and find a property that describes as many such values as
possible. Such a property could be componentwise modulo, since (X' + C p c • (k))%C p c

always equals X ' % C p c i f it does not exceed the size of the bit-vector. Thus, the constraint
added i n every step has the form x ' % C p c / X ' % C p c , where X ' is taken from a model of
the formula as a value of x'. Note that the cases where we use modulo 0 are defined as
n%0 = n.

27

We update the constraints un t i l the formula becomes unsatisfiable. Then the predicate
constraints(x) looks as follows:

A x ' G M O D E L S of T H E F O R M U L A 6.10 x ' % C p C / X ' % C p c (6-11)

After finishing the first step we are able to exclude every terminat ing path in the loop.
The second step only verifies that there is s t i l l some program path reaching the loop left
and it is indeed non-terminating. The formula for the second step is as follows:

3x, x'3(k) : Trans sterna x ') A x" = x' + C p c • (k) A constraints (x) (6-12)

6.3 Genera l iza t ion of the Pe r iod ica l Recurrence Set Search

In the previous two sections we used the vector x as a parameter for the function /(x).
Instead of x which represents a l l the variables in the program, we use only ph i nodes of
a specific loop. We present a generalization of our method in order to better explain our
approach. Let us take the program:

u n s i g n e d c , i = 1;
w h i l e (1)
{

i f (c)
i = i + 1;

e l s e
i = i + i ;

}

A s we can see the variable c does not belong to the set of ph i nodes of the given loop.
Nevertheless the form of function /(x) depends on its value. We split vector x into two
vectors x' and x", where vector x' represents the variables changed inside a loop and x"
describes the rest of variables i n a program. The generalization of Formula 6.4 has the
following form:

3x"Vx'3!c : #(x") = /(x') = x' + c (6.13)

Considering the program example above, the function g(x") is defined as follows:

J x ' + (1) x " / (0)
#(x) = \ , , , „ , m (6 - 1 4) I x + x x = (0)

A s we can see formula 6.13 is satisfiable for x" ^ (0). The problem of the general
approach is quantifier alternation. We restricted ourselves to only use its simplified version:

Vx"Vx'3!c : g(x") = /(x') = x' + c = Vx3!c : /(x) = x + c (6.15)

6.4 Implementa t ion of Pe r iod ica l Recurrence Set Search A l
gor i thm

This section describes the presented algori thm in a form that is implemented in 2LS. We
use the representation already described in Section 5.1. The formulas have the form fed to

28

the solver, and we also deal w i th implementat ion details, which we were unable to discuss
in the context of previous sections, because we d id not use the SSA-based representation.
A l g o r i t h m 2 represents our implementat ion of the presented algori thm i n pseudocode.

6.4.1 Implementation of Detection of Linearly Changed Phi Nodes

Formula 6.10 is passed to the solver in the form:

SSAk A f\phi_var&ioopphi_var%k + c = phi_var%(k - 1) (6.16)

We verify this formula for every loop separately. SSAk defines a function /(x) (see
Section 6.1) for every loop body. Constant c is unique for every phi_var. We use the over-
approximation to verify the formula, because we have to check a l l values for every phi node.
Recal l that the value of phi_var%k i n S S A is specified by the equation phi_var%k ==
guardls?var_lb : var_x, where var_lb is a free variable (see Section 2.3). Therefore, the
solver can assign every possible value to the variable phi_var%k. The value of the variable
phi_var%(k — 1) is derived from the equations of a loop body and the previous value of a
phi node represented by phi_var%k. We provide an example of the appl icat ion of formula
6.16 on the example i n L i s t i ng 2.5:

A i#phi2%l + c = i#p / i i2%0 (6.17)

Formula 6.6 is passed to the solver i n the form:

SSAk A f\phi_var&ioopphi_var%k + c = phi_var%(k - 1) A c / C (6.18)

We take model C of the constant c i f Formula 6.16 is satisfiable and we use it for the
second check. Below we provide an example of the appl icat ion of formula 6.18 on the
example i n L i s t i ng 2.5.

SSA1 A i # p h i 2 % l + c = i#p/ i i2%0 A c / C (6.19)

6.4.2 Implementation of The Non-termination Check

In this section we describe the non-termination check of the method whose theoretical
principles are listed i n Section 6.2. Recal l , that we check non-termination only i f the
candidate loop passes the check i n the previous section.

A t first we show how invariant x" = x' + C p c • (k) is represented i n the S S A form.
The loop head equations phi_var%k == guardls?var_lb : var_x, where var_lb is a free
variable, are supplemented by constraints. These constraints have the form of an invariant
which is an equation var_lb == var_x + C • k. The character C denotes a constant
computed by the l inearity check and k is a free variable. Remember that k is the same
variable for every ph i node i n the loop, but C is computed for every phi node separately. We
util ize over-approximation which gives us the abi l i ty to check every state along the program
path at once without iterative loop unwinding. The guardls for the currently analyzed loop
must hold i n order to apply the constraints. A s we iteratively check every loop, we need
to avoid the over-approximation of the other loops i n order to preserve completeness. This
approach is already described i n Section 5.2 i n Formula 5.2, but we omit guardls for the
current loop.

29

The relations Trans stem and Transioop are encoded i n the S S A form as described in
Section 5.1. In Section 6.1, we mention that we are able to detect undefined behavior of the
function / (x) . We defined a terminat ion condit ion or rather the condit ion for which a given
loop path does not fulfill non-termination requirements in the form ^ Transioop(x.",x." +
C p c) , where x " represents any state along the path. Let us first analyze when a loop that
passed the l inearity check can have an undefined behavior. Note that neither formula 6.16
nor formula 6.18 includes a loop guard. Therefore, the only cause for undefined behavior
is that a loop guard of the subsequent loop unwinding does not hold. In other words, for
every state of a non-terminating path the loop guard of the subsequent loop unwinding
must hold. The formula for the first step of the non-termination check looks as follows:

3£3var_x : SSAk A /\IOOP&LOOPS ^00P ^ o,nalysed_loop =>• ^guard_lsioop A
/\Phi_var%keioop%k var_lb == var_x + C • £ A constraints(x) A ^loop_guard%(k - 1)

(6.20)
We provide an example of the applicat ion of the formula above for l is t ing 2.5. The formula
of the first i teration for empty constraints looks as follows:

A i # £ 6 4 % l = i # l + 11 A ^guard#2%0 (6.21)

No ^guardls is used, because the program has only one loop. In the first i teration,
the solver provides us w i t h a model. One of the val id models for our formula is M =
{(i#lb4%l, 0), (i # l , 1), (1,1),...}. We use it to create a constraint i n the form i # l % C /
1%1. We create a new formula wi th an addi t ional constraint:

S S A i A i # £ 6 4 % l = i # l + 11 A i # l % l / 1%1 A ^guard#2%0 (6.22)

The formula above is no more satisfiable. A n d the a lgori thm can proceed to the second
check.

A t the end we have to check whether there s t i l l exists some pa th that satisfies the
constraints created in the first step. The formula is the same as for the first step except the
loop guard at the end. We do not have to check the satisfiability of the loop guard, since
every path that violates it has been already excluded. The check looks as follows:

3£3var_x : SSAk A AioopeLOOPS looP ^ analysed_loop =^ ^guard_lsioop A

f\phi_var%keiooP%k var_lb == var_x + C • £ A constraints^)

In reference to our pract ical example, we now check the formula:

A i # £ 6 4 % l = i # l + 11 A i#l%l / 1%1 (6.24)

It is unsatisfiable, because created constraints excluded every path through the loop. There
fore, for this example, the result of the method is D O N ' T K N O W .

30

A l g o r i t h m 2 Periodic Recurrence Set Search
Input: acyclic SSAk form of the program w i t h replaced assertions unwound k times
Output: non-terminating error trace or empty
M e t h o d :

1: let £ be a set of a l l loops in the SSAk
for all loop € C do

tp := SSAk

for all phi_var%k 6 loop_body%k do
tp := if A phi_var%k + constphi_Var = phi_var%(k — 1)

end for
solve
if U N S A T then

continue
end if
let $ be a model of the formula if
for all phi_var%k € loop_body%k do

Lf := ip A constphi_var &(constphi_var)

end for
solve
if S A T then

continue
end if

il> := S S A f c

for all loop2 € £ do
if loop2 ^ loop then

tp := tp A ^guardlsloop2

end if
end for
for all phi_var%k € loop_body%k do

let phi_var%k — guardls ? loop_back_var : above_var
if) := -0 A loop_back_var%k = above_var + l.Q(constphi_Var)

end for
while solve (V> A -<loop__guard%(k — 1)) = S A T do

let $ be a model of the formula tp
X = False
for all phi_var%k G loop_body%k do

let phi_var%k = guardls ? loop_back_var : above_var
X := X v above_var ^ ^>{above_var)

end for
V> := V A (x)

end while
if solve V) = S A T then

return error trace
end if

end for
return empty

31

Chapter 7

Implementation

We implemented our analysis i n a separate module called summary checker nonterm.
Non-terminat ion analysis is i n 2LS , available under the option —nontermination. It
automatical ly uses function in l in ing (option —inline), as our method is intraprocedural.
We also use automatic subst i tut ion of assertions wi th assumptions to exclude a l l paths
where any assertion can be violated. Funct ion in l in ing allows us to use one solver instance.
A s for the solver, we use default opt ion in 2LS which is M i n i S a t 2.2.1. We update the
solver content incrementally i n every i teration wi th new unwindings. Once the program is
in i t ia l ly transformed into S S A form, this ensures efficient run of the analysis.

The formulas added to the solver always have a form of impl ica t ion enabling_expr =>
added_f ormula. Loop unwinding is not monotonie, which means that some formulas are
added to the solver, but there are some that need to be removed to preserve correctness.
We remove the formulas by adding the negations of their enabling expressions into the
solver. In this way we can incrementally update the S S A formula without the need to pop
the solver stack, which is not supported by S A T solvers. However, conjunction of enabling
expressions and formula of a singleton recurrence set are added to the solver in a separate
context which is newly created in every i teration. A s we can see a part of Formula 5.4 is a
big disjunction updated in every i teration of the algori thm. The solver implementation in
2LS does not allow us to update subformulas in the current formula. Therefore we always
create new context where we put these temporary formulas in .

The module summary checker nonterm containing the implementat ion of the
non-termination analysis was conformed to the uniform template used by abstract in
terpretation - module summary checker ai, bounded model checking - module sum
mary checker bmc and k l k l - module summary checker kind. The terminat ion
analysis is included i n the module of the abstract interpretation. A l l these analyses inherit
from the base class summary checker base that provides these methods wi th the com
mon functionality. Every method has its own unwinding concept and addi t ional formulas.
Bounded model checking unwinds loops iteratively whilst abstract interpretation does it
only once. Nevertheless, a l l the analyses cal l a method check properties at some point,
which is part of the base class and no analysis overrides it except the non-termination
checker.

The method check properties verifies i f some assertions in a program have been vio
lated. In the case of non-termination analysis, we need to check i f there exists a recurrence
set i n the current unwinding of the S S A form. Therefore, the properties we check are not
assertions but loops. We keep this adjusted common template to avoid big changes i n the
code and use existing algorithms as much as possible. We uti l ize the original concept of

32

property map which is C + + container std: :map devoted to gather studied properties,
which are loops in our case. It creates an interface between callee and caller. The result of
every property is by default set to unknown. If non-termination is detected by the solver
it is changed to fail and this information is important for the generation of error trace.
The generation of error traces is already implemented in 2LS . We wanted to use this im
plementation wi th min ima l changes. A check of a l l properties is implemented i n the class
cover goals extt. It calls the solver, checks spurious counterexamples (this does not
have to be done for non-termination analysis) and builds an error trace when an error is
found.

We implemented two separate methods for non-termination analysis, but i n the end, we
integrate them into one. After a certain number of unwindings performed by the singleton
recurrence set method, there is one step devoted to employing the periodical recurrence set
method. If it does not succeed we continue unwinding wi th the first method. We d id not
implement any heuristics for the second method which would give a reason to elaborate
the mentioned integration. For example the use of a heuristic that detects that the loop is
fully unwound and forbids over-approximation for such a loop would give a reason to apply
the second method not only once, but after every x unwindings and also if a loop is fully
unwound.

33

Chapter 8

Experiments

We benchmarked our implementation wi th BenchExec 1.9 framework1 [2]. Th is framework
has been in use on International Compet i t ion on Software Ver i f ica t ion 2 since 2012. We
used the set of benchmarks 3 from S V - C O M P 2017 [1]. The BenchExec allows us to reliably
measure and l imi t resources as wal l t ime, C P U t ime and memory usage. We tested our
method exclusively in category Terminat ion and we compared our results w i th those from
S V - C O M P 2017 . The category Terminat ion has currently 1437 benchmarks from which
940 are classified as terminat ing and 497 as non-terminating. We also supported the faster
benchmarking by our own script that is measuring the number of unwindings used to prove
non-termination and tests non-terminating and terminat ing benchmarks separately.

2LS and C B M C have bash wrappers that provide an interface for BenchExec. We
exploit the wrapper for 2 L S to integrate terminat ion and non-termination analysis into the
one method. The original implementat ion of terminat ion analysis in 2LS was able to prove
never-termination, if it was not able to find a path from the beginning of the function to
its end [5]. However, this approach has some existing flaws that caused incorrect detections
of non-termination. We have prevented the terminat ion analyzer from checking never-
terminat ion and we completely rely on the non-termination analyzer, since it covers a l l
benchmarks where terminat ion analyzer detects non-termination. The analyzers are run in
parallel in the background subshell.

We used the same resource l imits as i n S V - C O M P 2017. 8 processing units, 1 5 G B
memory l imi t and 15 minutes of C P U time for each verification run. The l imi t for witness
validat ion was 2 processing units, 7 G B of memory and 1.5 minutes of C P U time for violat ion
witnesses and 15 minutes of C P U time for correctness witnesses. A l l of the measurements
were made on the machine wi th parameters C P U : Intel Core i7-6700 C P U 3.40GHz, cores:
8, frequency: 4000 M H z wi th Turbo Boost enabled, R A M : 33618 M B . Our operating system
was L i n u x x86_64 wi th Ubuntu-16.04 and L i n u x kernel 4.4.

We applied the same schema to compute the score that was used for S V - C O M P 2017
[1]. If a tool reports the correctness of a correct program and i f a validator does confirm
the witness, the score is 2, otherwise it is 1. If the correctness is proved for an incorrect
program the score is —32. The witnesses for property violations are not checked. If the

xhttps: //github.com/sosy-lab/benchexec
2https: //sv-comp.sosy-lab.org/2017/
3https: //github.com/sosy-lab/sv-benchmarks/tree/master/c
4https: //sv-comp.sosy-lab.org/2017/results/results-verified/META_Termination.table.html
5https: //github.com/dif fblue/cprover-sv-comp

34

http://sosy-lab.org/2017/
http://sosy-lab.org/2017/results/results-verified/META_Termination

property violat ion is correctly found the score is 1, otherwise, i n the case of false a larm it
is —16. A n y error or unknown result does not influence the final score.

The benchmarking was done i n order to see the improvement of 2LS on S V - C O M P 2017
benchmark set i n the category Termination. O u r a i m was also to find existing bugs i n our
implementation.

In the following section, we present the results achieved by 2LS wi th the implementat ion
of singleton recurrence set (SRS) method for non-termination analysis. We also mention
the principles of the simple parallel procedure (take the first result) that was used i n the
wrapper script to benchmark the tool w i t h BenchExec. The results of the version, where
the periodical recurrence set (P R S) method was supplemented to the analysis, are presented
in Section 8.2. In that section, we also present the improvement for our parallel procedure
(take the first val id result). We compare our results w i t h the competitive tools in Section
8.3. In the last section, we give a short bug report that describes flaws found i n the current
version of 2LS .

8.1 Benchmark ing of the Singleton Recurrence Set M e t h o d

In Table 8.1 we compare the results of the singleton recurrence set method wi th the results
of the version competing on S V - C O M P 2017. The unifying procedure of our two algorithms
for this table was to take the first available result of the analysis, even when it was unknown.
We see that the number of detected correct true benchmarks decreased, while the number of
correctly detected false properties significantly increased, but the most important difference
is the reduction of incorrect results from 34 to 6. We run the two processes i n parallel and
they share a l l the resources. Hence, in cases where proving terminat ion wi th the previous
implementation took significant amount of t ime or memory, we may reach the l imi t of
resources before the result can be computed. Recal l , that non-termination analysis is doing
unwinding which is a greedy process for a memory. If tested exclusively, the number of
benchmarks where our method is able to detect non-termination is slightly greater (475)
than we present i n Table 8.1 (465). The reason of this is that i n some cases terminat ion
analysis returns an unknown result before non-termination is proved. General ly to disprove
the property takes less t ime and as we see non-termination was detected faster than incorrect
termination. The reduction of incorrect false results is mainly caused by delegating non-
terminat ion analysis exclusively to the non-termination analyzer as we mentioned at the
beginning of this chapter. In some cases it was caused by the unknown result of the
terminat ion analyzer that finished sooner. In the end we see that the major advantage of
this parallel approach is a reduction of the number of incorrect results.

The score we give i n Table 8.1 is not normalized [1]. We see how important it is to avoid
incorrect results i f we look at the penalty for incorrectness of the tool . The improvement
made by non-termination analysis would not be so significant without hiding so many errors
using our parallel approach. The score achieved for correct false detections was improved
by 34% and the to ta l score by 65.6%, which is very promising.

The amount of resources used has no effect on the score, but it plays a role when it
comes to effectiveness of the method. Probab ly the most important aspect is t ime. We
were able to reduce total t ime consumption more than three times. A s we can see in Table
8.2 our method used 7530 of 17400 seconds to prove correct results, whilst the original
method used only 5660 of 60800. The method is able to resolve many of the benchmarks
that were t ime-consuming or even led to timeout. O n the other hand, we see that the time
of terminat ion analysis is worse. Reca l l that we use parallel ism and therefore the C P U

35

2LS 0.5.0 - S V - C O M P 2017 2LS 0.5.1 - S R S M e t h o d
Status Score Status Score

to ta l 1437 899 1437 1489
correct results 927 1507 1025 1585

correct true 580 1160 560 1120
correct false 347 347 465 465

incorrect results 34 -608 6 -96
incorrect true 4 -128 0 -
incorrect false 30 -480 6 -96

Table 8.1: Score - comparison wi th the results from S V - C O M P 2017

time (amount of t ime that a task spent on different C P U s) consumption is doubled whilst
both methods are running at the same time. The amount of t ime taken by incorrect results
increased even though the number of incorrectly classified benchmarks was significantly
decreased. One of the benchmarks took 120 seconds to prove non-termination. The source
file had 7 5 . 8 K B size w i t h 3694 lines of code. We analyzed the error trace and it was a
correct non-terminating program trace. We checked the competi t ion results and there was
no tool able to prove either terminat ion or non-termination of this incorrectly classified
benchmark. We found six other incorrectly classified benchmarks, which are reported and
discussed later.

Memory consumption increased wi th the use of our method. The non-termination
analysis i teratively unwinds a program and runs the solver. Th is is a memory consuming
process, especially when it comes to nested loops, where the number of loop unwindings
grows exponentially w i th the depth. B o t h analyses run i n parallel and thus the amount of
used memory is considerable.

2LS 0.5.0 - S V - C O M P 2017 2 L S 0.5.1 - S R S M e t h o d
C P U T ime (s) Memory (G B) C P U T ime (s) Memory (G B)

to ta l 60800 447 17400 1320
correct results 5660 268 7530 774

correct true 5480 253 6980 709
correct false 181 14.2 544 64.7

incorrect results 103 17.0 122 15.0
incorrect true 1.23 .109 - -
incorrect false 102 16.9 122 15.0

Table 8.2: Resources - comparison wi th the results from S V - C O M P 2017

We further studied the number of unwindings needed for specific benchmarks and we
tested the non-terminating and terminat ing sets of benchmarks separately i n order to dis
cover as many flaws in the implementat ion as possible.

The results of the method searching for the singleton recurrence set brought the following
findings:

• We found 11 benchmarks i n the sv-benchmarks test set w i t h an overflow issue that
were either fixed or moved to the todo file group - pu l l request to sosy-lab/sv-

36

benchmarks 6 by Peter Schrammel 7 (these benchmarks were either detected as non-
terminat ing or our program finished on l imi t) .

• 7 benchmarks were proven to be non-terminating and incorrectly classified.

• 5 benchmarks were incorrectly proven to be non-terminating which pointed to two
existing bugs i n 2LS.

• Non-terminat ion analysis d id not finish on 10 benchmarks i n the given amount of
time.

• 1 specially difficult benchmark was proved to be incorrectly classified without having
an overflow issue.

• Our tool was able to detect every single non-terminating benchmark in the folder
product-lines. 5 of these benchmarks were not detected by any other tool .

A s mentioned above we updated the set of benchmarks according to our findings. Four
of them were moved to category overflow, one benchmark was moved from the class of
non-terminating to the class of terminat ing benchmarks and an overflow trace has been
removed in seven benchmarks. The overview of the files is shown i n Table 8.3.

Benchmarks with the overflow trace removed
termination-crafted/Mysore false-termination true-valid-memsafety.c
termination-memory-alloca/PodelskiRybalchenko-2004V]VICAI-Ex2-alloca_false-termination.c
*termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-loops_true-termination_false-no-overflow.c
*termination-crafted-lit/PodelskiRybalchenko-LICS2004-Figl_true-termination_false-no-overflow.c
*loops / trex01_false-unreach-call_true-termination.i
*loops/trex01 true-unreach-call true-termination.i
*termination-15/arrayl7 alloca true- terminations, i

Benchmarks removed from the test set because of overflow
termination-crafted/Singapore plus false-termination true-valid-memsafety.c
termination-crafted/Singapore v l false-termination true-valid-memsafety.c
termination-crafted/Singapore v2 false-termination true-valid-memsafety.c
*termination-15/arrayll alloca true-terminations.i

Reclassified benchmarks
*product-lines/elevator_specl3_productSimulator_true-unreach-call_true-termination.cil.c

Table 8.3: Overview of the files where we detected overflow (benchmarks where our method
detected non-termination are marked wi th *)

8.2 Benchmark ing of the Pe r iod ica l Recurrence Set M e t h o d

We have also designed and implemented the method that searches for periodic recurrence
sets, to cover the m a x i m u m number of benchmarks that were not detected by the SRS
method. It was precisely four benchmarks, where the S R S method was highly ineffective
and the P R S was able to solve i t . Th is d id not lead to significant improvements, but we
made also other changes discussed in the following two paragraphs.

A s mentioned i n the previous section we discovered incorrectness i n the original set
of benchmarks that was thoroughly studied, reported and the p u l l request to sosy-lab/sv-
benchmarks was created. The tests presented in this section were made on the updated set
of benchmarks.

6https: //github.com/sosy-lab/sv-benchmarks
7https: //github.com/peterschrammel/sv-benchmarks/tree/f ix-termination-signed-overf low

37

We also improved our parallel a lgori thm so that i f the result of terminat ion analysis
is unknown, the a lgori thm waits for the result of the second process that is s t i l l running.
Our method needs one or two unwindings to find terminat ion violat ion for most of the
benchmarks. For three programs it was 50 or more unwindings, where m a x i m u m was
211. We decided to set the unwinding l imi t to 220, which according to our experiments,
represents a reasonable trade-off w i th respect to amount of the used resources.

We present the final score of the combined method, where we integrate P R S and SRS
into one analysis, in Table 8.4. It is improved compared to the results in the previous section
and the major difference is i n the number of correct false results. This improvement is caused
by updates i n the set of benchmarks and the better parallel a lgori thm. If terminat ion
analysis finishes sooner w i th the result unknown, the unifying procedure w i l l s t i l l wait for
the non-termination analysis to come up wi th its result. However, because we use the
unwinding l imi t , i n two cases it happens that non-termination analysis finishes sooner w i th
the unknown result. The unifying procedure ends without wait ing for the result of the
terminat ion analyzer, hence 558 correct true detections.

2LS 0.5.1 - S R S + P R S M e t h o d 2LS 0.5.1 - S R S + P R S M e t h o d
wi th Or ig ina l Para l le l Procedure wi th Upda ted Para l le l Procedure
Status Score Status Score

to ta l 1433 1509 1433 1516
correct results 1029 1589 1038 1596

correct true 560 1120 558 1116
correct false 469 469 480 480

incorrect results 5 -80 5 -80
incorrect true 0 - 0 -
incorrect false 5 -80 5 -80

Table 8.4: Score - updated set of benchmarks

Table 8.5 compares the amount of resources used by the S R S + P R S method wi th the
old procedure and by the same method using the updated version of i t . Remember that
previously we took the unknown result of the terminat ion analyzer as the final result of
the procedure, but in this method we are wai t ing for the result of non-termination analysis
which is l imi ted by 220 unwindings. Th is explains both the doubled memory consumption
and much worse overall t ime. However, we were able to fully exploit the potential of our
method and increase the score i n Table 8.1. We see a trade-off between the amount of
resources and the achievable score.

8.3 Compar i son w i t h the Other Tools

This section is devoted to comparison wi th the tools awarded i n category Termination on
S V - C O M P 2017. Note that the score we use in this chapter is not normalized, but is
directly taken from the results of Benchexec. The tools we have chosen for the comparison
are UAutomizer , which is the winner i n the category Termination and A P r o V E that
finished second in this category.

We use the results from S V - C O M P 2017 achieved by the other tools tested on a different
machine:

• C P U : Intel X e o n E3-1230 v5 3.40 G H z

38

2LS 0.5.1 - S R S + P R S M e t h o d 2LS 0.5.1 - S R S + P R S M e t h o d
wi th Or ig ina l Para l le l Procedure wi th Upda ted Para l le l Procedure
C P U T i m e (s) Memory (G B) C P U T ime (s) Memory (G B)

to ta l 19000 1300 86200 2510
correct results 8810 767 8320 743

correct true 8050 688 7520 662
correct false 754 79.8 794 80.7

incorrect results 2.37 .265 2.18 .259
incorrect true - - - -
incorrect false 2.37 .265 2.18 .259

Table 8.5: Resources - comparison wi th the results from S V - C O M P 2017

• cores: 8

• frequency: 3.8 G H z , Turbo Boost: disabled

• R A M : 33553 M B

• system: L i n u x 4.4.0-59-generic

Our computer had a slightly better performance rat ing than the machines used at S V -
C O M P 20 1 7 8 and we also used Turbo Boost 2.0. However, it is important to mention
that on our machine we d id not run the tests exclusively, but other processes were running
alongside the tests. Th is might influence the number of cache misses and basically slow
down the memory access of our tests. Table 8.6 compares the C P U time that was measured
at S V - C O M P 2017 to the t ime measured on our machine. The findings of this measurement
indicate that the performance of the machines is comparable, since the difference i n used
to ta l amount of t ime is only about 3%.

2LS 0.5.0 - Intel X e o n E3-1230 v5 2LS 0.5.0 - Intel Core i7-6700
C P U T ime (s) C P U T i m e (s)

total 58600 60800
correct results 4630 5660
incorrect results 90.6 103

Table 8.6: Machine performance comparison

Based on the results in Table 8.7, we predict that 2LS could finish the second at S V -
C O M P 2018. To compete for the winning posit ion, the terminat ion analysis must be
improved, which is the part of 2LS where further work needs to be done.

We also roughly compare the performance of the tools i n Table 8.8 and Table 8.9. A s
you can see, the efficiency of 2 L S is much higher than the efficiency of other successful
tools. The UAutomize r tool had a s imilar number of correct false detections as 2LS had,
but needed approximately 11 times more t ime than 2 L S . We can see that 2LS used almost
half of the to ta l computat ion t ime to produce a correct result, while other tools were much
worse.

;http://cpuboss.com/cpus/Intel-E3-1230V5-vs-Intel-Core-i7-6700

39

http://cpuboss.com/cpus/Intel-E3-1230V5-vs-Intel-Core-i7-6700

2LS 0.5.1 - S R S M e t h o d UAutomize r A P r o V E
Score Score Score

to ta l 1489 2085 978
correct results 1585 2085 978

correct true 1120 1626 916
correct false 465 459 62

incorrect results 122 - -
incorrect true - - -
incorrect false 122 - -

Table 8.7: Score - comparison wi th the best two other tools

2LS 0.5.1 - S R S M e t h o d UAutomize r
C P U T ime (s) M e m o r y (G B) C P U T ime (s) Memory (G B)

total 17400 1320 128000 2070
correct true 6980 709 23800 671
correct false 544 64.7 5940 268

Table 8.8: Resources - comparison wi th the winner

2LS 0.5.1 - S R S M e t h o d A P r o V E
C P U T ime (s) Memory (G B) C P U T ime (s) Memory (G B)

total 17400 1320 598000 7140
correct results 6980 709 11100 709
incorrect results 544 64.7 2050 73.9

Table 8.9: Resources - comparison wi th the second placed tool

40

8.4 B u g Repor t

5 incorrectly detected benchmarks reveal 2 hidden bugs i n 2 L S . In this section, we give
information about the 2 bugs discovered i n 2 L S . One bug caused incorrect results i n 4 of
these 5 benchmarks. We studied this in depth, but the fix complexity was beyond the
scope of our work. We provide a description of our findings which can be used in future
development. We use the following program example to explain the cause:

t y p e d e f s t r u c t node {
s t r u c t node* n e x t ;

} n o d e _ t ;
i n t m a i n (v o i d)
{

node_t* head = NULL;
node_t * c u r r ;
/ / a l l o c a t e singly linked l i s t
f o r (i n t i = 0 ; i < 2 ; i++) {

c u r r = m a l l o c (s i z e o f (n o d e _ t)) ;
c u r r - > n e x t = h e a d ;
head = c u r r ;

}

/ / i t e r a t e singly linked l i s t
node_t* c u r r = h e a d ;
w h i l e (c u r r != NULL) {

c u r r = c u r r - > n e x t ;
}

r e t u r n 0 ;

A s we can see, the program noted above is always terminating. It is creates a singly
linked list and then it searches through it t i l l it reaches the end, which is N U L L . Every
memory al location in 2LS is replaced by dynamic_object$i, which is a symbolic name for
the contents of allocated memory. The unwinding procedure is supposed to create the new
unique dynamic object for every unwinding i f such object is created inside the loop. In
the current version of 2LS , dynamic objects are not replaced w i t h unwinding. Therefore,
i n our previous example, the non-termination analysis w i l l detect infinite loop execution of
the while loop after 2 unwindings. The generated S S A form encodes the same program
behavior as if malloc function would return the same memory address twice i n the for
loop. It creates a recursive loop in the list.

The second bug was not fully documented. We were able to detect that the S S A form
is not correctly generated for the nested loops. There exist infeasible paths where we can
prove and disprove assertions w i t h the same S S A formula without over-approximation.
The benchmark, where the bug was detected is loops/while infinite loop 4 false-
unreach-call true-termination.i .

41

Chapter 9

Conclusion

Our a im in this work was to design and implement non-termination analysis wi th in the 2LS
tool . The tool uses the SSA-based representation and works exclusively on bit-vectors. Th is
represented the major challenge in this work. Ex i s t i ng methods for proving non-termination
were studied, and we implemented the well-known approach introduced by [] adjusted
for the representation used i n our tool . O u r results show that even a simple a lgori thm can
be highly effective wi th the proper, SSA-based, representation. We tested our tool on the
set of benchmarks from S V - C O M P 2017 and we were able to detect non-termination in
475 of 497 non-terminating benchmarks. The method also revealed 1 incorrectly classified
benchmark and 6 benchmarks wi th an overflow issue.

Even though the implemented method produced very good results, we wanted to cover
the set of programs where it was ineffective and took an excessive amount of t ime to
compute the result. Therefore, we introduced the concept of periodical recurrence sets
and we implemented our second method. This was able to cover 4 more benchmarks and
increase the to ta l number of detected non-terminating benchmarks to 479. We designed a
parallel a lgori thm for 2LS that combined our non-termination analysis w i th the terminat ion
analysis already implemented in our tool . The final score in the category Termination has
been increased from 899 to 1489, which is a significant improvement.

Further research is needed into terminat ion analysis i n 2LS i n order to increase the
number of successfully proved terminat ing benchmarks and to remove the existing bugs in
the analysis. A d d i t i o n a l work needs to be performed to improve the results of the unifying
procedure for the terminat ion and the non-termination analysis. Research into recursion
support is also needed, since more than 100 benchmarks on S V - C O M P are currently recur
sive. The use of more complex templates for periodical recurrence sets could be a productive
field of study. We highly recommend studying the use of this approach for interprocedural
analysis, which could increase the scalabili ty of the presented method.

42

Bibliography

[1] Beyer, D . : Software Verification w i t h Val ida t ion of Results. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2017. pp. 331-349.

[2] Beyer, D . ; Lowe, S.; Wendler, P.: Benchmarking and resource measurement. In Model
Checking Software. Springer. 2015. pp. 160-178.

[3] B r a i n , M . ; Joshi, S.; Kroen ing , D . ; et a l . : Safety Verification and Refutation by
k-Invariants and k-Induction. In International On Static Analysis. Springer. 2015. pp.
145-161.

[4] Chen , H . - Y . ; Cook, B . ; Fuhs, C ; et a l . : P rov ing nontermination v i a safety. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer. 2014. pp. 156-171.

[5] Chen , H . - Y . ; D a v i d , C ; Kroen ing , D . ; et a l . : Synthesising Interprocedural Bit-Precise
Terminat ion Proofs (T) . In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. I E E E . 2015. pp. 53-64.

[6] Clarke, E . ; Kroen ing , D . ; Lerda , F . : A tool for checking A N S I - C programs. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer. 2004. pp. 168-176.

[7] Clarke, E . ; Kroen ing , D . ; Yorav, K . : Behavioral Consistency of C and Veri log
Programs Using Bounded M o d e l Checking. 2003.

[8] Cook, B . ; Kroen ing , D . ; Rummer , P. ; et a l . : Rank ing function synthesis for bit-vector
relations. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2010. pp. 236-250.

[9] Cousot, P. ; Cousot, R . : Abst rac t interpretation: a unified lattice model for static
analysis of programs by construction or approximat ion of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. A C M . 1977. pp. 238-252.

[10] Gup ta , A . ; Henzinger, T . A . ; Majumdar , R . ; et a l . : P rov ing non-termination. ACM
Sigplan Notices, vol . 43, no. 1. 2008: pp. 147-158.

[11] Kroen ing , D . ; Lewis, M . ; Weissenbacher, G . : Under-approximating loops i n C
programs for fast counterexample detection. Formal methods in system design.
vol . 47, no. 1. 2015: pp. 75-92.

43

[12] Leike, J . ; Heizmann, M . : Rank ing templates for linear loops. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2014. pp. 172-186.

[13] Schrammel, P.; Kroen ing , D . : 2LS for P rogram Analys is . In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer.
2016. pp. 905-907.

44

