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Abstract 
One of the properties that are most difficult to verify in the area of formal analysis is live-
ness. P rov ing non-termination of programs also belongs to the methods that verify this 
property. O u r work describes the design and implementat ion of two algorithms checking 
non-termination. We inspire ourselves by already existing approaches, such as recurrence 
sets and over-approximation of loops wi th the use of invariants i n the form of recurrence re
lations. The ma in challenge for us was an adaptat ion of these algorithms to the S S A (single 
static assignment) representation used i n 2LS and the overall integration i n our frame
work. We were able to unify the mentioned approaches into analysis of non-termination, 
which achieves the best results i n comparison to the other tools that were compared at the 
S V - C O M P 2017 competi t ion. 

Abstrakt 
Jednou z nejsložitěji verifikovaných v l a s tnos t í p r o g r a m ů v oblasti formáln í a n a l ý z y je živost . 
K j e d n é z metod ověřujících tuto vlastnost p a t ř í i dokazován í neukonč i t e lnos t i p r o g r a m ů . 
Naše p r á c e popisuje n á v r h a implementaci dvou a l g o r i t m ů ověřujících neukonč i t e lnos t . In
spirujeme se již exis tuj íc ími př í s tupy , jako jsou r e k u r e n t n í m n o ž i n y a nadaproximace cyklů 
s v y u ž i t í m inva r i an tů ve tvaru r e k u r e n t n í c h relací . H lavn í výzvu pro n á s p ředs tavova lo 
p ř i způsoben í t ě ch to a lgo r i tmů S S A (single static assignment) reprezentaci p o u ž i t é v 2LS a 
jejich celková integrace v n a š e m frameworku. V z p o m í n a n é p ř í s t u p y se n á m poda ř i l o spojit 
do ana lýzy neukonč i t e lnos t i , k t e r á dosahuje nejlepší výs ledky v p o r o v n á n í s exis tuj íc ími 
nás t ro j i , k t e r é byly s r o v n a n é na soutěž i S V - C O M P 2017. 
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Chapter 1 

Introduction 

Various fully automatic methods of static formal analysis play an increasingly important 
role i n assuring software quality. Nevertheless, this concerns mainly checking relatively 
simple properties and often using analyses that, in order to gain scalability, give up not 
only completeness but even soundness. Scalable and sound methods of static analysis of 
complex properties of real-life programs do s t i l l pose a lot of research challenges. Th is is 
part icularly true for analyses of program terminat ion and non-termination. There exists 
continuous research i n these fields, but the community working on these issues is not as 
large as i n other areas of static analysis, especially i n the case of non-termination. 

One of the promising tools for formal analysis and verification of C programs is 2 L S , 
supported by the DiffBlue company. The 2LS tool is based on the C P R O V E R infrastruc
ture. 2LS combines bounded model checking, k- induct ion and abstract interpretation to 
implement a new efficient method called k-invariants k- induct ion [3]. The k-invariants k-
induct ion algori thm uses abstract interpretation to infer inductive invariants. To restrict 
the space in which possible invariants are to be sought, 2LS uses templates in the forms of 
parameterized constraints on program variables. For instance, a template for a variable i 
that has values from the interval (C2 , C I ) is i < C I A — i < C 2 . Searching for invariants is 
then reduced to searching for suitable values of the parameters of the chosen template. In 
the example, that would mean searching for the values of the parameters C I and C 2 . 

2LS also includes a module for verification of termination, based on using lexico
graphic ranking functions [12]. Th i s terminat ion analysis is currently able to check never-
terminat ion (i.e., checking that there does not exist any run from the beginning of a proce
dure to its end), but the more demanding non-termination analysis, which checks whether 
there is some non-terminating run of the given procedure, is missing. The goal of this work 
is to propose, implement, and experimentally evaluate a non-termination analysis i n 2LS. 

The 2LS tool uses a representation of programs based on the S S A (Single Static A s 
signment) form, which is the transformation of a program, where every variable is assigned 
once at most. 

The most common technique to check program non-termination is to search for recur
rence sets. A recurrence set is a set of program states where at least one state is reachable 
from the set of in i t i a l states, and, for every state in the recurrence set, we are able to 
get back to the recurrence set by executing the program. In this work, since 2 L S uses 
bit-vectors to represent program states, we use a notion of recurrence sets specialized for 
the domain of bit-vectors as described by [ ]. Hence, we look for one program state that 
is reachable at some loop head from some in i t i a l program state and that can be reached 
repeatedly from this loop head. 
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The main challenge that we address is to apply the aforementioned idea on the program 
representation used in 2LS , which is specific S S A , form encoded as a single bit-vector 
formula. The S S A form uses ph i nodes jo ining program states, flowing to loop heads from 
before loops wi th those flowing back from the loops. The latter states are i n 2 L S over-
approximated by a free variable that can be constrained by gradually refined invariants. 
These invariants can, however, s t i l l over-approximate reachable states. Hence, when using 
them, we would not be able to prove non-termination. Therefore, we proposed a simple, 
yet, as our experiments show, quite efficient approach, in which we use incremental loop 
unwinding, and restricting the S S A form to never use over-approximated back-edges of 
program loops. 

Moreover, we also propose another method for checking non-termination of programs 
where the above approach tends to be very inefficient. A s introduced by [11], we replace the 
recurrence relations defined by loops w i t h their solutions using loop invariants and thus, we 
describe arbi t rar i ly many loop iterations in one formula. Contrary to [11], where the loop 
exit conditions are taken into account, we consider every loop being nonterminating and the 
loop exit conditions are investigated separately. The effectiveness of this approach lies in 
the representation of a periodical recurrence set by single formula. A periodical recurrence 
set is a recurrence set, where the transi t ion from a state i n the recurrence set back to the 
set is defined as an addi t ion of some constant C. 

We have implemented and combined both of the approaches i n 2 L S . We tested our 
approach on the set of benchmarks used at S V - C O M P 2017 (International Compet i t ion on 
Software Verification). 2LS part icipated in this competi t ion in 2016 and 2017. In 2017, 
it gained 899 points, which our approach is able to improve to 1489 points. Moreover, 
our method for checking non-termination performed the best when compared to the non-
terminat ion analyses of a l l other tools that part icipated i n S V - C O M P 2017. 

The rest of the thesis is structured as follows. Chapter 2 describes the principles of the 
2LS tool , main ly abstract interpretation, the template-based approach, and the S S A form 
used for the program representation. Chapter 3 provides an introduct ion to intra-procedural 
terminat ion analysis i n 2LS . It introduces the notion of ranking functions and includes 
some essential definitions. Basic principles of non-termination analysis are presented in 
Chapter 4. Our method of searching for a singleton recurrence set and its implementat ion 
is presented in Chapter 5. We describe the search for periodical recurrence sets and their 
implementat ion i n Chapter 6. O u r experiments done on the set of benchmarks from S V -
C O M P 2017 are described in Chapter 8. F ina l ly , Chapter 9 gives a summary of our results 
and contains suggestions for prospective improvements. 
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Chapter 2 

The 2LS Tool 

2LS is a static analysis and verification tool for C programs [ ]. It performs interprocedural 
abstract interpretation, verification and refutation of assertions and terminat ion analysis. 
The too l works on bit-vectors. 

2LS uses G O T O programs as an intermediate representation [6]. It performs static 
analysis to derive the data flow equations for each function of the G O T O program. The 
result is an S S A form, which is an over-approximation of the G O T O program, because the 
loops are cut so that the variables modified inside them are havocked at the loop head (see 
Section 2.3). 

For the fast incremental solving 2LS uses S A T solvers, concretely M i n i S A T 2.2.1. A n 
S S A equation is translated into a C N F formula by bit-precise modeling of a l l expressions 
plus the Boolean guards. The formula is incrementally extended to perform an invariant 
generation using template-based synthesis, to add further loop unwindings and assertions 
for property checks. If a property check is satisfiable and the model computed by the S A T 
solver does not take a path through an invariant, then it corresponds to a path violat ing 
at least one of the assertions in the verified program. A human-readable counterexample 
is provided by translating the model back to a sequence of assignments. A n unsatisfiable 
property check means that the assertions are proven. 

The 2LS combines incremental bounded model checking, k- induct ion and abstract in 
terpretation to create a new k-invariant k- induct ion algori thm ['!]. The content of the 
following sections is mainly taken from [ ]. For the following text we have a notat ion that 
x represents a vector and x scalar. 

2.1 Abs t r ac t Interpretat ion in 2LS 

One of the main verification methods used in 2LS is an abstract interpretation [ ]. For 
the vector of variables x, we describe the start states by the predicate ira£(x) and the 
transi t ion relation by the predicate Trans(x, x'). The transi t ion relation is a formula which 
describes the progression relation from one state to another after executing some program 
statement. We use inductive invariants to describe the set of states that is a fixed-point 
for the transi t ion relation Trans(x, x') as follows: 

Definition 2 . 1 . 1 . (Inductive invariant) Inv is an inductive invariant i f it has the following 
property: 

(2.1) 
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The abstract interpretation i n 2LS is used to compute inductive invariants AInv which 
include start states i m t ( x ) : 

32AInv £ A : V x , x ' : ( i r a i (x ) => AInv(x))A . . 
(AZnv(x ) A Trans(x, x ' ) =>- A Z n u ( x ' ) ) ^ ' ' 

.A is the chosen abstract domain of the formulas. The result of the abstract interpretation is 
an over-approximation of the set of reachable states. The check for safety is then performed 
in the following way: 

V x : ATnu(x ) ) ->Err(x) (2.3) 

If the formula 2.3 does not have a model, this means that the system is safe. Otherwise, 
we have to find more restrictive AInv or choose the more expressive abstract domain A. 
In 2LS the template-based approach is used to choose the abstract interpretation domain, 
i.e. A contains only the formulas described by a template. 

2.2 Template-based A p p r o a c h in 2LS 

In 2LS the state space for the invariants is restricted by a template of the form 7~(x, d), 
where x are program variables and 8 are the template parameters. The second-order search 
for an invariant described by formula (2.2) can thus be replaced by the first-order search 
for the parameters of the template: 

36 : V x , x ' : (ira*(x) T ( x , 6))A . , 
( T ( x , <5) A Trans(x, x ' ) T(x ' ,5)) K ] 

The quantifier alternation 3V i n the formula (2.4) is a challenge for today's S M T solvers. 
Therefore the formula is negated and the parameters 8 are searched iteratively for different 
choices of constants d: 

3 x , x ' : - . ( i r a i (x ) T ( x , d ) ) V 
- i ( T ( x , d ) A Trans(x, x ' ) T ( x ' , d ) ) 1 °> 

The abstract value d represents the set of a l l x that satisfy the formula 7~(x, d ) . The 
abstract value _L denotes empty set and T stands for the whole domain. Hence we get 
T ( x , _L) = false and T ( x , T ) = false. 

2.3 SSA-based Representat ion 

A program verified by 2LS is at first translated into G O T O representation. In the G O T O 
version of a program, loop heads have a form of conditions and goto statements. The G O T O 
representation is then converted to SSA-based representation, which w i l l be further called 
the S S A form [7]. We explain our approach on a simple program below. We further provide 
the corresponding G O T O program and the S S A form. We also employ C F G (Contro l F low 
Graph) to explain the use of the specific constructs of the S S A form. 

L i s t ing 2.1: The example part of a program in C 

i n t i = 1; 
w h i l e ( i > 0) 

r e t u r n 0 ; 

(i 



Lis t ing 2.2: The corresponding G O T O program to the code 2.1 

s i g n e d i n t i ; 

i = l ; 
1 IF ! ( i >= 1) THEN GOTO 2 

i = -1 + i ; 
GOTO 1 

2 r e t u r n _ v a l u e = 0; 
dead i ; 

Lis t ing 2.3: The S S A form of the code 2.1 

$guard#0 = == TRUE 
i # l == 1 
i # p h i 2 == ($guard# l s4 ? i # l b 4 : i # l ) 
$cond#2 == = ! ( i # p h i 2 >= 1) 
$guard#2 = == $guard#0 
i#3 == -1 + i # p h i 2 
$guard#3 = == (!$cond#2 && $guard#2) 
$cond#4 == = TRUE 
m a i n # r e t u r n _ v a l u e # 5 == 0 
$guard#5 = == ($cond#2 & & $guard#2) 

$guard#0 
1 
I 
j  

int i = 1; 

i#1 

i--; return 0; 

Figure 2.1: C F G wi th the corresponding parts of the S S A form 

The parts of the generated S S A from 2.3 correspond to G O T O program statements. 
The ma in difference is the use of guard variables, which encode reachability of some pro
gram locations (see Figure 2.1). $guard#0 represents the reachability of the function entry 
point. It is set to TRUE, because we do intra-procedural analysis. $guard#2 represents the 
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reachability of the loop head. $guard#3 holds when the reachable loop has the satisfiable 
condit ion $cond#2. Because of the different types of loops i n C there are 2 conditions for 
every loop i n the S S A form. $cond#2 represents a condit ion at the loop head (for, while) 
and $cond#4 is a condit ion at the loop end (do-while). The last guard - $guard#5 holds 
when the location after the loop is reached. Accord ing to the equation i n the S S A form in 
Li s t ing 2.3, this happens when the loop condit ion is not satisfied and the loop is reachable. 

Notice the equation i#phi2 == ($guard#ls4 ? i#lb4 : i # l ) , where we use in
stead of i#3 a free variable i#lb4. This is shown in C F G i n Figure 2.1 where we cut the 
back edge variable i#3 and replace it w i th i#lb4. Even though the C F G s t i l l depicts a loop, 
there is no dependency between i#3 and i#lb4. The latter is a free variable representing 
an abstraction. Also , instead of a guard at the loop back, which is not even created (it 
must encompass $cond#4), we use another free variable $guard#ls4. Th is is an abstraction 
that covers the effect of any number of loop iterations because i#lb4 is a free variable and 
the choice between i#lb4 and i # l is nondeterministic. A s you can see, there is no loop in 
the generated S S A , and so it became an acyclic over-approximation of the program. If the 
property holds for both i # l and i#3, it can be assumed to hold for i#lb4. A n invariant is 
computed in the form of constraints for i#lb4. 

The way we can make the analysis more precise is to employ a loop unwinding. It is 
performed by repeating the conversion of a loop and renaming the variables. The variables 
from different loop exits are then merged at the end. The separate loop bodies created 
from one loop are called loop unwindings. G u a r d variables of loop heads of different loop 
unwindings are used as conditions for variable selection. We w i l l demonstrate the unwinding 
procedure on the same program as we used above in L i s t ing 2.1. The following is the 
unwound program i n C : 

L i s t ing 2.4: The example part of a program in C 

i n t i = 1; 
w h i l e ( i > 0) 
{ 

i - - ; 
i f (! ( i > 0)) goto BREAK; 
i - - ; 

> 
BREAK: 
r e t u r n 0; 

The corresponding S S A form becomes complicated and hardly readable as shown in L i s t ing 
2.5. 

L i s t ing 2.5: The S S A form of the code from Lis t ing 2.1 wi th every loop unwound one time 

$guard#0 == TRUE 
i # l == 1 
i # p h i 2 ° / „ l == ( $ g u a r d # l s 4 ° / „ l ? i # l b 4 ° / „ l : i # l ) 
$cond#2° /„0 == ! ( i # p h i 2 ° / „ 0 >= 1) 
$ g u a r d # 2 ° / „ 0 == ($guard#3°/„l && $cond#4%l) 
$cond#2%l == ! ( i # p h i 2 ° / . l >= 1) 
$ g u a r d # 2 ° / „ l == $guard#0 
i#3°/„l == -1 + i # p h i 2 ° / „ l 
i # p h i 2 ° / „ 0 == i#3°/„l 
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i#3°/„0 == -1 + i # p h i 2 ° / „ 0 
$ g u a r d # 3 ° / „ l == (! $ c o n d # 2 ° / „ l && $ g u a r d # 2 ° / „ l ) 
$ g u a r d # 3 ° / „ 0 == (! $cond#2° /„0 && $ g u a r d # 2 ° / 0 0 ) 
$ c o n d # 4 ° / „ l == TRUE 
$cond#4° /„0 == TRUE 
$cond#2 == ( $ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? $ c o n d # 2 ° / „ l : $cond#2*/,0) 
$guard#2 == ( $ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? $ g u a r d # 2 ° / „ l : $ g u a r d # 2 ° / „ 0 ) 
i #ph i2 == ( $ g u a r d # 2 ° / „ l && $ c o n d # 2 ° / „ l ? i # p h i 2 ° / „ l : i # p h i 2 ° / „ 0 ) 
m a i n # r e t u r n _ v a l u e # 5 == 0 
$guard#5 == ($cond#2 && $guard#2) 

We add the corresponding C F G i n Figure 2.2 which assigns guards to program locations. 

ts. 

Sguard#0 

int i = 1; 

i#1 

Figure 2.2: C F G wi th the corresponding parts of the S S A form 

We can see some already known parts that were described in L i s t ing 2.3. To differentiate 
two loop unwindings of the same loop body, 2 L S uses suffix °/0i. It is important to mention 
that °/0l denotes the first i teration and °/00 denotes the second. The loop unwinding that gets 
the highest number in its suffix always represents the first loop i teration. Contrariwise, an 
instance of the loop body wi th the suffix °/„0 is always the last instance. 

The unwound version has some addi t ional program locations. A s we can see differ
ent instances of the loop are bound together by the equations i#phi2°/„0 == i#3°/0l and 
$guard#2°/,0 == ($guard#3°/0l && $cond#4°/0l). The first equation binds the output vari
able of the first instance to the input variable of the second one. We can see i n the second 
equation that $guard#2°/ 00, which represents the locat ion of the second loop unwinding, 
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holds only when the loop body of the previous instance has been entered and the loop end 
condit ion of the first unwinding holds. Results from different loop instances are merged 
together and suffix °/„i is removed. Thus the loop result can be later used as if there was 
only one loop instance - $guard#5 == ($cond#2 && $guard#2). 
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Chapter 3 

Termination Analysis 

This chapter is devoted to the description of terminat ion analysis implemented in 2LS . It 
was the stepping stone of our further studies. The non-termination analysis itself would be 
useless without integration of terminat ion analysis into the cooperating model. Therefore, 
we describe the theoretical principles of the algori thm implemented i n 2LS checking ter
minat ion. 2LS contains the implementat ion of intra-procedural as well as inter-procedural 
analysis. Inter-procedural aspect is not relevant here and w i l l not be presented, because it 
was not used i n our work. O u r methods and also terminat ion analysis used i n this thesis 
are intra-procedural. It is ensured by in l in ing a l l function calls, and as we know, recursion 
in 2LS is not supported. The content of the following sections is predominantly drawn from 

3.1 Well-foundedness and R a n k i n g Funct ions 

Definition 3.1.1. (Well-founded Rela t ion [12]) A relation R C X x X is well-founded iff 
every non-empty subset of X has an i? -min imal element. 

L e m m a 1. A binary relation R is well-founded i f and only i f there exists a ranking function 
for R. 

Definitions of Rank ing function 3.1.2 and the following lemma are taken from [8]. 

Definition 3.1.2. (Ranking Function) Suppose (D, -C) is a well-founded, s tr ict ly part ia l ly 
ordered set, and R C U x U is a relation over a non-empty set U. A ranking function for 
R is a function m : U —>• D such that: 

L e m m a 2. If a (global) ranking function exists for the transi t ion relation R of a program 
f3, then /3 terminates. 

3.2 Intra-procedural Termina t ion Ana lys i s i n 2LS 

The linear lexicographic ranking functions are used in 2LS to efficiently solve the termina
t ion problem, because monoli thic ranking functions, however they are complete, are much 
more difficult to solve by existing S M T solvers. 

[ ]• 

(3.1) 
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Definition 3.2.1. (Lexicographic R a n k i n g Function) A lexicographic ranking function R 
for a t ransi t ion relation Trans(x, x ' ) is an n-tuple of expressions (Rn, Rn-i, Ri) such 
that 

3 A > 0 : V x , x ' : Transit, x ' ) A 3i G [1, n] : i ^ ( x ) > 0 
Ai2i(x) - i2i(x') > A (3.2) 
A V j > * : iij-(x) - i? j (x ' ) > 0 

The existence of A > 0 and the condit ion -Rj(x) > 0 guarantee that the relation > is 
well-founded. Since 2LS works on bit-vectors, the condit ion i?«(x) > 0 is t r iv ia l ly satisfied. 
Bit-vectors are also discrete so we replace the condit ion -Rj(x) — -Rj(x') > A w i th i?j(x) — 
i? i (x ' ) > 0. The condit ion that (Rn,Rn-i, . . . , i ? i ) is a lexicographic ranking function wi th 
n components over bit-vectors is necessary and sufficient for the val idi ty of the following 
LR formula: 

L i T ( x , x ' ) = V?=i ( i ? i (x ) - i2 i (x ' ) > 0 A A " = i + i ( ^ ( x ) - i ^ ( x ' ) > 0)) (3.3) 

The procedure / may be composed of several loops, where each of the loops has a guard 
g that expresses the reachability of the loop head. For k loops i n the procedure / the 
lexicographic ranking function has the form: 

i ? i T ( x , x ' ) = A t i 5i(x) = > L i ? « ( x , x ' ) (3.4) 

To synthesize lexicographic ranking functions the function -Rj(x) is specified to be the 
product l i X where U is the template parameter vector. The resulting constraints for a loop 
i are £7£™ l(x, x ' , L" 1 ) , where L " 1 is the vector ( 1 ^ , l " 1 ) . The constraints for the whole 
procedure are 72.72.(x, x ' , L n ) , where L n is the vector L " 1 , L £ k . W h e n no ranking function 
has been found, the special value T is used. The in i t i a l value of the template is _L which 
means that the ranking function has not been computed yet. Us ing these values we get 
£ 7 2 " i ( x , x ' , T ) = true and £72™ i(x, x ' , _L) = false. F ina l ly , the reduction of the ranking 
function synthesis to a first-order quantifier e l iminat ion problem over templates is Formula 
3.5: 

3 L n : V x , x ' : Inv(x) A Trans(x, x ' ) = ^ 7272(x, x ' , L n ) (3.5) 
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Chapter 4 

Non-termination Analysis 

Since the terminat ion analysis i n 2LS computes only the sufficient terminat ion precondition, 
which is a subset of the weakest precondition, the negation of this precondition could s t i l l 
encompass a terminat ing path. Therefore, we need to find another way to prove non-
terminat ion than just negating the terminat ion analysis results. In this chapter we look at 
the most commonly used approach to prove non-termination, which are the recurrence sets 
as described by [4, 10]. Informally a recurrence set RSet is a set of states at the head of a 
loop that satisfies the following properties [10]: 

1. RSet entails the loop condit ion. 

2. Some reachable state x satisfies RSet. 

3. For every state x satisfying RSet, some successor of x , after executing the loop body, 
is again in RSet. 

We introduce a theoretical principles of the lasso-based approach mentioned in [ ]. A n d 
finally we provide a short description of the method that transforms a property check from 
liveness to safety. 

4.1 Lasso-based A p p r o a c h for P r o v i n g Non- te rmina t ion 

A method working on lassos is described i n [10]. The lasso consists of a finite program path 
called stem followed by a finite program path named loop. The loop must form a syntactic 
cycle in the control-flow or cal l graph of the program. If the stem can be followed by an 
infinite number of executions of the loop, the lasso is feasible. 

The method works i n two phases. In the first phase lassos are generated. The second 
phase then checks the feasibility of a given lasso. 

Definition 4 . 1 . 1 . (Feasibility of the Lasso) A lasso is feasible i f and only i f there exists 
a recurrence set of states visi ted infinitely often along the infinite path that results from 
unroll ing the lasso. 

Using the convention from Chapter 3, we define the relations Transstem and Transioop 

on the program states as follows: 

Trans Stem{-XQ, x f c ) = i r a i (xo) A A t o * Trans fa, x i + i ) (4.1) 
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Transioop(xk,xm) = A^Lfc 1 Trans where m > k (4.2) 

W i t h the previous representation of the stem and loop transitions, we w i l l now specify 
the notions of open and closed recurrence sets according to the definitions of [1]. We 
consider it necessary to give the exact definition of the recurrence set: 

Definition 4 .1 .2 . (Open Recurrence Set) A transi t ion relation Transioop w i th in i t i a l states 
Init has an (open) recurrence set of states RSet iff Formulas 4.3 hold. 

3 x , x ' : Transstem(x,x') A RSet{x!) . . 
V x 3 x ' : RSet{-x) T r a n s Z o o p ( x , x ' ) A RSet(x') [ ' ' 

Definition 4 .1 .3. (Closed Recurrence Set) A set RSet is a closed recurrence set for a 
transi t ion relation Transioop w i th in i t i a l states Init iff the Formulas 4.4 hold. 

3x, x ' : TransS(em(x, x ' ) A RSet(x!) 
V x 3 x ' : RSet(x) Transioop(x, x ' ) (4.4) 
V x V x ' : i ?5ei (x) A T r a n s Z o o p ( x , x ' ) RSet{id) 

Unlike the open recurrence set, the closed recurrence set requires that every successor 
of the state i n RSet must be the member of RSet. The following theorems make clearer 
the relationship between a recurrence set and closed recurrence sets. 

Theorem 3. (Closed Recurrence Sets are Recurrence Sets [ ]) Let RSet be a closed recur
rence set for Transioop w i th in i t i a l states Init. Then RSet is also an open recurrence set for 
RSet w i th in i t i a l states Init. 

Theorem 4. (Open Recurrence Sets Always Con ta in Closed Recurrence Sets [ ]) There 
exists a recurrence set RSet for a t ransi t ion relation Transioop w i th in i t i a l states Init iff 
there exists an under-approximation Trans'loop w i th in i t i a l states Init' and RSet' C RSet 
such that RSet' is a closed recurrence set for Trans'lo0p w i th in i t i a l states Init'. 

Regarding the algori thm, the search for a lasso consists of two phases. In the first phase, 
the C F G (control flow graph) is searched for a lasso. In the next step, the lasso is checked 
for non-termination. The whole process is nondeterministic (i.e. each next program state 
is chosen randomly from the set of accessible states, and when there are more loops i n the 
C F G , the a lgori thm randomly selects one of them). Backtracking is used to pick a l l feasible 
lassos. 

Recal l that 2LS is acyclic, so we cannot search for lassos i n our method, thus instead 
we check a l l loops i n a program for non-termination. The most important part of the lasso-
based approach for our analysis is checking non-termination of the loop, which is discussed 
below. 

Definit ion 3.1.1 can be used to define non-well-foundedness. We use the informal def
in i t ion of [10] - the relation Trans(x, x ' ) over the program states is not-well-founded i f it 
induces an infinite sequence of states. The goal of this analysis is to find the in i t i a l states 
of such sequences. 

Definition 4 .1 .4. (Infinite Execut ion of the Lasso) A lasso induces an infinite execution 
if the following relation is not-we 11-founded: 

3 x , x ' , x " : Transstem(x,x') A Trans;oop(x/',x") (4.5) 
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Proposi t ion 1 taken from [10] relates the property non-well-foundedness and the recur
rence sets. 

Proposit ion 1. (Non-well-foundedness and Recurrence Sets) A relation Trans / o o p (x , x') is 
not-well-founded i f and only if there exists a non-empty recurrence set of states, i.e., i f for 
some RSet(x), we have: 

3 x : RSet(x) 
V x 3 x ' : RSet(x) = ^ Trans Z o o p (x , x') A RSet(x!) 1 ' ; 

A n d finally we define the infinite lasso execution using the recurrence sets by the fol
lowing proposit ion taken from [10]. 

Proposit ion 2. (Non-well-foundedness and Recurrence Sets) A lasso induces an infinite ex
ecution if and only if there exists a recurrence set RSet(x!) for the relation Trans/00p(x',x") 
such that: 

3 x 3 x ' : Transsiem(x,x') A RSet(x') (4.7) 

4.2 B i t - l eve l Non- te rmina t ion Ana lys i s w i t h a Lasso-based 
A p p r o a c h 

This analysis represents the core of our work since it works on bit-vectors such as the 
whole 2LS tool . It assumes finite state space, and thus for an infinite program execution, 
there exists a state which is repeated an infinite number of times. Therefore we look for a 
recurrence set w i th exactly one state. Th is can be formally expressed by the formula: 

3x , x', x" : Trans s i e m ( x , x') A Trans Z o o p (x' , x") A (x' = x") (4.8) 

In Formula 4.8 Transstem represents a transi t ion from the in i t i a l states to a state at the 
loop head of a lasso and Transioop is the predicate for the execution of the loop body. 

In some cases we need to apply loop unwinding to find a singleton recurrence set as 
demonstrated by the following example: 

w h i l e ( x = = y ) { x = ! x ; y = ! y ; } 

The program does not terminate i f x equals y at the beginning. B y applying Formula 4.8 
we get the expression (x = y) A (x = ->x A y = ->y), which is unsatisfiable. We need to 
unwind the loop once to satisfy the formula for the singleton recurrence set: 

w h i l e ( x == y ) { x = ! x ; y = ! y ; i f ( x = = y ) { x = ! x ; y = ! y ; > > 

Now we get (x = y) A (-*x = ->y) A (x = -i->x A y = ->->y) which is a satisfiable formula. 
This method does not require us to solve the problem of quantifier alternation. It s imply 

allows us to use a S A T solver and can be very effective wi th some program representations as 
shown by our implementat ion in 2LS (see Section 5.2). However, for some program instances 
this might be a very ineffective solution even though they are t r iv ia l . For example a simple 
program: 

f o r ( i n t i ; 1; i++) ; 

w i l l take as many unwindings as is the size of the integer type in C to satisfy Formula 4.8. 
We later introduce a method that is able to handle a smal l class of such program instances. 
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4.3 Integer Non- te rmina t ion Ana lys i s w i t h Lasso-based 
A p p r o a c h 

The program transitions can be represented by linear inequalities. The constraint-based 
approach has been used by [ ] to synthesize recurrence sets. The authors have chosen 
templates consisting of linear inequalities that describe a transi t ion relation and a recurrence 
set (see Equations 4.9). 

RSet = T x < t 
loopguard = G x < g (4.9) 

x ' = C/x + u 

B y using the template x ' = Ux + u as a subst i tut ion for x ' i n formula 4.6, the authors 
moved existential quantification from the next program state to the template parameters: 

V x : RSet(x) Trans(x, Ux + u) A RSet(Ux + u) (4.10) 

However, there is s t i l l a universal quantifier i n the formula. To avoid this, authors util ize 
L e m m a 5. 

L e m m a 5. (Farkas' Lemma) A satisfiable system of linear inequalities Ax < b implies an 
inequality cx < 5 if and only i f there exists a non-negative vector A such that XA = c and 
A6 < 5. 

After the use of Templates 4.9 for Formula 4.10 we get a l l parameters we need to util ize 
the L e m m a 5. 

V x : T x < t Gx < g A TUx <t-Tu (4.11) 

In the general case we have more such implications as described by the previous lemma 
and instead of a search for vector A it is the search for matr ix A . In this case the employment 
of L e m m a 5 to Formula 4.11 produces the following formula: 

3 A ^ ° - - A T = { f u ) A A t ^ { t - T u ) <4"12) 

A similar approach can be used to transform Formula 4.7. The solution for these 
constraints gives us a recurrence set. Th is would be an elegant and simple solution for some 
class of non-terminating loops. Unfortunately Farkas ' lemma is applicable for integers, but 
there is no such approach to handle quantifier alternation wi th bit-vectors. 

4.4 Non- te rmina t ion Ana lys i s v i a Safety 

Another approach based on recurrence sets is designed by [ ]. Authors apply notion of 
closed recurrence sets i n the form of under-approximation of an existing program using 
assumptions and assertions. Thus checking a liveness property is transformed into checking 
a safety property, which is that a program never terminates. 

The principle of the method is as follows. We put an assumption assume (true) at the 
beginning of a program. Such assumptions are also placed after each use of nondeterministic 
values. A n assert (false) statement is put in every place where a loop may exit. Th is 
program transformation is i l lustrated in Figure 4.1 taken from [ ]. 
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if (k >= 0) 
skip; 

else 
i = - 1 ; 

while (i >= 0) { 
i = nondet(); 

} 
i = 2; 

assume(true); 
if(k >= 0) 

skip; 
else 

while (i >= 0) { 
i = nondet(); 
assume(true); 

} 
assert(false); 
i = 2; 

Figure 4.1: P rogram transformation 

A s we can see, every path that violates the added assertion is terminat ing. The task of 
this method is to find the restrictive conditions for these assumptions so that no assertion 
is violated (see Figure 4.2). 

assume(k >= 0 && i >= 0); 
if(k >= 0) 

skip; 
else 

i = - 1 ; 
while (i >= 0) { 

i = nondet(); 
assume(i >= 0); 

} 
assert(false); 
i = 2; 

Figure 4.2: P rogram wi th restrictions specifying the closed recurrence set 

The restrictive conditions specify a closed recurrence set as soon as no assertion can be 
violated. To ensure soundness, the loop reachability is checked after computing assump
tions, which is transformed to a safety check, by adding assert (false) before the loop. 
Final ly , assertions inside the loop must be checked for satisfiability. 

Authors use precondition computat ion to define error states that violate the added 
assertions. A crucial part of this method is to use an accurate approach that w i l l not 
lead to divergence or to an empty recurrence set. The restrictive conditions are computed 
iteratively, where after computing a precondition, refinement is applied to a condit ion. 

A great advantage of this method is the reduction of liveness to safety, which creates the 
possibili ty to use existing effective methods to prove safety properties. However, there is 
s t i l l many programs where it w i l l diverge or fail , because of insufficient or undue refinement. 
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Chapter 5 

Singleton Recurrence Set Search 
Algorithm 

In Chapter 4, we have presented the recurrence set method for proving non-termination 
of programs. The description was based on an abstract representation of the behavior of 
programs v i a the Trans(x, x ' ) relation. To recall, this relation represents any single step 
between any two consecutive program locations in any run of the program. Note that even 
the program counter is included among the variables i n x . A sequence of n steps of the 
program is then represented using the conjunction AILo Trans(x.i, Xj+i) w i th a fresh copy 
of each program variable for each step. 

In what follows, we use a different representation of the behavior of programs that is 
based on the S S A representation of programs heavily exploited in 2 L S . Remember that the 
S S A representation, common in 2 L S , over-approximates the behavior of programs by using a 
phi node at each loop head, which non-deterministically chooses (using a free guard variable) 
between values flowing into the loop and values flowing through the back edge (abstracted 
away using another free variable). This way, 2LS covers the effect of any number of loop 
iterations, but even i f loop invariants are introduced to reduce the non-determinism, some 
over-approximation typical ly happens. We cannot afford to have this over-approximation 
and be able to reliably detect non-termination, and so we w i l l prohibit execution of the 
back edges i n the following, and instead, we w i l l use (exact) loop unwinding. 

Below, we first explain our representation of program execution in more detail using an 
example. We w i l l also explain in a closer way the correspondence between this representa
t ion and the representation based on the Trans relation, providing a basis for understanding 
the correctness of our construction. Subsequently, we propose a way that our program rep
resentation can be used for non-termination checking. 

5.1 SSA-based P r o g r a m Representat ion for Non- te rmina t ion 
Check ing 

In order to explain our SSA-based program representation suitable for non-termination 
checking, we use the following example: 

11: i n t i = 1; 
12: w h i l e ( i < 10) 
13: i++; 
14: r e t u r n 0; 
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The transi t ion relation Trans for this program looks as follows: 

Ifams(x, x ' ) = x = (init, i ) A x ' = (11, i ) V 
x = (11,t) A x ' = (12,1)V 
x = (12,t) A i < 10 A x ' = (13,i)V . , 
x = (12, t) A i > = 10 A x ' = (14, t )V ^ ' ' 
x = ( 1 3 , i ) A x ' = (12,t + l ) V 
x = (14,t) A x ' = ( (end ,0 ) , l ) , 

O n the other hand, the corresponding S S A form without unwinding is: 

$guard#0 == TRUE 
i # l == 1 
$guard#2 == $guard#0 
i #ph i2 == ($guard# l s4 ? i # l b 4 : i # l ) 
$cond#2 == i # p h i 2 >= 10 
$guard#3 == (!$cond#2 && $guard#2) 
i#3 == 1 + i # p h i 2 
$guard#5 == ($cond#2 && $guard#2) 
m a i n # r e t u r n _ v a l u e # 5 == 0 

The variable $guard#ls4 represents a nondeterministic choice between the back edge vari
able i#lb4 and the incoming variable i # l . B y this over-approximation we cover an arbi trary 
number of loop iterations, but we include the loop results that are not feasible. Now let 
the free variable $guard#ls4 be 0. So instead of the equation i#phi2 == ($guard#ls4 ? 
i#lb4 : i # l ) we get i#phi2 == i # l . Th is w i l l completely destroy a loop and the S S A 
w i l l only contain the information about its first i teration. Instead of over-approximation, 
now we get an under-approximation of a program. We w i l l use loop unwinding as described 
in Section 2.3 to obtain more precise program behavior. 

The program without unwinding corresponds to the Trans relation applied four times on 
the in i t i a l state ( i n i t , i ) . We get the same result for the variable i that we obtain from the 
solver for the variable i#3. Every state reached by applying the Trans relation, up to four 
times is encoded i n the S S A form. The in i t i a l state (init, i) is the very beginning. $guard#0 
== TRUE represents the state (11, i). B y adding the line i # l == 1 we get a representation 
of the state (12,1). The state (13, i) is represented by a l l the S S A equations except the last 
three. F ina l ly , if we add i#3 == 1 + i#phi2 we get a representation of the state (12, i +1) . 
The value of i#3 is not passed back to the loop head, hence the information about the loop 
is lost here. 

Let us now take the simplified S S A form, without guards and conditions where the loop 
is unwound once: 

i # l == 1 
i # p h i 2 ° / „ l = = (0 ? i # l b 4 ° / „ l i # l ) 
i#3° /„ l = = 1 + i # p h i 2 ° / „ l 
i # p h i 2 ° / „ 0 = = i#3° /„ l 
i#3°/„0 = = 1 + i#ph.i2%0 

We see that the value of the variable i#3°/ 00 is equivalent to the value of the variable i 
after Trans is applied 6 times. We continue unwinding unt i l we have 10 copies of the loop. 
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Now, the S S A form unwound 9 times encodes a l l the states that are reachable by the Trans 
relation. In this case, the S S A form represents an n-ary relation on program states, since 
it encodes every state along the execution path by a separate equation. Here, we have to 
consider that this representation is not equivalent to A I L o Transfa, xj+i). The reason is 
that the Trans relation and the S S A form do not use common variables. 

A s it was demonstrated i n our example, an arbi trary state reachable by Trans has its 
representation i n the S S A form unwound sufficiently many times. O n the other hand, the 
S S A form unwound k times represents some finite number n of iterations of the Trans 
relation. A formal proof of this would be rather technical and long. We consider it to be 
beyond the scope of this thesis, and we suppose that its presence is not necessary to believe 
it. 

The formula AILo Trans (xj, X j + i ) is further represented by the formula SSAk (the S S A 
form unwound k times). Note that the relationship between these parameters is exponential 
if we consider the unwinding of nested loops. Let us take this simple program: 

11: i n t i = 1; 
12: w h i l e ( i < 10) 
13: w h i l e ( i < 10) 
14: i++; 
15: r e t u r n 0; 

The unwinding procedure w i l l at first create k loop bodies of the inner loop and then k 
loop bodies of the outer loop, so at the end, the number of the inner loop bodies is k2. 

5.2 SSA-based Non- te rmina t ion Check ing 

Now, we w i l l ut i l ize the representation presented i n the previous section to describe our 
method for non-termination checking. We iteratively employ loop unwinding and we com
pare the new state we get w i th the states in the loop heads reached previously. The state in 
this section does not encompass the program location, since we use the S S A representation. 
Also remember that we must avoid over-approximation using the back edges here. Th is 
simple check is depicted in Figure 5.1. 

We w i l l use %i as a suffix for the symbols from a specific loop unwinding, loop is a set 
of a l l variables of every unwinding in a loop. loop_guard%0 represents the guard of a loop 
head from the last loop body created by unwinding. 

The solver is implemented as a stack. It means that we can push and pop some formulas 
to and from the solver depending on our needs. A s a base for our solution, the solver must 
always contain the S S A formula updated according to the current unwinding k. Since we 
do not use over-approximation in our method, we need to add some restrictions to the 
S S A formula. A s we know from Section 2.3, what creates this over-approximation are 
free variables that replace the back edge variables and the special guards that serve for 
nondeterministic choice in phi node between incoming variables and back edge variables. 
Therefore, we create a conjunction of the negations of a l l these guards, which means that 
the back edge variables are completely omit ted and we under-approximate the program 
behavior: 

l\ioop&LOOPS ^ 9 u a r d _ l s i o o p 
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step 1 step 2 step 3 

Figure 5.1: I l lustrat ion of the method 

Now, we describe a simple phi node comparison which represents the search for a sin
gleton recurrence set. We compare variables from different loop unwindings i n order to 
detect a state repetit ion i n the loop. It is important to mention that we compare only the 
variables modified i n the loop, the so called ph i nodes of the loop. A s our method proceeds 
iteratively, we make comparison only for the last loop i terat ion i n every step (see Figure 
5.1). Other iterations have already been compared to each other in the previous steps. To 
ensure the feasibility of the verified loop unwinding, we must also add a loop guard of the 
last i teration into the formula. Below, we introduce a singleton recurrence set check for one 
specific loop unwinding: 

loop_guard%0 A l\phi_var%moopphi_var%i = phi_var%0 (5.3) 

Final ly , we put a l l previously described pieces of our a lgori thm together and create a 
complex formula to check one i teration of every loop i n the C program. The formula looks 
as follows: 

SSAk A Aloop€LOOPS ^guard_lsioop A 

VioopeLOOPS V i = i (loop_guard%0 A A p h i _ v a r % m o o p phi_var%i = phi_var%0^ 

This formula is fed into the solver at every step of our algori thm, and, i f satisfiable, it is 
sufficient to prove the existence of a non-terminating program execution. Recal l , that it is 
not equivalent to Formula 4.8. They are not equivalent, because the S S A formula does not 
use a fresh copy of a l l variables at each step and also the unwinding procedure may create 
branches which are not reachable by i teration of the Trans relation. However, the formulas 
are indeed equisatisfiable as we showed in the example i n Section 5.1, that we can create 
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a mapping between the states reachable by the Trans relation and the states expressed 
by the formula SSAk A f\ioop&LooPS^9uard—lsioop ( S S A unwound k times without over-
approximation) . A formal proof of this fact would be rather long and complicated and is 
beyond the scope of this thesis. 

A l g o r i t h m 1 exactly describes the steps of the presented method i n pseudocode. The 
application of Formula 5.4 on an example in L i s t ing 2.5 looks as follows: 

A ^guard#ls4%l A guard#2%0 A i#phi2%l = i#phi2%0 (5.5) 

We discuss some facts that should be mentioned, but are less important i n the following 
paragraph. 

Loops in the C language can be terminated by unsatisfying the loop condit ion or by a 
goto statement or break statement inside the loop body. Ult imately, a l l the places where a 
loop can terminate have corresponding conditions and guards in the S S A formula. If we use 
unwinding, we do not have to add such conditions to the formula for every loop iteration. 
This is possible, because every loop i teration has its own guard and so i f the last loop guard 
holds, a l l the loop exit conditions from the previous iterations are unsatisfiable. A loop 
may be terminated also by an assertion. Assertions are not part of the loop exit conditions 
in 2LS , but they are handled as a separate program entity. We can describe a check for the 
satisfiability of every assertion i n a program by the formula: 

AassertionePROGRAM assertion (5.6) 

In this way, we include the problem of assertion satisfiability into our non-termination 
check. To avoid this, we replace assertions wi th assumptions and thus we check only the 
paths that w i l l not lead to an assertion violat ion. 

We believe now, that regarding the relationship of Trans and SSAk described in this 
chapter and the non-termination checking method presented above, it is intui t ively clear 
that formulas 5.4 and 4.8 are equisatisfiable. Therefore, our approach can be used to verify 
non-termination. Referring to what was stated i n Section 5.1, we underline that these 
formulas are equisatisfiable but not equivalent. 
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A l g o r i t h m 1 Singleton Recurrence Set Search 
Input: acyclic SSA form of the program, l imi t iV for unwinding 
Output: non-terminating error trace or empty 
M e t h o d : 

1: for all assertion in SSA do 
2: replace assertion w i t h assumtion 
3: end for 
4: k := 1 
5: while true do 
6: let SSAk be an SSA form unwound k times 
7: let £ be a set of a l l loops i n the SSAk 
8: tp := True 
9: for all loop £ C do 

10: ip := V> A -^guardlsi00p 
11: end for 
12: <p := False 
13: for all ^oop G £ do 
14: i := 1 
15: while i < fe do 
16: x : = loop_guard%0 
17: for all phi_var%i € Zoop do 
18: x '•= X Aphi_var%ii = phi_varVoO 
19: end for 
20: tp := if V (x) 
21: i:=i + l 
22: end while 
23: end for 
24: solve SSAk Aip A 
25: if S A T then 
26: return error trace 
27: else 
28: if k < N then 
29: k := k + 1 
30: else 
31: return empty 
32: end if 
33: end if 
34: end while 
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Chapter 6 

Periodical Recurrence Set Search 
Algorithm 

In this chapter we introduce the derivative a lgori thm of a known concept [11] in order to 
cover the smal l class of programs that require too many loop unwindings to be able to 
prove the existence of a recurrence set using the method i n Chapter 5. The ma in task of 
the method introduced i n [11] is to prevent a bounded model checker from enumerating 
a large number of spurious counterexamples, while traversing a loop body. W h i l e authors 
i n [11] use under-approximation of a loop i n the form of auxi l iary paths, we use an over-
approximation of loop paths, because we do not consider loop exit conditions. However, 
they use the same technique, using solution of recurrence relations describing the effect of 
arbi t rar i ly many loop iterations. In this work we use it to accelerate non-termination check. 
We designed a method which allows us to reduce a very large number of loop unwindings 
and solver calls into just one loop unwinding and a few solver calls, for some programs. 
Our analysis is restricted to study the loops that change the values of variables in every 
loop i teration according to the pattern of the recurrence relation defined below: 

x „ = x „ _ i + c (6.1) 

Note that c is a constant here. The solution of the recurrence relation above has a form: 

xn = x0 + c • n (6.2) 

If we are able to prove that a loop defines a recurrence relat ion of the specified form, we 
attempt to accelerate A l g o r i t h m 1. 

We provide a graphical representation of the new method in Figure 6.1. It is the 
simplified graphical representation of the following program: 

u n s i g n e d i n t i = = n o n d e t _ i n t ( ) 0 2 ; 
w h i l e ( i != 5) 

i += 2, 

Let us for s implic i ty restrict the size of the integer to 6. The circles on the figure marked 
wi th S are start states, where i = 0 or i = 1. The constant C equals 2, according to our 
program. The addi t ion operation on unsigned integer of the size 6 in the C language has 
the same behavior as the addi t ion i n modular ari thmetic i n the set Zq . O u r program has 
two candidates for a periodical recurrence set. One is the set {0 ,2 ,4} and the second is the 
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Figure 6.1: C F G wi th the corresponding parts of the S S A form 

set {1, 3, 5}. We w i l l prove that to check every such candidate takes one solver cal l i n our 
method and we further present this method in detail . 

We introduce a definition of periodic recurrence set whose existence is a non-termination 
proof in this method. 

Definition 6.0.1. (Periodical Recurrence Set) A transi t ion relation Transioop w i th in i t i a l 
states Init has a periodical recurrence set of states RSet iff Formulas 6.3 hold. 

3x , x ' : T r a n s s i e m ( x , x ' ) A RSet{x!) . . 
V x 3 x ' 3 ! C : RSet(x) T r a n s Z o o p ( x , x ' ) A RSet{n!) A x ' = x + C 1 j 

6.1 Detec t ion of L inea r ly Changed P h i Nodes in a L o o p 

In this section we use simplified abstract representation of a loop and program states in 
order to pla inly present the principle of our approach. Let us consider every loop body 
being a function / ( x ) : Z ^ —>• Z ^ over the program variables that takes a vector of bit-
vectors and returns a vector of the same type or has an undefined result. The vector only 
contains the program variables. In terms of this analysis we are interested i n loops wi th 
/ ( x ) constrained by the formula: 

Vx3!c : / ( x ) / U N D E F => / ( x ) = x + c (6.4) 

For cases where / ( x ) is undefined a program cannot reach the end of a loop body. This 
can be caused by a terminat ion from inside a loop body or by non-termination wi th in a 
loop body. 
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Because the S A T solver is unable to deal w i th a quantifier 3! (there exists one and only 
one), we check the property i n Formula 6.4 i n two steps. A t first we check the formula 
below: 

3x, c : /(x) = x + c (6.5) 

If Formula 6.5 is satisfiable, it gives us a model M. = {(x, X ) , (c, C)}. We use it for the 
second check: 

The constant vector C i n formula 6.6 is taken from the model in Formula 6.5. The 
unsatisfiable result of the previous formula means that either C is the only constant vector 
to satisfy the formula or /(x) is undefined. A s w i l l be shown later we can specify a l l the 
cases when the result of /(x) is undefined and thus the previous two checks are sufficient 
to detect a loop which l inearly changes its phi nodes and can be analysed. 

6.2 Check ing Exis tence of a Pe r iod ica l Recurrence Set i n a 
L o o p 

In this section, we introduce the abstract principle of the non-termination check designed in 
our method and we present a formal proof that our template covers the whole, potential ly 
non-terminating program path, regarding bit-vectors. We assume that this method receives 
an input which passed the first check for linearity. We use simplified abstract representation 
in this section, as was used i n Chapters 3 and 4. Note that the vectors here represent the 
program states and they contain the program counter as well . We use a special notat ion 
(k) for a vector, where a l l elements have the same value k. The constant vector C p c is 
created from the vector C i n the previous section by resizing wi th 0 in place of the program 
counter, which means that we get back to the loop head and potential ly never stop looping. 
The formula to check non-termination of a loop looks as follows: 

3x, x 'V(k) : Trans s i e m ( x , x') A x" = x' + C p c • (k) A TransZoop(x", x" + C p c ) (6.7) 

The in i t i a l loop input x' was generalized for every loop i teration as x" and it was restricted 
by the invariant that says the original value of x' can be increased only by the Hadamard 
product C • k. Th is invariant represents the base of the method. We uti l ize Transioop to 
express that from every state x", along the non-terminating program path, we can reach 
the loop head again. 

We show here, that i f we work wi th bit-vectors, x" represents every state reachable from 
x', i.e. verifying the values specified by the invariant is the same as verifying every state 
along a non-terminating program path. In this way we also show the completeness of our 
method. We know that unsigned integers cannot overflow from the C99 s tandard 1 §6 .2 .5 /9 : 

A computation involving unsigned operands can never overflow, because a result that 
cannot be represented by the resulting unsigned integer type is reduced modulo the number 
that is one greater than the largest value that can be represented by the resulting type. 

The standard says that the definitions of addi t ion and mul t ip l ica t ion on unsigned inte
gers creates a well known r ing ( Z N , + , 0, —, •, 1). 

xhttp: //www. open- std.org/jtcl/sc22/wgl4/www/docs/nl570.pdi 

(6.6) 
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We want to prove that our formula covers a l l the states along a potential ly non-
terminat ing program path. For s implic i ty we use a single bit-vector to prove a property 
that t r iv ia l ly holds for a vector of bit-vectors. The paths we study may be terminat ing for 
some state and i n that case the relation Transioop i n formula 6.7 does not hold for some x " . 
If it holds for every state, we need to prove there is no state left that has not been checked. 
The following equation is defined for the r ing ( ^ U I N T _ M A X + 1 ) +> 0, —, •, 1) and it says that 
the range of the unsigned integer is sufficient to cover every non-terminating path of a loop 
where a l l variables are changed by some constant C i n every i teration. 

x + C • U I N T _ M A X = x - C (6.8) 

The formal proof of Equa t ion 6.8 for unsigned bit-vectors looks as follows: 

x + C - U I N T _ M A X = x - C / + (-x) 
C - U I N T _ M A X = -C l + C 

C • U I N T _ M A X + C = 0 /distributivity (6.9) 
C • ( U I N T _ M A X + 1) = 0 

C-0 = 0 

Returning to Formula 6.7, we face the major problem of methods checking non-termination 
which is quantifier alternation. We have to avoid the use of the quantifier V and replace 
it w i th 3. In our case V(k) describes every state on the program path. If we use 3(k) 
here, we describe only one state that is chosen from the whole path. In this way we can 
change our search for a non-terminating path to a search for terminat ing paths, where the 
sufficient condit ion is an existing state x " for which the predicate Transi00p{x">x" + C p c ) 
does not hold. B y alternating the quantifier i n the formula, we can iteratively enumerate 
al l terminat ing paths and bu i ld a constraint. If we are not able to find a new terminat ing 
path, we s imply check that a path s t i l l exists and i f so, it must be non-terminating. Thus 
we split the check into two steps. In the first step we bu i ld a constraint that w i l l exclude 
al l terminat ing paths by iteratively evaluating the following formula: 

3x, x '3(k) : Transstem(x, x') A x" = x' + C p c • (k) A - . Transioop(x", x" + C p c ) A 
constraints^) 

(6.10) 
We update the predicate constraints^) i n every i teration using the model we get from 

Formula 6.10. Let X " be a model of x". We want to add some constraint to the formula 
so that i n the next i teration x" w i l l get a different value. The constraint could have a 
simple form x" 7^ X " . However, we know that if a loop potential ly reaches the state, where 
x" = X " , then a l l the states that lead to that given state and also a l l the states which w i l l 
follow from that state can be excluded. The invariant x" = x' + C p c • (k) is used to describe 
al l such states. We may use a larger restriction that w i l l exclude every value of x" such that 
x" = X " + C p c • (k). Since x" is computed from x' in the same way, we can interchange a 
value of x' and x". To exclude a l l specified values would lead to quantifier alternation again. 
Therefore we do a compromise and find a property that describes as many such values as 
possible. Such a property could be componentwise modulo, since (X' + C p c • (k))%C p c 

always equals X ' % C p c i f it does not exceed the size of the bit-vector. Thus, the constraint 
added i n every step has the form x ' % C p c / X ' % C p c , where X ' is taken from a model of 
the formula as a value of x'. Note that the cases where we use modulo 0 are defined as 
n%0 = n. 
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We update the constraints un t i l the formula becomes unsatisfiable. Then the predicate 
constraints(x) looks as follows: 

A x ' G M O D E L S of T H E F O R M U L A 6.10 x ' % C p C / X ' % C p c (6-11) 

After finishing the first step we are able to exclude every terminat ing path in the loop. 
The second step only verifies that there is s t i l l some program path reaching the loop left 
and it is indeed non-terminating. The formula for the second step is as follows: 

3x, x'3(k) : Trans sterna x ' ) A x" = x' + C p c • (k) A constraints (x) (6-12) 

6.3 Genera l iza t ion of the Pe r iod ica l Recurrence Set Search 

In the previous two sections we used the vector x as a parameter for the function /(x). 
Instead of x which represents a l l the variables in the program, we use only ph i nodes of 
a specific loop. We present a generalization of our method in order to better explain our 
approach. Let us take the program: 

u n s i g n e d c , i = 1; 
w h i l e (1) 
{ 

i f (c) 
i = i + 1; 

e l s e 
i = i + i ; 

} 

A s we can see the variable c does not belong to the set of ph i nodes of the given loop. 
Nevertheless the form of function /(x) depends on its value. We split vector x into two 
vectors x' and x", where vector x' represents the variables changed inside a loop and x" 
describes the rest of variables i n a program. The generalization of Formula 6.4 has the 
following form: 

3x"Vx'3!c : #(x") = /(x') = x' + c (6.13) 

Considering the program example above, the function g(x") is defined as follows: 

J x ' + (1) x " / ( 0 ) 
#( x ) = \ , , , „ , m ( 6 - 1 4 ) I x + x x = (0) 

A s we can see formula 6.13 is satisfiable for x" ^ (0). The problem of the general 
approach is quantifier alternation. We restricted ourselves to only use its simplified version: 

Vx"Vx'3!c : g(x") = /(x') = x' + c = Vx3!c : /(x) = x + c (6.15) 

6.4 Implementa t ion of Pe r iod ica l Recurrence Set Search A l 
gor i thm 

This section describes the presented algori thm in a form that is implemented in 2LS. We 
use the representation already described in Section 5.1. The formulas have the form fed to 
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the solver, and we also deal w i th implementat ion details, which we were unable to discuss 
in the context of previous sections, because we d id not use the SSA-based representation. 
A l g o r i t h m 2 represents our implementat ion of the presented algori thm i n pseudocode. 

6.4.1 Implementation of Detection of Linearly Changed Phi Nodes 

Formula 6.10 is passed to the solver in the form: 

SSAk A f\phi_var&ioopphi_var%k + c = phi_var%(k - 1) (6.16) 

We verify this formula for every loop separately. SSAk defines a function /(x) (see 
Section 6.1) for every loop body. Constant c is unique for every phi_var. We use the over-
approximation to verify the formula, because we have to check a l l values for every phi node. 
Recal l that the value of phi_var%k i n S S A is specified by the equation phi_var%k == 
guardls?var_lb : var_x, where var_lb is a free variable (see Section 2.3). Therefore, the 
solver can assign every possible value to the variable phi_var%k. The value of the variable 
phi_var%(k — 1) is derived from the equations of a loop body and the previous value of a 
phi node represented by phi_var%k. We provide an example of the appl icat ion of formula 
6.16 on the example i n L i s t i ng 2.5: 

A i#phi2%l + c = i#p / i i2%0 (6.17) 

Formula 6.6 is passed to the solver i n the form: 

SSAk A f\phi_var&ioopphi_var%k + c = phi_var%(k - 1) A c / C (6.18) 

We take model C of the constant c i f Formula 6.16 is satisfiable and we use it for the 
second check. Below we provide an example of the appl icat ion of formula 6.18 on the 
example i n L i s t i ng 2.5. 

SSA1 A i # p h i 2 % l + c = i#p/ i i2%0 A c / C (6.19) 

6.4.2 Implementation of The Non-termination Check 

In this section we describe the non-termination check of the method whose theoretical 
principles are listed i n Section 6.2. Recal l , that we check non-termination only i f the 
candidate loop passes the check i n the previous section. 

A t first we show how invariant x" = x' + C p c • (k) is represented i n the S S A form. 
The loop head equations phi_var%k == guardls?var_lb : var_x, where var_lb is a free 
variable, are supplemented by constraints. These constraints have the form of an invariant 
which is an equation var_lb == var_x + C • k. The character C denotes a constant 
computed by the l inearity check and k is a free variable. Remember that k is the same 
variable for every ph i node i n the loop, but C is computed for every phi node separately. We 
util ize over-approximation which gives us the abi l i ty to check every state along the program 
path at once without iterative loop unwinding. The guardls for the currently analyzed loop 
must hold i n order to apply the constraints. A s we iteratively check every loop, we need 
to avoid the over-approximation of the other loops i n order to preserve completeness. This 
approach is already described i n Section 5.2 i n Formula 5.2, but we omit guardls for the 
current loop. 
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The relations Trans stem and Transioop are encoded i n the S S A form as described in 
Section 5.1. In Section 6.1, we mention that we are able to detect undefined behavior of the 
function / ( x ) . We defined a terminat ion condit ion or rather the condit ion for which a given 
loop path does not fulfill non-termination requirements in the form ^ Transioop(x.",x." + 
C p c ) , where x " represents any state along the path. Let us first analyze when a loop that 
passed the l inearity check can have an undefined behavior. Note that neither formula 6.16 
nor formula 6.18 includes a loop guard. Therefore, the only cause for undefined behavior 
is that a loop guard of the subsequent loop unwinding does not hold. In other words, for 
every state of a non-terminating path the loop guard of the subsequent loop unwinding 
must hold. The formula for the first step of the non-termination check looks as follows: 

3£3var_x : SSAk A /\IOOP&LOOPS ^00P ^ o,nalysed_loop =>• ^guard_lsioop A 
/\Phi_var%keioop%k var_lb == var_x + C • £ A constraints(x) A ^loop_guard%(k - 1) 

(6.20) 
We provide an example of the applicat ion of the formula above for l is t ing 2.5. The formula 
of the first i teration for empty constraints looks as follows: 

A i # £ 6 4 % l = i # l + 11 A ^guard#2%0 (6.21) 

No ^guardls is used, because the program has only one loop. In the first i teration, 
the solver provides us w i t h a model. One of the val id models for our formula is M = 
{(i#lb4%l, 0), ( i # l , 1), (1,1),...}. We use it to create a constraint i n the form i # l % C / 
1%1. We create a new formula wi th an addi t ional constraint: 

S S A i A i # £ 6 4 % l = i # l + 11 A i # l % l / 1%1 A ^guard#2%0 (6.22) 

The formula above is no more satisfiable. A n d the a lgori thm can proceed to the second 
check. 

A t the end we have to check whether there s t i l l exists some pa th that satisfies the 
constraints created in the first step. The formula is the same as for the first step except the 
loop guard at the end. We do not have to check the satisfiability of the loop guard, since 
every path that violates it has been already excluded. The check looks as follows: 

3£3var_x : SSAk A AioopeLOOPS looP ^ analysed_loop =^ ^guard_lsioop A 

f\phi_var%keiooP%k var_lb == var_x + C • £ A constraints^) 

In reference to our pract ical example, we now check the formula: 

A i # £ 6 4 % l = i # l + 11 A i#l%l / 1%1 (6.24) 

It is unsatisfiable, because created constraints excluded every path through the loop. There
fore, for this example, the result of the method is D O N ' T K N O W . 
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A l g o r i t h m 2 Periodic Recurrence Set Search 
Input: acyclic SSAk form of the program w i t h replaced assertions unwound k times 
Output: non-terminating error trace or empty 
M e t h o d : 

1: let £ be a set of a l l loops in the SSAk 
for all loop € C do 

tp := SSAk 

for all phi_var%k 6 loop_body%k do 
tp := if A phi_var%k + constphi_Var = phi_var%(k — 1) 

end for 
solve 
if U N S A T then 

continue 
end if 
let $ be a model of the formula if 
for all phi_var%k € loop_body%k do 

Lf := ip A constphi_var &(constphi_var) 

end for 
solve 
if S A T then 

continue 
end if 

il> := S S A f c 

for all loop2 € £ do 
if loop2 ^ loop then 

tp := tp A ^guardlsloop2 

end if 
end for 
for all phi_var%k € loop_body%k do 

let phi_var%k — guardls ? loop_back_var : above_var 
if) := -0 A loop_back_var%k = above_var + l.Q(constphi_Var) 

end for 
while solve (V> A -<loop__guard%(k — 1)) = S A T do 

let $ be a model of the formula tp 
X = False 
for all phi_var%k G loop_body%k do 

let phi_var%k = guardls ? loop_back_var : above_var 
X := X v above_var ^ ^>{above_var) 

end for 
V> := V A (x) 

end while 
if solve V) = S A T then 

return error trace 
end if 

end for 
return empty 
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Chapter 7 

Implementation 

We implemented our analysis i n a separate module called summary checker nonterm. 
Non-terminat ion analysis is i n 2LS , available under the option —nontermination. It 
automatical ly uses function in l in ing (option —inline), as our method is intraprocedural. 
We also use automatic subst i tut ion of assertions wi th assumptions to exclude a l l paths 
where any assertion can be violated. Funct ion in l in ing allows us to use one solver instance. 
A s for the solver, we use default opt ion in 2LS which is M i n i S a t 2.2.1. We update the 
solver content incrementally i n every i teration wi th new unwindings. Once the program is 
in i t ia l ly transformed into S S A form, this ensures efficient run of the analysis. 

The formulas added to the solver always have a form of impl ica t ion enabling_expr => 
added_f ormula. Loop unwinding is not monotonie, which means that some formulas are 
added to the solver, but there are some that need to be removed to preserve correctness. 
We remove the formulas by adding the negations of their enabling expressions into the 
solver. In this way we can incrementally update the S S A formula without the need to pop 
the solver stack, which is not supported by S A T solvers. However, conjunction of enabling 
expressions and formula of a singleton recurrence set are added to the solver in a separate 
context which is newly created in every i teration. A s we can see a part of Formula 5.4 is a 
big disjunction updated in every i teration of the algori thm. The solver implementation in 
2LS does not allow us to update subformulas in the current formula. Therefore we always 
create new context where we put these temporary formulas in . 

The module summary checker nonterm containing the implementat ion of the 
non-termination analysis was conformed to the uniform template used by abstract in 
terpretation - module summary checker ai, bounded model checking - module sum
mary checker bmc and k l k l - module summary checker kind. The terminat ion 
analysis is included i n the module of the abstract interpretation. A l l these analyses inherit 
from the base class summary checker base that provides these methods wi th the com
mon functionality. Every method has its own unwinding concept and addi t ional formulas. 
Bounded model checking unwinds loops iteratively whilst abstract interpretation does it 
only once. Nevertheless, a l l the analyses cal l a method check properties at some point, 
which is part of the base class and no analysis overrides it except the non-termination 
checker. 

The method check properties verifies i f some assertions in a program have been vio
lated. In the case of non-termination analysis, we need to check i f there exists a recurrence 
set i n the current unwinding of the S S A form. Therefore, the properties we check are not 
assertions but loops. We keep this adjusted common template to avoid big changes i n the 
code and use existing algorithms as much as possible. We uti l ize the original concept of 
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property map which is C + + container std: :map devoted to gather studied properties, 
which are loops in our case. It creates an interface between callee and caller. The result of 
every property is by default set to unknown. If non-termination is detected by the solver 
it is changed to fail and this information is important for the generation of error trace. 
The generation of error traces is already implemented in 2LS . We wanted to use this im
plementation wi th min ima l changes. A check of a l l properties is implemented i n the class 
cover goals extt. It calls the solver, checks spurious counterexamples (this does not 
have to be done for non-termination analysis) and builds an error trace when an error is 
found. 

We implemented two separate methods for non-termination analysis, but i n the end, we 
integrate them into one. After a certain number of unwindings performed by the singleton 
recurrence set method, there is one step devoted to employing the periodical recurrence set 
method. If it does not succeed we continue unwinding wi th the first method. We d id not 
implement any heuristics for the second method which would give a reason to elaborate 
the mentioned integration. For example the use of a heuristic that detects that the loop is 
fully unwound and forbids over-approximation for such a loop would give a reason to apply 
the second method not only once, but after every x unwindings and also if a loop is fully 
unwound. 
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Chapter 8 

Experiments 

We benchmarked our implementation wi th BenchExec 1.9 framework1 [2]. Th is framework 
has been in use on International Compet i t ion on Software Ver i f ica t ion 2 since 2012. We 
used the set of benchmarks 3 from S V - C O M P 2017 [1]. The BenchExec allows us to reliably 
measure and l imi t resources as wal l t ime, C P U t ime and memory usage. We tested our 
method exclusively in category Terminat ion and we compared our results w i th those from 
S V - C O M P 2017 . The category Terminat ion has currently 1437 benchmarks from which 
940 are classified as terminat ing and 497 as non-terminating. We also supported the faster 
benchmarking by our own script that is measuring the number of unwindings used to prove 
non-termination and tests non-terminating and terminat ing benchmarks separately. 

2LS and C B M C have bash wrappers that provide an interface for BenchExec. We 
exploit the wrapper for 2 L S to integrate terminat ion and non-termination analysis into the 
one method. The original implementat ion of terminat ion analysis in 2LS was able to prove 
never-termination, if it was not able to find a path from the beginning of the function to 
its end [5]. However, this approach has some existing flaws that caused incorrect detections 
of non-termination. We have prevented the terminat ion analyzer from checking never-
terminat ion and we completely rely on the non-termination analyzer, since it covers a l l 
benchmarks where terminat ion analyzer detects non-termination. The analyzers are run in 
parallel in the background subshell. 

We used the same resource l imits as i n S V - C O M P 2017. 8 processing units, 1 5 G B 
memory l imi t and 15 minutes of C P U time for each verification run. The l imi t for witness 
validat ion was 2 processing units, 7 G B of memory and 1.5 minutes of C P U time for violat ion 
witnesses and 15 minutes of C P U time for correctness witnesses. A l l of the measurements 
were made on the machine wi th parameters C P U : Intel Core i7-6700 C P U 3.40GHz, cores: 
8, frequency: 4000 M H z wi th Turbo Boost enabled, R A M : 33618 M B . Our operating system 
was L i n u x x86_64 wi th Ubuntu-16.04 and L i n u x kernel 4.4. 

We applied the same schema to compute the score that was used for S V - C O M P 2017 
[1]. If a tool reports the correctness of a correct program and i f a validator does confirm 
the witness, the score is 2, otherwise it is 1. If the correctness is proved for an incorrect 
program the score is —32. The witnesses for property violations are not checked. If the 

xhttps: //github.com/sosy-lab/benchexec 
2https: //sv-comp.sosy-lab.org/2017/ 
3https: //github.com/sosy-lab/sv-benchmarks/tree/master/c 
4https: //sv-comp.sosy-lab.org/2017/results/results-verified/META_Termination.table.html 
5https: //github.com/dif fblue/cprover-sv-comp 
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property violat ion is correctly found the score is 1, otherwise, i n the case of false a larm it 
is —16. A n y error or unknown result does not influence the final score. 

The benchmarking was done i n order to see the improvement of 2LS on S V - C O M P 2017 
benchmark set i n the category Termination. O u r a i m was also to find existing bugs i n our 
implementation. 

In the following section, we present the results achieved by 2LS wi th the implementat ion 
of singleton recurrence set (SRS) method for non-termination analysis. We also mention 
the principles of the simple parallel procedure (take the first result) that was used i n the 
wrapper script to benchmark the tool w i t h BenchExec. The results of the version, where 
the periodical recurrence set ( P R S ) method was supplemented to the analysis, are presented 
in Section 8.2. In that section, we also present the improvement for our parallel procedure 
(take the first val id result). We compare our results w i t h the competitive tools in Section 
8.3. In the last section, we give a short bug report that describes flaws found i n the current 
version of 2LS . 

8.1 Benchmark ing of the Singleton Recurrence Set M e t h o d 

In Table 8.1 we compare the results of the singleton recurrence set method wi th the results 
of the version competing on S V - C O M P 2017. The unifying procedure of our two algorithms 
for this table was to take the first available result of the analysis, even when it was unknown. 
We see that the number of detected correct true benchmarks decreased, while the number of 
correctly detected false properties significantly increased, but the most important difference 
is the reduction of incorrect results from 34 to 6. We run the two processes i n parallel and 
they share a l l the resources. Hence, in cases where proving terminat ion wi th the previous 
implementation took significant amount of t ime or memory, we may reach the l imi t of 
resources before the result can be computed. Recal l , that non-termination analysis is doing 
unwinding which is a greedy process for a memory. If tested exclusively, the number of 
benchmarks where our method is able to detect non-termination is slightly greater (475) 
than we present i n Table 8.1 (465). The reason of this is that i n some cases terminat ion 
analysis returns an unknown result before non-termination is proved. General ly to disprove 
the property takes less t ime and as we see non-termination was detected faster than incorrect 
termination. The reduction of incorrect false results is mainly caused by delegating non-
terminat ion analysis exclusively to the non-termination analyzer as we mentioned at the 
beginning of this chapter. In some cases it was caused by the unknown result of the 
terminat ion analyzer that finished sooner. In the end we see that the major advantage of 
this parallel approach is a reduction of the number of incorrect results. 

The score we give i n Table 8.1 is not normalized [1]. We see how important it is to avoid 
incorrect results i f we look at the penalty for incorrectness of the tool . The improvement 
made by non-termination analysis would not be so significant without hiding so many errors 
using our parallel approach. The score achieved for correct false detections was improved 
by 34% and the to ta l score by 65.6%, which is very promising. 

The amount of resources used has no effect on the score, but it plays a role when it 
comes to effectiveness of the method. Probab ly the most important aspect is t ime. We 
were able to reduce total t ime consumption more than three times. A s we can see in Table 
8.2 our method used 7530 of 17400 seconds to prove correct results, whilst the original 
method used only 5660 of 60800. The method is able to resolve many of the benchmarks 
that were t ime-consuming or even led to timeout. O n the other hand, we see that the time 
of terminat ion analysis is worse. Reca l l that we use parallel ism and therefore the C P U 
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2LS 0.5.0 - S V - C O M P 2017 2LS 0.5.1 - S R S M e t h o d 
Status Score Status Score 

to ta l 1437 899 1437 1489 
correct results 927 1507 1025 1585 

correct true 580 1160 560 1120 
correct false 347 347 465 465 

incorrect results 34 -608 6 -96 
incorrect true 4 -128 0 -
incorrect false 30 -480 6 -96 

Table 8.1: Score - comparison wi th the results from S V - C O M P 2017 

time (amount of t ime that a task spent on different C P U s ) consumption is doubled whilst 
both methods are running at the same time. The amount of t ime taken by incorrect results 
increased even though the number of incorrectly classified benchmarks was significantly 
decreased. One of the benchmarks took 120 seconds to prove non-termination. The source 
file had 7 5 . 8 K B size w i t h 3694 lines of code. We analyzed the error trace and it was a 
correct non-terminating program trace. We checked the competi t ion results and there was 
no tool able to prove either terminat ion or non-termination of this incorrectly classified 
benchmark. We found six other incorrectly classified benchmarks, which are reported and 
discussed later. 

Memory consumption increased wi th the use of our method. The non-termination 
analysis i teratively unwinds a program and runs the solver. Th is is a memory consuming 
process, especially when it comes to nested loops, where the number of loop unwindings 
grows exponentially w i th the depth. B o t h analyses run i n parallel and thus the amount of 
used memory is considerable. 

2LS 0.5.0 - S V - C O M P 2017 2 L S 0.5.1 - S R S M e t h o d 
C P U T ime (s) Memory ( G B ) C P U T ime (s) Memory ( G B ) 

to ta l 60800 447 17400 1320 
correct results 5660 268 7530 774 

correct true 5480 253 6980 709 
correct false 181 14.2 544 64.7 

incorrect results 103 17.0 122 15.0 
incorrect true 1.23 .109 - -
incorrect false 102 16.9 122 15.0 

Table 8.2: Resources - comparison wi th the results from S V - C O M P 2017 

We further studied the number of unwindings needed for specific benchmarks and we 
tested the non-terminating and terminat ing sets of benchmarks separately i n order to dis
cover as many flaws in the implementat ion as possible. 

The results of the method searching for the singleton recurrence set brought the following 
findings: 

• We found 11 benchmarks i n the sv-benchmarks test set w i t h an overflow issue that 
were either fixed or moved to the todo file group - pu l l request to sosy-lab/sv-
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benchmarks 6 by Peter Schrammel 7 (these benchmarks were either detected as non-
terminat ing or our program finished on l imi t ) . 

• 7 benchmarks were proven to be non-terminating and incorrectly classified. 

• 5 benchmarks were incorrectly proven to be non-terminating which pointed to two 
existing bugs i n 2LS. 

• Non-terminat ion analysis d id not finish on 10 benchmarks i n the given amount of 
time. 

• 1 specially difficult benchmark was proved to be incorrectly classified without having 
an overflow issue. 

• Our tool was able to detect every single non-terminating benchmark in the folder 
product-lines. 5 of these benchmarks were not detected by any other tool . 

A s mentioned above we updated the set of benchmarks according to our findings. Four 
of them were moved to category overflow, one benchmark was moved from the class of 
non-terminating to the class of terminat ing benchmarks and an overflow trace has been 
removed in seven benchmarks. The overview of the files is shown i n Table 8.3. 

Benchmarks with the overflow trace removed 
termination-crafted/Mysore false-termination true-valid-memsafety.c 
termination-memory-alloca/PodelskiRybalchenko-2004V]VICAI-Ex2-alloca_false-termination.c 
*termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-loops_true-termination_false-no-overflow.c 
*termination-crafted-lit/PodelskiRybalchenko-LICS2004-Figl_true-termination_false-no-overflow.c 
*loops / trex01_false-unreach-call_true-termination.i 
*loops/trex01 true-unreach-call true-termination.i 
*termination-15/arrayl7 alloca true- terminations, i 

Benchmarks removed from the test set because of overflow 
termination-crafted/Singapore plus false-termination true-valid-memsafety.c 
termination-crafted/Singapore v l false-termination true-valid-memsafety.c 
termination-crafted/Singapore v2 false-termination true-valid-memsafety.c 
*termination-15/arrayll alloca true-terminations.i 

Reclassified benchmarks 
*product-lines/elevator_specl3_productSimulator_true-unreach-call_true-termination.cil.c 

Table 8.3: Overview of the files where we detected overflow (benchmarks where our method 
detected non-termination are marked wi th *) 

8.2 Benchmark ing of the Pe r iod ica l Recurrence Set M e t h o d 

We have also designed and implemented the method that searches for periodic recurrence 
sets, to cover the m a x i m u m number of benchmarks that were not detected by the SRS 
method. It was precisely four benchmarks, where the S R S method was highly ineffective 
and the P R S was able to solve i t . Th is d id not lead to significant improvements, but we 
made also other changes discussed in the following two paragraphs. 

A s mentioned i n the previous section we discovered incorrectness i n the original set 
of benchmarks that was thoroughly studied, reported and the p u l l request to sosy-lab/sv-
benchmarks was created. The tests presented in this section were made on the updated set 
of benchmarks. 

6https: //github.com/sosy-lab/sv-benchmarks 
7https: //github.com/peterschrammel/sv-benchmarks/tree/f ix-termination-signed-overf low 
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We also improved our parallel a lgori thm so that i f the result of terminat ion analysis 
is unknown, the a lgori thm waits for the result of the second process that is s t i l l running. 
Our method needs one or two unwindings to find terminat ion violat ion for most of the 
benchmarks. For three programs it was 50 or more unwindings, where m a x i m u m was 
211. We decided to set the unwinding l imi t to 220, which according to our experiments, 
represents a reasonable trade-off w i th respect to amount of the used resources. 

We present the final score of the combined method, where we integrate P R S and SRS 
into one analysis, in Table 8.4. It is improved compared to the results in the previous section 
and the major difference is i n the number of correct false results. This improvement is caused 
by updates i n the set of benchmarks and the better parallel a lgori thm. If terminat ion 
analysis finishes sooner w i th the result unknown, the unifying procedure w i l l s t i l l wait for 
the non-termination analysis to come up wi th its result. However, because we use the 
unwinding l imi t , i n two cases it happens that non-termination analysis finishes sooner w i th 
the unknown result. The unifying procedure ends without wait ing for the result of the 
terminat ion analyzer, hence 558 correct true detections. 

2LS 0.5.1 - S R S + P R S M e t h o d 2LS 0.5.1 - S R S + P R S M e t h o d 
wi th Or ig ina l Para l le l Procedure wi th Upda ted Para l le l Procedure 
Status Score Status Score 

to ta l 1433 1509 1433 1516 
correct results 1029 1589 1038 1596 

correct true 560 1120 558 1116 
correct false 469 469 480 480 

incorrect results 5 -80 5 -80 
incorrect true 0 - 0 -
incorrect false 5 -80 5 -80 

Table 8.4: Score - updated set of benchmarks 

Table 8.5 compares the amount of resources used by the S R S + P R S method wi th the 
old procedure and by the same method using the updated version of i t . Remember that 
previously we took the unknown result of the terminat ion analyzer as the final result of 
the procedure, but in this method we are wai t ing for the result of non-termination analysis 
which is l imi ted by 220 unwindings. Th is explains both the doubled memory consumption 
and much worse overall t ime. However, we were able to fully exploit the potential of our 
method and increase the score i n Table 8.1. We see a trade-off between the amount of 
resources and the achievable score. 

8.3 Compar i son w i t h the Other Tools 

This section is devoted to comparison wi th the tools awarded i n category Termination on 
S V - C O M P 2017. Note that the score we use in this chapter is not normalized, but is 
directly taken from the results of Benchexec. The tools we have chosen for the comparison 
are UAutomizer , which is the winner i n the category Termination and A P r o V E that 
finished second in this category. 

We use the results from S V - C O M P 2017 achieved by the other tools tested on a different 
machine: 

• C P U : Intel X e o n E3-1230 v5 3.40 G H z 
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2LS 0.5.1 - S R S + P R S M e t h o d 2LS 0.5.1 - S R S + P R S M e t h o d 
wi th Or ig ina l Para l le l Procedure wi th Upda ted Para l le l Procedure 
C P U T i m e (s) Memory ( G B ) C P U T ime (s) Memory ( G B ) 

to ta l 19000 1300 86200 2510 
correct results 8810 767 8320 743 

correct true 8050 688 7520 662 
correct false 754 79.8 794 80.7 

incorrect results 2.37 .265 2.18 .259 
incorrect true - - - -
incorrect false 2.37 .265 2.18 .259 

Table 8.5: Resources - comparison wi th the results from S V - C O M P 2017 

• cores: 8 

• frequency: 3.8 G H z , Turbo Boost: disabled 

• R A M : 33553 M B 

• system: L i n u x 4.4.0-59-generic 

Our computer had a slightly better performance rat ing than the machines used at S V -
C O M P 20 1 7 8 and we also used Turbo Boost 2.0. However, it is important to mention 
that on our machine we d id not run the tests exclusively, but other processes were running 
alongside the tests. Th is might influence the number of cache misses and basically slow 
down the memory access of our tests. Table 8.6 compares the C P U time that was measured 
at S V - C O M P 2017 to the t ime measured on our machine. The findings of this measurement 
indicate that the performance of the machines is comparable, since the difference i n used 
to ta l amount of t ime is only about 3%. 

2LS 0.5.0 - Intel X e o n E3-1230 v5 2LS 0.5.0 - Intel Core i7-6700 
C P U T ime (s) C P U T i m e (s) 

total 58600 60800 
correct results 4630 5660 
incorrect results 90.6 103 

Table 8.6: Machine performance comparison 

Based on the results in Table 8.7, we predict that 2LS could finish the second at S V -
C O M P 2018. To compete for the winning posit ion, the terminat ion analysis must be 
improved, which is the part of 2LS where further work needs to be done. 

We also roughly compare the performance of the tools i n Table 8.8 and Table 8.9. A s 
you can see, the efficiency of 2 L S is much higher than the efficiency of other successful 
tools. The UAutomize r tool had a s imilar number of correct false detections as 2LS had, 
but needed approximately 11 times more t ime than 2 L S . We can see that 2LS used almost 
half of the to ta l computat ion t ime to produce a correct result, while other tools were much 
worse. 

;http://cpuboss.com/cpus/Intel-E3-1230V5-vs-Intel-Core-i7-6700 
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2LS 0.5.1 - S R S M e t h o d UAutomize r A P r o V E 
Score Score Score 

to ta l 1489 2085 978 
correct results 1585 2085 978 

correct true 1120 1626 916 
correct false 465 459 62 

incorrect results 122 - -
incorrect true - - -
incorrect false 122 - -

Table 8.7: Score - comparison wi th the best two other tools 

2LS 0.5.1 - S R S M e t h o d UAutomize r 
C P U T ime (s) M e m o r y ( G B ) C P U T ime (s) Memory ( G B ) 

total 17400 1320 128000 2070 
correct true 6980 709 23800 671 
correct false 544 64.7 5940 268 

Table 8.8: Resources - comparison wi th the winner 

2LS 0.5.1 - S R S M e t h o d A P r o V E 
C P U T ime (s) Memory ( G B ) C P U T ime (s) Memory ( G B ) 

total 17400 1320 598000 7140 
correct results 6980 709 11100 709 
incorrect results 544 64.7 2050 73.9 

Table 8.9: Resources - comparison wi th the second placed tool 
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8.4 B u g Repor t 

5 incorrectly detected benchmarks reveal 2 hidden bugs i n 2 L S . In this section, we give 
information about the 2 bugs discovered i n 2 L S . One bug caused incorrect results i n 4 of 
these 5 benchmarks. We studied this in depth, but the fix complexity was beyond the 
scope of our work. We provide a description of our findings which can be used in future 
development. We use the following program example to explain the cause: 

t y p e d e f s t r u c t node { 
s t r u c t node* n e x t ; 

} n o d e _ t ; 
i n t m a i n ( v o i d ) 
{ 

node_t* head = NULL; 
node_t * c u r r ; 
/ / a l l o c a t e singly linked l i s t 
f o r ( i n t i = 0 ; i < 2 ; i++) { 

c u r r = m a l l o c ( s i z e o f ( n o d e _ t ) ) ; 
c u r r - > n e x t = h e a d ; 
head = c u r r ; 

} 

/ / i t e r a t e singly linked l i s t 
node_t* c u r r = h e a d ; 
w h i l e ( c u r r != NULL) { 

c u r r = c u r r - > n e x t ; 
} 

r e t u r n 0 ; 

A s we can see, the program noted above is always terminating. It is creates a singly 
linked list and then it searches through it t i l l it reaches the end, which is N U L L . Every 
memory al location in 2LS is replaced by dynamic_object$i, which is a symbolic name for 
the contents of allocated memory. The unwinding procedure is supposed to create the new 
unique dynamic object for every unwinding i f such object is created inside the loop. In 
the current version of 2LS , dynamic objects are not replaced w i t h unwinding. Therefore, 
i n our previous example, the non-termination analysis w i l l detect infinite loop execution of 
the while loop after 2 unwindings. The generated S S A form encodes the same program 
behavior as if malloc function would return the same memory address twice i n the for 
loop. It creates a recursive loop in the list. 

The second bug was not fully documented. We were able to detect that the S S A form 
is not correctly generated for the nested loops. There exist infeasible paths where we can 
prove and disprove assertions w i t h the same S S A formula without over-approximation. 
The benchmark, where the bug was detected is loops/while infinite loop 4 false-
unreach-call true-termination.i . 
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Chapter 9 

Conclusion 

Our a im in this work was to design and implement non-termination analysis wi th in the 2LS 
tool . The tool uses the SSA-based representation and works exclusively on bit-vectors. Th is 
represented the major challenge in this work. Ex i s t i ng methods for proving non-termination 
were studied, and we implemented the well-known approach introduced by [ ] adjusted 
for the representation used i n our tool . O u r results show that even a simple a lgori thm can 
be highly effective wi th the proper, SSA-based, representation. We tested our tool on the 
set of benchmarks from S V - C O M P 2017 and we were able to detect non-termination in 
475 of 497 non-terminating benchmarks. The method also revealed 1 incorrectly classified 
benchmark and 6 benchmarks wi th an overflow issue. 

Even though the implemented method produced very good results, we wanted to cover 
the set of programs where it was ineffective and took an excessive amount of t ime to 
compute the result. Therefore, we introduced the concept of periodical recurrence sets 
and we implemented our second method. This was able to cover 4 more benchmarks and 
increase the to ta l number of detected non-terminating benchmarks to 479. We designed a 
parallel a lgori thm for 2LS that combined our non-termination analysis w i th the terminat ion 
analysis already implemented in our tool . The final score in the category Termination has 
been increased from 899 to 1489, which is a significant improvement. 

Further research is needed into terminat ion analysis i n 2LS i n order to increase the 
number of successfully proved terminat ing benchmarks and to remove the existing bugs in 
the analysis. A d d i t i o n a l work needs to be performed to improve the results of the unifying 
procedure for the terminat ion and the non-termination analysis. Research into recursion 
support is also needed, since more than 100 benchmarks on S V - C O M P are currently recur
sive. The use of more complex templates for periodical recurrence sets could be a productive 
field of study. We highly recommend studying the use of this approach for interprocedural 
analysis, which could increase the scalabili ty of the presented method. 
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