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Abstract 
Cartesian genetic programming (CGP) is an evolutionary based machine learning method 
which can automatically design computer programs or digital circuits. C G P has been 
successfully applied in a number of challenging real-world problem domains. However, the 
computational power that the design based on C G P needs for obtaining innovative results is 
enormous for most applications. In C G P , every candidate program is executed to dermine 
a fitness value, representing the degree to which it solves the problem. Typically, the most 
time consuming part of C G P is the fitness evaluation. This thesis proposes to introduce 
coevolution of fitness predictors to C G P in order to accelerate the evolutionary design 
performed by C G P . Fitness predictors are small subsets of the training data, which are 
used to estimate candidate program fitness instead of performing an expensive objective 
fitness evaluation. Coevolution of fitness predictors is an optimization method of the fitness 
modeling that reduces the fitness evaluation cost and frequency, while maintaining the 
evolutionary process. In this thesis, the coevolutionary algorithm is adapted for C G P and 
three approaches to fitness predictor encoding are introduced and examined. The proposed 
approach is evaluated using five symbolic regression benchmarks and in the image filter 
design problem. The method enabled us to significantly reduce the time of evolutionary 
design for considered class of problems. 
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Abstrakt 
Kartézské genetické programování (CGP) je evolucí inspirovaná metoda strojového učení, 
která je primárně určená pro automatizovaný návrh programů a číslicových obvodů. C G P je 
úspěšné v řešení mnoha úloh z reálného světa. Avšak k nalezení inovativních řešení obvykle 
potřebuje značný výpočetní výkon. Každý kandidátní program navržený pomocí C G P musí 
být spuštěn, aby se zjistilo, do jaké míry tento program řeší zadaný problém, a mohla mu 
být přiřazena fitness hodnota. Právě vyhodnocení fitness bývá výpočetně nejnáročnější 
částí návrhu pomocí C G P . Tato práce se zabývá využitím koevoluce prediktorů fitness v 
C G P za účelem zrychlení procesu evolučního návrhu prováděného pomocí C G P . Prediktor 
fitness je malá podmnožina trénovacích dat používaná pro rychlý odhad fitness hodnoty 
namísto náročného vyhodnocení objektivní fitness hodnoty. Koevoluce prediktorů fitness 
je optimalizační metoda modelování fitness, která snižuje náročnost a frekvenci výpočtu 
fitness. V této práci je koevoluční algoritmus přizpůsoben pro C G P a jsou představeny 
a zkoumány tři přístupy k zakódování prediktorů fitness. Představená metoda je experi
mentálně vyhodnocena v pěti úlohách symbolické regrese a v úloze návrhu obrazových filtrů. 
Výsledky experimentů ukazují, že pomocí této metody lze významně snížit výpočetní čas, 
který C G P potřebuje pro řešení zkoumané třídy úloh. 
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Chapter 1 

Introduction 

The computer aided design is a well established approach to engineering design. Many 
software tools are currently available and simplify designers job. The evolutionary design 
builds on these software tools by taking over a part of a design process. It allows designers 
to improve the performance of their designs and to explore numerous alternative solutions 
to problems automatically [4]. 

The automatic evolution of computer programs is known as genetic programming (GP). 
In some sense, G P represents an attempt to accomplish one of the most ambitious goals of 
computer science: being able to specify what one wants a program to do, but not how, and 
have the computer figure out an implementation. 

In 1997, Julian Miller introduced a special form of GP, nowadays called Cartesian 
genetic programming (CGP) [41], which grew from a method of evolving digital circuits. 
Over the years, C G P has been successfully applied to a number of challenging real-world 
problem domains. However, the computational power that evolutionary design based on 
C G P (as well as on standard GP) needs for obtaining innovative results is enormous for 
many applications. 

For most real-world applications of G P it is a well known fact that fitness evaluation 
is by far the most time consuming operation. For example, for 36 tasks solved using 
Koza's genetic programming, the average population size was 3,350,000 individuals, 128.7 
generations were produced in average and the average time to reaching a solution was 81.9 
hours [36]. 

The problem with expensive evaluations also holds for the evolutionary design performed 
by C G P . For example, consider the image filter design problem. The most time consuming 
procedure is the fitness calculation where tens of thousands of pixels of the training set 
(i.e. fitness cases) have to be evaluated in order to obtain one fitness value. A single run is 
typically finished after 200 thousands candidate filter evaluations [60]. 

Many researches are concerned with how to establish criteria that can help them to 
reduce the time spent in the fitness evaluation phase as much as possible without compro
mising results in terms of quality and, possibly, generalization capability. 

The training set used for fitness evaluations is often a small sample of the entire problem 
domain space. One is thus confronted with two problems: how to select a sufficient number 
of fitness cases and how to choose such fitness cases that are effective in forcing the search 
process towards a desired solution. 

The fitness evaluation time can be reduced by using well prepared training sets, fitness 
estimation techniques or, in some cases, formal verification algorithms (see an overview in 
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[71]). Moreover, various domain-specific hardware accelerators, including GPU-based or 
FPGA-based machines [74, 70, 23], are often employed. 

One of fitness estimation techniques is a fitness prediction, which is a low cost adaptive 
procedure utilized to replace fitness evaluation. A framework for reducing the computa
tion requirements of symbolic regression using fitness predictors has been introduced for 
standard G P by Schmidt and Lipson [57]. Their method combines fitness prediction with 
coevolution to eliminate disadvantages of classic fitness modeling, in particular the effort 
needed to train a fitness model and adapt the level of approximation and accuracy. The 
method utilizes a coevolutionary algorithm which exploits the fact that one individual can 
influence the relative fitness ranking between two other individuals in the same or a separate 
population [24]. Coevolving the training samples (often called tests) - as the method of 
fitness modeling in standard G P - has been studied in many application domains. However, 
coevolution applied to reduce the computational cost of C G P has not been considered until 
the research leading in this thesis. 

1.1 Goals of the Thesis 

On the basis of the previous survey of problems relevant for C G P , the following hypothesis 
has been formulated: 

Research hypothesis: A properly designed mechanism employing coevolution of carte
sian programs and tests is able to reduce the computational cost of C G P for considered 
applications in comparison with the standard CGP. 

In order to confirm the hypothesis, more specific research goals have been defined: 

G o a l 1: To study the literature to get an overview of the state of the art in GP, C G P and 
coevolutionary principles. 

G o a l 2: To propose and implement C G P that uses coevolutionary principles. 

2.1: To solve how to choose such fitness cases that are effective in driving the search 
process towards a solution. 

2.2: To solve how to select a sufficient number of fitness cases. 

2.3: To evaluate the proposed approach using selected case studies, especially symbolic 
regression tasks. 

G o a l 3: To propose coevolutionary C G P suitable for F P G A s . 

1.2 The Thesis Outline 

The thesis is a collection of papers. The main ideas of this thesis and all relevant research 
results are, therefore, available in the papers. The papers were written with this thesis 
in mind and, therefore, build naturally on each other, leading towards the conclusion. 
Chapter 2 presents necessary background material. Chapter 3 provides an overview of 
the research process and the papers. Chapter 4 concludes the thesis, summarizes research 
contributions and provides suggestions for future work. 
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Chapter 2 

Background 

This chapter briefly surveys theoretical basis relevant to this work and gives a background 
to this thesis. Chapter 2.1 starts with a survey of the GP, including the graph-based G P 
approach, benchmark problems and real-world problems successfully solved by GP. Selected 
open issues - the so called scalability problems - are also introduced. Chapter 2.2 presents 
fitness approximation techniques as a possible way to overcome the scalability of evaluation 
problem. Chapter 2.3 gives a brief overview of the coevolutionary principles in GP. A 
summary of hardware acceleration techniques used in the evolutionary design is given in 
Chapter 2.4. 

2.1 Genetic Programming 

Genetic programming (GP) is an evolutionary approach that allows the exploration and 
exploitation of the space of computer programs. G P works by defining a goal in the form 
of a quality criterion (a fitness function) and then using this criterion to evolve a set 
(a population) of candidate solutions (individuals) by mimicking the basic principles of 
Darwinian evolution. G P tries to solve the problem using an iterative process involving 
the probabilistic selection of the fittest solutions and their variation by means of a set of 
genetic operators, usually crossover and mutation. G P became more widely known after the 
publication of John Koza's book in 1992 [31], but its roots can be traced back to Cramer's 
work [7]. 

In particular, G P genetically breeds a population of computer programs to solve a prob
lem. Individuals of the population are hierarchical variable-size structures that represent 
computer programs. To code the G P implementation, Koza chose the LISP language where 
both programs and data are in the form of the list. Lists can be nested and can easily re
present hierarchical structures such as syntax trees. While modern G P implementations 
are based on C, C++, Java or Python and syntax trees are often represented using flat
tened array-based representation rather than linked lists, programs are still treated and 
manipulated as trees as Koza did. This form of G P is called the tree-based GP. 

While the tree-based representation of individuals is the oldest and most common one, 
there are other forms of GP. A growing attention has been dedicated by researchers to 
linear genomes [5] and graph-based genomes [43]. Many other forms of GP, based on, 
e.g., grammars or the estimation of probability distributions algorithms, have also been 
proposed. A more comprehensive review is provided in [50]. 
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2.1.1 C a r t e s i a n G e n e t i c P r o g r a m m i n g 

This thesis deals with Cartesian Genetic Programming (CGP) . The state of the art of C G P 
has been summarized in monograph [41]. C G P uses a specific encoding in the form of di
rected acyclic graph and a mutation-based search. C G P has been successfully employed 
in many traditional application domains of genetic programming such as symbolic regres
sion, but has been predominantly applied in evolutionary design and optimization of logic 
networks. 

A candidate program in C G P is modelled as a Cartesian grid of programmable elements 
(nodes) and defined using the following parameters (according to [43]): 

o The problem-specific parameters: 

Hi', the number of program inputs, 

nQ: the number of program outputs, 

nn: the number of node inputs, 

nf. the number of node functions, 

V: the function look-up table, which contains n / (up to) n„-input functions of nodes. 

o The user-defined parameters: 

nr: the number of grid rows, 

nc: the number of grid columns, 

I: the levels-back parameter, which controls the connectivity of the graph encoded, 
i.e. constraints which columns a node can get its inputs from. 

The candidate program genotype G is then in the form of a string of nrnc (nn + 1) + n0 

integers. The program data inputs are given the absolute data address (0,rtj — 1). The 
data outputs of nodes in genotype are given the address sequentially, column by column, 
particularly (n^rtj + nrnc — 1). Nodes take their inputs in a feed-forward manner from 
the output of nodes in I previous columns or program inputs. Each node is encoded by 
nn + 1 integers; where one integer is the address of the node function in T. The n0 integers, 
which specify where the program outputs are taken from, are added to the end of genotype. 
Figure 2.1 shows an example of a candidate program encoding. 

This type of candidate program genotype encoding has some important features: 

o some nodes may be ignored (the so-called non-coding nodes), 

o some nodes can be multiply used, 

3 3 3 
1 0 6 
3 2 1 

Figure 2.1: A candidate program (left) in C G P , where I = 4, nc = 4, nr = 2, tii = 1, n0 = 1, 
na = 2, T = {+ (0), - (1), * (2), / (3)} audits genotype (right): 0,0,0; 0,0,0; 0,0,2; 2,2,1; 
3,1,3; 3,0,2; 3,6,1; 3,6,0; 8. Function genes are underlined. 
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Figure 2.2: Example of C G P phenotype and its interpretation. 

o some node inputs may be ignored, 

o some primary inputs may be ignored. 

While candidate program genotype has a fixed length, this representation has an unusual 
form of redundancy in which nodes may be switched on or off, under the control of evolution. 
The phenotype may consist of 0 up to nrnc nodes. The role of redundancy and its utility 
in evolutionary search was investigated in [42]. Figure 2.2 shows an example of a candidate 
program genotype and its interpretation in the form of a syntax tree and a functional 
expression. 

In C G P , a variant of a simple (1 + A) evolutionary algorithm is used as a search mecha
nism as follows: 

1. The initial population is constructed either randomly, by a heuristic procedure or uses 
an existing solution. 

2. A l l individuals in the population are evaluated. 

3. The fittest individual is promoted as a new parent. If more than one individual show 
the best fitness, the new parent is selected randomly from the set of best individuals: 
however the previous parent is never taken to promote diversity. 

4. The A offspring are created from the parent using a point mutation operator. The 
mutation operator modifies h randomly selected genes to other randomly generated 
(but valid) values. 

5. Every new population consists of the parent and its A offspring. 

6. If a solution is not found or the generation limit is not reached, continue to 2. 

Recent work [21] analyzed the aspects of the C G P evolutionary mechanisms. It examined 
parameter values tuning, the search quality of C G P variants at different problem difficulties, 
node behavior, or offspring replacement. While a really useful crossover operator has not 
been proposed for C G P so far, several promising mutation techniques are investigated 
in [21]. 

While this chapter introduces C G P in its basic form (as it is used in this thesis), several 
more complex forms were proposed, such as embedded C G P , modular C G P , self-modifying 
C G P , developmental C G P , and others. The interested reader is referred to [41]. 

2.1.2 F i t n e s s E v a l u a t i o n i n G P 

Each program in the population is assigned a fitness value, representing the degree to 
which it solves the problem of interest. This value is calculated by means of a well-defined 
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The training set 
Candidate program population 

Figure 2.3: Fitness evaluation in the standard C G P . 

procedure. The fitness in G P is often calculated over a set of fitness cases [69]. A fitness 
case corresponds to a representative situation in which the ability of the program to solve a 
problem can be evaluated. The fitness case consists of potential program inputs and target 
values expected from a perfect solution as a response for these program inputs. Figure 2.3 
shows the scheme of fitness evaluation. 

The set of fitness cases is typically a small sample of the entire domain space. The 
choice of how many fitness cases (and which ones) to use is often crucial since whether or 
not an evolved solution will generalize over the entire domain depends on this choice. In 
practice, the decision is made on the basis of knowledge about the problem and practical 
performance considerations - the bigger the training set, the longer the time required to 
evaluate fitness. The first theoretical study on the suitable number of fitness cases to be 
used has been presented in [20]. 

2.1.3 G P B e n c h m a r k s 

Koza [31] introduced a set of problems that can be considered as typical GP problems. 
These problems have been adopted by G P research community as an agreed-upon set of 
benchmarks, to be used in experimental studies. They include the following: 

o The Even k bit Parity Problem, whose goal is to find a Boolean function of k arguments 
that returns true if an even number of its arguments evaluates to true and false 
otherwise. 

o The h bit Multiplexer Problem, where the goal is to design a Boolean function with h 
inputs that operates as a multiplexer function. 

o The Symbolic Regression Problem, that aims at finding a mathematical expression 
that matches a given dataset. 

o The Intertwined Spirals Problem, the goal of which is to find a program to classify 
points in the x — y plane as belonging to one of two spirals. 

o The Artificial Ant on the Santa Fe Trail, whose goal is to find a navigation strategy 
for an agent on a limited toroidal grid. 

Wi th the development of the field, the G P community analyzed the use of G P bench
marks and suggested that several problems in common use should be blacklisted. Possible 
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replacements were proposed [75]. Among others, they offered more complex symbolic re
gression benchmarks; the multiple output multiplier replaced the multiplexer problem, or 
the artificial ant was replaced by the Mario gameplay. 

2.1.4 E x a m p l e s o f R e a l - W o r l d A p p l i c a t i o n s o f G P 

Since the nineties, G P has produced a plenty of results. The literature reports an enormous 
number of applications where G P has been successfully used as an automatic programming 
tool, a machine learning tool or an automatic problem-solving engine. The interested reader 
is referred to [33] for more detailed analysis. Examples of real-world applications of G P 
that are relevant for this thesis are listed bellow. 

C u r v e F i t t i n g , D a t a M o d e l i n g and Symbol ic Regression 

A large number of G P applications are in curve fitting, data modeling and symbolic regres
sion. G P can be used as a stand-alone tool or coupled with one of numerous existing feature 
selection methods, or even G P itself can be used for the feature selection [37]. Furthermore, 
C G P (or linear G P with multiple output registers) can also be used in cases where more 
than one output is required. 

Evolvable Hardware 

G P has now been successfully used to automatically synthesize designs in a number of 
fields, many of them were classified as human-competitive [35]. G P can be applied to 
create novel topologies for optical systems [1], antennas [39] or electronic circuits [61]. As 
C G P originally developed from a method for evolving digital circuits, it is often applied to 
challenging problems in digital circuit design. 

Image and Signal Process ing 

G P can be used for motorway traffic jams prediction from subsurface traffic speed measu
rements [25], preprocessing images of human faces to find regions of interest for subsequent 
analysis [68], classification of objects, and speech classification [80, 77]. Furthermore, evolu
tionary design of low level image filters by means of C G P resulted in novel designs showing 
very good quality of processing and low implementation cost in comparison with conven
tional image filters [60]. 

Genet ic Improvement of Software 

Nowadays, the genetic improvement of software is significantly growing. It uses automated 
search to find improved versions of an existing software. This field of research has been 
recently surveyed in [49]. 

2.1.5 O p e n Issues 

The scalability problem is usually understood as a problem in which the evolutionary algo
rithm (EA) is able to provide a very good solution to a small problem instance; however, 
only unsatisfactory solutions can be generated for larger problem instances. Because a kind 
of evolutionary algorithm is employed, the user is supposed to design a suitable problem 
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encoding, search strategy (i.e. the search algorithm including genetic operators) and fitness 
function. A l l these components can suffer from the scalability problems. 

Scalabi l i ty of Eva lua t ion 

In order to evaluate a complex candidate solution, a time consuming fitness evaluation 
procedure has to be undertaken in which the evaluation time typically grows exponentially 
with the size of the problem. This difficulty is known as the scalability of the fitness 
calculation. 

Fitness evaluation is often the most time consuming activity in G P applications and 
it is thus useful to find techniques that can help in reducing the evaluation time without 
compromising the quality of the results. The problem of determining adequate training 
samples of data is common in the machine learning field and it is shared by GP. 

In GP, the training set can be small and complete according to the solved problem. 
Considering the design of a one-bit full adder, the training set consists of 8 training vectors, 
which fully represent the functionality of the desired circuit. Each candidate program is 
then executed 8 times to evaluate its fitness. In the case of more complex circuits such as 
the 8bx8b multiplier, the complete training set consists of 2 1 6 training vectors - the bigger 
the training set, the longer the program evaluation process. 

However, in the case of digital circuit evolution, it is necessary to verify whether a 
candidate n-input circuit generates correct responses for all possible fitness cases (input 
combinations, i.e. 2™ assignments). It was shown that testing just a subset of 2™ fitness cases 
does not lead to correctly working circuits [26]. This problem can partially be eliminated 
in real-world applications by applying formal verification techniques [71]. 

In many G P applications, it is sufficient just to approximate the desired functionality. 
The goal is then to minimize the error for the training set, which can be large and in
complete. Considering symbolic regression, the experimentally obtained training data are 
often noisy (containing measurement errors) and thus it is not necessary to find the exact 
representation of the training set (which often contains from hundreds to ten thousands 
fitness cases). The desired expression should often be the simplest discovered form, that 
provides the predefined accuracy. 

The time needed for evaluating a single fitness case depends on a particular application. 
However, the computation time that the evolutionary design based on G P requires for 
obtaining innovative results is enormous for complex real-world applications. Usually, the 
goal of G P system design is to obtain a solution with predefined accuracy and robustness 
using a minimum number of evaluated fitness cases. There are two basic problems: 

I. How to select the sufficient number of fitness cases. 

II. How to choose fitness cases in such a way that they are effective in driving the learning 
process towards a solution. 

A commonly accepted principle, called minimum description length, states that the best 
model for explaining training set is the one that minimizes the amount of information needed 
to encode it. The minimum description length idea has been incorporated into G P fitness 
functions to avoid overfitting and bloat1 [79]. Another theoretical contribution showed 
that, under certain conditions, the number of fitness cases needed in G P fitness evaluation 

l r The average size of the programs in a G P population often starts growing during the evolution flow, 
but the increase in program size is not accompanied by any corresponding increase in fitness [50]. 
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can be upper-bounded via statistical and information-theoretic considerations [20]. Results 
indicated that the number of fitness cases needed for reliable function reconstruction in G P 
is well approximated by the entropy of the target function. 

Other works approached the second problem (II.) from a heuristical point of view with 
the aim of somehow sorting, cutting, or reordering the fitness cases in such a way that 
they are more useful in driving the learning process towards a solution [18, 19]. A brief 
overview of more complex heuristical approaches to selecting proper fitness cases is given 
in Chapter 2.2. 

Scalabi l i ty of Representat ions 

As complex solutions are usually represented by long chromosomes, it is difficult to establish 
a fast and accurate search method which will be capable of finding good solutions in the 
corresponding complex search spaces. This problem is referred to as the scalability of 
representations problem. Hence, the third problem related to open issues in G P is: 

III. How to eliminate the scalability of representation problem. 

The most important approaches will be surveyed in the following paragraphs. 
At the level of the search algorithm, modularization has been introduced for genetic 

programming (e.g. in the form of automatically defined functions [32]) as well as Cartesian 
genetic programming [73]. In the framework of co-evolutionary algorithms, several methods 
have been developed to reduce the computational requirements. A survey will be given in 
Chapter 2.3. 

There are also problem specific approaches to get over the scalability of representations 
problem. Approaches developed in the circuit design area which is the most relevant for 
C G P are listed bellow. 

A divide and conquer approach firstly (either deterministically or heuristically) divides 
the target circuit into modules (or subcircuits) and then evolves a solution for each module 
separately [67]. The benefits are twofold: reducing the search space and simplifying the 
fitness calculation. The approach can be applied iteratively [66]. 

Functional level evolution allows utilizing complex circuit elements (such as adders, 
multipliers or comparators) instead of elementary gates [45]. Relatively complex circuits 
can then be encoded using a shorter chromosome and the search space is thus restricted. 
The functional level evolution is often combined with a suitable decomposition scheme [62]. 

Another class of approaches, inspired by the biological development, employs an indirect 
problem encoding [34, 22]. A program is encoded in the chromosome rather than a circuit. 
When executed, the program is capable of constructing a complete phenotype from an initial 
solution, which is usually called the embryo. While designing a suitable developmental 
encoding is tricky, main advantages are shortening the genotype and obtaining a natural 
support for modularity and scalability in resulting circuits. 

2.2 Fitness Approximation 

The goal of the G P software design and G P parameters tuning is to automatically obtain a 
program (solving the target problem with predefined accuracy and robustness) in as short 
time as possible. In practice, this time is measured as the number of evaluated fitness cases 
or fitness function calls. In order to reduce the computational complexity of expensive 
fitness evaluation, fitness approximation techniques have been developed. 
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2.2.1 F i t n e s s M o d e l i n g 

One of the fitness approximation technique is fitness modeling which employs fitness models 
with different degrees of sophistication to reduce the evaluation time [27]. A predefined 
model or coarse-grained simulation has been used to approximate the fitness value in the 
cases in which obtaining the exact fitness requires an expensive simulation or a physical 
experiment. 

The concept of fitness modeling falls in the field of machine learning. Neural networks, 
support vector machines, decision trees and other machine learning methods can be used 
in order to efficiently approximate the exact fitness [28]. Sub-sampling of training data 
such as random subset selection [18], stochastic sampling [46] or dynamic topology-based 
selection [38] have also been studied in order to evaluate an individual on a smaller subset 
of fitness cases. 

Fitness modeling reduces the execution time in high-complexity or interactive domains, 
where the resolution provided by the exact fitness is unnecessary for the design pro
cess [28, 53]. Fitness models have also been applied in domains without computable fitness, 
such as evolution of art and music [29], or with very noisy fitness functions [2]. Fitness 
approximation can also reduce the frequency and severity of local optima in multimodal 
landscapes. Moreover, the motivation for fitness modeling can also be seen in smoothing 
the fitness landscape and promoting diversity [57]. However, it is not always clear when 
the benefits of fitness modeling can outweigh the cost. 

The use of fitness modeling techniques is often connected with three fundamental diffi
culties [57]: 

o Significant computational effort is required to train the desired model. 

o It is often unclear what level of approximation is accurate enough to achieve desired 
solution - the higher-quality approximations provide greater accuracy, but require 
more computation, and vice versa. 

o Approximations are bound with loss of accuracy, which, in the worse case, can lead 
to losing the global optimum. 

2.2.2 F i t n e s s P r e d i c t i o n 

A closely related concept to fitness modeling is fitness prediction, which is a technique 
used to replace fitness evaluations by a lightweight approximation that adapts with the 
solution evolution. Fitness predictors cannot approximate the entire fitness landscape, but 
they are instead shifting their focus throughout the evolution. A n algorithm that coevolves 
fitness predictors, optimized for the solution population, has been introduced for tree-based 
G P [57]. Results indicated that the fitness evaluation cost and also the bloated solutions 
can be reduced. 

2.3 Coevolutionary Algorithms 

Coevolutionary algorithms (CoEAs) are characterized by comparing individuals on the basis 
of their outcomes from interactions with other individuals. 

Considering E A fitness function of the form / : G —>• M, a real value is assigned to each 
possible genotype in G. Then, the relationship between any two genotypes #1,52 G G is 
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clear - f(gi) is compared to /G72) to find out which one is more fit. The objectively given 
fitness function used in typical EAs has been denoted as objective fitness. Contrary to the 
traditional EAs , in CoEAs individuals can be evaluated by interacting with other individuals 
from the same population or individuals in one population interact with individuals in one 
or several other populations. Thus, the fitness ranking of two individuals can change over 
time. The fitness in CoEAs has been called subjective fitness. 

CoEAs are traditionally used to evolve interactive behavior which is difficult to evolve 
with an absolute fitness function. The state of the art of coevolutionary algorithms has 
been summarized in the Chapter 31 of Handbook of Natural Computing [51]. 

Historically, the terms cooperative and competitive have been used to classify the do
mains in which coevolution is often applied. These terms appear from the game theory, but 
they have been appropriate neither for classifying problems over which C o E A operates nor 
algorithms themselves. According to [51], problems are primarily divided into classes based 
on what constitutes a solution. Two types of problems are distinguished - compositional 
problems and test-based problems. 

In CoEAs, relationship between terms such as individuals, populations and solutions can 
be more complicated than in traditional EAs . Depending on the problem, an individual 
can represent a candidate solution, but also a component (see Chapter 2.3.1) of a solution 
or a test (see Chapter 2.3.2) for solution evaluation. 

The population is a collection of individuals (as well as in traditional EAs) . In Co
EAs, two simple algorithms are distinguished: the single-population CoEA, and the multi-
population CoEA. A n example of the single-population C o E A are the neuro-developmental 
programs that play checkers [30]. Each individual in population is evaluated in the way, 
that it plays checkers against the other individuals from the same population (see Figure 
2.4a). Multi-population CoEAs are characterized by using populations, where different 
types of individuals are evolved in each population. Then, each population can contain one 
component of a problem (see Figure 2.4b), or one population contains candidate solutions 
and the other contains the test for candidate solution evaluations (see Figure 2.4c). 

However, coevolutionary methods often employ another kind of collection than popula
tion - an archive. In general, the archives contain individuals that span generations. The 
archives often contain the end solution (i.e. the best solution obtained during the evolu
tion flow) [54]; or when the solution is the aggregation of components, the composition 
of archives is the solution [8, 47]. Likewise elitism in traditional EAs , archives can also 
influence the search direction. 

To evaluate individuals according to interactions with other individuals, decisions need 
to be made as to what interactions should be assessed and how the outcomes of those 
interactions should be aggregated to give individuals fitness. When using multiple popu
lations, also the issue of communication between these populations should be considered. 

(a) Single population. (b) Compositional problem. (c) Test-based problem. 

Figure 2.4: Basic types of CoEAs. 
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The simplest choice is to enable all possible interactions (i.e. complete mixing). However, 
this approach is computationally very expensive. Only some of all interactions are often 
allowed and assessed. In order to aggregate the values coming from multiple interactions 
into the fitness score, two basic approaches are considered: 

o to aggregate values from multiple interactions into a single value: 

o to define the fitness with a tuple and select parents with a multi-objective E A . 

2.3.1 C o e v o l u t i o n A p p l i e d to C o m p o s i t i o n a l P r o b l e m s 

Coevolution applied to compositional problems sprang from the cooperative coevolutionary 
algorithms, wherein the originally stated aim was to attack the problem of evolving comp
licated objects by explicitly breaking them into parts, evolving parts separately and then 
assembling the parts into a working whole [52]. There is a number of successful applica
tions of CoEAs to compositional problems. For example, in neuro-evolutionary algorithms, 
weights and structure of artificial neural networks are often coevolved [65, 44, 64, 63]. 

Coevolution applied to compositional problems has also been proposed as a promising 
framework for solving high-dimensional optimization problems. However, it is not always 
clear how to decompose a problem into single variables. A new problem decomposition 
strategy (the grouping based strategy), in order to better capture the variable interdepen
dences for complex non-separable problems, has been proposed in [78]. 

2.3.2 C o e v o l u t i o n A p p l i e d to Tes t -based P r o b l e m s 

In coevolution applied to test-based problems, the quality of a potential solution is deter
mined by its performance when interacting with a set of tests. Hillis [24] introduced an 
approach that can automatically evolve subsets of fitness cases concurrently with a prob
lem solution. Hillis employed a two-population coevolutionary algorithm in the task of a 
minimal sorting network design. Subsets of fitness cases composed to evaluate candidate 
sorting networks were evolved simultaneously with the sorting networks. Evolved sorting 
networks were applied to evaluate the fitness cases subsets. The fitness of each sorting 
network was measured by its ability to correctly solve fitness cases while the fitness of the 
fitness cases subsets was better for those that could not be solved well by currently evolved 
sorting networks. 

The test-based problems are discussed in [10] and analyzed in connection with a multi-
objective optimization in [9]. Coevolving the fitness cases as the method of fitness modeling 
in G P has been studied in many application domains [13, 17, 40] as well as in symbolic 
regression problems [12, 48, 56, 57]. 

2.3.3 O p e n Issues 

The successful use of any E A is connected with many key decisions that have to be decided 
before executing it. For instance, choosing the candidate solution representation, population 
size, the genetic operators used to explore the search space and the fitness function(s) 
are surely the most important ones. Compared to traditional EAs , the CoEAs use more 
components, which are expected to interact, and thus the success of a particular C o E A is 
dependent on many more parameters. 

For instance, the occurrence of two pathological coevolutionary behaviours (disengage
ment and cycling) in simple genetic programming systems has been investigated in [58]. 
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The disengagement occurs when an element of the system has entered a state for which 
no search gradient can be induced by reference to the other coevolving elements. Cycling 
occurs when previously visited interactions recur so that the search process is led to repeat 
a previous progress of evolution. Next, under certain conditions, it is theoretically possible 
for some CoEAs to prefer components later in the run, which will tend to require larger 
supporting tests [6]. This feature may cause a kind of bloating. 

Although many theoretical works are concerned with analytical description of CoEAs, it 
is still an open research issue how to utilize all benefits that CoEAs bring to real algorithms 
and for real problems. 

2.4 Hardware Acceleration of C G P 

As the design based on C G P (as well as on other forms of GP) is computationally a 
very intensive method, it has been usually accompanied by application-specific acceleration 
techniques. Among others, many hardware accelerators have been designed, such as field 
programmable gate array (FPGA) based acceleration platforms. 

F P G A s are pre-fabricated silicon devices that can be electrically programmed in the field 
to become almost any kind of digital circuit or system [16]. Modern F P G A s provide cheap, 
flexible and powerful platform, often outperforming common workstations or even clusters 
of workstations in particular applications. Normally F P G A s comprise of programmable 
logic blocks which implement logic functions, programmable routing that connects these 
logic functions, and I /O blocks that are connected to logic blocks through routing inter
connect and that make off-chip connections. A generalized example of an F P G A is shown 
in Figure 2.5 where configurable logic blocks (CLBs) are arranged in two-dimensional grid 
and are interconnected by programmable routing resources. I /O blocks (IOB) are arranged 
at the periphery of the grid and they are also connected to the programmable routing 
interconnect. A C L B consists of so-called slices. Each slice contains the function genera
tors implemented using 3-,4-, or 6-input look-up tables (LUTs), flip-flops (FFs), and some 
additional logic. The configuration bitstream is stored in the configuration S R A M memory. 

Hardware implementations of C G P are typically developed with the aim of either en
abling autonomous system adaptation at the hardware level and in a real environment, 
or as accelerators reducing the execution time in comparison with a pure software imple
mentation [55, 11, 60]. Vasicek and Sekanina [71] introduced a new F P G A accelerator of 
C G P with the aim to provide high performance together with low power. The architecture 
contains multiple instances of virtual reconfigurable circuit (VRC, [59]) to evaluate several 
candidate solutions in parallel. Dobai [11] showed that when properly accelerated in an 
F P G A , C G P can evolve a unique image filter for every frame of a video played with a 
resolution of 427 x 240 pixels. In this task, C G P can generate and evaluate over 9,200 
candidate filters per second, each of them is evaluated using a 128 x 128 pixel image taken 
from the previous frame. 

It has to be noticed that only the standard C G P was accelerated in F P G A s . No ad
vanced C G P versions (such as coevolutionary C G P ) are available. 
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Chapter 3 

Research Summary 

This chapter gives a summary of the research behind this thesis. Chapter 3.1 starts with 
a description of the research process that led to this thesis. Chapter 3.2 lists five papers 
[A,B,C,D,E] included in this thesis, representing the research path taken towards finding 
answers to the research hypothesis of this work. The reader is supposed to consult these 
papers when reading this summary. 

3.1 Research Process 

This chapter presents the research process that led to this thesis. The C G P acceleration 
at the level of the search process inspired by coevolution of fitness predictors and tree-
based G P introduced in [56, 57] was chosen as the main topic from the very beginning. 
The method combines fitness prediction with coevolution to eliminate disadvantages of the 
classic fitness modeling, in particular the effort needed to train the fitness model and adapt 
the level of accuracy. This approach had to lead to reduction of expensive fitness evaluations 
and thus to help to eliminate the scalability of evaluation problem in CGP. 

After the initial study of literature, the coevolutionary algorithm was adapted for C G P 
as presented in paper [A]. C G P has some important differences compared to the tree-based 
GP. C G P uses very small populations (usually 1+4 individuals) which implies many gener
ations have to be performed (compared to tree-based GP) to obtain a solution. This feature 
is the main aspect to consider while designing the coevolutionary interactions in C G P . To
gether with the adaptation of the coevolutionary algorithm, the experimental evaluation 
process was specified, which is summarized in Chapter 3.1.4. The adaptation was accom
panied by a large number of experiments in order to find proper settings of the components 
involved in the coevolutionary algorithm. 

The proposed method employs four collections of individuals. There are two popula
tions: 

o population of candidate programs, 

o population of fitness predictors. 

Fitness predictors are surveyed in Chapter 3.1.1. In order to enable interactions between 
the populations, two archives are used: 

o archive of fitness trainers, 

o archive containing the current best evolved fitness predictor. 
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The archive of fitness trainers is used by the fitness predictors population for the evaluation 
of evolved fitness predictors, which is summarized in Chapter 3.1.3. Chapter 3.1.2 gives 
the overall preview of the proposed algorithm in terms of how each collection of individuals 
interact to each other. 

Although several possible encodings were mentioned in [56], both [56] and [57] used 
fitness predictors encoded as the constant-size array of fitness cases. In the proposed co-
evolutionary C G P , this type of fitness predictor encoding was considered as the first choice 
(see Chapter 3.1.5). We decided to evaluate proposed approach on five symbolic regression 
benchmarks. We obtained a significant reduction in the number of fitness evaluations -
comparable to the original approach involving tree-based GP. Results were summarized in 
paper [A]. The problem of how to choose fitness cases in such a way that they are effective 
in forcing the C G P towards a solution was solved by the proposed approach. 

Next, we employed this approach in a real-world problem which is more typical for 
C G P - the evolutionary design of low-level image filters. We also obtained a significant 
speedup [B] compared to the standard C G P , but many experiments were accomplished in 
order to find the most advantageous number of fitness cases in the fitness predictor (i.e. 
the predictor size), for this new task. 

This disadvantage focused our research on the second problem: how to automatically 
select a sufficient number of fitness cases directly by the coevolutionary process. In order to 
solve this problem, new approaches to fitness predictor encoding were applied (papers [C] 
and [D]). Therefore, this thesis proposes and analyzes three types of fitness predictor 
encoding: 

o a constant-size fitness predictor (Chapter 3.1.5), 

o an indirectly encoded fitness predictor (Chapter 3.1.6), 

o an adaptive-size fitness predictor (Chapter 3.1.7). 

As many problem-specific hardware accelerators have been introduced in order to ac
celerate fitness evaluations in C G P , the proposed coevolutionary algorithm was also imple
mented into hardware, as summarized in Chapter 3.1.8. 

3.1.1 F i t n e s s P r e d i c t o r 

For purposes of this thesis, the fitness predictor is a small subset of the training data. In 
context of coevolution applied to a test-based problem, the fitness predictor is a special 
form of a test. Fitness predictor is represented as an array of pointers to elements in the 
training data. Figure 3.1 illustrates how every pointer addresses one selected fitness case. 

A good fitness predictor provides a fitness prediction which is robust enough to differen
tiate the fitness between any pair of candidate programs, along with a significantly faster 
outcome than the objective fitness calculation. 

3.1.2 P r o p o s e d C o e v o l u t i o n a r y A l g o r i t h m 

There are two concurrently evolved populations in the proposed coevolutionary algorithm. 
Figure 3.2 shows the overall interaction scheme as introduced in paper [A]. 

The first population is the population of candidate programs evolved using C G P . The 
goal of the program evolution, formalized in the fitness function, is to minimize the difference 
between responses produced by a candidate solution and desired responses. While the 
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Figure 3.1: Fitness predictor addresses selected fitness cases (FCs). 

standard C G P uses the complete training data to evaluate candidate programs, the fitness 
prediction-based method uses only a selected subset of the training data (i.e. the fitness 
predictor) to estimate the program fitness. 

In the second population, fitness predictors have to be coevolved with the programs 
in order to adapt them to the solved task. The fitness predictor training data consists of 
fitness trainers that are selected copies of candidate programs occurred during the program 
evolution. The fitness predictor evaluation process is described in Chapter 3.1.3. The 
detailed implementation and pseudo-code for coevolution of the population of programs 
and the population of fitness predictors is shown in paper [B], Section 3.3. 
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Figure 3.2: The overall coevolutionary scheme. 
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While using coevolutionary algorithms, there are many settings of involved components 
to make coevolution produce satisfactory solutions. In addition to a correct setting of the 
search algorithm in each population, the proper setup of interactions, communication and 
synchronization has to be decided. In general, the time necessary to perform one generation 
is different in each population. The evolution loops can be executed in parallel in separate 
computing threads. In this case, the archives can be updated immediately after a new top-
ranked individual is evolved. However, the experiments showed that it is not necessary to 
update the fitness predictor archive each time a new top-ranked fitness predictor is found. 
For this reason, it is possible to specify the relative speed between the populations (i.e. how 
many generations of the faster algorithm are performed per one generation of the slower 
algorithm). 

Another option is to execute both evolutions in a single-threaded environment by in
terleaving the evolution loops. In this case, there is in fact only one evolution loop, which 
performs a specified number of generations in the program evolution in each iteration, 
followed by one or more generations of the fitness predictors evolution. 

Our experiments had shown that frequent interactions between populations do not lead 
to correctly working solutions, because of very fast changes in the fitness calculation proce
dures. As C G P uses small populations, the search process needs more generations to adapt 
to the changes of the selective pressure. The most suitable setup of coevolution of fitness 
predictors and C G P is presented in paper [A] and used in all other papers included in this 
thesis. 

3.1.3 F i t n e s s P r e d i c t o r E v a l u a t i o n 

The fitness predictors are evaluated using fitness trainers (trainers for short). Trainers are 
selected copies of candidate programs occurred during the program evolution. Trainers in 
the archive are updated periodically - the top-ranked candidate program is copied to the 
trainers archive if its predicted fitness value differs from the top-ranked candidate program 
in the previous generation. A new (randomly generated) trainer t replaces the oldest one 
in the trainers archive and the objective fitness of the new trainer jobjectives) 1S evaluated. 
This approach to the fitness predictor training leads to maintaining a representative sample 
of the current program population (due to the copies of top-ranked candidate programs) as 
well as increasing fitness diversity of programs in the trainers archive (due to the randomly 
generated trainers). 

The fitness value of the fitness predictor is calculated using the mean absolute error of 
the objective fitness and predicted fitness of fitness trainers. Let us consider a symbolic 
regression problem where the candidate program fitness is represented as the number of 
hits. In common (non-coevolutionary) GP, the program fitness function (taking candidate 
program s as its argument) is then defined 

where y(j) is the response of candidate program s for the j - t h fitness case, t is the target 
response, k is the number of fitness cases in the training data, and e is a user-defined 
maximum error. 

A: 

3=1 
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When the coevolutionary G P with the fitness predictor is employed, there are, in fact, 
(s) 

two fitness functions for candidate program s. While the objective fitness function fohjective 

(s) 
uses the complete training data, the predicted fitness function fpredicted employs only se
lected fitness cases. Formally, 

1 k 

fobjective = 1^29{V{J)), (3-3) 
3=1 

fpredicted = ^ H 9 (V 0')) (3-4) 

where k is the number of fitness cases in the training data and m is the number of fitness 
cases in the fitness predictor (i.e. m is the size of the fitness predictor). 

Fitness value of the fitness predictor (taking fitness predictor p as its argument) is then 
expressed as 

1 u 

f (P) = ~ \fobjective (*) _ fpredicted (*)l (3-5) 
i=l 

where u is the number of candidate programs (trainers) in the trainers archive, and /objective 
and fpredicted are their objective and predicted fitness values. 

3.1.4 E x p e r i m e n t a l E v a l u a t i o n o f C o e v o l u t i o n a r y C G P 

Proposed approaches were compared with standard C G P on selected applications and with 
each other. The selected applications are as follows: 

o the symbolic regression problem and 

o the low-level image filter design. 

Symbolic regression can be considered as a typical G P benchmark [31]. Hence, proposed 
approaches were evaluated on five symbolic regression benchmarks. Three of them were also 
used to evaluate the original fitness predictors based on the tree-based G P [57]. It enabled us 
to compare the use of fitness predictors with tree-based G P and proposed fitness predictors 
with C G P , among others. The other two benchmarks were taken from [72] (which are also 
mentioned in [75] as better GP benchmarks). These benchmarks were selected to easily 
observe the behaviour of fitness predictors. The benchmarks are described in paper [A]. 

The low-level image filter design problem was taken from [60] and described in paper [B]. 
The main difference compared to the symbolic regression benchmarks, in context of fitness 
predictors, is in the structure of the training data. In symbolic regression benchmarks, the 
training data are often sorted and, when visualized, one can recognize fitness cases placed 
in peaks, valleys or flexes. The filter design benchmarks employ much wider training set 
and the particular selection of fitness cases in the fitness predictor is not so easy to ex
plain. The fitness cases are not sorted as in the case of symbolic regression benchmarks, 
but can be classified on the basis of their features - for example, a fitness case can repre
sent the neighbourhood of corrupted pixel, while designing noise-suppressing filters, or the 
neighbourhood of a pixel representing the edge, while designing the edge detector. 

In order to evaluate the impact of proposed approaches, the following attributes were 
observed: 
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o the quality of evolved solutions, 

o the number of generations of program evolution needed to obtain a satisfactory solu
tion, 

o the number of fitness case evaluations during the whole coevolutionary process, 

o the execution time (as the the sum of execution times of all used resources during the 
whole coevolutionary process, i.e. sequential time of all processes even if running in 
parallel). 

A l l proposed coevolutionary approaches were compared with the standard C G P . While eva
luating standard C G P and C G P employing proposed coevolutionary approach, the identical 
C G P implementation (and C G P setup), running on the same machine, was employed. Va
rious parameter setting of the fitness predictor evolution and coevolutionary interactions 
were investigated and compared while searching for the most suitable parameters. A l l 
experiments were repeated at least 50 times and results were statistically evaluated. 

The proposed approaches are then compared with each other, which is summarized 
in Chapter 4.1 of this thesis. Finally, the coevolutionary C G P implemented in hardware 
was compared with the highly optimized software implementation of the coevolutionary 
C G P [E]. 

3.1.5 C o n s t a n t - S i z e F i t n e s s P r e d i c t o r 

The first approach we proposed, introduced the fitness predictor encoding in the form of a 
constant-size array of pointers to elements in the training data [A]. Constant-size fitness 
predictors (CSFPs) are operated using a simple genetic algorithm (GA). The interested 
reader is referred to [76] for a survey of models and methods of GAs . In addition to 
one-point crossover and mutation, a randomly generated fitness predictor replacing the 
worst-scored fitness predictor of the generation was introduced as a new genetic operator 
of G A . The fitness value of fitness predictor is then calculated as the mean absolute error 
of the objective and predicted fitness values of fitness trainers according to formula 3.5. 

Resul ts 

The C S F P approach was evaluated with the symbolic regression benchmarks [A]. It was 
shown in paper [A] that C G P equipped with coevolution of CSFPs can significantly be 
accelerated in this particular application. The speedup obtained for five benchmarks is 
2.03 - 5.45 over the standard C G P . It should be pointed out, that standard C G P evaluated 
200 fitness cases in every fitness function call, while the coevolutionary C G P evaluated 
only 12 fitness cases. Results are also very competitive with the tree-based G P introduced 
in [57]. 

While symbolic regression has not been considered as a typical application domain for 
C G P , the following research was devoted to utilization of the proposed approach in another 
application domain, where the standard C G P has been successful so far - the low-level 
image filter design. We investigated the coevolution of CSFPs in the evolutionary design 
of filters suppressing the so-called salt-and-pepper type of noise [B]. The median time of 
evolution was reduced 2.99 times in comparison with the standard C G P . However, this work 
revealed that the recommended size of the fitness predictor differs from task to task. In this 
case, 15 - 20% pixels of original training image (i.e. thousands fitness cases) were needed 
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to find an image filter which provided the same quality of filtering as the best filter evolved 
using the standard C G P which utilized the whole 256 x 256 pixel image. It means, that 
in order to find the most advantageous size of the fitness predictor for a particular task, a 
large number of experiments have to be accomplished. 

3.1.6 I n d i r e c t l y E n c o d e d F i t n e s s P r e d i c t o r 

In order to reduce a large number of experiments needed to find the most advantageous 
size of fitness predictor for a new unknown task, a new type of fitness predictor whose size 
is changing dynamically during the coevolution, was developed. Indirectly encoded fitness 
predictors (IEFPs) with a variable number of fitness cases are represented in the form of 
functional expressions. This functional expression, evolved by means of C G P , generates a 
certain number of indexes into the training data (see Figure 3.3). Indexes then address 
specific fitness cases from the original training data which are selected for program fitness 
prediction. Details of I E F P encoding, evaluation and search process are given in Section 4 
of paper [C]. 

Resul ts 

The IEFPs were evaluated in five symbolic regression benchmarks [C] and were found to be 
comparable with the original approach presented in paper [A] (which used only 12 fitness 
cases). The detailed comparisons of these algorithms are given in paper [C]. Section 5.3 
and Section 5.4 of paper [C] analyzed the behaviour of IEFP. It was shown that during 
the evolution of IEFPs, also large fitness predictors had to be evaluated (and then refused 
for their larger size), and thus plenty of fitness case evaluations were wasted. In order to 
prevent this overhead, the upper bound of fitness predictor size was considered, and the 
large fitness predictors have been refused before evaluation, to get closer to the evaluation 
cost of the CSFPs approach. However, this hard constraint prevented creating larger fitness 
predictors even if they were needed in the particular task. 

3.1.7 A d a p t i v e - S i z e F i t n e s s P r e d i c t o r 

The adaptive-size fitness predictor (ASFP) was inspired by the principle of phenotypic 
plasticity, which is the ability of an individual to learn how to utilize its genotype in order 
to adapt to the environment [3]. It was shown that a proper rate of environmental change 
may reduce the learning cost while evolving, for example, neural networks [14, 15]. 
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The A S F P genotype is a constant-size circular array of pointers to fitness cases. Its 
size is equal to the total number of fitness cases in training data. In order to generate the 
phenotype, the genes are read sequentially from a specified position. The reading stops after 
it has processed a specified number of genes. Figure 4 in paper [D] illustrates the genotype-
phenotype mapping. The number of genes in the phenotype is adjusted in response to the 
current state of program evolution. 

It can be observed that the evolution, in general, goes through various phases. At first, 
the overall fitness increases towards better solutions, until the evolution reaches a local 
optima. In our approach, the number of fitness cases in the fitness predictor is reduced 
in this phase, which increases the difference between predicted and objective fitness of 
candidate programs. This leads to higher population diversity and higher probability that 
a program situated farther from the local optima becomes the parent of the next generation. 
When the evolution leaves the local optima, the predictor size is increased in order to predict 
the fitness more accurately and thus evolve better programs. For the detailed survey of 
how the A S F P is encoded, and its size adapted, see Section 3 in paper [D]. 

Resul ts 

The A S F P s were applied to the five symbolic regression tasks [D]. It was shown that 
the proposed approach outperforms the original CSFPs [A], which used only 12 fitness 
cases, in terms of success rate and computational cost, expressed as the number of fitness 
case evaluations to converge. The detailed comparisons of these algorithms are given in 
paper [D], Section 4.6. Observing the A S F P behaviour revealed that the proposed algorithm 
is able to adapt the predictor size to the solved problem in response to the development in 
the candidate program evolution. 

The proposed method was then evaluated in the task of evolutionary design of image 
filters of various types 1. Figure 3.4 summarizes the results obtained for salt-and-pepper 
noise filters (noise intensity 5% and 50%). In the case of 5% noise intensity (see Figures 
3.4a and 3.4c), the quality of filtering provided by the standard C G P , C G P with the C S F P 
(using 5 % pixels) and C G P with the A S F P is almost identical. C G P with the C S F P is 6.4 
times faster than the standard C G P while C G P with the A S F P is only 2.4 times faster. For 
50% noise intensity (see Figures 3.4b and 3.4d), the proper predictor size is only 1 % of all 
fitness cases and C G P with this setting of the C S F P is 10.7 times faster than the standard 
C G P . C G P with the A S F P is 10.2 times faster. 

In order to confirm that the proposed approach is able to adapt the predictor size to 
a given task, we plot the progress of the average number (out of 100 independent runs) of 
fitness cases in the top-ranked A S F P during the course of evolution with respect to the initial 
predictor size. It can be seen in Figures 3.4e and 3.4f that the average size of the fitness 
predictor converges to a specific value independently of its initial size. Furthermore, the 
converged average predictor size differs for each benchmark. In general, it is advantageous 
to begin with a lower number of fitness cases in the fitness predictor, which in some cases 
leads to a lower number of fitness cases evaluations and thus shortening the design time. 
On the other hand, if the initial size is too small to find an acceptable solution, it will be 
automatically increased without a significant impact on the run time. 

l r The corresponding paper [G] is under review in a journal and it was not included to the thesis. 
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Figure 3.4: The quality of filtering (PSNR) (3.4a and 3.4b) and the time of evolution 
(3.4c and 3.4d) for filters evolved using the standard C G P (sCGP), C G P with the C S F P 
(predictor size 0.5 — 25% of the complete training set), C G P with A S F P , and C G P with 
random constant fitness predictor (RP) - the boxplots created from 100 runs with 3 • 10 4 

generations each. Figures 3.4e and 3.4f are the convergence curves for various initial A S F P 
sizes averaged from 100 independent runs. 
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3.1.8 H W I m p l e m e n t a t i o n 

Despite the acceleration provided by the fitness predictor coevolution, the C G P design is 
still computationally very expensive method. Inspired by the F P G A accelerator of C G P , a 
hardware platform for parallel coevolutionary C G P has been proposed. A two-population 
coevolutionary algorithm running on dual MicroBlaze soft processor system was accelerated 
using custom peripheral based on the V R C approach. The full pipelined V R C along with a 
special fitness cases memory enables very efficient fitness calculation. The implementation 
is described in paper [E]. 

Resul ts 

The performance of the hardware accelerator was experimentally evaluated in the task 
of evolutionary image filter design. The proposed hard ware-accelerated coevolutionary 
C G P was compared with hardware-accelerated standard C G P and with a highly optimized 
software implementation of coevolutionary C G P . It was shown that by using this platform, 
the execution time of evolutionary design using C G P can be significantly reduced (up to 
58 times). The detailed comparisons are given in paper [E]. 

3.2 List of Publications with Abstracts 

This chapter presents the list of papers with abstracts for all papers included in this thesis. 
The list of other papers of the author relevant to this thesis is also given. 

Papers Inc luded i n Thesis 

[A] Michaela Sikulova and Lukas Sekanina. Coevolution in cartesian genetic programming. 
In Genetic Programming - 15th European Conference, EuroGP 2012, Malaga, Spain, 
April 11-13, 2012. Proceedings, volume 7244 of Lecture Notes in Computer Science, 
pages 182-193. Springer, 2012. 

The author participation: 60 % 

Abs t r ac t : Cartesian genetic programming (CGP) is a branch of genetic programming 
which has been utilized in various applications. This paper proposes to introduce 
coevolution to C G P in order to accelerate the task of symbolic regression. In par
ticular, fitness predictors which are small subsets of the training set are coevolved 
with C G P programs. It is shown using five symbolic regression problems that 
the (median) execution time can be reduced 2 - 5 times in comparison with the 
standard C G P . 

[B] Michaela Sikulova and Lukas Sekanina. Acceleration of evolutionary image filter design 
using coevolution in cartesian G P . In Parallel Problem Solving from Nature - PPSN XII 
- 12th International Conference, Taormina, Italy, September 1-5, 2012, Proceedings, 
Part I, volume 7491 of Lecture Notes in Computer Science, pages 163-172. Springer, 
2012. 

The author participation: 60 % 

Abs t r ac t : The aim of this paper is to accelerate the task of evolutionary image fil
ter design using coevolution of candidate filters and training vectors subsets. Two 
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co-evolutionary methods are implemented and compared for this task in the frame
work of Cartesian Genetic Programming (CGP) . Experimental results show that 
only 1 5 - 2 0 % of original test vectors are needed to find an image filter which 
provides the same quality of filtering as the best filter evolved using the standard 
C G P which utilizes the whole training set. Moreover, the median time of evolution 
was reduced 2.99 times in comparison with the standard C G P . 

[C] Michaela Sikulova, Jir i Hulva, and Lukas Sekanina. Indirectly encoded fitness pre
dictors coevolved with cartesian programs. In Genetic Programming - 18th European 
Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings, vol
ume 9025 of Lecture Notes in Computer Science, pages 113-125. Springer, 2015. 

The author participation: 60 % 

Abs t r ac t : We investigate coevolutionary Cartesian genetic programming that coe-
volves fitness predictors in order to diminish the number of target objective vector 
(fitness case) evaluations, needed to obtain a satisfactory solution, to reduce the 
computational cost of evolution. This paper introduces the use of coevolution of 
fitness predictors in C G P with a new type of indirectly encoded predictors. In
directly encoded predictors are operated using the C G P and provide a variable 
number of fitness cases used for solution evaluation during the coevolution. It is 
shown in 5 symbolic regression problems that the proposed predictors are able to 
adapt the size of fitness cases array in response to a particular training data set. 

[D] Michal Wiglasz and Michaela Drahosova. Plastic fitness predictors coevolved with 
cartesian programs. In Genetic Programming - 19th European Conference, EuroGP 
2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings, volume 9594 of Lecture 
Notes in Computer Science, pages 164-179. Springer, 2016. 

The author participation: 50 % 

Abs t r ac t : Coevolution of fitness predictors, which are a small sample of all training 
data for a particular task, was successfully used to reduce the computational cost 
of the design performed by Cartesian genetic programming. However, it is neces
sary to specify the most advantageous number of fitness cases in predictors, which 
differs from task to task. This paper proposes to introduce a new type of directly 
encoded fitness predictors inspired by the principles of phenotypic plasticity. The 
size of the coevolved fitness predictor is adapted in response to the phase of learn
ing that the program evolution goes through. It is shown in 5 symbolic regression 
tasks that the proposed algorithm is able to adapt the number of fitness cases in 
predictors in response to the solved task and the program evolution flow. 

[E] Radek Hrbacek and Michaela Sikulova. Coevolutionary cartesian genetic program
ming in F P G A . In Proceedings of the Twelfth European Conference on the Synthesis 
and Simulation of Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, 
Italy, September 2-6, 2013, pages 431-438. M I T Press, 2013. 

The author participation: 40 % 

Abs t r ac t : In this paper, a hardware platform for coevolutionary cartesian genetic pro
gramming is proposed. The proposed two-population coevolutionary algorithm 
involves the implementation of search algorithms in two MicroBlaze soft proces
sors (one for each population) interconnected by the A X I bus in Xil inx Virtex 
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6 F P G A . Candidate programs are evaluated in a domain-specific virtual recon-
figurable circuit incorporated into custom MicroBlaze peripheral. Experimental 
results in the task of evolutionary image filter design show that we can achieve 
a significant speed-up (up to 58) in comparison with a highly optimized software 
implement ation. 

Othe r Relevant Papers 

[F] Michaela Sikulova, Gergely Komjathy, and Lukas Sekanina. Towards compositional 
coevolution in evolutionary circuit design. In 2014 IEEE International Conference on 
Evolvable Systems, ICES 2014, Orlando, FL, USA, December 9-12, 2014, pages 157-
164. I E E E , 2014. 

The author participation: 55 % 

[G] Michaela Drahosova, Lukas Sekanina, and Michal Wiglasz. On Coevolved Fitness 
Predictors in Cartesian Genetic Programming. [Under review in Evolutionary Compu
tation, 2017.] 

The author participation: 50 % 
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Chapter 4 

Conclusions 

The research presented in this thesis has addressed the problem of the scalability of eva
luation in Cartesian genetic programming. We proposed to apply coevolution of fitness 
predictors in the evolutionary design performed by C G P in order to reduce the expensive 
fitness evaluations. We investigated several scenarios how to adapt the concept of coevolu
tion for C G P . 

Chapter 1.1 formulated the following hypothesis: 

Research hypothesis: A properly designed mechanism employing coevolution of carte
sian programs and tests is able to reduce the computational cost of C G P for considered 
applications in comparison with the standard CGP. 

We believe that this thesis experimentally confirmed the hypothesis through 5 symbolic 
regression benchmarks and the low-level image filter design, which is considered as a real-
world problem often approached by C G P . Table 4.1 shows the acceleration obtained using 
proposed approaches in these particular tasks. 

Chapter 1.1 also formulated three research goals. They are given bellow together with 
a short comment how they were fulfilled. 

G o a l 1: To study the literature to get an overview of the state of the art in GP, C G P and 
coevolutionary principles. 

The theoretical basis relevant to this thesis has been briefly surveyed in Chapter 2. 

G o a l 2: To propose and implement C G P that uses coevolutionary principles. 

2.1: To solve how to choose such fitness cases that are effective in driving the search 
process towards a solution. 

2.2: To solve how to select a sufficient number of fitness cases. 

2.3: To evaluate the proposed approach using selected case studies, especially symbolic 
regression tasks. 

Of the three goals, Goal 2 has been the most challenging one to find a solution and was 
directly addressed in all papers, except paper [E]. Paper [A] introduced our adaptation of 
coevolutionary principles to C G P and presented its ability to choose those fitness cases that 
enable C G P to find a good solution. Papers [C] and [D] are very important contributions 
to fulfill this goal because they introduced approaches capable of (together with choosing 
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proper fitness cases) determining a sufficient number of fitness cases automatically during 
the evolution. The proposed approaches have been evaluated in five symbolic regression 
benchmarks [A,C,D] and the design of low-level image filters [B]. 

G o a l 3: To propose coevolutionary C G P suitable for F P G A s . 

The basic approach presented in paper [A] and later simplified in paper [B] in terms of 
population synchronization and communication can be considered as a suitable solution for 
implementation in F P G A s because of simple fitness predictor encoding and fitness predictor 
evolution via basic G A . Paper [E] addressed the challenge of applying coevolutionary C G P 
in resource-constrained devices, in particular in F P G A . Coevolutionary C G P implemented 
into F P G A was evaluated in the design of image filters and provided a significant speedup 
with respect to a highly-optimized software implementation. 

4.1 Summary of M a i n Contributions 

This chapter summarizes the main contributions of this thesis. 

C o n t r i b u t i o n 1: The use of coevolution applied to reduce the computational cost of C G P 
has been a novel approach. 

As the coevolution applied to reduce the computational cost of C G P has not been con
sidered until the research presented in this thesis, paper [A] has been the first published 
coevolutionary method reducing the cost of C G P . This paper has provided a blueprint of 
how to set up the coevolutionary interactions to make coevolutionary C G P produce suffi
cient results. 

C o n t r i b u t i o n 2: Using coevolution of fitness predictors in C G P reduces the execution 
time in comparison with standard C G P . 

We have consistently shown in all papers included in this thesis that using coevolution of fit
ness predictors, the number of fitness cases evaluations necessary to produce a satisfactory 
solution has been significantly reduced compared to the standard C G P (without coevolu
tion) . The summary of the number of fitness case evaluations for investigated benchmarks 
and all compared approaches is shown in Table 4.1. The speedup compared to the standard 
C G P is not as significant as the fitness cases evaluation reduction because of the overhead 
associated with coevolution. 

In paper [A], where fitness predictors were represented as a constant-size array of poin
ters to fitness cases, speedup of 2.0 - 5.4 was reported in comparison with the standard 
C G P for 5 symbolic regression benchmarks and the results were quite competitive with 
the tree-based G P [57] in terms of the number of fitness evaluations needed to obtain a 
satisfactory solution. While this approach required to set up the number of fitness cases 
before executing it, the predictor size is fixed during the whole coevolutionary process. This 
approach required a large number of experiments in order to find the most suitable predic
tor size for a particular task. This limitation doesn't matter in hardware implementation, 
because it used to be problem-specific. 

While using coevolutionary C G P to a new task, the approaches proposed in papers [C,D] 
are able to automatically adapt to the solved task. The number of fitness case evaluations 
needed to obtain satisfactory solutions for symbolic regression benchmarks ( F l - F5) and 
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Table 4.1: Comparison of standard C G P (sCGP), coevolutionary C G P with constant-size 
fitness predictor (CSFP, papers [A,B]), adaptive-size fitness predictor (ASFP, paper [D]) 
and coevolutionary C G P with indirectly-encoded fitness predictor (IEFP, paper [C]). For 
each benchmark, the best result is marked in bold font. 

(a) Symbolic regression benchmarks F l - F5 (according to [A]). 

Approach F l F2 F3 F4 F5 

s C G P 100% 100% 9 1 % 5% 27% 
Success rate C S F P 100% 100% 100% 100% 92% 

A S F P 100% 100% 100% 99% 87% 
I E F P 100% 100% 100% 100% 90% 

Fitness case 
evaluations to 

Converge (median) 

s C G P 2.0 • 10Y 7.4 • 10'' 2.8 • 10 s 9.9 • 10 y 7.8 • 10 9 

Fitness case 
evaluations to 

Converge (median) 

C S F P 
A S F P 
I E F P 

4.4 • 1 0 5 

6.2 • 10 5 

7.4 • 10 5 

3.0 • 10 6 

1.2 1 0 6 

1.6 • 10 6 

7.4 • 10 6 

4.6 1 0 6 

1.9- 10 7 

2.3 • 10 9 

1.4 • 10 9 

8.0- 1 0 8 

2.1 • 10 9 

1.5 • 10 9 

8.7- 1 0 8 

Speedup C S F P 2.0 2.6 5.4 2.5 5.1 
compared to A S F P 2.8 2.4 3.8 9.7 3.8 

CGP STD (median) I E F P 1.9 1.1 8.3 16.3 11.9 

(b) Salt-and-pepper noise-suppressing filter design (noise intensity 10 - 50%). 

Approach S & P 10% S & P 20% S & P 30% S & P 40% S & P 50% 

s C G P 27.9 24.8 22.3 20.1 18.2 
P S N R [dB] C S F P 28.6 25.1 22.5 20.2 18.3 

(median) A S F P 28.2 24.8 22.3 19.8 18.0 

Fitness case s C G P 4.5 • 10 1 U 4.5 • 10 1 U 4.5 • 10 1 U 4.5 • 10 1 U 4.5 • 10 1 U 

evaluations to C S F P 2.2 • l O 1 0 2.3- 10 1 0 2.5 • 10 1 0 2.6 • 10 1 0 2.9 • 10 1 0 

Converge (median) A S F P 2.3 • 10 1 0 1 . 1 1 0 1 " 3.5 1 0 9 2.2 1 0 9 1.5 • 1 0 9 

Speedup comp, to C S F P 4.1 2.0 2.0 2.9 4.3 
CGP STD (median) A S F P 6.2 7.3 7.7 7.8 7.3 

the speedup obtained for each proposed approach (compared to the standard C G P ) are 
shown in Table 4.1a. 

The same coevolutionary C G P has been used in the evolutionary design of salt-and-
pepper noise-suppressing filters. The number of fitness case evaluations needed to obtain 
satisfactory solutions and the speedup obtained in comparison to the standard C G P for 
this application is given in Table 4.1b. 

The approach I E F P presented in paper [C] seems to overcome other approaches under 
our experimental setup, because of low cost of coevolution. However, it should be pointed 
out, that during the evolution of the IEFPs, large fitness predictors can occur and must be 
evaluated (and then refused for a larger size), and thus plenty of fitness case evaluations 
are wasted. In order to prevent this overhead, the limitation of fitness predictor size was 
established to reduce the evaluation cost. Hence, the approach A S F P presented in [D] 
should be recommended, while applying coevolutionary C G P to a new, unknown, task. 

C o n t r i b u t i o n 3: Using coevolution of fitness predictors in C G P , the severity of local op
tima can be reduced. 

Papers [A,C,D] have also shown that standard C G P in some runs inclined to reach only a 
local optimum and wasn't able to leave it. The use of proposed approaches have reduced 
this problem. Table 4.1a summarizes the ratio of successfully reached solutions in the case 
of symbolic regression benchmarks. 
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4.2 Possibilities of Future Research 

This chapter suggests some directions for the research following on this thesis. 

o The C G P has been applied in many different problem domains, predominantly in 
evolutionary design and optimization of logic networks. Hence the proposed method 
should also be useful for evolvable hardware purposes. 

o Proposed approach is designed with respect to a changing environment in which both 
populations entail each other. It would be interesting to employ proposed approach in 
the task with outwardly changing environment, i.e. using a variable training set, such 
as in systems enabling autonomous adaptation, in order to speedup the adaptation 
process. 

o Wi th small modifications, the hardware platform introduced in paper [E], can be used 
to effectively evolve other digital circuits using coevolutionary C G P . 

o As hardware implementations of C G P are available, the methods proposed in paper 
[C] or [D] can be combined with a hardware accelerator of fitness evaluation in an 
embedded H W / S W system, for instance, implementing adaptive video filtering. 

o As mentioned in Chapter 3.1, C G P has some important differences, in terms of the use 
of very small populations and many more generations to obtain a solution, compared 
to the tree-based GP. This feature is the main aspect to consider while designing the 
coevolutionary interactions in C G P . Proposed approach has shown to be a relevant 
guidance to apply other type of coevolution in C G P , in particular the coevolution 
applied to compositional problems. Paper [F], which is related to this thesis, has 
offered a blueprint of how to apply the coevolutionary approach to divide and conquer 
method in order to solve the scalability of representations, addressed in section 2.1.5. 
The design of more complex circuits using compositional coevolution in C G P would 
also be interesting. 

o In the context of approximate computing, the proposed coevolutionary C G P could co-
evolve approximate components of a given system in such a way that errors produced 
by one components are compensated by the other component. 
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A b s t r a c t . Cartesian genetic programming ( C G P ) is a branch of genetic 
programming which has been utilized in various applications. This paper 
proposes to introduce coevolution to C G P in order to accelerate the task 
of symbolic regression. In particular, fitness predictors which are small 
subsets of the training set are coevolved wi th C G P programs. It is shown 
using five symbolic regression problems that the (median) execution time 
can be reduced 2-5 times in comparison wi th the standard C G P . 

K e y w o r d s : Cartesian genetic programming, Coevolution, Symbolic 
regression. 

1 I n t r o d u c t i o n 

Cartesian genetic programming (CGP) is a variant of genetic programming (GP) 
that uses a specific encoding in the form of directed acyclic graph and a mutation-
based search [11, 10]. CGP has been successfully employed in many traditional 
application domains of genetic programming such as symbolic regression. It has, 
however, been predominantly applied in evolutionary design and optimization 
of logic networks. 

The fitness evaluation is typically the most time consuming part of CGP 
in these applications. In the case of digital circuit evolution, it is necessary to 
verify whether a candidate n-input circuit generates correct responses for all 
possible input combinations (i.e., 2n assignments). It was shown that testing 
just a subset of 2 n test vectors does not lead to correctly working circuits [6, 9]. 
Recent work has indicated that this problem can partially be eliminated in real-
world applications by applying formal verification techniques [15]. 

In the case of symbolic regression, k fitness cases are evaluated during one 
fitness function call, where k typically goes from hundreds to ten thousands. 
The time needed for evaluating a single fitness case depends on a particular ap
plication. Usually, the goal of GP system design and GP parameters' tuning is 
to obtain a solution with predefined accuracy and robustness using a minimum 
number of evaluated fitness cases or fitness function calls. In order to reduce 
the evaluation time, fitness approximation techniques have been employed. One 
of them is fitness modeling which uses fitness models with different degrees of 
sophistication to reduce the fitness calculation time [7]. It is assumed that the 
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fitness model can be constructed and updated in a reasonable time. The mo
tivation for fitness modeling can be seen not only in reducing the complexity 
of fitness evaluation but also in avoiding the explicit fitness definitions, coping 
with noisy data, smoothing the fitness landscape and promoting diversity [14]. 
Fitness modeling is typically based on machine learning methods, subsampling 
of training data or partial evaluation. 

Fitness prediction is a low cost adaptive procedure utilized to replace fitness 
evaluation. A framework for reducing the computation requirements of symbolic 
regression using fitness predictors has been introduced for standard genetic pro
gramming by Schmidt and Lipson [14]. Their method combines fitness prediction 
with coevolution to eliminate disadvantages of a classic fitness modeling, in par
ticular the effort needed to train a fitness model and adapt the level of approx
imation and accuracy. The method utilizes a coevolutionary algorithm which 
exploits the fact that one individual can influence the relative fitness ranking 
between two other individuals in the same or a separate population [5]. Coe-
volving the training samples as the method of fitness modeling in GP has been 
studied in many aplication domains [2, 3, 4, 8] and in the symbolic regression 
problem [1, 12, 13, 14]. 

The goal of this paper is to introduce coevolving fitness predictors to CGP 
and show that by using them, the execution time of symbolic regression can sig
nificantly be reduced. The proposed coevolution of CGP programs and fitness 
predictors in the symbolic regression problem uses two populations evolving 
concurrently. Properties of individuals in the population of candidate programs 
change in response to properties of individuals in the population of fitness pre
dictors and vice versa. It is expected that CGP which has been accelerated using 
coevolution will be implemented on a chip in our future work. Hence the pro
posed approach will also be useful for evolvable hardware purposes. Note that 
hardware implementation of CGP is straightforward which is not the case of 
tree-based GP [10]. 

The proposed coevolutionary CGP method is compared with a standard CGP 
on five symbolic regression problems. A brief comparison of CGP and tree-based 
GP is also performed on selected benchmark problems. 

The rest of the paper is organized as follows. Section 2 introduces Cartesian 
genetic programming and its application to the symbolic regression problem. In 
Section 3, a new coevolutionary approach to CGP is presented. Section 4 com
pares the proposed coevolutionary algorithm with the standard CGP on five test 
problems. Experimental results are discussed in Section 5. Finally, conclusions 
are given in Section 6. 

2 C a r t e s i a n G e n e t i c P r o g r a m m i n g 

In standard CGP (chapter 2 of [10]), a candidate program is modeled as an array 
of n c (columns) x n r (rows) of programmable elements (nodes). The number of 
primary inputs, Hi, and outputs, n0, of the program is fixed. Each node input 
can be connected either to the output of a node placed in previous I columns or 
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Fig. 1. A candidate program in C G P , where I = 4, nc = 4, nr = 2, m = 1, n0 = 1. 
na = 2, r = {+ (1), - (2), * (3), / (4)} and chromosome is: 0 ,0 ,1 ; 0 ,0 ,1; 0, 0, 3; 2, 2, 2; 
3,1,4; 3,0,3; 3,6,2; 3 ,6 ,1; 8 

to one of the program inputs. The i-back parameter, in fact, defines the level of 
connectivity and thus reduces/extends the search space. Feedback is not allowed. 
Each node is programmed to perform one of na-input functions defined in the 
set r. Each node is encoded using na + 1 integers where values 1.. .na are the 
indexes of the input connections and the last value is the function code. Every 
individual is encoded using nc • nr • (na + 1) + n0 integers. Figure 1 shows an 
example of a candidate circuit. While the primary inputs are numbered 0 . . . n^ —1 
the nodes are indexed m ... ncnr + rii — 1. 

A simple (1+A) evolutionary algorithm is used as a search mechanism. It 
means that CGP operates with the population of 1 + A individuals (typically, A 
is between 1 and 20). The initial population is constructed either randomly or 
by a heuristic procedure. Every new population consists of the best individual 
of the previous population (so-called parent) and its A offspring. However, as a 
new parent an offspring is always chosen if it is equally as fit or has better fitness 
than the parent. The offspring individuals are created using a point mutation 
operator which modifies h randomly selected genes of the chromosome, where h is 
the user-defined value. The algorithm is terminated when the maximum number 
of generations is exhausted or a sufficiently working solution is obtained. 

For symbolic regression problems, the goal of evolution is usually to minimize 
the mean absolute error of a candidate program response y and target response 
t. The fitness function (taking candidate program s as its argument) is then 
defined 

k 

H*) = lT,m-tu)\ (i) 
where k is the number of fitness cases. Alternatively, the number of hits can 
represent the fitness value. The number of hits is defined 

k 
f ( s) = g ( y (j;)) - w h e r e (2) 

g ( y U ) ) - | l i f \y(j)-t(j)\<e [3> 

and e is a user-defined acceptable error. 
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3 C o e v o l u t i o n o f F i t n e s s P r e d i c t o r s i n C G P 

The aim of coevolving fitness predictors and programs is to allow both solutions 
(programs) and fitness predictors to enhance each other automatically until a 
satisfactory problem solution is found. We propose to adopt Schmidt's and Lip-
son's approach [14] using CGP for the task of symbolic regression. Figure 2 shows 
the overall scheme of the proposed method. There are two concurrently working 
populations: (1) candidate programs (syntactic expressions) evolving using CGP 
and (2) fitness predictors evolving using a genetic algorithm. 

Candidate solutions 
population 

Subset of training data points 
for candidate solutions 

fitness evaluation 

z 

Trainers adding Set of trainers: 
candidate solutions with 
different fitness values 

.15.245.. 

Predictor with the best 
fitness value 

\ 
Trainers for predictors 

fitness evaluation 

|l5|2 [95}62|63|  

I S |16114>3|"1 |76|3)65Jl4J57| 

|80|36|B7|19|57| \ V X -

Population of predictors: I : 
training data points subsets! • 

Training data set: 
all training data points 

Fig. 2. Coevolution of candidate programs and fitness predictors 
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3.1 Population of Candidate Programs 

Evolution of candidate programs is based on principles of CGP as introduced 
in Section 2. The fitness function for CGP is defined as the relative number of 
hits. There are, in fact, two fitness functions for candidate program s. While the 
exact fitness function fexact(s) utilizes the complete training set, the predicted 
fitness function fpredicted(s) employs only selected fitness cases. Formally, 

where k is the number of data points in the training set and m is the number of 
data points in the fitness predictor (i.e., m is the size of a subset of the training 
set). 

3.2 Set of Trainers 

The set of trainers which contains several candidate programs is used to evaluate 
fitness predictors. The proposed implementation differs from [14] in the organi
zation and update strategy. In particular, the set of trainers is divided into two 
parts. The first part is periodically updated from the population of candidate 
programs (the best-scored candidate program is sent to the trainers set if its 
fitness value differs from the best-scored candidate program in the previous gen
eration) and the second part is periodically and randomly generated to ensure 
genetic diversity of the set of trainers. The size of trainers set is kept constant 
during evolution. For every new selected or generated trainer, the exact fitness 
is calculated and the new trainer replaces the oldest one in the corresponding 
part of the trainers set. 

3.3 Population of Fitness Predictors 

Fitness predictor is a small subset of training data. An optimal fitness predictor 
is sought using a simple genetic algorithm (GA) which operates with a popula
tion of fitness predictors. Every predictor is encoded as a constant-size array of 
pointers to elements in the training data. In addition to one-point crossover and 
mutation, a randomly selected predictor replacing the worst-scored predictor in 
each generation has been introduced as a new genetic operator of GA. The fit
ness value of predictor p is calculated using the mean absolute error of the exact 
and predicted fitness values of trainers 

(5) 

i=i 
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where u is the number of candidate programs in the trainers set. The predictor 
with the best fitness value is used to predict the fitness of candidate programs 
in the population of candidate programs. 

3.4 Implementation 

Two threads are used. The first one is responsible for candidate programs evolu
tion using CGP. The second thread performs evolution of fitness predictors using 
a simple genetic algorithm. The coevolution is implemented as follows. The first 
thread randomly initializes both populations and also randomly creates the first 
individuals in the set of trainers. After the second thread is activated both pop
ulations are evaluated. 

CGP evolution loop begins with loading the fittest training data sample from 
population of fitness predictors. This is performed periodically, but not in every 
iteration due to a slower rate of fitness predictors evolution. This results in 
a lower computational effort. It is not necessary to run the fitness predictor 
evolution as fast as the candidate program evolution, because fast changes of 
the best rated fitness predictor do not contribute to convergence. 

The next step involves calculating the predicted fitness of all individuals in the 
candidate program population. The best rated individual is then selected and 
its number of hits is checked. If the predicted fitness value is not in the interval 
of acceptable fitness values, CGP will create a new population, eventually new 
trainer will be selected or generated. If predicted fitness value falls into the 
interval of acceptable fitness values, the exact fitness of candidate program is 
evaluated. If the exact fitness falls into the interval of acceptable fitness values, 
a solution is found, and coevolution is terminated. Otherwise, the update of the 
best rated fitness predictor is signaled and the coevolution has to continue. 

The second thread performs the evolution of fitness predictors. The fitness 
values of all fitness predictors are evaluated using trainers. The best rated pre
dictor is selected and stored to shared memory. The next step involves creating of 
a new generation of fitness predictors by means of GA operators. Subsequently, 
the GA waits for a signal from the first thread. After receiving the signal, the 
GA loop continues with the next iteration, or if a solution is discovered, GA is 
terminated. 

4 R e s u l t s 

This section presents benchmark problems, experimental setup, experimental 
evaluation of the proposed coevolutionary approach to CGP and its comparison 
with standard CGP. 

4.1 Benchmark Problems 

Five test functions (F l - F5) were selected as data point sources for evaluation 
of the proposed method: 
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-10 -5 0 S 10 -10 -S 0 S 10 -10 -S 0 5 10 
(a) Training data set F l (b) Training data set F2 (c) Training data set F 3 

(d) Training data set F4 (e) Training data set F5 

Fig. 3. Training data sets: x values on horizontal axes, f(x) values on vertical axis 

F l fix 
F2 fix 

F3 fix 

F4 fix 

F5 fix 

x2 - x3,x e (-10,10) (7) 
eNsin(a:),;r e (-10,10) (8) 

x2es[n{x) + x + sin ,x e (-10,10) (9) 

e~xx3 sin (x) cos (x) (sin2 (x) cos (x) - l ) , x e (0,10) (10) 

~, 1^T— ,xe{-2,8) (11) 
(x — 3) +5 

In order to form a training set, 200 equidistant distributed samples were taken 
from each function (see Fig. 3). Functions F l , F2 and F3 are taken from [14] 
and functions F4 and F5 from [16]. Table 1 shows acceptable errors and the 
acceptable number of hits. 

4.2 Experimental Setup 

Table 1 shows that various settings of the components involved in the proposed 
coevolutionary method have been tested. Over 100,000 independent runs were 
performed to find the most advantageous setting which is presented in the right
most column and which is later used in all reported experiments. 
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Programs are evolved using CGP with the following setup: I = nc, nr = 1, 
rii = 1, n0 = 1, every node has two inputs 12) and r = { i\ + 12, i\ — ii, 
i\ • 12, fj, sin(ii), cos(ii), eZl, log(zi)}. Table 1 shows various setting of n c ,A 
and h considered during parameters tuning. 

Fitness predictors evolution is conducted using a simple GA. Table 1 shows nu
merous setting of the chromosome length, population size and genetic operators. 

Other parameters of coevolution, such as the size of trainers set, frequency 
of trainers substitutions and predictors evolution deceleration are also given in 
Table 1. 

4.3 Comparison of Coevolving C G P with Standard C G P 

The proposed coevolutionary algorithm was compared with standard CGP us
ing test functions F1-F5. Parameters of both algorithms were chosen according 
to Table 1 and 50 independent runs were performed. Table 2 gives the result
ing success rate (the number of runs giving a solution with predefined quality), 
the number of generations, the number of data point evaluations and time to 
converge calculated as median out of 50 independent runs. Figure 4 shows quar-
tile graphs of the number of generations and data point evaluations for all five 
training data sets. 

Figure 5 shows the progress of the best fitness value during a typical run on the 
F2 data set. It can be seen that while the progress is monotonie for the standard 
CGP, the coevolutionary algorithm produces very dynamic changes ending with 
a significant increase of the best fitness value at the end of evolution. The changes 
of the best fitness value are caused by updating of the best fitness predictor. 

Table 1. Experimental setup 

Parameter Tested values 
Selected 
values 

Chromosome length nc 16, 24, 32, 64, 96, 128 32 

C G P 
Populat ion size A 4, 8, 12, 16, 20 12 

C G P 
Number of mutations h 

1-4, 1-8, 1-12, 1-16 1-8 
per individual 

1-4, 1-8, 1-12, 1-16 1-8 

A l l trainers substitution 1 per 500 generations of C G P 500 
Trainers, Trainers set size 8, 12, 16, 24, 32 8 
Coevolution Predictor evolution 1 per 10, 25, 50, 100, 150, 200 

100 
deceleration generations of C G P 

100 

Chromosome length 4, 8, 12, 16, 24, 32, 64 12 
Populat ion size I I, 12, 16, 24, 32, 48, 64, 96, 128 32 

G A-Predictors 
Offspring creation 

2-tournament selection, 
single point crossover 

Muta t ion probability 0.2 0.2 
Acceptable error F l , F2 : 0.5; F 3 : 1.5; 

Test functions of data point F4, F5 : 0.025 
Acceptable number of hits 97% 97% 
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Table 2. Comparison of standard C G P and C G P with coevolution for five training 
data sets 

F l F 2 F3 F 4 F5 

Success rate 
stand. CGP 
coevolution 

100% 
100% 

100% 
100% 

78% 
100% 

80% 
100% 

24% 
100% 

Generations to 
converge (median) 

stand. CGP 
coevolution 

1.11 • 10 3 

2.62 • 10 3 

4.46 • 10 3 

2.53 • 10 3 

1.76 • 10 b 

1.10 • 10 5 

7.15 • 10 b 

1.00 • 10 6 

1.36 • 10 b 

1.34 • 10 6 

Data point evaluations stand. CGP 
to converge (median) coevolution 

2.68 • 10 b 

5.20 • 10 5 

1.08 • 10Y 

5.01 • 10 5 

4.24 • 10 8 

2.19 • 10 7 

1.72 • 10 9 

2.00 • 10 8 

3.28 • 10 9 

2.67 • 10 8 

Time to converge 
(median) [s] 

stand. CGP 
coevolution 

35.4611 
17.4588 

55.1476 
21.1178 

98.8585 
18.1257 

44.0388 
17.1079 

104.6826 
20.4529 

2000 3000 400Q 
ge-neratian sooo «ooo 500 L000 15D0 2000 2500 3000 3500 « 0 0 

(a) Standard C G P . (b) C G P with coevolution. 

Fig. 5. Progress of the best fitness value during a typical run for the F2 data set 

5 D i s c u s s i o n 

It can be seen from Table 2 that the proposed coevolutionary method has reached 
a satisfactory solution using much fewer data point evaluations than the standard 
CGP. The speedup measured on the Intel® Core™ i5-2500 machine is between 
2.03 (Fl) and 5.45 (F3). Detailed analysis of execution time is shown in Fig. 6 
where quartile graphs are given for 50 independent runs. However, it should be 
pointed out that the standard CGP evaluates 200 fitness cases in every fitness 
function call while the coevolutionary algorithm evaluates only 12 fitness cases. 
The number of generations is similar for both methods. A notable observation 
is that while the standard CGP was not able to produce a satisfactory solution 
in 23.6% runs the proposed method reached a satisfactory solution in all cases. 
Moreover, the results generated by multiple runs of coevolutionary CGP are 
more stable than those produced by the standard CGP. 

There is only one data set (F2) and corresponding results of the tree-based 
coevolutionary GP [14] which can serve for a direct comparison with our CGP-
based coevolution. While tree-based GP requires 1 • 103 generations and 7 • 106 
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S t a n d a r d CGP ; Q u a r t i l e s I 
S t a n d a r d CGP ; M e d i a n • 

(a) Standard C G P . 

C o e v o l u t i o n ; Q u a r t i l e s I 
C o e y o l u t i o n I M e d i a n • 

2 3 4 5 
(b) C G P using coevolution. 

Fig. 6. Time of evolution 

data point evaluations to converge, the proposed CGP-based approach requires 
3 • 103 generations and only 5 • 105 data point evaluations to converge. The 
proposed method seems to be competitive with [14]. 

6 C o n c l u s i o n s 

Symbolic regression has not been considered as a typical application domain 
for CGP. We have shown in this paper that CGP equipped with coevolution of 
fitness predictors can significantly be accelerated in this particular application. 
The speedup obtained for five test problems is 2.03 - 5.45 over the standard 
CGP. Results are also very competitive with the tree-based GP. 

Our future work will be devoted to utilization of the proposed coevolutionary 
algorithm in other applications domains where the standard CGP has been suc
cessful so far. Another goal will be to implement the coevolutionary CGP on a 
chip and use it in a real-world application. 
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A b s t r a c t . The aim of this work is to accelerate the task of evolution
ary image filter design using coevolution of candidate filters and training 
vectors subsets. Two coevolutionary methods are implemented and com
pared for this task in the framework of Cartesian Genetic Programming 
( C G P ) . Experimental results show that only 15-20% of original training 
vectors are needed to find an image filter which provides the same qual
ity of filtering as the best filter evolved using the standard C G P which 
utilizes the whole training set. Moreover, the median time of evolution 
was reduced 2.99 times in comparison wi th the standard C G P . 

1 I n t r o d u c t i o n 

Evolutionary design based on genetic programming is a very computationally-
intensive design method. For example, for 36 tasks solved using Koza's genetic 
programming, the average population size was 3,350,000 individuals, 128.7 gen
erations were produced in average and the average time to reaching a solution 
was 81.9 hours [3]. It also holds for the evolutionary design of image niters which 
has been performed by Cartesian Genetic Programming (CGP). The most time 
consuming procedure is the fitness calculation where tens of thousands of pixels 
in training set (the so-called target objective vectors, TOVs) have to be evalu
ated in order to obtain a single fitness value. A single run is typically finished 
after 200 thousands candidate filter evaluations. However, for the cost of run
time, very efficient image filters were evolved, often beating conventional designs 
in terms of the filtering quality as well as the area required on a chip [9]. In order 
to reduce the time of evolution, various CGP accelerators have been introduced 
including GPU-based and FPGA-based machines [12, 11, 1]. 

In this paper, we propose to employ a coevolutionary algorithm running on an 
ordinary processor to accelerate the image filter evolution. Various coevolution
ary methods have been introduced that can evolve suitable subsets of TOVs for 
evaluation of candidate solutions. The aim of this type of coevolution is to allow 
both candidate programs and TOVs subsets to improve each other automati
cally until a satisfactory problem solution is found. Coevolutionary algorithms 
with interactions between two independently evolving populations, in the "hosts" 
and "parasites" type relationships, were studied in many application domains 
[2, 7, 6, 4]. 

C . A . Coello Coello et al. (Eds.): P P S N 2012, Part I, L N C S 7491, pp. 163-172, 2012. 
© Springer-Verlag Berl in Heidelberg 2012 
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In our previous work, inspired by coevolution of fitness predictors (CFP) [8], 
we applied coevolution of TOVs in CGP in order to accelerate the task of sym
bolic regression [10]. In this paper, we will show that the subsets of TOVs can 
be (substantially) smaller than original training sets in the task of image filter 
evolution. Consequently, the overall time of filter evolution can be significantly 
reduced. This paper also proposes and evaluates two strategies for top-ranked 
TOVs subset selection. The proposed coevolutionary algorithms will be com
pared with the standard CGP in the task of evolutionary design of image filters 
suppressing a salt-and-pepper noise. 

2 C G P for I m a g e F i l t e r D e s i g n 

The state of the art of CGP has recently been summarized in a monograph [5] 
which also surveys the evolutionary image filter design using CGP [9]. In CGP, 
candidate programs are represented in the form of directed acyclic graph, which 
is modeled as a matrix of n c x nr programmable elements (nodes). The number 
of primary inputs, Hi, and outputs, na, of the program is defined for a particular 
task. Each node input can be connected either to the output of a node placed 
in previous I columns or to one of the program inputs. Feedback is not allowed. 
Each node is programmed to perform one of na-input functions defined in the 
set r. Each node is encoded using na + 1 integers where values 1 . . .na are the 
indexes of the input connections and the last value is the function code. Every 
individual is encoded using nc • nr • (na + 1) + n0 integers. 

As the considered filters operate over a filtering window consisting of 3 x 3 
pixels, each candidate filter can utilize up to nine 8-bit inputs, i.e. = 9. The 
filters produce a single pixel, i.e. nQ = 1. Table 1 gives a set of functions working 
over two pixels i\ and i-i that are typically used for image filter evolution. Figure 1 
shows an example of a candidate filter and its encoding in CGP. 

In this task, the search is usually performed using a simple (1 +A) evolutionary 
algorithm, where A = 7. Every new population consists of the best individual of 
the previous population and its A offspring created using a mutation operator 
which modifies up to h integers of the chromosome. The initial population is 
generated randomly. The algorithm is terminated when the maximum number 

Table 1. Lis t of node functions 

Code Function Description Code Function Description 
0 255 constant 8 ii > 1 right shift by 1 
1 ii identity 9 ii > 2 right shift by 2 
2 255 - ii inversion A swap (11,12) swap nibbles 
3 il V %2 bitwise O R B il + i2 + (addition) 
4 il V 12 bitwise ii O R 12 C h+s i2 + with saturation 
5 ii A 12 bitwise A N D D {ii +12) 3> 1 average 
6 ii A 12 bitwise N A N D E max (ii, 12) maximum 
7 il © 12 bitwise X O R F min (11,12) minimum 
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Fig. 1. A candidate filter in C G P , where I = 1, nc = 8, nr = 4, m = 9, n0 = 1, 
na = 2, r is according to Table 1 and the chromosome is: 6,7,14; 2,6,10; 8,3,14; 
1, 6, 14; 10,12,15; 12, 8, 0; 0,12, 7; 11,12,15; 13, 15, 4; 14,16,11; 5, 7, 14; 16, 5, 10; 18,19,15; 17, 17, 5; 
19,19,10; 19,18,7; 21,23,6; 21,23,14; 22,23,10; 4,23,6; 25,28,0; 28,26,11; 1,25,11; 27,25,15; 
31, 30, 9; 4, 29,11; 6, 30, 8; 30, 32, 6; 33, 33, 2; 34, 36,15; 33, 35,11; 33, 34, 1; 38. 

of generations is exhausted, typically after 30,000 generations [9]. In the fitness 
function, the goal is to minimize the mean absolute error between uncorrupted 
version of the training image and the result of filtering of a candidate filter. This 
can be expressed in terms of the mean difference per pixel (MDPP) as 

M N 
MDPP = — Y,Y<\v(i,j)-w(i,j)\. (1) 

i=l j=l 

where M x N is the image size, v(i,j) is a pixel value in the filtered image and 
w(i,j) is a pixel value in the uncorrupted image. 

3 C o e v o l u t i o n o f T O V s i n C G P 

In the proposed coevolutionary algorithm, there are two concurrently working 
populations: (1) candidate programs (filters) evolving using CGP and (2) TOVs 
subsets evolving using a genetic algorithm. Figure 2 shows that both populations 
evolve simultaneously, interacting through the fitness function (using top-ranked 
individuals). 

3.1 Population of Candidate Filters 

Evolution of candidate filters is based on principles of CGP as introduced in 
Section 2. The fitness function for CGP is defined in terms of MDPP. There 
are, in fact, two fitness functions for a candidate filter. While the exact fitness 
function M D P P e x a c t utilizes the complete training set (i.e. all training vectors 
from the training images), the partial fitness function M D P P p a r t i a i uses only a 
selected subset. Formally, 
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TOVs subsets population TOVs set - all target objective vectors 

Fig. 2. Populations in coevolution of T O V s in C G P 

M N 
M D P P e x a c t = — ( i , j ) - w ( i , j ) \ (2) 

i=l j = l 

1 K 

M D P P p a r t i a l = -J2\v(l)-w(l)\ (3) 
i=i 

where M x N is the total number of TOVs in the training set and K is the 
number of TOVs in a training subset and I is index in the list of pointers to 
pixel at possition 

The set of fitness trainers contains several candidate filters and is used to eval
uate the fitness of TOVs subsets. If the top-ranked candidate filter has a different 
fitness value than the top-ranked candidate filter in the previous generation, the 
top-ranked candidate filter replaces the oldest trainer in a circular list of trainers. 

3.2 Population of T O V s Subsets 

The most useful subset of TOVs is sought using a simple genetic algorithm (GA) 
which operates with a population of TOVs subsets. Every TOVs subset is en
coded as a constant-size array of pointers to elements (i,j) in the training set. 
In addition to one-point crossover and mutation, a randomly generated TOVs 
subset replacing the worst-scored TOVs subset in each generation has been in
troduced as a new genetic operator of GA. 

We will compare two approaches to fitness calculation. In the first one, the 
fitness value of a TOVs subset (i.e. the fitness predictor) is calculated using the 
mean absolute error of the exact fitness and partial fitness of fitness trainers s. 
This fitness value, which is based on the CFP approach [8], can be expressed as 

1 T 

f C F P =^J2 l M D P P p a r t i a l (*(*)) - M D P P e x a c t («(*)) | , (4) 
t=l 
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where T is the number of trainers in the trainers set. The goal of TOVs subsets 
evolution is to minimize this fcFP value, i.e. to ensure that the TOVs subset can 
determine (predict) the solutions' fitness values as exactly as possible. 

Another approach exploits the competitive coevolution (CC) scheme [2]. The 
population of candidate filters can be viewed as "hosts" and the population of 
test cases as "parasites". The fitness of each candidate filter is measured by its 
ability to correctly solve training cases (therefore, the eq. 3 is applicable) while 
the fitness of the training cases is higher for those that cannot be solved well by 
currently evolved filters. Then the fitness value of a TOVs subset derived from 
Eq. 3 is defined as 

T K 
fcc = ^ E ^ X > W - W O I (5) 

t=l 1=1 

and the goal of evolution is to maximize the fee value. This type of fitness 
function should ensure that the TOVs subset includes TOVs that cannot be 
solved exactly by currently evolved filters. 

3.3 Implementation 

There are two threads in the coevolution implementation. One thread is respon
sible for candidate filters evolution using CGP, the other one for TOVs subsets 
evolution. This two thread model is described in Figure 3. 

In the first step, the candidate filters, the trainers and the TOVs subsets 
are randomly initialized. Then the CGP thread waits for the first evolved TOVs 
subset to load it from shared memory, which is done at the beginning of every it
eration of the CGP main loop. This loop continues with evaluating fitness values 
(MDPPp a rtiai) of each candidate filter in a current population and selecting the 
top-ranked candidate filter. Next, there is a possibility of storing a new trainer 
in trainers circular list. After deciding whether to store the new trainer or not, 
a new generation is created and the evolution loop continues with the next iter
ation. The evolution loop terminates when the predefined count of generations 
is reached. 

The TOVs subsets evolution loop begins with loading the trainers from shared 
memory. Depending on the selected method the exact fitness is or is not evalu
ated. In CFP, the exact fitness M D P P e x a c t is calculated for each trainer. Then 
the TOVs subset fitness is evaluated using fcFP (Eq. 4). In CC, the exact fitness 
values of trainers are not evaluated, and the TOVs subset fitness is calculated 
using fee (Eq. 5). As the top-ranked TOVs subset is then taken the subset 
with the maximal fee value, which means that this TOVs subset filtered using 
trainers has the worst (maximal) mean quality measured by MDPP p r e di c ted over 
trainers. This can help the candidate filters to improve filtering those training 
cases, which cannot be solved yet. 
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BEGIN F i l t e r s Thread 
Randomize trainers-circular—list 
Randomize filters population 
FDR 1 TD generation-total-count DD BEGIN 

Load top-ranked-TOVs-subset from shared memory 
Evaluate p a r t i a l f i tnesses for filters using top-ranked-TOVs-subset 
Select top-ranked-filter 
IF actual-parent-fitness <> previous-parent-fitness THEN BEGIN 

Store parent to trainers-circular-list to shared memory 
END 
Create new generation of filters using top-ranked-filter 

END 
Set terminating-flag 
Evaluate exact f i tness of last-top-ranked-filter 
RETURN last-top-ranked-filter 

END 

BEGIN TDVs Thread 
Randomize TOVs population 
REPEAT forever 

Load trainers-circular—list from shared memory 
[OPTIONALLY] Evaluate exact f i tnesses of trainers II depending on selected method 
Evaluate fi tnesses for TOVs-subsets using trainers 
Select top-ranked-TOVs-subset 
Store top-ranked-TOVs-subset to shared memory 
Create new generation of TOVs-subsets using 2-tournament se lec t ion 

and single point crossover 
IF terminating-flag THEN BEGIN 

EXIT thread 
END 

END 
END 

Fig. 3. Pseudocode for coevolution of the population of filters and the T O V s subsets 
population 

After trainers processing, the fitness values of TOVs subsets are evaluated 
and the top-ranked TOVs subset is selected and stored to shared memory. The 
worst-ranked TOVs subset is replaced by a new randomly generated one, which 
is involved in TOVs subset reproduction to ensure TOVs subsets population 
diversity. A new generation is then created and the evolution loop continues 
with the next iteration, while the terminating flag is not set up. 

4 R e s u l t s 

This section presents benchmark problems, experimental setup and experimental 
evaluation of the proposed coevolutionary approach and its comparison with the 
standard CGP. 

4.1 Benchmark Problems 

In order to evaluate the proposed approach, salt and pepper noise filters will be 
designed using CGP. This type of noise is characterized by noisy pixels with the 
value of either 0 or 255 (for the 8-bit gray-scaled images) typically caused by 
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errors in data transmission, faulty memory locations in hardware or malfunc
tioning pixels in camera sensors. Conventionally designed filters for this type of 
noise are based on the median function. Two noise intensities have been applied, 
i.e. the Lena training image with resolution 256 x 256 pixels was corrupted by 
5 % and 10 % salt-and-pepper type of noise. Evolved filters are tested using five 
different images containing the same type of noise. 

4.2 Experimental Setup 

CGP is used according to literature [5], i.e. nc = 8, nr = 4,1 = 1, m = 9, n0 = 1, 
A = 7, every node has two inputs, the number of mutations per new individual is 
h = 5 and r contains the functions from Table 1. The trainers set is represented 
as a circular list with eigth elements. 

TOVs subsets are evolved using a simple GA, where 2-tournament selection, 
single point crossover (with the probability 100%, but the top-ranked individ
ual is always involved in next generation) and mutation up to 2% of chromo
some are used. For the GA, various chromosome lengths are tested, particularly, 
2.5%, 5%, 10%, 15%, 20% and 25% of total size of TOVs in the training 
set (which contains 64,516 TOVs because boundary pixels are not considered 
in the 256 x 256 training images). For each TOVs subset size, 25 independent 
runs were performed and the evolution/coevolution was terminated after 30,000 
generations of CGP. 

4.3 Comparison of Coevolving C G P with Standard C G P 

The proposed coevolutionary algorithms were compared with the standard CGP 
in terms of filtering quality of evolved filters and the execution time. 

The quality of filtering is expressed as a peak signal-to-noise ratio (PSNR) 
which is a measure typically used in the image processing community. It can be 
seen in Figure 4 that the proposed coevolutionary algorithm is capable of evolv
ing image filters of satisfactory quality even if only 15% of TOVs are utilized. 

Table 2 gives PSNR for five test images filtered by the best filters evolved 
using standard CGP, coevolutionary CGP (CC, the TOVs subset size is 20%) 
and conventional median filter. The PNSR results of coevolutionary CGP are 
comparable or better with respect to the standard CGP for both noise intensities. 
The PSNR results for the median filter are not as good, however, we expected 
this on the basis of our previous work [9]. The best filter for the 5% noise evolved 
using CGP with coevolution is shown in Figure 1. 

Figure 5 shows one of test images corrupted with the 5 % salt-and-pepper 
noise and then filtered using the median filter, the best filter evolved using the 
standard CGP and the best filter evolved using CGP with coevolution. The 
median filter provides smudged images in comparison to evolved filters. 
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It can be seen in Figure 6 that for the 15% TOVs subset size, the evolutionary 
design is accelerated 2.99-times in comparison to the standard CGP. Note that 
the execution time is given as the sum of execution times of both threads. The 
speedup was measured on the 2x 8-thread Intel® Xeon® E5640 machine. 

Figures 6 and 4 show that the CC and CFP fitness interacting strategies 
are similar in terms of filtering quality of evolved filters and execution time. 
However, profiles of evolved TOVs subsets differ. The CFP fitness interacting 
strategy leads to TOVs subsets that have a similar ratio of corrupted pixels as 
the total TOVs set, while the CC fitness interacting strategy leads to a little 
higher ratio of corrupted pixels in TOVs subsets (Table 3). 

Table 2. P S N R for test images filtered by the best filters evolved using standard C G P 
coevolutionary C G P ( C C , the T O V s subset size is 20 %) and conventional median filter. 

Test image 
std C G P 

5 % noise 
coevolution median 3 x 3 std C G P 

10 % noise 
coevolution median 3 x 3 

Airplane 38.008 37.747 29.303 32.370 34.053 28.557 
B i r d 46.113 44.706 38.242 35.735 40.054 36.990 
Bridge 35.117 33.707 26.040 30.051 30.246 25.662 
Camera 35.299 36.075 26.823 30.590 32.800 26.245 
Goldhi l l 37.799 37.906 27.927 32.284 34.012 27.524 
Lena 38.233 38.357 30.381 33.332 35.301 29.739 

Table 3. Comparison of a mean ratio of corrupted pixels in the top-ranked T O V s 
subsets in the C F P and C C strategy (5% noise). 

Subset size 25% 20% 15% 10% 5% 2.5% 
C F P 4.973 % 5.009 % 4.971 % 4.960 % 4.961 % 5.087 % 
C C 5.328 % 5.391 % 5.456 % 5.658 % 5.519 % 6.114% 
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(a) Noise 5 % (b) Median filter 

(c) Std C G P filter (d) Coe C G P filter 

Fig. 5. Comparison of images filtered by median filter (b), the best filter evolved using 
the standard C G P (c), and C G P with coevolution (d) 
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Fig. 6. Execution time statistics calculated from 25 independent runs for C C and C F P . 
The 100% result is for the standard C G P running in one thread. Other values are for 
coevolution using two threads (the execution time is the sum of both threads). 

5 C o n c l u s i o n s 

In this paper, we proposed two coevolutionary methods to CGP in order to ac
celerate the evolutionary design of image filters. No significant differences were 
observed between the cooperative coevolution and coevolution of fitness predic
tors. It was shown that only 15-20% of original test vectors are needed to find 
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an image filter w h i c h provides the same qua l i ty of filtering as the best filter 
evolved using the s t andard CGP w h i c h ut i l izes the whole t r a in ing set. T h e me
d i a n t ime of evo lu t ion was reduced 2.99 t imes i n compar i son w i t h the s tandard 
CGP. Fu tu re work w i l l be devoted to further pa ra l l e l i za t ion of the whole concept. 
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A b s t r a c t . We investigate coevolutionary Cartesian genetic program
ming that coevolves fitness predictors in order to diminish the number 
of target objective vector ( T O V ) evaluations, needed to obtain a satisfac
tory solution, to reduce the computational cost of evolution. This paper 
introduces the use of coevolution of fitness predictors in C G P with a new 
type of indirectly encoded predictors. Indirectly encoded predictors are 
operated using the C G P and provide a variable number of T O V s used 
for solution evaluation during the coevolution. It is shown in 5 symbolic 
regression problems that the proposed predictors are able to adapt the 
size of T O V s array in response to a particular training data set. 

K e y w o r d s : Coevolution • Cartesian genetic programming • Fitness 
prediction 

1 I n t r o d u c t i o n 

The development of Genetic Programming (GP) is mainly driven by the increas
ing demand to solve complex problems which cannot be solved directly or sys
tematically using informed methods. In many real-world applications, the fitness 
evaluation of a candidate program is computationally very expensive. Often, the 
fitness in GP is calculated over a set of fitness cases [11]. A fitness case corre
sponds to a representative situation in which the ability of a program to solve 
a problem can be evaluated. A fitness case consists of potential program inputs 
and target values expected from a perfect solution as a response to these pro
gram inputs. Potential program inputs and the corresponding target values are 
ordered in a sequence called target objective vector (TOV). 

A set of TOVs (training data) is typically a small sample of the entire domain 
space. The choice of how many TOVs (and which ones) to use is often a crucial 
decision since whether or not an evolved solution will generalize over the entire 
domain depends on this choice. It also holds for the evolutionary design which 
has been performed by Cartesian Genetic Programming (CGP). In the case of 
symbolic regression or the evolutionary image filter design (which is one of the 
typical application domains for CGP [8]), from hundreds to tens of thousands 
TOVs have to be evaluated in order to obtain a single fitness value. In order to 
© Springer International Publishing Switzerland 2015 
P. Machado et al. (Eds.): Eu roGP 2015, L N C S 9025, pp. 113-125, 2015. 
DOI: 10.1007/978-3-319-16501-1.10 
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find a robust and acceptable solution a large number of fitness evaluations has 
to be performed. 

Fitness modeling methods have been used to reduce the computational com
plexity of expensive fitness evaluations [2]. A predefined model or coarse-grained 
simulation has been used to approximate the fitness value in cases in which 
obtaining the exact fitness requires an expensive simulation or a physical exper
iment. Machine learning methods or a subsampling of training data can be used 
in order to approximate the fitness efficiently. However, it is not always clear 
when the benefits of fitness modeling can outweigh the cost. 

A closely related concept to fitness modeling is fitness prediction, which is 
a technique used to replace fitness evaluations by a lightweight approximation 
that adapts with the solution evolution. Fitness predictors cannot approximate 
the entire fitness landscape, but they are instead shifting their focus through
out the evolution. An algorithm that coevolves fitness predictors, optimized for 
the solution population, has been introduced for standard (tree-based) genetic 
programming in order to reduce the fitness evaluation cost and frequency by 
Schmidt and Lipson [7]. 

In our previous work, inspired by coevolution of fitness predictors [7] and the 
coevolutionary principles which have been summarized in [4], we applied a coevo
lution of TOVs in order to accelerate fitness evaluations in CGP. We adopted 
the fitness predictor encoding in the form of a subset of training data. Fitness 
predictors have been represented as a constant-size array of pointers to elements 
in the training data and operated using a simple genetic algorithm. Coevolu
tionary algorithm has been adapted for CGP. We have obtained a significant 
speedup (2.03-5.45) over the standard CGP for 5 symbolic regression problems 
[10] and the results have been very competitive with tree-based GP. The same 
coevolutionary CGP and Hillis' competitive coevolution approach [1] adapted for 
CGP have been used in the evolutionary image filter design [9]. Although the 
median time of evolution has been reduced 2.99 times in comparison with stan
dard CGP, a large number of experiments had to be accomplished in order to 
find the most advantageous size of the fitness predictor (the number of TOVs 
in predictor) for this particular task. An open problem is how to reduce this 
overhead. 

This paper deals with a new type of fitness predictors whose size is changing 
dynamically during the coevolution. These fitness predictors with a variable 
number of TOVs are represented in the form of functional expressions. This 
functional expression generates a certain number of indexes into the training 
data. Indexes then address specific TOVs from the original training data which 
are selected for solution fitness prediction. The proposed method is evaluated 
using 5 symbolic regression problems and compared with the original approach. 

The paper is organized as follows. Section 2 introduces Cartesian genetic 
programming, Sect. 3 summarizes our previous work on Coevolution of Fitness 
predictors in the CGP and outlines an open issue. In Sect. 4, a new approach 
to fitness predictor encoding is presented. Experimental results are discussed in 
Sect. 5. Finally, conclusions are given in Sect. 6. 
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Fig. 1. A candidate program in C G P , where I = 4, nc = 4, nr = 2, m = 1, n0 = 1, na = 
2, r = {+ (1), - (2), * (3), /(4)} and chromosome is: 0,0, 1; 0 ,0 ,1; 0,0, 3; 2, 2, 2; 3,1, 4; 
3,0,3; 3,6,2; 3,6,1; 8. 

2 C a r t e s i a n G e n e t i c P r o g r a m m i n g 

The state of the art of Cartesian genetic programming has been summarized in 
a monograph [3]. CGP is a variant of genetic programming that uses a specific 
encoding in the form of directed acyclic graph and a mutation-based search. 
CGP has been successfully employed in many traditional application domains of 
genetic programming such as symbolic regression, but has been predominantly 
applied in evolutionary design and optimization of logic networks. 

A candidate program in CGP is modelled as a Cartesian grid of n c x n r 

(columns x rows) programmable elements (nodes). The number of primary 
inputs, Hi, and outputs, n0, of the program are denned for a particular task. 
Each node input can be connected to the output of a node placed in previous I 
columns or to one of the program primary inputs. The types of na-input node 
functions are decided by user and denned in the set r. Each node of the directed 
graph represents a particular function and is encoded by n a + 1 genes. One gene 
is the code of node function, the remaining genes are the indexes of the node 
input connections. Figure 1 shows an example of a candidate program and its 
encoding in the chromosome. 

In CGP, a variant of a simple (1 + A) evolutionary algorithm is used as a 
search mechanism. The initial population is constructed either randomly, by a 
heuristic procedure or uses an existing solution. Every new population consists 
of the best individual of the previous generation (so-called parent) and its A 
offspring. To create the offspring individuals from the parent, a point muta
tion operator is used. Mutation modifies h randomly selected genes to another 
randomly generated (but valid) values. 

3 F i t n e s s P r e d i c t i o n i n C G P 

In our previous work, fitness predictors were small subsets of the training data 
and coevolved with CGP programs [10]. An optimal fitness predictor was sought 
using a simple genetic algorithm (GA) which operated a population of fitness 
predictors. Fitness predictor was directly encoded as a constant-size array of 
pointers to the elements (TOVs) in the training data. It was shown in 5 symbolic 
regression benchmarks that only 12 TOVs for fitness prediction were needed 
to find a satisfactory solution. Moreover, a significant improvement (in terms 
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of computational cost reduction) has been obtained in comparison with CGP 
without coevolution. 

The coevolution adapted for CGP has been used in the evolutionary design of 
image filters, where the standard CGP has been successful so far. Using coevolu-
tionary CGP, a computational cost reduction has been obtained too [9]. However, 
this utilization brings some potential problems. The process of finding the most 
advantageous setting in terms of the fitness predictor size for this particular task 
was the most time consuming part of the experiments. Too many independent 
runs had to be performed to observe that 15-20% (about 10 thousand of TOVs) 
of original training data are needed to find an image filter of the same quality 
of filtering as the best filter evolved using the standard CGP utilizing the orig
inal training data. While using GA chromosomes as long as thousands genes, 
the so-called scalability problem has been observed. In the context of EAs the 
scalability problem refers to the situation in which the evolutionary algorithm 
is able to provide a very good solution to a small problem instance, but only 
unsatisfactory solutions can be generated for larger problem instances. 

4 P r o p o s e d M e t h o d 

The number of TOVs required to obtain a satisfactory solution is variable from 
benchmark to benchmark. To simply apply a coevolutionary CGP to a new, 
unknown task, we should consider a fitness predictor with the dynamic size which 
can be adapted during the coevolutionary process. Although the direct encoding 
of the predictor involves a simpler encoding which is suitable for basic applica
tions, more complex tasks need sizable predictors that are sorely handled by GA. 
Several possible encodings of fitness predictor have been mentioned in [6]. Fit
ness predictors, in this work are not, however, encoded as the constant-size array 
of TOVs. Instead, we use an indirect encoding in the form of functional expres
sion selecting particular TOVs. TOVs used for fitness prediction are selected by 
means of indexes that are generated using this expression. 

The evolution of this expression can be seen as a form of a symbolic regression 
task which is a typical task for genetic programming. We have considered to 
employ CGP due to a simpler and faster operation on chromosomes. 

4.1 Indirectly Encoded Predictor 

In this paper, the evolution of fitness predictors is based on the principles of CGP 
as introduced in Sect. 2. The predictor chromosome encodes a Cartesian grid of 
two-input functional nodes operating over one primary input and returning two 
primary outputs. In addition to the Cartesian grid, an initializing value XQ is 
encoded in the chromosome. It is operated using a special mutation operator -
value XQ is multiplied by a randomly generated real number in the user-defined 
range. 

While composing the array of TOVs for fitness prediction, the initializing 
value XQ is used as a primary input of the predictor. In response to the primary 
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input Xi, the candidate predictor returns two outputs - outo(xi) and outi(xi). 
Index j(xi) of selected TOV is then calculated as: 

j(xi) = outo(xi) mod n, (1) 

where n is the total number of TOVs in the training data. TOVs selection 
continues with the next iteration using outo(xi) as a new primary input of the 
predictor, until the out\(xi) is out of the user-defined range routi or the maximum 
size of the array of TOVs for fitness prediction is reached. 

4.2 Predictor Training 

Predictors have to be coevolved with the solution evolution in order to adapt 
them to the solved problem. Predictor training data consists of fitness trainers, 
which are selected copies of candidate solutions occurred during the solution 
evolution and their corresponding exactly measured fitness values f e x act (i-e. 
fitness evaluated using the original training data). 

The archive of trainers has a well defined structure. The number of trainers 
in the archive is kept constant during the evolution. While initializing the coevo-
lution, solutions from the first generation are chosen and copied to the archive of 
trainers. If the archive of trainers is larger than the solution population, missing 
trainers are generated randomly. Trainers in the archive are updated periodi
cally - the top-ranked candidate solution is copied to the trainers archive if its 
predicted fitness value differs from the top-ranked candidate solution in the pre
vious generation; the next trainer is updated using a random solution. A new 
trainer t replaces the oldest one in the trainers archive and the exact fitness of 
the new trainer f e x act(i) is evaluated. This approach to the predictor training 
data structure leads to maintaining a representative sample of the current solu
tion population (due to the copies of top-ranked candidate solutions) as well as 
maximizing fitness diversity of solutions in the archive of trainers (due to the 
randomly generated trainers). 

4.3 Fitness of Predictor 

While designing the fitness function of the indirectly encoded predictor, two 
main options should be considered: (1) prediction precision and (2) prediction 
cost. Prediction precision of predictor p is calculated using the relative error of 
the exact and predicted fitness values of solutions in the trainers archive: 

/ \ f X v fexactU?) fpredicted\tj) /r.\ 

P r e c { P ) = u g « W * ; ) + c ' ( 2 ) 

where u is the number of solutions in the trainers archive, parameter c allows to 
moderate a sharp increase of relative error while the feXact(*j) is v e r Y close to 0. 

Prediction cost of a predictor is depended on how many TOVs have to be 
used while evaluating the predicted fitness. The number of TOVs in the array for 
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Fig. 2. Coevolution of candidate solutions and fitness predictors. 

fitness prediction - size (p) - is employed for this purpose. To simplify the fitness 
evaluation process, both objectives are embedded in the single fitness function. 
To establish the fitness function for predictor p, a desired function flow has 
been processed by the Eureqa software [5], and the following function has been 
obtained: 

f (p) = (a • prec (p ) ) 4 + b • size (p) (l + a- prec (p)2^j , (3) 

where size (p) is the number of TOVs addressed by predictor p. Parameters a 
and b control the preference between the prediction precision and the prediction 
speed (i.e. the number of TOVs addressed by predictor). 

4.4 Coevolution of Solutions and Predictors 

In the first step, the candidate solutions and candidate predictors are randomly 
initialized. Then the solution evolution waits for the first top-ranked predictor 
(obtained in the first generation of predictors). The evolution of candidate solu
tions is based on the principles of CGP. TOVs addressed by the predictor loaded 
from the predictor archive are used for fitness prediction of the solutions. The 
top-ranked predictor for solution fitness prediction is then updated periodically 
in a user-defined number of solution generations. While evolving solution, top-
ranked solutions with different fitness are copied to the one half of the trainers 
archive. In each generation of predictors, one trainer from the second half of 
trainers archive is updated randomly. 
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Predictors are also evolved using CGP. Using each predictor in the current 
generation, the predicted fitness of trainers is evaluated and the fitness of the 
predictor is established. The top-ranked predictor is then updated in a predictor 
archive and also used for producing a new generation of predictors. The overall 
scheme of the proposed coevolutionary algorithm is shown in Fig. 2. 

If a satisfactory solution is found or the user-defined maximum number of 
solution generations is reached, the coevolution is terminated. 

5 R e s u l t s 

This section presents benchmark problems, experimental setup and experimental 
evaluation of the proposed approach and its comparison with the original directly 
encoded fitness predictors and standard CGP without coevolution. 

5.1 Benchmark Problems 

Five symbolic regression benchmark functions (F1-F5) were selected as TOV 
sources for evaluation of the proposed method: 

F l fix) 2 3 
= x — x , x = [-10 : 0.1 : 10] 

F2 fix) = e | a : | sin(a;), x = [-10 : 0.1 : 10] 

F3 fix) = x2es[n(x) + x + sin ( ) , X = [-10 : 0.1 : 10] 

F4 fix) = e~xx3 sin (x) cos (x) (sin2 (x) cos (x) — l) , X = [0 : 0.05 : 10] 

F5 fix) 10 
~ (a:-3) 2 + 5' 

X = [-2 : 0.05 : 8] . 

In order to form a training data, 200 equidistant distributed samples were taken 
from each function. Functions F l , F2 and F3 are taken from [7], functions F4 and 
F5 from [12] and all functions F1-F5 were used in order to evaluate coevolution 
of CGP and directly encoded predictors [9]. 

5.2 Experimental Setup 

The setup of the solution evolution is used according to literature [10], i.e. 
A = 12,rii = l,nQ = l,nc = 32, nr = 1,1 = 32, every node has two inputs 
{ii,i2),r = {ii +t2,ii —i2,ii -h, f^,sin(ii) ,cos(ii) ,e n,k>g(ii)} and the max
imum number of mutation per individual is h = 8. The solution fitness function 
is defined as the relative number of hits. There are, in fact, two fitness func
tions for candidate solution s. While the exact fitness function fexactis) utilizes 
the complete training set, the fitness function for fitness prediction fpredictedis) 
employs only selected TOVs. Formally, 
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fexact (S) = - yZg(y(j)) n. z—J (4) 
3 = 1 

fpredicted (s) = — V f l (j/ (j)) m. z—J (5) 

(6) 

where y(j) is a candidate program response to TOV j, t(j) is the target response, 
n is the number of TOVs in the training data, m is the number of TOVs 
addressed by predictor and e is a user-defined acceptable error - for benchmarks 
F l , F2: 0.5; F3: 1.5; F4, F5: 0.025. The acceptable number of hits is 97%. 

To find the most advantageous setting of the predictor evolution, over 160,000 
independent runs were performed. The results were obtained using the following 
setup of the predictor evolution: A = 4, rij = l,n0 = 2,n c = 15, nr = 2,1 = 4, 
every node has two inputs 12), r = {ii+iiiii—iiiii-ii,f^, sin max (i i , «2), 
min (ii, i2) , mod 12, \i\| and number of mutation per individual is h = 30. 
The range of out\ (affecting the number of TOVs addressed by predictor) is 
set as —1000 < routi < 1000; the minimum number of TOVs addressed by 
predictor is 5 (2,5% of the complete training data) and the maximum number 
is 50 (25%). Parameters of predictor fitness function were empirically set as 
follows: Predictor precision (Formula 2) parameter c = 0.002 and the predictor 
fitness function (Formula 3) parameters a = 17 and b = 0.04. Every 2,000 
generations of the solution evolution, a new predictor has been loaded for the 
solution fitness evaluation. 

5.3 Comparisons of the Algorithms 

The goal of this experiment is to compare the proposed coevolution of indirectly 
encoded fitness predictors evolved using CGP (FPCGP) with the original directly 
encoded fitness predictors evolved using GA (FPGA) and standard CGP with
out coevolution (CGPSTD)- In all the algorithms, solutions are evolved using 
the equivalent setup as presented in Sect. 5.2. FPGA is used according to liter
ature [9], i.e. 12 TOVs in chromosome, 32 individuals in predictor population, 
2-tournament selection, a single point crossover and the mutation probability 0.2. 
The algorithms are compared in terms of the success rate (the number of runs, 
giving a solution with predefined quality), the number of generations and the 
number of TOV evaluations to converge (in order to compare the computational 
cost). Table 1 gives the median values calculated of 50 independent runs for each 
benchmark function F1-F5. 

It can be seen from Table 1 that both coevolutionary approaches have reached 
a satisfactory solution using a significantly fewer TOV evaluations than the 
standard CGP. Despite the fact that during FPCGP evolution predictors with 
a large number of TOVs have to be evaluated, the number of TOV evaluations 

73 



Indirectly Encoded Fitness Predictors Coevolved wi th Cartesian Programs 121 

Table 1. Comparison of standard C G P (CGPSTD) and coevolutionary C G P with 
directly encoded predictors FPGA and indirectly encoded predictors FPCGP-

Algor i thm F l F2 F 3 F4 F5 

Success rate CGPSTD 100% 100% 100% 80% 24% Success rate 

FPGA 100% 100% 100% 100% 100% 

Success rate 

FPCGP 100% 100% 100% 100% 90% 

Generations to 
converge 
(median) 

CGPSTD 1.11 • 10 3 4.46 • 10 3 1.76 • 10 5 7.15 • 10 5 1.36 • 10 6 Generations to 
converge 
(median) 

FPGA 2.62 • 10 3 2.53 • 10 3 1.10 • 10 5 1.00 • 10 6 1.34 • 10 6 

Generations to 
converge 
(median) 

FPCGP 1.00 • 10 3 2.25 • 10 3 4.11 • 10 4 1.47- 10 6 1.74 • 10 6 

T O V 
evaluations 
to converge 
(median) 

CGPSTD 2.68 • 10 6 1.08 • 10 7 4.24 • 10 s 1.72 • 10 9 3.28 • 10 9 T O V 
evaluations 
to converge 
(median) 

FPGA 5.20 • 10 5 5.01 • 10 5 2.19 • 10 7 2.00 • 10 8 2.67- 10 8 

T O V 
evaluations 
to converge 
(median) FPCGP 7.43 • 10 5 1.60 • 10 6 1.90 • 10 7 8.05 • 10 s 8.78 • 10 s 

to converge is similar for both FPc^p-evolved a n d FP^-evolved predictors. 
Although CGPSTD evaluates the whole TOVs set in every fitness function call, 
the number of generations is comparable for all three methods. 

5.4 Predictor Behaviour 

In this section we discuss how the predictors are able to select a representative 
sample of TOVs which allows for obtaining a satisfactory solution. However, 
it should be pointed out that to facilitate an indirectly encoded predictor to 
maintain eventual geometries or peaks and valleys in training data, the training 
set should be well sorted (if it is possible). 

In order to observe the behaviour of predictor data samples, we plot (see 
Figs. 3 and 4) the number of TOVs and the frequency of TOVs addressed by 
predictors, which were used during the course of evolution for solution fitness 
prediction (50 independent runs considered). It can be seen from Table 1 that 
the satisfactory solution for benchmarks F l and F2 can be obtained by 2 • 103 

generations of the solution fitness prediction, which is the time when only the first 
co-evolved predictor is ready for solution fitness prediction. Then Fig. 3 shows 
the number and the frequency of TOVs addressed by the top-ranked predictor 
taken from the very first (randomly generated) generation. While the evolution 
wasn't allowed to suit to the training data, sizable predictors were selected in 
order to accomplish a better prediction precision - see Fig. 3b and d. Despite 
this fact, satisfactory solutions for benchmarks F l and F2 have been found using 
a comparable number of TOV evaluations (and less number of generations of 
solutions) in comparison with directly encoded predictors using only 12 TOVs 
for solution fitness prediction (FPGA)-
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(c) Training set F2 . (d) Training set F2 . 

Fig. 3. Frequency and the number of T O V s in predictors used for candidate solution 
fitness prediction (training set F l and F2) . 

In case of benchmarks F3, F4 and F5, coevolution exhausted many more 
generations to converge. Then predictors were able to adapt to the training 
data. Figure4b, d and f shows that each benchmark prefers a different number 
of TOVs for fitness prediction. It can be seen from Fig. 4f that about 10 TOVs 
and about 38 TOVs were preferred in order to predict the fitness of candidate 
solutions while solving the benchmark F5. 

It can be seen in Fig. 4a, c and e that sample points do not focus entirely on 
the peaks and valleys of the training data, but are well distributed over the data 
set during the coevolution, however some geometries have been observed. If all 
TOVs addressed by predictor focus on the interesting regions (peaks and valleys) 
of the training data, the predictor would represent the maximum error (which is 
improper while requiring the predicted fitness corresponding to the exact fitness). 
Furthermore, TOVs addressed by the fitness predictors are variable in response 
to the solution evolution. The solution evolution forces the predictors to contain 
two types of TOVs, some of them are easy others difficult for particular solutions. 

The number of TOVs addressed by predictors also changes during the coevo
lution in response to the course of solution evolution. Figure 5 shows the exact 
fitness of the top-ranked candidate solutions during the course of coevolution 
and the size of the predictor used to predict their fitness during a typical run 
for the benchmark F3. 
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TOV selection frequency 

(a) Training set F3 . 

(e) Training set F5 . 

(b) Training set F3 . 

0 Predictor size frequency 

(d) Training set F4. 

0 Predictor size frequency 

(f) Training set F5 . 

Fig. 4. Frequency and the number of T O V s in predictors used for candidate solution 
fitness prediction (training set F 3 - F 5 ) . 

n u m b e r o f T O V s f o r f i t n e s s p r e d i c t i o n 

— t o p - r a n k e d s o l u t i o n e x a c t fitness 

Fig. 5. Exact fitness of top-ranked candidate solutions during the course of evolution 
and the size of predictor during a typical run for the F 3 data set. 
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6 C o n c l u s i o n s 

In summary, we have introduced the use of coevolution of fitness predictors in 
CGP with a new type of indirectly encoded predictors. Indirectly encoded pre
dictors are operated using the CGP and provide a variable number of TOVs used 
for solution fitness prediction during the coevolution in response to the solved 
problem. When applied to the symbolic regression problem, this approach was 
found to be comparable with the original directly encoded predictors using just 
12 TOVs for the solution fitness prediction in terms of the number of evaluated 
TOVs to converge. We have shown using 5 benchmarks that proposed predic
tors are able to adapt the size of TOVs array for solution fitness prediction in 
response to the particular training data. This property enables to use the coevo
lution of fitness predictors for solving a new, unknown task, without the need to 
find the most advantageous size of the TOVs array experimentally. 

However, as symbolic regression has not been considered as a typical appli
cation domain for CGP, our future work will be devoted to the utilization of 
the proposed fitness prediction algorithm in the evolutionary image filter design 
where the original directly encoded predictors have been successful so far. Con
sidering the fact that the evolutionary design using CGP has been successfully 
accelerated in field programmable gate array (FPGA), another goal will be to 
implement coevolutionary CGP with indirectly encoded predictors to F P G A and 
thus accelerate the search process and use it in a real-world application. 

Acknowledgments. This work was supported by the Czech science foundation 
project 14-04197S, the Brno University of Technology project FIT-S-14-2297 and the 
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070. 
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Abstract. Coevolution of fitness predictors, which are a small sample 
of all training data for a particular task, was successfully used to reduce 
the computational cost of the design performed by cartesian genetic pro
gramming. However, it is necessary to specify the most advantageous 
number of fitness cases in predictors, which differs from task to task. 
This paper introduces a new type of directly encoded fitness predictors 
inspired by the principles of phenotypic plasticity. The size of the coe
volved fitness predictor is adapted in response to the learning phase that 
the program evolution goes through. It is shown in 5 symbolic regres
sion tasks that the proposed algorithm is able to adapt the number of 
fitness cases in predictors in response to the solved task and the program 
evolution flow. 

Keywords: Fitness predictors • Cartesian genetic programming • 
Coevolution • Phenotypic plasticity 

1 I n t r o d u c t i o n 

Cartesian genetic programming (CGP) is a specific form of genetic programming 
(GP) and has been successfully applied to a number of challenging real-world 
problem domains [7]. In CGP, as well as in GP, every evolved program must be 
executed to find out what it does. Each program in the population is assigned a 
fitness value, representing the degree to which it solves the problem of interest. 
Often, but not always, the fitness is calculated over a set of fitness cases. A 
fitness case consists of potential program inputs and target values expected from 
a perfect solution as a response to these program inputs. The outputs of the 
evolved program are then compared with the desired outputs for given inputs. 
The choice of how many fitness cases (and which ones) to use is often a crucial 
decision since whether or not the evolved program will generalize over the entire 
domain depends on this choice. 

In the case of digital circuit evolution, which is a typical task for CGP, it is 
necessary to verify whether a candidate n-input circuit generates correct responses 
for all possible input combinations (i.e., 2™ assignments). It was shown that testing 
just a subset of 2" fitness cases does not lead to correctly working circuits [5]. 

In the symbolic regression tasks, the goal of GP system design and GP para
meters' tuning is to obtain a solution with predefined accuracy and robustness. 
© Springer International Publishing Switzerland 2016 
M . Heywood et al. (Eds.): Eu roGP 2016, L N C S 9594, pp. 164-179, 2016. 
DOI: 10.1007/978-3-319-30668-1-11 
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In this case, k fitness cases are evaluated during one fitness function call, where 
k typically goes from hundreds to ten thousands. The time needed for evaluat
ing a single fitness case depends on a particular application. Usually, in order to 
find a robust and acceptable solution a large number of fitness evaluations has 
to be performed. In order to reduce the evaluation time, fitness approximation 
techniques have been employed, e.g. fitness modeling [6]. 

Closely related concept to the fitness modeling is a fitness prediction, which 
is a low cost adaptive procedure utilized to replace the fitness evaluation. A 
framework for reducing the computation requirements of symbolic regression 
using fitness predictors has been introduced for standard genetic programming 
by Schmidt and Lipson [9]. The method utilizes a coevolutionary algorithm which 
exploits the fact that one individual can influence the relative fitness ranking 
between two other individuals in the same or a separate population [4]. The 
state of the art of coevolutionary principles has recently been summarized in the 
chapter of Handbook of Natural Computing [8]. 

Inspired by [9], we have introduced coevolving fitness predictors to CGP 
and have shown that by using them, the execution time of symbolic regression 
can significantly be reduced [12]. Fitness predictors have been represented as a 
constant-size array of pointers to elements in the fitness case set and operated 
using a simple genetic algorithm. The same coevolutionary CGP and Hillis' 
competitive coevolution approach [4] adapted for CGP have been used in the 
evolutionary image filter design [11]. Although the time of evolution has also 
been reduced, a large number of experiments had to be accomplished in order 
to find the most advantageous size of the fitness predictor (the number of fitness 
cases in predictor) for this particular task. 

To solve this problem, we have introduced a new type of indirectly encoded 
fitness predictors which can automatically adapt the number of fitness cases used 
to evaluate the candidate programs [10]. However, during the evolution of fitness 
predictors, also large fitness predictors have to be evaluated (and then refused 
for a larger size), and thus plenty of fitness case evaluations have been wasted. 

In this paper, we integrate phenotypic plasticity principles into coevolution. 
The phenotypic plasticity is the ability of an individual to learn how to utilize its 
genotype in order to adapt to the environment [1]. It was shown that a proper 
rate of environmental change may reduce the learning cost while evolving the 
solution [2,3]. Inspired by these principles, we introduce a new type of fitness 
predictors, operated using a simple genetic algorithm (GA), using the phenotypic 
plasticity in order to adapt the number of fitness cases for candidate solution 
evaluations and thus regulate the rate of environmental change. In the case of 
fitness prediction, a stable environment contains a complete fitness cases set, a 
highly changing environment only a few of them. 

The paper is organized as follows. Section 2 introduces cartesian genetic pro
gramming and coevolution of fitness predictors. In Sect. 3, a new approach to 
fitness predictor encoding is presented. The proposed approach is evaluated using 
5 symbolic regression benchmarks. Experimental results are discussed in Sect. 4. 
Finally, conclusions are given in Sect. 5. 
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2 F i t n e s s P r e d i c t i o n i n C G P 

In standard CGP, candidate programs are represented in the form of directed 
acyclic graph, which is modeled as a matrix of n c x nr programmable elements 
(nodes). Each node is programmed to perform one of na-input functions defined 
in the set r. The number of primary inputs, m, and outputs, n0, of the program 
is defined for a particular task. Each node input can be connected either to the 
output of a node placed in previous I columns or to one of the program inputs. 
Feedback is not allowed. The search is usually performed using a simple (1 + A) 
evolutionary algorithm, where usually A = 4. Every new population consists of 
the best individual of the previous population and its A offspring created using 
a mutation operator which modifies up to h genes of the chromosome. The state 
of the art of CGP has recently been summarized in a monograph [7]. 

In the case of symbolic regression, the set of fitness cases is usually constructed 
from experimentally obtained data. Then each of k fitness cases from the set is 
used to evaluate each candidate program (see Fig. 1). The fitness function of 
candidate program is often defined as the relative number of hits. Formally, 

1 k 

f ( s ) = k'52s(yti)). w h e r e (!) 
i = i 

R ( v ( j ) ) - / O i f | y ( j ) - t ( i ) | > £ ( ) 

g ( y U ) ) - | l i f \y(j)-t(j)\<e [2> 

and y is a candidate program response, t is a target response and e is a user-
defined acceptable error. The fitness evaluation is the most time consuming part 
in standard CGP (as well as tree-based GP). 

3 - 2 - 1 0 1 2 3 

# x f(x) 
(1) 
(2) 
(3) 
(4) 
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(2) 
(3) 
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(15) 
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Fig. 1. Fitness evaluation of a candidate cartesian program. 

2.1 Fitness Predictor 

In order to reduce the total number of evaluations during each one fitness func
tion call, fitness predictor in the form of small subset of the fitness case set 
have been introduced to CGP [12]. An optimal fitness predictor is sought using 
a simple genetic algorithm (GA) which operates with a population of fitness 
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# X f(x) 

->~ ID 0.000 0.707 
->- (2) 0.100 0.817 
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(4) 
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(99) 9.S00 70.979 

Fig. 2. Fitness predictor representation. 

predictors. Every predictor is encoded as a constant-size array of pointers to 
elements in the training data (see Fig. 2). In addition to one-point crossover and 
mutation, a randomly selected predictor replacing the worst-scored predictor in 
each generation has been introduced as a new genetic operator of GA. The goal 
of the evolution of predictors is to minimize the relative error of fitness prediction 
and the expensive exact fitness evaluation. 

2.2 Coevolution of Cartesian Programs and Fitness Predictors 

The aim of coevolving fitness predictors and programs is to allow both solutions 
(programs) and fitness predictors to enhance each other automatically until a 
satisfactory problem solution is found. There are two concurrently working pop
ulations: (1) candidate programs (syntactic expressions) evolving using CGP and 
(2) fitness predictors evolving using GA. The overall scheme of the coevolution-
ary algorithm is shown in Fig. 3. 

Evolution of candidate programs is based on principles of CGP. The fitness 
function for CGP is defined as the relative number of hits. There are, in fact, 
two fitness functions for candidate program s. While the exact fitness function 
fexact{s) utilizes the complete set of fitness cases, the predicted fitness function 
/predicted (s) employs only selected fitness cases. Formally, 

1 k 

fexact (s) = ^Y^9{y(j)) (3) 
i = i 

m 
fpredicted (s) = — ^ 9 (y (J)) (4) 

1 7 1 3 = 1 

where k is the number of fitness cases in the set of fitness cases and m is the 
number of fitness cases in the fitness predictor. The fpredicted is used to evaluate 
the candidate programs in the population. The fexact is used during the predictor 
training. 

The predictor training is accomplished as follows. The archive of trainers 
is generated and updated in response to the candidate program evolution. It 
consists of candidate programs with evaluated fexact and is divided into two 
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Candidate solution population Archive of trainers: 
candidate solutions for 
predictor evaluation 

3z3 predictor for candidate 
solution evaluation 

Predictor population 

Training data 
# x f(x) 

(1) 
(2) 
(3) 
(4) 

0.000 0.707 (1) 
(2) 
(3) 
(4) 

0.100 0.817 
(1) 
(2) 
(3) 
(4) 

0.200 0.950 

(1) 
(2) 
(3) 
(4) 0.300 1.108 

(13) 
(14) 
(15) 

1.200 4.048 (13) 
(14) 
(15) 

1.300 4.742 
(13) 
(14) 
(15) 1.400 5.725 

(65) 
(66) 

6.400 52.993 (65) 
(66) 6.500 59.388 

(99) (99) 9.800 170.9791 

Fig. 3. Coevolution of candidate solutions and fitness predictors. 

parts: The first part contains copies of top-ranked programs (with different fit
ness) obtained during the program evolution and the second part is periodically 
updated with randomly generated programs to ensure genetic diversity of the 
archive. The size of the archive is kept constant during the coevolution and each 
new trainer replaces the oldest one in the corresponding part of the archive. 

The fitness value of predictor p is calculated using the mean absolute error 
of the exact and predicted fitness values of programs in the archive of trainers: 

1 " 

f (p) = ~ X] l f e x a c t w 
i=l 

T predicted ("01 (5) 

where u is the number of candidate programs in the archive of trainers. The 
predictor with the best fitness value is used to predict the fitness of candidate 
programs in the population of candidate programs [9]. 

3 P r o p o s e d M e t h o d 

In this paper, we propose a new approach to fitness predictor encoding. The 
number of fitness cases required to obtain a satisfactory solution varies from 
benchmark to benchmark. In order to apply coevolutionary CGP to different 
tasks, it is required to perform numerous experiments to find the most advanta
geous number of fitness cases in fitness predictors. 
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It can be observed that the population of solutions goes through various 
phases as the population's ability to adapt to the problem changes over the 
time [2]. A lower fitness phase needs less stimuli to improve solutions, but the 
same amount of stimuli does not lead to converge during the higher fitness phase. 
This property is discussed by Ellefsen [2], in order to reduce the learning cost. 
In this paper, the number of fitness cases in predictors is changed according to 
the latest development in the population of the candidate programs. 

3.1 Plastic Directly Encoded Predictor 

We propose directly encoded fitness predictors with an adaptive number of fit
ness cases for candidate solution evaluations. To be able to modify their size, 
we employ the principles of phenotypic plasticity. This allows the individual to 
produce different phenotypes from the same genotype, depending on the envi
ronmental conditions [2]. In the plastic fitness predictors, the phenotype is con
structed by including only selected subset of genes. 

The predictor genotype is a constant-size circular array of pointers to ele
ments in the training data. Its size is equal to the total number of fitness cases. 
In order to produce the phenotype, the genes are read sequentially from specified 
position (offset). The genotype may contain duplicate gene values. Therefore, 
the gene with a value, which is already included in the phenotype, is skipped 
in order to prevent duplicate fitness case in predictor. The reading stops after 
it has processed the number of genes specified by the readLength variable. The 
readLength value is determined by the flow of the candidate program evolution. 

The offset is determined by an extra gene included in the genotype, evolved 
by a special mutation operator, which adds a small Gaussian random number to 
the current value. Figure 4 shows an example of phenotype construction when 6 
out of 10 available genes are used. 

The evolution of predictors is directed by the genetic algorithm (GA). The 
crossover operator is modified so the split point is always selected within the 
active part of the genotype, which increases phenotype diversity. 

Genotype 
of fset 0 1 2 3 4 5 6 7 8 9 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 [ 9 l 

Phenotype 

of fset 6 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 T 9 l [U 
of fset ^ 7 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 " T 9 l [ST/oH 
of fset T 8 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 " T 9 l [ŠTŠl 

Genotype Phenotype 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 ~ [ 9 l | 3 | 6 | 9 | 
of fset 0 ' 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 " T 9 l | 3 | 6 | 9 | 1 | 
of fset ' 1 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 | " 9 l | 3 | 6 | 9 | l | 7 | 

of fset 0 1 2 3 4 5 6 7 8 9 

I 6 | l | 7 | 4 | 0 | 7 | 4 | 3 | 6 | 3 ~ [ 9 l | 3 | 6 | 9 | 1 | 7 | 

Fig. 4. Predictor phenotype construction wi th offset = 6 and readLength = 6. 

85 



170 M . Wiglasz and M . Drahosova 

3.2 Predictor Size Adaptation 

The predictor size is adapted through the readLength variable. Its value is 
changed according to the latest development in the population of the candidate 
programs. It can be observed that the population goes through various phases 
as the population's ability to adapt to the problem changes over the time. If 
the ability is higher, the overall fitness increases towards better solutions, if it is 
lower, the fitness remains almost constant. In this case the evolution probably 
reached some local optimum. 

The phase of evolution can be described in terms of the evolution speed which 
we express as follows: 

A fexact 
V = ^G~> ( 6 ) 

where AG is the number of generations between two last fitness changes of CGP 
population parent (top-ranked programs) and Afexact is the difference of exact 
fitness values of these parents. Although the evolution of programs is guided by 
the predicted fitness, the speed can be negative, because it is calculated from 
the exact fitness. 

It is necessary to set the lower boundary of the predictor size. If the prediction 
is based on only a few fitness cases (in extreme cases on only one fitness case), 
over-fitting of predictors occurs. The prediction inaccuracy can be expressed as 
the absolute difference between predicted and exact fitness: 

I — \fpredicted /exact] 5 (7) 

In the case the prediction inaccuracy exceeds given threshold Ithr > the number 
of fitness cases should be increased. 

The readLength value is updated each time a new solution with better pre
dicted fitness than parent individual is found. It can be also updated after a 
user-specified number of generations during which a new solution is not found. 
The evolution speed and prediction inaccuracy is updated and a corresponding 
rule is selected. The rules are based on the following assumptions: 

1. If the inaccuracy exceeds the threshold (/ > Ithr), the size is increased. 
2. If the fitness remains unchanged (v « 0), the predictor size is decreased, 

which should help the evolution to leave a local optimum. 
3. If the fitness decreases (v < 0), the evolution is probably leaving a local 

optimum and decreasing the size can accelerate this process. 
4. If the fitness increases (v > 0), the predictor size is increased to make the 

prediction more accurate. 

The purpose of these rules is to find the lowest possible predictor size while 
the evolution still converges. The new readLength value is obtained by multipli
cation of the previous value and a coefficient, which is selected using described 
rules. Experimentally obtained values of the coefficients are specified in Sect. 4.2. 
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4 R e s u l t s 

In this section, 5 symbolic regression benchmarks are introduced. Next, we 
present experimental results, in particular the proposed predictor behaviour 
and the comparisons of the proposed approach with the previously presented 
approaches to coevolutionary and standard CGP. 

4.1 Benchmark Problems 

Five symbolic regression benchmark functions (F l - F5, see Fig. 5) were selected 
as training data sources for evaluation of the proposed method: 

F l / (*) 
2 3 = x — X , x = [-10 : 0.1 : 10] 

F2 fix) = e'11' sin(a;), X = [-10 : 0.1 : 10] 

F3 fix) 
2 sinO) , , • f 71 \ = x e ' + x + sin y—j , X = [-10 : 0.1 : 10] 

F4 fix) = e~xx3 sin (ai) cos (a;) (sin 2 (a;) cos (ai) — l ) , X = [0 : 0.05 : 10] 

F5 fix) 
10 

( x - 3 ) 2 + 5 : 
X = [-2 : 0.05 : 8] . fix) 

10 
( x - 3 ) 2 + 5 : 

[-2 : 0.05 : 8] . 

To form the training data, 200 equidistant distributed samples were taken from 
each function. Functions F l - F5 are taken from [12] and all functions F l -
F5 were used in order to evaluate coevolution of CGP and both directly and 
indirectly encoded predictors [10,12]. 

X X X X X 

(a) F l . (b) F2 . (c) F3 . (d) F4 . (e) F5 . 

Fig. 5. Symbolic regression benchmark functions used for evaluation. 

4.2 Experimental Setup 

The setup of the program evolution is used according to literature [12], i.e. 
A = 12, rii = 1, na = 1, nc = 32, nr = 1, I = 32, every node has two inputs 
(zi , i 2 ) , r = {h + i2, ii - i2, i\ • 12, j;, sin(ii), cos (ii), eH, log (ii)} and the 
maximum number of mutations per individual is h = 8. The program fitness 
function is defined as the relative number of hits (see Eqs. 3 and 4). For the 
benchmarks, the user-defined acceptable errors e are as follows: F l , F2: 0.5; F3: 
1.5; F4, F5: 0.025. The acceptable number of hits is 96%. 

87 



172 M . Wiglasz and M . Drahosova 

Table 1. Rules used to adapt the readLength value. 

Prior i ty Condit ion Coefficient 

1 I > Ithr 1.2 

2 \v\ < 0.001 0.9 

3 v < 0 0.96 

4 0 < v < 0.1 1.07 

5 v > 0.1 1 

The predictor size is adapted as follows: The readLength value is initialized 
with 5 genes (the influence of the initial value is discussed in Sect. 4.3), its mi
nimum is limited to 5 and the maximum is the total number of fitness cases. 
The value is updated after a new top-ranked program is found, or after 5000 
generations since last update. The new readLength value is given as readLength • 
coefficient. Experimentally obtained coefficient values are shown in Tablet. The 
threshold Ithr = 15 is chosen. Conditions are set according to assumptions in 
Sect. 3.2. If more conditions are fulfilled at the same time, the value is updated 
according to the priority (see Table 1). 

4.3 Abi l i t y to Adapt the Number of Fitness Cases 

In order to confirm that the proposed algorithm is able to adapt the predictor 
size on a given task, we plot the progress of the average number (out of 100 
independent runs) of fitness cases in top-ranked predictor during the evolution 
flow with respect to the initial predictor sizes. It can be seen in Fig. 6 that the 
size converges to the similar value independently of an initial size and the final 
predictor size differs for each benchmark. 

The success rate is the same for each initial size setting. In the case of bench
marks F l - F3, a larger initial size leads to more fitness case evaluations required 
to find an acceptable solution, see Fig. 6. This does not hold for benchmarks F4 
and F5, where all settings lead to a comparable number of evaluations. The rea
son is that the predictor size converges in approximately 105 generations, while 
it takes much more time (approx. 3.7 • 106 generations) to find a satisfactory 
solution (see Table 2), so the effect of different predictor size in the beginning 
of the evolution is negligible. Note that a satisfactory solution for the bench
mark F l is found in less generations than it is necessary for the predictor size 
to converge. 

In general, it is advantageous to begin with a lower number of fitness cases 
in predictor, which in some cases leads to a lower number of evaluations and 
thus the design process acceleration. On the other hand, if the initial size is too 
low to find an acceptable solution, it will be automatically increased without a 
significant impact on the run time. 
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Fig. 6. Different ini t ial predictor sizes: The average number of fitness cases in predictors 
and the number of fitness case evaluations necessary to find an acceptable solution. 
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4.4 Predictor Behaviour 

In this section, we discuss how a predictor selects a subset of training data 
capable of guiding the evolution towards the satisfactory solution. We plot the 
distribution of fitness cases selected by predictors during the whole coevolution-
ary process out of 100 independent runs. Figure 7 show the frequency of fitness 
cases addressed by the top-ranked predictors during the coevolution flow. It can 
be seen that for benchmarks F l and F2 predictors focus more on peaks and 
valleys than on flexes. On the other hand, in the case of F3 - F5, the samples 
are well distributed over the data set. Considering all fitness cases addressed 
by the predictor focused on the interesting regions (peaks and valleys) of the 
training data, the predictor would represent the maximum error. Note that this 
characteristic is desired in the Hillis' competitive coevolutionary approach [4], 
but is improper while requiring the predicted fitness corresponding to the exact 
fitness. Furthermore, fitness cases addressed by the fitness predictors are vari
able in response to the program evolution flow. The program evolution forces 
the predictors to contain two types of fitness cases, some of them are easy, others 
difficult, for a particular program. 

(c) Benchmark F3 . (d) Benchmark F4. 

1 2 0 0 , 1 

(e) Benchmark F5. 

Fig. 7. Frequency of fitness cases in predictors used for programs evaluations. 
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4.5 Comparison of the Predictor Size 

Indirect ly encoded fitness predictors based on the principles of C G P (below 
FPindir) were proposed i n order to overcome the p rob lem w i t h selection of the 
most advantageous number of fitness cases used for fitness evaluat ion. In FPindir, 
the predic tor size parameter is inc luded i n the fitness funct ion. M o s t of the sizable 
predictors are then rejected, but evaluated du r ing the predictor t ra in ing , wh ich 
results in to wasted evaluations. In order to reduce the computa t iona l cost of 
predictor fitness evaluations du r ing the t ra in ing , a l i m i t of predictor size was 
in t roduced. T h e n , the m a x i m u m size of fitness predictor evolved using FPindir 

was 50 fitness cases. 

T h e size of the proposed adapt ive d i rec t ly encoded predictors (FPadapt) 
varies on ly a l i t t l e i n the fol lowing generations, depending on coefficients (see 
Table 1). T h e number of fitness cases i n the active predic tor is thus changed only 
i n sma l l steps and no l i m i t of the predic tor size is necessary. 

F igure 8 shows the number of fitness cases i n the top-ranked predictor du r ing 
the coevolu t ion flow (left par t of figures shows FPin<nr, r ight par t FPadapt)- In 
general, the preferred number of fitness cases differs from benchmark to bench
mark. It can be seen that for the benchmarks F l and F 2 ( in w h i c h only some of 
the first predictors are used) the preferred size of fitness predic tor is the max
i m u m value (50 fitness cases) for FPina-ir and near to the in i t i a l i z ing value for 
FP adapt approach ( 6 - 7 fitness cases). For the benchmark F 3 , the m a x i m u m 
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Fig. 8. Number of fitness cases in predictors used for program evaluations. 

91 



176 M . Wiglasz and M . Drahosova 

Fig. 9. Relation between the exact fitnesses of top-ranked candidate program and the 
size of predictor during a typical run for the F5 benchmark. 

value is also preferred in FPindir approach (because the evolution of predictors 
does not have enough time to adapt), but in FPadapt the preferred value is 
between 7 and 12 fitness cases. Benchmark F4 is an example of how the limit of 
the predictor size in FPindir could be restrictive. FPadapt predictor size is dis
tributed around 52 fitness cases, whereas FPindir leads to predictors using 45 to 
50 fitness cases and must not exceed 50. For benchmark F5, we can observe two 
peaks (in 12 and 38 fitness cases) for FPindir predictors, but only one peak dis
tributed around 25 fitness cases for FPadapt- Note that FPina\ir evolution allows 
fast changes of predictor size in contiguous generations and thus cause skips 
between distant values of predictor size in response to the program evolution 
flow. Conversely, FPadapt evolution provides only small changes of predictor size 
in contiguous generations. The FPadapt preferred predictor size, for benchmark 
F5, lies between preferred predictor sizes of the FPindir approach, in the middle. 

Although the average preferred size of predictor (out of 100 runs) in FPadapt 
approach converges to the single value for a particular task, this trend is not so 
obvious while analyzing a single run. During a single run, the predictor size 
changes in response to the current development in the program population. 
Figure 9 shows the exact fitness of top-ranked program and the number of fitness 
cases in predictor used for program evaluation during a typical coevolutionary 
run for the F5 benchmark. It can be seen that the predictor size is first increased 
towards the preferred value and then it reacts on the development of candidate 
program. In this example the evolution seems to have reached a local optimum 
after approximately 8 • 105 generations which leads to decreasing of the predictor 
size. Around generation 8.5 • 105 the fitness of top-ranked program drops signif
icantly as the evolution left the local optimum and the number of fitness cases 
starts to increase again, to increase accuracy of the fitness prediction. 

4.6 Comparisons of Various Approaches to Fitness Prediction 
in C G P 

The proposed coevolution employing adaptive directly encoded fitness predictors 
[FPadaPt) is compared with the original fixed-size directly encoded predictors 
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Table 2. Comparison of standard C G P (CGPSTD), r evo lu t iona ry C G P with directly 
encoded constant-size (FPconst) and adaptive predictors (FPadapt) and coevolutionary 
C G P with indirectly encoded CGP-based predictors (FPindir). For each benchmark, 
the best result is marked in bold font. 

Algori thm F l F2 F3 F4 F5 

Success rate CGP STD 100% 100% 91% 5% 27% Success rate 

PP const 100% 100% 100% 33% 43% 

Success rate 

PP adapt 100% 100% 100% 99% 87% 

Success rate 

P P l n d l r 100% 100% 100% 100% 90% 
Generations to converge 

(median) 
CGP STD 8.66 • 10 3 3.09 • 10 4 1.17 • 10 5 4.13 • 10 6 3.25 • 10 6 Generations to converge 

(median) PP const 2.08 • 10 3 1.07 • 10 4 2.60 • 1 0 4 1.13 • 10 7 7.32 • 10 6 

Generations to converge 
(median) 

PP adapt 3.06 • 10 3 1.24 • 10 4 4.10 • 10 4 2.42 • 10 6 5.00 • 10 6 

Generations to converge 
(median) 

P P i n d l r 1.00 • 1 0 3 2.25 • 1 0 3 4.11 • 10 4 1.47 • 1 0 8 1.74 • 1 0 8 

Fitness case evaluations 

to converge (median) 
CGP STD 2.09 • 10 7 7.45 • 10 7 2.82 • 10 s 9.96 • 10 9 7.84 • 10 9 Fitness case evaluations 

to converge (median) FP const 4.41 • 1 0 5 3.09 • 10 6 7.40 • 10 6 2.31 • 10 9 2.18 • 10 9 

Fitness case evaluations 

to converge (median) 

PP adapt 6.27 • 10 5 1.26 • 1 0 8 4.60 • 1 0 8 1.47 • 10 9 1.53 • 10 9 

Fitness case evaluations 

to converge (median) 

FPINIIR 7.43 • 10 5 1.60 • 10 6 1.90 • 10 7 8.05 • 1 0 s 8.78 • 1 0 s 

(FPconst), indirectly encoded CGP-based predictors (FPindir) and standard CGP 
without coevolution (CGP STD)-

FPconst is used according to literature [12], i.e. 12 fitness cases in chromo
some, 32 individuals in predictor population, 2-tournament selection, a single-
point crossover and the mutation probability 0.2. The same setup is used for 
FP adapt, except the number of fitness cases, which is variable. 

The algorithms are compared in terms of the success rate (the number of 
runs, giving a solution with predefined quality), the number of generations and 
the number of fitness case evaluations to converge (in order to compare the com
putational cost). Table2 gives the median values calculated of 100 independent 
runs for each benchmark F l - F5. 

It can be seen in the Table 2 that both adaptive approaches, FPadaPt and 
FPindir, have the highest success rate in all benchmarks. The difference is in 
the number of generations and fitness case evaluations required to converge. 
As described in Sect. 4.4, the FPadaPt uses fewer fitness cases than FPina\ir for 
benchmarks F l - F3. For benchmarks F l and F2, this leads to a larger num
ber of generations to converge using FP adapt compared to FPindir, fewer fitness 
case evaluations have to be performed using FPadaPt- This does not hold for the 
benchmark F3, where the number of generations is similar for both approaches. 
Nevertheless, for benchmarks F4 and F5, FPincnr needs fewer fitness case eval
uations to converge, but still comparable in the order of magnitude. The size of 
fitness predictors in the FPina\ir approach is limited to 50 fitness cases, to reduce 
larger predictor evaluations. However, FP adapt approach prefers, for benchmark 
F4, more fitness cases in the predictor for this particular task (see Fig. 8), there
fore the cost-reducing limit in FPina%r approach might be restrictive for more 
complex tasks. 
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In comparison with both FPadapt and FPindir approaches, FPconst required 
the lowest number of evaluations for the benchmark F l . In this case the satis
factory solution is found before the predictor size can adapt. However, let's note 
that many experiments have to be performed to find the most advantageous size 
of the predictor using FPconst approach for these benchmark tasks, while the 
FPadapt and FPindir adjust the size of the predictor during each single run in 
response to a particular task. 

Finally, all three coevolutionary approaches beats CGPSTD in terms of num
ber of fitness case evaluations to converge and thus accelerate the design process 
performed by CGP. 

5 C o n c l u s i o n s 

We have introduced the use of coevolution of cartesian programs with a new 
type of directly encoded predictors with the adaptive number of fitness cases. 
The proposed fitness predictors employ phenotypic plasticity and are able to 
modify the number of fitness cases used for program evaluation in dependence 
on the phase of program evolution. 

Applied to the 5 symbolic regression tasks, we have found the proposed app
roach to outperform the original constant-size predictors, which use only 12 
fitness cases for program evaluation, in terms of success rate and computational 
cost, expressed as the number of fitness case evaluations required to converge. We 
have shown that the proposed algorithm is able to adapt the predictor size on the 
solved problem in response to the development in candidate program evolution. 
As a result, it is possible to use coevolutionary CGP on a new task without the 
time-consuming experiments aimed at finding the most advantageous predictor 
size for the particular task. 

Compared to coevolutionary CGP with indirectly encoded fitness predictors, 
the proposed predictor evolution does not produce predictors with larger pre
dictor sizes than necessary. This reduces the number of necessary fitness case 
evaluations, while maintaining comparable program accuracy and robustness. 

While symbolic regression is good to investigate the system behaviour, our 
future work will be devoted to applying the proposed approach to more complex 
problems, such as image filter design, and let the proposed approach and the 
approach employing indirectly encoded fitness predictors compete in the field in 
which the behaviour of the system is not so obvious. 

The CGP has been applied to many different problem domains, predom
inantly in evolutionary design and optimization of logic networks. Hence the 
proposed approach will also be useful for evolvable hardware purposes and in 
real-world applications. 
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Abstract 

In this paper, a hardware platform for coevolutionary carte
sian genetic programming is proposed. The proposed two-
population coevolutionary algorithm involves the implemen
tation of search algoritms in two MicroBlaze soft processors 
(one for each population) interconnected by the A X I bus in 
Xilinx Virtex 6 FPGA. Candidate programs are evaluated in 
a domain-specific virtual reconfigurable circuit incorporated 
into custom MicroBlaze peripheral. Experimental results in 
the task of evolutionary image filter design show that we can 
achieve significant speed-up (up to 58) in comparison with 
highly optimized software implementation. 

Introduction 
Cartesian genetic programming (CGP) - a special variant 
of genetic programming (GP) - has been successfully app
lied to a number of challenging real-world problem domains 
(Miller, 2011). However, the computational power that evo
lutionary design based on CGP (as well as on standard GP) 
needs for obtaining innovative results is enormous for most 
applications. Often, the fitness in GP is calculated over a set 
of fitness cases (Vanneschi and Poli, 2012). A fitness case 
corresponds to a representative situation in which the ability 
of a program to solve a problem can be evaluated. Fitness 
case consists of potential program inputs and target values 
expected from a perfect solution as a response for these pro
gram inputs. 

A set of fitness cases is typically a small sample of the 
entire domain space. The choice of how many fitness cases 
(and which ones) to use is often crucial since whether or not 
an evolved solution will generalize over the entire domain 
depends on this choice. However, in the case of digital cir
cuit evolution, it is necessary to verify whether a candidate 
n-input circuit generates correct responses for all possible 
fitness cases (input combinations, i.e. 2™ assignments). It 
was shown that testing just a subset of 2™ fitness cases does 
not lead to correctly working circuits (Imamura et al., 2000). 
Recent work has indicated that this problem can partialy 
be eliminated in real-world applications by applying formal 
verification techniques (Vasicek and Sekanina, 2011). 

Hillis (1990) introduced an approach that can automati
cally evolve subsets of fitness cases concurrently with prob
lem solution. Hillis used a two-population coevolutionary 
algorithm (CoEA) applied to a test-based problem in the task 
of minimal sorting network design. Subsets of test cases 
used to evaluate sorting networks evolved simultaneously 
with the sorting networks. Evolved sorting networks were 
used to evaluate the test cases subsets. The fitness of each 
sorting network was measured by its ability to correctly 
solve fitness cases while the fitness of the fitness cases sub
sets was better for those that could not be solved well by 
currently evolved sorting networks. 

Coevolutionary algorithms are traditionally used to evolve 
interactive behavior which is difficult to evolve with an ab
solute fitness function. The state of the art of coevolutionary 
algorithms has recently been summarized in (Popovici et al., 
2012). A test-based problem is defined as a co-search or co-
optimization problem with two populations - population of 
candidate solutions and population of tests (subsets of the 
fitness cases set). 

In our previous work, inspired by coevolution of fitness 
predictors (Schmidt and Lipson, 2008) and the principles 
of the competitive coevolution introduced by Hillis (1990), 
we proposed a two-population coevolutionary CGP algo
rithm running on an ordinary processor in order to accele
rate the task of symbolic regression (Sikulova and Sekanina, 
2012b) and the evolutionary image filter design (Sikulova 
and Sekanina, 2012a). For our benchmark problems (5 sym
bolic regression problems and salt-and-pepper noise filter 
design) we have shown that the (median) execution time can 
be reduced 2-5 times in comparison with the standard CGP. 

Despite the acceleration based on fitness cases coevolu
tion, the CGP design is still computationally very intensive 
design method. Therefore an FPGA based acceleration plat
form has been designed. Modern FPGAs provide cheap, 
flexible and powerfull platform, often outperforming com
mon workstations or even clusters of workstations in parti
cular applications. Vasicek and Sekanina (2010) introduced 
a new FPGA accelerator of CGP with the aim to provide 
both high performance and low power. The architecture 
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contains multiple instances of virtual reconfigurble circuit 
(VRC, Sekanina (2003)) to evaluate several candidate solu
tions in parallel. 

Inspired by the FPGA accelerator of CGP, we propose 
a hardware platform for parallel two-population CoEA and 
show that by using this platform, the execution time of evo
lutionary design using CGP can be significantly reduced. 
The proposed hardware accelerated coevolutionary CGP 
is compared with hardware-accelerated standard CGP and 
with a highly optimized software implementation of coevo
lutionary CGP in the task of evolutionary image filter design. 

The paper is organized as follows. The next section in
troduces the idea of coevolution in cartesian genetic pro
gramming. In the following section the architecture of the 
proposed accelerator is presented. The remaining section is 
devoted to experimental evaluation of the accelerator in the 
benchmark problem - the image filter evolution. Conclu
sions are given in the last section. 

Coevolution in Cartesian Genetic 
Programming 

In standard CGP (Miller, 2011), a candidate program is 
represented in the form of directed acyclic graph, which is 
modelled as an array of nc x nT (columns x rows) pro
grammable elements (nodes). The number of primary in
puts, rii, and outputs, n0, of the program is defined for a 
particular task. Each node input can be connected either to 
the output of a node placed in previous I columns or to one 

of the program inputs. The i-back parameter, in fact, defines 
the level of connectivity and thus reduces/extends the search 
space. Feedback is not allowed. Each node is programmed 
to perform one of n0-input functions defined in the set T. 
Each node is encoded using n a + 1 integers where values 
1... n a are the indexes of the input connections and the last 
value is the function code. Every individual is encoded using 
nc • nT • (n a + 1) + na integers. 

A simple (1+A) evolutionary algorithm is used as a search 
mechanism. It means that CGP operates with the popula
tion of 1 + A individuals (typically, A is between 1 and 20). 
The initial population is constructed either randomly or by 
a heuristic procedure. Every new population consists of the 
best individual of the previous population (so-called parent) 
and its A offspring. In each generation, an offspring with 
equal or better fitness than the parent's is chosen as the new 
parent. The offspring individuals are created using a point 
mutation operator which modifies up to h randomly selected 
genes of the chromosome, where h is a user-defined value. 
The algorithm is terminated when the maximum number of 
generations is exhausted or a sufficiently working solution is 
obtained. 

There are two concurrently evolving populations in the 
proposed coevolutionary algorithm: (1) candidate programs 
evolving using CGP and (2) tests (fitness cases subsets, abb. 
FCSs) evolving using a simple genetic algorithm. Both pop
ulations evolve simultaneously and interact through the fit
ness function. 

P o p u l a t i o n o f c a n d i d a t e p r o g r a m s 
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Figure 1: Populations in coevolutionary CGP - candidate programs and tests. 
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Test is a subset of the fitness cases set, therefore every test 
is encoded as a fixed-sized array of pointers to elements in 
the fitness cases set. In addition to one-point crossover and 
mutation, a randomly generated tests replacing the worst-
scored tests in each generation has been used. 

The aim of coevolving tests and candidate programs is 
to allow both candidate programs and tests to enhance each 
other automatically until a satisfactory problem solution has 
been found. Figure 1 shows the overall scheme of the pro
posed method. If the top-ranked candidate program fitness 
value (in the actual generation of candidate programs evolu
tion) has changed against the previous generation, the top-
ranked candidate program is copied to the archive of candi
date programs. The archive of candidate programs is a cir
cular list that is used for tests evaluation. Tests (in the tests 
evolution) are evaluated using candidate programs from the 
archive as follows. Each candidate program from the archive 
is executed for all fitness cases in the test. The test with the 
worst mean fitness value for candidate programs from the 
archive is selected as the top-ranked test in the actual gener
ation. This test is then used to evaluate candidate programs 
in the candidate programs evolution. This fitness interaction 
approach allows to improve candidate programs using the 
fitness cases, which cannot be correctly solved by currently 
evolved candidate programs yet. 

Hardware platform design 
The evolutionary design includes two basic steps alternating 
in each generation - generation of new population and evalu
ation. Since the evaluation step consists in multiple running 
or simulating of candidate program and computing chosen 
fitness, a significant acceleration can be achieved by means 
of task or data parallelism, while the best throughput can be 
achieved using custom hardware. 

On the contrary, the evolutionary process control is, by its 
nature, suitable rather for running on a universal processor, 
moreover in the case of CoEAs two evolutionary processes 
need to be executed in parallel with the ability to communi
cate with each other. 

These requirements have been taken into account when 
choosing the target platform. Currently, two suitable alterna
tives are available - conventional FPGAs and a combination 
of a processor and programmable logic (e.g. Xilinx Zynq 
A l l Programmable SoC, Dobai and Sekanina (2013)). Table 
1 compares several devices available in our institution as part 
of a development kit with respect to the configurable logic 

Table 1: Target platforms comparison. 

device logic cells block R A M 
Virtex 6 XC6VLX240T 241,152 14,976 Kb 

Virtex 7 XC7K325T 326,080 16,020 Kb 
Zynq 7020 XC7Z020 85,000 4,480 Kb 

MicroBlaze #0 

external DDR3 SDRAM memory 

• ••• •••• 
1 

memory driver MicroBlaze #1 

CGP Memory' 
fitness cases memory 

Figure 2: Hardware platform architecture. 

cells count and the amount of block R A M . It is obvious, that 
the Zynq platform offers much less flexibility in terms of 
custom logic comparing to Virtex FPGA family. Therefore, 
a standard FPGA has been chosen as a more flexible option. 

Despite the fact that standard FPGAs do not have hard 
processors, wide choice of soft processors under various l i 
cences are available. The most suitable choice for Xilinx 
devices is the MicroBlaze soft processor, offering sufficient 
performance while occupying a reasonable area. Figure 2 
shows the proposed hardware platform architecture. The 
system consists of two MicroBlaze soft processors supple
mented by two independent acceleration units (CGP Units) 
and fitness cases memory (CGP Memory). A l l components 
are interconnected by the A X I bus and additional memory 
channels are introduced for fitness cases transfers. Com-

Fitness 

Chromosome 
Fitness cases 

subset memory 

fitness 
c;isc 

fitness 
case 
address 

Figure 3: Detailed architecture of CGP Unit. 
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Figure 4: Virtual Reconflgurable Circuit (VRC). 

munication with a service application running on a PC is 
performed through serial port (UART) and L C M commu
nication library1. The dual MicroBlaze system utilizes A X I 
Mailbox component, which enables to pass simple messages 
between the processors (control and status messages, chro
mosomes, fitness values etc.). 

CGP Unit (Figure 3) includes a set of subcomponents, 
each composed of one virtual reconflgurable circuit (VRC), 
fitness unit and chromosome register. Moreover, the CGP 
Unit includes a common control unit and FCS memory, each 
subcomponent is fed with the same data. The control unit is 
responsible for the communication between the MicroBlaze 
processor and the peripheral and for controlling the fitness 
computation. There are several configuration and status re
gisters that are memory mapped on the A X I bus together 
with the test memory. By setting a specific bit in the control 
register, the fitness computation starts. Fitness cases are ad
dressed indirectly using the test memory, which is addressed 
sequentially by the control unit. In the case of image filter 
design, each fitness case consists of chosen, e.g. 3 x 3 or 
5x5 , pixel neighbourhood from the noisy image and one 
pixel from the original image. The noisy pixels are pro
cessed in the VRCs and together with the clean pixel, pro
perly delayed, come to the fitness unit. After a specified 
number of fitness cases is processed, the control unit saves 
the current fitness values and notifies the MicroBlaze pro
cessor by changing the status register value. 

The V R C architecture is shown in Figure 4. According 
to the program representation in CGP, the V R C comprises 
a grid of nodes, called configurable function blocks (CFBs), 
interconnected in such a way that each block can access all 
other blocks in previous columns and the V R C inputs. Both 
V R C s inputs and CFB's outputs are registered and delayed, 
so that the V R C is fully pipelined while keeping the i-back 
parameter of arbitrary choice. Thanks to the pipelining, the 

Table 2: Functions implemented in CFBs according to 
Sekanina etal. (2011). 

# function # function 
0 255 8 H > 1 
1 h 9 h 2> 2 
2 10 (ii < 4 ) V (i2 2> 4 ) 

3 i\ V «2 11 h +*2 

4 i\ V «2 12 
5 i\ A i2 13 ( i i + i 2 ) > 1 
6 i\ A i2 14 max(i!, i2) 
7 H © «2 15 min(i 1 , i2) 

V R C is able to process one fitness case per clock cycle. 
Each CFB has the same structure. The input data are se

lected using two multiplexers and forwarded to several func
tions (functions used for image filter design are listed in Ta
ble 2), the output value is selected by an output multiplexer. 
The configuration of the multiplexers is determined by spe
cific genes of the chromosome. 

The output of each V R C is connected to separate fitness 
unit (Figure 7). Two different fitness functions are computed 
simultaneously - squared and absolute error: 

JV 

•ZW = ̂ 2 (xi ~ Vi)' 
i=i 
N 

/ a b S = -Vi\, 

(1) 

Lightweight Communications and Marshalling (LCM) is a set 
of libraries and tools for message passing and data marshalling 
originally designed by the MIT DARPA Urban Challenge Team. 

where Xi is the clean pixel, yi the V R C output correspond
ing to the i-th fitness case and N the number of fitness cases. 
These fitness functions are very similar to the M S E and 
MDPP functions (commonly used for image filter design), 
except for normalization with the number of pixels N. Since 
division is a very demanding operation, its removal saves 
a lot of resources without any impact on the application in 
EAs. While performing experiments, one can choose which 
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VRC output 

reference pixel 

squared error 

absolute error 

Figure 7: Fitness unit. 

fitness function is used for the evaluation. 
The CGP Memory component (Figure 8) is designed to 

achieve very high throughput. One write port (connected 
to the A X I bus) and two read ports enable to supply both 
CGP Units with data. These ports have different data widths 
because the A X I bus is 32 bit wide, but the width of the 
fitness case depends on the chosen pixel neighbourhood (80 
bits for 3 x 3 , 208 bits for 5 x 5). Therefore the memory has 
to be divided into 8 bit wide blocks and the read and write 
ports have to be treated in a different way. The fitness case 
(data output of the read port) is a concatenation of values 
from all these blocks from the same address. When writing 
from the A X I bus side, at most 4 blocks are updated at the 
same time. The total memory size depends on the chosen 
pixel neighbourhood and the maximum training image size 
we want to use. In our design, the number of fitness cases 
is limited to 65,536 due to fixed address width (16 bit), then 
the maximum memory capacity is 80 • 65, 536 ~ 5, 243 Kb 
for 3 x 3 , respectively 208 • 65, 536 « 13, 632 Kb for 5 x 5 
neighbourhood. Note that these sizes still fit into the Virtex 
devices, but not into the Zynq SoC (see Table 1). 

Thanks to these hardware components, the fitness calcula
tion is very efficient. The remaining steps of the evolutiona
ry process (individuals manipulation, communication) take 
place on the MicroBlaze processors. 

The evolutionary design is running as follows. At the 
beginning, original and noisy images are transfered to the 
external DDR3 memory, fitness cases are put together and 
copied to the CGP Memory. After that, the design pro
cess is initiated. Timing diagram in Figure 5 shows the 
steps of a single generation. The population is divided into 
Nch chunks of Pch individuals depending on the number of 

A X I 
o a d d r e s s 
ft 

A X I . 
d a t a 

32 

32 8 

+-T+-
B l o c k #0 

65536x8b 

B l o c k #1 

65536x8b 

B l o c k #9 

65536x8b 

16 

-+-

f i t n e s s 
• c a s e 

a d d r e s s 

f i t n e s s 
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o 
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a d d r e s s 

•a 
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Figure 8: Architecture of CGP Memory. 

VRCs JVVRC and the population size P: 

AU = NvRC Prh — (2) 

In each generation, individuals belonging to the first chunk 
need to be mutated and transfered to the CGP Unit before 
the fitness computation is executed. For every succeeding 
chunk (except for the last one including the last individuals 
of the population), the mutations and chromosome transfers 
can be overlapped with the fitness computation (all chromo
some registers are shadowed). To achieve the best hardware 
utilization, the fitness computation time if has to be longer 
than the time i m spent on the mutations and transfers. Ignor
ing some overhead, the total time per generation i g is than: 

1) (3) • m a x ( i m , if) + if. 

Finally, when the evolution is completed, the best indivi
dual's chromosome is sent to the PC. 

The coevolutionary design process is slightly more diffi
cult, as it can be seen in Figure 6. The image filter evolution 
is running almost the same way except for the fitness cases 
subset, which is beeing evolved in parallel. For the purpose 
of FCSs evaluation, the best evolved filters are saved to an 
archive of candidate filters. The FCSs evolutionary process 

M i c r o B l a z e #0 •••( m u t a t i o n s X m u t a t i o n s ) 

C G P U n i t #0 

Figure 5: Timing diagram of the evolutionary process. 
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Figure 6: Timing diagram of the revolutionary process. 

is based on a simple genetic algorithm, the FCS chromo
some is represented by a fixed-sized array of integers. In 
each generation, all FCS individuals are evaluated using all 
filters from the archive (trainers), the fitness value of the i-th 
individual is the mean value of the particular fitnesses: 

/FCS 
1 A 

hj) (4) 

where A is the archive size and f(i, j) is the fitness (either 
squared error / s q or absolute error / a b s ) of the j- th trainer on 
the i-th FCS. After all FCSs are evaluated, new population is 
created using standard genetic operators. Specified number 
of individuals is obtained by one-point crossovers and the 
new individuals are mutated with some probability. In order 
to exert the selective pressure, elitism is introduced by keep
ing the best individual unchanged and making a few mutated 
clones. Finally, the rest of the population is generated ran
domly to preserve genetic variability. At the end of each 
generation, the filter evolutionary process is notified and at 
the right moment (after finishing the entire generation), the 
FCS is copied to the CGP Unit #0. No FCSs sharing be
tween MicroBlaze processors is required. 

Experimental results 
This section presents benchmark problems, experimental 
setup and experimental evaluation of the proposed hardware 
accelerated approach and its comparison with the software 
approach. 

In order to evaluate the proposed approach, salt-and-
pepper noise filters were designed using standard CGP and 
coevolutionary CGP. This type of noise is characterized by 
noisy pixels with the value of either 0 or 255 (for 8-bit gray-
scaled images). The Lena training image with size 256 x 256 
pixels was corrupted by 5%, 10%, 15% and 20% salt-and-
pepper noise. The evolved filters were tested on 14 different 
images (Gonzalez et al., 2009) containing the same type of 
noise. 

CGP was used according to Sekanina et al. (2011), i.e. 
nc = 8, n r = 4, I = 7, n\ = 9, n0 = 1, A = 19, every node 
had two inputs, the number of mutations per new individual 
was h = 5 and T contained the functions from Table 2. The 
archive of candidate programs had capacity of 20 elements. 

FCSs were evolved using a simple GA, where 3-
tournament selection, single point crossover and mutation 
up to 2 % of chromosome were used. Elitism and random 
individuals were used to exert selective pressure and pre
serve genetic variability. For the GA, various chromosome 
lengths were tested, particularly, 1.5625 %, 3.125 %, 6.25 %, 
12.5 %, 25 % and 50 % of total number of fitness cases in the 
training set. For each FCS size, 100 independent runs were 
performed and the evolution/coevolution was terminated af
ter 100,000 generations of CGP. 

The proposed coevolutionary algorithm accelerated using 
FPGA was compared with the standard CGP algorithm in 
terms of filtering quality of evolved filters and with the higly 
optimized coevolution implementation running on an ordi
nary processor in terms of the execution time. 

The quality of filtering was expressed using a measure 
typically used in the image processing community - as a 
peak signal-to-noise ratio (PSNR): 

2552 

^ , , ) = 1 0 1 o g M ^ . ) _ y ( , . ) ) a , 

(5) 
where M x N is the size of the image, x denotes the original 
image, y the filtered image and i, j are indexes of a pixel in 
the image. Figure 9 shows that using coevolutionary CGP 
running on an FPGA we are able to evolve image filters 
of comparable (or better) quality than standard CGP for all 
noise intensities. Furthermore, the higher the noise intensity, 
the smaller fitness cases subset can be used to get acceptable 
results. 

Software and hardware performance comparison for stan
dard CGP can be found in Table 3. The software imlementa-
tion is a command line tool written in C + + utilizing OpenMP 
library for running in multiple threads and SSE 4.1 instruc-
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Figure 9: PSNR statistics calculated from 100 evolved niters (100 independent runs using the Lena training image for each 
noise intensity and each FCS size) for the 14 test images. 

tions enabling to process 16 fitness cases in a single step. 
Before evaluation, each chromosome is analyzed to exclude 
the inactive nodes. The performance tests were performed 
on the Intel Core i7-860 processor (2.8 GHz), allowing 8 
threads to be running simultaneously. The hardware plat
form configuration was as follows: 7 VRCs in the CGP 
Unit #0, 6 VRCs in the CGP Unit #1, in total i V V R c = 13, 
the entire system was running on 100 MHz frequency. De
spite a very efficient software implementation and powerful 
processor, the hardware implementation overcomes the SW 
version significantly. The bigger the population, the higher 
the acceleration, while the most advantageous choice of the 
population size is a multiple of the V R C count. 

The coevolutionary design performance of the hardware 
platform was compared to a software implementation, again 

Table 3: Hardware platform evolutionary process perfor
mance (10,000 generations, image size 256 x 256 pixels, 1-5 
mutations per chromosome) obtained by running 100 inde
pendent tests for each population size. 

10 15 20 25 population size 
SW time (s) 
HW time (s) 
acceleration 

30.83 74.65 
7.21 7.86 
4.28 9.50 

122.39 183.40 233.71 
14.17 14.44 14.83 
8.63 12.70 15.77 

optimized using OpenMP and SSE 4.1 instructions. Be
cause of two evolutionary processes running in parallel and 
very poor data locality, the performance of the software im
plementation was vastly degraded. Therefore the speed-up 
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Table 4: Co-evolutionary design performance. 

FCS size 50% 25% 12.5 % 
SW time (s) 713.23 405.47 223.18 
HW time (s) 12.51 6.91 4.23 
acceleration 56.99 58.64 52.82 

FCS size 6.25 % 3.125% 1.5625% 
SW time (s) 133.91 88.26 71.92 
HW time (s) 3.57 4.20 3.97 
acceleration 37.49 21.04 18.11 

is much more significant in the case of coevolutionary de
sign. Table 4 shows performance tests results for software 
and hardware approaches. The experimental setup was as 
follows: 10,000 generations, population of 20 individuals, 
image size 256 x 256 pixels, 1-5 mutations per CGP chro
mosome, up to 2 % mutations per FCS. Note that for FCS 
sizes lower than 12.5 %, the evolution time is similar. Due 
to very low fitness cases count, the fitness computation time 
if is shorter than the mutations time i m and hardware uti
lization goes down. Moreover, the FCS evolution runs faster 
due to lower overhead and the FCS is updated more often. 
That is why the computation time can surprisingly grow with 
FCS size decrease. 

Conclusions 
In this paper, a hardware platform for coevolutionary CGP 
speed-up based on FPGA technology has been proposed. 
Two-population coevolutionary algorithm running on dual 
MicroBlaze soft processor system has been accelerated us
ing custom peripheral based on virtual reconfigurable cir
cuit approach. The full pipelined V R C along with a special 
fitness cases memory enables very efficient fitness calcula
tion. The performance of the hardware was experimentaly 
evaluated in the task of evolutionary image filter design. It 
was shown that using custom hardware, universal processor 
thoughput can be greatly overcome in the task of the evo
lutionary design and even more in the coveolutionary case. 
Various sizes of fitness cases subset have been applied to de-
mostrate the coevolutionary approach benefits. Especially 
for higher noise intensities, reduction of the FCS size leads 
to better results. 

With small modifications, the hardware platform can be 
used to effectively evolve other digital circuits using coevo
lutionary CGP. In our future work, we will focus on design
ing image filters for other noise types as well as other image 
transformations, combinational logic design and other tasks 
suitable for coevolutionary design. 
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