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Abstract
This thesis explores the importance of NIC performance testing in network engineering, par-
ticularly for systems using the modern Linux kernel, due to rising network throughputs and
multi-core processors expansion. It develops a scalable, adaptable test scenarios for NIC
testing that handle the complexities of a rapidly evolving hardware and software landscape,
aiming for stable, reproducible outcomes across different scenarios. The research includes
analyzing Linux kernel’s offloading features, using continuous integration tools for volumi-
nous testing, and rigorously examining hardware setups. The test scenarios’ effectiveness is
validated through extensive testing on a specialized testbed, enhancing the understanding
and optimization of NIC performance in complex Linux-based networks.

Abstrakt
Táto práca sa zaoberá významom testovania výkonnosti sieťových kariet (NIC) v inžinier-
stve sietí, najmä pre systémy používajúce moderné jadro Linuxu, v dôsledku rastúcej
priepustnosti sietí a expanzie viacjadrových procesorov. Vyvíja škálovateľné a prispôso-
biteľné testovacie scenáre pre testovanie NIC, ktoré zohľadňujú zložitosť rýchlo sa vyvíja-
júceho hardvéru a softvéru a smerujú k stabilným, reprodukovateľným výsledkom v rôznych
scenároch. Výskum zahŕňa analýzu akcelerácie sieťových mechanizmov jadra Linuxu, použi-
tie nástrojov kontinuálnej integrácie pri objemnom testovaní a dôkladné preskúmanie hard-
vérových konfigurácií. Účinnosť testovacích scenárov je validovaná rozsiahlým testovaním
na presne definovanom testovacom prostredí, čo zlepšuje pochopenie a optimalizáciu výkon-
nosti NIC v komplexných sieťových systémoch založených na Linuxe.
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Rozšířený abstrakt
Táto práca sa zaoberá kritickou úlohou testovania výkonu sieťových kariet (NIC) v inžinier-
stve a manažmente sietí. Zdôrazňuje komplexnosť a dôležitosť sieťového výkonu v rôznych
aplikáciách. Optimálny sieťový výkon závisí na správnej konfigurácii viacerých kompo-
nentov vrátane CPU, PCI, prepojení soketov, sieťovej karty a konfigurácie jadra Linuxu.
Táto práca predstavuje testovacie scenáre pre kontinuálne testovanie výkonu NIC na oper-
ačných systémoch založených na modernom jadre Linuxu. Potreba neustáleho testovania
vzniká so zvyšovaním sieťovej priepustnosti na vyššie dátové rýchlosti a rozširovaním pro-
cesorov koncových systémov na viacjadrové. Tieto vývoje podnietili používanie techník
ako hardvérová akcelerácia pomocou NIC a ladenie jadra Linuxu na optimalizáciu prenosu
dát veľkej rýchlosti. Jadro Linuxu sa vyvíja do hĺbky, zlepšovaním schopnosti spracovania
paketov a do šírky, podporou širšej škáli hardvéru. To má za následok rozsiahlu testo-
vaciu maticu a komplexnosť manuálneho testovania. Okrem toho, rýchly a decentralizo-
vaný charakter vývoja jadra Linuxu znamená vyšší objem opráv, ktoré vyžadujú testovanie
na izoláciu potenciálnych problémov. Táto práca skúma funkcie odľahčenia jadra Lin-
uxu, aby identifikovala efektívne konfigurácie a stanovila najlepšie postupy pre kontinuálne
testovanie výkonu softvéru. Práca navrhuje škálovateľné testovacie scenáre pre rozsiahle
testovanie, ktoré poskytujú konzistentné, reprodukovateľné výsledky v rôznych výkonnost-
ných scenároch. Kapitola 2 sa podrobne venuje mechanizmom hardvérová akcelerácie siete
v jadre Linuxu, čo je zásadný aspekt optimalizácie výkonu siete. Hardvérová akcelerá-
cia odkazuje na prenos špecifických úloh spracovania siete z CPU na sieťovú kartu, čím
sa zvyšuje efektivita. Následne, Kapitola 3 skúma integráciu nástrojov pre kontinuálnu
integráciu (CI) v kontexte testovania výkonu NIC na systémoch založených na Linuxe.
Hodnotí rôzne nástroje a platformy CI, posudzuje ich vhodnosť pre zvládanie komplexnosti
a rozsahu testovania výkonu siete. Kapitola tiež pokrýva všeobecné techniky testovania
softvéru, prispôsobuje tieto metodológie na riešenie jedinečných výziev, ktoré predstavuje
testovanie výkonu NIC. Kapitola 4 poskytuje komplexný prehľad o hardvérove použitom
pre testovanie výkonu NIC. Detailne opisuje špecifikácie a konfigurácie sieťových kariet vy-
braných pre experimenty, vysvetľuje odôvodnenie za každým výberom. Ďalej zdôrazňuje
rôzne architektúry procesorov, na ktorých budú sieťové karty testované. Na základe pred-
chádzajúcich kapitol, Kapitola 5 predstavuje systematický prístup k testovaniu výkonu
NIC na operačných systémoch založených na jadre Linux. Tento prístup je navrhnutý tak,
aby bol komplexný, pokrývajúc rôzne aspekty ako plánovanie testov, ich vykonávanie, zber
dát a analýzu. Dôraz je kladený na automatizáciu, aby sa zabezpečili efektívne a opako-
vateľné testovacie procesy. Okrem toho predstavuje rad všeobecných testovacích scenárov
na zjednodušenie efektívneho, opakovateľného testovacieho procesu, ktorý prináša konzis-
tentné a porovnateľné výsledky. Dôležitým aspektom je škálovateľnosť, zabezpečujúca,
že testovacie scenáre môžu byť implementované naprieč rôznymi sieťovými prostrediami
a hardvérovými konfiguráciami. Rovnako dôležitá je prispôsobivosť, umožňujúca testo-
vacím scenárom zostať aplikovateľnými v meniacom sa a vyvíjajúcom sa hardvérovom a
softvérovom prostredí. Kapitola 6 ukazuje, že testovacie scenáre sú dostatočne flexibilné,
aby zvládli širokú škálu sieťových konfigurácií, vrátane rôznych verzií IP (IPv4, IPv6), nas-
tavení VLAN a transportných protokolov ako TCP alebo UDP. Budúca práca by mohla
rozšíriť tieto scenáre o konfigurácie ako MPTCP alebo VXLAN. Štúdia ukazuje, že variá-
cie v IP verziách a nastaveniach VLAN majú minimálny vplyv na sieťový výkon, pričom
moderné procesory efektívne zvládajú až 100Gb obojsmerného toku dát. Vypnutie TCP
Segmentation Offload (TSO) vedie k výraznému zníženiu lokálnej efektivity, medzi 60% a
70%, zatiaľ čo vplyvy na efektivitu vzdialeného zariadenia sú minimálne a jednotné na-



prieč rôznymi značkami NIC. Podobné dopady sú pozorované, keď sú vypnuté oba offloady
výpočtu odoslaných a prijatých checksumov, hoci vzdialená efektivita klesá. Dôležitosť
manažmentu architektúry NUMA na predchádzanie poklesu výkonu a význam nepretržitej
integrácie pri reakcii na opravy jadra sú zdôraznené v tejto práci. Intel Sapphire Rapids
vyniká ako najlepší výkonný hráč, pričom Intel E810 je označený ako najlepšia sieťová
karta. Avšak výkon sa výrazne líši v závislosti od kombinácií procesorov a sieťových ka-
riet, ovplyvňujúc celkovú efektivitu a optimalizáciu systému. Tieto poznatky sú kľúčové
pre informované rozhodovania v oblasti inžinierstva a manažmentu sietí. Do budúcnosti by
sa mohol klásť dôraz na začlenenie 400Gb kariet alebo na vývoj metriky pre priepustnosť
na watt s porovnaním procesorov ARM s inými architektúrami, čo umožňuje porovnania,
ktoré sú obzvlášť relevantné, keď veľkí poskytovatelia začínajú klásť dôraz na energetickú
úspornosť [31].
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Chapter 1

Introduction

This thesis delves into the crucial role of network interface card (NIC) performance testing
in network engineering and management. It emphasizes the complexity and importance of
network performance across various applications. Optimal network performance hinges on
the appropriate configuration of multiple components, including the CPU, PCI, intercon-
nect, network interface card, and Linux kernel configuration.

This thesis introduces test scenarios for ongoing NIC performance testing on operating
systems based on the modern Linux kernel. The necessity for continuous testing arises from
scaling up network throughput to higher data rates and expanding end-system processors
to multiple cores. These developments have spurred the use of techniques like NIC offloads
and Linux kernel tuning to optimize high-speed data transfer. The Linux kernel is evolving
in-depth, enhancing its packet processing capabilities and breadth, supporting a wider
range of hardware. This results in a vast testing matrix and the complexity of manual
testing. Additionally, the rapid and decentralized nature of Linux kernel development
means a higher volume of patches requiring testing to isolate potential issues. This thesis
investigates the Linux kernel’s offloading features to identify effective configurations and
establish best practices for continuous software performance testing. The thesis proposes
scalable test scenarios for extensive testing that yield consistent, reproducible results in
various performance scenarios.

The thesis is organized as follows:
Chapter 2 delves into the specifics of network offloading mechanisms in the Linux kernel,

an essential aspect of network performance optimization. Offloading refers to transferring
specific network processing tasks from the CPU to the network interface card, enhancing
efficiency.

After that, Chapter 3 explores the integration of continuous integration (CI) tools in
the context of NIC performance testing on Linux-based systems. It evaluates various CI
tools and platforms, assessing their suitability for handling the complexities and scale of
network performance testing. The chapter also covers general software testing techniques,
adapting these methodologies to address the unique challenges NIC performance testing
poses.

Chapter 4 provides a comprehensive overview of the hardware setup used for NIC per-
formance testing. It details the specifications and configurations of NICs selected for the
experiments, explaining the rationale behind each choice. Furthermore, it highlights various
CPU architectures on which the NICs will be tested.

Based on the previous chapters, Chapter 5 presents a systematic approach for NIC
performance testing on Linux kernel-based operating systems. The approach is designed to
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be comprehensive, covering various aspects such as test planning, execution, data collection,
and analysis. It emphasizes automation to ensure efficient and repeatable testing processes.
Scalability is a crucial focus, allowing the test scenarios to be applied to various network
environments and hardware configurations. Adaptability is also vital, enabling the test
scenarios to remain relevant in evolving hardware and software landscapes. The chapter
outlines strategies for ensuring the stability and reproducibility of test results, which are
vital for reliable performance evaluation.

Next, Chapter 6 assesses the effectiveness of the proposed NIC performance testing
approach and the performance of NICs under different test scenarios. This involves con-
ducting a series of tests on the specified testbed, utilizing a sufficiently large sample size
across diverse configurations and various test scenarios tailored to different workloads. The
chapter summarises the findings from these tests, discusses their implications, and provides
a detailed comparison of the results across the entire testbed.

Finally, Chapter 7 concludes the thesis by summarizing the key findings from the NIC
performance tests, the effectiveness of the proposed approach, and test scenarios. It reflects
on the implications of these findings for network engineering and management, particularly
with Linux-based systems. The chapter discusses potential limitations and suggests areas
for future research and improvement.
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Chapter 2

Linux kernel network offloading

This thesis necessitates a basic familiarity with the Linux networking stack. To maintain
focus and relevance to the main content of the thesis, extensive details and intermediate
packet processing steps will be bypassed, concentrating instead on aspects crucial for un-
derstanding the subsequent sections. For those seeking a more in-depth exploration, a
thorough description is available in [32]. However, it’s important to note that the most
current and authoritative resource on this subject is the source code, which is continuously
updated.

2.1 Features of network interfaces
In the Linux networking subsystem, feature flags indicate network interfaces’ capabilities
and specific behaviours. Within the Linux kernel’s networking subsystem context, these
flags are known as features. These features are integral to the net_device structure, a
key component in the Linux kernel that represents network interfaces. Network interface
drivers typically set these flags, which can be altered (enabled or disabled) based on the
hardware’s capabilities and the desired network configuration.

The term features refers to specific hardware offloading or processing capabilities sup-
ported by the Network Interface Card (NIC). Examples of such capabilities include check-
sum offloading, TCP segmentation offloading (TSO), and scatter-gather I/O, among others.
The kernel leverages these features to optimize how packets are handled for a particular
interface. For instance, if a NIC supports checksum offloading, the kernel will forego com-
puting the checksum via software, thus conserving CPU resources (as detailed in Section
2.2). Substantial enhancements can be achieved in network throughput and latency by
utilising these network interface features.

Some standard features in the Linux kernel include NETIF_F_HW_CSUM, indicating the
NIC’s ability to compute packet checksums; NETIF_F_TSO, which allows the NIC to break
down large data blocks into TCP segments; NETIF_F_RXHASH, enabling the NIC to dis-
tribute incoming network traffic across multiple CPU cores for improved load balancing;
NETIF_F_GSO, which permits the NIC to offload the segmentation of large packets; and
NETIF_F_SG, allowing the NIC to assemble data from various memory buffer locations into
a single packet, thus reducing the number of I/O calls.

These features can be configured and examined using various Linux networking tools
and commands, such as ethtool. This tool provides the functionality to enable or disable
specific features on a network interface tailored to the network’s requirements and the hard-
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ware’s capabilities. The current list of features can be viewed using the --show-features
action in ethtool, and modifications to features that can be toggled from userspace are
made using the --features action.

2.2 Checksum offloads
Checksum offloading is crucial in modern networking, particularly in the Linux kernel’s net-
working stack. It involves transferring the responsibility of computing checksums from the
CPU to the network interface card (NIC), significantly reducing CPU load and enhancing
system throughput.

Originally, CPUs were responsible for all checksum calculations, a resource-intensive
task, especially under high network traffic. The development of advanced NICs capable of
handling these computations represented a paradigm shift, allowing for more efficient data
processing and reduced latency.

Checksums are crucial for ensuring data integrity across networks. The NIC typically
computes the checksum at the link layer, as it fully understands the protocol. This is known
as the Frame Check Sequence for Ethernet, detailed at the end of the frame [4]. The NIC
computes the checksum during data transmission and checks it upon reception; a nonzero
value indicates a corrupted frame, which is then discarded.

At the network layer, IPv6 does not use a checksum [18], while IPv4 includes a checksum
for its header, which is generally not computationally demanding due to the header’s small
size [2]. Many controllers can compute the IPv4 header checksum before transmission.

Transport layer protocols, like TCP [12], UDP [1], and DCCP [14], use a 16-bit one’s
complement checksum for the entire packet. Computing this checksum is resource-intensive,
particularly due to large packet payloads and poor caching. NICs often provide checksum
offloading for receiving and sending at this layer, enhancing efficiency.

The checksum verification is straightforward for received packets, independent of the
specific protocol, provided the IP packet is not fragmented. For transmission, newer NICs
can calculate checksums for any part of the packet and place them at any offset, allowing
for broader protocol compatibility.

TCP and UDP also include a Pseudo Header in their checksum calculations, which may
require the system software to pre-compute this part of the checksum [30].

In Linux, checksum offloading is managed through feature flags on a per-packet basis,
accommodating scenarios like tunnel headers and VLAN tags. For an in-depth understand-
ing, the Linux source file include/linux/skbuff.h can be referenced.

2.2.1 Transmit Checksum Offload

In the context of data transmission, especially when excluding Generic Segmentation Of-
fload (GSO), see Section 2.3.3, the process becomes more intricate. Without GSO, basic
checksum offloading [48] involves ensuring that packets have a valid checksum or that the
subsequent software component, such as the network driver, can compute it. Specific feature
flags indicate a driver’s ability to calculate checksums. The flag NETIF_F_HW_CSUM signifies
the driver’s capability to compute any one’s complement checksum as defined in the sk_buff
structure fields. Other feature flags like NETIF_F_FCOE_CRC and NETIF_F_SCTP_CRC rep-
resent the ability to calculate the CRC for FCoE [26] and SCTP [37] packets, respec-
tively. The flags NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM, though deprecated in favour
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of NETIF_F_HW_CSUM, indicate the capability to compute the checksum for TCP/UDP pack-
ets over IPv4 and IPv6, respectively.

Notably, none of the feature flags account for the checksum of the IPv4 header. This
omission is because computing the checksum for the relatively small 20-byte header is
not resource-intensive, especially when the header is already constructed in software. An
exception exists for IP packets generated through TCP Segmentation Offload (TSO), where
the controller assembles the IP packets, necessitating special handling.

Earlier efforts focused on simpler cases of checksum computation, but these evolved into
a more general capability for computing one’s complement checksums. This development
means the driver assesses whether the controller can compute the checksum. If the controller
recognizes the headers, it is directed to compute the checksum; otherwise, the checksum
calculation returns to the software. Drivers must also accommodate packets that are already
checksummed or do not require checksum computation.

In scenarios involving generic checksum calculations, such as SCTP, the checksummed
portion of the packet is defined as a suffix starting from the csum_start field in the sk_buff
structure. The driver ensures the checksum is placed at the csum_offset. If the controller
does not support generic checksum computation, the driver verifies the compatibility of
these fields with the controller’s capabilities.

Should there be doubts about the controller’s checksum computing ability, the driver
can employ helper functions like skb_csum_hwoffload_help(), skb_checksum_help(), or
skb_crc32c_csum_help() to carry out the checksum calculation in software.

2.2.2 Receive Checksum Offload

In the driver, the feature flag NETIF_F_RXCSUM controls offloading received checksums [10].
However, the system’s stack does not rely solely on the driver’s functionality; it also consis-
tently evaluates the ip_summed field. When a packet is received from the NIC, the driver
cannot change the offload state, as it is too late. Thus, the driver must use the meta-
information provided by the device to determine which checksums have been verified and
then appropriately set the ip_summed field based on this information.

The ip_summed field can have several values:

• CHECKSUM_NONE: This indicates that the device did not perform a checksum on the
packet, potentially due to a lack of capability. The checksum has not been verified,
and the value of skb->csum is undefined.

• CHECKSUM_UNNECESSARY: Used when the hardware does not compute the entire check-
sum but verifies checksums for specific protocols (such as TCP, UDP, GRE, SCTP,
FCOE). When checksums are verified, this state is set, indicating that no additional
processing is required. However, skb->csum remains undefined.

• CHECKSUM_PARTIAL: This indicates a scenario where a checksum is offloaded to a de-
vice, often used in cases like GRO or remote checksum offload. It means checksums up
to a certain point in the packet are verified, but those beyond the offloaded checksum
are not. This state is important for understanding the extent of verification.

• CHECKSUM_COMPLETE: This state is used when a device provides the checksum for the
entire packet, offering a more generalized approach where the device does not need to
parse headers to compute the checksum. However, this state does not apply to SCTP
and FCoE protocols.
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Understanding these states is crucial for effectively managing checksum offloading and
ensuring accurate packet processing in network systems.

2.2.3 Local Checksum Offload

Local Checksum Offloading (LCO) [41] is a technique in network processing designed to
efficiently calculate the checksum of an encapsulated datagram, especially when the inner
checksum is set for offloading. This method is particularly beneficial in scenarios involving
encapsulated data packets, such as virtual networking or tunnelling protocols.

The fundamental principle of LCO is based on the properties of one’s complement check-
sums. For these packets, a correctly calculated checksum means that the one’s complement
sum of the packet equals the complement of the sum of the pseudo-header. The checksum
field effectively neutralizes the other sums due to its complementary nature. This principle
applies to any case where an ’IP-style’ one’s complement checksum is employed.

In TX (Transmit) Checksum Offload, where the network interface card (NIC) computes
the packet checksum, this principle is used for LCO. When the NIC calculates the checksum,
the one’s complement sum from a specified starting point (csum_start) to the packet’s end
equals the complement of the initial value in the checksum field. To compute the outer
checksum without processing the entire payload, the summing can halt at csum_start,
including the complement of the 16-bit word at the offset (csum_start + csum_offset).

The correct outer checksum emerges when the actual inner checksum is later computed
(either by skb_checksum_help() or hardware) due to the inherent arithmetic properties.
In the Linux stack, LCO is employed when constructing UDP headers for encapsulations
like VXLAN[24] or GENEVE[16], as well as their IPv6 equivalents. It is also used for IPv4
GRE[23] headers but is not currently applied to IPv6 GRE headers, although it could be
relevant.

2.2.4 Remote Checksum Offload

Remote Checksum Offloading (RCO)[17] is a method employed to circumvent the compu-
tation of the inner checksum in an encapsulated data packet, enabling the offloading of
checksum calculation for the outer layer instead. This technique requires alterations to the
encapsulation protocols, which must also be supported by the receiving end. Due to these
prerequisites, RCO is not typically enabled by default. RCO proves particularly advanta-
geous in the context of encapsulated network traffic, such as that utilizing UDP or GRE
protocols.

When creating a packet at the transport layer (for example, a TCP or UDP segment),
the system prepares it for checksum offloading. This preparation includes marking in the
packet’s metadata that the checksum calculation is designated for offloading. The packet’s
checksum field is either filled with a pseudo-header checksum or set to zero.

Subsequently, the encapsulation layer, which wraps the original packet with additional
headers for routing or other functions, appends specific metadata to the packet. This meta-
data comprises the checksum start and offset values, instructing the NIC on the initiation
point for checksum calculation and the placement of the computed checksum.

Once encapsulated and equipped with the necessary metadata, the packet is dispatched
to the NIC. The NIC, capable of checksum offloading, performs the checksum computation
for the outer header (such as the UDP checksum in UDP encapsulation), based on the
metadata provided.
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Upon computing and inserting the checksum, the NIC forwards the packet. The offload-
ing process ensures that the remaining parts of the packet, particularly the inner header
and payload, are not altered during transmission.

The implementation of RCO varies across encapsulation protocols, with many tunnel
types providing control flags to enable it. For instance, in VXLAN, the flag
VXLAN_F_REMCSUM_TX within the vxlan_rdst structure is utilized to activate RCO for trans-
missions to specific remote destinations.

2.3 Segmentation offloads
The Linux networking stack implements various segmentation offloads and incorporates
software strategies that reduce the frequency of traversing the networking stack. These
software approaches are crafted to integrate smoothly with hardware offloading techniques,
thereby boosting overall efficiency.

To comprehend certain offloading techniques, it is crucial to understand the Network
API (NAPI), a mechanism in the Linux kernel that minimizes the overhead caused by
interrupts. When a network device receives a packet, it stores the packet in a DMA buffer
in the host’s memory, marks it, and then interrupts the host. Instead of processing the
packet immediately during the interrupt, a NAPI-compatible driver schedules a softirq
handler for polling and temporarily disables further interrupts. The driver then processes
packets, including any received during this period, in a polling loop. This loop continues
until no packets are left, after which the interrupt is re-enabled. This approach enhances
the packet processing rate by preventing disruption from incoming packets.

The offloading techniques discussed below, often called Stateless Offloads, are designed
to streamline networking operations. While some of these techniques, such as Large Receive
Offload (LRO), may require maintaining state, the term ”Stateless Offloads“ is a widely
accepted and commonly used descriptor in the industry.

2.3.1 TCP Segmentation Offload

TCP functions as a stream-like conduit, creating the semblance of a continuous data stream
over a network that, in reality, transmits discrete, bounded packets. Data inputted into
this ”stream“ is divided into segments, each assigned a sequential number for tracking
purposes. This sequential numbering ensures that segments are neither lost nor delivered
out of sequence at the application layer. Notably, TCP does not specify the size of these
data segments, theoretically allowing data transmission to be as granular as individual
bytes. This adaptability to various data sizes and network conditions is a key feature of
TCP’s design.

Minimizing overhead by handling data in the largest chunks possible is efficient, as it
reduces the frequency of data passing through the entire network stack. Software-wise,
the network stack typically segments data as late as possible, facilitating batch processing.
On the receiving end, the stack may merge segments from the same TCP stream before
delivery, optimizing the process.

A Network Interface Card (NIC) might offer a feature that queues TCP packets larger
than the network’s Maximum Transmission Unit (MTU) and autonomously fragments these
oversized packets into smaller, MTU-compliant segments for transmission. This capabil-
ity, known as Large Send Offload (LSO), allows the network stack to operate beyond the
constraints of the link MTU, dealing with larger data blocks.
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The offloading process requires recognition up to the TCP header, which limits it to
certain header combinations. Basic NICs support TCP over IP, while advanced ones can
process TCP encapsulated within various tunnel types. Conversely, a Large Receive Offload
(LRO) merges multiple TCP segments into a larger packet before it enters the OS’s receive
queue. This feature is optional to avoid protocol violations in bridging or routing scenarios.
If LRO is inapplicable or needs deactivation (as in routing), Linux offers Generic Receive
Offload (GRO) for packet coalescence, enabling larger data block handling.

Both LSO and LRO rely on checksum offloading for packet validation and creation.
Managing multiple checksums, particularly in tunnelled protocols, is vital for these offloads.
Additionally, TCP Segmentation Offload (TSO)[46] enhances performance in virtual envi-
ronments by effectively increasing the virtual link MTU without compromising isolation.

LRO operates independently of the Linux networking stack. Once a driver receives a
packet, LRO processing has already been completed. Thus, Linux’s role is to provide a
mechanism for activating LRO, achieved via the NETIF_F_LRO feature flag, which toggles
LRO as needed.

Recognizing LRO’s limited applicability, some NIC vendors have developed a stricter
version of LRO that provides detailed metadata about original packet segmentation, en-
abling resegmentation later.

2.3.2 UDP Fragmentation Offload

UDP Fragmentation Offload (UFO)[49] is a relatively simpler technique compared to TCP
segmentation offload, primarily because UDP datagrams have a maximum size limit of 64
KB. This size often surpasses typical network links’ Maximum Transmission Unit (MTU).
In contrast to TCP, UDP does not have an inherent concept of fragmentation and instead
relies on IP fragmentation for payloads exceeding the MTU. Some network controllers can
manage IP packet fragmentation directly on the chip. This process is less complex than TCP
segmentation offload since it only updates the IPv4 header checksum and does not require
modifications to the transport layer Protocol Data Unit (PDU). The IPv4 Identification
(ID) field must remain constant across all fragments generated from a single IPv4 datagram.

However, the UFO feature has been deprecated in modern Linux kernels, which means
these kernels no longer generate socket buffers (skbs) using UFO. Nevertheless, these kernels
are still capable of processing UFO skbs received from devices like tuntap. Despite the
deprecation of the UFO feature, the offloading for UDP-based tunnel protocols remains
supported.

2.3.3 Generic Segmentation Offload

Generic Segmentation Offload (GSO)[40] is a software-only approach to manage situations
where device drivers cannot perform certain hardware offloads. In GSO, packet segmenta-
tion occurs just before the packet is delivered to the driver. This approach streamlines the
driver’s task by eliminating the need for it to manage packet segmentation. The packets for
segmentation may result from Generic Receive Offload (GRO) processing, or they might be
directly generated from data sent through a socket.

In this process, the data in a skbuff is split into multiple resized skbuffs. Each
of these is sized according to the Maximum Segment Size (MSS), which is defined in
skb_shinfo()->gso_size. A crucial step before employing any hardware-based segmen-
tation offload is to initiate a corresponding software offload using GSO. This preemptive
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step is essential to avoid scenarios where a frame becomes untransmittable when rerouted
between different devices due to incompatible segmentation specifications.

2.3.4 Generic Receive Offload

Generic Receive Offload (GRO)[39] is the counterpart to Generic Segmentation Offload
(GSO). GRO functions by consolidating incoming packets into batches whenever possible.
As packets are processed by the Network API (NAPI), they are organized into a gro_list
composed of sk_buff structures. Each newly received packet is assessed against this list to
determine if it can be amalgamated with existing ones. A distinctive feature of GRO is its
adaptability: it is not restricted to specific protocol layers, thus allowing protocol handlers
to make informed decisions about which aspects of the information can be compromised
for the sake of merging. Packets that are candidates for merging typically exhibit similar
header sequences, with only slight variations in certain fields. These packets remain in the
gro_list until they are relayed to the upper layer for further processing.

Contrary to Large Receive Offload (LRO), GRO merges packets non-destructively. For
successful combination by GRO, packets must belong to the same flow and share certain at-
tributes, including timestamps. This meticulous merging process ensures that GRO-merged
packets can be subsequently deconstructed into their original segments when needed. Con-
sequently, GRO is also suitable for deployment in routers and bridges.

Network Interface Cards (NICs) implementing a strict version of LRO can offload GRO
directly to the hardware. This is facilitated by utilising the NETIF_F_GRO_HW feature flag.

2.3.5 Partial Generic Segmentation Offload

Partial Generic Segmentation Offload[42], an amalgamation of features from TCP Seg-
mentation Offload (TSO) and Generic Segmentation Offload (GSO), see Section 2.3.1 and
Section 2.3.3, capitalizes on specific attributes of TCP and tunnelling protocols. This of-
fload strategy focuses on updating only the innermost transport header and, if necessary,
the outermost network header rather than modifying headers for each segment. This se-
lective updating enables devices that do not support tunnel offloading or lack checksum
capabilities to utilize segmentation benefits.

In this offload technique, all headers, except the inner transport header, are essentially
set up for straightforward duplication. The only exception pertains to the outer IPv4
Identification (ID) field; in scenarios where this header does not include the Don’t Fragment
(DF) bit, device drivers must increment the ID field. The presence and utilization of this
offload feature are denoted by the NETIF_F_GSO_PARTIAL flag.

2.4 Scaling in the Linux Networking Stack
Implementing multiple queues for communication between the host and the Network Inter-
face Card (NIC) opens up various opportunities for performance improvement. The ideal
count of these queues is subject to change based on the specific controller and its applica-
tion. As will be explored, the benefits of employing multiple queues are not confined to
multi-processor systems; they extend to a broader spectrum of use cases.

Additionally, the utilization of multiple receive queues is straightforward. The con-
troller’s primary responsibility in this setup is to allocate incoming network packets among
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these queues. The particular distribution algorithm employed can facilitate the integration
of various offloading techniques.

2.4.1 Receive Side Scaling

Modern Network Interface Cards (NICs) are equipped with multiple receive and transmit
descriptor queues, a feature referred to as multi-queue. This capability allows a NIC to dis-
tribute incoming packets across various queues, thereby balancing the processing workload
across multiple CPUs. This distribution utilizes a filtering mechanism that assigns packets
to different logical flows, with each flow directed to a distinct receive queue for processing
by separate CPUs. This technique, commonly known as Receive-side Scaling (RSS)[45],
aims to enhance performance uniformly.

RSS typically uses a hash function on network or transport layer headers, such as a 4-
tuple hash of IP addresses and TCP ports. A standard hardware implementation involves a
128-entry indirection table, where each entry represents a queue number. A hash function,
often a Toeplitz hash, determines the packet’s receive queue. A Toeplitz hash is generated
based on a predefined Toeplitz matrix, characterized by constant descending diagonals from
left to right. When applied to data like packet headers in networking, the Toeplitz hash
consistently distributes network traffic across multiple paths or resources.

More advanced NICs provide greater flexibility, enabling packets to be steered to queues
based on programmable filters. For example, packets heading to a web server’s TCP port
80 can be routed to a specific queue. These ”n-tuple“ filters can be configured using tools
like ethtool, specifically with the --config-ntuple option.

Drivers for NICs supporting multi-queue often include a kernel module parameter for
setting the number of hardware queues. For instance, in the bnx2x driver, this parameter is
num_queues. A typical RSS setup might involve one receive queue per CPU, assuming the
device supports enough queues. If not, allocating at least one queue per memory domain
(where a memory domain encompasses CPUs sharing a specific memory level) is common.

The RSS device’s indirection table, which maps a queue based on a masked hash, is usu-
ally configured by the driver during initialization. By default, queues are distributed evenly,
but the table can be accessed and modified using ethtool commands, --show-rxfh-indir
and --set-rxfh-indir, for runtime adjustments like varying queue weights.

Each receive queue in a NIC corresponds to a unique IRQ (Interrupt Request). The
NIC triggers the associated IRQ to notify the corresponding CPU when new packets arrive
in a queue. PCIe devices use message-signaled interrupts (MSI-X) for this purpose, direct-
ing each interrupt to a specific CPU. The current queue-to-IRQ mappings can be viewed
in /proc/interrupts. Typically, any CPU may handle an IRQ, but distributing these
interrupts across CPUs is beneficial, especially considering the significant packet processing
involved in interrupt handling. IRQ affinity can be manually adjusted, though systems
with the irqbalance daemon, which optimizes IRQ assignments dynamically, might over-
ride manual settings.

RSS should be enabled when reducing latency is critical or processing receive interrupts
becomes a bottleneck. Distributing the load across CPUs reduces queue length. Ideally,
allocate as many queues as there are CPUs for low-latency networking, or the maximum
number supported by the NIC if it’s lower. For achieving high throughput, the most effective
setting usually involves the minimum number of receive queues needed to prevent CPU
saturation and queue overflow. This is because more queues can lead to more interrupts
and increased workload with default interrupt coalescing settings.
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2.4.2 Receive Packet Steering

Receive Packet Steering (RPS)[44] acts as a software-based counterpart to RSS (see Section
2.4.1). Functioning later in the data processing path, RPS is responsible for selecting the
CPU for higher-level protocol processing post-interrupt. It does this by placing the incoming
packet into the chosen CPU’s backlog queue and then signalling that CPU for processing.
Due to its software-level operation, RPS offers certain advantages over RSS. It is compatible
with any NIC, allows easy integration of software filters for new protocols, and does not
increase the hardware device interrupt rate.

RPS is activated during the latter part of the receive interrupt handling. When a driver
sends a packet up the network stack using netif_rx() or netif_receive_skb(), RPS kicks
in. At this juncture, the get_rps_cpu() function is called to determine the appropriate
CPU queue for processing the packet.

The initial phase of CPU selection in RPS involves computing a flow hash based on
the packet’s addresses or ports, utilizing either a 2-tuple or 4-tuple hash, depending on the
protocol. This hash is a consistent identifier for the packet’s flow and is either provided by
the hardware or computed within the stack. If the hardware is capable, it supplies the hash
in the packet’s receive descriptor, often the same hash used in RSS. The hash is stored in
skb->hash and is used within the stack to represent the packet’s flow.

Each hardware receive queue is associated with a list of CPUs, and RPS may direct
packets to these CPUs for processing. The process involves calculating an index from the
flow hash modulo the size of the CPU list, thereby selecting a CPU for packet processing.
The packet is then added to that CPU’s backlog queue. After completing the bottom half
routine, Inter-Processor Interrupts (IPIs) are sent to CPUs with packets in their backlog
queues, triggering backlog processing and further network stack processing.

RPS is available in kernels compiled with the CONFIG_RPS kconfig symbol, typically
enabled by default in SMP systems. However, RPS must be explicitly configured to be
active. The specific CPUs that RPS can route traffic to can be set individually for each
receive queue via a corresponding sysfs file entry, implementing a bitmap of CPUs. RPS
is disabled when set to zero; in such cases, packets are processed on the interrupting CPU.

In a single-queue device, a common RPS setup involves setting rps_cpus to the CPUs
within the same memory domain as the interrupt-handling CPU. If NUMA concerns are
negligible, it might encompass all system CPUs. However, at high interrupt rates, excluding
the interrupting CPU from this map is advised to reduce its workload.

For multi-queue systems with RSS configured to align each hardware receive queue with
a specific CPU, RPS may be unnecessary. Yet, if there are fewer hardware queues than
CPUs, RPS can be beneficial. Configuring rps_cpus for each queue to include CPUs in
the same memory domain as the queue’s interrupting CPU can be advantageous.

RPS effectively distributes network traffic processing across multiple CPUs, avoiding
packet reordering issues. However, this method can lead to CPU workload imbalances when
different data flows have varying packet rates, especially if one flow heavily dominates. This
is particularly noticeable in server environments with multiple active connections and could
indicate configuration issues or Denial of Service attacks with spoofed source addresses.

The Flow Limit feature in RPS addresses this imbalance during high CPU usage by
favouring smaller data flows. It activates when the CPU’s incoming packet queue exceeds
half its maximum length (net.core.netdev_max_backlog). The system tracks the number
of packets per flow over the latest 256 packets. If a flow exceeds a set proportion (default
50%) when a new packet arrives, the new packet is discarded, while packets from other
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flows are discarded only when the queue reaches maximum length. Below the critical
threshold, no packets are dropped, maintaining connectivity even for large flows. Flow
Limit is beneficial in systems with many concurrent connections, where a single connection
occupying 50% of a CPU’s capacity indicates an issue. In such cases, enabling Flow Limit
on all CPUs handling network rx interrupts is advisable.

2.4.3 Receive Flow Steering

Receiver Packet Steering (RPS) steers packets based on their hash values, typically resulting
in an evenly distributed network load. However, RPS does not consider the specific location
of the application that is processing the packets. This limitation is addressed by Receive
Flow Steering (RFS)[43], which enhances data cache efficiency by directing the kernel’s
packet processing to the CPU running the relevant application thread. RFS uses the same
methods as RPS for queuing packets in a different CPU’s backlog and signalling that CPU
to initiate processing.

In RFS, the packet’s hash is used as a reference in a flow lookup table rather than for
direct forwarding. This table maps network flows to specific CPUs handling them. As
mentioned in Section 2.4.2, the flow hash determines the table index. Each table entry
records the CPU that most recently processed the flow. If an entry doesn’t correspond to a
valid CPU, the packet is handled using standard RPS methods. It’s common for multiple
entries in this table to refer to the same CPU, especially when numerous flows and limited
CPUs are involved, leading to a single application thread managing multiple flows.

The rps_sock_flow_table is a global flow table that tracks the optimal CPU for
various network flows, specifically the CPU actively managing the flow in user space.
This table’s values, which are indices of CPUs, are updated when functions like recvmsg
and sendmsg are called during the execution of inet_recvmsg(), inet_sendmsg(), and
tcp_splice_read().

When a thread is moved to a new CPU while having pending receive packets on the
original CPU, there’s a risk of receiving packets in the wrong order. RFS counters this using
an additional flow table, rps_dev_flow_table, unique to each hardware receive queue.
This table contains two pieces of information for each flow: a CPU index and a count.
The CPU index shows the current CPU where packets for the flow are queued for kernel
processing. Ideally, both kernel and user space processing would occur on the same CPU.
However, mismatches may occur if the scheduler moves a user-space thread to a new CPU
while kernel packets are still queued on the previous CPU.

The rps_dev_flow_table records the backlog length of the current CPU when a packet
from a particular flow was last added to the queue. A tail counter is derived by adding
the queue’s length to the head counter to locate the last item in the queue. Essentially,
the rps_dev_flow[i] counter tracks the latest item added from flow i to the queue of the
CPU currently assigned to handle flow i. Assigning flows to CPUs is based on hashing,
and multiple flows can be directed to the same CPU queue.

A specific method is used for selecting the CPU for packet processing, as determined by
the get_rps_cpu() function. This involves comparing the rps_sock_flow table, indicating
the preferred CPU for a flow, with the rps_dev_flow table of the queue where the packet
was received. If the preferred CPU matches the one currently handling the flow, the packet
is added to that CPU’s backlog. If not, the CPU is updated to match the preferred one
under certain conditions:
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• The queue head counter of the current CPU is greater than or equal to the tail counter
value in rps_dev_flow[i].

• The current CPU is not set (indicated by being greater than or equal to nr_cpu_ids).

• The current CPU is offline.

After these checks, the packet is sent to the updated CPU. These rules aim to ensure
that a flow is transferred to a new CPU only if there are no pending packets on the old
CPU, preventing out-of-order packet arrival.

RFS is enabled if the CONFIG_RPS kconfig symbol is activated (default for SMP systems).
However, it remains inactive until explicitly configured. The recommended number of
flow entries is based on the expected number of active connections at any given time,
usually much lower than the total number of open connections. Experience suggests setting
rps_sock_flow_entries to 32768 for moderately loaded servers.

For a single-queue device, rps_flow_cnt is typically set to match
rps_sock_flow_entries. For multi-queue devices, rps_flow_cnt for each queue is usually
set to rps_sock_flow_entries divided by the total number of queues (N). For instance,
with 32768 rps_sock_flow_entries and 16 receive queues, each queue’s rps_flow_cnt
would likely be 2048.

2.4.4 Accelerated Receive Flow Steering

Accelerated Receive Flow Steering (Accelerated RFS)[38] is akin to RFS (see Section 2.4.3),
much like how Receive-Side Scaling (see Section 2.4.1) relates to Receive Packet Steering
(see Section 2.4.2). It is a hardware-augmented method of load balancing that leverages
soft state to route network flows based on the location of the application thread handling
each flow’s packets. Accelerated RFS is anticipated to surpass the performance of RFS by
directly sending packets to a CPU that is either hosting the consuming application thread
or is closely located within the cache hierarchy to the CPU of that thread.

To enable Accelerated RFS, the networking stack uses the driver’s ndo_rx_flow_steer
function to specify the preferred hardware queue for packets of a particular flow. This
function is invoked automatically by the network stack whenever there is a change in a flow
entry in the rps_dev_flow_table. The driver then employs a device-specific method to
configure the NIC to route packets to the designated queue.

Each flow’s choice of hardware queue hinges on the CPU information recorded in the
rps_dev_flow_table. The network stack maintains a map that associates CPUs with
hardware queues, which is constantly updated by the NIC driver. This map is a counterpart
to the IRQ affinity table, viewable in /proc/interrupts. To construct this map, drivers
can use functions from the cpu_rmap (CPU affinity reverse map) available in the kernel
library. The map is organized so that for each CPU, the linked queue is processed by the
closest CPU in terms of cache proximity.

The availability of Accelerated RFS is contingent upon the kernel being compiled with
the CONFIG_RFS_ACCEL option and the support of the NIC and its driver for this feature.
Moreover, it requires the activation of ntuple filtering via ethtool. The mapping of CPUs
to their respective queues is deduced from the IRQ affinities set by the driver for each
receive queue, thus negating the need for additional configuration.

Accelerated RFS is recommended for scenarios where RFS is desired, and the NIC is
capable of hardware acceleration. It provides an effective method to optimize network
packet routing in alignment with application thread processing.
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2.4.5 Transmit Packet Steering

Transmit Packet Steering (XPS)[47] is a method employed in devices with multiple queues
to intelligently select the appropriate transmit queue for sending a packet. XPS achieves
this by maintaining two mappings: one linking each CPU to one or more hardware transmit
queues and another associating each receive queue with specific hardware transmit queues.

XPS, using the CPUs map, is designed to allocate queues to a group of selected CPUs,
ensuring that the completion of transmissions for these queues is handled by a CPU within
this group. This strategy offers two key benefits: it significantly reduces competition for
access to the device queue lock, as fewer CPUs compete for the same queue (this contention
can be eliminated if each CPU has a dedicated transmit queue), and it decreases the rate
of cache misses during transmit completion, especially for data cache lines that contain the
sk_buff structures.

XPS, utilizing a receive queues map, chooses a transmit queue based on the configuration
of a receive queue(s) map, as determined by the administrator. While it is possible to map
multiple receive queues to multiple transmit queues, the most common scenario involves a
one-to-one mapping. This setup facilitates transmitting and receiving packets on the same
queue pairings, which is particularly advantageous for multi-threaded workloads using busy
polling, especially when associating a specific CPU with a particular application thread is
challenging. In such configurations, application threads, which are not fixed to specific
CPUs, handle packets received on individual queues, with the number of the receive queue
stored in the connection’s socket.

Transmitting packets through the same transmit queue corresponding to the receive
queue offers benefits such as minimizing CPU overhead. The work related to transmit
completion is confined to the same queue association polling by the application, thereby
avoiding the need to trigger an interrupt on another CPU. Additionally, when the appli-
cation processes the packets during busy polling, it can handle transmit completion in the
same thread context, reducing latency.

XPS is configured for each transmit queue by creating a bitmap that identifies which
CPUs or receive queues are allowed to use that particular queue for transmission. Each
network device computes and updates a reverse map linking CPUs to transmit or receive
queues to transmit queues. When a flow’s first packet is ready for transmission, the function
get_xps_queue() is called to select a queue. This function matches the receive queue ID
associated with the socket connection to entries in the receive-to-transmit queue lookup
table, or it uses the ID of the currently active CPU to find a corresponding queue in the
CPU-to-queue lookup table. If multiple queues match, one is chosen based on an index
calculated from the flow’s hash.

The transmit queue selected for a specific flow, such as a TCP connection, is stored in
the flow’s corresponding socket structure. This chosen queue is then consistently used for
all subsequent packets in that flow to avoid the risk of packets arriving out of order. This
strategy also spreads the cost of invoking the get_xps_queues() function across all packets
within the flow. To maintain order and avoid out-of-order packets, the queue assigned to
a flow can only be changed if the skb->ooo_okay flag is set for a packet within that flow,
indicating that the flow has no pending packets and allowing the transmit queue to be
changed without causing out-of-order delivery.

The responsibility for correctly setting the ooo_okay flag lies with the transport layer.
For instance, TCP sets this flag when it has received acknowledgements for all the data in
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a connection, indicating it’s safe to switch the transmit queue without disrupting packet
order.

XPS becomes available when the kconfig symbol CONFIG_XPS is activated, the default
setting for SMP (Symmetric Multi-Processing) systems. If incorporated into the system,
XPS’s availability and specific configuration during device initialization depend on the
driver. The mapping between CPUs/receive-queues and transmit queues can be viewed
and set up through sysfs.

When dealing with a network device with only one transmission queue, configuring XPS
has no impact because there’s no alternative queue. However, it’s ideal to configure XPS
in systems with multiple queues so that each CPU corresponds to a specific queue. In
scenarios where the number of queues matches the number of CPUs, creating a one-to-
one mapping is possible, with each queue exclusively paired with a single CPU, thereby
eliminating contention. Conversely, if the system has more CPUs than queues, the most
effective strategy is likely to assign CPUs that share a cache with the CPU handling transmit
completions (or transmit interrupts) for a particular queue to share that queue.

When choosing a transmit queue based on receive queue(s), XPS requires explicit con-
figuration to map these receive-queue(s) to specific transmit queue(s). If the user-defined
mapping for receive queues is not applicable or relevant, then the transmit queue selection
will default to being based on the existing map of CPUs.
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Chapter 3

Continuous integration network
performance testing

The chapter delves into the intricacies and importance of implementing continuous inte-
gration (CI) in the agile software development landscape. It underscores the role of CI in
streamlining the software development process, emphasizing its effectiveness in integrating
regular updates, automating crucial tasks, and enhancing cost efficiency. The chapter also
outlines the broader testing context within the Software Development Life Cycle (SDLC),
discussing various testing stages, methodologies, and the importance of creating realistic
testing scenarios. Moreover, it touches upon software benchmarking, an essential process
in quality engineering. It concludes with an in-depth look at the performance testing of
Network Interface Cards (NICs) and the Linux kernel network stack, highlighting their
pivotal roles in network engineering and management.

3.1 Continuous integration
The widespread adoption of agile methodologies in software companies has led to a grow-
ing interest in Continuous Integration (CI) systems. These systems enhance the pace of
software development and improve cost efficiency by enabling more frequent integration of
software updates. This efficiency results from the automation of tasks like building, testing,
and reporting test outcomes, which are crucial for identifying and resolving issues swiftly,
thereby reducing development costs [53].

CI, an essential practice before software deployment and delivery, involves automated
software construction and testing [22]. It supports expanding engineering teams’ size and
output capacity, allowing developers to work simultaneously and independently on different
features. This approach enables quick and independent integration of these features into
the final product. The subsequent sections detail notable open-source CI servers.

In CI environments, regression testing is key for a rapid and cost-effective method of
validating and deploying new software updates. This improves fault detection and software
quality [52]. The importance of regression testing arises from the need for immediate test
feedback in CI, where test cycles are short. These cycles, subject to a time budget, vary
in duration and include selecting relevant tests, executing them, and relaying the results to
developers.
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3.1.1 CircleCI

CircleCI is a purpose-built CI/CD (Continuous Integration/Continuous Deployment) plat-
form designed to deliver speed and reliability in software development processes [8]. It
supports both cloud-based and private infrastructure environments. The tool is tailored for
DevOps workflows, providing a range of features to automate and enhance software devel-
opment and deployment activities. CircleCI stands out for its efficiency in handling builds
across multiple environments and its robust support for various programming languages
and machine types.

CircleCI offers the flexibility to build on any machine type in any language. It allows
teams to configure CPU and memory for optimal performance and increased speed. Ad-
ditionally, workflows can be defined and orchestrated for building, testing, and deploying
applications with complete control.

Built by DevOps professionals, CircleCI focuses on improving the entire development
process. It includes insights for tracking status and monitoring duration, SSH debugging for
quick problem resolution, advanced caching to speed up builds, and a VS Code extension
for interacting with pipelines.

Moreover, it supports building with GitHub, GitLab, or Bitbucket and offers thousands
of existing integrations or the option to create custom ones. It utilizes pre-built integrations
(orbs) for services like Slack and AWS and provides webhooks and a full-featured RESTful
API for additional customizable integrations.

The platform ensures the pipeline’s security, supports authentication via OpenID Con-
nect, and meets the rigorous standards of FedRAMP. It also ensures clean execution en-
vironments for jobs and allows the creation of policies for organizational compliance and
standardization.

CircleCI offers cloud-based hosting with setup, security, and maintenance support, in-
cluding using self-hosted runners. It also allows for installation on private servers, providing
flexibility in hosting continuous integration.

Also, it is known for its fast performance, with features like smart test-splitting, opti-
mized build speeds, and native docker layer caching. It can work with any machine type
and language, offering seamless scaling.

3.1.2 Jenkins

Jenkins is an open-source automation server crucial in software development, especially in
continuous integration (CI) and continuous delivery (CD). It stands as one of the most
widely used automation tools globally. Written in Java, Jenkins is highly valued for its
flexibility and extensibility, essential for automating different stages of software development
[8].

Jenkins automates various phases of the software delivery process, integrating stages
like build, test, and deployment seamlessly and efficiently. This integration enhances the
efficiency and reliability of the development process, contributing to the stability of the
final product. Jenkins utilizes user-defined ”pipelines“ to customize and control the CI/CD
processes tailored to specific project requirements.

A key strength of Jenkins is its extensive plugin ecosystem. With over a thousand
plugins available, Jenkins can integrate with nearly every CI/CD toolchain, making it highly
adaptable to various environments and development scenarios. Its plugin architecture also
supports custom plugin development to fulfil unique needs.
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As a free and open-source tool, Jenkins is accessible to developers and teams of various
sizes. Its platform-independent nature adds to its adaptability. Jenkins offers versatility
in job creation, with both freestyle and pipeline options. However, its user interface is
often outdated and less intuitive, particularly for CI/CD novices. It can be complex and
challenging to configure and maintain. Additionally, Jenkins may experience performance
issues, especially when overloaded with numerous plugins on a local server.

3.1.3 Travis CI

Travis CI is a well-regarded continuous integration service, notable for its effective inte-
gration with cloud-based repositories, especially GitHub. It automates the building and
testing of software projects, playing a key role in continuous integration (CI) and delivery
(CD) processes. A notable feature of Travis CI is its user-friendliness and quick setup,
appealing to developers and teams of various sizes [8].

A prominent feature of Travis CI is its Build Matrix, which facilitates the parallel
execution of different build stages, thereby improving testing efficiency. Each build operates
in a separate virtual machine, ensuring a pristine and stable environment. This aspect
is particularly advantageous for projects needing specific configurations or dependencies.
Travis CI’s robust integration with GitHub and compatibility with a broad spectrum of
third-party tools, such as Coveralls and BrowserStack, enhance its adaptability to various
development scenarios.

Beyond its primary functions, Travis CI boasts a comprehensive API, further expanding
its utility in automating and customizing CI/CD workflows. The API enables various
operations, including reading data and managing builds, which assists in integrating with
other tools or bespoke workflows.

Despite these advantages, Travis CI presents some challenges. The platform may not
be as straightforward for those new to CI tools. Configurations, mainly through the
.travis.yml file can become complex for advanced setups. Furthermore, its reliance on
cloud-based repositories may restrict its applicability to private or self-hosted version con-
trol systems projects. Nevertheless, Travis CI remains accessible and valuable for automat-
ing and optimizing software development processes, thanks to its open-source nature and
extensive documentation.

3.2 Software testing
Testing is the process of evaluating whether a specific system fulfils its defined requirements.
This process involves validation and verification to determine if the system meets user-
defined needs. As a result, testing identifies discrepancies between actual and expected
outcomes. In software, testing aims to identify bugs, errors, or unmet requirements in a
system or software. Thus, it is an investigative activity informing stakeholders about the
product’s quality.

Software testing can be viewed as an activity based on assessing risks. During the
testing process, it is crucial for testers to know how to condense a vast number of tests into
a manageable set. They must also make informed decisions about which risks are critical
to test and which are not [29].

Testing in software development is structured into various levels and steps, with different
individuals responsible for testing at each level. Unit, Integration, and System Testing are
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the three fundamental stages of software testing. Each stage is conducted by software
developers or quality assurance engineers, also called software testers.

The testing stages mentioned are integral to the Software Development Life Cycle
(SDLC). In software development, it’s crucial to divide the process into modules, each
assigned to different teams or individuals. Unit Testing is the first step, where developers
test each module to ensure it meets expectations. The next phase is Integration Testing,
combining independently developed modules, often revealing integration errors. The final
stage is System Testing, which evaluates the entire software comprehensively. Software test-
ing also ensures that integrated units do not negatively impact other modules. However,
testing large or complex systems can be time-consuming, as testing every combination and
scenario becomes more challenging, highlighting the need for more efficient and optimized
software testing processes [20].

The testing cycle comprises several stages, starting with Test Planning and culminating
in Test Result Analysis. Test Planning is the initial stage where the overall plan for the
testing activities is formulated. This is followed by Test Development, where specific test
cases are created for testing. The subsequent phase is Test Execution, involving the actual
running of these test cases and reporting any bugs found in the Test Reporting phase. The
final stage, Test Result Analysis, involves analyzing defects, typically by the developer or
in collaboration with the client, to decide what needs fixing, enhancement, or modification
[13].

The initiation of the testing process begins with the creation of test cases. These
test cases are crafted using diverse techniques to ensure effective and precise testing. The
primary techniques employed include Black Box Testing, White Box Testing, and Grey Box
Testing [21].

White Box Testing is a comprehensive method that evaluates software’s functionality
and internal structure. It requires programming expertise for designing test cases, known as
clear or glass box testing. Applicable across various levels, including unit, integration, and
system testing, this method is also a form of Security Testing, ensuring data protection and
maintaining functionality. White Box Testing scrutinizes all independent module paths,
logical decisions, loop boundaries, and internal data structures. However, its complexity
stems from the need for programming skills in testing.

Black Box Testing is a method that focuses on testing the application’s functionality
without delving into the details of its implementation. This technique is applicable at every
testing level within the Software Development Life Cycle (SDLC). It conducts tests to cover
all application functionalities, checking if they meet the user’s initial requirements. This
approach effectively identifies incorrect functionalities by evaluating them across minimum,
maximum, and base case values. Renowned for its simplicity, Black Box Testing is a widely
used testing technique globally.

Grey Box Testing merges the strengths of both White Box and Black Box Testing
techniques. This approach enhanced testing effectiveness, allowing testers to be mindful
of the application’s internal structure. By understanding the inner workings, testers can
evaluate the application’s functionality more effectively, considering its interior architecture.

In the Software Testing Life Cycle’s (STLC) initial phase, the Quality Assurance team
reviews the software requirements, gaining a thorough understanding of the core requisites
for the testing process. Should any discrepancies arise, coordination with the development
team is essential to clarify and resolve these issues. The subsequent phase, test planning,
is pivotal as it outlines the entire testing strategy. This phase focuses on creating a com-
prehensive test plan, serving as a fundamental guide for the testing process. A Test Plan
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is an essential document primarily focused on the functional testing of an application. The
testing process cannot proceed without this critical document [34].

In the test designing phase of the STLC, the creation of test cases takes place, and
the test planning activities conclude. The QA team either manually writes suitable test
cases or generates automated ones. Each test case details a set of test inputs or data,
specific execution conditions, and anticipated results. The chosen test data should elicit
expected outcomes and include deliberately flawed data to identify errors during testing.
This approach is typically employed to determine under what conditions the application
fails to function correctly.

The Test Execution Phase involves the test cases according to the previously prepared
test plan. The test is cleared or passed if a functionality successfully passes this phase
without any reported bugs. Conversely, every failed test case is linked to the identified bug
or error. The output of this activity is creating a defect or bug report.

Test Reporting involves communicating the outcomes obtained from executing the test
cases. This phase also includes reporting bugs, which are then conveyed to the development
team for resolution.

The significant improvement in the testing procedure has guided it towards Test Au-
tomation. This involves continuous integration software to perform tests and compare
actual outcomes with anticipated results. Test Automation is efficient in terms of time, as
it reduces the need for time-consuming manual testing.

Test Automation is applied during both the implementation and testing phases. It
supersedes manual testing by minimizing its necessity and revealing errors and deficiencies
that manual methods might not detect.

Regression Testing, a key testing type, is time-consuming when performed manually. It
primarily checks if software or applications function correctly after bug fixes, as error ratios
can increase post-fixation. Automated test suites are compiled into a regression test suite
to reduce time spent on regression testing. Additionally, Test Automation aids in early
problem detection, thereby saving substantial costs and effort in later modification stages
[33].

Furthermore, employing Test Metrics is critically important for significantly improving
the testing process’s effectiveness. These metrics are key indicators of efficiency, correctness,
and analytical evaluation. Additionally, they assist in pinpointing areas needing enhance-
ment and guide the necessary actions to address these shortcomings.

A significant challenge in the current testing process is aligning the testing approach
with the developed application. Not all testing methods are suitable for every application.
For instance, testing network protocol software versus an e-commerce application involves
different complexities in test cases. This highlights the crucial role of human involvement
in the testing process beyond mere dependence on existing test cases.

3.3 Software benchmarking
Benchmarking is a systematic approach in quality engineering and management, focusing on
a comparative process to identify best practices for specific issues. Initially used to improve
business processes, benchmarking involves examining industry standards, comparing them
with an organization’s practices, and formulating an action plan with clear objectives to
enhance process quality and efficiency. Its relevance has expanded to scientific research and
software engineering, driven by finding superior methodologies or algorithms for scientific
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challenges and aiding various phases of software development, such as automated code
testing [35].

Software benchmarking quantifies performance aspects like response time, throughput,
and resource utilization. These metrics are crucial for evaluating software efficiency and
effectiveness. The process typically involves comparing the software’s performance with
established standards or best practices, which may come from industry benchmarks, com-
petitor analysis, or previous software versions. A key aspect of benchmarking is uncovering
superior techniques or strategies employed by other software systems, often through research
of competitors or industry leaders.

Unlike monitoring, benchmarking addresses specific questions and is often used to com-
pare different versions, configurations, or deployments of a system in a non-production en-
vironment. This evaluation uses selected metrics during distinct moments across multiple
test runs, with post-test analysis conducted offline. It can involve micro benchmarks, focus-
ing on very detailed features, such as the performance of a single method. Benchmarking
typically requires setting up the system on multiple machines, including dependent systems,
and using a separate machine for measurement.

3.4 Performance testing
Developing an efficient network infrastructure critically depends on two main aspects: func-
tionality and performance. ’Functionality’ refers to what the network kernel allows re-
garding data transmission and processing capabilities, including data throughput, packet
routing, and protocol support. On the other hand, ’performance’ pertains to the kernel’s
efficiency and reliability in handling data, aiming for optimal transmission speeds and min-
imal packet loss, even in high network traffic or with limited hardware capabilities.

Pre-deployment kernel network performance testing is vital to preempt network failures
due to performance issues. However, many teams face challenges due to the absence of
specialized performance testing methodologies, leading to potential availability, reliability,
and scalability issues in real-world network implementations.

Performance testing is critical for all network infrastructures, especially in sectors where
network reliability and efficiency are paramount, such as telecommunications, internet ser-
vice providers, cloud computing, and large-scale data centres.

Performance Testing, often called Load Testing, evaluates a system’s responsiveness and
stability under a simulated real-world workload. It involves using tools to replicate actual
user behaviour to identify system limitations, aiming to assess scalability, availability, and
overall system performance from both hardware and software perspectives. Key metrics
monitored and analyzed include CPU and memory utilization, cache effectiveness, data
integrity across various storage mediums, power usage, and network bandwidth.

Successful performance testing relies on several factors, ensuring the testing process
identifies bottlenecks and provides actionable optimization insights. Creating realistic test-
ing scenarios is paramount, simulating a user environment resembling operating conditions.
This approach is essential for uncovering real-world performance issues that may not be
evident in controlled testing settings [11].

A thorough analysis of both hardware and software components is also crucial. Perfor-
mance testing should encompass the entire infrastructure, including network components,
databases, and servers, to determine the source of performance issues, whether in applica-
tion code, database queries, network setup, or a combination thereof. This is particularly
evident in distributed network environments like the cloud [28].
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Moreover, performance testing requires continuous monitoring and iterative improve-
ments. It involves an ongoing cycle of testing, analyzing, optimizing, and retesting, ensuring
sustained system optimization [6]. Effective data collection and analysis are also fundamen-
tal, as performance testing generates vast data volumes that must be efficiently analyzed
to derive meaningful conclusions.

The benefits of thorough performance testing are vast, enhancing system reliability,
user experience, and cost-effectiveness in the development lifecycle. By identifying and
addressing performance issues early, costs and time spent on post-deployment fixes are
significantly reduced. Performance testing also informs scalability planning and ensures
high availability and business continuity in high-traffic situations [27].

In summary, performance testing is invaluable for enhancing user experience, system
reliability, cost-effectiveness, scalability, and availability. It’s an essential part of software
development and network management, contributing significantly to the success and sus-
tainability of technological systems.

3.5 Network performance testing
Performance testing of Network Interface Cards (NICs) and the Linux kernel network stack
is a vital component of network engineering and management, reflecting the intricacy and
significance of network performance in various applications.

NICs are the crucial link between a computer system and its network, handling data
transmission. Therefore, testing NICs’ performance is key to determining their efficiency in
managing data flow. This includes evaluating throughput, latency, and packet processing
capabilities, which ensure NICs can handle expected network loads, particularly in high-
demand environments. Optimizing NICs for better data handling and reduced latency is
necessary [36].

The Linux kernel network stack, responsible for routing, packet processing, and protocol
management, is integral to effective network communication. Testing its performance is
essential to ensure these functions are performed efficiently. This type of testing identifies
bottlenecks in the stack, aiding optimizations to enhance data flow and processing, as
discussed in Chapter 2.

Performance testing of NICs and the Linux kernel network stack extends beyond speed
and efficiency enhancements. In network security, this testing is crucial for identifying the
performance impacts of vulnerability mitigations.

The role of NICs and the Linux kernel network stack as core components of network
infrastructure underscores the importance of their performance testing. This testing en-
sures optimal performance in terms of speed and efficiency and contributes significantly to
maintaining network security. Insights from this testing are invaluable for improving and
securing network systems.

Performance testing of NICs and the Linux kernel network stack is a specialized field
within performance testing. This specialization stems from their unique characteristics and
roles in network infrastructures.

NIC performance testing focuses on network-specific parameters like throughput, la-
tency, packet loss, and error rates, requiring specialized tools and methodologies to simu-
late network traffic and monitor these metrics [50]. In contrast, general performance testing
often revolves around user experience metrics such as load times or response speeds.

Performance testing of the Linux kernel network stack necessitates a deep understanding
of low-level network operations and interactions. It involves assessing the effectiveness of the
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stack in managing network traffic, processing protocols, and handling network congestion,
often requiring kernel tuning and monitoring.

The implications and applications of this testing also differ. While general performance
testing might aim at user satisfaction and application efficiency, testing NICs and the Linux
kernel network stack informs network infrastructure design and management decisions.
These tests are pivotal for network architecture and scalability planning.

Therefore, performance testing of NICs and the Linux kernel network stack is distinct
due to its focus on network-specific metrics and operations. This specialization requires
dedicated tools and an in-depth understanding of network protocols and kernel operations
and has broader implications for network architecture and management. The complexity
and critical nature of these components in network infrastructures necessitate a focused
and nuanced approach to performance testing.

3.5.1 nepta framework

nepta1 framework is a network performance testing automation tool. It provides easy ex-
tensibility, customization and relatively quick and simple test configuration. nepta contains
APIs for direct interaction with the underlying operating system and various commands,
such as work with network or filesystem. From the perspective of the testing cycle from
Section 3.2, this framework takes care of the representation of test cases/scenarios and the
whole Test Execution Phase.

Furthermore, the framework implements multiple workflow strategies for test environ-
ment preparation and configuration, environment synchronization between hosts and test
result reporting. These strategies differ in network performance testing compared to other
software performance testing.

Moreover, nepta is independent of the underlying performance testing tool, so users can
extend it with their performance testing tools. However, it comes by default with support
for iperf3 and netperf tools.

Thanks to its tool abstractions, the framework allows for the programmatic creation of
test scenarios from the test host configuration of networking and system packages, config-
uration synchronization between the specified testing host to the configuration of provided
or custom test scenarios and their order of execution.

3.5.2 Catalog

Catalog is an internally developed solution for performance test result storage and test
reporting. This tool provides functionality from the later parts of the testing cycle from
Section 3.2, specifically test result monitoring, regression testing and bug reporting.

To take advantage of the test automation process, Catalog exposes REST API for per-
formance test result storage, querying and searching.

The design of Catalog is tailored to meet the specific needs of performance testing,
ensuring data integrity and efficiently retrieving test results. Specifically, the representation
of the testing process parts like test suite execution, multiple test scenario runs with various
settings and the ability to compare them.

Moreover, each execution of the tests can be complemented by metadata describing the
configuration and test setup for future easier searching and comparing.

1https://github.com/rh-nepta/nepta-core
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Figure 3.1: The example of the web interface of Catalog service.

Furthermore, Catalog is equipped with a user interface (see Figure 3.1), a feature that
significantly enhances its utility. This interface allows for manual analysis and comparison
of historical test data. The ability to manually review and analyze data is indispensable
for developers and quality engineers, as it will enable exploring data beyond predefined
analytical models or raw data reports.
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Chapter 4

Testbed

This chapter describes the industry’s leading Network Interface Cards (NICs): the Nvidia
ConnectX-6 Dx, the Intel Ethernet Controller E810, and the Broadcom BCM57508. Each of
these NICs stands at the forefront of modern networking technology, equipped with unique
features and capabilities to meet the diverse needs of today’s network infrastructures.

The Nvidia ConnectX-6 Dx exemplifies the combination of high bandwidth and ad-
vanced offloading features, aligning well with the demands of modern data centres, espe-
cially in supporting AI and machine learning workloads. In contrast, the Intel Ethernet
Controller E810 is known for its versatility and adaptability, making it an ideal choice for
various applications, from virtualization to cloud computing. Its sophisticated offloading
features are key to enhancing network performance, marking it as a vital component in
contemporary network design.

The Broadcom BCM57508 stands out as a strong competitor, offering features specifi-
cally designed for high-density environments and optimized for energy efficiency. This NIC
represents the industry’s shift towards more sustainable networking solutions that do not
sacrifice performance.

For the evaluation in this thesis, these NICs will be tested on machines equipped with
AMD CPUs from the Genoa and Milan generations, Intel CPUs from the Skylake, Ice Lake,
and Sapphire Rapids generations, and ARM Altra, specifically see Table 4.2.

CPU Family No. sockets No. of cores
#1 AMD Milan 1 32
#2 AMD Genoa 1 24
#3 Intel Skylake 2 12
#4 Intel Icelake 2 16
#5 Intel Sapphire Rapids 2 24
#6 ARM Altra 1 80

Table 4.1: Testbed CPU vendors and generations with number of cores in each socket.
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CPU Family NICs
#1 Milan ConnectX-6 / BCM57508
#2 Genoa ConnectX-6 / Intel E810
#3 Skylake BCM57508
#4 Icelake ConnectX-6 / Intel E810
#5 Sapphire Rapids ConnectX-6 / Intel E810
#6 ARM Altra ConnectX-6 / Intel E810

Table 4.2: Testbed CPU and NIC testing matrix.

4.1 Nvidia ConnectX-6 Dx
NVIDIA’s ConnectX-6 cards are distinguished by their advanced offloading capabilities [25],
greatly enhancing network and data processing efficiencies. These smart NICs (Network
Interface Cards) offload various tasks traditionally managed by the CPU, including network
functions such as encryption, decryption, and packet processing. This offloading reduces
the CPU’s workload, freeing it up for other critical operations. This feature is particularly
valuable in data-intensive settings like data centres, where optimizing processing and net-
work speeds is essential. The ConnectX-6 cards’ offloading abilities thus play a significant
role in improving overall system efficiency and performance.

The card has state-of-the-art stateless offloading capabilities that boost network perfor-
mance and efficiency. It supports stateless TCP/UDP/IP offloading, which handles network
protocol processing directly on the card, thereby reducing CPU overhead. Large Send Of-
fload (LSO) and Large Receive Offload (LRO) allow for more efficient management of large
data packets, further reducing CPU strain. Additionally, ConnectX-6 provides checksum
offload for improved error-checking and correction.

Enhanced features like Receive Side Scaling (RSS) and Transmit Side Scaling (TSS)
optimize network traffic distribution across multiple CPU cores, ensuring balanced loads
and increased throughput. RSS is also effective for encapsulated packets, maintaining
performance in intricate networking environments. The cards also support network cus-
tomization through VLAN and MPLS tag insertion and stripping and receive flow steering,
which channels incoming traffic to specific cores or processes for optimized network resource
utilization.

Moreover, the ConnectX-6 card supports Single Root IO Virtualization (SR-IOV) and
VirtIO Acceleration. SR-IOV facilitates efficient I/O virtualization by allowing multiple
virtual functions (VFs) to share a single physical hardware resource, thus reducing over-
head in virtualized environments. It supports up to 1000 VFs per port, allowing extensive
virtualization capabilities to share network resources among numerous virtual machines ef-
ficiently. The card also supports up to 8 Physical Functions (PFs), the primary interface
for controlling VFs, ensuring robust resource management in virtualized settings.

The card also handles overlay network protocols like VXLAN, NVGRE, and Geneve
through Encapsulation/Decapsulation. This feature is crucial for modern data centres, as
it involves adding or removing network headers as data moves through network layers.

Additional features include the Data Plane Development Kit (DPDK) for Kernel Bypass
Applications, which enables direct access to network data by applications and bypasses the
kernel’s network stack for faster packet processing. Open vSwitch (OVS) Offload using
ASAP 2 offloads OVS processing to the network card, enhancing software-defined network
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performance. Flexible Match-Action Flow Tables allow customized network traffic handling
with programmable rules, increasing network flexibility and control. Lastly, the header
rewrite supports hardware offloading of the NAT router, which improves network address
translation efficiency by offloading it to the hardware.

4.2 Intel Ethernet Controller E810
The Intel Ethernet Controller E810 [19] is engineered to enhance network performance and
efficiency across various applications significantly. It achieves this through a combination
of advanced offloading capabilities, encompassing both generic and stateless offloads. The
controller’s standout features include:

• Receive-Side Scaling (see Section 2.4.1) efficiently distributes network traffic across
different processor cores, enhancing processing efficiency and reducing bottlenecks.

• Data Center Bridging (DCB) feature improves network reliability and efficiency, es-
pecially critical in data centre environments.

• Customizable Queue Selection allows for queue configuration based on Source Address
(SA), VLAN pairs, or individual SAs or VLANs. This customization enables optimal
performance by allocating tasks more efficiently.

• Remote Direct Memory Access (RDMA) with supporting up to 32 Virtual Functions
(VFs), the E810’s RDMA capabilities reduce CPU load and accelerate data transfers
between servers. Additionally, the controller can manage many Virtual Machines
(VMs) and VFs, supporting up to 768 VMs and 256 VFs per device, making it ideal
for high-density server virtualization.

In network virtualization and RDMA, the E810 stands out for its ability to offload
stateless tasks, even for tunnelled packets – a critical feature for network virtualization. It
supports iWARP and RoCE v2 protocols for RDMA, handling up to 256K Queue Pairs
(QPs). However, when configured for more than 4-port operations, there are certain limi-
tations in its RDMA support. It’s important to note that the E810 does not support the
Userspace Direct Access (UDA) feature, which is confined to iWARP connection setup and
error handling within the kernel.

Designed for low-latency and high-throughput environments, the E810 can support up
to 8x10GbE connections, particularly in the E810-CAM2 model. It integrates an optimized
transmission scheduler to regulate traffic flow and prevent network congestion. The con-
troller also supports IEEE 1588, ensuring precision time measurement essential for synchro-
nized timing across network devices. Its enhanced support for the Data Plane Development
Kit (DPDK) bolsters its capabilities in Network Functions Virtualization, advanced packet
forwarding, and efficient packet processing.

For virtualization and Quality of Service (QoS), the E810 offers extensive capabilities
in Network Functions Virtualization (NFV) and Network Virtualization Overlays (NVO),
which are crucial for modern data centres and cloud computing. The Dynamic Device Per-
sonalization (DDP) feature provides a programmable pipeline adaptable to various network
protocols and standards. It also supports multiple network virtualization overlay protocols
and vSwitch Assist for improved virtual switch operations. The E810’s QoS features, in-
cluding Priority-based Flow Control, Enhanced Transmission Selection, and Differentiated
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Services Code Point, facilitate effective traffic management and prioritization. Addition-
ally, its support for Single Root I/O Virtualization (SR-IOV) with extensive queue pair and
virtual station interface capabilities, along with programmable Virtual Ethernet Bridging
(VEB) and Access Control Lists (ACLs), underlines its suitability for complex network
environments.

4.3 Broadcom BCM57508
The BCM5750x series [9], comprising Ethernet controllers, is engineered to meet the specific
needs of cloud and enterprise data centres. These controllers are highly efficient in handling
big data, machine learning, web services, storage, and database applications. The Thor NIC
family, part of this series, offers flexible single, dual, and quad-port configurations, providing
up to 200/100 Gb/s aggregate throughput, setting a benchmark for power efficiency in the
industry.

This section explores the stateless offload capabilities of these Ethernet controllers,
demonstrating their efficiency in handling such tasks.

The controllers include Checksum Offloading for IP, TCP, and UDP, configured by host
software to compute checksums as per RFC standards ([2], [3], and [1]). They identify the
start of IP, UDP datagrams, and TCP segments in a frame, which varies depending on
frame tagging (VLAN or LLC/SNAP encapsulation). After identification, checksums are
calculated for the entire datagram and inserted into the protocol header, covering all frame
types, including those with IP datagram options and TCP segments.

The UDP Fragmentation Offload (UFO), particularly in the Linux environment, allows
large UDP/IP datagrams to be segmented into smaller packets, reducing CPU load in UDP
applications.

For TCP, the controllers offer TCP Segmentation Offload and Large Send Offload (LSO),
also known as Large Segment Offload. This feature enables large TCP messages to be
divided into several TCP/IP packets, easing CPU strain in TCP applications.

Generic Receive Offload (GRO) and Large Receive Offload (LRO) provide hardware
acceleration for receiving TCP data. These features, supported by Transparent Packet
Aggregation (TPA), lower CPU load and boost throughput for TCP applications by aggre-
gating TCP streams based on source and destination IPs and ports. GRO is preferred in
TPA for its ability to maintain packet boundaries, which is essential for routing applications
using LSO for transmission.

Header and Data Split functionality allows TCP/IP packets to be received with separate
header and payload data buffers, improving TCP/IP performance. This feature, available
in Windows and Linux, facilitates efficient header caching and advanced operations like
page flipping and zero-copy by the host TCP/IP stack.

The controller’s VLAN Tag Insertion and Removal supports IEEE 802.1Q-compliant
VLAN tags in transmitted and received frames, including stripping VLAN tags upon re-
ception.

Packet Steering and Receive Side Scaling (RSS) balance packet processing across mul-
tiple processors while ensuring in-order data delivery. Packets are processed on different
CPUs/cores in parallel, using a Toeplitz algorithm for 4-tuple match and an indirection
table for stream-to-CPU mapping. Symmetric RSS ensures consistent mapping of packets
from a given TCP or UDP flow to the same receive queue.
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Accelerated Receive Flow Steering (aRFS, or RFS) directs packets to queues based on
CPU locality, reducing memory access latency and enhancing performance. aRFS steers
flows based on n-tuple filters or the RSS hash, taking precedence over RSS.

Lastly, Data Center Bridging (DCB) includes protocols like DCBX, LLDP, ETS, and
PFC designed for data centre environments. Broadcom Ethernet NIC controllers support
these protocols, focusing on priority flow control.
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Chapter 5

Test scenario design

Integrating Network Interface Cards (NICs) with the Linux kernel is critical for ensuring
efficient network communication in various computing systems. Traditional performance
testing methods for NICs often lack automation, have scalability issues, and cannot adapt
to the rapidly evolving Linux kernel. This chapter introduces a new methodology designed
specifically for continuous integration (CI) performance testing of NICs on the Linux kernel,
emphasizing automated testing processes, scalability, and adaptability.

5.1 Overview
The proposed methodology for Network Interface Card (NIC) performance testing in the
context of the Linux kernel is designed to address the unique challenges inherent in this
environment (see Section 3.5). It focuses on automation, scalability, adaptability, com-
prehensive metrics, and integration with existing workflows to enhance the efficiency and
accuracy of NIC testing. Based on the knowledge about general software testing from
Section 3.2 is the proposed testing process architecture from Figure 5.1.

The cornerstone of this methodology is the development of an automated test suite. This
suite is tailored to integrate seamlessly with the Linux kernel’s continuous integration (CI)
pipeline, minimizing manual intervention and accelerating testing. The Jenkins continuous
integration tool (see Section 3.1.2) facilitates this automation. This tool can automatically
trigger performance tests upon new kernel updates or NIC driver submissions, ensuring
immediate and consistent testing. The automation also extends to the setup and teardown
of test environments and the collection and initial analysis of test results. Jenkins could
also be utilised for automated setup and teardown of the test environments. However, the
Beaker1 tool is used since it’s better suited for this task.

A scalable testing infrastructure is essential to simulate various network environments
and loads. This methodology will be evaluated on multiple servers equipped with NICs and
CPUs mentioned in Chapter 4, to create a sufficient hardware matrix for testing. These
servers are always in pairs with the exact hardware specifications connected back to back.

Adapting to the continuously evolving Linux kernel is critical to this methodology.
AI/ML algorithms could be implemented to analyze past test results and predict potential
impact areas in new kernel updates, allowing for proactive adjustments to the test suite.
However, that is not the focus of this thesis, and continuous monitoring of kernel updates
and development trends will suffice to keep the tests up-to-date.

1https://beaker-project.org/
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A set of comprehensive and relevant performance metrics is established to evaluate NIC
performance thoroughly. These metrics include throughput, local machine CPU utilisation,
and remote machine CPU utilisation. Furthermore, there will be compound metrics of
local machine throughput per core and remote machine throughput per core, referred to as
local/remote efficiency later on, calculated as follows:

efficiency =
throughput

number of utilised cores , (5.1)

where local efficiency represents throughput divided by the number of utilised cores
from the sender machine in a test and remote efficiency represents the same calculation
with values from the receiver machine, resulting in the unit being throughput per core.

Throughput metrics will be measured using iperf and CPU metrics by mpstat. These
simple tools are supplemented by nepta tool (see Section 3.5.1) for more specific and unique
testing scenarios proposed in this thesis. The methodology emphasizes the importance of
consistently and reliably measuring these metrics across different testing scenarios to ensure
the results are actionable and comparable.

Jenkins Beaker Prepare
environment

Execute
testsCatalog

Web application

Event from message bus

Allocate machine pair

Store test results

Developers

Quality
Engineers

Figure 5.1: Architecture of continuous network performance testing pipeline.

An integral part of this methodology is establishing a feedback loop where test results
are analyzed in-depth. This analysis informs the improvement of NIC hardware and the
refinement of the Linux kernel. Continuous improvement is a key focus, with stakeholders,
including developers, testers, and hardware engineers, reviewing results and deciding on
subsequent actions. This collaborative approach ensures that improvements are compre-
hensive and align with the overall objectives of kernel development and NIC performance
optimization.

As mentioned in Section 3.2, the whole testing process should account for test result
storage and test reporting. This could be achieved by choosing a shelf solution. However,
this thesis will utilize an internally developed solution named Catalog.
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The design of Catalog and the functionality along with a user interface are explained in
more depth in Section 3.5.2.

5.2 Test planning and test scenarios
As mentioned in Section 3.2, Test Plan creation is part of the initial testing phase with a
focus on understanding the core requisites for the testing process, in this case, testing of
NICs specifically from the testbed. First, it’s essential to review the progress made over
the past decade to understand the test scenarios in this section.

In the last decade, processor cores have reached a limit in clock speed, with no antici-
pated increases in CPU clock frequencies. Meanwhile, data rates in optical fibre networks
have consistently risen, overcoming physical limitations such as scattering, absorption, and
dispersion through improved optics and precision equipment. Despite these advancements
at the physical layer, the system software’s capacity for protocol processing remains a
bottleneck. Consequently, efficient protocol processing and comprehensive system-level op-
timization are essential to enhance network throughput at the application layer.

TCP, known for its reliability and connection-oriented nature, ensures the sequential
delivery of data from sender to receiver, concentrating most of the protocol processing
tasks on the end system. Implementing TCP’s functionalities requires a significant level of
complexity, and as an end-to-end protocol, these functionalities are embedded within the
end system. Consequently, enhancements to current TCP implementations typically fall
into two categories. Firstly, offloads aim to integrate TCP functions with the lower layers
of the protocol stack, such as hardware, firmware, or drivers. This integration is pursued
to boost efficiency at the transport layer. Secondly, tuning parameters are designed to add
more complexity to the upper layers, including software, system operations, and systems
management.

All test scenarios in this thesis concentrate on affinity within tuning parameters. Affin-
ity, or core binding, essentially involves deciding which resources are utilized on which
processor in a networked multiprocessor system. The Linux network’s New API for Net-
works (NAPI), see Section 2.3, facilitates two distinct operational contexts for the Network
Interface Controller (NIC). The first is the interrupt context, typically implemented with
coalescing. Here, the NIC signals the processor after receiving a specific number of packets.
The NIC dispatches these packets to the processor using Direct Memory Access (DMA).
Subsequently, the NIC driver and the operating system (OS) kernel continue processing
protocol until the data is prepared for the application. The second context involves polling,
where the kernel regularly checks the NIC for any incoming network data. When such data
is found, the kernel processes it according to the network and transport layer protocols,
delivering it to the application via the sockets API.

There are two kinds of affinity to consider. First is Flow affinity, which decides which
core is designated to handle the network flow processing. Second, Application affinity iden-
tifies the core responsible for running the application process to receive the network data.
Flow affinity will be configured using the tuna tool. On the other hand, Application affinity
is established directly through iperf command argument --affinity, which handles this
functionality.

As end-system processor architectures have shifted towards scaling out with multiple
cores instead of scaling up in clock speed, system designers have encountered distinctive
challenges in leveraging this parallelism for network-related processing. Various related yet
fundamentally distinct methods have been developed to address these challenges.
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Receive-side scaling (RSS), see Section 2.4.1, is a technology integral to NIC drivers,
enabling multiqueue-capable NICs to harness the multiprocessing prowess of multicore end-
systems. Specifically, RSS facilitates scheduling the interrupt service routine (ISR) on a
designated core. This ensures that the same core which receives the data is also responsible
for processing the interrupt, effectively synchronizing flow and interrupt affinity across most
modern operating systems. NICs may incorporate RSS compatibility directly in hardware
or through the driver implementation.

Parallel to RSS, Receive Packet Steering (RPS), see Section 2.4.2, is another significant
kernel-level technology. RPS allows for the strategic selection of the CPU core to undertake
protocol processing for incoming packets in a receiving end-system. This technology is
instrumental in enhancing network throughput and balancing load across multiple CPU
cores.

Building upon the foundations of RPS, Receive Flow Steering (RFS), see Section 2.4.3,
adds an additional layer of control. RFS extends the capabilities of RPS by ensuring that
the flow and application processing occur on the same logical core. This alignment is crucial
for optimizing CPU cache utilization and reducing context-switching overheads, enhancing
overall system performance in network-intensive applications.

Since all NICs from the testbed are capable of 100 Gbps+ and one core is no longer
sufficient to fill this line rate, the test scenarios should rely upon the above-mentioned scaling
optimizations as much as possible. Furthermore, it is desired to introduce compound metrics
mentioned in Section 5.1, like throughput per core or throughput per watt, to capture better
the efficiency of all the NIC offloads as well as prepare this methodology to keep up with
the development of computing in the future.

Furthermore, as the number of cores in commodity multicore systems increases, the
time required for resources to be accessed between these cores is no longer consistent. This
change is due to the impracticality of maintaining uniform propagation speeds across core-
to-core interconnects. This disparity primarily impacted memory access, classifying these
systems as Non-Uniform Memory Access (NUMA) architectures. However, in contemporary
high-speed computing environments, this non-uniformity extends beyond memory access,
significantly influencing the movement of network and I/O data, given that the throughput
of modern I/O and network devices is now comparable to that of memory.

Choosing cores that share the lowest level of cache hierarchy for network processing tasks
is widely recommended. This approach, as discussed in various studies [15] [7], suggests
that when a specific core, say core 1, is tasked with the protocol or interrupt processing,
another core that shares the lowest level of cache with core 1 should be assigned to run
the corresponding user-level application. By adopting this strategy, the number of context
switches can be minimized, cache performance can be enhanced, and as a result, overall
system throughput is likely to improve.

The new methodology aims to produce reproducible and well-comparable performance
results, so the Linux irqbalance daemon will be disabled. Due to its utilization of round-
robin scheduling for distributing the interrupt processing load across cores, this method
can lead to suboptimal outcomes. As a result, a more strategic approach is necessary, one
that allows for a more informed and controlled selection of cores specifically for interrupt
processing tasks.

The design of Intel’s processors features a direct connection between each CPU socket
and its own PCI-Express bus. This architecture implies that specific PCI-Express slots
are physically tied to a particular socket, limiting the flexibility in how these slots can
communicate with different CPU sockets. Intel introduced the Ultra Path Interconnect
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(UPI), a low-level inter-socket communication technology to address this limitation. UPI
enables faster and more efficient data transfer between CPU sockets, enhancing overall
system performance in multi-socket configurations.

In contrast, AMD’s approach offers a different solution, particularly with their newer
technologies. AMD employs its Infinity Fabric interconnect, which is a key feature in its
EPYC processor lines. Infinity Fabric provides high bandwidth and low latency commu-
nication within the processor for core-to-core communication and between multiple CPUs
in a server. This technology allows AMD processors to efficiently share resources and co-
ordinate tasks across multiple sockets, effectively overcoming the limitations seen in earlier
interconnect designs.

Lastly, protocols have been specifically tailored for the swift and reliable transfer of
large data volumes within closed networks, such as those within or between data centres.
Recently, the focus of these protocols has shifted towards facilitating direct data movement
from the memory of one system to another. A notable modern instance of this technology
is Remote Direct Memory Access (RDMA), initially paired with its original physical layer,
InfiniBand. Typically, these protocols necessitate meticulously managed networks due to
their specific addressing and routing requirements, leading to their predominant use in
intra-datacenter traffic scenarios.

Taking into account the comprehensive details provided in this section and to evaluate
the performance as well as the overall efficiency of transfers across various affinitization
scenarios, all the metrics outlined in Section 5.1 will be measured in the following three test
scenarios:

• BestNode represents a test scenario where the Flow affinity and Application affinity
are pinned to the cores from the same socket on the CPU to which is NIC connected.
For example, if the CPU has 18 cores, the Flow affinity might be pinned to cores
14-17, and the Application affinity might be pinned across 0-13 cores. This scenario
aims to test various offloading features and the sharing of the lowest level of cache
hierarchy, as mentioned above in this section.

• NeighbourNode is similar to the previous test scenario; one difference is that the
Flow affinity and Application affinity are pinned to the cores from the different sockets
on the CPU. For example, the CPU has 36 cores with two sockets. The Flow affinity
might be pinned to a range of 0-7 cores, and the Application affinity might be spread
across 18-24 cores. The test scenario aims to test performance when the application
runs on a socket to which the NIC is not directly connected.

• Unpinned test scenario is the closest scenario to the real-world scenario where the
system administrator only uses NIC without further fine-tuning the system. The Flow
affinity is pinned on the cores of the socket to which the NIC is connected. Otherwise,
the Application affinity is not pinned and is left to the system to decide.

The test scenarios demonstrate that Flow affinity is consistently assigned to the cores
on the socket connected to the NIC. Moreover, Application affinity is deliberately set to
different cores to avoid any overlap with Flow affinity. This approach is adopted to maxi-
mize efficiency and minimize any interference in the throughput metric that could occur if
Flow and Application affinity coincide on the same core. Such a collision typically results
in suboptimal performance outcomes and increased noise, which can potentially obscure
genuine performance issues that may arise later.
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5.2.1 TCP scalability scenario

In the unidirectional TCP test scenario designed for network performance evaluation, two
machines are configured with network interface cards (NICs) connected directly (back-to-
back configuration). This setup allows for controlled testing of TCP traffic flow in a single-
side manner, meaning that data can flow in both directions but only in one direction.
This scenario provides valuable insights into how the systems handle TCP traffic under
constrained communication conditions. The packet size in this test scenario is 128KB.

Host #1

NIC

Back To Back

Host #2

NIC

Packets

Figure 5.2: Diagram of back-to-back connected machine pair where packets are flowing only
in one direction from server #1 to server #2.

The test uses IPv4 and IPv6 configurations to determine the impact of different IP
protocols on the performance. Each configuration is tested with and without a Virtual
Local Area Network (VLAN). VLANs are used to segment network traffic logically, offering
an additional layer to test the network’s ability to handle traffic with varying priorities and
complexities. This segmentation is crucial for assessing performance differentials that may
arise due to the overhead introduced by communication over VLAN.

5.2.2 Duplex TCP scenario

In the duplex TCP test scenario, the setup involves two machines configured with network
interface cards (NICs) connected directly in a back-to-back configuration, similar to the
previous unidirectional TCP test scenario. However, unlike the single-side scenario, where
data flow is unidirectional, the duplex scenario allows simultaneous bidirectional data trans-
fer. This means data can flow in both directions simultaneously, making it a more dynamic
and representative test of network performance under typical communication conditions.

This duplex scenario enhances understanding of how network systems manage concur-
rent data streams, which is crucial for applications requiring real-time data exchange. It
tests the network interface cards’ ability to handle multiple data packets simultaneously,
assessing throughput and efficiency in a more stringent and realistic network environment.

As in the previous section, this test uses IPv4 and IPv6 configurations to determine
the impact of different IP protocols on performance. Each configuration is again tested
with and without a Virtual Local Area Network (VLAN) to evaluate how VLANs affect
the bidirectional communication dynamics. The use of VLANs in the duplex test scenario
is particularly pertinent for understanding how network segmentation and the associated
overhead influence the simultaneous handling of incoming and outgoing traffic.
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Figure 5.3: Diagram of back-to-back connected machine pair with duplex communication,
where packets are flowing simultaneously in both directions between server #1 and server
#2.

The duplex TCP test scenario thus extends the insights gained from the single-side
TCP test by introducing the complexities and challenges of managing bidirectional network
traffic, offering a comprehensive view of network interface card performance under typical
operational conditions.

5.2.3 Offloading impact scenarios

Building upon the test scenarios outlined previously, a specific area of interest involves
examining various offloads, particularly the TCP Segmentation Offload (TSO), a critical
feature in network performance optimization. TSO allows a network interface card (NIC)
to divide larger data packets into smaller segments, a task typically handled by the host
processor, for more detail see Section 2.3.1. This offload is crucial as it can significantly
reduce the CPU overhead of transmitting large packets over a network, enhancing overall
system performance.

The test scenario for evaluating the impact of TSO will follow the same setup as detailed
in the previous Section 5.2.1. By disabling TSO, we can assess the performance implications
and gauge the efficiency of the NIC’s implementation of this offload. This method provides
a clear comparison between the NIC’s performance with and without the offload, offering
insights into how much processing work the NIC can offload from the CPU and the effect
on network throughput and CPU load.

Other essential offloads like Transmit and Receive Checksum offloads will also be tested.
These functions are integral to network operations, where the NIC handles the computation
of checksums for outgoing and incoming packets, respectively (see Section 2.2.1 and Section
2.2.2). Typically, these tasks consume processor resources, so offloading them to the NIC
can improve performance by reducing CPU utilization. The performance impact of disabling
these checksum offloads will be evaluated to understand their role in network efficiency
further.

The results from disabling these offloads—TSO, Transmit Checksum, and Receive Check-
sum—will provide valuable data on the network interface cards’ effectiveness in handling
what the CPU generally considers routine tasks. This analysis will help quantify the perfor-
mance benefits these offloads bring to network operations and can guide system architects
and network engineers in optimizing their configurations for maximum efficiency. Such in-
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sights are crucial for environments demanding high network performance and minimal CPU
involvement, ensuring optimal system responsiveness and stability.

5.2.4 UDP test scenario

Building upon the duplex TCP test scenario, the bidirectional UDP test scenario is designed
to evaluate the maximum possible workload that can be handled by network interface cards
(NICs) under intense network conditions. This setup also involves two machines with NICs
connected directly in a back-to-back configuration, similar to the duplex TCP arrangement
previously described. However, the key difference in this scenario is that the UDP protocol
is used instead of TCP, catering specifically to applications that require high-speed data
transfer without the overhead of connection management and error correction that TCP
involves.

In the bidirectional UDP test scenario, both machines simultaneously send and receive
UDP packets, creating a highly dynamic and stressful environment to measure how well the
NICs can handle extreme levels of data packets without TCP’s typical checks and balances.
This test is crucial for understanding the raw throughput capabilities of the NICs, as UDP
does not guarantee packet delivery, placing a greater emphasis on the network’s ability to
handle large volumes of data efficiently.

Similar to the duplex TCP scenario, this UDP test employs IPv4 and IPv6 configurations
to determine the impact of different IP protocols on performance. Each configuration is
tested with and without Virtual Local Area Network (VLAN) tagging. Including VLANs
is particularly relevant for assessing how network segmentation and its overhead affect the
NICs’ performance under maximum UDP traffic load.

This bidirectional UDP test scenario rigorously assesses NIC performance, pushing the
boundaries of data handling capabilities in a network. It extends the duplex TCP insights by
introducing the challenges of managing high-speed, bidirectional UDP traffic, essential for
applications such as live streaming, gaming, and other real-time services that rely on rapid
data exchange. This scenario offers a comprehensive view of how network systems perform
under high throughput demands, which is crucial for optimizing network infrastructure in
high-demand environments.

5.3 Execution and Implementation
All the test scenarios are implemented using nepta framework (see Section 3.5.1) and can
be run manually, but this thesis focuses on continuous performance testing, so let’s go over
the event path in the proposed architecture from Section 5.1

The whole process starts with triggering an execution by an event in Jenkins, which
creates specific Beaker jobs on desired machine pairs. Next, it installs the preferred Linux
distribution with the wanted kernel version and launches the preparation of the environment
using the nepta framework. nepta then prepares the whole environment on local and remote
end systems and launches iperf servers on the remote end system.

During the test execution phase, the testing framework systematically initiates all out-
lined test scenarios, deploying a varying number of iperf streams that range from 1 to N.
This range allows for a comprehensive examination of network performance under different
levels of load and concurrency. Each stream is executed repeatedly – precisely, 5 times –
to enhance the accuracy and reliability of the test results. This repetition is crucial for
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mitigating anomalies and ensuring the data reflects consistent performance patterns rather
than one-off occurrences or outliers.

The size of the messages in each stream varies according to the specific test scenario
being executed. For TCP test scenarios, the message size is set at 128KB, whereas for UDP
test scenarios, it is significantly smaller, at 64 bytes.

Furthermore, the length of each iperf test is fixed at 30 seconds. This duration is
significant for several reasons. Firstly, it is sufficiently long to ensure that system caches
and network queues are fully utilized during the test, which is essential for accurately
assessing the performance under typical operating conditions. Cache lines and queues
are vital in overall system performance, affecting data transfer rates, latency, and CPU
efficiency. A test duration of 30 seconds ensures that these components reach a steady
state, thus providing a more accurate reflection of the system’s capabilities.

Additionally, a 30-second test window allows for observing performance over a long
period to factor in transient states and temporary fluctuations in network throughput or
system resource utilization. This can include the initial ramp-up period, where connec-
tions are established and data flow begins, and any potential stabilization phase, where
performance metrics level off.

After the test executions, a critical data aggregation and storage phase commences. All
performance results generated from the tests are systematically collected and stored in a
specially designed datastore, aptly named Catalog (see Section 3.5.2). This data store plays
a crucial role in the overall testing process, as it serves as a centralized repository for all test
data, ensuring that the information is organized, secure, and readily accessible for further
analysis.

The configuration capabilities within the nepta framework have been enhanced, specif-
ically by extending its configuration class to include additional attributes for interrupt
settings and more refined CPU pinning strategies. These enhancements aim to improve the
control and efficiency of test environment setups, particularly with how hardware resources
are allocated and managed during network tests.

class UBenchPath(Path):
cpu_pinning: Sequence[Sequence[Any]]

def __init__(self, mine_ip, their_ip, tags, cpu_pinning, irq_settings):
super().__init__(mine_ip, their_ip, tags, cpu_pinning)
self.irq_settings = irq_settings

Listing 5.1: Example of the extended Path configuration from nepta framework

Instances of this extended class are pivotal in configuring the test scenarios effectively.
They facilitate the specification of which Ethernet interfaces to use, along with correspond-
ing IP and VLAN configurations. Additionally, they carry informative tags, which later aid
in the analysis phase. The enhancements for CPU pinning and IRQ settings are particu-
larly crucial as they directly influence application affinity and flow affinity, optimizing the
allocation of computing resources to specific tasks or data flows.

An illustrative example of how these configurations are employed can be seen in the
setup for a BestNode configuration, detailed in Section 5.2, using an IPv4 setup on In-
tel Sapphire Rapids processors. This example demonstrates the application of multiple
streams, showcasing the versatility of the CPU pinning and IRQ settings in handling vary-
ing network load levels.
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UP(
host1.intf.eth.ice_0.v4_conf[0],
host2.intf.eth.ice_0.v4_conf[0],
[tag.ipv4, tag.ice, tag.speed_100g],
[

[(0, 0)], # one stream
[(0, 0), (1, 1)], # two streams
[(i, i) for i in range(0, 4)], # four streams
[(i, i) for i in range(0, 8)], # eight streams
[(i, i) for i in range(0, 14)], # fourteen streams
[(i, i) for i in range(0, 28)], # twentyeight streams

],
[

(’ice’, ’1-27’),
(’ice’, ’2-27’),
(’ice’, ’4-27’),
(’ice’, ’8-27’),
(’ice’, ’14-27’),
(’ice’, ’0-27’),

],
)

Listing 5.2: Example of BestNode configuration on Intel Sapphire Rapids.

In this thesis, the proposed approach and the execution flow outlined in this section are
encapsulated within a generic class called UBenchGeneric. This class is foundational for im-
plementing and customizing various test scenarios as specified in Section 5.2. For instance,
specialized extensions of this class, such as UBenchBestNode, UBenchNeighbourBidir, and
UBenchBestBidirUDP, are designed to cater to specific testing needs. UBenchBestNode is
tailored for optimal node configurations, UBenchNeighbourBidir is developed for Neigh-
bourNode configurations in a duplex communication scenario, and UBenchBestBidirUDP
is structured around UDP test scenarios, ensuring that each test scenario is thoroughly
addressed with suitable configurations.

Furthermore, the nepta framework underpins these configurations and incorporates
sophisticated capabilities for managing and toggling network offloads. At the initialization
of the EthernetInterface class within this framework, offloads can be turned on or off
depending on the test requirements. This feature is crucial for experiments that require a
clean baseline to assess the impact of specific network functions on overall performance.

The configuration setup in the nepta framework is organized in a hierarchical tree
structure, simplifying the management of complex settings and enabling precise adjustments
across various layers of the network stack. An example of how such configurations can be
manipulated is demonstrated in the following Python snippet:

def add_checksum_off_offloads_ethernet(conf):
for eth in conf.get_subset(m_type=EthernetInterface):

eth.offloads[’rx’] = ’off’
eth.offloads[’tx’] = ’off’

clone_and_modify(
’NewBench’,
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’NewBenchChksOff’,
add_checksum_off_offloads_ethernet

)

Listing 5.3: Example of disabling transmit and receive offloads

In this example, a function named add_checksum_off_offloads_ethernet is defined
to disable both transmit (’tx’) and receive (’rx’) offloads on Ethernet interfaces within a
given configuration. This function iterates over a subset of configuration elements that
match the type EthernetInterface, setting the offload settings for each interface to ’off’.
The changes are then applied through a cloning process, creating a modified version of a
test scenario, which is useful for comparisons against the original setup. This approach
enhances the flexibility and adaptability of the testing framework and ensures that each
test scenario can be precisely configured to reflect the most accurate and relevant results.
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Chapter 6

Test scenarios evaluation

This chapter reports the proposed configuration results from Chapter 5 in various testing
scenarios. Table 4.2 lists combinations of CPU and NIC details of the systems used to
evaluate the approach and produce results presented in this chapter. The discussed results
are obtained by comparing several generations of processors with various cards on many test
scenarios built upon the proposed approach. The chapter presents throughput results and
proposed compound metric efficiency from Equation 5.1, where local efficiency represents
throughput divided by a number of utilised cores from the sender machine in a test, and
remote efficiency represents the same calculation with values from the receiver machine.

6.1 Baseline TCP scenarios
As the first set of results is presented a baseline measurement of Nvidia ConnectX-6 and
Intel E810 cards on the fourth generation of AMD Epyc processor using BestNode test
scenario with IPv4 configuration from Section 5.2.1.
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Figure 6.1: The bar chart illustrates the local efficiency (expressed as Gbps per core) of an
IPv4 configuration on an AMD Genoa processor with Nvidia ConnextX-6 network interface
card under varying numbers of streams, ranging from 1 to 32. Each bar represents the local
efficiency observed at different stream counts, showing a generally high efficiency at lower
stream counts, which slightly declines as the number of streams increases.
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Figure 6.1 presents local efficiency measurements on the previously mentioned test sce-
nario with the Nvidia ConnectX-6 card. It shows a trend where local efficiency scales almost
linearly as the number of streams rises from 1 to 4, suggesting that parallel processing of
network streams up to a certain point doesn’t impact throughput efficiency per core. How-
ever, the efficiency starts falling at 8 streams, after which the efficiency begins to decline
as the number of streams increases to 16 and further to 32. This decline could indicate the
system is encountering resource constraints, such as CPU limitations or insufficient network
bandwidth.

The remote efficiency holds steady as the number of streams increases from 1 to 4, which
indicates that up to this point, the system scales well with additional streams, improving its
remote efficiency. However, upon reaching 4 streams, the efficiency plateaus between 4 and
8 streams. Beyond 8 streams, efficiency dramatically decreases as the number of streams
rises to 32.
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Figure 6.2: The chart illustrates the remote efficiency of an IPv4 configuration on an AMD
Genoa processor with a Nvidia ConnextX-6 network interface card measured across different
numbers of streams from 1 to 32. The remote efficiency, presented in gigabits per second
per core (Gbps/core), demonstrates strong performance across 1 to 4 streams, maintaining
close to peak values with slight variances. However, as the number of streams increases to
8 and 16, a progressive decline in efficiency is observed, culminating in a significant drop
at 32 streams.

Finally, observing the throughput measurement, there’s a clear trend of increasing as the
number of streams grows, however when the stream count is 32, there’s a pronounced drop
in throughput. All these results point to interesting performance issues related to remote
server efficiency, which are further discussed in Section 6.6. But, since these performance
results are achieved similarly to all the others, including the same Linux kernel, they will
be taken at face value.
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Figure 6.3: The chart presents the throughput performance of an IPv4 configuration mea-
sured in gigabits per second per core (Gbps/core) across different numbers of streams (1 to
32). Initially, at one stream, the throughput is relatively low. As the number of streams
increases to 2 and then 4, there is a notable increase in throughput, demonstrating the
network’s capacity to handle higher loads effectively. The throughput peaks significantly at
8 and 16 streams. However, a decrease at 32 streams suggests a potential saturation point
where the setup struggles with the load, leading to reduced throughput.

Now let’s review the result from Intel E810 on the same setup in Figure 6.4. The local
efficiency shows that as the number of streams increases from 1 to 4, the local efficiency
decreases minimally. This indicates that the system effectively utilises its resources to
process more data in parallel, increasing efficiency. The peak efficiency is observed at 4
streams, suggesting this is the optimal number of streams for this system configuration,
as it achieves the highest throughput per core. After reaching the peak at 4 streams,
there is a decline in efficiency when the number of streams is increased. This decline is
due to the network bottleneck, the card’s rate of 100 Gbps. However, until the line rate
is saturated, ranges of 1-4 streams can be used to compare the two cards. Both local
efficiency measurements indicate that cards at the same workload with IPv4 configuration
scale similarly, however difference in median values is around 1.5 Gbps per core higher for
Intel card.
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Figure 6.4: The chart illustrates the local efficiency in gigabits per second (Gbps) for
Intel and Nvidia network cards with IPv4 under different numbers of streams ranging from
1 to 32. Both brands show a generally decreasing trend in efficiency as the number of
streams increases, with notable drops at higher stream counts. Intel’s performance remains
consistently higher than Nvidia’s across most stream configurations, particularly noticeable
at lower stream counts (1 to 4).

Next, the focus will be on IPv4 with VLAN configuration shown in Table 6.1. These
results for local efficiency appear to range between -4% and 1% compared to the results
without VLAN. All the measurements show the same trends and the difference at the peak
throughput is around 1%, which is at 16 streams. This minimal difference in peak perfor-
mance indicates that the overhead introduced by VLAN tagging in an IPv4 environment is
negligible in the context of the tested system. VLANs, often used for network segmentation
and improving security, can sometimes introduce a slight overhead due to additional bytes
in the frame for the VLAN tag. However, the observed data suggests that the network
interface cards can handle VLAN encapsulation and de-encapsulation with little impact on
the network throughput and efficiency.

1 2 4 8 16 32

IPv4 Local efficiency 35.66 34.60 33.12 29.37 22.79 25.70
Throughput 28.74 56.05 96.76 181.47 188.19 107.63

IPv4
VLAN

Local efficiency -4% 0% +1% -2% -1% -4%
Throughput -2% -5% +2% -2% 0% +5%

Table 6.1: The table presents comparative data on local efficiency (as Gbps per core for
IPv4 and fraction of IPv4 for VLAN) and throughput (in gigabits per second for IPv4 and
fraction of IPv4 for VLAN) for IPv4 and IPv4 VLAN under varying numbers of streams
(1, 2, 4, 8, 16, 32). IPv4 VLAN configuration differs from IPv4 in only a few percentage
points.

As mentioned in Section 5.2.1, the last set of measurements is for IPv6 and IPv6 with
VLAN configurations. The results discussed are presented in Table 6.2. Interestingly, the
performance characteristics of IPv4 and IPv6 and IPv6 with VLAN are strikingly similar,
suggesting that the underlying Nvidia ConnectX-6 card and software are equally adept at
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handling both protocols. This parity is expected, as IPv6 is designed to be the successor
of IPv4, retaining operational similarities while providing a larger address space and some
additional features.

1 2 4 8 16 32

IPv6 Local efficiency 34.68 34.97 32.79 29.03 21.88 24.12
Throughput 27.87 53.17 95.93 176.26 185.14 116.09

IPv6
VLAN

Local efficiency -1% -4% -4% 0% -1% 0%
Throughput -1% -2% 0% -3% 0% +3%

Table 6.2: The table presents comparative data on local efficiency (as Gbps per core for
IPv6 and fraction of IPv6 for VLAN) and throughput (in gigabits per second for IPv6 and
fraction of IPv6 for VLAN) for IPv6 and IPv6 VLAN under varying numbers of streams
(1, 2, 4, 8, 16, 32). IPv6 VLAN configuration differs from IPv6 in only a few percentage
points.

Moreover, the similarity in the IPv6, both with and without VLAN, throughout the
range of streams reinforces the conclusion that VLAN configuration does not significantly
impact performance. It reflects a state of optimization in the VLAN implementation that
allows network traffic to be segmented without losing efficiency. It is critical for com-
plex network infrastructure that relies on such segmentation for security and management
purposes.

1 2 4 8 14 28

IPv4 Local efficiency 66.21 58.18 33.00 27.84 22.74 19.18
Throughput 45.11 72.73 94.03 94.04 94.06 94.15

IPv4
VLAN

Local efficiency +2% -2% -1% +2% 0% -2%
Throughput -3% +2% 0% 0% 0% 0%

IPv6 Local efficiency +4% +1% +9% -2% 0% -2%
Throughput -14% -11% -1% -1% -1% -1%

IPv6
VLAN

Local efficiency +1% -2% +2% 0% 0% -1%
Throughput -11% -10% -2% -2% -2% -2%

Table 6.3: The table provides a detailed comparison of local efficiency and throughput for
both IPv4 and IPv6 configurations, with VLAN configurations, across varying numbers of
streams (1, 2, 4, 8, 14, 28). This table demonstrates the varying impacts of configurations,
illustrating key performance trends within a Sapphire Rapids processor with the Intel E810
network card.

The networking hardware for the tests included Nvidia ConnectX-6 and Intel E810 cards.
The results are methodically laid out in Table 6.3. This table is crucial as it encapsulates the
empirical evidence of the performance metrics gathered. The results are compelling because
they corroborate the pattern observed from prior measurements taken using AMD Epyc
processors. These earlier measurements indicated no discernible performance impact when
comparing IPv4 to IPv6 configurations, with or without VLAN. The absence of performance
degradation between the protocols, irrespective of the VLAN configuration, is a significant
finding. It highlights the efficiency of modern networking stacks and the proficiency with
which they handle traffic, regardless of the complexity introduced by VLANs.
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1 2 4 8 14 28

IPv4 Local efficiency 49.99 46.67 34.07 23.17 18.76 18.17
Throughput 40.08 72.26 94.02 94.03 94.05 94.14

IPv4
VLAN

Local efficiency 0% -1% -3% -2% -2% -2%
Throughput -2% -1% 0% 0% 0% 0%

IPv6 Local efficiency +2% +5% -1% -1% -1% -1%
Throughput -3% -3% -1% -1% -1% -1%

IPv6
VLAN

Local efficiency 0% +8% -4% -3% -1% -2%
Throughput -3% -3% -2% -2% -2% -2%

Table 6.4: The table provides a detailed comparison of local efficiency and throughput for
both IPv4 and IPv6 configurations, with VLAN configurations, across varying numbers of
streams (1, 2, 4, 8, 14, 28). This table demonstrates the varying impacts of configurations,
illustrating key performance trends within a Sapphire Rapids processor with the Nvidia
ConnectX-6 network card.

Moreover, the findings of these tests are not isolated incidents but are consistently sup-
ported across all machine setups detailed in Chapter 4. This consistency across different
platforms lends considerable weight to the results, underscoring the robustness of the net-
work performance under varying conditions. It is also worth noting that the performance
parity holds not only for Nvidia and Intel network cards but also for the Broadcom card
that was part of the test suite. The extensive results from various machine configurations
have been organized and presented in the Appendix A.1.

6.2 Duplex test scenario
Table 6.5 presents results from the test scenario described in Section 5.2.2 on the fourth
generation of AMD Epyc processor using the BestNode test scenario.

Figure 6.5 displays data from a Duplex TCP test scenario using an IPv4 configuration,
which shows similar results as the other configurations corresponding to findings from Sec-
tion 6.1, comparing it to results obtained from that same section. A quick analysis of the
data reveals a few trends and insights about network performance in these conditions.

The duplex test scenario data indicates that local and remote efficiency generally in-
creases as streams rise from 1 to 8. This suggests that the system scales well with ad-
ditional parallel streams, likely due to better utilization of available CPU resources and
network bandwidth. Peak efficiency is achieved with 8 streams, beyond which there is a
sharp decline as the number of streams increases to 16 and 32. The full utilization of CPU
resources explains this downturn.

While not directly comparable to the Duplex scenario, the unidirectional stream TCP
scenario from Section 5.2.1 shows a different pattern. The efficiency starts high and remains
relatively stable as the number of streams increases. This steadiness may be attributed to
the lack of parallel streams competing for resources, allowing for a more predictable and
controlled utilization of the network and CPU.
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Figure 6.5: The chart compares the local efficiency in gigabits per second per core for
two test scenarios across varying numbers of streams (1, 2, 4, 8, 16, 32). The blue bars
represent the baseline one-directional test scenario, and the purple bars indicate the target
bidirectional test scenario. The efficiency of the bidirectional tests is significantly lower,
highlighting the increased computational demands of handling traffic in both directions
simultaneously. The results are from an AMD Genoa processor with Nvidia ConnectX-6
NIC.
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Figure 6.6: The chart displays the throughput, measured in gigabits per second (Gbps),
for two test scenarios, one-directional (Baseline) and bidirectional (Target), across various
numbers of streams (1, 2, 4, 8, 16, 32). This chart illustrates the impact of bidirectional
communication on network throughput, highlighting the challenges and limitations of bidi-
rectional data transmission under increasing loads. The results are from an AMD Genoa
with Nvidia ConnectX-6 NIC.

The lower throughput in the Duplex scenario (see Figure 6.6) results from bidirectional
traffic, creating more contention and complexity in packet scheduling and processing. Full-
duplex communication requires the system to handle incoming and outgoing data simulta-
neously, which can lead to increased CPU usage and potential bottlenecks in the network
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stack. Additionally, since full-duplex traffic doubles the number of packets (in and out),
the associated handling overhead can become a limiting factor, especially as the number of
streams grows beyond the optimal point. NICs’ local and remote efficiency from Nvidia and
Intel exhibit notable variations. For local efficiency, Nvidia NIC operates with an efficiency
that falls between 14% and 26%, whereas Intel NIC displays a slightly higher efficiency
range from 17% to 27%. When evaluating remote efficiency, they tend to be less affected
and closer to their baseline capabilities. Nvidia NIC’s remote efficiency ranges from 51%
to as much as 90% of the baseline performance. Intel NIC similarly shows robust remote
efficiencies, ranging from 47% to 85%. This performance metric suggests that although
Intel NIC may offer marginally better local efficiency, Nvidia NIC consistently exhibit a
stronger retention of baseline remote efficiency.

1 2 4 8 16 32
Baseline
Nvidia

Local efficiency 35.42 35.29 33.25 29.82 22.95 24.46
Remote efficiency 11.04 10.95 12.35 11.23 8.87 3.57

Throughput 28.23 54.28 96.91 173.17 188.19 111.86
Target
Nvidia

Local efficiency -84% -82% -77% -76% -74% -86%
Remote efficiency -48% -42% -36% -35% -29% -10%

Throughput -28% -31% -28% -31% -12% -17%
Baseline
Intel

Local efficiency 36.00 35.72 34.85 21.74 17.05 15.28
Remote efficiency 13.04 13.01 12.15 7.99 5.59 4.48

Throughput 24.12 48.73 89.42 94.06 94.12 94.29
Target
Intel

Local efficiency -83% -80% -80% -73% -76% -76%
Remote efficiency -53% -45% -40% -34% -34% -15%

Throughput -23% -27% -30% 0% 0% 0%

Table 6.5: The table compares local and remote efficiency and throughput measurements
across a range of stream counts (1, 2, 4, 8, 16, 32) for both Nvidia and Intel network
interface cards on AMD Genoa processors. The Baseline represents one-directional and
Target bidirectional test scenarios. Target results are represented as fractions of the baseline
measurements.

The next set of measurements presents collected data from the Intel Sapphire Rapids
processor to understand its performance under the same test scenario configurations pre-
viously used. The results, as illustrated in Figure 6.7, show a distinct trend in efficiency
based on the number of data streams processed. Initially, the efficiency is high when using a
single stream but begins to taper off as additional streams are introduced. This decline can
be attributed to the processor reaching its maximum throughput capacity, or line rate, at
around eight streams. Beyond this point, adding more streams paradoxically reduces over-
all efficiency, as the system must allocate resources to manage the increased load, leading
to diminished returns.
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Figure 6.7: The chart compares the local efficiency, measured in gigabits per second per
core, of the Intel E810 network interface card on the Intel Sapphire Rapids processor for
two test scenarios, one-directional (Baseline) and bidirectional (Target). The tests were
conducted across various streams (1, 2, 4, 8, 14, 28). This chart highlights the impact of
bidirectional tests on the efficiency of network data handling.

The duplex scenario involving bidirectional traffic further complicates the efficiency dy-
namics. In this setup, the efficiencies recorded ranged from 23% to 36% for local efficiency
and 58% to 83% for remote efficiency of the baseline measurements. This reduction is
primarily due to the added contention and complexity in packet scheduling and process-
ing when traffic flows in both directions. The duplex scenario inherently requires more
sophisticated management of network resources, which challenges the processor’s ability to
maintain higher efficiency levels.

Comprehensive results from additional machines tested in this study are compiled in
Appendix A.2, as referenced from Chapter 4. These results build upon the observations
detailed above, with local efficiencies varying from 16% to approximately 37% of baseline
performance and remote efficiencies 47% to 85%. It was observed that all machines reached
the line rate when processing data streams, although the number of streams required to
achieve this was higher than the baseline. Notably, some configurations could not attain
line-rate performance on higher capacity 200Gb cards, highlighting the limitations of cur-
rent hardware when dealing with extremely high data throughput demands. This detailed
examination across different setups provides valuable insights into contemporary network
processing units’ scalability and performance.

6.3 NIC offloading
The design and execution of the baseline test scenario, as outlined in Section 2.3.1, provide
a structured approach to evaluate the offloading capabilities discussed. This section delves
deeper into the results from these tests, detailed further in Section 5.2.3 and illustrated in
the forthcoming Figure 6.8. The tests utilized the fourth-generation AMD Epyc processor
with the BestNode configuration on the Nvidia ConnectX-6 card, presenting a cutting-edge
platform for assessing network performance and efficiency.
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(b) Remote efficiency

Figure 6.8: The charts display local and remote efficiency in gigabits per second per core
across varying numbers of data streams (1, 2, 4, 8, 16, 32) for network tests conducted
under two different conditions: Baseline (TSO enabled) and Target (TSO disabled). The
test setup comprises an AMD Genoa processor with a Nvidia ConnectX-6 network interface
card. These charts underscore TSO’s role in enhancing network performance, particularly in
reducing CPU load and improving data handling efficiency on local machines, with variable
impacts on remote machines.

The results present insightful findings regarding the performance metrics of local effi-
ciency. It was observed that the trends in local efficiency metrics align closely with the
baseline measurements. However, there is a notable disparity in performance levels. Specif-
ically, the local efficiency metrics were significantly lower than the baseline, achieving only
20% to 21% of the baseline performance. This considerable reduction highlights the sub-
stantial importance of TSO offload for sender devices.

In contrast, the analysis of remote efficiency presents a different scenario. The impact
on remote efficiency did not mirror the substantial decrease observed in local efficiency. In-
stead, the reduction in remote efficiency was relatively mild. The maximum drop recorded
in remote efficiency was only up to 8%, as illustrated in Figure 6.8b. This figure visu-
ally represents the minimal decline in efficiency on the receiver end, suggesting a minimal
performance impact of disabled TSO compared to the baseline.

To further explore the performance of network interface cards, a test was undertaken
using the Intel E810 card. This experiment was conducted under identical conditions to
those previously used for the Nvidia ConnectX-6. The findings from this test revealed
that the Intel E810 card exhibited a local efficiency range similar to that of the Nvidia
ConnectX-6, with values fluctuating between 14% and 25% of the baseline performance.
This similarity suggests a consistent pattern of reduced local efficiency with disabled TSO
offload.
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(b) Remote efficiency

Figure 6.9: The charts display local and remote efficiency in gigabits per second per core
across varying numbers of data streams (1, 2, 4, 8, 16, 32) for network tests conducted
under two different conditions: Baseline (TSO enabled) and Target (TSO disabled). The
test setup comprises an AMD Genoa processor with an Intel E810 network interface card.
These charts underscore TSO’s role in enhancing network performance, particularly in
reducing CPU load and improving data handling efficiency on local machines, with variable
impacts on remote machines.

However, the comparison of remote efficiency between the two cards highlighted a differ-
ent trend. The Intel E810 card demonstrated less favourable remote efficiency performance
than its Nvidia counterpart. Specifically, the Intel card experienced a performance drop of
up to 20% in remote efficiency (see Figure 6.9b). This marked decline indicates a notable
disparity in the capability of the Intel E810 card to maintain efficiency on the receiving end,
setting it apart from the Nvidia ConnectX-6, which appeared to sustain closer to baseline
levels under similar conditions.

In the next phase of the study, tests were conducted using the Intel Sapphire Rapids
processor, employing the BestNode test scenario along with two types of network interface
cards, the Nvidia ConnectX-6 and the Intel E810. These tests were designed to evaluate
the performance nuances that might arise when varying the hardware within the same test
parameters.

In an extensive evaluation of network interface cards (NICs) on different processors,
significant variances in performance were observed, particularly between the Intel E810
NIC when used with Intel Sapphire Rapids and AMD Genoa processors. The results show
that the local efficiencies of the Intel E810 NIC on the Intel Sapphire Rapids processor
ranged from 30% to 40% of the baseline performance. This represents an improvement of
approximately 15% to 20% compared to the same NIC’s performance on an AMD Genoa
machine. This difference underscores the impact that the choice of processor can have on
the performance of networking hardware.

Regarding remote efficiency, the Intel E810 NIC also demonstrated robust performance,
with only up to a 4% drop in efficiency. Comparatively, the Nvidia ConnectX-6 NIC
showcased a broader range of local efficiency on Intel Sapphire Rapids, with performance
metrics ranging from 30% to 50% of baseline performance. This suggests a higher peak
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efficiency under optimal conditions than the Intel E810. The Nvidia ConnectX-6 also
matched Intel’s remote efficiency, with a performance decrease of only up to 4%.

1 2 4 8 16 32
Baseline
Intel

Local efficiency 66.21 58.18 33.00 27.84 22.74 19.18
Remote efficiency 28.84 22.02 16.58 12.38 9.26 6.25

Target
Intel

Local efficiency -68% -69% -60% -60% -59% -58%
Remote efficiency -4% -2% 0% 0% 0% 0%

Baseline
Nvidia

Local efficiency 49.99 46.67 34.07 23.17 18.76 18.17
Remote efficiency 22.91 19.06 16.78 12.10 9.03 7.72

Target
Nvidia

Local efficiency -65% -68% -60% -53% -49% -52%
Remote efficiency 0% +15% +5% -4% 0% 0%

Table 6.6: The table comprehensively compares local and remote efficiency for Intel and
Nvidia under different configurations: Baseline and Target, where Baseline denotes TSO
enabled, and Target signifies TSO disabled. This table effectively highlights the impact of
TCP Segmentation Offload (TSO) on the network performance of Intel and Nvidia network
cards with Intel Sapphire Rapids processor, showing varied effects based on local and remote
server efficiencies.

The tests uniformly indicated that performance levels across all configurations were
comparable to those recorded in the baseline scenario. Notably, there were no significant
differences between the two network interface cards and across different network configu-
rations. The results indicate that the IP stack configuration and the use of VLAN do not
markedly influence the performance of these particular hardware setups.

However, testing with older hardware architectures, as detailed in Appendix A.3, demon-
strates a more predictable pattern where local and remote efficiencies fall below the baseline.
This decline in performance is attributed primarily to increased CPU utilization, which av-
erages about one core more than newer setups. These findings align with expectations that
older systems with less efficient hardware will likely experience reduced performance due
to higher demands on processing power.

Let’s examine the network performance impact of another offload type as outlined in
the test scenario from Section 5.2.3; the data presents a comprehensive view of the impact
of checksum offloading on network efficiency. The results from this set of tests utilize the
advanced fourth-generation AMD Epyc processor paired with the BestNode configuration
for both Nvidia ConnectX-6 and Intel E810 network cards. Figure 6.10 focuses on the
Nvidia ConnectX-6 card’s performance under these conditions.

The performance metrics for the Nvidia ConnectX-6 card reveal significant insights into
efficiency under TX and RX checksum offloading disabled. With the transmit checksum
offload disabled, the local efficiency of the Nvidia card ranges between 15% and 20% of
the baseline performance. This indicates a considerable reduction in efficiency, showcasing
how critical the enablement of transmit checksum offloading is to maintaining higher local
throughput and processing speed.

Moreover, with receive checksum offload disabled, the remote efficiency experiences a
substantial drop, decreasing up to 23%. This drop is even more pronounced than the
impact observed when TCP segmentation offload (TSO) is disabled. This result highlights
a larger degradation in performance on both the transmit and receive sides, which aligns
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with expectations given the increased processing burden placed on the CPU when checksum
calculations are handled by the host rather than offloaded to the NIC.
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(b) Remote efficiency

Figure 6.10: The charts depict the local and remote efficiency, measured in gigabits per
second per core, under two different testing conditions across varying numbers of data
streams (1, 2, 4, 8, 16, 32). They are compared between the Baseline, where RX and
TX checksum offloads are enabled, and the Target, where these offloads are disabled. The
results are from an AMD Genoa processor with a Nvidia ConnectX-6 card.

In a continuation of the network performance evaluation, further results have been
analyzed for the Intel E810 Network Interface Card (NIC) under the same experimental
setup as previously detailed. These results are systematically presented in Table 6.7 and
reveal trends broadly consistent with earlier findings but with notably steeper performance
declines.

The data on the Intel E810 NIC indicates that local efficiency ranges from 13% to 20%.
This range suggests that the card performs at a lower efficiency than its baseline capability
when operating under conditions where the transmit checksum offload is disabled. The
decrease in local efficiency underlines the critical role that hardware-accelerated functions
play in maintaining optimal operational performance, especially in scenarios demanding
high data throughput.

Moreover, a more significant decline is observed in the remote efficiency, which drops
by as much as 35%. This substantial reduction when receiving checksum offload is dis-
abled points to the increased processing load transferred to the processor, highlighting a
considerable degradation in the NIC’s ability to handle incoming data efficiently under
these conditions. This contrasts with the slightly milder impacts of similar configurations
in previous tests on other hardware, emphasizing the Intel E810’s sensitivity to disabling
offloading features.
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1 2 4 8 16 32
Baseline
Intel

Local efficiency 36.00 35.72 34.85 21.74 17.05 15.28
Remote efficiency 13.04 13.01 12.15 7.99 5.59 4.48

Target
Intel

Local efficiency -87% -87% -85% -82% -80% -79%
Remote efficiency -35% -35% -37% -10% +22% -5%

Table 6.7: The table comprehensively compares local and remote efficiency across various
stream counts (1, 2, 4, 8, 16, 32) for the Intel network card. The Baseline represents
results with RX and TX checksum offload enabled, while the Target represents results with
disabled offloads. The results are from the Genoa generation of AMD processor with Intel
E810 card.

Tests were also conducted using the Intel Sapphire Rapids processor. These tests uti-
lized the BestNode test scenario and employed two network interface card (NIC) types: the
Nvidia ConnectX-6 and the Intel E810. The results of these tests are meticulously recorded
in Table 6.8, providing a comprehensive view of each card’s efficiency under specific condi-
tions.

For the Intel E810 NIC, the findings indicate that the local efficiency ranges from 30%
to 37% of the baseline performance. This level of efficiency represents a relatively smaller
impact compared to the same card’s performance on an AMD Genoa processor. Similarly,
the remote efficiency experiences a decrease of up to 24%, which also presents a smaller
impact compared to the results obtained with the AMD processor.

On the other hand, the Nvidia ConnectX-6 displayed a range of local efficiency between
27% and 47% of the baseline performance. Furthermore, the drop in remote efficiency
was limited to up to 16%, indicating a stronger overall performance on the Intel processor
compared to the AMD. These results underline that the Intel Sapphire Rapids processor
may offer better compatibility and performance efficiency with high-end NICs.

1 2 4 8 14 28
Baseline
Intel

Local efficiency 66.21 58.18 33.00 27.84 22.74 19.18
Remote efficiency 28.84 22.02 16.58 12.38 9.26 6.25

Target
Intel

Local efficiency -71% -71% -67% -68% -66% -63%
Remote efficiency -19% -15% -15% -20% -14% -11%

Baseline
Nvidia

Local efficiency 49.99 46.67 34.07 23.17 18.76 18.17
Remote efficiency 22.91 19.06 16.78 12.10 9.03 7.72

Target
Nvidia

Local efficiency -70% -73% -68% -60% -53% -57%
Remote efficiency -14% 0% -7% -16% -10% -11%

Table 6.8: The table comprehensively compares local and remote efficiency across various
stream counts (1, 2, 4, 8, 16, 32) for the Intel network card. The Baseline represents
results with RX and TX checksum offload enabled, while the Target represents results with
disabled offloads. The results are from the Intel Sapphire Rapids processor with Intel E810
and Nvidia ConnectX-6 cards.

The comprehensive network interface card performance analysis continues with addi-
tional results detailed in Appendix A.4. Combined with those discussed earlier in this
section, these findings consistently demonstrate an expected performance decline across
different setups. Specifically, the local efficiency of the tested systems shows a notable
drop, ranging from about 20% to 45% of baseline performance, depending on the specific
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configuration and operating conditions. Furthermore, the impact on remote efficiency varies
considerably, with changes spanning from a marginal 5% to as high as 40%. Notably, sys-
tems employing Intel processors exhibited less variability in performance outcomes than
those using AMD processors. This suggests that Intel setups might offer a more stable and
predictable performance environment, particularly under conditions that stress network
throughput and efficiency.

6.4 UDP comparison
The subsequent results are derived from the UDP test scenario, detailed in Section 5.2.4,
designed to place the highest possible workload on the network interface cards. This de-
manding test environment is critical for evaluating the cards under extreme operational
conditions, pushing the hardware to its limits to assess its performance and scalability.
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Figure 6.11: The charts depict the transmit packet rates of two different hosts across varying
numbers of data streams (1, 2, 4, 8, 16, 32). Chart (a) illustrates the local transmit packet
rate for Host #1, which shows a significant increase in packet transmission as the number of
streams escalates, peaking dramatically at 32. Conversely, Chart (b) represents the remote
transmit packet rate for Host #2, demonstrating a similar trend of increasing packet rates
with the number of streams, with a notable peak at 32. However, the rate increase appears
more consistent and gradual than Host #1. These charts depict results from AMD Genora
with Nvidia ConnectX-6 card on UDP test scenario.

Focusing initially on the Nvidia ConnectX-6 and Intel E810 cards, these tests were
conducted using the fourth generation of AMD Epyc processors within the BestNode test
scenario configured for IPv4. The results, visually represented in Figure 6.11, detail both
local and remote packet transmission rates. A notable observation from the data is the linear
scaling of packet transmission with the increase in the number of streams. Specifically, the
system peaks at approximately 10 million packets per second at the maximum number of
streams, illustrating the processor’s capacity to handle even greater loads potentially being
limited by testing tool generation power. This trend underscores the robust capability of
the AMD Epyc processor in conjunction with the efficient escalating network demands of
both Nvidia.

Moreover, whether VLAN is employed or not, this linear scaling trend is consistent
across all IP stack configurations. This uniformity in performance across different network-
ing setups indicates that the hardware’s efficiency and scalability are not adversely affected
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by complexity variations in the network layer. Such consistency is crucial for network
design, suggesting that systems can be configured for high throughput demands without
significant performance degradation, regardless of IP stack and VLAN settings.

These results also align with findings from Section 6.1, reinforcing the observed be-
haviours and performance benchmarks established earlier.

In a continuation of our evaluation of network interface cards under intense demand, the
Intel E810 card demonstrates a comparable trend to its counterparts, with an increasing
number of streams correlating directly to a higher number of packets sent per second (see
Figure 6.12). This observation, similar to what was seen with the Nvidia ConnectX-6 card,
reflects a linear scaling in performance. However, a critical distinction arises: the linear
increase in packet throughput with the Intel E810 card holds steady only up to 16 streams,
beyond which the growth plateaus. This suggests that the Intel E810 card, within this
specific setup, begins to approach its maximum performance capacity when handling more
than 16 streams, achieving around 55% of packet rate compared to the Nvidia ConnectX-6
card.
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Figure 6.12: The charts illustrate the local and remote transmit packet rates measured in
millions of packets per second (Mpps) for two hosts equipped with AMD Genoa processors
and Intel E810 NICs across varying numbers of data streams (1, 2, 4, 8, 16, 32). In chart
(a), Host #1 displays a progressive increase in local packet transmission rates as the number
of streams increases, with a notable spike at 32 streams. Chart (b) shows similar trends for
Host #2 in remote packet transmissions, where rates increase significantly as the number
of streams rises, particularly achieving the highest transmission rate at 32 streams.

The results derived from testing on the Intel Sapphire Rapids processor, utilizing the
BestNode test scenario with two different network interface cards, such as the Nvidia
ConnectX-6 and the Intel E810, provide intriguing insights into network performance dy-
namics. Notably, the Intel E810 card demonstrated a high packet per second rate (see
Figure 6.13). This anomaly has prompted a deeper investigation, which is extensively dis-
cussed in Section 6.6 to understand and possibly rectify what might be influencing these
results.
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Figure 6.13: The charts show the local and remote transmit packet rates for two hosts
equipped with Intel Sapphire Rapids processors and Intel E810 NICs, measured across
various data stream counts (1, 2, 4, 8, 14, 28). Chart (a) shows Host #1’s local transmit
packet rates, which steadily increase as the number of streams rises, peaking impressively at
28 streams. Conversely, Chart (b) captures Host #2’s remote transmit packet rates, which
also show a progressive increase with the number of streams, culminating in a significant
peak at 28 streams. These charts highlight the scalability of the Intel Sapphire Rapids
with Intel E810 NIC setup in efficiently handling increasing network loads, both locally and
remotely, showcasing the capability to manage large volumes of data traffic efficiently.

Additionally, a significant observation was made regarding the IP configuration’s impact
on performance, specifically concerning the use of VLAN. Tests showed configurations with-
out VLAN could deliver about 1 million more packets per second at the peak of maximum
streams compared to those with VLAN enabled. This suggests that VLAN implementation
might introduce a performance degradation of up to 5%.

Lastly, comprehensive investigations across various machine setups detailed in Chapter
4 reveal that implementing VLAN configuration at maximum streams typically results in
a performance decrease of approximately 5%. An exception is noted with the Broadcom
card, where the performance impact is dramatically higher, nearly 50%. This significant
discrepancy highlights the Broadcom card’s unique sensitivity to VLAN configurations com-
pared to its counterparts. Additionally, when comparing performance metrics head-to-head,
the Nvidia ConnectX-6 consistently outperforms the other network interface cards, includ-
ing the Intel E810 and Broadcom, as further elaborated in Appendix A.5. This superior
performance of the Nvidia ConnectX-6 suggests its enhanced efficiency and robustness in
handling high-load network scenarios, making it a preferable choice in environments where
maintaining peak performance is crucial.

6.5 NUMA impact
As described in Section 5.2, the test scenarios involve multi-socket processor architectures,
making it pertinent to assess the impact on performance using the diverse setups out-
lined in Chapter 4. The NeighbourNode measurement approach is notably relevant to
Intel processors due to their architectural specifics and how they manage inter-processor
communications and network traffic.

Detailed results involving the Inter Sapphire Rapids processors equipped with Nvidia
ConnectX-6 and Intel E810 network interface cards are compiled in this context. These
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findings are scheduled for presentation in Table 6.9. When analyzing the data, it is evident
that the BestNode configuration yields significantly better performance than the Neigh-
bourNode configuration. Specifically, the Intel network card has an efficiency gain ranging
between 5 to 8 Gbps per core. In contrast, using the Nvidia network card, the efficiency
improvement is somewhat lower, between 3 to 5 Gbps per core. This differential highlights
the varied efficiencies between network cards under similar test conditions.

1 2 4 8 14 28
BestNode
Intel

Local efficiency 66.21 58.18 33.00 27.84 22.74 19.18
Remote efficiency 28.84 22.02 16.58 12.38 9.26 6.25

Throughput 45.11 72.73 94.03 94.04 94.06 94.15
Neighbour
Node
Intel

Local efficiency -24% -17% -13% -21% -18% -22%
Remote efficiency -46% -34% -20% -27% -27% -34%

Throughput -42% -34% -6% 0% 0% 0%
BestNode
Nvidia

Local efficiency 49.99 46.67 34.07 23.17 18.76 18.17
Remote efficiency 22.91 19.06 16.78 12.10 9.03 7.72

Throughput 40.08 72.26 94.02 94.03 94.05 94.14
Neighbour
Node
Nvidia

Local efficiency -12% -10% -20% -12% -3% -17%
Remote efficiency -32% -35% -23% -17% -11% -19%

Throughput -16% -30% 0% 0% 0% 0%

Table 6.9: The table provides a detailed comparison of local and remote efficiency, along
with throughput metrics, across various stream counts (1, 2, 4, 8, 14, 28) for two types
of node configurations—BestNode and Neighbour Node—each utilizing Intel and Nvidia
NICs. The Neighbour Node configurations demonstrate significantly lower efficiencies and
varied throughput results, suggesting potential latency or resource-sharing impacts in these
less optimal node selections. This table highlights the influence of Non-Uniform Memory
Access (NUMA) configurations on network performance, showcasing the variable efficiency
and throughput of Intel Sapphire Rapids processors across different operational scenarios
and hardware setups.

Moreover, the Intel network card requires more streams to achieve the maximum line
rate when configured under the NeighbourNode setup. This contrasts with the Nvidia card,
which reaches the line rate with fewer streams. This observation underlines a recurring
theme found in previous tests: Nvidia network cards generally offer better performance
than their Intel counterparts, especially in configurations that demand high throughput
from multiple network streams.

The next section of the analysis introduces performance metrics for the Intel IceLake
processor paired with both Nvidia and Intel network interface cards, which will be illustrated
in Figure 6.14. The initial focus is on the Nvidia card, which, in the BestNode configuration,
demonstrates a significant local efficiency advantage, achieving approximately 7 Gbps per
core more than its counterparts. Interestingly, this enhanced performance does not stem
from lower CPU utilization; the Nvidia card registers higher CPU usage. Despite this,
it still delivers superior throughput, leveraging the increased processing power to handle
greater data volumes more efficiently.
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Figure 6.14: The charts compare the local efficiency in gigabits per second per core of two
network interface cards (Intel E810 and Nvidia Connect-X) across various data streams
(1, 2, 4, 8, 16) under two different configurations: BestNode and NeighbourNode. In the
chart (a), the Intel E810 shows higher local efficiency for BestNode configurations across all
stream counts, with noticeable performance degradation in NeighbourNode settings, par-
ticularly at higher stream counts. Similarly, chart (b) illustrates that the Nvidia Connect-X
also performs better in BestNode settings, maintaining superior efficiency across the same
range of data streams. These charts highlight the impact of optimal NUMA node selection
on the performance of network interface cards, emphasizing the significant advantage of
matching network hardware with the appropriate memory access configurations to opti-
mize performance. These results were obtained on Intel Icelake.

This counterintuitive result, where higher CPU utilization correlates with better per-
formance, suggests that the Nvidia card’s architecture or driver optimizations might be
more adept at processing large amounts of data at the correct socket. This could indicate a
well-tuned system where the card and processor efficiently work together to maximize data
handling and throughput despite the increased demand for system resources.

Meanwhile, the performance of the Intel card on the same Icelake processor offers in-
sights that align with findings from other recent tests involving newer generations of Intel
processors. Like its counterparts, the Intel card exhibits similar trends in terms of efficiency
and throughput. This consistency across different generations of hardware suggests that
Intel network cards maintain a stable performance profile, which is crucial for network plan-
ning and operations, ensuring that systems can be scaled or upgraded without unexpected
deviations in network performance.

The final set of results, featuring the Intel Skylake processor equipped with a Broadcom
network interface card, is detailed in Figure 6.15. These findings corroborate previously
observed patterns, particularly highlighting that the local efficiency is reduced by approx-
imately 20%. Notably, this performance drop is more pronounced in the NeighbourNode
configuration, which fails to achieve the full line rate capacity of the 100Gb Broadcom card.
This inefficiency is attributed to the maximum remote CPU utilization being reached, be-
yond which the system cannot process additional traffic.
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Figure 6.15: The charts present the local efficiency and throughput performance of a Broad-
com Network Interface Card (NIC) on an Intel Skylake processor under two different con-
figurations, BestNode and NeighbourNode, across various numbers of data streams (1, 2,
3, 6, 12). In chart (a), the local efficiency in gigabits per second per core is shown for
both configurations. BestNode consistently outperforms NeighbourNode across all stream
counts, highlighting the benefits of optimal NUMA placement in enhancing data process-
ing efficiency. Chart (b) demonstrates throughput in gigabits per second, with a similar
trend where BestNode configuration maintains superior performance, particularly at higher
stream counts.

This situation underscores a significant limitation when older processor architectures
manage high-bandwidth network traffic. The Skylake processor, despite its capabilities,
struggles under the demands of 100 Gb throughput, particularly in less optimized con-
figurations like NeighbourNode. This indicates a mismatch between the network card’s
capabilities and the processor’s ability to handle such high levels of data flow effectively
without specific configuration adjustments.

The observation that these older architectures require configuration optimization, such
as switching to a BestNode setup, to manage high traffic effectively points to the necessity of
tailored system configurations to harness the full potential of high-capacity network cards.
BestNode configurations, which optimize processing by strategically managing data flow
and CPU utilization across the system, can help mitigate these bottlenecks and improve
the network’s overall efficiency.

The results from various network interface card tests reveal both the capabilities and
limitations inherent in each model, emphasizing the critical role of selecting the optimal con-
figuration tailored to the specific demands of the processor architecture and the anticipated
network load. This selection process is vital in complex environments that utilize multi-
socket processor architectures, where the goal is to maximize per-core network throughput.
The insights from these tests provide invaluable guidance for optimizing network infras-
tructure, ensuring that each component is appropriately matched and configured to handle
the expected data volumes efficiently. Such optimization helps achieve the best possible
performance, reduces bottlenecks, and enhances the overall reliability and responsiveness
of the system.

Further analysis underscores that while local efficiency is an important metric, the more
significant limitation often stems from the remote machine’s CPU utilization, which, when
maxed out, can severely restrict overall network throughput. High CPU utilization on the
remote side indicates insufficient processing power to handle incoming traffic at optimal
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speeds, causing a drop in throughput and efficiency. This finding points to the necessity
of focusing on the network cards and local configurations and ensuring that the remote
setups are equally capable of handling the projected loads. Managing and synchronizing
the capabilities of both local and remote resources is essential for maintaining smooth and
efficient network operations, especially in high-demand scenarios where data transmission
rates are critical.

6.6 Performance impact of mitigations
As mentioned in Section 6.1, comparative analyses between AMD and Intel processors
revealed notable differences in stability, particularly under high loads. This instability is
especially evident in configurations using AMD processors, where increased CPU utilization
on the receiving side was observed during the tests.

More specifically, when utilizing the fourth-generation AMD processor paired with an
Nvidia ConnectX-6 network card, the impact of escalating data streams on remote efficiency
was monitored. Initially, as the number of streams increased from 1 to 4, the system’s
remote efficiency remained relatively stable. This suggests that up to this point, the AMD
processor and Nvidia card combination could handle the increased load without significant
performance degradation.

However, the situation changed markedly when the number of streams increased. As
the streams expanded from 8 to 32, a noticeable decline in efficiency began to manifest.
This degradation in performance became more pronounced with each increase in stream
count, indicating a direct correlation between the number of streams and the strain placed
on the system’s resources.

The culmination of this trend was observed when the system reached 32 streams. At this
level, the throughput experienced a significant drop (see Figure 6.16), which was attributed
to the remote server reaching its maximum processing capacity. This was evident from
utilising all 32 AMD processor cores, which became a bottleneck.

The investigation into a specific performance issue began with a straightforward ap-
proach, focusing on developing test scenarios and conducting continuous evaluations across
different kernel versions. In this case, the evaluations centred on kernel version 5.14.0-
284. Subsequent comparisons were made with what was suspected to be a problematic
kernel, version 5.14.0-408, as shown in Figure 6.17. These comparisons revealed that while
there were observable performance improvements in scenarios involving a smaller number
of streams, the same could not be said for configurations with a higher number of streams;
these did not experience the same degree of performance degradation.
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Figure 6.16: The charts display the remote efficiency and throughput of a network interface
card (NIC) across various numbers of data streams (1, 2, 4, 8, 16, 32). The chart shows
relatively stable performance across lower numbers of streams but sees a significant drop
at 32 streams. The results were collected on an AMD Genoa processor.
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Figure 6.17: The bar chart compares the network throughput in gigabits per second across
various numbers of streams (1, 2, 4, 8, 16, 32) for two different versions of a kernel: 5.14.0-
284 (blue bars) and 5.14.0-408 (purple bars). The throughput generally increases with
the number of streams for both kernel versions, indicating scaling efficiency. However, the
newer kernel version (5.14.0-408) tends to perform similarly or slightly below the older
version (5.14.0-284) at lower stream counts but shows a notable decline in performance at
32 streams.

This difference in performance led to the hypothesis that a specific change introduced
between kernel versions 284 and 408 was responsible for the observed discrepancies. Fur-
ther in-depth analysis confirmed this hypothesis, identifying the cause of the performance
regression as a vulnerability mitigation mechanism, formally named the Speculative Return
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Stack Overflow (SRSO)[5], colloquially known as AMD Inception. This mitigation aimed
to enhance security but at the cost of performance under certain conditions.

The mitigation can be selectively disabled using the kernel parameter
spec_rstack_overflow=off, or more comprehensively through mitigations=off, depend-
ing on the desired scope of vulnerability protection versus performance optimization. A
subsequent set of measurements, referenced in Figure 6.18, provided empirical support that
disabling this SRSO mitigation alleviated the performance degradation. This discovery
underscored the delicate balance between securing systems against potential vulnerabili-
ties and maintaining optimal performance, particularly in environments with critical high
throughput and low latency.
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Figure 6.18: The charts compare the performance of network throughput and remote ef-
ficiency across various numbers of data streams (1, 2, 4, 8, 16, 32) under two different
configurations: Baseline, with Speculative Return Stack Overflow (SRSO) mitigation en-
abled, and Target, with SRSO mitigation disabled. In the chart (a), remote efficiency,
measured in gigabits per second per core, is consistently higher in the Baseline setup across
all stream counts, suggesting that disabling SRSO mitigation helps maintain higher data ef-
ficiency, particularly noticeable at higher streams (16 and 32). Chart (b) shows throughput
in gigabits per second, where the Baseline configuration generally outperforms the Target,
except at 32 streams, where performance drops significantly, indicating possible perfor-
mance limitations due to the mitigation’s overhead. These charts illustrate the trade-offs
between security enhancements through mitigation techniques and network performance,
highlighting the potential impact on throughput and efficiency under varying operational
loads.

6.7 Summary
The analysis presented in Section 6.1 indicates that utilising different IP versions and im-
plementing VLAN results in a negligible performance impact. This suggests that all con-
figurations tested are adequately equipped to handle these network settings effectively.
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Further insights from the Duplex test scenario detailed in Section 6.2 reveal that while
the computational demands for handling bidirectional communication are significantly greater
than those for unidirectional communication, modern processors are capable of achieving a
throughput of 100Gb in both directions within this testing framework.

The findings from Section 6.3 elucidate the consequences of disabling TCP Segmentation
Offload (TSO), which leads to a reduction in local efficiency by approximately 60% to 70%
compared to when TSO is enabled. Conversely, the impact on remote efficiency is negligible.
Additionally, the performance across network interface cards from different manufacturers
remains consistent, irrespective of the vendor.

Measurements obtained from scenarios where both transmit (TX) and receive (RX)
offloads are disabled show that the performance penalties mirror those observed when TSO
is disabled. Notably, this includes a tangible effect on remote efficiency. The decrease in
performance is relatively uniform across different network interface card brands.

In Section 6.4, the findings reinforce the earlier observation from Section 6.1 that vari-
ations in IP configurations, whether with or without VLAN, have a minimal effect on per-
formance. However, it is noted that the primary bottleneck in this scenario is attributed to
iperf3 [51], as its performance metrics do not align with those achievable using DPDK1,
suggesting that the testbed is capable of much higher performance when processing is of-
floaded from the kernel.

The examination of NUMA architectures in Section 6.5 emphasizes the importance of
managing data processing and interrupt request (IRQ) handling within the same node that
hosts the network card being tested. Performance reductions ranged from as little as 10%
to as much as 40%, highlighting that older processors might struggle to achieve 100Gb
throughput if data handling is assigned to an adjacent socket.

Section 6.6 discusses the critical nature of being cognizant of vulnerability mitigations
for different processor brands within the Linux kernel. It highlights a mitigation strategy
for AMD processors that substantially increases CPU utilization and decreases efficiency
relative to their Intel counterparts. The section also underscores the value of continuous
integration in performance testing, which allows for rapid detection and response to kernel
patches. This approach benefits from triggering a testing pipeline for various configurations
and demonstrates the utility of analytical tools in aggregating and comparing extensive data
sets.

The comprehensive comparison of performance metrics across all test setups from the
testbed, as outlined in Table 6.10, provides a detailed overview of processor capabilities.
The Intel Sapphire Rapids emerges as the top performer, followed closely by the Intel Ice
Lake. The AMD Genoa and Milan processors are ranked next, showing strong performance
but slightly hindered by the SRSO mitigation, which, if absent, might have positioned them
closer to the Sapphire Rapids in terms of efficiency. Notably, the ARM setup ranks just
above the last place, which is held by the Intel Skylake. The positioning of the Skylake
processor at the bottom of the list is attributed to its older technology base and the burden
of multiple vulnerability mitigations.

Furthermore, the comparative analysis highlights that the ARM setup exhibits efficiency
metrics in single and multistream tests comparable to AMD Genoa, indicating a compet-
itive performance. In contrast, Intel processors distinctly outperform AMD and ARM in
single-core efficiency. However, when it comes to multi-core processing, Intel’s advantage

1https://core.dpdk.org/perf-reports/
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diminishes, bringing its performance closer to that of AMD and ARM, suggesting a more
levelled field in scenarios that demand multi-core capabilities.

The Intel E810 is the best overall network interface card, closely followed by the Nvidia
ConnectX-6. Broadcom BCM57508 cards are last. However, it aligns with the marketing
depiction as power efficient rather than a high-performance leader. When considering the
optimal combinations of processors and network cards, setups involving Intel Sapphire
Rapids and Ice Lake paired with Intel E810 cards lead to performance. These combinations
are followed by setups incorporating the same Intel processors but using the Nvidia card
instead. This hierarchical arrangement underscores the significant impact of the choice of
network interface cards on the overall system performance, particularly in compatibility
and efficiency with different processors.
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Processor A4 I4 A3 I3 I2 ARM
NIC Nvidia Intel Nvidia Intel Nvidia Broadcom Nvidia Intel Broadcom Nvidia Intel

A4 Nvidia - -2%/-2% -30%/-25% -47%/-40% -24%/+88% +80%/+80% -37%/-30% -47%/-34% +138%/+105% +3%/+8% -1%/+8%
Intel +2%/+4% - -29%/-24% -46%/-39% -23%/+91% +83%/+82% -36%/-29% -46%/-33% +142%/+107% +5%/+9% +1%/+9%

I4 Nvidia +41%/+32% +39%/+30% - -25%/-20% +8%/+149% +154%/+138% -11%/-8% -34%/-12% +236%/+171% +46%/+43% +40%/+43%
Intel +87%/+64% +84%/+62% +32%/+24% - +42%/+211% +237%/+196% +19%/+16% 0%/+10% +345%/+238% +93%/+78% +86%/+78%

A3 Nvidia +30%/-53% +29%/-52% -8%/-60% -30%/-68% - +136%/-5% -17%/-63% -30%/-65% +212%/+8% +35%/-43% +30%/-43%
Broadcom -45%/-45% -45%/-46% -60%/-59% -70%/-67% -58%/+5% - -65%/-61% -70%/-63% +32%/+14% -43%/-41% -45%/-40%

I3 Nvidia +57%/+42% +54%/+40% +11%/+7% -16%/-14% +20%/+168% +183%/+152% 55.63 | 50.22 -16%/-5% +274%/+192% +62%/+53% +56%/+54%
Intel +85%/+50% +82%/+47% +31%/+13% -1%/-10% +42%/+182% +234%/+169% +18%/+5% - +342%/+207% +92%/+61% +84%/+62%

I2 Broadcom -59%/-52% -58%/-52% -70%/-64% -78%/-71% -68%/-9% -25%/-13% -74%/-66% -78%/-68% 14.85 | 17.18 -57%/-48% -59%/-48%

ARM Nvidia -4%/-8% -5%/-9% -32%/-30% -49%/-44% -27%/+74% +74%/+66% -39%/-35% -48%/-49% +130%/+90% - -4%/0%
Intel 0%/-8% -1%/-9% -29%/-31% -47%/-44% -34%/+74% +81%/+66% -36%/-36% -46%/-39% +139%/+90% +4%/0% -

Table 6.10: The Comparison Matrix systematically evaluates all setups from the testbed detailed in Chapter 4, aligning the results with
the baseline measurements discussed in Section 6.1. A4 is AMD Genoa, I4 is Intel Sapphire Rapids, A3 is AMD Milan, I3 is Intel Icelake
and I2 is short for Intel Skylake. This matrix assesses local efficiency, measured as gigabits per second per core, across two performance
metrics: single-stream and multi-stream. It reveals that Intel processors strongly dominate single-stream performance, leveraging their
robust design to maximize throughput per core. However, this significant advantage diminishes in multi-stream scenarios, where the
simultaneous handling of multiple data streams tempers their superiority. The Intel E810 emerges as the leading option among network
interface cards, demonstrating superior performance across both metrics, followed closely by the Nvidia ConnectX-6. The Broadcom
BCM57508, while positioned last, aligns with its market depiction as power efficient rather than a high-performance leader, indicating a
strategic focus on energy efficiency over peak performance.
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Chapter 7

Conclusion

The primary aim of this thesis was to develop and investigate continuous network perfor-
mance testing test scenarios, with a particular focus on their application in modern Linux
kernel environments. This research addressed the challenges and opportunities presented
by the growth in network throughputs and the advancement of multi-core processor tech-
nologies.

The pivotal findings of this thesis are encapsulated in a detailed analysis of the funda-
mental contributors to network performance. This includes an in-depth examination of key
hardware network offloading strategies, as thoroughly discussed in Chapter 2.

In Chapter 3, a variety of continuous integration (CI) tools were explored within the
realm of network interface card (NIC) performance testing on Linux-based systems. This
chapter evaluates numerous CI tools and platforms, examining their effectiveness in manag-
ing the intricacies and demands of network performance testing. It also explores established
software testing methods to determine their adaptability in meeting the unique challenges
faced in NIC performance testing and identifying the necessary tools to mitigate them.

Chapter 4 offers an exhaustive overview of the hardware configurations utilized in NIC
performance testing. It outlines the specifications and setups of the chosen NICs, explaining
the reasoning behind each selection. This chapter describes the CPU architectures used to
test the NICs and introduces a complete testing matrix.

Drawing on insights from the preceding chapters, Chapter 5 presents a proposed ap-
proach for continuous network performance testing on Linux-based operating systems. This
comprehensive approach encompasses test planning, execution, data collection, and analy-
sis. Furthermore, it introduces a range of generic testing scenarios to facilitate an efficient,
repeatable testing process that yields consistent and comparable results. Scalability is a
key emphasis, ensuring that the test scenarios can be implemented across different network
environments and hardware setups. Adaptability is equally important, allowing the test
scenarios to stay applicable in changing hardware and software contexts.

Chapter 6 concludes that the test scenarios are flexible enough to accommodate a range
of network configurations, including various IP versions (IPv4, IPv6), VLAN settings, and
transport layer protocols like TCP or UDP. Future work could extend these scenarios to
include configurations like MPTCP or VXLAN. The study demonstrates that variations
in IP versions and VLAN setups minimally impact network performance, with modern
processors efficiently handling up to 100Gb of bidirectional throughput. Disabling TCP
Segmentation Offload (TSO) leads to a substantial reduction in local efficiency, between
60% and 70%, while the effects on remote efficiency are minimal and uniform across different
NIC brands. Similar impacts are observed when both TX and RX offloads are disabled,
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though remote efficiency declines. The importance of NUMA architecture management to
avoid performance degradation and the significance of continuous integration in responding
to kernel patches are highlighted. Intel Sapphire Rapids stands out as the top performer,
with Intel E810 noted as the best NIC. However, performance greatly varies with different
processor and NIC combinations, affecting overall system efficiency and optimization. These
insights are critical for informed decision-making in network engineering and management.
Looking ahead, there could be a focus on incorporating 400Gb cards or developing a metric
for throughput per watt with a comparison of ARM processors to other architectures,
facilitating comparisons that are especially relevant as large providers start to prioritize
power efficiency [31].
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Appendix A

Measurements

A.1 Baseline measurements
This section evaluates the performance of different processors and network interface card
(NIC) configurations under various network conditions, continuing on the results presented
in Section 6.1. These tables cover a range of processors, from Intel’s Ice Lake and Skylake to
AMD’s Milan. The performance is examined with different network cards across multiple
IP configurations, including IPv4 and IPv6, with and without VLAN. Performance metrics
such as local efficiency and throughput are quantified across various concurrent streams,
illustrating how each setup handles escalating network loads.

The first Table A.1 examines the Intel Ice Lake processor paired with Nvidia’s ConnectX-
6 network card. It contrasts the performance differences between IPv4 and IPv6 configu-
rations, highlighting the scalability and efficiency shifts when VLAN is applied. This setup
demonstrates how the processor and NIC handle increased network demands, with detailed
measurements of local efficiency and throughput across up to 16 concurrent streams. No-
tably, the table shows a general decline in performance efficiency with increased loads but
provides valuable insights into the network capabilities of this specific hardware combina-
tion.

The other tables continue this analysis with different hardware setups. Table A.3 as-
sesses AMD Milan with Nvidia ConnectX-6, exploring similar metrics under various network
loads and configurations. This approach is repeated across various combinations, including
AMD Milan with Broadcom and Intel Skylake with Broadcom, in Table A.4 and Table A.5.
These tables collectively outline the performance impacts of newer versus older technolo-
gies, different processor architectures, and the influence of network card selections. Each
table provides specific insights into how these setups perform under different configura-
tions, highlighting that different configurations have no significant impact on throughput
and local efficiency.
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1 2 4 8 16

IPv4 Local efficiency 55.63 50.23 42.61 34.89 36.59
Throughput 40.64 73.74 130.58 175.06 155.84

IPv4
VLAN

Local efficiency +2% -3% -1% 0% -2%
Throughput -3% -3% -1% 0% -1%

IPv6 Local efficiency +3% -1% -1% -1% +2%
Throughput -6% -4% -2% 0% -11%

IPv6
VLAN

Local efficiency +4% -3% -2% -1% -2%
Throughput -7% -4% -3% 0% -3%

Table A.1: Performance metrics comparison for Intel Icelake with Nvidia ConnectX-6 net-
work card under different IP configurations and VLAN setups across multiple concurrent
streams. This table presents the local efficiency and throughput for IPv4 and IPv6, both
with and without VLAN, across varying numbers of concurrent streams (1, 2, 4, 8, and 16).
The first entry in the local efficiency and throughput rows indicates the actual performance
measurement, measured in gigabit per second per core and gigabit per second, respectively.
In contrast, the percentage changes in the subsequent rows reflect the impact compared to
the base IPv4 configuration. The table underscores the scalability of network performance
under increasing loads and the subtle variances introduced by different network protocols
and configurations.

1 2 4 8 16

IPv4 Local efficiency 65.79 52.77 35.94 31.62 27.15
Throughput 42.40 74.36 94.04 94.05 94.08

IPv4
VLAN

Local efficiency -1% -3% +2% -2% -1%
Throughput -8% -5% 0% 0% 0%

IPv6 Local efficiency -1% -1% 0% -1% 0%
Throughput -14% -9% 0% 0% 0%

IPv6
VLAN

Local efficiency -3% -2% -2% -3% -1%
Throughput -10% -11% -2% -2% -2%

Table A.2: Comparative analysis of network performance for Intel Icelake with IPv4 and
IPv6 configurations on Intel E810 NIC, both with and without VLAN, across varying
numbers of concurrent streams (1, 2, 4, 8, and 16). The table shows local efficiency and
throughput measurements for each setup. Local efficiency and throughput are initially
presented as an absolute value for IPv4 without VLAN, measured in gigabit per second per
core and gigabit per second, followed by the percentage change. Throughput changes are
similarly shown as deviations from the baseline IPv4 performance. This detailed matrix
illustrates how network performance adapts under different IP versions with or without
VLAN.
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1 2 3 6 12 24

IPv4 Local efficiency 47.36 21.37 31.63 21.74 13.22 24.21
Throughput 37.39 51.52 89.80 84.56 134.66 186.28

IPv4
VLAN

Local efficiency +1% -11% -4% -1% -3% -1%
Throughput +1% +5% -2% -2% 0% 0%

IPv6 Local efficiency -1% -12% -7% -1% -4% -1%
Throughput +2% -5% -2% -2% -2% -1%

IPv6
VLAN

Local efficiency 0% -13% -5% -2% -3% -1%
Throughput -1% -7% -1% -2% -2% -3%

Table A.3: Performance evaluation of AMD Milan with Nvidia ConnectX-6 network card
across IPv4 and IPv6 configurations, both with and without VLAN, for different numbers
of concurrent streams (1, 2, 3, 6, 12, and 24). This table quantitatively details local
efficiency and throughput for each network setup. For IPv4, initial values are presented.
Local efficiency is measured in Gbps per core, and throughput is in Gbps. Followed by
percentage changes that illustrate the impact of implementing VLAN and switching to
IPv6. The effects of these changes on throughput are also provided, highlighting minimal
performance impact across different stream counts.

1 2 3 6 12 24

IPv4 Local efficiency 19.64 19.58 19.61 12.69 12.73 8.89
Throughput 24.84 49.39 73.76 102.47 83.84 60.53

IPv4
VLAN

Local efficiency -1% 0% -1% -2% -2% -5%
Throughput +1% 0% 0% 0% +1% 0%

IPv6 Local efficiency 0% -2% -1% -2% -3% -4%
Throughput 0% -2% -1% +1% 0% -1%

IPv6
VLAN

Local efficiency -4% -4% -3% -1% -5% -6%
Throughput -2% -3% -2% 0% 0% +1%

Table A.4: This table presents a performance analysis of AMD Milan using a Broadcom
network card across various IPv4 and IPv6 configurations, with and without VLAN, across
a range of concurrent streams (1, 2, 3, 6, 12, and 24). The data details local efficiency
and throughput, measured in Gbps per core and Gbps, for each configuration and stream
count, starting with baseline IPv4 values, followed by percentage changes due to VLAN
implementation and IPv6 adaptation. The adjustments in local efficiency and throughput
under each network condition provide insights into the network performance stability and
scalability of AMD Milan in response to increased network demands and varied protocol
environments.
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1 2 3 6 12

IPv4 Local efficiency 14.85 17.18 19.29 17.47 16.90
Throughput 30.96 56.77 84.22 94.06 94.10

IPv4
VLAN

Local efficiency -2% -1% -1% -1% -1%
Throughput +2% +2% 0% 0% 0%

IPv6 Local efficiency 0% 0% -2% -1% -2%
Throughput +2% +1% -1% -1% -1%

IPv6
VLAN

Local efficiency -2% -2% -3% -2% -3%
Throughput +1% +1% -2% -2% -2%

Table A.5: Performance metrics of Intel Skylake with a Broadcom network card under IPv4
and IPv6 settings, both with and without VLAN, across multiple concurrent streams (1,
2, 3, 6, and 12). This table illustrates each configuration’s local efficiency and throughput,
providing baseline figures for IPv4, measured in gigabits per second per core and gigabits per
second, and subsequent percentage changes reflecting the impact of different configurations.
There seems to be no significant performance impact.

A.2 Duplex
The tables presented offer a comprehensive look at the performance characteristics of differ-
ent network setups involving Intel and AMD processors with Broadcom and Nvidia network
cards under varied duplex (unidirectional and bidirectional communication) scenarios. The
first Table A.6 details the performance of Intel Sapphire Rapids processors in combination
with Nvidia ConnectX-6 and Intel E810 network interface cards across multiple streams,
quantifying local and remote efficiency, as well as throughput. This data shows the base-
line performance in a unidirectional setting and the percentage reduction in efficiency and
throughput in bidirectional scenarios, highlighting the processors’ capabilities and limita-
tions when handling increased network traffic.

The second Table A.7 focuses on the AMD Milan processor, comparing its performance
using Nvidia and Broadcom network cards. This analysis is particularly insightful as it
outlines the baseline performance and the significant drop in efficiency when switching to
bidirectional communication across a range of concurrent streams. The data illustrates
how performance degrades more severely under certain network card setups, notably with
Broadcom showing a pronounced decline, especially in higher concurrency settings. The
contrasting results between Nvidia and Broadcom setups provide valuable insights into the
impact of network card selection on system performance in complex network scenarios.

Finally, using a Broadcom network card, the third Table A.8 centres on the Intel Skylake
processor. This table is similar to the previous ones but focuses exclusively on Skylake’s
capabilities in handling unidirectional and bidirectional communications across fewer con-
current streams. It reports local and remote efficiency and throughput, showing a marked
decline as the number of streams increases, indicative of Skylake’s performance scalability
issues under bidirectional stress. This detailed breakdown helps understand the specific per-
formance bottlenecks and operational limitations faced by older Intel processors compared
to newer models and different network cards.
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1 2 4 8 16 32
Baseline
Intel

Local efficiency 66.21 58.18 33.00 27.84 22.74 19.18
Remote efficiency 28.84 22.02 16.58 12.38 9.26 6.25

Throughput 45.11 72.73 94.03 94.04 94.06 94.15
Target
Intel

Local efficiency -75% -77% -64% -69% -71% -73%
Remote efficiency -42% -40% -28% -30% -28% -17%

Throughput -40% -39% -16% 0% 0% 0%
Baseline
Nvidia

Local efficiency 49.99 46.67 34.07 23.17 18.76 18.17
Remote efficiency 22.91 19.06 16.78 12.10 9.03 7.72

Throughput 40.08 72.26 94.02 94.03 94.05 94.14
Target
Nvidia

Local efficiency -72% -77% -74% -63% -64% -66%
Remote efficiency -39% -42% -46% -29% -25% -20%

Throughput -32% -38% -17% 0% 0% 0%

Table A.6: Comprehensive performance analysis of duplex configurations using Intel Sap-
phire Rapids and Nvidia ConnectX-6 and Intel E810 network interface cards, detailing both
baseline (unidirectional communication) and target (bidirectional communication) metrics.
This table presents local and remote efficiency measurements in Gbps per core, alongside
total throughput in Gbps, across a range of concurrent streams (1, 2, 4, 8, 16, and 32). The
baseline configurations for Intel and Nvidia illustrate initial performance metrics, while the
target rows depict the percentage reduction in efficiency and throughput compared to the
baseline. This stark contrast in performance across both platforms and various workload
intensities highlights the scalability challenges and efficiency losses under increased opera-
tional demands. However, still shows the ability to reach a 100Gb line rate.
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1 2 3 6 12 24
Baseline
Nvidia

Local efficiency 47.68 19.02 30.48 21.57 12.87 23.93
Remote efficiency 15.32 14.45 15.22 7.03 6.37 8.38

Throughput 37.60 48.91 88.25 83.29 134.94 185.79
Target
Nvidia

Local efficiency -84% -60% -80% -74% -68% -79%
Remote efficiency -49% -47% -57% -21% -35% -38%

Throughput -30% -17% -51% -20% -72% -43%
Baseline
Broadcom

Local efficiency 19.64 19.58 19.61 12.69 12.73 8.89
Remote efficiency 23.50 22.12 21.02 14.35 6.78 4.64

Throughput 24.84 49.39 73.76 102.47 83.84 60.53
Target
Broadcom

Local efficiency -34% -38% -87% -89% -59% -52%
Remote efficiency -45% -46% -87% -91% -22% -8%

Throughput +40% +1% -81% -88% -38% -25%

Table A.7: This table presents a comparative analysis of duplex performance metrics for
AMD Milan using Nvidia and Broadcom network cards, both baseline and target configura-
tions, unidirectional and bidirectional communications, across multiple concurrent streams
(1, 2, 3, 6, 12, and 24). Local and remote efficiency, in Gbps per core, alongside throughput
in Gbps, are quantified for baseline settings, followed by percentage changes in the target
settings to illustrate performance degradation under varied operational demands. The table
distinctly highlights the variance in performance degradation between the two network card
setups across a range of workload intensities, demonstrating the impact of different network
cards on the overall system efficiency and throughput in duplex scenarios. Furthermore,
results show that in this specific test scenario, the Nvidia ConnectX-6 is unable to reach a
line rate of 200Gb in both directions.

1 2 3 6 12
Baseline
Broadcom

Local efficiency 14.85 17.18 19.29 17.47 16.90
Remote efficiency 12.44 13.89 14.00 11.51 11.34

Throughput 30.96 56.77 84.22 94.06 94.10
Target
Broadcom

Local efficiency -27% -37% -47% -54% -56%
Remote efficiency -12% -23% -28% -30% -34%

Throughput -48% -45% -47% -24% -7%

Table A.8: Performance comparison between baseline (unidirectional communication) and
target (bidirectional communication) test scenarios for Intel Skylake using a Broadcom
network card across various concurrent streams (1, 2, 3, 6, and 12). The table measures
local and remote efficiency regarding gigabits per second per core and overall throughput in
gigabits per second. Each baseline metric is followed by the percentage decrease observed
in the target configuration, reflecting the performance impact under increased workload
scenarios. This table effectively illustrates the decrease in local and remote efficiency and
throughput as the number of streams increases, providing a clear view of the scalability
challenges this specific setup faces.
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A.3 TSO offloading
This section is a continuation of discussing results of the test scenario from Section 6.3,
offers a detailed comparative analysis of network interface cards (NICs) focusing on the
impact of enabling or disabling Transmission Segment Offloading (TSO) on efficiency and
throughput. The first Table A.9 focuses on Nvidia and Intel NICs on the Intel Icelake
processor, providing baseline data when TSO is enabled and target data with TSO disabled.
It includes metrics such as local and remote efficiency (measured in Gbps per core) and
throughput (measured in Gbps) across multiple concurrent streams. This presentation
allows for a direct comparison of the two scenarios, highlighting how disabling TSO affects
performance across different streams, reflecting a decrease in local efficiency and variable
changes in remote efficiency.

The second Table A.10 extends this analysis to the AMD Milan processor with the
Nvidia ConnectX-6 NIC. This table captures the fluctuations in local and remote efficiencies
and throughput across multiple streams, showing how the baseline performance with TSO
enabled compares against the target performance with TSO disabled. Significant losses in
local efficiency are evident with marginal improvements in remote efficiency.

Lastly, the third Table A.11 presents a comparative study on Broadcom NICs on the
Intel Skylake processor. This comparison follows the same methodology of contrasting
performance metrics with TSO enabled and disabled. The data reveal a consistent pattern
of decreased local efficiency when TSO is disabled, which aligns with findings from Nvidia
and Intel NICs. However, it shows a more significant improvement in remote efficiency,
which suggests that the Broadcom NICs might handle receiving traffic more effectively
under certain conditions without TSO. Each table collectively emphasizes the critical role
of TSO in optimizing network throughput and efficiency, providing valuable insights for
network administrators and system architects.
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1 2 4 8 16
Baseline
Nvidia

Local efficiency 55.63 50.23 42.61 34.89 36.59
Remote efficiency 19.63 17.08 14.59 15.88 9.76

Throughput 340.64 73.74 130.58 175.06 155.84
Target
Nvidia

Local efficiency -70% -69% -67% -59% -63%
Remote efficiency +24% +26% +29% +9% 39%

Throughput -34% -33% -35% -19% 0%
Baseline
Intel

Local efficiency 65.79 52.77 35.94 31.62 27.15
Remote efficiency 23.72 20.49 17.29 14.17 10.58

Throughput 42.40 74.36 94.04 94.05 94.08
Target
Intel

Local efficiency -70% -65% -58% -58% -56%
Remote efficiency +4% -5% 0% 0% 0%

Throughput -20% -8% 0% 0% 0%

Table A.9: This table presents a comprehensive comparison on the Intel Icelake processor
of baseline measurements with TSO enabled and target with TSO disabled for Nvidia
ConnectX-6 and Intel E810 measured in terms of local and remote efficiency (measured
in Gbps per core) and throughput (measured in Gbps) across multiple concurrent streams
(1, 2, 4, 8, and 16). The Baseline rows show the initial performance levels for Nvidia and
Intel network interface cards with TSO enabled, capturing local and remote efficiencies and
throughput. In contrast, the Target rows display the percentage change from baseline when
TSO was disabled, reflecting how each processor adapts to disabling TSO offload.

1 2 3 6 12 24
Baseline
Nvidia

Local efficiency 47.68 19.02 30.48 21.57 12.87 23.93
Remote efficiency 15.32 14.45 15.22 7.03 6.37 8.38

Throughput 37.60 48.91 88.25 83.29 134.94 185.79
Target
Nvidia

Local efficiency -77% -38% -61% -54% -28% -66%
Remote efficiency +2% +7% -8% +26% +8% +6%

Throughput -49% -29% -63% -8% +1% -26%

Table A.10: This table displays the local and remote efficiency percentages and throughput
values measured across many streams (1, 2, 3, 6, 12, and 24) measured on AMD Milan
processor with Nvidia ConnectX-6 NIC. The data highlights changes in performance be-
tween the baseline with TSO offload enabled and the target with TSO disabled, indicating
efficiency losses and gains.
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1 2 3 6 12
Baseline
Broadcom

Local efficiency 14.85 17.18 19.29 17.47 16.90
Remote efficiency 12.44 13.89 14.00 11.51 11.34

Throughput 30.96 56.77 84.22 94.06 94.10
Target
Broadcom

Local efficiency -27% -50% -61% -48% -49%
Remote efficiency +27% +8% +7% +32% +33%

Throughput -41% -50% -55% -23% -4%

Table A.11: This table presents a comprehensive comparison of the Broadcom network
interface card on the Intel Skylake processor, contrasting baseline measurements (enabled
TSO) with the target (disabled TSO) where conditions are varied. The evaluation spans
multiple streams (1, 2, 3, 6, and 12), focusing on local and remote efficiency (measured in
Gbps per core) and throughput (measured in Gbps). The Baseline Broadcom rows cap-
ture the initial performance metrics, while the Target Broadcom rows show the percentage
change in performance, indicating the card’s performance when TSO offload is disabled .

A.4 TX and RX offloading
The section is a continuation of the performance evaluation from Section 6.3, which presents
an in-depth performance evaluation of network interface cards (NICs) across different pro-
cessors like Intel Icelake, AMD Milan, and Intel Skylake under conditions of receive and
transmit checksum offloads. The first Table A.12 focuses on the Intel Icelake processor,
comparing baseline metrics with checksum offloads enabled against target metrics with
offloads disabled. This comparison uses Nvidia ConnectX-6 and Intel E810 NICs across
multiple concurrent streams. The data notably demonstrate how local and remote efficien-
cies and throughput are affected when these offloads are turned off, with a significant drop
in local efficiency and throughput as the primary outcome.

Similarly, the second Table A.13 examines the AMD Milan processor using an Nvidia
network interface card. This table extends the analysis to include a broader range of
streams, from 1 up to 24, providing a granular view of performance decay over an increased
workload. Baseline measurements with enabled RX and TX offloads are juxtaposed with
target scenarios where these functionalities are disabled. The results sharply highlight the
degradation in local and remote efficiency and throughput across all streams, underlining
the impact of disabling offloads in high-performance environments.

Lastly, the third Table A.14 focuses on the Intel Skylake processor, employing a Broad-
com network card to ascertain the effects of enabling versus disabling RX/TX checksum
offloads across fewer streams (1, 2, 3, 6, and 12). Like the previous tables, this illustrates
the baseline and target scenarios’ local and remote efficiencies and throughput, measured
in gigabits per second per core and gigabit per second, respectively. Significant decreases
in efficiency and throughput in the target configuration reveal the critical role of check-
sum offloads in maintaining optimal performance levels under various streaming condi-
tions, thereby mapping out the scalability challenges and operational impacts in network
communications.
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#1 2 4 8 16
Baseline
Nvidia

Local efficiency 55.63 50.23 42.61 34.89 36.59
Remote efficiency 19.63 17.08 14.59 15.88 9.76

Throughput 40.64 73.74 130.58 175.06 155.84
Target
Nvidia

Local efficiency -76% -74% -73%6 -66% -63%
Remote efficiency -5% +9% +22% +2% -9%

Throughput -48% -49% -50% -35% -12%
Baseline
Intel

Local efficiency 65.79 52.77 35.94 31.62 27.15
Remote efficiency 23.72 20.49 17.29 14.17 10.58

Throughput 42.40 74.36 94.04 94.05 94.08
Target
Intel

Local efficiency -74% -68% -68% -68% -65%
Remote efficiency -15% -11% -12% -13% -8%

Throughput -34% -27% 0% 0% 0%

Table A.12: This table presents a comprehensive comparison on the Intel Icelake processor
of baseline measurements with receive and transmit checksum offloads enabled and target
with these offloads disabled for Nvidia ConnectX-6 and Intel E810 measured in terms of
local and remote efficiency (measured in Gbps per core) and throughput (measured in Gbps)
across multiple concurrent streams (1, 2, 4, 8, and 16). The Baseline rows show the initial
performance levels for Nvidia and Intel network interface cards with TX and RX offloads
enabled, capturing local and remote efficiencies and throughput. In contrast, the Target
rows display the percentage change from baseline when TX and RX offloads were disabled.

#1 2 3 6 12 24
Baseline
Nvidia

Local efficiency 47.68 19.02 30.48 21.57 12.87 23.93
Remote efficiency 15.32 14.45 15.22 7.03 6.37 8.38

Throughput 37.60 48.91 88.25 83.29 134.94 185.79
Target
Nvidia

Local efficiency -81% -51% -74% -72% -56% -79%
Remote efficiency -19% -14% -47% -16% -6% -21%

Throughput -69% -50% -69% -40% -35% -48%

Table A.13: This table presents a comparative analysis of performance metrics for AMD
Milan uses a Nvidia network interface card with baseline and target configurations. The
baseline represents measurements with RX and TX offloads enabled, while the target rep-
resents those disabled. The results are measured across multiple concurrent streams (1,
2, 3, 6, 12, and 24). Local and remote efficiency, in Gbps per core, alongside throughput
in Gbps, are quantified for baseline settings, followed by percentage changes in the target
to illustrate performance degradation with these offload disabled, highlighting substantial
local and remote efficiency declines.
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#1 2 3 6 12
Baseline
Broadcom

Local efficiency 14.85 17.18 19.29 17.47 16.90
Remote efficiency 12.44 13.89 14.00 11.51 11.34

Throughput 30.96 56.77 84.22 94.06 94.10
Target
Broadcom

Local efficiency -39% -58% -70% -56% -58%
Remote efficiency -18% -36% -37% -29% -30%

Throughput -57% -61% -64% -43% -29%

Table A.14: Performance comparison of baseline and target scenarios for Intel Skylake using
a Broadcom network card, assessed across multiple concurrent streams (1, 2, 3, 6, and 12).
The baseline represents enabled RX/TX checksum offloads, while the target represents
disabled offloads. The table captures local and remote efficiency in gigabits per second per
core and overall throughput in gigabits per second. Each baseline measurement is followed
by the percentage decrease in the target configuration, demonstrating the performance
impact with these offloads disabled. This table effectively highlights the reduction in local
and remote efficiency and throughput while receive and transmit checksum offloads are
disabled.

A.5 UDP
This section continues the presentation of results from Section 6.4 and explores the perfor-
mance of various network cards across different processor architectures during UDP traffic,
focusing on the impact of increasing data streams on network throughput measured in
packets per second (PPS). The first Table A.15 delves into the performance characteristics
of Nvidia ConnectX-6 and Intel E810 network cards on Intel IceLake processors. This setup
demonstrates how each network card manages bidirectional communication across different
hosts, revealing significant differences in their capacity to handle escalating network traffic.
Notably, Nvidia cards show superior packet handling capabilities at higher data stream
counts than Intel, suggesting better scalability under load.

The second Table A.16 assesses the performance of Nvidia and Broadcom network cards
on AMD Milan processors. This analysis extends to more varied stream counts (up to
24 streams), providing a broader perspective on each card’s throughput efficiency under
incrementally increased loads. The Broadcom cards particularly stand out at higher stream
counts, showcasing their ability to sustain higher throughput rates, which could indicate
better optimization for higher concurrency levels in network traffic.

Finally, the third Table A.17 shifts focus to an ARM-based setup, comparing Nvidia
and Intel network cards across an even broader range of data streams, from 1 to 32. This
setup highlights Nvidia’s exceptional performance, maintaining robust throughput even as
network demands scale significantly. Both host systems exhibit progressive performance
degradation as the number of streams increases, yet Nvidia consistently outperforms Intel,
especially at the highest concurrency levels. This indicates Nvidia’s superior efficiency
and throughput stability in high-demand scenarios, emphasizing its potential for use in
environments with intense data transmission requirements.

Together, these tables provide valuable insights into the comparative performance of dif-
ferent network cards across various architectures and conditions, illuminating the complex
dynamics of network scalability and efficiency in high-throughput environments.
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1 2 4 8 16

Nvidia Host #1 1031303 1996631 3822444 7308213 9479147
Host #2 1903709 1759808 3376013 6461508 7236961

Intel Host #1 1044448 1911491 3721755 6933520 8539879
Host #2 916203 1752248 3310653 6304425 6875822

Table A.15: Performance evaluation of Nvidia and Intel network cards across two host
systems, measuring packets per second (pps) across various number of streams (1, 2, 4, 8,
16). This table showcases the capabilities of each network card on Intel IceLake processors
during UDP transmissions, comparing the throughput of Host #1 and Host #2 under
identical conditions in bidirectional communication. The data reveals the differing packet
handling capacities of Nvidia and Intel hardware, providing insights into their performance
scaling with increasing network traffic.

1 2 3 6 12 24

Nvidia Host #1 498840 991191 1483245 2401579 4815468 7252519
Host #2 1440838 881628 1319874 2202576 4374334 4964795

Broadcom Host #1 1040392 1690811 1553282 4706576 6927408 8299525
Host #2 892036 1506397 2724234 3571938 7470404 8838950

Table A.16: This table compares the performance of Nvidia and Broadcom network cards
in handling UDP traffic across multiple streams (1, 2, 3, 6, 12, and 24) on hosts within
the AMD Milan processor. It quantifies the throughput in packets per second (pps) for
two hosts under each network card, illustrating how each card manages network traffic as
the load increases in bidirectional communication. The data provided shows variations in
performance between the two brands and between different hosts, offering a detailed view
of each card’s efficiency and capability in progressively demanding network environments.

1 2 4 8 16 32

Nvidia Host #1 642853 1146881 2286337 4504058 8138258 15118067
Host #2 569855 1029915 2045658 3986854 7457992 12648309

Intel Host #1 572600 1085598 2139554 3824881 5040524 11370500
Host #2 518966 994237 1940515 3499987 4589612 10476405

Table A.17: This table illustrates the performance of Nvidia ConnectX-6 and Intel E810
network cards on ARM-based hosts, measuring throughput in packets per second (pps)
across increasing concurrent data streams (1, 2, 4, 8, 16, and 32). The table presents a side-
by-side comparison of two hosts under each network card type, showcasing the scalability
of each card as network loads intensify in bidirectional UDP communication. The data
highlights the superior throughput capabilities of Nvidia cards across all stream counts,
providing insights into network performance optimization in high-demand scenarios.
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