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Abstrakt 

Cieľom tejto práce bolo posúdiť dynamickú stabilitu chôdze u seniorov. V prvom kroku bolo 

prevedené zhrnutie dostupnej literatúry s cieľom identifikovať štúdie, v ktorých boli popísané 

charakteristiky chôdze majúce vzťah k riziku pádov u seniorov. Ďalej boli u skupiny mladých 

a starších žien porovnané lineárne i nelineárne charakteristiky chôdze získané za rôznych 

podmienok – prirodzená chôdza po chodbe, chôdza po bežeckom páse – z akcelerometru 

umiestneného v spodnej časti trupu.  Poslednou časťou tejto dizertačnej práce bola ročná 

prospektívna štúdia seniorov, ktorá bola zameraná na odvodenie predikčnej validity 

špecifických charakteristík chôdze s cieľom včasne identifikovať seniorov, u ktorých existuje 

riziko, že spadnú. Výsledky časti dizertačnej práce zameranej na porovnanie chôdze v rôznych 

podmienkach ukazujú, že existujú rozdiely medzi lineárnymi i nelineárnymi charakteristikami 

chôdze získanými z prirodzenej chôdze a chôdze po bežeckom páse. Výsledky prospektívnej 

štúdie ďalej poukazuje na vzťah Shannonovej entropie, získanej pomocou rekurenčnej 

kvantifikačnej analýzy, a lokálnej dynamickej stability k výskytu pádov. Pri predikcii pádov sa 

ako najlepšie riešenie z nami skúmaných testov a charakteristík ukazuje medio-laterálna lokálna 

dynamická stabilita chôdze dopočítaná zo zrýchlenia spodnej časti trupu v kombinácii s 

klinickým vyšetrením. Táto práca opäť poukazuje na nutnosť kombinácie viacerých testov pri 

analýze rizikových faktorov, ktoré spôsobujú pády. 
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Abstract 

The aim of this dissertation thesis was to assess the dynamic stability of gait in elderly. Firstly, 

a literature review was conducted to identify published peer-reviewed articles documenting gait 

characteristics related to fall risk in elderly. Secondly, linear and nonlinear gait characteristics 

obtained from lower trunk acceleration during overground and treadmill walking were 

compared between young and older women. Lastly, one year prospective study of elderly 

people focused on the predictive validity of specific gait characteristics for fall prediction with 

the aim of early identification of people at risk was conducted. On the whole, the results of this 

thesis show that both linear and nonlinear gait measures significantly differ during overground 

and treadmill walking. The prospective study showed relationship between Shannon entropy 

computed based on the recurrence quantification analysis and lower trunk local dynamic 

stability to the fall occurrence. From the variables used in the present study, combination of 

medial-lateral local dynamic stability derived from lower trunk acceleration and clinical 

assessment can be useful for fall prediction. Taken together, the present findings support the 

need to use combination of tests while examining the risk factors related to fall occurrence.  
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1 Introduction 

1.1 Falls 

Falls pose a world-wide problem in terms of financial burden on society but also influence on 

quality of life, mostly but not exclusively of elderly people. They lead to 20% to 30% of 

unintentional injuries (Scuffham, Chaplin, & Legood, 2003). Age groups most exposed to the 

risk of falling include children up to 15 years of age, young adults aged 15-29 years and elderly 

over 65 years with risk of falling increasing with increasing age (World Health Organization, 

2017). Even though falls are related to different mechanisms and actions in each age group, the 

causes of falls can be generally categorised. According to Joint Commission Resources (2007), 

there are internal (related to physical state) and external (related to the environment) causes of 

falls. World Health Organization (2017) provides a deeper division of fall-related risk factors 

into four groups – biological (e.g. age, gender, race), behavioural (e.g. multiple use of 

medication, alcohol intake, lack of exercise), environmental (e.g. condition of environment in 

terms of lighting, slippery or uneven surfaces) and socio-economic (e.g. inadequate housing, 

low income, lack of social interactions). As for specific causes of falls, Rubenstein (2006) 

presented that based on the summary of literature, fall occurrence is often related to 

environment or caused by accidents (in 31% of cases), related to deterioration of gait and 

balance (in 17% of cases), dizziness or vertigo (in 13% of cases) and others.  

1.2 Dynamic stability 

When talking about dynamic stability, one needs to understand the mechanical concept of 

equilibrium first. An object is in the state of static equilibrium if it is at rest. On the other hand, 

the object is in dynamic equilibrium if it is in a motion with constant speed (Le Veau, 1992).  

Postural control or balance can be defined statically and dynamically, too. Statically, it refers 

to the ability to maintain  a  base  of  support  with  minimal  movement, and  dynamically,  to  

the  ability  to  perform  a  task  while  maintaining  a  stable  position (Winter, Patla, & Frank, 

1990). 

Term stability refers to the ability of the system to resist perturbations (Nayfeh & 

Balachandran, 1995). Based on the definition of Bouisset and Do (2008), dynamic stability can 

be understood as a process that “allows dynamic equilibrium at every instant”. 
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In continuation of the preceding chapter, locomotion is an activity during which falls 

of the older adults occur mostly (McArthur, Gonzalez, Roy, & Giangregorio, 2016). Therefore, 

quantification of dynamic stability during gait as a basic activity of daily living deserves the 

attention of researchers (Dingwell & Marin, 2006). Problem arises with the methodology for 

such description, which is not uniform (Dingwell & Kang, 2006). In the following text, possible 

approaches for gait assessment are described. Although many of them are related to fall risk in 

elderly people, description of such relationship is not provided as it is the focus of Study I (see 

chapter 4). 

1.3 Gait assessment 

The description of gait pattern is important in understanding the age-related changes in terms 

of gait maturation in children, but also decline in elderly. While in children, gait instability is 

related to their development, in elderly, such gait pattern is related to deterioration of gait 

control, high fall risk and fall-related injuries as consequences. Gait pattern can be described 

using the data obtained by many approaches – clinical assessment, motion capture systems, 

inertial sensors, force and pressure plates and others, however, in recent years, the inertial 

sensors made a breakthrough in the assessment of locomotion. The inertial sensors are small 

devices that include accelerometers and gyroscopes as the basics, however, they might also 

include other components – magnetometers, electrodes, thermometer or others based on the 

manufacturer and presumed usage (Bizovská, Janura, Míková, & Svoboda, 2017). The most 

important advantages they propose is their small weight and portability leading to the possibility 

to use them outside of laboratory or controlled environment. It has also been proven that they 

are sufficient for gait assessment related to fall risk in elderly (Howcroft, Kofman, & Lemaire, 

2013). 

 

1.3.1 Detection of gait events 

The identification of gait events can help to divide recorded signal into steps and strides. The 

most often used ones are heel strikes, but few algorithms are able to simultaneously detect toe 

offs (e.g. González, López, Rodriguez-Uría, Alvarez, & Alvarez, 2010). For gait events 

detection, several methods have been proposed and used in the literature, most of them 

depending on the processing of anterior-posterior acceleration signal from various body 

segments separately (e.g. Fortune, Lugade, & Kaufman, 2014; González et al., 2010; Pham et 
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al., 2017; Zijlstra & Hof, 2003) or in combination (Fortune, Lugade, Amin, & Kaufman, 2015). 

Furthermore, methods using vertical acceleration for gait events detection have been developed 

(Kose, Cereatti, & Della Croce, 2012; McCamley, Donati, Grimpampi, & Mazzà, 2012). Based 

on the vertical trunk acceleration, more gait events can be observed – heel strike, foot flat, mid-

stance and toe off (Auvinet et al., 2002). Recently, a systematic review has been performed to 

assess the methods for gait events detection based on signal recorded by inertial sensors (Pacini 

Panebianco, Bisi, Stagni, & Fantozzi, 2018). Based on the results of 17 compared algorithms, 

the gait event detection is more accurate and reliable when sensors are placed on distal body 

segments – shanks or feet – compared to trunk positioning.  

1.3.2 Data analysis 

Various approaches exist that quantify spatial-temporal gait characteristics and their variability, 

frequency, symmetry or other aspects of gait. These approaches are based on a relatively 

straightforward observation of changes of the gait pattern in time. The most basic variable 

which describes gait pattern is the root mean square of acceleration (Sekine et al., 2013). Root 

mean square describes the dispersion of the data around zero and indicates the magnitude of 

acceleration (Menz, Lord, & Fitzpatrick, 2003). As a more developed index, root mean square 

ratio representing a relationship between directional root mean square and total root mean 

square vector magnitude has been introduced by Sekine et al. (2013) and proven to be used as 

gait abnormality indicator. Standard deviation of acceleration as another easy-to-compute 

variable can be also considered a simple variability indicator (Menz et al., 2003). 

Gait symmetry is used often when dynamics of gait is being assessed. For gait symmetry 

computed from signal of inertial sensors, several options have been proposed including ratio 

index with its computation based on peak acceleration (Seliktar & Mizrahi, 1986) or angular 

velocity (Iosa, Marro, Paolucci, & Morelli, 2012). In recent years, harmonic ratio has become 

a useful index which quantifies gait symmetry based on the data analysis in frequency domain 

(Pasciuto, Bergamini, Iosa, Vannozzi, & Cappozzo, 2017). It is computed as a ratio of the sum 

of the amplitudes of the intrinsic harmonics and the sum of the amplitudes of the extrinsic 

harmonics of the acceleration signal. Specific computation is related to the directional axes 

(even/odd harmonics for vertical and anterior-posterior direction; odd/even harmonics for 

medial-lateral direction) (Menz et al., 2003). Till 2013, harmonic ratio has wrongly been 

considered as smoothness, harmony, rhythmicity or dynamic stability of gait (see Pasciuto et 

al., 2017 for overview). Finally, Bellanca, Lowry, VanSwearingen, Brach, and Redfern (2013) 

stated that harmonic ratio can only provide information about gait symmetry. 
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Another descriptive variable that can be obtained from analysis in a frequency domain 

is the index of harmonicity (Lamoth, Beek, & Meijer, 2002). It quantifies the contribution of 

the stride frequency to the signal power relative to higher harmonics (Riva, Grimpampi, Mazzà, 

& Stagni, 2014) and therefore, is computed based on the signal power spectrum. 

One can object that the abovementioned gait characteristics are descriptive but do not 

consider the changes in motor behaviour (Stergiou & Decker, 2011). For a purpose of deeper 

understanding of various aspects of gait, nonlinear methods which quantify the inner structure 

of observed data (Harbourne & Stergiou, 2009) have been introduced to gait analysis. 

1.3.3 Data analysis – nonlinear characteristics 

Even though the nonlinear gait characteristics are presently widely used, compared to the 

abovementioned variables with clear meaning, interpretation of results obtained by nonlinear 

analysis is often not definite. Furthermore, for reliable results, depending on the specific 

approach, several dozens of strides are needed for analysis (Riva, Bisi, & Stagni, 2014). In 

further text, several methods often used in gait assessment studies will be discussed.  

Detrended fluctuation analysis 

Long range correlations presented in the signal corresponding to the dependency of future gait 

variations on past gait variations (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995) can be 

observed by the detrended fluctuation analysis. As stated by Bruijn, Meijer, Beek, and van 

Dieën (2013) and shown by Damouras, Chang, Sejdic, and Chau (2010), detrended fluctuation 

analysis has high demands on the length of original data, therefore, is not as popular as other 

analyses discussed later. The resulting variable which describes gait stability is the scaling 

exponent α. The computation (Peng et al., 1993) begins with the integration of original data. 

The integrated data is divided into even windows of length n (n increases after each partial 

computation). A line is fitted to data in each window and residual variance of the data around 

this line is computed. Average residual variance f(n) for window of size n is computed 

(Damouras, Chang, Sejdic, & Chau, 2010). The f(n) dependent on n is then plotted into the log-

log plot and scaling exponent is computed as the slope of a linear fit to this plot. Based on the 

review by Bruijn et al. (2013), the validity of this characteristic as a measure of gait stability is 

yet hard to establish because of the lack of studies. Especially problematic are the demands on 

a time series processed – data length of 300 strides and longer is recommended (Bruijn, van 

Dieën, Meijer, & Beek, 2009). 
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Entropy measures 

Entropy measures, in comparison with the long range correlation, are used more often. Entropy 

measures describe complexity of the movement in terms of automaticity of the performance. 

Approximate entropy, still often used in gait assessment, was introduced by Pincus (1991). 

Because approximate entropy lacks consistency (is highly dependent on input variables for 

computation) and is dependent on the length of the time series studied, with obtaining 

inaccurate results for shorter time series, Richman and Moorman (2000) introduced sample 

entropy as a more precise modification. Both entropies are defined as a negative natural 

logarithm of conditional probability that two sequences that are similar for m data points remain 

similar at the next data point within a tolerance r, however, in sample entropy, self-matches are 

excluded from probability computation (Richman & Moorman, 2000). Even though the sample 

entropy overcame bias originally present in approximate entropy, it was shown that this variable 

is not suitable for time series shorter than 200 data points (Yentes et al., 2013). Furthermore, it 

has been recommended to use the m set on value 2 and work with several values of r to study 

the dependency of sample entropy on this input variable (Yentes et al., 2013). 

As sample entropy became more popular, Costa, Goldberger, and Peng (2002) and 

Costa, Peng, Goldberger, and Hausdorf (2003) proposed that there is a need to study 

physiological time series on several scales. For this purpose, multiscale entropy was introduced 

by these authors. Multiscale entropy is defined as sample entropy computed for several scales 

of the time series. Scaling of the time series is based on the computation of mean values of s 

consecutive data points in non-overlapping windows. For scale 1, original time series is used 

for computation of sample entropy. For scale 2, each two consecutive data points are averaged 

in non-overlapping windows with obtaining new time series of half of the length of the original 

time series. For scale number three, similar procedure is performed, but the number of averaged 

consecutive data points is 3. This process is repeated usually for 6-15 scales depending on the 

sampling rate, receiving sample entropy value for each scale. 

Recently, many new modifications and approaches for entropy measures have been 

introduced – refined composite multiscale entropy (Ihlen, Weiss, Bourke, Helbostad, & 

Hausdorff, 2016), refined multiscale permutation entropy (Ihlen et al., 2016), multivariate 

multiscale entropy (Ahmed & Mandic, 2011), quantized dynamical entropy (Ahmadi et al. 

2018, Leverick, Szturm, & Wu, 2014) and others. 
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State space reconstruction 

State space reconstruction is an important part of data pre-processing for local dynamic stability 

computation, orbital stability computation and recurrence quantification analysis. Usually, 

original data is normalised to 100 or 101 data points per stride before processing. The state 

space reconstruction can be performed by using time delayed copies of the original data (e.g. 

Dingwell, Cusumano, Cavanagh, & Sternad, 2001) or derivations of the original data (e.g. Kang 

& Dingwel, 2008). State vectors which form the state space are described as 

 𝑿(𝑡) = [𝑥(𝑡), 𝑥(𝑡 + 𝑇), 𝑥(𝑡 + 2𝑇),… , 𝑥(𝑡 + (𝑑𝐸 − 1)𝑇],  

with X(t) representing the state vector of embedding dimension dE, x(t) original data and T 

representing time delay. This is the case for state space reconstruction with time delayed copies 

or original time series. However, it is well-known that time delay and embedding dimension 

have crucial influence on the resulting characteristics. Often, algorithms such as Global false 

nearest neighbour analysis (embedding dimension) and Average mutual information function 

(time delay) are used for their estimation.  

For state space reconstruction using derivations of original data, following equation can 

be used for description of the state vector:  

 𝑿(𝑡) = [𝑥1, 𝑥2, 𝑥3, �̇�1, �̇�2, �̇�3, �̈�1, �̈�2, �̈�3],  

where x is original data in specific direction or plane of the movement, �̇� is the first time 

derivation of x, �̈� is the second time derivation of x. Especially for orbital stability computation, 

the latter procedure is often used with creating 9 – 12 dimensional state spaces. 

Recurrence quantification analysis 

Sylos Labini, Meli, Ivanenko, and Tufarelli (2012) first introduced the recurrence quantification 

analysis (RQA) into gait assessment. The basis for RQA is an observation of recurrence 

diagram (Zbilut & Webber, 1992) which enables to quantify data dynamics (Ramdani, Tallon, 

Bernard, & Blain, 2013). 

After state space reconstruction, distance matrix is computed based on the Euclidean 

distance between all state vectors. For reconstruction of the recurrence matrix, critical value of 

the distance (radius) is defined. Binary function is then assigned to all the distances with value 

0 representing distance greater than radius and value 1 representing distance lesser than radius 

(indicating recurrence point) (Webber & Zbilut, 1994). Recurrence matrix is then constructed 

based on this binary results. Evaluation of the recurrence matrix is based on the quantification 

of number and layout of the recurrence points. Two basic characteristics of recurrence matrix 

are used mostly – recurrence rate (percentage of recurrent points in recurrence diagram) and 
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determinism rate (percentage of recurrent points located in diagonal line structures) (Sylos 

Labini, Meli, Ivanenko, & Tufarelli, 2012). 

Local dynamic stability 

Local dynamic stability describes how the system responds to small perturbations in real time. 

The small perturbations are noted as variations during gait and result from internal 

(neuromuscular) and external (environmental/sensory) noise (Kang & Dingwell, 2008). 

The first step to local dynamic stability computation is similar to the procedure for RQA. 

Euclidean distances between state vectors are computed as a function of time and averaged. 

Divergence curve is created describing the dependence of the logarithm of an average Euclidean 

distance between each pair of originally nearest neighbours (Rosenstein, Collins, & DeLuca, 

1993) as a function of time (Figure 1). Local dynamic stability is described by Lyapunov 

exponents which are obtained as slopes of the divergence curve in specific time intervals. 

Usually short-term Lyapunov exponent (slope of the curve over one step) and long-term 

Lyapunov exponent (slope of the curve over fourth to tenth stride) are used as the resulting 

characteristics. Even though both short-term and long-term exponents are computed from the 

divergence curve, recent studies suggest that the long-term Lyapunov exponent is associated 

with gait automaticity and therefore should not be interpreted in the same way as the short-term 

Lyapunov exponent (Terrier & Reynard, 2018).  

The resulting local dynamic stability depends on the algorithm used for computation. 

The one mostly used in gait assessment is the algorithm proposed by Rosenstein, Collins, and 

DeLuca (1993) altering the original procedure by Wolf, Swift, Swinney, and Vastano (1985). 

However, modification by Kantz (1994) and Ihlen, Weiss, Beck, Helbostad, and Hausdorff 

(2016) are also available. Furthermore, a modification of Rosenstein’s algorithm was 

introduced by Mehdizadeh (2019) recently. In the systematic review by Mehdizadeh (2018), 

the discrepancies between approaches as well as data pre-processing were pointed out with the 

need to create a uniform analysis to ensure comparability between studies.  

Orbital stability 

Orbital stability quantifies the rate of convergence or divergence to or from the “stable gait 

performance” through small changes between strides (Dingwell & Kang, 2007), with “stable 

gait performance” defined as the average stride. A stride is compared to the average stride at a 

fixed point along a Poincaré section (Siragy & Nantel, 2018) (Figure 1). Floquet multipliers are 

then either computed as mean or (more often used) maximum of eigenvalues of Jacobian 

matrix, which describes the rate of changes from one stride to another. A system is considered 
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stable when value of maximum Floquet multipliers is less than 1 (Riva, Bisi, & Stagni, 2013). 

Based on the conclusions of a review conducted by Riva, Bisi, and Stagni (2013), most of the 

studies use procedure described by Hurmuzlu, Basdogan, and Stoianovici (1996) for a 

computation of Floquet multipliers. 

Values of Floquet multipliers differ over the stride (Dingwell & Kang, 2007), therefore, 

computation of several Floquet multipliers has to be performed. The computation has 

previously been performed for all 101 data points of normalised gait cycle (Dingwell, Kang, & 

Marin, 2007) or specific points in the 0%, 25%, 50% and 75% of the stride (Dingwell & Kang, 

2007; Kang & Dingwell, 2008). 
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Figure 1. Schematic representation of state space constructed in three dimensions with a. 

Changes of Euclidian distance of two originally nearest neighbours dj(0) in time dj(i). b. 

Poincaré section, change of the state vectors x(t) and x(t-1) from average cycle x*. 

  



- 19 - 

 

2 Aims of the study 

The aim of this doctoral thesis is to assess dynamic stability during gait in elderly people. 

 

Specific aims: 

- to summarise approaches for gait assessment related to fall risk in elderly adults, 

- to assess the differences in specific gait characteristics related to walking conditions 

(treadmill vs. overground), 

- to assess relationship between clinical and instrumental assessments of gait and 

balance, 

- to assess the predictive validity of gait characteristics derived from inertial sensors for 

fall risk prediction using prospective approach for fall occurrence observation in 

elderly adults. 

The following three research questions and hypotheses were formed to answer the aims of this 

study. 

 

Research question 1: What gait characteristics are related to fall risk in elderly adults? 

 

Research question 2: Is there any relationship between gait characteristics derived from 

inertial sensors and clinical score? 

 

Research question 3: What is the predictive validity of gait and clinical characteristic for fall 

risk prediction? 

 

 

Hypothesis 1: Gait pattern differs between overground and treadmill walking conditions. 

 

Hypothesis 2: Complexity of gait differs between elderly fallers and nonfallers. 

 

Hypothesis 3: Local dynamic stability of gait differs between elderly fallers and nonfallers. 
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To confirm hypotheses 1-3, significant difference between walking conditions or groups have 

to be found for at least one gait variable. Gait pattern (hypothesis 1) will be described by 

temporal measures and their variability, symmetry, local dynamic stability and entropy derived 

from lower trunk acceleration. The division of the cohort into fallers and non-fallers will be 

based on a prospective fall occurrence observation in duration of six (hypothesis 2) and twelve 

(hypothesis 3) months.  
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3 Methods 

3.1 Study I – summary of the literature 

To conduct a review of the literature with the focus of answering a research question 1, an 

electronic literature search was conducted in following databases – Web of Science, PubMed, 

Medline. The researches published between 01/2005 – 01/2015 found using the word 

combination (gait OR walking) AND “dynamic stability” AND human AND “fall risk” were 

included in the search. Only original articles related to human dynamic stability during 

continuous level walking in laboratory environment were considered. Specifically, studies 

related to initiation or termination of gait, humanoid robots or models and locomotion episodes 

during daily life were excluded. 

A customised data extraction form was developed and the following information (if 

mentioned) was extracted: authors, publication year and characteristics of each of the sample 

groups that participated in the study, including sample size, gender, age, height, weight, and 

diagnosis. Furthermore, identification or definition of a “faller”, fall history assessment, 

characteristics of the study design, including measurement devices, walking surface, duration 

and velocity of gait, unnatural changes in gait characteristics, such as slip perturbations; and 

data analyses, including data filtering, number of gait cycles, computed variables and key 

results were also extracted. 

3.2 Study II – treadmill and overground walking comparison 

Thirty-six healthy females divided into two groups participated in the study – young (n = 13, 

age 21.8 ± 0.9 years) and older adults (n = 13, age 57.5 ± 4.8 years). Two successive gait 

sessions were performed with the first session composed of 5-minutes overground walking at a 

preferred speed and second session composed of 3-minutes treadmill walking (LODE Valiant, 

Lode, B. V. Medical Technology, Groningen, Netherlands) at the same speed. A 3D 

accelerometer (Trigno wireless system, Delsys Inc., Natick, MA, USA, sampling rate 296.3 Hz) 

was securely attached to the lower back at the level of the fifth lumbar vertebra and recorded 

lower trunk acceleration in medial-lateral, anterior-posterior and vertical direction.  

One hundred and forty strides recorded during both walking conditions were used for 

further analysis. For overground walking, turns, one stride before turn and one stride after turn 

were cut off from the signal to ensure only straight walking intervals were included in the 
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analysis.  Several temporal (stride time, standard deviation and coefficient of variation of stride 

time), variability (root-mean-square and standard deviation of acceleration), frequency 

(harmonic ratios) and nonlinear measures (local dynamic stability, multiscale entropy) were 

computed to characterise gait patterns. Root-mean-square was computed for the whole walking 

trial, on the other hand, standard deviation was computed for each stride and averaged across 

trials. Harmonic ratio as a variable describing gait symmetry was computed based on the 

amplitude spectrum derived from fast Fourier transform. First ten even and odd harmonics were 

used from computation. Multiscale entropy was computed for input variables set on m = 2, r = 

0.15 for scales 1 to 6. For local dynamic stability assessment, data were normalised to 14,000 

data points to obtain approximately 100 data points per stride. State space was reconstructed 

based on the time delayed copies of the original time series with delays of 10, 7 and 9 samples 

for vertical, medial-lateral and anterior-posterior acceleration, respectively. Embedding 

dimension of 6 was used as derived from the global false nearest neighbour analysis. Short-

term (over one step) and long-term (over 4. – 10. stride) Lyapunov exponents were computed 

from the divergence curve created based on the Rosenstein’s algorithm (Rosenstein et al., 

1993). 

All computations were performed by using custom-written Matlab scripts (R2014a, 

MathWorks, Inc., Natick, MA, USA). A Kolmogorov–Smirnov test was used to verify the 

normality of the computed variables. The data were normally distributed in all cases. A two-

way repeated measures analysis of variance with Bonferroni post-hoc test was used to 

determine differences between walking conditions and groups. The level of significance was 

set to p = 0.05. Statistical analysis was performed in Statistica (version 12, StatSoft, Inc., Tulsa, 

OK, USA). 

3.3 Study III and Study IV – gait characteristics for fall-risk prediction 

Methodology of the Study III and Study IV will be summarised together since the results of 

both studies are based on the same testing and cohort. See Table 1 for detailed characterisation 

of participants and methodological differences. 

3.3.1 Participants 

Participants were recruited through the University of the Third Age and clubs for elderly. 

Subjects were included in the study if they were at least 60 years old, have no known 

neurological or musculoskeletal problem that affects gait or stance, were able to perform daily 
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life activities without assistance or use of any assisting device and were free of any injury or 

surgery of the musculoskeletal system during the last two years prior the baseline testing. 

3.3.2 Baseline procedures 

During baseline testing, anamnestic questionnaire, clinical assessment (Tinetti Balance 

Assessment Tool) and gait assessment were performed. During gait test, participants were 

instructed to walk at their self-selected speed during 5 minutes long time interval in the inner 

straight corridor wearing sport shoes. Two well-visible marks were pasted on the floor 

restricting a 25 m long pathway. Participants were instructed to walk straight, maintain a stable 

pace, and turn around after crossing the marks. Walking speed was defined as the mean speed 

of the participant’s walk between the marks and was computed for each interval from the 

distance and time needed to complete this task. Three accelerometers (Trigno wireless system, 

Delsys Inc., Natick, MA, USA, sampling rate 296.3 Hz) were securely attached directly on the 

skin by a double sided tape to the lower back at the level of the fifth lumbar vertebra and on 

both shanks approximately 15 cm above the lateral malleolus.  

After cutting of the turns at the ends of the corridor, one stride before and one stride 

after the turn, one hundred and fifty strides were extracted for further analysis. Heel strikes 

were identified based on the peak detection with anterior-posterior lower trunk acceleration 

(Zijlstra & Hof, 2003). Following gait characteristics were analysed: mean gait speed, stride 

time, stride frequency, local dynamic stability, Shannon entropy, multiscale entropy and index 

of complexity derived from multiscale entropy. The characteristics were computed in Matlab 

(R2015b, MathWorks, Inc., Natick, MA, USA) with input computational specifications as 

follows.  

Stride frequency was derived from an amplitude spectrum created after submitting the 

anterior-posterior lower trunk acceleration signal to the fast Fourier transform. Local dynamic 

stability was characterised by short- and long-term Lyapunov exponents (see chapter 3.2). To 

compute them, the original acceleration time series of 150 strides was normalised to 15,000 

data points to obtain approximately 100 data points per stride. State space was reconstructed 

for a dimension of 6 with time delays of 11, 8 and 10 samples for the trunk and 9, 6 and 11 

samples for the shanks in vertical, medial-lateral and anterior-posterior directions, respectively. 

Time delay and embedding dimension were computed as described previously (chapter 3.2). 

Shannon entropy was determined from recurrence plot based on the recurrence quantification 

analysis from the same state space as described above. Euclidian distance and radius set to 40% 

was used for analysis. Multiscale entropy was computed for scales 1 to 15, with m = 2 and r = 
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0.15 of the standard deviation of the time series used for computation. The multiscale entropy 

curve was created as a plot of sample entropies as a function of the scales used for computation. 

Index of complexity was obtained by integrating the multiscale entropy curve.  

3.3.3 Fall occurrence observation 

Prospective approach for fall occurrence observation was adopted. After baseline measurement, 

the participants were contacted every 14 day by phone call to collect information about falls. 

The participants were asked if they tripped, slipped or fell. In the event of a trip, slip or fall, the 

participants were asked detailed information about their activity during the situation, the exact 

cause of the situation and the consequences; they were also asked to note the details in the 

provided notebook. The falls were regularly assessed and categorised with exclusion of the falls 

related to sport activities or falls caused by an unexpected event – great external force, impeded 

visual conditions. The participants were categorised as nonfallers if no fall was observed (Study 

III, Study IV), fallers if one or more falls were observed (Study III), fallers who experienced 

one fall (Study IV) and multiple fallers (Study IV). 

3.3.4 Statistical analysis 

Kolmogorov-Smirnov test was used for data normality assessment in both studies. Since normal 

distribution was not verified, non-parametric tests were adopted further. Mann-Whitney U test 

was used for a comparison between groups. In Study III, Spearman correlation coefficients were 

used to assess the relationship between two types of entropy measures and between clinical 

scores and entropies. In Study IV, receiver operating characteristic curve (ROC) analysis was 

used to assess predictive validity of variables which significantly differed between groups. 

Specificity and sensitivity were computed based on the cut-off point defined by Youden’s J 

index. Bonferroni corrections were applied for each group of variables to supress possibly 

random identification of differences as follows: multiscale entropy (15 scales) – resulting p = 

0.003; clinical scores (gait, balance, total) – resulting p = 0.017; short-term Lyapunov exponents 

(three directions of movement) – resulting p = 0.017; long-term Lyapunov exponents (three 

directions of movement) – resulting p = 0.017.  
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Table 1 

Summary of participants’ characteristics and differences in methodology of Study III and Study 

IV 

  Study III Study IV 

Participants    
Nonfallers 

(n = 101; age 70.9 ± 4.3 years) 

Nonfallers 

(n = 81; age 70.5 ± 6.4 years)  
Fallers 

(n = 38; age 71.1 ± 7.4 years) 

Fallers with one fall 

(n = 35; age 71.4 ± 7.7 years)   
Multiple fallers 

(n = 15; age 71.2 ± 5.3 years) 

Duration of fall occurrence observation   
6 months 12 months 

Clinical evaluation   
TBAT TBAT 

Gait characteristics   
Mean gait speed Mean gait speed  
Stride time Stride frequency  
Shannon entropy Short-term Lyapunov exponent  
Multiscale entropy Long-term Lyapunov exponent  
Index of complexity 

 

Statistical analysis   
Mann-Whitney U test to compare 

groups 

Mann-Whitney U test to compare 

groups 

  

Spearman correlation coefficients to 

assess relationship between TBAT 

and entropies 

ROC analysis 

Note. TBAT – Tinetti Balance Assessment Tool, ROC – receiver operating characteristic curve 
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4 Study I 

Bizovska, L., Svoboda, Z., & Janura, M. (2015). The possibilities for dynamic stability 

assessment during gait: A review of the literature. Journal of Physical Education and Sport, 

15(3), 490-497. 

 

Published manuscript addressing research question 1: What gait characteristics are related to 

fall risk in elderly adults?  
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5 Study II 

Bizovska, L., Svoboda, Z., Kubonova, E., Vuillerme, N., Hirjakova, Z., & Janura, M. (2018). 

The differences between overground and treadmill walking in nonlinear, entropy-based and 

frequency variables derived from accelerometers in young and older women – preliminary 

report. Acta of Bioengineering and Biomechanics, 20(1), 93-100. 

 

Published manuscript addressing hypothesis 1: Gait pattern differs between overground and 

treadmill walking conditions. 
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6 Study III 

Bizovska, L., Svoboda, Z., Vuillerme, N., & Janura, M. (2017). Multiscale and Shannon 

entropies during gait as fall risk predictors - A prospective study. Gait & Posture, 52(1), 5-10. 

 

Published manuscript addressing research question 2 and hypothesis 2: 

Is there any relationship between gait characteristics derived from inertial sensors and clinical 

score? 

Complexity of gait differs between elderly fallers and nonfallers. 
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7 Study IV 

Bizovska, L., Svoboda, Z., Janura, M., Bisi, M. C., & Vuillerme, N. (2018). Local dynamic 

stability during gait for predicting falls in elderly people: A one-year prospective study. Plos 

One, 13(5), 1-11. 

 

Published manuscript addressing hypothesis 3 and research question 3: 

Local dynamic stability of gait differs between elderly fallers and nonfallers. 

What is the predictive validity of gait and clinical characteristic for fall risk prediction? 
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8 Discussion 

8.1 Summary of the results 

Falls pose a significant threat to the elderly, from primary consequences such as injuries, to 

secondary consequences such as impaired quality of life and well-being or death in the most 

severe cases (Dionyssiotis, 2012; Kwan & Straus, 2014). To find reliable and sensitive method 

to identify elderly at risk of falling, several methodological approaches have been employed, 

however, without definite or conclusive results. Therefore, the aim of this study was to define 

gait variables which can be used for early fall prediction in elderly adults using prospective 

method of fall occurrence observation. 

To successfully fulfil this main aim, firstly, available literature has been summarised 

with the conclusions on the procedures describing gait with relation to fall risk. Procedures able 

to distinguish between fallers and nonfallers, their methodology and approach for fall 

observation were studied. The results of this review of literature showed that instrumental 

methods or combination of the clinical tests and questionnaires pose a good choice for fall risk 

assessment with factors such as age, health, walking conditions and gait speed influencing the 

results of assessment. Prospective approach is more preferable for fall occurrence assessment. 

Spatial-temporal gait variables, their variability and non-linear variables were confirmed to 

have a relationship to fall risk. The results showed differences, and sometimes, ambiguity 

between methodologies used for nonlinear analyses. 

Secondly, a preliminary study was performed to explore the possibilities of various 

temporal, non-linear and frequency characteristics of overground and treadmill gait. Even 

though it has previously been shown that kinematics and kinetics of the treadmill and 

overground gait differs (Alton, Baldey, Caplan, & Morrissey, 1998), such a conclusion had not 

been made for more advanced methods for gait assessment. The results of this study showed 

significant differences between these two types of gait patterns in local dynamic stability, 

multiscale entropy, harmonic ratio and variability of the acceleration in a group of older 

participants. Younger participants exhibited different local dynamic stability related to walking 

conditions. Based on the conclusion that such gait characteristics differ, the main experiment 

was performed in the overground walking conditions. 

Lastly, a one-year prospective study has been conducted to assess which gait or clinical 

variables could be used as fall risk predictors with conclusions drawn after half of the observed 
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time interval (entropy measures) and at the end of the observed period of time (local dynamic 

stability). The results for entropy measures showed that Shannon entropy derived from trunk 

acceleration, in contrast with multiscale entropy, was related to fall occurrence. The relationship 

between entropy measures and clinical evaluation revealed inconclusive results. The results 

after one year of observation showed predictive ability of medial-lateral lower trunk 

acceleration local dynamic stability for fall risk with improvement of the predictive ability after 

combining with clinical evaluation. 

8.2 General discussion 

The possibilities for gait assessment include linear and non-linear approaches derived from gait 

kinematics. It has been shown that non-linear gait analysis can provide deeper understanding 

over motor behaviour (Stergiou & Decker, 2011). However, such analysis has several 

disadvantages which could influence the choice of procedure for data recording. One of the 

most influential disadvantage is the need to consider several tens of gait cycles for analysis to 

obtain reliable results (Riva et al., 2014). Another disadvantage is the need to use continuous 

gait episodes for calculation. Although some of the non-linear methods can be used for gait 

episodes which are not continuous with taking into consideration the discontinuation as a 

limitation of the concluded results, for some, such approach is undesirable and propose a 

significant influence on the obtained results (e.g. scaling exponent). To overcome these 

boundaries, treadmills have been used often when investigating gait since they provide the 

opportunity to record high number of gait events at a stable pace in a small space. However, it 

has been shown that treadmill walking significantly differs from overground walking. The 

results of our study (Study II) showed differences in gait patterns describing stride time 

variability, variability of the acceleration, gait symmetry, local dynamic stability and 

complexity, especially in older adults. Such results are in the accordance with the literature 

suggesting more stable, less variable, more symmetrical and more complex gait pattern when 

walking on a treadmill (Lee & Hidler, 2008; Murray, Spurr, Sepic, Gardner, & Mollinger, 1985; 

Row Lazzarini, & Kataras, 2016; White, Yack, Tucker, & Lin, 1998). However, these results 

contradict natural gait patterns and could be evoked as a consequence of the treadmill’s stable 

speed and continuous movement of the belt. Such reasons led us to the usage of more natural – 

overground – walking conditions for further studies. 

Overground walking, although more natural, comes with another methodological 

problem, which is the extraction of gait episodes that are long enough to be subjected to non-
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linear analyses. The approaches for the solution of such problem were either walking on the 

indoor oval track during data recording (Yentes, Denton, McCamley, Raffalt, & Schmid, 2018), 

or walking in the straight corridors with excluding turns at the ends of the corridors (Riva et al., 

2014). Previous studies showed independency of turns on gait characteristics, such as multiscale 

entropy, short term Lyapunov exponents and some variables derived from recurrence 

quantification analysis (Riva et al., 2014); however, this was only shown for healthy young 

adults. Since such conclusions regarding elderly participants were not available yet, the choice 

of our approach fell on the extraction of turns from analysis and sole usage of straight gait 

intervals. However, recently, the interest has been shown for assessment of turns in the literature 

(Mancini et al., 2016). Analysis of turns during daily life provided evidence that quality and 

quantity of the daily life turns has a potential to distinguish between elderly fallers and non-

fallers (Leach, Mellone, Palumbo, Bandinelli, & Chiari, 2018). According to these authors, 

turns with their mechanical structure do require a better coordination and more demanding 

neural processing. At this point, however, more research is needed to understand the constrains 

that turns pose on postural control. 

The conclusions drawn from the differences in gait patterns between fallers and 

nonfallers greatly depend on the definition of a faller. In our entropy-based study (Study III), 

the participants were divided into two groups based on either absence of the falls (nonfallers) 

or occurrence of one and more falls (fallers). Even though this division is common in the 

literature, a single fall might be a random event not necessarily related to higher fall risk 

(Melzer, Benjuya, & Kaplanski, 2004). Furthermore, evidences were found where similarities 

between postural stability of elderly nonfallers and fallers experiencing one fall were reported 

(Lord, Ward, Williams, & Anstey, 1994). Although we were aware of possible limitations of 

this approach, the number of observed falls was not sufficient to divide the groups otherwise. 

In our study related to local dynamic stability (Study IV), participants were divided into three 

groups considering the group of people who experienced one fall during the year separately. 

Our results showed lack of differences between nonfallers and fallers with one fall in clinical 

performance and gait characteristics supporting the abovementioned statements. 

Methodology for fall rate observation is also of concern while designing any fall-related 

study. Retrospective fall history observation has mostly been used in previous studies. This 

approach has a big advantage since the information can be obtained quickly and easily from 

participants during short communication. However, such information lacks precision (Hale, 

Delaney, & Cable, 1993). Moreover, it is not clear whether the observed state of the participants 

reflects the fall risk or the consequent state caused by previous falls. The retrospective approach 
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for fall history estimation may therefore present bias in the interpretation of the observed results 

(Bizovska, Svoboda, Janura, Bisi, & Vuillerme, 2018). Even though the majority of studies 

used retrospective design for fall history observation, this approach has been supressed recently. 

Prospective approach has been employed more often following the recommendation of Lamb, 

Jørstad-Stein, Hauer, and Becker (2005). 

Based on a clinical evaluation, our participants were at low fall risk. Even fallers 

exhibited almost full Tinetti score (Study III, Study IV). Although the significant differences 

were observed between fallers and nonfallers, the absolute difference in median score was only 

0.25 points (Study III) and 1.00 point (Study IV). Our results are in accordance with the results 

of Raîche, Hébert, Prince, and Corriveau (2000) and Chiu, Au-Yeung, and Lo (2003) in which, 

however, higher differences in obtained values were observed. The reason behind high scoring 

of our participants could be related to several factors. First, mean age of the elderly participants 

included in our study was about 10 years lower than that of participants in studies of Raîche et 

al. (2000) and Chiu et al. (2003). The recruitment strategy also differed by addressing the 

University of the Third Age and clubs for elderly in our study, in contrast to recruitment through 

general practitioners, clinics and hospitals (Chiu, Au-Yeung, & Lo, 2003). The recruitment 

strategy we employed was chosen upon taking into consideration measurement protocol and 

requirement for obtaining reliable gait characteristics. Therefore, people attending the 

University and clubs for elderly were our choice since their mobility were considered satisfying 

for the measurements we planned. This, however, also poses as a limitation of our study. 

When considering the relationship between clinical scores obtained from Tinetti 

Balance Assessment Tool and entropy-based gait characteristics (Study III), conclusive results 

were not found. Although significant relationship was found between Tinetti scores and 

Shannon entropy and Index of complexity, the correlation coefficients were low, not even 

reaching the absolute value of 0.2. This results could be also connected to the physical 

characteristics of participants included in our study and their high scoring in Tinetti Balance 

Assessment Tool.  

Nonlinear methods for gait assessment, such as entropy measures (Study III) or local 

dynamic stability (Study IV), have been proven to have a relationship with fall rate (Study I). 

Out of various entropy-measures available, multiscale entropy, refined composite multiscale 

entropy, and refined multiscale permutation entropy of gait kinematics have been investigated 

in relation to fall risk in elderly. Interestingly, however, retrospective approach was used for 

fall history assessment (Ihlen, Weiss, Bourke, Helbostad, & Hausdorf, 2016; Riva, Toebes, 

Pijnappels, Stagni, & van Dieën, 2013). Since both studies used similar entropy measures 
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(multiscale entropy in Riva, Toebes, Pijnappels, Stagni, and van Dieën, 2013 and entropies 

derived from multiscale entropy in Ihlen, Weiss, Bourke, Helbostad, and Hausdorf, 2016), the 

methods are comparable, however, the results seem to be contradictory. Riva et al. (2013) found 

increased complexity in elderly fallers in opposite of Ihlen et al. (2016) who found decreased 

complexity in elderly fallers. The results of our study (Study III) do not support either of the 

abovementioned studies since results related to multiscale entropy in our study were not 

significant. However, trends found in our study suggest the increase of multiscale entropy in 

nonfallers.  

On the other hand, Shannon entropy is still not widely used for gait assessment, and 

similarly to other nonlinear measures, the interpretation might be difficult because of its 

unpredictable behaviour (Ramdani, Tallon, Bernard, & Blain, 2013; Seigle, Ramdani, & 

Bernard, 2009). The results of our study showed significantly higher Shannon entropy values 

in fallers compared to nonfallers. Although no comparison with gait studies was available, in 

static conditions, Ramdani, Tallon, Bernard, and Blain (2013) found similar results. When 

considering trends we found for multiscale entropy, the values show opposite patterns – 

multiscale entropy was slightly higher in nonfallers, Shannon entropy was significantly higher 

in fallers. The opposite trends support the assumption of Seigle, Ramdani, and Bernard (2009) 

with different interpretation of Shannon entropy compared to multiscale entropy since Shannon 

entropy reflects a complexity of deterministic structure of the signal (Li, Ouyang, Yao, & Guan, 

2004). 

As for another widely used gait characteristic related to fall risk, Buzzi, Stergiou, Kurz, 

Hageman, and Heidel (2003) found age-related differences in local dynamic stability and 

concluded that since age-related changes in gait control can be observed by local dynamic 

stability, this characteristic has also the potential in fall risk prediction. Further studies provided 

evidence for this assumption indicating that elderly fallers and nonfallers identified by 

retrospective fall history observation (Ihlen, Weiss, Beck, Helbostad, & Hausdorff, 2016; 

Rispens et al., 2015; Toebes, Hoozemans, Furrer, Dekker, & van Dieen, 2012) and toddlers and 

healthy adults (Bisi, Riva, & Stagni, 2014) differ in terms of local dynamic stability. Our results 

(Study IV) partially support this idea with trend found for medial-lateral short-term Lyapunov 

exponent between nonfallers and multiple fallers. However, since different methodologies for 

gait assessment, local dynamic stability computation and fall rate observation were employed; 

the results of our study are not quite persuasive compared to the abovementioned ones. 

According to the trend found in our results, the values of trunk short-term Lyapunov exponents 

in the medial-lateral direction increased with increasing number of observed falls, showing a 
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possible relation between fall occurrence and local dynamic stability in medial-lateral direction. 

This result provides further evidence that movement in medial-lateral direction is crucial for 

balance control during gait (Terrier & Reynard, 2015). Another interesting result found in our 

study was the absence of significant differences between groups for long-term Lyapunov 

exponents. This result supports the conclusions of Toebes, Hoozemans, Furrer, Dekker, and 

van Dieen (2012) that since the unstable situation requires immediate response, the changes 

will be detectable in short-term Lyapunov exponents compared to long-term ones with regards 

to the computational differences between them. 

When subjecting clinical score and trunk local dynamic stability to the receiver 

operating characteristic curve (ROC) analysis (Study IV), it was shown that combination of 

these characteristics provides better predictive validity for fall risk prediction than each of these 

characteristics alone. The highest area under the ROC curve was found when combination of 

Tinetti balance score, Tinetti total score and trunk short-term Lyapunov exponent was subjected 

to analysis, however, even though this value was the highest (0.760) it is still considered low 

for direct validation. Comparable results of area under the ROC curve were also found for 

Tinetti total score, combination of Tinetti balance and total scores and combination of Tinetti 

total score and trunk local dynamic stability differing only in sensitivity. Although true 

identification of people at fall risk is crucial (sensitivity), so is the true identification of people 

not at risk (specificity) in terms of financial burden of several examinations, visits or 

interventional programs. Taking this into consideration, Tinetti total score with combination of 

trunk short-term Lyapunov exponent in medial-lateral direction might be suitable for fall risk 

prediction.  

It is important to note that the differences between fallers and nonfallers in gait 

characteristics are not related to changes of gait speed between groups (Study III, Study IV) 

even though slower gait speed has been previously associated with fall risk (Bergland, Jarnio, 

& Laake, 2003). In addition, temporal variables – stride time (Study III) and stride frequency 

(Study IV) were immune to the fall rate further supporting the results of Tinetti balance 

Assessment Tool showing that the participants included in our study were generally at low fall 

risk. 

Taken together, the results of our studies showed differences between elderly fallers and 

nonfallers identified by prospective fall occurrence observation in Tinetti score, Shannon 

entropy and trunk local dynamic stability. However, our participants showed high level of 

physical functioning documented by Tinetti scores. Since we were able to find significant 

differences in the abovementioned characteristics even in such highly functioning elderly 
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adults, these characteristics have a very high potential for future fall risk prediction. The 

combination of clinical score and trunk local dynamic stability seem to provide the best option 

for prediction. 

8.3 Study limitations 

There are several limitations of this study. One of the advantages for data recording also poses 

as a limitation of the study. To ensure successful data recording, elderly who were generally 

considered as active were included in this study which led to high clinical scoring of our 

participants not clearly comparable with other studies. This limitation is also related to the 

second one, which is a relatively low number of observed falls during 6 and 12 months after 

baseline measurement. Thirdly, baseline measurement was performed in the indoor 

environment. Recently, daily-life locomotion is of interest for researchers; however, to ensure 

comparability with other studies, indoor conditions were used for data recording. Lastly, local 

dynamic stability computation was performed with only one algorithm not taking into 

consideration further modifications by Kantz and Ihlen. Rosenstein’s algorithm was 

implemented since it was the algorithm mostly used for gait assessment. 

8.4 Perspectives 

This work provides a relevant foundations for future studies related to fall risk assessment in 

elderly people. In future, studies focused on a combination of several gait characteristics or a 

combination of various factors, such as of gait, clinical, strength and quiet standing 

characteristics should be of interest for fall risk prediction.  

Compared to participants included in the present study, in future research, less active 

elderly should be taken into consideration. However, several problems related to the demands 

of studied tasks (e.g. ability of the participants to achieve required number of strides for reliable 

gait analysis) have to be considered first. 

Lastly, daily-life walking episodes together with evaluation of turns have gained more 

popularity recently. Future research focusing on more in-depth analysis of daily-life walking 

could be of interest. 
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9 Súhrn 

V posledných rokoch nastal výrazný posun pri hodnotení dynamickej stability chôdze. I keď 

však existuje vysoké množstvo prístupov, ktoré sa na takúto analýzu využívajú, ich metodológia 

nie je jednoznačná. S technologickým pokrokom v tejto oblasti i s konceptami, ktoré boli 

postupne preberané z teoretickej mechaniky, sa nejednoznačnosť záverov interpretovaných vo 

vedeckej literatúre ešte zvýšila. Poruchy rovnováhy a chôdze výrazne prispievajú k výskytu 

pádov u seniorov, preto hodnotenie dynamickej stability chôdze zohráva dôležitú úlohu pri 

predikcii pádov.  

Táto dizertačná práca pozostáva zo štyroch častí, z ktorých každá pojednáva o probléme 

týkajúcom sa hodnotenia dynamickej stability chôdze. V prvej časti (Study I) bolo cieľom 

zhrnúť dostupnú literatúru a sumarizovať tak charakteristiky využívané pri hodnotení chôdze, 

ich výpočet, podmienky testovania a vzťah týchto charakteristík k riziku pádu. Na základe 

výsledkov tejto štúdie bola pripravená pilotná štúdia (Study II), ktorá si kládla za cieľ porovnať 

chôdzu pri testovaní v prirodzených podmienkach (na chodbe) a pri testovaní na bežeckom 

páse. Výsledky týchto dvoch štúdií slúžili ako základ pri vytváraní konceptu a dizajnu ročnej 

prospektívnej štúdie (Study III, Study IV, 139 participantov). Táto štúdia bola zameraná na 

overenie, ktoré chôdzové charakteristiky alebo ich kombinácia môže viesť k spoľahlivej 

predikcii pádov u jedincov seniorského veku. Hlavné výsledky prispievajúce k aktuálnemu 

poznaniu v tejto oblasti je možné zhrnúť nasledovne: 

 chôdza po chodbe a po bežeckom páse sa v skupine starších jedincov líši v lokálnej 

dynamickej stabilite, multiškálovej entropii, harmonickom pomere a variabilite 

zrýchlenia, 

 chôdza po chodbe a po bežeckom páse sa v skupine mladých zdravých dospelých 

jedincov líši v lokálnej dynamickej stabilite, 

 Shannonova entropia odvodená z rekurenčnej kvantifikačnej analýzy zrýchlenia 

spodnej časti trupu má vzťah k riziku pádov u seniorov, 

 lokálnu dynamickú stabilitu odvodenú zo zrýchlenia spodnej časti trupu v medio-

laterálnom smere je možné využiť na predikciu pádov u seniorov, predikčná validita 

stúpa po kombinácii lokálnej dynamickej stability s výsledkom klinického vyšetrenia. 
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10 Summary 

Assessment of dynamic stability during gait has made a breakthrough in recent years. Although 

many approaches exist, their methodology and usage is not uniform. With more advanced 

technology and concepts adopted from theoretical mechanics, even more ambiguity can be 

found in the scientific literature. Since balance and gait impairments are considered significant 

contributors to fall occurrence in elderly people, gait assessment itself plays an important role 

in fall risk prediction. Along these lines, the topic of the present doctoral thesis is fall prediction 

in elderly adults using gait characteristics derived from accelerometers. 

To achieve this goal, this thesis is divided into four parts each including a research 

problem relevant to the topic of dynamic stability assessment during gait. Firstly, a review of a 

literature was conducted (Study I) aiming to compile available procedures for gait assessment, 

their methodologies, conditions during which data was recorded and relationship of resulting 

gait characteristics to fall risk. Based on the results of this first study, decision was made to 

perform pilot Study II, in which gait characteristics recorded from overground and treadmill 

walking were compared in the groups of healthy young and older subjects. The two 

abovementioned studies served as a basis for the main prospective study (Study III and IV, 139 

participants), in which conclusions from Studies I and II were taken into account while 

preparing its design. A one-year prospective study was conducted with the aim to reveal which 

gait characteristics or their combination can be used for fall prediction in elderly people. The 

main results contributing to the current knowledge in this field can be summarised as follows: 

 treadmill and overground walking significantly differ in terms of local dynamic 

stability, multiscale entropy, harmonic ratio and variability of acceleration in a group 

of older adults, 

 treadmill and overground walking significantly differ in terms of local dynamic 

stability in young healthy adults, 

 Shannon entropy derived from recurrence quantification analysis of lower trunk 

acceleration is related to the fall occurrence in agile elderly people, 

 medial-lateral lower trunk local dynamic stability can be used for fall risk prediction in  

agile elderly people, the predictive validity increases when combined with results of 

clinical evaluation. 
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