Faculty of Physical

W Culture
Palacky University

Olomouc

Doctoral Dissertation

2019 Lucia BIZOVSKA



Fakulta

@ télesné kultury
Univerzita Palackého

v Olomouci

Hodnotenie dynamickej stability pri chodzi

u seniorov

Katedra ptirodnich véd v kinantropologii
Autor: Mgr. Lucia Bizovska
Skolitel’: prof. RNDr. Miroslav Janura, Dr.
Konzultanti: assoc. prof. Nicolas Vuillerme, Ph.D.; Mgr. Zden€k Svoboda, Ph.D.

Olomouc 2019



Faculty of Physical

@ Culture
Palacky University

Olomouc

Dynamic stability assessment during gait

in elderly people

Department of Natural Sciences in Kinanthropology
Author: Mgr. Lucia Bizovska
Supervisor: prof. RNDr. Miroslav Janura, Dr.

Co-supervisors: assoc. prof. Nicolas Vuillerme, Ph.D.; Mgr. Zden¢k Svoboda, Ph.D.

Olomouc 2019



Meno a priezvisko autora: Lucia Bizovska

Nazov dizerta¢nej prace: Hodnotenie dynamickej stability pri chddzi u seniorov
Pracovisko: Katedra pfirodnich véd v kinantropologii

Skolitel: prof. RNDr. Miroslav Janura, Dr.

Konzultanti: assoc. prof. Nicolas Vuillerme, Ph.D.; Mgr. Zden¢k Svoboda, Ph.D.
Rok obhajoby: 2019

Abstrakt

Ciel'om tejto prace bolo posudit’ dynamicka stabilitu chodze u seniorov. V prvom kroku bolo
prevedené zhrnutie dostupne;j literatiry s cielom identifikovat’ Stadie, v ktorych boli popisané
charakteristiky chddze majuce vztah k riziku padov u seniorov. Dalej boli u skupiny mladych
a starSich zien porovnané linedrne i nelinearne charakteristiky chddze ziskané za rdéznych
podmienok — prirodzena chddza po chodbe, chédza po bezeckom pase — z akcelerometru
umiestneného v spodnej Casti trupu. Poslednou c¢ast'ou tejto dizertacnej prace bola rocna
prospektivna Studia seniorov, ktora bola zamerand na odvodenie predikénej validity
Specifickych charakteristik chddze s cielom vc¢asne identifikovat’ seniorov, u ktorych existuje
riziko, Ze spadnu. Vysledky casti dizertanej prace zameranej na porovnanie chddze v roznych
podmienkach ukazuju, Ze existuji rozdiely medzi linearnymi i nelinedrnymi charakteristikami
chddze ziskanymi z prirodzenej chddze a chddze po bezeckom pése. Vysledky prospektivnej
Stadie d’alej poukazuje na vztah Shannonovej entropie, ziskanej pomocou rekurencnej
kvantifika¢nej analyzy, a lokalnej dynamickej stability k vyskytu padov. Pri predikcii padov sa
ako najlepsie rieSenie z nami skimanych testov a charakteristik ukazuje medio-lateralna lokdlna
dynamicka stabilita chodze dopocitand zo zrychlenia spodnej Casti trupu v kombinécii s
klinickym vySetrenim. Tato praca opét’ poukazuje na nutnost’ kombinécie viacerych testov pri

analyze rizikovych faktorov, ktoré spdsobuju pady.
Kracové slova

pady, starnutie, lokalna dynamicka stabilita, entropia, predikcia, riziko padu, zrychlenie
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Abstract

The aim of this dissertation thesis was to assess the dynamic stability of gait in elderly. Firstly,
a literature review was conducted to identify published peer-reviewed articles documenting gait
characteristics related to fall risk in elderly. Secondly, linear and nonlinear gait characteristics
obtained from lower trunk acceleration during overground and treadmill walking were
compared between young and older women. Lastly, one year prospective study of elderly
people focused on the predictive validity of specific gait characteristics for fall prediction with
the aim of early identification of people at risk was conducted. On the whole, the results of this
thesis show that both linear and nonlinear gait measures significantly differ during overground
and treadmill walking. The prospective study showed relationship between Shannon entropy
computed based on the recurrence quantification analysis and lower trunk local dynamic
stability to the fall occurrence. From the variables used in the present study, combination of
medial-lateral local dynamic stability derived from lower trunk acceleration and clinical
assessment can be useful for fall prediction. Taken together, the present findings support the

need to use combination of tests while examining the risk factors related to fall occurrence.
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1 Introduction

1.1 Falls

Falls pose a world-wide problem in terms of financial burden on society but also influence on
quality of life, mostly but not exclusively of elderly people. They lead to 20% to 30% of
unintentional injuries (Scuffham, Chaplin, & Legood, 2003). Age groups most exposed to the
risk of falling include children up to 15 years of age, young adults aged 15-29 years and elderly
over 65 years with risk of falling increasing with increasing age (World Health Organization,
2017). Even though falls are related to different mechanisms and actions in each age group, the
causes of falls can be generally categorised. According to Joint Commission Resources (2007),
there are internal (related to physical state) and external (related to the environment) causes of
falls. World Health Organization (2017) provides a deeper division of fall-related risk factors
into four groups — biological (e.g. age, gender, race), behavioural (e.g. multiple use of
medication, alcohol intake, lack of exercise), environmental (e.g. condition of environment in
terms of lighting, slippery or uneven surfaces) and socio-economic (e.g. inadequate housing,
low income, lack of social interactions). As for specific causes of falls, Rubenstein (2006)
presented that based on the summary of literature, fall occurrence is often related to
environment or caused by accidents (in 31% of cases), related to deterioration of gait and

balance (in 17% of cases), dizziness or vertigo (in 13% of cases) and others.

1.2 Dynamic stability

When talking about dynamic stability, one needs to understand the mechanical concept of
equilibrium first. An object is in the state of static equilibrium if it is at rest. On the other hand,
the object is in dynamic equilibrium if it is in @ motion with constant speed (Le Veau, 1992).
Postural control or balance can be defined statically and dynamically, too. Statically, it refers
to the ability to maintain a base of support with minimal movement, and dynamically, to
the ability to perform a task while maintaining a stable position (Winter, Patla, & Frank,
1990).

Term stability refers to the ability of the system to resist perturbations (Nayfeh &
Balachandran, 1995). Based on the definition of Bouisset and Do (2008), dynamic stability can

be understood as a process that “allows dynamic equilibrium at every instant”.
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In continuation of the preceding chapter, locomotion is an activity during which falls
of the older adults occur mostly (McArthur, Gonzalez, Roy, & Giangregorio, 2016). Therefore,
quantification of dynamic stability during gait as a basic activity of daily living deserves the
attention of researchers (Dingwell & Marin, 2006). Problem arises with the methodology for
such description, which is not uniform (Dingwell & Kang, 2006). In the following text, possible
approaches for gait assessment are described. Although many of them are related to fall risk in
elderly people, description of such relationship is not provided as it is the focus of Study I (see
chapter 4).

1.3 Gait assessment

The description of gait pattern is important in understanding the age-related changes in terms
of gait maturation in children, but also decline in elderly. While in children, gait instability is
related to their development, in elderly, such gait pattern is related to deterioration of gait
control, high fall risk and fall-related injuries as consequences. Gait pattern can be described
using the data obtained by many approaches — clinical assessment, motion capture systems,
inertial sensors, force and pressure plates and others, however, in recent years, the inertial
sensors made a breakthrough in the assessment of locomotion. The inertial sensors are small
devices that include accelerometers and gyroscopes as the basics, however, they might also
include other components — magnetometers, electrodes, thermometer or others based on the
manufacturer and presumed usage (Bizovska, Janura, Mikova, & Svoboda, 2017). The most
important advantages they propose is their small weight and portability leading to the possibility
to use them outside of laboratory or controlled environment. It has also been proven that they
are sufficient for gait assessment related to fall risk in elderly (Howcroft, Kofman, & Lemaire,
2013).

1.3.1 Detection of gait events

The identification of gait events can help to divide recorded signal into steps and strides. The
most often used ones are heel strikes, but few algorithms are able to simultaneously detect toe
offs (e.g. Gonzalez, Lopez, Rodriguez-Uria, Alvarez, & Alvarez, 2010). For gait events
detection, several methods have been proposed and used in the literature, most of them
depending on the processing of anterior-posterior acceleration signal from various body

segments separately (e.g. Fortune, Lugade, & Kaufman, 2014; Gonzalez et al., 2010; Pham et
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al., 2017; Zijlstra & Hof, 2003) or in combination (Fortune, Lugade, Amin, & Kaufman, 2015).
Furthermore, methods using vertical acceleration for gait events detection have been developed
(Kose, Cereatti, & Della Croce, 2012; McCamley, Donati, Grimpampi, & Mazza, 2012). Based
on the vertical trunk acceleration, more gait events can be observed — heel strike, foot flat, mid-
stance and toe off (Auvinet et al., 2002). Recently, a systematic review has been performed to
assess the methods for gait events detection based on signal recorded by inertial sensors (Pacini
Panebianco, Bisi, Stagni, & Fantozzi, 2018). Based on the results of 17 compared algorithms,
the gait event detection is more accurate and reliable when sensors are placed on distal body

segments — shanks or feet — compared to trunk positioning.
1.3.2 Data analysis

Various approaches exist that quantify spatial-temporal gait characteristics and their variability,
frequency, symmetry or other aspects of gait. These approaches are based on a relatively
straightforward observation of changes of the gait pattern in time. The most basic variable
which describes gait pattern is the root mean square of acceleration (Sekine et al., 2013). Root
mean square describes the dispersion of the data around zero and indicates the magnitude of
acceleration (Menz, Lord, & Fitzpatrick, 2003). As a more developed index, root mean square
ratio representing a relationship between directional root mean square and total root mean
square vector magnitude has been introduced by Sekine et al. (2013) and proven to be used as
gait abnormality indicator. Standard deviation of acceleration as another easy-to-compute
variable can be also considered a simple variability indicator (Menz et al., 2003).

Gait symmetry is used often when dynamics of gait is being assessed. For gait symmetry
computed from signal of inertial sensors, several options have been proposed including ratio
index with its computation based on peak acceleration (Seliktar & Mizrahi, 1986) or angular
velocity (losa, Marro, Paolucci, & Morelli, 2012). In recent years, harmonic ratio has become
a useful index which quantifies gait symmetry based on the data analysis in frequency domain
(Pasciuto, Bergamini, losa, Vannozzi, & Cappozzo, 2017). It is computed as a ratio of the sum
of the amplitudes of the intrinsic harmonics and the sum of the amplitudes of the extrinsic
harmonics of the acceleration signal. Specific computation is related to the directional axes
(even/odd harmonics for vertical and anterior-posterior direction; odd/even harmonics for
medial-lateral direction) (Menz et al., 2003). Till 2013, harmonic ratio has wrongly been
considered as smoothness, harmony, rhythmicity or dynamic stability of gait (see Pasciuto et
al., 2017 for overview). Finally, Bellanca, Lowry, VanSwearingen, Brach, and Redfern (2013)
stated that harmonic ratio can only provide information about gait symmetry.
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Another descriptive variable that can be obtained from analysis in a frequency domain
is the index of harmonicity (Lamoth, Beek, & Meijer, 2002). It quantifies the contribution of
the stride frequency to the signal power relative to higher harmonics (Riva, Grimpampi, Mazza,
& Stagni, 2014) and therefore, is computed based on the signal power spectrum.

One can object that the abovementioned gait characteristics are descriptive but do not
consider the changes in motor behaviour (Stergiou & Decker, 2011). For a purpose of deeper
understanding of various aspects of gait, nonlinear methods which quantify the inner structure

of observed data (Harbourne & Stergiou, 2009) have been introduced to gait analysis.
1.3.3 Data analysis — nonlinear characteristics

Even though the nonlinear gait characteristics are presently widely used, compared to the
abovementioned variables with clear meaning, interpretation of results obtained by nonlinear
analysis is often not definite. Furthermore, for reliable results, depending on the specific
approach, several dozens of strides are needed for analysis (Riva, Bisi, & Stagni, 2014). In

further text, several methods often used in gait assessment studies will be discussed.

Detrended fluctuation analysis

Long range correlations presented in the signal corresponding to the dependency of future gait
variations on past gait variations (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995) can be
observed by the detrended fluctuation analysis. As stated by Bruijn, Meijer, Beek, and van
Dieén (2013) and shown by Damouras, Chang, Sejdic, and Chau (2010), detrended fluctuation
analysis has high demands on the length of original data, therefore, is not as popular as other
analyses discussed later. The resulting variable which describes gait stability is the scaling
exponent a. The computation (Peng et al., 1993) begins with the integration of original data.
The integrated data is divided into even windows of length n (n increases after each partial
computation). A line is fitted to data in each window and residual variance of the data around
this line is computed. Average residual variance f(n) for window of size n is computed
(Damouras, Chang, Sejdic, & Chau, 2010). The f(n) dependent on n is then plotted into the log-
log plot and scaling exponent is computed as the slope of a linear fit to this plot. Based on the
review by Bruijn et al. (2013), the validity of this characteristic as a measure of gait stability is
yet hard to establish because of the lack of studies. Especially problematic are the demands on
a time series processed — data length of 300 strides and longer is recommended (Bruijn, van
Dieén, Meijer, & Beek, 2009).
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Entropy measures

Entropy measures, in comparison with the long range correlation, are used more often. Entropy
measures describe complexity of the movement in terms of automaticity of the performance.
Approximate entropy, still often used in gait assessment, was introduced by Pincus (1991).
Because approximate entropy lacks consistency (is highly dependent on input variables for
computation) and is dependent on the length of the time series studied, with obtaining
inaccurate results for shorter time series, Richman and Moorman (2000) introduced sample
entropy as a more precise modification. Both entropies are defined as a negative natural
logarithm of conditional probability that two sequences that are similar for m data points remain
similar at the next data point within a tolerance r, however, in sample entropy, self-matches are
excluded from probability computation (Richman & Moorman, 2000). Even though the sample
entropy overcame bias originally present in approximate entropy, it was shown that this variable
is not suitable for time series shorter than 200 data points (Yentes et al., 2013). Furthermore, it
has been recommended to use the m set on value 2 and work with several values of r to study
the dependency of sample entropy on this input variable (Yentes et al., 2013).

As sample entropy became more popular, Costa, Goldberger, and Peng (2002) and
Costa, Peng, Goldberger, and Hausdorf (2003) proposed that there is a need to study
physiological time series on several scales. For this purpose, multiscale entropy was introduced
by these authors. Multiscale entropy is defined as sample entropy computed for several scales
of the time series. Scaling of the time series is based on the computation of mean values of s
consecutive data points in non-overlapping windows. For scale 1, original time series is used
for computation of sample entropy. For scale 2, each two consecutive data points are averaged
in non-overlapping windows with obtaining new time series of half of the length of the original
time series. For scale number three, similar procedure is performed, but the number of averaged
consecutive data points is 3. This process is repeated usually for 6-15 scales depending on the
sampling rate, receiving sample entropy value for each scale.

Recently, many new modifications and approaches for entropy measures have been
introduced — refined composite multiscale entropy (lhlen, Weiss, Bourke, Helbostad, &
Hausdorff, 2016), refined multiscale permutation entropy (lhlen et al., 2016), multivariate
multiscale entropy (Ahmed & Mandic, 2011), quantized dynamical entropy (Ahmadi et al.
2018, Leverick, Szturm, & Wu, 2014) and others.
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State space reconstruction
State space reconstruction is an important part of data pre-processing for local dynamic stability
computation, orbital stability computation and recurrence quantification analysis. Usually,
original data is normalised to 100 or 101 data points per stride before processing. The state
space reconstruction can be performed by using time delayed copies of the original data (e.g.
Dingwell, Cusumano, Cavanagh, & Sternad, 2001) or derivations of the original data (e.g. Kang
& Dingwel, 2008). State vectors which form the state space are described as
X() = [x(t),x(t +T),x(t +2T), ..., x(t + (dg — 1T],

with X(t) representing the state vector of embedding dimension dg, x(t) original data and T
representing time delay. This is the case for state space reconstruction with time delayed copies
or original time series. However, it is well-known that time delay and embedding dimension
have crucial influence on the resulting characteristics. Often, algorithms such as Global false
nearest neighbour analysis (embedding dimension) and Average mutual information function
(time delay) are used for their estimation.

For state space reconstruction using derivations of original data, following equation can
be used for description of the state vector:

X(t) = [x1, %2, X3, Xq, X3, X3, ¥y, X3, ¥3],

where x is original data in specific direction or plane of the movement, x is the first time
derivation of x, i is the second time derivation of x. Especially for orbital stability computation,

the latter procedure is often used with creating 9 — 12 dimensional state spaces.

Recurrence quantification analysis

Sylos Labini, Meli, Ivanenko, and Tufarelli (2012) first introduced the recurrence quantification
analysis (RQA) into gait assessment. The basis for RQA is an observation of recurrence
diagram (Zbilut & Webber, 1992) which enables to quantify data dynamics (Ramdani, Tallon,
Bernard, & Blain, 2013).

After state space reconstruction, distance matrix is computed based on the Euclidean
distance between all state vectors. For reconstruction of the recurrence matrix, critical value of
the distance (radius) is defined. Binary function is then assigned to all the distances with value
0 representing distance greater than radius and value 1 representing distance lesser than radius
(indicating recurrence point) (Webber & Zbilut, 1994). Recurrence matrix is then constructed
based on this binary results. Evaluation of the recurrence matrix is based on the quantification
of number and layout of the recurrence points. Two basic characteristics of recurrence matrix

are used mostly — recurrence rate (percentage of recurrent points in recurrence diagram) and
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determinism rate (percentage of recurrent points located in diagonal line structures) (Sylos
Labini, Meli, Ivanenko, & Tufarelli, 2012).

Local dynamic stability

Local dynamic stability describes how the system responds to small perturbations in real time.
The small perturbations are noted as variations during gait and result from internal
(neuromuscular) and external (environmental/sensory) noise (Kang & Dingwell, 2008).

The first step to local dynamic stability computation is similar to the procedure for RQA.
Euclidean distances between state vectors are computed as a function of time and averaged.
Divergence curve is created describing the dependence of the logarithm of an average Euclidean
distance between each pair of originally nearest neighbours (Rosenstein, Collins, & DeLuca,
1993) as a function of time (Figure 1). Local dynamic stability is described by Lyapunov
exponents which are obtained as slopes of the divergence curve in specific time intervals.
Usually short-term Lyapunov exponent (slope of the curve over one step) and long-term
Lyapunov exponent (slope of the curve over fourth to tenth stride) are used as the resulting
characteristics. Even though both short-term and long-term exponents are computed from the
divergence curve, recent studies suggest that the long-term Lyapunov exponent is associated
with gait automaticity and therefore should not be interpreted in the same way as the short-term
Lyapunov exponent (Terrier & Reynard, 2018).

The resulting local dynamic stability depends on the algorithm used for computation.
The one mostly used in gait assessment is the algorithm proposed by Rosenstein, Collins, and
DelLuca (1993) altering the original procedure by Wolf, Swift, Swinney, and Vastano (1985).
However, modification by Kantz (1994) and Ihlen, Weiss, Beck, Helbostad, and Hausdorff
(2016) are also available. Furthermore, a modification of Rosenstein’s algorithm was
introduced by Mehdizadeh (2019) recently. In the systematic review by Mehdizadeh (2018),
the discrepancies between approaches as well as data pre-processing were pointed out with the

need to create a uniform analysis to ensure comparability between studies.

Orbital stability

Orbital stability quantifies the rate of convergence or divergence to or from the “stable gait
performance” through small changes between strides (Dingwell & Kang, 2007), with “stable
gait performance” defined as the average stride. A stride is compared to the average stride at a
fixed point along a Poincaré section (Siragy & Nantel, 2018) (Figure 1). Floquet multipliers are
then either computed as mean or (more often used) maximum of eigenvalues of Jacobian
matrix, which describes the rate of changes from one stride to another. A system is considered

-16 -



stable when value of maximum Floquet multipliers is less than 1 (Riva, Bisi, & Stagni, 2013).
Based on the conclusions of a review conducted by Riva, Bisi, and Stagni (2013), most of the
studies use procedure described by Hurmuzlu, Basdogan, and Stoianovici (1996) for a
computation of Floquet multipliers.

Values of Floquet multipliers differ over the stride (Dingwell & Kang, 2007), therefore,
computation of several Floquet multipliers has to be performed. The computation has
previously been performed for all 101 data points of normalised gait cycle (Dingwell, Kang, &
Marin, 2007) or specific points in the 0%, 25%, 50% and 75% of the stride (Dingwell & Kang,
2007; Kang & Dingwell, 2008).

-17 -



A x()+2T

Figure 1. Schematic representation of state space constructed in three dimensions with a.
Changes of Euclidian distance of two originally nearest neighbours d;(0) in time d(i). b.

Poincaré section, change of the state vectors x(t) and x(t-1) from average cycle x*.
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2 Aims of the study

The aim of this doctoral thesis is to assess dynamic stability during gait in elderly people.

Specific aims:

to summarise approaches for gait assessment related to fall risk in elderly adults,

- to assess the differences in specific gait characteristics related to walking conditions
(treadmill vs. overground),

- to assess relationship between clinical and instrumental assessments of gait and
balance,

- toassess the predictive validity of gait characteristics derived from inertial sensors for

fall risk prediction using prospective approach for fall occurrence observation in

elderly adults.

The following three research questions and hypotheses were formed to answer the aims of this

study.

Research question 1: What gait characteristics are related to fall risk in elderly adults?

Research question 2: Is there any relationship between gait characteristics derived from

inertial sensors and clinical score?

Research question 3: What is the predictive validity of gait and clinical characteristic for fall

risk prediction?

Hypothesis 1: Gait pattern differs between overground and treadmill walking conditions.

Hypothesis 2: Complexity of gait differs between elderly fallers and nonfallers.

Hypothesis 3: Local dynamic stability of gait differs between elderly fallers and nonfallers.
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To confirm hypotheses 1-3, significant difference between walking conditions or groups have
to be found for at least one gait variable. Gait pattern (hypothesis 1) will be described by
temporal measures and their variability, symmetry, local dynamic stability and entropy derived
from lower trunk acceleration. The division of the cohort into fallers and non-fallers will be
based on a prospective fall occurrence observation in duration of six (hypothesis 2) and twelve

(hypothesis 3) months.
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3 Methods

3.1 Study | — summary of the literature

To conduct a review of the literature with the focus of answering a research question 1, an
electronic literature search was conducted in following databases — Web of Science, PubMed,
Medline. The researches published between 01/2005 — 01/2015 found using the word
combination (gait OR walking) AND “dynamic stability” AND human AND “fall risk” were
included in the search. Only original articles related to human dynamic stability during
continuous level walking in laboratory environment were considered. Specifically, studies
related to initiation or termination of gait, humanoid robots or models and locomotion episodes
during daily life were excluded.

A customised data extraction form was developed and the following information (if
mentioned) was extracted: authors, publication year and characteristics of each of the sample
groups that participated in the study, including sample size, gender, age, height, weight, and
diagnosis. Furthermore, identification or definition of a “faller”, fall history assessment,
characteristics of the study design, including measurement devices, walking surface, duration
and velocity of gait, unnatural changes in gait characteristics, such as slip perturbations; and
data analyses, including data filtering, number of gait cycles, computed variables and key

results were also extracted.
3.2 Study Il — treadmill and overground walking comparison

Thirty-six healthy females divided into two groups participated in the study — young (n = 13,
age 21.8 £ 0.9 years) and older adults (n = 13, age 57.5 + 4.8 years). Two successive gait
sessions were performed with the first session composed of 5-minutes overground walking at a
preferred speed and second session composed of 3-minutes treadmill walking (LODE Valiant,
Lode, B. V. Medical Technology, Groningen, Netherlands) at the same speed. A 3D
accelerometer (Trigno wireless system, Delsys Inc., Natick, MA, USA, sampling rate 296.3 Hz)
was securely attached to the lower back at the level of the fifth lumbar vertebra and recorded
lower trunk acceleration in medial-lateral, anterior-posterior and vertical direction.

One hundred and forty strides recorded during both walking conditions were used for
further analysis. For overground walking, turns, one stride before turn and one stride after turn

were cut off from the signal to ensure only straight walking intervals were included in the
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analysis. Several temporal (stride time, standard deviation and coefficient of variation of stride
time), variability (root-mean-square and standard deviation of acceleration), frequency
(harmonic ratios) and nonlinear measures (local dynamic stability, multiscale entropy) were
computed to characterise gait patterns. Root-mean-square was computed for the whole walking
trial, on the other hand, standard deviation was computed for each stride and averaged across
trials. Harmonic ratio as a variable describing gait symmetry was computed based on the
amplitude spectrum derived from fast Fourier transform. First ten even and odd harmonics were
used from computation. Multiscale entropy was computed for input variables setonm =2, r =
0.15 for scales 1 to 6. For local dynamic stability assessment, data were normalised to 14,000
data points to obtain approximately 100 data points per stride. State space was reconstructed
based on the time delayed copies of the original time series with delays of 10, 7 and 9 samples
for vertical, medial-lateral and anterior-posterior acceleration, respectively. Embedding
dimension of 6 was used as derived from the global false nearest neighbour analysis. Short-
term (over one step) and long-term (over 4. — 10. stride) Lyapunov exponents were computed
from the divergence curve created based on the Rosenstein’s algorithm (Rosenstein et al.,
1993).

All computations were performed by using custom-written Matlab scripts (R2014a,
MathWorks, Inc., Natick, MA, USA). A Kolmogorov—Smirnov test was used to verify the
normality of the computed variables. The data were normally distributed in all cases. A two-
way repeated measures analysis of variance with Bonferroni post-hoc test was used to
determine differences between walking conditions and groups. The level of significance was
set to p = 0.05. Statistical analysis was performed in Statistica (version 12, StatSoft, Inc., Tulsa,
OK, USA).

3.3 Study 111 and Study IV — gait characteristics for fall-risk prediction

Methodology of the Study Il and Study 1V will be summarised together since the results of
both studies are based on the same testing and cohort. See Table 1 for detailed characterisation

of participants and methodological differences.
3.3.1 Participants

Participants were recruited through the University of the Third Age and clubs for elderly.
Subjects were included in the study if they were at least 60 years old, have no known

neurological or musculoskeletal problem that affects gait or stance, were able to perform daily
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life activities without assistance or use of any assisting device and were free of any injury or

surgery of the musculoskeletal system during the last two years prior the baseline testing.
3.3.2 Baseline procedures

During baseline testing, anamnestic questionnaire, clinical assessment (Tinetti Balance
Assessment Tool) and gait assessment were performed. During gait test, participants were
instructed to walk at their self-selected speed during 5 minutes long time interval in the inner
straight corridor wearing sport shoes. Two well-visible marks were pasted on the floor
restricting a 25 m long pathway. Participants were instructed to walk straight, maintain a stable
pace, and turn around after crossing the marks. Walking speed was defined as the mean speed
of the participant’s walk between the marks and was computed for each interval from the
distance and time needed to complete this task. Three accelerometers (Trigno wireless system,
Delsys Inc., Natick, MA, USA, sampling rate 296.3 Hz) were securely attached directly on the
skin by a double sided tape to the lower back at the level of the fifth lumbar vertebra and on
both shanks approximately 15 cm above the lateral malleolus.

After cutting of the turns at the ends of the corridor, one stride before and one stride
after the turn, one hundred and fifty strides were extracted for further analysis. Heel strikes
were identified based on the peak detection with anterior-posterior lower trunk acceleration
(Zijlstra & Hof, 2003). Following gait characteristics were analysed: mean gait speed, stride
time, stride frequency, local dynamic stability, Shannon entropy, multiscale entropy and index
of complexity derived from multiscale entropy. The characteristics were computed in Matlab
(R2015b, MathWorks, Inc., Natick, MA, USA) with input computational specifications as
follows.

Stride frequency was derived from an amplitude spectrum created after submitting the
anterior-posterior lower trunk acceleration signal to the fast Fourier transform. Local dynamic
stability was characterised by short- and long-term Lyapunov exponents (see chapter 3.2). To
compute them, the original acceleration time series of 150 strides was normalised to 15,000
data points to obtain approximately 100 data points per stride. State space was reconstructed
for a dimension of 6 with time delays of 11, 8 and 10 samples for the trunk and 9, 6 and 11
samples for the shanks in vertical, medial-lateral and anterior-posterior directions, respectively.
Time delay and embedding dimension were computed as described previously (chapter 3.2).
Shannon entropy was determined from recurrence plot based on the recurrence quantification
analysis from the same state space as described above. Euclidian distance and radius set to 40%
was used for analysis. Multiscale entropy was computed for scales 1 to 15, withm=2and r =
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0.15 of the standard deviation of the time series used for computation. The multiscale entropy
curve was created as a plot of sample entropies as a function of the scales used for computation.
Index of complexity was obtained by integrating the multiscale entropy curve.

3.3.3 Fall occurrence observation

Prospective approach for fall occurrence observation was adopted. After baseline measurement,
the participants were contacted every 14 day by phone call to collect information about falls.
The participants were asked if they tripped, slipped or fell. In the event of a trip, slip or fall, the
participants were asked detailed information about their activity during the situation, the exact
cause of the situation and the consequences; they were also asked to note the details in the
provided notebook. The falls were regularly assessed and categorised with exclusion of the falls
related to sport activities or falls caused by an unexpected event — great external force, impeded
visual conditions. The participants were categorised as nonfallers if no fall was observed (Study
I11, Study 1V), fallers if one or more falls were observed (Study 1l1), fallers who experienced
one fall (Study IV) and multiple fallers (Study V).

3.3.4 Statistical analysis

Kolmogorov-Smirnov test was used for data normality assessment in both studies. Since normal
distribution was not verified, non-parametric tests were adopted further. Mann-Whitney U test
was used for a comparison between groups. In Study 11, Spearman correlation coefficients were
used to assess the relationship between two types of entropy measures and between clinical
scores and entropies. In Study IV, receiver operating characteristic curve (ROC) analysis was
used to assess predictive validity of variables which significantly differed between groups.
Specificity and sensitivity were computed based on the cut-off point defined by Youden’s J
index. Bonferroni corrections were applied for each group of variables to supress possibly
random identification of differences as follows: multiscale entropy (15 scales) — resulting p =
0.003; clinical scores (gait, balance, total) — resulting p = 0.017; short-term Lyapunov exponents
(three directions of movement) — resulting p = 0.017; long-term Lyapunov exponents (three
directions of movement) — resulting p = 0.017.
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Table 1
Summary of participants’ characteristics and differences in methodology of Study 111 and Study
v

Study 111 Study IV
Participants
Nonfallers Nonfallers
(n=101; age 70.9 + 4.3 years) (n=81; age 70.5 + 6.4 years)
Fallers Fallers with one fall
(n=38; age 71.1 + 7.4 years) (n=35; age 71.4 + 7.7 years)

Multiple fallers
(n=15; age 71.2 £ 5.3 years)
Duration of fall occurrence observation

6 months 12 months
Clinical evaluation
TBAT TBAT
Gait characteristics
Mean gait speed Mean gait speed
Stride time Stride frequency
Shannon entropy Short-term Lyapunov exponent
Multiscale entropy Long-term Lyapunov exponent

Index of complexity
Statistical analysis
Mann-Whitney U test to compare Mann-Whitney U test to compare
groups groups
Spearman correlation coefficientsto  ROC analysis
assess relationship between TBAT
and entropies

Note. TBAT — Tinetti Balance Assessment Tool, ROC — receiver operating characteristic curve
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Abstract:

Falls are highly common causes of health problems and mmjunies, especially in the elderly population. Fall risk
can be predicted from fall history, questionnaires, and clinical and instrumental tests in both static and dynamic
conditions. During the last decade, dynamic stability assessment during gait has been widely discussed because
the majority of falls occur in dynamic conditions. There are many different approaches for dynamic stabality
assessment; therefore, this study aimed to summarise articles related to stability assessment during gait in
relation to fall nsk and fall history. Three databases were searched, and 23 articles met the inclusion and
exclusion criteria. This review was focused on studies of continuous human gait in laboratory environments;
therefore, articles that discussed models, robots or measurements during daily life activities were excluded. The
most frequently used vanables to determune gait stability and varability were short-term and long-term local
dynamic stability exponents and spatial-temporal gait charactenstics. According to the results of our analysis,
direct relationships with fall history and fall nsk determined using clinical tests and questionnaires was found for
nonlinear vanables and spatial-temporal gait vanables and their vanability. Nonlinear vanables were sufficient
for distingmishing patients with musculoskeletal and neurclogical disorders from healthy subjects and, in
combination with the variability of spatial-temporal gait characteristics, were sufficient for distinguishing
VArlous age groups.

Keywords: walking, fall risk, fall history, variability, nonlinear analysis

Introduction

Falls are very common causes of a vanety of health problems, especially in the elderly. Falls lead to
20% to 30% of unintentional injuries (Scuffham, Chaplin, & Legood, 2003) and are responsible for 40% of
deaths caused by mjury (Rubenstein, 2006). The most frequent fall related injuries are hip fractures. As a
consequence, half of the people suffering from such an injury are not able to return to the same mobility level as
before the injury. Fall rate is gender related. Females fall more frequently than males; however, the rate of fatal
falls is significantly higher in males above 65 years of age (Stevens, 2005). In addition, when assessing health-
related quality of life, elderly fallers showed significantly lower scores than elderly non-fallers (Stenhagen,
Ekstrim, Nordell, & Elmstahl, 2014).

The main nisk factors for falls were divided into four groups: behavioural, biological, environmental and
socioeconomic (World Health Organisation [WHO], 2007). According to Stenhagen, Ekstrém, Nordell and
Elmstahl (2013), three health indicators can be used to predict falls globally in the elderly — reduced mobility,
heart dysfunction and functional impairment; furthermore, an individual risk factor for falls is neurcleptic drugs.

In assessing fall risk, three approaches have been used — questionnaires and clinical and instrumental
tests. Questionnaires mostly include questions regarding fall history, medications, psychological condition,
vision, hearing, mobility and cognition problems and alcohol intake (Stapleton et al. 2009; Joint commission
resources, 2008). Hamacher, Singh, van Dieen, Heller and Taylor (2011) stated that a number of limitations are
associated with questionnaires, especially self-reports. Regarding clinical evaluations of fall risk, the Timed Up
and Go Test is the most frequently used motor performance test, followed by other exams reported in literature
(for review see Howeroft, Kofman, & Lemaire, 2013), including the Tinneti assessment tool, Berg balance scale,
one legged stance, physical performance test and others. There 1s evidence that fall nsk cannot be predicted by
motor performance tests alone in healthy persons and in active elderly persons (Laessoe, Hoeck, Simonsen,
Sinkjaer. & Voigt, 2007).

For instrumental assessment of fall sk, manly static and dynamic posturography evaluations of
persons in static and dymamic conditions, respectively, have been used. In recent years, stability assessments
during gait have often been discussed because the majonty of falls occur in dynamic conditions. Thus, gait
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stability assessment is the focus of this review. There are several approaches to assessing dynamic stability
during gait, and they require different walking speeds and walking distances and different numbers of tnals. To
study balance during gait, stability and vanability parameters can be used. Stability i1s defined as the ability to
preserve functional locomotion even if the locomotion is disturbed or control errors are present (England &
Granata, 2007). Moreover, stability parameters can provide information about noise present during locomotion
(Hamacher et al., 2011). Vanability results from the noise present during a locomotion task and the noise present
in the environment (Hamacher et al., 2011) and can be related to basic motor control and to age-related and
pathological changes in locomotion (Gaouelle et al., 2013).

Many different approaches for variability and stability gait assessment exist, including assessments of
spatial-temporal and kinematic gait characteristics and their standard deviations and coefficients of variation,
assessments of accelerometric signal charactenistics and nonlinear analyses, such as recurrence quantification
analysis, Floguet analysis and local dynamic stability analysis. Thus, it may be difficult for a researcher to
choose the optimal balance assessment approach for a particular purpose. This review aims to summarise the
currently published articles on gait stability assessment to recommend a suitable and effective method for
analysing dynamic stability during gait.

Methods
Search strategy

An electronic literature search was performed to find all articles related to dynamic stability assessment
during gait in relation to fall risk published between 01/2005 and 01/2015. Three databases were searched — Web
of Science, PubMed and Medline — using the following key word combinations: (gait OR walking) AND
“dynamic stability” AND human AND “fall risk™. A targeted search for relevant articles was also performed.
Only original research articles were included in the study. The titles and abstracts were assessed to identify
articles that were inappropriate for this review. Because this review aimed to discuss dynamic stability during
continuous level walking and only human-related gait events measured strictly in laboratory environments,
articles assessing humanoid robots or models, locomotion episodes during daily life and initiation or termination
of gait were excluded.

Data extraction

A customised data extraction form was developed. The following data, when present, were extracted:
authors, publication year and charactenistics of each of the sample groups that participated in the study, ncluding
sample size, gender, age, height, weight, and diagnosis. In addition faller identification; fall history assessment,
if available; charactenstics of the study design, including measurement devices, walking surface, duration and
velocity of gait, if performed; unnatural changes in gait characteristics, such as slip perturbations; and data
analyses, including data filtering, number of gait cycles, computed variables and key results, if studied, were also
extracted. If orbital or local dynmamic stability was computed, mformation regarding the state space
reconstruction was also extracted.

Results
Search yield

The initial search of all databases revealed 59 results. Four other articles were identified by a targeted
search using the reference lists of the related articles. After discarding duplicates and applying the exclusion
criteria, 23 studies were included for further analysis. The search process is shown in Fig. 1.

Fall risk and fall history assessment

Fall history was assessed in 17.4% of studies. A retrospective evaluation was used in 13.0% of those
studies, and a combination of retrospective and prospective assessments was only used in one study. Clinical
assessment was reported in 21.7% of the studies.

Participanis

When comparing sample size, one study included less than 10 participants in each experimental group,
one study included less than 10 participants in one of the experimental groups, and all others studies (91.3%)
mncluded 10 or more subjects in all expenmental groups. The largest study included a total of 134 participants.
The gender compositions of the experimental groups were reported by 78.3% of studies: two studies enrolled
only female subjects, and all other studies included both male and female participants. In regards to age. 65.2%
of studies included subjects up to 65 years of age, 17.4% studies included subjects above 65 years of age and the
other studies (17.4%) included a combination of young and middle-aged adults and elderly persons. Information
regarding body mass index (BMI) was not provided by any studies; thus, BMI was computed for all studies from
the mean weights and mean heights of each of the study groups. According to our calculations, BMI ranged from
21 to 30 kg.m™, which corresponds to a normal or overweight population. In regards to health condition, 69.6%
of studies included healthy participants, 17.4% studies included healthy subjects as a control group in addition to
patients, and the other studies only included patients. Reported diagnoses included umilateral transtibial
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amputation, cognitive impairment, stroke, peripheral vestibular disorder, multiple sclerosis and other
neurological and musculoskeletal problems.

| Web of Scicnce | PubMed | MEDLINE
| Sl | | iSrculs | 16 resuls |
argeted search
ﬂnl!ﬂr

= sssessment of dynamic stabality during continuous level walking

studics exchuded from review
=« cxpeniments with humanoid models or robots

- life
‘m&d:r activitics

Fig 1: Search yield with inclusion and exclusion cnitena for this review

Measurement devices

Some of the studies did not strictly assess gait characteristics but instead combined gait stability or
variability assessments with functional magnetic resonance imaging (Bruijn, Van Impe, Duysens, & Swinnen,
2014) or bone density assessments (Bhatt, Espy, Yang, & Pai, 2011). For the purpose of this review, only the
gait related methods and parameters will be discussed.

Motion capture systems or inertial sensors, such as accelerometers and gyroscopes, were used by 91.3%
of studies. Force plates placed on the ground or as part of a treadmill were used in 26.1% of studies, and
computer assisted rehabilitation environment (CAREN) was used in 2 studies. One study used a dynamometer
and gomiometer, and one study used a force-sensitive resistor. As the only measurement device, motion capture
systems were used in 16.7% of studies, accelerometers were used in 22.2% of studies and force plates were used
i 11.1% of studies. A combination of a motion capture system and CAREN or force plates was used i 22.2%
of studies.

Walking condition

Participants walked either overground or on a treadmill; one study used a combination of both walking
conditions. Participants walked at their preferred walking speed in 56.5% of studies, and a combination of
various velocities was assessed in 8.7% of studies. Additionally, 8.7% of studies used a walking speed 4 km/h. In
one study, participants walked 1 m/s, and in one other study participants walked 1.4 m/s. Two of the studies
assessed the fastest possible walking velocity. Gait speed was computed individually for each subject using leg
length in one study, and one study did not provide clear information about walking velocity.

In 78.2% of studies, the walking surface was firm and stable. One study tested subjects walking on a
soft surface and two studies tested walking after perturbations. In addition, participants were asked to perform a
verbal dual task (letter fluency) in one study, and one study aimed to assess dynamic stability during gait with
walking conditions that were different — wider/narrower/longer/shorter steps — than those preferred by the
participant. In 17.4% of studies, trip perturbations were created.

Regarding measurement duration, trials were performed with durations ranging from a few seconds to
25 munutes, depending on the subsequent analysis. The reported walking distances ranged from 10 — 160 m, and
this mostly reported by studies that did not use a treadmill.

Data analysis

The first parameter extracted was the number of steps or strides used for further analysis. Depending on
the mathematic analysis methods used in the studies, the number of steps ranged from | to 350, with most above
40. Regarding data filtering, 52.2% of studies did not filter their data or did not specify their filtering process. All
studies that specified their data filtering process used lowpass filter type Butterworth or Chebyshev 1. Finite
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impulse response filtering was used in one study, and Woltring filter routine was implemented in one study. The
order of the filters ranged from zero to ten, and cut-off frequencies were chosen depending on the input data. For
the marker data recorded using motion capture systems, the cut-off frequencies ranged from 4.5 to 25 Hz, and for
the accelerometric data the cut-off frequencies ranged from 10 to 50 Hz. Data from force plates were filtered
with cut-off frequencies of 6 or 50 Hz.

The most frequently used vanables to quantify dynamic stability were variables describing local
dynamic stability — Lyapunov exponents {LE). Short term LE were computed in 60.9% of studies, and long-term
LE were computed m 30.4% of studies. Maximum Floguet multipliers (FM), as orbital stability vanables, were
computed m 13.0% of studies. In 21.7% of studies, LE or FM were computed as the only variables. Temporal
gait parameters, such as step time, stride time and double support time, were computed in 30.4% of studies, and
spatial gait variables, such as step or stnide length and step width, were computed in 34.8% of studies. Cadence
was assessed in 21.7% of studies. Regarding time series recorded using inertial sensors, only 13.0% of studies
computed variables, such as root means square or peak acceleration and mean angular velocity, that
characterised the signal. Other studies used the time series as an mput for nonlinear or detrended fluctuation
analysis. Regarding variability parameters, coefficients of variation and standard deviations were computed from
temporal or spatial gait characteristics in 30.4% studies. Centre of pressure (COP), centre of mass (COM),
energy, foot clearance, spectral and other characteristics were computed in 56.5% of studies; however, each of
these variable was assessed by no more than three studies.

If local or orbital stability was assessed, we extracted information regarding state space construction,
time delay and embedding dimensions. LE (short- or long-term), FM or both were computed in 60.9% of studies,
and of those studies, each study that computed FM used kinematic marker data to construct the state space.
Short-term LE was computed using kinematic marker data in 28.6% of these studies, using accelerations or
angular velocities from inertial sensors in 64.3% of these studies and using COP trajectory in one study. For
long-term LE, which was computed in 50.0% of these studies, accelerometric and marker kinematic data were
used equally in 42.9% of these studies and COP trajectory was used in one study. To calculate embedding
dimensions, global false nearest neighbour analysis was performed in all studies that clearly stated their
computation algorithm. The embedding dimension values differed between the various measurement devices.
Dimension 6 was wsed for COP trajectory data, dimension 5 or & was used for accelerometric data, and
dimension 5 was used for kinematic data. Regarding time delay computation, two possible approaches were
found —an autocorrelation function based on am algorithm imtroduced by Rosenstein et al. (1993) and a first
minimum of average mutual information function, which was used more frequently. Because time delays were
generally computed from each time series separately for each subject and each trial and then averaged. the values
differed for the various time senes recorded using vanous devices.

Discussion

Dynamic stability assessment and its relationship with fall nsk and fall history is thoroughly discussed
in the literature. Although a prospective approach for fall history assessment 1s recommended, in the majonty of
studies, a retrospective approach was used. Additionally, the methodology for dynamic stability assessment
during gait 1s not uniform. Bruyjn, Meijer, Beek and van Dieén (2014) in their review discussed vahdity and
computation of currently most often used methods for dynamic stability assessment. To date, the relationship
between variables describing dynamic stability during gait and fall risk or fall history has not been discussed,
therefore, this study summansed imformation available in the hiterature regarding the methodologies used to
assess dynamic stability during gait in relation to fall risk.

Factors influencing gait dynamics

There are many factors that have a direct or indirect relationship with dynamic stability. One of the
main causes of changes in gait features are participants’ characteristics. There is evidence that age influences
dynamic stability, as determined using nonlinear techniques (Bruijn et al., 2014; Kang & Dingwell, 2008). Gait
variables deducted from COP or COM movement have also been shown to influence dynamic stability
(Bizovska et al., 2014; Krasovsky et al., 2012). Studies have shown increased values of variables that describe
gait stability or variability with increasing age, which suggests that aging causes a decreasing ability to maintain
locomotion stability. A review by Hamacher et al. (2011) studied kinematic variables obtained using motion
capture systems. They found vanables that effectively distinguished between various age-groups — vanability of
step width, stride time and velocity. A similar relationship between nonlinear gait analysis and aging has been
discussed widely in the literature (Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003; Terrier & Reynard, 2015).
Study results have suggested that variability in spatial-temporal gait characteristics 1s suitable for distinguishing
elder adults from younger adults and that local and orbital stability can also be useful for this purpose.

BMI was not used as a classification criterion in any of the studies examined here. To the best of our
knowledge, no studies that assessed the relationship of BMI with dynamic stability during gait have been
published. In static conditions, a direct relationship of BMI with postural stability has been documented
(Blaszczyk, Cieslinska-Swider, Plewa, Zahorska-Markiewicz, & Markiewicz, 2009; Kovacikova et al., 2014;
Ku, Abu Osman, Yusof, & Wan Abas, 2012). The results have shown that overweight and obese people
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exhibited worse postural control than normal-weight participants. Because an obvious relationship between BMI
and stability in static conditions has been found, future studies should also assess the possible influence of BMI
on dynamic stability during gait.

Regarding gender, the majority of studies used both male and female participants, but there were also
studies that included strictly female participants. None of the articles discussed in this review studied gender-
related differences in gait stability. Although, elder females are more fall-prone than elder males, studies should
assess both genders so that their findings can be generalised to both genders.

Five of the studies discussed here assessed healthy subjects in comparison to patients with
musculoskeletal, vestibular or neurological problems (Beurskens, Wilken, & Dingwell, 2014; Lamoth et al.,
2011; Lee & Chou, 2006; Reynard, Vuadens, Deriaz, & Temier, 2014). Healthy subjects and patients with
neurclogical problems could be distinguished using LE as a stability indicator (Reynard et al_, 2014). The results
showed higher short-term LEs computed from accelerations in anterior-posterior, medial-lateral and vertical
directions in patients, which indicates lower dynamic stability in patients. LE and FM were insufficient to
distingumish between healthy participants and high-functioning participants with transtibial amputation
(Beurskens et al., 2014). However, other supportive studies showed that FM and LE could be used to distinguish
between patients with musculoskeletal and neurological disorders (Kurz, Arpin, & Corr, 2012; Marghitu &
Hobatho, 2001). When comparing cognitively impaired and intact subjects, significant differences between
groups were found in phase variability index, scaling exponents and root mean square of medial-lateral
acceleration only when a dual task was performed (Lamoth et al., 2011). Patients with complaints of imbalance
during walking or with a history of falls exhibited significantly different COM-COP inclination angles than
healthy controls (Lee & Chou, 2006). When comparing healthy participants with patients with unilateral
peripheral vestibular disorder during perturbed walking, patients showed a decreased ability to maintain stability
after perturbations, which can be interpreted as a higher fall nisk (McCrum et al., 2014). From these results, it
can be assumed that local dynamic stability is sufficient for distinguishing between patients with neurological
problems and healthy subjects, and varables describing gait stability after perturbations seem to be efficient for
recognising potential fallers.

Other factors influencing the stability and variability of gait include the condition of the walking surface
(Chang, Sejdic, Wnght, & Chau, 2010), stability of the walking surface (Beurskens et al., 2014; McAndrew,
Wilken, & Dingwell, 2011), visual feedback (Beurskens et al., 2014; McAndrew et al., 2011), changes in step
characteristics (Young & Dingwell, 2012) and perturbations (Bhatt et al., 2011; Kajrolkar, Yang, Pai, & Bhatt,
2014; Krasovsky et al., 2012; McCrum et al., 2014). Chang, Sejdic. Wright and Chau (2010) tested gait stability
on different surfaces, firm and soft, using LE and variability parameters as indicators. According to their results,
LE was able to differentiate between surfaces, while vanability of spatial and accelerometne characteristics were
not. Beurskens et al. (2014) and McAndrew et al. (2011) tested gait dynamics in a destabilising environment
using the CAREN system. When comparing unperturbed and perturbed walking patterns, perturbed walking
exhibited significantly different mean and vanability values of spatial-temporal gait charactenistics and increased
FM and short-term LE (Beurskens et al., 2014). McAndrew et al. (2011) showed that changes in LE and FM
values computed from variables for differemt directions were related to the direction of the perturbation.
Interestingly, for FM computed from the velocity of the lower trunk in the vertical direction, perturbed walking
showed a smaller FM than unperturbed walking. Nonlinear variables were also found to be sensitive to voluntary
changes in steps characteristics (Young & Dingwell, 2012).

It 1s well known that gait speed can influence gait performance and most gait variables. The majonty of
studies used preferred walking speed when performing gait analysis. [t is unclear whether the choice of preferred
walking speed, which is generally different for subjects within a group, influences the computed results. There is
much evidence that gait stability and wvariability differ when the wvelocity of locomotion differs (England &
Granata, 2007; Kang & Dingwell, 2008; Krasovsky, Lamontagne, Feldman, & Levin, 2014; Stenum, Bruijn, &
Jensen, 2014; Terrier & Deriaz, 2013). To ensure uniformity, we can propose that a defined walking speed
should be used for gait analysis. On the other hand, walking with a defined walking speed other than the
participant’s preferred walking speed could influence locomotion patterns, which could result in unnatural or
altered walking patterns and, therefore, could have a negative impact on the computed results.

Relationship between fall risk and dynamic stability

Fall risk assessments using clinical tests or questionnaires about fall history were performed in nine
studies. Prospective or retrospective approaches were used to examine fall history. Retrospective assessments of
fall history are not sufficiently accurate or reliable because information about falls, their causes and
consequences, are hard to remember in detail for 6. 12 and 24 months. In addition, subjects are examined after
falls; thus, the impact of falls rather than fall risk is measured after a fall. A prospective approach is
recommended by Lamb, Joerstad-Stein, Haver and Becker (2005). Nevertheless, retrospective fall history
assessment was the most frequently used method reported in the literature {Howeroft et al., 2013). Researchers
related fall risk or fall history with local dynamic stability (Lockhart & Liu, 2008; Toebes, Hoozemans, Furrer,
Dekker, & van Dieen, 2012), means and standard deviations or coefficients of vanations of spatial-temporal gait
characteristics (Komg, Taylor, Armbrecht, Dietzel, & Singh, 2014}, COM-COP mnclination angles (Lee & Chou,
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2006), multiscale entropy and recurrence quantification analysis of anterior-posterior accelerometric signal
(Riva, Toebes, Pynappels, Stagmi, & wvan Dieén, 2013) and COM movement patterns as a response to
perturbations (Krasovsky et al., 2012). In the literature, variability of kinematic parameters, mostly in
combination with spatial-temporal gait variables, was used to differentiate between fallers and non-fallers
(Barak, Wagenaar, & Holt, 2006; Hausdorff, Edelberg, Mitchell. Goldberger, & Wei, 1997; Miyoshi, Kinugasa,
Urushihata, & Yuki, 2011). FM also seems to be an effective tool for gait assessment in relation to fall risk
(Riva, Bisi, & Stagni, 2013). In future research, a prospective approach should be used when assessing fall
history and its relationship with dynamic stability during gait and a combination of clinical tests and instrumental
methods should be considered as both of this approaches provide information abowt fall risk.

Data analysis with nonlinear approaches

Nonlinear analyses included computation of FM, local divergence exponents, LE, and wvariables
computed using recurrence quantification analysis. FM is able to quantify orbital stability of periodic, or mostly
periodic, systems, while LE is used to assess local stability in not strictly periodic, and often chaotic, systems.
Howewver, both of these approaches necessitate a large number of gait cycles for analysis; thus, longer
locomotion periods must be recorded. Recurrence quantification analysis is a multidimensional nonlinear
analysis that can provide a quantification of the determimistic structure, the non-stationanity or regulanty, of the
system (Riley & Turvey, 2002; Riva, Bisi, & Stagni, 2014).

Although LE and FM are widely used, the methodology for data recording and analysis of LE and FM
varies. First, data filtering varies between studies and devices. For the computation of both types of exponents,
some authors filtered the signal using a low-pass Butterworth filter or Chebyshev type | filter with cut-off
frequencies ranging from 6 and 50 Hz. Some authors did not filter the recorded signals because of application of
linear filtering to nonlinear signals (Riva, Grimpampi, Mazza, & Stagni, 2014). Thus, comparing results between
studies is difficult when the data are analysed differently.

The studies examined in this review used stride counts that range from 35 steps for short-term LE
computation to 175 for LE or FM computation. Riva et al. (2014) studied the minimal number of strides required
for gait stability and vanability measures to ensure accuracy and reliability. For short-term LE calculated for
acceleration in all directions, the number of stndes ranged from 63 to 105. For long-term LE, 138 to 146 strides
were used, and for FM, most studies used 137 strides.

The methodology for nonlinear analyses 1s highly vanable from data recording to data analysis. In
future research, all methods should be discussed and analysed more deeply. A uniform approach for each method
in regards to the reliability and accuracy of the measurement device being implemented for gait analysis should
be proposed to allow results to be compared between studies without inaccuracies.

Conclusions

This study summarised articles related to stability assessment during gait. The conclusions of this
review of the literature are as follows:

For fall risk assessment, instrumental methods or a combination of the clinical tests and questionnaires
should be used. A prospective approach should be used for fall history assessment. The most influential factors
in dynamic stability and variability of gait are age, health, walking surface and walking speed. Nonlinear
variables and variability of spatial-temporal gait characteristics are effective for distinguishing different age
groups. Nonlinear variables are sufficient for distinguishing patients with musculoskeletal or neurological
disorders form healthy subjects. Direct relationships between fall history or fall nsk and nonlinear vanables and
spatial-temporal gait variables and their variability were determined using clinical tests and questionnaires. In
future research, the relationships between dynamic stability during gait and body mass index and gender should
be mvestigated. A uniform methodology for each nonlinear technique should be implemented.
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Purpose: The aim of this study was to compare gait stability and variability berween walking conditions and age groups. Merthods:
Twenty-six healthy vounger and older females participated. Trunk acceleration in the vertical (V), medial-lateral (ML) and anterior-
posterior (AP) directions during 5 minutes walking overground and 3 minutes walking on the treadmill at self-selected speed were re-
corded. Root mean square and standard deviations of acceleration, stride time and its variability, Lyapunov exponents (LE), multiscale
entropy (MSE) and harmonic ratios (HR) were computed. Resuits: Both age groups showed significantly higher sinde tme variability
and short-term LE in all directions during overground walking. For the older group, overground walking showed higher V and AP stan-
dard deviation. Significantly lower values for overground walking were observed for long-term LE (V and ML for the younger group,
ML for the older group), HR (ML for the older group) and MSE (V for the older group). Significant age-related differences were found
for V long-term LE for overground walking. Conclusions: The present findings suggest that both linear and advanced computational
techniques for gait stability and variability assessment in older adults are sensitive to walking conditions.

Key words: ageing, gait, stability, variability, local dynamic stability

1. Introduction

Stability and wvariability of gait can be assessed
using various methods that include both linear and non-
linear characteristics. It is presumed that linear charac-
teristics seem not to include every aspect of a global
complex system or movement, and hence linear pa-
rameters may not be capable of describing human gait
precisely [7]., [13], [28]. As a response to this prob-
lem, more sophisticated approaches have been re-
cently implemented from theoretical mechanics and
mathematics to gait analysis. In recent years, indeed

nonlinear, entropy-based and frequency analyses have
been successfully used to quantify stability and vari-
ability of the gait [2], [3], [7], [25]. [27]. Compared to
traditional variables, these approaches provide the op-
portunity to study inner structure, regularity, complexity
and stability of the system represented by a recorded
time series in a more direct way.

First, the age-related differences in gait perform-
ance have been shown in literature [2], [3], [27].
Buzzi et al. [3] found significantly higher local dy-
namic instability in a group of the elderly, compared
to a group of young adults during treadmill walking.
Terrier and Reynard [27] found increase of local dy-

* Corresponding author: Lucia Bizovska, Palacky University Olomouc, Faculty of Physical Culture, Department of Natural Sciences
in Kinanthropology, Trida Miru 117, 77111 Olomoue, Czech Republic. Phone: +420777830724, E-mail: lucia bizovskaig gmail com

Received: August 30th, 2017
Accepted for publication: November 16th, 2017

-35-



o4 L. Bizavska et al.

namic instability from age 40-50 and over during
treadmill walking, which was significantly present in
medial-lateral direction of upper trunk acceleration.
Bisi et al. [2] compared toddlers, young adults and
elderly using nonlinear (local and orbital dynamic
stability, recurrence quantification analysis), entropy-
based (multiscale entropy), frequency (harmonic ra-
tios) variables and traditional variables derived from
trunk accelerations during overground walking. Their
results showed the best distinguishing ability between
groups with harmonic ratios and variables derived
from recurrence quantification analysis. The trend
present in their work showed increased stability of the
gait from toddlers to young adults, with elderly in
between these two groups. Taken all together, the
variables describing stability of the gait seem to pro-
vide relevant information about age-related changes in
gait performance. However, there seem to be an un-
certainty about the influence of conditions in which
the data were collected.

Because many gait cycles are often necessary to
calculate most of these variables (ranging from 10
strides for multiscale entropy to 150 strides long-term
Lyapunov exponents) [24], it is common to use
treadmill walking to assess gait. However, previous
studies have reported that gait performance during
overground and treadmill conditions could differ.
First, studies concerning kinematics and kinetics of
treadmill walking (TW) have reported higher hip
flexion [1], [22] and a lower second peak in vertical
ground reaction forces [22], compared to overground
walking (OgW). These differences could suggest the
difference in importance of push-off during both con-
ditions. During TW, the active push-off is primarily
not needed, but during OgW, the active push-off and
the associated changes in the vertical ground reaction
force are essential for forward movement. Second,
differences in gait dynamics have been a concern of
several studies. In a group of ten healthy, young sub-
jects, Dingwell et al. [7] have compared TW and
OgW by examining the variability of kinematic and
temporal data, and local dynamic stability indicated
by short- and long-term Lyapunov exponents (LE).
Both linear (stride time variability and kinematic vari-
ability, indicated by standard deviation) and nonlinear
(LE) measures showed significant differences be-
tween walking conditions. Terrier and Deriaz [28]
have also compared the acceleration variability of TW
and OgW in twenty healthy, yvoung subjects by using
standard deviation and LE. However, they found that
the conditions showed no differences in the accelera-
tion variability. During OgW, there were significantly
higher short- and long-term LE values, which indi-

cated increased local dynamic stability during TW.
Despite the fact that a great deal of attention has been
paid to frequency analysis end entropy-based vari-
ables for stability assessment recently, the differences
of these variables between walking conditions have
not been documented yet.

In recent years, inertial measurement units have
been widely used for gait assessment [2], [24], [25],
[27]. Compared to the optoelectronic systems more
often used for gait assessment, inertial sensors are less
expensive, easy to use and portable devices which can
be employed in various measuring conditions and
environment. As it seems, these sensors have a great
potential for gait assessment [15] and also provide the
opportunity to easily obtain time series which can be
analyzed by sophisticated methodologies.

To our knowledge, no studies have compared
harmonic ratio and entropy-based measures during
different walking conditions and among different age
groups. Hence, the aim of this study is to compare
overground and treadmill walking trials in two differ-
ent age groups by assessing local stability, multiscale
entropy, harmonic ratios and linear variability meas-
ures of a trunk accelerometric signal. Even though the
other indexes have been reported in literature, the aim
of the present study is to have a complex insight to the
movement patterns, therefore, all of these indexes will
be evaluated and compared. We hypothesize that gait
patterns, indicated by variability and stability meas-
ures, will be different between walking conditions and
groups. Based on the results of similar studies, the
five working hypotheses of the present study are as
follows: 1) the local dynamic stability indicated by LE
would be higher in TW; 2) traditional variability
measures would show higher variability during OgW;
3) regularity and periodicity would be higher in TW
indicating more stable walking pattern; 4) complexity
would be higher during OgW: 5) the age-related
changes would reveal more stable patterns in younger
egroup of subjects.

2. Methods

Subjects: Twenty-six healthy females voluntarily
participated in this study. Participants were divided into
two groups: younger adults (1 = 13, age 21.8 £+ 0.9 years,
height 1.70 £+ 0.07 m, body mass 63 + 9 kg) and
older adults (n = 13, age 57.5 + 4.8 years, height 1.64
+ (.06 m, body mass 65 £ 12 kg). The participants did
not have any musculoskeletal or neurological problem
that could influence their balance abilities or gait pat-
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terns. The study was approved by the institutional ethics
committee and all participants signed informed con-
sent before the measurement.

Experimental protocol: Participants performed two
successive gait sessions. The first session was re-
corded during 5 minutes of OgW in comfortable sport
shoes within a 30 m long corridor. Two well-visible
marks were placed on the floor, demarcating a 23 m
long pathway. The participants were instructed to
walk straight, maintain a preferred walking speed
between those marks, and turn around immediately
after crossing a mark. During this walking trial,
walking speed of each participant was evaluated using
two photocell gates (Fitronic, Bratislava, Slovakia)
placed in the middle of the walkway, placed 1.5 m
apart. Participants walked through the photocell gates
15-20 times depending on their walking speed. Pre-
ferred walking speed was estimated as an average
speed recorded during the whole trial. The second
session was performed during 3 minutes of walking
on the treadmill (LODE Valiant, Lode, B. V. Medical
Technology, Groningen, Netherlands). The 2-minute
difference in the duration of the sessions was caused
by the consideration of the turnaround time during the
OgW trials. The participants were given a sufficient
time to familiarize themselves with the treadmill and
then 3 minutes to walk at the speed estimated during
the OgW trial without the use of handrails. The par-
ticipants wore the same shoes during both trials, and
the sessions were measured one week apart. A 3D
accelerometer (Trigno wireless system, Delsys Inc.,
Matick, MA, USA) with a sampling rate of 296.3 Hz
was placed at the level of L5 vertebra and measured in
the medial-lateral (ML), anterior-posterior (AP) and
vertical (V) directions. The accelerometer was attached
directly to the skin using a double-sided tape.

Data analysis: The first 300 samples of accele-
rometric signal were excluded from analysis to avoid
the influence of nonstationarity [27]. The raw signal
was filtered using a 2nd-order low-pass Butterworth
filter with a 50 Hz cut-off frequency. In the OgW trial
data, turnarounds, the last stride before a turnaround
and the first stride after a turnaround were removed
prior to analysis. From each trial, 140 strides were
extracted and used for analysis, since that was the
maximum number of strides obtainable for all of the
participants and conditions. The heel strikes were
identified from the AP accelerometric signal using the
procedure proposed by Zijlstra and Hof [30]. For each
direction, the stride time, standard deviation and coef-
ficient of variation of stride time, root mean square
and standard deviation of acceleration, short- and
long-term LE, multiscale entropy (MSE) and har-

monic ratios were computed as the stability and vari-
ability measures.

The stride time was computed after isolating the
gait cycles as explained above. The standard deviation
and coefficient of variation of stride time were com-
puted as measures of linear variability. Root mean
square was computed in each accelerometric direction
for the whole walking trial, according to Menz et al.
[19]. Standard deviation was computed in each of the
140 strides and then averaged to obtain one represen-
tative value. The parameters were computed from the
filtered signal in Matlab (R2014a, MathWorks, Inc.,
Natick, MA, USA).

MSE was introduced by Costa et al. [4], [6] to as-
sess the complexity of a system. It is based on sample
entropy and uses several scales for computation. First,
the coarse-grained time series is constructed by aver-
aging an increasing number of data points in non-
overlapping windows [6]. Sample entropy is then
computed for each of the coarse-grained time series.
The number of data points in each window is defined
by a scale factor. Sample entropy indicates the simi-
larity of consecutive data points. The computation
depends on the length of consecutive data points and
the similarity criterion, which is a measure of distance
[6]. In the present study, MSE was computed from the
filtered accelerometric signals for scales | to 6, as
proposed by Costa et al. [6]. Entropies were computed
by software available on Physionet [4], [5], [12] with
a number of consecutive data points m set to 2 and
a radius of 0.15 [6].

Harmonic ratios were computed from the filtered
signals, after decomposition, using fast Fourier trans-
form to the frequency domain. The harmonic ratios
for the AP and V directions were computed by divid-
ing the sum of the amplitudes of the first ten even
harmonics, by the sum of the amplitudes of the first
ten odd harmonics. The harmonic ratio for the ML
direction was computed as the inverse ratio. The har-
monic ratios were computed using custom-written
Matlab scripts.

LE represents local dynamic stability [8]. They
quantify the ability of the system to respond to small,
local perturbations [8] and denote the mean exponen-
tial rate of divergence among initially neighboring
points in the state space [28]. LE is computed in prac-
tice from the slope of a linear fit to the average logarith-
mic divergence plot. In the present study, the filtered
accelerometric signal was normalized to 14,000 points to
obtain approximately 100 data points per stride. The
time delay was assessed by the first minimum of the
average mutual information function. There were de-
lays of 10 samples in the V direction, 7 samples in the
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ML direction and 9 samples in the AP direction. An
embedding dimension of 6 was used as computed by
global false nearest neighbor analysis, and according
to the existing literature. An algorithm proposed by
Rosenstein et al. [26] was used to compute the short-
term (over one step) and long-term LE (over the
fourth to tenth stride). The computations were per-
formed by a custom-written Matlab algorithm.

Statistical analysis: A Kolmogorov—Smimov test
was used to verify the normality of the computed
variables. The data were normally distributed in all
cases. A two-way repeated measure analysis of vari-
ance with Bonferroni post-hoc test was used to deter-
mine differences between walking conditions and
groups. The level of significance was set to p = .05,
Statistical analysis was performed in Statistica (ver-
sion 12, StatSoft, Inc., Tulsa, OK, USA).

L. Bizavska et al.

3. Results

The results are shown in Tables 1-3. There was
no significant difference in walking speed between
groups (younger: 4.95 = 0.57 km-h™, older: 5.14
£0.39km-h™).

Age-related differences were found only for the
long-term LE in the V direction during OgW
{p = .021), with higher values obtained for the older
group.

In the younger group, we found significant differ-
ences between TW and OgW for short-term LE in all
directions (V: p = 018, ML: p = .016, AP: p = .001),
the values in the OgW trials being higher. Compared
to TW, the long-term LE for OgW were significantly
lower in the V (p = .001) and ML (p < .001) direc-

Table 1. Results of linear measures stated as mean (standard deviation)

. o Younger (n=13) Older (n=13)
Variable Direction

Treadmill Overground Treadmill Owverground

Stride time [s] 1.07 (0.08) 1.07 (0.09) 0.99 (0.08) 1.00 (0.08)
SD stride time [s] 0.021 (0.013) | 0,030 (0.010)* | 0018 (0.015) | 0031 (0.012)*

CV stride time [%] 1.94 (1.04) 281 (D.72)* 1.77(1.26) 3.01 (0.98)*

v 0.22 (0.06) 0.24 (0.06) 0.23 (0.04) 027 (0.04)*

SDg] ML 0.16 (0.04) 0.16 (0.04) 0.18 (0.04) 0.18 (0.04)

AP 0.19 (0.03) 0.20 (0.04) 0.19(0.02) 0.21 (0.02)*

v 0.86 (0.06) 0.87 (0.05) 0.86(0.07) 0.90 (0.06)

RMS [g] ML 0.19 (0.04) 0.18 (0.04) 0.22 (0.04) 0.22 (0.05)

AP 0.70 (0.09) 0.70 (0.08) 0.64(0.17) 0.59 (0.15)

n — number of participants included in group, 5D - standard deviation, CV - coefficient of varia-
tion, V = vertical, ML - medial-lateral, AP - anterior-posterior.
* p < .05 for effect of conditions in groups — vounger treadmill vs. overground and elder treadmill

vs. overground.

Table 2. Harmonic ratios and Lyapunov exponents stated as mean (standard deviation)

o o Younger (n=13) Older (n=13)
Variable | Direction
Treadmall Overground Treadmill Overground
\i 6.2(2.0) 53(LE) 4.9(1.3) 4.6(1.7)
HE ML 33 (0.8) 2.7(0.7) 37(1.0) 2.7(0.9)*
AP T74(24) 6.2(2.2) 5.9(1.3) 4.6(1.5)
\i 0.58 (0.13) 0.73 (0.17)* 0.60 (0.16) 0.76 (0.18)*
siLE ML 0.76 (0.17) 0.94 (0.23)* 0.89 (0.23) 1.06 (0.26)*
AP 0.60 (0.15) 0.79(0.17)* 0.75(0.19) 0.93 (0.15)*
v 0.040 (0.009) | 0.024(0.010)* | 0,037 (0.011) | 0.037 (0.012)°
ILE ML 0.023 (0.004) | 0.009 (0.004)* | 0.028(0.010) | 0.014 (0.006)*
AP 0.046 (0.012) | 0.037(00012) | 0.044 (0.008) 0.033 (0.014)

n = number of participants included in group, HR. - harmonic ratio, stLE - short-term Lyapunov
exponent, HLE — long-term Lyapunov exponent, V — vertical, ML - medial-lateral, AP — anterior-

-posterior.

* p < 05 for effect of conditions in groups — younger treadmill vs. overground and older

treadmill vs. overground.

sp <05 for effect of age during overground walking — overground younger vs. older.
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Table 3. Multiscale entropy results stated as mean (standard deviation)

. . Younger (n=13) Older (n=13)
Variable | Direction

Treadmill Overground Treadmill Owerground

v 0.38 (D.07) 0.40 (0.10) 0.43 (0.10) 0.35 (0.06)*

MSE] ML 0.50(0.07) 0.47 (0.09) 0.54(0.10) 0.54(0.10)
AP 0.28 (0.04) 0.27 (0.05) 0.28 (0.09) 0.26 (0.06)

\i 0.55 (D.09) 058 (0.14) 066 (0.17) 0.55(0.10)*

MSE2 ML 0.76 (0.13) 0.71(0.14) 082 (0.18) 083 (0.19)
AP 041 (D.06) 0.40 (D.08) 0.45(0.13) 041 (0.09)

\i 067 (0.14) 0.73 (0.19) 083 (D.21) 069 (0.13)*

MSE3 ML 097 (0.17) 0.90 (D.21) 1.04{0.23) 104 {0.24)
AP 0.52 (0.08) 0.49 (0.10) 0.57(0.17) 0.51(0.12)

v 0.79 (D.18) (.86 (0.23) 0.96 (0.23) 0.79(D.15)*

MSE4 ML 1.15{0.19) 1.06 (0.25) 1.19{0.25) 1.19{0.25)
AP 0.60 (D.11) 0.57(0.12) 0.66 (0.19) 0.58 (0.13)

v 0.89(0.22) 0.96 (0.26) 1.05 (0.23) 0.86 (0.16)*

MSES ML 1.30 {0.20) 1.20 (0.28) 1.30 (0.25) 1.30(0.25)
AP 067 (0.14) 0.63 (0.14) 0.71 (D.20) 0,62 (0.14)

\i 0.99 (0.24) 1.05(0.27) 1.12{0.22) 0.93 (0.16)*

MSE® ML 1.43 (0.21) 1.32(0.29) 1.38 (0.23) 1.38(0.23)
AP 0.72(0.17) 0.6 (0_15) 0.76 (0.21) 0,66 (0.15)

n = number of participants included in group, MSE 16 — multiscale entropy for scales 1 to 6,
WV = vertical, ML = medial-lateral, AP - anterior-posterior.
* p < 05 for effect of conditions in groups — younger treadmill vs. overground and older

treadmill vs. overground.

tions. The standard deviation and coefficient of varia-
tion of stride time showed significantly higher values
for OgW (standard deviation: p = 003, coefficient of
variation: p = .004), compared to TW.

When comparing walking conditions in the older
egroup, significant differences were found for all of
the short-term LE (V: p = .020, ML: p = .014, AP:
p = .001), the values obtained for the OgW trials be-
ing higher than the TW trials. The opposite situation
was found for long-term LE in the ML direction
such that the OgW trials were lower than the TW trials
(p < .001). In the older group, OgW showed signifi-
cantly lower harmonic ratio in the ML (p = .031)
compared to TW. The MSE in the V direction
showed lower values during OgW for all scales
{ p = .008-.028). The standard deviation in the V and
AP directions was higher during OgW (V: p < .001,
AP: p= 006) than in TW. The standard deviation and
coefficient of variation of stride time showed signifi-
cantly higher values for OgW (both p < .001).

4. Discussion

TW is a walking condition that is frequently used
during clinical sessions among patients with neuro-

logical problems to increase gait symmetry, step
length, step width, rhythmicity and posture [9], [11],
[14]. With the increasing trend to use more advanced
computational techniques for data analysis, which
usually require a relatively high number of gait cycles,
treadmills have become more often used in research
area. Unlike OgW, TW allows for stable gait speed
and the opportunity to record a high number of gait
cycles in a small laboratory room. However, gait per-
formance during TW is less natural, because of a fear
of falling and a fear of the continuously moving belt
underneath a patient’s feet. The purpose of this study
was to compare gait stability and variability during
OgW and TW among two different age groups. We
formed five hypotheses expecting TW and younger
adulis to show more stable and less variable walking
pattern. The hypotheses were supported partially.
Previous studies involving OgW and TW researched
mostly spatial, temporal, kinetic, kinematic and EMG
data [1], [17], [20], [22], [23], [29]. For instance, Ri-
ley et al. [23] assessed spatial-temporal, kinematic and
kinetic variables in a group of young, healthy adults.
Although they found significant differences in most of
the variables when comparing OgW and TW, the ab-
solute differences were small enough to be considered
natural variability for kinematic assessment (differ-
ences less than 2°) and for all of the moments and
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powers from kinetic analysis except for peek knee
extension moment (differences smaller than values of
coefficients of repeatability evaluated by authors).
The authors concluded that the gait in both of the
walking conditions are quantitatively and gualitatively
similar. Other authors also confirmed these results for
elderly adults. Lee and Hidler [17] studied young and
older adults and reported similar results for kinematic
and temporal gait parameters. On the other hand, their
results for joint moment, joint powers and muscle
activity suggest that motor control is different be-
tween walking conditions. The results of these studies
seem to be inconsistent. Some authors claim that
OgW and TW are similar in terms of kinematic analy-
sis [22], [23]. while the other reported distinct differ-
ences between walking conditions [17], [20], [29].

Advanced computational techniques have been im-
plemented to assess gait patterns during both walking
conditions. In a group of young, healthy adults, Ding-
well et al. [7] assessed spatial-temporal characteristics,
their variability and local dynamic stability with data
obtained by kinematic analysis of lower limb move-
ment and trunk acceleration. They found significantly
lower short-term LE for both the trunk accelerations
and lower limb kinematics during the TW trial com-
pared to the OgW trial. However, the results for long-
term LE did not show any significant differences in
trunk acceleration, although for the lower limb kine-
matics, the long-term LE during TW was lower than
0gW, similar to short-term LE. Our results for LE also
showed lower stLE for TW in both age groups, which
can be explained by the compulsory regular movement
and the need to respond immediately to the treadmill
belt to successfully walk. On the contrary, we observed
higher long-term LE during the TW trial in both age
groups. Our results could be expected due to the visual
imagination of the movement during OgW. As Terrier
and Deriaz [28] showed in their study, the differences
between walking conditions could be induced by dif-
ferent proprioceptive and visual information. During
0gW, a subject usually knows where he is going, and
the aim of that movement is not the walking iself. One
1s not primarily interested in small perturbations it is
a natural movement, and thus a type of automatic sub-
cortical movement. In contrast, small perturbations
during TW could cause a disturbance because it is
a less natural, learned cortical process.

In the older group, harmonic ratio in the ML di-
rection was significantly higher during TW, compared
to OgW. This result suggests that there is better har-
monicity and periodicity during TW in the ML direc-
tion. In this group, higher TW MSE in the V direction
for all scales has also been found. Higher values of

MSE imply more complex movement. Kang et al. [16]
showed that lower complexity implies frailty in an
elderly population, which is connected to higher fall
risk and, therefore, instability. Our results could sug-
gest better stability during TW in the V direction.

The linear measures evaluated in the present study
were also able to distinguish between walking condi-
tions. In both groups, we found significantly higher
stride time variability for OgW, compared to TW.
These results agree with those of Dingwell et al. [7],
who observed decreased stride time variability during
TW trials. Also, our results for the standard deviation
of acceleration were similar to those reported in their
study. They found significantly higher standard devia-
tion for the OgW trial in the AP direction, with similar
trends in other directions. Taken together, these results
suggest that advanced computational techniques are not
the only ones that can be used to differentiate between
walking conditions. However, they provide a different
insight into locomotor control.

We found age-related differences during the OgW
trials only for the long-term LE in the V direction.
A possible reason for this result could be the physical
condition of our older participants, who were fit and
active despite their age. A similar study by Lee and
Hidler [17] intended to assess differences connected
to age, however, they did not detect any significant
differences. Their study assessed kinematic, kinetic
and EMG characteristics, and therefore, our data are
not comparable. On the other hand, it is possible that
when older participants are healthy and fit, differences
in gait performance, compared to a younger group,
vanish in treadmill walking which do not provide such
an open variability and possibilities for movement
compared to OgW. As for variables used in the pres-
ent study, results of previous works also support the
relationship between age, stability and variability meas-
ures [27]. Our results, however, were not in agreement
with results of their study. As mentioned above. our
results could have been affected by the physical con-
dition of our participants.

There are several limitations of this study. One of
the main complications when computing linear and
nonlinear characteristics is the use of these methods
for non-continuous walking intervals. It was proven
that the local stability could be computed from one
long trial or multiple shorter walking episodes aligned
one after another. This confirmation was not available
for other approaches used in this study, i.e., harmonic
ratios and entropy. Moreover, filtering plays a very
important role in the computational process. Several
authors have claimed that linear filtering before non-
linear analyses is undesirable [8], [21]. In spite of that,
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other authors applied low-pass filtering before com-
putation [10]. We believe that frequencies higher than
50 Hz do not need to be considered in the investigated
time series when studying gait. Another limitation
could be the choice of walking speed. Preferred walk-
ing speeds during treadmill and overground walking
could differ [18]. To ensure the influence of the walk-
ing speed on computed variables was minimal, we
decided to use the same speed — the preferred walking
speed during the overground walking trial — for both
conditions. However, it remains a possibility that gait
performance 18 slightly altered during treadmill walk-
ing. Lastly, the study was conducted on a relatively
small group of participants (n = 26). Further investi-
gation with larger groups of various ages is then
needed to generalize the presented results.

5. Conclusions

This study compared the gait stability and vari-
ability of trunk accelerations during overground and
treadmill walking in two age groups. According to the
results of this study, only the Lyapunov exponents
were sensitive to the change of walking conditions in
younger participants. In the older group, Lyapunov ex-
ponents, harmonic ratio in the medial-lateral direction,
standard deviation in vertical and anterior-posterior di-
rections and multiscale entropy in wvertical direction
were distinguishable between walking conditions. We
found age-related changes in gait performance only
for the long-term Lyapunov exponents in the vertical
direction during the overground walking trial. It can
be assumed that both linear and advanced computa-
tional techniques for gait stability and variability as-
sessment in the older population are sensitive to
walking conditions. Researchers should take these
differences into account when interpreting their results
because as it seems, the change of the experimental
conditions induces changes in stability and variability
of the gait performance.
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ABSTRACT

Although entropy-based measurements of gait dynamics are becoming widely used tools for fall nsk
assessment, their relationship to fall occurrence is still unclear. The aim of this study was hence to
compare fallers and non-fallers in terms of gait dynamics assessed by the multiscale and Shannon
entropy. This study included 139 participants, aged 60-80 years, divided into two groups according to fall
occurrence during a G-month prospective observation (38 fallers, 101 non-fallers). The methodology
involved the use of the Tinetti balance assessment tool (TBAT) and 5 min of overground walking with 3D
accelerometers located near the LS vertebra and shanks. We analyzed 150 strides for gait complexity, an
index of complexity (C1), computed from multiscale entropy (M5E) and Shannon entropy (ShE) derived
from the recurrence quantification analysis. We found no significant differences between groups in MSE
and Cl. The TBAT total score was significantly higher in non-fallers (P=0.033), however, both groups
showed low risk of falls. ShE in the anterior-posterior direction from trunk and in the medial-lateral
direction from the shanks were both significantly higher in fallers (P=0.020; P=0.024). ShE was
negatively correlated with C1, the shank ShE in the vertical direction was positively correlated with TBAT.
Taken together, our findings sugeest that MSE is not able to distinguish between highly functional groups,
whereas Shannon entropy seems to be sufficient in fall risk prediction.

& 2016 Elsevier BV. All nghts reserved.

1. Introduction

Although entropy-based measures are widely used for gait
assessment, their relationship to fall risk remains still unclear.
During dynamic conditions, approximate entropy | 1] and sample
entropy |2| are used to assess the complexity and regularity of a
system | 2|. Because these two measures provide only one scale of
information about the system, Costa et al. [4.5] introduced
multiscale entropy (MSE), sample entropy computed for several
scales.

MS5E is a relatively new approach in locomotor assessment:;
therefore, its use in scientific studies is limited. For fall risk
assessment during quiet stance, Kang et al. |6] used MSE to
distinguizh between elderly individuals with different degrees of
frailty. According to their results, non-frail elderly showed higher
center of pressure movement complexity than pre-frail and frail

* Corresponding author at: Department of Matural Sciences in Kinanthropology
Faculty of Physical Culture, Palacky University Olomour, Trida Mim 117, 771 11,
Olomoue, Crechia.

E-muil address: lucia bizovska@gmailcom (L Bizowska).

hrtpe:fjdx.dolorg/10.1016j gairpost 2016.11.009
0966-63628 2016 Elsevier BV All rights reserved.

groups. Additionally, the complexity decreased with increased
difficulty of a given task (i.e., from quiet stance to a dual task).

Bisi et al. |7| recently used the MSE method to assess toddler
gait. Toddlers are frequent fallers; therefore, their risk of falling is
considerably higher compared to that of adults. Toddler gait was
compared to gait of the young and elderly adults in order to
investigate if MSE could be used to distinguish between toddlers
and young adults and elderly and young adults. They reported that
MSE computed from trunk acceleration in vertical (V) and anterior-
posterior (AP) direction in toddlers is significantly higher than that
obtained in young adults. Moreover, M5SE in V direction was
significantly higher for elderly group compared to voung adults
indicating less stable gait. According to Bisi et al |7], variables
which are able to distinguish toddlers and young adults should
have more promising ability to distinguish elderly fallers and non-
fallers.

Another study by Bisi and Stagni |2 investigated the develop-
ment and decline of gait in terms of complexity in several age
groups ranging from toddlers (13 months) to elderly (84 years old).
Their results showed that MSE computed from the trunk V and AP
accelerations generally decreased from childhood to adulthood
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and increased from adulthood to the old age. This trend could
suggest possible indication of maturation of gait which could be
described by gait complexity.

Direct fall risk studies on an elderly population invelving MSE
were conducted by Riva et al. [9] and Ihlen et al. [10]. In both
studies, the elderly were divided according to a retrospective fall
history report and MSE was computed from trunk acceleration.
Riva et al. 9] clearly showed a relationship with fall history for MSE
in AP direction with scale factors 2 and 3. According to the resulis
of their study, higher complexity of gait is related to fall history. On
the other hand, lhnel et al. [10] investigated daily life walking
episodes with two MSE derived variables = refined composite
multiscale entropy (RCME) and refined multiscale permutation
entropy (RMPE). Their results are in contrast with the above-
mentioned work |29] and showed higher complexity from trunk
accelerations in elderly non-fallers for both RCME and RPME in
medial-lateral (ML) direction and in AP and V directions for RCME.
RMPE in V direction showed high values for fallers. Authors explain
that their results could be influenced by walking condition with
different regulation of gait in controlled (lab) and uncontrolled
(daily life) environment.

Another advanced approach in gait analysis is recurrence
quantification analysis (RQA), which provides an insight to time
series behavior by quantifying deterministic structures and non-
stationarity | 11]. Variables derived from RQA seem to be effective
in distinguishing between toddlers and young adults [7], elderly
fallers and non-fallers [9] or healthy adults and individuals with
unilateral wvestibular hypofunction |12]. A possible entropy
measure derived from RQA is Shannon entropy (ShE), which is
considered a complexity measure of a deterministic structure | 13].
While this index is still not extensively used to describe gair,
several studies reported results of ShE in static conditions
|11,14=16]. Their results appear to be quite contradictory showing
higher ShE values for younger adults compared to elderly [15] but
simultaneously higher ShE for elderly fallers compared to elderly
non-fallers | 16].

To our knowledge, no prospective studies of MSE and ShE
during gait have been conducted to date. The main aim of the
present study is to assess differences in MSE and ShE between
elderly fallers and non-fallers using a prospective approach. The
second aim is to evaluate the relationship between clinical results
and entropy measures. The hypotheses for this work are as follows.
Based on the in lab results obtained by [7-9], we expect that
complexity of the gait is connected to fall occurrence in elderly
subjects resulting in higher MSE values for fallers. This relationship
should also be related to the results of clinical evaluation with
negative correlation suggesting decline in clinical score followed
by increase of complexity of the gait. Based on the results of
Ramdani et al. | 16], we expect similar trends also for ShE.

2. Methods

The study included 139 participants, who were recruited from
clubs for the elderly and the University of the Third Age in
Olomouc, Czech Republic. The inclusion criteria included the
ability to stand and walk without any support and older age,
specifically, age of more than 60 wyears. Participanis with
musculoskeletal problems, injuries, and surgical interventions
that were performed within 2 years hefore measurement were
excluded from the study. All of the participants signed written
informed consent forms before examination. The research was
approved by an institutional ethics committee (no. 24/2014).
Participants completed the Tinetti balance assessment tool [17],
and the acceleration of their gait was measured. After baseline
measurements, the participants were observed for 6 months to
collect fall data. The participants were given a notepad to ensure all

of the falls were recorded, and phone calls were made, at a
minimum of once every two weeks, to collect the fall data. A fall
was defined as “an unexpected event in which the participants
come to rest on the ground, floor, or lower level™ [ 18]. Falls related
to sports, such as skiing and cycling, and those caused by a great
external force were excluded from the analysis. A “faller” was
considered a person with at least one fall during the observed
period of time.

21. Measurements

The Tinetti balance assessment tool (TBAT) was included for
clinical examination. The TBAT score was considered in each of the
sections (balance and gait) separately and together. Gait was
measured over 5 min of walking at a preferred walking speed in a
30m long indoor corridor. Two well-visible marks were placed on
the floor restricting a 25m long pathway. Participants were
instructed towalk straight, maintain a stable pace, and turn around
after crossing the marks. Walking speed was defined to be the
mean speed of the participant’s walk between the marks and was
computed for each interval from the distance and time needed to
complete this task. Participants wore comfortable sport shoes
during the measurement. 3D accelerometers (sampling rate
2963 Hz, Trigno wireless system, Delsys Inc., Matick, MA, USA)
were attached near the L5 vertebra and on the shanks approxi-
mately 15cm above the malleolus on each limb to record
acceleration in V., ML and AP directions. The recording of
acceleration started after the initial stride.

22 Data analysis

The first 300 samples of the acceleration signal were excluded
from the analysis to avoid non-stationarities of the signal caused
by sensors’ delayed response. The turnarounds, the last stride
before the turnaround and the first stride after the turnaround
were removed from the signal before further analysis. Heel strikes
were identified using a procedure introduced by Zijlstra and Hof
|19], and 150 strides were extracted for further analysis. The signal
was analyzed without filtering. Stride time, MSE and ShE were
computed for each time series.

MSE was computed for scale factors 1-15 by software available
on Physionet [4,5.20]. A number of consecutive data points, m,
were set to 2, and the radius was set to 15% of the standard
deviation of the time series [5). The MSE curve was then obtained
as a plot of sample entropies as a function of scales. The index of
complexity (Cl) was computed as an integral of the MSE curve [4).

ShE was computed from the RQA by an algorithm developed by
Ouyang [ 13| in Matlab { R2015b, MathWorks. Inc., Natick, MA, USA).
Each time series was normalized to 15,000 data points to obtain
approximately 100 data points per stride. The input variables for
RQA were determined as follows. Time delays were computed from
an average mutual information function at the first minimum. The
resulting delays were averaged in each direction giving time delays
of 9,6 and 11 samples for the V, ML and AP directions, respectively,
for signals from the shanks. There were time delays of 11, 8 and 10
samples for the V, ML and AP direction, respectively, for trunk
acceleration. The embedding dimension was computed from a
global false nearest neighbor analysis, which resulted in dimension
6. The Euclidian distance was calculated [12], and the radius was
set to 40% |9| for analysis. For the purposes of this work, only ShE
was extracted from RQA.

2.3, Statistics

The Kolmogorov-Smirnov test was used to verify the normality
of the data distribution. Since some of the data did not have a
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Table 1
Somatic characteristics and TBAT scores.

Fallers (m=38) Mon-fallers (n=101)

Variable Median Lower quartile Upper quartile Median Lowwer guartile Upper quartile P

Age [vears) 7093 65.63 T76.27 T0.57 B65.57 7617 o
Height {cm) 160.30 155.45 165.25 16250 156.95 16755 o132
Wweighr (kg) 7308 6613 BO.16 7399 66.58 BE.ES 0252
Body mass index (kgm™T) 27492 253 2914 2829 24.37 3274 05593
TBAT gait 16.00 15.00 1600 16.00 16.00 16.00 0aa3
TBAT balance 12.00 11.50 1200 1200 1200 12.00 0223
TBAT total 2775 26.50 Z8.00 ZE0D 27.50 28.00 0033

TBAT — Tinetti balance assessment tool score.

normal distribution, the non-parametric tests were used. The
Mann-Whitney U/ test was used to compare fallers to non-fallers.
Spearman correlation coefficients were used to assess relation-
ships between entropies and TBAT scores, as well as entropies
among themselves. Association was considered low for values
<0.30, moderate for values 0.31-0.69 and high for values 0.70-1.00
|21). The level of significance was set to P=0.05 for all analyses.
When comparing MSE resulis, number of compared pairs in each
direction was 15 (each scale separately). To avoid a possibility to
identify random significant differences when comparing high
number of pairs, the Bonferroni correction for multiple compar-
isons was applied resulting to P=0.003 (original P level 0.05/15
comparisons). Statistics were performed in Statistica (v. 12,
StatSoft, Inc., Tulsa, OK, USA).

3. Results

The characteristics of the groups are presented in Table 1.
Significant differences between fallers and non-fallers were found
for the TBAT total score (P=0.033), ShE from trunk accelerations in
the AP direction (P=0.020) and ShE from shank accelerations in the
ML direction (P=0.024) (Table 2 ). Mo differences were found for CI,
somatic characteristics, mean gait speed and stride time (P> 0.05).
When comparing MSE separately for each scale (Fiz. 1), a
significant difference was found only for the trunk AP acceleration
in scale 3 (P=00047). However, after applying Bonferroni correc-
tion, even this difference was too low to be considered.

Between Cl and ShE (Table 3), negative significant correlations
were found in most of the cases.

There were no significant correlations found between the TBAT
balance score and any of the entropies. The TBAT gait score
correlated negatively with ShE from shank accelerations in the ML
direction and Cl from trunk acceleration in the AP direction. The
TBAT gait score also correlated positively with ShE from shank

Tahble 2
Gait characteristics.

accelerations in the V direction and Cl from shank accelerations in
the ML direction. The TBAT total score correlated positively only
with ShE shank accelerations in the V direction. For details, see
Table 4.

4. Discussion

Fall risk assessment during both static and dynamic conditions
is still a developing field. Despite the high number of approaches
for fall risk assessment, only a limited number have been proven to
have a direct relationship with fall occurrence. The main aim of this
study was to assess the relationship between fall occurrence and
measures derived from multiscale entropy computation - the
sample entropies for different scales and an index of complexity.
Shannon entropy was used as a comparison with the results
obtained by MSE.

According to our results, there were no significant differences in
somatic characteristics, MSE, Cl, stride time and gait speed
between fallers and non-fallers in our studied subjects (Tables 1
and 2, Fiz. 1). Differences were found only in the TBAT total score
and ShE.

Our results for MSE and CI disagree with the results of Riva et al.
[9], who found an association between MSE in the AP direction and
fall history. In respect with recent works by Bisi and Stagni [8] and
Riva et al_ |9], suggesting different results observed depending on
the scale used for computation, when using sampling rate 2963,
we expected to observe differences for higher values of scale factor
(8=15). Computation for scale factor 8 would be equivalent to low-
pass filtering with the cut-off frequency 18.5Hz, for factor 15 it
would correspond to 9.9 Hz, limiting the band where differences
are expected. However, in our case, we did not find any differences
even for the higher scales corresponding with the results obtained
for Cl. A possible explanation could be the differences in
methodology used to either assess fall occurrence or capture

Fallers {n=38) Non-fallers (n=101)

Variable Median Lowwer quartile Upper guartile Median Liovwer quartile Upper quartile P

Mean gait speed {m.s~") 122 113 133 123 115 1.36 0489
Stride time (s) 103 099 Lo 105 1o 109 0264
Trunk ShE v LLE L 038 0.50 043 034 057 OLBE3
Trunk ShE ML 06 13 0.24 o7 o2 026 0.708
Trunk ShE AP 034 .30 0.41 031 024 039 0020
Shanks ShE V 0.59 053 065 057 047 068 0.298
Shanks ShE ML 041 033 0.51 037 023 044 0024
Shanks ShE AP 058 D48 064 058 046 mEE 0851
Trunk C1W 1246 1061 13.67 12.40 035 14.10 0841
Trunk €1 ML 17.25 16.41 18.59 17.99 16.27 1963 0.603
Trunk €1 AP 4.80 95 106 1016 Q6 1182 0243
Shanks C1V BOE .09 9.B8 B62 6.90 10.67 0.759
Shanks C1 ML 15.20 153.60 16.92 15.50 1381 17.79 0.330
Shanks C1 AP BAE 753 9.31 B850 739 1023 0.0

ShE — Shannon entropy, C1 — index of complexity, V — vertical direction, ML — medial-lateral direction, AP — anterior-posterior direction.
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TRUNK SHANKS
Vertical
1.4 1.4y
1.2 1.24
1.4 1.04
w08 w 0.8
w n
£ 06 £ 06
0.4 0.44
02 0.24
0.0 ol 0.0+
1 2 3 4 5 & T B 8 W00 M 12 13 14 15 1 2 3 4 8§ 8 7 B 9 10 1M 12 13 14 18
Scale Scale
Medial-lateral
1.8 1.8,
1.6 1.64
1.4 1.4
1.2 1.24
W10 w 1.0
w 0n
= 0.8 = 0.8
0.6 (.69
0.4 0,44
0.z 0.2
0.0 ol 0.0
1 2 3 4 5 865 T & 9 10 M 12 13 14 15 1 2 3 4 5 & 7 8 9 10 N 12 13 14 15
Scale Scale
Anterior-posterior
1.2 1.2
1.0 1.0
0.8 0.84
EUE Hﬂﬁ
=i -
0.4 044
0.2 0.24
0.104 0.0
1 2 3 4 5 & 7 & 9% 10 M 12 13 14 15 1 2 3 4 5 8 7 B 8 10 1 12 13 14 1§
Scala Scale

Flg. 1. Multiscale entropy computed for scale factors 1-15.

strides. Riva et al. [9] retrospectively observed 12 months of fall
history. According to Lamb et al. [18], prospective observation is
recommended because the information obtained from events after
a long time may lack accuracy. Therefore, in our study, we decided
to follow this recommendation. Another difference in methodolo-
gy between our studies was walking condition. We chose to study
overground walking trials because there are documented differ-
ences in gait performance on treadmills compared with over-
ground walking |22,23). These differences have not yet been
documented for sample entropy: however, it is possible that the

walking conditions could be a factor with a very high influence on
the documented results. When comparing results of Riva et al. [9]
and Ihnel et al. (10|, different trends could be found suggesting
inconsistency of these observations. This inconsistency could be
connected to different control mechanism during gait enabling
high adaptability during daily-life situations [10]. Future work
addressing this issue should investigate the differences between
walking conditions - indoor overground, indoor treadmill, outdoor
overground walking. The last possible difference could be found in
our cohorts themselves and is connected to a limitation of the

Table 3
Spearman correlation coefficient between gair characteristics.
Trunk ShE V Trunk ShE ML Trunk ShE AP Shanks ShE V Shanks ShE ML Shanks ShE AP
Trunk C1 v —0.440 ~0.102 —0160 -0294 0.061 0133
Trunk Cl ML —0.147 —0.567 =0143 —0.128 0.3 =0.024
Trunk Cl AP =024z =0179 —0.560 —0248 =043 =059
Shanks €1 ¥ 0.055 =000 0152 0504 —=0.009 0165
Shanks €1 ML 0075 =0.134 0100 —0.185 —0.697 —-0.322
Shanks C1 AP —0.027 ~0.139 =[S -0234 —D462 —0.542

ShE — Shannon entropy, Cl — index of complexity, V — vertical direction, ML — medial-lateral direction, AP — anterior-posterior direction

Baold values highlight the statistically significant correlations.
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Table 4
Spearman correlation coefficient between TBAT scores and gair characteristics.
TBAT balance TBAT gait TBAT total

Trunk ShE ¥ wovs o35 i)
Trunk ShE ML oz -0 0037
Trunk ShE AP o34 oot 0056
Shanks ShE W 0138 01es 0187
Shanks ShE ML uoso =176 =030
Shanks ShE AP [iRE ) — 0008 0o
Trunk 1V —0023 —0inE —0032
Trunk C1 ML — 0028 D46 =010
Trunk C1 AP uoza —0.170 —03g
Shanks 1V m7 oz =001
Shanks C1 ML - 0066 0230 033
Shanks C1 AP - 0004 0105 0043

TBAT — Tinetti balance assessment tool score, ShE — Shannon entropy, Cl — index of
complexity, ¥ — vertical direction, ML — medial-lateral direction, AP — anterior-
posterior direction

Bold values highlight the statistically significant correlations.

present study. Both fallers and non-fallers scored highly in TBAT
evaluation suggesting low risk of falls in both groups. It is
uncommon to obtain such a high score for group of elderly
individuals with positive fall occurrence. This result shows that
participants in the present study could be considered highly
functional and MSE was not able to detect the differences in such
groups. Also the variability of the TBAT scores is very low. Such a
limited variability could be considered as another limitation of our
work and is also connected to the active life style of all of our
participants.

Unlike MSE and CI, ShE showed the ability to distinguish
between fallers and non-fallers in the ML shank and AP trunk
accelerations. ShE is a complexity measure of a deterministic
structure in a dynamical system and higher values indicate a more
complex deterministic structure [13]. In our case, fallers showed
higher ShE values in the ML shank and AP trunk accelerations,
suggesting higher deterministic complexity. This result could be
considered in agreement with the findings of Ramdani et al. [16]
with higher ShE in fallers, however, the measuring conditions
differ (static stance/dynamic gait). The ShE is an index without
clear interpretation. As Seigle et al. [15] pointed out, it could
represent different meaning when compared to MSE because it
represents a complexity of a deterministic structure of the system
while MSE represents the complexity of the system itself.
Moreover, its behavior could be unpredictable [16| and more
research is needed.

Our results showed moderate negative correlation between Cl
and ShE in corresponding directions (Table 3). As observed by Kang
etal. |5] in static conditions, a lower Cl implies frailty in the elderly
population. Frailty may also be predictable in elderly fallers
because they have decreased postural functionality. We were not
able to find differences between groups for Cl; however, there was
a low to moderate correlation between Cl and ShE from trunk
accelerations and a low to high association between Cl and ShE
from shank accelerations. The significant differences in the ML
direction observed in our study agree with the results from other
studies that considered ML stability during static |24 and dynamic
|25-27| conditions in groups of fallers and non-fallers. All of these
studies reported better ML gait control among people with no
history of falls.

The second aim of this study assessed the relationship between
TBAT scores and entropy measures. First, we assessed whether
there were any differences between fall risk groups. We found that
the differences in TBAT total score were statistically significant
(Table 1). This result agrees with other studies that used the Tinetti
assessment tool for clinical evaluation of fallers and non-fallers

|28.29]. ShE and Cl did not show any clear relationship (Table 4).
The balance score did not show any significant relationships with
the entropies; however, the gait score was negatively correlated
with ShE and positively correlated with Cl from shank ML
accelerations. This result supports the idea that there is a
relationship between Cl and ShE despite the possible differences
in the meaning and interpretation. There was another significant
correlation between TBAT gait score and ShE from shank V
accelerations and a positive correlation between total TBAT score
and ShE from shank V accelerations. Although all of these
correlations were significant, the relationships with values lower
than 0.30 are considered weak and do not provide a clear evidence.
As mentioned earlier, the results of this study could be influenced
by the fact that our participants (both fallers and non-fallers) have
a low risk of falls according to the total TBAT score. Although we
found a significant difference between groups in this score, the
absolute difference between groups was only 0.25 points. In this
case, both of our groups could be considered highly functional
despite the fall occurrence in a group of fallers. This is a limitation
of the present work which constrains the applicability of this
results to wider population of elderly.

5. Conclusions

This study aimed to assess differences between fallers and non-
fallers in terms of the following entropy-based measures: sample
entropies computed for different scale factors, an index of
complexity derived from multiscale entropy, and Shannon entropy
derived from recurrence quantification analysis. Significant differ-
ences were found only for Shannon entropy: sample entropies and
the index of complexity were not able to distinguish between
groups. The second part of this work considered relationships
between entropies and a clinical evaluation performed by the
Tinetti balance assessment tool. Only low correlations were found
not providing clear evidence of the relationship. According to the
results of this work, highly functional elderly fallers could not be
identified by variables derived from multiscale entropy approach.
Future work should evaluate Shannon entropy because it seems to
sufficiently distinguish between active fallers and non-fallers.
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Abstract

Computing the local dynamic stability using accelerometer data from inertial sensors has
recently been proposed as a gait measure which may be able to identify elderly people at fall
risk. However, the assumptions supporting this potential were concluded as most studies
implement a retrospective fall history observation. The aim of this study was to evaluate the
potential of local dynamic stability for fall risk prediction in a cohort of subjects over the age of
60 years using a prospective fall occurrence observation. A total of 131 elderly subjects volun-
tarily participated in this study. The baseline measurement included gait stability assessment
using inertial sensors and clinical examinafion by Tinetti Balance Assessment Tool. After the
baseline measurement, subjects were observed for a period of one year for fall occurrence.
Our results demonstrated poor multiple falls predictive ability of trunk local dynamic stability
(AUC = 0.673). The predictive ability improved when the local dynamic stability was combined
with clinical measures, a combination of trunk medial-lateral local dynamic stability and Tinetti
total score being the best predictor (AUC = 0.755). Together, the present findings suggest that
the medial-lateral local dynamic stability during gait combined with a clinical score is a poten-
tial fall risk assessment measure in the elderly population.

Introduction

Falls are a leading cause of injuries and injury-related deaths in people over 65 years of age [1].
The risk factors for falls in the elderly can be divided into four main groups-behavioural,
socioeconomic, biological, and environmental [2]. Generally, the causes of falls are considered
intrinsic (related to the person) or extrinsic (related to the environment) [3]. In 30-50% of
falls is the cause of the fall extrinsic [4]. It has been shown that ageing is associated with a
decline in balance control [5]. This decline generally results in decreased gait stability and
increased variability in movement [6=8].
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Falls occur mostly in dynamic conditions [9]. The methods to quantify changes in gait
stability and variability may be useful for early identification of people at risk of falls and
subsequently prevention of falls and fall-related injuries. Furthermore, spatiotemporal gait
variables and their fluctuations over time provide relevant information evidencing signifi-
cant changes in stride length, double support time, step width and stride time variability in
elderly fallers compared to non-fallers [10,11]. However, these variables do not reflect the
inner structure of a physiological time series and do not provide information about changes
in motor behaviour [12]. Without separately evaluating bad and good variance (variability
that does or does not affect the final outcome of the task), an increase in the variability of
gait pattern may be seen as either an effective or ineffective method for ensuring gait stabil-
ity [13].

In recent years it has been proven that nonlinear methods, such as local dynamic stabil-
ity, may reveal age-related changes in gait pattern [14,15]; they may also retrospectively
distinguish elderly fallers from non-fallers [16-18] or fall-prone subjects-toddlers—from
healthy adults [19]. Terrier and Reynard [15] reported age-related changes in the medial-
lateral (ML) local dynamic stability demonstrated by the short-term Lyapunov exponent
(LE) computed from upper trunk acceleration. Their results further showed a decreasing
local stability with increasing age. Similar results were reported by Buzzi et al. [14] who
computed the LE from the vertical displacement time series of lower limb joints and found
higher LE values in elderly subjects. According to their results, the LE may indicate age-
related changes in gait control; therefore, LE may also have potential in fall risk prediction.
To answer this question, Bisi et al. [19] combined the time series of different directions of
linear trunk accelerations to compute and compare the LE in toddlers and young adults.
They reported higher LE values in toddlers, verifying the expected decreased local stability
in toddler gait. Toebes et al. [16] studied the age-gait relationship in elderly fallers and
non-fallers using a retrospective approach. Their results implied that the short-term LE
computed from combined trunk linear accelerations and angular velocities had the best
association with fall history. As shown above, several devices ranging from optoelectronic
devices to inertial sensors can be used for gait assessment. Inertial sensors have several
advantages compared to optoelectronic devices (cost, portability) and showed a great
potential for gait assessment in the elderly population [20].

Fall history observation is another concern in the fall risk assessment. In most of the
studies, a retrospective approach was taken where the subjects were questioned on the num-
ber of falls experienced several months before the testing procedure itself [20]. However,
there is evidence that recall of the number and circumstances of falls often does not reflect
the actual state [21]. Furthermore, it is not clear whether the results reflect the fall risk or
the actual state as a consequence of previous falls. Considering the inaccuracy of retrospec-
tive assessments of fall history, prospective observation of fall occurrence was recoms-
mended [22].

The retrospective approaches for estimating fall history may present bias in the inter-
pretation of the results. According to the results of the aforementioned studies, the LE has
great potential to be used in the early identification of people at risk of falls. Therefore, the
aim of this study is to investigate the LE derived from trunk acceleration during gait and
the potential use of the LE as a fall risk assessment measure using a prospective approach.
To the best of our knowledge, there have been no studies based on a prospective observa-
tion analysing the LE in a controlled in-lab environment. The working hypothesis is that
higher LE values precede future falls and therefore, could be used as fall risk predictors.
We expect to find higher distinctive strength when comparing multiple fallers and non-

fallers.
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Methods
The participants and methods were the same as in the 6-month prospective studies published

earlier by our team [23,24]. The baseline measurement was more complex and included several
tests; only specific measurements were included in the present work. A brief description of the
methods is below.

Participants
This study was designed as a one-year prospective study focusing on an elderly population.
Participants were recruited from the university for elderly (University of the Third Age,
Palacky University Olomouc, Olomouc, Czech Republic) and clubs for elderly in Olomouc,
Czech Republic according to the following inclusion and exclusion criteria.

Inclusion criteria

« age 60 years and above
+ no known neurological or musculoskeletal problem that may affect gait or balance abilities
+ ability to stand and walk without any assistance and assisting device

Exclusion criterion

+ any injury or surgery on the musculoskeletal system during the last two years before the
baseline measurement

The study was approved by the institutional ethics committee (The Ethics Committee of
the Faculty of Physical Culture, Palacky University Olomouc, Olomouc, Czech Republic, no.
24/2014). The participants signed written informed consent before the baseline measurement.

Baseline measurement

During the baseline measurement, the participants filled in the anamnestic questionnaire focusing
on their physical condition and fall history in 3 months prior the measurement. If a participant
reported any falls, the details were asked. The participants were also examined clinically by the Tin-
etti Balance Assessment Tool {TBAT) [25], and their gait stability was assessed during 5 minutes of
indoor walking (over ground) in a 30 metre long well-lit corridor. Three 3D accelerometers (sam-
pling rate 296.3 Hz, Trigno wireless system, Delsys Inc., Natick, MA, USA) were attached on the
trunk near the L5 vertebra and on both shanks approximately 15 cm above the malleolus; accelera-
tion was recorded in the anterior-posterior (AP}, vertical (V) and medial-lateral (ML) directions.
The sensors on the shanks were added to capture the interaction between the body and the surface
(end-point variability). A twenty-five metre long corridor was marked on the floor. The partici-
pants were instructed to walk straight in a stable comfortable pace, turn after crossing the mark on
the floor and continue to walk at the same comfortable speed. They wore comfortable sport shoes
during the test. Data collection started after the first stride of the walking trial to avoid the possible
influence of transition to gait on the time series due to a change in speed. The gait speed was com-
puted for each interval from the distance and time (measured by a stop watch) to complete the 25
metre long walking episodes. The average speed was then computed for each participant.

Fall occurrence observation

After the baseline measurement, the participants were observed for fall occurrence for one
year. Every 14 days, the participants received a phone call from one of the research assistants
to check if they tripped, slipped or fell. In the event of a trip, slip or fall, the participants
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included information about their activity during the situation, the exact cause of the situation
and the consequences; they were also asked to note the details in the provided notebook. Falls
were assessed regularly and categorized in agreement with the recommendation of The Pre-
vention of Falls Network Europe [22]; therefore, a fall was defined as “an unexpected event in
which the participants come to rest on the ground, floor, or lower level”. Only falls that
occurred during everyday activities were included in the analysis. Thus, falls related to sports
activities (12 falls), caused by greater external force (e.g., subjects being suddenly dragged by
dogs, 4 falls) and falls related to impeded visual conditions (e.g., walking in the basement stor-
age and unable to turn on the lights, 3 falls) were excluded.

After one year of observation, the cohort was divided into three groups: non-fallers (N, 0
falls), fallers who experienced one fall (F1), and multiple fallers (F2+, two and more falls). The
three groups were implemented to ensure consideration of the recurrent fallers, as definitions
of fallers are vastly different [26]. The definition of a faller as a person who experienced at least
one fall has been used in the literature [27,28]. However, one fall during a one-year period may
be a consequence of a random event and not relevant to the fall risk [29].

Data analysis

The first 300 data points of recorded data were excluded from the analysis because of the unsta-
ble response of the sensors. The last stride before the turn, the Usturn and the first stride after
the turn were cut-off from the signal before processing to obtain only the data from straight
walking episodes. The cut-off was performed to be sure there was no influence of the turns on
the analysed data, thus excluding the gait initiation and termination phases. Riva et al. [30]
proved this independence in young healthy adults, but no conclusions were provided for elderly
people. The unfiltered signal was then analysed. For the analysis, strides were extracted from the
AP trunk acceleration using the heel strike identification as proposed by Zijlstra and Hof [31].
To assess local dynamic stability, short-term and long-term Lyapunov exponents were com-
puted on 150 strides to ensure reliability of indices [32]. For this purpose, the original time
series without turns was resampled to 15,000 points to obtain approximately 100 data points per
stride. For a state space reconstruction, time delays of 11, 8 and 10 samples for the trunk and 9,
6 and 11 samples for the shanks in the V, ML and AP directions, respectively, were used asa
result of the first minimum from the average mutual information function. An embedding
dimension of 6 was used as computed by the global false nearest neighbour analysis. To allow
comparison between studies, the most widely used algorithm proposed by Rosenstein et al. [33]
was used to compute the short-term (over one step, stLE) and long-term LE (over the fourth to
tenth stride, ItLE) (Fiz 1). Stride frequency was computed from an amplitude spectrum of fast
Fourier transformation of the AP trunk acceleration. The computations were performed by a
custom Matlab algorithm.

Statistical analysis

To compare fallers and non-fallers, the Mann-Whitney U test was used since the data did not
show a normal distribution in all cases as assessed by the Kolmogorov-Smirnov test. After
comparing groups and finding the most significant differences between groups (p < 0.05), a
receiver operating characteristic curve analysis (ROC analysis) was used to establish the
strength of each significant variable to predict falls in our cohort. Variables were submitted to
the ROC analysis separately and combined based on the logistic regression. Specificity and
sensitivity were computed for the cut-off points assessed by Youden’s | index (] = max{speci-
ficity + sensitivity= 1}). The statistical analysis was performed at a significance level of «e = 0L05,
however, in each group of variables (clinical scores, short- and long-term LE separately for
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Fig 1. Representation of short- and long-term LE computation. LE are computed as slopes of mean log divergence curve
between 0 and 0.5 stride (short-term) and 4 and 10 strides (long-term ).
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trunk and shanks) a Bonferroni correction was applied resulting in the adjustment of level of
significance to value 0.05/3 = 0.017. Computations were performed with Statistica software

(v. 12, StatSoft, Inc., Tulsa, OK, USA) and SPSS Statistics for Windows (v. 18, IBM, New York,
NY, USA).

Results

General characteristics of participants
A total of 131 elderly people participated in this study (mean age 70.8 + 6.7 years, height

162.5 + 7.6 cm, weight 75.3 + 13.6 kg, body mass index 28.4 + 4.6 kg.m'z}. Deetailed informa-

tion about participants and their results for each test are available in the supporting file 51
Diata. Based on the prospective fall occurrence observation, participants were divided into

three groups as follows: N (81 subjects— 63 females, 18 males), F1 (35 subjects- 31 females, 4
males) and F2+ (15 subjects— 14 females, 1 male). The participants’ characteristics are shown

in Table 1. The groups did not differ in age, body mass index nor the number of falls at the
baseline (p > 0.05). Significant differences were found between N and F1 in weight (p = 0.037)

and height (p = 0.034).

Table 1. Demographic and anthropometric characteristics of groups (mean + standard deviation).

N (n=81) Fl {n=35) F2+ (n=15) N vs. Fl Nvs. F2+ Fl vs. F2+
Age (years) 705 + 6.4 T14%77 T12+53 0.541 0.725 0.919
Height {cm) 1636+ 78 1603 £7.1 1615 + 6.4 0.034 0.335 0,567
Weight (kg) 775+ 148 716+ 114 725493 0.037 0.208 0.789
Body mass index (kg m™) IEA + 46 175 +48 7E+41 0.325 0.459 0.992
Fall history at the baseline-number of falls in group 0.10 + 034 0.20 + 0.58 0.13 + 0.35 0.785 0.775 0.975

M-subjects with no fall, F1 —subjects with one fall, F2+—subjects with two and more falls, the last three columns show the p-values for differences between the groups.

hittpz2/doi.org0.1371/journal pone. 0197 091 1001
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Clinical assessment

The results of the clinical examination are shown in Table 2. The analysis of TBAT scores
showed that groups N and F2+ differed in all TBAT scores (balance: p = 0.009; gait: p = 0.015;
total: p = 0.000) with lower values for F2+. There was no significant difference between N and
F1. Significant differences were found between F1 and F2+ in total score (p = 0.009) with
higher values for F1.

Gait assessment

The gait speed and stride frequency did not differ between any of the groups (p > 0.05)
(Table 2). The lowest p-value was found for the trunk ML acceleration in stLE between N and
F2+ (p = 0.034) with higher values for F2+ (Fig 2). However, when a Bonferroni correction
was applied to the p-value, the difference became insignificant. The N group reached the low-
est values of trunk ML stLE, while the F2+ group reached the highest.

Predictive validity of fall risk assessment measures

In the comparison of N and F2+, the ROC analysis (Table 3) showed the highest area under
the ROC curve (AUC) when combining Tinetti balance score, Tinetti total score and trunk
ML stLE.

The individual variables showed AUC values of 0.659-0.757 with Tinetti total score as the
best predictor variable. When combining two variables, the AUC increased to the values of
0.724=0.755.

Discussion

The aim of this study was to assess the potential of local dynamic stability for fall risk predic-
tion in the elderly population. For this purpose, a prospective approach for fall occurrence
observation was implemented. The results of the present study showed fair to good strength of
Tinetti balance score, Tinetti total score and trunk ML stLE to predict future falls in multiple
fallers. The prediction was strengthened when submitting a combination of abovementioned
variables to analysis.

The results of the present study showed significant differences between the trunk ML stLE
of non-fallers and multiple fallers. The values of trunk stLE in the ML direction increased as
the number of observed falls increased, showing a distinct trend of decreased local dynamic

Table 2. Results of a dinical and basic gait assessment.

N {n=281) Fl (n=35) F2+(n=15) p-values
median | lower upper median | lower upper median |lower upper Nws. Fl |Nvs F2+ [Flvs F2+
quartile quartile quartile quartile quartile quartile

Tinetti score
balance 16.0 150 16.0 160 16.0 160 16.0 14.5 16.0 0.836 0.009 0043
Gait 120 120 120 120 12.0 120 120 11.0 120 0.433 0015 0153
Total 28.0 275 280 280 27.0 280 270 6.5 280 0850 0000 0,009
Gait characteristics
gait speed [m_i"] 1.24 1.16 1.37 1.25 1.13 1.36 1.20 1.10 1.30 0.966 0204 0.280
stride [rn]uenq' 0955 0916 0987 0949 0911 1.020 0989 089 1.00& 0622 0397 0.949
(Hz)

M-subjects with no fall, F1 -subjects with one fall. F2+-subjects with two and more falls.

hittps:doi.org0.1371fournal pone. 01970911002
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stability of the trunk in the ML direction in relation to fall occurrence. This result confirms the
previous evidence suggesting that ML movement is crucial for balance control during human
gait [15]. The results of the present study showed no significant differences between the gait
speed and stride frequency of the groups and no differences in anthropologic data between N
and F2+. According to these findings, it may be assumed that the significant difference found

Table 3. ROC analysis results for discriminating multiple fallers from non-fallers.

|auc | specificity | sensitivity
Single variable
Tinetti balance score 0659 089 047
Tinetti total score 0.757 .83 67
Trunk stLE ML 0673 .85 0.53
Combination of two variables
Tinetti balance score, Tinetti total score 0.753 0.83 067
Tinetti balance score, trunk stLE ML 0.724 074 073
Tinetti total score, trunk stLE ML 0.755 072 087
Combination of three variables
Tinetti balance score, Tinetti total score, trunk stLE ML 0.760 0.72 .80

AUC-area under the curve, stLE-short-term Lyapunov exponent, ML-medial-lateral.

hitps:ffdoi.orm'10.1371 fiournal pone. 0197091 1003
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in the stLE in the ML direction was not inflicted by differences in gait speed between the
groups nor the participants' individual anthropological characteristics.

There were no significant differences between N and F1 when comparing the clinical test
data and gait characteristics, confirming the need to consider at least two falls when defining
fallers. As mentioned above, a single fall may be a random event influenced by external factors
and not necessarily relevant to actual fall risk [29]. Our study complements the results of Lord
et al. [34], who found evidence of similarities between N and F1 in terms of postural stability
in women over 65 years of age. In analysing the influence of environment [18], their presented
results show that subjects at risk of fall during daily life (F2+) exhibit a decreased ML local sta-
bility when walking indoors, which reveals an unexpected decreased ability to overcome small
perturbations [35] in a controlled condition.

There were no significant differences in ItLE. The observation of significant differences
between N and F2+ only in stLE compared to ItLE is also in agreement with previous studies
[16] and is likely related to the progress of an instable situation. The perturbations leading to
falls require immediate response so the changes can be accurately observed by stLE [16],
which are calculated as a slope of the divergence curve through one step. Compared to ItLE cal-
culated between the 4th and 10th stride, the local stability occurring long after the perturbation
likely does not have a strong association with the actual response [16]; therefore, as the results
suggest, this local stability is not likely to be crucial for fall risk assessment.

The results of the ROC analysis are not substantial for this cohort. The AUC value of 0.673
when comparing trunk ML stLE between F2+ and N suggests that this variable alone is not
suited to distinguish the two groups. This result is not surprising considering the small sample
size of F2+; very few participants in the present cohort experienced more than one fall during
one year of observation (11.5%). We believe that this result is also related to the results of the
clinical examination of the present cohort. Although there were significant differences in the
Tinetti scores of fallers and non-fallers (Table 2), the absolute difference was one point at most.
The median values for all groups correspond to low risk groups according to the classification
provided by Tinetti et al. [25]. The AUC for TBAT balance score was lower compared to AUC
of TBAT total score. Furthermore, the AUC of TBAT total score showed higher value compared
to trunk ML stLE. The result showing a high TBAT score in fallers is in contrast with other stud-
ies investigating fall-related changes using similar procedures-modifications of TBAT [36,37].
There may be several reasons explaining this difference. First, the participants involved in the
present study were considerably younger (mean age = 70.8 years, N = 131) than those of Raiche
etal [36] (mean age = 80.0 years, N = 225) and Chiu et al. [37] (mean age of groups 81-83 years,
N = 78). The results of the present study are likely related to the inclusion criteria and the rec-
ruiting process of the study. Since we wanted to employ non-linear gait characteristics, a high
number of gait cycles was needed to obtain reliable results [32]; therefore, one of the inclusion
criteria was being able to stand and walk independently. Furthermore, the recruiting process
was performed in senior clubs and university which is in contrast to similar studies including
participants recruited in hospitals, clinics or through general practitioners [37]. Consequently,
we assumed that the participants in the present prospective study were healthy and active elderly
people considering their activities such as attending education classes for elderly or socializing in
senior clubs.

The results of the present study showed that a combination of clinical examination and gait
assessment by local dynamic stability leads to better predictive validity than each test alone.
Even though the TBAT total score showed the AUC value comparable to the AUC of combina-
tion of two (TBAT total*trunk ML stLE and TBAT total* TBAT balance) or three variables
(TBAT total* TBAT balance*trunk ML stLE), the sensitivity increased considerably when using
a combination of clinical and gait variables. For future fall prediction, true identification of
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subjects in risk is crucial. Considering this assumption, the results of this study show that the
trunk ML stLE in a combination with TBAT total score has potential for fall risk prediction in
high functional elderly subjects generally not considered at fall risk.

There are several limitations present in this study. First of all, the number of multiple fallers
is low compared to other groups. Even though a relatively high number of participants with
various backgrounds were recruited, we were not able to avoid this consequence. Second limi-
tation is the in-lab setting of the experiment. Future research is needed to compare the predic-
tive ability of variables computed from in-lab and daily-life data collection. Lastly, we used
specific analysis for gait assessment, namely local dynamic stability. The results of this analysis
depend on the type of the time series used for computation (e.g., angular velocity, acceleration)
and the position of the marker or sensor used for data recording [38]. Furthermore, a high
number of gait cycles is needed to achieve reliable results [32] making this analysis difficult to
perform in clinical settings. Further research focused on other measures and analyses (e.g.,
orbital stability, recurrence quantification analysis, entropy measures, frequency analysis) is
needed to improve the fall risk prediction based on gait analysis.

Conclusions

The present findings demonstrated that trunk medial-lateral local dynamic stability is a poten-
tial marker for fall risk prediction in elderly subjects. The predictive ability improved when
combining clinical examination and local dynamic stability. Concerning the clinical results of
our cohort, participants in the present study were generally considered at low fall risk. How-
ever, the short-term Lyapunov exponents computed from the linear trunk acceleration in the
medial-lateral direction displayed a trend of declining local stability with increasing fall

oocurrence.

Supporting information
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8 Discussion

8.1 Summary of the results

Falls pose a significant threat to the elderly, from primary consequences such as injuries, to
secondary consequences such as impaired quality of life and well-being or death in the most
severe cases (Dionyssiotis, 2012; Kwan & Straus, 2014). To find reliable and sensitive method
to identify elderly at risk of falling, several methodological approaches have been employed,
however, without definite or conclusive results. Therefore, the aim of this study was to define
gait variables which can be used for early fall prediction in elderly adults using prospective
method of fall occurrence observation.

To successfully fulfil this main aim, firstly, available literature has been summarised
with the conclusions on the procedures describing gait with relation to fall risk. Procedures able
to distinguish between fallers and nonfallers, their methodology and approach for fall
observation were studied. The results of this review of literature showed that instrumental
methods or combination of the clinical tests and questionnaires pose a good choice for fall risk
assessment with factors such as age, health, walking conditions and gait speed influencing the
results of assessment. Prospective approach is more preferable for fall occurrence assessment.
Spatial-temporal gait variables, their variability and non-linear variables were confirmed to
have a relationship to fall risk. The results showed differences, and sometimes, ambiguity
between methodologies used for nonlinear analyses.

Secondly, a preliminary study was performed to explore the possibilities of various
temporal, non-linear and frequency characteristics of overground and treadmill gait. Even
though it has previously been shown that kinematics and kinetics of the treadmill and
overground gait differs (Alton, Baldey, Caplan, & Morrissey, 1998), such a conclusion had not
been made for more advanced methods for gait assessment. The results of this study showed
significant differences between these two types of gait patterns in local dynamic stability,
multiscale entropy, harmonic ratio and variability of the acceleration in a group of older
participants. Younger participants exhibited different local dynamic stability related to walking
conditions. Based on the conclusion that such gait characteristics differ, the main experiment
was performed in the overground walking conditions.

Lastly, a one-year prospective study has been conducted to assess which gait or clinical
variables could be used as fall risk predictors with conclusions drawn after half of the observed
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time interval (entropy measures) and at the end of the observed period of time (local dynamic
stability). The results for entropy measures showed that Shannon entropy derived from trunk
acceleration, in contrast with multiscale entropy, was related to fall occurrence. The relationship
between entropy measures and clinical evaluation revealed inconclusive results. The results
after one year of observation showed predictive ability of medial-lateral lower trunk
acceleration local dynamic stability for fall risk with improvement of the predictive ability after

combining with clinical evaluation.

8.2 General discussion

The possibilities for gait assessment include linear and non-linear approaches derived from gait
kinematics. It has been shown that non-linear gait analysis can provide deeper understanding
over motor behaviour (Stergiou & Decker, 2011). However, such analysis has several
disadvantages which could influence the choice of procedure for data recording. One of the
most influential disadvantage is the need to consider several tens of gait cycles for analysis to
obtain reliable results (Riva et al., 2014). Another disadvantage is the need to use continuous
gait episodes for calculation. Although some of the non-linear methods can be used for gait
episodes which are not continuous with taking into consideration the discontinuation as a
limitation of the concluded results, for some, such approach is undesirable and propose a
significant influence on the obtained results (e.g. scaling exponent). To overcome these
boundaries, treadmills have been used often when investigating gait since they provide the
opportunity to record high number of gait events at a stable pace in a small space. However, it
has been shown that treadmill walking significantly differs from overground walking. The
results of our study (Study Il) showed differences in gait patterns describing stride time
variability, variability of the acceleration, gait symmetry, local dynamic stability and
complexity, especially in older adults. Such results are in the accordance with the literature
suggesting more stable, less variable, more symmetrical and more complex gait pattern when
walking on a treadmill (Lee & Hidler, 2008; Murray, Spurr, Sepic, Gardner, & Mollinger, 1985;
Row Lazzarini, & Kataras, 2016; White, Yack, Tucker, & Lin, 1998). However, these results
contradict natural gait patterns and could be evoked as a consequence of the treadmill’s stable
speed and continuous movement of the belt. Such reasons led us to the usage of more natural —
overground — walking conditions for further studies.

Overground walking, although more natural, comes with another methodological

problem, which is the extraction of gait episodes that are long enough to be subjected to non-
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linear analyses. The approaches for the solution of such problem were either walking on the
indoor oval track during data recording (Yentes, Denton, McCamley, Raffalt, & Schmid, 2018),
or walking in the straight corridors with excluding turns at the ends of the corridors (Riva et al.,
2014). Previous studies showed independency of turns on gait characteristics, such as multiscale
entropy, short term Lyapunov exponents and some variables derived from recurrence
quantification analysis (Riva et al., 2014); however, this was only shown for healthy young
adults. Since such conclusions regarding elderly participants were not available yet, the choice
of our approach fell on the extraction of turns from analysis and sole usage of straight gait
intervals. However, recently, the interest has been shown for assessment of turns in the literature
(Mancini et al., 2016). Analysis of turns during daily life provided evidence that quality and
quantity of the daily life turns has a potential to distinguish between elderly fallers and non-
fallers (Leach, Mellone, Palumbo, Bandinelli, & Chiari, 2018). According to these authors,
turns with their mechanical structure do require a better coordination and more demanding
neural processing. At this point, however, more research is needed to understand the constrains
that turns pose on postural control.

The conclusions drawn from the differences in gait patterns between fallers and
nonfallers greatly depend on the definition of a faller. In our entropy-based study (Study I11),
the participants were divided into two groups based on either absence of the falls (nonfallers)
or occurrence of one and more falls (fallers). Even though this division is common in the
literature, a single fall might be a random event not necessarily related to higher fall risk
(Melzer, Benjuya, & Kaplanski, 2004). Furthermore, evidences were found where similarities
between postural stability of elderly nonfallers and fallers experiencing one fall were reported
(Lord, Ward, Williams, & Anstey, 1994). Although we were aware of possible limitations of
this approach, the number of observed falls was not sufficient to divide the groups otherwise.
In our study related to local dynamic stability (Study 1V), participants were divided into three
groups considering the group of people who experienced one fall during the year separately.
Our results showed lack of differences between nonfallers and fallers with one fall in clinical
performance and gait characteristics supporting the abovementioned statements.

Methodology for fall rate observation is also of concern while designing any fall-related
study. Retrospective fall history observation has mostly been used in previous studies. This
approach has a big advantage since the information can be obtained quickly and easily from
participants during short communication. However, such information lacks precision (Hale,
Delaney, & Cable, 1993). Moreover, it is not clear whether the observed state of the participants

reflects the fall risk or the consequent state caused by previous falls. The retrospective approach
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for fall history estimation may therefore present bias in the interpretation of the observed results
(Bizovska, Svoboda, Janura, Bisi, & Vuillerme, 2018). Even though the majority of studies
used retrospective design for fall history observation, this approach has been supressed recently.
Prospective approach has been employed more often following the recommendation of Lamb,
Jorstad-Stein, Hauer, and Becker (2005).

Based on a clinical evaluation, our participants were at low fall risk. Even fallers
exhibited almost full Tinetti score (Study 11, Study V). Although the significant differences
were observed between fallers and nonfallers, the absolute difference in median score was only
0.25 points (Study I11) and 1.00 point (Study IV). Our results are in accordance with the results
of Raiche, Hébert, Prince, and Corriveau (2000) and Chiu, Au-Yeung, and Lo (2003) in which,
however, higher differences in obtained values were observed. The reason behind high scoring
of our participants could be related to several factors. First, mean age of the elderly participants
included in our study was about 10 years lower than that of participants in studies of Raiche et
al. (2000) and Chiu et al. (2003). The recruitment strategy also differed by addressing the
University of the Third Age and clubs for elderly in our study, in contrast to recruitment through
general practitioners, clinics and hospitals (Chiu, Au-Yeung, & Lo, 2003). The recruitment
strategy we employed was chosen upon taking into consideration measurement protocol and
requirement for obtaining reliable gait characteristics. Therefore, people attending the
University and clubs for elderly were our choice since their mobility were considered satisfying
for the measurements we planned. This, however, also poses as a limitation of our study.

When considering the relationship between clinical scores obtained from Tinetti
Balance Assessment Tool and entropy-based gait characteristics (Study I11), conclusive results
were not found. Although significant relationship was found between Tinetti scores and
Shannon entropy and Index of complexity, the correlation coefficients were low, not even
reaching the absolute value of 0.2. This results could be also connected to the physical
characteristics of participants included in our study and their high scoring in Tinetti Balance
Assessment Tool.

Nonlinear methods for gait assessment, such as entropy measures (Study I11) or local
dynamic stability (Study V), have been proven to have a relationship with fall rate (Study 1).
Out of various entropy-measures available, multiscale entropy, refined composite multiscale
entropy, and refined multiscale permutation entropy of gait kinematics have been investigated
in relation to fall risk in elderly. Interestingly, however, retrospective approach was used for
fall history assessment (lhlen, Weiss, Bourke, Helbostad, & Hausdorf, 2016; Riva, Toebes,

Pijnappels, Stagni, & van Dieén, 2013). Since both studies used similar entropy measures
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(multiscale entropy in Riva, Toebes, Pijnappels, Stagni, and van Dieén, 2013 and entropies
derived from multiscale entropy in Ihlen, Weiss, Bourke, Helbostad, and Hausdorf, 2016), the
methods are comparable, however, the results seem to be contradictory. Riva et al. (2013) found
increased complexity in elderly fallers in opposite of Ihlen et al. (2016) who found decreased
complexity in elderly fallers. The results of our study (Study I11) do not support either of the
abovementioned studies since results related to multiscale entropy in our study were not
significant. However, trends found in our study suggest the increase of multiscale entropy in
nonfallers.

On the other hand, Shannon entropy is still not widely used for gait assessment, and
similarly to other nonlinear measures, the interpretation might be difficult because of its
unpredictable behaviour (Ramdani, Tallon, Bernard, & Blain, 2013; Seigle, Ramdani, &
Bernard, 2009). The results of our study showed significantly higher Shannon entropy values
in fallers compared to nonfallers. Although no comparison with gait studies was available, in
static conditions, Ramdani, Tallon, Bernard, and Blain (2013) found similar results. When
considering trends we found for multiscale entropy, the values show opposite patterns —
multiscale entropy was slightly higher in nonfallers, Shannon entropy was significantly higher
in fallers. The opposite trends support the assumption of Seigle, Ramdani, and Bernard (2009)
with different interpretation of Shannon entropy compared to multiscale entropy since Shannon
entropy reflects a complexity of deterministic structure of the signal (Li, Ouyang, Yao, & Guan,
2004).

As for another widely used gait characteristic related to fall risk, Buzzi, Stergiou, Kurz,
Hageman, and Heidel (2003) found age-related differences in local dynamic stability and
concluded that since age-related changes in gait control can be observed by local dynamic
stability, this characteristic has also the potential in fall risk prediction. Further studies provided
evidence for this assumption indicating that elderly fallers and nonfallers identified by
retrospective fall history observation (lhlen, Weiss, Beck, Helbostad, & Hausdorff, 2016;
Rispens et al., 2015; Toebes, Hoozemans, Furrer, Dekker, & van Dieen, 2012) and toddlers and
healthy adults (Bisi, Riva, & Stagni, 2014) differ in terms of local dynamic stability. Our results
(Study 1V) partially support this idea with trend found for medial-lateral short-term Lyapunov
exponent between nonfallers and multiple fallers. However, since different methodologies for
gait assessment, local dynamic stability computation and fall rate observation were employed;
the results of our study are not quite persuasive compared to the abovementioned ones.
According to the trend found in our results, the values of trunk short-term Lyapunov exponents

in the medial-lateral direction increased with increasing number of observed falls, showing a
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possible relation between fall occurrence and local dynamic stability in medial-lateral direction.
This result provides further evidence that movement in medial-lateral direction is crucial for
balance control during gait (Terrier & Reynard, 2015). Another interesting result found in our
study was the absence of significant differences between groups for long-term Lyapunov
exponents. This result supports the conclusions of Toebes, Hoozemans, Furrer, Dekker, and
van Dieen (2012) that since the unstable situation requires immediate response, the changes
will be detectable in short-term Lyapunov exponents compared to long-term ones with regards
to the computational differences between them.

When subjecting clinical score and trunk local dynamic stability to the receiver
operating characteristic curve (ROC) analysis (Study V), it was shown that combination of
these characteristics provides better predictive validity for fall risk prediction than each of these
characteristics alone. The highest area under the ROC curve was found when combination of
Tinetti balance score, Tinetti total score and trunk short-term Lyapunov exponent was subjected
to analysis, however, even though this value was the highest (0.760) it is still considered low
for direct validation. Comparable results of area under the ROC curve were also found for
Tinetti total score, combination of Tinetti balance and total scores and combination of Tinetti
total score and trunk local dynamic stability differing only in sensitivity. Although true
identification of people at fall risk is crucial (sensitivity), so is the true identification of people
not at risk (specificity) in terms of financial burden of several examinations, visits or
interventional programs. Taking this into consideration, Tinetti total score with combination of
trunk short-term Lyapunov exponent in medial-lateral direction might be suitable for fall risk
prediction.

It is important to note that the differences between fallers and nonfallers in gait
characteristics are not related to changes of gait speed between groups (Study Ill, Study 1V)
even though slower gait speed has been previously associated with fall risk (Bergland, Jarnio,
& Laake, 2003). In addition, temporal variables — stride time (Study I11) and stride frequency
(Study 1V) were immune to the fall rate further supporting the results of Tinetti balance
Assessment Tool showing that the participants included in our study were generally at low fall
risk.

Taken together, the results of our studies showed differences between elderly fallers and
nonfallers identified by prospective fall occurrence observation in Tinetti score, Shannon
entropy and trunk local dynamic stability. However, our participants showed high level of
physical functioning documented by Tinetti scores. Since we were able to find significant

differences in the abovementioned characteristics even in such highly functioning elderly
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adults, these characteristics have a very high potential for future fall risk prediction. The
combination of clinical score and trunk local dynamic stability seem to provide the best option
for prediction.

8.3 Study limitations

There are several limitations of this study. One of the advantages for data recording also poses
as a limitation of the study. To ensure successful data recording, elderly who were generally
considered as active were included in this study which led to high clinical scoring of our
participants not clearly comparable with other studies. This limitation is also related to the
second one, which is a relatively low number of observed falls during 6 and 12 months after
baseline measurement. Thirdly, baseline measurement was performed in the indoor
environment. Recently, daily-life locomotion is of interest for researchers; however, to ensure
comparability with other studies, indoor conditions were used for data recording. Lastly, local
dynamic stability computation was performed with only one algorithm not taking into
consideration further modifications by Kantz and Ihlen. Rosenstein’s algorithm was

implemented since it was the algorithm mostly used for gait assessment.
8.4 Perspectives

This work provides a relevant foundations for future studies related to fall risk assessment in
elderly people. In future, studies focused on a combination of several gait characteristics or a
combination of various factors, such as of gait, clinical, strength and quiet standing
characteristics should be of interest for fall risk prediction.

Compared to participants included in the present study, in future research, less active
elderly should be taken into consideration. However, several problems related to the demands
of studied tasks (e.g. ability of the participants to achieve required number of strides for reliable
gait analysis) have to be considered first.

Lastly, daily-life walking episodes together with evaluation of turns have gained more
popularity recently. Future research focusing on more in-depth analysis of daily-life walking

could be of interest.
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9 Suhrn

V poslednych rokoch nastal vyrazny posun pri hodnoteni dynamickej stability chodze. | ked
vsak existuje vysoké mnozstvo pristupov, ktoré sa na takato analyzu vyuzivaju, ich metodolégia
nie je jednozna¢na. S technologickym pokrokom v tejto oblasti i s konceptami, ktoré boli
postupne preberané z teoretickej mechaniky, sa nejednoznaénost’ zaverov interpretovanych vo
vedeckej literature eSte zvysila. Poruchy rovnovahy a chddze vyrazne prispievaju k vyskytu
padov u seniorov, preto hodnotenie dynamickej stability chodze zohrava doélezitu ulohu pri
predikcii padov.

Tato dizertacné praca pozostava zo Styroch Casti, z ktorych kazda pojednava o probléme
tykajicom sa hodnotenia dynamickej stability chddze. V prvej casti (Study I) bolo cielom
zhrnit' dostupnu literatiru a sumarizovat’ tak charakteristiky vyuzivané pri hodnoteni chodze,
ich vypocet, podmienky testovania a vztah tychto charakteristik k riziku padu. Na zaklade
vysledkov tejto Stidie bola pripravena pilotna Stadia (Study II), ktord si kladla za ciel’ porovnat’
chodzu pri testovani v prirodzenych podmienkach (na chodbe) a pri testovani na bezeckom
pase. Vysledky tychto dvoch studii slazili ako zaklad pri vytvarani konceptu a dizajnu rocne;j
prospektivnej stadie (Study III, Study IV, 139 participantov). Tato Stidia bola zamerana na
overenie, ktoré chddzové charakteristiky alebo ich kombinacia moéze viest k spolahlivej
predikcii padov u jedincov seniorského veku. Hlavné vysledky prispievajuce k aktudlnemu

poznaniu Vv tejto oblasti je mozné zhrnut’ nasledovne:

e chodza po chodbe a po bezeckom pase sa v skupine starSich jedincov lisi v lokalnej
dynamickej stabilite, multiskalovej entropii, harmonickom pomere a variabilite
zrychlenia,

e chddza po chodbe a po bezeckom pase sa v skupine mladych zdravych dospelych
jedincov lisi v lokalnej dynamickej stabilite,

e Shannonova entropia odvodena zrekurencnej kvantifikacnej analyzy zrychlenia
spodnej Casti trupu ma vztah k riziku padov u seniorov,

e lokalnu dynamicka stabilitu odvodent zo zrychlenia spodnej Casti trupu v medio-
laterdlnom smere je mozné vyuzit na predikciu padov u seniorov, predikénd validita

stiipa po kombinécii lokalnej dynamickej stability s vysledkom klinického vysSetrenia.
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10 Summary

Assessment of dynamic stability during gait has made a breakthrough in recent years. Although
many approaches exist, their methodology and usage is not uniform. With more advanced
technology and concepts adopted from theoretical mechanics, even more ambiguity can be
found in the scientific literature. Since balance and gait impairments are considered significant
contributors to fall occurrence in elderly people, gait assessment itself plays an important role
in fall risk prediction. Along these lines, the topic of the present doctoral thesis is fall prediction
in elderly adults using gait characteristics derived from accelerometers.

To achieve this goal, this thesis is divided into four parts each including a research
problem relevant to the topic of dynamic stability assessment during gait. Firstly, a review of a
literature was conducted (Study I) aiming to compile available procedures for gait assessment,
their methodologies, conditions during which data was recorded and relationship of resulting
gait characteristics to fall risk. Based on the results of this first study, decision was made to
perform pilot Study Il, in which gait characteristics recorded from overground and treadmill
walking were compared in the groups of healthy young and older subjects. The two
abovementioned studies served as a basis for the main prospective study (Study 111 and 1V, 139
participants), in which conclusions from Studies | and Il were taken into account while
preparing its design. A one-year prospective study was conducted with the aim to reveal which
gait characteristics or their combination can be used for fall prediction in elderly people. The

main results contributing to the current knowledge in this field can be summarised as follows:

e treadmill and overground walking significantly differ in terms of local dynamic
stability, multiscale entropy, harmonic ratio and variability of acceleration in a group
of older adults,

e treadmill and overground walking significantly differ in terms of local dynamic
stability in young healthy adults,

e Shannon entropy derived from recurrence quantification analysis of lower trunk
acceleration is related to the fall occurrence in agile elderly people,

o medial-lateral lower trunk local dynamic stability can be used for fall risk prediction in
agile elderly people, the predictive validity increases when combined with results of

clinical evaluation.
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