
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ADVANCED STATIC PERFORMANCE ANALYSIS
USING META INFER

POKROČILÁ STATICKÁ ANALÝZA VÝKONNOSTI V NÁSTROJI META INFER

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. ONDREJ PAVELA
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Master's Thesis Assignment
148637

Institut: Depar tment of Intel l igent Sys tems (UITS)

Pave la O n d ř e j , B e .

Informat ion Techno logy and Art i f icial Intel l igence

Compute r Graph ics and Interact ion

P o k r o č i l á s t a t i c k á a n a l ý z a v ý k o n n o s t i v n á s t r o j i Me ta In fe r

Sof tware analys is and test ing

Student :

P rog ramme:

Specia l izat ion:

Tit le:

Category :

Academ ic year: 2022/23

Ass ignment :

1. S tudy l imitat ions of the stat ic per formance analyser Looper deve loped in your bachelor thesis as
wel l as the latest deve lopments concern ing the Meta Infer f ramework .

2. Propose ways of s igni f icant ly improving precis ion and/or scalabi l i ty of the analys is wi th a s t ress on
inter-procedural analysis.

3. Implement a new vers ion of Looper including the proposed improvements .
4. Evaluate the new vers ion of Looper on sui table benchmarks , including also s o m e real-l ife code.
5. Descr ibe and d iscuss the ach ieved results and their fur ther possible improvements .

Li terature:
• Rival , X., Y i , K.: Introduct ion to Stat ic Analys is : A n Abst ract Interpretat ion Perspect ive. MIT Press,

2020 .
• S inn, M.: Au tomated Complex i ty Ana lys is for Imperat ive Programs, PhD thesis , V ienna Universi ty

of Techno logy , 2016.
• Bygde, S.: Stat ic W C E T Analys is Based on Abst ract Interpretat ion and Count ing of E lements ,

Licent iate's thes is , Malarda len Universi ty, 2010 .
• Distefano, D., Fahndr ich , M., Logozzo, F., O 'Hearn , P.W.: Scal ing Stat ic Ana lyses at Facebook.

C o m m u n . A C M , 62(8) :62-70, A C M , 2019.
• Cicek, E., Bouaziz , M., Cho , S., Distefano, D.: Stat ic Resource Analys is at Scale, In: Proc. of

SAS '20 , L N C S 12389, Spr inger, 2020 .
• Cicek, E.: Cost: Runt ime Complex i ty Analys is . Avai lab le onl ine at

ht tps: / / fb infer .com/docs/next /checker-cost . [Checked on 3/10/2022.]

Requ i rements for the semest ra l de fence :
The first point and at least some work on the second and third points.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : V o j n a r T o m a s , p ro f . I ng . , P h . D .

Head of Depar tment : Hanacek Petr, doc. Dr. Ing.

Beginning of work : 1.11.2022

Submiss ion deadl ine: 17.5.2023

Approva l date: 3.11.2022

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://fbinfer.com/docs/next/checker-cost
https://www.fit.vut.cz/study/theses/

Abstract
Looper is a static complexity analysis too l for inference of tight upper bounds on the exe
cution cost of programs. It is based on the previously existing L O O P U S tool which used
abstract program model of difference constraints (inequalities of the form x' < y + c), which
allows for natural abstraction of common loop counter updates x = x + c i—> x' < x + c
and x = y i—> x' < y + 0. Looper was in i t ia l ly proposed and implemented i n author's
bachelor's thesis as a checker for the Meta Infer framework but the tool failed to meet the
expectations when tested on real-world code. This master's thesis proposes a new improved
version of Looper that aims at solving the main l imitat ions of the original tool , namely
through introduct ion of interprocedural analysis. Addi t ional ly , various extensions target
ing improved precision of the intraprocedural analysis, such as new abstraction algori thm,
handling of compound loop conditions and more, were implemented. Moreover, logging,
issue reporting and collection of results has been significantly improved. F ina l ly , through
extensive experiments w i t h the new Looper version, the abi l i ty to analyze real-world code
in a more general, scalable and precise way was shown.

Abstrakt
Sta t i cký a n a l y z á t o r s loži tost i Looper s louží pro odvozování přesných horních mezí ceny
v y k o n á n í p r o g r a m ů . Jako teore t i cký zák lad b y l využ i t dř íve existuj ící n á s t r o j L O O P U S
a jeho abstraktní programový model využívaj ící tzv. difference constraints (nerovnosti typu
x' < y + c), k t e r é umožňu j í p ř i r o z e n ý m z p ů s o b e m modelovat typ ické modifikace p o č í t a d e l
cyklů x = x + c i—> x'<x + cax = y i—> x' < y + 0. Looper b y l p ů v o d n ě n a v r ž e n
a i m p l e m e n t o v á n v r á m c i autorovy baka l á ř ské p r á c e jako z á s u v n ý modu l ap l ikačn ího r á m c e
Meta Infer. Výs ledný n á s t r o j n i c m é n ě nenaplnil očekáván í př i pokusech o jeho nasazen í na
reálné programy. Tato d ip lomová p r á c e p ř e d s t a v u j e n á v r h nové verze, k t e r á si dává za cíl
odstranit h lavn í l imitace p ů v o d n í h o n á s t r o j e Looper , z e jména d íky nově p o d p o r o v a n é in-
terprocedurální analýze. Dá le byla i m p l e m e n t o v á n a ř a d a rozšíření , k t e r é cílily na zvýšení
p řesnos t i i n t r a p r o c e d u r á l n í analýzy, jako n a p ř . nový a b s t r a k č n í algoritmus, podpora pro
složené p o d m í n k y v h lav ičkách smyček a dalš í . K r o m ě toho bylo t a k é v ý r a z n ě vy lepšeno
logování, h lášen í chyb a sbě r výs ledků ana lýzy . N a závěr byla skrze skrze rozsáh lé exper
imenty d e m o n s t r o v á n a schopnost nové verze n á s t r o j e Looper analyzovat reálný kód obec
nějš ím, šká lovate lně jš ím a p řesně j š ím z p ů s o b e m .

Keywords
M e t a Infer, Static analysis, B o u n d analysis, Complex i ty analysis, Amor t i zed analysis, Cost
Analysis , Difference constraints, Incremental analysis, M o d u l a r analysis, Differential analy
sis, Complex i ty degradation, Composi t ional analysis, Interprocedural analysis, Scalability,
Looper, Loopus, Imperative programs

Klíčová slova
M e t a Infer, S t a t i c k á ana lýza , A n a l ý z a mezí , A n a l ý z a s loži tost i , A m o r t i z o v a n á ana lýza ,
A n a l ý z a ceny, I n k r e m e n t á l n í ana lýza , M o d u l á r n í ana lýza , Rozdí lová ana lýza , Degradace
složi tost i , K o m p o z i č n í ana lýza , I n t e r p r o c e d u r á l n í ana lýza , Ská lova te lnos t , Looper , Loopus,
I m p e r a t i v n í programy

Reference
P A V E L A , O n d ř e j . Advanced Static Performance Analysis Using Meta Infer. Brno , 2023.
Master 's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Super
visor prof. Ing. T o m á š Vojnar, P h . D .

Rozšířený abstrakt
Zákeřné chyby ukrývaj íc í se na nečekaných mís t ech a způsobuj íc í závažné škody jsou bo

hužel neodmyslitelnou součás t í vývoje softwaru již od n e p a m ě t i . V reakci na tento p r o b l é m
se v ý z k u m n í c i v někol ika pos ledn ích dese t i le t ích zabýval i vývo jem nových ná s t ro jů , k t e ré
by — když už ne eliminovali — tak a l e spoň omezily vznik nových chyb v k r i t i ckém softwaru.
V ě t š i n a pozornosti se ovšem v minulost i u p í n a l a ze jména k vývoji n á s t r o j ů pro odha lován í
tzv. funkčních chyb, k t e r é mohou p ř í m o ovlivni t schopnost programu vykonáva t jeho za
mýš lenou funkci.

Výkonnostní chyby by ly až d o n e d á v n a v n í m á n y jako m é n ě kr i t ické a o b d o b n é nás t ro j e
pro odha lován í t ě c h t o chyb byly proto rozví jeny pomaleji . To vedlo k nedostatku spolehli
vých n á s t r o j ů ve chvíli, kdy se začalo ukazovat, že závažnos t v ý k o n n o s t n í c h chyb je srov
n a t e l n á s chybami funkčními . V e x t r é m n í c h p ř í p a d e c h mohou tyto chyby vést prakt icky
k nepouž i t e lnos t i p r o g r a m ů , ze jména př i p rác i s vě t š ím objemem (a nebo j i n ý m typem) dat,
než bylo očekáváno . Takové chování je nepř i j a te lné , ze jména dnes, kdy se klade velký d ů r a z
na dobrou už iva te l skou zkušenos t . V současnos t i se pro odha lován í v ý k o n n o s t n í c h chyb ne
jčas tě j i využívaj í d y n a m i c k é profilační nás t ro j e , k t e r é jsou v mnoha p ř í p a d e c h dostačuj íc í .
T y t o n á s t r o j e n i c m é n ě ze své podstaty mohou zanechat spoustu v ý k o n n o s t n í c h p r o b l é m ů
neodha l ených . Al te rna t ivou jsou p o t é s t a t i cké a n a l y z á t o r y jako n a p ř . Coveri ty nebo CodeS-
onar, k t e r é mohou n a b í d n o u t k o m p l e m e n t á r n í p ř í s t u p , t a k t é ž se svými p r o b l é m y — j a k o
n a p ř . po t enc i á ln í h lášen í falešných chyb, tzv. "falše alarms". Vě t š inou jsou tyto nás t ro j e
ovšem propr ie tami a nen í m o ž n é je j e d n o d u š e vyhodnot i t nebo rozšíř i t o v l a s tn í analýzy.

V reakci na současnou situaci proto společnos t M e t a n e d á v n o p ř eds t av i l a v l a s tn í řešení
n a z v a n é Meta Infer: n á s t r o j s o t e v ř e n ý m zd ro jovým k ó d e m pro vývoj kompoz ičn ích , inkre
m e n t á l n í c h a i n t e r p r o c e d u r á l n í c h s t a t i ckých a n a l y z á t o r ů , k t e r é jsou v důs l edku tedy i vysoce
šká lovate lné . N á s t r o j M e t a Infer v pos ledn ích letech zažil o b d o b í rych lého vývoje a je
v současnos t i s t á le rozví jen mnoha t ý m y po celém svě tě . K r o m ě toho je a k t i v n ě využ íván
pro odha lován í chyb nejen samotnou společnos t í Me ta , ale mnoha da lš ími ve lkými společnos
t m i jako n a p ř . Spotify, Uber, M o z i l l a nebo A m a z o n . N á s t r o j M e t a Infer v současné
d o b ě disponuje rozmanitou ř a d o u ana lýz pro odha lován í š iroké škály sof twarových chyb,
jako n a p ř . p ř í s t u p y mimo meze pol í ("buffer overruns"), u v á z n u t í ("deadlock") a s t á r n u t í
("starvation") ve v ícev láknových programech, dereference nu lových u k a z a t e l ů ("null pointer
dereference"), ú n i k y p a m ě t i ("memory leak") a mnoho dalš ích chyb souvisejících s bezpeč
nou p rac í s p a m ě t í ("memory safety"). Zároveň n á s t r o j M e t a Infer p ř e d s t a v u j e ap l ikačn í
r á m e c pro rychlý a j e d n o d u c h ý vývoj nových a n a l y z á t o r ů .

N icméně Infer v současnos t i s t á le zaos t ává v oblasti v ý k o n n o s t n í c h chyb p řes tože nabíz í
p o m ě r n ě pokroč i lý a n a l y z á t o r C O S T — j e d i n ý d o s t u p n ý v ý k o n n o s t n ě z a m ě ř e n ý a n a l y z á t o r .
Tento a n a l y z á t o r implementuje upravenou verzi tzv. worst-case execution Ume (W C E T)
ana lýzy za ložené na d i s e r t ačn í p rác i Stefana Bygdeho [8]. Tento typ ana lýzy ovšem posky
tuje pouze těžko interpretovatelnou a čas to (v p ř í p a d ě složitějších a l g o r i t m ů zahrnuj íc ích
amortizovanou složitost) p o m ě r n ě n e p ř e s n o u numerickou mez na čas p o t ř e b n ý k v y k o n á n í
programu. K r o m ě toho se C O S T zaměřu je ze jména na programy n a p s a n é ve vyšších pro
gramovac ích jazyc ích jako n a p ř . Java a jeho h l a v n í m cí lem nen í n u t n ě odvozování p ře sných
mezí , ale spíše rychlé odha lován í v ý k o n n o s t n í c h d e g r a d a c í na zák l adě rozdí lové ana lýzy
("differential analysis") mezi více verzemi jednoho programu.

V r á m c i b a k a l á ř s k é p r á c e autora (kdy a n a l y z á t o r C O S T j e š t ě neexistoval) b y l proto
nav ržen a i m p l e m e n t o v á n n á s t r o j Looper — s t a t i c k ý a n a l y z á t o r pro a u t o m a t i c k é odvozování
mezí s loži tost i p r o g r a m ů , k t e r ý b y l současně i m p l e m e n t o v á n jako z á s u v n ý modu l ap l ikačn ího
r á m c e M e t a Infer. P r i n c i p n á s t r o j e Looper by l založen na j iž dř íve exis tuj íc ím nás t ro j i Loo-

pus [32], k t e r ý v t é d o b ě (dle na šeho nej lepšího vědomí) b y l j e d i n ý m n á s t r o j e m s c h o p n ý m
analyzovat amortizovanou složi tost u š iroké škály p r o g r a m ů . P r v n í verze n á s t r o j e Looper
implementovala veškeré s těžejní algori tmy or ig iná ln ího n á s t r o j e Loopus a byla schopna
analyzovat i kompl ikované , umě le v y t v o ř e n é programy. I p ř e s t o však m ě l a p r v n í verze
několik kr i t i ckých n e d o s t a t k ů . V p r v n í ř a d ě Looper nebyl schopen (p r i m á r n ě kvůl i tech
n i ckým n e d o s t a t k ů m) analyzovat prakt icky ž á d n ý reá lný kód k r o m ě u mě le v y t v o ř e n ý c h
p ř ík l adů . Zároveň Looper neobsahoval ž á d n é mechanismy zo taven í z chyb a v p ř í p a d ě
se lhání ana lýzy j e d n é funkce došlo k p á d u celého n á s t r o j e Infer, což prakt icky znemožňo
valo a n a l ý z u jakéhokol iv vě t š ího programu. D r u h ý m h l a v n í m nedostatkem byla chybějící
podpora pro i n t e r p r o c e d u r á l n í ana lýzu , jelikož p ů v o d n í n á s t r o j Loopus b y l pouze intrapro-
cedurá ln í a volání funkcí nebral v potaz (v r á m c i t e s tován í a u t o ř i m a n u á l n ě vkláda l i kód
vo laných funkcí) .

V r á m c i t é t o d ip lomové p r á c e b y l n á s t r o j Looper v ý r a z n ě vy lepšen a rozší řen. H lavn í
snahou bylo n á s t r o j vylepši t tak, aby bylo m o ž n é analyzovat reá lný kód . K o n k r é t n ě by l
proto od z á k l a d u p ř e p r a c o v á n algoritmus pro konstrukci grafů za ložených na a b s t r a k t n í m
m o d e l ů n a z v a n é m difference constraint program (D C P) . Dá le byla v ý r a z n ě vy lepšena inter
pretace ins t rukc í Infer SIL mez ikódu , což umožn i lo z á k l a d n í podporu pro p rác i s d a t o v ý m i
s t rukturami a ukazateli , k t e r é jsou m a s i v n ě využ ívány v n í zkoúrovňovém C kódu . K r o m ě
toho byla t a k é i m p l e m e n t o v á n a š i roká ř a d a vy lepšen í za úče lem zpřesněn í i n t r a p r o c e d u r á l n í
analýzy, n a p ř . podpora s ložených p o d m í n e k v h lavičkách smyček nebo rozš í ření p ů v o d n í
omezené formy tzv. difference constraints (D C) ne rovnos t í . T y p ů v o d n ě podporovaly pouze
v ý r a z y typu x < y+c, k t e r é nebyly schopny zachytit dekrementace p o m o c í j iných o p e r á t o r ů
jako n a p ř . dělení nebo p r a v ý c h b i tových p o s u n ů . H l a v n í m p ř í n o s e m n i c m é n ě zůs t ává imple
mentace rozš í ření pro i n t e r p r o c e d u r á l n í ana lýzu , k t e r á u m o ž n i l a o t e s tován í n á s t r o j e Looper
na rozsáh lém s k u t e č n é m k ó d u a zvýši la jeho šance pro jeho b u d o u c í n a s a z e n í v p r a k t i c k ý
p o d m í n k á c h .

V závěru byla veškerá n a v r ž e n á a i m p l e m e n t o v a n á rozší ření n á s t r o j e Looper ú spěšně
o t e s tována a e x p e r i m e n t á l n ě vyhodnocena nejen na r u č n ě vy tvo řených , ale t a k é na reál
ných programech. V p o r o v n á n í s p r v n í verzí n á s t r o j e došlo k v ý r a z n é m u posunu, ze jména
ve schopnosti analyzovat s k u t e č n ý kód, což bylo dř íve prakt icky n e m o ž n é . Zá roveň se
potvrdi lo, že n á s t r o j Looper s k u t e č n ě je schopen d o b ř e škálovat na roz sáh l ém a komp
l ikovaném k ó d u i př i p o d p o ř e i n t e r p r o c e d u r á l n í ana lýzy . Evaluace na rozsáh lých reá lných
programech p o t é dá le odhali la , že Looper je v ý r a z n ě rychlejší než a k t u á l n í verze ana lyzá
toru C O S T za cenu nižší p ře snos t i . A n a l ý z a výs ledků ovšem naznač i la , že nižší p ře snos t je
v mnoha p ř í p a d e c h zav iněna p o u h ý m i t echn ickými p r o b l é m y a nikol iv i n h e r e n t n í l imi tac í
p o u ž i t é h o algori tmu. V současnos t i je proto m o ž n é p řesnos t dá le z lepšovat m n o h ý m i způ
soby, ať j iž o d s t r a ň o v á n í m techn ických n e d o s t a t k ů , či i m p l e m e n t a c í d o d a t e č n ý c h rozší ření
z p ů v o d n í h o n á s t r o j e Loopus [32]. V nepos l edn í ř a d ě , implementace rozdí lové ana lýzy
a podpory pro dalš í p r o g r a m o v a c í j azyky p ř e d s t a v u j e dalš í z p ů s o b jak n á s t r o j Looper v bu
doucnu vylepš i t .

Vývoj p ů v o d n í verze n á s t r o j e Looper b y l zahá j en v r á m c i p r o j e k t ů H2020 E C S E L
A Q U A S a Arrowhead Tools. Vývoj nové verze je p o d p o r o v á n projekty H2020 E C S E L
V A L U 3 S , G A Č R (Czech Science Foundation) Snappy 20-07487S a A I D E 23-06506S. P r á c e
na projektu byla v p o č á t c í c h t a k t é ž d i s k u t o v á n a s vývojář i n á s t r o j e M e t a Infer.

A d v a n c e d S t a t i c P e r f o r m a n c e A n a l y s i s

U s i n g M e t a I n f e r

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of professor Tomas Vojnar. I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

O n d ř e j Pavela
M a y 24, 2023

Acknowledgements
I would like to express my sincere and utmost gratitude to my supervisor Prof. Ing. T o m á š
Vojnar, P h . D . for his supervision, consultations, and his expert advice over the course of
this work. A special thanks goes to my brother Ing. J i ř í Pavela for his invaluable wr i t ing
advice as well as words of encouragement. Last but not least, a sincere and special gratitude
goes to my girlfriend, family, and friends who had to put up wi th my rants, for their support
and everlasting patience during the period I invested a l l my time and energy into this work.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Fundamentals of P rogram Analys is 6

2.1.1 Analys is G o a l 6
2.1.2 Difference between Static and Dynamic Analys is 9
2.1.3 Au tomat ion and H u m a n Input 10
2.1.4 Scalabil i ty: Composi t ional and Incremental Analys is 11
2.1.5 Approx ima t ing results: Soundness and Completeness 12
2.1.6 Analysis Techniques: A n Overview 14

2.2 Abstract Interpretation 20
2.3 M e t a Infer — Static Analys is Framework 22

3 Looper — A Worst Case Cost Analyser 27
3.1 Core Concepts of Looper 27

3.1.1 Const ruct ion of Labeled Transi t ion System 29
3.1.2 Const ruct ion of guarded D C P 31
3.1.3 Const ruct ion of regular D C P 34
3.1.4 B o u n d Analys is Prel iminaries 35
3.1.5 F i n d i n g L o c a l Bounds 38
3.1.6 Variable F low Graphs 39
3.1.7 Reset C h a i n Graphs 41
3.1.8 B o u n d Analys is using Reset Chains 43

3.2 Looper 's L imi ta t ions 48

4 Proposal of Enhancements for Looper 52
4.1 New Abs t rac t ion A l g o r i t h m 53

4.1.1 M a n u a l Const ruct ion of L T S 53
4.1.2 Improved SIL Intepretation 57
4.1.3 Difference Constraint Derivat ion 61

4.2 Intraprocedural Analys is Extensions 64
4.2.1 Lower Variable B o u n d A l g o r i t h m 64
4.2.2 Compound L o c a l Bounds 65

4.3 Interprocedural Analys is 67
4.3.1 Funct ion Summaries and Summary Trees 68
4.3.2 Determining Funct ion Monotonici t ies 70
4.3.3 Const ruct ion of Funct ion Summaries 72
4.3.4 Instantiation of Funct ion Summaries 73

1

5 Implementation of Proposed Enhancements 77
5.1 Code Organizat ion and Archi tecture 78
5.2 Analys is E n t r y Point Funct ion 80
5.3 Construct ion of L T S 83
5.4 Compound L o c a l Bounds 84
5.5 Lower Variable B o u n d 86
5.6 Interprocedural Analys is 88

5.6.1 Monotonic i ty and Pa r t i a l Differentiation 88
5.6.2 Const ruct ion and Instantiation of Summaries 91

6 Experimental Evaluat ion of Enhanced Looper 95
6.1 Revisi ted Loopus Test-Suite 95
6.2 Evalua t ion of Scalabi l i ty and Precis ion 98

6.3 Summary and Future Work 99

7 Conclusion 101

Bibl iography 102

A Contents of the included storage media 106

B Installation and User M a n u a l 107

2

Chapter 1

Introduction

Subtle bugs hiding i n unexpected places and causing significant damage when triggered
are an inherent part of software ever since the inception of the programming discipline.
In response to this problem, researchers in the last few decades focused their attention on
developing new tools w i th the pr imary goal of reducing the number of bugs or even proving
their absence i n cr i t ica l software. However, most of the attention was drawn towards the
field of the so-called functional bugs which can direct ly affect the abi l i ty of a program to
perform the intended function.

U n t i l recently, performance bugs were not regarded as cr i t ica l and remained at the
sidelines of research, resulting i n a lack of reliable tools when it became apparent that the
severity of performance bugs is comparable to the severity of functional ones. In extreme
cases, these bugs can tu rn otherwise correct programs into unusable pieces of software
when met w i t h an unexpected amount and/or pattern of input data. Th is behaviour is
unacceptable especially wi th today's emphasis on great user experience.

The current widespread approach is to employ extensive automated testing and leverage
dynamic analysis tools such as profilers in order to catch bugs early in the development
process. However, despite their undisputed usefulness, the capabilities of automated testing
are directly t ied to the quali ty of manual ly wri t ten tests, and profilers are able to provide
performance characteristics related to specific input data only. Unfortunately, performance
bugs tend to manifest in later development stages or upon deployment due to a previously
unanticipated workload. In conclusion, approaches based on dynamic analysis are sufficient
in many cases but can sometimes s t i l l miss cr i t ical errors and cannot provide any conclusive
claims about certain properties of a program.

Static analysis offers an alternative solution which usually does not require any addi
t ional user input and can be easily employed i n early development stages as it does not rely
on the executability of a program. However, even static analysis has its own shortcomings
such as a t radi t ional ly high rate of false alarms, and, most notably, a prevailing problem
wi th scalability which plagues most of the current tools and renders them unusable for large
and quickly changing codebases, at least when more involved classes of bugs — such as those
related to performance — are of concern.

A s a response, M e t a has recently proposed its own solution for efficient static analysis
and bug finding called Meta Infer — a compositional, incremental, and consequently highly
scalable static analysis framework suitable for quick integration of new inter-procedural
analyses. Since then, it has been successfully deployed i n many large companies such as
Spotify, Uber , M o z i l l a , and of course Me ta . It currently offers a wide range of analyses, e.g.,

3

for detection of buffer overruns, deadlocks, data races, and many other issues. Notably, it
also offers the C O S T checker which performs a worst-case execution time analysis.

Looper In author's previous work [27], a static analyzer for automated complexity anal
ysis (based on the previously existing tool L O O P U S [32]) called Looper was proposed and
later implemented as an ind iv idua l analysis module in the M e t a Infer framework. The key
distinctive feature of Looper which set it apart from other state-of-the-art tools and the
existing Infer C O S T checker is the abi l i ty to perform amortized complexity analysis. Often
times, it allowed Looper to infer significantly more precise upper bounds on loop complex
ities compared to the C O S T checker as was demonstrated in the experimental evaluation
in [27] .

Unfortunately, the first version of Looper suffered from many l imitat ions, the most
crucial one being the lack of support for interprocedural analysis. It not only affected
the precision of Looper but also prevented it from analyzing certain programs as using
side-effects or function return values to modify loop counter values is fairly common in
real-world code. Further, it d id not perform well outside of simple code due to insufficient
abstraction algori thm. Moreover, differential analysis i n the spirit of C O S T checker was not
implemented yet, and thus, the first version of Looper had no way of detecting complexity
degradations.

New Looper Enhancements W i t h i n this thesis, mult iple significant improvements to
Looper were proposed and implemented. In particular, interprocedural analysis using In
fer summaries was proposed and implemented. Furthermore, the inadequate abstraction
algori thm, originally implemented i n the Infer abstract interpretation framework, has been
completely rewrit ten and the program expression abstraction process was significantly im
proved as well . Moreover, several other proposed improvement ideas such as better logging,
issue reporting, handling of compound loop conditions, and many more smaller enhance
ments were implemented.

Outline of the Thesis The rest of this work is structured as follows: Chapter 2 in
troduces the fundamental theory behind program analysis and discusses several impor
tant concepts such as scalability, soundness, and completeness. It also provides a concise
overview of several existing approaches to program analysis. Special attention is given to
the abstract interpretation technique as its currently one of the most commonly used ap
proaches and also because it is used at the core of the Infer framework which is also briefly
discussed. Chapter 3 discusses both the core concepts and main l imitat ions of the first
version of Looper . Subsequently, Chapter 4 presents a l l of the proposed extensions and im
provements. Furthermore, Chapter 5 covers the implementat ion of these extensions. The
experimental evaluation of these extensions and new features on hand-crafted examples as
well as read-world code is covered in Chapter 6 along wi th a brief discussion of future work.
Final ly , Chapter 7 concludes this thesis. Addi t ional ly , Append ix A specifies the content of
the attached memory media and A p p e n d i x B provides a short instal lat ion and user manual.
Also , note that parts of the thesis concerning the preliminaries and the description of the
first version of Looper are par t ia l ly taken from the previous work [27].

Acknowledgement The development of the first version of Looper was launched under
the H 2 0 2 0 E C S E L projects A Q U A S and Arrowhead Tools. The development of the new

4

version has been supported by the H2020 E C S E L project V A L U 3 S , G A C R (Czech Science
Foundation) Snappy 20-07487S, and A I D E 23-06506S. The project was also discussed wi th
the developers of M e t a Infer in its in i t i a l development phase; we hereby thank for the
received support.

5

Chapter 2

Preliminaries

This chapter introduces the core concepts and notions that this work builds upon and which
are necessary for clear understanding of the following chapters. It should be noted that
parts of this chapter were par t ia l ly taken from the author's bachelor's thesis [27] and the
previously published student conference paper [28].

The rest of this chapter is structured as follows: the first Section 2.1 provides simple and
concise explanation of various terms frequently used in this work and other literature related
to program analysis. The goal of this section is to make the rest of this work reasonably
self-contained. The following Section 2.2 w i l l provide a high-level overview of the widely
used static analysis technique called Abst rac t Interpretation (AI) . It is important to note
that since the original version of Looper was presented, the author has decided to abandon
the use of A I for various reasons which w i l l be discussed i n Chapter 3.2. Despite this fact,
Looper is s t i l l bui l t upon the M e t a Infer infrastructure which contains general A I framework
used by most of the analyses. Thus , it was deemed appropriate to include at least a gentle
introduct ion to the theory behind this static analysis technique. The last section of this
chapter focuses on the M e t a Infer too l itself and gives insight into its architecture and A I
framework.

2.1 Fundamentals of Program Analysis

This section provides an overview of the fundamental concepts and questions related to
program analysis. The goal of this section is to bu i ld an in tu i t ion of

• what is program analysis,

• what are the fundamental l imitat ions,

• what are the ma in questions we ask about the analyzed program and,

• how do we t ry to answer them wi th respect to the computat ional l imits .

Addi t ional ly , basic principles, l imitat ions and trade-offs of various widely used approaches
to program analysis w i l l be discussed at the end of this section. This section is based on
the introductory chapters from [29] and the overview paper [20].

2.1.1 Analysis Goal

Arguab ly the most important question to answer before anything else is: what do we ana
lyze? More precisely, the question is twofold: what programs to analyze and what properties

6

are we t ry ing to determine. The answers to these questions constitute basic characterization
criterion for program analyses.

Classification based on Analyzed Programs

The first and most obvious way to characterize analyzed programs is by the programming
language they have been wri t ten in . However, w i th the onset of modern analysis frame
works such as M e t a Infer, the importance of specific language (within one programming
paradigm) for characterization of analyses is diminished. These frameworks [31, 10] are usu
ally buil t upon the L L V M compiler infrastructure [22] which allows them to work wi th one
language-independent intermediate representation (IR). L L V M currently supports many
major programming languages, including several modern ones such as Rust or G o . A l l of
these languages can be compiled into one I R which can then serve as a basis for generating
various different custom program models for further analysis. W i t h this approach, at least
in theory, developers can easily adapt their analysis tool for mult iple different languages.
Unfortunately, support ing features unique to specific languages more often than not s t i l l
requires considerable effort, contrary to what theory tells us. Nevertheless, this approach
is s t i l l less resource intensive than creating mult iple analysis tools tailored specifically for
each target language.

Issues usually arise when it comes to support ing mult iple languages across different
paradigms, such as imperative and functional. These paradigms differ vastly in the philos
ophy behind language features and i n their compila t ion or interpretation pipelines which
detracts engineers from the effort of creating such general frameworks. Moreover, bugs that
users of these languages have to face on dai ly basis also differ vastly. To name one such ex
ample: the prominent and ever-present off-by-one buffer overrun bug encountered by novice
and seasoned software engineers alike. Such bugs are extremely prevalent in imperative and
object oriented languages but v i r tua l ly non-existent in type-safe functional languages such
as OCaml or Haskell1. Consequently, developing general analysis frameworks for languages
across different paradigms is not only hardly feasible i n practice but arguably meaningless
i n the first place.

A more meaningful way of characterizing analyses is whether they are domain-specific
or not.

• Domain-specific: certain programs are wri t ten wi th a very specific purpose and
requirements based on the target domain. These common characteristics divide pro
grams into families and analysis designer can therefore leverage assumptions about
certain family to create a more efficient and possibly more precise analysis.

A n example can be a comparison between embedded software and a common web
application. The former w i l l be of comparatively smal l scale (few thousands of lines),
likely wr i t ten i n C language, using l imi ted set of language features (no dynamic al
locations or recursion), and possibly deployed in safety-critical environment such as
controller on a plane.

The latter can span from hundreds to mil l ions of lines of code and might be writ
ten in numerous different high-level programming languages such as JavaScript , Java,
P y t h o n or Haskel l to name a few. These applications w i l l l ikely involve use of class

1However, contrary to popular belief, Haskell is not as type-safe as it might seem [34] and one can
encounter infamous Segmentation fault errors common to languages conventionally perceived as unsafe
such as C.

7

inheritance and v i r tua l functions among many more available complex language fea
tures. Moreover, i n most instances, safety w i l l be of l i t t le concern as the worst that
can happen is a temporary unavailabil i ty of the service.

Clearly, these are two completely different types of programs wi th different sets of
requirements and goals for potential analysis tool . Focusing on a specific domain
is thus a pragmatic way to achieve more precision and lower cost by sacrificing the
generality.

• Non-domain-specific: other analyses go in the opposite direction and are designed
to be used on a l l kinds of programs wri t ten in a specific language. These analyses are
frequently used inside compilers and their usual pr imary objective is to collect more
information about the compiled programs which can then be leveraged for example in
the opt imizat ion phase. It can also help developers to discover errors common to a l l
kinds of programs such as buffer overruns. The main requirement is to have acceptable
performance for wide range of input programs and as such the usual trade-off is lower
precision across the board.

Another common way how to characterize analyses is by examining how they perform
the analysis over the input program. The options are to either perform the analysis directly
over program's source code, i.e., mimick ing the work of compiler or creating some sort of
semantic model which can then be used as an input for the analysis tool:

• Program-level analyses: these analyses take the source code of a program which
can be wri t ten any of the conventional languages such as C or Java but it is also
possible to analyse code describing hardware, i.e., V H D L or Veri log. In any case,
the source code is first processed by some k ind of compiler-like front-end (or it can
really be a compiler such as L L V M) into abstract syntax tree which can later be used
to generate I R or even other representations such as control-flow graphs. Moreover,
these front-ends can also generate other useful data structures like call-graphs. Apa r t
from source code, program-level analysis can also be run on executable binary of
a program.

• Model- level analyses: another option is to create a program model which tries
to capture semantics relevant to the analysis and then use this model as an input.
The pr imary motivat ion behind this approach is the option to abstract away some
of the complexity and implementat ion details of the source code during the modeling
phase which should make subsequent analysis easier and possibly more efficient. The
downside of this method is the need to create the model i n the first place and prove
its semantic correspondence w i t h the original program which might be difficult. The
creation process can be either manual (potentially very tedious) or automatic v ia
specialized tools which extract a model out of the source code. Ei ther way this
introduces a middle step that might be a source of imprecision or bugs i n the following
analysis. Few examples of possible models are automata, Pe t r i nets, Markov chains
and other more specialized models such as difference constraint model which w i l l be
discussed later.

Classification based on Target Property

Based on the answer to the question "what do we ask about the analyzed program?" it is
possible to characterize analyses into several different families. In other words, what seman-

8

tic property is the tool t ry ing to compute divides programs into certain groups. Or ig ina l ly
introduced by Leslie Lampor t in late 1970s, the two most common target property classes
are safety and liveness. However, the classification of semantic properties became more
complicated over the years w i t h the introduct ion of new classes and due to refinement of
existing ones which resulted in the creation of various subclasses [9]. To name a few exam
ples, other property classes involve information flow, reachability, fairness (special case of
liveness) and others.

Informally, safety property [33] states that "something bad never happens11 or in other
words that program w i l l never reach an erroneous state. More precisely, a safety property
imposes a requirement upon the program which should be maintained throughout its entire
run un t i l the terminat ion point [21]. I.e., this requirement must not be violated i n any of the
program's states in a finite run. Consequently, i f property might be violated by a program it
w i l l always be possible to observe a counter-example i n a finite run. One of the most typica l
examples of a safety property in the computer science domain is mutual exclusion. If this
property holds then it guarantees that "no two or more distinct concurrent processes will
enter their shared critical section simultaneously11. Another very common safety property
is that buffer overflow w i l l never occur. A real world example of safety property wi th
precondition could be "as long as the key is not in the ignition position, the car won't
start11 [9].

W h e n it comes to liveness property, giving few real world examples from [9] can help
bui ld basic intui t ion:

1. "by keeping on trying, one will eventually succeed11

2. "if we call on the elevator, it is bound to arrive eventually11

3. "the traffic light will turn green11

In other words, the point of examining liveness properties is to figure out i f under certain
conditions "something good will eventually happen11. Aga in , to be more precise, it imposes
a requirement whose eventual (and possibly repeated) fulfillment has to be guaranteed
but i n contrast to safety properties it does not need to hold continuously. Addi t ional ly ,
compared to safety properties it might not be as obvious that it is not possible to observe
a counter-example in any finite run since it can always be extended by a state which fulfills
the requirement [21] 2. Few examples are freedom from starvation and live-lock or, perhaps
confusingly, terminat ion which guarantees that a l l program runs w i l l terminate.

One might be incl ined to th ink that liveness property can be expressed as reachability
property by reformulating the statement. However, this is not the case as can be observed
for example wi th the statement 3. The difference is that reachability only guarantees the
possibility to turn green but it does not guarantee that the light will eventually turn green.
Moreover, v i r tua l ly in a l l pract ical use-cases the liveness property of interest is also bounded,
meaning the observed event has to happen wi th a certain t ime l i m i t 3 .

2.1.2 Difference between Static and Dynamic Analysis

One of the most important distinctive features of each analysis technique is when it is
performed. The two ma in commonly used options are are before and during the program
execution.

2 The prerequisite for liveness is reachability. If fulfillment state is reachable then we can extend any
program run to reach it and fulfill the liveness requirement.

3The notion of time can be defined in many different ways when it comes to software.

9

The first opt ion is to run the analysis at run-time of a program in which case the analysis
is called dynamic. Th is approach gathers information along the execution of one or more
program runs and can be implemented i n many different ways, for example by running the
program on a v i r tua l processor or by code instrumentation which is a technique involving
injection of addi t ional instructions into the program's executable binary. Few notable ex
amples of dynamic analysis tools are Valgrind mostly used for detection of memory leaks,
Google's suite of Sanitizers (Thread, Address, Memory, ...) and Intel Inspector which helps
to discover dynamic memory and threading errors. Various kinds of profilers for measuring
of program performance or memory usage are also considered to be dynamic analysis tools.

The second possible option is to perform the analysis before running the program in
which case we cal l such analysis static. The name comes from the fact that such analyses
are run independently from any program execution and thus there are no "moving parts".
Consequently, analyzing the same unchanging code repeatedly w i l l always yield the same
results (if the tool is deterministic as it should) which is not necessarily true for dynamic
analysis. Few notable examples of static tools are Coverity and Astree which are proprietary
or Frama-C and Meta Infer which are Open-Source.

This dis t inct ion is more significant than might be immediately obvious as the choice
between static or dynamic approach comes wi th different advantages and drawbacks or
even fundamental l imitat ions. The first notable trade-off is between the ease of design and
implementation, and performance. Dynamic tools are typical ly easier to design and imple
ment when compared to, for example, development of a fully-fledged abstract interpretation
framework from scratch. Unfortunately, this benefit i n t ime and effort domain is i n some
cases heavily outweighed by the tool performance and in some edge cases a tool can even be
rendered unusable in certain applications due to the performance penalty. For example, it
is v i r tua l ly impossible to employ the previously mentioned Valgrind tool for memory leak
detection in advanced real-time 3D graphics rendering applications which require user input
(e.g. video games) because the impact on F P S (frames per second) is too significant. In
comparison static analysis techniques do not incur any run-time performance cost but they
are not free either as their deployment can have non-negligible impact on the development
i teration t ime which is one of the many aspects that can hinder the willingness of developers
to adopt a certain tool [14].

One possible advantage of dynamic approaches is the access to concrete run-time state
information which can lead to less false positives4 on average. Addi t ional ly , such information
can be leveraged by the tool to provide the developers w i th more precise and detailed
issue reports. A s has been empirical ly tested [14], min imiz ing the false positives rate and
increasing the quali ty of issue reports is of great importance for smooth adoption of analysis
tools by developers i n practice, regardless of the static or dynamic aspect.

Last but not least, the choice between these two approaches has major implicat ions
on the program properties that can be checked. Mos t notably, termination is one of the
properties that is impossible to determine dynamical ly for any input program due to fun
damental l imitat ions of dynamic analysis. S imply put, the potential tool would have to run
infinitely to determine non-termination of an input program.

2.1.3 Automation and H u m a n Input

One of the crucial aspects of any k ind of analysis is the amount of human input that is
needed. The ideal which every analysis should strive for is full automation, meaning the

4The issue of false negatives and false positives will be explored in Section 2.1.5 in more detail.

10

analysis is fully functional and computes the same outputs regardless of whether any human
help was provided or not, i.e., no human help is needed to obtain the most precise possible
results.

Most analyses decide to give up some amount of precision in order to remain fully
automated which is usually preferred by the end users i n the non-safety cr i t ica l domains.
Unfortunately, analysis of certain properties is impossible without any human intervention
due to the implications of the Halting Problem (HP) undecidability and related Rice's
theorem [29]. In short, this theorem states that any non-trivial semantic property is not
computable because it can be reduced to the HP and consequently proven undecidable.
Moreover, property is considered to be non-trivial i f there is at least one program which
satisfies it and one program which does not satisfy i t , i.e. it is not either true or false for
a l l programs. Clearly, by this definition almost a l l properties are non-trivial and thus not
computable.

In those cases analysis designers have to give up on full automation and depend on users
to provide some sort of input, usually i n form of local or global invariants. Very common
are for example local loop invariants because complex loops typical ly present a challenge for
any k ind of analysis. Th is par t ly shifts the responsibility of computing the analysis result
on the user which becomes increasingly more problematic as the programs grow i n size and
complexity. Thus, it is not uncommon to hire a professional w i th mathematical expertise,
who configures and provides input to such analyses but even so, the need for human input
is most of the t ime error prone and can compromise the correctness of potential results.

2.1.4 Scalability: Compositional and Incremental Analysis

Somewhat related to automation, scalability is another aspect of consideration when de
signing an analysis. Even when human element is completely eliminated and tool is fully
automatic, it might s t i l l be unsuitable for use i n real large-scale software wi th mill ions of
lines of code.

The degree to which an analysis is able to handle such codebases and provide results
in reasonable t ime is called scalability. It is determined by the t ime and memory complex
ity as wel l as by other properties of the used analysis algori thm. Namely, whether it is
compositional and possibly incremental or not is especially crucial for scalability on real
product ion software. A s [10] states: "A compositional analysis is one in which the analysis
result of a composite program is computed from the results of its parts. As a consequence,
compositional analyses can run on incomplete programs (they are not whole-program anal
yses), are by their nature incremental, scale well, and tolerate imprecision on parts of code
that are difficult to analyse."

Indeed, without the abi l i ty to compose the final result from results of its parts (very
common is granularity at the level of program functions), the analysis might soon reach
its l imits because of extensive t ime or memory costs even if it 's otherwise very efficient on
small scale programs. Furthermore, incrementality might not have a direct impact on the
scalability in case of whole-program analysis but it is equally as important in fast paced
development environments where performing costly whole-program analysis on each and
every code change is out of the question. In such settings, the abi l i ty to run the analysis
only on a single code diff (code change, typical ly contained i n a single commit, submitted
by a developer for code review) is essential for usabil i ty of a tool and can be considered as
another dimension of scalability.

11

2.1.5 Approximating results: Soundness and Completeness

A s discussed in Section 2.1.3, full automation is often one of the top priorities when design
ing an analysis for several reasons and as such it is very common to compromise on other
qualities instead of relaxing the full automation requirement. The popular analysis design
trade-off is to sacrifice some amount of accuracy but mainta in the correctness of the results
i n order to preserve the automation. Th is can be achieved through different ways. One
possibili ty is for the analysis to answer "yes" or "no" only i n cases when it is conclusive
and then introduce a th i rd fallback option of "don't know". Clearly, this would allow the
analysis to remain correct w i t h its answers but the usefulness might be compromised wi th
frequent choice of the fallback option.

Another option is conservative approximation w i th two analysis properties of dual nature
that describe the form of approximation used. To express these notions, following notat ion
w i l l be used: let C be a Turing-complete language and TT be a non-trivial semantic property
examined by an analysis tool T targeting programs i n C. A perfect analysis tool without
any k ind of inaccuracies could then be described by the following equation:

Vp G C : analysis T (p) = true •£=>• p \= TT.

Unfortunately, as discussed prior, such analyses are impossible to create i n practice but
decomposing the logical equivalence i n the equation above into a pair of implications reveals
two approximat ion possibilities:

Vp G C : analysis T (p) = true =>• p \= TT

Vp G C : analysis T (p) = true 4= p \= ir.

B y dropping either one of these two implications, a par t ia l ly accurate tool w i th different
k ind of approximat ion can be achieved.

Soundness

The first opt ion is to design a tool which satisfies the first impl ica t ion but does not care
about the satisfaction of the second one. Such tool is called sound and can be defined using
the first impl ica t ion as follows:

Definition 2.1.1 (Soundness [29]). The program analyzer T is sound w i th respect to
property TT whenever,

Vp G C. analysis T (p) = true =>• p \= TT.

Informally, when a sound tool concludes that program p satisfies property ir then it t ru ly
satisfies i t . I.e., a sound analysis w i l l never c la im that program p satisfies IT when i n reality
it doesn't. The concept of soundness is visual ly represented i n Figure 2.1a. Consequently,
a t r iv ia l ly sound but pract ical ly useless analysis can be achieved by always answering false.

Completeness

In contrast, a complete tool w i l l disregard the fulfillment of the first impl ica t ion but requires
satisfaction of the second one.

Definition 2.1.2 (Completeness [29]). The program analyzer T is complete w i th re
spect to property TT whenever,

Vp G C. p \= 7r =>• analysis T (p) = true.

12

(a) Sound but incomplete (b) Complete but unsound (c) Sound and complete

Figure 2.1: Graph ica l representation of soundness and completeness

Intuitively, if a program satisfies the property 7r then a complete analysis must conclude
that it does. I.e., it w i l l never reach a conclusion that a program does not satisfy property 7r
when it in fact does. The visual representation of this concept can be observed i n Figure 2.1b
and as before a complete tool can be t r iv ia l ly constructed by always answering true.

Soundness and Completeness

To expand on the previous discussion about computat ional l imits , it is futile to hope for
a fully automatic, sound and complete tool which computes a non-trivial semantic property
of a Turing-complete language. Mos t tools opt for automatic but either unsound or incom
plete analysis. There has been a lot of confusion about what soundness and completeness
means in terms of specific analysis over the years, especially when it comes to the notions
of false positives and false negatives borrowed from the binary classification theory. Th is
confusion is mainly caused by the dual notion of these terms as well as the fact that the
meaning is relative i n respect to the goal of the analysis [24].

A good example to il lustrate this relat ivi ty is terminat ion analysis. Is a tool performing
the analysis unsound or incomplete i f it concludes that a program does not terminate when
i n reality it does? To answer this question it is necessary to establish the goal of the tool
first. Let us consider two cases:

• Input-Output programs: These programs are expected to terminate i n finite t ime and
produce a val id result. A s such, non-termination is violation and the goal of the
analysis is to find these cases. Thus, i f an analysis incorrectly flags a desirable
terminat ing program as non-terminating it is a false alarm which makes the anal
ysis incomplete. Conversely, if it misses a violating program and concludes that it
terminates, then it is unsound.

• HTTP Webserver: Avai lab i l i ty of a website is dependant on its webserver which should
be running constantly in order to serve incoming user requests. Clearly, it is desirable
for a webserver to keep running and not terminate (non-tr ivial liveness property)
which would be a violation. Therefore, if an analysis concludes that a program does
not terminate when i n reality it does then it is missed violation and the tool is
unsound.

A s can be seen, these notions are relative and th inking in terms of desirables or violations
and consequently false alarms or missed violations i n the context of specific analysis
dismisses any possible confusion. Figure 2.2 illustrates these notions alongside the standard
false positive j false negative terminology.

13

Passed

Accepted
Desirables

1 Missed Violations
(False Positives!

False Alarms
(False Negatives)

(;
Caught Violations

Rejected

(a) Unsound and incom
plete: both false alarms and
missed violations can occur.

Passed

Accepted
Desirables

False Alarms
(False Negatives)

Caught Violations

Rejected

(b) Sound but incomplete:
only false alarms can occur
but analysis will never miss
a violation

Passed

Accepted Missed Violations
Desirables) (False Positives]

Caught Violations

Rejected

(c) Unsound but complete: vi
olations might be missed but
false alarms cannot occur.

Figure 2.2: Soundness and completeness i l lustrated i n terms of false alarms and missed
violations. A n analysis can either accept a program (possibly missing a violation of
examined property) or reject it (might be correct but deemed incorrect due to a false
alarm).

2.1.6 Analysis Techniques: A n Overview

There are several heavily researched mainstream approaches to program analysis, each
of them wi th numerous more or less distinctive variants. This section attempts to provide
a concise overview of main existing techniques without delving into too much detai l because
comprehensive discussion about each technique is out of the scope of this thesis. A s such,
references to other sources wi th more information w i l l be provided.

Since Looper is a static analysis tool , the pr imary focus of this thesis is given but it is
beneficial to have a basic understanding of the other existing methods wi th their strong
points and drawbacks. Moreover, nowadays there are tools which are buil t around interplay
between mult iple different approaches, e.g., combining static and dynamic analysis to get
the best from both worlds. Th is section is mostly based on [20, 29].

Automated or Machine-Assisted Deductive Formal Verification

This static-only approach, also-called theorem proving, is most of the times semi-automated
way of formally proving certain program property i n a sound (w.r.t. to the model of the
program semantics) and usually also complete (up to the abilities of proof assistant) way.
There are three essential elements to this approach:

• Logical theory and its general theorems: the choice of a logical theory is based on the
property of interest and it forms the abstraction basis. C o m m o n examples are Integer
or Real arithmetic, Boolean operations, Sets, Maps [5], Bitvectors [18], Strings and
many others.

• Logical facts: these facts are either part of the used logical theory, provided by the
user or deduced by the system. The need to provide facts manual ly is one of the
reasons why some of these methods are not fully automated.

• Inference system: provides inference rules that drive the deduction process. New
logical facts and theorems are deduced by automatical ly or manual ly applying valid
inference rules.

14

Clearly, this approach bears a strong resemblance to classical mathematical reasoning. In
deed, the principle is the same but the difference is that it is performed by software tools
(theorem provers) which eliminate as much tedious and often error-prone human labor as
possible. Unfortunately, these machine-assisted techniques also have their computat ional
l imits and i n many cases have to rely on human input to reach any conclusion. For example,
users might have to provide information which is otherwise difficult to deduce automati
cally such as aforementioned loop invariants or function pre/post-conditions which form
"boundaries" for deducing. A p a r t from providing data, users might have to lead the in
ference process itself by deciding which rules should be used w i t h which facts and when.
Needless to say, this often requires high level of mathematical expertise and even then can
be source of errors or the reason for inabi l i ty to prove a property. However, despite these
l imitations, the verification process s t i l l remains mostly fully automatic. Few examples of
these interactive theorem provers are P V S , Isabelle, A C L 2 , C o q and others.

Most of these tools have one important aspect i n common: they employ so-called satis
fiability solvers for various logical theories. These tools are essential bui ld ing blocks which
most higher-level verification methods rely on since every NF'-Complete logical problem
(properties of interest usually represent a NP- Complete problem) can be reduced to classi
cal Boolean satisfiability (SAT) problem. The term satisfiability solvers encompasses various
different solvers w i th most important being SAT-solvers solving the aforementioned SAT
problems. Few examples of modern powerful SAT-solvers are In te lSAT, R L N T , Glucose
and many more. Unfortunately, as many real wor ld problems are not easily or intui t ively
expressible i n pla in Boolean logic, a new category of SMT-solvers (Satisfiability Modulo
Theories) has emerged. These solvers are buil t for problems expressible i n first-order logic
and its various logical theories such as Linear (Real) Arithmetic theory or theory of Ar rays
and Lis ts . M a n y of these important theories are sadly undecidable [3] (as is first-order logic
in general), but significant advances i n recent years made it possible to efficiently solve
a wide range of problems nevertheless. Few notable examples of modern and actively de
veloped SMT-solvers are C V C , Yices , ver iT or Z3, some of which are indirect ly used by
Looper itself.

Last notable category is comprised of high-level tools that leverage the infrastructure of
other existing tools to streamline the verification process. One example is a language/veri
fier Dafny [23] which allows users to write imperative and sequential programs wi th support
of generic classes and dynamic al location. The syntax of the Dafny language resembles
modern object oriented languages such as C + + but also incorporates formal specification
constructs such as function pre/post-conditions or termination metrics [23]. To perform
the verification, programs wri t ten i n Dafny are first translated to intermediate verification
language Boogie and then passed to the Z3 SMT-solver which verifies that program meets
its formal specification. Final ly , a correct program can be compiled into several widely
used languages such as C # , Java, JavaScript or G o . Moreover, Dafny ecosystem provides
plugins for certain I D E s such as V i s u a l Studio which continuously perform the verification
as user writes Dafny code.

Second, and for this thesis important , example of high-level tool is W h y 3 [6] verification
platform. T h i s tool comes wi th its own first-order logic based specification language called
Why ML which can be used to create program models. Alternat ively, these models can also
be created using the O C a m l language bindings that expose the W h y 3 A P I . The strength of
W h y 3 lies i n the abi l i ty to transform these formal models into several standardized formats
such as SMT-LIB. These formats are supported by various SMT-solvers or theorem provers
such as Vampire which was used by Looper at one point. It provides a front-end that

1 5

allows end users to easily employ mult iple supported solvers or provers at once based on
the problem at hand. This is crucial because each tool excels i n different logical fragments.
O n the other hand, it requires a certain level of expertise and knowledge of each used solver
to know which one to use for which logical problem. This is further complicated by the
fact that modern solvers are mostly black boxes wi th not always intuit ive and possibly
surprising behaviour, especially when it comes to the abi l i ty to solve a given problem. The
use of W h y 3 by Looper w i l l be discussed i n more detail in Chapter 5.

In conclusion, the methods i n the field of deductive formal verification are a l l static
and tend to be semi-automated but fully automated tools exist as well . The i r use often
necessitates mathematical knowledge and a certain level of expertise i n formal verifica
t ion techniques and associated tools. Most of them are sound by design and usually also
complete.

Testing: Dynamical ly Checking P r o g r a m Executions

One approach that often comes to mind first is to run a program and observe its execution,
usually many times wi th different inputs. Th is approach of dynamical ly checking whether
a program behaves as expected for a wide range of possible inputs is called testing. How
ever, apart from special cases it is not feasible to observe a l l possible executions even i f their
number is technically finitely bounded. Moreover, non-terminating programs pose a prob
lem as those cannot be tested. Thus, program testing can only check finite set of finite
executions. Based on this fact and the famous quote from Di jks t ra : "Program testing can
be used to show the presence of bugs, but never to show their absence!", it becomes clear
that in most cases testing is unsound. O n the other hand, t radi t ional testing approaches
are considered complete as they cannot produce false alarms and usually provide user
w i th a counter-example i n case of a failed testing run.

Apar t from the basic variations such as random testing, there are many more advanced
techniques, each of them t ry ing to address some l imi ta t ion of rudimentary testing. For
example, the most prominent issue of low code coverage is tackled by the concolic or search-
based techniques which both attempt to synthesize more test data, albeit each i n a differ
ent manner. Concurrent software posed another challenge to testing as certain types of
bugs (deadlock, data races) rarely manifest under normal process/thread scheduling cir
cumstances. Thus, techniques like noise-injection, which disrupt the normal scheduling
by injecting t iming noise, were developed. Other advanced techniques t ry to increase the
chances of catching elusive concurrency bugs by performing a post-analysis and extrapolat
ing possible erroneous states based on what has been seen i n real executions. O n the flip
side, this technique can compromise completeness of testing and lead to false alarms as
some of these extrapolated states might not be reachable in reality. There have been mul t i
tudes of tools targeting concurrency errors over the years but few prominent examples that
implemented these ideas are Eraser, Fast Track or more recently ThreadSanit izer developed
by Google.

Regardless of used analysis technique, any k ind of testing can be performed on several
levels or development stages during the software life cycle as is usually the case i n the indus
try. Mos t common are so-called unit tests (testing of smallest testable parts i n isolation),
integration tests (individual ly tested modules are integrated together and tested as a group)
and system tests (the final product is tested as a whole).

In conclusion, testing is generally easy to automate and modern cloud repository hosting
services also provide infrastructure to easily employ so-called continous integration which

1 6

further automates testing processes. It is, apart from exceptions, unsound and reaching
high test coverage requires a lot of effort and resources. O n the other hand it is t radi t ion
ally complete unless combined w i t h other static analysis techniques which can potential ly
compromise completeness. Moreover, failed test runs produce counter-examples that often
provide precise information on how to fix the program. Unfortunately, the usefulness of
these counter-examples is diminished in non-deterministic programs where specific execu
tions cannot be easily reproduced. One significant advantage of testing is the abi l i ty to
perform it in the conditions of the target platform (hardware, drivers and operating sys
tem) which might reveal bugs that would not otherwise manifest. Last ly, testing inherently
cannot be used to determine certain classes of properties such as program termination.

Finite-State M o d e l Checking

The technique of model checking aims at addressing the unsoundness problem of tradi
t ional testing which can only check finite set of finite executions out of possibly infinite
set of possible executions. Instead, this approach focuses on finite systems w i t h the goal of
exhaustively checking a l l possible executions of a system i n order to soundly and completely
determine whether it satisfies a property or not. To make it possible, model checking uses
various heuristics to perform a systematic exploration of the state space of a constructed
model. Nevertheless, the infeasibility of sound testing is also reflected in model checking
which suffers from so called state space explosion problem [20]. To overcome this issue, vari
ous efficient data structures such as binary decision diagrams or compact state space storage
are being used i n order to reduce the search space, sometimes at the cost of soundness as
is the case i n bit-state hashing method [20]. Addi t ional ly , it is possible to apply certain
abstractions or perform so-called bounded model checking which bounds the state space by
restricting certain property, e.g., the depth of the search or the number of context switches
when analyzing concurrent program. This sadly also leads to unsoundness i n most cases.

There are two important caveats to model checking which have to be mentioned. Fi rs t ly ,
it is often presented as automatic technique which is true wi th respect to the analysis itself.
However, the design and creation of model which precedes the analysis is mostly manual,
tedious and resource intensive process. Moreover, it can also be a source of inaccuracies or
errors which relates to the second caveat: model checking in its original form indeed is sound
and complete but only w i t h respect to the model as it is performed at model level and not at
the program level. Thus, i f the possible inaccuracy of the model and the relation between
the program and its model is taken into account, model checking might be rendered unsound
and/or incomplete w i th respect to the program. Some techniques incorporate automatic
model refinements to alleviate this issue but then problems w i t h non-termination might
arise [29]. Despite this, most model checking tools i n practice are often conservative and
thus sound and incomplete w.r.t. to the modeled program.

In conclusion, model checking has been successfully employed i n many software and
hardware areas alike. There have been many influential commercial applications especially
in the field of hardware verification. Few examples include RuleBase from I B M , Incisive
Verifier from Cadence or N u S M V . However, there have also been many software model
checking tools for concurrent and distributed systems as well as for real-time and probabilistic
systems. More examples of existing tools and detailed discussion on temporal logics such as
C T L or L T L which are used for specification of properties can be found i n [20].

1 7

Static Analysis

The most relevant i n the context of this thesis are the static analysis techniques (differ
ence between static and dynamic approach was previously discussed i n Section 2.1.2) since
Looper tool belongs to this category. Accord ing to [29], the term is defined as follows:
"static analysis relies on other techniques to compute conservative descriptions of program
behaviors using finite resources. The core idea is to finitely over-approximate the set of
all program behaviors using a specific set of properties, the computation of which can be
automated ". This rather vague and general definition does not necessarily help one to un
derstand the term i n pract ical sense. The reason is that the field of static analysis is very
broad and thus providing clear cut precise definition is no easy feat. The most crucial part
of this definition is the conservative over-approximation of program behaviors, i.e., any
static analysis method should be sound by design. Re lax ing the soundness requirement
yields a so-called bug finding method which w i l l be discussed shortly.

The meaning of conservative over-approximation depends on the goal of specific anal
ysis. For example, i f the focus of an analysis is to detect array buffer overruns, then it is
conservative to consider the worst possible m i n i m u m and m a x i m u m values of a l l indexing
expressions while at the same t ime expecting the array to be as smal l as possible at any
given access t ime. Do ing so w i l l ensure soundness, however the true difficulty lies i n the
sound computat ion of the aforementioned values. For this thesis more relevant example
is a general resource (time, memory, open files, etc.) bound analysis which should always
return a bound that is greater or equal than the real bound i n order to remain sound. How
to be conservative dur ing the analysis then depends on the target resource.

Another , maybe more intuit ive, description from [25] states: "it is the art of reasoning
about the behavior of computer programs without actually running them" (at least not under
their original semantics). A s a consequence of not having to run a program to analyze it ,
no input data is needed which is a significant advantage over testing or dynamic analysis in
general. In short, reasoning about the behavior of programs i n the most rudimentary way
can be done by observing certain syntactic patterns i n the source code, which was pioneered
by the famous Lint [19] tool . However, over the years increasingly more advanced tools
started to take a different approach i n reasoning by using some sort of program abstraction.
A n abstraction bears a certain resemblance to a model used in model checking. However,
an abstraction has to be designed only once and then it can be applied automatical ly to
any program, whereas a model has to be crafted specifically for each analyzed program.

Historically, certain forms of static analysis have been part of compilers ever since their
inception, either to check correctness (type systems), extract useful information (control-
flow graph, call graph, alias analysis, etc.), or for opt imizat ion purposes (dead code elimina
tion, invariant analysis) and the set of compiler analyses has been growing over the years.
More recently, due to the ever increasing need for parallel programs, addi t ional analyses
such as cross-loop data dependence analysis or memory synchronization analysis became
part of compilers for programs wri t ten using O p e n M P , O p e n C L or C U D A [30].

A s t ime went by, static analysis tools developed beyond compilers and became more
advanced. Nowadays, it is being used to automatical ly find errors or even verify correctness
w.r.t . to some program property. It has been heavily used to design program verifiers and
other support ing tools (sometimes integrated i n IDEs) that help programmers to understand
code. Some advanced use-cases chosen, but not exclusively, from [25]:

• Alias Analysis: A r e pointers p and q point ing to disjoint data structures i n memory?

18

• Buffer Overrun Analysis: A r e arrays always accessed wi th in their bounds?

• Termination Analysis: Does the program terminate on every input?

• Concurrency Issues Analysis: A r e data races possible? C a n the program (or parts of
the program) deadlock?

• Worst-Case Execution Time Analysis: W h a t is the upper bound on the execution
t ime for a piece of code when taking hardware characteristics of a specific platform
(timings, cache, ...) into account?

• Complexity Analysis: W h a t are the asymptotic complexities of specific program
parts such as loops or functions?

Clearly, the field of static analysis t ru ly is broad and encompasses a wide range of
analyses as supported by these examples and the cited definition. However, one can s t i l l
identify several t radi t ional approaches [20]:

• Linters — named after the famous Lint, these tools search for so-called syntactic anti-
patterns indicat ing possible bugs. A p a r t from standalone tools like Cppcheck, linters
are used in v i r tua l ly a l l modern compilers and I D E s like V i s u a l Studio (Code) or
C L i o n (buil t- in or as a plugin).

• Data-flow analysis — this type of analysis tracks how properties of interest called
data flow facts [20] propagate through program locations. It typical ly operates over
a Control-Flow Graph (C F G) which is a graph representation of a program. It can
be performed i n forward or backward manner and wi th in single function {interproce-
dural) or across function boundaries (interprocedural). It can be either may (which
facts could be true at each location) or must (which facts are definitely true at
each location) analysis [7]. Th is type of analysis was originally mostly used i n op
t imiz ing compilers but it is nowadays heavily used by many commercial as well as
open-source tools, either as a data collection pre-analysis or standalone bug finding
analysis. Two typica l examples are Live-variables analysis and Reaching Definitions
analysis. Examples of influential tools include Coverity, CodeSonar, P h A S A R [31],
or F indBugs (newly SpotBugs) , which was one of the first widely used (Google and
other major companies) open-source tools [2].

• Constraint-based analysis — this analysis works in two phases. F i rs t it derives a set of
constraints which forms an abstraction of the analyzed program. These constraints are
mathematical equations and their form is determined by the property of interest. A s
an example, a two completely different types of constraints w i l l be needed i n order to
derive linear invariants and linear ranking functions. C o m m o n types of constraints
are conditional set constraints, linear arithmetic constraints, polynomial arithmetic
constraints and more.

The real difficulty lies i n the second phase which is about solving the set of constraint
as the number of constraints can be i n hundreds or even thousands. However, these
analyses typical ly leverage the modern and powerful S A T and S M T constraints-solvers
to find the solutions. The main inherent advantage is the abi l i ty to find a l l possible
solutions and not just one (all loop invariants for example). Furthermore, solvers are
constantly improving which in turn leads to advances in this field. Two examples of
typica l use-cases are points-to analysis and derivation of loop invariants.

19

• Type-based analysis — general term that encompasses a l l analyses that i n some way
leverage type information either as basis for the analysis or to improve existing analysis
in terms of precision and efficiency Two common approaches to type-based analysis
are Type and Effect and Types-as-Discriminators [26].

• Abstract Interpretation — probably the most common approach to static analysis in
recent years. Br ie f in t roduct ion is presented i n Section 2.2. Current state-of-the-art
tools include Astree, Polyspace or Sparrow. Other tools like the commercial Coveri ty
are not per se abstract interpretation tools but they include analyses based on this
technique [16]. Advances in the category of open-source frameworks are led by Frama-
C and M e t a Infer which is discussed i n Section 2.3. These frameworks offer both sound
and unsound analyses.

Last important remark belongs to the so-called bug finding (also-called bug hunting)
approach. Tradi t ional conservative static analysis is fully automatic, sound and incomplete
while also scalable when considering recent advances of modern tools. However, the sound
ness requirement often times goes against the trends i n the industry [4], where the rate
of false positives can determine the success of a tool . M a n y tools thus decide to drop the
soundness property wi th the main motivat ion being faster and easier design process and
implementation. Due to their unsoundness, such tools cannot be classified as conservative
static analysis i n the conventional sense even i f their techniques are commonly based on
those used in model checking or static analysis. The pr imary a i m of bug finding tools is
to quickly find as many errors while min imiz ing false positives and user adoption friction.
They are commonly used i n non-safety critical domains to improve the quali ty of program
at a low cost [29]. Examples of prominent bug finding tools include aforementioned Coverity,
CodeSonar or C B M C (C Bounded M o d e l Checker).

Table 2.1 summarizes characteristics of analysis techniques discussed i n this section.

Technique Automat ic Sound Complete Object A p p r o a c h

Deductive N o Yes Y e s / N o M o d e l / P r o g r a m Static
verification
Testing Yes N o Yes P rogram Dynamic
M o d e l checking Yes Yes Y e s / N o M o d e l / P r o g r a m Static
Conservative Yes Yes N o P rogram Static
static analysis
B u g finding Yes N o N o P rogram Static

Table 2.1: A n overview of discussed program analysis techniques based on the information
available in [29, 20]. It summarizes the ma in characteristics of each method.

2.2 Abstract Interpretation

Since the publ icat ion of author's bachelor's thesis, abstract interpretation technique is no
longer used by the Looper tool for any purpose. The previous use-case and the reason why
it was not desirable to continue using it w i l l be discussed i n Chapter 3.2. Despite this,
abstract interpretation s t i l l remains an essential part of the Meta Infer framework (see
Section 2.3) which was used to develop Looper and as such it was considered necessary to
have at least a basic understanding of this approach. Note that this section was taken from

20

previously published author's work [27] and then appropriately updated and shortened to
fit the scope of this thesis.

Abstract interpretation was originally formalized by a married couple of French com
puter scientists Pa t r ick and R a d h i a Cousot i n the late 1970s [13]. The theory of abstract
interpretation provides a general framework which can be ut i l ized i n the process of creating
specific static analyses. New analyses can be obtained by instantiat ing of the necessary
components to the general framework.

Even though abstract interpretation falls into the domain of static analysis of programs,
it actually executes instructions of analyzed program i n a sense. The key difference is
how are these executed instructions interpreted: each concrete instruction is assigned wi th
certain abstract semantics that specify what effect it has when executed over a so-called
abstract domain. Th is abstract domain has to be tailored for the specific needs of the
analysis and its area of focus. Abstract semantics of an instruct ion are then applied to
the abstract context which is used to represent a program state at a certain location.
The actual physical execution of the program instructions is thus completely avoided which
means that the A I preserves a l l the advantageous properties of static analysis. A state space
of a program can subsequently be reduced significantly just by choosing the appropriate
level of abstraction for the problem at hand and devising corresponding abstract domain
and abstract transformers.

Components of the Abstract Interpretation

W h e n instantiat ing the theory of abstract interpretation, every analysis has to provide few
essential components required by the framework. These components describe the semantics
of the analysis:

• Abstract domain: a set of abstract states. A n abstract state represents a program
state at a certain program location. The definition and contents of an abstract state
depends on the type of analysis being designed. Simple interval domain for tracking
safe lower and upper bounds of integer program variables presents a t r iv i a l exam
ple. I.e., each abstract state of this domain w i l l contain an interval of possible values
for each program variable in this form: [a, 6] where a G ZU{—oo}, 6 G ZU{oo},
T = (—oo, oo) and _L = (a, 6) for a = b. The T symbol denotes the top element of the
underlying lattice as a l l existing intervals are contained i n the (—oo, oo) interval. The
_L symbol denotes the bo t tom element of the underlying lattice which is an empty in
terval. The integer sets for lower and upper bounds are extended by infinities because
it is not always possible to determine precise bounds and interval over-approximation
is necessary if we a im for a sound static analysis.

• Abstract transformers: each instruction from program's source code has assigned
transformer which transforms the original semantics of an instruct ion to abstract se
mantics which can be applied to an abstract state. For example, it would be necessary
to transform the integer ari thmetic of a concrete program to the interval ari thmetic
applicable in the previously introduced interval domain. E . g . , increment to variable
i represented by the [a, b] interval would lead to new interval [a + 1, b + 1] and the
assignment i = 0 would lead to [0, 0].

• Jo in operator: accumulates two input abstract states into a new output state. Jo in
operator is used at program junctions where several program paths meet, e.g. after

21

if-else construct. One possible definition of the jo in operator for the interval domain
is as follows:

[a, b] o [c, d] = [min(a, c), max(6, d)]

• Widening: applied on a sequence of abstract contexts at a certain program location
(for example loop headers) i n order to accelerate fixpoint calculat ion. However, ac
celerated fixpoint computat ion by means of widening usually has a trade-off i n a form
of precision loss. Widen ing in the interval domain can be defined as:

[OJ, bj] V [aj+i, = [if flj+i < a,i then — oo else ai, if bi+\ < bi then oo else bj],

where intervals [aj,6j] and [ai+\, bj+i] correspond to the values of two abstract states
accumulated at a loop header after two consecutive iterations i and i + 1.

• Narrowing: can be used in order to refine the result of widening operation. Some
analyses do not require to define the narrowing operation. Narrowing in the interval
domain can be defined as:

[ao, bo] A [ai, 61] = [if ao = —00 then a\ else ao, if bo = 00 then b\ else bo].

Importantly, there should be a correspondence between the abstract and concrete do
mains and semantics. The correspondence between these domains is t radi t ional ly assured
by a pair of monotone functions which are called abstraction and concretisation functions,
usually denoted by a and 7. These functions should form a so called Galois connection
but the more general definition of abstract interpretation, which was later formulated by
Cousot lifts this requirement. Further, program instructions are assigned w i t h so-called
abstract and concrete transformers, which are monotone functions applied on the objects
of abstract and concrete domains respectively.

The last necessary component to perform the analysis is some traversal a lgori thm which
w i l l visit control flow graph nodes of the analyzed procedure in a certain order. The order in
which the nodes are traversed matters especially when an abstract domain requires widening.
In such cases it is desirable to widen at as few nodes as possible to increase precision and
efficiency [15]. Examples of possible node orderings include reverse post-order or weak
topological order. F inal ly , the analysis is performed by vis i t ing C F G nodes i n the chosen
order and applying abstract transformers of node instructions along the way. W h e n abstract
states from mult iple paths meet, join operator is used and possibly followed by the widen
operator if located at a loop head. Opt ional ly if defined, narrowing operator can be used
to refine the widening result [20].

More detailed explanation of abstract interpretation w i th formal definitions of a l l men
tioned concepts including Galois connection, fixpoints and their approximat ion can be found
in [20, 13, 12, 29].

2.3 Meta Infer — Static Analysis Framework

Infer is an open-source static analysis framework developed by the Meta Infer team and
implemented mainly i n OCaml. Its ma in advantage over the most of the other existing
tools is the abi l i ty to discover interprocedural bugs in a scalable manner through the use
of the so-called function summaries.

22

Infer was originally a standalone analyser focused on finding of memory safety violations
such as the dereferencing of nu l l pointers or memory leaks. It has made its breakthrough
thanks to the influential paper [11] presenting logical concept called bi-abduction which
composes the static analysis in a scalable manner. Bi -abduct ion is a form of logical inference
mainly for separation logic which is a novel k ind of mathematical logic. Separation logic
itself made a huge impact on a way how one can reason about computer memory and was
one of the key reasons why the original shape analysis could scale.

Since then, Infer has evolved into a general abstract interpretation framework that can
be used to quickly develop new kinds of modular interprocedural analyses. A t the core of
each interprocedural analysis stands an intraprocedural analysis that computes a summary
for a single procedure. Abst rac t interpretation framework can then leverage those sum
maries at the cal l sites of previously analysed functions and use them to lift the analysis to
the interprocedural and composit ional level. A s a consequence of composit ionali ty it is also
incremental which means that it can be run only on code changes instead of entire codebase.
This property is especially cr i t ica l for analyses that w i l l be run on large codebases where
complete re-analysis on each code change would be unfeasible for real world applicat ion
which is what Infer aims for.

Infer currently consists of three main parts: AI, AL and SL. The A I refers to the afore
mentioned abstract interpretation framework, A L is a framework for basic syntax linters
and S L refers to the original separation logic based analysis. The A I framework currently
supports analysis of C , C + + , Object ive-C and Java programs and provides a wide range
of analyses each focusing on different bug types. L i s t of more mature analyses includes for
example Inferbo (buffer overrun checker), RacerD (data races) or Starvation (concurrency
starvation and some types of deadlocks).

Abstract Interpretation Framework Architecture

Infer.AI is an abstract interpretation framework implemented inside the Infer tool . It
provides basic infrastructure as well as great number of facilities that simplify the develop
ment process of new analyzers such as automatic H T M L logging and formatting or various
O C a m l modules for easier expression parsing and pattern matching. Infer.AI can be used
to implement simple intraprocedural analyses which can be converted to interprocedural
analyses just by adding some boilerplate code that enables usage of function summaries.

The framework architecture consists of three main components. The first ma in compo
nent is the frontend. Its job is to leverage the underlying L L V M compiler infrastructure
to compile analyzed program from its source language to so-called Smallfoot Intermediate
Language (SIL) : the low-level intermediate language used by Infer.AI framework during
the analysis.

Frontend provides an output in form of a C F G for each analyzed procedure and also
another higher level interprocedural C F G for each source file, i.e., a file specific call graph.
Frontend is able to generate variety of different procedure C F G types such as normal, excep
tional w i th exceptional flow for languages wi th exceptions or backward (reversed direction).
Th is approach is more flexible and gives the developer more options to choose from based
on the needs of specific analysis.

Each node of the procedure C F G contains a list of S I L instructions that w i l l be in
terpreted by abstract interpreter implemented i n the framework. We can list four main
instructions:

23

• LOAD — loads value from an address denoted by an expression into a temporary iden
tifier. Address expression can be either a program variable or, e.g., more complex
expression that includes array indexing,

• STORE — stores value of an expression into a place denoted by an address expression
(same as w i th LOAD instruction). Value expression consists of constants and temporary
identifiers created by previous LOAD instructions,

• CALL — represents a function cal l . Creates a new temporary identifier for a possible
return value and provides information about return type, types of parameters and
call flags. Note, that indirect function calls are handled by a combinat ion of LOAD
and CALL instructions,

• PRUNE — splits the control flow into two new branches based on possible results of
a boolean expression. Th is instruction is interpreted after the split which means it is
interpreted twice, once for the true branch and once for the false branch.

Infer also supports analysis over another higher level intermediate language called HIL which
is buil t on top of SIL. E v e n though HIL is simpler than SIL and has only three instructions
it is sufficient for the needs of the most of the analyses. However it is not suitable for
analyses that focus on memory bugs and work w i t h pointers on regular basis, contrary to
SIL which is more appropriate.

The frontend module and the use of the intermediate language allows us to write new
analyses wi th min ima l language specific logic and i n tu rn we can run one analysis on
programs wri t ten i n mult iple programming languages.

The second main component of the architecture is scheduler which determines the suit
able order of analysis of each procedure based on a call graph. Scheduler is especially
important for interprocedural analysis where order in which procedures are analysed really
matters. We w i l l explain this problem i n more detai l i n the Section 2.3. A procedure
is analysed once it is chosen by the scheduler and returns a summary which is stored in
the results database. This way, a procedure summary can be retrieved from a database
and instantiated repeatedly at different cal l sites. Moreover, the use of a database storage
allows Infer to be incremental. Scheduler is also able to determine which procedures are
independent and, hence, can be analysed concurrently. Infer can then be run i n a heavily
parallelized manner — one of the reasons for its high scalability.

The last main component is the parameterized abstract interpreter which must be in
stantiated by every analyser and performs the actual analysis of each procedure. New
instance of abstract interpreter must be provided w i t h an aforementioned type of proce
dure C F G and a module implementing custom transfer functions for each SIL instruction.
Effect of these transfer functions is applied to abstract states for a custom abstract do
main . Infer does not impose any restrictions on the contents of an abstract domain and the
only requirement is that it must provide implementat ion for jo in and widen operations and
a comparator for abstract states which creates an ordering. In addi t ion it must also define
a data structure representing abstract state.

Intraprocedural Analysis

Intraprocedural analysis is an analysis that ignores the nested calls of other procedures.
It focuses on a single procedure at a t ime and out of context of its ca l l sites. A s a result
it has quite l imi ted abi l i ty to reason about the program as a whole and can only provide

24

a knowledge about its procedures l imi ted to their scope. For example, it is not possible to
provide addi t ional preconditions based on the context of specific cal l site and at the other
end postconditions are of no value to the caller.

W h e n performing intraprocedural analysis, the previously introduced abstract inter
preter analyses a single procedure using two main components: the command interpreter
and the control interpreter. The command interpreter interprets SIL or HIL instructions
over input abstract states and produces new output states. The interpretation is a process
of applying the corresponding transfer function to the input state which produces a new
output state. The control interpreter receives this updated state and continues wi th next
instruction based on the procedure C F G . B o t h components together form the main analysis
loop which repeats un t i l it processes a l l instructions or finds a fixpoint i n case of a program
loop. These parts of the abstract interpreter have access to transfer functions and a valid
domain implementing necessary operations and defining abstract state.

Modu la r i t y of the A I framework is ensured by the parametric command interpreter
which changes behaviour based on the currently plugged set of transfer functions. This
approach makes the process of creating new analyses easy as there is no need to change
command interpreter every t ime we decide to add new analysis. Hence, we can create
new intraprocedural analysis i n three steps: (1) we choose type of procedure C F G , (2) we
design abstract domain, and finally (3) we implement transfer functions. Individual parts
are passed to the new abstract interpreter instance that stitches everything together and
exposes various functions that perform different tasks related to the analysis.

Interprocedural Analysis

Unlike intraprocedural analysis, interprocedural analysis can discover bugs caused by inter
actions between procedures and does take ca l l site context into account. Postcondi t ion of
a called procedure changes based on its preconditions w.r.t . the current state of a program
at specific cal l site. B u t i n interprocedural analysis postconditions can also affect state of
the caller v ia return value or pointer parameters.

Infer uses two different approaches to achieve interprocedurality. The first is based
on bi-abduction theory and is employed i n the original separation-logic based analyser.
Bi-abduction allows Infer to break one large memory analysis of a whole program into
smaller independent analyses of ind iv idua l procedures. In general, it is a technique that
allows Infer to automatical ly deduce preconditions and postconditions for a procedure by
symbolic execution of its code. It is one of the reasons why the original analyser scales so
well.

The second approach to interprocedural analysis is based on the not ion of summaries
and is employed i n the A I framework. Summary as a general concept is a data structure
that stores relevant information about the analysed procedure. In most cases, it contains
collection of conditions over the formal parameters of a procedure. Subsequent violat ion
of those conditions at specific cal l site w i th concrete arguments can then be considered
as a bug. However, summary does not necessarily have to be a collection of conditions.
Instead it can contain general context-independent postcondit ion for each formal parameter
or a formula describing relation between argument values and return value. Addi t ional ly ,
it can also contain information about side effects of the procedure.

The A I framework does not impose any restrictions i n regards to the content of a sum
mary. A s a result, it can contain any type of data and it is solely on the programmer which
data he chooses to store and how he leverages them at cal l sites. The summary concept

25

allows Infer to analyse each procedure only once and then reuse stored procedure sum
maries as many times as needed by instantiat ing them at ca l l sites. Summary instantiat ion
is basically a subst i tut ion of general parts of a summary for concrete values at a cal l site.

Conversion of intraprocedural analysis into modular interprocedural analysis i n the A I
framework is straightforward. F i rs t we define the summary data type along wi th boilerplate
code implementing interface exposed to the framework so that it can store and read the
summary. F ina l ly , we add logic that uses summaries i n the transfer functions.

Order in which procedures are analysed during interprocedural analysis does matter,
because the analyser needs to have a val id summary for each function that is called by
the currently analysed procedure. The scheduler implemented i n the A I framework uses
a call graph to handle this issue and ensures that procedures are analysed in suitable order.
C a l l graph is an oriented graph describing dependencies between procedures, i.e. which
procedures can be called by a one specific procedure. Example of one such cal l graph can
be seen in Figure 2.3.

P M A I N

P5

P I

r

P3

r

P6

P2

- • P4

Figure 2.3: A cal l graph describing ca l l dependencies of each procedure represented by
a node. Outgoing edge signifies the possibil i ty of a ca l l to other procedure.

In the example, Infer would first analyse procedures P5 and P6 as they are sink vertices,
i.e., vertices that have no outgoing edges. These procedures do not cal l any other user
defined procedures but they might s t i l l cal l bu i l t - in or l ibrary procedures wi th defined
models that do not need to be analysed. Infer would then continue i n s imilar fashion
towards source vertices w i th no incoming edges, i.e., P m a i n i n this case. A s stated before,
Infer can also analyse mult iple procedures concurrently and uses ca l l graphs to ensure that
no dependencies are violated when it selects a set of procedures that could be analysed
simultaneously.

This example also illustrates the incremental property of Infer that allows it to scale
extremely well especially i n rapidly changing code bases where conventional batch analysis
is unfeasible. Incremental analysis only needs to re-analyse procedures directly affected by
a code change and a l l procedures up the cal l chain as the summaries must have changed
and therefore their updated versions should be propagated to a l l cal l sites. For example i f
procedure P5 was changed, Infer would also have to re-analyse procedures P3, P I and P m a i n -
However, if P2 was changed, only P m a i n would have to be re-analysed on top of it.

26

Chapter 3

Looper — A Worst Case Cost
Analyser

A s was previously mentioned, Looper is a static complexity analysis too l for automatic
inference of tight upper bounds on program execution cost. Based on the previously existing
L O O P U S tool , the core concepts of the original Looper tool were extensively studied wi th in
author's previously published bachelor's thesis [27], which also described the proposal and
implementation of the tool i n great detail . The main intention of this chapter is to revisit the
original work and provide a concise summary of the most important points i n Section 3.1,
natural ly based on the aforementioned [27]. The last Section 3.2 of this chapter is dedicated
to a brief discussion about the current main l imitat ions of the Looper tool , some of which
were previously formulated i n [27].

3.1 Core Concepts of Looper

The introduct ion of this chapter stated that the main focus of Looper is automatic inference
of tight upper bounds on program execution cost. F i r s t , it is necessary to establish what
exactly cost of a program is and the cost model it is based on. Tradit ionally, resource
bound analyses define their own cost model (or mult iple models) which assigns a cost to
each instruct ion i n the language of interest. Th is cost model captures the essence of the
analysis and determines what k ind of resource w i l l be under scrutiny. For example, a t r iv i a l
cost model for a memory usage bound analysis of C programs could assign positive cost of N
to every p = malloc (N) ca l l , negative cost of N to every free (p) cal l and cost 0 to a l l other
instructions for the sake of simplicity. Intuit ively it follows that by summing up costs of a l l
executed instructions i n a concrete program run the total cost is obtained. However, a static
analyser is typical ly concerned wi th obtaining the upper bound of a program cost and not
the total cost of one program execution (that is typical ly the domain of dynamic analysers
such as V A L G F J N D) . A s such, static analysers have to consider all possible executions of
a program and determine a bound that holds true for a l l executions if their goal is to remain
sound. Moreover, these bounds should also be as precise as possible i n order to be useful.
Certainly, a bound of +oo is sound i n a l l circumstances but it has no information value
for the end user. The final computed bound is then typical ly a symbolic expression over
a program or function parameters.

27

Back-Edge Metric

Looper uses a so-called back-edge metric as its cost model . Th is model assigns the cost 1
to every back jump instruction and the cost 0 to a l l other instructions. It might not
be immediately obvious what the back j ump instruct ion is due to its impl ic i t nature in
commonly used languages. It refers to the action of control flow jump which occurs at the
end of each loop i teration and which is typical ly caused by an explicit JMP instruct ion in
low-level assembly languages. In control flow graphs, these back jumps are represented by
oriented back-edges that point back to loop header nodes w i t h loop conditions. A s a final
note, the back-edge metric is interesting because it reflects the asymptotic time complexity
of a program: the final bound corresponds to the number of loop iterations and asymptotic
complexity can be obtained by disregarding the constants.

Loop Bounds

To demonstrate this concept and others, a running example from [32] presented i n Figure 3.1
w i l l be used throughout this chapter. In essence, the so-called loop bound represents an

void tarjan(int n) {
int i~= n; (processed elements)
int j = 0; (current stack size)
while (i-> 0) {

i — ;
j++; (push)

while (j > 0 && *)
j — ; (pop)

Figure 3.1: Example tarjan [32] models a stack which processes the to ta l number of n
elements. I.e., there are n pushes and possibly n pops due to non-determinism. The loop
bounds for l\ and I2 are both n as it is possible to push and pop only n elements i n total .
The corresponding labeled transition system is on the right w i th n and T2 being the back-
edges of interest. Note that assignments without effect such as i = i are omit ted here.

upper bound on how many times the control flow can return back to the loop header of an
analyzed loop v i a any back-edge. More specifically, the loop bound for the while loop £1
in Figure 3.1 corresponds wi th the m a x i m u m amount of times the back-edge transi t ion T2

(the only back-edge for li) can be possibly taken to return back to the loop header. Clearly,
by summing up a l l loop bounds of one function, the to ta l upper bound for the execution
cost is obtained.

Needless to say, the real difficulty lies i n obtaining these loop bounds i n the first place
and the analysis that computes them has several phases. F i rs t , an abstraction algori thm
is applied to a so-called labeled transition system (LTS) which is a type of control flow
graph. The abstraction algori thm takes an L T S representation of a program as input and
transforms it into a different type of control flow graph called difference constraint program
(D C P) w i th guards over integers Z. These guards are then removed i n the second phase
when DCP with guards is further abstracted to a regular DCP over natural numbers N.

28

1: S t a r t s i m p l e _ l o o p
FormaIs: n : i n t
L o c a l s : i : i n t

1
8: DeclStmt

VARIABLE_DECLARED(i:int)
n$3=*&n:int
*&i:int=n$3

6: Prune (f a l s e ,
__PRUNE(!(n$0 > 0)

whi l e)
f a l s e) _

2: E x i t simple loop

4: BinaryOperatorStmt: GT
n$0=*&i:int

5: Prune (t r u e , w h i l e)
PRUNE((n$0 > 0), t r u e)

7: UnaryOperator
n $ l = * & i : i n t

* & i : i n t = (n $ l - 1)

Figure 3.2: The native Infer C F G of a t r i v i a l simple_loop example wi th single while loop
that decrements variable i = n un t i l zero. Infer C F G statement nodes contain lists of low-
level S IL instructions (see Section 2.3) and edges do not contain any data. Meta-instructions
were omit ted for the sake of clar i ty

Final ly , i n the last phase, the DCP over N is used as an input for the bound algorithm
that computes loop bounds. The bound algorithm itself comprises of few steps which w i l l be
briefly described i n 3.1.8. This abstraction procedure is the same as the one that the original
L O O P U S tool performs but Looper has to perform one more addi t ional preprocessing step
at the beginning to obtain the in i t i a l L T S graph from the Infer C F G . The following sections
w i l l cover ind iv idua l abstraction stages in more detail .

3.1.1 Construction of Labeled Transition System

The first step is to transform the the native Infer C F G to the L T S program used as starting
point for the abstraction algori thm. The Infer C F G is defined as follows:

Definition 3.1.1 (Infer Contro l Flow Graph) . Let C = (Nc, Ec,ns,ne) be Infer C F G
(directed labeled graph), where Nc is a finite set of nodes, ns and ne are the start and exit
nodes and EQ C NC x NC is a finite set of edges. We write n\ —>• ri2 to denote an edge
(711,712) £ EQ. Let type(n): NQ —>• {start, exit, prune, join, statement} be a function
which maps the node n G Nc to its node type. Addi t ional ly , let Is be a set of a l l SIL
instructions and finally, let instr(n): Nc —> 2Xs be a function which maps the node n to
a set of SIL instructions contained in this node.

A start node represents the entry point of a function, exit node is the exit point of
a function, prune node is the first node in every program branch and contains the informa
t ion about branching type, condit ion and whether it is true or false branch. Furthermore,
join node merges two or more program paths (two C F G edges) together and finally the

29

statement node is a regular node without any special s t ructural semantics. Note that con
trary to the in i t i a l intui t ion, instructions can be contained not only in statement nodes but
also in nodes of any type. A n example of Infer C F G obtained from a t r i v i a l code wi th
a single while loop can be seen i n Figure 3.2.

These Infer C F G s serve as a start ing point for the analysis i n Looper which transforms
them into L T S graphs that in tu rn served as the start ing point of the original L O O P U S tool
that inspired Looper . L O O P U S programs, visual ly represented by L T S graphs, are formally
defined as follows:

Definition 3.1.2 (Program [32]). Let E be a set of states. A program over E is a directed
labeled graph V = (L,T,lf,,le), where L is a finite set of locations, € L is the entry
location, le £ L is the exit location and T C L L is a finite set of transitions. We
write l\ A> \<i to denote a transi t ion (li, A, I2) £ T. We cal l A £ 2 S x S a t ransi t ion relation.

Informally, a run of V is a sequence of transitions that starts at lb and ends at le in
case of complete run. Note that it is important to dist inguish between transitions T = h \
I 2 6 T and transi t ion relations A = (o~i, 02) £ 2 s x S , where l\, I2 are program locations (see
Figure 3.1) and 01,02 are program execution states containing values of integer variables
at a specific program location. For example, the T3 t ransi t ion from Figure 3.1 is labeled by

! > 0 A ! = i - l A j = j - l ,

which encodes the following transi t ion relation:

A = {(a, a') e 2 S x E | a(i) > 0 A a'(i) = a(i) - 1 A a'(j) = a(j) - 1},

where a(i) and cr'(i) denote the value of variable i i n state a before and after assignment
respectively.

The ma in difference between the Infer C F G and L T S graphs is where and how they
encode program instructions. Compar ing the graphs i n figures 3.1 and 3.2, it is immediately
noticeable that Infer stores program instructions in nodes whereas L T S stores them in
edges wi th a very different encoding and the only information stored i n L T S nodes is the
corresponding source code location. Moreover, due to the inherently lower level abstraction
that Infer uses, the Infer C F G s are comparably more verbose. This generally results in
graphs w i t h a higher number of nodes (containing more instructions) leading to a more
complicated structure overall.

Thus, the two main goals of the transformation algori thm is to construct an L T S wi th
a less complex structure out of Infer C F G and at the same time interpret the low-level S IL
instructions to construct assignments and conditions which label L T S edges. The abstrac
t ion a lgori thm implemented in Looper piggybacks off of the Infer abstract interpretation
framework to achieve both goals. In particular, the framework visits a l l C F G nodes i n an
order (for example W T O , see Section 3.2) that typical ly minimizes the number of widening
points which leads to higher precision and efficiency. Moreover, instructions of a l l visited
nodes are interpreted (possibly several times) by the framework. The general idea of the al
gori thm is to take advantage of this traversal to observe visi ted nodes and create L T S nodes
when needed. More specifically, a start node is created at the beginning and remembered as
a last created node. W h e n either a prune or join C F G node is encountered, new L T S node
is created, connected by an edge wi th the previously created one and remembered as new
last node. A l l statement nodes between these two points are el iminated i n the L T S graph

30

and their contained instructions are transformed into assignments and conditions that w i l l
label the new edge. This process repeats itself un t i l the L T S graph is complete.

This is a very high level overview of the a lgori thm that skips over many important
details and optimizations such as how redundant edges are eliminated, how back-edges
are detected or how mult iple join nodes are merged together in L T S graphs to simplify
the resulting structure as much as possible. A s such, it is recommended to see [27] for
more details and better understanding. The main issue wi th this approach is the nature
of abstract interpretation itself, where many C F G nodes are visi ted repeatedly, joins and
widens are performed and the interpretation continues un t i l a fixpoint is reached. Moreover,
by Infer design the analysis has no access to the underlying graph structure and can only
access the current node and its instructions without any knowledge of graph predecessors or
successors. Th is further complicates the transformation algori thm and led to many hacks
being implemented i n the end.

3.1.2 Construction of guarded D C P

Assuming that a val id L T S graph was obtained in the previous step, the first abstraction
phase yielding a guarded DCP graph is performed next. Edges i n D C P graphs are labeled
by so-called difference constraints that are defined as follows:

Definition 3.1.3 (Difference Constraints [32]). A difference constraint over A is an
inequality of form x' < y + c w i th x G V , y G A and c G Z . B y DC (A) we denote the set of
al l difference constraints over A .

The V , C and A = VUC a l l denote finite sets of variables, symbolic constants and atoms
respectively. Informally, a l l function parameters and expressions over parameters (possibly
including constants c G Z) are considered to be symbolic constants. Perhaps unintuit ively,
the V set i n reality not only includes atomic program variables but also variable expressions,
meaning that expressions such as n — i, where n G C and i G V , belong to the V set because
they contain at least one variable. Defined this way, difference constraints clearly allow
increments, decrements (x' < x ± 1) and resets (x' < n) to be expressed. W i t h this in
mind, the guarded DCP programs obtained at the end of this abstraction step are defined
as follows:

Definition 3.1.4 (Guarded Difference Constraint Program [32]). A guarded dif
ference constraint program (guarded D C P) over A is a directed labeled graph AVG =

(L, E, lb, le), where L is a finite set of vertices, G L and le G L and E C Lx2v x 2 D C ^ x L

is a finite set of edges. We write h h to denote an edge (h,g,u,h) G E labeled by
a set of difference constraints u G 2 D C ^ and guards g G 2 V . We use the notat ion l\ —>• I2

to denote an edge labeled by an empty set of difference constraints and no guards. AVG is
fan-in-free, i f for every edge £1 ^—t I2 G E and every v G V there is at most one a £ i and
c G Z such that v' < a + c G u.

Informally, edges in guarded DCP programs are labeled solely by conjunctions of differ
ence constraints and guards instead of conjunctions of assignments and conditions. More
over, guards are subsets of V and their semantics are simple: the transit ion £1 I2 G E
can be executed only if Vv G g. <J\(v) > 0, i.e., if values of a l l guards are greater than zero
in the program state o\ at the associated locat ion l\. Intuitively, the need for guards is due
to the fact that variables in regular DCP programs without guards can only take values
over natural numbers N whereas variables i n guarded DCP programs can take any value

31

from Z. A s such, guards are exploited by the abstraction algori thm in the next phase to
obtain a DCP over natural numbers. The guarded DCP of tarjan example can be seen in
Figure 3.3

A brief note on the transi t ion semantics: when l\ I2 £ E of AVG is executed,
V(x ' < y + c) £ u. 02 (x) < o"i(u) + c, i.e., the value of variable x i n program state 02 at
location I2 after executing the transit ion is bounded by the value of the expression y + c in
the program state o\ at the location £1. The scope of this work does not allow for a more
rigorous definition of the syntax and semantics of difference constraints, guards and DCP
programs so please refer to [32] for more details.

The main goal of this abstraction step is to transform the assignments and conditions
labeling each edge i n the L T S program to difference constraints and guards. This is achieved

3>0
T l \) J = J - 1

Figure 3.3: Compar ison between the L T S and guarded DCP graphs of tarjan [32] example.
The assignments and conditions labeling edges of L T S graph are used to derive difference
constraints and guards labeling edges of D C P graph. Graphs are structural ly equivalent.

in several steps using the concept of so-called norms. N o r m is an integer valued expression
that can be used to symbolical ly bound the number of iterations of a loop. B y observing
how the value of certain norms changes during the execution of a program, it is possible to
determine the overall bound on the complexity.

Obtaining Initial Set of Norms iV

The first challenge is how to obtain an in i t i a l set of norms which w i l l lead the subsequent
abstraction process. The [32] describes a general outline of the idea but doesn't delve into
details. However, the main idea is to focus on loop conditions and extract an in i t i a l set of
norms from them because complexity in imperative programs stems from iterating loops 1 .
The first version of Looper implemented a rudimentary algori thm which solves this problem
for a very l imi ted subset of example programs presented i n [32]. It is important to note
that regardless of a specific implementation, the process of choosing the in i t i a l set of norms
is inherently based on heuristics and the in i t i a l choice affects the outcome of the bound
algori thm itself.

Looper tries to construct the in i t i a l set by extracting potential norms from boolean
conditions of each Prune instruction. It considers only conditions of form a > b or a > b
which can be transformed into equivalent conditions a — b > 0 and a —6+1 > 0 respectively.

1Looper does not support analysis of recursive programs.

32

B y omit t ing the condit ion part "> 0" and making it impl ic i t , norms a — b and a — b + 1
are obtained. Intuitively, the value of a norm thus semantically expresses the distance from
zero. W h e n Looper encounters a loop header condit ion of such form, it extracts a norm and
places it directly in the set of in i t i a l norms 2 . Norms extracted from branching conditions
along a loop path that involve some loop counter variable are first placed into a set of
potential norms. A potential norm can be confirmed by a S t o r e instruct ion that either
increases or decreases the value of such norm. The first version of Looper detected only
t r iv ia l increments or decrements of form e = e ± c, where e G V and c G Z. This allowed
Looper to analyze a l l of the examples from [32] but greatly l imi ted its usabil i ty in more
realistic settings. Note that Looper builds the in i t i a l set of norms as a byproduct of the
L T S construction when it interprets S IL instructions contained i n function's C F G nodes.

Abstract ing Transitions

The basic idea is to symbolical ly execute transitions of an L T S graph and construct differ
ence constraints as follows:

V/i 4 l2 € T. Vei G N. e[< e2 + c,

where e2 is obtained from e\ by simple substi tut ion of the assignments in A. E .g . , i f
ei = x + y and x = x + 1 G A then e2 = (x + 1) + y. Clearly, new norms can be created
during this process and the whole process has to repeat un t i l the set N stabilizes. The
goal is to keep the final number of norms at m i n i m u m while not negatively affecting the
outcome of the bound algori thm. A s such, new norms are only created if it is not possible
to reuse some already existing ones when deriving a difference constraint. Th is is not only
a form of opt imizat ion but i n most cases a necessity due to possible non-termination of this
algori thm if new norms are constantly generated. Consider the previously shown simple
example of a transi t ion wi th assignment x = x + 1 and the norm e\ = x + y. A new norm
62 = (x + 1) + y is obtained through substi tut ion and subsequently used again yielding
yet another norm e% = ((x + 1) + 1) + y. Clear ly this can repeat ad infinitum resulting in
non-termination unless norms are reused.

For simplicity, original Looper implemented support for few specific types of norms and
assignments because wr i t ing a sufficiently general substi tut ion algori thm wi th abi l i ty to
detect sub-expression norms proved to be non-tr ivial . The ma in difficulty lies i n detecting
sub-expression norms wi th regards to the associativity and commutat iv i ty properties. To
circumvent this difficulty, the handling logic for specific norm types such as x, x — y, c — x
and similar was hard-coded. This logic would transform each norm after subst i tut ion into
a canonical form e+c, where e G A is a symbolic expression and c G Z is separated constant
part. Such canonical form made it easy to detect if a part of an expression is equal to some
already existing norm.

More detailed description of the abstraction procedure including pseudo-code algorithms
can be found i n [27]. It shows how the complete sets of difference constraints are constructed
for each D C P edge and the main processing loop which deals w i th newly generated norms
unt i l the final set of norms stabilizes.

2During the abstraction phase Looper optimistically assumes that loops terminate and as such it expects
that the value of extracted norm will be updated in the loop body.

33

Derivation and Propagation of Guards

Guards are derived after the derivation of difference constraints i n the previous step. In
formally, guards of a transi t ion are norms that are guaranteed to have value greater than
zero when performing the transit ion. Looper used Z3 smt-solver to derive guards for each
ind iv idua l D C P transi t ion locally, i.e., it is not used for any form of a whole program anal
ysis. Z3 is s imply used to determine whether the conditions present on an L T S edge imply
that value of a norm e w i l l remain greater than zero after taking the transit ion, i.e.,

VZi 4 h € T. Ve € N. (/ \ c) e > 0,
c e C A

where C\ is a set of conditions present on the transi t ion A.
After the in i t i a l derivation of guards, addi t ional post-processing guard propagation step

is performed. The main idea is to create a guard set intersection for a l l incoming edges of
a location I € L:

G = n 9
q,u

V Z i — H e E
Addi t ional ly , the intersection set G is pruned to not contain any guard e which is decre
mented on any of the incoming edges

gp = {e £ G | $ h I. e < e — c G u}

Final ly , the propagated guard set gp is added to the in i t ia l ly derived set of guards g for
a l l outgoing edges. Intuitively, if the same guard holds for a l l incoming edges then it must
hold for an outgoing edge too unless there is a possibil i ty that it might be decreased on one
of the paths.

Looper implemented the propagation a lgor i thm through iterative DFS traversal of the
D C P graph which terminates as soon as the guard sets of a l l transitions stabilize and no
new guards are being propagated. The algori thm is described through pseudo-code i n more
detail i n [27].

3.1.3 Construction of regular D C P

The last abstraction step consists of using the obtained guard sets to transform the guarded
DCP into a regular DCP defined as follows:

Definition 3.1.5 (Difference Constraint Program [32]). A difference constraint pro
gram (D C P) is a guarded DCP w i th the finite set of edges E redefined as follows:

ECLx 2 V C { A) x L,

where u £ 2 D C ^ is a set of difference constraints w i th valuation over natural numbers N.

This transformation consists of constraining the valuation range of difference constraints
to natural numbers Z by leveraging the guard sets and el iminat ing them i n the process.
The process is straightforward: every difference constraint e'x < ei + c is transformed either
to [ei]' < [e<2\ + c i f c > 0, or [ei]' < \e^[— 1 i f c < 0 and e2 £ g or [ei]' < \e^[i f ei ^ g where
[x] = max(x , 0). A s a consequence, bo th sides of any difference constraint are guaranteed to
have values greater or equal to zero even if the value of a norm is decremented on a certain
edge. Loop bounds derived in later stages are obtained through syntactic manipulat ion of

34

expressions which originate from difference constraints and it is thus necessary to ensure
the valuation over Z as a bound wi th negative value obviously would not be sound.

The implementat ion of this abstraction step i n Looper is t r iv i a l and closely follows the
described algori thm. A n example of guarded DCP for the tarjan running example can be
seen in Figure 3.4.

[«r < w

» ir

3>0
T i t) f < j

[«r < w - 1

- 1

Figure 3.4: Compar ison between the guarded DCP and D C P over Z graphs of tarjan [32]
example. Regular D C P does not contain any guards and the valuation of a l l difference
constraints is over Z w i th the use of [x] = max(x, 0) operator.

3.1.4 Bound Analysis Preliminaries

The author of [32] first presented a basic version of the bound algori thm and then proceeded
to slowly bu i ld upon the main ideas i n order to obtain a more powerful bound algori thm.
More specifically, a bound algori thm for the special case of syntactically restricted vector
addition systems3 (VASS) was presented first, followed by an extended algori thm for DCPs
wi th constant resets 4 and finally the complete a lgor i thm for full D C P s was introduced at
the end. Addi t ional ly , various precision improvement techniques such as chained resets or
flow-sensitive reasoning were discussed i n the subsequent sections.

Author ' s motivat ion behind this intentionally more didactic approach was to slowly
bu i ld in tui t ion start ing from the simplest possible version of the a lgori thm i n order to fully
understand the inner workings before introducing a new concept. Unfortunately, the scope
of this works does not allow for such approach and it is thus recommended to refer to [32] for
more in tui t ion behind the development of each concept. A s such, this chapter w i l l instead
first introduce the foundational bui ld ing blocks of the complete bound algori thm without
focusing too much on the underlying in tui t ion which w i l l become apparent after gradual
piece-wise introduct ion of the a lgori thm itself.

3 VASS are strict syntactic sub-class of DCPs that allow only monotone difference constraints of form
x < x + c. Non-monotone constraints are allowed only on single initial transition from location lb-

4 DCPs with constant resets additionally allow non-monotone difference constraints x < y + c to be
present on any edge, however, if such constraint is present then y G C, i.e., y must be a symbolic constant.
As mentioned before, only expressions built over formal parameters and constants c G Z are considered as
symbolic constants. The bound algorithm from [32] operates under the assumption that the value of formal
parameters does not change during the execution of a function.

35

Basic Definitions

A t its core, the bound algori thm syntactically differentiates between two different types of
norm updates which are encoded in difference constraint: increments and resets.

Definition 3.1.6 (Increments and Resets [32]). Let AV = (L,E, 1^, le) be a DCP over
A. Let v G V. We define the resets 7Z(v) and increments I(v) of v as follows:

TZ(v) = {(h ^ l 2 , a , c) e £ x i x Z | v ' < a + c G M , a / v}

I(v) = {(h A l2, c) G E x N | v' < v + c G u, c > 0}

Intuitively, a l l difference constraints of form x < y + c, where I / J / are considered to
be resets because we're updat ing the value of the norm x to the value of different norm
y, regardless of the constant part c. Th i s type of difference constraints corresponds wi th
our natural idea of assignments that set the value of a variable to the value of different
variable such as x = y. Similarly, increments also correspond wi th our natural idea of
assignments that increment the value of a variable such as x = x + 5. This assignment is
represented by the increment difference constraints x < x + 5 . Technically, bo th resets
and increments X(v) of v are sets of edges where the variable is either reset or incremented.

B o t h resets and increments are required during the computat ion of a bound for a cer
ta in transit ion. Looper heavily leverages the common practice of caching from dynamic
programming and computes these sets for ind iv idua l variables on-demand to avoid unnec
essary computat ional overhead. The cache is defined as following par t ia l function:

X:V ^ (E x AxZ, £ x N) ,

which maps a variable v to its reset and increment sets. A n example of such cache is this:

,) = / ({ } , { & ^ ' 3 , 5) }) i f v = x

l({(*2 Afe ,*,2)}, {}) i f v = y

W h e n the resets or increments of a variable x are demanded, Looper first checks whether
the cached results already exist and if not then it iterates over a l l DCP edges and for each
edge over a l l difference constraints. Simple syntactic check is performed for each difference
constraint to determine whether it is a reset or increment and new element is added to
lZ(x) or I(x) respectively i f so. F ina l ly , a new mapping of x —>• (JZ(x), I(x)) is added to
the cache.

Definition 3.1.7 (Counter Notat ion I [32]). Let V = (L,T,lb,le) be a program over E .

Let r G T. Let p = (l^, (To) (h, o~i) —^ • • • be a run of V. B y #(r , p) we denote the
number of times that r occurs on p.

Definition 3.1.8 (Counter Notat ion II [32]). Let V = (L,T,lb,le) be a program over

S . Let r G T. Let p = (lb, oo) ^ > (h, &\) —^ • • • be a run of V. Let e: E —>• Z. B y 1 (e, p)
we denote the number of times that the value of e decreases on p, i.e.,
4- (e,p) = |{» I e(pi+i) < e(pi)}\

Definitions 3.1.7 and 3.1.8 establish the notions of t ransi t ion execution counter and
norm decrease counter. Note that 3.1.7 counts only the number of times that one specific
t ransi t ion r is executed over the run p. O n the contrary, the norm decrease counter 3.1.8
counts the total number of times that the value of e decreases on any transi t ion of program
V. The notion of these counters is necessary to define the concept of local bound:

36

Definition 3.1.9 (Local B o u n d [32]). Let V = (L,T,l^,le) be a program over E . Let

r G T. Let e: E —>• N be a norm that takes values i n the natural numbers. Let p =

(Z&, do) (Zi, <J\) —^ • • • be a run of V. e is a focal bound for r on p if it holds that

(r , p) < l (e , p) .

Informally, norm e over natural numbers is a local bound for r on a run p if r is
executed less times than the number of times the value of e decreases. A s was mentioned
previously, it is important to keep in m i n d that #(r , p) refers to the to ta l number of
executions of r , whereas \. (e,p) refers to the number of decrements of e, regardless of
transit ion. Intuitively, the symbolic expression of a local bound norm l imits the number of
executions of one t ransi t ion local ly in isolation. Meaning, the local bound e is only val id
under the assumption that no transi t ion that increases the value of e is executed i n the
meantime.

Example 3.1.1. Consider the previously seen DCP graph of the running example tarjan:

h

[«r < m

h -

h

n (J b ? < b 1 - i

Figure 3.5

Following definition 3.1.9, norm [j] represents the local bound for the transi t ion n be
cause it l imits the number of executions of T\ as long as the transi t ion T3 which increments
the value of [j] is not executed. Alternat ively, the norm[j] decreases wi th each i terat ion of
loop I2 which can be repeated only i f j > 0. Meaning, the number of consecutive iterations
of loop I2 is l imi ted by the norm [j]. However, norm [j] does not l imi t the to ta l number of
executions of I2 because it can be incremented on transit ion T3 and therefore it is not an
overall transition bound. Instead, [j] is merely a local bound.

The concept of local bounds is crucial as it stands at the core of the bound algori thm
which s imply tries to reason what is the overall amount by which the value of a local bound
e can increase over the execution of a program. It does so by observing how many times
and by how much each t ime can the value increase.

The main idea of the bound algori thm can be intui t ively understood as a calculation
of cumulative potential for the local bound e which represents the overall transition bound.
Note that a l l decrements of form [x] < [x] + c, where c < 0, are transformed into [x] < [x] — 1
during the abstraction process. I.e., only decrements by one 5 can be present i n DCP

5This is of course a sound approximation which only leads to less precise upper bounds.

*• I a

[«r < w -1

37

programs. This implies that the to ta l potential n of a local bound can be decreased n times
by 1 before it reaches zero which is why it corresponds w i t h the to ta l transition bound.

Definition 3.1.10 (Local B o u n d M a p p i n g [32]). Let AV = (L , E, lb, le) be a DCP over
A. Let p = (lb, CQ) (l\, a{) —k~ • • • be a run of AV. We cal l a function £ : E —>• Expr(A)
a local bound mapping for p i f for a l l T € E it holds that either

1. C (R) £ Expr(C) and [C(^)](co) is a bound for r on p or

2. C (R) ^ V and [C (T) | is a local bound for r on p.

We say that £ is a local bound mapping for AV i f C is a local bound mapping for a l l runs
of AV.

Informally, local bound mapping is a function that maps non-loop transitions to their
transition bounds and loop path transitions to their local bounds. Intuitively, a non-loop
t ransi t ion r can be executed exactly once, therefore £ (T) = 1. Note that 1 G Expr(C). The
construction of a local bound mapping is performed before the bound analysis itself which
needs to have the knowledge of local bounds for a l l DCP transitions before it can be run.
A s discussed previously, local bounds lie at the heart of the bound analysis so a local bound
mapping represents a starting point.

3.1.5 Finding Local Bounds

The previous local bound definitions d id not concern themselves wi th the question of how
to construct a local bound mapping and how to implement an a lgor i thm solving this prob
lem. The three-step algori thm presented in [32] uses the concept of strongly connected
components^ (S C C) to determine the in i t i a l local bound mapping.

Let AV = (L, E, lb, le) be a DCP. Let S be a set of a l l S C C s of P. The algori thm
assumes that a l l S C C s for the input DCP graph have been previously computed. Looper
uses the ocamlgraph l ibrary to perform this step. F ina l ly , the a lgori thm steps are following:

1. VT € E : $s € S. T € s = > • £ (T) = 1- Informally, a l l transitions that do not belong
to any S C C from S (i.e., non-loop transitions) have their bound set to 1 as they can
be executed exactly once. Looper s imply iterates over a l l DCP transitions r G E
and for each edge checks whether it is part of any S C C from S using the ocamlgraph
library.

2. Accord ing to [32]: Let v G V. We define £(v) C E to be the set of a l l transitions
r = h A h G E such that v' < v + c G u for some c < 0. For a l l r G £(v) we set
Q(T) = v. Informally, i f a t ransi t ion r on a loop path decreases the value of a norm
v, then v is the local bound for r .

The actual implementat ion follows this formal description closely: Set D = { l\ A
I2 G E J v' < v + c G u, c < 0} is computed for every norm v G iV by i terating
over a l l DCP transitions and performing a simple syntactic check over a l l difference
constraints. Next , £(v) —>• D is implemented by adding a key-value pair into a Map
data structure. F ina l ly , VT G D : £ (T) = v which is done as a side-effect dur ing the
construction of every D. Note that Looper does not use a dedicated Map data structure
to hold the local bound mapping, instead it stores the local bound information in each
indiv idual DCP edge data structure.

6 A strongly connected component of a directed graph is a sub-graph in which every vertex is reachable
from every other vertex, i.e., any two vertices of a SCC are connected by a path.

38

3. Lastly, according to [32]: Let v G V and r G E. Assume r was not yet assigned
a local bound i n previous steps. We set £ (r) = v, if r does not belong to any S C C of
the directed graph (L , E') where E' = E \ £(v) which is the C F G of AV where the
transitions £(v) (computed i n the previous step) were removed.

Intuitively, any remaining transi t ion r that has not been assigned w i t h a local bound
yet must be a part of some S C C , i.e., its execution depends on the uninterrupted loop
path of loop I which corresponds wi th such S C C . Further, i f I ceases to be a loop when
transitions £(v) are removed, then it implies that v is local bound of loop I. Then it
follows that v must also be local bound for r due to the execution dependency of r
on I.

The implementat ion first removes £(v) transitions from the original AV~ for selected
v € J V , then recalculates the S C C s of such modified graph and finally observes which
transitions cease to be part of any S C C . Those transitions are assigned wi th the
local bound v. Looper systematically repeats this process for each v G N un t i l a l l
transitions have a local bound.

A s [32] notes, it is possible that more than one local bound might exist for a single
transi t ion wi th this algori thm. Looper adopts the same greedy approach as [32] and chooses
the first viable option. Unfortunately, this approach can lead to not only lower precision but
also a failure of the subsequent bound analysis if a wrong local bound is chosen. It would
be more suitable to adopt a more systematic approach and backtrack in case of failure.

3.1.6 Variable Flow Graphs

Withou t any preprocessing done to the input DCP graph, the bound algori thm is flow-
insensitive, which means it does not take into account that i n many cases the value of
a variable cannot flow from one program locat ion to another. This imprecision frequently
occurs when a variable is incremented or reset to a value at a later program location which
affects the analysis of a loop bound at an earlier program locat ion even though value cannot
flow backwards. Consider the simple example i n Figure 3.6a:

Clearly, the value of z at locat ion \<i can never flow back into z at l\ but the bound
algori thm has no knowledge of this fact as it is not encoded i n regular DCPs in any way.
To resolve this issue, Looper uses so called variable flow graphs (V F G) introduced i n [32]:

Definition 3.1.11 (Variable Flow G r a p h [32]). Let AV = (L,E,lb,le) be a DCP over
A. We cal l the graph wi th node set V x L and edge set

{(y, h) (x, h) \h^-l2£EAx'<y + c e u w i th x, y G V }

the variable flow graph.

A n example of such V F G can be seen in Figure 3.6b. Intuitively, it shows the paths
along which the values of variables can flow in the program. The formal set-builder notat ion
directly translates to the actual implementat ion in Looper: a loop over a l l DCP transitions
l\ A- I2 and difference constraints x < y + c £ u is performed and every difference constraint
is checked whether x, y G V 7 If so, new nodes (y,h), {x,h) and transi t ion between them
are added to the V F G unless they already exist.

7 As was outlined in 3.1.2, norm e is considered to be variable if the AST of expression e contains at least
one program variable which is not a formal parameter.

39

>1

(b) Example of variable flow graph that corre
sponds with the DCP on the left. It is used
to perform preprocessing that renames program
variables which produces flow-sensitive DCP.

Figure 3.6: A n example of a regular flow-insensitive DCP graph 3.1.5 and its corresponding
variable flow graph. Regular DCPs do not encode the variable flow information i n any way
which results i n coarse over-approximations of the bound algori thm leading to a less precise
transi t ion bounds.

Once a V F G graph is obtained, it can be used to rename variables i n the difference
constraints of the original DCP graph. The resulting graph resembles programs i n so-called
static single assignment (SSA) fo rm 8 which also relates to functional programming [1]. Th is
transformation is done i n two steps:

1. A transformation mapping q: V x L —>• V is constructed using the V F G

2. A modified DCP graph AV'(L, E', lb, le) is constructed from AV. New transi t ion set

E' is generated by transforming each transi t ion l\ I2 € E into £1 —t I2 € E', where:

x' < y + c e u =>• q(x, h)' < s(y, h) + c € u,

i.e., every variable norm e £ V that appears i n any difference constraint of AV is
renamed using the transformation mapping <j, yielding AV'.

The <j mapping is constructed as follows: let {SCCi , SCC2,..., SCC n } be S C C s of previously
constructed V F G . Then, SCCi —>• Vj, i.e., every node (v,l) of each SCCi is mapped to an
auxi l iary fresh variable Vj as such <j(v, I) = Vj. In total , n auxi l iary fresh variables are
generated, one for each S C C . Looper uses Infer Pv a r module to generate these auxi l iary
variables.

The second step consists of looping over a l l transitions and difference constraints of
the original DCP and applying the mapping. Note that the mapping function is par t ia l
as it is defined only for variable norms V . Constant norms are thus not renamed which
would be unnecessary i n the first place as no updates or resets are allowed. Looper uses
Map data structure to store the <j function. The resulting flow-sensitive DCP obtained v i a
transformation of the original DCP from Figure 3.6a can be seen in Figure 3.7.

8 Static single assignment form mandates that all variables are assigned only once at the moment of their
definition, i.e., no updates to the variable value are permitted after the initial assignment.

Z' < Z

y'<y

TO

T l

T"2

Z' < Z + 1 ^

y < y - 1 T 3

z' < n
y' < n

z' <z

y'<y

•+ L

(a) Example of a DCP program where flow-
insensitive bound algorithm causes imprecision
because it assumes that values from location I2
can flow back into l\.

40

h

z[< n

y'i < n

Z'2 < Z\

y'i < yi

• le

Figure 3.7: A n example of a flow-sensitive DCP that encodes the flow information v ia
variable renaming using a VFG. It resembles programs i n the single static assignment form
and does not allow backward flow of values, i.e., variable updates at later program locations
do not affect the variable at earlier locations.

3.1.7 Reset Chain Graphs

The basic bound algori thm presented i n [32] uses the concept of variable resets TZ(v) to
reason about the possible bounds for values of variables. However, reasoning solely based on
these resets without any addi t ional context is another source of coarse over-approximation
which often leads to transi t ion bounds wi th higher asymptotic class. Reasoning about
possible sequences of resets instead of isolated resets greatly improves the precision of the
algori thm. For example, two assignments y = x and z = y form the x —>• y —>• z reset
sequence. To be able to systematically reason about a l l possible reset sequences, Looper
uses the concept of reset chain graphs (R G) defined as follows:

Definition 3.1.12 (Reset C h a i n G r a p h [32]). Let AV = (L , E, lb, le) be a DCP over A.
The reset chain graph or reset graph of AV is the directed graph Q w i th node set A and
edges

8 = {(y, r, c, x) | (r, y, c) G Tl(x)} CAxExZxV,

i.e., each edge has a label in E x Z. We cal l Q{A,S) a reset chain DAG or reset DAG
if G(A,£) is acyclic. We cal l G(A,£) a reset chain forest or reset forest i f the sub-graph
Q(V,£) is a forest. We cal l a finite path

7~n i Cn 7~n — 1; — 1
K = &N > a „ _ i > . . . a 0

i n Q w i th n > 0 a reset chain of AV. We say that K is a reset chain from a „ to ao. Let
n > i > j > 0. B y K\ij] we denote the sub-path of K that starts at a, and ends at a^. We

Z[< Zi

y[< yi

TO

e h
T l

r2

Zo < Z2 + 1 ^

y2 < yi - 1 r 3

41

define several helpful functions as follows:

in(n

C (K) = > 'a
n

i=l

trn(K) = { r n , r „ _ i , . . . ,T1},

atm(n) = a „ _ i , . . . , ao

atmi(n) = {a G atm(n) | | P (a , v) | < 1}

atm2(n) = {a G atm(n) | | P (a , v) | > 1},

where P (a , v) denotes the set of paths from a to v i n the reset graph. Reset chain n is sound
if for a l l 1 < i < n it holds that aj is reset on a l l paths from the target locat ion of T\ to the
source locat ion of Tj in A P . K is op t imal i f K is sound and there is no sound reset chain *c
of length n + 1 s.t. X[„5o] = Let v G V , by 9l(v) we denote the set of op t imal reset chains
ending i n v.

Intuitively, a reset graph contains a pair of nodes and an edge between them for each
existing reset (r, y,c) G 1Z{x) from the previously defined resets set 3.1.6. The original
P (v) set can be seen as a set of context-free resets of v which is equivalent to a reset chain
of zero length. Reset graphs thus expand the concept of resets to capture more context.
Note that Defini t ion 3.1.12 distinguishes between reset graphs and reset DAGs (and also
forests) but a l l reset graphs derived from flow-sensitive DCPs using the variable flow graph
are natural ly acyclic by construction so when a reset graph or forest is mentioned it w i l l be
impl ic i t ly assumed that it is already acyclic.

A n example of a reset graph can be seen i n Figure 3.8. The enhanced bound algori thm
which leverages this reset graph is able to derive the correct linear complexity for the DCP
program on the left. The basic reasoning which leverages only context-free resets from P (v)
is able to derive quadratic complexity. Final ly , the bound algori thm can only consider sound
reset chains i n order to derive sound t ransi t ion bounds. W h e n considering Figure 3.8, bo th
reset chains

n > r > p, and

L) > r > p

are sound according to Defini t ion 3.1.12 because the only a tom between the beginning and
the end is r and it is reset on a l l possible DCP paths from £3 (target location of T2) to I2
(source locat ion of T 2) . Intuitively, if some variable along a reset sequence is not always
reset (for example due to condit ional execution) then it invalidates the whole reset chain
because the value might not propagate along the entire path. Optimal reset chains are
the longest possible sound reset chains. The bound algori thm only considers optimal reset
chains, i.e., the reset chain r —̂ > p is not considered because the aforementioned longer
sound reset chains exist.

B y nature, the construction of reset graphs from the reset sets P.(v) is t r iv i a l in both
theory and implementat ion. O n the contrary, the a lgori thm for determining opt imal reset
chains is non-t r ivia l as it has to use both DCP and reset graphs. Looper implements a non-
opt imal two phase algori thm which leverages the ocamlgraph l ibrary. The first phase is
about finding a l l possible max ima l reset chains by traversing the reset graph backwards
starting from the origin node (reset graphs use variable norms as nodes). Th is translates

42

(a) (b)

Figure 3.8: A n example of a DCP graph that requires reset chain reasoning to obtain the
correct linear complexity. The variable p is reset to the value of the formal parameter n
through the variable r on the first execution of the transi t ion T 2 . However, r is set to zero
on T4 afterwards which means p w i l l be set to zero during any subsequent execution of T 2 ,

leading to linear complexity. Looper uses the reset graph on the right to systematically
reason about these reset sequences.

to performing a backwards DFS search and creating a new reset chain whenever a node
without any predecessor is reached. This approach yields a set of reset chains w i th max ima l
lengths. Note that a l l reset graphs are guaranteed to be acyclic so the DFS a lgori thm is
t r iv i a l i n this case. Each ind iv idua l chain is then systematically shortened i n the second
phase un t i l it becomes sound. This ensures that the resulting set w i l l only contain optimal
(longest possible sound) reset chains. The idea is to start from the end of the chain and
check whether each a tom a j is being reset on a l l paths between the two DCP locations
specified i n Defini t ion 3.1.12. I.e., a l l paths between the source location of Tj and target
location of T\ are searched for resets of a j using DFS approach.

3.1.8 Bound Analysis using Reset Chains

Firs t to shortly summarize, the bound algori thm presented i n this section can be applied
to a flow-sensitive DCP which is constructed using the variable flow graph discussed in
Section 3.1.6. Furthermore, a l l optimal reset chains must be found (using the reset graphs
discussed in Section 3.1.7) prior running the analysis. F ina l ly , the local bound mapping (see
Definit ion 3.1.10) which serves as the analysis start ing point has to be established.

Considering these assumptions, the previously described main idea of the bound algo
r i thm s t i l l holds true, albeit the actual definition is considerably more complex due to the
concept of reset chains which supersede the simple context-free resets. I.e., the ma in idea is
to start w i t h the local bound £ (T) of a t ransi t ion r and then t ry to calculate how much the
value of £ (T) can grow i n to ta l over the course of a program run. In simple terms, this is
achieved by reasoning how many times and by how much each time can the value of a local
bound be incremented. The exact formal definition of the bound algori thm is as follows:

43

Definition 3.1.13 (Bound Algor i thm [32]). Let AV = (L,E,lb,le) be a DCP over A.
Let £ : E —>• Expr(A) be a local bound mapping for A P . We define V23: .4 —>• Expr(A) and
TB: E ^ Expr{A) as:

ViB(a) = a, i f a € C, else

V B (v) = I n c r (v) + max (V B (a) + c)
(_,a,c)£R(v)

T B (T) = C (r) , i f C (T) £ V , else

r S (r) = I n c r ((J otmi («)] +
\KG91(C(r)) /

^ TB(trn(K)j x max (y B (m (K)) + C(K), O) + Incr (a tm 2 (n) j
«GJR(C(r))

where T B ({ T I , T 2 , . . . , r n }) = m i n TB{ji) and
l<j <n

Inc r (v) = ^ T B (T) X C , (we set I n c r (v) = 0 for X(v) = 0)
(r,c)GX(v)

Incr(ai, a 2 ,..., a n) = Incr(aj) w i t h lncr (0) = 0
l<i <n

O n the highest level, the bound algori thm is based on the interplay of two mutual ly
recursive procedures TB and VB. The first procedure TB calculates transition bounds
(upper bound on the number of executions of a transition) which i n most cases requires
the knowledge of variable bounds (upper bound on the value of a variable) for certain
variables. Calcu la t ion of these variable bounds is handled by the second procedure VB

which in turn requires the knowledge of transition bounds for certain transitions, hence the
mutual recursion 9 .

The variable bound procedure VB w i l l be discussed first. A s mentioned before, formal
parameters are considered to be constant and the upper bound for a constant is the constant
itself, hence the first case VB(c) = c. The computat ion of the variable bound for a variable
v is based on the simple idea that the upper bound can be determined by adding together
the highest possible in i t i a l value of v and the amount by which it can increase over the
program run. The highest in i t i a l value for v can be determined by using the max operator
over a l l possible reset values. Crucia l ly , the VB procedure has to be called recursively for
each operand of the max operator because the reset might contain another variable whose
upper bound must be used. F ina l ly , the Incr(v) procedure is used to calculate the total
amount by which the value of v can increase. Intuitively, i f a t ransi t ion r is executed TB{T)

times and v is incremented by c each time, then their product must y ie ld the to ta l amount
for t ransi t ion r. Obviously, this has to be done for every transi t ion that increments v, hence
the sum.

To explain the core idea of the TB procedure, it is best to first consider the version
using simple context-free resets instead of reset chains for a while:

TB(T) = I n c r (C (r)) + ^ TB(t) x max (VB(a) + c, 0)
(t,a,c)GW(C(T))

9The issue of termination and the possible causes for infinite recursion are discussed in [32] in detail.

4 4

The procedure starting point for the t ransi t ion r is its local bound £ (T) whose value can
be incremented over the course of the program run. However, the value of £ (T) can also be
reset to the value of a different variable, possibly repeatedly. The Incr(£(r)) part computes
the amount by which £ (T) can increase and the remaining part deals w i t h the possible resets
of C (R) - Intuitively, if a t ransi t ion t contains a reset £ (T) < a + C and t can be executed
TB{t) times, then it follows that the product TB{t) x m a x (F S (a) + c ,0) is equal to the
to ta l amount by which the value of Q{T) can increase through resets. A s before, the upper
bound for the value of a has to be used, hence the VB{a) term.

The TB procedure from Defini t ion 3.1.13 expands on this idea by replacing the context-
free resets from 7Z w i th reset chains from 9t. The basic structure of the formula stays
the same but the introduct ion of reset chains required several changes. F i rs t , the term
Incr((^(r)) was replaced by

Incr(atmi(n)).
« G J R (C (r))

The reasoning behind this change is simple: if a reset chain w i t h atoms aj, where 0 < i < n
is considered, then it is possible that any a tom aj is incremented before its value is passed to
the next a tom a j_ i along the chain v ia reset a j _ i < aj. To accommodate for this possibility,
the extended term accumulates the increments of a l l atoms aj along the chain before it
finally flows into £ (r) which is at the end of the chain. More precisely, it accumulates the
increments only for atmi{n)10 atoms of the K chain.

Furthermore, the term

TB(trn{n))
x max I VB(in(n)) + C(K), 0 J

KG9t(C(T))

also expands on the previously discussed idea about the number of times a reset can be
executed by replacing the context-free resets w i t h reset chains. Two simple observations are
necessary to obtain the in tu i t ion behind these changes. F i rs t , a chain is only as strong as its
weakest l ink, i.e., the number of executions of the entire reset chain sequence is l imi ted by
the lowest t ransi t ion bound of a l l of its transitions. E .g . , i f a t ransi t ion r can be executed
only once and it is part of a reset chain K, then the entire reset sequence of K can be realized
only once. Thus, the TB procedure for a set of transitions is defined as the m i n i m u m of
the ind iv idua l bounds: TB({TI,T2, • • • , T „ }) = m i n i < j < „ TB{ji). Second, the upper bound
for the value of a sound reset chain K w i th atoms aj, where 0 < i < n, is given by the
upper bound of the last a tom in(n) = a n . Intuitively, i f a chain is sound, then the value
from a n w i l l eventually flow into £ (r) through intermediate resets and it is thus sufficient to
calculate the variable bound only for the a tom in(n), hence the te rm VB(in(n)). The term
C(K) accounts for the possible constants Cj i n ind iv idua l reset constraints a j_ i < aj + Cj.

The composit ion of these ideas leads to the final formula for the TB procedure as defined
in Defini t ion 3.1.13. The term Incz(atm2(n)) that was not discussed deals w i th the special
case when a reset graph contains two or more paths connecting some atoms wi th the variable
C (T) . More detailed discussion of this special case (related to the concept of atm\ and atm,2)
as well as the extended explanation of the VB and TB formulas can be found [32].

Looper implements the bound algori thm through several mutual ly recursive O C a m l
procedures whose purpose and implementat ion w i l l be briefly discussed now:

1 0 In this case, the atm\ function returns a set of atoms which are connected to the variable £(T) in the
reset graph at maximum with one path.

4 5

• calculate_increment_sum: Th is procedure implements the

Incr(v) = ^2 TB{T) X C
(r,c)GX(v)

formula which calculates how much the value of a variable v can increase i n to ta l
and it recursively calls the transition_bound procedure. This procedure only imple
ments the symbolic addi t ion and mul t ip l ica t ion of ind iv idua l t ransi t ion bounds w i t h
their associated increment values. I.e., the transition_bound procedure is called for
each ind iv idua l t ransi t ion r i n the increment set I(y) and the result is symbolical ly
mult ipl ied wi th the constant c. The O C a m l fold function is then used to accumulate
the to ta l sum. In reality, Looper implements the more general

Incr(ai,a 2,... ,a„) = ^ Incr(a*)
1< i<n

formula which accepts a set of norms and wraps the computat ion i n one addi t ional
fold function that accumulates the sum of the ind iv idua l a tom values.

• calculate_reset_sum: The second procedure calculates the symbolic value of the

TB^trn(n)^ x max (vB(in(K)) + C (K) , O) + Incr (a t m 2 (n) ^
«GJR(C(r))

reset sum formula. The implementat ion is fairly straightforward as it uses single
fold function over a l l reset chains to accumulate the to ta l value of the sum. The
computat ion is split into three parts for each reset chain.

Firs t , the max term is evaluated by cal l ing the variable_bound procedure for the
final chain a tom in(n) and computing the value of the chain c(n). Reset chains are
represented as lists of reset graph edges so in(n) t r iv ia l ly translates to accessing the
first element of the list. Note that the ocamlgraph edge data structure includes both
source and destination nodes which are equal to the chain atoms. O n the contrary,
the C(K) accumulates the overall reset increase value of the chain by looping through
al l the chain edges wi th another fold function.

Next , the transit ion bound of the trn(n) set is evaluated by cal l ing the transition_bound
procedure for each ind iv idua l transit ion. The results are used as operands in the sym
bolic m i n (. . .) operator as per Defini t ion 3.1.13.

Final ly , the last term Incr (a i m 2 (« ;)) is evaluated by cal l ing the previously discussed
calculate_increment_sum which handles the calculation for the set of atoms atm2(n)
internally.

• variable_bound : This procedure implements both cases of the VB formula:

VB(&) = a, i f a € C, else

VB(v) = Incr(v) + max (VB(a) + c).
(_A,c)eiz(v)

Firs t , the input norm v is checked whether it is a constant or not and the procedure
returns the input norm itself as a bound i n the case of a constant. In the other case,

4 6

the first term is handled by the calculate_increment_sum procedure and the max
term involves folding and recursively cal l ing itself over a l l TZ(y) resets to accumulate
the arguments for the max operator.

• trans i t ion_bound: F ina l ly , the implementat ion of the transi t ion bound

TB(T) = C (r) , i f C (T) i V , else

T S f r) =Incr I (J atm1(n)\ +

V KGJR(C (T)) /

TB^trn(n)^ x max (vB(in(K)) + C(K), O) + Incr (a tm 2 (n)^
« G J R (C (r))

formula is t r iv i a l because a l l the constituent parts are handled by the previous proce
dures so it is only matter of composing the parts together. S imi la r ly to the variable
bound procedure, the local bound ((T) of the input transit ion r is first checked and
£ (T) itself is returned if it is a symbolic constant. The other case involves obtaining
the reset chains 91(C(T)) for the local bound C (r) and computing the

atmi(n)
kSK«(t))

union set which is then passed to the calculate_increment_sum procedure. F ina l ly ,
the reset chains 91(C(T)) are passed as an argument to the calculate_reset_sum
procedure and the results of both calls are symbolical ly added together.

Most of these formulas cannot be directly evaluated when performing intraprocedural anal
ysis and thus the derivation of bounds is done through algebraic manipula t ion of symbolic
expressions. Looper represents the bound expressions wi th Bound recursive data structure
which extends the Exp Infer module wi th addi t ional m i n and max operators and Inf in
finity value. A s these bound expressions can easily explode in size which hinders human
readability, there is also an effort to simplify and possibly minimize the intermediate ex
pressions dur ing the computat ion. In fact, these algebraic optimizations are done not only
during the bound analysis itself but at every step along the way wi th different goals. A t
the beginning, as part of the DCP abstraction phase, the difference constraint derivation
algori thm tries to reorganize the symbolic expressions i n order to extract the constant part
and obtain constraints w i t h the x < y + c form. This process yields more reusable norms
which i n tu rn reduces the to ta l number of derived norms and also increases the chance that
the derivation algori thm w i l l terminate natural ly without the need for forced t e rmina t ion 1 1 .

In comparison, the algebraic manipulations performed during the bound analysis are
more focused on el iminat ing unnecessary terms and overall min imiz ing the bound expres
sion. More specifically, there are several steps that can be done such as unpacking and
deduplicating m i n / max arguments, e l iminat ion of unnecessary max operators and identity
elements w i th respect to addi t ion or mul t ip l ica t ion and more. For example, the bound ex
pression max(max(x , 0), x, 0) can be simplified to max(x, 0) and i f x is an unsigned integer
then the max operator can be el iminated altogether. Further, whole mul t ip l ica t ion terms

1 1 The abstraction loop can be terminated for example when a certain level of recursion is reached or
when the number of norms grows past a certain threshold. However, prematurely terminating the algorithm
might lead to missing some crucial norms necessary for successful bound analysis later on.

47

are el iminated when one of the factors is equal to zero and s imilar ly zero terms are el imi
nated in addi t ion. Note that these optimizations are heuristic i n nature and do not produce
min ima l expressions. A s such, adopting a more systematic approach based on analysis of
expression A S T s or using simplification algorithms available i n external provers such as Z3
would yield better results.

In summary, Looper follows the principles of dynamic programming and caching to opti
mize the bound analysis process. To achieve polynomia l complexity of the bound algori thm,
the X , 1Z, 9t, VB, and TB are a l l computed on demand and cached for repeated use. F ina l ly ,
to obtain the to ta l bound of a function, the TB procedure is called for every DCP back-edge
and the ind iv idua l results are s imply added together.

3.2 Looper's Limitations

The design and implementat ion of the first Looper version was described i n author's pre
vious work [27]. The core ideas and algorithms from the original Loopus tool that Looper
builds upon were successfully implemented and worked as intended i n the first version of
Looper . However, despite the progress that has been made in the context of [27], Looper
struggled wi th performing well on real-world code outside of controlled environment of con
tr ived examples. The last two chapters regarding evaluation and conclusion of [27] were
already dedicated to discussing some of the current l imitat ions of Looper, however, the
major reasons why it d id not perform well i n real-world settings were neither discussed nor
mentioned. This chapter is thus dedicated to the discussion about the major l imitat ions or
design issues that have been observed by the author.

Abstraction Algori thm Limitations

B y far the biggest contributor to the number of analysis failure cases i n the first version was
the unrel iabi l i ty of the Linear Transition System construction algori thm. Looper uses the
so-called Linear Transition System (LTS) graph abstraction to represent analyzed programs
in the in i t i a l phase. Th is representation is subsequently transformed into a different one
but that requires having correct L T S of a program i n the first place. The original idea,
implemented in the first version, was to leverage the Infer abstract interpretation framework
for construction of these graphs. This solution seemed appealing at first due to its perceived
simplici ty but turned out to be more harmful i n the long run. C o m m o n C F G traversal
algorithms wi th node orderings such as W T O [15] or reversed post-order visit certain C F G
nodes mult iple times to apply join and/or widen operators. Th i s is however completely
unnecessary for the purpose of simple graph transformation from C F G to L T S and led to
mult i tude of complications when t ry ing to design a transformation algori thm in the abstract
interpretation framework. In the end, it proved to be unnecessarily complicated and the
final a lgori thm was too unreliable for transformation of complicated loops wi th complex loop
header conditions (Infer C F G represents condit ion conjunctions or disjunctions by multiple
nodes). Moreover, certain language constructs such as switch, goto or continue were
not supported. A s a consequence, most of the cases in which Looper failed were caused
by inabi l i ty to construct a val id L T S which is the starting point for the main analysis
algori thm.

Another related issue wi th the first implementat ion was insufficient modeling of program
instructions and expressions. The algori thm for transformation of integer expressions into
norms and later into so-called difference constraints was at the t ime hasti ly implemented

18

and worked only for a smal l subset of a l l possible integer expressions. O n l y simple program
expressions wi th addi t ion or mul t ip l ica t ion operators such as i = i + 1, i = i * k and
similar were supported. Support for other operators and more complex expressions was
not implemented and Looper would either ignore such occurrences (the better outcome) or
crash. Mos t affected by this were low-level C programs that heavily used bitwise operators
as those have not been modeled at a l l . Moreover, use of data structures and pointers was not
supported by the analysis at a l l either which significantly reduced the number of programs
that was possible to analyze.

Missing Loopus Extensions

So far, Looper does not implement any of the extensions that have been proposed i n [32].
These extensions either improve the abstraction procedure (such as modeling arbi trary
decrements) or the analysis a lgori thm itself and i n most cases lead to tighter bounds. How
ever, i n certain cases it helps the analysis to solve some programs that could not be solved
previously (modeling boolean flags and refining control-flow). The l imitat ions and the so
lutions provided by these extensions are discussed in detail i n [32]. Addi t ional ly , certain
inherent l imitat ions of the difference constraint program (D C P) abstraction have been ob
served by the author when implementing the first version of Looper and that have not been
addressed by any of the extensions. These l imitat ions are caused by the restricted form of
the difference constraints which are able to represent only following relational inequalities:
x' < y + c. Obviously, this abstraction is not able to represent different inequalities involv
ing mult ipl icat ion, divis ion or various bitwise operators in a natural way. There have been
attempts to mitigate this l imi ta t ion i n [32] without changing the expressive power of dif
ference constraints, presumably to ensure soundness that has been comprehensively proved
for the analysis algorithms based on the previously specified form. This approach has sadly
led to "hacky" extensions of sorts which seem to mostly address the symptoms and not
the root cause. Moreover, some of the described extensions were actually not implemented
in the latest version of the Loopus tool leaving them only i n the theoretical plane. These
solutions also seemed to have some gaps i n logic observed by the author of this thesis when
at tempting to implement them in Looper.

It could be worthwhile to examine how possible changes to the expressive power of
difference constraints could enable analysis of a wider range of programs. However, it
would most l ikely be a non- t r iv ia l or even very challenging task to extend the existing
proofs of soundness to these more expressive variants. Implementing these changes without
proving their soundness in the spirit of bug finding approaches but warning the user in
those occurrences could be an interesting compromise.

Error Handling and Recovery

Withou t a doubt one of the l imitat ions impact ing the pract ical usabil i ty i n a negative
way the most is non-existent error handling wi th recovery. This is especially apparent
when analyzing large scale programs wi th hundreds of functions. Currently, when Looper
encounters an error during the analysis of a single function, it throws an exception which
is not handled i n any way causing the analysis of the function to abrupt ly end. Moreover,
if Infer catches an exception thrown during the analysis of a function then it terminates
the whole currently running checker and as a consequence any remaining functions to be
analyzed are skipped by the Infer scheduler. Th is solution is not acceptable for any k ind
of too l intended for pract ical use and it also complicates other aspects related to the tool

4 9

development such as experimental evaluation. Clearly, a reliable tool has to be resilient
and be able to recover from failures which is currently one of the main improvement goals.

Reporting and Differential Analysis

Even i f an analysis is able to achieve good results i n its respective domain, the effort might
be wasted if the results are not communicated to the user i n a clear way. Unfortunately,
issue reporting is one of the areas where Looper was found lacking. It is currently capable
of generating log files that contain the final bound after analyzing a function but the format
is not opt imal . The bound expressions are not simplified or min imized in any way which
leads to sometimes absurdly long expressions that are difficult to parse. Moreover, to find
bound expressions for ind iv idua l loops, one must search through the log file which is not
user friendly. Final ly , the log files do not contain any information about the worst-case
asymptotic complexity O that could be extracted from the concrete bound. Thus, it has
to be determined by the user manual ly i f needed.

Another related major l imi ta t ion is the inabi l i ty to report any changes to the com
plexity of ind iv idua l program parts upon a change when performing subsequent analysis.
Th is so called differential analysis [35] which would allow Looper to track changes of com
plexity between different versions of analyzed program and report issues when detecting
performance degradation has not been implemented yet. The existing Infer C O S T checker
already provides this functionality through managing several J S O N files that serve as pr im
itive database of results. Implementation of a similar differential system, either based on
J S O N files as well or using S Q L database (Infer already uses S Q L database for storing data)
is another major improvement goal.

Interprocedural Analysis

Undeniably the most significant l imi ta t ion of Looper i n its current state is the lack of
support for interprocedural analysis. In theory, it should not affect the abi l i ty to analyze
programs apart from the obvious imprecision. Even then, such analysis could be s t i l l useful
on its own i n the same way that exclusive performance profiling12 is useful i n the field of
dynamic analysis. However, it might not be immediately apparent that the inabi l i ty to
perform interprocedural analysis in fact can also severely reduce the number of loops that
can be analyzed i n otherwise intraprocedural way. The ma in reason are modern range-based
for loop constructs and their variations that are prevalent i n newer versions of commonly
used languages such as C + + , C # , Java or P y t h o n . These constructs sometimes hide the
fact that there are functions being called i n the background to perform the i teration and
even iterator-based for loops i n C + + involve function calls. In conclusion, the inabi l i ty to
perform interprocedural analysis affects not only the precision of the result but i n many
cases the analysis failure rate too.

Related issue is the missing implementat ion of so-called models that would provide
summaries for l ibrary and other functions that either have unavailable source code or that
cannot be analyzed for some other reason. For example, function models are commonly
used by the C O S T checker to model complexity of various container (notably Vectors, Lis ts
and Maps) operations such as lookup or insertion i n C + + or Java. They are also necessary
for analysis of the aforementioned modern loop constructs that involve function calls.

1 2Exclusive profiling considers only the time spent in specific function, excluding the time spent in func
tions called from it

50

Last notable l imi ta t ion of Looper that is related to the previous two issues is the support
of other languages. Th is support should be, at least theoretically, easy to achieve thanks to
the L L V M based Infer front-end module (see Chapter 2.3) that compiles a l l of the languages
supported by Infer into a single intermediate representation. Thus, the intraprocedural
version of Looper should i n fact be able to analyze t radi t ional loops i n different languages
but this remains to be tested. Nevertheless, each language w i l l most l ikely s t i l l require
creation of many new function models to be able to analyze language-specific constructs
and containers.

5 1

Chapter 4

Proposal of Enhancements for
Looper

The author's previous work [27] already provided a brief overview of possible future im
provements of Looper but d id not offer any deeper technical discussion about the specific
ideas. Furthermore, the previous work d id not include any systematic investigation on the
l imitat ions of the first version of Looper or even the original Loopus tool [32]. A s such, the
previous Section 3.2 at tempted to summarize the major issues that were discovered dur
ing subsequent extensive experimentation wi th real-world code. Note that most of these
l imitat ions also apply to the original Loopus tool which is no longer actively developed.
This chapter builds upon the findings summarized in the previous section and discusses
the proposed solutions which mostly a im at enhancing the pract ical usabil i ty and precision
of the analysis. Moreover, the issue of scalabili ty is also considered. This issue was not
discussed in Section 3.2 as it was not possible to evaluate the scalabili ty of the first version
of Looper due to its past inabi l i ty to analyze a vast majority of real-world or even bench
mark code. Chapter 6 then presents an experimental evaluation which demonstrates the
scalability potential by analyzing the evaluation results of the new Looper version which is
finally able to handle enough code to draw any meaningful conclusions from the data.

The remaining part of this chapter is structured as follows: Section 4.1 covers the
replacement of the o ld and mostly hard-coded abstraction algori thm which was one of the
major reasons why Looper could not cope wi th the vast majority of typ ica l C code. The
new abstraction algori thm attempts to alleviate this functional bottleneck which prevented
most code from ever reaching the phase of bound analysis itself.

The following Section 4.2 describes a few addi t ional extensions of the core a lgori thm
which have not been previously implemented i n Looper . Note that some of the extension
ideas were inspired by the original Loopus tool [32] and adapted for the Infer framework.

B y nature of the problem, any static analysis tool is l imi ted when it comes to the
code it can analyze and Looper is no exception. Unfortunately, compared to other more
mature tools, Looper lacked any reliable error handling and recovery mechanisms which
meant that a failure during the analysis of a single function would prevent the analysis of
the remaining code. Th is was another major reason why it was not possible to properly
benchmark, let alone deploy Looper for any pract ical use. Note that this chapter does not
cover the proposed solution but Section 5.2 briefly addresses how these issues were solved
from the implementat ion standpoint.

52

Final ly , Section 4.3 provides an in-depth look at the most significant contr ibut ion over
the original work — the interprocedural extension. The technical discussion included in
that section covers the challenges and difficulties encountered when extending the original
intraprocedural analysis as it provides useful insights into why specific design decisions have
been made. Not only this extension increases the precision of the analysis but it also allows
Looper to handle cases that were previously not supported, such as using the return value
of a function cal l i n a loop condit ion.

The implementat ion details for a l l previously mentioned sections are provided in Chap
ter 5.

4.1 New Abstraction Algori thm

Section 3.2 covered the l imitat ions of the original abstraction algori thm i n detai l and dis
cussed the reasons why it was necessary to replace i t . There were two ma in deficiencies
that had to be addressed:

1. The frequent inabi l i ty to construct the in i t i a l labeled transition system (LTS) graph
from the analyzed function due to functions wi th more complex control flow struc
tures, which frequently posed a challenge for Looper . In most cases, the constructed
L T S graph either had an incorrect structure, or the a lgor i thm failed to produce any
output altogether, resulting i n a crash.

2. Const ruct ing structural ly correct L T S was not enough by itself and deriving val id L T S
edge assignments out of the low-level S I L instructions posed another major challenge.
The SIL intermediate language operates over memory locations denoted by identifiers
Ident. t which can be populated wi th heap or stack values using the Load instruction.
A s such, it was necessary to manually keep track of the values stored i n each identifier
and then subsequently use these values to reconstruct the original program expressions
when interpreting the Store instruction. Most of this handling logic was originally
hard-coded, and Looper supported only basic assignments such as i = x or i = i ±c.
W h i l e this l imi ted support was sufficient to analyze a l l the examples i n [32], real-world
code is significantly more complex and requires handling of pointers, data structures,
and field accesses, among other things.

4.1.1 Manual Construction of L T S

A s discussed i n Section 3.2, the original Looper leveraged the Abst rac t Interpretation frame
work of Infer i n order to construct the in i t i a l L T S . However, this approach was deemed not
suitable for further development and had to be reimagined. Thus a special-purpose ap
proach was adopted instead, and each L T S is constructed by directly traversing the nodes
of an Infer C F G instead of relying on the traversal order of the A I framework. Hence, the
main goal of transforming the Infer C F G from Defini t ion 3.1.1 to L T S from Defini t ion 3.1.2
remains the same but the transformation algori thm is completely new. To illustrate the
proposed solution, a simple code example wi th the corresponding Infer C F G i n Figure 4.1
and L T S i n Figure 4.2 w i l l serve as a running example. These graphs represent the input
and the desired output of the new abstraction algori thm, respectively. The C code example
in L i s t i ng 4.1 presents a modified version of the remove_suf f i x function, which was taken
from the G N U coreutils repository.

53

static void remove_suffix(char *name, char const *suffix) {
char *np = name + strlen(name);
char const *sp = suffix + strlen(suffix);
while (np > name && sp > suffix) {

np—; sp—;
}

}

Lis t ing 4.1: A simple code example extracted from the G N U coreutils repository. It contains
a compound loop condit ion which produces an Infer C F G that Looper could not previously
handle.

A s w i th the first Looper version, it is important for the new abstraction algori thm to
transform the Infer C F G into a val id L T S without losing the branching semantics encoded
by the structure of the original Infer C F G . The most obvious difference between the two
graph types is the fact that the Infer C F G encodes the program computat ion v i a node
labels whereas the L T S encodes computat ion v i a edge labels.

Apar t from this, the structure of both graphs is also very different. The Infer C F G
uses a lot of intermediate nodes whereas the L T S attempts to compress the structure of the
graph as much as possible, frequently merging several C F G nodes into one L T S edge. The
most notable difference is the handling of compound boolean conditions i n loop headers.
Infer decomposes these conditions and creates one C F G branching node w i t h true and
false branches per each atomic condit ion as can be seen i n Figure 3.2 wi th the np >
name && sp > suffix compound condit ion. O n the contrary, the L T S creates a single
branching node per a loop header and stores the entire compound condit ion on the true
edge which enters the loop body. The reason why reconstructing the entire compound
condit ion out of several C F G nodes and storing it on single edge is beneficial and how it is
used to improve precision of transi t ion bounds w i l l be discussed i n Section 4.2. Note that
the first version of Looper d id not support compound conditions at a l l , and the choice of
a local bound norm (these norms were generated from the ind iv idua l atomic conditions)
for the subsequent bound analysis was non-deterministic. The resulting transi t ion bounds
could therefore differ depending on which atomic condit ion was chosen as the basis for the
analysis. A s such, the first Looper version d id not attempt to compress these ind iv idua l
branching nodes into a single node at a l l .

The new abstraction algori thm is based on explicit depth-first search (DFS) traversal of
the Infer C F G which gathers necessary data along the way and creates new L T S nodes and
edges on demand. Note that this section w i l l focus solely on how the correct L T S structure
is obtained, and the interpretation of S I L instructions w i l l be discussed i n Section 4.1.2.
The construction process w i l l be described semi-formally.

The main idea is to transform the Infer C F G C = (NQ, Ec,ns,ne) into the L T S V =
(L,T,lb,le) by accumulating auxi l iary data during the traversal of the Infer C F G and
by creating L T S nodes and edges at certain points dur ing the traversal. The notat ion
out(n), in(n), where n G NQ, w i l l be used to represent the C F G node out-degree and in-
degree, respectively. Addi t ional ly , let M C NQ X L be the set of associations between Infer
C F G and L T S nodes. The transformation starts w i t h in i t ia l izat ion of the sets L = {lb},
T = {}, and M = {}, where lb is the L T S start node. The rest of the transformation process
consists of handling special node types during the DFS traversal.

54

1: S t a r t remove_suffix

I
13: BinaryOperatorStmt: Assign

E
12: BinaryOperatorStmt: Assign

Figure 4.1: The Infer C F G obtained from the modified remove_suf f ix function presented
i n L i s t ing 4.1. The S IL instructions contained i n each node were omit ted for the sake of
clarity.

Handl ing of Branching Nodes

The first type of nodes which needs a special handling are the C F G branching nodes defined
as follows: np G NQ : out{np) = 2. Two examples of such nodes are the nodes wi th IDs 4
and 7 i n Figure 4.1. There are two possible options when a branching node is encountered.

1. Fi rs t , a following notat ion n G n, w i l l be used ctS cl shorthand for

n G {n'p,..., np} where {n'p,..., np} is the set of nodes that appear i n the path
Assume there is a map (n'l') G M where previously rh,

encountered Infer C F G branching node wi th its associated L T S node l'p. Then, let
n'p —>• • • • —>• np be the path between n'p and np which was taken by the DFS a lgori thm.
If it holds that V n G n'p —>• • • • —>• np: type(n) ^ join, then no new L T S node is created
and a new association is established only by setting M' = MU{(np, l'p)}. I.e., instead
of creating mult iple L T S nodes for one loop head wi th a compound condit ion, a single

5 5

B e g i n : remove_suffix

str len(name)
s t r l e n (s u f f i x)

np = (name + Strlen(name))
sp = (s u f f i x + S t r l e n (s u f f i x))

w h i l e (t r u e)
[backedge]

(sp > s u f f i x) &&(np > name)
np = (np - 1)
sp = (sp - 1)

w h i l e (f a l s e)
\(np > name)
I sp = sp

np = np

sp
np

f

sp
np

E x i t

Figure 4.2: The L T S obtained from the Infer C F G in Figure 4.1 using the new abstraction
algori thm.

L T S node is used to represent a l l of the Infer C F G branching nodes associated w i t h
the single loop head.

2. Suppose that 3 n G n'p —>• • • • —>• np such that type(n) = join, or no branching node
n'p was previously encountered. Let I G L be the last previously created L T S node on

the current DFS path. Then a new L T S node lp and an L T S edge I A - lp are created

and the corresponding sets are updated accordingly: V = L U {lp}, T' = T U {I A>
lp}, M' = M U {(np,lp)}. Intuitively, Infer generates only one loop-head per loop
and a join node in this case marks a loop-head. Thus, i f a join node appears on the
path, then it means a new loop was encountered and it is not a case of a compound
condit ion for one loop. Hence, a new L T S node for another loop is created and no
merge is performed.

Handl ing of Merge Nodes

A n y node rij G NQ: in(rij) = 2 A type(rij) ^ join needs a special handling because the
fact that in(nj) = 2 implies that nj w i l l be visi ted twice by the DFS traversal but only
one L T S node wi th two incoming edges should be created. A g a i n , let I G L be the last
previously created L T S node on the current DFS path. W h e n the node rij is encountered

for the first time, a new L T S join node lj and an L T S edge I ^> lj is created. Addi t ional ly ,
a new association (rij, lj) is established, and the sets are updated as follows: L' = L U {lj}

and T ' = T U { i A- lj}. W h e n rij is visi ted for the second time, the association (rij, lj) must

5 6

exist, and no new L T S node is created. However, a new edge is added to the set of edges:

T' = T U {I' \ lj} where I' is the last L T S node created on the second incoming DFS path.
Note that, by definition, Infer C F G join nodes always have two incoming edges wi th

one of them being a loop back-edge. However, the L T S does not require a dedicated loop
head join nodes, and hence the condit ion type(n) ^ join as these nodes are not considered
when creating L T S join nodes. A n example of a node satisfying this condit ion is the exit
node in Figure 4.1.

Handl ing of Exi t Nodes

The last node type which needs special handling is the Infer C F G exit node defined as
follows: ne G NQ : in{ne) > 1 A out(ne) = 0. W h e n the Infer C F G exit node is encountered,
a new L T S exit node le is created and added to the set of nodes L' = L U {le}. A new L T S

edge I A le is also created and added to the set of edges T ' = T U { I 4 l e } where the node
I is defined as before. Even though the C F G exit node can have more than one incoming
edge, the L T S exit node le w i l l always have only one incoming edge. This is ensured by
creating a predecessor L T S merge node lj which merges a l l of the incoming edges first i f
in{ne) > 2. A n example of this construction can be seen i n Figure 4.2.

Detecting Back-Edges

The last issue that had to be solved was the detection of back-edges. The fact that the Infer
C F G always contains a single join node per loop head was leveraged, and the ma in idea is to
detect when a join node is visi ted for the second time. Since V n G NQ : type(n) = join =>
in{n) = 2 and since one of the incoming edges is guaranteed to be a back-edge, the second
visit by the DFS forward traversal, starting from the Infer C F G start node ns, must be
v ia the back-edge. Thus, when the DFS traversal a lgori thm detects a visit of a previously
visi ted node nj G NQ : type(nj) = join, then a new edge r& = I A lp marked as a back-edge
is added to the set of edges T ' = T U {T?,}. The node I is defined as previously, and it holds
that 3(nj,lp) G M.

Note that this section only presented an outline of the solution and that the actual trans
formation process is a bit more involved, including a few addi t ional steps which help wi th
reducing the size of the final L T S . Chapter 5 describes how the abstraction algori thm is
implemented in Looper and provides some more details.

4.1.2 Improved SIL Intepretation

Contrary to the previously described changes to the construction algori thm for the L T S
structure, the S I L instruct ion interpretation core was not completely replaced but rather
improved and extended. In fact, the function exec_instr which used to be plugged into
the A I framework remained mostly the same w i t h some changes to its parameters due to
it now being called during the DFS traversal. This section thus focuses on how the L T S
edge labels are constructed, i.e., how the assignments, conditions and norms are obtained
during the interpretation.

57

Access Paths

The first major change regards the expressions which were allowed to appear on the left-
hand side of L T S assignments. The first version of Looper used the Pvar.t (short for
a program variable) type for the left-hand side which meant that only simple program
variables such as int x could appear on the left. Unfortunately, real-world code often
uses complex memory addressing methods, such as array indexing, nested structure field
accesses, or pointer ari thmetic. These access patterns were previously not supported at a l l
which greatly l imi ted the amount of code that could be analyzed. To alleviate this problem,
the concept of access paths was employed as it was easily available in Infer which already
implements it w i t h the AccessPath module. The concept of access paths, i.e., roughly, the
expressions (such as x.y.z[10]) used to access some value, was briefly discussed i n [17]
along w i t h its l imitat ions, especially when it comes to aliased accesses 1. In short, access
paths serve for a syntax-based representation of heap or stack locations. I.e., an access
expression such as x.y.z[10] (x is a structure variable and y, z are its nested fields w i th
z also being an array) is used to uniquely identify a memory location. Clearly, this is not
precise when one considers that the same access expression can i n fact point to different
memory locations at different points dur ing the execution or inversely that two different
access expressions can point to the same memory location, i.e., alias. However, this is not
of a much concern for this work as the new version of Looper (and M e t a Infer itself) mostly
aims for the bug finding approach discussed in Section 2.1.6. A s such, the issue of aliasing
was mostly ignored. Moreover, as mentioned i n [17], access paths alone are i n many cases
enough to c la im wi th a certain degree of certainty that no aliasing occurs under certain
circumstances. Access paths, as implemented i n M e t a Infer, can be formally defined as
follows [17]:

7T G LT ::= Var x Field*,

where LT is the set of a l l access paths, Var is the set of a l l program variables which can
serve as a base of the access path, and Field is the set of a l l existing field names (structure
fields, class members, etc.). The expression x.y.z[10] can thus be formally wri t ten as
(x,{y,z}).

Edge Expressions

Looper previously leveraged the Exp module provided by Infer to represent assignments and
difference constraint expressions. Due to its l imitat ions, namely not support ing m i n or max
operators and oo values, an addi t ional Bound wrapper module was implemented to extend
the original Exp module. Us ing two different data types for inherently the same purpose,
however, proved to be cumbersome and as such the decision to come up wi th a new solution
was made.

The new version of Looper implements a custom EdgeExp module to represent a l l ex
pressions used during the analysis. I.e., the same data type is used for expressions in
assignments, difference constraints, and derived bounds. To par t ia l ly formalize the Edge
Exp expressions, let T be the set of a l l program types, let T be the set of a l l callable
program functions, let EdgeExp be the set of a l l expressions representable by the new

1 Meta Infer does not implement any kind of alias analysis due to its cost and also because it goes
against their analysis design philosophy, which was briefly discussed in Section 2.1.4. In particular, none of
the existing state-of-the-art alias analysis techniques works compositionally, which is the core principle for
Infer's scalability.

5 8

EdgeExp module, and, finally, let S be the set of a l l function summaries. Section 4.3
w i l l describe how Looper leverages the concept of summaries for interprocedural analysis.
The new recursive data structure then supports construction of arbi t rary expressions us
ing unary and binary operators and addi t ional ly supports the min , max, the str ing length
function strlen(x): II —>• N mapping strings accessed by access paths to their length, and
the type cast function cast(x): EdgeExp x T - > EdgeExp which maps input expressions
to new expressions based on the supplied type. Addi t ional ly , it also supports the function
cal l call(f, args): T x 2 E d 9 e E x p —>• S operator. The atomic terms of expressions can either
be access paths IT G II, constants c G Z, strlen operator function or infinity oo which can
be ut i l ized as the top T value for variable and transi t ion bounds. Conversely, the — oo can
be ut i l ized as the bo t tom _L value for variable bounds.

Assignment Representation

The first version of Looper used the Exp module for expressions i n assignments a which
were previously defined as follows:

a G A ::= Pvar x Exp

where A is the finite set of a l l possible assignments, Pvar is the set of a l l program variables
and Exp is the set of a l l expressions representable by the o ld Exp module. Intuitively, the
program variable p G Pvar was set to the value of the expression e G Exp. The new version
of Looper redefines the old definition of assignments a to leverage the concept of access
paths as well as the new EdgeExp module:

a G A ::= LI x EdgeExp x EdgeExp.

For instance, the tuple ((x, {y, z}), 0, oo) G A is an example of a val id assignment which
can be informally represented by the following notat ion x.y.z = [0, oo]. A p a r t from using
the access expressions, the most significant change is that the right-hand side no longer
consists of a simple value but instead an interval is used. The reason for this change is
rooted i n the added support for interprocedural analysis and w i l l be discussed in more
detail i n Section 4.3.

Assignment Derivation

Final ly , the derivation algori thm for edge assignments had to be modified to produce as
signments according to the new definition. To achieve this, the interpretation of ind iv idua l
S IL instructions i n the exec_instr function had to be significantly adjusted even though
the principle of the original approach stayed the same. The semantics of each ind iv idua l
instruction w i l l now be defined semi-formally:

• L O A D : A S discussed before, the intended use of this instruct ion in Infer is to load
heap or stack values addressed by an expression into temporary variables. Let I dent
be the set of a l l temporary variables representable by the Infer I dent module and let
Exp be defined as before. Then , i <— e denotes the instruct ion loading a value given
by e G Exp into the identifier i G I dent.

Looper follows this convention and keeps the intended semantics. Let M ::= Ident x
EdgeExp x EdgeExp, then let M C M. be a set of associations between identifiers
and their associated intervals represented by two EdgeExp values. E .g . , (i, ei, e2) G M

5 9

represents the association between the identifier i G Ident and the interval [ei,e2],
where e l , e 2 G EdgeExp. The following notat ion i i-> [ei,e2] w i l l be used to denote
that such an association exists i n M, and M(i) w i l l be used to refer to the interval as
sociated wi th i. Furthermore, let transform(x, m): Exp x M. —>• EdgeExp x EdgeExp
be a function that converts an expression into an interval of EdgeExp expressions
using the set of associations M.

Internally, the function transform(x,m) uses a recursive bottom-up a lgori thm to con
struct the expressions e\, e2 G EdgeExp from e G The main goal is to replace
al l temporary variables i G Ident, which can appear i n the expression e, w i th their
associated values from M. I.e., i f 1(e) C Ident denotes the set of a l l identifiers present
in e, then it is transformed as follows: {M (i) | i G 1(e)}. A p a r t from that, the func
t ion s imply converts Infer Exp terms into their EdgeExp counterparts, e.g., an Exp
binary operator expression e; + er is transformed by recursively transforming the sub
expressions ei, er G Exp to e[, e'r G EdgeExp and finally a new EdgeExp expression
e\ + e'r is constructed.

W h e n a Load instruct ion i <— e is encountered, the expression e is used to construct
the pair of EdgeExp expressions, and the set M is updated wi th the result. Formally,
let transform(e, M) = (ei, e2), then M' = M U {(i, ei, e2)}.

• S T O R E : The Store instruct ion leverages identifiers created by Load instructions to
store the value of an expression into the heap or stack. Let e;, er G Exp be expressions,
then e; <— er denotes a store instruct ion which stores the value of the expression er

into a memory locat ion addressed by the expression e;. Note that er is always an
expression buil t solely over identifiers and constants.

W h e n Looper interprets a Store instruction, it constructs an assignment and adds it
to the set of assignments A C A which w i l l be used to label an L T S edge. Formally,
let (li, I2) = transform^, M) and (ri, r2) = transform(er, M) such that l\ = I2 /\h G
LT, then A' = A U {(/i,ri,r2)} where LT C EdgeExp. Note that Looper currently
expects that both the l\ and I2 left-hand expressions produced by the transform(x, M)
function are access paths, because values can only be stored to memory locations
denoted by access paths. The equality l\ = I2 enforces that only one assignment is
derived since Looper currently does not support the case when l\ 7̂ I2 which would
cause two assignments to be generated.

• C A L L : A n y function ca l l is represented by a single C a l l instruction which can be
formally defined as an element of the set Ident x Exp x Exp* x C where C is the set
of a l l program locations uniquely identified by a line and column i n the source code.
Informally, a function ca l l consists of an identifier for the return value, an expression
which identifies the called function, a sequence of call-site arguments, and, finally the
source code location of the cal l .

The main purpose of the C a l l instruct ion is to provide a way for instantiat ion of
a function summary at a cal l site. Looper uses summaries pr imar i ly to store the
symbolic bounds for the execution cost of a function, but it also stores the lower and
upper bounds for the possible return value as well as integer-typed pointer parameters
which can be subject to side-effects. Informally, summary instantiat ion denotes the
result of replacing formal parameters i n a l l elements of a summary by the actual
argument values at a specific call-site. Wi thou t discussing the technical details of

6 0

summaries and their instantiat ion (Section 4.3 covers these topics), let B C II x
EdgeExp x EdgeExp be the set of instantiated bounds for formal parameters, let i
be the identifier created for the return value, and let (ei, 02) G EdgeExp x EdgeExp
be the instantiated bounds for the return value if any exists. Then , A' = AL) B
and M' = M U {(z,ei,e2)}. Furthermore, let s G S be the summary obtained by
instantiat ion of a summary of a function cal l at location I G C. F ina l ly , let F C C x S
be the set of associations between program locations and instantiated summaries
tracked by Looper across the entire analyzed program. The set F is updated by the
C a l l instruct ion as follows: F' = F U {(I, s)}.

• P R U N E : The Prune instruction handles the conditions which are used for program
branching. It is formally defined as an element of the set BExp x {true, false} x C
where BExp C Exp is the set of a l l Boolean expressions which are used as conditions.
The Boolean value b G {true, false} indicates whether the Prune instruct ion belongs
to the true or false branch.

Looper uses the Prune instruction pr imar i ly to derive new norms and to store the nor
malized form of the condit ion c G BExp on the L T S edge which is being constructed
at the moment. Let trans•form{c,M) = (01,02) be the EdgeExp Boolean expressions
constructed out of the condit ion c G BExp. Looper currently uses the expression C2

for further analysis and norm derivation only. Intuitively, the expressions c\ and C2

represent the "lower" and "upper" bounds of the expression c where C2 corresponds
w i t h the originally used expression before the interprocedural analysis and lower vari
able bounds were introduced i n this work. N o suitable use-case for the lower bound
value of the condit ion expression has been found yet and hence it is ignored.

Let C C EdgeExp be the set of conditions associated w i t h the current L T S edge.
Then, C = C U {e2J is the updated set of conditions after interpretation of the Prune
instruction.

Interpretation of each S I L instruct ion is i n reality a bit more complicated as it involves
derivation of norms and also various expression optimizations to obtain assignments and
conditions in a certain canonical form. However, most of these steps are considered to be
implementation details and as such were not discussed here. Furthermore, the principles
of norm derivation remained mostly unchanged since the first version of Looper and thus
the description provided in Section 3.1.2 is s t i l l relevant. A few minor changes to the norm
derivation process caused by the introduct ion of interprocedural analysis w i l l be discussed
in Section 4.3.

4.1.3 Difference Constraint Derivation

A s discussed in Section 3.1.2 and Section 3.2, the constraint derivation logic in the first
version was hard-coded and handled a very l imi ted subset of a l l possible expressions only.
Instead of relying on specific types of expressions, the solution we proposed was to rewrite
the derivation algori thm to make it more general. The basic concept remained the same
but the derivation is now done i n two steps:

1. Let r = l\ A I2 G T be an L T S edge and let A C A be the set of assignments encoded
by the t ransi t ion relation A. Let N C EdgeExp be the in i t i a l set of norms obtained
during the L T S construction and let e G N be the currently processed norm. Then ,

61

the first step is to attempt to substitute a l l access path terms IT G II of the norm e,
i.e., to replace each te rm TT by the values associated w i t h them:

(r, i f (TT, r, r) G A,

(ri,T2), else i f (7r,ri,r2) G A, where r\ ^ r2

TT, otherwise.
The obvious issue is that it is not possible to s imply replace a value term w i t h an
interval at a leaf node i n the A S T of e because the EdgeExp module does not support
intervals as values. The solution was to split the tree into two new sub-trees r\ and
r2 at any access path leaf node TT. These new sub-trees are then propagated upwards
unt i l the root node of e is reached at which point two new expressions e\ and e2 are
created. B ina ry and unary operators along the original A S T of e are applied between
pairs of nodes during the bottom-up creation of e\ and e2. Th i s is somewhat similar
to how interval domain operators are evaluated during abstract interpretation (e.g.,
x + [0, y] = [x, x + y] where x would refer to a single node and [0, y] would refer to
a pair of nodes).

2. Once the new expressions e\ and e2 are obtained through substitution, the second
step can be performed. It involves simplifying each expression and checking whether
a new norm has to be added to iV or i f an existing norm can be used when deriving
a difference constraint. S imi lar ly to the changes done to the definition of assignments
as discussed in Section 4.1.2, the definition of difference constraints had to be changed
too. The original Looper defined difference constraints s imply as follows:

DC ::= Exp x Exp x Z ,

corresponding to the x < y + c form where the operators < and + were impl ic i t . Th is
representation had certain l imitat ions (see Section 3.2) even when interprocedural
analysis was not considered. The new version redefines the difference constraints as
follows:

WHS ::= EdgeExp x O x Z ,

DC ::= EdgeExp x WHS x WHS

where O = {+,*,-=-,<C,^>} is the set of possible operators. These operators were
the most commonly used i n our experiments and the added support allowed Looper
to consider expressions such as < i > 2 as decrements i n certain cases. To add
more, one would need to subsequently generalize the t ransi t ion and variable bound
algorithms accordingly which might be non-tr ivial . Note that other operators are
st i l l allowed to be used inside norm expressions but Looper w i l l not consider them
as possible increments or decrements of a loop control variable. Moreover, the " —"
operator is not included i n the set O because it can be t r iv ia l ly converted to +(—1).

This new definition allows Looper to represent constraints such as x < \e\ + 1, &i * 5],
i.e., constraints now also operate over intervals instead of simple values. Moreover,
the + operator is no longer impl ic i t and instead any operator (f> G O can be used
explici t ly to construct a val id difference constraint.

Final ly , bo th expressions e\ and e2 are simplified to obtain a canonical form which
makes it easier to determine whether a new norm has to be generated or not. For the

62

while (x > 0) {
x = x » 1;

}

Lis t ing 4.2: A n example of a loop pattern encountered during experimental testing. It
uses the right bit-shift operator 3> to decrement the value of control variable x. The new
version of Looper is able to analyze such loops due to the extended definition of difference
constraints.

simplification, the new version of Looper implements an algori thm which leverages
the distributive, commutative and associative laws of algebra i n order to simplify the
input expression. Let C£ ::= (O x Z) U {e} be the optional constant part of a difference
constraint where e is the empty value. Then,

split (x): EdgeExp ->• {EdgeExp x N x N)* x C£

is a function which applies various algebraic rules to simplify the expression x and
splits it into an additive list of terms of the form x\ • # i n the process. Moreover,
it attempts to separate out the opt ional constant C£. The a lgor i thm is deterministic
and thus produces the same result for any two expressions e\ and e2 that are possibly
syntactically different but equivalent and can be transformed to the same expression
through applicat ion of algebraic rules. To demonstrate how this property is leveraged,
consider the norm e\ = (x * 5) — y and the edge assignment x = x — 1, which leads
to a new norm e2 = {{x — 1) * 5) — y. Unfortunately, this form makes it impossible
to reuse the previously existing norm e\ and avoid creating a new norm ei- However,
spli t(ei) = ([x • j , y • (—j)], e) and s p l i t ^) = ([x • j , y • j], +, (—5)) transform the
expressions into a different form by applying the following algebraic transformations:
{x * 5) — y = 5x — y and ((x — 1) * 5) — y = (5x — 5) — y = (5x — y) — 5,
where —5 is separated as the opt ional constant (+,(—5)) and the expressions are
split into addi t ion terms. This form makes it t r iv i a l to detect i f a norm can be reused.
In particular, equal term lists imply that the norm e\ can be reused. Moreover, the
extended definition of difference constraints enables analysis of different loop patterns
such as those i n L i s t ing 4.2 where bit-shift operators are used to decrement the value
of the control variable.

Consequently, the definitions for the increments, decrements and resets from [32] had
to be updated as shown below in Defini t ion 4.1.1.

Definition 4.1.1 (Increments, Decrements and Resets). Let AV = (L , E,lb,le) be
a DCP over A. Let l\ —>• \<i € E, v € V, a € A, c € Z , and 4> G O. We redefine the resets

63

TZ(v), increments X(v), and decrements X>(v) of v as follows:

TZ(v) ={(h ^ l2, a, c) | v' < [a cj) c, _] G u, a ^ v} U

{(̂ l -> 2̂, a, c) | v' < [_, a 0 c] £ it, a / v}

X(v) = {(h ^ h, c) | v' < [v + c, _] G u, c > 0} U
{(/i A Z2, c) | v ' < [_ , v + c] e M , c > 0}

£>(v) = {(Zi H> Z2, +, c) | (v < [v + c, _] G u, c < 0) V (v < [_, v + c] G « , c < 0)} U

{(h >̂ fe, > , c) | (v < [v > c, J G u, c > 0) V (v < [_, v > c] G w, c > 0)}

Note that this definition follows the original notat ion from [32] where A = EdgeExp
and V C EdgeExp. Furthermore, the X(v) set considers the plus operator + only even
though constraints such as x < x * 2 could also be considered as increments w i th the
new definition. However, considering these types of increments would require addi t ional
extensive changes to the core bound derivation algori thm which is out of the scope of this
work. O n the contrary, the V{y) set includes the bit-shift decrements precisely because it
d id not mandate extensive changes. Intuitively, any constraint such as x < x ^> 1 can be
soundly over-approximated by x < x — 1 for the purposes of the bound algori thm, i.e., the
algori thm can treat both of these decrements i n the same way. Also note that the sets X(v)
and T>(v) s imply track which transitions can increment or decrement a norm v and it is
assumed that they are disjoint. The case when the sets are not disjoint is not supported in
any way yet.

4.2 Intraprocedural Analysis Extensions

The original Loopus tool [32] proposed several extensions which aimed at improving the
overall precision of the bound algori thm. However, as Section 3.2 hinted, the logic behind
some of these extensions proved to be flawed when an implementat ion attempt was made.
Moreover, when considering analysis of real-world code, certain major deficiencies were
overlooked by a l l of the proposed extensions. Th is section presents two new extensions
which a im at improving the analysis for pract ical use-cases.

4.2.1 Lower Variable Bound Algorithm

Even though this first major extension does not directly improve the precision of intrapro
cedural analysis i n an obvious way, it serves as a bui ld ing block for the interprocedural
analysis extension subsequently covered i n Section 4.3. F ina l ly , adding a support for in
terprocedural analysis can, i n turn, improve the overall intraprocedural precision through
consideration of return values and side-effects.

The bui ld ing block at question is the lower variable bound analysis. Originally, there
was no need for lower bound analysis i n the bound algori thm as described i n Section 3.1.
However, the requirement for such analysis natural ly occurred in the process of designing
the interprocedural analysis and more specifically when the issue of sound summary instan
tiation was considered. Note that this work does not present any formal proofs of soundness
for any of the introduced extensions, but the author w i l l , based on intui t ion, attempt to
lay out the case why each extension should be sound (at least in some described cases).

64

The main idea was to modify the already existing variable bound procedure from Defi
ni t ion 3.1.13 to obtain a new procedure LVB which works conversely:

LVB(a) = a i f a G C, else

LVB(v) = Decr(v) + m i n (LVB(a) + c)
(_,a,c)eft(v)

where
Decr(v) = ^ TB(T) X C (we set Decr(v) = 0 for P(v) = 0)

(T , + , C) G X > (V)

Intuitively, the concept is the same for both VB and LVB procedures, but instead of
choosing the reset w i th the highest possible value and calculat ing by how much it can
increase the value, the LVB procedure chooses the reset w i t h the lowest possible value and
calculates by how much it can decrease the value. The in tui t ion behind why we believe
that LVB should be sound starts from that it leverages the already sound TB procedure
for the most part. Indeed, the Incr and Deer procedures work exactly the same w i t h the
only difference being that the Deer procedure is using decrements (r, +, c) G D(y) where
c < 0. A s such, mul t ip ly ing the amount of times r can be executed wi th the amount c
by which v decreases i n each execution should indeed yield the to ta l amount by which v
can decrease. Furthermore, the soundness of replacing the max(i a i c)e7£(v) (^^ (a) + c) term
w i t h the inverse te rm min / A C) e K u (i y 6 (a) + c) seems fairly obvious.

There are, however, two notable caveats. F i rs t , recall Section 3.1.3 which covered
the abstraction algori thm for transformation of guarded DCPs into regular DCPs. More
specifically, recall that any constant c < 0 is transformed either to —1 or 0 depending on
whether the associated norm is guarded on the given transi t ion or not. Consequently, the
proposed LVB procedure under-approximates the real lower bounds when evaluated over
regular DCPs w i t h transformed constants. To solve this, Looper also keeps the original
constant for each difference constraint and uses the original values during construction of
the V(v) set which is then leveraged by the LVB procedure.

The second issue is that only decrements (r, +, c) G T>(v) involving the plus operator
are compatible w i t h the original idea adopted from the VB procedure. Cont ra ry to the
TB procedure, where even decrements w i th the right bit-shift operator could have been
impl ic i t ly considered to obtain over-approximated transi t ion bounds (see Section 4.1.3),
the entire LVB procedure would have to be substantially modified in order to support the
right bit-shift and possibly division operator. Such changes were out of the scope of this
work and this issue is therefore currently one of the possible sources of unsoundness anytime
the LVB procedure is leveraged.

4.2.2 Compound Local Bounds

One major overlooked issue wi th the original concept of Local Bound Mapping (see Def
in i t ion 3.1.10) is that it does not take compound loop conditions such a s x > 0 A y > 0
into account. A n extension for generalizing local bounds to sets of local bounds was already
proposed i n [32]. However, this extension was pr imar i ly intended for handling of non-linear
control flow involving break statements and alike. Formally, the extension redefined the
local bound mapping function from (: E ->• Expr(A) to (: E ->• < l E x ^ A \

The main motivat ion for our extension of the local bounds is to significantly increase the
precision by considering the complete Boolean expressions i n loop conditions. Original ly,

6 5

any loop condit ion such as x > 0 && y > 0 would generate two norms x and y but the
subsequent choice of a local bound norm was non-deterministic. I.e., either x or y would be
chosen and used to calculate the transi t ion bound for the loop wi th this condit ion. Th is is
clearly not precise in the case of the A operator and outright unsound when the V operator
is considered. However, the original Loopus assumed that each loop condit ion can contain
only a single atomic condit ion and possibly some non-deterministic element, e.g., x - y >
0 && * where * denotes a non-deterministic condit ion.

This section proposes a solution to handling the compound conditions i n more precise
and also sound way for the A and V operators, respectively. The core idea is to take the
logical operators in loop conditions into account and transform them into m i n and max
operators i n the final t ransi t ion bound accordingly. Namely, the loop condit ion x > 0 A y >
0 should yield the transi t ion bound mm(TB(x), TB(y)), and, conversely, the condit ion
x > 0 V y > 0 should yield max(TB(x), TB(y)). The reasoning is simple: a loop w i t h the
condit ion e\ > 0 A e2 > 0 executes as long as both conditions e\ > 0 and e2 > 0 are true. If
either one of those conditions becomes false, the loop is terminated. Therefore, the number
of iterations is l imi ted by the condit ion which becomes false first, hence the m i n operator.
The in tu i t ion behind the V operator is analogical.

To implement this reasoning, changes at several steps had to be made. F i rs t , the
definition of the local bound mapping was changed from (: E —>• Expr(A) to

Each edge is now mapped to a set of sets of norms instead of a single norm which makes it
possible to represent complex conditions that are i n the Disjunctive Normal Form (D N F) .
E .g . , the condit ion (x > OAy > 0)Vz > 0 would be represented as {{x > 0, y > 0}, {z > 0}}.
Next , the Infer C F G to L T S abstraction process originally d id not support compound
conditions. The solution to this problem was proposed i n Section 4.1.1 which presented
a new abstraction algori thm that merges mult iple branching nodes of one loop head into
a single prune node i n the L T S (see Figure 4.2). T h i s was also leveraged to compose the
ind iv idua l atomic conditions of each Infer C F G path into the original compound condit ion
present i n the source code of the analyzed program. These compound conditions are now
also stored as sets of sets of expressions, i.e., elements of the set 2 2 E d g e E x v . The L T S to
DCP abstraction process then transforms these conditions into norms which can be finally
used to construct the local bound mapping.

Determining C o m p o u n d Local Bounds

The new algori thm for finding compound local bounds s imply extends the original a lgori thm
described i n Section 3.1.5 by adding two new steps between the first and second step of the
original a lgori thm. Let AV = (L, E, lb, le) be a DCP. Let S be a set of a l l S C C s of P and
suppose that V C EdgeExp. The two new steps are the following:

1. Let cv G 2 2 V . We define £ (cv) C E to be the set of a l l transitions r = l\ l2 G E
such that

3s G cv: 3v G s: (v' < v + c G u, c < 0) V (v' < v > c G u, c > 0).

I.e., it is sufficient if just one norm v from cv is decreased on r to be included in the
£(cv) set. For a l l r G £ (cv) , we set £ (T) = cv.

6 6

2. Let cv G 2 2 and T <E E. Assume r was not yet assigned a local bound. We set
£ (T) = cv i f r does not belong to any S C C of the directed graph (L , £7') where
E' = E \ £ (cv) which is the C F G of A T 3 where the transitions £ (cv) were removed.

Clearly, these two new steps are simple generalizations of the steps 2 and 3 from the original
algori thm wi th the only difference being that instead of the norm v, the set of sets of norms
cv is used. Therefore, the in tui t ion behind these two steps as discussed i n Section 3 . 1 . 5
also applies here.

Changes to the TB procedure

Final ly , the TB procedure also had to be generalized to reflect the changes to the local
bound mapping definition. Assuming the T B 0 ^ (T) procedure for norms as defined in Defi
ni t ion 3 . 1 . 1 3 , the new generalized procedure is defined as follows:

TB0id(a) =a, i f a £ V , else

TB0id(v) =Incr I (J atmi(n)\ +
\KG9t(v) /

Y TB(trn(K)) x max (vB(in(K)) + C (K) , O) + I n c r (a t m 2 (K))

TBNEW(T) = max (mm(TBold(v)))
5SC(T) ^ v s s /

The new definition s imply used the previous definition of T 7 3 0 ^ (T) from Defini t ion 3 . 1 . 1 3
and changed the parameter from transi t ion r to a norm v which required only minor changes
as the original TB0idij) procedure was already using the r parameter only to retrieve the
norm v v ia the Q{T) mapping. The ma in contr ibution is i n the new TBnem{r) te rm which
wraps the o ld procedure and implements the reasoning discussed at the beginning of this
section.

4.3 Interprocedural Analysis

The main contr ibution of this work is the interprocedural analysis extension of the Loopus
tool which was originally only intraprocedural. The issue of adding support for interpro
cedural analysis had two main parts: construction and instantiat ion of summaries. The
first step was to design an appropriate summary data structure which would hold enough
information to make the subsequent instantiat ion sufficiently precise. The original simple
but naive idea was to summarize a function wi th a single bound expression:

e = T B ^ \
T£EB

where EB C E is the set of a l l back-edges of a DCP program AV = (L , E,lb,le). Note
that the program AV represents a single analyzed function. However, this design led to an
overly coarse instantiat ion process w i th a significant loss of precision in many cases. A more
granular design was needed, not only to increase the precision but also to isolate the points
of failure to make the analysis more robust overall.

6 7

4.3.1 Function Summaries and Summary Trees

Since the original idea was insufficient for pract ical use, a new hierarchical and recursive
summary design was adopted. The idea was to represent each analyzed function as a set
of transitions, each wi th their associated transi t ion bounds. W i t h this more granular ap
proach, a function summary is instantiated at the level of ind iv idua l transitions which is not
only generally more sound as discussed in Section 4.3.4 but can also be leveraged to more
precisely isolate the parts of a program for which the analysis fails. Moreover, this approach
also enables a more detailed transition-level issue reporting for the end user. Figure 4.3
demonstrates the hierarchical and recursive nature of this design.

Figure 4.3: A n example of a summary tree which visualizes the hierarchical structure of the
function summary constructed during interprocedural analysis of the perf orm_basename
function. Each function summary consists of transition summaries (green and blue nodes)
and call summaries (red nodes) which are mutual ly recursive. Note that transi t ion iden
tifiers and associated source code locations were omit ted from the figure for the sake of
clarity.

The figure presents a so-called summary tree of a function summary obtained during
the analysis of the perf orm_basename function from the G N U coreutils repository. The
summary consists of ind iv idua l transition summaries (green and blue nodes in the summary
tree) for each back-edge or t ransi t ion containing at least one function ca l l . Specifically, in
this case, only the transi t ion T5 is a back-edge and the remaining transitions each contain at
least one function cal l . E a c h transition summary of r G E stores the calculated transi t ion
bound TB(T), which is shown behind the semicolon ":", and a set of so-called call summaries
(red nodes) which i n tu rn contain a set of transition summaries. A leaf node of the summary
tree is either a transi t ion summary wi th no ca l l summaries or conversely a ca l l summary
wi th no transi t ion summaries.

Summary Formalization

Before presenting the formal definitions of call, transition, and function summaries, a few
essential domains w i l l be defined first. Let f2 = { < , > , ~ } be a set of possible function
monotonicities, w i th < denoting a non-decreasing function, > denoting a non-increasing

68

function, and lastly ~ denoting a non-monotonic function. Then,

M::=nx Q,,
T ::= Var x N ,

Ve ::= (EdgeExp x EdgeExp) U {e}, and

B ::= EdgeExp x (EdgeExp x EdgeExp)

where A4 denotes the domain of monotonicity maps that associate access paths w i t h func
t ion monotonicities. T denotes the domain of so-called formal maps that associate formal
parameters (represented by Var variables) w i th their positional indices. V£ denotes the
domain of opt ional EdgeExp pairs where e represents the neutral value. Final ly , B denotes
the domain of formal bound maps which associate formal parameters w i th their lower and
upper bounds represented by a pair of EdgeExp values. Assuming these domains, the
definitions of ind iv idua l summary types can be presented.

Definition 4.3.1 (Call Summary) . Let Procname be the domain of val id function names
and let Loc be the domain of source code locations. A call summary is a tuple

(n, I, ST) € § c : : = Procname x Loc x 2 S t ,

where n is the name of the called function, I is the source code locat ion of the function cal l ,
and ST C § T is a set of t ransi t ion summaries associated wi th this ca l l summary.

Definition 4.3.2 (Transition Summary) . A transi t ion summary of a DCP program AV
is a tuple

(r, e, M, Sc) € § T " = E x EdgeExp x 2M x 2 S c

where r is a DCP t ransit ion, e is the transi t ion bound TB(T) for r , M C M. is a mono
tonicity map for the transi t ion bound e, and, lastly, Sc C § c is a set of summaries for the
function calls present on r.

Definition 4.3.3 (Function Summary) . A function summary of a DCP program AV~
(i.e., a single function) is a tuple

(F , S T , M R , M F , B f , bR) G S A p "= ^ x 2 S t X 2 M x M X 2 " M x - m X 2 s X P £

where F is a formal map for the formal parameters of the function AV, ST is a set of i ran-
sition summaries for transitions of the function AV, MR and are pairs of monotonicity
maps for lower and upper bounds of the return value and formal parameters respectively.
Furthermore, Bp is a formal bound map for the formal parameters of the function AV, and,
finally, b^ is an optional pair of lower and upper return value bounds.

The definitions of call and transition summaries are mutual ly recursive which forms the
tree structure of a function summary. This design leverages the function analysis order
adopted by Infer, i.e., leaf functions of the ca l l graph which do not cal l any other function
are analyzed first before any other function cal l ing them can be analyzed, moving up the
cal l graph. Note that the depth of the function summaries grows wi th the depth of the
cal l graph of a program but this d id not seem to be a performance problem during our
experimental testing. Alternat ively, it could be beneficial to introduce a way i n which
a user could l imi t the m a x i m u m depth of function summaries.

69

1 void f o o (i n t x, i n t y) {
2 while ((x - y) > 0) {
3 y++;
4 }
5 }

Lis t ing 4.3: A simple code snippet which motivates the need for the analysis of function
monotoncities.

4.3.2 Determining Function Monotonicities

The previous section mentioned the concept of monotonicity maps which needs further
explanation. Fundamentally, the issue of determining function monotonicities relates both
to the construction and instantiat ion of summaries as w i l l be shown later. However, the
process is same for both cases, albeit the results are used for a different purpose in each
case. To motivate the need for this concept i n the first place, consider the t r iv ia l example
from L i s t i ng 4.3.

The analysis of this function w i l l y ie ld the expression e = (x — y) as the bound for the
back-edge of the while loop. However, in the interprocedural settings, it is also necessary
to consider how the value of e changes when the value of either x or y changes. Indeed,
the expression e is an upper bound for the while loop but only i n the intraprocedural sense
which assumes that the values of a l l formal parameters are fixed. This is, however, no longer
true for interprocedural analysis which instantiates the loop bound wi th certain function
arguments at the cal l site, effectively changing the values of x and y. This in t u r n affects
the value of e which represents the loop bound. The question at hand is thus: how to obtain
the upper bound of e during instantiation ? Intuitively, the value of (x — y) increases as x
increases and conversely decreases as y increases. Assuming f(x, y) = x — y, this can be
wri t ten formally as

(V x i , x 2 e Z x Z : xi < x2 => f(xi,y) < f(x2,y)) A

(Vyi ,ya G Z x Z : y1 < y2 =^ f(x,yi) > f(x,y2)).

Hence, to obtain the m a x i m u m of (x — y), the upper bound for x and the lower bound for
y should be used. This is fundamentally a problem of function monotonicity: is a func
t ion monotonical ly non-decreasing, non-increasing, or not monotonic at a l l w i th respect to
a certain parameter?

This problem is, however, generally complex in nature, and the imperfect solution pre
sented in the remaining part of this section reflects that. O u r first attempt at solving this
issue involved using the Z3 SMT solver (see Section 2.1.6), which was previously lever
aged for the derivation of guards covered i n Section 3.1.2. Suppose an n-ary function
f(a\,..., an) = e where e is a bound expression involving the variables a\,... ,an. The
idea was to use the previously presented impl ica t ion formula wi th quantifiers and check
the monotonici ty of / for each parameter <n i n isolation by checking i f either one of the
following formulas is satisfiable or not

3a- , a- : (a- < a- / (a i , . . . , a],..., an) > f(au . . . , a - , . . . , a „)) ,

3a- , a- : (a- < a- => f(a1,..., a],..., an) < f(a1,..., a - , . . . , a „)) .

7 0

If the first or second formula was unsatisfiable, then / was assumed to be non-decreasing
or non-increasing in terms of Oj, respectively. If bo th formulas were satisfiable, then / was
assumed to be non-monotonic i n terms of Oj. Note that Looper handles instantiat ion of
non-monotonic bound expressions by using the oo value, which is sound but not very useful.
Moreover, checking the monotonici ty of / in terms of ind iv idua l isolated parameters is
l ikely not enough i n general. Testing a l l possible permutations of increasing/decreasing
parameter values might be a more accurate way to determine the monotonicities. These
claims are, however, purely based on author's in tui t ion without providing any proof i n this
work. Nevertheless, the bound expressions s t i l l reflect loop complexities which most often
take a specific form of multivariate polynomials, and the first approach might be sufficient
for those.

We have, however, not explored the above possibil i ty further because of the following
issue. Namely, the issue wi th this approach which manifested during experiments is that
non-linear integer arithmetic, which is often needed i n real-life code, is undecidable in
general, and Z3 would frequently fail when t ry ing to find solution to these formulas. The
issue was somewhat mit igated by t ry ing to solve bounds for ind iv idua l transitions instead
of the sum of a l l t ransi t ion bounds, but even then there were many cases where Z3 failed
to find a solution. A n attempt to use real arithmetic which is decidable instead of integer
ari thmetic was also made, but that d id not y ie ld much of an improvement either. A final
idea was to t ry different S M T solvers or theorem provers instead of Z3. This idea led to the
decision to use the W h y 3 platform for solvers discussed in Section 2.1.6. After implementing
the support for W h y 3 (see Chapter 5 for specifics), a set of different provers such as Vampire ,
A l t - E r g o , or C V C 4 were tested on the same tasks, but the results were either the same or
worse when compared to Z3 . These results motivated a different approach used in the new
version of Looper and presented below.

Part ial Derivatives

The task of proving monotonicities directly w i th S M T solvers turned out to be infeasible
in practice which led to the idea of transforming the monotonici ty problem into a problem
of finding function roots. Namely, checking whether a function derivative has any roots
determines whether the function is monotonic or not. If the derivative has no roots, then the
precise type of monotonici ty has to be further analyzed by checking the original function.
Assuming the n-ary function f(ai,...,an) as before, the task given to Z3 indirect ly v ia
W h y 3 reduces to

Of
3xi eR : —(ai,... ,Xi,... ,an) = 0.

This formula is checked for satisfiability, and if no root exists, then a further heuristic check
is performed to figure out whether the function is non-decreasing or non-increasing w i th
respect to a\ by plugging two increasing values x\,xi : x\ < X2 to the parameter a\ of the
original function / . Th is approach turned out to be much more feasible, and Z3 has been
able to solve these formulas for any expression tested during the experimental evaluation.
Nevertheless, it shares some of the same deficiencies as the first approach, i.e., it is unclear
whether it is correct for every type of expression and hence possibly leads to an unsound
analysis. The challenge here is how to handle functions wi th mult iple parameters that a l l
appear together in the bounds. Th is seems to be a research question going far beyond the
scope of this thesis. However, our experiments have shown that this is not much of an issue
in pract ical settings.

71

The process of computing par t ia l derivatives also deserves a brief discussion. We had to
propose and implement our own procedure to calculate par t ia l derivatives i n Looper because
the main requirement was to perform symbolic differentiation, and there is currently no
O C a m l l ibrary available for that. Moreover, Looper uses a custom EdgeExp expression data
structure which supports various addi t ional operators such as m i n or max over arbi t rary
number of operands. Differentiation of these terms is generally complicated, but wr i t ing
a custom algori thm made it possible to apply certain heuristics based on the knowledge that
the derivative w i l l be subsequently used for analysis of monotonicity. The algori thm itself
is recursive and leverages mostly the chain rule, product rule, and quotient rule i n order to
compute par t ia l derivatives. A more detailed explanation w i l l be presented in Chapter 5.

Final ly , to construct the monotonicity map for a single multivariate expression e w i th
variables A = {ai G II11 < i < n}, suppose that ui(e, a): EdgeExp x II —>• Q is a function
that determines the monotonici ty of e w i th respect to the variable a v i a the previously
described principle. Note that Looper represents variables as access paths. The mono
tonicity map M is constructed as follows

M = {(ai, m) e M \ ai e A, m = u(e, aj)} C M

For convenience, let M(e): EdgeExp —> 2M be a function that constructs the set M C M.
for an expression e.

4.3.3 Construction of Function Summaries

W i t h the ind iv idua l summary types as defined above, the construction of a function sum
mary is fairly straightforward as most of the components were already existing before the
introduct ion of interprocedural analysis. For the most part, the construction is merely a pro
cess of collecting data during the intraprocedural analysis and populat ing appropriate data
structures. To formalize, let AV = (L , E, lb, le) be a DCP program representing a function,
and let Eg C E be the set of a l l edges of AT which are either back-edges or contain at
least one function cal l of a different function. The first step is to create a set of t ransi t ion
summaries for each transi t ion r G EB, which involves instantiat ion of function calls on r ,
calculating the transi t ion bound TB{T), and, finally, the construction of a monotonicity
map for the TB{T) bound expression. Formal ly writ ten:

ST = {(r,TB(T),M,Sc)\reEB,M = M(TB(r)), SC = XC{T)} C S T

where X c (r) : E —> 2 S c is a function that maps a DCP edge to a set of cal l summaries, i.e.,
the instantiat ion function for cal l summaries on the edge r. Due to the mutual ly recursive
nature, the instantiated function calls are transformed into cal l summaries and used i n the
summary of the caller. The IC(T) function w i l l be discussed in Section 4.3.4 as it is part
of the instantiat ion process.

Once the set of t ransi t ion summaries is constructed, the construction of the function
summary itself can proceed. Let Ep C EdgeExp be the set of formal parameters of AV,

and let return£ G (EdgeExp U {e}) be the opt ional return variable of AV. Addi t ional ly ,
let F C J- be the formal map for AV provided by the Infer framework. Then, the function
summary SAP G SAP is constructed as follows

S A R = (F,ST,MR,MF,BF,bR)

72

where the set of t ransi t ion summaries Sp was constructed before,

e if return£ = £,

\(LVB(return£), VB(return£)) otherwise,

and the formal bound map Bp is constructed as

BF = {(f, (LVB(f), VB(f)) | / G Ep}.

4.3.4 Instantiation of Function Summaries

The instantiat ion process had to be split i n two parts due to execution dependency. The first
phase is performed during the construction of the L T S graph as described in Section 3.1.1.
More specifically, the SIL C a l l instruction retrieves the summary of a called function and
part ial ly instantiates i t . A complete instantiat ion is not possible at that moment because
lower and upper bounds of ca l l arguments are required to properly instantiate the summary
and the LVB and VB procedures cannot be called before a val id DCP graph of the function
is constructed. However, it is s t i l l necessary to instantiate the return bound and formal
parameter bounds to account for possible side-effects. Thus, a compromise was made,
and these bounds are instantiated without computing any lower or upper bounds which is
possibly unsound. We were unable to show the correctness of this step but, as a heuristic,
it worked reasonably well in our experiments and a proper solution was out of the scope of
this work.

Instantiation of Formal Parameter Bounds

The formal bounds pract ical ly represent the side-effects caused by updates of pointer argu
ments (parameters passed by reference). To apply these side-effects at the cal l site, Looper
constructs a new edge assignment for each modified formal parameter using the formal
bounds and extends the set of edge assignments. Let

Sf = (F, ST, MR, MF, Bp, bR) G S A T

be the retrieved summary of a function / called on an L T S transi t ion r = l\ —> h, which
is being constructed. Furthermore, assume that A C A is the set of assignments (see
Section 4.1.2) on r , and let args C EdgeExp x N be the set of arguments passed to / .
After processing the summary, the set A is updated as

A' = A U {{a{f, args, F), a{lb, args, F), a(ub, args, F)) | (/, (lb, ub)) G Bp},

where
a(e, args, F): EdgeExp x 2 E d 9 e E x p x T q x j ^ EdgeExp

is a function which substitutes the function arguments into the expression e based on the
formal map F. Suppose that p\,...,pn G Var are the formal parameter variables used in
e. Then a substitutes the formal parameter variable pi w i th the argument such that
(aj, i) G args where (fi, i) G F. Informally, when a formal parameter pi of e is encountered,
the formal map F is used to retrieve its posi t ional index which is then i n turn used to
retrieve the corresponding argument expression from the set of arguments.

73

Instantiation of R e t u r n B o u n d

The return bound bR is instantiated i n a very similar fashion as the formal parameter
bounds. Suppose that M C I dent x EdgeExp x EdgeExp is the set of identifier associations
as defined in Section 4.1.2, and let id,R G Ident be the identifier created by the C a l l
instruction to store the return value. T h e n the set M is updated as follows:

I.e., if the function / has a return value, then the formal parameters i n both lower and
upper bound expressions have to be substituted wi th the arguments from the ca l l site.
These substituted bounds are then used to create a new association wi th the identifier
idR and the association is added to M. The need for this intermediate identifier idn arises
because return values are not necessarily always used i n practice and thus may be discarded.
The identifier id,R is s imply not used by any subsequent SIL instruct ion in such cases.

Instantiation of Transit ion Bounds

A s mentioned above, the transi t ion summaries cannot be instantiated before the complete
DCP graph of the analyzed function is constructed. Looper thus stores references to cal l
expressions for delayed instantiat ion. Let Calls C EdgeExp be the set of a l l possible
function ca l l expressions, and let Loc be the domain of source code locations. A s before,
suppose that

is the retrieved summary of a function / G Calls called on an L T S edge T = l\ ——> l2

2

where C C Calls is the set of function expressions stored on r . F ina l ly , let LS C Loc x SAV

be the set of associations between source code locations and function summaries. W h e n
a S IL C a l l instruction at a locat ion I G Loc is interpreted, the summary Sf is par t ia l ly
instantiated and then the sets LS and C are updated as follows:

This is a new association between the cal l locat ion I and the function summary Sf. Note
that the locat ion I is also part of the function expression / and w i l l be used later to retrieve
the summary Sf from LS.

The second instantiat ion phase happens at the end of the analysis of AV = (L , E, lb, le),
after the transit ion bound TB{T) has been computed for a l l transitions r G EB where
EB Q E is the set of edges defined i n Section 4.3.3. The second phase works as follows:

1. For each r = l\ —> l2 G EB (the set C is copied from the original L T S edge) and
for each cal l expression / G C w i th an associated location I G Loc, retrieve the
function summary Sf = (F, ST, M R , Mp, Bp, bp) : (l,Sf) G LS. A l so , as previously,
let pi,... ,pn G Var be the formal parameters of / and let args C EdgeExp x N be
the set of arguments passed to / .

2 In reality, LTS edges store sets of assignments and function calls among other data.

Sf = (F, ST, MR, M f , Bp, bR) G S A P

C' = Cu{f},

LS' = LS U {(I, Sf)}.

74

2. For each transi t ion summary ST = (T , e, M , 5 c) G <Sr, instantiate the transi t ion bound
e. S imi lar ly to the function cr(e, orgs, F) , suppose that

?(e, a r 5 s , F , M) : EdgeExp x 2 ^ e i ^ x N x j x 2 ^ 4 EdgeExp

is a function which for each argument aj of the function / substitutes either the lower
or upper bound based on the computed monotonici ty map M. Note that the formal
map F is used to retrieve the corresponding argument for the formal parameter p^.
Each parameter pi is substituted w i t h a value 6j as follows:

f l - y ^ a O i f m i = (>),

h = < ViB(a i) , else if = (<), ,

[oo otherwise

where (aj , i) G orgs for (p«,i) G F and (pj,mj) G M . The function <j works the same
way as the previously described function a w i th the only difference being that instead
of a,i, either the lower bound LVB{ai) or the upper bound VB(di) is used. Intuitively,

mi = (>) => (Vxi,X2 G M : x\ < x2 =4> e\pi/xi] > e2\pi/x2]),

i.e., the value of e is non-increasing w i th respect to pj, and thus

mi = (>) e[pi/VB{ai)} < e[Pi/LVB{ai)}.

In other words, the value of the transi t ion bound expression e for t ransi t ion r is
non-increasing w.r.t . the parameter pi (the value of e decreases w i t h the increasing
value of pi) and thus the lower variable bound LVB(ai) of the argument has to be
substituted to soundly instantiate the transi t ion bound e for the t ransi t ion r . In this
case, substi tut ion of the lower variable bound LVB(ai) would lead to a lower overall
value of the instantiated transi t ion bound e' which could possibly be lower than the
real bound and thus unsound. Note that the case of mi = (<) works analogically.

Final ly ,
s,

T = (r,e,,M',lc(Sc))

is the instantiated transi t ion summary where e' = cr(e, args, F, M) is the instantiated
bound e of ST and M' = A4(e') is the new monotonicity map recomputed for e'. The
instantiation of function summaries by Xc(Sc) is discussed in Step 3.

3. Assuming the transi t ion summary ST = (T , e, M , Sc) G ST from the previous step,
instantiate each ca l l summary sc = (n, I, T) G Sc where T C ST is a set of t ransi t ion
summaries. To instantiate sc, recursively repeat the second step for the set T instead
of ST- Let T' be the instantiated set of t ransi t ion summaries, then s'c = {n,l,T') is
the instantiated ca l l summary. Note that the mutua l recursion of Steps 2 and 3 ends
when a transi t ion w i t h no ca l l summaries is reached.

Intuitively, the second phase produces a set of t ransi t ion summaries ST for each r G EB

by recursively instantiat ing transi t ion summaries and ca l l summaries. Let

S'T = U S T

T£EB

7 5

be the union of these sets. The final step is to instantiate the function summary as

S'AV = (F',Slr,MR,MF,BF,bR)

where F' is the formal map of AV~ provided by Infer. The remaining components were
discussed i n Section 4.3.3 as the construction and instantiat ion of summaries overlap. F i g
ure 4.3 from the beginning of this section shows the constructed summary S&p for the
function perf orm_basename and the sub-tree of the remove_suf f ix function represents
the instantiated cal l summary where x and y are formal parameters of perf orm_basename.
The remaining functions represented by the red leaf nodes (for example base_name or
r p l _ f ree) either d id not contain any loops and further function calls, or the their function
summary was missing and thus could not be instantiated. A missing function summary
can be caused by unavailable source code or if the analyzer previously failed to analyze the
called function and d id not construct any summary. For example, i n this case, the function
strlen is a l ibrary function wi th missing summary which can be remedied by providing
a custom function model. In any case, the recursive instantiat ion process terminates when
such a function is encountered.

7 6

Chapter 5

Implementation of Proposed
Enhancements

This chapter presents an overview of the previously proposed enhancements of Looper from
Chapter 4. It holist ically discusses the implementat ion of the new version by covering both
the implementat ion of the original version from [27] (see Chapter 3), as well as the new
extensions proposed in the previous chapter which remain the pr imary focus of this chapter.
The parts dedicated to the implementat ion of the original version are, however, mostly
focused on the discussion of necessary changes that had to be made due to internal changes
in the Infer framework. In fact, Infer has been under active development w i th dai ly updates
for the past several years which means that the framework itself has changed considerably
since the original version of Looper was published. Moreover, the added support for new
features, namely the interprocedural analysis, mandated addi t ional significant changes and
heavy refactoring. Consequently, the new version bears almost no structural resemblance
wi th the original version, albeit the implementat ion of the core bound algorithms based
on [32] remained mostly the same.

Even though Looper is implemented as an extension of the modular M e t a Infer frame
work introduced in Section 2.3, it does not leverage the architecture of the abstract inter
pretation framework to perform the analysis as most of the other analyzers do. The first
version of Looper leveraged the framework only to construct the in i t i a l L T S graph which
eventually proved to be cumbersome and the approach has been abandoned since then for
a different solution discussed i n Chapter 4. The current state of implementat ion thus relies
only on the general analysis framework of Infer which provides hooks to plug-in custom
analyzers into the architecture for interprocedural analysis. A s w i t h the first version, the
main implementat ion language of Looper as well as Infer is O C a m l which w i l l be used
to present simplified code snippets of important parts. Most of these code examples are
wri t ten i n the functional paradigm as O C a m l is p r imar i ly a functional language, but it
also allows developers to write code i n the imperative (and even object-oriented) paradigm
which is leveraged for example by the ocamlgraph l ibrary and few algorithms i n Looper .
Furthermore, s imilar ly to [27], an intuit ive pseudocode w i l l be used to present any relevant
algorithms.

The remaining part of this chapter is structured as follows. Section 5.1 describes how the
code is organized into files and how each file relates to the theoretical concepts presented in
Chapter 3 and in Chapter 4. It covers the basic architecture of the analyzer. The following
Section 5.2 covers the entry point function of the analyzer and how it controls the whole

77

analysis process. Section 5.3 is dedicated to discussion of the implementat ion changes made
in the intraprocedural part of Looper , more specifically the changes of the abstraction algo
r i thm. Furthermore, Section 5.4 discusses the implementat ion of the extension which allows
Looper to handle compound local bounds. The implementat ion of the newly introduced
lower variable bound procedure is covered in Section 5.5. Last ly, Section 5.6 discusses a l l of
the technical details related to the implementat ion of the interprocedural extension — the
main contr ibution of this work.

A s a final note, the scope of this work does not allow for an extended discussion of
implementation details but the source code of both the first and the new version of Looper is
publ ic ly available at G i t H u b 1 so readers are encouraged to study the code itself if interested.
Addi t ional ly , the Append ix B contains useful information about instal lat ion from source
code and usage of Looper . Moreover, the attached memory media (see Append ix A) and
the G i t H u b Pages 2 of the project repository also contain useful information along wi th some
usage examples.

5.1 Code Organization and Architecture

A s mentioned at the beginning of this chapter, the new version is vastly different not only
in terms of the architecture but also the code itself. The code of Looper is currently divided
into mult i tude of files i n the inf er/src/looper directory, each wi th its clearly defined re
sponsibility. Moreover, the entire analyzer follows the Infer module interface which allows it
to be integrated into the main analysis framework v i a the infer/src/base/Checker.ml [i]
and infer/src/backend/registerCheckers.ml files. These files provide an easy way to
register a custom checker by extending the existing variant O C a m l type Checker.t w i th
new analyzer entry which has to specify analysis name, command-line options, supported
languages and more. Addi t ional ly , the registerCheckers.ml file has to be extended too,
to specify the analysis callbacks (i.e., this is the hook which triggers the analysis) and also
the payload type, which refers to the custom summary type. Note that Infer does not
enforce any rules about the structure of a summary type which gives developers great free
dom to design any type of analysis and not only abstract interpretation based analyses. The
modular design also allows Infer users to run ind iv idua l analyses independently by using
specific command-line options, i.e., it is possible to run only Looper . The remaining part
of this section briefly introduces each ind iv idua l file and how it relates to the theoretical
concepts.

• LooperAnalysis .ml [i] : Th i s file contains the analyze_procedure entry point func
t ion of the entire analysis. It executes the high-level logic of the analysis, i.e., con
structs the graphs, derives constraints, guards, in i t i a l norms and local bounds. It
is also responsible for computing the transi t ion bounds of a l l relevant DCP edges
and construction of function summaries at the end of the analysis. Furthermore, it
contains the implementat ion of Incr, Deer, LVB, VB and TB procedures.

• GraphConstructor .ml [i] : The code responsible for construction of L T S graphs is
present here. The manual construction of the L T S graph structure as described in

l rThe open-source repository of Looper is available at: https://github.com/paveon/Looper. The source
code of the first as well as the new version along with an executable is available as a release at: https:
//github.com/paveon/Looper/releases.

2The repository GitHub Pages with additional information are available at: https://github.com/
paveon/Looper/wiki/Looper: -A-Worst-Case-Cost-Analyser

7 8

https://github.com/paveon/Looper
https://github.com/

Section 4.1.1 is performed by the traverseCFG function which traverses the input
Infer C F G using the D F S algori thm. The interpretation of S IL instructions and con
struction of edge assignments as well as conditions is handled by the exec_instr
function. This function was taken from the first version of Looper where it imple
mented the abstract transformers (see Section 2.2) i n the A I framework. Since then,
the A I framework is no longer used by Looper but the function was repurposed.

• LabeledTransitionSystem.ini [i] : These files implement the concept of L T S graphs
V from Defini t ion 3.1.2. The implementat ion file defines the Node.t and EdgeData.t
types which are used by the ocamlgraph l ibrary to construct the L T S data type. The
edge module defines several convenient functions such as for derivation of difference
constraints and guards which are used during the construction of a D C P . It also
defines several functions which are required i n order to output an L T S graph to a file
in the DOT format.

• Diff erenceConstraintProgram.ini [i] : These files implement the concept of DCP
graphs AV = (L, E, If,, le) from Defini t ion 3.1.5. A s it was possible to reuse the Node. t
module from the L T S implementation, only the EdgeData.t had to be redefined and
then used to construct the DCP graph data type. I.e., the L T S and DCP node data
types are identical . Aga in , it also defines several functions which are used during the
construction and output of a DCP graph.

• VariableFlowGraph.ml [i] : The concept of variable flow graphs w i th the V x L node
set from Defini t ion 3.1.11 is implemented by these files. Note that V = EdgeExp.t and
L = Node.t in the actual implementation. It only defines the data types for nodes
and edges w i t h no addi t ional functions.

• ResetGraph.ml [i] : The concept of reset chain graphs G(A, £) from Defini t ion 3.1.12
is implemented by these files. Assuming that E = Node.t x DCP.EdgeData.t x Node.t,
then A = EdgeExp.t and £ = E x Binop.t x IntLit.t are the actual modules used to
implement the node and edge sets. The Binop and IntLit modules are provided by
Infer and they are used to represent binary operators and integer literals. Moreover,
these files also define the Chain module which implements the reset chains concept,
likewise from Defini t ion 3.1.12. Th is module is able to represent chains such as K =

a n
 r"'C"> a n _ i - " 1> ... ao and implements function get_reset_chains which

constructs a l l op t imal reset chains (see Section 3.1.7) of Q. Furthermore, it implements
the helper functions m («) , C(K), trn(n) and atm(n).

• LooperSummary. ml [i] : The custom summary data structure which enables interpro-
cedural analysis is defined i n these files. Based on Section 4.3.1, the t, t r a n s i t i o n
and c a l l data types implement the function S^v, t ransi t ion ST and cal l Sc summaries
respectively. It also defines a cache data type which is used throughout the entire
analysis to cache various data to leverage the technique of dynamic programming.
Furthermore, the process of summary instantiation (see Section 4.3.4 is implemented
by this module v ia a instantiate function and addi t ional total_bound function
is used to compute the overall bound of a specific summary i n the form of single
EdgeExp .t expression. Lastly, a definition of a TreeGraph module can be found here.
Th is module is responsible for construction of summary trees out of summaries and
for output to files. Figure 4.3 presents an example.

79

• LooperCostModels.ml: A n experimental module inspired by the existing Cost an
alyzer. It is intended for representation of function models for functions without
available source code such as bui l t - in or l ibrary functions, e.g., malloc,std: :find or
container methods from C + + or Java. These functions cannot be analyzed and thus
do not have any real summaries for instantiation. A s such, it is instead possible to
create artificial summaries for these functions, i.e., models. The current state of im
plementation of this module and of function models i n general is purely experimental
and i n active development.

• EdgeExp .ml [i] : The EdgeExp module implemented by these files is the most es
sential bui ld ing block of the entire analyzer. It implements the theoretical domain
of EdgeExp expression used throughout Chapter 4. Th is module is used to repre
sent a l l expressions used by Looper i n the various graph data structures and during
the analysis itself. It implements a wide variety of functions ranging from conve
nient u t i l i ty functions and operators to complex procedures for par t ia l differentiation,
monotonicity checking or expression simplification. Moreover, it provides a function
for construction of EdgeExp expressions out of Infer Exp module expressions. It is
also possible to convert the EdgeExp expressions into W h y 3 expressions used by the
W h y 3 prover framework. Last ly, it defines ValuePair and CallPair wrapper mod
ules which implement a type that can either hold a single value or a pair of values for
expressions or specifically only cal l expressions. The need for these types arose wi th
the introduct ion of interprocedural analysis and the need for both the lower and the
upper bounds of values.

• Dif f erenceConstraint .ml [i] : The concept of difference constraints originally de
fined i n Defini t ion 3.1.3 and later redefined i n Section 4.1.3 is implemented here.
The previously introduced mathematical domain is implemented by actual O C a m l
modules as follows:

WHS ::= EdgeExp.t x Binop.t x IntLit.t
VC ::= EdgeExp.t x WHS x WHS,

The module also implements few convenient and simple functions, for example to
check whether a difference constraint is increasing, decreasing or a reset.

• LooperUtils .ml [i] : A collection of several useful u t i l i ty types used by other files.

• Provers .ml: A file that defines several data types related to the use of W h y 3 frame
work. It also specifies a list of provers supported both by W h y 3 and Looper. However,
the ma in purpose of this module is to load the necessary theories and ini t ial ize the
external provers for W h y 3 using custom driver files [6]. The W h y 3 framework is then
used to derive DCP guards and impor tant ly to determine monotonici ty of expressions
as discussed i n Section 4.3.2.

5.2 Analysis Entry Point Function

A s mentioned before, the analyze_procedure function registered in the registerCheckers
module serves as an analyzer entry point that gets invoked once by the Infer backend
for each procedure i n a program. Infer does not pose any restrictions upon the function

8 0

l e t analyze_procedure analysis_data =
(* ... Setup logging, Why3 and create output d i r e c t o r y structure... *)

(* Construct the i n i t i a l LTS graph and set of norms *)
l e t graph_data = GraphConstructor.construct analysis_data i n

(* Derive constraints and compute the f i n a l set of norms i n the process *)
l e t unprocessed_norms = graph_data.norms
l e t final_norms = compute_norm_set unprocessed_norms EdgeExp.Set.empty i n

(* Derive guards, propagate them and construct guarded DCP *)
L i s t . i t e r edge_pairs - f : (f u n (lts_edge, dcp_edge) ->

l e t guards = LTS.EdgeData.derive_guards lts_edge final_norms i n
DCP.EdgeData.add_guards dcp_edge guards) ;

propagate_guards guarded_nodes ;
to_natural_numbers dcp ; (* Transform guarded DCP into regular DCP *)

(* Create VFG graph, VFG mapping, apply mapping and construct Reset Graph *)
determine_local_bounds dcp ;

l e t edge_set, cache = DCP.fold_edges_e
(fun ((_ , edge_data, _) as edge) (edge_set, cache) ->

i f DCP.EdgeData.is_backedge edge_data then
l e t _, cache = transition_bound edge cache i n
(DCP.EdgeSet.add edge edge_set, cache)

else i f not (EdgeExp.CallPair.Set.is_empty edge_data.calls) then
(DCP.EdgeSet.add edge edge_set, cache)

else (edge_set, cache))
dcp (DCP.EdgeSet.empty, LooperSummary.empty_cache)

i n
(* Execution cost must be computed a f t e r t r a n s i t i o n s bounds
* to avoid computation cycles *)

l e t bounds, cache = DCP.EdgeSet.fold
(fun ((src_node, edge_data, dst_node) as edge) (bounds, cache) ->

l e t i n s t a n t i a t e d _ c a l l s , cache = i n s t a n t i a t e _ f u n c t i o n _ c a l l s edge_data cache i n
l e t bound, cache = transition_bound edge cache i n
l e t monotony_map =

i f EdgeExp.is_const bound then AccessExpressionMap.empty
else EdgeExp.determine_monotonicity bound tenv active_prover

i n
l e t transition_summary =

{src_node; dst_node; bound; monotony_map; ca l l s = i n s t a n t i a t e d _ c a l l s }
i n
(t r a n s i t i o n :: bounds, cache))

edge_set ([] , cache)

(* Calculate LVB and UVB f o r formal parameters and return value *)

l e t summary : LooperSummary.t = {
formal_map= FormalMap.make (Procdesc.get_attributes proc_desc)

; bounds ; return_bound ; formal_bounds }
i n
Some summary

Lis t ing 5.1: The entry point of Looper which is invoked by Infer for every analyzed
procedure. It implements the high-level logic of the analysis and is responsible for the
computat ion of t ransi t ion bounds and construction of summaries at the end of analysis.

81

apart from the fact that it has to optionally return a summary of the analyzed procedure.
A greatly simplified implementat ion is presented i n L i s t i ng 5.1. The presented code snippet
is pr imar i ly intended to show how the analysis is split into several steps without focus on
the details. A s such, many steps were either left out and replaced by simple comments
or greatly simplified. For example, the implementat ion of bound algorithms is left out
but the functions are s t i l l used i n the snippet. A t the beginning, before the L T S graph is
constructed at line 5, it is necessary to ini t ial ize logging and create a log file. Moreover, the
W h y 3 l ibrary has to be ini t ia l ized through the Provers module as it is used later during
the analysis. However, contrary to the logging setup, the W h y 3 ini t ia l iza t ion happens only
once when a first function is being analyzed. To avoid repeating the costly ini t ia l izat ion,
imperatively accessed cache is being used. The imperative access paradigm is facilitated by
the bui l t - in ref pointer type in O C a m l .

The construct function from the GraphConstructor module implements the algori thm
described i n Section 4.1.1 and Section 4.1.2. It constructs the L T S graph and the in i t i a l
set of norms, both contained in the graph_data data structure. It leverages the previously
mentioned traverseCFG and exec_instr functions which bu i ld the L T S graph structure
and edge labels respectively. Note that the traverseCFG function uses the Infer C F G as
is, i.e., it does not filter the graph nodes or edges. Other abstract interpretation based
analyzers typical ly use one of the C F G types provide by Infer, such as ProcCfg.Normal
or ProcCfg.Exceptional. However, because Looper currently does not support other lan
guages than C , there was no need to worry about specific C F G types as there is no exception
handling in C . The implementat ion of the traverseCFG and exec_instr functions w i l l be
briefly covered i n Section 5.3.

The compute_norm_set function on line 9 simultaneously derives difference constraints,
extracts the in i t i a l set of norms and constructs a guarded DCP without any guards. Guards
are then derived a propagated on lines 12-15 and finally the line 16 is responsible for the
transformation to a regular DCP. The implementat ion of these steps was already summa
rized in Section 3.1.2 and Section 3.1.3 or in more detail i n [27], as it is mostly identical
w i th the first version of Looper.

Then the flow-sensitivity transformation (see Section 3.1.6) is performed and the reset
graph (see Section 3.1.7) is constructed as hinted by the comment on the line 18. The
last step before the bound computat ion is the determine_local_bounds function which
implements the enhanced version of the a lgori thm as proposed in Section 4.2.2. The imple
mentation of the enhanced version w i l l be described i n Section 5.4.

The lines 21-46 are responsible for the main part of the analysis, i.e., the computa
t ion of t ransi t ion bounds TB{T) for a l l relevant edges r G EB, where EB is the previously
defined edge set. The second half instantiates the cal l summaries Sc (line 35) and uses
them to construct the t ransi t ion summaries ST (lines 41-43). Addi t ional ly , the monotony
map M is computed for each TB{T), where the determine_monotonicity function cor
responds wi th the Ai(e) function defined in Section 4.3.2. The implementat ion of the
determine_monotonicity function w i l l be covered i n more detail , including the a lgori thm
for par t ia l differentiation, in Section 5.6.1. Furthermore, the line 48 corresponds wi th a code
section that computes the lower LVB{y) and upper VB{y) variable bounds for formal pa
rameters / i , . . . , / „ as well as for the return shadow variable of the analyzed function. Note
that only parameters fi of pointer to integer types are considered. The implementat ion of
the new LVB procedure introduced in Section 4.2.1 w i l l be covered i n Section 5.5.

Final ly , the remaining lines 50-54 construct the function summary § A " P of the currently
analyzed function and return it to the Infer backend which stores it for subsequent instan-

82

1 l e t analyze_procedure analysis_data =
2 (* ... Setup logging, Why3 and create output d i r e c t o r y structure.. . *)
3 t r y
4
g

l e t graph_data = GraphConstructor.construct analysis_data i n

6 Some summary
7 with error ->
8 l e t stack = Printexc.get_backtrace () i n
9 report_issue IssueType.looper_infinite_cost
10 "cannot be computed due to thrown exception" ;
11 U t i l s . c l o s e _ o u t f l o g _ f i l e ;
12 debug_fmt := L i s t . t l _ e x n !debug_fmt ;
13 None

Lis t ing 5.2: Except ion handling of the entry point function from L i s t i ng 5.1.

t ia t ion. The f ormal_map value (line 51) which corresponds wi th the formal map J- domain
from Section 4.3.1 is provided by Infer infrastructure.

O n a final note, the analyze_procedure function in reality also contains exception
handling for everything except the ini t ia l izat ion of W h y 3 and logging at the beginning.
L i s t ing 5.2 shows how the code from Lis t ing 5.1 is wrapped i n try-with blocks. Due to the
complexity of Looper as well as the complexity of real-world code that is being analyzed,
there are always unforeseen issues and code patterns that might cause the perpetually
incomplete analyzer to crash. Th is coarse exception handling is intended to prevent these
errors from crashing the entire analysis loop of Infer and instead gracefully handle the issue
so that the analysis can continue, albeit w i th missing summary.

5.3 Construction of LTS

A s mentioned before, the traverseCFG function is responsible for construction of L T S
graphs. L i s t ing 5.3 shows the implementat ion of O C a m l modules used to represent the
L T S nodes and edges. The Node module only holds the information about node type and
the EdgeData module pr imar i ly contains edge assignments, conditions and calls among other
useful data. These modules are used during the construction of the L T S graph structure
in A l g o r i t h m 1. Suppose that Edge ::= Node.t x EdgeData.t x Node.t is the type of L T S
edge.

The algori thm follows a fairly standard D F S pattern and pr imar i ly serves as a re
placement for the original A I framework which was vis i t ing nodes in a predefined or
der, such as W T O (see Section 3.2). It visits each node at least once where the node
is processed by the process_cfg_node function on the first visit (line 6) and by the
process_visited_cfg_node function on any subsequent visit (line 3). Section 4.1.1 briefly
discussed the ideas behind these functions and the implementat ion details w i l l not be cov
ered here.

Furthermore, process_cf g_node function indirect ly calls the exec_instr function which
implements the logic described at the end of Section 4.1.2. Extended discussion about im
plementation is not provided here because it closely follows the previously outl ined logic
which does not involve any complicated algorithms that would require further discussion.
Moreover, the code was also already reviewed in [27] i n greater detail . Nevertheless, the
implementation of C a l l instruct ion is worth revisit ing as it performs the instantiat ion pro-

83

module Node : s i g
type t =

Prune of (S i l . i f _ k i n d * Location.t * Procdesc.Node.id)
Start of (Procname.t * Location.t)
Joi n of (Location.t * Procdesc.Node.id)
E x i t

end
module EdgeData : s i g

type t = {
backedge: bool

conditions: EdgeExp.Set.t l i s t
condition_norms: EdgeExp.Set.t l i s t
assignments: (HilExp.access_expression * EdgeExp.ValuePair.t) l i s t
branch_info: (S i l . i f _ k i n d * bool * Location.t) option
c a l l s : EdgeExp.CallPair.Set.t }

v a l add_invariants : t -> AccessExpressionSet.t AccessPath.BaseMap.t -> t
end

Lis t ing 5.3: Implementation of L T S Node and EdgeData modules.

cess for real function summaries or models. L i s t ing 5.4 shows an outline of the exec_instr
function wi th focus on the ca l l instruction. It follows the two-step instantiat ion scheme de
scribed i n Section 4.3.4 where the C a l l instruction only substitutes the formal parameters
in the bound expressions (return and formal bounds) w i th actual arguments but does not
compute any lower or upper value bounds. More specifically, lines 15-18 substitute the ar
guments and then lines 19-20 create the summary mapping for delayed instantiation. Lines
24-27 deal w i th the experimental support for function models of bu i l t - in or l ibrary func
tions as discussed in Section 5.1. Implementation is not discussed due to its experimental
nature. Final ly , lines 29-31 are responsible for updat ing the appropriate summary compo
nents, where ident_map (defined i n Section 4.1.2 as M ::= Ident x EdgeExp x EdgeExp)
holds the associations between identifiers and expression pairs.

The remaining Load Store and Prune instructions are responsible for creation of the
other L T S node types and also connecting edges as described i n Section 4.1.1.

5.4 Compound Local Bounds

Implementation of the compound local bounds feature was fairly straightforward. The first
step was to extend the existing EdgeData modules of both L T S and DCP graphs to store
the condition_norms: EdgeExp. Set. t l i s t which are copied over from L T S to DCP
during construction. The next step was to implement logic for detection of decreasing edges
where compound norm norm is considered to be decreasing i f at least one atomic norm is
being decreased on an edge. L i s t i ng 5.5 shows the code that computes the £(cv) C E set
(see Section 4.2.2) of decreasing edges for compound norms instead of atomic norms. Note
that the scc_edges set contains a l l edges which can be executed more than once, i.e., loop
edges.

A l g o r i t h m 2 shows how the ind iv idua l decreasing edge sets £(cv) are used to determine
the compound local bounds and closely follows the outline from Section 4.2.2. Addi t ional ly ,
A l g o r i t h m 3 outlines the implementat ion of the TB(T) procedure which had to be gener-

81

l e t exec_instr = fun (graph_data, proc_data) i n s t r -> match i n s t r with
I Prune (cond, l o c , branch, kind) -> ...
I Store -[el= l h s ; typ; e2= rhs; loc} -> ...
I Load {id; e; typ; loc} -> ...
I C a l l ((r e t _ i d , r e t _ t y p) , Exp.Const (Const.Cfun callee_pname), args, l o c , _)

(* process arguments and extract norms out of them.
* lb_args and ub_args are used during s u b s t i t u t i o n *)

l e t lb_args, ub_args = ... i n
l e t c a l l _ p a i r , arg_norms = ... i n
l e t summaries, return_bound, edge_data =
match analyze_dependency callee_pname with
I Some payload ->

(* substitute optional return bound with actual arguments *)
l e t subst_ret_bound_opt = ... i n
(* i n s t a n t i a t e payload.formal bounds and create edge assignments
* function ~ f (. . .) uses lb_args and ub_args *)

l e t edge_data = EdgeExp.Map.fold formal_bounds edge_data - f : (. . .) i n
l e t summary = {payload with return_bound= subst_ret_bound_opt} i n
l e t summaries = Location.Map.add l o c summary summaries i n
l e t return_bound_pair = ...
i n
(summaries, return_bound_pair, edge_data)

I None ->
match LooperCostModels.Call.get_model callee_pname args_pairs with
I Some call_model -> (* i n s t a n t i a t e and return model summary *)
I None -> (* no model, ignore / report issue *)

i n
ident_map= Ident.Map.add r e t _ i d return_bound ident_map i n
cal l s = EdgeExp.CallPair.Set.add c a l l _ p a i r c a l l s i n
norms= EdgeExp.Set.union norms arg_norms i n

Lis t ing 5.4: Interpretation of SIL C a l l instructions dur ing the construction of L T S graph.
The code shows an outline of the par t ia l instantiat ion of function summaries i n the first
phase. It includes the experimental instantiat ion of function models.

l e t condition_norms_decreasing norms (edge_data : DCP.EdgeData.t) =
L i s t . e x i s t s norms ~ f : (f u n norm_set ->

(* It i s enough i f at l e a s t one norm from the compound norm i s decreased *)
EdgeExp.Set.exists

(fun condition_norm ->
match DC.get_dc condition_norm edge_data.constraints with
I Some dc ->

DC.same_norms dc && DC.is_decreasing dc
I _ ">

f a l s e)
norm_set)

i n
l e t get_decreased_edge_set condition_norms = DCP.EdgeSet.filter

(fun (_, edge_data, _) -> condition_norms_decreasing condition_norms edge_data)
scc_edges

i n

Lis t ing 5.5: Detection of decreasing compound norms and computat ion of sets of edges wi th
decreasing compound norms.

85

Algorithm 1: Const ruct ing the node and edge sets for L T S
Input : Infer C F G node n G NQ; set of visi ted nodes N C NQ; construction data

(ld,ed,Ld,Td) G Node.t x EdgeData.t x 2 N o d e - t x 2Ed9e, where ld is the
last created L T S node, ed is the data of the L T S edge which is currently
being constructed and Ld and Td are already created nodes and
transitions respectively.

Output:
l def traverseCFG (n , N, (ld,ed,Ld,Td)):

if n G N then
process_visited_cfg_node (n , data)

else
N i- NU {n}:
process_cfg_node (n , data):
if type{n) = exit then

le <— Node.Exit:
Ld <- LdU{le};
Td <— Td U {(ld, EdgeData.add invariants ed, le)}-,
return (le, EdgeData.empty, Ld, Td):

else
/* store a copy of the o r i g i n a l data for each DFS path */
(l,e) <- copy((ld,ed));
for ns G successors(n) do
[_ traverseCFG (n s , N, (l,e, Ld,Td);

alized for compound norms. The function process_norm implements the original TB{T)

procedure which was modified in Section 4.2.2 to take norms instead of transitions as input.
The presented algori thm does not include error checking, use of cache or checks for infinite
recursion which can occur for example when the real transit ion bounds are exponential.

5.5 Lower Variable Bound

Section 4.2.1 proposed an algori thm for computing lower variable bounds which were a nec
essary prerequisite for implementat ion of interprocedural analysis. The section covered how
the proposed algori thm was obtained through a modification of the original variable bound
algori thm. L i s t ing 5.6 shows a simplified version of the implementat ion which leveraged
the similar nature of both procedures and s imply modified the original variable_bound
function to support computat ion of both lower and upper bound. Lines 2-5 choose the
appropriate sub-algorithms based on the bound type which are then used on lines 9 and
18. Note that the actual implementat ion contains addi t ional updates of cache and the true
branch of the if-statement on line 10 handles a special case when the end of a reset chain
is a formal variable.

The concept of formal variables had to be introduced i n order to support analysis of
pointer side-effects. The original Loopus tool considered a l l formal parameters of an ana
lyzed function to be immutable constant values and transi t ion bounds were buil t over these

86

A l g o r i t h m 2: Determining compound local bounds
Input : set of D C P loop edges sec edges C E

1 Er <— sec edges:
2 for e G sec edges do
3 cv = e. condition _norms;
4 Ecv <— get_decreased_edge_set(cv)
5 for e G (Ecv D Er) do
6 e.bound_norms <— cv:

7 £ V E r \ Ecv:
8 remove_edges(A'P, Ecv):
9 F n o n _ s c c = F R \ get_scc_edges(A'P):
10 for 6non sec G Eaoa Scc do
11 e n o n scc.bound_norms <— cv:

12 add_edges(AP, Ecv):
13 Er i Er \ Enon see;
14 if Er = {} then
15 break:

A l g o r i t h m 3: Comput ing TB{T) for edges wi th compound local bounds
Input : D C P edge e G E
Output: bound expression EdgeExp.Max

l def transition_bound(e):
^max C EdgeExp <- {};
for N G e.bound_norms do

Amin C EdgeExp <- {}:
for n G iV do

|_ ^.min —̂ ^.min U { process_norm (n)} :
U {EdgeExp.Min(,4 m i n)};

return EdgeExp.Max(^4 m a x);

parameters. However, i n most cases, side-effects imp ly that the value of a parameter is
changed by the function through pointer access. Thus, the original assumption about con
stant parameter values no longer holds and a temporary "hacky" solution was implemented.
The idea is to treat formal parameter norms of pointer to integer type as variables V when
deriving difference constraints but as symbolic constants C when the parameter appears
at the end of a reset chain. T h i s approach is not opt imal but allows for basic analysis
of side-effects. A proper solution would probably involve introduct ion of so-called shadow
variables, i.e., generated auxi l iary variables ini t ia l ized wi th the parameter values at the
beginning of the analyzed function.

8 7

l e t variable_bound -bound_type norm cache =
l e t sum_function, min_max_constructor = match bound_type with
I BoundType.Upper -> (calculate_increment_sum, max_constructor)
I BoundType.Lower -> (calculate_decrement_sum, min_constructor)
i n
match EdgeExp.Map.find_opt norm bound_cache with
I Some bound -> (bound, cache) (* r e t r i e v e from cache *)
I None -> i f is_terminal_norm norm then (norm, cache) else

l e t sum_part, cache = sum_function (EdgeExp.Set.singleton norm) cache i n
i f Resets.is_empty norm_updates.resets then (...) else (

l e t min_max_reset_args, cache =
Resets.fold (fun (_, norm, const) (args, cache) ->

l e t var_bound, cache = variable_bound ~bound_type norm cache i n
l e t min_max_arg = ... i n
(EdgeExp.Set.add min_max_arg args, cache)

)
norm_updates.resets (EdgeExp.Set.empty, cache) i n
l e t min_max_reset = min_max_constructor min_max_reset_args i n
(EdgeExp.add min_max_reset sum_part, cache)

)

L i s t ing 5.6: A generalized version of the original variable_bound procedure which can
compute either LVB{y) or VB(v).

5.6 Interprocedural Analysis

The LooperSummary .ml [i] files contain the definition of summary types as proposed in
Section 4.3.1 and the implementat ion can be seen i n L i s t ing 5.7 Lines 12-16 define the
main function summary S^v w i th T as formal_map, 2 S t as bounds, Ve as return_bound
and finally 2" as formal_bounds. Lines 5-10 define the transi t ion summary ST where
src_node and dst_node correspond wi th the transi t ion r , e G EdgeExp as bound, M G 2M

as monotony_map and lastly the set of ca l l summaries Sc G 2 S c as c a l l s . Furthermore,
line 1 defines the type for the cal l summary Sc where n G Procname is represented by
name, / G Loc by loc and the set of t ransi t ion summaries ST G 2 S t by bounds. The cal l
summary type is addi t ional ly wrapped i n a variant type c a l l which can hold summaries of
both real and model calls. The model_call type is omit ted due to its experimental nature.

5.6.1 Monotonicity and Partial Differentiation

Section 4.3.2 proposed a solution for the problem of sound instantiat ion of function sum
maries. The issue was whether a lower or upper bound of an argument should be
substituted into summary bounds dur ing instantiation. The idea was to analyze the mono-
tonicities of ind iv idua l t ransi t ion bounds wi th respect to each function parameter and then
substitute either LVB(ai) or VB{ai) based on the result. The proposed solution leveraged
par t ia l derivatives and the W h y 3 prover platform (mainly using Z3 prover) to determine
the monotonicities. L i s t ing 5.8 presents a simplified version of the p a r t i a l _ d i f f function
which performs the par t ia l differentiation using a recursive approach and leveraging the
sum, product and quotient rules. The code is fairly straightforward and follows a stan
dard differentiation pattern. Lines 20-22 process the leaf nodes of an expression A S T and
terminate the recursion. More specifically, line 20 treats an access path IT expression as

8 8

type r e a l _ c a l l = {name: Procname.t; l o c : Location.t; bounds: t r a n s i t i o n l i s t }

and c a l l = ModelCall of model_call I R e a l C a l l of r e a l _ c a l l

and t r a n s i t i o n =
{ src_node: LTS.Node.t

dst_node: LTS.Node.t
bound: EdgeExp.T.t
monotony_map: Monotonicity.t AccessExpressionMap.t
c a l l s : c a l l l i s t }

type t =
{ formal_map: FormalMap.t
; bounds: t r a n s i t i o n l i s t
; return_bound: EdgeExp.ValuePair.pair opt ion
; formal_bounds: EdgeExp.ValuePair.pair EdgeExp.Map.t}

Lis t ing 5.7: The definition of summary types wi th the model summary omitted.

l e t rec p a r t i a l _ d i f f exp - d i f f _ v a r = match exp with
I BinOp ((Binop.PlusA _ as op), lexp, rexp)
I BinOp ((Binop.MinusA _ as op), lexp, rexp) ->

(* Apply Sum r u l e : f +/- g -> f ' +/- g' *)

I BinOp (Binop.Mult kind, lexp, rexp) ->
(* Apply Product r u l e : f * g -> (f ' * g) + (f * g') *)
l e t lexp' = p a r t i a l _ d i f f lexp - d i f f _ v a r i n
l e t rexp' = p a r t i a l _ d i f f rexp - d i f f _ v a r i n
BinOp (Binop.PlusA kind, BinOp (Binop.Mult kind, lexp', rexp),

BinOp (Binop.Mult kind, lexp, rexp'))
I BinOp (Binop.Divl, lexp, rexp) ->

(* Apply Quotient r u l e : f / g - > (f * g - f * g ') / g~2 *)
l e t lexp' = p a r t i a l _ d i f f lexp - d i f f _ v a r i n
l e t rexp' = p a r t i a l _ d i f f rexp - d i f f _ v a r i n
l e t num_lhs = BinOp (Binop.Mult None, lexp', rexp) i n
l e t num_rhs = BinOp (Binop.Mult None, lexp, rexp') i n
BinOp (Binop.Divl, BinOp (Binop.MinusA None, num_lhs, num_rhs),

BinOp (Binop.Mult None, rexp, rexp))
UnOp (Unop.Neg, exp, typ) -> UnOp (Unop.Neg, p a r t i a l _ d i f f exp - d i f f _ v a r , typ)
Access access -> i f AccessExpression.equal access d i f f _ v a r then one else zero
S t r l e n s t r -> i f AccessExpression.equal s t r d i f f _ v a r then one else zero
Const (Const.Cint _) -> zero

-> . . .

Lis t ing 5.8: A simplified version of the recursive p a r t i a l _ d i f f function for par t ia l
differentiation. It leverages the sum, quotient, and product rules i n combinat ion wi th
recursion to compute the result.

89

l e t determine_monotonicity exp tenv prover_data =
l e t exp = s i m p l i f y exp i n
l e t why3_solve_task task = ... i n
l e t d e r i v a t i v e _ v a r i a b l e s = get_accesses exp i n
AccessExpressionSet.fold (fun d i f f _ v a r acc ->

l e t exp' = p a r t i a l _ d i f f exp - d i f f _ v a r |> s i m p l i f y i n
i f is_const exp' then

l e t exp_monotonicity = incr_or_decr exp d i f f _ v a r i n
AccessExpressionMap.add d i f f _ v a r exp_monotonicity acc

else
l e t why3_exp' = to_why3_expr exp' tenv prover_data i n
l e t non_zero_exp' =

t_app_infer ne_symbol [why3_exp'; zero_const]
i n
l e t free_vars = Mvs.keys (t_vars non_zero_exp') i n
l e t n o n _ z e r o _ f o r a l l = t _ f o r a l l _ c l o s e _ s i m p free_vars [] non_zero_exp' i n
l e t task =

Task.add_prop_decl base_task Decl.Pgoal nonzero_goal n o n _ z e r o _ f o r a l l
i n
match (why3_solve_task task).pr_answer with
I C a l l _ p r o v e r s . V a l i d ->

l e t exp_monotonicity = incr_or_decr exp d i f f _ v a r i n
AccessExpressionMap.add d i f f _ v a r exp_monotonicity acc

I C a l l _ p r o v e r s . I n v a l i d I Call_provers.Unknown _ ->
AccessExpressionMap.add d i f f _ v a r Monotonicity.NotMonotonic acc

I _ -> (* error handling *)
) d e r i v a t i v e _ v a r i a b l e s AccessExpressionMap.empty

Lis t ing 5.9: A simplified version of the determine_monotonicity function which
determines the monotonici ty of the input expression for each expression variable. For
brevity, handling of type conditions that can increase the success rate of the used prover
was omitted.

an variable i f it is equal to the current differentiation variable d i f f _var or as constant
otherwise. Regardless of the current d i f f _var, constants are always derived as zero.

The snippet does not include the code for handling of special operators such as m i n or
max which are difficult to differentiate properly, especially when there are mult iple argu
ments. The adopted solution is thus heuristic in nature and not mathematical ly accurate.
However, by leveraging the knowledge about the specific use-case (determining monotonic
ity) , it was possible to come up wi th a solution which reasonably approximates the expected
outcomes. Namely, the m i n and max operators are transformed to + for the purposes of
the differentiation. Such transformation l ikely is not generally correct, however, for our
pract ical purposes it proved to be sufficient.

The previously discussed p a r t i a l _ d i f f function serves as a bui ld ing block used in the
determine_monotonicity function presented i n L i s t ing 5.9. The function first finds a l l
access path variables used i n the input expression exp on line 4. Then the expression is
differentiated wi th respect to each variable on line 6 and the derivative exp' is used to
construct a W h y 3 expression and a prover task out of it on lines 11-19. F ina l ly , the task
is given to W h y 3 and checked whether it is val id or not on line 20. Note that the W h y 3
A P I works w i t h validity instead of satisfiability but the task is then internally converted
to a satisfiability problem before it is delegated to Z3 , hence the lines 21-25 process the
result i n terms of validity. A val id result on line 21 implies that the derivative has no

90

l e t formal_bounds, cache = EdgeExp.Map.fold (fun vfg_norm formal (bound_map, cache) ->
l e t upper_bound, cache = variable_bound -bound_type:BoundType.Upper vfg_norm cache i n
l e t lower_bound, cache = variable_bound -bound_type:BoundType.Lower vfg_norm cache i n
(EdgeExp.Map.add formal (lower_bound, upper_bound) bound_map, cache)

) formals_mapping (EdgeExp.Map.empty, cache)
i n

l e t ret_type = Procdesc.get_ret_type proc_desc i n
l e t return_bound = match ret_type.desc with
I T i n t _ ->

l e t return_access = AccessPath.base_of_pvar (Procdesc.get_ret_var proc_desc) ret_type
|> HilExp.AccessExpression.base
i n
l e t return_norm =

EdgeExp.T.Max (EdgeExp.Set.singleton (EdgeExp.T.Access return_access)) i n
l e t ub = variable_bound -bound_type:BoundType.Upper return_norm cache i n
l e t l b = variable_bound -bound_type:BoundType.Lower return_norm cache i n
Some (lb , ub)

I _ ->
None

i n
l e t summary : LooperSummary.t = { ... } i n
Some summary

Lis t ing 5.10: Const ruct ion of formal and return bounds used in the function summary at
the end of analysis. It is an extension to the code from L i s t i ng 5.1 which omit ted parts
related to return and formal bounds.

root, i.e., the input expression exp is monotonic w i t h respect to variable diff_var, but
a further investigation of the specific monotonici ty type is required. The omit ted function
incr_or_decr tries to find out by substi tut ing two increasing constant values instead of
d i f f _var into the original input expression exp. Th is approach w i l l fail to give a decisive
answer when a local ly constant interval of exp is encountered, but such cases d id not occur
during the experimental testing.

5.6.2 Construction and Instantiation of Summaries

Lis t ing 5.1 already presented part of the construction process of summaries which involved
creation of transi t ion summaries but omit ted the return and formal bounds. L i s t ing 5.10
thus expands the original code and presents a simplified version of the code that computes
both of these bounds. Lines 1-6 compute the formal bounds using the formals_mapping
which maps the auxi l iary variables vfg_norm generated during the flow-sensitivity trans
formation to the original formal parameter variables. Hence, lines 2 and 3 cal l the
variable_bound function for the vfg_norm instead of directly cal l ing it for the formal
variable. The remaining lines compute the lower and upper bounds for the return variable
but only i f it exists and is of integer type (line 10) at the same time.

A s mentioned previously i n Section 5.2, the analyze_procedure function from Lis t
ing 5.1 also simultaneously instantiates a l l function summaries stored on DCP edges wi th
the instantiate_function_calls function on line 35. A l g o r i t h m 4 outlines the instan-

Q
t ia t ion process for a single D C P edge e = l\ —> I2, where the set C C Calls is a set of
function expressions (n, A, I) £ C defined in Section 4.3.4. Each function ca l l expression

91

Algorithm 4: Instantiating a l l function calls on a D C P edge e
Input : D C P edge e G E; Location.Map.t mapping from locations to function

summaries LS C L x SAV

Output: Set of instantiated cal l summaries Sc C § c
l def instantiate_function_calls (e , LS):

SccSc^ {};
for (n, A, I) G e.calls do

/* r e t r i e v e function summary stored i n LS */

(F, ST, Bp, bp) <- Location. Map. find (I, LS);

S'T <- {};
for sp G S T do

/* i n s t a n t i a t e a l l t r a n s i t i o n bounds of the r e t r i e v e d summary */
S'T S'T U { instantiate_transition_summary(ST> A, F)}:

Sc<-ScU{(n,l,S'T)};

return Sc]

(n, A, I) G Procname.t x 2 E d g e E x p t xLoc.t from the e.calls list is first used on line 4 to retrieve
the associated function summary which was previously stored in LS (also defined i n Sec
t ion 4.3.4) using the call-site location I. Each function summary contains a set of t ransi t ion
summaries ST which are then instantiated wi th the instantiate_transition_summary
recursive function on line 7. Th is function produces a modified transi t ion summary s'T for
every input summary ST- These summaries are used to construct a set of modified sum
maries ST and those are i n t u r n used to construct a modified set S'c which is returned and
used i n L i s t i ng 5.1 on line 42 to construct a t ransi t ion summary for the currently analyzed
function AV.

A l g o r i t h m 5 then shows the implementat ion of the instantiate_transition_summary
function from line 7 of the previous algori thm.

The function works recursively by first instantiat ing the transi t ion bound e on line 3
(constant bounds do not have to be instantiated) and recomputing the monotony map M'
for the instantiated bound e'. A new monotony map is required because the bound e' is
now buil t over the formal parameters of the currently analyzed function AV instead of
parameters of the called function itself. The final step is to instantiate the cal l summaries
present on r which are stored i n Sc- Each function ca l l represented by a function summary
sc G Sc also contains a set of transitions represented by summaries ST- These transi t ion
summaries are thus recursively instantiated by the instantiate_transition_summary (t)
function ca l l on line 10 and used to construct a new set of instantiated
which is used to create updated set of cal l summaries S'c. on line 11. F ina l ly , an instan
t iated transi t ion summary for input t ransi t ion r is returned on line 12. Note that both
of these algorithms are simplified versions of the actual implementat ion which addi t ional ly
includes error checking, management of computat ional cache and also handling of model
cal l summaries which are currently i n an experimental stage of development.

The final piece of the puzzle is the instantiate_bound function which instantiates
a single input bound expression e based on the principle presented i n Section 4.3.4. A l
gori thm 6 outlines the process where the task is to maximize the value of expression e
v i a substi tut ion of either upper or lower bound of each argument. More specifically, the
notation TT G e on line 2 denotes a loop over a l l access path variables ir i n the expression e,

92

Algorithm 5: Recursively instantiat ing transi t ion summary ST G §T

Input : t ransi t ion summary ST = (T , e, M, Sc)] set of arguments A C EdgeExp:
formal map F C T

Output: instantiated transi t ion summary (r, e', M', S'c)
l def instantiate_transition_summary((r, e, M, Sc), A, F):

if EdgeExp. is_const (e) then e' e
else e' instantiate_bound (e , ^4, M , i 7)
/* create new M' f o r the i n s t a n t i a t e d bound e' */

if EdgeExp.is_const(e ') then M' <(— {}
else M ' EdgeExp. determine_monotonicity(e')

S'c <- U
for (n, I, 5 T) G 5 C do

5 T ^ { }
for i G S T do

/* recursive i n s t a n t i a t i o n
S'T 5 T U { instantiate_transition_summary (t , yl) }

return (r,e', M', S'c)

*l

i.e., it represents the visit of each IT leaf node i n A S T of e. The formal variable IT is then
used on line 3 to retrieve the associated formal index i from the formal map F which is
i n t u rn used to retrieve the corresponding argument arg from the list of argument A on
line 4. Furthermore, the function monotonici ty m associated wi th the formal parameter 7r
is retrieved from the monotonici ty map M on line 7. Based on the monotonici ty m, the
variable_bound function is used to compute either a lower or upper bound for arg on lines
8-14. Moreover, the notat ion on line 15 denotes the substi tut ion of expression arg into the
formal parameter IT i n expression e. F ina l ly , the expression e is returned on line 16 after
al l formal parameter variables have been substituted.

93

Algorithm 6: Instantiating single transi t ion bound expression
Input : bound expression e G EdgeExp; list of arguments A C EdgeExp;

monotonicity map of formal parameters M C M; formal map F C T
Output: instantiated bound expression e

1 def instantiate_bound (e , A, M, F):
for 7T G e do

i 6 M f - get_formal_index(7r, F);
arg <— A[i\;
if EdgeExp.is_const(arg) then return arg ;
else

m G Q <— AccessExpressionMap.find(7r, M) ;
switch m do

case < do

arg <— variable_bound(arg, BoundType.Upper);
case > do

arg «— variable_bound(arg, BoundType.Lower):
case ~ do

arg 4— EdgeExp.Inf;

e 4— e[ir/arg];

return e;

94

Chapter 6

Experimental Evaluation of
Enhanced Looper

This chapter covers the experimental evaluation and testing of the new Looper version which
was proposed in Chapter 4 and subsequently implemented i n Chapter 5. The proposed en
hancements and extensions underwent continuous testing throughout the development pro
cess on both hand-crafted code examples and real-world code samples. Each enhancement
was first tested on suitable hand-crafted examples to ensure proper basic functionality w.r.t.
the proposal and then addi t ional testing on real code was conducted. Especial ly the fairly
complex interprocedurality extension was extensively tested to ensure proper functionality.
The rest of this chapter is structured as follows: F i rs t , Section 6.1 revisits the o ld test
suite used during evaluation of the original version of Looper and includes the results from
the new version. Further, Section 6.2 briefly discusses the issue of scalabili ty and precision
which was evaluated i n comparison wi th the C O S T checker on the G N U coreutils suite of
programs. F ina l ly , Section 6.3 briefly addresses the achieved results and provides a short
discussion on the potential future work.

6.1 Revisited Loopus Test-Suite

The original version of Looper was tested on several examples that were taken from [32].
These examples were mostly extracted from the S P E C C P U 2 0 0 6 benchmark and included
complex i teration patterns which demonstrated the strengths of original Loopus and com
pared Looper against the C O S T checker from Infer. The evaluation from [27] addi t ional ly
included a smal l test-suite of selected C O S T examples to provide a fair comparison when
tested on code which should favor the C O S T checker.

This test-suite was revisited and used to test the new version of Looper to ensure
that the original intraprocedural functionality was not compromised after the extensive
modifications proposed and implemented i n this work. It also provided an insight into the
improvements that have been made to the C O S T checker over the years and whether it
can now handle complex i teration patterns it originally could not. Table 6.1 presents the
Loopus test-suite results which are mostly unchanged. The two notable differences are the
drastically reduced run-time of both checkers and also few changes i n the inferred bounds.
The reduction of run-time is mostly at t r ibuted to the improved performance of Infer itself
and possibly also the C O S T checker. The new version of Looper d id not introduce any major
performance optimizations i n regards to the original intraprocedural analysis a lgori thm and

95

Inferred bound Tota l T i m e [s]

Rea l B o u n d Cost Looper Cost Looper

v l v2 v i v2 v l v2 v l v2

#1 n n 2 n 2 2n 2n

#2 2n n 2 n 2 2n 2n

#3 An oo oo 5n 5n

#4 *n2 oo oo n 2 oo
10.2 0.7 5.5 2.3

#5 2n oo 2n 2n 2n
10.2 0.7 5.5 2.3

#6 *n oo oo n n

#7 2n oo oo 2n 2n

#8 2n oo oo 2n 2n

Table 6.1: The evaluation results taken from [27] and extended wi th newly measured data
using the new versions of C O S T and Looper. The origin of these examples is from from [32]
which extracted them mostly from S P E C C P U 2 0 0 6 benchmark. *The precise real bounds
of examples no. 4 and 6 were (n + 1) * max{n — 1,0) + n + 1 and 3n + max(ml,m2)
respectively.

the improvements are thus at t r ibuted mostly to the internal changes of Infer. The second
difference are the changes to inferred bounds where C O S T is now able to successfully analyze
the example no. 5 which it previously could not. Addi t ional ly , Looper failed to analyze
the example no. 4 which it previously could analyze. The reason lies i n the inherent
non-determinism of the local bound algori thm which assigns local bounds to transitions
in a random order. The internal changes made to Looper affected this order, leading to
a different choice of local bounds which i n tu rn caused cyclic computat ion, i.e., infinite
bound.

W h e n revisit ing the C O S T checker test-suite, a l l of the available 71 examples were
included this t ime compared to the 30 curated examples i n [27]. Or ig ina l Looper d id
not support interprocedural analysis or compound Boolean conditions i n loop headers (and
branching statements i n general) among other things. Moreover, it could not handle various
control flow patterns such as goto or do-while. These l imitat ions were the reason for
choosing a specific subset of examples that Looper could potential ly handle. The original
results of this comparison can be seen in Table 6.2.

Precise Bounds Imprecise Bounds Errors * T i m e [s]

Looper 24 3 3 5.5
Cost 27 3 0 15.3

Table 6.2: Revis i ted results from [27]. The C O S T test-suite contained 30 relevant functions
from the to ta l of 62 functions available at the time. *The tota l t ime was measured only on
27 functions which d id not cause a crash of Looper.

In comparison, the new version of Looper no longer has these l imitat ions and thus could
be tested on the complete C O S T test-suite which now contains 71 examples up from the
previous 62. The results of this comparison can be seen i n Table 6.3

96

Precise Bounds Tight Bounds Imprecise Bounds T i m e [s]

Looper 50 6 15 7.35
Cost 8 57 6 2.51

Table 6.3: The results of an experimental evaluation of Looper using the complete C O S T
checker test-suite w i th 71 functions. The test-suite contains some challenging i teration
patterns including the use of goto to create mult iple entry points of a loop. Moreover, it
tests the interprocedural capabilities of checkers.

The new table does not include the column for errors anymore because Looper now
returns oo bound instead of crashing when it fails to determine a bound or encounters an
error. Addi t ional ly , the table now also differentiates between the precise and tight bounds
where a bound is considered to be precise i f it is equal to the real execution cost, including
constants. O n the other hand, a bound e is considered tight i f the big-© of e is equal to
the b ig-© of the real bound. A n a l y z i n g the results, a l l of the imprecise bounds in case of
Looper are in fact equal to oo due to a fail dur ing analysis. In most successful
analysis of these examples is wi th in the reach of Looper and not an inherent l imi ta t ion of
the used algori thm. However, there are also a few cases where the a lgori thm i n its current
state cannot possibly succeed. One such case is presented in L i s t ing 6.1.

void larger_state_FN() {
i n t i-= 0, k-= 0;
while (k-< 100) {

i++;
i f (i->= 10000) {

k++;
i-= 0;

}
}

}

Lis t ing 6.1: A function from the C O S T test-suite which demonstrates an inherent l imi ta t ion
of Looper 's bound algori thm. Looper fails to determine a local bound and returns oo.

Figure 6.1 presents the DCP graph derived from the code of this function and w i l l be
used to explain the l imi ta t ion . The core issue is that Looper is unable to determine the
local bounds for a l l DCP transitions and the reason is two fold. F i rs t , the norm [100 — k]
is, indeed, assigned as a local bound to the transi t ion r 2 but removing r 2 from the graph
does not break the strongly connected component of the while loop because the transi t ion
T3 s t i l l exists. Second, the inverted if-statement condit ion i >= 10000 produces norm
e = [i — 9999]. However, norm e is not decreased on any edge, i.e., the increment i + + on
line 4 actually increases the value of the norm as follows [(i + 1) — 9999] —>• [i — 9999] + 1.
A s a consequence, norm e cannot be used as a local bound for the t ransi t ion n and i n fact
no other norm can be used as a local bound for T\. Th is exhausts a l l of the options and
the remaining transitions end up wi th no local bounds. In general, Looper in its current
state cannot handle such i teration patterns involving this type of inverted conditions, even
if the path-sensitive reasoning extension from [32] has been implemented.

In conclusion, most of the imprecise bounds (oo) are caused by rather technical reasons
than due to general l imitat ions of the approach and only few iteration patterns present in
the test-suite could pose a difficult problem to solve.

97

lb

I [100 - k]' < 100
[i - 9999]' < 0

lf

Ti\ [i- 9999]' < [i - 9999] + 1

[100 - k]' < [100 — k] — l
[i - 9999]' < 0

Figure 6 . 1 : A DCP graph derived from the code i n L i s t i ng 6 . 1 . The norm [100 — k] is
assigned as a local bound for T2 but no local bound can be determined for the remaining
transitions T I , T3 and T4. Note that constant assignments were omit ted for brevity.

6.2 Evaluation of Scalability and Precision

The next step was to evaluate the scalabili ty and precision of the new version of Looper on
real-world code to determine whether it can handle large codebases as well as its ma in com
petitor, the Infer C O S T checker. The entire publ ic ly available codebase of G N U coreutils1

(totaling roughly 9 5 , 0 0 0 lines of code) was used as a suitable benchmark for the evaluation
purposes. It consists of complex low-level programs that heavily rely on the use of pointers
and involve complicated control flow structures such as goto and switch statements.

The experiments were performed on a 2 0 2 0 Macbook A i r machine wi th the A R M based
3 .2 G H z A p p l e M l processor and 1 6 G B of system memory, running the Ventura 1 3 . 3 . 1
version of the macOS operating system. Table 6 .4 shows the analysis results measured on
the to ta l number of 2 , 1 4 3 functions.

Success Infinite B o u n d Fail Rate [%] Total T i m e [s]

Looper 4 8 9 1 , 6 5 4 7 7 . 2 1 6 1

Cost 1 , 5 0 8 6 3 5 2 9 . 6 1 , 0 2 6

Table 6 .4 : Eva lua t ion results for the total number of 2 , 1 4 3 functions from the G N U coreutils
codebase. It presents the fail-rate and total time of bo th Looper and C O S T . The data is
based on the assumption that the source code i n reality does not contain any infinite loops.

Firs t ly , the assumption is that none of the functions contain an infinite loop and any
inferred 00 bound is thus considered incorrect. Moreover, due to the amount of code, it
was not possible to closely examine each analyzed function to determine whether a derived
non-infinity bound is actually correct or not. Considering this, the data shows that C O S T
is superior when it comes to the abi l i ty to analyze real-world code, successfully analyzing
almost 4 times as many functions as Looper . However, it is important to note that upon

1The source code is available at the GitHub repository: https://github.com/coreutils/coreutils.

9 8

https://github.com/coreutils/coreutils

a closer inspection of few analyzed functions which produced oo bound, it was determined
that the reason is rather technical. In most instances, the failure was caused by the inabi l i ty
to handle a certain language construct, namely complex expressions involving the use of
pointers.

A s a result, many functions which in fact do not contain any loop failed to produce
a val id bound due to a failure during construction of DCP or evaluation of return bounds.
It was thus concluded that it does not demonstrate a general l imi ta t ion of the approach to
handle complex i teration patterns. One major class of program loops that Looper currently
fails on due to an inherent l imi ta t ion are loops which process data i n memory and break
when a certain condit ion is met. For example i terating unt i l a NULL pointer or a string
delimiter is encountered. Also , seemingly infinite loops w i t h break statements in the loop
body are currently out of reach. However, even the C O S T analyzer struggles w i th these
loop patterns.

W h e n it comes to the performance of both tools, neither C O S T nor Looper experienced
any timeouts and managed to complete the analysis of a l l functions. The results indicate
that the current version of Looper is roughly ~ 6 . 4 times faster than the current version
of C O S T when analyzing a large C codebase. Looper thus has a clear advantage on the
performance front which is unfortunately outweighed by the considerably higher rate of
failure as discussed above. Nevertheless, the presented results bear witness to the future
potential of the approach adopted by Looper when it comes to scalability. A s a final note,
the original version of Looper is not included in the comparison due to its inabi l i ty to analyze
any real code in practice without causing crashes of Infer. Moreover, it would require non-
t r iv ia l changes of the original source code to make it compatible w i th the current version
of Infer.

6.3 Summary and Future Work

Section 6 .1 first demonstrated that the intraprocedural part of Looper s t i l l works correctly
after the implementat ion of a l l proposed enhancements by revisit ing the old Loopus test-
suite. Next , the complete C O S T test-suite consisting of 7 1 smal l hand-crafted functions was
used to validate that the implemented enhancements work correctly w.r.t. the proposal. It
was pr imar i ly used to test if the new version of Looper is able to construct DCP graphs
even for more complex control flow structures and i f the major interprocedural extension
works correctly w.r.t . the proposal.

The evaluation of scalabili ty and precision in Section 6 .2 reveals that the new version
of Looper is now able to analyze real-world low-level C code at scale and wi th reasonable
performance. In fact, compared to the C O S T checker, Looper was proven to be significantly
faster at the expense of precision. Moreover, compared to the original version of Looper
which failed to analyze even t r iv ia l real-world code, the new version was able to infer a non-
infinity bound for 4 8 9 functions from the G N U coreutils repository which marks a success,
despite the comparison wi th C O S T analyzer.

Based on these results, the potential future work w i l l main ly focus on el iminat ing the
current technical l imitat ions which hinder the precision of the analysis. Namely, the testing
on real-world code has shown that complex expressions involving the use of pointers are
a major failure point due to the fairly incomplete implementation. A s such, addi t ional
improvements to the use of newly introduced access paths could lead to major increase of
precision. Furthermore, following the direction of the C O S T checker and adding support for
other higher-level languages without pointers (such as Java), could alleviate this issue and

9 9

present a more viable path for further development. Th is would require implementing the
previously discussed support for various data containers which are heavily used i n those
languages.

Orthogonally to those issues, further improvements to the user experience are crucial
for the usabil i ty of the tool and possible adoption by users. Namely, a better reporting of
issues and support for differential analysis pose a major future work prospect. The new
version of Looper already includes a few improvements in those aspects but s t i l l leaves a lot
to be desired. Compared to the original version, logging was significantly improved, the
analysis results are output i n a form of a structured J S O N file and Infer issues are reported
when Looper fails to determine a bound. Nonetheless, it would be worthwhile to further
improve the accuracy and verbosity of the reporting to help the end users w i th analysis
of the results. Moreover, implementing the differential analysis in the same fashion as the
C O S T analyzer is currently another major future work pr ior i ty apart from improving the
precision.

100

Chapter 7

Conclusion

The introductory chapters of this thesis were dedicated to the topic of program analysis
on a more theoretical level. The goal of these chapters was to provide a basic insight
into the motivat ion behind program analysis, what the key properties of any analysis are,
and finally a short overview of most common analysis techniques was provided. Special
attention was given to the abstract interpretation technique as it plays a major role in
the subsequently discussed M e t a Infer static analysis framework. The following chapter
focused on the Looper analyzer — proposed and implemented wi th in the author's bachelor's
thesis [27]. More specifically, the main l imitat ions of the original tool that motivated further
development were discussed.

The biggest pain point of the first Looper version was its inabi l i ty to analyze a vast
majority of real-world code outside of contrived examples. It was shown that the two main
causes are insufficient abstraction algorithm and missing support for the interprocedural
analysis. Solutions to both of these issues as well as some addi t ional enhancements to
improve the precision were proposed and implemented i n this work. Namely, a completely
new abstraction algorithm which can handle more complex control flow structures as well
as more complicated program expressions involving the use of pointers and data structures
was implemented. Addi t ional ly , the precision of the original intraprocedural analysis was
improved by adding support for compound loop conditions. However, most important ly, the
main contr ibut ion of this work — the interprocedural analysis extension — was successfully
implemented and tested on real-world code.

The newly implemented features and enhancements were successfully tested and ex
perimentally evaluated on hand-crafted examples as well as extensive real-world software.
The evaluation confirmed that Looper is now indeed able to analyze real code and infer
precise or at least tight upper bounds on the execution cost. Moreover, the evaluation has
shown that Looper scales very well, even compared to the existing Infer C O S T analyzer.
Overal l , the achieved results were deemed promising, especially when compared to the first
version of Looper, and further improvements to the accuracy can be made. For instance,
the precision could be significantly increased by further focusing on el iminat ion of technical
l imitat ions. Other possible future improvements include added support for more program
ming languages wi th everything it entails, such as the analysis of code involving the use of
data containers. Last ly, the implementat ion of differential analysis, which could detect the
complexity degradation of functions between different versions of a program, presents an
excit ing future possibility.

101

Bibliography

[1] A P P E L , A . W . S S A is Funct ional Programming. SIGPLAN Not. New York , N Y ,
U S A : Associat ion for Comput ing Machinery. A p r i l 1998, vol . 33, no. 4, p. 17-20, [cit.
2023-03-24]. D O I : 10.1145/278283.278285. I S S N 0362-1340. Available at:
https://doi.org/10.1145/278283.278285.

[2] A Y E W A H , N . , H O V E M E Y E R , D . , M O R G E N T H A L E R , J . D . , P E N I X , J . and P U G H , W .

Experiences Us ing Static Analys is to F i n d Bugs. IEEE software. 1st ed. I E E E . 2008,
vol . 25, no. 5, p. 22-29, [cit. 2023-01-28]. D O I : 10.1109/MS.2008.130. Available at:
https: //storage.googleapis.com/pub-tools-public-publication-data/pdf/34339.pdf.

[3] B A R R E T T , C . SAT and SMT: Theory and Practice [online]. September 2008 [cit.
2023-01-22]. Available at: https://resources.mpi-inf.mpg.de/departments/rgl/
conferences/vtsa08/slides/barretl_sat.pdf.

[4] B E S S E Y , A . , B L O C K , K . , C H E L F , B . , C H O U , A . , F U L T O N , B . et a l . A Few B i l l i o n

Lines of Code Later : Us ing Static Analys is to F i n d Bugs i n the Rea l Wor ld .
Communications of the ACM. 1st ed. New York , N Y , U S A : Associat ion for
Comput ing Machinery. February 2010, vol . 53, no. 2, p. 66-75. D O I :
10.1145/1646353.1646374. I S S N 0001-0782. Available at:
https://doi.org/10.1145/1646353.1646374.

[5] B O B O T , F . , FlLLIATRE, J . - C , M A R C H E , C , M E L Q U I O N D , G . and P A S K E V I C H , A .

The W h y 3 platform. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay [online]. 1st
ed. 2011, vol . 2, no. 1, [cit. 2023-01-22]. Available at:
https: //why3.lri.fr/download/manual-0.82.pdf.

[6] B O B O T , F . , F I L L I A T R E , J . - C , M A R C H E , C . and P A S K E V I C H , A . W h y 3 : Shepherd

Y o u r Herd of Provers. In: Boogie 2011: First International Workshop on
Intermediate Verification Languages [online]. Wroclaw, Poland: [b.n.], 2011, p. 53-64
[cit. 2023-01-22]. Available at: https://hal.inria.fr/hal-00790310.

[7] B O D I K , R . , C H E U N G , A . , A H M A D , M . , R I N G E R , T . and T E B B S , B . Data Flow

Analysis [online]. Univers i ty of Washington, 2016 [cit. 2023-01-28]. Available at:
https:
/ / courses.cs.washington.edu/courses/cse401/16wi/sections/section8/df a.html.

[8] B Y G D E , S. Static WCET analysis based on abstract interpretation and counting of
elements. V ä s t e r ä s , S E , 2010. [cit. 2023-05-23]. Dissertat ion. M ä l a r d a l e n University.
Available at:
https: //www.diva-portal.org/smash/record, j sf ?dswid=6649&pid=diva2°/03A292120.

102

https://doi.org/10.1145/278283.278285
http://storage.googleapis.com/pub-tools-public-publication-data/pdf/34339.pdf
https://resources.mpi-inf.mpg.de/departments/rgl/
https://doi.org/10.1145/1646353.1646374
http://lri.fr/download/manual-0.82.pdf
https://hal.inria.fr/hal-00790310
http://courses.cs.washington.edu/
http://www.diva-portal.org/smash/record

[9] B E R A R D , B . , B I D O I T , M . , F I N K E L , A . , L A R O U S S I N I E , F . , P E T I T , A . et a l . Systems

and Software Verification: Model-Checking Techniques and Tools. 1st ed. Springer
Ber l in , Heidelberg, June 2001. I S B N 978-3-540-41523-7.

[10] C A L C A G N O , C , D I S T E F A N O , D . , D U B R E I L , J . , G A B I , D . , H O O I M E I J E R , P . et al .

M o v i n g Fast w i th Software Verification. Springer International Publ i sh ing . A p r i l
2015, p. 3-11, [cit. 2023-01-14]. Available at: h t t p s :
//resear ch.facebook.com/file/892640211665108/publication00124_download0001.pdf.

[11] C A L C A G N O , C , D I S T E F A N O , D . , O ' H E A R N , P . and Y A N G , H . Composi t ional Shape

Analys is by Means of B i - A b d u c t i o n . In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New
York , N Y , U S A : Associat ion for Compu t ing Machinery, 2009, p. 289-300 [cit.
2023-01-22]. P O P L '09. D O I : 10.1145/1480881.1480917. I S B N 9781605583792.
Available at: https://doi.org/10.1145/1480881.1480917.

[12] C O U S O T , P . A Tutorial on Abstract Interpretation [online]. Paris , F R : [b.n.], January
2005 [cit. 2023-01-30] . Available at: https://homepage.cs.uiowa.edu/~tinelli/classes/
seminar/Cousot—A7.20Tutorial7.20on7.20AI.pdf.

[13] C O U S O T , P . and C O U S O T , R . Abst rac t Interpretation: A Unified Lat t ice M o d e l for
Static Analys is of Programs by Const ruct ion or Approx ima t ion of Fixpoin ts .
In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. New York , N Y , U S A : Associa t ion for Comput ing
Machinery, 1977, p . 238-252 [cit. 2023-01-30]. P O P L '77. D O I :
10.1145/512950.512973. I S B N 9781450373500. Available at:
https://doi.org/10.1145/512950.512973.

[14] D I S T E F A N O , D . , F Ä H N D R I C H , M . , L O G O Z Z O , F . and O ' H E A R N , P . W . Scaling static

analyses at Facebook. Communications of the ACM. A C M New York , N Y , U S A .
August 2019, vol . 62, no. 8, p. 62-70, [cit. 2023-01-06]. D O I : 10.1145/3338112.
Available at: https://discovery.ucl.ac.uk/id/eprint/10084236 / l/07,27Hearn7 .20AAM7.
20scaling-static-analysis-at-facebook.pdf.

[15] E L D E R , M . Bourdoncle Components, [online]. Madison , W I , U S A : Univers i ty of
Wiscons in-Madison . June 2010, [cit. 2023-01-30]. Available at:
https: //pages.cs.wisc.edu/~elder/stuf f/bourdoncle.pdf.

[16] F A R A G O , D . , M E R Z , F . and S I N Z , C . Automat ic Heavy-weight Static Analys is Tools
for F i n d i n g Bugs in Safety-critical Embedded C/C++ Code. Softwaretechnik-Trends.
Springer. M a y 2014, vol . 34, no. 3, [cit. 2023-01-29]. Available at:
https://fb-swt.gi.de/fileadmin/FB/SWT/Softwaretechnik-Trends/Verzeichnis/
Band_34_Heft_3/tav36.pdf.

[17] H A R M I M , D . Advanced Static Analysis of Atomicity in Concurrent Programs through
Facebook Infer. Brno , C Z , 2021. Master 's Thesis. Brno Universi ty of Technology,
Facul ty of Information Technology. Available at:
https://www.vut.cz/en/students/f inal-thesis/detail/136837.

[18] H U A N G , R . , M O N R O E , A . , B J O R N E R , N . , H A L L E U X , P . de, M O U R A , L . de et a l .

Z3 Guide: Bitvectors [online]. Microsoft Corporat ion, 2023 [cit. 2023-01-22] . Available
at: https://microsoft.github.io/z3guide/docs/theories/Bitvectors.

103

http://ch.facebook.com/file/892640211665108/publication00124_download0001.pdf
https://doi.org/10.1145/1480881.1480917
https://homepage.cs.uiowa.edu/~tinelli/classes/
https://doi.org/10.1145/512950.512973
https://discovery.ucl.ac.uk/id/eprint/10084236/l/07,27Hearn7.20AAM7
http://cs.wisc.edu/~elder/
https://fb-swt.gi.de/fileadmin/FB/SWT/Softwaretechnik-Trends/Verzeichnis/
https://www.vut.cz/en/students/f
https://microsoft.github.io/z3guide/docs/theories/Bitvectors

[19] J O H N S O N , S. C . Lint, a C Program Checker. B e l l Laboratories, J u l y 1978 [cit.
2023-01-27]. Available at: http://squoze.net/UNIX/v7/files/doc/15_lint.pdf.

[20] K R E N A , B . and V O J N A R , T . Automated formal analysis and verification: A n
overview. International Journal of General Systems. Taylor & Francis. M a y 2013,
42:4, p. 335-365. D O I : 10.1080/03081079.2012.757437. I S S N 0308-1079.

[21] L A M P O R T , L . Safety, Liveness, and Fairness. M a y 2019, [cit. 2022-12-27]. Available
at: https : //lamport.azurewebsites.net/tla/safety-liveness.pdf.

[22] L A T T N E R , C . and A D V E , V . L L V M : A Compi la t ion Framework for Lifelong Program
Analys is & Transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization. U S A :
I E E E Computer Society, M a r c h 2004, p. 75. C G O '04. D O I : 10.5555/977395.977673.
I S B N 0769521029. Available at: https://dl.acm.org/doi/10.5555/977395.977673.

[23] L E I N O , K . R . M . Dafny: A n Automat i c P rogram Verifier for Funct ional Correctness.
In: C L A R K E , E . M . and V O R O N K O V , A . , ed. Logic for Programming, Artificial
Intelligence, and Reasoning. Ber l in , Heidelberg: Springer Ber l in Heidelberg, 2010,
p. 348-370. D O I : 10.1007/978-3-642-17511-4_20. I S B N 978-3-642-17511-4. Available
at: h t t p s : //citeseerx.ist.psu.edu/document?doi=
6c725d2a7e88515c5f7c877936f90b0184c4fe8f.

[24] M E Y E R , B . Soundness and Completeness: With Precision [online]. Communicat ions
of the A C M , A p r i l 2019 [cit. 2023-01-16]. Available at: https://cacm.acm.org/blogs/
blog-cacm/236068-soundness-and-completeness-with-precision/fulltext.

[25] M O L L E R , A . and S C H W A R T Z B A C H , M . I. Static program analysis [online]. December
2022 [cit. 2023-01-27]. Aarhus University, Department of Computer Science. Available at:
https: //cs.au.dk/~amoeller/spa/spa.pdf.

[26] P A L S B E R G , J . Type-Based Analys is and Appl ica t ions . In:. New York , N Y , U S A :
Associa t ion for Comput ing Machinery, 2001, p. 20-27. P A S T E '01. D O I :
10.1145/379605.379635. I S B N 1581134134. Available at:
https://doi.org/10.1145/379605.379635.

[27] P A V E L A , O . Static Analysis Using Facebook Infer Focused on Performance Analysis.
Brno , C Z , 2019. [cit. 2023-02-08]. Bachelor's thesis. B rno Univers i ty of Technology,
Facul ty of Information Technology. Available at:
https: //www.fit.vut.cz/study/thesis/21919/.

[28] P A V E L A , O. , H A R M I M , D . and M A R C I N , V . Scalable Static Analys is Us ing Facebook
Infer. In: Proc. of Excel©FIT"19 [online]. 2019. Available at:
h t t p : //excel.fit.vutbr.cz/submissions/2019/059/59.pdf.

[29] R I V A L , X . and Y i , K . Introduction to Static Analysis: An Abstract Interpretation
Perspective. 1st ed. Cambridge: The M I T Press, February 2020. I S B N
978-0-262-04341-0.

[30] S A T O H , S., K U S A N O , K . and S A T O , M . Compi ler opt imizat ion techniques for

O p e n M P programs. Scientific Programming. IOS press. 2001, vol . 9, 2-3, p. 131-142,
[cit. 2023-01-27]. Available at:
https: //downloads.hindawi.com/j ournals/sp/2001/ 189054.pdf.

104

http://squoze.net/UNIX/v7/files/doc/15_lint.pdf
http://azurewebsites.net/tla/
https://dl.acm.org/doi/10.5555/977395.977673
https://cacm.acm.org/blogs/
http://cs.au.dk/~amoeller/
https://doi.org/10.1145/379605.379635
http://www.fit.vut.cz/study/thesis/21919/
http://fit.vutbr.cz/

[31] S C H U B E R T , P . D . , H E R M A N N , B . and B O D D E N , E . P h A S A R : A n Inter-procedural

Static Analys is Framework for C / C + + . In: V O J N A R , T . and Z H A N G , L . , ed. Tools
and Algorithms for the Construction and Analysis of Systems. Springer International
Publ ish ing, 2019, p. 393-410. D O I : 10.1007/978-3-030-17465-l_22. I S B N
978-3-030-17465-1. Available at:
https://link.springer.com/chapter/10.1007/978-3-030-17465-l_22.

[32] S I N N , M . Automated Complexity Analysis for Imperative Programs. Vienna , A U ,
2016. [cit. 2023-01-30]. Dissertat ion. V ienna Universi ty of Technology. Available at:
https: //publik.tuwien.ac.at/f iles/publik_257756.pdf.

[33] U R B A N , C . Static analysis by abstract interpretation of functional temporal properties
of programs. Paris , F R , 2015. [cit. 2022-12-27]. Dissertat ion. Ecole normale
superieure. Available at: https://theses.hal.science/tel-01176641v2/document.

[34] Z I L B E R S T E I N , N . , M A N D E L , T . and S T E R N , M . Unsafe Haskell [online]. Universi ty of
Pennsylvania, A p r i l 2015 [cit. 2023-01-27]. Available at:
https: //www. seas .upenn.edu/~cis 1940/springl5/lectures/ 12-unsaf e.html.

[35] CiQEK, E . Cost: Complexity Analysis [online]. M e ta , 2023 [cit. 2023-01-30]. Available
at: https : / / f binfer.com/docs/next/checker-cost/.

105

https://link.springer.com/chapter/10.1007/978-3-030-17465-l_22
https://theses.hal.science/tel-01176641v2/document
http://upenn.edu/~cis
http://binfer.com/docs/next/

Appendix A

Contents of the included storage
media

This appendix lists the contents of the attached memory media. In particular, the attached
memory media contains the following:

• /xpavel34-thesis-2023.pdf

— The P D F file of this thesis.

• /thesis-latex/

— DTFiXsource files used to produce the P D F of this thesis.

— The included Makefile can be used to compile the source files into the P D F
either w i t h pdf latex or bibtex v i a the make command.

— Note that Overleaf was used to compile the attached P D F .

. /README.md

— A README file w i th instructions for instal lat ion and basic user manual.

• /src/

— Contains the source code of the entire M e t a Infer framework, including the code
of Looper .

— The source files of Looper specifically are located i n the i n f e r / src/looper/ sub
directory but several other Infer files were modified i n order to plug-in Looper
into the Infer framework.

• /examples/

— Several examples that have been used for testing during development and exper
imental evaluation.

106

Appendix B

Installation and User Manual

This appendix contains a brief instal lat ion and user manual . More detailed information
(including some examples) can be found at Loopers 's G i t H u b pages (https: //github.com/
paveon/Looper/wiki/Looper: -A-Worst-Case-Cost-Analyser) and on the attached mem
ory media (see Append ix A) . In the case of missing or corrupted files i n the / s r c / directory
on the attached memory media, the entire repository can be cloned from G i t H u b using git
v i a S S H or H T T P S using one of the following commands:

g i t clone git@github.com:paveon/Looper.git —branch develop
—single-branch —depth 1 —recurse-submodules src

git clone https://github.com/paveon/Looper.git —branch develop
—single-branch —depth 1 —recurse-submodules src

Alternatively, it can be manual ly download through the G i t H u b repository page at the
following address: https://github.com/paveon/Looper. However, it might be necessary
to manual ly switch to the develop branch and ini t ial ize the submodules when choosing
this approach.

Installation Manual

Due to certain l imitat ions, no pre-compiled binary of Infer w i th Looper is available. B u i l d
ing Looper from the source is thus currently the only option. Beware that building Looper
from the source may be very time-consuming as it involves compilation of a customized
clang compiler.

A t first, it is required to instal l M e t a Infer's dependencies and then to compile M e t a
Infer w i th Looper . Here are the prerequisites to be able to compile Facebook Infer w i th
Looper on L inux :

. opam > 2.0.0,

. pkg-config,

• Java (only needed for the Java analysis),

• gcc > 5 .X or clang > 3.4 (only needed for the C / C + + analysis),

• autoconf > 2.63,

• automake > 1.11.1,

107

https://github.com/paveon/Looper.git
https://github.com/paveon/Looper

• cmake (only needed for the C/C++ analysis).

The compilat ion and instal lat ion of M e t a Infer w i th Looper can be done using the
following commands:

cd src
./build-infer.sh
sudo make i n s t a l l

The official and up-to-date M e t a Infer's instal lat ion manual (which also includes instruc
tions for other operating systems) can be found at https: //github.com/f acebook/inf er/
blob/main/INSTALL.md. M e t a Infer w i th Looper should be now installed system-wide wi th
executable binaries located in /src/inf er/bin/.

User Manual

This section assumes that Meta Infer with Looper is installed system-wide and executable
by the command infer.

In general, an analysis of a C / C + + program wi th Facebook Infer can be done using the
following command (for a single source file):

infer — gcc -c source_file. c

Java programs can be analyzed using the following command:

infer — javac source_file.Java

Another option is to analyze the entire project w i th Makefile using the following:

infer — make <target>

For advanced usage, see https://fbinfer.com/docs/infer-workflow. M a n y other bui ld
systems may be used; see https://fbinfer.com/docs/analyzing-apps-or-projects.
Looper is deactivated by default but the analysis can be triggered using the following
commands:

infer capture — gcc -c source_file.c
infer analyze —looper-only

or s imply

infer run —looper-only — gcc -c source_file.c

For more information, please refer to the official Infer website or the G i t H u b repository.

108

https://fbinfer.com/docs/infer-workflow
https://fbinfer.com/docs/analyzing-apps-or-projects

