
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING
AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RÁDIOELEKTRONIKY

PROGRAM UPDATE OF ZYNQ-BASED DEVICES
AKTUALIZACE PROGRAMU V ZAŘÍZENÍ S OBVODY ZYNQ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Branislav Michálek

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Michal Kubíček, Ph.D.

CONSULTANT
KONZULTANT

Ing. Jan Král

BRNO 2019

T VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

Diplomová práce
magisterský navazující studijní obor Elektronika a sdělovací technika

Ústav rádioelektroniky

Student: Bc. Branislav Michálek ID: 164338

Ročník: 2 Akademický rok: 2018/19

NÁZEV TÉMATU:

Aktualizace programu v zařízení s obvody Zynq

P O K Y N Y P R O VYPRACOVÁNÍ:

Prozkoumejte možnosti bootování obvodu Zynq a možnosti aktualizace jejich konfigurace. Vytvořte ukázkovou

aplikaci pro obvod Zynq s možností aktualizace bitstreamu F P G A i programu pro procesor přes Ethernet. Aplikaci

doplňte vhodným programem spustitelným z příkazové řádky O S Windows a Linux. Řešení musí zajistat načtení

záložní konfigurace v případě selhání předchozí aktualizace.

DOPORUČENÁ L I T E R A T U R A :

[1] MAXFIELD, Clive. The design warrior's guide to F P G A s : devices, tools, and flows. Boston: Newnes/Elsevier,

C2004. ISBN 0-7506-7604-3.

[2] C A T S O U L I S , John. Designing embedded hardware. 2nd ed. Sebastopol, CA : O'Reilly, c2005. ISBN 05-96-

-0755-8.

Termín zadání: 4.2.2019 Termín odevzdání: 16.5.2019

Vedoucí práce: Ing. Michal Kubíček, Ph.D.

Konzultant: Ing. Jan Král

prof. Ing. Tomáš Kratochví l , Ph .D.
předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným

způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského

zákona č. 121/2000 S b . , včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku

č.40/2009 S b .

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRACT
Among many which are placed on modern embedded systems is also the need of storing
multiple system boot image versions and the ability to select from them upon boot time,
depending on a function which they provide. This thesis describes the development of
a system update application for Xilinx Zynq-7000 devices. The application includes a
simple embedded H T T P server for a remote file transfer. A client is allowed to upload
the boot image file with the system update from either command line application or
using the web page developed for this purpose.

KEYWORDS

Zynq-7000, System on Chip, Booting, HHypertext Transfer Protocol

ABSTRAKT
Mezi mnohé požadavky kladené na moderní vestavěné systémy patří potřeba uchovávat
více verzí jejich systémového obrazu (firmware, software nebo hardwareová konfigurace)
a také možnost volby, který z těchto obrazů systém načte během procesu bootování,
v závislosti na funkci, kterou daný obraz poskytuje. Tato diplomová práce popisuje vý
voj aplikace pro zařízení s obvody Zynq firmy Xilinx, jejíž funkcí je provést aktualizaci
systému. Aplikace zahrnuje jednoduchý vestavěný H T T P server sloužící ke vzdálenému
přenosu souborů. Klientovi umožňuje nahrát soubor s obrazem skrze aplikaci spustitelnou
z příkazové řádky, nebo prostřednictvím webové stránky, která byla navržena k tomuto
účelu.

KLÍČOVÁ SLOVA

Zynq-7000, systém na čipu, bootování, hypertextový přenosový protokol

MICHÁLEK, Branislav. Program update of Zynq-based devices. Brno, Rok, 49 p. Mas
ter's Thesis. Brno University of Technology, Faculty of Electrical Engineering and Com
munication, Department of Radio Electronics. Advised by Ing. Michal Kubíček, Ph.D.

This thesis was typeset using the thesis package version 3.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written the Master's Thesis titled "Program update of Zynq-based

devices" independently, under the guidance of the advisor and using exclusively the

technical references and other sources of information cited in the thesis and listed in the

comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master's

Thesis, I have not infringed any copyright or violated anyone's personal and/or ownership

rights. In this context, I am fully aware of the consequences of breaking Regulation § 11

of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of

any breach of rights related to intellectual property or introduced within amendments to

relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009

Coll., Section 2, Head VI, Part 4.

Brno

author's signature

A C K N O W L E D G E M E N T

First and foremost, I would like to thank God Almighty for giving me the strength, knowl

edge, ability and opportunity to undertake the whole study. I would like to express my

gratitude to my consultant Jan Král for the useful comments, remarks and engagement

through the learning process of this master thesis. Furthermore I would like to thank

my supervisor Michal Kubicek for his helpful advice concerning the study issues. I would

like to thank all my loved ones, who have supported me throughout entire process, both

by keeping me harmonious and helping me putting pieces together.

Brno

author's signature

ysix
^ • ^ • ^ B r e s e a r c h c e n t r e
sensor, information and communication systems

Faculty of Electrical Engineering

and Communication

Brno University of Technology

Purkynova 118, CZ-61200 Brno

Czech Republic

http: //www.six.feec.vutbr.cz

A C K N O W L E D G E M E N T

Research described in this Master's Thesis has been implemented in the laboratories

supported by the SIX project; reg. no. CZ.1.05/2.1.00/03.0072, operational program

Výzkum a vývoj pro inovace.

Brno

author's signature

M I N I S T E R S T V O Š K O L S T V Í ,
M L Á D E Ž E A T Ě L O V Ý C H O V Y

EVROPSKÁ UNIE

EVROPSKÝ F O N D PRO REGIONÁLNÍ ROZVOJ

INVESTICE DO VAŠÍ BUDOUCNOSTI

O P Výzkum a vývoj

pro i n o v a c e

http://www.six.feec.vutbr.cz

EUROPEAN UNION

I i n t ; i f t r v j

Austria-Czech Republic
European Regional Development Fund

This work was done as part of the InterOp ATCZ175 project of the Interreg program of
the European Union. The project is co-financed by the European Regional Development
Fund and the state budget of the Czech Republic.

Contents

Introduction 11

1 Zynq Devices Booting 12
1.1 Boot Devices and Boot Modes 13
1.2 Boot Stages 13

1.2.1 Stage 0 14
1.2.2 Stage 1 14
1.2.3 Stage 2 15
1.2.4 Multiboot 16

1.3 Boot Image Creation 16
1.3.1 Boot Image Layout 17

2 Remote File Transfer 19
2.1 Remote File Transfer Protocols 19

2.1.1 File Transfer Protocol 20
2.1.2 Trivial File Transfer Protocol 20
2.1.3 Secure Copy Protocol 21
2.1.4 Secure File Transfer Protocol 21
2.1.5 Hypertext Transfer Protocol 21

3 System Update Implementation 24
3.1 Target Device Description 24
3.2 System-Level Design and Considerations 25
3.3 Boot Image Building 27
3.4 Multiboot and Fallback Functionality 29
3.5 System Update Application 30

3.5.1 H T T P Server 31
3.5.2 Client Command-Line Application 33
3.5.3 Client Web Application 34

3.5.4 Boot Image Validation Process 35

4 Conclusion 37

Bibliography 38

List of symbols, physical constants and abbreviations 41

List of appendices 43

A Code Listings 44
A . l JavaScript Function to Transfer a Boot Image 44
A.2 Python Script to Build a Boot Image 45
A. 3 C Function for Boot Image Valiadtion 47

B Command Prompt Listings 49
B. l cURL Client Command and Server Response 49

List of Figures
1.1 Zynq-7000 PS architectural overview [3] 12
1.2 Boot image layout [6] 18
3.1 SDR emulator - top view 24
3.2 Flash memory address map 26
3.3 System-level diagram of the proposed system update application. . . 27
3.4 Boot image building script flowchart 28
3.5 Multiboot functionality flowchart 29
3.6 Thread processing H T T P requests flowchart 31
3.7 H T T P response generation flowchart 33
3.8 A principal communication model using Ajax 34
3.9 Layout of the system update webpage 35

Introduction
A system update is a mechanism which ensures that a embedded device running
an older version of the system runs with a more recent release when the update
mechanism is done. This includes updating everything that defines the system
(bootloader, operation system kernel, software applications, hardware configuration,
etc.), restarting running processes and eventually a reboot [1].

A n ideal mechanism never ends up in an inconsistent state, always keeps the
device usable (in case of update failure the device fallbacks to previous state or a
recovery mode), minimizes downtime while updating, ensures integrity and security.
A properly developed system update mechanism can reduce [2]:

• Reduce development cycle. The possibility of adding new functionality means
all features do not need to be implemented in the original release.

• Fault management. A system update fixes defects with a patch.
• Extend the life cycle of embedded device with updated software and hardware.

This thesis focuses on the design and implementation of the system update for Xilinx
Zynq Single-on-Chip (SoC) devices. The first chapter briefly introduces the Zynq
devices booting stages, a boot image layout and its creation process. The second
chapter describes some of the most used communication protocols used for remote
file transfer.

The third chapter presents the system update application design and implemen
tation, the device multiboot and fallback functionality and the process of creation
of customized boot image file.

The last chapter summarizes the achieved results of the thesis and proposes
suggestions for further development.

11

1 Zynq Devices Booting
Xilinx Zynq-7000 SoC is a processor-centric platform that offers software, hardware
and Input/Output (I/O) programmability). Zynq-7000 integrates the A R M based
Processing System (PS) with 28 nm Programmable Logic (PL) in a single device.

The key component of the PS is Application Processor Unit (APU). The A P U
contains one or two identical Cortex-A9 Central Processing units (CPU), each with
its own 32 K B instruction and data cache, a Floating-Point Unit (FPU) for accel
eration of floating-point arithmetic and so-called N E O N unit for multimedia op
erations. Each C P U also contains standard Memory Management Unit (MMU)
which is needed in Linux-based operating systems. The architectural overview of
the Zynq-7000 PS is depicted on Fig. 1.1.

A
I/O

Peripherals

USB

USB

GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART UART
UART
CAN
CAN
I2C
I2C
SPI
SPI

Processing System
Clock Reset

Generation
Reset

2 x U S B

2x G igE

2 x S D

IRQ

Memory
Interfaces

SRAM/
NOR

ONFI 1.0
NAND
Q-SPI
CTRL

Central
Interconnect

S W D T

TTC

System-
Level

Control
Regs

D M A 8
Channel

Application Processor Unit

F P U and N E O N Engine I F P U and N E O N Engine

M M U
A R M Cortex-A9

C P U M M U
A R M Cortex-A9

C P U

32 KB 32 KB I 32 K B 32 K B
l-Cache D-Cache I l -Cache D-Cache

L
GIC Snoop Controller, AWDT, Timer

512 KB L2 C a c h e & Controller

O C M 256K
Interconnect S R A M

CoreSight
Components

D A P

DevC

Memory
Interfaces

DDR2/3,
DDR3L,
LPDDR2

Controller

Programmable Logic to
Memory Interconnect

D Z t Z i
EMIO X A D C

12-Bit A D C

General -Purpose
Ports

D M A
Sync

IRQ Config
A E S /
S H A

High-Performance Ports

Programmable Logic

A C P

Notes:
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, A H B 32-Bit, A P B 32-Bit, Custom
3) Dashed line box indicates 2nd processor in dual-core devices

SelectIO
Resources

Fig. 1.1: Zynq-7000 PS architectural overview [3].

The PS also includes 256 K B of shared On-Chip Memory (OCM) for general
purpose, controller for external Double Data Rate (DDR) Random Access Memory
(RAM), Non-Volatile Memory (NVM) interfaces supporting N A N D , 8-bit parallel
NOR, and up to two quad serial peripheral interface (QSPI) N O R flash devices.

12

Main communication peripherals include two Gigabyte Ethernet M A C mod
ules, Universal Serial Bus (USB) 2.0, Universal Asynchronous Receiver-Transmitter
(UART), Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), Controller
Area Network (CAN), and General-Purpose Input/Output (GPIO) controllers. Other
custom application-specific peripherals can be implemented in the P L , including
complex hardware functions as digital signal processing (DSP), high performance
computing (HPC) etc.

Main P L components include Configurable Logic Blocks (CLB), 36 K B of dual-
port block R A M , DSP slices, I/O blocks, serial data transceivers and two 12-bit
Analog to Digital Converters (ADC). Each C L B contains 16 flip-flops, eight 6-input
Lookup Tables (LUT) for programmable logic or distributed memory implementa
tion, and two 4-bit adders for arithmetic functions.

1.1 Boot Devices and Boot Modes

A boot device is a flash memory device, which the system boots from. This is
referred as a master boot mode [4]. Depending on selected boot device, there are
four possible master boot modes:

• Quad-SPI Boot,
. N A N D Boot,
. N O R Boot,
. SD Card Boot.

In QSPI boot mode, the boot device is a non-volatile serial N O R flash memory
device, connected to a host system via the SPI. This mode supports multiple input
and output (multi I/O) SPI devices with single bit (Single I/O) as well as optional
two bit (Dual I/O) and four bit (Quad I/O) data bus width.

1.2 Boot Stages

Zynq-7000 devices use a multi-stage boot process. Both a non-secure and a secure
boot is supported. For a secure boot, the P L must be powered on to enable the
use of the security block located within the PL , which provides 256-bit Advanced
Encryption Standard (AES) and Secure Hash Algorithm (SHA) decryption/authen
tication.

The PS hardware boot stages include power supply ramping, clocking, resets, pin
strap sampling and the Phase-Locked Loop (PLL) initialization. Within 45 clock
cycles of the PS reference clock, the hardware samples the seven boot mode strap
pins and stores their settings in read-only registers.

13

1.2.1 Stage 0

A read-only BootROM code, located in the on-chip Read Only Memory (ROM),
executes on the primary C P U after a system reset is performed. There are two basic
types of reset - the Powe-On Reset (POR) which resets the whole system including
all of the registers. A l l states, except those stored in the eFuse and Battery-Backed
R A M (BBRAM) are lost. A non-POR causes the BootROM to execute, but the
BootROM retains knowledge about the security level of the previous boot in the
REB00T_STATUS register. The non-POR sources include PS_SRST pin and internal
system resets, also referred to as soft reset (e.g. software controlled reset, watchdog
timer, etc.).

The P L power-up and initialization sequences can occur in parallel with or after
the PS start-up. If the BootROM needs the P L powered up, then early in the
BootROM execution the BootROM

The main tasks of the BootROM are to configure the system, copy the first
partition (usually a primary bootloader) from the boot device to the O C M , and
then branch the code execution to the O C M . Before the branch, the BootROM
disables access to its R O M code.

The BootROM code reads the boot mode register to determine if a master or
slave boot mode is used, and if master, also the type of boot device used. Then
the BootROM code searches for a valid boot image header (also referred as the
BootROM header). The header search continues until a valid header is found or
the entire range has been searched. Invalid header is detected by calculating it's
checksum.

In the secure boot mode, the BootROM has the ability to authenticate and
decrypt the encrypted bootloader partition. Authenticating the bootloader parti
tion the BootROM also validates its data integrity. In the non-secure boot mode,
corruption in bootloader partition is not recognized [3].

1.2.2 Stage 1

This is generally a first-stage bootloader (FSBL), but it can be any user-controlled
code. As the stage 1 code is loaded to the O C M , its size is limited to 192 K B [3].
FSBL reads the partition header table of the boot image (see section 1.3.1) to find
a bitstream, second-stage bootloader (SSBL) or bare-metal application partition.
Then it is responsible for:

• initialization of selected system features and peripherals (e.g. D D R memory,
I/Os, system clock, etc.) with the PS configuration data,

• programming the P L using a bitstream, if provided,
• loading a SSBL or a bare-metal application code into D D R memory,

14

• handoff the execution to the SSBL or bare-metal application.
The FSBL also supports loading partitions from e M M C flash devices, configured

as a secondary boot device [4]. This is useful when there is a small QSPI flash which
does not meet the memory requirements to store all the partitions. In this case, the
primary boot mode needs to be set to QSPI (through the boot mode pins), but only
the FSBL is placed on the QSPI flash. A l l the other partitions are on the eMMC
flash instead. The FSBL ignores the configured primary boot mode and loads the
other partitions from eMMC.

If loading of any partition fails for some reason, the FSBL does a fallback and
enables the BootROM to load another bootable image that is known to be in a good
state, if such an image is present in the boot device. This image is often referred
to as the golden image [4]. The FSBL updates a Multiboot Register and does
a non-POR soft system reset, so that the BootROM executes again and loads the
image pointed to by the Multiboot Register.

The FSBL does a fallback if any of the partitions is corrupted. A corrupted
partition is detected either by performing an RSA authentication or calculating a
md5 checksum.

1.2.3 Stage 2

During the stage 2 an application software is generally loaded, but it could be also a
SSBL [4]. Booting larger systems (e.g. Linux-based operating systems) may require
more complex procedures, which are unable to be performed by FSBL due to its
own limitations. The SSBL is a special software which is able to properly load such
a system and transfer the execution to it.

The Universal Boot Loader (U-boot) is open-source SSBL that is frequently
used in embedded devices for booting Linux kernel, device tree, root file system and
Linux applications [5]. Unlike the FSBL, U-boot typically runs in DDR, not O C M .
Its features include the ability to load, decrypt, authenticate, and execute images
from Ethernet, flash memory, SD cards and USB. Users are able to interact with
U-boot and control the boot process using the built-in command interpreter.

As the U-boot's commands are fairly low-level, it takes several steps to boot
a kernel, but this also makes U-boot more flexible than other bootloaders, since
the same commands can be used for more general tasks. Copying data with U -
boot requires explicit specification of the physical memory addresses in destination
memory [5].

15

1.2.4 Multiboot

Multiboot is a feature that allows the device to select from multiple boot images
stored in a boot device [4]. The boot image which is to be loaded can be user-
selectable, or it can be selected automatically by the system upon the user-defined
decision criteria. To select an image, the FSBL writes its base address divided by
32 K B into the MultibootRegister and then generates a non-POR system reset.
When the BootROM executes after the reset, it looks for the boot image header
pointed to by the MultibootRegister.

1.3 Boot Image Creation

A boot image is a binary file usually stored in a boot device which allows the
associated hardware to boot. This may include the operating system, utilities and
diagnostics, as well as boot and data recovery information. Once built, the boot
image can be distributed to a target device, patched within reasonable limits, and
remain disposable in case of a need.

The boot image is created by building the required boot image header, processing
input data files and appending tables which describe them. A n input file can be
software, hardware configuration (bitstream), or general data [4]. A l l these files
are referred to as images. A software image is provided either in binary (BIN) or
Executable and Linking Format (ELF) file format. Every image can have one or
more partitions, e.g. an E L F file can have multiple loadable sections, each of which
forms a partition in the boot image. There could be performed a chosen type of
encryption and authentication on each partition.

Building the boot image in general involves the following steps [6]:
1. Creating a Boot Image Format (BIF) file.
2. Running the Xilinx Bootgen utility to create a bootable binary file.

The BIF file specifies every component of the boot image according to boot order.
Several attributes can be applied to each component, e.g. the bootloader attribute
applied to an E L F file identifies the file as the FSBL. The following code snippet is
an example of a simple BIF file:

the_ROM_image:
{
[i n i t] i n i t \ _ d a t a . i n t
[b o o t l o a d e r] f s b l . e l f
b i t s t r e a m . b i t
a p p l i c a t i o n . e l f
}

16

Bootgen is a Xilinx tool which merges image files together and builds a boot image.
Bootgen comes with both a Graphical User Interface (GUI) and a command line
option. The command line option can be scripted [6].

1.3.1 Boot Image Layout

Every boot image consists of the following components (see Fig. 1.2) [6]:
• a boot image header,
• a register initialization table.
• an image header table.
• a partition header table.
• a FSBL image.
• optionally other image partitions.
The boot image header (also referred to as the BootROM header) resides in the

beginning of a boot image. The boot image header is a structure that contains
information related to booting the FSBL. There is only one such structure in the
entire boot image. This header is parsed by the BootROM to get determined, where
the FSBL is stored in boot device and where it needs to be loaded in O C M . In case
of secure boot, some encryption and authentication related parameters are stored in
there. Boot image header also provides a User Defined Field (UDF). This 76 bytes of
free space has potential to be used for storing boot image version and identification,
time stamp, or other user defined data. The U D F is written using the Bootgen. The
input user defined data is provided through a text file in the form of a hexadecimal
string.

Immediately after the fixed-sized boot image header (BootROM header) there is
typically the image header table. It is a structure comprising a own header, followed
by a linked list of image headers. The header of the image header table contains
information which is common across all images, e.g. the total number of partitions
present in the boot image. Each image header contains information, such as the
image name, number of partitions associated with this image and pointer to a first
associated partition header.

The partition header table is an array of structures containing information and
attributes related to each partition, such as partition size, address in boot device,
load address in R A M , encryption and authentication related information, etc.

17

Boot Header

Register Initialization Table

Image Header Table

Image Header
1

Image Header
2

Image Header

Partition
Header 1

Partition
Header 2

Partition
Header n

Header Authentication Certificate (Optional)

Partition 1 (FSBL) A C
(Optional)

Partition 2 A C
(Optional)

Partition n A C
(Optional)

Fig. 1.2: Boot image layout [6].

18

2 Remote File Transfer
Both the PS and P L of Zynq-7000 are programmed using a conventional device
driver, providing support for a user initiated update. In typical system update flow,
the central site for developing and distributing software for fielded embedded systems
creates a boot image, which needs to be transferred to the system, typically using
wired or wireless Ethernet. Initial destination for the new boot image is usually
D D R R A M [2].

After the image is transferred to the device, a special software (either a user
code or U-boot) copies the image from R A M to another location in R A M , O C M , or
N V M (e.g. QSPI flash memory).

2.1 Remote File Transfer Protocols

File transfer is the transmission of a binary file over a telecommunication network
from one system to another. Typically, file transfer is mediated by a file transfer
communication protocol, which is a convention that describes how to transfer files
between two endpoints.

Most of the protocols are designed for the Internet and its Internet protocol suite,
commonly known as T C P / I P protocol stack [8]. Internet is a packet-switched net
work which transmits data divided into units called packets. A packet comprises of
a header and a payload. Network applications make use of the services provided by
the lower layers, especially the transport layer protocols: Transmission Control Pro
tocol (TCP) or User Datagram Protocol (UDP), which provide reliable or unreliable
pipes to other processes.

File transfer protocols are higher-level protocols that operate in the application
layer of the T C P / I P stack [8]. File data is encapsulated into transport layer protocol
units, such as T C P or UDP segments. The segments transmission is handled by
lower layer protocols. Apart from a stream of bits from a file, a file transfer protocol
unit may also contain some relevant metadata, such as the file name, file size, file
attributes, etc. Some of the most widely used file transfer protocols are:

• File Transfer Protocol (FTP),
• Trivial File Transfer Protocol (TFTP),
• Secure Copy Protocol (SCP),
• Secure File Transfer Protocol (SFTP),
• Hypertext Transfer Protocol (HTTP).

19

2.1.1 File Transfer Protocol

F T P is a standard network protocol used for the transfer of files between a client
and a server on a network. F T P users may authenticate themselves with a clear-
text sign-in protocol, normally in the form of a username and password, or connect
anonymously if the server is configured to allow it [9].

In both, the active and passive modes of establishing the data connection, the
client creates a T C P connection from a random, usually unprivileged port to the
F T P server command port 21. The server responds over the control connection with
three-digit status code in ASCII with an optional, human-readable explanation of
request, e.g. "200 OK".

While transferring data over the network, four data representations can be used,
from which most important are [9]:

• ASCII mode - inappropriate for files that contain data other then plain text.
• Image mode (also called binary mode) - the recipient stores the bytestream as

the sending machine sends each file byte by byte.
Data transfer itself can be done in three modes [9]:
• Stream mode - the data is sent as a continuous stream, all processing is left

to TCP. No terminator character is needed.
• Block mode - F T P breaks the data into several blocks comprising header, byte

count, and data field.
• Compressed mode - the data is compressed using a simple algorithm.
F T P does not encrypt its traffic. Usernames, passwords, commands and data

can be read by anyone able to perform packet capture on the network. For se
cure transmission F T P may be secured either with Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) protocols or replaced with SFTP.

2.1.2 Trivial File Transfer Protocol

T F T P is a simple derivate of F T P which allows a client to get a file from or put a
file onto a remote host [10]. It is mainly used for transferring firmware images and
configuration files to network appliances like routers, firewalls, IP phones, etc. [11].
T F T P has been used for this purpose because it is very simple to be implemented
by code with a small memory footprint. This is especially useful for low resourced
Single-Board Computers (SBC) and SoCs.

T F T P uses U D P as its transport protocol. A transfer request is always initiated
targeting port 69, but the data transfer ports are chose independently by the sender
and receiver during the transfer initialization. Due to its simplicity, T F T P lacks
most of the more advanced features offered by more complex file transfer protocols.

20

T F T P only reads and writes files from or to a remote server. It cannot list, delete,
or rename files or directories and it has no provision for user authentication [10].

2.1.3 Secure Copy Protocol

SCP is based on Secure Shell (SSH) protocol [12]. It was developed for secure transfer
of files between a local and a remote host or between two remote hosts. It uses the
same mechanism for authentication as SSH, thereby it ensures the authenticity and
confidentiality of the data in transit. A client can send files to a server and also
request files from a server. Normally, a client initiates an SSH connection to the
remote host, and requests an SCP process to be started on the remote server [13].
The remote SCP process can operate in one of two modes:

• source mode, which reads files and sends them back to the client,
• sink mode, which accept the files sent by the client.

2.1.4 Secure File Transfer Protocol

SFTP (also referred to as SSH File Transfer Protocol) is an extension of the SSH
protocol [12]. Compared to SCP, which only allows file transfer, SFTP allows for a
range of management operations with remote files, including resuming interrupted
transfers, directory listings, and remote file removal. While SCP is better designed
for one-time file transfers between two networked endpoints, the SFTP does the
same and adds the data management [13].

2.1.5 Hypertext Transfer Protocol

Hypertext Transfer Protocol is an application layer protocol designed within the
framework of the Internet protocol suite [14]. H T T P usually uses T C P as underlying
and reliable transport layer protocol. H T T P was developed to facilitate World Wide
Web, where hypertext documents include hyperlinks to other resources that the user
can access.

H T T P works as a request-response protocol in a client-server computing model
[14]. A web browser may represent the client side, and an application running on
a system hosting a website may represent the server side. The client submits a H T T P
request message to the server by establishing a T C P connection to a particular port
on the server, typically port 80 [14]. The server waits for the client's request and
returns a response comprising of a status line and a message. The body of this
message is typically a requested resource. H T T P resource is identified and located
on the server by a Uniform Resource Locator (URLs) [14].

21

The client and server communicate by sending plain-text ASCII messages. The
request message consists of the following [14]:

• a request line.
• a request header fields.
• an empty line.
• an optional message body.

The request line and other header fields must all be terminated with Carriage Return
(CR) and Line Feed (LF) characters [14].

H T T P defines methods to indicate a desired action to be performed on a identi
fied resource. What this resource represents, whether pre-existing data or data that
is generated dynamically, depends on the implementation of the server. The most
used methods include [14]:

• G E T - the G E T method requests a representation of the specified resource.
• H E A D - the H E A D method asks for a response identical to that of a G E T

request, but without the response body.
• POST - the POST method requests that the server accept the entity enclosed

in the request. The POST data might be for example a block of data that is
the result of submitting a web form to a data-handling process, or a file to be
uploaded to the server.

• OPTIONS - the OPTIONS method returns the H T T P methods that the server
supports for the specified U R L .

Format of the response message is similar to the format of the request message.
It contains a status line, which comprises a status code and reason message. H T T P
response status codes are primarily divided into five groups [14]:

• Informational lxx,
• Successful 2xx,
• Redirection 3xx,
• Client Error 4xx,
• Server Error 5xx.
H T T P fixes the bugs in F T P that make it inconvenient to use for many small

transfers which are typical for web pages. F T P has a stateful control connection
which maintains a current working directory, and each transfer requires a secondary
connection through which data is transferred. H T T P is stateless and multiplexes
control and data over a single connection from client to server on well-known port
numbers, which if necessary, can trivially pass through Network Address Translation
(NAT) gateways and is simple for firewalls to manage. When F T P is transferring
over the data connection, the control connection is idle. If it takes too long to
transfer a file, the firewall or NAT may decide that the control connection is dead
and stop tracking it. This effectively breaks the connection and confuses the transfer.

22

On the other hand, a single H T T P connection is only idle between requests and it
is normal and expected for such connections to be dropped after a time-out.

23

3 System Update Implementation
In this chapter we present the proposed system update application for a target
device, a system update process flow and a device multiboot functionality. We start
from a specification of a target device, for which the application is intended. Next
we make an system-level overview, leading to a more detailed description of each
component.

3.1 Target Device Description

For the system update application development purpose, we used a TE0720 mod
ule, along with TE0703 development board, both from Trenz Electronic. A main
component of the TE0720 module is Xilinx Zynq-7000 SoC. Development of the
application has to be done with respect to its future usability on TE0803 module
based on Xilinx Zynq Ultrascale-I- Multi-Processor System-on-Chip (MPSoC). This
module will be a main part of the Software-Defined Radio (SDR) emulator, which is
being developed by the Department of Radio Electronics of the Faculty of Electrical
Engineering and Communication at the Brno University of Technology.

Fig. 3.1: SDR emulator - top view.

24

The Trenz Electronic TE0720 is an industrial-grade System-on-Module (SoM).
Its key features are:

. 1 GB of DDR3 R A M ,
• 32 M B of SPI flash memory,
• gigabit Ethernet P H Y transciever,
• USB P H Y transciever,
• switching-mode power supplies for all on-board voltages,
• configurable I/Os provided via high-speed stacking strips.

3.2 System-Level Design and Considerations

From the system-level point of view, there were three main objectives to be achieved:
1. To enable a target device to automatically select from multiple boot image

versions, which are stored in its boot device. Upon a possible previous boot
failure, the ability to load a backup configuration (golden boot image) must
be ensured.

2. To enable the target device to receive a binary file containing a system up
date over a network and to decide, which of the currently present boot image
versions will be updated.

3. To allow a user to manage the system update process and interact with a
target device.

Although the TE0720 module is equipped with a single 32 M B SPI flash memory,
the Zynq-7000 QSPI controller is limited to 3-bytes addressing, therefore the boot
image can be fetched by the BootROM only if it resides in the first 16 M B of the
flash memory. Using the full capacity of the flash for booting purposes would require
to store FSBL (also SSBL, if present) of each boot image in the first 16 M B of the
memory. The rest of the partitions, possibly residing in a portion of the memory
that is beyond 16 M B would be handled by FSBL or SSBL (e.g. U-boot). This
could be problematic during the system update - the appliccation would have to be
able to accept and write boot images in Intel H E X file format (*.mcs), where each
block of data to be written in memory has an address offset specified. Based on this
facts we decided to rather reserve the first 16 M B of flash memory only for storing
boot images and keep the rest upper 16 M B available for other applications. For a
simple and fast localization of boot images in the memory we designed the system
to use fixed address mapping, which allows to store one golden image and up to
three multiboot images, each up to 4 M B in size (see Fig. 3.2).

For a remote file transfer of a boot image from a user's computer to the target
device we decided to use H T T P protocol. This approach brings the user two ways

25

0x0000 0000 Golden Image
4 MB

0x0040 0000 Multiboot Image 1
4 MB

0x0080 0000 Multiboot Image 2
4 MB

OxOOCO 0000 Reserved
4 MB

0x0100 0000

Free Space
16 MB

Not Accessible by BootROM

to
ru

CO

m

J

Fig. 3.2: Flash memory address map.

of managing the system update process: the first one is to use a standard command-
line application for transferring data using H T T P protocol. The second way is to use
the proposed system update webpage, which enables the user to choose and upload
the boot image file from the web interface. The webpage code is part of the target
device application itself, thus the webpage functionality can be updated along with
it.

The target device runs a simple web server, which implements the application-
specific subset of H T T P protocol methods. Such a web server can be also used to
control or monitor the target device operation.

Upon receiving a request, the server sends a response containing the system
update webpage, which is displayed in a web browser of a user's computer. Using
this webpage, the user uploads the binary file containing updated boot image to the
device. The device then handles the flash memory related system update operations.

To enable the target device to automatically select from multiple image versions
upon boot and to decide, which one should be replaced upon system update, we
developed two-criteria decision mechanism. Firstly, the device checks the boot image
validity. If there are multiple valid boot images present, then the device decides on
a boot image version basis - a newest valid image is loaded upon boot, and an oldest

26

(or invalid) image is overwritten upon system update.
To validate a boot image means to validate its individual partitions. Since the

thesis assignment did not put a requirement for a secure boot, we decided to use
non-secure boot only. Therefore none of partitions is RSA authenticated and AES
encrypted upon boot image creation. Instead of that a md5 checksum of every
partition is calculated, except for the FSBL partition. According to section , the
BootROM does not support md5-validation of the FSBL partition, neither the Boot-
gen can calculate and include it in a boot image. For this reason we created a Python
script, whose function is to calculate md5 checksum of the FSBL partition, and along
with a boot image version (in form of timestamp) to write it to a U D F file. The
U D F file then serves as the input for the Bootgen, which writes the U D F data in
the user-defined field in the boot image header.

*.bif

.elf
" L A

Web browser

Inputs

.bit
" L A

.udf - C r e a t e s - zynqcrea teboo t image.py

Invokes
t

Input- — C r e a t e s - ^

bootgen.bat BOOT, bin

HTTP Commun ica t i on

webpage.html

BOOT.bin 1
Zynq device

FW update app

Webserver listening
on port 80

Fig. 3.3: System-level diagram of the proposed system update application.

3.3 Boot Image Building

To create a script for building boot images we had chosen the Python programming
language due to its cross-platform feature and great availability of well-documented
libraries and packages.

27

The user firstly creates the BIF file (using Bootgen GUI integrated in Xilinx
SDK, or writing it manually) where he specifies all the images (FSBL, application,
bitstream, etc.) to be processed into a boot image, along with their attributes and
file paths which points to them (see section 1.3). Then the Python script can be
executed. The script reads the input BIF file to search for the file path which
points to the FSBL image E L F file. Searching is done by using regular expression
operations from the package re [16].

According to E L F file specification[17], the script reads the E L F file header and
program header to obtain the beginning of the FSBL data segment and the segment
size. Then it loads the FSBL data from the file and computes its md5 checksum
using the package h a s h l i b [18]. Next the script gets the current timestamp using
the package datetime [19].

The checksum, timestamp and the Image Validity Word (a value of OxFFFFFFFF)
are then written to a U D F file as a string of hexadecimal values. The U D F and BIF
files, serve as inputs for the Bootgen. The script invokes the Bootgen using the
subprocess package [20]. The whole Python script listing can be found in Ap
pendix A.2.

bootgeninput.bif

Get path toFSBLelf

Calculate FSBL md5
checksum

Get current
timestamp

Format checksum,
timestamp and validity

word into hex string

udf.txt

Invoke
bootgen.bat

BOOT, bin

Fig. 3.4: Boot image building script flowchart.

28

3.4 Multiboot and Fallback Functionality

According to section 1.2.1, upon a system reset, the BootROM starts searching for
a valid BootROM header (boot image header), beginning from the base address of
the flash memory. Since we had designed the flash memory mapping as it is depicted
on Fig. 3.2, the multiboot functionality was only needed to be implemented in FSBL
of the golden image . For this purpose we modified a generic FSBL code, which is
distributed along with Xilinx Software Development Ki t (SDK). Flowchart of the
procedures, which the target device takes during multiboot, is presented on Fig. 3.5.

Fig. 3.5: Multiboot functionality flowchart.

After a necessary device initialization, the FSBL reads the REB00T_STATUS reg
ister. If no previous boot failure is detected, FSBL continues with searching for
boot images in the flash memory at predefined addresses. A valid boot image is
recognized by finding:

1. a mandatory value of 0x584C4E58, 'XLNX', at 0x24 offset address. The value
represents the Image Identification parameter, whose primary use is to allow
the BootROM (along with the header checksum) to determine that a valid
BootROM header is present.

29

2. a mandatory value of OxFFFFFFFE at 0x60 offset address. This value represents
the Image Validity Word U D F parameter. Finding this value the FSBL knows,
that the whole boot image was successfully validated after it had been written
into flash memory.

If the golden image FSBL finds multiple valid boot images, it checks their version.
A boot image has its version stored in the U D F section of the BootROM header, in
form of a hexadecimal-encoded timestamp. Then, the MultibootRegister is loaded
with the base address of the newest valid boot image found and a soft system reset
is triggered.

Upon this reset, the BootROM loads a FSBL from the location, at which points
the MultibootRegister. Then the FSBL handles loading of the remaining parti
tions from the flash memory. If the loading fails for some reason, the FSBL_FAIL
flag in the REB00T_STATUS register is set and a soft system reset is triggered again.
The golden image F S B L reboots, but now it load its own partitions immediately,
without searching for multiboot images.

3.5 System Update Application

The proposed system update application is intended to run on a target device as
an independent task in parallel with other applications/tasks, each having distinct
responsibilities and requirements. For this reason its development was based on
FreeRTOS platform.

The FreeRTOS is an open source, light-weight, real-time operating system kernel
for embedded devices. It provides deterministic time behaviour, priority-based mul
titasking capability, simple scheduler to switch between task, queues to inter-task
communication, semaphores to manage resources sharing between tasks, etc.

From the FreeRTOS features also benefits the Lightweight T C P / I P (lwIP) stack,
which is used in the application to enable the networking functionality. The lwIP
stack is a small independent implementation if the Internet protocol suite.

Networking in general makes use of a number of timed protocols, which include
timeouts, retransmissions, etc. As the FreeRTOS provides multi-threaded environ
ment, we could use an lwIP socket mode Application Programming Interface (API),
which blocks on T C P socket reads and writes until they are complete. The neces
sary timers are handled in the background and does not need to be implemented
manually.

30

3.5.1 HTTP Server

Implementation of the H T T P server on the target device makes use of lwIP stack
and its socket mode API . After lwIP initialization, the network_thread, which con
figures the network interface and creates a http_server thread. The http_server
thread creates a new T C P socket, binded to H T T P port 80. The lwIP then starts
to listen for incoming connections on this socket. Upon newly accepted connection
on port 80, a process_http_request thread is created. In this thread, all the main
web server's functionality is implemented. Flowchart of the thread is depicted in
Fig. 3.6.

Firmware
update process

(Close socket
Delete Task

Fig. 3.6: Thread processing H T T P requests flowchart.

On a receiving a new request, a new socket descriptor is created. The server
starts to read data from the socket until a whole H T T P header is received. This
is done by searching for the header terminator - a sequence of "CRLFCRLF" ASCII

31

characters. Next, the header is processed to obtain the request-related information,
namely:

• a H T T P method of the request,
• a client-send command to the server, in form of a U R L ,
• a length of a payload, if the request have some. The header contains this

information in Content-Length field.
The server then continues receiving data from the socket until a whole payload

is received. Depending on a request method, an appropriate response is generated
and sand back to the client. We implemented the server to accept following H T T P
methods:

• G E T - a client uses this method when it requests a specific resource from the
servers. The server currently provides a single resource available to a client.
Therefore on every client's G E T request, the server responds with the system
update webpage. However, if needed in future, the server is prepared to be
extended with the functionality to send responses depending on requested
resource.

• POST - a client uses this method to upload a boot image file to the server and
to send a specific command.

• OPTIONS - a client sends OPTIONS request to describe the communication
options for the target resource. The server responds with the allowed option
specified in the response header.

The server currently accepts two types of commands contained in a POST re
quest:

• cmd/update-multiboot,
• cmd/update-golden.

When the server receives the POST request with the cmd/update-multiboot com
mand, the system updates one of the multiboot images in the flash memory with
the received boot image file. Likewise, if the cmd/update-multiboot command is
received, the system will update the golden image sector. This feature is assumed
to be available only for developing and debugging purposes, as usually it is not
desirable to allow the end user to modify the golden image.

Upon receiving a request containing one of the supported commands, the server
responds with "200 OK" status code and a message containing size of the received
file. If the client sends no or unknown command, the server sends "400 Bad Request"
response. Flowchart of the response generation is depicted in Fig. 3.7

32

method posr-

Send response
HTTP 200 OK

Content: webpage

Send response
HTTP 204 No Content

Allow header

-OTHER/UNKNOWN- Send response
HTTP 501 Not I mple mented

0

-cmd/update-golden Switch
command

Send response
HTTP 200 OK

Content: message
-cmd/update-multi boot-

Send response
HTTP 400 Bad Request

Content: message
-No/unknow command-

Fig. 3.7: H T T P response generation flowchart.

3.5.2 Client Command-Line Application

Since the target device is running the H T T P server, to upload a boot image file
the user can choose one of many available command-line based H T T P clients, e.g.
cURL [21], G N U Wget [22], or HTTPie [23]. A l l of the clients listed above are
cross-platform and support file uploads over HTTP. As an example we describe the
file upload using cURL on Windows.

cURL tool can be executed from Windows Command Prompt by entering the
c u r l command using the following syntax:

c u r l [o p t i o n s / U R L s] .

To upload arbitrary binary data to a server, the command should be used with
following options:

- - h e a d e r " C o n t e n t - T y p e : a p p l i c a t i o n / o c t e t - s t r e a m "
- - d a t a - b i n a r y @ < f i l e n a m e >

By entering a command in the format above cURL builds the POST H T T P request
header to which it appends the data file. Request is then send to the specified
U R L . The full listing of cURL command, including the client request and the server
response headers, can be found in Appendix B . l .

33

3.5.3 Client Web Application

The proposed system update webpage makes use of Asynchronous JavaScript +
extensible Markup Language (XML) , abbreviated as Ajax. Ajax is not a program
ming language, but rather a set of web development techniques using multiple web
technologies on the client side to create asynchronous web applications. Using Ajax,
webpages are allowed to change its content dynamically, without the need to reload
the entire page [24]. A principal communication model using Ajax can be found in
Fig. 3.8. In the proposed web application we used following technologies:

• Hypertext Markup Language (HTML) to describe the structure of a webpage,
and provide input forms, user interaction elements, etc.

• The XMLHttpRequest (XHR), which is an A P I in the form of an object whose
methods transfer data between a web browser and a web server.

• JavaScript (JS) to bring these technologies together and to modify the webpage
content.

Web Browser

XMLHttpRequest

onreadystatechange
callback

JavaScript HTML Data
Call

Presentation

-HTTP Request-

-HTTP Response-

Target Device

Web Server

Firmware Update Process
Update Sector Selection Logic

Flash Operations
(Read, Write, Erase)

Flash Memory

Fig. 3.8: A principal communication model using Ajax.

The webpage contains file input H T M L element, which accepts files with .bin
file extension, two radio buttons allowing a user to select either golden or multiboot
sector in flash memory to be updated, and a submit button to start sending a file.
Preview of the webpage, as it is displayed in a browser, is depicted in Fig. 3.9.

Upon pressing the submit button, the doSubmit JS function is called. The
function obtains the data from all the input elements and then creates new X H R
object. The newly-created X H R object is initialized using POST method and with

34

Z y n q S y s t e m U p d a t e

| Choose File | No file chosen

3 Update golden image sector.
* Update one of multiboot image sectors.

Submit

D e v i c e r e s p o n s e :

Fig. 3.9: Layout of the system update webpage.

an U R L , which represents a command to be send to a server, according to selected
update sector. After the XHR ' s readyState attribute indicates that the transfer
is complete, yet an empty paragraph is updated with the XHR's response message.
The JS code listing of the textttdoSubmit function can be found in Appendix A . l .

3.5.4 Boot Image Validation Process

Before newly-received boot image file is written to a flash memory, the system
performs similar operations as it does during multiboot (see Fig. 3.5). It looks for
a valid boot images present at predefined fixed addresses in the flash memory and
decides which one to update and therefore overwrite. The system primarily updates
an invalid image. If there are multiple valid images present in the memory, then the
system update the one with a smaller timestamp and thus a lower version.

Technology of the flash memory requires erasing the flash sectors to be over
written. For this reason and for the process simplicity, the whole 4 M B sector is
erased, regardless of the actual image size. The new boot image is then written to
the memory using the most effective, 256 byte page programming command [25].

To check a data integrity after the flash write operation, the system reads the
data back from the flash memory and validates:

• a boot image header,

35

• a partition header of every partition present.
• every partition data, including FSBL.

The system therefore does nearly the same operation as the BootROM and FSBL
do during boot time. The only difference is in validation of the FSBL partition,
which is the BootROM incapable of in non-secure boot mode. To enable the system
to validate boot images stored in flash memory we modified a generic FSBL code
and created custom library adapted to the system update application needs. A n
example listing of a C function which wraps other function calls needed to validate
the boot image can be found in Appendix A.3.

If the system successfully validates the boot image, it changes a least significant
bit of a Image Validity Word in the boot image header from 1 to 0 (programming
a flash memory means changing values of ones to zeros), therefore the Validity
Word new value will be OxFFFFFFFE. Reading that value a golden image FSBL will
recognize this boot image a valid so it will be eligible for boot (see section 3.4).

36

4 Conclusion
The system update application for Zynq-7000 device was designed and implemented.
QSPI flash memory device is used as a boot device for storing multiple boot images
of user application. A based storing and update mechanism was selected, without
the use of a file system. That implies that all boot images are limited in size to
maximum of 4 M B .

The system counts on functionality of a golden image, whose bootloader code
provides both, an automatic boot image selection upon boot time (multiboot) and
recovery loading of backup configuration upon boot failure (fallback). The boot
image selection/update decision mechanism is based on calculating checksums and
comparing timestamps of the images. The system is designed to always try to load
the newest valid boot image and to update the oldest or invalid one.

The system update process is handled by a FreeRTOS and lwIP stack based
application, which runs on a target device. The main component of the application
is a web server, which implements a subset of H T T P protocol for communication
with the application running on a client side. The client side is represented either
by one of freely available command line tool (e.g. cURL) which serves as H T T P
client, or by a web page which runs a simple web application for transmitting the
boot image binary file and displaying the server response.

Writing a newly-received boot image file in flash memory also provides the target
device application, which make use of customized library for accessing flash memory
data and perform validation operations over them.

For creation the customized boot images files it was developed a Python script
which processes the input files and invokes the Bootgen utility.

Our proposal for further development is to:
• Implement a file system-based storing the boot images in the boot device,

including flash memories larger than 16 M B . Make a support for other boot
device types.

• Extend the functionality of H T T P server with H T M L Server-Sent Event tech
nology enabling a client to receive automatic updates from a server (e.g. sys
tem update process progress, system status, etc.).

• Consider some of the secure boot mode options, mainly the RSA authentica
tion for boot for better boot image validation.

• Make port of the system for Xilinx Ultrascale+ MPSoC platform.

37

Bibliography
[1] System Update In: Yocto Project Wiki [online]. 20187 [cit. 2019-05-14]. Avail

able: <https://wiki.yoctoproject.org/wiki/Main_Page>

[2] SANDERS, Lester. Updating a System Securely in the Zynq-7000 AP
SoC [online]. VI.1 Xilinx, 2014, last modified February 12, 2015 [cit.
2019-05-14]. XAPP1224. Available: <https://www.xilinx.com/support/
documentation/application_notes/xappl224-secure-system-update.
pdf>.

[3] X I L I N X . Zynq-7000 SoC: Technical Reference Manual [online]. VI.12.2.
2012, last modified July 1, 2018 [cit. 2019-05-14]. UG585. Avail
able: <https://www.xilinx.com/support/documentation/user_guides/
ug585-Zynq-7000-TRM.pdf >.

[4] X I L I N X . Zynq-7000 All Programmable SoC Software Developers Guide [online].
V12.0. 2014, last modified September 30, 2015 [cit. 2019-05-14]. UG821. Avail
able: <https://www.xilinx.com/support/documentation/user_guides/
ug82l-zynq-7000-swdev.pdf >.

[5] Das U-Boot - the Universal Boot Loader, [online]. Gröbenzell (DE): D E N X
Software Engineering, 2017 [cit. 2019-05-14]. Available: <https://www.denx.
de/wiki/U-Boot/>

[6] X I L I N X . Bootgen User Guide [online]. V2018.2. 2018 [cit. 2019-05-14].
UG1283. Available: <https: //www. x i l i n x . com/support/documentation/
sw_manuals/xilinx2018_2/ugl283-bootgen-user-guide.pdf>

[7] S A R A N G I , Anirudha, Stephen M A C M A H O N and Upender C H E R U K U P A L Y .
LightWeight IP Application Examples [online]. v5.1. 2008, last modification
November 21, 2014 [cit. 2019-05-14]. XAPP1026. Available: <https://www.
xilinx.com/support/documentation/application_notes/xappl026.pdf >.

[8] Comparison of file transfer protocols. In: Wikipedia: the free encyclopedia [on
line]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2019-05-14]. Avail
able: <https://en.wikipedia.org/wiki/Comparison_of_file_transfer_
protocols>

[9] B H U S H A N , A . K . B E R N E R S - L E E . File Transfer Protocol [online]. 1971 [cit.
2019-05-14]. R F C 114. Available: <https://www.rfc-editor.org/info/
r f c l l 4 > .

38

https://wiki.yoctoproject.org/wiki/Main_Page
http://www.xilinx.com/support/documentation/application_notes/xappl224-secure-system-update.pdf
http://www.xilinx.com/support/documentation/application_notes/xappl224-secure-system-update.pdf
http://www.xilinx.com/support/documentation/application_notes/xappl224-secure-system-update.pdf
https://www.xilinx.com/support/documentation/user_guides/?ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/?ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/?ug82l-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/user_guides/?ug82l-zynq-7000-swdev.pdf
http://www.denx.de/wiki/U-Boot/
http://www.denx.de/wiki/U-Boot/
https://www.?xilinx.com/support/documentation/application_notes/xappl026.pdf
https://www.?xilinx.com/support/documentation/application_notes/xappl026.pdf
https://en.wikipedia.org/wiki/Comparison_of_file_transfer_?protocols
https://en.wikipedia.org/wiki/Comparison_of_file_transfer_?protocols
http://www.rfc-editor.org/info/rfcll4
http://www.rfc-editor.org/info/rfcll4

[10] SOLLINS, K . B E R N E R S - L E E . The TFTP Protocol (Revision 2) [online].
1992 [cit. 2019-05-14]. R F C 1350. Available: <https://www.rfc-editor.org/
i n f o / r f c l 3 5 0 > .

[11] F I N L A Y S O N , R. Bootstrap loading using TFTP [online]. 1984 [cit. 2019-05-14].
R F C 906. Available: <https://www.rfc-editor.org/info/rfc906>.

[12] Y L O N E N , T. a C. L O N V I C K . The Secure Shell (SSH) Protocol Architec
ture [online]. 2006 [cit. 2019-05-14]. R F C 4251. Available: <http://www.
rfc - e d i t o r . o r g / i n f o / r f c 4 2 5 1 > .

[13] SCP vs SFTP: Which One Should You Use for File Transfer In: Make Tech
Easier - Computer Tutorials, Tips and Tricks [online]. Uqnic Network Pte.
C2007-2019 [cit. 2019-05-14]. Available: <https://www.maketecheasier.com/
scp-vs-sftp/>

[14] F IELDING, R., J. G E T T Y S , J. M O G U L , H. F R Y S T Y K , L. M A S I N T E R , P.
L E A C H a T. B E R N E R S - L E E . Hypertext Transfer Protocol - HTTP/1.1 [on
line]. R F C 2068. 1999 [cit. 2019-05-14]. Available: <https ://www.rf c- e d i t o r .
org/info/rfc2616>.

[15] TE0720 TRM [online], v.85. 2015, last modified November 10, 2017 [cit.
2019-05-14]. Available: <https : //www.trenz-electronic.de/f ileadmin/
docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/
REV03/Documents/TRM-TE0720-03.pdf >.

[16] Re - Regular expression operations. In: Python 3.7.3 documentation [online].
Wilmington (USA): Python Software Foundation, c2001-2019 [cit. 2019-05-14].
Available: <https : //docs. python. o r g / 3 / l i b r a r y / r e . html>

[17] TIS C O M M I T T E E . Tool Interface Standard (TIS) Executable and Linking For
mat (ELF) Specification [online]. Version 1.2 1995 [cit. 2019-05-14]. Available:
< h t t p s : / / r e f s p e c s . l i n u x f o u n d a t i o n . o r g / e l f / e l f . p d f >.

[18] hashlib - Secure hashes and message digests. In: Python 3.7.3 documenta
tion [online]. Wilmington (USA): Python Software Foundation, c2001-2019 [cit.
2019-05-14]. Available: <https : //docs. python. o r g / 3 . 4 / l i b r a r y / h a s h l i b .
htmlto>

[19] datetime - Basic date and time types. In: Python 3.7.3 documentation [online].
Wilmington (USA): Python Software Foundation, c2001-2019 [cit. 2019-05-14].
Available: <https : //docs .python.org/3/library/datetime .html>

39

http://www.rfc-editor.org/info/rfcl350
http://www.rfc-editor.org/info/rfcl350
http://www.rfc-editor.org/info/rfc906
http://www.?rfc-editor.org/info/rfc4251
http://www.?rfc-editor.org/info/rfc4251
http://www.maketecheasier.com/scp-vs-sftp/
http://www.maketecheasier.com/scp-vs-sftp/
http://www.rf
http://www.trenz-electronic.de/f
https://refspecs.linuxfoundation.org/elf/elf.pdf

[20] subprocess - Subprocess management. In: Python 3.7.3 documentation [online].
Wilmington (USA): Python Software Foundation, c2001-2019 [cit. 2019-05-14].
Available: <https : //docs. python. org/3/library/subprocess . html>

[21] Curl: command line tool and library for transferring data with URLs [on
line]. Daniel Stenberg and contributors, cl996-2019 [cit. 2019-05-14]. Available:
<https://curl.haxx.se/>

[22] GNU Wget [online]. Boston (USA): Free Software Foundation, 2017 [cit. 2019-
05-14]. Available: <https : //www. gnu. org/sof tware/wget/>

[23] HTTPie - command line HTTP client [online]. Jakub Roztočil [cit. 2019-05-14].
Available: <https://httpie.org/>

[24] A J A X Introduction In: W3Schools Online Web Tutorials [online]. Sandnes
(NO): Refsnes Data, cl999-2019 [cit. 2019-05-14]. Available: <https://www.
w3schools.com/xml/aj ax_intro.asp>

[25] C Y P R E S S S E M I C O N D U C T O R C O R P O R A T I O N . In: 128 Mb (16 MBJ/256
Mb (32 MB) 3.0V SPI Flash Memory Datasheet [online]. Rev. *P. San
Jose (CA): Cypress Semiconductor Corporation, 2011, Revised August 07,
2018 [cit. 2019-05-16]. Available: <https://www.cypress.com/file/448601/
download>

40

https://curl.haxx.se/
http://httpie.org/
https://www.?w3schools.com/xml/aj%20ax_intro.asp
https://www.?w3schools.com/xml/aj%20ax_intro.asp
http://www.cypress.com/file/448601/download
http://www.cypress.com/file/448601/download

List of symbols, physical constants and abbre-

viations
A D C Analogue to Digital Converter
AES Advanced Encryption Standard
Ajax Asynchronous JavaScript + X M L
API Application Programming Interface
A P U Application Processor Unit
B B R A M Battery-Backed R A M
C A N Controller Area Network
C L B Configurable Logic Block
C P U Central Processing Unit
C R Carriage Return
D D R Double Data Rate
DSP Digital Signal Processing
E L F Executable and Linking Format
F P U Floating-Point Unit
FSBL First-Stage Bootloader
F T P File Traansfer Protocol
GPIO General-Purpose Input/Output
GUI Graphical User Interface
H P C High Performance Computing
H T M L Hypertext Markup Language
H T T P Hypertext Transfer Protocol
I2C Inter-Integrated Circuit
I/O Input / Output
JS JavaScript
L A N Local Area Network
L F Line Feed
L U T Lookup Table
lwIP Lightweight T C P / I P
M M U Memory Management Unit
MPSoC Multi-Processor System-on-Chip
N A T Network Address Translation
O C M On-Chip Memory
PL Programmable Logic
P L L Phase-Locked Loop
PS Proessing System

41

P O R Power-On Reset
Q S P I Quad Serial Peripheral Interface
R A M Random Access Memory
S B C Single-Board Computer
S C P Secure Copy Protocol
S D K Software Development Ki t
S D R Software-Defined Radio
S F T P Secure File Transfer Protocol
S H A Secure Hash Algorithm
SoC System-on- Chip
S o M System-on-Module
S S B L Second-Stage Bootloader
S S H Secure Shell
SSL Secure Sockets Layer
T C P Transmission Control Protocol
T L S Transport Layer Security
T F T P Trivial File Transfer Protocol
U-boot the Universal Boot Loader
U A R T Universal Asynchronous Receiver-Transmitter
U D F User Defined Field
U D P Transmission Layer Protocol
U R L Uniform Resource Locator
U S B Universal Serial Bus
X M L extensible Markup Language
X H R XMLHttpRequest

42

List of appendices

A Code Listings 44
A . l JavaScript Function to Transfer a Boot Image 44
A.2 Python Script to Build a Boot Image 45
A . 3 C Function for Boot Image Valiadtion 47

B Command Prompt Listings 49
B. l cURL Client Command and Server Response 49

43

A Code Listings

A. l JavaScript Function to Transfer a Boot Image

< s c r i p t t y p e = " t e x t / j a v a s c r i p t " >

f u n c t i o n d o S u b m i t O {

/* S p e c i f y s e r v e r URL */
con s t s e r v e r U r l = "http://192.168.1 . 10/" ;

var f i l e S e l e c t = d o c u m e n t . g e t E l e m e n t B y l d (' f i l e - s e l e c t ') ;
var u p d a t e S e c t o r = d o c u m e n t . q u e r y S e l e c t o r (' i n p u t [n a m e = '

+ ' " s e c t o r - r a d i o "] :checked ') . v a l u e ;
var t e x t A r e a = d o c u m e n t . g e t E l e m e n t B y l d (" s e r v e r - r e s p o n s e ") ;
var formData = new F o r m D a t a O ;

/* C r e a t e new XMLHttpRequest o b j e c t . */
var x h t t p = new X M L H t t p R e q u e s t () ;

/* O b t a i n a f i l e from the f i l e i n p u t element */
i f (f i l e S e l e c t . f i l e s & f i l e S e l e c t . f i l e s . l e n g t h == 1) {

var f i l e = f i l e S e l e c t . f i l e s [0] ;
f o r m D a t a . s e t (" f i l e " , f i l e , f i l e . n a m e) ;

};

/*

* An event h a n d l e r t h a t i s c a l l e d whenever the r e a d y S t a t e
* a t t r i b u t e changes. The c a l l b a c k f u n c t i o n updates the
* c o n t e n t of the t e x t b o x element w i t h XHR r e s p o n s e t e x t
* when the d a t a t r a n s f e r i s completed.
*/
x h t t p . o n r e a d y s t a t e c h a n g e = f u n c t i o n () {

i f (t h i s . r e a d y S t a t e == 4) {
t e x t A r e a . i n n e r H T M L = t h i s . r e s p o n s e T e x t + "\n" +
t e x t A r e a . i n n e r H T M L ;

} ;

};

/*
* B u i l d the URL a c c o r d i n g to s e l e c t e d s e c t o r to be
* updated.
*/
s w i t c h (u p d a t e S e c t o r) {

case " g o l d e n " :
var u r l = s e r v e r U r l . c o n c a t (" c m d / u p d a t e - g o l d e n ") ;

44

http://192.168.1
http://http.onreadystatechange

break;
def a u l t :

var u r l = s e r v e r U r l . c o n c a t (" c m d / u p d a t e - m u l t i b o o t ") ;
break;

};

/*
* I n i t i a l i z e the XHR. Set the MIME type of the XHR to
* a p p l i c a t i o n / o c t e t - s t r e a m . Send the r e q u e s t to a s e r v e r .
*/
x h ttp.open("POST", u r l , t r u e) ;
x h t t p . s e t R e q u e s t H e a d e r (" C o n t e n t - T y p e " ,

" a p p l i c a t i o n / o c t e t - s t r e a m ") ;
x h t t p . s e n d (f i l e) ;
>;

< / s c r i p t >

A.2 Python Script to Build a Boot Image

import r e , os, s u b p r o c e s s , d a t e t i m e , h a s h l i b , s t r u c t

Boot image header f i e l d s d e f i n i t i o n s .
BOOTEOM_HDR_TIMESTAMP_OFFSET = 0x4C
BOOTROM_HDR_FSBL_CHECKSUM_OFFSET = 0x50

ELF f i l e header f i e l d s d e f i n i t i o n s .
ELF_FHDR_PHDR_PTR_OFFSET = OxlC
ELF_PHDR_SEG_PTR_OFFSET = 0x04
ELF_PHDR_SEG_SIZE_OFFSET = 0x10

R e g u l a r e x p r e s s i o n to match the FSBL ELF f i l e p a t h ,
p a t t e r n = r e . c o m p i l e (r ' (? < = \ s \ [b o o t l o a d e r \]) (\ w :) '

r ' ([\ \ I /] \ S + [\ \ | /]) (\S+. (e l f)) ')

Se a r c h f o r FSBL ELF f i l e p a t h i n b o o t g e n _ i n p u t . b i f u s i n g regex
with o p e n (' b o o t g e n _ i n p u t . b i f ' , ' r') as f i l e :

f s b l _ p a t h = r e . s e a r c h (p a t t e r n , f i l e . r e a d ()) . g r o u p ()

w i t h o p e n (f s b l _ p a t h , ' r b ') as f i l e :
Read program header t a b l e ' s f i l e o f f s e t i n b y t e s ,
file.seek(ELF_FHDR_PHDR_PTR_0FFSET)
e_phoff = i n t . f r o m _ b y t e s (f i l e . r e a d (4) , b y t e o r d e r = ' l i t t l e ')

Read the b e g i n n i n g of the d a t a segment o f f s e t i n b y t e s ,
f i l e . s e e k (e _ p h o f f + ELF_PHDR_SEG_PTR_0FFSET)
p _ o f f s e t = i n t . f r o m _ b y t e s (f i l e . r e a d (4) , b y t e o r d e r = ' l i t t l e ')

45

http://http.open(%22POST
http://http.setRequestHeader(%22Content-Type
http://http.send(f

Read the number of b y t e s of the d a t a segment.
f i l e . s e e k (e _ p h o f f + ELF_PHDR_SEG_SIZE_OFFSET)
p _ f i l e s z = i n t . f r o m _ b y t e s (f i l e . r e a d (4) , b y t e o r d e r = ' l i t t l e ')

Read the FSBK d a t a from the ELF.
f i l e . s e e k (p _ o f f s e t)
f s b l _ d a t a = f i l e . r e a d (p _ f i l e s z)

C a l c u l a t e the md5 checksum of the FSBL d a t a ,
f s b l _ c h e c k s u m = h a s h l i b . m d 5 (f s b l _ d a t a)

Get c u r r e n t timestamp.
timestamp = d a t e t i m e . d a t e t i m e . n o w ()

Conve r t e n d i a n n e s s to l i t t l e - e n d i a n and format i n t o hex s t r i n g .
t i m e s t a m p _ h e x _ s t r = f o r m a t (s t r u c t . u n p a c k (' < I ' ,

s t r u c t . p a c k (' > I 1 , i n t (t i m e s t a m p . t i m e s t a m p ()))) [0] , ' 08x 1)

W r i t e the FSBL checksum, timestamp, and Image V a l i d i t y Word
to UDF f i l e .
w i t h o p e n (' u d f . t x t ' , 'w') as f i l e :

f i l e . w r i t e (t ime stamp_hex_ s t r)
f i l e . w r i t e (' { : 0 3 2 x } ' .f o r m a t (i n t . f r o m _ b y t e s (

f s b l _ c h e c k s u m . d i g e s t () , b y t e o r d e r =)))
f i l e . w r i t e (1 f f f f f f f f ')
f i l e . c l o s e ()

S p e c i f y a f i l e name of the boot image,
f i l e n a m e = 'B00T4.bin'

S p e c i f y a f i l e p a t h to the boo t g e n . b a t
b o o t g e n _ p a t h = r ' D : \ X i l i n x \ S D K \ 2 0 1 8 . 2 \ b i n \ b o o t g e n . b a t '

S p e c i f y arguments to be passe d to the bootgen.bat
-image <filename> [. b i f] - s p e c i f i e s the i n p u t BIF f i l e .
- a r c h [zynq | zynqmp] - X i l i n x a r c h i t e c t u r e
-o <filename> - s p e c i f i e s the output BIN f i l e .
Use no or . b i n e x t e n s i o n .
-w [on | o f f] - o v e r w r i t e mode
bo o t g e n _ a r g s = r'-image { c w d } \ b o o t g e n _ i n p u t . b i f ' \

r ' - a r c h zynq 1 \
r' - o {cwd}\{filename} 1 \
r'-w o n ' . f o r m a t (c w d = o s . g e t c w d () , f i l e n a m e = f i l e n a m e)

Invoke the bo o t g e n . b a t to b u i l d a boot image,
s u b p r o c e s s . r u n ([b o o t g e n _ p a t h , b o o t g e n _ a r g s])

46

file://2/bin/bootgen.bat

A.3 C Function for Boot Image Valiadtion

int FlashVal idateBoot lmage (const u32 FlashAddr)

{
u32 Sta tus ;
u32 Pa r t i t i onCoun t ;
u32 Par t i t ionNum ;

PartHeader Par t i t ionHeader [MAX_PARTITION_NUMBER] ;
BootRomHeader_t BootRomHeader;
u32 ImageValidityWord [1] = {IMAGE_VALID };
u8 Header [0x68] ;

/*
* Get the t o t a l number of p a r t i t i o n s in a boot image by obta in ing
* the t o t o a l number of images from a image header t a b l e .
* Program then goes through a l l the images , counting the
* corresponding p a r t i t i o n s .
*/

Par t i t i onCoun t = F la shGe tPa r t i t i onCoun t (FlashAddr) ;

/* Read a boot image header */
FlashGetBootRomHeader (FlashAddr , &BootRomHeader) ;
/*

* Read a p a r t i t i o n header of every p a r t i t i o n in the boot
* image

*/
FlashGe tPa r t i t i onHeade r ln fo (FlashAddr , Pa r t i t ionCount ,

Pa r t i t ionHeader) ;

/*
* Go through a l l the p a r t i t i o n , va l ida te the p a r t i t i o n
* header If the p a r t i t i o n header is va l id , va l ida t e
* p a r t i t i o n data . A spec i a l funct ion is used to va l ida te
* a FSBL p a r t i t i o n because a FSBL p a r t i t i o n checksum
* is stored in UDF of the boot image header , unl ike
* a common p a r t i t i o n s checksums, which are stored at
* the end of the boot image f i l e .

*/
for (Par t i t ionNum = 0; Par t i t ionNum < P a r t i t i o n C o u n t ;
PartitionNum++) {

Status = V a l i d a t e P a r t i t i o n H e a d e r (&Par t i t ionHeader [Par t i t ionNum]) ;
i f (Status != XST_SUCCESS)

return XST_FAILURE;

47

i f (Par t i t ionNum = 0) {
Status = F l a s h V a l i d a t e F s b l P a r t i t i o n (FlashAddr , &Par t i t ionHeader [

Par t i t ionNum]) ;
} else {

Status = F l a s h V a l i d a t e P a r t i t i o n (FlashAddr , &Par t i t ionHeader [
Par t i t ionNum]) ;

}
i f (Status != XST_SUCCESS)

return XST_FAILURE;

/*
* Write O x f f f f f f f e at 0x60 offset address in f lash to mark the
* boot image v a l i d .

*/
FlashWriteWord (FlashAddr + MAGE_VAIJDITY_WORD_OFFSET, IMAGE_VALID)

}
return XST_SUCCESS;

48

B Command Prompt Listings

B.l cURL Client Command and Server Response

C : \ u p d a t e \ > c u r l - - v e r b o s e --header " C o n t e n t - T y p e : a p p l i c a t i o n / o c t e t -
stream" - - d a t a - b i n a r y 0B00T.bin http://192.168.1.10/cmd/update-
m u l t i b o o t

* T r y i n g 192 . 168.1.10...
* TCP_N0DELAY set
* Connected to 192.168.1.10 (192.168.1.10) p o r t 80 (#0)
> POST / c m d / u p d a t e - m u l t i b o o t HTTP/1.1
> Host: 192.168.1.10
> U s e r - A g e n t : c u r l / 7 . 5 5 . 1
> A c c e p t : */*
> C o n t e n t - T y p e : a p p l i c a t i o n / o c t e t - s t r e a m
> C o n t e n t - L e n g t h : 153488
> E x p e c t : 1 0 0 - c o n t i n u e
>

* Done w a i t i n g f o r 1 0 0 - c o n t i n u e
* We are c o m p l e t e l y u p l o a d e d and f i n e
< HTTP/1.1 200 OK
< Access - C o n t r o l - A l l o w - O r i g i n : n u l l
< Cache - C o n t r o l : no-cache
< C o n t e n t - T y p e : t e x t / p l a i n
< C o n t e n t - l e n g t h : 122
< C o n n e c t i o n : c l o s e
<

[Web S e r v e r] 200 OK: R e c e i v e d boot image of s i z e 153488 b y t e s . One
of m u l t i b o o t firmware s e c t o r s i n f l a s h w i l l be updated.

* C l o s i n g c o n n e c t i o n 0>

49

file:///update
http://192.168.1.10/cmd/update-

