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Using machine learning in Football 

 

Abstract 

 

This thesis explores the application of machine learning techniques to football data analysis, 

focusing on the history, use cases, and implementation of these methods in the sport. The 

study begins with a literature review, tracing the development of data analysis in football from 

early beginnings with Charles Reep to the modern age, and discussing the role of event data in 

the sport. The thesis then delves into the history, types, and workflow of machine learning, 

with emphasis on supervised, unsupervised, semi-supervised, and reinforcement learning. The 

practical part of the study is dedicated to the implementation of a machine learning model, 

specifically the training process and utilization of the final selected model to create a shot 

map. This implementation relies on Python, XGBoost, Pandas, and Matplotlib technologies. 

The thesis outlines the intents, workspace configuration, and training data features, before 

describing the model training algorithm and methods for finding the best results. The study 

offers valuable insights into the potential of machine learning applications in football data 

analysis, and enhancing understanding of the game. 

 

Keywords: Machine Learning, Data analysis, Event data, Python, xGboost, Football, xG 
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Using machine learning in Football 

 

Abstrakt 

 

Tato diplomová práce zkoumá aplikaci strojového učení v analýze fotbalových dat se 

zaměřením na historii, případové studie a implementaci těchto metod ve sportu. Studie začíná 

rešerší literatury, která sleduje vývoj analýzy dat ve fotbale od raných začátků s Charlesem 

Reepem až po moderní dobu a diskutuje o roli eventových dat ve sportu. Práce se poté zabývá 

historií, typy a pracovním postupem strojového učení.  

Praktická část studie je věnována implementaci modelu strojového učení, konkrétně procesu 

trénování a využití vybraného modelu pro vytvoření mapy střel. Tato implementace spoléhá 

na technologie Python, XGBoost, Pandas a Matplotlib.  

Diplomová práce popisuje záměry, konfiguraci pracovního prostoru a vlastnosti tréninkových 

dat předtím, než popíše algoritmus tréninku modelu a metody pro nalezení nejlepších 

výsledků. Studie nabízí cenné náhledy do potenciálu aplikací strojového učení v analýze 

fotbalových dat a zlepšení porozumění hře. 

 

Klíčová slova: Machine Learning, Datová analýza, Eventová data, Python, xGboost, Fotbal, 

xG 
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1 Introduction 

Machine learning is increasingly being used in football to examine and comprehend data 

related to the sport. The most useful type of data for such purposes is what we call “event 

data”, which is a collection of tracking information gathered during a match, such as player 

and ball movement and the actions of the match officials, often gathered using specialized 

tracking systems installed in the stadium, combined with some human input. 

 

This type of data can then be used to establish players or teams’ performances in certain 

situations, overall gameplay, or style. For the analysis of this type of data, it is typical to use 

visualizations, mathematical models, or machine learning. 

 

One specific use case of machine learning in football is predicting the result of shots taken, 

with the goal being to develop a model that can accurately determine the probability of a shot 

resulting in a goal. Such information can be very useful in determining the actual performance 

of a team or player, especially in football, as there is a small number of goals scored over a 

single match, so it can be hard to judge players or teams solely on their actual goals scored, 

because they might just have been lucky. This model can tell us which team has managed to 

create better chances for themselves to win, or which player is getting himself into the best 

positions to score. 

 

In this thesis we will explore the technologies behind, and the process of creating such a 

model, and explore some use cases for it. 
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Objectives and Methodology 

1.1 Objectives 

The main goal of this thesis, is to present and explore the benefits of using machine learning 

on match event data, to analyze players and their actions on the football field Using XGBoost 

in python. Supporting goals are to train and explain a XGBoost model that can evaluate the 

chance of scoring a goal when a player shoots a shot. 

1.2 Methodology 

The methodology of this thesis is based on the analysis of technical and scientific sources 

focusing on the use of machine learning on real world problems. 

Based on the synthesis of the knowledge gained, a XGBoost model will be trained, and 

a Python script will be created. When given event data to process, the script will evaluate the 

data using the trained model, and visualize the results in a user friendly way. 

The performance of the model will be assessed by comparing the estimated number of goals 

in a wider range of data, and the actual number of goals scored. 
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2 Literature Review 

2.1 History of data analysis in football 

2.1.1 Early beginnings - Charles Reep 

Charles Reep was an accountant who got inspired after a conversation with the captain of 

Arsenal about an analysis of wing play being used by the club, which emphasized the 

objective of wing players to quickly move the ball forward. 

This conversation inspired Reep and was the beginning of his passion for attacking football, 

and the widespread adoption of the play style. 

 

Later, Reep became frustrated with a game he was attending. The game was slow, and the 

scoring attempts were inefficient. 

This was where he decided to write down the actions on the pitch. He recorded pitch positions 

and passing sequences with outcomes using a system that mixed symbols and notes to obtain 

a complete record of a game. Basically, the first or one of the first event data recordings. 

The idea was to understand the patterns of the team and suggest possible improvements. 

With the data collected, he found that an average football game at the time would consist of 

280 attacking moves, and an average of 2 goals scored. Using simple extrapolation, he 

claimed that a small improvement, could get teams to the average of 3 goals scored per match. 

Reep established himself as the first performance analyst in professional football, and would 

continue gathering match data, and developing on his strategies derived from the analysis of 

the data he collected. 

When he first published his work, some of his analysis suggested that teams scored on 

average every nine shots, and that half the goals scored came from recovered possessions in 

the final third. He also suggested that teams should try to move the ball as quickly forward as 

possible, instead of passing in a more passive manner. He was promoting a quick, direct and 

long-pass playing style. 

However not everybody was convinced about his various findings. He has been criticized for 

his simplistic methods, where his conclusions were often more the result of correlation, not 
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causation,  not taking into consideration the quality of the team, as well as having strong 

preconceived notions that would prevent him from exploring alternative hypotheses. 

(Pollard 2002) 

2.1.2 Next generation - Opta 

In 1996, Opta consulting started to collect match data for the Premier League, with the goal to 

rank teams and players. It was a major step forward for the industry, as they had signed a deal 

with a sponsor of the Premier League, to provide their data to each team in the league, as well 

as to the media. 

The clubs received Excel sheets with reports on some basic statistics and information.  

Teams now got an overview about how many kilometers each player ran, and how many 

tackles and passes they made. 

But what got people thinking about the use of data in football the most, was arguably their 

index, called “Opta Index”, which rated players across 70 categories to determine the best 

players for each position. 

(The history of football analytics - Part 2. [no date]) 

2.1.3 Modern age 

In recent times, the realm of professional football has experienced a considerable shift due to 

the emergence of data analytics. This has resulted in an increasing number of teams 

integrating data-driven decision-making processes into their operations. Nowadays, it's 

uncommon to come across a professional soccer team that doesn't have a dedicated data 

analytics team or collaborate with an external company for such services. 

 

The application of data analytics in football has become a crucial component in attaining 

success. By harnessing the extensive data gathered from matches, teams can extract valuable 

insights about their performance, pinpoint areas that need enhancement, and make well-

informed choices regarding their tactics, training, and recruitment strategies. 

 

Looking at the industry nowadays, the most notable companies are Opta, Wyscout, InStat, and 

StatsBomb. 
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• Opta - Opta, now owned by StatsPerform, has expanded beyond football, and is now 

involved in a variety of sports, including but not limited to Hockey, Rugby, Baseball, 

Basketball, and American football. Opta is tracking event data for the Premier league, 

EFL, and Scottish leagues. 

• Wyscout - A company under the Hudl umbrella, is tracking and providing event data 

and videos for over 600 leagues worldwide, and 400 000 players, as well as providing 

their own platform where users can see videos, and simple statistics from matches. 

• InStat - Recently acquired by Hudl, is providing data and videos for Hockey, Football 

and Basketball, and is tracking over 150 000 players when it comes to football itself. 

• StatsBomb - Well known for advanced statistics, and a web platform with a lot of 

advanced features and metrics. The company tracks over 90 leagues worldwide. 

Event data can be very useful, and it keeps getting better. One of the more recent 

improvements in this field is tracking data.  

Regular event data usually provides us with the information about the action that is happening 

with the ball. This means, all the other players on the pitch are not accounted for. This is 

where tracking data comes in. Tracking data is keeping track of other players on the pitch. 

Some tracking data is tracking every player on the pitch, some tracking data only includes a 

certain area around the ball. Anyhow this can be very important information, as having the 

ball in the penalty area, and having only the goalkeeper separate our player from the goal, can 

be very different from having a couple enemy players right in front of him. 

Expected Goals model (xG) 

The xG model, or Expected Goals model, is a widely used statistical tool in the realm of 

football analytics, and in recent years became popularized to the wider public by the media 

outlets covering football events, as they slowly begin to integrate it into their match statistics. 

 

The model's primary purpose is to quantify the probability of a shot resulting in a goal, based 

on various factors such as shot location, angle, body part used, and the game situation. By 

providing a numerical value for each shot's likelihood of becoming a goal, the xG model 

offers a deeper understanding of a team's performance and the quality of their goal-scoring 

opportunities. 
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Many different variations of it exist across the industry. 

Many companies and even some enthusiasts have developed their own xG model. 

Here are a couple of examples from two of the bigger companies in the industry: 

Wyscout: 

According to Wyscout, their xG model uses the following features. 

• Location of the shot 

• Location of the assist 

• Foot or head 

• Assist type 

• Was there a dribble of a field player or a goalkeeper immediately before the shot? 

• Is it coming from a set piece? 

• Was the shot a counterattack or did it happen in a transition? 

• Tagger's assessment of the danger of the shot 

Plus, apparently some “technical parameters”, which we have no way of identifying.(Wyscout 

xG [no date]) 

 

We can see that the general idea here is to assess where the shot took place, and what 

happened immediately before the shot. 

StatsBomb: 

StatsBomb takes this a step further, with their ability to include different kinds of tracking 

data. Just to name a few interesting upgrades to their model when compared to most other 

models, they have been able to include: 

• Positioning of the goalkeeper 

• Positioning of the surrounding defenders and attackers 

• Height of the ball at the moment the shot is struck 

• Shot velocity 

(Upgrading Expected Goals - StatsBomb | Data Champions [no date]) 
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Here is a visual representation of what the model gets fed, when it comes to positioning of the 

players around the shooter. 

 

Figure 1: Tracking data Visualization (StatsBomb) 

 

Use cases 

One of the main use cases of the xG model is evaluating a team's offensive and defensive 

capabilities. By analyzing the total xG value for shots taken and conceded, we can get a 

clearer picture of a team's effectiveness in creating goal-scoring chances and preventing the 

opposition from doing the same. This insight can help coaching staff in adjusting tactics and 

addressing areas of concern. 

 

Another notable application of the xG model is in player analysis. By examining a player's xG 

metrics, analysts can assess their performance in terms of goal-scoring potential, shot 

selection, and positioning. This data-driven approach can assist in identifying talent, 



 

 

 

 

 17 

evaluating transfer targets, and making informed decisions on player development and 

recruitment. 

 

Finally, the xG model has found its place in the world of sports betting, as bettors utilize xG 

data to make more informed wagers. By understanding the underlying performance metrics of 

teams and players, bettors can potentially identify value bets and make data-driven decisions. 

 

In conclusion, the xG model has become an indispensable tool in football analytics, offering 

valuable insights into team and player performance. Its diverse range of use cases, from 

tactical analysis to player scouting and betting, highlights the importance of data-driven 

decision-making in modern football. 
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2.2 Use cases of event data in football 

Delving into the realm of football analytics, the application of event data has become 

increasingly prevalent, enabling teams and analysts to draw meaningful insights and inform 

strategic decisions. Event data, which encompasses information related to various on-pitch 

occurrences, such as passes, shots, and tackles, serves as a valuable tool for dissecting the 

intricacies of the game. 

 

With the growing availability of granular event data, analysts are now able to dissect 

individual and team performances with remarkable precision. By utilizing cutting-edge 

visualization techniques, often powered by libraries like matplotlib, these professionals can 

transform raw data into insightful visual representations. These graphics offer an accessible 

means for identifying patterns, understanding tactics, and evaluating player contributions 

within specific contexts. 

 

One popular use of event data is to examine a team's passing network, which can reveal the 

underlying structure of a team's tactical approach. By plotting the average positions of players 

and mapping the frequency of passes between them, analysts can identify key playmakers, 

assess the balance of the formation, and uncover potential weaknesses to exploit. 

 

Another notable application of event data is the creation of shot maps, which provide a spatial 

representation of all the shots taken during a match or over a specific period. These 

visualizations can help analysts pinpoint areas from which a team is most dangerous, as well 

as identify defensive vulnerabilities that may warrant attention. 

Moreover, the versatility of event data lends itself to the analysis of various defensive metrics, 

such as pressing intensity and tackle success rates. By visualizing these aspects, analysts can 

gain a deeper understanding of a team's defensive structure and efficacy, informing potential 

adjustments to tactics or player selection. 
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In essence, the utilization of event data in football has become an essential component of 

modern analytics. By harnessing the power of visualization tools like matplotlib, analysts can 

unlock valuable insights into team dynamics, tactics, and player performance, ultimately 

influencing critical decisions both on and off the pitch. 
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2.3 Types of machine learning 

Depending on the methodology and learning approach, Machine Learning can be divided into 

four categories: 

 

• Supervised Machine Learning 

• Unsupervised Machine Learning 

• Semi-Supervised Machine Learning 

• Reinforcement Machine Learning 

(Types of Machine Learning - Javatpoint [no date]) 

 

2.3.1 Supervised Machine Learning 

As the name says, Supervised Machine Learning depends on supervision. It is implemented 

with the use of labeled data which contains tons of examples of Target and Features. 

Supervised Machine Learning uses algorithms to detect relationships and patterns of the input 

and output data. The process of finding relationships between Features and Target from the 

dataset is called Fitting or Training.  

 

Supervised Machine Learning solves two types of problems: 

• Classification - prediction of categories present in the dataset. 

• Regression - prediction of continuous output variables. 

 

Advantages of Supervised Machine Learning: 

• Since it works with a labeled dataset, we have an idea about the classes predicted. 

• These algorithms are good at predictions based on previous experience. 

 

Disadvantages:  

• Not fitted for complex problems. 

• Takes a long time to train. 

• Predictions can be wrong if the testing data differ from the training data. 
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Applications of Supervised Learning: 

• Medical Diagnosis 

• Image Segmentation 

• Spam Detection 

• Fraud Detection 

• Speech Recognition 

 

 

2.3.2 Unsupervised Machine Learning 

 Unlike Supervised Learning, Unsupervised needs no supervision. The idea is that the model 

predicts output on unlabeled data.   

The main goal is to group data by similarities, patterns, and differences. Though it still 

requires some level of human involvement, analyzing that output makes sense.  

 

Unsupervised Learning can be of two types: 

• Clustering: groups objects into "clusters" based on similarities 

• Association: associates data by dependency on one another 

 

Advantages of Unsupervised Learning: 

• Because of the unlabeled dataset, it can work with more complex tasks. 

• It is easier to obtain unlabeled datasets. 

 

Disadvantages: 

• Since no exact outputs are given, outputs can be less accurate. 

 

Applications of Unsupervised Learning: 

• Recommendation engines 

• Network Analysis 

• Anomaly Detection 
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2.3.3 Semi-Supervised Machine Learning 

Semi-Supervised Learning is a golden mean between Supervised and Unsupervised. While 

training, it uses both labeled and unlabeled data. It blends a small size of labeled data with a 

big size of unlabeled.  

 

 

 

Semi-Supervised Learning can be of two types:  

• Transductive Learning: focuses on improving the accuracy of prediction for specific 

instances in data. 

• Inductive Learning: focuses on generalizing the mapping between input and output 

data to new, unseen data. 

 

Advantages of Semi-Supervised Learning: 

• Efficiency 

• Easy to understand 

• Solves the issues of Supervised and Unsupervised Learning 

 

Disadvantages: 

• Iterations are unstable. 

• Low accuracy. 

 

Applications: 

• Image Classification 

• Natural Language Processing 

• Computer Vision 

• Anomaly Detection 
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2.3.4 Reinforcement Machine Learning 

Reinforcement Machine Learning is based on the feedback process, where an agent learns 

from its own experience and gets rewarded for good actions and punished for bad. The 

feedback is either a reward or a punishment, and the goal is to maximize the reward. It is 

similar in a way to a human who learns from their experience.   

 

Types of Reinforcement Learning: 

• Positive Reinforcement Learning: when an agent is rewarded for taking a particular 

action, which encourages it to take similar action in the future. 

• Negative Reinforcement Learning: when an agent is punished for taking a particular 

action, which makes it change an approach to avoid punishment in the future. 

 

Advantages of Reinforcement Learning: 

• It is good at solving complex problems, which other techniques could not do. 

• Because of its similarity to a human, it tends to be more accurate. 

 

Disadvantages: 

• Not good to use for simple problems. 

• Needs a lot of computation and data. 

 

Applications of Reinforcement Learning: 

 

• Robotics 

• Game AI 

• Healthcare 

• Finance 

• Recourse Management 

• Personalized Recommendations 

• Autonomous Vehicles. 
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2.4 Machine learning workflow 

Machine learning techniques are used for classification work by training a model on a labeled 

dataset when later given unlabeled data to label it. The selection of the technique fully 

depends on the problem there is to solve, and the data given, if it is structured and labeled or 

not. The more data is given, the better the prediction will be.  

It goes as follows: 

 

• Data Preparation Stage: this step is first and is highly important since good data 

preparation will lead to more accurate and efficient algorithms. At this stage, all the 

data must be collected. After, the data must be labeled with class labels and cleaned so 

there is no inconsistency. 

 

• Feature Selection Stage: this step is a process of reducing and selecting the right 

input variables for our predictive model. The importance of reducing it is not only to 

decrease the computational cost but also to, sometimes, improve the model's 

performance. It is done using statistical methods which evaluate the relationships 

between input and target variables, after choosing the ones with the strongest 

connection. These methods will be discussed later.  

 

• Model Selection Stage: at this stage, the most fitting for the task ML model is chosen. 

 

• Hyperparameter Tuning Stage: the performance of the model is highly dependent 

on the choice of the hyperparameters. Hyperparameters are adjustable and are always 

set before the actual training. It is a time-consuming and expensive process of finding 

optimal hyperparameters, mostly beneficial for more complex models. 

 

• Model Training Stage: at this point, the right learning algorithm is fed with the 

prepared data, to learn the patterns and relationships. The goal is to minimize the 

difference between the predicted and actual output. 
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• Model Evaluation Stage: after training, evaluation is needed to estimate how well it 

performs. it is done by:  

 

1. Training and evaluating on the same dataset: mostly beneficial for complex models 

that have issues with generalizing. 

2. Split test: it is a fast, flexible, and simple way to test the model. The dataset is split 

into two parts so that the model is trained and tested on the different data. 

3. Cross-validation techniques: using cross-validation techniques prevents having a 

"lucky" or "unlucky" split of the data. The results are averaged across multiple training 

sessions and overall performance is evaluated. 

 

Accuracy, precision, and recall are some of the common metrics used for evaluation.  

 

• Model Deployment Stage: after all the training and evaluation, the model can be 

deployed to predict unseen data points.  

 

2.4.1 Data preparation 

Why Prepare Data? 

To be processed and analyzed, raw data must be reformatted, cleaned, and put into one file or 

data table. 

It is usually a long process but is essential to prevent the possibility of biases from poor data 

quality. 

Data must be formatted according to the software tool which will be used. 

Real-world data is dirty. 

Data can be incomplete, have inconsistencies, or even errors that need to be looked upon. 

 

Benefits of Preparing Data  

• Fix Errors: during the Data preparation, errors can be caught and fixed, otherwise 

later it is harder to do, once it's out of its source. 
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• High-quality of Data: when going through all the preparation stages you are sure that 

data is of high quality. 

• Better business decisions: having high-quality data leads to a faster and more 

efficient analysis which equals better, high-quality business decisions. 

 

 

Main Data Preparation Steps 

 

Figure 2: Data preparation steps (DeZyre) 

 

• Data Discretization - particularly important for numerical data. Is a way of 

transforming continuous data into finite with minimal loss. For example, data 

binarization transforms continuous attributes into binary. 

 

• Data Cleaning - at this stage duplicates get removed, structural errors get fixed, and 

missing data and incorrect format are handled. Altair Monarch is a helpful technology 

to speed up the cleansing process with more than 80 pre-built data preparation 

functions. 

 

• Data Integration - is the process of combining data from different sources and 

providing a unified overview of it. 
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• Data Transformation - is a process of transforming data into a usable format to 

match the destination software. 

 

• Data Reduction - typically means the reduction of the volume of data. It is beneficial 

for storage efficiency, improves performance, and reduces cost. Common technologies 

used are Compression and Data Deduplication. 

 

Data binning 

 

Binning data helps to simplify the visualization of the data. It is usually a compression of data 

into smaller "bins" by reducing the number of possible levels or values. For example, 

grouping the age of people in the ranges by decades. It helps avoid overfitting for smaller 

datasets. 

 

2.4.2 Feature selection 

Why is Feature Selection important?  

 

• Overfitting or The Curse of Dimensionality - this problem arises when the data we 

are working with has multiple features (columns), so-called high-dimension data. The 

more features data has - the higher are chances for overfitting.  

• Occam's razor - simplicity is key. Ocamm's razor is a method of choosing between 

theories or assumptions. Normally, the simplest is the best.  

• Garbage in - Garbage out - some features sometimes only take up space and don't 

provide any important information, therefore making the dataset bulkier. It is best to 

get rid of such.  
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How to select the best features? 

 

Fortunately, nowadays, there are technologies to use for a simpler feature selection such as 

Scikit-learn. Most of the available feature selection methods can be divided into three 

categories: 

• Filter-based: filter features are based on some metric. For example, Chi-Square or 

Correlation; 

 

• Wrapper-based: this approach takes a set of features as a problem. Example, 

Recursive Feature Elimination; 

• Embedded: This category uses algorithms that have pre-built selection features, such 

as Lasso.  

 

Feature Selection Methods: 

• Pearson Correlation - is a filter-based method. This method takes the features with 

the highest correlation to a target variable as these are usually more informative and 

do best for a predictive model. Though the method can only identify linear 

relationships, it may not be as good at identifying interactions between features and 

nonlinear relationships. 

 

• Chi-Squared - is also filter-based. This method is generally used for measuring the 

independence of the variables, therefore it can tell us which of them are most likely to 

have these relationships. It is important to acknowledge that the Chi-Squared test 

assumes that variables are categorical, and samples are independent, so in the case of 

continuous variables and relations between samples - other methods are better to 

consider. 

 

 

 

 

 

 



 

 

 

 

 29 

• Recursive Feature Elimination - it is a wrapper-based method. Scikit-learn (ML 

library for Python) describes it as: "... the goal of recursive feature elimination (RFE) 

is to select features by recursively considering smaller and smaller sets of features. 

First, the estimator is trained on the initial set of features and the importance of each 

feature is obtained either through any specific attribute or callable. Then, the least 

important features are pruned from current set of features. That procedure is 

recursively repeated on the pruned set until the desired number of features to select is 

eventually reached.". (sklearn.feature_selection.RFE — scikit-learn 1.2.2 

documentation [no date])This method might be expensive but is very useful to reduce 

the dimensionality of the dataset and to get rid of irrelevant features. 

 

• Lasso (Least Absolute Shrinkage and Selection Operator) - it is an embedded 

method. Lasso is a kind of regularized regression that penalizes the objective function, 

therefore some coefficients of features are forced to be shrunk to zero which equals 

being removed from the model. Lasso assumes that the relationship between the target 

variable and features is linear and might not be the best choice for non-linear 

relationships.  

 

• Tree-based - also called the decision tree method, it is an embedded method. This 

method uses a tree-like model of decisions and their possible consequences to resolve 

the problem. The tree is built in a way of recursive splitting of the dataset into smaller 

ones by the values of the features until the needed criteria are met. The outcome is the 

tree where each "branch" is a decision based on the values of the features, and every 

"leaf" is a prediction. In comparison to a Random Forest, for example, the Tree-based 

method is well interpretable and provides intuitive explanations for decisions. Also, 

this method is not as expensive computationally as Random forest. 
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• Random Forest - is an embedded method. It is related to a tree-based method, though 

the approach is a bit different. Unlike the Tree-based method where only one decision 

tree is built, Random Forest builds multiple decision trees and combines the 

predictions to improve the accuracy of the model. The idea is to add some 

Randomness into a tree-building process by implementing the random selection of the 

set of features and a set of data points for each tree. This makes a model less prone to 

overfitting, as well as reduces the correlation between trees. 

 

• Gradient Boosting Machines - it is an embedded method. This approach also uses a 

set of decision trees to resolve the problem. GBM produces the importance of a feature 

by adding up the number of times the split of the node has happened in the decision 

tree, weighted by improvement in the error function caused by the split. Although 

GBM may not find the optimal set of features, it is good for reducing dimensionality 

and improving accuracy.  

 

2.4.3 Model selection 

Model Selection is an important step in training a model. There are several factors to consider 

when choosing the best one, such as the complexity of the task, the size of the dataset, 

available computing resources, and desired performance.  

The common approach to selection is to compare the performance of different models using 

the training, validation, and test datasets. The best to fit is the best to choose.  

When selecting a model, it is important to consider the interpretability of the model. Some are 

easier and some are harder to interpret. The easiest is Decision Trees and Linear Regression 

while Neural Networks are usually hard to interpret.  
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Here are some of the common ML models:  

 

• Linear Regression 

• Logistic Regression 

• Decision Trees 

• Random Forest 

• Support Vector Machines (SVMs) 

• Neural Networks 

 

Linear regression 

Linear regression is probably one of the most common and well-understood models in ML. It 

is mostly used for regression tasks. The LR algorithm belongs to supervised learning and 

works by applying relations that predict the outcome of the event based on independent 

variable data points. The result is a straight line that is surrounded by the given data points, as 

close to it as possible.  

Generally, Linear Regression represents a linear relationship between dependent and 

independent variables. It is done by observing how the value of the dependent variable 

changes with the change of the independent variable. 

 

An equation for LR goes as followed: 

y= β0+ β1x+ ε  

 

Where: 

• Y= Dependent Variable   

• X= Independent Variable   

• β 0= intercept of the line   

• β1 = Linear regression coefficient (slope of the line)  

• ε = random error  
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Figure 3: Linear regression graph (Knowledge Hut) 

 

Types of Linear Regression: 

 

• Simple Linear Regression - works with one independent variable 

 

• Multiple Linear Regression - number of independent variables differs from 1 

 

• Non-Linear Regression - when the most fitting line is not straight but curved. 
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Logistic regression 

Logistic Regression also falls under supervised learning. It uses a set of independent variables 

for predicting the categorical dependent variable and is mostly used for classification 

problems.  

Since output must be categorical it can be either 1 or 0, Yes or No, True or False, etc. But 

instead of giving an exact categorical result, it gives us a probabilistic value that lies between 

1 and 0 which describes the likelihood of something. 

Instead of fitting a regression line, in Logistic regression, we are fitting an "S" shaped 

function(Sigmoid function) with maximum values of 0 and 1.  

The dependent variable must be naturally categorical for it to work.  

 

Figure 4: Logistic Regression (saedsayad) 

 

Types of Logistic Regression: 

 

• Binomial: dependent variable can have only two values such as 0 and 1, yes or no, 

pass or fail, etc. 

 

• Multinomial: dependent variable can be of 3 or more unordered types. For example, 

"plastic", "paper", and "glass".  
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• Ordinal: dependent variable can be of 3 or more ordered types, like "short", 

"average", and "tall".  

 

Decision trees 

Decision Trees fall into the supervised learning category and can be used for both 

classification and regression, but if preferred - they are better suited for classification. It is 

called a tree because of its structure, it starts with the root node, expands with more branches, 

and grows into a tree. In Decision Trees, internal nodes represent the features, leaf nodes 

represent outcomes, and branches - decisions.  

 

A Decision Tree is a graphical/visual representation of all the possible solutions to a given 

problem, considering all the conditions.  

 

There are two types of nodes: 

• Leaf Node: the outcome of the decision, the end node not followed by any other 

branches. 

• Decision Node: used to decide, followed by multiple branches. 

 

In order to build a tree a CART (Classification and Regression Tree) algorithm is used. It is 

built on the basis of Gini's impurity index to originate binary splits.  

Gini's impurity index describes the probability of a variable being classified wrongly when 

chosen randomly.  

The idea of a tree is to simply ask a question like Yes or No, then divide it into sub nodes or 

outcomes. Also, it accepts not only categorical data but numerical as well.  
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Figure 5: Decision tree structure (PiAnalytiX) 

 

Terminology 

 

• Root Node: It is the starting dataset, that is further split into more homogeneous ones. 

• Leaf Node: Ending nodes with the outcomes. 

• Branch: A tree formed by splitting. 

• Parent/Child Node: The parent Node is a Root Node, and all the nodes created during 

the split are the Child Nodes. 

• Splitting: It is a process of dividing the node (root or decision) into smaller ones 

according to conditions. 

• Pruning: Pruning is a process of removing all the unwanted branches of the tree. 

 

(A Classification and Regression Tree (CART) Algorithm | Analytics Steps [no date]) 
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Random forest 

"Random forest is a commonly-used machine learning algorithm trademarked by Leo 

Breiman and Adele Cutler, which combines the output of multiple decision trees to reach a 

single result. Its ease of use and flexibility have fueled its adoption, as it handles both 

classification and regression problems."(What is Random Forest? | IBM [no date]) - this is 

IBM's definition of a Random Forest.  

Before the training, Random Forest has three hyperparameters that need to be set. These are 

node size, number of features, and number of trees.  

Strengths and flaws 

Strengths: 

• Low risk of overfitting: Considering the number of trees in a Random Forest, the 

model tends not to overfit since the averaging of uncorrelated trees lowers the 

prediction error and variance. 

• Flexibility: Random Forest is highly accurate in most of the tasks given, either 

regression or classification, which makes it widely used by Data Scientists 

• Feature Importance is easy to establish. Feature Importance is easy to evaluate using 

Random Forests. Techniques like Gini's importance and mean decrease in 

impurity(MDI) efficiently measures how much accuracy decrease with an exclusion of 

a variable, and Mean Decrease Accuracy (MDA) which identifies the decrease in 

accuracy by randomly permutating the feature values in samples, provide good help 

for it.  

 

Weaknesses: 

• Need of resources: Generally Random Forest works with vast amounts of data, 

meaning it needs more resources to store it. 

• Time-consumption: because of the large datasets it is time-consuming to compute it all 

through every single decision tree. 

• Complexity: the result of a single tree is usually easy to interpret, but when there is a 

forest of them it gets more complex. 
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Figure 6: Random forest structure (FreeCodeCamp) 

Support vector machines  

SVM is a powerful tool in supervised learning. It is commonly used in Data Science, Face 

Detection, Image Classification, bioinformatics, Text Categorization, etc. Primarily, it is 

classification tasks.  

 

SVM is a machine learning algorithm that separates data into different groups by drawing a 

line (called a "hyperplane") between them. The algorithm tries to draw the line in a way that 

maximizes the space between the line and the closest data points from each group. This space 

is called the "margin", and maximizing it helps the algorithm make better predictions about 

new data that it hasn't seen before. 

 

For SVM, data must be previously transformed into a higher-dimensional space, it is done by 

applying a kernel function. The kernel function applies a linear classifier to data to separate it 

into a high-dimension feature space. There are a few types of Kernel functions that could be 

used such as linear, polynomial, and radial basis functions (RBF). 
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Types of SVM: 

• Linear SVM: It is used for linearly separable data, which classifies it into classes 

using a straight line. 

• Non-linear SVM: In the case of non-linearly separable data, it applies a kernel trick 

technique which transforms it into a higher-dimensional space, so it becomes 

separable by a hyperplane since non-linearly separable data cannot be classified using 

a straight line.  

 

 

Figure 7: SVM (Medium) 

 

(Support Vector Machine (SVM) Algorithm - Javatpoint [no date]) 
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Neural networks 

What are Neural Networks?  

IBM definition goes as follows: "Neural networks, also known as artificial neural networks 

(ANNs) or simulated neural networks (SNNs), are a subset of machine learning and are at the 

heart of deep learning algorithms. Their name and structure are inspired by the human brain, 

mimicking the way that biological neurons signal to one another. 

 

Artificial neural networks (ANNs) are comprised of node layers, containing an input layer, 

one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to 

another and has an associated weight and threshold. If the output of any individual node is 

above the specified threshold value, that node is activated, sending data to the next layer of 

the network. Otherwise, no data is passed along to the next layer of the network. 

Neural networks rely on training data to learn and improve their accuracy over time. 

However, once these learning algorithms are fine-tuned for accuracy, they are powerful tools 

in computer science and artificial intelligence, allowing us to classify and cluster data at a 

high velocity. Tasks in speech recognition or image recognition can take minutes versus hours 

when compared to the manual identification by human experts. One of the most well-known 

neural networks is Google’s search algorithm."(What are Neural Networks? | IBM [no date]) 
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Figure 8: Neural Network Structure (Towards Data Science) 

 

Types of Neural Networks: 

• Perceptron 

• Feed Forward Neural Network 

• Multilayer Perceptron 

• Convolutional Neural Network 

• Radial Basis Function Network 

• Recurrent Neural Network 

• Sequence to sequence model 

• Modular Neural Network 

(Explained: Neural networks | MIT News | Massachusetts Institute of Technology [no date]; 

What are Neural Networks? | IBM [no date]) 
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Perceptron 

Perceptron is one of the oldest and simplest models of a Neural Network. It performs basic 

computations to detect some features of the input data. To get the final output, it applies an 

activation function to inputs. The second name of the model is Threshold Logic Unit (TLU).  

Perceptron is a binary classifier, meaning it classifies data into two categories and it is a 

supervised learning algorithm.  

 

Advantages of the Perceptron: 

• Logical Operators can be implemented such as AND, OR, and NAND; 

 

Disadvantages of the Perceptron: 

• Perceptron can only work with linearly separable problems, for non-linearly separable 

problems it does not work. 

 

Feed Forward Neural Network  

A Feed Forward Neural Network is a type of ANN where the information flows only forward 

through the input layer to output without any feedback loops.  

It can and cannot have hidden layers but input and output layers are always present. All the 

layers relate to the next one. The input layer receives the data, and the output produces the 

prediction, hidden layers process and transform data by applying a nonlinear function to the 

sum of its inputs to produce an output. The number of layers assumes it is a single-layered or 

multi-layered Feed Forward Neural Network. Accordingly defines the complexity of the 

model. Nonlinear function is good for allowing nonlinear relationships in the data.  

The weights of the connections in the model are set to minimize the error between the 

predicted and actual outcomes.  

 

Feed Forward Neural Networks are widely used for Image Recognition, Financial 

Forecasting, Natural Language Processing, Computer Vision, etc.  
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Advantages: 

• It has a wide range of applications, so it is flexible. 

• Easy to create and maintain. 

• Less complex. 

• It is fast due to a one-way propagation. 

• It is responsive to noisy data. 

 

Disadvantages: 

• Because of the lack of backpropagation and the absence of dense layers, it cannot be 

used for Deep Learning. 

 

 

Figure 9: Feed Forward Network (Learn Open CV) 
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Multilayer Perceptron (MLP) 

It is a more complex neural network that works by processing input data through multiple 

layers of artificial neurons.  

Each node in one layer is connected to all of the neurons in the next layer, making it a fully 

connected network.  

 

The Multilayer Perceptron model has multiple hidden layers, with at least three or more layers 

in total, without counting input and output layers. It applies both forward propagation and 

backward propagation, so-called bi-directional propagation. 

 

The application of backpropagation involves adjustment of the weights between neurons 

respecting the error between predicted and actual outputs. The activation function is applied 

alongside softmax as the output layer activation function. The goal is to obtain the weights 

that minimize the error, therefore making the prediction more accurate.  

 

Advantages: 

• Because of the presence of backpropagation and fully connected layers, it can be used 

for Deep Learning. 

 

Disadvantages: 

• Hard to design and maintain. 

• Can be slow depending on the number of layers. 

 

Convolutional Neural Network  

 

A Convolutional Neural Network (CNN) is a branch of ANN, that shows the best result for 

image recognition and classification problems. The idea of a CNN is borrowed from the 

cortex in the human brain and is created to automate the extraction of the most relevant 

features in images.  
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The distinguishable element of a CNN is the presence of convolutional layers, as the name 

says. Convolutional layers apply filters to the input image to receive important features such 

as patterns, edges, shapes, etc. 

As an output of the filter application, we receive a feature map which is then passed to the 

non-linear activation function to observe non-linearity. After convolutional layers come 

pooling layers, which then improve efficiency by reducing the number of parameters. 

The final layers are fully connected and take the result of the previous layers to produce the 

output.  

The training is done using backpropagation to improve accuracy.  

 

Advantages: 

Hierarchical Feature Extraction: with each layer, CNN dives deeper and learns more complex 

features. 

Reduced Parameters: due to shared weights across the network, fewer parameters are needed, 

therefore it is less prone to overfit and is efficient. 

 

Disadvantages: 

Vast amounts of data are a necessity: to achieve a good performance, CNN must be trained on 

large amounts of data. 

Need for resources: since CNNs tend to be computationally intensive, especially with large 

datasets and complex architectures, there is a need of having enough resources to store them.  

 

 

Figure 10: CNN steps (My Great Learning) 
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Radial Basis Function Network 

A Radial Basis Function Network (RBFN) is an ANN that is mostly used for classification 

tasks and function approximation. RNFN consists of three layers: input, hidden, and output.  

A hidden layer of RBFN has a set of radial basis functions that transform the data into a 

higher-dimensional feature space. Functions are centered on the prototype vector, whose 

purpose is to determine the size and shape of a function. Each function produces an output 

which is then weighted by a scalar value found during the training (backpropagation).  

The output layer's weights are set during the training of a supervised learning algorithm. The 

final output of the network is a linear combination of weighted radial basis functions.  

 

Advantages: 

• Interpretability: RBFNs output are easy to interpret. 

• Generalization: RBFNs have a good performance on unseen data due to their great 

generalization properties. 

• Fast to develop: simple structure and a small number of properties make it quick to 

train. 

 

Disadvantages: 

• Vulnerability: RBFNs tend to overfit in case of a higher number of functions or if data 

is incomplete or noisy. 

• Accuracy depends on the prototype selection: prototype selection must be done 

carefully because it drastically affects the accuracy, especially in high-dimensional 

feature space.  
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Recurrent Neural Network 

 A Recurrent Neural Network is a branch of ANNs that works with sequential data. RNNs can 

process sequences like time series and NLP due to their ability to process data not only once, 

unlike other kinds of NN. 

A special feature of RNNs is the feedback loop, so when the output of the layer is stored, it is 

fed back again, to help predict the next item in the sequence, such as the next word. In case of 

a false prediction, small changes are applied to gradually move it towards the correct 

prediction.  

 

Advantages: 

• Once used with convolutional layers, the effectiveness increases. 

• Sequential data can be dependent on historical data, making it an advantage. 

 

Disadvantages: 

• Gradient Vanishing problem (Gradient Vanishing problem is a phenomenon that 

occurs when gradients of an error become too small as they are backpropagated, so the 

weights are not updated or there is a small change to them. It causes slow or no 

improvement at all.) 

• RNNs are hard to train. 

 

Figure 11: RNN structure (Simplilearn) 
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Sequence to sequence model 

 

A Sequence-to-sequence model is made up of two RNNs. The first one is an encoder and the 

second is a decoder. An encoder works with an input, it processes it, and the decoder works 

with an output. Both work simultaneously.  

The model is particularly good when the input data length equals the output data length. 

The sequence to sequence model is mostly applied in chatbots, question-answering machines, 

and machine translation. 

 

 

Figure 12: Sequence to Sequence model (Medium) 

 

 

Modular Neural Network 

A Modular Neural Network is a combination of different networks that function 

independently from each other, and each of them performs its tasks.   

A complex problem is split into smaller tasks for each module to resolve, so as a result the 

whole process is done faster.  
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Advantages: 

• Fast 

• Efficient 

• Independent 

 

Disadvantages: 

• Moving target problem, which occurs when the target function is trying to learn 

changes over time. In this case "dynamic modularization" must be applied, which 

allows the network to adapt to changes by adding or removing subnetworks.  

 

 

Figure 13: Modular Neural Network (ResearGate) 
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K-NN algorithm 

 K-Nearest Neighbor (KNN) algorithm is one of the simplest in supervised learning and is 

mostly used for classification tasks.  

 

K-NN assumes based on available categories and labels it as one it has the most similarity to. 

The algorithm is non-parametric, so the prediction is done using the distance between data 

points.  

The "K" in K-NN is the number of nearest neighbors which are taken into consideration when 

making a prediction for a new point.  

The metric for distance in K-NN could vary depending on the problem and data given. 

 

Some of the popular distance metrics include: 

• Euclidean Distance: it is a measure of the distance between two points using a 

straight line. 

• Manhattan Distance: it is a measure of distance between two points using a grid-like 

structure. 

• Cosine Similarity: it is a measure of similarity between two non-zero vectors and is 

defined as a cosine angle between them. 

 

Advantages: 

• Simple to implement. 

• Effectiveness increases with the amount of data. 

 

Disadvantages: 

• K-value has to be calculated at all times, which can be problematic. 

• It is expensive.  

(K-Nearest Neighbor(KNN) Algorithm for Machine Learning - Javatpoint [no date]) 
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Naïve Bayes Classifier 

Naïve Bayes is a supervised learning algorithm, based on the Bayes theorem, mostly used for 

solving text classification problems.  

 

It is a probabilistic algorithm, which means it makes predictions based on probability. Bayes 

theorem used, provides a way to calculate the probability of a hypothesis given evidence. 

The Naïve Bayes classifier makes a "naive" assumption of independence between every pair 

of features. First, the probabilities of each class are calculated, based on the frequencies of the 

classes in the data. Next, for each feature, there is, probability of this feature given each class 

is calculated. At last, these probabilities are combined using the Bayes theorem to calculate 

the posterior probability of each class, considering given data. The class with the highest 

probability is then chosen as a prediction. 

  

The classifier is used in spam filtration, article classification, and Sentimental analysis. 

 

Types of Naïve Bayes model: 

• Gaussian: this model that features have a normal distribution; 

• Multinomial: this type of model works when the data has a multinomial distribution; 

• Bernoulli: The Bernoulli classifier is similar to the Multinomial classifier, except the 

predictor variables are independent and Boolean. 

(Naive Bayes Classifier in Machine Learning - Javatpoint [no date]; 1.9. Naive Bayes — 

scikit-learn 1.2.2 documentation [no date]) 
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2.4.4 Hyperparameter tuning 

What are hyperparameters? 

Hyperparameters are parameters that are set before the training begins by a user. They cannot 

be learned from data during the training like model parameters.  

They directly affect the learning process and have a significant impact on the performance of 

the model. Hyperparameters are the number of hidden layers, learning rate, regularization, 

depth and width, or the number of clusters.  

 

What is hyperparameter tuning? 

Finding the best set of hyperparameters that maximize the performance of a model is called 

hyperparameter tuning.  

 

Some of the popular hyperparameter tuning methods include: 

• Grid Search: This method has a predefined grid of hyperparameters, and it is 

searching over until it finds the best combination of them. 

• Random Search: Unlike grid search, there is no predefined grid, but a range of 

hyperparameters. The search is done randomly within the given range until the best 

combination is found. 

• Bayesian Optimization: This is a probabilistic method, which uses an objective 

function model to iteratively search for the optimal combination of hyperparameters. 

This method compared to the previous ones requires fewer evaluations and can work 

with non-convex and non-smooth search spaces but is more expensive. 

• Evolutionary Algorithms: These are optimization methods that take genetics and 

natural selection as inspiration. They create a population of 

solutions(hyperparameters), make them evolve by selection, reproduction, and 

mutation, then select the best of them for the next generation. The process can be 

computationally expensive. 

(Hyperparameter tuning - GeeksforGeeks [no date]) 

(Hyperparameter tuning for machine learning models. [no date]) 
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2.4.5 Model Training 

Once data is prepared and the right model is chosen comes the training phase. During the 

training, patterns, and relationships in data are learned. 

 

Steps of the training process: 

1. Model Initialization: parameters are initialized randomly or with pre-trained weights. 

2. Forward Pass: data is fed to the model and prediction is made. 

3. Loss Computation: After comparing the actual output with desired, the loss or error 

metric is computed. This metric describes how well the model performed. 

4. Backward Pass: using backpropagation, gradients of the loss are computed with 

respect to the model's parameters. 

5. Update of the parameters: to minimize the loss, parameters are updated using an 

optimization algorithm. 

6. Repeat: steps 2 to 5 are repeated, until the desired level of performance or stopping 

criteria is met. 

 

The output is a trained model that is ready to make predictions on unseen data. 

(Support Vector Machine (SVM) Algorithm - Javatpoint [no date]; What is Random Forest? | 

IBM [no date])  

2.4.6 Model Evaluation 

There are multiple ways of evaluating an ML model. For this, testing and validation datasets 

are needed, so it is good not to train the model on the whole dataset, but to split it into 

partitions of 60%, 20%, and 20%, for training, testing, and validation accordingly.  

 

When performing a prediction, the following types of outcomes could occur: 

• True positives (TP): occurs when the predicted positive and it is positive. 

• False positives (FP): occurs when predicted positive but it is negative. 

• True negatives (TN): occurs when predicted negative and it is negative. 

• False negatives (FN): occurs when predicted negative but it is positive. 
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Metrics to evaluate a model include: 

Classification: 

• Accuracy: This metric measures how many times the model predicts the class 

correctly and is calculated by dividing the number of correct predictions by the total 

number of them. 

• Precision: This metric is a proportion of TP and total predicted positive instances. 

• Recall: It is a proportion of TP and all truly positive instances. 

• F1-score: This score is the mean of both recall and precision. 

 

 

 

Regression: 

• Mean Absolute Error (MAE): It is an average absolute difference between the actual 

and predicted values. 

• Mean Squared Error (MSE): It is an average squared difference between actual and 

predicted values. 

• Root Mean Squared Error (RMSE): It is a square root value of MSE. 

• R-squared: This metric describes how well the model fits the data. The measure lies in 

the range of 0 and 1. 

 

Clustering: 

 

• Davies-Bouldin Index: It is a measure that describes the average similarity between 

the most similar cluster and every other cluster. 

• Silhouette Score: This score is a measure of the similarity of an instance to its cluster 

compared to others. 

• Calinski-Harabasz Index: It is a ratio of between-cluster and within-cluster 

dispersions. 
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Recommender Systems: 

• Precision: It is a proportion of recommended objects that are relevant. 

• Recall: It is a proportion of relevant objects that were recommended. 

(Evaluating a machine learning model. [no date]; Various ways to evaluate a machine 

learning model’s performance | by Kartik Nighania | Towards Data Science [no date]) 
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2.5 Used technologies 

2.5.1 Python 

Python is a versatile, high-level, open-source programming language that was created by 

Guido van Rossum and first released in 1991. The language is designed with readability and 

simplicity in mind, emphasizing clean and easily understandable code. Python's syntax allows 

developers to express complex concepts with fewer lines of code than other languages like 

C++ or Java, making it a popular choice for both beginners and experienced programmers 

alike. 

 

Python is an interpreted language, which means that the source code is executed directly 

rather than being compiled into machine code beforehand. This enables rapid prototyping and 

debugging, as changes can be made and tested immediately without the need for lengthy 

compilation processes. 

 

Python is known for its extensive standard library, which provides a wide range of 

functionalities out-of-the-box. This "batteries-included" philosophy allows developers to 

quickly build applications without having to search for and install external libraries. 

Furthermore, Python boasts a vibrant and active community that continuously contributes to 

the development of third-party packages, which can be easily installed and managed using 

package managers like pip. 

 

Python is a general-purpose programming language, suitable for various applications, such as: 

• Web development: Python's popular web frameworks, like Django and Flask, enable 

developers to create powerful and scalable web applications with ease. 

• Data analysis and visualization: Python's rich ecosystem of data manipulation and 

visualization libraries, including Pandas, NumPy, and Matplotlib, makes it a great 

choice for processing, analyzing, and visualizing large datasets. 
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• Artificial intelligence: Python is the go-to language for AI projects, thanks to its vast 

array of libraries and frameworks like TensorFlow, PyTorch, and scikit-learn, and in 

our case xGBoost. 

• Automation and scripting: Python's simplicity and cross-platform compatibility 

make it a popular choice for automating tasks, creating scripts, and developing tools 

for various platforms. 

• Game development: Python's Pygame library provides a simple yet powerful 

foundation for creating 2D games and multimedia applications. 

 

2.5.2 XGBoost 

XGBoost is an open-source library, currently available in, C++, Java, Python, R, Julia, Perl, 

and Scala, for gradient boosting. 

The name "XGBoost" stands for extreme gradient boosting, which refers to its optimization 

objective and its use of gradient boosting techniques. 

It is widely used for various machine learning applications, like classification, regression, and 

ranking problems. 

It has been developed by Tianqi Chen as a research project, and from there surged in 

popularity because of its high efficiency, and accuracy modeling complex data. Eventually 

packages with the algorithm started becoming available in more and more programming 

languages, making it easily, and widely available. 

Because of its ability to handle missing values and outliers, XGBoost became widely adopted 

in various industries, including finance, e-commerce, healthcare, and of course football data 

analysis, as it is a robust approach for real-world data problems. 

xGBoost uses a data structure called DMatrix to store and work with the training data. 

The Dmatrix data structure is highly optimized, memory efficient and designed for the 

xGBoost library. It can store both the features, and the objective variable in an efficient way, 

as well as being memory efficient with sparse data, meaning it can represent zero or missing 

values without taking up much memory, which can be common in real world data sets.  
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2.5.3 Pandas 

Pandas is an open-source Python library designed for data manipulation and analysis. 

Developed by Wes McKinney, Pandas has quickly become a vital component of the Python 

data science ecosystem. Its primary purpose is to provide efficient, flexible, and user-friendly 

data structures for managing and analyzing structured and semi-structured data, such as 

spreadsheets, SQL tables, and time series data. 

 

The name "Pandas" originates from the term "panel data," which refers to multi-dimensional 

structured datasets commonly utilized in statistics and econometrics. The key data structures 

in Pandas are the DataFrame and the Series, which offer an intuitive and convenient way to 

work with data. 

 

Pandas is widely used for various data-related applications, including: 

• Data cleaning and preprocessing: Pandas offers a broad range of tools for filtering, 

sorting, renaming, reshaping, and aggregating data, as well as handling missing or null 

values. This allows users to efficiently clean and prepare their datasets for further 

analysis. 

• Data analysis and visualization: With its seamless integration with other Python data 

analysis libraries like NumPy, Matplotlib, and Seaborn, Pandas enables users to 

perform in-depth data analysis and create visual representations of their findings. 

• Time series manipulation: Pandas provides extensive support for working with time 

series data, making it an excellent choice for handling datasets with time-dependent 

elements, such as financial or sensor data. 

• Data import and export: Pandas can read and write data in a variety of file formats, 

including CSV, Excel, SQL databases, JSON, and more, allowing for smooth 

integration with existing data workflows. 

 

Like XGBoost, Pandas has garnered widespread adoption in various industries, such as 

finance, e-commerce, healthcare, and sports data analysis. Its robust approach to handling 
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real-world data challenges has made it a popular choice for professionals and researchers 

alike. 

 

2.5.4 Matplotlib 

The matplotlib library, a widely recognized tool within the Python programming ecosystem, 

serves as a powerful resource for generating a vast array of visualizations. Its primary goal is 

to facilitate the creation of static, animated, and interactive visual representations of data, 

making it an invaluable asset for data analysts, scientists, and researchers alike. 

 

Boasting a comprehensive range of capabilities, matplotlib allows users to craft a multitude of 

charts and graphs, including line plots, scatter plots, bar plots, and histograms. This versatility 

ensures that data can be represented in the most appropriate and insightful manner, depending 

on the specific context and objectives. 

 

One of the key strengths of matplotlib lies in its high level of customizability. Users can 

tweak various aspects of their visualizations, such as colors, styles, labels, and axes. This 

adaptability empowers individuals to create visually appealing and informative graphics that 

cater to their specific needs and preferences. 

 

In addition, matplotlib's compatibility with other Python libraries, such as NumPy and pandas, 

further enhances its functionality. By seamlessly integrating with these popular tools, 

matplotlib enables users to effortlessly generate visualizations from data stored in various 

formats, streamlining the data analysis process. 

 

In summary, the matplotlib library stands as an indispensable resource within the Python 

landscape, offering users a versatile and customizable solution for producing a wide range of 

data visualizations. Its seamless integration with other popular Python libraries and its 

adaptability make it a go-to choice for professionals seeking to convey their data in a visually 

engaging and informative manner. 
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3 Practical Part 

The practical part of this thesis will focus on the development of a ML model that will 

estimate the chance of scoring a goal from a given situation in a football match. This process 

will involve an analysis of the best inputs for the given task, testing of the best parameters for 

the model training, and finally presenting a visual representation of the results.  

The model will be trained using the xGBoost library in Python, and the visualization will be 

prepared using matplotlib. 

 

The program will be able to: 

• Load the base shot data from a txt file as a Pandas dataframe. 

• Split the loaded data to a training and testing data set. 

• Transform the data sets to a DMatrix needed for xGBoost. 

• Train models with different parameters and input columns. 

• Test the accuracy for each model. 

• Save the test results for the models into a txt file. 

• Determine the best parameters/model from the test results. 

• Use the best model to visualize the results as a shot map using matplotlib. 
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3.1 Definition of intents 

This program is meant to find the ideal parameters for training a ML model using xGBoost 

for determining the chance of scoring a goal from a given situation. 

This has been done many times before by different companies and enthusiasts alike, however 

it is my intention to test maybe never before used features, and explore their effects on the 

final model evaluation. 

This means I will train tens of thousands of models using different combinations of 

parameters and different situational information inputs(features), to determine the most 

valuable combination of features and parameters. 

The best model will be determined by scoring the model with two statistical tests.  

• Mean squared error 

• R2 

The chosen model will have high scores in both statistical tests. 

 

After choosing the best model, I will select a sample of shots, and create a so called shot map, 

to visualize some of the results of the model. 

 

3.2 Workspace configuration 

The program will be run using Python. As for the environment we will create a virtual 

environment using Python 3.11. 

 

For the packages I need to install: 

• xGBoost 

• pandas 

• scikit-learn 

• matplotlib 

into the virtual environment. 

 

As for the IDE I’m using PyCharm. 
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3.3 Training data 

The basis of the training data is Wyscouts event data. With a lot of transformations, I have 

prepared features that I believe could be used by the model to enhance its ability to predict the 

chance of scoring a goal from a given situation. I will explain the individual inputs, and later 

test if the inputs, and different combinations of these inputs helped the accuracy of the 

predictions of the model. 

 

3.3.1 The features 

The features presented here are not the features used for the final model. These are the 

features that will be tested. 

 

• Px + Py: Are the coordinate of the player on the pitch when he shoots his shot. This is 

expected to be one of the strongest indicators, as being close to the goal will have a 

major influence on the overall probability to score. 

• Distance from goal + Angle to goal: A simpler representation of the position of the 

shooting player on the pitch, relative to the goal. 

• Previous event type: A variety of event types, that indicate the type of event that 

preceded the shot. The types of events preceding the shot could indicate how well the 

defense is prepared for the following attack. This information is available for up to 3 

preceding events. 

• Shot body part type: Shot body part type tells the model whether the player is using 

his main foot, head, or his weaker foot for the shot. 

• Time since last event: Seconds since last event before the shot. This can indicate how 

much time the shooter had with the ball before shooting. 

• Shot after Free kick: Indicates if the shot was taken during a free kick scenario. Set 

pieces are very specific scenarios, therefore it could be useful to provide this 

information. 

• Shot after Corner: Indicates if the shot was taken during a corner scenario. Set pieces 

are very specific scenarios, therefore it could be useful to provide this information. 
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• Shot after Throw-in: Indicates if the shot was taken during a Throw-in scenario. Set 

pieces are very specific scenarios, therefore it could be useful to provide this 

information. 

• Primary position: A simplified position of the player, where the side which he is 

playing on is not considered. The position of the player can indicate his scoring 

abilities, and possibly indicate where other players might be relative to him. 

• Primary position Detailed: Similar to Primary position, however with more detail. 

Here we indicate if the player is playing on the left, right, or middle as well as the type 

of position he is playing. 

• Meters per sec.: Meters per second is an indicator which can tell us the pace of the 

game. Faster forward pace might indicate that the defense is less organized, and might 

lead to better goal scoring chances. This information is available for the past 3 events. 

• Preceding event by same player: This indicates how many preceding actions our 

player had the ball in his control. If he has the ball for many events in a row, this 

might indicate that the defense had more time to prepare for the attack from him, or 

vice versa. In combination with other provided indicators, this could bring further 

context for the current situation for the model. This information is available for the 

preceding 3 events before the shot. 

• Preceding event by same team: This indicates when the attacking team was in 

possession of the ball. Giving further context for what is happening before the shot. 

This information is available for the preceding 3 events before the shot. 

 

Objective: 

• Goal: Information if the shot was a goal or not. This is what the model is trying to 

predict.  
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3.4 Code implementation 

Description of individual functions needed for the model training, testing, visualization and 

statistical outputs. 

3.4.1 Loading the training data 

I created a function called “get_shots”.  

It uses pandas to read and transform the data into a pandas dataframe from a csv file. 

The csv file contains the training data for the model. It includes over 180 000 shots and 

includes all the information described in “The inputs” for every one of them. This amount of 

data should be a good sample size for our training purposes. 

 

 

Figure 14: GetShots (Own) 

 

3.4.2 Final data transformation 

Upon receiving the training data from the "get_shots" function, it is presented to us in the 

form of a pandas dataframe, encompassing all the available columns from the comprehensive 

training data set. Our task at hand is to cherry-pick only those columns which are of relevance 

to the current round of model training. This is essential since we intend to experiment with 

various input combinations. Consequently, the function will be designed to accept an array of 

column names as input, proceeding to select only these specific columns as part of the final 

format preparation process. Following this, the selected columns will be saved as a separate 
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data frame. In addition, it is imperative that we include the target variable, denoted as "goal", 

since the model's ultimate objective is to generate accurate predictions for this variable. This 

target variable, too, will be preserved in a distinct variable as a dataframe. 

 

As a result of these operations, we find ourselves in possession of two dataframes – one 

encompassing all the feature variables, while the other focuses exclusively on the target 

variable. Nevertheless, for the sake of evaluating the performance of our trained model, it is 

crucial that we further segregate the data into distinct train and test sets. To accomplish this, I 

employ the "train_test_split" function, courtesy of the sklearn library. This process entails 

allocating 30% of the data to the test set, while the remaining 70% is designated for the actual 

training of the model. This split ensures a comprehensive and efficient training process, while 

still reserving an adequate portion of the data for testing purposes. 

 

At this point, we have four data frames: 

• x_train 

• x_test 

• y_train 

• y_test 

The variable names starting with x are the features, and the y variables are the target 

variables. They are still pandas dataframes. 

 

However, that is not the correct format for the xGboost model training algorithm.  

xGBooost expects us to pass a DMatrix object. To solve this, we use the xgb.DMatrix 

function, which takes both the features and the target variable dataframes, and creates a 

DMatrix, which can now be used for the training of our model. 
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Here is the code: 

 

 

Figure 15: PrepareTrainingData (Own) 

 

3.4.3 Model training algorithm 

For the model training purposes, I have created a class called “ModelTraining”. 
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Figure 16: ModelTraining class (Own) 

 

I chose to use class variables to store some relevant information and parameters for the class. 

• num_round: Is used as a parameter for the model training. It can be specified by 

hand, or if we use a function that will try different parameter combinations, this 

parameter will automatically be changed by the program. 

• run_for_input_cols_combos: Is set manually to determine if the model training 

should use the different column(input) combinations. 

• params: Stores a dictionary with some default settings for the model parameters. 

These are either set manually, or are changed by the program, depending on the 

training function used.. 

• The remaining variables store information about the columns that have already been 

chosen by the model, or should be tested when running the program that explores 

different parameters and inputs. 

 

The most basic function in the class is the “train_model_for_params” function. 

 

 

Figure 17:TrainModelForParams (Own) 

 

This function takes the training parameters that are manually set in the class variables, and the 

columns which should be used as features for the model training as the inputs, and then calls 

the functions for loading and transforming the data, and runs the function “train_xg_model”. 
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Figure 18: TrainxGModel (Own) 

 

In this function, we prepare a name for the model from the given parameters, and proceed to 

train the model using “xgb.train”, providing the training parameters and data. The train 

function will train our model, which we can then save using “.save_model” and providing a 

path.  

At the end I am calling the function “get_and_save_test_results”, while passing the model, 

data and the used parameters. 

 

 

Figure 19: GetAndSaveTestResults (Own) 

  

 

This function will use the model, evaluate the performance, and save the results of the models 

performance, along with the used parameters and features. 

 

Using “model.predict” with our testing data set, will evaluate the testing data set, and return 

the predictions for each shot.  

I then transform the output to a pandas dataframe, extracting the “chance to score” 

column,and store it as “xg”. 
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Now we can evaluate the performance. For the evaluation, I chose to save three results.  

• Mean square error 

• Mean squared absolute error 

• and R2 

I get these metrics by passing them into their corresponding functions with the prediction, and 

the actual correct results. Meaning the testing set target variable. 

 

At the end of this function, another function is called, named “save_test_results” 

 

 

Figure 20: SaveTestResults (Own) 

 

Here we are simply appending to a text file, and saving the parameters, used features, as well 

as the test results, and the program stops. 

 

This describes the whole process of calling the function “train_model_for_params”. 

However this is only meant to train a specific model, when we know what parameters to use. 

To training large amounts of different models, I have created another function, that will go 

through all the possible combinations, and save the results, just like in the previous example.  

 

The function is called “train_models”. 

Just like before, we need to load our training data. 

By default, we will call a function called “combs” which takes all the columns that we are 

meant to test and create every possible combination of features from them.  

Some of these combinations might not make sense, so depending on the columns that I'm 

trying to test, I will filter them using the function “clean_combos”, where the array of features 

is checked, and some are filtered out. For example, if we look at the features 

“primary_position” and “primary_position_detailed”, we will not expect there to be a benefit 
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having them both as features at the same time. So, to save some time, I filter out every 

combination of features, where both of these features are present, and at the end, we should be 

able to determine which one should be kept for the final model. 

 

When the unwanted combinations are filtered out, we prepare the training data, and run the 

“run_for_num_round_funtion”. 

 

Figure 21: TrainModels (Own) 

 

The “run_for_num_round” function is another step in the whole process of trying all different 

combinations.  

We loop through multiple num_rounds, adjusting the class variable that is used as the 

parameter for model training, and go to the next parameter, max depth. 

 

 

Figure 22: RunForNumRound (Own) 

 

Same as for num_round, we loop through different settings while changing the parameters, 

and run the next parameter manipulator each time. This time “run_for_eta”. 
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Figure 23: RunForMaxDepth (Own) 

 

The final loop inside of all the loops, “run_for_eta”, is the one that is calling 

“train_xg_model”. This function has been explained above, so it will train the model with the 

current parameters, run the tests, and store the results. 

 

 

Figure 24: RunForEta (Own) 

 

3.4.4 Find best results 

After running the model training algorithm, and going through all the possible input 

combinations, the file “test_results.txt” will be filled with the records for each trained model, 

in csv format. The task of the following function will be to print out the best model based on 

two evaluation metrics.  

• Mean square error 

• R2 

This information is already stored, the program will only look for the best results, and print 

them out for us. 

To take into account both values, I decided to look for entries, where both are indicating great 

results compared to the other trained models. 

 

The first step is to get a very high quantile value for both metrics from the dataset. 
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Because I loaded the file as a pandas dataframe, I'm able to use the built in function 

“.quantile”, and pass the desired quantile over a selected column. 

After getting both quantile values, I can filter the dataframe from entries that do not satisfy 

both quantiles, and I will be left with only the models with the best results. I adjust the 

quantile value to the point of only getting a single entry, and that will be the chosen model. 

 

 

Figure 25: GetTestResults (Own) 

 

3.4.5 Model showcase 

Data preparation 

The first step of the algorithm will be to load the shots we want to showcase and transform 

them into the appropriate format. 

 

We load the csv with the shots using pandas.read_csv, giving us a pandas dataframe with all 

the shots. 
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Next step needs to be the transformation to the DMatrix data structure, so we need to choose 

only the relevant columns for the model and pass the pandas dataframe to the “DMatrix” 

function using xGBoost. 

 

 

Figure 26:LoadAndPrepareData (Own) 

 

Evaluation 

To evaluate the shots, we simply create a xGBoost booster instance, load the model, and use 

the “.predict” function while passing the DMatrix with the shots. 

The result will be a Numpy array, where the model's evaluations are stored. 

 

Figure 27: EvaluateShots (Own) 

 

Shots preparation 

With the model’s evaluation, it is time to connect them to the shots to which they belong, and 

create a final data structure that we will use for the visualization and other data showcasing. 

 

The predictions numpy array stores both the chance to score, and the chance not to score. To 

get the chance to score, we transform the numpy array to a pandas dataframe, and name the 

columns col1 and the second one “xg”, as that is where the xG value is stored.  
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We can then use the “.assign” function to connect the shot pandas dataframe with the newly 

created predictions pandas dataframe, this will leave us with a dataframe with the xG value as 

well as the other shot details. 

 

Finally, I transform the data frame to a regular dictionary. 

 

 

Figure 28: PrepareShots (Own) 

 

Shot map 

Finally, we draw the shot map.  

We start with creating a new matplotlib figure and create a subplot. 

Then we call the draw_pitch function. 

 

 

Figure 29: DrawShotMap (Own) 
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In the draw_pitch function, I select the color of the lines, and set the width and length of the 

pitch. 

The length of the pitch can vary from pitch to pitch, but I chose these parameters as a middle 

ground. 

 

First, I create the outline of the pitch. 

Since we are focusing on shots, I will draw only the opposite half of the pitch. 

 

 

Figure 30: DrawPitch (Own) 

 

After that I draw the Goal post, small and regular Box onto the field. 

 

Figure 31: DrawGoalpostAndBoxes (Own) 

 

Finally, we add the Spots and arc 
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and our pitch is done. 

 

 

Figure 32: DrawCircles (Own) 

 

Here is the result of our drawing: 

 

Figure 33: Pitch (Own) 
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Draw shots 

To draw the shots, we choose a colormap from the matplotlib library, that will give us a color 

scale, which we can then use to assign different colors to different xG values. 

 

We then loop though all the shots, and draw a circle using matplotlibs Circle, while providing 

the coordinates and the shots assigned color. 

 

 

Figure 34: DrawShots (Own) 
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3.5 Training process 

With the model training algorithm complete, as well to identify a good set of parameters and 

features, it is time to run the program.  

 

The first obvious issue was the overwhelming number of possible combinations of the 

different features and parameters. So, my first focus was to gradually eliminate some columns 

and combinations, rather than running the program for every possible combination. 

 

To reduce the number of models I needed to train, I would adjust the for loops for the 

parameters like eta, num_rounds, and max_depth, to jump by more than one at a time. This 

would dramatically reduce the number of models trained, while still allowing me to get a 

good idea for which features matter the most. 

 

3.5.1 First iteration 

In the first test, where I tested only 7 features, I was able to eliminate the following features: 

• Shot after Throw-in 

• Distance from goal + Angle to goal 

 

The “Shot after Throw-in” feature seems to have no benefit when it comes to goal scoring 

probability. It was not present in the features list for any of the best performing models from 

the first round of training. It possibly even had some negative impact. 

This is not very surprising, as this set piece does not change much when it comes to how 

players move on the field, when compared to corners or Free-kicks, which are very specific 

situations. 

 

Another eliminated feature was the combination of Distance from goal, and Angle to goal. 

I was trying to determine which is better for the model. If the coordinates (px, py), or the 

combination of Distance and Angle to the goal. The coordinates ended up being the better 

indicator for the model. 
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This left me with the following features: 

• Px + Py 

• Previous event type 

• Time since last event 

• Shot after Free kick 

• Shot after Corner 

 

These columns would from this point on be always present in the future training cycles. Thus, 

reducing the number of possible combinations for all my future runs. 

 

3.5.2 Second iteration 

In the second test, I would try to give the model more information about the events leading up 

to the shot.  

 

In my data set, I have information going back up to 3 events into the past, for the following 

features: 

• Time since last event: 

• Previous event type: 

• Meters per second: 

• Previous event same player: 

• Previous event same team: 

 

To again address the issue of too many combinations, for this iteration I will only use the 

features for 2 events into the past. 

If some of them prove themselves to be useful, I will add their counterparts of the proven 

features for the third, fourth and fifth events back, in the next iterations.  
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I will also include: 

• Primary position 

• Primary position detailed 

• Shot body part type 

 

as features to be tested. 

 

After running the second iteration, the results between “Primary position”, and “Primary 

position detailed” have been inconclusive, but having at least one of them seems to be 

valuable information for the model. 

There are multiple models which have done well with both Primary position detailed, and 

Primary position, so I will choose Primary position Detailed moving forward, as it had just 

little more presence in the top results, and stop testing Primary position altogether. 

 

As for the other features: 

• Time since last event (1-2 events back) 

o Time since last event seems to be a decent indicator for the indicator, it was 

present for four of the top 5 models trained. 

• Previous event type (2 events back) 

o Has been present in all the top performing models. 

• Meters per second (1-2 events back) 

o Has been present in all the top performing models. 

• Previous event same player (1-2 events back) 

o This feature for one event back was present in all the top 5 models. For two 

events back, it was only present for two of the five. 

• Previous event same team (1-2 events back) 

o This feature has been successful with the information for one event back, but 2 

events back seem to not be important for the models performance, It only 

appeared in one of the top 5 models. 
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From this we can see that all the information seems to have some relevance for the model, at 

least in specific combinations.  

 

The features that were present for at least four of the top five models will be added to the 

models features in the future iterations. This would include: 

• Previous event type (2 events back) 

• Meters per second (1-2 events back) 

• Previous event same player (1 event back) 

• Previous event same team (1 events back) 

• Time since last event (1 event back) 

 

As for the eliminations, “Previous event same team” seems to not be very relevant to the 

model even just two events into the past, so I will remove it. 

As the previous event same player feature did not fare much better, I will keep the two events 

back for further testing, but I will not be testing 3 events back going forward. 

 

3.5.3 Third iteration 

In the final iteration we are left to test the benefits of the following features: 

• Time since last event (3 events back) 

• Previous event type (3 events back) 

• Meters per second (3 events back) 

• Previous event same player (3 events back) 

 

The results of the testing show, that adding the combination of features: Meters per second, 

and Time since last event, have trained the best performing model, based on the Mean square 

and R2 values. 

 

Therefore, I will use them as the last two features to add to the model. 

This means I have found the features I want to use for the final model. 
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Now, since I skipped over some possible parameter combinations, I will run the training one 

more time, with the selected features, but for every possible parameter combination. 

 

And the best training parameters were the following: 

• Eta: 0.4 

• Num_rounds: 29 

• Max_depth: 4 

 

 

 



 

 

 

 

 82 

4 Results 

4.1 Model performance 

I will be comparing the performance of my model, to the model that Wyscout uses in their 

data. 

 

The data set used for the comparison, is not part of the training set. 

The training has been conducted on shots from three European leagues, 

Bundesliga(Germany), Premier league(England), and Ligue 1 (France). 

 

The data set used for comparing the model’s evaluation to Wyscouts evaluation, will be shots 

from the last four seasons (2019-2023) of the Spanish “La Liga” league. 

 

Here are the results. 

Wyscout: 

• Mean Squared error:  0.08150984163618753 

• R2:  0.1262127932934366 

• Mean Absolute error:  0.16464572738752645 

 

Trained Model: 

• mean_sq:  0.08002742794309388 

• r2:  0.1421042990805953 

• mean_abs:  0.16468648589966053 
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Figure 35: Model performance comparison (Own) 

Mean squared error: Smaller is better 

R2: Bigger is better. 

Mean absolute error: Smaller is better. 

 

When looking at the numbers and the graph, we can see that our model has generally 

performed better in all the evaluation metrics. 

 

When it comes to Mean squared error, the slightly lower value in my model suggests a 

slightly better accuracy.  

 

The R2 values indicate, that the trained model explains more of the variance of the data, 

making it a better fit. 

 

The mean Absolute error however, indicates that the magnitude of errors is very similar for 

both models.  
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Another way of evaluating the model’s performance, is how the total xG compares to the 

actual goals scored over a large sample of shots, as that is one of the use cases for the model, 

to see how many goals “should have” been scored. 

 

 

Figure 36: Goals vs. Expected goals (Own) 

In the figure above, we can see that my model is a lot closer the actual number of goals scored 

than the Wyscout model.  

 

4.2 Shot map 

For an example of the shot map, I have chosen to visualize the shots of Erling Haaland for the 

current, still on-going, season.  

He is an excellent finisher, so it is to be expected for him to overperform what the model will 

predict. 

 

Haaland has 77 shots(non-penalty) so far, from which he has scored 23 goals. The model 

predicted only 15,49 xG. This could indicate that the player is exceptionally good at finishing. 

Here is his shot map:  



 

 

 

 

 85 

 

 

Figure 37: Haaland Shot-map(Own) 

The scale next to the pitch shows the colors corelated to the xG value of the shots. 

The scale goes from 0.0 to 0.3 xG. This means, the red dots on the pitch are shots, that had a 

very high probability (around 30%) for scoring a goal, at least according to my model.  

 

 



 

 

 

 

 86 

5 Conclusion 

This thesis aimed to explore the potential of machine learning in football analytics. 

The literature review served to present the historical context of data analysis in football, as 

well as to describe the key machine learning concepts and methodologies employed in the 

study. The practical part of the thesis was dedicated to implementing a machine learning 

model that tries to predict the probability of a goal. 

 

The practical component of this work focused on developing and refining our machine 

learning model. We utilized widely adopted tools and libraries such as Python, XGBoost, 

Pandas, and Matplotlib to accomplish this goal. Through multiple iterations of training and 

fine-tuning and trying to find new helpful features for this specific purpose, we found a well 

performing set of parameters and features.  

Our model demonstrated a slight improvement in performance when compared to the 

Wyscout model, and there are still many more potentially helpful features to be explored for 

further enhancements of the xG model. 

 

Moreover, our study underlines the value of visualization tools, such as the shot map, for 

improving the understanding and interpretation of football analytics data. Visualization tools 

can provide crucial insights for coaches, analysts, and decision-makers in the football 

industry. 

 

In summary, this thesis has demonstrated that machine learning techniques hold promise for 

the future of football analytics by offering more accurate and insightful models for analyzing 

event data. As machine learning becomes more accessible and widely adopted, it is expected 

that its application in football analytics will continue to grow, ultimately leading to more 

informed decision-making within the sport. Future research can build upon this foundation by 

exploring alternative machine learning algorithms, incorporating additional features, like 

tracking-data, and refining the training process to further optimize performance and unlock 

the full potential of machine learning in football analytics. 
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8 Appendix

Files attached to the thesis: 

A Folder named xGModelTraining that includes - 

• events – A folder with the training data and the script for loading the shots. 

• chosen_model – A folder with the final model 

• chose_shots – A folder with a csv of the shots for the selected players shots for the shot-

map visualization 

• visualizations – A filder that hold all the scripts necessary for drawing the field and shots. 

• xg – A folder with the training scripts. 

• main.py – Script that runs the different functions. 


