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Abstract 
This dissertation is a collection of the author's peer-reviewed papers, w i th a common topic 
of computer network forensic analysis, published i n journals and conferences i n computer 
science, d ig i ta l forensics. In contrast to understanding network forensics as a discipline 
of network security monitoring, this work's merit is to a id law enforcement agency ( L E A ) 
officers in conducting network forensic investigations. The dist inct ion lies i n put t ing em­
phasis on extracting evidence from i l l ic i t activities rather than detecting network attacks 
or security incidents. 

Th is work revisits methods used for the forensic investigation of captured network traf­
fic by cr i t ical ly analyzing tools commonly used by L E A investigators. The objective is to 
identify weaknesses, design solutions, and propose new approaches. Par t icular interest is 
given to processing incomplete network communicat ion that typical ly occurs in low-quality 
interception provided by Internet Service Providers (ISPs). The proposed method involves 
omit t ing missing parts and intelligently rewinding the protocol parsers to pass the missing 
segments using information from transport and internet layers. Th is process allowed the cre­
ation of novel features for the applicat ion protocol identification, thus addi t ional ly enabling 
applicat ion protocol identification and finer-grained applicat ion identification. Subsequent 
research analyzed the performance characteristics of single-machine captured network com­
municat ion and designed, implemented, and evaluated a l inearly scalable architecture for 
distr ibuted computat ion. Last ly, the problem of overlay and tunneled communicat ion was 
tackled by thoroughly analyzing Generic Stream Encapsulat ion ( G S E ) . 

The presented research is publ ic ly available, except for the l imitat ions enforced by the 
publishing houses. W h e n applicable, methods have been implemented into the open source 
network forensic investigation and analysis tool , Netfox Detective, and verified using en­
closed datasets. A l l data sets and results are available and referenced in their respective 
publications. 
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Rozšířený abstrakt 
Tato d i se r t ačn í p r á c e je souborem v y b r a n ý c h recenzovaných p rac í autora spo jených té­

matem forenzní ana lýzy poč í t ačových sí t í . P r á c e byly pub l ikovány v p o s l e d n í m deset i le t í 
v časopisech a konferencích zaměřuj íc ích se na oblast informatiky se special izací na dig­
i tá ln í forenzní ana lýzu . Tato p r á c e se ned ívá na síťovou forenzní a n a l ý z u jako discipl ínu 
m o n i t o r o v á n í síťové bezpečnos t i , ale za j ímá se o pomoc př i fo renzním vyše t řován í kr imina l ­
isty z pol icejních složek ( L E A ) . Rozd í l spoč ívá spíše v z a m ě ř e n í se na z ískávání d ů k a z ů o 
nezákonných č innos tech než na odha lován í síťových ú t o k ů nebo b e z p e č n o s t n í c h inc iden tů . 

Následuj ící text uvád í p řeh led př i ložených č l ánků (v chronologickém p o ř a d í ) v t é t o p rác i . 
Č lánek V I I popisuje p r v n í i teraci na šeho síťového forenzního n á s t r o j e Netfox Detective. 
Je uvedena prezentace jeho architektury u r č e n é pro jedno uživate lské p r o s t ř e d í p racovn í 
stanice. Dokument popisuje výzvy a problémy, k t e r é bylo n u t n é pro ú s p ě š n ý n á v r h a im­
plementaci síťového forenzního n á s t r o j e vyřeš i t . Nejdůlež i tě j š ím p ř í n o s e m tohoto v ý z k u m u 
bylo zjištění , že kval i ta v s t u p n í c h dat je mnohdy n ízká a je t ř e b a , aby b y l tento fakt zohled­
něn j iž v p o č á t k u n á v r h u síťového forenzního sys t ému . 

Z tohoto d ů v o d u jsme se zaměř i l i na problematiku zpracován í neúp lných dat a naše 
závěry publikovali v č l ánku V I . N e ú p l n o s t zachycené síťové komunikace m ů ž e bý t z p ů s o b e n a 
někol ika vl ivy. Nejčas tě jš ími jsou zahozen í packetu z d ů v o d u p ře t ečen í vyrovnávac í p a m ě t i 
sondy, odposlech na lince, kde je ap l ikováno a syme t r i cké směrován í , vy rovnáván í zá těže 
mezi několik se rverů (load balancing). N a š í m ře šen ím je postavit heurist iky s v y u ž i t í m 
informací ze síťové a t r a n s p o r t n í vrs tvy a p rovés t aproximaci u rčen í ap l ikačn ích zpráv . 

Nav ržené heurist iky pro detekci z a č á t k u a konce ap l ikačn í z p r á v y je m o ž n é využ í t i pro 
zpřesněn í identifikace ap l ikačn ích p ro toko lů . Č l á n e k V popisuje n á š v ý z k u m z t é t o oblasti , 
kde jsme porovnali t ř i M L algoritmy využívaj ící n á š framework pro zp racován í síťové ko­
munikace spolu s extraktory v l a s t n o s t í za ložených jak na s t a n d a r d n í c h ident i f iká torech, tak 
na n á m i nově nav ržených ident i f iká torech s v y u ž i t í m výše zmíněných heuristik. Zkoumal i 
jsme v z á j e m n é závislost i v l a s tnos t í , k t e r é jsou odl išné pro j edno t l ivé ap l ikačn í protokoly, 
a navrhl i využ í t el iminaci takto kore lovaných v l a s tnos t í . V ý z k u m jsme uzavřel i n á v r h e m 
s ta t i s t i cké metody, k t e r á zakomponovala výše z m í n ě n é poznatky. 

Č lánek I V je z a m ě ř e n ý na vyše t řova te le , k t e ř í p ů s o b í v t e r é n u a získávají d ů k a z y p ř í m ý m 
p ř í s t u p e m do zabezpečených W i - F i s í t í . T í m t o z p ů s o b e m je m o ž n é odhalit p ř í m o p ř ipo­
j e n á zař ízení , interagovat s n i m i a obstarat data, k t e r á jsou deta i lně jš í nežli b ě ž n ý záchy t na 
ú rovn i poskytovatele p ř ipo jen í . C í l em u v e d e n é h o č l ánku je prozkoumat možnos t i p roveden í 
a u t o m a t i z o v a n é penetrace b e z d r á t o v é s í tě a zp ros t ř edkován í p ř í m é h o p ř í s t u p u ke komu­
nikaci (Man-in- the-Middle) i pro vyše t řova te le , k t e ř í nema j í d o s t a t e č n é technické vzdě lán í 
v I T oboru. 

Ros touc í m n o ž s t v í dat p ř e n á š e n ý c h po síti zvyšuje v ý p o č e t n í n á r o k y na v ý p o č e t n í 
p rvky analyzuj íc í zachycenou komunikaci . Vzhledem k tomu, že ve r t iká ln í škálování nen í 
ud rž i t e lný proces, m ů ž e bý t na čase zaměř i t se na z m ě n u p ř í s t u p u a prozkoumat možnos t i 
škálování do šířky, tedy p roveden í ana lýzy zachycené komunikace na více v ý p o č e t n í c h 
prvcích než jeden p r acovn í stroj vyše t řova te le . V č l ánku III jsme se zaměř i l i na n á v r h 
t akového s y s t é m u , k t e r ý respektuje dř íve z m í n ě n é způsoby zpracován í poškození komu­
nikace a zá roveň umožňu je zpracovat síťovou komunikaci na clusteru v ý p o č e t n í c h p r v k ů . 

Pos ledn í identifikovanou výzvou, na kterou se v t é t o p rác i z a m ě ř í m e , je zpracován í 
t u n e l o v a n é h o provozu. Č l á n e k II popisuje tune lovac í protokoly, se k t e r ý m i se mohou L E A 
vyše t řova te lé b ě ž n ě setkat. V y b r a l i jsme jeden z komplexně jš í p ro toko lů , Generic Stream 
Encapsulat ion ( G S E , ) na k t e r é m ukazujeme možnos t i integrace podpory zpracován í do 
na šeho síťového forenzního nás t ro j e . 



Pos ledn í př i ložený č lánek I shrnuje tuto d i se r t ačn í p rác i popisem našeho síťového foren-
zního n á s t r o j e Netfox Detective, j a k o ž t o d e m o n s t r a č n í h o p r o s t ř e d í metod a koncep tů , k t e r é 
tato p r á c e a př i ložené č l ánky popisuj í . S v y u ž i t í m tohoto n á s t r o j e ověřu jeme p ř e d s t a v e n é 
metody v praxi . 

P r e z e n t o v a n ý v ý z k u m je volně d o s t u p n ý vyjma č l ánků s o m e z e n ý m p ř í s t u p e m . Tam, kde 
to bylo m o ž n é , by ly metody i m p l e m e n t o v á n y do na šeho n á s t r o j e pro forenzní vyše t řován í 
a a n a l ý z u s í tě s o t e v ř e n ý m zd ro jovým k ó d e m a jsou p lně d o s t u p n é k o m u n i t ě . Me tody 
byly ověřeny p o m o c í př i ložených d a t o v ý c h sad. Všechny d a t o v é sady a výs ledky jsou volně 
d o s t u p n é a o d k a z o v a n é v p ř í s lušných publ ikac ích . 
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Chapter 1 

Introduction 

The presented dissertation is a collection of peer-reviewed papers wi th a common topic of 
computer network forensics. The paper's target audience are law enforcement investigators, 
specialists, and programmers of network forensic tools. These papers reflect the author's 
journey of gaining experience in computer network forensics, forensic investigation, and 
law enforcement investigators' dai ly work. Struggling to improve the current state, I was 
looking for solutions to the open questions proposed by the Law Enforcement Agencies 
( L E A ) practitioners. 

1.1 Motivat ion 

Tradi t ional Network Forensics, as the state-of-the-art Chapter 2 indicates, is focused on in­
cident detection and response (i.e., I D S / I P S system) i n the scope of network adminis t ra t ion 
intended for smal l businesses, corporations, and cr i t ica l infrastructure networks. 

This thesis aims to address the problem from the point of view of L E A investigators 
whose modus operandi differs from those of network administrators. O f course, there is 
related work focused on the L E A investigators' needs, but, as it appears, the current state 
does not meet their demands, suggested by the constant innovation supported by national 
grants such as VG20102015022, VI20172020062, VH20192021043. 

This research dates back to 2014 (and continues onward), just after Snowden's leak, 
when penetration of encryption on the public Internet services was not considered a "big 
issue." A s history proves, eight years after, we can s t i l l encounter some services that do 
not use encryption, e.g., some email transfer services, low-energy IoT communicat ion, and 
pla in D N S . Some of them may leak metadata even when the actual content is encrypted 
(like p r e - T L S 1.3 leaked service name identifiers (SNI)) . 

Network forensic tools are becoming, as is usually the fate of an open source when it is 
no longer maintained, inadequate for the task. Tha t is because, more often than not, they 
are developed as academic research and supported by a grant project. After the project 
ends and the tool has not been mass-publicized, not at the science conferences but among 
the actual end-users, the project tends to be abandoned and no longer maintained. Due to 
the rapid evolution of communicat ion, it is adrift and no longer entirely usable. Add i t i on ­
ally, these tools require expert knowledge because, i n the majority, they are single-purpose 
solutions controlled by a command-line interface or a simple graphical user interface. L E A 
officers without adequate t ra ining and deep domain knowledge w i l l l ikely not use them 
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or miss crucial evidence. A l so , there is the issue of v is ib i l i ty of such tools because L E A 
investigators tend to "do the job," not the research of methodologies and tools. 

In contrast, commercial products developed by teams of hundreds of employees wi th 
proper founding can keep up w i t h the evolution and keep the tools entirely usable and 
product ion ready. They typical ly use a user-friendly interface to process data sources and 
provide the investigator w i th an easily understandable reports. Because of that, commercial 
tools are de facto becoming standards admissible i n a court of law. These tools are intended 
to be massively used by L E A , but because they are closed source, ever-suspicious investiga­
tors are wary of using them. Therefore, there is pressure for applied academic research to 
produce open source, customizable, and reliable tools. A n addi t ional motivat ion to create 
open source network forensic tools is that L E A investigators have approaches that need to 
be kept confidential. Revealing them to a private company that supplied a commercial tool 
is either inconceivable, or the cost for customization of such tool is economically unrea­
sonable. Therefore, the open source nature allows for such approaches' easy extendabil i ty 
while maintaining the low cost of such modifications. Furthermore, these changes can be 
rebased on the tool mainstream, thus al lowing for almost effortless tool upgrades. 

Here we are, between open source single-purpose tools that are trustworthy but hard to 
use and commercial ones "to fit a l l them easily usable tools" that are not customizable and 
may not be trusted by some L E A investigators. 

This research tries to help L E A investigators combat cybercrime by providing advanced 
state-of-the-art methods for network forensic investigation packed i n a graphical applicat ion 
that validates the results and allows pract ical applications. 

In simple terms, this dissertation can be considered a cookbook on how to write your 
network forensic investigation tool that is customizable to fit various use cases, the chal­
lenges you w i l l face, and the approach you can take to conquer them. 

1.2 Problem Statement 

The connection speed to the Internet in households, smal l businesses, and v i r tua l private 
servers ( V P S ) rentable in data centers is experiencing unprecedented growth. Illegal ac­
tivit ies carried out on devices connected to the Internet pose various challenges to L E A 
investigations. 

Firs t , the amount of c r imina l activities conducted over the network increases wi th the 
penetration of new digi ta l technologies amongst the populat ion, impl ica t ing the increase of 
cases for d ig i ta l forensic investigators to solve. This fact creates a problem because there 
is a shortage of I T specialists i n the L E A officers' lines. 

Second, the increase in communicat ion speed generates more data to be processed by 
forensic specialists, which requires increased computing power to process the data and, 
furthermore, the introduct ion of appropriate methods to uti l ize the added resources to 
scale well. 

Due to the expert shortage, the solution seems to be the research of novel approaches, the 
use of more sophisticated methodologies, and modern tools to be used by the investigators: 
otherwise, processing the ever-increasing amount of data appears to be unsustainable. 
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1.3 Research Goal and Objectives 

The goal is to revisit network forensic methods to improve their capabilities 
and reliability for processing network communication and extracting evidence, 
enabling the implementation of efficient tools for LEA investigators. 

Therefore, the incentive of this dissertation is to help L E A investigators deal w i th Net­
work Forensic investigations in their dai ly work. 

Dur ing the past eight years, I have been i n contact w i th mult iple L E A investigators, 
L E A executives, and commercial vendors during private meetings, scientific conferences, or 
closed business conferences organized directly for L E A s . D u r i n g this t ime, I realized that as 
long as there is demand, there is a vendor that has a solution to L E A problems. B u t L E A s 
are bureaucratic organizations wi th a fixed budget that requires planning, and adaptat ion 
to novel problems occurs slowly. 

To mitigate this conundrum, this dissertation states the following research objectives to 
collect, update, or propose novel approaches to problems of network forensic investigation: 
see the following description and Figure 1.1 for the visual representation of the linkage 
between the objectives and the selected papers. 

Captur ing and processing in/complete network data is a fundamental step for 
network forensic investigation. Wi thou t the abi l i ty to robustly deal w i th missing parts 
of the communicat ion, appl icat ion protocol parsers must stop on the first occurrence 
of a missing piece of the communication, no matter how small or significant it is for 
the investigation. 

Appl icat ion protocol and finer-grained application identification are necessary 
steps before using an applicat ion protocol parser to dissect the communicat ion. The 
decision must be made to identify which applicat ion protocol is used i n the part icular 
application flow. Taking the identification further, we may also deduce some valuable 
meta-information, such as which applicat ion was used by the user. Furthermore, the 
classifier should not expect that the communicat ion is entirely captured. 

W h a t should be the architecture of a network forensic tool / scale or not to 
scale are questions many ask. Is it better to run the tool on a single machine / 
workstation environment, be centralized on dedicated server(s), or scale up past a 
single computat ion unit and uti l ize spare resources on a cluster? Is the achievable 
speed improvement worth the cost of the computat ion hardware? 

Tunneled and overlay networks have been used to interconnect geographically sep­
arated networks or computer systems to allow end-to-end connectivity and possibly 
add a security layer using encryption. For forensic investigators, such technology is 
a significant factor, even though the data transported may not be fully read due to 
encryption. 

5 



Revisit methods used in network forensics tools to improve 
their capabilities of processing captured network 

communication and extraction of evidence in order to relax 
requirements on the technical expertise of LEA 

investigators. 

Tunnelled and overlay 
networks 

Architecture of 
network forensic 

tool/scale or not to 
scale 

Application protocol 
and finergrained 

applications 
identification 

Capturing and 
processing of 

[incomplete network 
data 

Paper I: 
Netfox detective: A 
novel open-source 
network forensics 

analysis tool 

Paper 
Network Forensic 
Investigations of 

Tunneled Traffic: A 
Case Study 

Paper 
Network Forensic 

Analysis for Lawful 
Enforcement on 

Steroids, Distributed 
and Scalable 

Paper IV: 
Automated Man-in-
the-Middle Attack 

Against Wi-Fi 
Networks 

Paper V: 
Traffic Classification 

and Application 
Identification in 

Network Forensics 

Paper VI: 
Advanced 

Techniques for 
Reconstruction of 

Incomplete Network 
Data 

Paper VII: 
Netfox Detective: A 
tool for advanced 
network forensics 

analysis 

Figure 1.1: Th is figure depicts relations between research goal, objectives and selected 
papers. 

These objectives and their solutions are implemented pr imar i ly in the Netfox Detective 
network forensic tool , which demonstrates the val idi ty and verifies the usabil i ty of this 
research i n real-world applications. 

1.4 Structure of the Dissertation Thesis 

The dissertation is a composit ion of the selected conference and journal publications of 
the author accompanied by a rat ional introduct ion part. The seven selected peer-reviewed 
papers summarize the contr ibution of this dissertation. A l l papers are attached i n their 
original publ icized form. 

The dissertation is organized as follows. The first chapter provides an introduction, 
including motivat ion, a problem statement, and a brief description of the goal and research 
objectives. The second chapter places the research i n its appropriate place by defining the 
related work. The th i rd chapter summarizes the author's research and contributions. The 
last chapter discusses the results, highlights contributions, and concludes this thesis. 
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Chapter 2 

State of the A r t 

Related work is a fundamental part of every research, so let us define the context for this 
dissertation. This chapter is d ivided into six sections concerning the research objective 
stated i n Section 1.3. 

Fi rs t , let us clarify the meaning of network forensics and designate this dissertation 
in this subdiscipline of computer forensics. Section 2.1 brings a broader in t roduct ion to 
network forensics, as seen by various renowned authors i n this field. Mul t i p l e theoretical 
frameworks are discussed to describe the recommended forensic approaches. 

To develop advanced methods for forensic investigation of networks, it is necessary to 
study existing tools, identify weaknesses, and design improvements. Section 2.2 provides 
a brief overview of these tools. The dist inct ion between mult iple categories is made, and 
various taxonomies are presented. Not ice that taxonomies classify tools into numerous 
categories that may not correspond to each other. In other words, the authors may not 
agree on the classification. 

To do the advanced, we need to define the basics. Section 2.3 covers the approach to 
processing network data. Dist inct ions are made between Network Security and Moni to r ing 
( N S M ) tools and Network Forensic and Analys is Tools ( N F A T ) . The crucial role of packet 
loss intercepting is underscored by some suggestions for achieving it . 

Before we can parse the network traffic, knowing which applicat ion protocol carried 
the data is crucial . Section 2.4 covers related research for the identification of appl icat ion 
protocols. Th is information is essential because we need to know the applicat ion protocol 
used to apply an appropriate parser to extract valuable information. In some cases, when 
data are encrypted, extraction of metadata, such as SNI1 in the case of T L S / S S L , or 
categorization of applicat ion and content types, such as voice or text, could be essential. 

Not a l l communicat ion is encapsulated i n the t radi t ional way (Ethernet j Wi-Fi) / (IPv4 
I IPv6) / (TCP j UDP), but a significant amount of it is tunneled in overlay protocols such 
as 6in4, Teredo, G S E , etc. Section 2.5 describes the processing capabilities of overlay 
networks, mainly used i n N F A T s . 

Lastly, because the amount of communicat ion required for forensic investigations today 
increases, Section 2.6 introduces related research on parallel processing, scalability, and 
dis t r ibutabi l i ty of network forensic tools. 

1 Service Name Identifier reveals service hostname 
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2.1 Network Forensics 

Let 's assume that the term network forensics might be sl ightly confusing. The common un­
derstanding is that network forensics is a cross-over between digi ta l forensics and computer 
security [65]. It is concerned wi th the capture, recording, and analysis of network commu­
nication for for detecting and investigating incidents [53]. For simplicity, network forensics 
deals w i th data traces acquired by passive or active network devices. The main goal of net­
work forensics is to investigate network evidence to determine whether there was a security 
incident or other anomaly, provide evidence, and document their investigation [31]. 

Accord ing to Palmer, network forensics is the use of scientifically proven techniques 
to collect, fuse, identify, examine, correlate, analyze, and document digi ta l evidence from 
mult iple d igi ta l sources. The objective is to uncover facts related to planned intent or 
successful measurement of unauthorized activities that are intended to disrupt, corrupt, or 
compromise system components. Information gained during the investigation can be used 
to respond to or recover from these i l l ic i t activities [52]. 

Network forensics can be described using various process models. The first, proposed 
by Palmer [52] i n D F R W S 2001, is a linear model that contains these steps: identification, 
preservation, collection, examination, analysis, presentation, and decision. Emanue l P i l l i 
has updated this waterfall-like model w i th fast i teration shortcuts and called it a generic 
process model [53]. The alternative to this model is the O S C A R process model, which 
contains these steps: obtain information, strategize, collect evidence, analyze, and report. 
Davidoff, who proposed it i n his book "Network forensics: t racking hackers through cy­
berspace" [15], simplified it and made it linear again. 

A n inherent part of network forensics is its techniques ( N F T ) . We can study them 
based on forensic process models, forensic tools, and forensic frameworks. K h a n , i n his 
"Network forensics: Review, taxonomy, and open challenges" [34], reviews fundamentals 
such as traceback-based N F T , converge network-based N F T , attack graph-based N F T , 
distributive-based N F T , and N F T using IDS . 

2.2 Network Forensic Tools 

Network forensics aims to make sense of volatile network communicat ion. Interpreting low-
level network protocols requires expert knowledge to see the bigger picture [10]. Specific 
network forensic tools can be used to relax the requirement of expert knowledge and make 
the network forensic investigation accessible to more investigators [22, 25]. These tools 
should support the summarizat ion, clustering, and highlighting of relevant information [7], 
such as extracting the content of t ransmit ted files and user credentials or performing ad­
di t ional analysis and visualizat ion i n an easily understandable form. M a n y single-purpose 
network forensic tools are available (see more i n the upcoming sections), but their capabil­
ities, functionality, and usabil i ty are lacking behind t radi t ional forensic toolkits [10] such 
as EnCase or Autopsy. 

Network forensic tools are best described using taxonomies that categorize them accord­
ing to their properties. B y s tudying mult iple taxonomies, we can observe that authors may 
disagree on the tool classification, i.e., one author classifies a tool as network monitor ing 
and another as forensic analysis. 

One of the first taxonomies [23] proposed in 2002 by Simon Garfinkel is based on mon­
i toring and recording network data; see Table 2.1. The first approach, catch it as you can, 
tries to capture a l l data that pass through the network i n real-time and analyze them in 
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batches later. Th is approach requires a large amount of data storage [42] but may produce 
better results because mult iple tools can be used to analyze these captured data. The 
second approach, stop, look and listen, uses fi l trat ion to l imi t the amount of data captured 
to deal w i th situations where it is not legal to record information unless for some specific 
reason, such court order [23]. 

"catch it as you can" "stop, look, and listen" 

Commerc ia l N e t V C R Network Fl igh t Recorder ( N F R ) 
Netlntercept Sil lentRunner 

O p e n source t cpdump snort intrusion detection system 
windump NetWitness 

"Carnivore" Internet wiretapping system 

Table 2.1: Taxonomy of network forensic tools according to Simson Garfinkel , 2002, Table 
source [77]. 

Meghanathan et a l . in 2009 proposed i n their taxonomy [45] to divide tools according 
to their focus, emphasizing the growing interest i n domain-specific tools; see Table 2.2. The 
authors c la im that the essential categories are email , web forensics, and packet sniffers. 

E m a i l forensics I Packet sniffers I W e b forensics 
emailTrackerPro 
Smart W h o l s 

A i r P c a p 
Ethereal 
W i n P c a p 

Index.dat analyzer 
Web His tor ian 

Table 2.2: Taxonomy of network forensic tools according to Meghanathan et a l . , 2009, 
Table source [77]. 
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One of the most complex taxonomies was indisputably proposed by P i l l i and Joshi [53] 
in 2010 in the D i g i t a l Investigation journal ; see Table 2.3. They introduce the term Network 
Forensic Analytical Tools as opposed to Network Security Monitoring tools. Th is dist inct ion 
is crucial i n dist inguishing tools designed for forensic investigators ( N F A T ) from those 
intended for network administrators ( N S M ) . Th is taxonomy was updated i n 2016 by the 
same authors [30]; see Table 2.4, resulting in more up-to-date categorization. Note that 
the subcategories have changed slightly and that propr ie tary/commercia l N F A T s have been 
reduced. This reduction in commercial tools is probably due to the increased secrecy around 
t h e m 2 . 

N F A T s 

O p e n source NetworkMiner 
P y F l a g 
X p l i c o 

Proprietary DeepSee 
InfmiStream 
Iris 
NetDetector 
Netlntercept 
NetWitness 
OmniPeek 
SilentRunner 

N S M tools 

Fingerprint ing N m a p 
POf 

IDS B r o 
Snort 

Manipulat ion T C P R e p l a y 
S i L K 

Packet capture Argus 
flow-tools 
N f D u m p 
Nessus 
P A D S 
Sebek 
T C P D u m p 
T C P F l o w 
Wireshark 

Pattern matching Ngrep 
T C P X t r a c t 

Statistic NetF low 
Ntop 
T C P D s t a t 
T C P S t a t 
T C P T r a c e 

Table 2.3: Taxonomy of network forensic tools according to P i l l i and Joshi, 2010, Table 
source [77]. 

2Authors observation obtained while discussing the problem with tool vendors on ISS World conference 
during the past decade. 
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N S M tools 

Intrusion detection B r o 
systems (IDS) Snort 
Network monitoring I P T r a f 
tools Ntop 

T C P S t a t 
Visua lRoute 

N F A T s 

O p e n source P y F l a g 
X p l i c o 

Proprietary NetDetector 
Netlntercept 
OmniPeek 

Network scanning 
tools 

Network sniffers and 
packet analyzing 
tools 

A n g r y IP Scanner 
N m a p 
Wireless Network Watcher 
Aircrack-ng 
eMai lTrackerPro 
Kismet 
NetworkMiner 
ngrep 
WebScarab 
Wireshark 

Vulnerabil i ty Acune t ix W V S 
assessment tools Metasploit 

Nessus 
Nik to 
Yersinia 
W i k t o 

Table 2.4: Network forensic tools updated taxonomy according to P i l l i and Joshi, 2016, 
Table source [77]. 

11 



Davidoff and H a m proposed a taxonomy [15] i n 2012 based on the tool's functionality 
and the investigation phase in which the tool can be used; see Table 2.5. 

W A P discovery tools 

O p e n source K i s M A C 
Kismet 
NetStumbler 

Proprietary Skyhook 

I D S / I P S 
1 Traffic acquisition O p e n source B r o dumpcap 

Snort l ibpcap 
Proprietary Checkpoint IPS-1 tcpdump 

Cisco I P S tshark 
Corero Network Security winpcap 
Enterasys I P S Wireshark 
H P T ipp ingPoin t I P S 
I B M Security N I P S 
Sourcefire 3D System 

Packet analysis 

Protocol analysis tshark 
tools Wireshark 
Packet analysis Bless 
tools ngrep 

tshark 
Wireshark 

Flow analysis pcapcat 
tools tcpflow 

t cpXt rac t 
tshark 
Wireshark 

Higher-layer traffic fmdsmtpinfo .py 
analysis tools NetworkMiner 

oftcat 
smtpdump 

Statistical flow analysis 

Sensors Argus 
softflowd 
yaf 

Flow record I P F I X 
export protocols NetF low 

sFlow 
Collection systems Argus 

flow-tools 
nfdump 
NfSen 
S i L K (flowcap, rwflowpack) 

Flow record Argus Client Tools (ra, racluster, 
analysis tools ragraph, ragrep, rahisto, rasort) 

Ethe rApe 
F l o w T r a q 
flow-tools 
nfdump 
NfSen 
S i L K (PySiLK, rwcount, rwcut, 
rwfilter, rwidsquery, rwpmatch, 
rwstats, rwuniq) 

Table 2.5: Taxonomy of network forensic tools according to Davidoff and H a m , 2012, Table source [77]. 

12 



Complementary categorization can also be based on how the investigator interacts w i t h 
the tool . Lub i s and Siahaan proposed to divide tools into console and GUI categories: 
see Table 2.6. 

Console-based tools GUI-based tools 

A R P 
Gnetcast - G N U 
ifconfig 
Network Mapper (Nmap) 
ping 
snoop 
T C P dump 
X p l i c o 

E-detective 
Netcat 
Wireshark /E therea l 

Table 2.6: Taxonomy of network forensic tools according to Lub is and Siahaan, 2016, Table 
source [77]. 

The European Un ion Cyber Security Agency ( E N I S A ) developed a handbook [17] -
Introduction to Network Forensics based on the experience of the C S I R T community. Thei r 
categorization is similar to Davidoff and H a m [15] based on the intended tool usage; see Ta­
ble 2.7. 

Flow capture & analysis tools I Full-state analysis tools I IDS 
Argus WireShark Snort 

Packet capturing tools I Pat tern matching tools 
tcpdump 
dumpcap 

ngrep 

Table 2.7: Taxonomy of network forensic tools according to E N I S A , 2019, Table source [77]. 

Studying the taxonomies, we may observe that each author group focused on different 
aspects. Garfinkel [23] concentrated on the volat i l i ty of the data and the granularity that 
can be achieved wi th l imi ted computat ion resources. In contrast, Meghanathan et a l . [45] 
showed concern for the applicat ion domain. P i l l i and Joshi [53, 30] extended categorization 
by focusing on forensic investigators and network administrators. Davidoff and H a m [15] 
created detailed categorization of N S M tools. Lub i s and Siahaan [40] and E N I S A [17] also 
focused on N S M tools. Based on the presented taxonomies, we may conclude that the 
development of generally usable open source N F A T tools have been put aside. 

2.3 Capturing and Processing of In/complete Network Data 

Network traffic is the most common data source for N F A T s [10, 22, 25, 66]. A l t h o u g h 
there are tools, main ly N S M , al lowing online analysis, like Wireshark and T C P D u m p , this 
approach is generally discouraged for forensics [12, 8] because of its bottom-up approach 
that requires a large amount of manual labor. Forensic science involves repeatabili ty of 
the investigation process [12], thus rendering these live N S M tools usable in prel iminary 
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investigation phases as a control mechanism functional for val idat ion of deployment of 
Lawful Interception (LI) probes. 

Captur ing data using L I probes is a complex problem. Due to the volat i l i ty of network 
data, what is not captured is lost forever. Th is fact poses a challenge for the capturing. 
The capturing appliances are software [4] or hardware [49, 32, 59] based. 

Software-based appliances uti l ize the kernel functionality of the operating system to 
capture packets not intended for the part icular interface that the interception is running 
on (e.g., using promiscuous mode [4]). A naive approach may be to use pla in T C P D u m p , 
or Wireshark to capture the network traffic. A s several studies have shown [4, 16, 37, 3, 
61, 5], this approach leads to severe packet loss. A sophisticated approach is to use a kernel 
module-based tool , e.g., T C P D u m p compiled wi th P F R I N G , or a commercial solution 
like ntop's n 2 d i s k ™ that is opt imized for the task and is already based on P F R I N G 3 . 
E m p i r i c a l experience has shown that, as the vendor c la im, n 2 d i s k ™ can store network 
traffic up to l O G b p s . Addi t ional ly , using F P G A - b a s e d N I C , n 2 d i s k ™ can store up to 
4 0 G b p s 4 . 

Hardware-based appliances are typical ly advanced solutions developed in general by pr i ­
vate companies. The i r detailed specification and addi t ional functionalities are not publ ic ly 
available. Some vendors publ ish the specification in the form of white paper, e.g., NetQuest 
that announces up to lOOGbps capabilities [49]. Another rare occurrence is research done 
by Czech's N R E N C E S N E T on hardware-accelerated traffic processing on 100 Gbps net­
works [32, 59]. Other major players on the market providing not only packet interception 
but also deep packet inspection (DPI) for L E A are Sandvine, E N E A Cosmos Div is ion , and 
X C I , according to the ISS W o r l d Tra in ing conference [50]. 

Regarding the state-of-the-art interception appliances, empir ical observation shows that 
not a negligible por t ion of intercepted network traffic provided to the L E A by ISPs is not 
without packet loss. A commonly used approach is to uti l ize port mirror ing, i.e., SPAN 
port on a switch that may introduce packet loss under a load [78]. Determinat ion of packet 
loss on capturing probe is challenging by itself. The T C P reassembling can be used to 
prove that some part of data t ransmit ted over a network was missing from the packet 
trace. S t i l l , it does not necessarily prove that the capturing appliance is at fault because 
of other possibilities like asymmetrical routing. To determine packet loss of protocols on 
U D P , addi t ional analysis and understanding of applicat ion protocol are required (providing 
that applicat ion protocol carries identifiers that can be used). 

The practice has shown that network forensic practitioners need tools tolerant of packet 
loss. These tools have to use applicat ion protocol parsers that do not stop on the first invalid 
data but contain a robust parsing engine that allows for rewinding the inval id por t ion of 
data streams. 

2.4 Applicat ion Protocol Identification 

The applicat ion protocol identification is an inherent part of network forensics. Wi thou t the 
precise knowledge of the appl icat ion protocol in question, the N F A T or N S M tool cannot 
extract crucial information carried by the protocol because the tool would not know which 
applicat ion protocol parser to use. 

3https://www.ntop.org/products/packet-capture/pf_ring/ 
4https://www.ntop.org/products/traffic-recording-replay/n2disk/ 
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In digi ta l forensics, par t icular ly storage device or mobile device forensics, the artifacts 
are identified by matching the hashes of investigated files to well-known ones stored i n 
databases like Vi rus T o t a l 5 . This approach filters the system or otherwise uninteresting files 
and allows the investigator to focus only on ind iv idua l files that most l ikely contain the 
digi ta l evidence. 

This approach works very well for static / constant files but is not direct ly applicable 
to computer networks because of their entropy. Transferring the same static file using the 
same applicat ion protocol may result in data streams wi th different characteristics. The 
data stream checksum would differ because of variable internet, transport, and applica­
t ion protocol fields. Addi t ional ly , external aspects dependent on the transfer media type, 
network ut i l izat ion, and quali ty of the service (retransmissions) may also differ. 

The most straightforward method of appl icat ion protocol identification is to use well-
known protocol port numbers. Th is method utilizes port numbers present i n the transport 
protocols, either T C P or U D P . The accuracy of this method is about 60-80% [47, 6] and 
hugely depends on a part icular sample of applications in question. Services may use random 
protocol ports usually defined by a service administrator or used impl ic i t ly for services like 
mul t imedia streaming, multiplayer games, or various types of traffic tunneling. 

Because L E A is t radi t ional ly focused on extracting as much informat ion/meta informa­
t ion as possible, we need to go deeper and improve the accuracy. Tradit ionally, there are 
several directions we may take [51, 33, 48, 71, 76, 64]. 

Supervised machine learning [28] tackles the problem wi th learning by example. The clas­
sification model is created using annotated data sets. Usually, applicat ion protocols 
contained in the data set are classified wi th reasonable accuracy. Protocols that were 
not part of the t raining set are often miss-classified into one of the known categories. 

Unsupervised machine learning [19] is a technique that impl ic i t ly expects that there are 
unknown applicat ion protocols i n the data set. Th is method does not require a data 
set to be trained on. Categorizat ion is done on the data during the classification 
process. Simi lar samples of applicat ion protocols are assigned to the same category. 

Semi-supervised machine learning [18] is a combinat ion of the approaches above. The 
sample applicat ion communicat ion is categorized using the clustering/unsupervised 
methods, and by applying the supervised method/s , we may infer a correct label for 
otherwise unclassified samples. 

Machine learning methods require data preprocessing that is concluded wi th feature 
extraction. In this domain, we recognize the following feature categories w i t h respective 
extraction methods [51, 33, 48, 71, 48]: 

Pay load analysis extracts features from the packet contents (payload/s). Th is method 
works well for unencrypted / plain-text applicat ion protocols but poorly for encrypted 
ones. 

Statistical methods [28, 35, 24] do not look into the data but use metadata, such as 
information about packet size, inter-packet delays, etc. Th is method also works for 
encrypted applicat ion protocols. 

5https://www.virustotal.com/ 
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H y b r i d methods combine pay load analysis w i th statist ical models. Ut i l i zed features may 
be a combinat ion of the methods mentioned above. These methods work well for 
encrypted and unencrypted applicat ion protocols [9, 41]. 

Add i t i ona l sources summarising advances i n applicat ion protocol identification / classi­
fication are surveys by Nguyen and Armi tage [51], Namdev et a l . [48], and Velan et a l . [71], 
who focused on encrypted traffic. Recently, J A 3 emerged as a defacto standard for finger­
print ing clients and J A 3 S for fingerprinting service providers (servers) [1]. The best results 
were achieved by pair ing J A 3 and J A 3 S to identify client and server applications / services. 
Note that this identifies part icular implementat ion of client/service that may change in 
t ime due to service updates [2]. Mercury by M c G r e w et a l . (Cisco) [44] is similar, based on 
a broader feature set. Even though it may seem that fingerprinting of S S L / T L S has been 
solved (using J A 3 or Mercury) , Hejcman's bachelor thesis [26] shows that it may be further 
refined. 

The contr ibut ion of this thesis is based on the previous work of the following authors. 
E r i k Hjelmvik 's S P I D [27, 28] statistical-based algori thm, further improved by Kohnen [36], 
is a very lightweight a lgori thm capable of appl icat ion protocol identification on the fly from 
the beginning of the flows. Foroushani and Zinc i r -Heywood [20] have shown i n graphical 
details possibilities of separation of different encrypted applicat ion protocols using statis­
t ica l information extracted from the flows. D a i et a l . [14] and Miskovic et a l . [46] studied 
communication-based fingerprinting of mobile applications. E r m a n et a l . [18] described 
a flow-based semi-supervised classification method that can accommodate known and un­
known applications. 

Due to a significant investment required to create and mainta in t radi t ional applicat ion 
protocol identification methods, current research is exploring addi t ional paths. A survey 
done by Wang et a l . [75], who summarized possibilities achievable by applying Deep Learn­
ing, shows promising results. Compared to the aforementioned t radi t ional methods, Deep 
Learning may ease maintainabi l i ty and overcome l imitat ions posed by time-consuming, 
costly handcrafted features and frequent feature updates. 

Nowadays, a need for fine-grained classification arises. F u et a l . [21] evaluated their 
system C U M M A for classifying mobile messaging app service usage by jo in t ly modeling 
user behavioral patterns, network traffic characteristics, and temporal dependencies. Using 
a statistical-based approach, they can segregate messages into classes such as text, audio 
notes, pictures, stream voice calls, location sharing, and short videos. They showed that 
this segregation is possible without decryption keys and deep packet inspection of contents. 

2.5 Overlay and Tunneling Network Protocols 

Overlay networks are becoming popular for creating v i r tua l / logical networks over physical 
infrastructure. Overlays are no longer a domain of t radi t ional V P N protocols like P P T P , 
G R E , L 2 T P , and O p e n V P N . Novel , encrypted by design, protocols such as Hamachi , Ze-
roTier , and W i r e G u a r d are increasing their popularity. Addi t ional ly , the rise of anonymiza-
t ion networks like Freenet 6 , the Tor Pro jec t 7 , and the Internet Invisibi l i ty Project ( I2P) 8 

complicated forensic investigation even further. 

6 https: //github.com/f reenet/f red 
Thttps: //www.torproject.org/  
8 https: //geti2p.net/en/ 
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Support for some overlay or tunneling protocols in N F A T tools is rare. Pyflag does 
not have any support. Xplico supports L 2 T P , V L A N , and P P P . More comprehensive sup­
port for encapsulation is implemented in N S M tools, par t icular ly Wireshark and TShark . 
NetworkMiner supports G R E , 802.IQ, P P P o E , V X L A N , OpenFlow, S O C K S , M P L S , E o M -
P L S , and E R S P A N . 

The reason is most l ikely that N F A T s dissect protocols to extract information. E n ­
crypted overlay networks are not par t icular ly interesting in this regard. O n the other hand, 
their presence may be a piece of helpful information for the investigator [67]. The i r detec­
t ion and meta-information about an encapsulated content extraction extend the topic of 
applicat ion protocol identification; see Section 2.4. This lack of overlay protocol support i n 
N F A T s opens up novel research opportunities i n this field. 

2.6 Network Forensics of B i g Data 

Network forensic investigation is no longer a domain that deals w i th smal l packet traces 
of a few hundred megabytes [34]. The penetration of high-speed internet connection for 
smal l businesses, residents, and even mobile devices is more significant than ever. The 
boom of mul t imedia consumerism in teen generations [11] pushes network infrastructures 
to unprecedented growth, and naturally, we would expect N F A T s to keep up. 

Contradictory, the scientific community 's interest in developing parallel or even better 
scalable and distr ibuted (so as not to confuse wi th cloud forensics) N F A T s has not in ­
creased i n the last decade or so. Val lent in has done thorough state-of-the-art research i n 
this area i n his dissertation [69] under the supervision of Vern Paxson, who covered the years 
2005-2015. Dupl ica t ing a detailed overview of this period i n this work would be wasteful. 
Val lent in concludes that "The academic treatment of large-scale network forensics is strik­
ingly thin." and that "The last decade of research on network forensics paints a fragmented 
picture: only occasional interest, even i n security-centric venues." Val lent in concluded his 
research i n the publ icat ion called " { V A S T } : A Unified P la t fo rm for Interactive Network 
Forensics" [70]. Recently, V A S T was used by other research groups [60] as a backend for 
distr ibuted computat ion. 

Since Vallentin 's time, several other authors have researched the acceleration possibil i­
ties of distr ibuted network forensics. D 'Alessandro investigated options of scalable network 
traffic classification using distr ibuted support vector machines [13] which are a crossover 
w i t h Section 2.4. Ryšavý, Rych lý and J e ř á b e k [63, 29, 62] used Apache based technolo­
gies, namely Hadoop, Spark, Kafka , Ignite. The i r research focused on identification and 
clustering in big data network flow traces. 
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Chapter 3 

Research Summary 

This chapter summarizes the research included in this dissertation and the related contri­
butions of mine. The research presented can be commonly classified into computer science, 
computer security, digi ta l forensics, and network forensics. Section 3.1 summarizes the 
work and highlights motivations and contributions for the presented research. For better 
navigation, see Figure 1.1, which shows the relationships between research objectives and 
selected papers. 

Section 3.2 compose a list of seven selected papers included in this dissertation. A brief 
overview of each publ icat ion is provided i n a summary form containing motivat ion and 
related contributions. A d d i t i o n a l information is included as abstract, original c i ta t ion form, 
and references to publications that cited the paper. In case other publications preceded the 
paper, its citations are also referenced. 

Section 3.3 contains a list of my other publications related to this dissertation but not 
included. The list consists of technical reports and student conference publications that 
were published before my doctoral studies but bear witness to my interest i n this field since 
I was an undergraduate student. 

Section 3.4 lists nat ional and international projects i n which I have part icipated. Sec­
t ion 3.5 enumerates the software and specimens that I have contributed. Section 3.6 con­
tains a list of presentations, posters, and invi ted speeches I have given i n the last decade 
concerning the research covered by this dissertation. Section 3.7 and Section 3.8 list related 
/ unrelated bachelor and master theses I have supervised. 

3.1 Overview 

This dissertation aims to help law enforcement agency ( L E A ) investigators conducting a 
cr iminal investigation to be more efficient i n their work and lower the requirements for their 
prel iminary understanding of technical details, al lowing them to focus on the investigative 
side. Us ing Network Forensic and Analys is Tools along the lines of regular investigators 
provides them wi th the means to process captured network communicat ion directly and 
extract information instead of wait ing for dedicated I T professionals to preprocess the data 
for them. To achieve this goal, I have part icipated i n several grant projects that focused 
on the needs of network forensic investigators, researched various problems, and helped 
develop the tools mentioned earlier. 

A l o n g the way, we have faced several difficulties that posed excit ing research challenges 
beyond engineering and required a rigorous scientific approach to be solved. We were asked 
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to develop a network forensic investigation tool to consume the captured network commu­
nication and extract information from the applicat ion messages. W i t h this information, the 
investigator can bui ld a case. 

The first challenge was to design the applicat ion architecture. The paper VII, describes 
the first i teration of the Netfox Detective applicat ion. We tr ied to separate it into layers w i t h 
well-defined interfaces focusing only on their respective concerns. Th is paper elaborates on 
several challenges that we have encountered i n this implementat ion. The most severe one 
was a recognition that the quali ty of the input data varies, and forensic appl icat ion needs 
to incorporate this into their design. 

Therefore, paper VI investigates the steps to take to fully overcome Internet service 
providers' inabi l i ty to capture network communicat ion without packet loss. O r face other 
factors like asymmetric routing, load-balancing, etc., that causes the captured data to be 
incomplete. We have developed several heuristics that uti l ize information from lower than 
applicat ion protocol layers to create abstractions of applicat ion messages that appl icat ion 
protocol parsers can parse to extract the contents to form the evidence. 

Furthermore, we realized that these heuristics and applicat ion protocol abstractions 
might contribute to more precise applicat ion protocol identification and maybe allow us to 
identify the exact applications that generated the communicat ion. Paper V describes our 
achievements i n this regard. The result was an implementat ion of a framework that could 
extract features from applicat ion data flow and conversations to allow us to benchmark sev­
eral approaches and machine learning algorithms. Once again, a l l of this was implemented 
in the Netfox Detective N F A T applicat ion. 

Paper IV targets in-field L E A operatives that need to gather evidence directly from 
a wireless local area network ( W L A N ) . A l l o w i n g the investigator to access the L A N directly, 
compared wi th an investigation of captured network communicat ion on the Internet service 
provider level, introduces several benefits discussed i n the paper. Au toma t ing this k ind of 
Man- in- the-Middle attack complies w i th our goal of al lowing regular investigators to obtain 
the needed evidence without wai t ing for an I T specialist to get it for them. 

The increasing amount of data t ransmit ted over the network required investigating new 
processing methods. The clear choice to increase the performance of something embarrass­
ingly parallel is to scale up the computat ion. Paper III describes our attempts to design 
and implement a scalable framework for network forensics. Previous papers V I I , V I , and 
V show our approach to network data processing i n a single process on a single machine. 
This paper investigates these methods and scales the processing l inearly while maintaining 
the same robust incomplete data processing. 

The last challenge we identified was the processing of tunneled traffic. Paper II describes 
the common tunneling protocols that L E A investigators can encounter. We chose one of the 
most complex protocols, the Generic Stream Encapsulation, to demonstrate how a complex 
tunneling protocol can be dissected by our processing framework while maintaining its 
properties of robustness for incomplete data processing. 

The final Paper I concludes this dissertation. Th is paper describes a l l the methods and 
principles we have designed to overcome the challenges posed by the incomplete data pro­
cessing for network forensic analysis on a single machine. This paper introduces the final 
version of the Netfox Detective tool as a Proof-of-concept platform to demonstrate the 
correctness and usabil i ty of the methods designed for network forensic investigation. A d ­
ditionally, a crossover to Network Security Moni to r ing is shown by using the platform to 
visualize SIP Fraud attacks i n cooperation wi th Czech N R E N C E S N E T . 
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3.2 Papers Included in this Dissertation 

This section provides an overview of selected papers included in this dissertation. A n expla­
nation of its motivat ion is included in each paper, and direct contributions are mentioned. 
The author's par t ic ipat ion i n creating the publ icat ion is noted wi th the conference / journal 
ranking or impact factor. 

3.2.1 P a p e r I 

Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-source 
network forensics analysis too l" . In: Forensic Science International: Digital Investigation 
35 (2020), p. 301019. I S S N : 2666-2817 

Author ' s part icipat ion: 50 % l 

Impact factor: 1.805 ( Q l ) 

M o t i v a t i o n a n d contr ibut ions 

This is the most recently published paper that summarizes my research i n the area of 
network forensics and the development of an open source network forensics and analysis tool 

- Netfox Detect ive 2 . Th i s too l served as a Proof-of-Concept platform that demonstrated 
the functionality of each feature described i n the previous papers (except for scalabili ty and 
research related to W i F i ) and therefore demonstrated its correctness. 

This paper described Netfox Detective, a novel, easy-to-use, powerful network forensic 
platform for top-down investigations. The tool covered the forensic model's examination, 
analysis, and investigation phases as defined by P i l l i [55]. The following contributions are 
provided i n detail: 

1. Introduction of the investigation profiles that contained a l l necessary data for sharing 
the case between mult iple investigators. 

2. The new method to reassemble the T C P stream based on heuristics (the method itself 
was previously published [45], but the tool contains an improved version). 

3. Improved identification of application-level sessions wi th in T C P streams; the system 
could identify more applicat ion sessions compared to other tools. 

4. Support for analysis of traffic encapsulated i n the G S E protocol; to the best of my 
knowledge, Netfox Detective had been the only open source N F A T that supported 
G S E . 

5. A novel web page reconstruction approach; compared to other tools, the tool not 
only extracted objects from H T T P communicat ion but also reconstructed the page 
entirely (rewriting sources of a l l intercepted objects like C S S , pictures, video streams, 
etc.). Pages were stored as M A F F archives, including snapshots showing how the 
page changed over t ime. JavaScript was interpreted, and part icular A P I calls were 
mocked to be injected wi th intercepted ones, like R E S T A P I calls. The reconstruction 
of a web page required analysis and correlation of mult iple L 7 conversations because 
a page usually references (includes) data from various domains. 

1 Author participation states the contribution index used for publication submission into the Czech na­
tional database of research, development and innovations (RIV). 

2 https: //github.com/nesf i t /Net f oxDetective 
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T h e paper has been cited in: 

• Kous ik Bar ik , Saptarshi Das, K a r a b i Konar , Bipasha Chakrabar t i Banik , and A r -
chita Banerjee. "Exp lo r ing user requirements of network forensic tools". In: Global 
Transitions Proceedings 2.2 (2021), pp. 350-354 

Abstract 

Network forensics is a significant sub-discipline of digi ta l forensics, which has become in­
creasingly important in an age where everything is connected. To deal w i th the amounts of 
data and other network challenges, practitioners require powerful tools that support them. 
This paper highlights a novel open source network forensic tool named Netfox Detective 
that outperforms existing tools such as Wireshark or Ne tworkMiner i n certain areas. For 
instance, it provides a heuristically based engine for traffic processing that can be easily ex­
tended. O u r appl icat ion tolerates malformed or missing conversation segments using robust 
parsers (we rely not solely on the R F C description but heuristics). Besides out l ining the 
tool's architecture and basic processing concepts, we also explain how it can be extended. 
Lastly, a comparison w i t h similar tools is presented, and a real-world scenario is discussed. 

3.2.2 P a p e r II 

Jan P luska l , M i c h a l Kou tenský , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Foren­
sic Investigations of Tunneled Traffic: A Case Study". In: Revue roumaine des sciences 
techniques. Série Electrotechnique et Energétique 64.4 (2019), pp. 429-434. I S S N : 0035-4066 

Author ' s part icipat ion: 25 % 
Impact factor: 0.76 (Q3) 

M o t i v a t i o n a n d contr ibut ions 

The present paper provided an overview of the expected points i n the network topology that 
law enforcement agencies ( L E A ) can use to conduct lawful interception. We summarized 
the most used tunneling protocols and discussed their features concerning digi ta l forensic 
analysis. For each protocol, the possibil i ty of content extraction was explained. Also , a brief 
overview of methods for encapsulated traffic classification was provided. The problem 
of connection recovery from tunneled communicat ion was demonstrated using the G S E 
protocol as an example. 

Abstract 

The increasing importance of network forensics in the investigations conducted by L a w 
Enforcement Agencies is indisputable. Today's Internet does not carry ordinary T C P / I P 
traffic but utilizes many other encapsulations and tunneling protocols. Th is paper provides 
an overview of the most used tunneling protocols and their features wi th regard to digi tal 
forensic analysis. A generic stream encapsulation case study describes how the investigator 
can obtain encapsulated applicat ion data from wi th in . 
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Preceding related paper: J an P luska l , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Net­
work Forensics in G S E Overlay Networks". In: Proceedings of the 6th Conference on the 
Engineering of Computer Based Systems. A C M . 2019. I S B N : 9781450376365 

Author ' s part icipat ion: 60 % 
Conference ranking: N / A 

3.2.3 P a p e r III 

V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . "Network Forensic Analys is for Lawful 
Enforcement on Steroids, Dis t r ibu ted and Scalable". In: Proceedings of the 6th Conference 
on the Engineering of Computer Based Systems. A C M . 2019. I S B N : 9781450376365 

Author ' s part icipat ion: 30 % 
Conference ranking: N / A 

M o t i v a t i o n a n d contr ibut ions 

This paper described a scalable architecture design for processing network packet traces 
at that t ime work i n progress. Accord ing to our previous research, the processing speed 
of Netfox Detective, which was around 100 Mbps , seemed too slow, and we were looking 
for acceleration possibilities. Because the task of conversation tracking and consequence 
transport protocol processing (creating abstractions of applicat ion messages, possibly using 
T C P reassembling and heuristics) is embarrassingly parallel , we realized that we could scale 
the job on mult iple devices instead of one processing unit. 

The contr ibution of this paper lies in the design, performance, and properties discussion 
of a new Network Forensic and Analys is Too l ( N E A T ) - Network Traffic Processing & 
Analysis Cluster ( N T P A C ) . This specimen utilizes distr ibuted computing architecture to 
improve the performance of network traffic analysis while being less demanding on hardware 
requirements than related systems. 

To extract evidence from network packets, we must thoroughly analyze them, perform­
ing several consecutive operations such as packet dissecting, flow identification, network 
stream composit ion, applicat ion protocol identification, and message parsing and artifact 
extraction. Unl ike the other N F A T tools, N T P A C could correctly process captured mal­
formed traffic without yielding misleading evidence. N T P A C performed a forensic analysis 
of network traffic i n high-speed networks. The system design used a scalable approach to 
run the tool on a single machine and a computing cluster. Compared to other N F A T tools, 
N T P A C was an order of magnitude faster and was scaling linearly. 

T h e paper has been cited in: 

• Danie l Gustavsson. Molnforensik: En litteraturstudie om tekniska utmaningar och 
mójligheter inom IT-forensik mot molnet. 2020 

Abstract 

Forensic analysis of intercepted network traffic focuses on finding and extracting commu­
nication evidence, such as instant messaging, email , V o I P calls, local izat ion information, 
documents, and images. Due to the amount of data captured, this process is t ime-consuming 
and complicated. Most commonly used forensic network analysis tools have l imi ted capa­
bilities for extensive data processing. In this paper, we are introducing a new tool that 
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achieves better data processing performance using available computing resources through 
distr ibuted processing. Thanks to the technology used, this tool can be used on commodi ty 
hardware in a local area network, in a dedicated computing cluster, or cloud environment. 

Preceding related paper: V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . " A Scal­
able Archi tecture for Network Traffic Forensics". In: The Fifteenth International Confer­
ence on Networking and Services ICNS 2019. Athens, G R : The International Academy, 
Research and Industry Associat ion, 2019, pp. 32-36. I S B N : 9781612087115 

Author ' s part icipat ion: 30 % 
Conference ranking: B 3 (Qualis) 

T h e paper has been cited in: 

• Kous ik Bar ik , Saptarshi Das, K a r a b i Konar , Bipasha Chakrabar t i Banik , and A r -
chita Banerjee. "Exp lo r ing user requirements of network forensic tools". In: Global 
Transitions Proceedings 2.2 (2021), pp. 350-354 

3.2.4 P a p e r I V 

M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . "Automated Man- in- the-Middle A t ­
tack Against W i - F i Networks". In: The Journal of Digital Forensics, Security and Law: 
JDFSL 13.1 (2018), pp. 59-80. I S S N : 1558-7215 

Author ' s part icipat ion: 30 % 
Impact factor: N / A 

M o t i v a t i o n a n d contr ibut ions 

This paper is based on M a r t i n Vondráček ' s bachelor thesis [105], deals w i th the automation 
of M i t M attack on W i - F i networks and is also supported by software [42]. Due to its wireless 
nature, W i - F i networks constitute an ideal data source for L E A investigation. Captur ing 
traces from local W i - F i may br ing new information because local services (non-routable on 
the public internet) tend to be poorly secured. The addi t ional benefit of being connected 
to the local network is the more offensive possibil i ty of conducting M i t M attacks. Various 
commercial vendors developed and sold tact ical solutions to support this use case. 

The contr ibution of this research was gathering state-of-the-art tools and approaches 
for penetration of wireless networks and developing an overlay applicat ion that allowed for 
a regular, non-technical person to operate i t . In this way, field L E A operators could gather 
evidence from wireless networks without the complex knowledge of an I T professional. 

Addi t ional ly , we focused on the detection possibilities of wireless attacks on devices 
intended for home use. The analysis showed that even without enterprise-level monitoring 
and logging, an attack on these low-power devices introduces a noticeable increase i n latency 
that can be monitored, and an alert can be raised. 

23 



The paper has been cited in : 

• T i n a W u , Frank Breitinger, and Stephen O'Shaughnessy. "D ig i t a l forensic tools: 
Recent advances and enhancing the status quo". In: Forensic Science International: 
Digital Investigation 34 (2020), p. 300999 

• Mohamed A m i n e Khel i f , J o r d á n e Lorandel , Ol iv ie r Romain , Ma t th i eu Regnery, Denis 
Baheux, and Gui l l aume B a r b u . "Toward a Hardware Man- in- the-Middle At tack on 
P C I e Bus for Smart D a t a Replay" . In: 2019 22nd Euromicro Conference on Digital 
System Design (DSD). I E E E . 2019, pp. 230-237 

• Mohamed A m i n e Khel i f , J o r d á n e Lorandel , Ol iv ie r Romain , Ma t th i eu Regnery, Denis 
Baheux, and Gui l laume Barbu . "Toward a hardware man-in-the-middle attack on pcie 
bus". In: Microprocessors and Microsystems 77 (2020), p. 103198 

• Cr i sp in R Jose. "Exp lo r ing Security Process Improvements for Integrating Security 
Tools wi th in a Software App l i ca t i on Development Methodology". P h D thesis. C o l ­
orado Technical University, 2020 

• C y n t h i a Valer ia M a z a Gonzalez and F a b i á n Gustavo Roch ina Manobanda . "Estado 
del arte ut i l izando mapeo s i s t emá t i co de seguridad de redes domés t i c a s W I F I en 
familias ecuatorianas". B . S . thesis. 2021 

Current ly used wireless communicat ion technologies suffer security weaknesses that can 
be exploited, al lowing eavesdropping or spoofing of network communicat ion. Th is paper 
presents a pract ical tool that can automate the attack on wireless security. The package 
developed, wif imi tm, provides functionality to automate M i t M attacks in a wireless en­
vironment. The package combines several existing tools and attack strategies to bypass 
wireless security mechanisms, such as W E P , W P A , and W P S . The tool presented can be 
integrated into a solution for automated penetration testing. Also , a popular izat ion of the 
fact that such attacks can be easily automated should raise public awareness of the state 
of wireless security. 

Preceding related paper: M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . " A u ­
tomation of M i t M At t ack on W i - F i Networks". In: 9th International Conference on Digital 
Forensics & Cyber Crime. V o l . 2018. 216. Springer International Publ i sh ing , 2017, pp. 207-

T h e paper has been cited in: 

• T i n a W u . " D i g i t a l forensic investigation of IoT devices: tools and methods". P h D 
thesis. Univers i ty of Oxford, 2020 

• Due Le Tran , Thong Trung Tran, K h a n h Quoc Dang, Reem Alkanhe l , and A m m a r 
Muthanna . "Malware Spreading M o d e l for Routers in W i - F i Networks". In: IEEE 
Access 10 (2022). A l l Open Access, G o l d Open Access, pp. 61873-61891. D O I : 10 . 
1109/ACCESS.2022.3182243 

Abstract 

220. I S B N : 9783319736969 
Author ' s par t ic ipat ion 

Conference ranking 
3 0 % 
N / A 
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3.2.5 P a p e r V 

Jan P luska l , O n d ř e j Lichtner, and O n d ř e j R y š a v ý . "Traffic Classification and App l i ca t i on 
Identification in Network Forensics". In: Fourteenth Annual IFIP WG 11.9 International 
Conference on Digital Forensics. E d . by Gi lber t Peterson and Sujeet Shenoi. New Delh i , 
I N : Springer International Publ i sh ing , 2018, pp. 161-181. I S B N : 9783319992778 

Author ' s part icipat ion: 40 % 
Conference ranking: B 5 (Qualis) 

M o t i v a t i o n a n d contr ibut ions 

This paper introduced a novel approach to appl icat ion protocol identification and appl i ­
cation (that generated the communication) classification. The identification/classification 
of the appl icat ion protocol is necessary for any Network Security Mon i to r ing tool or Net­
work Forensic Analys is Too l to extract any useful information from the applicat ion layer. 
Tools use applicat ion parsers to extract this information, but without the knowledge of 
the applicat ion protocol, the tool is unaware of which applicat ion parser to use. V a r i ­
ous applicat ion protocol parsers may consume any data; therefore, their acceptance of the 
applicat ion data stream cannot be used for identification purposes. The abi l i ty to also iden­
tify an applicat ion that generated the communicat ion yields addi t ional value to a forensic 
investigator. 

The contributions of this paper are presented i n the following points: 

Testbed that implemented three classification methods, namely Bayesian Network, R a n ­
dom Forests, and Enhanced Stat is t ical Probabi l i ty Identification, was presented. A d ­
ditionally, feature extraction was implemented as a modular framework allowing users 
to create and experiment w i th new features. The entire testbed used G U I for ex­
perimenting wi th feature el imination, classification, and visual result analysis. The 
analysis allowed for various feature comparisons and visualizat ion of the feature cor­
relation matr ix . The user could iterate and experiment w i th the testbed to proceed 
wi th the hyperparameter tuning. 

Dataset created i n laboratory environment in cooperation wi th various students simulat­
ing real act ivi ty / work on staged computers, over mult iple days containing 19,5 G B 
of annotated captured network communicat ion i n the form of enhanced P C A P files. 
Captur ing traffic using N a m o n 3 [115, 23], we have created a unique, annotated, cap­
tured network trace dataset that has been publ ic ly available since publicat ion. 

Feature elimination as an automated process that allowed us to create op t imal classi­
fiers that omit correlated features for a part icular applicat ion protocol or appl icat ion 
communication. 

Classification of applications as a finer-grained complement to the identification of the 
application protocol was described. 

Bayesian Network classifier enhanced wi th automated feature el iminat ion was created 
and trained on the aforementioned dataset. 

R a n d o m Forests classifier enhanced wi th automated feature el iminat ion was created and 
trained on the aforementioned dataset. 

3 https: //jzlka.github.io/namon/ 
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Enhanced Statistical Probabil i ty Identification method was developed, benchmark-
ed, and compared to a baseline formed by Bayesian Network and R a n d o m Forests 
classifiers. In comparison, this method d id not embed explicit feature el iminat ion 
because it is an inherent part of i t . 

T h e paper has been cited in: 

• H i l m a n d K h a n , Sarmad Hanif, and Bakht M u h a m m a d . " A survey of machine learning 
applications in d igi ta l forensics". In: Trends in Computer Science and Information 
Technology 6.1 (2021), pp. 020-024 

• Kous ik Bar ik , A A b i r a m i , K a r a b i Konar , and Saptarshi Das. "Research Perspective 
on D i g i t a l Forensic Tools and Investigation Process". In: Illumination of Artificial 
Intelligence in Cybersecurity and Forensics. Springer, 2022, pp. 71-95 

Abstract 

Network traffic classification is essential for network monitoring, security analyses, and 
digi ta l forensics. Wi thou t an accurate traffic classification, the computat ional demands 
imposed by analyzing a l l IP traffic flows are enormous. Classification can also reduce the 
number of flows that must be examined and priori t ized for analysis i n forensic investigations. 

This chapter presents an automated feature el iminat ion method based on a feature 
correlation matr ix . Addi t ional ly , it proposes an enhanced statist ical protocol identification 
method compared to Bayesian network and random forests classification methods that 
offer high accuracy and acceptable performance. E a c h classification method is used wi th 
a subset of features that best suit the method. Methods are evaluated based on their abi l i ty 
to identify the appl icat ion layer protocols and the applications themselves. Experiments 
demonstrate that the random forests classifier yields the most promising results, while the 
proposed enhanced statist ical protocol identification method provides an interesting trade­
off between higher performance and slightly lower accuracy. 

3.2.6 P a p e r V I 

Petr M a t o u š e k , Jan P luska l , O n d ř e j Ryšavý , V l a d i m í r Veselý, M a r t i n K m e t , F i l i p Karp í šek , 
and M a r t i n Vymlá t i l . "Advanced Techniques for Reconstruction of Incomplete Network 
Da ta" . In: Digital Forensics and Cyber Crime. E d . by Joshua I. James and Frank Bre-
itinger. C h a m : Springer International Publ ish ing, 2015, pp. 69-84. I S B N : 9783319255125 

Author ' s part icipat ion: 20 % 
Conference ranking: N / A 

M o t i v a t i o n a n d contr ibut ions 

This paper deals w i t h the reconstruction of incomplete network data and thus answers 
the research question proposed by the previous publ icat ion [72]. Because network data is 
volatile and what is not captured is lost forever, we need to create a robust framework 
supporting these robust applicat ion protocol parsers to extract as much information as 
possible from the applicat ion conversation. Th is paper advances Netfox Framework, orig­
inal ly developed as a part of my master thesis [60], and adds addi t ional functionalities, 
namely support for the processing of encrypted communicat ion implemented by Miros lav 
S l ivka [92], and improved by V i l i a m Letavay [34]. 
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The main contr ibution of this paper is the robust a lgori thm for reassembling potential ly 
incomplete network data, its heuristics, and its abi l i ty to signal this information to the 
applicat ion protocol parsers. This way, conversation tracking is not only using data from 
Internet (L3) and Transport (L4) layers but also embeds the L 4 reassembling. L7PDUs are 
introduced as abstractions of applicat ion messages. 

The analysis showed that without this incorporation of reassembling into the conversa­
t ion tracking, the other N F A T s provided incorrect conversation tracking i n case part icular 
parts of T C P signaling were missing, thus giving the investigators incorrect results. The 
possibil i ty of jo ining mult iple T C P flows into one may lead to false evidence. 

Furthermore, this paper presented a novel approach to Web Mail analysis. It used mul­
t iple H T T P decoders to process webmail communicat ion and search for patterns commonly 
used in that communicat ion. Us ing this approach, we were able to extract the contents of 
webmails from captured traces of several online email services. 

The precondit ion for this webmail and other analyses was implementing S S L / T L S de­
crypt ion support into the tool . W i t h this module activated, it was possible to run appl i ­
cation protocol parsing modules (Snoopers) on decrypted traffic under one of the following 
conditions. E i ther a private server key was included wi th the packet traces in case R S A 
(non-ephemeral) key negotiation was used. O r pre-master secrets from M I T M proxy were 
included. 

Lastly, the paper discussed the possibilities of B i t co in traffic detection and metadata ex­
tract ion. Th is functionality was tested i n a real-world investigation and helped provide 
evidence for a c r imina l investigation of foreign ( E U ) L E A . 

T h e paper has been cited in: 

• Yanchao Wang, Zhongqian Su, and D a y i Song. "F i l e Fragment Type Identification 
wi th Convolut ional Neura l Networks". In: Proceedings of the 2018 International 
Conference on Machine Learning Technologies. A C M . 2018, pp. 41-47 

• D a v i d Muelas, Jorge E Lopez de Vergara, Javier Ramos, Jose Lu i s Garcia-Dorado, and 
Javier A r a c i l . " O n the impact of T C P segmentation: Experience i n V o I P monitoring". 
In: 2011 IF IP /IEEE Symposium on Integrated Network and Service Management 
(IM). I E E E . 2017, pp. 708-713 

• Haidong Ge, N i n g Zheng, L i n C a i , M i n g X u , Tong Qiao, Tao Yang , J inka i Sun, and 
Sudeng H u . "Adapt ive C a r v i n g M e t h o d for L ive F L V Streaming". In: International 
Conference on Collaborative Computing: Networking, Applications and Worksharing. 
Springer. 2017, pp. 554-566 

• D a v i d Muelas Recuenco. "Flexib le Network Moni to r ing and Traffic Analys is Tech­
niques for the Future Internet". P h D thesis. Univers idad A u t o n o m a de M a d r i d , 
2019 

Abstract 

Network forensics is a method of obtaining and analyzing digi ta l evidence from network 
sources. Network forensics includes data acquisition, selection, processing, analysis and 
presentation to investigators. Due to the large volumes of t ransmit ted data, acquired 
information can be incomplete, corrupted, or disordered, making further reconstruction 
difficult. In this paper, we address the issue of advanced parsing and reconstruction of 
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incomplete, corrupted, or disordered data packets. We introduce a technique that recovers 
T C P or U D P conversations so that applicat ion parsers can further analyze them. The 
presented method is implemented i n a new network forensic tool called Netfox Detective. 
We also discuss current challenges in parsing webmail communicat ion, S S L decryption, and 
B i t co in detection. 

3.2.7 P a p e r V I I 

Jan P luska l , Petr M a t o u š e k , O n d ř e j Ryšavý , M a r t i n K m e t , V l a d i m i r Veselý, F i l i p Karp í šek , 
and M a r t i n Vymlá t i l . "Netfox Detective: A tool for advanced network forensics analysis". 
In: Proceedings of Security and Protection of Information (SPI) 2015. Brno , C Z : Brno 
Univers i ty of Defence, 2015, pp. 147-163. I S B N : 9788072319978 

Author ' s part icipat ion: 15 % 
Conference ranking: N / A 

M o t i v a t i o n a n d contr ibut ions 

This paper describes the first i teration of the implementat ion of the Netfox Detective tool . 
The focus is given on the Netfox Framework's architecture, that is, the implementat ion of 
business logic and Netfox Detective, which stood for the implementat ion of the G U I . 

The contr ibution of this work was the composit ion of several d ip loma theses and related 
research projects. M y master thesis [60] produced the Netfox Framework, supported by 
publications at student conferences [73, 65], which also contained a re-implementation of 
my bachelor thesis [56], supported by publ icat ion at student conferences [57]. M a r t i n 
Mares 's master thesis [41] developed the G U I - Netfox Detective. M a r t i n Kmet ' s master 
thesis [28] dealt w i t h detecting of R T P traffic without signaling information obtained from 
SIP. V l a d i m i r Vesely's PmLib [98] implemented logic to open P C A P files and parsed packets 
up to the transport layer. 

This paper proposed a research question regarding the importance of correct processing 
of incomplete network data. The concrete method that allows the extraction of V o I P 
communicat ion without signaling from SIP [28], even when a por t ion of the communicat ion 
is missing, is presented wi th a more generic solution described in the following paper [45]. 

T h e paper has been cited in: 

• Beatr iz Pa r r a de Gal lo . "Advances i n the appl icat ion of Ontologies in the area of 
D ig i t a l Forensic Electronic M a i l " . In: IEEE Latin America Transactions 17.10 (2019), 
pp. 1694-1705 

• Carol ine Wanj i ra Machar ia . "Main ta in ing a bi tcoin address repository through fo­
cused web crawling". M A thesis. Strathmore University, 2017 

Abstract 

Network forensics is a process of capturing, collecting, and analyzing network data for infor­
mat ion gathering, legal evidence, or intrusion detection. The new Internet generation opens 
novel opportunities for cybercrime activities and security incidents using network applica­
tions. Security administrators and L E A (Law Enforcement Agency) officers are challenged 
to use advanced tools and techniques to detect unlawful or unauthorized activities. In case 
of grave suspicion of c r imina l activity, network forensic tools and techniques are used to find 
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legal evidence in a captured network communicat ion that proves or disproves the suspect's 
part icipat ion in that activity. 

Today, various commercial or free tools for network forensic analysis are available, e.g., 
Wireshark, Network Miner , NetWitness , X p l i c o , Netlntercept, or PacketScan. M a n y of 
these tools fail to successfully reconstruct communicat ion when using incomplete, dupl i ­
cated, or corrupted input data. Investigators also require advanced automatic processing 
of applicat ion data that helps them to see the actual content of the conversation, including 
chats, V o I P talks, file transmission, email exchange, etc. 

Our research focuses on designing and implementing a modular framework for network 
forensics w i th advanced possibilities for applicat ion reconstruction. The proposed archi­
tecture consists of (i) input packet processing, (ii) an advanced reconstruction of L 7 con­
versations, and (iii) application-based analysis and presentation of L 7 conversations. Our 
approach employs various advanced reconstruction techniques and heuristics that work even 
w i t h corrupted or incomplete data, e.g., one-directional flows, missing synchronization, un­
bounded conversations, etc. 

The proposed framework was implemented in a tool called Netfox Detective developed 
by our research group. This paper shows its architecture from a functional and logical 
point of view and its applicat ion i n the reconstruction of webmail traffic, VoIP , and R T P 
transmissions. 

3.3 Relevant Publications not Included in this Dissertation 

1. Jan P luska l . Netfox Detective 2.0 - Nástroj pro sítovou forenzní analýzu. Czech. 
Tech. rep. F IT-TR-2017-06 , C Z , 2017, p. 16 

Author ' s par t ic ipat ion: 100% 

2. Jan P luska l , O n d ř e j Lichtner, and O n d ř e j Ryšavý . Netfox Detective - Identifikace 
aplikačních protokolů pomocí algoritmů strojového učení. Czech. Tech. rep. F I T - T R -
2017-05, C Z , 2017, p. 19 

Author ' s part icipat ion: 90 % 

3. Jan P luska l , O n d ř e j Ryšavý , and V l a d i m i r Veselý. "NetFox - The network forensic 
extandable analysis tool" . In: 6th AFCEA Student Conference Future of Information 
and Communication Technology. Bucharest, R O : Universi ty Pol i tehnica of Bucharest, 
2014, pp. 68-71. I S B N : 9786065510470 

Author ' s part icipat ion: 90 % 

4. Jan P luska l . "NetFox.Framework - The network forensic extandable analysis tool" . 
In: Proceedings of the 20th Conference STUDENT EEICT 2014 Volume 2. Brno , C Z : 
Brno Univers i ty of Technology, 2014, pp. 280-282. I S B N : 9788021449237 

Author ' s par t ic ipat ion: 100% 

5. Jan P luska l . " A n a l ý z a a rekonstrukce komunikace typu instant messaging ( Y M S G a 
I C Q ) " . Czech. In: Proceedings of the 18th Conference Student EEICT 2012 Volume 
1. Brno , C Z : Facul ty of Information Technology B U T , 2012, pp. 176-178. I S B N : 

9788021444607 

Author ' s par t ic ipat ion: 100% 
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1. T E N A C I T y : Travell ing intel l igENce Against C r i m e and Terrorism, team 
member, EC EU - HORIZON EUROPE, 101074048, 2022-2025 

2. Development of Decoder for IP Traffic, deputy team leader, team member, 
VH20192021043, Ministry of the interior of the Czech Republic, 2019-2021 

3. M o d e r n and O p e n Study Techniques, team member, O P V V V P 0 2 E S F , Min­
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tool for web activity monitoring, [Computer Software]. 2019 
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3. P lu ska l Jan. SupportApp. [Computer Software]. 2018 

4. P lu ska l Jan. Netfox Detective 2.0 - Nástroj pro sítovou forenzní analýzu. [Computer 
Software]. 2017 
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zapouzdřeného sítového provozu. [Computer Software]. 2017 

6. J a n e č e k Ví t , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Modul pro zpracování 
zapouzdřeného sítového provozu. [Computer Software]. 2017 

7. P lu ska l Jan. Appldent - Tool for Network Application Protocols Identification. [Com­
puter Software]. 2017 

8. Vondráček M a r t i n , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Automation of 
MitM Attack on WiFi Networks. [Computer Software]. 2016 

9. M a r u š i c Marek, P lu ska l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Automatization of 
MitM Attack for SSL/TLS Decryption, software. [Computer Software]. 2016 
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10. H v ě z d a M a t ě j , P lu ska l Jan , R y š a v ý O n d ř e j , and M a t o u š e k Petr . Network Forensics 
Distrubuted Platform. [Computer Software]. 2016 

11. Letavay V i l i a m , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Reconstruction of 
Captured Communication on iOS Platform. [Computer Software]. 2016 

12. J a n e č e k Ví t , P lu ska l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Web Traffic Data 
Export to MAFF. [Computer Software]. 2016 

13. P lu ska l Jan, K m e t M a r t i n , Ka rp í š ek F i l i p , R y š a v ý O n d ř e j , Veselý Vlad imí r , and 
M a t o u š e k Petr . Netfox Detective - a network forensics tool for analyzing network 
traffic. [Computer Software]. 2015 

14. P lu ska l Jan, Veselý Vlad imí r , R y š a v ý O n d ř e j , and M a t o u š e k Petr . Netfox.Framework 
- Network traffic decoder and content analyzer. [Computer Software]. 2013 

3.6 Invited Speeches, Presentations and Posters 

1. Jan P luska l . Workshop on Correlating Blockchain Activity with Real-Life Events and 
Users. [Invited speech]. ISS W o r l d A s i a , Duba i , Uni ted A r a b Emirates, 2022 

2. Jan P luska l . Intercepting and Collecting Web Evidence in the Times of TLS1.3 and 
HTTP 3.0. [Invited speech]. ISS W o r l d A s i a , Duba i , Un i t ed A r a b Emirates , 2022 

3. Jan P luska l . Intercepting and Collecting Web Evidence in the Times of TLS1.3 and 
HTTP 3.0. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic , 2021 

4. Jan P luska l and Veselý V lad imí r . Intercepting and Collecting Web Evidence in the 
Times of TLS1.3 and HTTP 3.0. [Invited speech]. ISS W o r l d A s i a , Duba i , Uni ted 
A r a b Emirates , 2021 

5. Jan P luska l . Cryptocurrency Investigation Workshop. [Invited speech]. ISS W o r l d 
As i a , Duba i , Un i t ed A r a b Emirates, 2020 

6. Jan P luska l . Towards Fully Automated Infinitely Scalable and Maximally Effective 
Password Cracking of Encrypted Documents. [Invited speech]. ISS W o r l d A s i a , Duba i , 
Un i t ed A r a b Emirates , 2020 

7. Jan P luska l . ISS MEA 2020 - SSL/TLS Interception Workshop (TLS 1.3 Edition). 
[Invited speech]. ISS W o r l d M E A , Duba i , Un i t ed A r a b Emirates, 2020 

8. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech]. 
ISS W o r l d A s i a , K u a l a Lumpur , Malays ia , 2019 

9. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech]. 
ISS W o r l d M E A , Duba i , Un i t ed A r a b Emirates , 2019 

10. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech]. 
ISS W o r l d Europe, Prague, Czech Republ ic , 2019 

11. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech]. 
ISS W o r l d A s i a , K u a l a Lumpur , Malays ia , 2018 
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12. Jan P luska l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech]. 
ISS W o r l d Europe, Prague, Czech Republ ic , 2018 

13. Jan P luska l , O n d ř e j Ryšavý , and M a t o u š e k Petr . Detection, and Analysis of SIP 
Fraud Attack on 100Gb Ethernet with NEMEA System. [Invited speech]. Cybersecu-
ri ty and Privacy, Pr i s t ina , Kosovo, 2017 

14. Jan P luska l . Detection, and Analysis of SIP Fraud Attack on 100Gb Ethernet with 
NEMEA System. [Presentation]. I R T F N M G R Workshop, Ber l in , 2016 

15. Jan P luska l , O n d ř e j Ryšavý , and Petr M a t o u š e k . " O n the Identification of App l i ca ­
tions from Captured Network Traffic". In: 8th International Conference on Digital 
Forensics & Cyber Crime. [Poster]. New York , 2016. U R L : https://prezi.com/ 
wnxlghgkocti 

16. Jan P l u s k a l and O n d ř e j R y š a v ý . Network Forensic Tool Netfox Detective. [Invited 
speech]. Cybersecuri ty and Privacy, Pr i s t ina , Kosovo, 2016 

17. Jan P luska l , V lad imí r Veselý, M a t ě j Grégr , and O n d ř e j Ryšavý . TLS/SSL Decryption 
Workshop. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic , 2016 

18. Jan P l u s k a l and O n d ř e j R y š a v ý . Concepts of Intercepted Communication Processing 
with Netfox Detective. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic , 
2015 
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Technology, 2021. U R L : https://www.fit.vut.cz/study/thesis/22857/ 

2. R icha rd Stehl ík . " Ú t o k na W i F i síť s v y u ž i t í m ESP32 /8266" . Czech. Master 's thesis. 
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2021. 
U R L : https://www.fit.vut.cz/study/thesis/23435/ 

3. M a r t i n a Zembjaková . "Network Forensics Tools Survey and Taxonomy". Master 's 
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 
2021. U R L : https://www.fit.vut.cz/study/thesis/23022/ 

4. T o m á š Cikel. " B e z p e č n o s t n í a n a l ý z a d o m á c í IoT s í t ě" . Slovak. Bachelor's thesis. 
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2020. 
U R L : https://www.fit.vut.cz/study/thesis/23135/ 

5. Juraj K u b i š . "SS7 Honeypoty - p r o a k t i v n í ochrana prot i p o d v o d ů m v mobi ln ích 
s í t ích". Czech. Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty 
of Information Technology, 2020. U R L : https://www.fit.vut.cz/study/thesis/ 
23130/ 

6. Jozef Zuzelka. "Con t ro l of Ex te rna l Devices on macOS to Prevent D a t a Leaks". 
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2020. U R L : https://www.fit.vut.cz/study/thesis/22637/ 
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7. T o m á š A m b r o ž . "Ana ly t i cké webové p r o s t ř e d í pro zp racován í síťové komunikace". 
Czech. Master 's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22049/ 

8. Dan ie l Dušek . "Web App l i ca t i on Penetrat ion Testing Automat ion" . Master 's thesis. 
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019. 
U R L : https://www.fit.vut.cz/study/thesis/21678/ 
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Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019. 
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10. M a r t i n Vondráček . "Security Analys is of Immersive V i r t u a l Real i ty and Its Implica­
tions". Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22158/ 

11. S imon Pod l e sný . "Automatizace M I T M ú t o k ů za použ i t í j ednodeskového poč í t a če" . 
Czech. Bachelor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22142/ 

12. V i l i a m Letavay. "Zpracován í síťové komunikace v d i s t r i b u o v a n é m p r o s t ř e d í " . Czech. 
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2018. U R L : https://www.fit.vut.cz/study/thesis/20432/ 

13. Hana S lámová . "Refaktorizace síťového forenzního n á s t r o j e Netfox Detective". Czech. 
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2018. U R L : https://www.fit.vut.cz/study/thesis/20380/ 

14. T o m á š Chomo. "Identifikace ap l ikačn ích p ro toko lů" . Czech. Bachelor's thesis. Brno , 
C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2017. U R L : 
https://www.fit.vut.cz/study/thesis/20191/ 

15. Jozef Zuzelka. " N á s t r o j pro zachycení síťového provozu s a p l i k a č n í m tagem". Czech. 
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2017. U R L : https://www.fit.vut.cz/study/thesis/20013/ 

16. J i nd ř i ch Dudek. "Rekonstrukce zachycené komunikace ze sociálních s í t í " . Czech. 
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18433/ 

17. M a t ě j Hvězda . "D i s t r i buované zp racován í zachycené síťové komunikace". Czech. 
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18434/ 

18. V i l i a m Letavay. "Rekonstrukce zachycené komunikace na p l a t fo rmě i O S " . Czech. 
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information 
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18557/ 

19. Marek Maruš i c . "Automatizace M i t M ú t o k u pro dešifrování S S L / T L S " . Czech. Bach­
elor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Information Tech­
nology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18593/ 
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Chapter 4 

Conclusions 

This chapter summarizes the research presented i n this dissertation. The approach followed 
is outlined, and the results obtained are discussed. Future research directions are proposed 
based on the experience gained. 

4.1 The Research Approach 

This dissertation does not consist of basic research as is customary but describes the ad­
vances i n my applied research. 

M y research began around 2012, w i th my bachelor thesis focused on the reconstruction 
of Y M S G and O S C A R instant communicat ion protocols. I have realized that creating 
single-purpose tools may br ing unnecessary overhead considering its maintainabi l i ty and 
extensibili ty to cover addi t ional network protocols. In my master thesis, I developed a 
framework for reconstructing captured network communicat ion that required abstracted 
data preprocessing steps and provided a unified interface for appl icat ion protocol parsers 
to improve this state. To my shame, I realized that I had not conducted rigorous state-of-
the-art research to compare the capabilities of existing network forensic tools, identify their 
weaknesses, choose the research area, and improve the state-of-the-art. 

A t the beginning of my doctoral studies, i n 2014, I started to experiment w i th the most 
advanced open source network forensic and analysis tools and network security monitor ing 
tools (according to P i l l i and Joshi [53]; see Table 2.3) at that time, namely Wireshark, 
Network Monitor, Xplico, Network Miner, and PyFlag. W i t h these experiments, I gained 
an understanding of the usabil i ty of these tools and also their capabilities. Us ing these 
experiments combined w i t h the experience gained i n my previous work, I created a list 
containing the four pr imary research objectives (see Section 1.3) I wanted to improve. 

Dur ing the literature review, I realized that not a negligible number of research papers 
do not allow for reproducibi l i ty of their results by lacking either a description or better 
concrete implementat ion of the methods they describe. This observation has convinced 
me to explain my experiments, input data, and results precisely and to attach a concrete 
implementation wi th the datasets I used. Furthermore, my long-term goal was to create a 
tool to help L E A investigators i n their dai ly work. I have used this opportuni ty to util ize 
this tool as a base framework for my research experiments and have extended it to most of 
my research results. 
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4.2 Contributions 

This section summarizes my research contributions, while a complete and detailed de­
scription is provided along w i t h the attached papers in Section 3.2. The most significant 
contr ibution of this work was the identification of research objectives, see Section 1.3, which 
could enrich the state-of-the-art. 

Contr ibut ions to the capturing and processing of in/complete network data 
consist of identifying subopt imal mechanisms used in several N E A T and N S M tools [43, 
54]. Th is may result i n inaccurate L4 and application conversation tracking, which yields 
fewer conversations than actually occurred. Th is applies only in the case where the cap­
tured communicat ion was incomplete. Consequently, these tools w i l l extract artifacts from 
the contents of the appl icat ion protocol and assign them to these inaccurately tracked 
conversations. E a c h L 4 and applicat ion protocol conversation is assigned to an entity / 
identity responsible for the communicat ion. Inaccurate conversation tracking merges mul­
t iple conversations into one, which may assign artifacts from the missed conversation to 
the previously identified one, resulting i n the creation of false evidence. Furthermore, we 
have determined that some N E A T and N S M tools [43, 54] are not fully implementing T C P 
reassembling and cannot extract the content of an applicat ion message i f the TCP sequence 
number overflows. Furthermore, concerning reassembling incomplete T C P conversations, 
some tools [43, 54] stop the artifact extraction process after the first missing data occurs. 
Th is approach may omit crucial evidence of act ivi ty that occurred i n the communicat ion 
after the first missing data. In the publications mentioned above, we proposed a method to 
remedy this si tuation using heuristics based on information from transport protocols. A s a 
prel iminary step, we have considered the possibil i ty of capturing local network traffic using 
M i t M proxies that are intrusively deployed on W i - F i networks [73, 74]. 

Contr ibut ions to application protocol and finer-grained application identifica­
tion are described in detai l in the enclosed papers [56, 54]. The major contr ibution of this 
research is to show that not only can applicat ion protocols be identified using M L algo­
ri thms, but we can also identify, w i th a lower probabili ty, applications that were used to 
generate that communicat ion. Secondary contributions are open source publ ic ly available 
datasets for research verification and open source implementations of mult iple classification 
algorithms that may serve as a playground for further research related to feature engi­
neering and hyper parameter tuning. Addi t ional ly , we revisited commonly used features for 
applicat ion protocol classification and proposed adding new features based on information 
gained by reassembling applicat ion messages. Th is approach may eliminate certain noise 
introduced by IP fragmentation and T C P segmentation. Our addi t ional contr ibut ion to 
feature engineering for t radi t ional M L algorithms was the introduct ion of automated fea­
ture el iminat ion based on feature correlation computed from our annotated dataset. The 
last contr ibut ion was the proposit ion of a novel statistical-based method that inherently 
contained feature el iminat ion and d id not require this addi t ional pre-training step. 

Contr ibut ions to what should be the architecture of network forensic tool / scale 
or not to scale research questions were addressed i n the publications [39, 38]. In this 
research, we were looking for possibilities to increase the throughput of capture traffic 
network processing using horizontal scalability. Inspired by Valentin 's [70] usage of the 
actor model, we have designed and implemented a framework capable of linear scalabili ty 
while respecting advanced processing features for heuristical handling of incomplete data 
described in other enclosed publications [43, 56]. The overall contr ibution is a pract ical 
demonstration supported by rigorous measurements that show the feasibility of horizontal 

37 



scalabili ty for increasing the performance of N F A T s . The secondary contr ibution is the 
creation of a P o C specimen [72] composed of low-cost / low-power computers on a single 
board. 

Contr ibut ions to the processing of tunneled and overlay networks i n network foren­
sic analysis lie in identifying the need to address the underlying network encapsulation [55, 
58, 54] correctly. Omi t t ing , for example, V L A N tags may m i x up unrelated flows, sim­
i lar ly to incorrect T C P reassembling of incomplete communicat ion. O u r contr ibut ion to 
this topic is the analysis of Generic Stream Encapsulation (GSE) and the creation of its 
P o C processing unit incorporated into our N F A T Netfox Detective tool , while being the 
only N F A T tool that supports it. 

This work la id the theoretical ground for a research project sponsored by the Czech 
M i n i s t r y of Interior (VH20192021043). 

4.3 Future Work 

Considering the experience gained i n the field of Network Forensic Analys is , I would like 
to outline future research directions that seem promising: 

• Investigation of possible data sources for forensic investigation. A lawful interception 
at the Internet Service Provider level is de facto standard, but addi t ional points in 
the network infrastructure may also be beneficial. R ichard Stehlik's master thesis [68] 
introduces one of the promising directions. 

• A deeper analysis of appl icat ion communicat ion patterns and metadata extraction is 
the key to fighting omnipresent encryption. Identifying not only an applicat ion pro­
tocol but also an applicat ion and type of communicat ion such as text, voice message, 
interactive ca l l , etc., may allow the use of standardized analyt ical approaches for C a l l 
De ta i l Records ( C D R s ) from the telecommunication world in the network forensic 
investigation. 

• A correlation of patterns observed from network traffic captured on mult iple points 
in the network to prove that entities were i n contact, e.g., V o I P ca l l routed through a 
third-party proxy may have the same characteristics on both sides of a broker; thus, 
the correlation may identify cal l ing parties. 

4.4 Final Notes 

The presented dissertation outl ined research conducted i n the Networks and Dis t r ibuted 
Systems Research Group (NESCDFIT), at the Facul ty of Information Technology, under 
the Brno Universi ty of Technology i n the field of Network Forensic Analys is , which I have 
part icipated i n i n the last decade. The goal of this research is consistent w i th the needs 
of the Czech L a w Enforcement Agencies that supported the selected research objectives 
presented in this work. The results of this research have been given to end users along the 
lines of L E A investigators. To the best of my knowledge, they are being used or considered 
for pract ical applications. 

38 



Bibliography 

[1] John Althouse, Jeff A tk inson , and Josh Atk ins . J A3 - A method for profiling SS-
L/TLS Clients, https://github.com/salesforce/ja3/. 2017. 

[2] Blake Anderson and D a v i d M c G r e w . " T L S Beyond the Browser: Combin ing E n d 
Host and Network D a t a to Understand App l i ca t i on Behavior" . In: I M C '19. A m ­
sterdam, Netherlands: Associat ion for Comput ing Machinery, 2019, pp. 379-392. 
I S B N : 9781450369480. D O l : 10.1145/3355369.3355601. U R L : https://doi.org/ 
10.1145/3355369.3355601. 

[3] E Anderson and M A r l i t t . " F u l l packet capture and offline analysis on 1 and 10 gb 
networks". In: (2006). 

[4] Sabeel Ansa r i , S G Rajeev, and H S Chandrashekar. "Packet sniffing: a brief intro­
duct ion" . In: IEEE potentials 21.5 (2003), pp. 17-19. 

[5] Pa l l av i A s r o d i a and V i s h a l Sharma. "Network monitor ing and analysis by packet 
sniffing method". In: International Journal of Engineering Trends and Technology 
(IJETT) 4.5 (2013), pp. 2133-2135. 

[6] T o m A u l d , Andrew W Moore, and Stephen F G u l l . "Bayesian neural networks for 
internet traffic classification". In: IEEE Transactions on neural networks 18.1 (2007), 
pp. 223-239. 

[7] Nicole Beebe. "D ig i t a l forensic research: The good, the bad and the unaddressed". 
In: IFIP International Conference on Digital Forensics. Springer. 2009, pp. 17-36. 

[8] Joshua Broadway, Benjamin Turnbul l , and J i l l Slay. "Improving the Analys is of 
Lawful ly Intercepted Network Packet D a t a Captured for Forensic Analys i s" . In: 
2008 Third International Conference on Availability, Reliability and Security. 2008, 
pp. 1361-1368. D O l : 10.1109/ARES. 2008.122. 

[9] Ehe Burszte in . "Probabi l is t ic identification for hard to classify protocol". In: IFIP 
International Workshop on Information Security Theory and Practices. Springer. 
2008, pp. 49-63. 

[10] Eoghan Casey. "Network traffic as a source of evidence: tool strengths, weaknesses, 
and future needs". In: Digital Investigation 1.1 (2004), pp. 28-43. ISSN: 1742-2876. 

[11] Clement C h a u . "YouTube as a part icipatory culture". In: New directions for youth 
development 2010.128 (2010), pp. 65-74. 

[12] V i c k a Corey, Charles Peterman, Syb i l Shearin, Michae l S Greenberg, and James V a n 
Bokkelen. "Network forensics analysis". In: IEEE Internet Computing 6.6 (2002), 
pp. 60-66. 

39 

https://github.com/salesforce/ja3/
https://doi.org/


Valerio D'Alessandro, Byungchul Park, L u i g i Romano, Chr is tof Fetzer, et a l . "Scal­
able network traffic classification using distr ibuted support vector machines". In: 
2015 IEEE 8th International Conference on Cloud Computing. I E E E . 2015, pp. 1008-
1012. 

Shuaifu D a i , A l o k Tongaonkar, X i a o y i n Wang, Anton io Nucc i , and D a w n Song. "Net-
workProfiler: Towards automatic fingerprinting of A n d r o i d apps". In: Proceedings -
IEEE INFOCOM (2013), pp. 809-817. I S S N : 0743166X. D O I : 10. 1109/INFCOM. 
2013.6566868. 
Sherri Davidoff and Jonathan H a m . Network forensics: tracking hackers through 
cyberspace. V o l . 2014. Prentice ha l l Upper Saddle River , 2012. 

L u c a Der i et a l . "Improving passive packet capture: Beyond device pol l ing" . In: 
Proceedings of SANE. V o l . 2004. Amsterdam, Netherlands. 2004, pp. 85-93. 

E N I S A . Introduction to Network Forensics. Tech. rep. European U n i o n Agency for 
Cybersecuri ty ( E N I S A ) , 2019. D O I : 10.2824/995110. 
Jeffrey E r m a n , A n i r b a n Mahan t i , M a r t i n A r l i t t , Ira Cohen, and Carey Wi l l i amson . 
"Offline/realtime traffic classification using semi-supervised learning". In: Perfor­
mance Evaluation 64.9 (2007), pp. 1194-1213. 

Alessandro Finamore, Marco Me l l i a , and Miche la Meo. " M i n i n g unclassified traf­
fic using automatic clustering techniques". In: International Workshop on Traffic 
Monitoring and Analysis. Springer. 2011, pp. 150-163. 

V a h i d Aghaei Foroushani and A N u r Zinc i r -Heywood. "Investigating applicat ion 
behavior i n network traffic traces". In: Computational Intelligence for Security and 
Defense Applications (CISDA), 2013 IEEE Symposium on. I E E E . 2013, pp. 72-79. 

Yanjie F u , H u i X i o n g , Xin j i ang L u , J i n Yang , and C a n Chen. "Service usage classi­
fication w i t h encrypted internet traffic in mobile messaging apps". In: IEEE Trans­
actions on Mobile Computing 15.11 (2016), pp. 2851-2864. 

Simson Garfmkel. "D ig i t a l forensics research: The next 10 years". In: Digital Inves­
tigation 7 (2010), S64-S73. 

Simson Garfmkel. "Network Forensics: Tapping the Internet". In: O'Reilly Network 
(2002). 

Gabr ie l Gomez Sena and Pablo Belzarena. " E a r l y traffic classification using support 
vector machines". In: Proceedings of the 5th International Latin American Network­
ing Conference. A C M . 2009, pp. 60-66. 

V i k r a m S Harichandran, Frank Breitinger, Ibrahim Baggi l i , and Andrew Marr ing ton . 
" A cyber forensics needs analysis survey: Revis i t ing the domain's needs a decade 
later". In: Computers & Security 57 (2016), pp. 1-13. 

Lukas Hejcman. "Fingerpr int ing and Identification of T L S Connections". Bachelor's 
thesis. Brno , C Z : B r n o Univers i ty of Technology, Facul ty of Information Technology, 
2021. U R L : https://www.fit.vut.cz/study/thesis/23922/. 
E r i k Hjelmvik. "The S P I D algorithm-statist ical protocol identification". In: Gavle, 
Sweden, October (2008). 

E r i k Hjelmvik and Wolfgang John. "The S P I D A l g o r i t h m " . In: Swedish National 
Computer Networking Workshop. 2009, p. 21. 

40 

https://www.fit.vut.cz/study/thesis/23922/


K a m i l J e ř á b e k and O n d ř e j R y š a v ý . " B i g data network flow processing using Apache 
Spark". In: Proceedings of the 6th conference on the engineering of computer based 
systems. 2019, pp. 1-9. 
R . C . Joshi and Emmanue l S. P i l l i . "Network Forensic Tools". In: Fundamentals of 
Network Forensics. E d . by A . J . Sammes. Springer, 2016. Chap . 4, pp. 71-93. I S B N : 

978-1-4471-7297-0. D O l : 10.1007/978-1-4471-7299-4{\_>4. 
R . C . Joshi and Emmanue l S. P i l l i . Fundamentals of Network Forensics. Springer, 
2016. 
L u k á š Kekely , Jan K u č e r a , V i k t o r P u š , Jan Kořenek , and Athanasius V . Vasilakos. 
"Software Defined Moni to r ing of App l i ca t i on Protocols" . In: IEEE Transactions on 
Computers 65.2 (2016), pp. 615-626. D O l : 10.1109/TC.2015.2423668. 
Jawad Khal i fe , A m j a d Hajjar, and Jesus Diaz-Verdejo. " A mult i level taxonomy and 
requirements for an op t imal traffic-classification model" . In: International Journal 
of Network Management 24.2 (2014), pp. 101-120. 
Suleman K h a n , A b d u l l a h G a n i , A i n u d d i n W a h i d A b d u l Wahab, M u h a m m a d Shiraz, 
and Iftikhar A h m a d . "Network forensics: Review, taxonomy, and open challenges". 
In: Journal of Network and Computer Applications 66 (2016), pp. 214-235. I S S N : 

1084-8045. D O l : https : //doi . org/10 .1016/j . jnca. 2016 . 03 . 005. U R L : https : 
//www.sciencedirect.com/science/article/pii/S1084804516300121. 
Christopher K ö n n e n , Chr i s t i an Ubera l l , F lo r i an Adamsky , Veselin Rakocevic, M u t -
tukrishnan Rajarajan, and Rudol f J äge r . "Enhancements to Stat is t ical Pro toco l 
IDentification (SPID) for Self-Organised QoS i n L A N s . " In: ICCCN. 2010, pp. 1-6. 
Christopher K ö n n e n , Chr i s t i an Übera l l , F lo r i an Adamsky , Veselin Rakočev ié , M u t -
tukrishnan Rajarajan, and Rudol f J äge r . "Enhancements to Stat is t ical Pro toco l 
IDentification (SPID) for self-organised QoS i n L A N s " . In: Proceedings - Interna­
tional Conference on Computer Communications and Networks, ICCCN. 2010. 
Stefan Kornex l , Vern Paxson, Holger Dreger, A n j a Feldmann, and R o b i n Sommer. 
"Bu i ld ing a t ime machine for efficient recording and retrieval of high-volume net­
work traffic". In: 5th Internet Measurement Conference. U S E N I X Associat ion. 2005, 
pp. 267-272. 
V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . " A Scalable Archi tecture for Net­
work Traffic Forensics". In: The Fifteenth International Conference on Networking 
and Services ICNS 2019. Athens, G R : The International Academy, Research and 
Industry Associat ion, 2019, pp. 32-36. I S B N : 9781612087115. 
V i l i a m Letavay, Jan P luska l , and O n d ř e j Ryšavý . "Network Forensic Analys is for 
Lawful Enforcement on Steroids, Dis t r ibuted and Scalable". In: Proceedings of the 
6th Conference on the Engineering of Computer Based Systems. A C M . 2019. I S B N : 

9781450376365. 
A k h y a r Lub i s and A n d y s a h Pu te ra U t a m a Siahaan. "NetworkForensic App l i ca t i on 
i n General Cases". In: IOSR Journal of Computer Engineering (IOSR-JCE) 18.6 
(2016), pp. 41-44. D O l : 10.9790/0661-1806044144. 
Y a n Luo , K e X i a n g , and Sanping L i . "Accelerat ion of decision tree searching for I P 
traffic classification". In: Proceedings of the 4th ACM/IEEE Symposium on Archi­
tectures for Networking and Communications Systems. A C M . 2008, pp. 40-49. 

41 

http://www.sciencedirect.com/science/article/pii/S1084804516300121


Marie-Helen Maras . "Network Forensics: A n Introduction". In: Computer Foren-
sics: Cybercriminals, Laws, and Evidence. Second. Jones & Bart le t t Learning, 2015. 
Chap. 12. I S B N : 978-1-4496-9222-3. 
Petr M a t o u š e k , Jan P luska l , O n d ř e j Ryšavý , V l a d i m í r Veselý, M a r t i n K m e t , F i l i p 
Karp í šek , and M a r t i n Vymlá t i l . "Advanced Techniques for Reconstruct ion of In­
complete Network Da ta" . In: Digital Forensics and Cyber Crime. E d . by Joshua I. 
James and Frank Breit inger. C h a m : Springer International Publ ish ing, 2015, pp. 69-
84. I S B N : 9783319255125. 
D a v i d M c G r e w , Brandon Enr ight , and Blake Anderson. Mercury: network metadata 
capture and analysis, https://github.com/cisco/mercury. 2019. 
Natarajan Meghanathan, Sumanth Reddy A l l a m , and Lore t ta A Moore . " T O O L S 
A N D T E C H N I Q U E S F O R N E T W O R K F O R E N S I C S " . In: International Journal of 
Network Security & Its Applications (IJNSA) 1.1 (Apr . 2009), pp. 14-25. 
Stanislav Miskovic , Gene M o o Lee, Yong Liao , and M a r i o B a l d i . " A p p P r i n t : Au to ­
matic fingerprinting of mobile applications in network traffic". In: Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics). V o l . 8995. Springer Verlag, 2015, pp. 57-69. 
Andrew W Moore and Kons tan t ina Papagiannaki . "Toward the accurate identi­
fication of network applications". In: Passive and Active Network Measurement 
3431 (2005). E d . by Constant inosEdi tor Dovrol is , pp. 41-54. U R L : http://www. 
springerlink.com/index/re7ej Ouj 7eep2htl.pdf. 
Neeraj Namdev, Shikha Agrawal , and Sanjay Si lkar i . "Recent advancement i n ma­
chine learning based internet traffic classification". In: Procedia Computer Science 
60 (2015), pp. 784-791. 
NetQuest . 1-9100 100/40/10G Interceptor Network Monitoring Access solutions for 
today's intelligent packet optical transport networks. Jan . 2021. U R L : https : / / 
netquestcorp . com/wp- content /uploads / 2021 / 01 /NQ-1 - 9100-Interceptor-
Datasheet-2.pdf (visited on 05/08/2022). 
NetQuest . ISS World Training - Intelligent Support Systems for Lawful Interception, 
Electronic Surveillance and Cyber Intelligence Gathering. M a y 2022. U R L : https : 
//www.issworldtraining.com/ (visited on 05/08/2022). 
T h u y T T Nguyen and Grenvi l le Armi tage . " A survey of techniques for internet 
traffic classification using machine learning". In: IEEE Communications Surveys & 
Tutorials 10.4 (2008), pp. 56-76. 
Gary Palmer . " A Framework for D i g i t a l Forensic Scrience Par t of A R o a d M a p 
for D i g i t a l Forensic Research". In: Digital Forensic Research Conference (DFRWS). 
2001, pp. 15-20. 
Emmanue l S. P i l l i , Ramesh C . Joshi, and Rajdeep Niyog i . "Network forensic frame­
works: Survey and research challenges". In: Digital Investigation 7.1 (2010), pp. 14-
27. 
Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-
source network forensics analysis too l" . In: Forensic Science International: Digital 
Investigation 35 (2020), p. 301019. I S S N : 2666-2817. 

42 

https://github.com/cisco/mercury
http://www
http://www.issworldtraining.com/


Jan P luska l , M i c h a l K o u t e n s k ý , M a r t i n Vondráček , and O n d ř e j R y š a v ý . "Network 
Forensic Investigations of Tunneled Traffic: A Case Study". In: Revue roumaine des 
sciences techniques. Série Electrotechnique et Energétique 64.4 (2019), pp. 429-434. 
I S S N : 0035-4066. 

Jan P luska l , O n d ř e j Lichtner, and O n d ř e j R y š a v ý . "Traffic Classification and A p p l i ­
cation Identification in Network Forensics". In: Fourteenth Annual IFIP WG 11.9 
International Conference on Digital Forensics. E d . by Gi lber t Peterson and Sujeet 
Shenoi. New Delh i , I N : Springer International Publ ish ing, 2018, pp. 161-181. I S B N : 

9783319992778. 

Jan P luska l , Pe t r M a t o u š e k , O n d ř e j Ryšavý , M a r t i n K m e t , V l a d i m i r Veselý, F i l i p 
Karp í šek , and M a r t i n Vymlá t i l . "Netfox Detective: A tool for advanced network 
forensics analysis". In: Proceedings of Security and Protection of Information (SPI) 
2015. Brno , C Z : Brno Universi ty of Defence, 2015, pp. 147-163. I S B N : 9788072319978. 

Jan P luska l , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Forensics i n G S E 
Overlay Networks". In: Proceedings of the 6th Conference on the Engineering of 
Computer Based Systems. A C M . 2019. I S B N : 9781450376365. 

Zdenek Rosa, T o m á š Cejka, M a r t i n Zádník , and V i k t o r Pus . " B u i l d i n g a feedback 
loop to capture evidence of network incidents". In: 2016 12th International Con­
ference on Network and Service Management (CNSM). 2016, pp. 292-296. D O I : 
10 .1109/CNSM.2016.7818435. 

M i n o o R o u h i , Q u i r i n Scheitle, Ol iver Gasser, Chr i s t i an W a h l , M a r c i n Nawrocki , 
Mat th ias Wáhl i sch , Raphael Hiesgen, and Thomas C Schmidt . "Incident Forensics 
in Dis t r ibu ted High-Speed Networks". In: (). 

Javier Rubio-Loyola , Dolors Sala, and A l i Ismail A l i . " M a x i m i z i n g packet loss moni­
toring accuracy for reliable trace collections". In: 2008 16th IEEE workshop on local 
and metropolitan area networks. I E E E . 2008, pp. 61-66. 

Marek R y c h l and O n d ř e j Rysav. " B i g data security analysis w i th tarzan platform". 
In: Journal of Cyber Security and Mobility (2019), pp. 165-188. 

Marek Rych lý and O n d ř e j R y š a v ý . " T A R Z A N : A n integrated platform for secu­
ri ty analysis". In: 2017 Federated Conference on Computer Science and Information 
Systems (FedCSIS). I E E E . 2017, pp. 561-567. 

O l a Salman, Imad H Elha j j , A y m a n Kayss i , and A l i Chehab. " A review on machine 
learning-based approaches for Internet traffic classification". In: Annals of Telecom­
munications 75.11 (2020), pp. 673-710. 

F i l i p o Sharevski. Mobile Network Forensics: Emerging Research and Opportunities: 
Emerging Research and Opportunities. I G I Globa l , 2018. 

Leslie F . Sikos. "Packet analysis for network forensics: A comprehensive survey". 
In: Forensic Science International: Digital Investigation 32 (2020), p. 200892. I S S N : 

2666-2817. D O I : https://doi.Org / 1 0 . 1 0 1 6/j.fsidi . 2 0 1 9 . 2 0 0 8 9 2 . U R L : https: 
//www.sciencedirect.com/science/article/pii /S1742287619302002 . 

Danie l Spiekermann and Tobias Eggendorfer. "Towards D i g i t a l Investigation i n V i r ­
tua l Networks: A Study of Challenges and Open Problems". In: 2016 11th Interna­
tional Conference on Availability, Reliability and Security (ARES). 2016, pp. 406-
413. D O I : 10 .1109 /ARES.2016 .34 . 

43 

https://doi.Org/10.1016/j.fsidi.2019.200892
http://www.sciencedirect.com/science/article/pii/S1742287619302002


Richard Stehl ík . "Útok na W i F i síť s v y u ž i t í m ESP32 /8266" . Czech. Master 's thesis. 
Brno , C Z : Brno Universi ty of Technology, Facul ty of Information Technology, 2021. 
U R L : https://www.fit.vut.cz/study/thesis/23435/. 
Matth ias Val lent in . "Scalable Network Forensics". P h D thesis. U C Berkeley, 2016. 

Mat th ias Val lent in , Vern Paxson, and R o b i n Sommer. " { V A S T } : A Unified P la t form 
for Interactive Network Forensics". In: 13th USENIX Symposium on Networked Sys­
tems Design and Implementation (NSDI16). 2016, pp. 345-362. 

Petr Velan, M i l a n Čermák, Pavel Celeda, and M a r t i n D r a š a r . " A survey of methods 
for encrypted traffic classification and analysis". In: International Journal of Network 
Management 25.5 (2015), pp. 355-374. 

Letavay V i l i a m , P lu ska l Jan, and J e ř á b e k K a m i l . Banana Pi BPI-R2 Cluster Pro­
totype. [Specimen]. 2018. 

M a r t i n Vondráček , J an P luska l , and O n d ř e j Ryšavý . "Automated Man- in- the-Middle 
At tack Against W i - F i Networks". In: The Journal of Digital Forensics, Security and 
Law: JDFSL 13.1 (2018), pp. 59-80. ISSN: 1558-7215. 

M a r t i n Vondráček , Jan P luska l , and O n d ř e j Ryšavý . "Automat ion of M i t M At t ack 
on W i - F i Networks". In: 9th International Conference on Digital Forensics & Cyber 
Crime. V o l . 2018. 216. Springer International Publ i sh ing , 2017, pp. 207-220. ISBN: 
9783319736969. 

P a n Wang, Xuej iao Chen , Feng Ye , and Z h i x i n Sun. " A Survey of Techniques for 
Mobi le Service Encryp ted Traffic Classification Us ing Deep Learning" . In: IEEE 
Access 7 (2019), pp. 54024-54033. D O l : 10.1109/ACCESS.2019.2912896. 
Y i P e n g Wang, Xiaochun Y u n , Yongzheng Zhang, L iwe i Chen , and T iann ing Zang. 
"Reth inking robust and accurate applicat ion protocol identification". In: Computer 
Networks 129 (2017), pp. 64-78. ISSN: 1389-1286. D O l : https://doi.org / 1 0 . 1 0 1 6 / 
j . comnet . 2017 . 09 . 006. U R L : https : / / www . sciencedirect . com/ science/ 
article/pii / S 1 3 8 9 1 2 8 6 1 7 3 0 3 5 7 2 . 

M a r t i n a Zembjaková . "Network Forensics Tools Survey and Taxonomy". Master 's 
thesis. Brno , C Z : B r n o Univers i ty of Technology, Facul ty of Information Technology, 
2021. U R L : https://www.fit.vut.cz/study/thesis /23022/ . 

J i an Zhang and A n d r e w Moore . "Traffic trace artifacts due to moni tor ing v i a port 
mirror ing" . In: 2007 Workshop on End-to-End Monitoring Techniques and Services. 
I E E E . 2007, pp. 1-8. 

44 

https://www.fit.vut.cz/study/thesis/23435/
https://doi.org/10.1016/
https://www.fit.vut.cz/study/thesis/23022/


Appendix A 

Included Papers 

A . l Net fox detective: A novel open-source network forensics 
analysis tool 

Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-source 
network forensics analysis too l" . In: Forensic Science International: Digital Investigation 
35 (2020), p. 301019. ISSN: 2666-2817 

45 



Forensic Science International: Digital Investigation 35 (2020) 301019 

Con ten t s l ists ava i l ab le at Sc i enceD i rec t 

Forensic Science International: Digital Investigation 

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / f s i d i 

Netfox detective: A novel open-source network forensics analysis tool 

Jan Pluskal v , Frank Breitinger b, Ondřej Ryšavý 1 

a Brno University of Technology, Faculty of information Technology, Božetěchova 2, Brno, Czech Republic 
b Hilti Chair for Data and Application Security institute of information Systems, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490, Vaduz, 
Liechtenstein 

(D 

A R T I C L E I N F O 

Article history: 
Received 21 January 2020 
Received in rev ised form 
16 June 2020 
Accepted IS June 2020 
Avai lable on l ine x x x 

Keywords: 
N e t w o r k forensics 
Protocol analysis 
W e b forensics 
N e t w o r k forensic analysis tool 
Lawful in tercept ion 

A B S T R A C T 

N e t w o r k f o r e n s i c s is a m a j o r s u b - d i s c i p l i n e o f d i g i t a l f o r e n s i c s w h i c h b e c o m e s m o r e a n d m o r e i m p o r t a n t 

i n a n a g e w h e r e e v e r y t h i n g i s c o n n e c t e d . I n o r d e r t o c o p e w i t h t h e a m o u n t s o f d a t a a n d o t h e r c h a l l e n g e s 

w i t h i n n e t w o r k s , p r a c t i t i o n e r s r e q u i r e p o w e r f u l t o o l s t h a t s u p p o r t t h e m . I n t h i s p a p e r , w e h i g h l i g h t a 

n o v e l o p e n - s o u r c e n e t w o r k f o r e n s i c t o o l n a m e d — N e t f o x D e t e c t i v e — t h a t o u t p e r f o r m s e x i s t i n g t o o l s 

s u c h as W i r e s h a r k o r N e t w o r k M i n e r i n c e r t a i n a r ea s . F o r i n s t a n c e , i t p r o v i d e s a h e u r i s t i c a l l y b a s e d e n g i n e 

for t r a f f i c p r o c e s s i n g t h a t c a n b e e a s i l y e x t e n d e d . U s i n g r o b u s t p a r s e r s ( w e a r e n o t s o l e l y r e l y i n g o n the 

R F C d e s c r i p t i o n b u t u s e h e u r i s t i c s ) , o u r a p p l i c a t i o n t o l e r a t e s m a l f o r m e d o r m i s s i n g c o n v e r s a t i o n s e g ­

m e n t s . B e s i d e s o u t l i n i n g t h e t o o l ' s a r c h i t e c t u r e a n d b a s i c p r o c e s s i n g c o n c e p t s , w e a l s o e x p l a i n h o w i t c a n 

b e e x t e n d e d . L a s t l y , a c o m p a r i s o n w i t h o t h e r s i m i l a r t o o l s i s p r e s e n t e d as w e l l as a r e a l - w o r l d s c e n a r i o is 

d i s c u s s e d . 

© 2 0 2 0 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d . 

1. Introduction 

Network forensics aims to understand/reconstruct events from 
network communication, which often requires expert knowledge 
(interpreting the low-level network protocols in order to see the big 
picture) (Casey, 2004). To eliminate some of the complexity, 
adequate tools are essential (Garfinkel, 2010; Harichandran et al., 
2016). Specifically, tools should support investigators by summa­
rizing, clustering and highlighting relevant information (Beebe, 
2009), e.g., provide contents of transmitted files, extract user cre­
dentials or perform analysis and visualize the data in an easily 
understandable form. While there are many different network 
forensic analysis tools (Pilli et al., 2010) out there (details discussed 
in the upcoming sections), their functionalities, capabilities, and 
usability are not keeping up with traditional forensics toolkits 
(Casey, 2004) such as EnCase, 2020 or The Sleuth Kit (TSK) & 
Autopsy, 2020. 

Thematic classification: While network forensics and cloud fo­
rensics are related, the latter one is usually more complex, e.g., it 
may involve Software Defined Networking (SDN (McKeown et al., 
2008)) which comes with additional evidence such as Logfiles 
from the SDN controller, compute nodes or cloud controller 

(Spiekermann et al., 2017). These networks also use state-of-the-art 
networking technology (100—400 Gbps) that cannot be monitored 
without hardware acceleration (typically FPGA), and even then, 
only selected flows can be fully captured (Kekely et al., 2016) and 
used for further, detailed examination. Netfox Detective is intended 
for network forensic analysis and visualization on a PC and does not 
compete with these tools, but uses them to filter and capture data. 

Terms and definition: For readers not completely familiar with 
the network terminology, we included an overview in Appendix A. 

1.1. Analysis of network communication 

Two of the most popular tools for Network Security Monitoring 
(NSM) are Wireshark and TCPDUMP, 2020, which are commonly 
used by network administrators to identify problems or security 
incidents (Pilli et al., 2010). Wireshark provides a large number of 
protocol parsers, can extract the content of the communication for 
several application protocols and offers a detailed view of the 
network communication. While it is one of the most powerful tools, 
its bottom-up analysis approach means that finding and extracting 
evidence often requires (intensive) labor and expert domain 
knowledge. Nevertheless, Wireshark is continuously optimized, 

* Cor re spond ing author. 
E-mail addresses: ipluskal@fit .vutbr .cz Q. Pluskal) , Frank.Brei t inger@uni . l i (F. Brei t inger) , rysavy@fit.vutbr.cz (O. Ryšavý) . 
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and usage of analyzers and LUA plugins eases up the investigation. 
Netfox Detective partially addresses this by implementing 
advanced features such as heuristical TCP reassembling or L7 
conversation tracking or reconstruction of forensic artifacts 
extracted from the communication. Furthermore, Wireshark does 
not scale well above hundreds of megabytes of source data, and 
thus, data preprocessing is necessary for large inputs. TCPDUMP, 
2020, on the other hand, has only a command line interface that 
allows admins to inspect incoming and outgoing network traffic. 

There are also more specialized tools that can extract valuable 
forensic information, for instance, ngrep, 2020, ssldump, 2020, or 
tcpxtract, 2020. These tools were created to solve specific problems 
such as searching for a phrase in network communication, decod­
ing encrypted communication if a private key is known, or 
extracting transferred files from network communication, respec­
tively. To take advantage of all tools, an investigator is required to 
combine them. For repeating tasks, one may write scripts to speed 
up the process and thus, reduce the amount of manual labor. 

Without question, there are many practitioners who prefer 
featureful open-source tools (Beebe, 2009; Farmer and Venema, 
2009) although there is a risk that they are poorly documented, 
out-of-date, and even abandoned (Garfinkel, 2010). 

1.2. Expected properties for network forensic tools 

According to Cohen (2008), a network forensic analysis tool 
(NFAT) should provide a certain set of general features (listed as 
items 1 —3 below). We further analyzed the demands and identified 
some more specific features yielding the following list of 
requirements: 

1. Efficient processing of large capture files: Current investigations 
deal with a big amount of data that needs to be analyzed. Tools 
are required to provide at least partial results quickly. 

2. Extraction of high-level information: Network communication 
can be analyzed at different levels but for digital investigation 
extracting artifacts from data sources is a priority. 

3. Validation of results: Applying reliable procedures and the pos­
sibility to validate the integrity of results is a crucial requirement 
on all forensic tools including NFATs. 

4. Process non-standard or incomplete traffic: Network communi­
cation should be correctly processed regardless of the accept­
able deviations from the specification. 

5. Robust data decapsulation: Even in the presence of IP fragmen­
tation and data stream multiplexing, the tool should be able to 
identify and compose unique application level conversations. 

6. Support for overlay networks: Network communication may be 
encapsulated using tunneling techniques, e.g.. Virtual Private 
Networks. If possible, detection and extraction are then fol­
lowed by the analysis of the encapsulated messages. 

7. Application protocol identification: Services communicating on 
non-standard or dynamic ports require advanced methods for 
application identification. Without the correctly identified type 
of communicating application, it is difficult to extract any high-
level information. 

8. Investigation process: The tool should support the top-bottom 
investigative process and guide the user. It is essential that 
even non-expert personnel can operate NFAT and extract evi­
dence to support their cases. 

The presented list is not exhaustive and stems from our expe­
rience in network traffic analysis and evaluation of existing NFATs. 
Some requirements are conflicting, for instance, processing of large 
data sources and in-depth analysis of conversations to extract high-
level artifacts. 

1.3. Network forensic tools 

Besides Network Security Monitoring (NSM) tools that are 
intended for packet capturing, fingerprinting, or intrusion detec­
tion, there are some network forensic analysis tools (NFAT) spe­
cifically designed to support investigators. These aim to ease 
analysis by automating artifacts extraction and providing intuitive 
user interfaces. Usually, these tools have a top-down approach 
which makes the analysis simpler and saves time. In the following 
we briefly summarize the five prominent tools (numbers in 
brackets related to Sec. 1.2 and show missing properties): 

• Netlntercept was one of the first NFATs (Corey et al., 2002). It 
accepts PCAP files (no live captures), reassembles TCP flows and 
extracts artifacts from protocols running even on non-standard 
ports. Note: Netlntercept is closed source and to the best of our 
knowledge no longer available for download. Thus, we were 
unable to perform a more detailed evaluation. 

• PyFlag, 2020 [1, 3, 4, 6, 7, 8] "is a general purpose, open source, 
forensic package which merges disk forensics, memory foren-
sics, and network forensics" (Cohen, 2008). By using specialized 
scanners, PyFlag can understand several application protocols 
and extract the communicated contents. However, according to 
Forensics Wild, the tool is deprecated.1 

• XPlico, 2020 [1, 3, 4, 5] is open source NFAT that is preinstalled 
on major digital forensics distribution such as DEFT, Security 
Onion and even Kali. It understands about 30 application pro­
tocols and can extract the content of emails. Session Initiation 
Protocol (SIP) or web communication. 

• NetworkMiner, 2020 [1, 3, 4, 8] is a passive network sniffer/ 
packet capturing tool that can detect operating systems, ses­
sions, hostnames, open ports, and more. It also allows extracting 
files from about a dozen commonly used application protocols. 
In the professional version, NetworkMinor also extracts VoIP 
calls, supports Geo IP localization, performs port-independent 
protocol identification, OS fingerprinting, and web browser 
tracing. 

• TCPFlow, 2020 [2,3,4, 5, 6,8] "captures data transmitted as part 
of TCP connections (flows), and stores the data in a way that is 
convenient for protocol analysis and debugging. Each TCP flow is 
stored in its own file. Thus, the typical TCP flow will be stored in 
two files, one for each direction. TCPFlow can also process stored 
'tcpdump' packet flows". It is important to note that TCPflow 
does not recognize IP fragments; therefore, reassembling of 
such conversations will be malformed. 

While these tools have different strengths, our tool provides 
some unique features which are pointed out in Sec. 5. 

1.4. Problem description 

Although many tools have been developed/exist, several tools 
are outdated, abandoned, or do not meet all expected properties 
(see Sec. 1.2). Additionally, current tools are not intuitive (require 
training), not (easily) expandable or can handle network traffic 
captures in the order of magnitude of gigabytes which were re­
quirements/statements from the Lawful Enforcement Agency (LEA) 
officers. Last, existing tools are not structured along the investiga­
tive process; commonly there is no case management, the linkage 
between investigations, and verification of results which can be 
helpful during investigations. 

1 h t tps : / /www.forens icswik i .o rg /wik i /PyFlag%20 (last accessed 2019-08-17). 
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Table 1 
Performance of selected operat ions us ing the M 5 7 case P C A P files. M a c h i n e conf igura t ion: C P U i 7 - 4 7 9 0 , 4 . 0 0 G H z , 64 GB D D R 4 , Cruc ia l M X 1 0 0 SSD, W i n d o w s 10. Exper iments 
were repeated 10-times, measured by time and Perfmon ut i l i t ies . 

Opera t ion Backend+ Frontend + B a c k e n d ^ Wireshark* N e t w o r k M i n e r 1 t c p f l o w t , A 

1 Tota l t ime 6 m 14s, ff= 15 .23s 9 m 3 6 s , (T = 3 0 . 1 2 s 8 m 4 8 s , < r = 17 .34s 41 m 23s, a ~ 124.43 s 13 m 39s, a ~ 64.21 s 
2 M a x R A M usage 8.3GB 8.5 GB 7.1GB 20GB 243 M B 
3 A v g C P U usage 76%, <r=8% 66%, ff= 18 % 12%, ff=3% 15%, ff=2 % 3%, ff=l % 
4 Sessions (TCP + U D P ) 118,709 118,709 98,084 49,865 93,619 
5 TCP - miss ing 3.9%* 3.9%* 0.6%* N / A N / A 
6 DNS - records 238,531 238,531 150,426 183,527 N / A 
7 Emails 28 28 N / A 39 N / A 
8 FTP 16 16 N / A 1 N / A 
9 Comple t e W e b pages 6 6 N / A N / A N / A 
10 Speed 101.8 M b p s 66.1 M b p s 72.1 M b p s 15.3 M b p s 46.5 M b p s 

(t) To measure comparab le results, i n - m e m o r y database has been used, 
(t) The too l was d o w n l o a d e d as a binary release. 
(A) The tcpf low 1.4.4 was ran w i t h parameters -r fiie.pcap -a -Fm to do A L L pos t -process ing and spli t output i n 1 M directories. 
(*)Netfox Detect ive computes TCP loss based on lost segment size (see Eq . (2)). F o r W i r e s h a r k , w e c o m p u t e d it by a p p l y i n g the tcp.anaiysis.iost_segment filter and then u t i l i zed 
Eq. (1). This does not m e a n that the tool lost the data but they were not present i n the capture, i.e., the cap tur ing probe lost t hem. 

1.5. Notes on legal requirements 

Possible real-world usage of Netfox Detective, as well as other 
NFAT tools, needs to be under the frame of legal requirements and 
restrictions. Then conditions of the legal use of NFAT tools cannot 
be stated world-wide. EU countries and even states of a single 
country, e.g., the USA or Germany, have different laws about col­
lecting digital traces related to user activities (see ENISA (2019), 
section 2.6). Network forensics necessary requires to gather IP ad­
dresses, packet captures, or log files that may contain all kinds of 
private data, including passwords, usernames, credit card numbers, 
etc. Specific laws regarding online services, protection of critical 
infrastructures, and cybercrime or computer crime may apply to 
the practice of digital investigation. Commonly they limit what data 
can be acquired or the way in which data can be processed. The 
presented tool is only technical equipment able to process captured 
communication. Same as in the case for other NFAT, the tool is able 
to extract various artifacts from network communication and it is 
required that investigators have to abide by the law, especially since 
matters may be taken to court. Often knowing what law applies to 
the situation may be challenging and the advice of trained legal 
experts is needed. 

1.6. Contribution and paper structure 

This paper provides Netfox Detective; a novel, easy-to-use, 
powerful network forensic platform for top-down investigations. 
Our tool covers examination, analysis, and investigation phases of 
the forensic model as defined by P i l l i et al. (2010). In detail, we 
provide the following contributions: 

1. Introduction of investigation profiles that contain all necessary 
data for sharing the case by just copying the investigation folder 
— Sec 3.3. 

2. The new method of TCP stream reassembling based on heuris­
tics (method itself was previously published (Matousek et al., 
2015), but the tool contains an improved version of it) — Sec 
3.4 and Appendix E. 

3. Improved identification of application-level sessions within TCP 
streams; the system can identify more application sessions 
compared to other tools (see Table 1) — Sec 3.4, Appendix E. 

4. Seamless analysis across boundaries of multiple capture files 
that ensures correct processing of long-running conversations 
(i.e., overlapping conversations are processed correctly) — Sec 
3.4. To the best ofourknowledge.no NFAT or NSM tool currently 
has this functionality which is crucial for LEA forensic 

investigation. Data sources in form of PCAP files are typically 
split due to time or space constraints. 

5. Support for analysis of traffic encapsulated in GSE protocol; to 
the best our knowledge, Netfox Detective is the only open-
source NFAT that supports GSE — Sec 5.3. 

6. Novel approach for web page reconstruction; in comparison to 
other tools, we do not only extract objects from HTTP commu­
nication, but we also reconstruct the page entirely (rewriting 
sources of all intercepted objects like CSS, pictures, video 
streams, etc.). Pages are stored as a MAFF, 2020 archive 
including snapshots that show how the page changed over time. 
The JavaScript is interpreted, and particular API calls are mocked 
to be injected with intercepted ones, like REST API calls — Sec 
6.2. The reconstruction of a web-page requires analysis and 
correlation of multiple L7 conversations, because a page usually 
references (includes) data from multiple domains. 

Note, the system has a modular architecture where processing 
engine, data-access component, and visualization subsystem can 
be used separately. The function related to packet capture file 
processing, namely, file parsing, conversation tracking, application 
protocol identification, application data extraction, and analysis can 
also be used as a standalone console tool and integrated to auto­
mated investigation procedures and combined with other existing 
tools. 

The source code 2 is released on GitHub and under the Apache 
Licence 2.0. Additional information can be found on Netfox 
Detective's YouTube channel: https://goo.gI/fKM8Vs. 

The remainder of this paper is organized as follows: Sec. 2 de­
scribes the system architecture, illustrates the frontend, and ex­
plains possibilities on how to extend Netfox Detective. Sec. 5 
highlights some of the unique features of our tool as well as con­
tains a comparison with other prominent network forensics/secu-
rity tools. The last section concludes the paper. 

2. Netfox Detective 

Netfox Detective is a network forensic tool that was developed 
to support digital forensic practitioners to analyze network cap­
tures and to extract evidence from packet traces quickly. The 
development started off as PoC (Pluskal et al., 2015) with slower 
processing pipeline and storage, a limited set of application pro­
tocol support, and capabilities in general. It allows to correctly 

2 h t tps : / /g i thub.com/nesf i t /NetfoxDetect ive . 
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Fig. 1. The overview of Netfox Detective Architecture. 

identify network conversations, parse common Internet protocols, 
and extract metadata as well as content from the end-to-end 
communication. Additionally, it is possible to extend the tool 
with new functionality through a well-documented API. 

The tool is a Windows application relying on the.NET Platform 
and is available as an installation package that performs necessary 
deployment steps. Our implementation exploits many advantages 
of this platform like the rich graphical user interface provided by 
Windows Presentation Foundation (WPF), short development 
times due to a high abstraction language (C#), and availability of 
many libraries provided through NuGet packages. Furthermore, the 
implementation utilizes the Task Parallel Library (TPL) for parallel 
processing. 

The software consists of over 140,000 lines of code 3 organized in 
about 110 projects. While it currently does not support live analysis, 
it accepts a variety of different network capture formats such as 
libPcap, 2020, Pcap-NG, 2020, and Network Monitor (MNM) 
format. 

Fig. 1 describes the architecture, which is composed of two main 
components: 

Frontend is primarily a rich visual user interface (GUI, see Fig. 2) 
that is built on top of the backend and contains analysis capabilities 
(Sharafaldin et al., 2019). Analyzers are frontend interfaces that 
allow adding new functionality. Details are outlined in Sec. 3.2. 

Backend is a network traffic processing engine that performs: 
capture file processing, protocol parsing, traffic analysis, and met­
adata extraction. It is independent of the frontend (GUI) and comes 
with its own CLI which allows to integrate it in automated pro­
cessing pipelines or to use it as a single-purpose tool. Snoopers are 
backend interfaces that allow adding new functionality. Details are 
outlined in Sec. 3.4. 

2.1. Analyzers vs. snoopers 

The tool can be extended through the implementation of 
snoopers or analyzers. Analyzers have more advanced functionality 
and different purpose than snoopers. The Analyzer API provides 
access to data storage as well as the user interface. An analyzer can 
be bound either to application or investigation scope. Thus, it is 
possible to integrate highly specialized analyzers for specific cases. 

Calcula ted by V i s u a l Studio (code metr ics) on the comple te imp lemen ta t i on ; 
excludes w h i t e spaces, comment s , usings, a n d th i rd-par ty l ibraries. 

Analyzers can create investigations, add capture files, or run any 
operation supported by Netfox Detective or access any data. 

On the other hand, snoopers can access information from the 
processing pipeline through the database (metadata storage). 
Snoopers can extract objects from the source data but may also 
utilize other data such as flow records, log files, etc. Snoopers are 
intended to parse the application conversation protocols (L7, listed 
below) and extract data such as files, videos, or HTTP headers. More 
details about analyzers and snoopers are provided in Appendix C 
and Appendix B, respectively 

Note, Netfox Detective is too complex to explain every detail in 
this paper, and thus, we focus on some important design decisions 
in the next section. We plan on releasing more information/details 
over the years. 

3. Design decisions 

While we made many decisions along the way, the following 
subsections discuss the most important ones: GUI design, investi­
gative process workflow, and packet processing pipeline. 

3.1. No live captures 

Netfox Detective does not support live captures but accepts 
several input formats, which had several reasons. First, lawful 
interception deployment contains one or more capturing probes 
that store data on drives locally, or on remote storage (Invea, 2020). 
Secondly, the analysis is often performed on more powerful 
equipment rather than the capturing probe. Third, this was not a 
requirement by LEA. 

3.2. GUI design 

The GUI follows the principles of Master/Detail screen layout 
(Microsoft Corporation, 2017) supported by the navigator panels as 
shown in Fig. 2. This organization is ideal for creating an efficient 
user experience (Scott and Neil, 2009) when the user needs to 
navigate between linked items (Beebe, 2009). The user interface 
provides a high degree of customization, utilizing a grid layout of 
dockable views. The application has three main areas, namely, left-
hand side, upper right and lower right, that host basic visual 
components: 

• Investigation Explorer is the main navigation panel of the appli­
cation. It organizes Captures, Logs, Detected Events and Expor­
ted objects (see the left blue box in Fig. 2). More details about the 
structure are given in Fig. 3, and discussed in the Investigation 
Explorer paragraph. 

• Conversation View provides a list of all tracked conversations in 
source capture files (see left red box). 

• Conversation Detail provides information for the selected con­
versation. The presented content may contain links for addi­
tional data and detailed information on the target object (see 
right red box). 

• Detail View, e.g., Export Detail, provides additional information 
for specific object types. The content uses links to navigate via 
multiple views (see the black box at the bottom). 

• Conversation Explorer contains a list of conversations that were 
associated with investigated objects, e.g., conversation or export 
object (see right blue box). 

• Output Window contains a list of events generated during the 
processing. These events may be informative, warnings or errors 
raised during source data processing (see the green box, only 
partially shown). 
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Fig. 2. A screenshot of the UI design of Netfox Detective w i t h highlighted dockable locations. Each pane can be moved and docked to any dockable location inside the Netfox 
Detective window, or drag & dropped outside the w i n d o w to materialize a new one w i t h the same dockable properties. This way, an investigator split the application across 
mult iple screens. 

XUSERPROFILE0/. 
Netfox Detective Workspaces 
L <Workspacejnam.e> 

, I n v e s t i g a t i o n s 
< Inve st i g a t i o n jname> 

Database 
Exports 

— Logs 
S e t t i n g s 
Sources 
Temp 

1 <Investigationjname> .nf i 
1 <Workspace_name>.nfw 

Fig. 3. The structure of an investigation folder. A l l workspaces are stored under the 
user's profile folder. Each workspace and each investigation has its name — suffixed 
w i t h GUID for uniqueness. Each investigation contains a database, exports (extracted 
data from traffic), logs, settings, sources (copies of source data, e.g., PCAPs), and temp 
(for temporary data generated by snoopers and analyzers). Metadata about the 
workspace and investigation is stored i n *.njw, *.nfi files, respectively. 

3.3. Investigative process workflow 

The application was designed according to already well-
established concepts known from Integrated Development Environ­
ments that programmers use to organize complex software designs 
(Microsoft Corporation, 2017). With respect to digital forensics, we 
consider an Investigation to be an equivalent to a project; In­
vestigations are combined into a Workspace that is equivalent to a 
Solution. An investigator can choose on which Investigation(s) s/he 
wants to work on and add data in the form of PCAP files or logs. Data 
is processed, and all gathered information is stored in an Inves­
tigation's scope; nothing is shared beyond that. In case several 

PCAPs are added (e.g., cause they have been split previously), across 
analysis is conducted (they will be treated as one PCAP internally 
for tracking and reconstruction of events).While data is never 
shared between investigations, we allow opening multiple in­
vestigations (in separate docked panes) which allow comparing 
data from multiple sources. 

3.4. Packet processing pipeline 

To master the challenges of parsing and to polish all information 
gathered, it consists of several interconnected implementation 
blocks which compose a packet processing pipeline. The pipeline 
(lower right-hand side of Fig. 1) performs (i) packet file loading and 
processing, (ii) conversation tracking, (iii) application recognition 
and (iv) extracted (meta)data storing. Thus, the processing pipeline 
handles the identification of protocols for each packet, performs 
defragmentation, and does stream reassembly for TCP communi­
cation (L7 Tracker). A detailed view is provided in Fig. 4. Note, the 
snoopers allow to extend the backend and will be discussed in Sec. 
Appendix C. 

Packet file loading and processing, (i.e., components Packet Cap­
ture Source, Packet Capture Processor, L3-L7 Trackers, and Appl-
dent): Source packet capture files are processed by the 
corresponding packet file loader depending on their file type. The 
processing of the frames is sequentially where each loaded frame is 
dissected into the low-level protocols to identify its key properties, 
such as a physical address, network address, or ports. The dissected 
packet is forwarded to the next component (i.e., L3 Tracker) which 
performs further processing. 

Conversation Tracking. Conversation tracking is a critical 
component of the system as it examines each dissected packet and 
associates it with the corresponding conversation.1 A conversation 
is considered as the basic data object for further analysis. The 
system identifies conversations at different network layers: 

4 Note, conversat ions are also cal led b i - f lows i n some li terature. 
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Fig. 4. Abstract capture file processing scheme w i t h a sequential passage. Data dependencies between models are omit ted . The ultimate goal is to identify and collect application 
level conversations. In order to accomplish this, communica t ion at low levels need to be properly identified, messages parsed, relevant data extracted, and packet composed. This is 
achieved by conversation trackers. 

• Packets sharing the same source and destination addresses 
belong to the same network layer conversation (L3). Every pair 
of devices shares a single L3 conversation. 

• Packets with the same network source and destination ad­
dresses, transport layer source and destination ports and a 
specific transport protocol belong to the same transport layer 
conversation (L4). At this layer, the conversation mostly corre­
sponds to a pair of TCP streams or UDP data exchanges. 

• Lastly, application layer conversations (L7) are identified using 
various TCP heuristics we have developed previously (Matousek 
et al., 2015) and improved for this article. The difference is in the 
handling of corner cases in TCP reassembling, namely the 
computation with seq. numbers, order of processing of colliding 
TCP sequences, and remaining sequences without introductory, 
or conclusive TCP flags, for details, compare Appendix E 
2.e.(ii—iii), 2.h, 4, 5 and original paper. The heuristics solve the 
problem when dealing with incomplete data or multiple ses­
sions that are merged into a single transport layer conversation. 
L7 conversations reflect a single session between a client and a 
server application. 

Correct identification of conversations from source packets is a 
challenging task as several issues may arise, e.g., out of sequence 
packets, missing packets, fragmented packets, or missing termi­
nation packets. To succeed, we use several heuristics to identify and 
collect as many conversations as possible, even in corrupted or 
incomplete data sources. Additionally, the tool addresses the need 
for fast processing by using available processor cores, implement­
ing concurrent conversations processing. 

Metadata Storage (database). Extracted information, e.g., con­
versations at different layers, application layer data units, and other 
relevant information, is stored in a SQL database. The bulk insert 
method is used to obtain better performance. Thus integrity is not 
guaranteed until all data is inserted. The user interface is aware of 
this and handles temporally incomplete data correctly. The data­
base is accessed through persistence providers that allow to easily 
add support for different databases.5 

3.5. Security considerations 

Netfox Detective is intended for a single-user environment, i.e., 
it runs on an investigator's desktop. Therefore, the system does not 
include user management, authentication, or authorization. The 
designated way to share investigation between multiple in­
vestigators is to export/import the workspace. This decision allows 
to enable the more extensive use of our tool by investigators that 
prefer disconnected systems to protect sensitive data against 

5 Current ly , the too l supports Microsof t SQL and i n - m e m o r y data storage. 

misuse. Netfox Detective, therefore, does not require a certification 
process to be usable inside LEA. 

4. Testing 

Given the complexity of our application, testing was (is) an 
essential part throughout the development process, where we 
followed a Test-Driven Development (TDD) methodology. TDD re­
quires writing tests first, then production code that passes the tests 
and lastly to refactor the code to improve its structure. We utilized 
unit tests, which then also ensures integration/regression testing 
and ensures the correctness of new versions. Because our focus is 
very specific (network data parsing and analysis), mocking the data 
would be tedious (Osherove, 2015). Therefore, we omit the unit 
tests in favor of integration/system tests that use data loaded from 
PCAP files processed (in-time of the test) by our processing 
pipeline. 

To develop and test modules (snoopers/analyzers), we started 
by collecting testing data first, where we either downloaded 
available PCAPs or created our ground of truth utilizing our private 
networks. In the latter case, we then filtered the captured data 
using Wireshark, which ensured that we only deal with one 
application message, action, or scenario at a time. If Wireshark 
supported the application protocol, we compared both results (ours 
and Wireshark's). 

In the beginning, we also used Microsoft Network Monitor, 2020 
(MNM), which allowed us to develop parsers written in Network 
Parsing Language (NPL). In other words, we created parsers for two 
different frameworks and compared results. Given that M N M is 
outdated, and this is not the most reliable method for testing, we 
abandoned M N M . 

After carving basic events from the protocol messages worked 
correctly (single packet), we created more complex scenarios (e.g., 
a login scenario which has multiple packets) and manually verified 
the results. Lastly, we created a comprehensive dataset and 
extracted key data (e.g., the summary of extracted events) which 
we then used as benchmark data for new version testing to prevent 
regression bugs. Currently, Netfox Detective contains 1000+ tests 
that are automatically executed whenever new code is committed 
and run approximately 46min. In case that a regression bug is 
found, the merge is denied until the bug is fixed. 

5. Evaluation 

The rest of this section discusses the efficiency (see Sec. 5.1) 
followed by a summary of carving capabilities. In Sec. 5.3 we 
compare Netfox Detective to other exiting tools before we provide a 
real-world example. The last section explains the seciweb; a very 
unique feature of our application. 
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5.1. Efficiency assessment 

Although Netfox Detective is an offline analysis tool, runtime/ 
memory footprint are essential aspects. Thus, this section discusses 
the runtime efficiency in comparison with Wireshark and Net-
workMiner. To measure the efficiency, we used the M57, 2020 M57-
Patent scenario 6 PCAP files which consist of several PCAP files with 
a total size of 4.8GB and 5,707,845 frames (we combined them into 
a single PCAP). Note, given that each tool performs very different 
tasks, this is only a rough comparison. 

The results are provided in Table 1. As can be seen, Netfox 
Framework is slightly faster than Wireshark despite the TCP reas­
sembling of all sessions. Note, when opening the case the 2nd time, 
all data is extracted from the database which is completed in a 
matter of seconds. However, we require more memory footprint 
(RAM). Netfox Detective is slightly slower than Netfox Framework 
as it visualizes the information. NetworkMiner is about 4—7 times 
slower than the other tools. The average CPU usage is not reaching 
100% with Netfox Framework and Netfox Detective because of the 
thread synchronization, I/O operations. Garbage Collection, and 
back pressure in the processing pipeline that balances overall 
performance and resource utilization. Overall, the Mbps per tool 
vary between 15 and 100. 

Additional efficiency indicators are given in Table 2, where we 
focus on rows 12 and 13 (processing speed and parallel processing; 
remaining rows are discussed in Sec. 5.3). As shown, Netfox De­
tective allows parallel processing, which should make it faster than 
the deprecated PyFlag. On the other hand, Cohen (2008) points out 
that PyFlag is not intended for high-speed. Concerning XPlico, more 
research is needed as it also processes data in parallel, and we did 
not find information on processing speed. 

5.2. Event carving capabilities 

The next important aspect for forensics is event carving, i.e., 
restoring particular events such as an FTP Login, a DNS query or 
sending emails from a comprehensive stream. This section pri­
marily focuses on NetworkMiner (NM) and Netfox Framework and 
their capabilities; Wireshark does not incorporate advanced 
forensic features such as emails or web page reconstruction as it is 
intended for Network Security Monitoring (Sira, 2003; Pilli et al., 
2010). 

For comparison, we decided to focus on detected sessions, TCP 
reassembling, and DNS records where the results are shown in 
Table 1. These properties strongly depend on how a tool was 
implemented. Higher numbers reflect finer granularity (this does 
not mean that higher (or lower) numbers are better). 

Sessions: the number of TCP and UDP sessions recognized by 
each tool. This feature strongly depended on the mechanism 
handling missing fragments, see Appendix E. Ithere is no packet 
loss; the tools should report the same number of TCP sessions; UDP 
sessions can differ in case the tool uses an inactivity timeout 
threshold to split UDP sessions (the UDP protocol does not carry 
any signaling information that can be used to determine the end of 
a session). 

TCP missing: signifies how much information is lost and cannot 
be recovered, e.g., capturing problems, packet loss, or storage is­
sues. All issues are related to actions that occurred before pro­
cessing of the capture file, i.e., they are not caused by Netfox 
Detective. There are different ways to calculate the loss as shown in 
Eq . ( l )orEq . (2 ) : 

6 h t tps: / /digi ta lcorpora.org/corpora/scenarios/m57-patents-scenario%20 (last 
accessed 2019-08-17) . 

lost.packets / alLpackets[%\ (1) 

lost .bytes / alLbytes[%] (2) 

Netfox Detective uses the Eq. (2) as we believe that if a sequence 
of packets is lost, their count is unknown and can be approximated 
using a heuristic based approach on M T U or previously observed 
segment sizes. However, we had to utilize Eq. (1) as Wireshark does 
not explicitly count lost_bytes. 

DNS records: the number of events carved from DNS traffic. 
Netfox Detective extracts much more events compared to N M that 
only considers DNS response packets (Mockapetris, 1987b) and 
ignores query packets (Mockapetris, 1987a). N M also ignores some 
other record types such as PTR, SRV or M X that may carry valuable 
forensic information, e.g., a mapping of IP address to the domain 
name (PTR), a definition of the service location (the hostname and 
port number (SRV)), or domain names of mailing servers (MX). This 
additional information may be useful in case of DNS spoofing at­
tacks/investigations (Huber et al., 2010). Lastly, N M only shows the 
first record from an answer section. In contrast, Netfox Framework 
processes all, i.e., all records from Question, Answer, Authority, 
Additional from both packet types (not only response). 

Emails and errors: reflects the number of extracted emails. NM 
identifies more emails as Netfox Framework currently only con­
siders emails sent through the SMTP protocol; N M also processes 
emails sent through webmail. 7 

FTP: the number of events identified in the FTP session. While 
N M extracts only transferred files, Netfox Detective and Wireshark 
show other related (meta-)information about the FTP sessions such 
as the login or list-command. 

Web pages: the number of reconstructed web pages using our 
module. In total, 182 HTTP objects were found which created six 
MAFFArchives containing full offline web page snapshots including 
CSS and other downloaded objects. For additional details we refer 
to Sec. 6.2. 

In summary: each of the tools has its strengths and weaknesses, 
and one has to choose the best tool for the job. For instance, Netfox 
Detective has focused on carving capabilities from conversations 
containing missing data. 

5.3. Comparison to existing tools 

This section compares Netfox Detective against other applica­
tions concerning capabilities, functionality, and features. A sum­
marized overview with is provided in Table 2 and is discussed in the 
upcoming paragraphs. 

In its current version, Netfox Detective does not allow live data 
capture or PCAP-over-IP and thus is not as flexible as NetworkMiner, 
2020 or XPlico, 2020. However, it supports various capture file 
types. Note, this was a design decision: we work under the premise 
that data is gathered on capturing probes and uploaded for analysis 
after the capture ends (or parts of the ongoing capture are 
provided). 

In terms of support for encapsulation protocols, NetworkMinor 
has a wide variety of supported protocols. However, to the best of 
our knowledge, Netfox Detective, and Wireshark are currently the 
only applications that support Generic Stream Encapsulation (GSE). 
In comparison to other protocols, GSE frequently uses multiple 
encapsulations, whereas other protocols usually do not. That re­
quires a significant change in the tool's architecture. 

7 This was a scenario w e have not cons idered . W e w i l l update ou r m o d u l e i n the 
near future. 
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Netfox Detect ive i n compar i son to major open-source n e t w o r k forensic tools. The p rov ided in format ion was gathered from official sources p rov ided by the too l authors. N / A 
indicates that w e cou ld not find any details regard ing the par t icular feature. W e del iberately do not add any in format ion that is not stated by authors, such as process ing speed. 

Netfox Detective N e t w o r k M i n e r PyFlag 

R\iiurc 

Live data capture NO 
PCAP-over-IP NO 
Supported file 
types 
IPv6 

Encapsulation 
protocols 

l ibPcap, P c a p - N G , M N M 

YES 
GRE, 802.1 a GSE 

6 Application 
Protocol 
Identification 

7 Supported 
application 
protocols 

SPID, N B A R , ESPI, Bayessian, R a n d o m Forests 

HTTP, SSL/TLS, M A F F . X M P P , Y M S G , OSCAR, Facebook Messenger , 
Hangouts , Twi t te r , XChat , I M A P , P O P 3 , S M T P , G m a i l , Yahoo , RTP, SIP, 
Minecraf t , Warcraf t , Facebook, Stra tum, DNS, FTP, SPDY, M Q T T 

S Applications YES 
Identification 

9 OS Fingerprinting YES (using typica l appl icat ions) 
10 Credentials Facebook, I M A P , S M T P , POP3 

Extraction 
11 Incomplete or TCP data loss, IPv4 fragmentat ion 

malformed 
communication 

12 Processing speed 100 M b p s 
13 Parallel 

processing 
14 Advanced 

analytical views 
15 Persistent 

storage 
16 Querying/ 

filtering 

YES 

MSSQL, i n - m e m o r y 

3-rd par ty tools on S( 

YES 
YES 
l ibPcap 

YES 
L2TP, V L A N , PPP 

YES 
YES 

l ibPcap, P c a p - N G 

YES 

G R E , 802.1 a PPPoE, L L M N R , 
V X L A N , OpenF low, SOCKS, 
M P L S a n d E o M P L S 
SPID, PIPI 

FTP, TFTP, HTTP, S M B . S M B 2 , HTTP, POP3, S M T P , I M A P , SIP, DNS, 
S M T P , POP3, I M A P , Y o u T u b e RTP, SDP, FTP, DNS, IRC, IPP, HTTP, 

PJL, M M S , SLL M S N , 
G m a i l 

NO N O N O 

YES N O N O 
S M T P , HTTP Digest N O N O 
Authen t i ca t ion 
N / A N O N O 

1 1 . 9 2 - 1 8 . 4 9 M b p s N / A 
YES 

C S V / E x c e l / X M L / C A S E / J S O N - L D SQLite, M y S Q L or PostgreSQL VFS 

k e y w o r d search 3 - r d party tools on SQL DB YES 

Rows 6—8 deal with application and their protocols. While 
Netfox Detective uses a variety of different algorithms to identify 
the protocol, NetworkMiner and XPlico rely on SPID and PIPI. 
Furthermore, Netfox Detective tries to identify applications as well 
as application protocols, e.g., HTTPS-Firefox, HTTPS-Chrome 
(Pluskal et al., 2018). However, further testing is required to make a 
qualified decision which tool works the most reliable. Concerning 
supported application protocols, our tool supports a wide variety of 
different ones, including some unique protocols like Facebook 
Messenger, Hangouts, Twitter, or Warcraft. Note, since those are 
implemented using snoopers, there will be more in the future. 

OS fingerprint (row 9) is supported by NetworkMiner and Net­
fox Detective. While we rely on the Appldent analyzer, N M uses 
statistical based SPID algorithm (Hjelmvik and John, 2009). 

In case that user credentials are observed in a communication, 
Netfox Detective, and NetworkMiner allow to extract them where 
the two tools focus on different protocols. Another major feature is 
the handling of malformed, incomplete network traffic. This is 
based on our previous work (Matousek et al., 2015) where we 
showed that the risks of undesired association of the unrelated 
conversation fragments yielding twisted evidence. We could not 
find information for NetworkMiner; however, as shown in Table 1, 
NetworkMiner identifies significantly fewer sessions (maybe due to 
combining unrelated conversations). Advanced analytical views 
address visualization capabilities where Netfox Detective is very 
flexible due to the Analyzer API (see Sec. B), which ensures that the 
tool can be extended with pluggable modules. In terms of XPlico, 
we were unable to find detailed information; besides a reference to 
a PHP Framework named cake-php. 8 

h t tp : / /w ik i .xp l i co .o rg /doku .php7 id = interface (last accessed 2019-08-17). 

Row 16 addresses the querying/filtering capabilities of the cor­
responding tools. NetworkMiner, 2020, Wireshark, 2020 and 
PyFlag, 2020 include basic query functionality (e.g., keyword 
searches), XPlico and Netfox Detective require third-party tools 
(e.g., one may query the database using analytical third-party ap­
plications or write a new snooper). If support for hitherto appli­
cation protocol is required, the advanced investigator can create a 
new snooper module that will be dynamically be loaded without a 
need of recompilation of the Netfox Detective. In comparison to 
Wireshark, creation of a new snooper is straightforward imperative 
programming based on an enriched API of a data stream that 
handles several types of application protocol behaviors, like 
request-response, asynchronous message exchange, etc., that helps 
to handle missing/not-captured data. 

To sum it up: While there are aspects where other applications 
like NetworkMiner are superior, Netfox Detective has a lot of 
unique functionality/features and is under active development — 
new features can be expected. Especially the number of supported 
application protocols, the incomplete or malformed communica­
tion handling make and the expandability, make it a great forensics 
tool. Additionally, we believe that one of the major difference is 
usability and the amount of expertise needed (especially compared 
with Wireshark). 

6. Example features 

This section presents two of the many advanced features of 
Netfox Detective and have been chosen as they make Netfox De­
tective unique. These features have been tested in real deployments 
and helped LEA investigators to solve cases. Given their complexity, 
we also provide brief video summaries at the beginning of the 
corresponding sections. More videos about its capabilities can be 
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Workspace manager Envesllgation manager 

Hard drive Delay buffer 

Fig. 5. This figure describes SIP Fraud Analyzer. The v iew is an interactive animat ion that reflects the actual state of the deployed 100CE hardware-accelerated network card w i t h the 
IPFIX collector and the N E M E A system that detects network incidents based on IPFIX records. SIP Fraud is visualized on the upper right side w i t h a count currently analyzed 
messages, i.e., 6200. At the bottom, a tree-like structure visualizes a prefix tree that is an interpretation of the attack. The root node i n an interconnection between the same roots of 
telephone number attacked from different IP addresses. The path from a leaf node to the root aggregate node represents a prefix combined w i t h a PSTN number that was tried to be 
called. Sensitive information, as a part of called number and IP addresses, was omit ted. 

found on Netfox Detective's YouTube channel. 9 

6.1. An example: SIP fraud analysis 

This section reviews Netfox Detective in use based on a simu­
lated SIP (Session Initiation Protocol) Fraud case. The SIP Fraud 
attack exploits a misconfiguration of the SIP server where the 
attacker tries to guess a secret prefix that is used to initiate a call 
from a VoIP network to PSTN (public switched telephone network). 
If the attacker finds the correct prefix, the Gateway (Callee) replies 
with a 200 OK SIP message. The attacker then uses the discovered 
prefix to initiate a call on a premium number. The costs of the call 
are charged to the owner and will profit the attacker. A visual 
summary can be found here: http://y2u.be/P2W9uANYKyI. 

To tackle the challenge, we developed the SIP Fraud Analyzer 
that can perform a postmortem analysis of possible SIP fraud at­
tacks in given PCAPs. The exact procedure is best explained by 
Fig. 5. The upper part is an interactive animation that reflects the 
actual state of the system (commodity server with hardware-
accelerated network card), the IPFIX collector and NEMEA system 
(Cejka et al., 2016) (note, this is not part of Netfox Detective but 
external equipment/software). In a nutshell, the hardware (left-
hand side) captures information and forwards it to NEMEA. Once an 
attack (or false-positive thereof) is identified (Jansky et al., 2017), 
NEMEA notifies the appliance, which then captures all evidence 
(generates a PCAP) and stores it on the hard drive. This file then 
serves as input for Netfox Detective. 

Knowing the workflow, we now focus on the analyzer and its 
responsibilities. First, NEMEA can notify Netfox Detective about its 
current state which allows us to update the view (e.g., the red arrow 
pointing from NEMEA to FPGA). Thus, an investigator can see (live) 
the current processing. Second, NEMEA can notify Netfox Detective 
when capturing is completed and trigger the analyzer to download 
and visualize the PCAP (the bottom pane in the figure). 

Fig. 5 shows the SIP Fraud Analyzer main view that visualizes 
the attack pattern. The evidence has the form of prefix guessing 
activity represented by several SIP INVITE messages that differ by 
the prefix of the callee number (here it is the number 031 ... 
@65518... and a lot of seemingly random prefixes which reflect the 
attacker guessing them). In other words, if the analyzer shows a 
graph like this, one knows an attack occurred; if we find 200 OK 
message, we know that the attack was successful. 

The system was tested/developed with a confidential dataset 
from the National Research and Education Network (NREN). During 
the experimental deployment of this system, we were able to 
successfully extract evidence, and based on that we informed vic­
tims about their misconfiguration in SIP's PBX. 1 0 

6.2. Reconstruction of web pages 

Another feature of the Netfox Detective is web page recon­
struction which can be viewed here: http://y2u.be/CP02rhe5Xs8. 
First, the SnooperHTTP extracts all HTTP objects and stores the 

' h t tps : / /goo .g l / f i iMSVs 
P B X - Private branch exchange used to relay VoIP c o m m u n i c a t i o n to the PSTN 

- pub l i c s w i t c h e d te lephone ne twork . 
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contents on disk. Second, SnooperMAFF iterates through the HTTP 
objects to identify all HTML documents. Subsequent analysis of 
these documents yields all linked objects, e.g., CSS files, JavaScript 
scripts, media streams, and so on. Lastly, all references to web re­
sources are rewritten (e.g., <a href = "http://... /photo.png" will be 
replaced by <a href = "./photo.png"), and then the HTML docu­
ments including all resources are packed into Mozilla Archive 
Format (MAFF) archive. 

The self-contained MAFF archive 1 1 contains all data that is 
related to each web page that was viewed. Experimentally, in case 
of the dynamic web that loads data continuously, we try to create 
multiple so-called snapshots that approximate how the web page 
may have looked. The snapshot is created with each significant 
change to the web page. The investigator is warned that this is 
experimental approximation and not an accurate replica. We do 
this approximation by interpreting JavaScript scripts and supplying 
it with resources previously extracted. Hence, we can reconstruct 
some dynamic pages like webmails, chats, or video streaming ser­
vices. These approximations are stored inside the MAFF archive as 
additional tabs. 

Note, web page reconstruction is only possible if the session is 
established using plain HTTP. Otherwise, it requires the investigator 
to get into the middle of the communication using a M i t M proxy 
like SSLSplit, 2020 that can capture unencrypted traffic or store SSL/ 
TLS session keys (Rescorla, 2018). 

7. Conclusions 

The amount of data sent over networks increases daily, and so 
does the number of devices connected to it. Additionally, analyzing 
the data becomes more complex due to encryption, the large 
number of different protocols or tunneling. As a consequence, 
forensic investigators are overwhelmed with data (possible evi­
dence), and traditional workflows are outdated (i.e., manually 
combing several specialized tools like SSLSplit, 2020, TShark, 2020, 
or Wireshark, 2020). To cope with these challenges, it requires 
automated, extendable tools that support practitioners by sum­
marizing data and providing visualization, which allows easy 
comprehension of the information (Beebe, 2009). 

In this article, we presented Netfox Detective which is a 
comprehensive open-source network forensic analysis tool (NFAT) 
available under the Apache 2.0 License. By design, our application 
can be expanded by implementing new modules; backend modules 
are called snoopers and frontend modules (which allow more 
complexity) are named analyzers. To enable researchers to create 
new modules, we have a well-documented API including several 
examples. The GUI follows the principles of a Master/Detail screen 
layout and uses dockable views, which makes it intuitive and easy-
to-use. We achieve better performance than comparable tools 
because of the parallel pipeline processing. As a side note: it was 
used by CESNET 1 2 for SIP Fraud Detection as mentioned in Sec. 6.1. 

The evaluation and comparison with existing tools show that 
Netfox Detective has a good efficiency as it makes use of all cores. 
Additionally, it has some unique features, that cannot be found in 
any other NFAT, e.g., a large number of supported application pro­
tocols as listed in Table 2, support for GSE tunneling, or heuristic 
extraction from malformed data. 

For the future, we plan on expanding Netfox Detective by 

1 1 Note, M o z i l l a d i scon t inued M A F F suppor t i n newer Firefox versions. W e advise 
u s ing S e a M o n k e y w i t h M A F F p lug in ht tps: / /addons. thunderbird.net /en-us/ 
seamonkey/addon/mozi l l a -a rch ive- format / , 

1 2 CESNET is a developer and operator of na t iona l e-infrastructure for science, 
research, deve lopment , and educat ion in Czech Republ ic . 

creating new modules (features), e.g., finding similarities using 
approximate matching (Breitinger et al., 2014). We also plan on 
changing the mechanisms for data processing to allow computation 
on clusters. In terms of interoperability, we intend to add exporting 
capabilities into standard formats, e.g.. Advanced Forensic Format 
(Cohen et al., 2009) or CybOX (Casey et al., 2015). Lastly, we want to 
create training sessions and material which will allow practitioners 
to become familiar with our tool. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at 
https://doi.Org/10.1016/j.fsidi.2020.301019. 

Appendix A. Terminology and definition 

There are several definitions in the community regarding flow, 
conversation, etc. For this work, we used the Microsoft Network 
Monitor (MNM) terminology 1 3 which is very close to the well 
established terminology used by Kurose and Ross (2016). 

Frame is a data link layer (12) protocol data unit 
Packet is an internet layer (L3) protocol data unit. 
Datagram is a transport layer (14) protocol data unit 
Protocol/application message is a application layer (L7) proto­

col data unit (PDU). A message is a collection of one or more L7 
PDUs. 

13 flow is a sequence of packets having the same source and 
destination IP addresses. It represents an uni-directional transmission 
of packets between two network nodes. 

13 conversation is a pair of L3 flows with mutually transposed 
source and destination IP addresses. It represents bi-directional 
transmission between two network nodes. 

lAflow is a sequence of packets with the same source and desti­
nation IP addresses and ports, and an 14 protocol number. It represents 
uni-directional communication between processes, e.g., data sent by 
an HTTP client to an HTTP server, possibly in several 14 half sessions. 
An 14 flow consists of one or more 17 flows. 

L4 conversation is a pair of L4 flows with mutually transposed 
L3 and L4 identifiers (src/dst IP addresses and src/dst ports). It 
represents bi-directional communication between processes, e.g., 
requests and responses between an HTTP client and server. The L4 
conversation may contain several L4 sessions (L7 conversations) 
between the same network nodes using the identical src/dst ports 
and the L4 protocol. 

L7flow is a part of the 14 flow that represents a transport session, 
e.g, one UDP or TCP session. For TCP, an 17 flow is bounded by its initial 
SYN packet and its closing FIN or RST packet. For UDP, an 17 flow 
corresponds to an 14 flow. One 14 flow may include several 17 flows 
that are logically independent, e.g., several TCP sessions (HTTP re­
quests ) with the same src/dst ports and IP addresses may compose one 
14 flow. A TCP 17 flow also includes starting SYN and ACK packets 
without any 17 payload, if present. 

L7 PDU represents an approximation of an application message, 
e.g., HTTP request. L7 PDU is a logical object that contains an L7 
payload of one or more packets belonging to the same L7 flow. It is 

1 3 The t e rmino logy was de t e rmined by s tudy o f M N M manua l , and b l o g — https:// 
blogs. technet .microsoft .com/netmon/( las t accessed 2019-08-17). 
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created using TCP reassembling. L7 PDU objects are processed by 
application parsers called L7 Snoopers. In a case of UDP, an L7 PDU 
is created for every L4 payload, i.e., there is an 1:1 relation between 
UDP payload and application message. 

L7 conversation is a pair of 17 flows. It represents logical appli­
cation data that are subjected to the forensic analysis. 17 flows are 
interconnected to the conversation according to SYN and SYN + ACK 
sequence numbers in TCP. An 17 conversation includes meta data such 
as timestamps of the first and last PDU— selected from both directions 
whichever is prior and posterior, number of frames of 17 conversation, 
collection of virtual frames representing missing (expected) frames, 
type of encryption, cipher keys (for TLS decryption), collection of 
probable application tags (types of 17 protocol, e.g., HTTP, SMTP, etc.). 

L7 Snooper is an application data analyzer (application parser, 
dissector). Snooper reads L7 PDUs from L7 conversations and per­
forms L7 processing, analysis, and visualization. L7 snoopers can 
co-operate with each other, e.g., SIP snooper co-operates with RTP 
snooper, WebMail snoopers with HTTP snooper, etc. 

L7 Analyzer is a less strict abstraction, module that encapsulates 
predefined behavior that applies to processed data or directly controls 
data processing. 17 Analyzers have full access to Netfox Detective 
platform and can change, extend any functionality used for processing 
or analysis. 

information about the running processes.1 4 Note, the training data 
was annotated with the application process instead of the appli­
cation protocol. On the other hand, our backend engine was 
extended to extract the process information for learning purposes. 
The feature vector characterizing the application protocol was 
specified according to the work by Moore et al. (2013), and 
customized for L7 conversation-based approach instead of packet-
based. 

The classification mode of the analyzer is used for annotating 
conversation with recognized protocols and applications. It is not 
an easy task, and the precision varies for the classification methods 
and the target set of applications. For more details see Pluskal et al. 
(2018) who demonstrated that it is possible to distinguish between 
communications traces of OneDrive, Skype, iTunes, Spotify, Steam 
and [Horrent clients, although all of them use HTTPS. 

Usually, traffic classification is a black box (e.g., in security 
software/hardware like IDS/IPS) and depends on the model. How­
ever, for practitioners, it may be helpful to get more insight and 
therefore Appldent can provide additional computed results in a 
visual manner. In other words, we implemented views allowing the 
comparison of the classification results of different methods, clas­
sifier performance analysis, and hyper-parameter tuning. 

srcPorl l ->dstPort2 HTTP R e q u e s t 

Capture file 

Capture file 

srclPl <-> dstIP2 

L3 conversation It 

sreIP3 <-> dstlP4 

L3 conversation I 

srcPortl <->dstPort2 
J L 4 conversation I 

-| L4 conversation \ 

srcPort5 <-> dstPort6 

N L4 conversation . 

SYN+ACK <-> FIN. 
-* | L7 conversation]^ 

UDP session 

-| L7 conversation 

SYN+ACK <-> FIN 
•| L7 conversation | 
SYN+ACK <-> FIN 
1 L7 conversation 

srcPort2 ->ds iPor t l HTTP Response 
- H L 7 flowl *-|L7 PDU I 

rcPorl3 -> dstPort4 SIP INVITE 

- I L 7 P D U I •\L7 flow|— 

\ i SIP A L K 
^ [ L T f l ^ ^JL7PDlj| 

srcPort4 - > dstPorO 

Fig. A.6. Figure describes relations between encapsulations on various levels of ne tworking stack reflected by object hierarchy serving as containers. Data is segregated into a 
particular container based on common identifiers described i n Section Append ix A . One 13 Conversation can contain frames from mult iple capture files and have a relation one to 
many w i t h 14 Conversations. The rest of graph is read similarly. 

Appendix B. Analyzers (Frontend Modules) 

Analyzers extend Netfox Detective with more advanced func­
tionality that cannot be implemented as snoopers. The Analyzer API 
provides access to data storage as well as the user interface. An 
analyzer can be bound either to application or investigation scope. 
Thus, it is possible to integrate highly specialized analyzers for 
specific cases. In order to grasp the concept of analyzers, we discuss 
their capabilities based on the Appldent — an application identifi­
cation analyzer. Appldent assigns an application protocol (or even 
network application) to every flow in the source data. The goal of 
the analyzer is to recognize applications (e.g., Google Drive, iTunes, 
or OneDrive) in network traffic instead of just the application layer 
protocol used (e.g., HTTPS). 

The analyzer is implemented using machine-learning 
(Christodorescu et al., 2015) and statistical methods, in particular, 
Bayesian belief network. Random Forests, and Enhanced Statistical 
Probability Identification, to make the decision. Because supervised 
learning methods are used, there are two running modes: 

The learning mode is used to build the models which required 
annotated data. To generate the data, we produced local network 
traffic and captured the communication using Microsoft Network 
Monitor, which automatically enriches the capture with 

Appendix C. Snoopers (Backend Modules) 

The backend supports modules, called snoopers, that can access 
information from the processing pipeline through the database 
(metadata storage). Snoopers extract objects from the source data 
but may also utilize other data such as regular log files. Therefore, 
snoopers parse the application conversation protocols (L7, listed 
below) and extract data such as files, videos, or HTTP headers. 
These extracted objects are then either stored in the database or 
pushed to the Investigation Explorer (grouped by a protocol) or can 
be accessed from the special Export Overview pane where they are 
grouped by event type, e.g., emails, images, chat messages. The 
following protocols for metadata and/or content extraction are 
supported: 

• Common internet protocols: DNS, SPDY, and SSL/TLS. 
• Selected application protocols: HTTP(S), MAP, POP3, SMTP, and 

FTP. 
• Email services: Gmail, Yahoo, and other webmails. 
• Instant messaging: XMPP, YMSG, OSCAR, Facebook Messenger, 

Hangouts, and XChat 

1 4 In deta i l , M N M creates a Process Info table that stores in fo rmat ion on the socket 
a n d the process that created it. 
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• Social networks and gaming: Twitter, Facebook, Minecraft, and 
Warcraft. 

• Bitcoin communication: Stratum. 
• Voice over IP systems: FTP and SIP. 
• Internet ofThings communication: MQTT. 

If the communication is not encrypted (or the server's private 
key is provided, and the server's configuration allows it), the 
snoopers can extract the communication content, e.g., transmitted 
files. For secured communication, only traffic metadata is available. 

In order to create new snoopers, there are three abstract classes 
that need to be inherited: 

SnooperBase can be seen as the extractor that will handle the 
identification of objects. The registration of a new snooper and its 
integration is automated as long as the snooper's DLL resides in the 
root directory of the application. Details about the snooperBase are 
provided at the end of this subsection. 

SnooperExportObjectBase stores the actual objects. For 
instance, an application protocol parser will dissect the commu­
nication and create instances of domain objects. Those objects 
might also implement various interfaces like IChatMessage, ICall, 
[EMail, IPhotoMessage, etc. to automatically integrate exported 
objects in generic views. 

SnooperExportBase encapsulates (meta-)information about 
the export process. For instance, the source of an L7 conversation. 
Additionally, it contains all extracted objects SnooperExport- Ob­
ject Base. 

SnooperBase. To create a new snooper, a new class that inherits 
from the abstract class SnooperBase including the class members, 

such as Name, Description, KnownApplicationPorts, CreateSno-
oper Export, and ProcessConversation, needs to be implemented. 
Additionally, the class defines multiple abstract methods that 
represent callback functions executed during conversation pro­
cessing. An example is given in Appendix D. The functionality has to 
be implemented in the following methods: 

• On Conversation Processing Begin — any relevant activity for 
creating a new object to be populated by the module. 

• On Conversation Processing End — any required processing 
before the new object is stored in the database. 

• On Before Protocol Parsing and On After Protocol Parsing — takes 
care of the internal state of an object and handles exceptional 
cases that are assigned to 'parsing state'. 

• On Before Data Exporting and On After Data Exporting — takes 
care of the internal state of an object and handles exceptional 
cases that are assigned to information 'extraction state'. 

Each snooper is executed on-demand, on the selected PCAP or a 
collection of them, according to the tool configuration. While 
modules can use the information provided by other modules, their 
basic use case is to implement extraction capabilities for applica­
tion protocols. For more complex analysis, we use analyzers. 

Appendix D. Abstract code for an Example Protocol snooper 
creation 

public class SnooperExample : SnooperBase { 
public override string Name => "Example Protocol"; 
protected override SnooperExportBase CreateSnooperExport0 

f throw new NotlmplementedExceptionQ; } 
public override string Description => "Description of Example Protocol"; 
public override int [] KnownApplicationPorts => new[] { 42 }; 

protected override void ProcessConversationQ 
•C 

//we need a stream to read from 
var stream • new PDUStreamBasedProvider(this.CurrentConversation, 

EfcPDUProviderType.Breamed); 
// now we can create a reader for the stream 
var reader = new PDUStreamReader(stream, Encoding.GetEncoding(437), true); 

// reader w i l l spawn messages, cycle through them 
do 
{ 

this.DnBeforeProtocolParsingO; 

// parse the protocol 
var message = new ExampleProtocolParseMsg(reader); 
i f (!message.Valid){ 

//TODO report error 

} 

this. DnAf terProtocolParsingO ; 
// TODD some additional integrity checks perhaps 
this.DnBeforeDataExportingO; 

var exportedObjact - new SnooperExportedDataObjectExampleProtocol 
(this.SnooperExportH.. .>; 

this.SnooperExport.AddExportObject(exportedObject); 

this.DnAfterDataExportingO; 
1- while (reader.NewMessageO); 

> 
} 
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Appendix E. Simplified reassembling algorithm implemented 
in Netfox Detective. 

1. Select L4 flows and sort packets u s ing the i r sequence numbers . 
2. Process each L4 flow accordingly : 
(a) Start f o l l o w i n g i tera t ion w i t h a S Y N packet, i.e., P,. 
(b) Increment Sen,, i.e., Seq f + = 1. 
(c) Create a new L7 F l o w to be a co l lec t ion of L7 PDUs for f o l l o w i n g a lgor i thm. 

Set Pirijt = Pj. 
(d) Create a n e w L7 P D U i f does not exist o r i f a previous L7 P D U was c losed, (e) If 

Seqj^Seqj_i + \Pj_-, | (the expected packet is miss ing , check t imes tamps TS 
and sequence numbers Seq as fo l lows: 

i . If TSj - TS(_i < MaxTime and Sea;, - Seq,-_] < MaxLost then a v i r tua l packet w i l l 
be created to replace the m i s s i n g packet. 

i i . If T5j - TSj_i > MaxTime and Seq, - S e a , . , < MaxLost then there is an 
ove r l app ing of TCP sessions because i packet, i.e., this packet , belongs to a 
different L7 flow. Skip this packet and proceed w i t h the next one. 

h i . If Seq, - Seqj.] > MaxLost then there are too many m i s s i n g data. The flow 
cannot be fully res tored. Close it a n d proceed w i t h next S Y N packet. 

(f) If Seq, = = Seqj_] + \Pj_i | the P, packet is expected, i.e., P, contains f o l l o w i n g 
data segment, add it into the L7 P D U created i n 2 d. 

(g) If F IN/RST/PSH flag is found or |P| = = MaxPayload, close the L7 P D U , 
(h) If P j n f r = = Pit break i tera t ion. 
(i) Increment i , i.e., i+ = 1 and GOTO 2 d. 
3. If there remains any S Y N packet i n the current L4 flow, GOTO 2a 
4. If the L4 flow contains any unprocessed packet, i.e., captured c o m m u n i c a t i o n 

is i ncomple te and heur is t ic methods (2e) have to be appl ied . 
5. Select packet P, that has m a x i m a l Seqt - Seq^ and GOTO 2c 
6. C o m b i n e opposi te L7 flows into an L7 conversa t ion u s ing co r re spond ing S Y N 

and A C K numbers . 

P, — represents the packet on the i-th index 
\Pj\ — represents a payload size obtained from the packet header 
Seq, — represents sequence number of packet on i-th index 
PiJlit — stores the reference to the packet that the reassembling 
algorithm started with 
TSj — represents time stamp of the packet on the i-th index 
MaxTime — variable, empirically set to 600 s 
MaxLost — variable, empirically set to 3800 B 
MaxPayload — variable, empirically set to maximal expected 
MTU 
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The increasing importance of network forensics in the investigations conducted by Law Enforcement Agencies is indisputable. 
Today's Internet does not carry ordinary T C P / I P traffic but utilizes many other encapsulations and tunneling protocols. In this 
paper, we overview the most used tunneling protocols and their features concerning digital forensic analysis. A case study of 
generic stream encapsulation describes how the investigator can obtain encapsulated application data from within. 

1 INTRODUCTION 

Internet applications use different communication 
protocols to exchange content. Most of network forensic 
analysis tools can correctly identify the communicating 
application and extract the content communication if 
encryption is not used. However, encryption is not the only 
obstacle for network forensic tools. Application 
communication can be also encapsulated in other protocols 
that provide an extra network layer in addition to the 
Internet's T C P / I P stack. These tunneling protocols are 
supposed to protect the encapsulated communication. It 
may be because the carried protocol is not compatible with 
the transport network technology or the additional security 
is necessary. Tunneling protocols are the basis for building 
virtual private networks. The local traffic needs to be sent 
over the Internet, which opens various possibilities for 
attackers. By using tunneling protocols, it is possible to 
protect the encapsulated communication with strong 
encryption to avoid eavesdropping and communication 
alteration. However, this benefit of network security 
represents a challenge for network forensics. 

This publication extends the original paper "Network 
forensics in generic stream encapsulation ( G S E ) overlay 
networks" published in In 6th Conference on the 
Engineering of Computer Based Systems ( E C B S '19), 
September 2-3, 2019, Bucharest, Romania [1]. 

1.1. P R O B L E M D E S C R I P T I O N 

Network data acquisition faces many challenges. One of 
the complications for evidence recovery from captured 
network data is the use of encryption and tunneling. W h e n 
end-to-end encryption was used the content of messages is 
protected but it is still possible to identify individual 
connections. In the case of tunneling protocols, multiple 
connections are multiplexed in the tunnel. The original 
design goal of tunneling protocols was to interconnect 
networks through possible incompatible network 
technology. The captured content o f the tunnel can be 
easily extracted, and individual connections recovered. 
However, modem tunneling protocols include security 
measures by applying encryption to transferred content. 
Therefore, connections can only be recovered at exit points 
of the tunnel. 

1.2. C O N T R I B U T I O N A N D P A P E R S T R U C T U R E 

The present paper provides an overview the common 

points in the network topology that can be used by law 
enforcement agencies ( L E A ) to conduct lawful interception. 
We provide a summary of most used tunneling protocols 
and discuss their features with respect to digital forensic 
analysis. F o r each protocol, the possibility of content 
extraction is explained. Also , a brief overview of methods 
for the classification of encapsulated traffic is provided. 
The issue o f connection recovery from tunneled 
communication is demonstrated using the G S E protocol as 
an example. 

2. LAWFUL INTERCEPTION POINTS IN 
NETWORK TOPOLOGY 

The goal of lawful network data acquisition is to collect 
enough information for evidence extraction. A s most of the 
Internet traffic is encrypted, the analysis of metadata 
represents the most important approach. There are many 
possible locations in the network topology that may be used 
for lawful interception and their selection depends on 
various circumstances. This section describes the locations 
and adequate techniques used to collect digital evidence out 
of network devices. 

The end-user machine is the place where any kind of 
data is presented to the user, or stored. If encryption is used 
to protect data in transfer, this is the place where it happens. 
If the device can be accessed by an investigator, several 
techniques for obtaining the evidence v ia the installation of 
agent software that can intercept A P I hooks [2], capture 
network traffic [3], capture screen [4] or maliciously 
modify [5]. 

Internet service provider (ISP) The most typical lawful 
interception probe deployment occurs in the ISP 
network [6]. The L E A possessing a search warrant can [7] 
compel the ISP to reveal the retained data [6] or to intercept 
the suspect's communication [8] using L E A ' s deployed 
network probes [6]. Technically, there are several types of 
interception or traffic manipulation that can be done. 

Network layer defines a physical connection between 
devices connected to a shared segment identified by M A C 
addresses that are resolved by A R P protocol. A R P can be 
misused to redirect the communication to an interception 
device [9], but it can also be error-prone [10]. The common 
encapsulation and tunneling protocols are V L A N , L 2 T P 
described in Section 3. 

Internet layer The majority of traffic interception probes 
assume that traffic is redirected into them Interception 
rules that are typically based on the IP address of the 
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suspect, defines which IP flows should be intercepted, i.e., 
captured for future analysis. Interception up to 1 Gbps 
speeds can be done on regular P C s without additional 
configuration. Speeds up to 10 Gbps require that data are 
not copied between the kernel and userspace, e.g., usage 
p f r i n g [11], or n2disk [11]. Speeds past the 10 Gbps [12] 
requires custom kernel optimizations, e.g., pf_ring and C P U 
core to N I C queue mapping. Typica l encapsulations are 
IPsec. P P T P . IPIP. 6in4 described in Section 3. 

Transport & application layer O n the transport layer, 
we may utilize "policy-based-routing" to define rules that 
describe coinmunication we are interested in to capture, or 
redirect to capturing probe. Typica l encapsulation protocols 
are G R E , S S T P , A y i y a described in Section 3. O n the 
application layer, we can go deeper and manipulate 
communication, e.g., conduct S S L / I L S inspection, 
filtering, or capturing [13, 14]. 

Datacenter accommodates the complexity of network 
architecture to their size [15]. Smaller providers [16] use 
from common network design segmenting a network into 
smaller subsets o n Internet layer, mid to large 
providers [17, 18], and cloud providers commonly use 
software defined networking ( S D N ) [19] to create virtual 
networks over well-designed base network layer. 
Customers can usually define network typologies 
dynamically as they create their visualized 
infrastructures [18]. A l l protocols described in Section 3 
can be used. 

3 ENCAPSULATION AND TUNNELING 
PROTOCOLS 

The structure of the T C P / I P networking stack used o n the 
Internet is quite rigid. There is a fixed number of layers, 
each providing certain functionality. This setup works fine 
for common scenarios, but occasionally the need to use a 
different configuration arises. 

Encapsulation is a core concept for computer networks 
and is the basis for the layer model. A s data moves 
downwards through the stack, from application to the 
physical medium, the contents get wrapped-encapsulated-
at each layer in additional protocol information. W h e n 
processing received data, each layer interprets its own 
information and forwards the encapsulated payload to the 
layer above. 

Tunneling and encapsulation are likewise strongly 
related concepts. While common protocols encapsulate data 
o f higher layer protocols, tunneling protocols may also 
encapsulate data of protocols of the same or lower layers. 

Table 1 

Summary of tunneling protocol features 

Protocol Authentication Encryption 
IPSec Built-in Built-in 
G R E No No 
PPTP Using P P P Using P P P 
L 2 T P Using P P P Using P P P 
SSTP Using SSL Using SSL 
IPIP No No 
6m4 No No 
Ayiya No No 

Tins effectively allows extending the stack, repeating 
some layers multiple times, and can be considered a form of 
recursion. 

C o m m o n use-cases for tunneling include transporting 
data over network segments with an unsupported network 

or data-link layer protocols or providing the illusion of 

being connected to a remote L A N via V P N . 

3.1. C O M M O N T U N N E L I N G P R O T O C O L S 

There exist a number of tunneling protocols varying in 
their application and scope. Some have very narrowly 
defined capabilities while others attempt to be general and 
extensible, see Table 1 for comparison. 

IPsec is a suite of protocols that work with the IP family 
to provide confidentiality and integrity of transmitted 
data [20]. While not strictly a tunneling protocol, it can 
operate in a tunneling mode where the secured IP packet is 
encapsulated in a new packet. The operation of IPsec 
roughly consists o f three components: security association 
(SA), authentication header ( A H ) [21] and encapsulating 
security payload (ESP) [22]. W h e n a party is interested in 
communicating securely, it negotiates a S A winch holds the 
necessary cryptographic parameters. Afterward, the 
communicating parties can include A H in their packets, 
winch can be used to verify the integrity o f the received 
data. A H achieves this by computing a hash from the fields 
of the IP header as well as the included payload and the S A . 
It is the last property that differentiates A H from a basic 
checksum and protects the data from being modified in 
transit. A s A H protects parts of the IP header in addition to 
the payload, it also provides a form of authentication. The 
E S P can provide integrity as wel l as cotrfidentiality using 
encryption. In transport mode. E S P only encrypts the 
payload; in the aforementioned tunneling mode, E S P 
encrypts both the IP header and the payload and 
encapsulates them in a new IP header. 

GRE is an encapsulation protocol developed by Cisco to 
allow for encapsulation of link and network protocols in a 
generic way [23]. The protocol itself is very simple and 
provides no security features such as encryption or 
authentication. The payload packet is encapsulated in the 
G R E header, which is then encapsulated in the delivery 
protocol. The G R E header contains a protocol number 
identifying the encapsulated protocol. Additionally, a 
checksum might be present. Earlier R F C s included several 
other fields that specified, e.g., the number of allowed 
recursions of encapsulation or routing information [23]. 
Their use has been deprecated [24]. 

PPTP is a tunneling protocol originally designed to cany 
PPP traffic over IP networks [25]. It operates on the link 
layer and uses a client/server model, where the server is 
called the P P T P network server and the client P P T P access 
concentrator. F o r encapsulation of the payload, P P T P uses 
an enhanced version of G R E . E a c h P A C - P N S pair 
establishes a tunnel and a control connection which runs 
over T C P . This control connection is used to manage both 
the tunnel and any user sessions using it. P P T P uses 
security mechanisms from P P P for authentication and 
encryption; the most commonly known are Password 
Authentication Protocol and Challenge-Handshake 
Authentication Protocol. 

L 2 T P aims to tunnel PPP packets in a way that is as 
transparent as possible [26]. It decouples the layer 2 and 
PPP endpoints. allowing them to exist at different devices 
connected by a packet-switched network. The overall 
design is reminiscent of that of P P T P . The two endpoints 
are called the L 2 T P Network Server and L 2 T P Access 
Concentrator, fi l l ing similar roles as their P P T P 
equivalents. These two endpoints establish a tunnel which 
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consists of a control connection and zero or more sessions. 
The control channel is reliable, while the channel used for 
transmitting data messages is not. In IP networks, the 
transport protocol to carry the L 2 T P messages is U D P . 
which avoids the issues brought by stacking several T C P 
connections on top of each other. L 2 T P supports the 
C H A P - l i k e tunnel authentication mechanism but provides 
no integrity or confidentiality, leveraging features provided 
by PPP instead. However, it is commonly used in 
combination with IPsec to encrypt the payload via E S P 
and/or A H . 

SSTP tunnels P P P frames over S S L / T L S , using T C P as 
its transport protocol [27]. In this case, security is provided 
by S S L using encryption and integrity checking. The 
structure of the S S T P header is quite simple, with the only 
interesting field being the C flag. W h e n set, the 
encapsulated payload contains an S S T P control message; 
otherwise the higher-lay er protocol. 

IPIP is a protocol meant to alter the normal routing 
process by encapsulating the IPv4 packet in another IPv4 
packet and sending it to an intermediate node [28]. The 
entry point of the tunnel wraps the IPv4 packet in another 
IPv4 header destined to the tunnel endpoint. After 
traversing the tunnel, the inner IPv4 packet is decapsulated 
and processed normally, routed and forwarded to its true 
destination. The protocol is simple, using no additional 
headers, as it is limited to one type of outer-inner protocol; 
most of the complexity lies in rules on how to properly 
handle I C M P messages. O n its own, it provides no 
additional security features over basic IPv4. 

6in4 is a transition mechanism allowing IPv6 traffic to 
traverse networks with only IPv4 support [29]. A tunnel is 
established between two devices, and the IPv6 traffic is 
transported by encapsulating it in IPv4. A special IP 
protocol number is defined for this purpose. 6in4 itself 
provides no security-related features such as authentication 
or integrity. 

Ayiya attempts to solve some o f the issues that 
transition protocols such as 6in4 have with establishing 
tunnels that travel through N A T s . [30] These N A T s need 
to be manually reconfigured to properly handle 6in4, 
which in some cases is not possible. A y i y a solves this by 
tunneling IP traffic not directly over IP, as is the case with 
6in4 or IPIP, but over a transport layer protocol such as 
T C P or U D P . It aims to be general, independent of both 
the payload protocol and the transport protocol being 
used, thus the name Anyth ing in Anything. It is even 
possible to tunnel the payload protocol directly over the 
network protocol, i n the ve in of IPIP. for IP over IP 
tunnels with minimal overhead where possible. A y i y a 
defines a custom header that is placed between the 
payload and the delivery protocol. The header contains an 
identity field to help determine which sender the packet 
has originated from, as the source port number and IP 
address may change arbitrarily during the connection, due 
to N A T . D H C P , IPv6 privacy extensions etc. A n operation 
code field may specify special handling o f the received 
packet, such as echoing it back to the sender. In addition, 
it contains an optional signature and authentication, 
providing some security features out of the box. A 
heartbeat message is used to keep the tunnel open, as not 
receiving any packets for a certain period of time results 
in closing the tunnel. 

3.2. I D E N T I F I C A T I O N O F E N C A P S U L A T I O N 
P R O T O C O L S 

T o properly parse a protocol and extract information 
from it. it is necessary to correctly identify it. A s there is 
no field identifying the application protocol in common 
transport protocol headers ( T C P . U D P ) . and port numbers 
alone aren't sufficient to identify the protocol being used, 
several approaches have been developed to solve this 
issue. 

Deep packet inspection (DPI) is a content-based 
method that attempts to identify protocols by looking 
inside the payload [31]. It looks for known signatures in 
the transmitted data to identify the data flow as a 
particular protocol. The signature matching process can be 
as simple as looking for a value in the first few bytes of 
the payload (application header) or complex heuristics 
requiring access to whole flows. D P I achieves high 
accuracy; the chief downside of this approach is that it 
needs to be able to access the data being transmitted to 
function properly, and it needs to inspect every packet 
passing through the interface. If the application uses 
encryption, D P I fails to provide meaningful results. 

Connection patterns can be used to classify traffic into 
categories without inspecting the payload [32]. Sequences 
of flows are matched against heuristics using a set of 
rules. A s different types of traffic (such as web or P2P) 
display different connection patterns over time, this 
information is sufficient to categorize the observed flows. 
Whi le significantly simpler and less computationally 
intensive than D P I , this method only achieves rough 
categorization; it does not identify specific protocols. 

Statistical methods are based o n flow properties such 
as duration, packet size or arrival times [33]. 
Measurements of various protocol attributes are taken, and 
these are compared to existing models. It is possible to 
include some D P I attributes and treat them as statistical 
properties, resulting in a hybrid approach. Creating 
models by extracting fingerprints can be done manually; 
however, this is a very time-consuming process. Avai lable 
algorithms, therefore, try to automate the process of 
creating new protocol models, requiring only pre-
classified training data instead, uti l izing machine 
learning [34]. 

A s tunneling protocols work above the network or 
transport layer, these approaches can be used to detect 
encapsulated traffic as well . Few of the protocols 
described in the previous section provide encryption by 
themselves, and most offer some kind o f signature 
available in the header that can be matched. Moreover , the 
accuracy of identification is of high priority, as we don't 
want to simply categorize the traffic to gather statistics but 
identify the encapsulated traffic as well . F o r this we need 
to correctly identify the protocol being used; DPI , 
therefore, appears to be a reasonable choice for 
encapsulation identification. The problem is further 
complicated by the possibility of IPsec being used to 
secure the tunneled traffic independent of the protocol 
being used; this is, in fact, the recommended approach by 
L 2 T P [26]. Addit ional ly , tunneling protocols can tunnel 
other tunneling protocols, recursively extending the 
number o f layers; to properly extract the application data, 
it is necessary to identify and decapsulate each of those 
protocols in turn properly. 
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D V B - S 2 , G S E 

Fig. 1 - This example scenario is presenting a professional application 
of DVB-S2 and GSE, This architecture offers point-to-point or point-
to-multipoint connections over a satellite link in both directions. 
Traffic between site A and site B is carried using generic stream 
encapsulation. The figure is based on the GSE implementation 
guidelines [37]. 
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u ate band 

"'••"n":i :s 

m'iTj en n i 

Fig. 2 - The figure shows the encapsulation of network layer PDUs 
into GSE packets and transmission of GSE packets inside physical 

layer baseband frames. GSE packets and baseband frames consist of a 
header (shown as a grey block) and a data field (shown as white space). 
GSE packet carrying the last fragment also contains CRC-32 (shown as 

a block with pattern). The figure is based on GSE protocol 
specification [35, p. 10], 

4 GENERIC STREAM ENCAPSULATION (GSE) 
CASE STUDY 

Network protocol generic stream encapsulation ( G S E ) 

was defined by the digital video broadcasting project 

( D V B ) , and it offers a way to transport IP traffic over a 

generic physical layer, usually over D V B physical 

infrastructure [35, p. 6], G S E , as a native IP encapsulation 

protocol o n D V B bearers, was introduced with the second-

generation satellite transmission system called D V B - S 2 

(Fig. 1). Generic data transmission on the first generation of 

D V B standards was formerly possible using the multi­

protocol encapsulation ( M P E ) o n M P E G T S packets. 

However, M P E suffered significant overhead. G S E is also 

included in the Satlabs System Recommendations for D V B -

R C S terminals [36]. 

Outline of GSE procedures operation of G S E allows 

transmission of variable size generic data encapsulated into 

baseband frames. G S E can encapsulate not only IPv4 traffic 

but a wide range of other protocols including IPv6, 

Ethernet, A T M , M P E G , and others. It supports addressing 

using 6-Byte M A C addresses, 3-Byte addresses, and even a 

M A C address-less mode [35, p. 6[. Encapsulation and 

decapsulation procedures performed by the D V B broadcast 

bearers are transparent to the rest of the network topology 

and the carried traffic. Shall a network layer P D U be 

transmitted over a satellite connection. G S E packets serve 

as a data link layer (Fig. 1). 

Uwptr TP 
l i e . work 

Overlay 
technology 

Luti:e:f TP 

m i . v. o i k 

Dala link 
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Fig. 3 - Example of IP traffic encapsulated in the GSE layer, which is 
carried by another IP traffic. The resulting virtual topology can be 

characterized as an established overlay network. 

This G S E layer provides encapsulation, fragmentation, and 

slicing. Created G S E packets are then carried in baseband 

frames, e.g., D V B - S 2 , on the physical layer (Fig. 2). The 

receiving side performs a reassembly process, integrity 

check, and a final decapsulation of transmitted P D U s [38]. 

Moreover, it is also possible to transport G S E packets 

over, for example, standard IP network infrastructure. In 

this case, the D V B - S 2 traffic can be carried like a generic 

pay load on the application layer with the use of the U D P as 

a transport layer. Therefore, given U D P datagrams carry 

D V B - S 2 baseband frames, which further carry G S E packets 

encapsulating selected protocol communication. This 

approach effectively establishes an overlay network 

infrastructure, because IP traffic can practically carry G S E 

packets, which can carry another layer of IP traffic. A t this 

point, the U D P / I P layer below G S E can be considered the 

carrier (encapsulating) traffic whereas, for example, the IP 

layer above G S E can be described as the carried 

(encapsulated) traffic. This approach is presented in F ig . 3. 

According to specifications and recommendations 

published by SatLabs, the implementation of a receiver 

with an Ethernet interface can be divided into a 

demodulation/decoding device, and a device focused on 

baseband processing. In such a case, the L3 Mode 

Adaptation Receiver Header can be prepended to received 

data [39, p. 10]. The receiving device would then process 

DVB-S2 L3 Mode Adaptation Receiver Header, DVBS2 
baseband frame, and GSE packets to analyze transmitted 

conununication. 

Fragmentation, slicing, padding and reassembly 

process A s noted earlier, G S E procedures can encapsulate 

different protocol data units in one or more G S E packets. In 

general, G S E packets have variable lengths, and they can be 

sent in different baseband frames individually or in a group. 

Therefore, fragmentation, slicing, padding and 

reassembling can occur. In this context, fragmentation 

refers to a situation when a P D U and extension header is 

fragmented into multiple G S E packets (Fig. 2). Slicing 

indicates a case when a G S E packet itself is divided into 

several contiguous baseband frames [35, p. 8[. Noted 

slicing, therefore, refers to physical layer fragmentation, 

which shall be transparent to the G S E layer [37, p. 27]. 

Concerning D V B - S 2 applications, G S E slicing does not 

occur [37, p. 31]. 

Shall a single P D U be fragmented into several G S E 

packets, each packet is assigned a fragmentation identifier 

(Frag ID) label in the G S E header [35, p. 17]. Frag ID is 

used to match fragments belonging to the same original 
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P D U . This approach enables the simultaneous transmission 
of fragments from up to 256 different original P D U s . G S E 
packets carrying a complete P D U and G S E packets with 
P D U fragments can be distinguished using start and end 
flags in the G S E header. The protocol of carried P D U is 
indicated by protocol type/extension field in the G S E 
header of the first fragmented packet and every not 
fragmented packet. The packet with the last P D U fragment 
further carries a C R C - 3 2 field used to check integrity after 
the reassembly process (Fig. 2). It is important to note that 
for example, D V B - S 2 allows multiplexed transmission of 
multiple streams, each identified by its input stream 
identifier (ISI) [37, p. 32] in baseband header [40, p. 20]. 
The reassembly process has to be carried out independently 
for each received stream [35, p. 21]. Some of the possible 
G S E packet formats are presented in the technical 
specification [35, pp. 31-32]. 

3 Fun.: No. 0 PCOfl a m , : 

I Crftat 00 01 0? 03 04 OS 06 07 ASO 
-n. 

• 000 0< 00 21 Ot Dl BC 00 U ..• j 
OOld " " " M " Z Z " ","t\ 

;' ' - - . S i EE E5EEEEEE 
z : s " " : : 

Fig, 4 - View of the frame content of the Netfox Detective presenting a 
frame carrying eight other encapsulated frames. It is possible to navigate 

between encapsulated frames using shown links labeled with GUID of the 
target frame. 

Concerning G S E addressing modes noted earlier, an 
additional fourth mode called label re-use can be used 
when multiple G S E packets are carried in a single baseband 
frame. Shall label re-use be indicated, current G S E packet 
without address belongs to the same address as the last 
previously processed G S E packet. A more detailed analysis 
of G S E protocol is beyond this paper's scope. G S E packet 
format is defined in the protocol specification [35, p. 12]. 
Further information can be found in standards, 
recommendations, and guidelines covering G S E and D V B -
S2 [35, 41, 42, 37, 43]. 

4.1. E V A L U A T I O N 

Every layer of decapsulated traffic is subject to further 

network forensic analysis performed by the Netfox 

Detective 1 . The information is presented in the G U I . The 

view informs the user whether the current frame in 

encapsulated or not. It is also possible to navigate between 

views showing individual encapsulating frames (Fig. 4) and 

encapsulated frames. The implementation has been 

evaluated on publicly available d a t a s e t 2 , and results 

(amount of correctly identified and extracted G S E 

communications) were comparable to the reference 

Wireshark implementation. A set of integration tests was 

implemented that verify the correct processing of G S E 

traffic in future releases and prohibit regression bugs from 

being introduced. 

1 https://github.com/nesfit/NetfoxDetective 
1 https://wiki.wirestork.org/DVB-S2 (last accessed 2019-12-12), 

5 CONCLUSIONS 

Network forensic analysis currently faces many 
challengesthat stems from the fact that most of the Internet 
traffic is encrypted. Thus, the analysis relies o n the 
metadata of messages and the behavioral characteristics of 
the communication. In this paper, we have considered 
another issue for network forensics, namely, the use of 
tunneling protocols. We have identified the problem that 
tunneling represents for evidence extraction. Then we have 
presented an overview of different existing tunneling 
protocols and their characteristics with respect to digital 
forensics. Finally, we have demonstrated the case study 
using the G S E protocol, which allows transporting IP traffic 
via satellite connections. The experimental G S E protocol 
analyzer implements the method for full content extraction. 
Thus it can be used to preprocess the data for network 
forensic analysis tools that are unable to directly cope with 
tunneled communication. If tunneling protocols apply 
encryption to protect the encapsulated traffic, the content 
extraction is not possible in general. However, several 
approaches were proposed for the detection of the 
application class of encapsulated communication. The 
paper provides a brief overview. Their adaptation for 
different tunneling protocols belongs to the intentions of 
our future work. 
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Abstract 
The importance of captured network traffic as a data-source 

for law enforcement crime investigation has increased be­

cause many devices are Internet-enabled and the data com­

munication might yield crucial evidence for an investigation. 

There are many points in the Internet Service Provider's 

infrastructure where the network traffic might be captured. 

One of them is a satellite connection, D V B - S 2 , which use 

Generic Stream Encapsulation (GSE) protocol that carries 

IP traffic. Current tools for network traffic forensic analysis 

do not support G S E . In this paper, we describe principles 

of GSE, methods for GSE traffic analysis and the extension for 

an existing network forensic tool that performs G S E traffic 

processing and extraction of encapsulated communication. 
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1 Introduction 
The digital forensics is becoming a domain of skilled oper­

atives employed in Law Enforcement Agencies (LEA) that 

are tasked to investigate crimes. The ir data-sources might 

vary, like seized mobile phones, computers, or other storage 
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devices. Several cases use a lawfully intercepted network 

traffic as a valued data-source [2]. 

Al though the analysis of network communication was 

not considered the primary area of digital forensics, its im­

portance has increased as most of the devices are Internet-

enabled. Performing network forensic analysis requires ade­

quate tool support [13, 14]. A typical network forensics anal­

ysis tool provides features that aid an investigator to reveal 

evidence in network communication [l]. Instead of provid­

ing network protocol details, the forensic tool is expected 

to extract contents of transmitted files, perform a keyword 

search, identify user credentials, and more [2, 19]. 

M a n y complex and functionally rich network analysis 

tools require expert knowledge of operators necessary to cor­

rectly pre-process the data to suit the too l The field oper­

atives are experienced criminal investigators but usually 

not computer experts. Therefore, tools they use need to be 

straight-forward, provide top-to-bottom analysis, and re­

quire as few expert knowledge as possible. 

The overlay networks are becoming widely used by Inter­

net Service Providers (ISPs) that are interconnecting various 

public places, businesses, campuses, or regular home inter­

net connections. Technologies can be fiber-optic, metallic 

ethernet, 3G, 4G, 5G or satellite connection D VB-S2 that uses 

G S E to encapsulate IP traffic [6, 8-11]. 

Our motivation behind the implementation of G S E ana­

lyzer stems from the interest expressed by L E A investigators 

that seek a tool capable of analysis Internet communica­

tion encapsulated in various tunneling protocols. The offi­

cers prefer open-source network forensic and analysis tools 

(NEATs) [ l , 12], even though they might be poorly docu­

mented, out-of-date, and even abandoned [13]. 

1.1 P r o b l e m D e s c r i p t i o n 

The G S E is nowadays commonly used for Internet traffic 

encapsulation in satellite networks. As its name suggests, it 

is a generic method of encapsulation and can occur on Data 

Link, or Application layer even recursively. The L E A s strug­

gle to perform network forensics on data captured with GSE 

encapsulation, but because commonly used tools for network 

forensics do not process it, it is a difficult task. 

1.2 C o n t r i b u t i o n a n d Paper Structure 

This paper introduces the issues and methods of forensic 

analysis of the G S E protocol. In the next section, we list 

the most used Network Forensic Analysis Tools (NEAT) and 

B I D H T B t l N K 4 > 
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Network Security Monitoring (NSM) tools and their capa­

bilities in processing tunneling traffic, in particular, G S E 

protocol. It is interesting that to our knowledge, none of the 

NFATs support GSE. Next, we provide a detailed description 

of Netfox Detective architecture, and atop of it, we describe 

the principles of G S E processing. The goal of the present 

work is to provide advanced information for network foren­

sic practitioners that need to deal with GSE communication. 

We also implemented the G S E processing as an extension 

to our own N E A T making it available to the wider body 

of digital investigators. 

2 Related Work 
Network forensic practitioners commonly use two types 

of tools — the N S M and the N E A T [13]. This section mainly 

focuses on tunneling protocols support in related tools and 

their usability for network forensic investigation conducted 

by L E A officers. 

NSM tools are intended for a high-level insight into the net­

work communication. Such tools are usually fast and scal­

able; thus can process high volumes of network data on high­

speed networks up to hundreds of gigabits per second. These 

tools provide information typically from lower layers, i.e., 

Internet and Transport, and only partially from Application, 

where they parse only well-known protocols; rarely they sup­

port overlay networks. Also, these tools are guided strictly 

by standards and usually do not include heuristics or more 

in-depth analysis to extract additional content. They operate 

online, and most cannot process malformed or incomplete 

communication. The incomplete communication is a typical 

case when interception is done on commodity hardware in­

side ISP infrastructure. Therefore, these tools are used mostly 

by network operators for measurements, accounting, and in­

cident detection. N S M tools provide the bottom-up approach 

showing dissected packets and letting the investigator con­

duct expert analysis. 

The most commonly known N S M tool is Wireshark [27] 

that supports the following encapsulation protocols: GSE, 

GRE, Ayiya, G T P v l , L2TP, SSTP, PPTP, IPIP, IPsec, 6in4, etc. 

It supports the broadest range of network and application 

protocols. Wireshark defines an API that can be used to ex­

tend its functionality by a new protocol dissector. Note that 

it is the only tool supporting GSE\ 

Some N S M tools can be integrated, and more sophisticated 

analysis can be done programmatically, like TShark [27], 

T C P D u m p [24], T C P F l o w [26], NfDump [18], Suricata [23] 

(Teredo, GRE), Zeek [29] (Ayiya, Teredo, G T P v l , GRE), M o ­

loch [16] (GRE) that can analyze live or intercepted com­

munication. They can be parts of scripts that can do one or 

more tasks, but still can not be compared to N E A T carving 

and analytical capabilities. 

Jan Pluskal, Martin V o n d r á č e k , and O n d ř e j R y š a v ý 

NFAT Our focus is to provide a tool for L E A operatives 

to extract forensically important information mostly from 

the application layer of communication. This intent perfectly 

fits into the category of NFATs that is intended for in-depth 

traffic analysis, that is mainly performed offline on captured 

communication. NFATs provide the same amount of informa­

tion as N S M tools but also add extra information extracted 

from the application layer. They conduct a thoughtful analy­

sis of the traffic and use the extracted data to infer informa­

tion that helps the investigator. The information is usually 

provided in a synoptic, easily navigable user interface be­

cause NFATs are intended to be used even by field operatives 

without specialized training. 

Popular NFATs are NetworkMiner [17] (GRE, 802.IQ, PP-

PoE, V X L A N , OpenFlow, S O C K S , M P L S , and EoMPLS) , Py-

Flag [3, 20], XPlico [28] (L2TP, V L A N , PPP), Netlntercept [5]. 

No N F A T supports G S E as far as we know. 

3 Netfox Detective in Depths 
In this section, we present Netfox Detective, a network ana­

lysis desktop application created for the Windows platform. 

We discuss the low-level network traffic processing parts 

to be able to explain the extension of G S E decapsulation 

support. The tool is composed of two parts: 

Netfox F r a m e w o r k (backend, details see Sec. 3.1) is net­

work traffic processing engine that provides all kinds 

of functionality starting from capture file loading, go­

ing through traffic processing, extraction and ending 

with traffic analysis. 

Netfox Detect ive (frontend, details see Figs. 10, 11) 

is a visualization tool that depends on the backend 

for processing part but extending it with analytic ca­

pabilities to interpret extracted data. 

For a high-level overview of the tool architecture see Fig. 1. 

Note, Netfox Framework is a separate set of . N E T assemblies 

that have no dependency on Netfox Detective and can oper­

ate separately. However, the framework does not have any 

CLI and therefore has to be incorporated into an application. 

O n the other hand, Netfox Detective has a direct dependency 

on the Netfox Framework and is compiled with it, e.g., it uses 

types that are defined in Netfox Framework. 

3.1 Netfox F r a m e w o r k 

Netfox Framework is the backend, and it is responsible for 

parsing and preparing all information gathered. For instance, 

it identifies used protocols, to overcome fragmentation (L3) 

and segmentation (L4). In its current version, it does not sup­

port live capture but can process standard input file formats 

such: libPCAP, Microsoft Network Monitor cap, andPCAP-ng. 

Link Layer Once an input file is loaded, it is processed 

frame by frame (L2). The lowest used protocols type (e.g., 

L r N K T Y P E _ E T H E R N E T (IEEE 802.3), LrNKTYPE_IEEE802_ 11 
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Figure 1. The figure describes the abstraction of Netfox Detective and Netfox Framework architecture. The upper part of the 

diagram above the line represents visual parts of the tool. Below the line, components of Netfox Framework are drawn in 

a hierarchical view. 

(IEEE 802.11), LFNKTYPE_PPP, etc.) is stored in the pcap_fi-

le_header' structure, and we use it to load the first protocol 

parser. A good overview of the Link-Layer header type values 

is provided by [25]. 

Next, we utilize the frame header and its Logical L ink 

Controller header (LLC) where the main field is a unique 

identifier of the L3 protocol (e.g., IPv4, IPv6). 

Notice that sometimes it might not be stored in the cap­

ture file. L ink layer usually does not carry any forensically 

significant information; thus it is generally omitted and LINK-

TYPE_RAW, LINKTYPE_NULL l ink layer types are used. 

Internet Layer Similarly, both IPv4 and IPv6 contain an 

identification of an upper layer. (Note, IPv4 names the field 

'protocol'; IPv6 names it 'Next Header') which allows us 

to choose an appropriate L4 parser. A s long as the proto­

col/next header is present, we can parse the communication 

deterministically, usually up-to the transport layer. 

Transport Layer The transport layer carries no informa­

tion about the subsequent protocol; therefore, the continu­

ing application layer needs to be identified by other means 

to be correctly processed. We can do this identification using 

several methods (e.g., port-based classification, deep-packet 

inspection, probabilistic and statistical methods based on ma­

chine learning). Typical encapsulation with protocol exam­

ples is presented in Fig. 2. 

3.2 C o n v e r s a t i o n T r a c k i n g 

This section provides a comparison of ISO/OSI and TCP/IP 

models with denoted layer names and samples of typical 

protocols used on particular layers. The logical approach 

to process network data is to create a forest of trees with 

roots based on identifiers extracted from the lowest layer 

of the network encapsulation model and continue with upper 

^ M i n e c r a f t l l Warcraft~j| Bitcoin | ^ 
D L H ] 

I POP3 irTicebook || XMPP || SPDY| 
?Ť^ě71| XChaťll MQTTI 

I SMTP II Handouts II ICQ || RTP I 
~|| YMSG IITŤpI 

TCP UDP 

IPv6 IPv4 

Figure 2. This figure provides the comparison of ISO/OSI 

and T C P / I P models with denoted layer names and samples 

of typical protocols used on particular layers. Netfox De­

tective supports all protocols that are enumerated on this 

figure. 

encapsulation levels. This way, conversations on all levels 

are created, which also sets boundaries, and specific traffic 

can be targeted for analysis and information extraction. 

Besides, each layer has its specifics that need to be taken 

into account before processing ongoing layer. 

IPv4 (L3) f r a g m e n t a t i o n can occur, and packets need 

to be defragmented before further processing. Frag­

ments are identified by Fragment Offset and bit More 

Fragments (MF) set in the Flags field. As long as M F bit 

is set, defragmentation process has to buffer packets 

and further process them in bulk, because fragments 

do not carry headers from upper layers, thus cannot 

be processed separately and in parallel. 

T C P (L4) segmentat ion occurs regularly. Segments are 

agnostic to processing mechanisms, carry all required 

headers and can be processed in parallel. The posi­

tion of a segment in transmission buffer is defined by 
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the difference of initial sequence number (SYN packet's 

SEQ) and the particular segment's SEQ. 

A p p l i c a t i o n messages are not implicitly denoted be­

cause each application protocol has its structure and 

is not parsed on this level of processing. To obtain at 

least some level of abstraction, we can deduce bound­

aries of application messages from the transport layer. 

E.g., T C P ' s field Flags contains the PSH bit that is set 

when the last segment of a particular application mes­

sage is created. In other words, when flushQ is called 

on network socket which is typically done to notify 

the kernel that message is to be dispatch right away. 

Our unique mechanism of processing network commu­

nication [15], mainly L4 segregation shown that even mal­

formed or corrupted captures could be used as data-source 

and carving modules can extract otherwise lost information. 

We accomplish this during the last processing step, that cre­

ates L7PDUs, which are the approximations of application 

messages. 

3.3 Netfox Detect ive A r c h i t e c t u r e 

Netfox Detective was designed to be modular and modules 

to be inter-operable, but also to work as self-contained l i ­

braries to be used by other tools. This way, we have created 

a framework for network forensics and analytic application 

supporting the forensic investigation. 

Fig. 1 describes the decomposition of the tool to small 

interconnected building blocks/modules. In the bottom part, 

the architecture of Netfox Framework processing network 

communication that is interconnected with Netfox Detective 

by NetfoxFrameworkAPI. This API enables easy incorporation 

of Netfox Framework with any additional software that may 

use it as a platform. Furthermore, this part is divided into 

two groups, the execution and model parts. 

Execution part, on the left-bottom side of NetfoxFrame­

workAPI, consists of modules that by their composition en­

sures polymorphic behavior and extensibility. Each new net­

working protocol that is to be supported requires the creation 

of its tracking building block and connection into the process­

ing pipeline. The communication interface between building 

blocks is defined by their interfaces that buffer inputs and 

outputs that encapsulates data in models. 

Model part consists of blocks below DbContext. Models 

serve as data carriers for parsed, extracted state information, 

e.g., for L3 conversation it is the source and destination IP 

address with a collection of other models representing Frames. 

Models are persisted with DbContext and also accessible 

through it to higher layers. 

To ensure fast parallel processing on a single computa­

tion node with shared memory, i.e., an application running 

a single process, we used Task Parallel Library (TPL). This ap­

proach enables the creation of functional blocks that improve 

modularity. Each block processes immutable data; thus, all 
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blocks might run in parallel and together create an oriented 

graph, a Data Flow 1 . The Netfox Framework combines buffer­

ing blocks that interconnect execution blocks to maximize 

the utilization of resources due to different time complexities 

of data processing in the functional blocks. Also, this intro­

duces a back-pressure mechanism that is used as memory 

management to slow down faster blocks that might other­

wise overwhelm the system and cause resource depletion 

and consequently, a disk swapping or an application crash. 

3.4 C a p t u r e F i l e Process ing 

In Netfox Framework, capture file processing is initiated by 

a method call of AddCapture in NetfoxFrameworkAPI. In the 

current implementation, the tool processes captured traffic 

in formats libPCAP, PCAP-ng and MNM Cap (Microsoft Net­

work Monitor). Fig. 3 describes a sequence of execution calls 

and model passing through execution pipeline, a layer by 

layer to describe logical processing in an abstracted manner. 

Modules are designed to ensure concurrent processing 

thus they do process immutable data only. Majority of mod­

ules also do run in parallel instances to increase a degree 

of parallelism further. This design also enables with some 

modifications of processing pipeline to scale up and run 

the data flow graph in a distributed environment. That is 

achieved with T P L Data Flow which also enables to change 

interconnection of execution block to extend the process­

ing of capabilities to process new network encapsulations 

(tunneling protocols). 

The rest of this section describes processing blocks and 

their interconnections denoted on Fig. 4. 

C o n t r o l l e r C a p t u r e P r o c e s s o r 

ControllerCaptureProcessor block is used to oversee captured 

traffic processing. This module interconnects particular func­

tional and buffering block to a processing pipeline reflecting 

typical network layered encapsulation. A new processing 

data flow pipeline is created for each job. That leads to segre­

gation of data potentially originated from multiple cases and 

guarantees that no data might be reconstructed into false 

evidence. The processing has two reading phases. 

Firstly, a path to file or files with captured communication 

is passed to the CaptureProcessorBlock that takes care of pars­

ing of particular P C A P file format and retrieving raw frames. 

The output of this block is PmCapture object collection meta 

information about the capture file and frames encapsulated 

in objects oiPmFrame. PmFrame is obtained in the sequential 

streamed one-way passage of capture file and contains only 

information about its position in the capture file. 

Secondly, additional meta information used in further pro­

cessing without actual payload is filled in the second read 

by IndexMetaFramesBlock. This segregation is due to a way 

how frames are stored in various P C A P file formats. Some 

1 h t t p s : / / m s d n . r n i c r o s o f t . c o r n / c s - c z / l i b i a r y . h h ^ 8 6 0 3 ( v - v s . l l O ) . a s p x 
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Figure 3. Abstract capture file processing scheme with a sequential passage. Data dependencies between models are omitted. 

New conversations are stored in relational database triggered by the processing of a first frame belonging to it. 
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Figure 4. The figure describes the scheme of the functional and buffering block based on T P L Data Flow. This schema describes 

the decomposition of processing units to perform actions like reading frames from capture files, tracking conversations on L3. 

L4 levels and furthermore on L7 application layer with the approximation of application messages and application protocol 

identification. 

formats (e.g., M N M ) contains a frame table with this meta-

information in place and spares the first P C A P read. Execu­

tion of IndexMetaFramesBlock block, which is a non-blocking 

read from P C A P file with parsing of (L2), L3, L4 layers, is done 

with the maximal level of parallelism. Layer 2 might be omit­

ted in case that P C A P is captured without it. 

L 3 L 4 C o n v e r s a t i o n T r a c k e r 

L3L4ConversationTracker takes care of the creation of con­

versations on particular levels inside the ProcessPacketBlock. 

A PmFrame(s) (packets) with the same IP source and destina­

tion address compose an L3Conversation. This L4 conversa­

tion if furthermore a collection of smaller L4 conversations 

that composes PmFrame(s) (datagrams) with the same IP 

source and destination address and T C P or U D P source and 

destination ports and L4 protocol type (i.e., U D P or TCP) . 

In the time when conversations on layer L3 and L4 are 

created, meta-information in the form of PmFrames is still 

kept in memory. Because of that, complementary to the con­

versation creation, conversation statistics are generated as 

well. Statistics on both levels are updated by data processed 

from each PmFrame passing through ProcessPacketBlock. 

Because the processing model in Netfox Framework is based 

on IP communication, all non-IP communication is tracked 

in special aggregation conversations. These conversations 

have invalid LP addresses as identifiers, i.e., 0.0.0.0 and [::] 

on L3 level, and invalid endpoints on L4, i.e., 0.0.0.0:0 and [::]:0 

as both source and destination. Similarly, L3 conversations 

containing an unknown transport protocol are aggregated 

into first L4 conversation with valid IP addresses but invalid 

transport ports, i.e., 0 port number. 

L 7 C o n v e r s a t i o n T r a c k e r 

L7ConversationTracker is a core of our reassembling engine 

currently supporting T C P and U D P transport protocols. Vari­

ous T C P heuristics [15] are used to separated IP flow commu­

nication, i.e., L4 conversations to finer-grained units based 

on application session We call them L7 conversations. 

This module processes incoming datagrams in parallel 

respecting the following scheme. For each newly processed 

L4 conversation it creates a new Task and stores it into 

a dictionary keyed by an L4 conversation key. A l l conse­

quently processed datagrams wil l be forwarded into this 
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task. Tasks run in parallel on multiple cores and are sched­

uled by the TaskScheduler inside C o m m o n Language Run­

time (CLR), which makes them much lighter than regular OS 

threads because they are running on existing threads stored 

in the ThreadPool. After a task is done or paused, the thread 

is returned into the ThreadPool, and a new task is immedi­

ately executed on it. This way, the overhead is minimal, and 

parallel processing improves performance rapidly. 

Based on the transport protocol type, appropriate reassem-

bler is selected, and the datagram is passed to it for the pro­

cessing. Reassemblers incorporate heuristics [15] for ad­

vanced network traffic processing capable of accurate pro­

cessing of even malformed, or missing frames. 

U D P reassembler uses timeouts to separate consequen­

tial U D P sessions. Because of a lack of information 

from U D P protocol, application messages are created 

as an ordered sequence of L7 PDUs. Each L7 P D U con­

tains only one datagram. 

T C P reassembler is more complex and uses properties 

of T C P protocol like sequence numbers, flags (mainly 

S Y N , FIN, RST, PSH) in combination with timeouts. 

Based on T C P properties, approximations of applica­

tion messages are created in the form of the ordered 

sequence of L7 PDUs. Each L7 P D U contains one or 

more datagrams composing the application message. 

TCP Reassembler This solves an issue with the ambiguity 

of L4 conversations captured in one or many simultaneously 

processed captures. Typically this happens when static ports 

are used at server and client side. In a case when a packet loss 

corrupts capture, it may happen that multiple T C P sessions 

would be merged into one because from a network point 

of view, communication would match the regular schema. 

A T C P finite state machine would process this merged com­

munication and report missing data but would lack further 

information. That would result in ambiguity in determina­

tion who was communicating, whether there were one or 

more identities involved. 

Both reassemblers (TCP and UDP) produce L 7 Conversa­

tions that contain collections of data and non-data frames. 

Non-data frames are frames without payloads that serve 

for signaling purposes like T C P A C K s , or frames with pay-

loads that are malformed, or retransmitted. These frames do 

not participate in final stream creation, but their presence 

is either way recorded for auxiliary forensic intents. 

L7PDUs Data frames are stored inside L7 PDUs . One L7 

P D U represents a data stream that is an approximation of an 

application message. A n application message is considered 

to be a sequence of datagrams containing one user action, 

e.g., the user sends a message on online chat, or an email, 

or downloads a picture, etc. Although, one application mes­

sage can span across multiple L7 PDUs, scarcely, one L7 

P D U would contain multiple application messages. This also 
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serves as a check-pointing mechanism in case that module ex­

tracting data from the application protocol is unable to parse 

the data stream due to corruption or unknown content cor­

rectly. We observed that this happens a lot when proprietary 

application protocols are involved because of their volatile 

nature and closed specification. 

Storage B l o c k s 

Storage blocks are used to assure asynchronous persistence 

of gathered meta-information in the form of outputs of all 

functional blocks, i.e., L3, L4, L7 Conversations with statis­

tics, L7 PDUs and Frames. Data is stored in S Q L database in 

bulk operations to achieve higher performance with a cost 

of delay introduced with buffering. Buffering and database 

storing operations run in separate tasks. This way, both ser­

vices run in parallel and do not block one-another under 

ideal circumstances. Storage buffering is highly memory 

consumptive; therefore, in case that database is slower then 

processing, back-pressure mechanism protects processing 

pipeline against memory deprivation lowering its perfor­

mance. 

4 Decapsulation of Overlay Network 
Communication 

Available network technologies provide ways to encapsu­

late various network protocols inside carrier traffic. This 

approach practically establishes an overlay network on top 

of an existing network infrastructure. The virtual topology 

of such an overlay network is usually different than the phys­

ical topology. Encapsulation methods can aim to maintain 

security Confidentiality, Integrity, and Availability (CIA) triad. 

As already explained, the goal of Netfox Detective is to offer 

an extensive forensic analysis of captured traffic. To fulfill 

this goal and provide a broader range of use-cases, our re­

search and development further focused on the processing 

of encapsulated traffic. This section, therefore, outlines sev­

eral encountered challenges and explains how the analysis 

of encapsulated satellite traffic was solved. 

4.1 G e n e r i c S tream E n c a p s u l a t i o n 

Network protocol Generic Stream Encapsulation (GSE) was 

defined by the Digital Video Broadcasting Project (DVB), and 

it offers a way to transport IP traffic over generic physical 

layer, usually over D V B physical infrastructure [8, p. 6]. GSE. 

as a native IP encapsulation protocol on D V B bearers, was 

introduced with the second-generation satellite transmission 

system called DVB-S2 (Figure 5). Generic data transmission 

on the first generation of D V B standards was formerly pos­

sible using the Multi-Protocol Encapsulation (MPE) on M P E G -

TS packets. However, M P E suffered significant overhead. 

G S E is also included in Satlabs System Recommendations 

for D V B - R C S terminals [22]. 
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Figure 5. This example scenario is presenting a profes­

sional application of D V B - S 2 and G S E . This architecture 

offers point-to-point or point-to-multipoint connections over 

a satellite link in both directions. Traffic between Site A and 

Site B is carried using Generic Stream Encapsulation. The 

figure is based on the G S E implementation guidelines [6]. 

Outline of GSE Procedures Operation of GSE allows trans­

mission of variable size generic data encapsulated into base­

band frames. G S E can encapsulate not only IPv4 traffic but 

a wide range of other protocols including IPv6, Ethernet, 

A T M , M P E G , and others. It supports addressing using 6-Byte 

M A C addresses, 3-Byte addresses, and even a M A C address-

less mode [8, p. 6]. Encapsulation and decapsulation proce­

dures performed by the D V B broadcast bearers are transpar­

ent to the rest of the network topology and the carried traffic. 

Shall a network layer P D U be transmitted over a satellite 

connection, GSE packets serve as a data link layer (Figure 5). 

This G S E layer provides encapsulation, fragmentation, and 

slicing. Created G S E packets are then carried in baseband 

frames, e.g. DVB-S2, on the physical layer (Figure 6). The re­

ceiving side performs a reassembly process, integrity check 

and a final decapsulation of transmitted PDUs [4]. 

Moreover, it is also possible to transport GSE packets over, 

for example, standard IP network infrastructure. In this case, 

the D V B - S 2 traffic can be carried like a generic payload 

on the application layer with the use of User Datagram Pro­

tocol (UDP) as a transport layer. Therefore, given U D P data­

grams carry DVB-S2 baseband frames, which further carry 

G S E packets encapsulating selected protocol communica­

tion. This approach effectively establishes an overlay net­

work infrastructure, because IP traffic can practically carry 

G S E packets, which can carry another layer of IP traffic. At 

this point, the UDP/LP layer below G S E can be considered 

the carrier (encapsulating) traffic while, for example, the IP 

CSE 
packci s 

D V B - S 2 

ttrtf rrrrfi 
] ü 

Figure 6. The figure shows the encapsulation of network 

layer PDUs into GSE packets and transmission of GSE pack­

ets inside physical layer baseband frames. G S E packets and 

baseband frames consist of a header (shown as a grey block) 

and a data field (shown as white space). GSE packet carrying 

the last fragment also contains CRC-32 (shown as a block 

with pattern). The figure is based on GSE protocol specifica­

tion [8, p. 10]. 
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F igure 7. Example of LP traffic encapsulated in G S E layer, 

which is carried by another IP traffic. The resulting virtual 

topology can be characterized as an established overlay net­

work. 

layer above GSE can be described as the carried (encapsulated) 

traffic. This approach is presented in Figure 7. 

According to specifications and recommendations pub­

lished by SatLabs, implementation of a receiver with Eth­

ernet interface can be divided into demodulation/decoding 

device, and a device focused on baseband processing. In such 

case, L3 Mode Adaptation Receiver Header can be prepended 

to received data [21, p. 10]. The receiving device would then 

process DVB-S2 L3 Mode Adaptation Receiver Header, DVB-

S2 baseband frame, and GSE packets to analyze transmitted 

communication. 

Fragmentation, Slicing, Padding and Reassembly Pro­

cess As noted earlier, G S E procedures can encapsulate dif­

ferent protocol data units in one or more GSE packets. In gen­

eral, GSE packets have variable length, and they can be sent 

in different baseband frames individually or in a group. There­

fore, fragmentation, slicing, padding and reassembling can 
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occur. In this context, fragmentation refers to a situation 

when a P D U and Extension Header is fragmented into mul­

tiple G S E packets (Figure 6). Slicing indicates a case when 

a G S E packet itself is divided into several contiguous base­

band frames [8, p. 8]. Noted slicing, therefore, refers to phys­

ical layer fragmentation, which shall be transparent to the 

G S E layer [6, p. 27]. Concerning DVB-S2 applications, GSE 

slicing (fragmentation into baseband frames) does not oc­

cur [6, p. 31]. 

Shall a single P D U be fragmented into several GSE packets, 

each packet is assigned a Fragmentation Identifier (Frag ID) 

label in the G S E header [8, p. 17]. Frag ID is used to match 

fragments belonging to the same original P D U . This ap­

proach enables the simultaneous transmission of fragments 

from up to 256 different original PDUs. G S E packets carry­

ing a complete P D U and G S E packets with P D U fragments 

can be distinguished using start and end flags in the G S E 

header. The protocol of carried P D U is indicated by Pro­

tocol Type/Extension field in the G S E header of the first 

fragmented packet and every not fragmented packet. The 

packet with the last P D U fragment further carries a CRC-32 

field used to check integrity after the reassembly process 

(Figure 6). It is important to note that for example, DVB-S2 

allows multiplexed transmission of multiple streams, each 

identified by its Input Stream Identifier (ISI) [6, p. 32] in base­

band header [7, p. 20]. The reassembly process has to be 

carried out independently for each received stream [8, p. 21]. 

Some of the possible G S E packet formats are presented in 

the technical specification [8, pp. 31-32]. 

Concerning G S E addressing modes noted earlier, an ad­

ditional fourth mode called label re-use can be used when 

multiple GSE packets are carried in a single baseband frame. 

Shall label re-use be indicated, current G S E packet without 

address belongs to the same address as the last previously 

processed G S E packet. More detailed analysis of G S E proto­

col is beyond this paper's scope. GSE packet format is defined 

in the protocol specification [8, p. 12]. Further information 

can be found in standards, recommendations, and guidelines 

covering G S E and DVB-S2 [8], [9], [10], [6], [11]. 

Implementation Outline O u r main goal was to success­

fully decapsulate and process GSE protocol used as an over­

lay network technology (Figure 7). M a i n challenges were 

represented by correct decapsulation of fragmented traffic 

including timeout detection and also including support for 

recursive encapsulation. A s outlined earlier, this approach 

represents the transmission of following protocols layered 

on top of each other: 

• upper IP as an overlay network layer, 

• G S E packets transmitted inside a D V B - S 2 baseband 

frame with Mode Adaptation Header, 

• lower IP and U D P as a network and a transport layer, 

• Ethernet as a data link layer. 
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Figure 8. Extension of object model focused on the process­

ing of GSE-encapsulated frames (simplified). 

Design of the extension of the object model concerning 

the processing of encapsulated communication (Figure 8) 

is quite straightforward and reflects above-described pro­

tocol layers. Instance of BaseBandFrame composes of Mod-

eAdaptationHeaderL3, BaseBandHeader, and several user pack­

ets. These user packets are, in this case, G S E packets. The 

instance of GsePacket includes GseHeader and carries the en­

capsulated P D U . Properties of these instances store values 

of specific protocol fields from the processed frame, e.g., 

address label, length, fragment ID, encapsulated protocol 

type, checksum, etc. A l l designed model classes make use 

of factory methods for parsing corresponding instances from 

network traffic. These Parse methods, therefore, take an in­

stance of PDUStreamReader, which is responsible for provid­

ing a correct sequence of bytes belonging to the lower P D U , 

as described above. 

Because G S E packets can represent fragments of the en­

capsulated P D U , GsePacket class implements Fragment in­

terface utilized during reassembly procedures. With the chal­

lenge of correct reassembly and decapsulation, a new type 

of network traffic frame was introduced. Class PmFrameEn-

capsulated inheriting from PmFrameBase represents a frame 

encapsulated in one or more carrier datagrams. Carrier data­

grams can be either baseband frames or encapsulation pack­

ets. The instance of PmFrameEncapsulated has references 

to individual fragments which form the given frame. 

Processing of GSE-encapsulated communication is man­

aged by L7DvbS2GseDecapsulatorBlock (Figure 9) dynami­

cally connected to the frame processing pipeline, which was 

described in Figure 4. This T P L block aims to decapsulate 

frames from GSE packets used as an overlay network technol­

ogy. Connection to the pipeline is established using Broad-

castBlock, which is capable of forwarding L7Conversations 
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from the L7ConversationTrackerBlock to the StoreL7Conver-

sationBlock (as in the standard pipeline topology presented 

in Figure 4) and also to the noted L7DvbS2GseDecapsulator-

Block (Figure 9). Due to the possible amount of false positive 

detections of G S E layer, decapsulation procedures are op­

tional. M a i n Netfox Detective application settings include 

such option to enable Decapsulation during capture file import 

for communication of Generic Stream Encapsulation (GSE) 

inside DVB-S2 baseband frames with Mode Adaptation Header 

L3 sent as Layer 7 PDU. Shall this option be enabled, C o n ­

tra Her Cap tureProces so r instantiates and connects L7DvbS2-

GseDecapsulatorBlock to the pipeline. 

7 C o nversat io n T r a c k e r B lockj 

L 7 C o nversat io n 

f L7Conversat ionBroadcaster j  

r~L7Conversat ion—LL7Conversation—^  

^ StoreL7Conversat ionBlock j ^ L7DvbS2GseDecapsu la to r j 

L 7 C o nversat ion I 'ii 1I ran ir-lvm-i | i--n. <-< I 

III l i l 
Database DecapsulatedFrames 

Figure 9. Scheme illustrating the connection 

of L7DvbS2GseDecapsulatorBlock to the frame pro­

cessing pipeline using BroadcastBlock placed between 

L7ConversationTrackerBlock and StoreL7ConversationBlock. 

Standard pipeline topology is shown in Figure 4. 

Because GSE packets, which can encapsulate IP traffic, can 

be transmitted inside another UDP/IP, recursive encapsula­

tion can happen. In such an edge case, several G S E overlay 

networks could be created on top of each other. That implies 

that a frame decapsulated from G S E packets must be sepa­

rately processed and analyzed for the presence of another 

G S E layer. The challenge of recursive encapsulation is han­

dled by ControllerCaptureProcessor, as well. Shall the frame 

processing pipeline finish with some decapsulated frames, an­

other pipeline is established, and these decapsulated frames 

are further processed. 

The decapsulation procedure performed by L7DvbS2Gse-

DecapsulatorBlock is following. Instantiated PDUStreamReader 

handles reading bytes of the input conversation and then 

parsing of a G S E layer is attempted. U p o n successful de­

tection of G S E layer, D V B - S 2 baseband frames are passed 

to the GseReassemblingDecapsulator. It outputs frames which 

have type PmFrameEncapsulated and are ready for further 

processing by consequential blocks. 

The GseReassemblingDecapsulator manages decapsulation 

of frames encapsulated inside G S E packets, which are car­

ried in baseband frames. The decapsulator is capable of re­

assembly procedure according to the specification [8, p. 21]. 

Reassembling distinguishes single input stream and multiple 

input streams based on ISI explained earlier. The reassembly 

procedure utilizes GseReassemblyBujfer for each fragment ID 

and for each stream identifier processed. The decapsulator, 

therefore, decapsulates frames from G S E packets in base­

band frames. In the case of G S E fragmentation, given G S E 

packet (fragment) is added to the corresponding reassembly 

buffer. Upon successful reassembly, the carried frame is then 

decapsulated, too. Each GseReassemblyBujfer holds a counter 

of processed baseband frames, which is used to detect a P D U 

reassembly time-out error, as defined in the specification [8]. 

4.2 E v a l u a t i o n 

Every layer of decapsulated traffic is subject to further net­

work forensic analysis performed by the Netfox Detective. 

The information is presented in the GUI. The view informs 

the user whether the current frame in encapsulated or not. It 

is also possible to navigate between views showing individ­

ual encapsulating frames (see Figure 10) and encapsulated 

frames (see Figure 11). 

The implementation has been evaluated on publicly avail­

able datasets 2 , and results (amount of correctly identified 

and extracted GSE communications) were comparable to the 

reference Wireshark implementation. A set of integration 

tests was implemented that verify the correct processing 

of GSE traffic in future releases and prohibit regression bugs 

from being introduced. 

1 ! „ . „ . , . . 

-S=;10W=I= 5100D.tr,; 774 J! Z l " l m " * " ^ 

-: E„:1..,1.f:i-:.saî .= «-isa=-̂ M-Eo91-ä=3ä:«r5acS 

Figure l O . V i e w of the frame contentof the Netfox Detective 

presenting a frame carrying eight other encapsulated frames. 

It is possible to navigate between encapsulated frames using 

shown links labeled with GUID of the target frame. 

The main goal was to process GSE traffic used as the tun­

neling protocol in satellite communication networks. The 

current implementation of GSE processing module does not 

support for D V B - S 2 baseband frames that can be used as 

the physical layer. The decapsulation procedure also does 

not handle G S E labels, because of the limitation of the Net­

fox Framework tool that does not support tracking multiple 

LI conversations. Stream LD and fragment LD is correctly 

2 h t t p s : / / w i k i . w i r e s h a r k . o r g/DVB - S 2 (last accessed 2019-04-17), 
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F igure 11. Frame content view of Netfox Detective (as in Fig­

ure 10) analyzing a frame that was decapsulated from another 

frame of the lower layer. 

utilized during G S E reassembling. However, the stream ID 

value is not used to separate L l conversations. 

5 Conclusion 
Network traffic analysis is often conducted as a part of dig­

ital investigation. In most cases, Internet communication 

is analyzed, but sometimes the interesting communication 

is encapsulated in some tunneling protocol because of the 

network technology used. In this paper, we have presented 

the analysis of GSE protocol and the implementation of foren­

sic data extraction enabling to access the encapsulated In­

ternet traffic. The proposed implementation was evaluated 

against the Wireshark tool, the only available implementa­

tion of G S E analysis module in common N S M tools. The 

forensics tool Netfox Detective is publicly available (https: 

//github.com/nesfit/NetfoxDetective) for all network foren­

sic practitioners to use, including open-source source codes 

that can be freely modified, or integrated into other newly 

implemented tools. 
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Abstract 
Forensic analysis of intercepted network traffic focuses on 

finding and extracting communication evidence, such as in­

stant messaging, email, VoIP calls, localization information, 

documents, images. Due to the amount of data captured, this 

process is time-consuming and complicated. Most commonly 

used forensic network analysis tools have limited capabilities 

for large data processing. In this paper, we are introducing 

a new tool that achieves better data processing performance 

using available computing resources through distributed 

processing. Thanks to the technology used, this tool can 

be used on commodity hardware in a local area network, 

in a dedicated computing cluster or cloud environment. 

CCS Concepts • A p p l i e d c o m p u t i n g —> N e t w o r k f o r e n -

sics; • Ne tworks —> Network monitoring; Network protocols; 

Transport protocols; Application layer protocols; • Socia l 

and profess iona l topics —> Computer crime. 

Keywords Network Forensics, Network Traffic Processing. 
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1 Introduction 
Network administrators, cyber-security analysts, and digital 

forensic investigators capture and analyze network com­

munication to reveal the attack patterns or recover digital 

P e r m i s s i o n to m a k e d i g i t a l o r h a r d cop ies o f a l l o r pa r t o f this w o r k for 

p e r s o n a l o r c l a s s r o o m use is g r a n t e d w i t h o u t fee p r o v i d e d that cop i e s 

are n o t m a d e or d i s t r i b u t e d for p ro f i t o r c o m m e r c i a l a d v a n t a g e a n d that 

cop ies bea r th i s n o t i c e a n d the f u l l c i t a t i o n o n the f i rs t page . C o p y r i g h t s 

for c o m p o n e n t s o f th i s w o r k o w n e d b y o the rs t h a n the au thor (s ) m u s t 

be h o n o r e d . A b s t r a c t i n g w i t h c red i t is p e r m i t t e d . T o c o p y o t h e r w i s e , o r 

repub l i sh , to pos t o n servers or to redis t r ibute to lists, requi res p r i o r specif ic 

p e r m i s s i o n a n d / o r a fee. Reques t p e r m i s s i o n s f r o m p e r m i s s i o n s @ a c m . o r g . 
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evidence. The traditional tools used to process captured com­

munication have limited scalability. For instance, Wireshark 

is an excellent tool for troubleshooting and security analysis. 

However, performing analysis of captured files of several 

gigabytes is cumbersome. Current computing platforms of­

fer tremendous computation power. It is mainly because 

of its multi-core architecture. The number of cores available 

per C P U constantly grows 1 , contrary to the C P U frequency 

that is essential for single threaded applications. 

However, modifying commonly used single-threaded net­

work forensic tools, e.g., PyFlag, NetworkMiner, to utilize 

the full potential of modern processors is a complex task 

which would require extensive modification of their code 

base. Therefore, new tools for network forensic analysis are 

in high demand [9, 14]. 

Even more computing power can be obtained by distribut­

ing the workload among a cluster of machines. Availability 

of industrial strength technology for distributed data process­

ing and scalable storage led to the emergence of distributed 

network security analysis systems, e.g., M o l o c h 2 , Apache 

Spot 3 , or Apache M e t r o n 4 . Academic research also yields 

to implementations of scalable network security monitoring 

systems [26]. 

Regardless of the technology used, these systems aim 

to provide a high performance distributed computing envi­

ronment for network security monitoring (NSM). These tools 

are especially useful for real-time data processing and com­

plement other systems to defend against cyber threats such 

as IDS, firewalls, or SIEM. While these tools are also useful 

for network forensic analysis, forensic investigation favors 

the depth, accuracy, and reliability of processing over the fast 

response time. W h e n investigating, it is necessary to reliably 

analyze any artifact that can be extracted, even though the 

source data may be corrupted and may not be complete. 

1.1 C o n t r i b u t i o n 

This paper discusses the design, performance, and proper­

ties of a new Network Forensic and Analysis Tool (NEAT) — 

' E x a m p l e o f the s ta te-of- the-ar t C P U a v a i l a b l e o n the m a r k e t — A M D 

E P Y C R o m e 64 cores 128 threads, 2.35 G H z ; In te l® X e o n Ph i™ 7290F, 72 cores.. 

1.5 G H z ; In t e l® X e o n ® P l a t i n u m S 1 S 0 M 28 cores, 56 threads, 2.5 G H z 
2 h t t p s : / /mo lo . ch / (last accessed 2019-07-03). 
3 h t t p : / / s p o t . i n c u b a t o r . a p a c h e . o r g / (last accessed 2019-07-03). 
4 h t t p : / / m e t r o n . a p a c h e . o r g / (last accessed 2019-07-03). 
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Network Traffic Processing & Analysis Cluster ( N T P A C ) — 

that utilizes distributed computing architecture to improve 

the performance of network traffic analysis while being 

less demanding on hardware requirements than related sys­

tems. To extract the evidence from network packets, we need 

to thoroughly analyze them which means to perform several 

consecutive operations such as packet dissecting, flow iden­

tification, network stream composition, application protocol 

identification, and message parsing and artifact extraction 

(see Section 3). Contrary to the other N E A T tools (see Sec­

tion 2.4), N T P A C is able to correctly process captured traffic 

that is malformed without yielding misleading evidence (see 

Section 4.2). N T P A C performs forensic network traffic analy­

sis at high-speed networks. The system design uses a scalable 

approach that enables to run the tool on a single machine 

as well as on a computing cluster, in comparison with other 

NFATs tools, N T P A C is an order of magnitude faster and 

scales (see Section 3). 

1.2 Paper Structure 

Initially, background and related work are discussed pre­

senting an overview of current network forensic and secu­

rity monitoring tools. The architecture of N T P A C is intro­

duced, and the major architectural components are outlined. 

The paper then provides a preliminary evaluation of the per­

formance that focuses on demonstrating the throughput 

and scalability of the tool. Finally, we discuss h'mitations 

and future work. 

2 Background and Related Work 
This section provides a background for the paper and lists 

the related work. First, the actor model and network packet 

capture analysis are presented. Then we overview existing 

network forensic tools and frameworks. 

2.1 A c t o r M o d e l 

Actor model offers to solve the problems related to parallel 

and distributed computing elegantly and efficiently. The ac­

tor model was first introduced as a theoretical computation 

model highly influenced by Lisp, Simula and packet switch­

ing in computer networks [7]. It defines a fundamental con­

cept called actor system that is composed of tiny building 

blocks called actors that execute independently and mas­

sively in parallel. The actor is in the distributed world an 

abstraction of what is an object in Object-Oriented Program­

ming; in other words, it bounds data with computation. 

Actors communicate asynchronously via message passing. 

Actor system guarantees at most one delivery, which means 

that any message can get lost at any time but cannot be deliv­

ered twice or more. Actor's state changes only as a reaction 

on a received message. Actor's behavior determines how 

to process the incoming message by creating another actor 

sending a message to another actor, changing its state. 

Viliam Letavay, Jan Pluskal and O n d ř e j R y š a v ý 

The composition of actors in the actor system is hierarchi­

cal. Each actor is responsible for any other actor it creates, 

i.e., the creation of a parent-child relationship. A n Actor is de­

signed to be as simple as possible, typically without complex 

inner integrity checks, exception handling, etc. Thus, it can 

crash at any time. Parent actor is responsible for its children 

and knows how to deal with children's failures. This con­

cept greatly simplifies the computation model and allows 

a programmer to focus only on the most important part that 

is the core application's functionality and frees him/her from 

the need of use of synchronization tools (such as mutexes). 

2.2 Packet C a p t u r e A n a l y s i s 

Network traffic analysis aims to reveal traces of network 

attacks and find answers to questions about the incident 

investigation. Packet analysis starts with dissecting network 

traffic which performs the following steps: i) loading PCAP 

files, parsing the P C A P file, and extracting individual packets, 

ii) dissecting packets with low-level protocol parsers, including 

Ethernet, IP, IPv6, T C P or U D P , iii) collecting TCP packets 

into streams, and iv) applying higher level protocol parsers 

to get the required information or extract artifacts. 

However, in many cases, it is not possible to obtain plain 

content from communication because of encryption. Then 

at least some form of valuable forensic information can 

be identified, for instance, identities of users [1, 18], de­

vices [17] or applications [16] based on extracted metadata. 

Depending on the goal and available tools there are nu­

merous analytic approaches to network packet analysis: 

• The bottom-up approach is a prevalent method used 

by Network Security Monitoring (NSM) [24] oriented 

analysis that supports several tools, most notably Wire-

shark. A l l packets are parsed and presented to the in­

vestigator who uses filtering, querying and reassem­

bling to identify and extract required artifacts. 

• The top-down approach assumes that the Network 

Forensic and Analysis Tool (NEAT) [15], e.g., Network-

Miner, Xplico, PyFlag, NetfoxDetective, can extract in­

formation from packets into conversations or other 

higher level artifacts. These applications visualize this 

high-level information to the investigator that can then 

drill down into details if necessary. 

• Search based approach considers network communica­

tion being just another data format in which it is pos­

sible to search for keywords or patterns [11, 20]. 

2.3 N e t w o r k Securi ty M o n i t o r i n g Too l s 

Network forensic methods were implemented in various 

N S M tools, e.g., Wireshark, T C P dump, IDS systems (Snort, 

Zeek), fingerprinting tools (Nmap, pOf), and tools to identify 

and analyze security threats. As [15] observes, N S M tools are 

primarily used by network administrators and are intended 

for detailed bottom-up analysis that requires advanced skills. 
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Lukashin [12] presented a scalable internet traffic analysis 

system, which can process multi-terabytes libpcap dump 

files. It utilizes Apache Spark for data processing to ana­

lyze captured packets. The system performs basic analy­

sis and lacks some advanced features required by network 

forensics. Other approaches to the big data network security 

analysis were presented by various researchers [2, 19, 30]. 

Currently, Apache Metron and Apache Spot projects are 

the most vital. They are frameworks for security analysis 

of IT threats, enabling to process also firewall and appli­

cation logs, emails, intrusion-detection reports, and so on. 

Although they are primarily focusing on network security, 

they can be valuable as sources of forensic data. 

Additionally, there are special appliances for network se­

curity monitoring based on custom made F P G A chips that 

can perform up to 100 Gbps deep packet analysis and ex­

port NetFlow with additional information extracted from 

application protocols [8]. 

2.4 N e t w o r k Forens ic A n a l y s i s Too l s 

The investigators of Law Enforcement Agencies deal with the 

enormous number of cases. They require specialized tools 

that perform top-down analysis and save valuable time [3]. 

The following list is a selection of notable open-source tools 

that were designed to support the investigators: 

P y F l a g is full-fledged N E A T which is intended for disk, 

memory, and network forensics. PyFlag's design in­

corporates the concept of a Virtual File System [4]. 

It implements a specific loader for each supported 

data source. PyFlag enables to reassemble the content 

of the communication, e.g., web pages, email conver­

sation. 

N e t w o r k M i n e r is an open source tool that integrates packet 

sniffing and higher-layer protocol analyzing capabili­

ties into a tool for passive network forensic analysis. 

X p l i c o is a modular N E A T It consists of the input mod­

ule handling the loading source data, decoding mod­

ule equipped with protocol dissectors for decoding 

the traffic and exporting the content, and the output 

module organizing decoded data and presenting them 

to the user. Xpl ico is a client-server application that 

can analyze P C A P files as large as several gigabytes. 

Whi le all these tools are very useful for investigators 

as they offer a variety of advanced features, their scalability 

is limited because they run on either a single computer or in 

a traditional client-server architecture. 

2.5 B i g D a t a Forens ics 

As distributed frameworks matured, new tools for big data 

security analysis and digital forensics were designed. Such 

tools are usually intended for the forensic investigation con­

ducted by network administrators on corporate networks. 
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They usually serve as a complement to Intrusion Detection 

Systems enabling to capture and analyze hi-speed communi­

cation at scale. 

Agent-based systems for digital forensics were considered 

in the literature [21, 22, 29]. These models are more suit­

able for real-time network forensic analysis from multiple 

sources, such as logs and captured communication. In these 

systems, numerous agents perform data collection tasks. 

The extracted information is then sent to the forensic server 

and analyzed on this single node only [10], which makes this 

node to be the bottleneck of the whole system. 

The V A S T system builds upon Vallentin's previous work 

— The NLDS Cluster [28] which distributes the workload 

across multiple workers running Zeek to investigate online 

network traffic and extract Zeek events. The V A S T system 

itself goes further and distributes Zeek events to workers 

running in a computing cluster which allows for on-line 

analysis and interactive queries. Distribution of raw packets 

is also supported as a 4-tuple with payload up to the speed 

of 3 . l G b / s (the libpcap reading speed). According to Val-

lentin [27] the system does not guarantee that the storage 

will be able to keep up with the incoming traffic of this speed. 

3 Traffic Processing 
The goal of N T P A C is to capture and analyze network com­

munication enabling to extract available information. De­

pending on the case, the forensic investigator may be inter­

ested in the content or metadata of application messages. 

N T P A C handles captured packets according to the following 

procedure in order to reassemble application messages: 

• N T P A C organizes captured packets into separate net­

work layer conversations based on their source and 

destination LP addresses, providing IP conversation. 

• N T P A C then splits LP conversations into T C P / U D P 

conversations based on the source and destination port 

numbers and the transport protocol type, as shown 

in figure 2. 

• N T P A C reassembles application conversations from 

packets separated into individual T C P / U D P conversa­

tions. This method utilizes heuristics [13] to recognize 

multiple application communication multiplexed into 

a stream of packets of one T C P / U D P conversation 

caused for example by port reuse. 

Because application message extraction is a computation­

ally challenging task, it is a good candidate to run on a com­

puter cluster to improve overall system performance. 

Extraction of the artifacts from application messages as­

sumes that we correctly identified the application protocols. 

Methods based on known port numbers, characteristics pat­

terns in the payload of packets, using statistical methods 

or machine learning [16] approach can be applied. 
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However, in many cases, application information cannot 

be extracted because the content is encrypted. In fact, ap­

proximately 76 % of H T T P traffic (at the time of writing 

this paper) is transmitted by S S L / T L S 5 . In this situation, 

we cannot extract application messages, but it is possible 

to get metadata from the SSL/TLS protocol itself, for exam­

ple, cryptographic information, certificate data, etc. The only 

exception is two possible situations in which we can decrypt 

encrypted application data [5]: 

1. We have access to the server's private key used in the ini­

tialization of an SSL/TLS session, we want to decrypt, 

and cipher-suites not supporting forward secrecy is used. 

2. We can perform a Man-In-The-Middle attack with an 

SSL/TLS proxy [23] and store session keys. 

Most agencies cannot use these techniques because of legal 

restrictions. For this reason, we did not consider implement­

ing SSL/TLS encryption techniques in our tool. 

4 System architecture 
The architecture consists of multiple modules that form the 

processing pipeline (see Figurel) . A t the highest level, the 

N T P A C workflow can be divided into two main phases: 

D a t a pre-process ing reconstructs application layer con­

versations (L7 conversation). Each of these conversa­

tions is made up of source and destination endpoints, 

tfmestamps, and other information that is needed for 

subsequent processing. 

D a t a analys is identifies application protocols in recon­

structed conversations and uses an appropriate ap­

plication protocol decoder to reconstruct application 

events from given conversations, such as visited web 

pages, sent emails, queried domains, etc. The output 

of this phase is a set of forensic artifacts. 

These phases correspond to low-level analysis and high-

level analysis. The separation of data pre-processing from the 

data analysis enables to use the actor-based computational 

model and offer the ability to distribute the computation. 

In the rest of the section, details will be given for each module 

of the processing pipeline. 

4.1 L o a d b a l a n c i n g 

The job of the Load Balancer nodes is to split the input packet 

stream, i.e., P C A P file or live traffic, into sub-streams that are 

then delivered to the reassembling nodes. To avoid the prob­

lem of sending packets from the same conversation to dif­

ferent reassemble nodes, the Load Balancer calculates the 

key used to select the destination node from the appropriate 

protocol fields. 

The Eq . 1 calculates the routing key based on communica­

tion endpoints (EP_A and EP_B) and the transport protocol 

used. Value n represents the number of active Reassembler 

5 https://1etsencrypt.0rg/s tats/ 
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nodes. 

Hash(EPA • EPB • Protocol) mod n (1) 

Since all packets from the same conversation (i.e. in both 

directions of the conversation) should produce the same rout­

ing key, we defined an ordering relation < for the endpoints 6 

and ensured that EPA < EPg by swapping them if necessary. 

Whi le the Load Balancers process each packet individu­

ally, the data is delivered to Reassemblers in batches. This 

technique helps to decrease network and processing cost of 

the data distribution. 

Back pressure mechanism is used to control the data flow 

between the nodes. To increase throughput, a Load Balancer 

can submit multiple batches in parallel to the target Reassem­

blers. 

IPv4 fragmentation is a challenge for Load Balancers. Frag­

mentation splits one IP packet into multiple IP packets so 

that the encapsulated transport layer segment header only 

occurs in the first IP fragment. The Load Balancer must, 

therefore, rebuild the IP fragments to identify the routing 

key for all fragments of a segment, before it can send them 

to an appropriate Reassembler. 

4.2 C o n v e r s a t i o n R e a s s e m b l i n g 

Reassembler reconstructs conversations, i.e., two-way traffic 

layer flows, in batches of packets received from Load Bal­

ancers. The reassembly process is designed to reconstruct 

incomplete and corrupted data, using various heuristic tech­

niques [13]. Reassembling is done in several steps until 

two corresponding flows are assembled, which is illustrated 

in Figure 2. The entire processing is mapped to actors per­

forming individual steps. Individual L3 and L4 conversations 

are represented by corresponding actors, which form an ac­

tor hierarchy as shown in figure 3. L3 Conversation actors 

are managed by Capture actors, which stands for a source 

capture being analyzed. To enable an analysis of multiple 

captures at the same time, multiple Capture actors can be ini­

tiated. The Captures Controller actor manages all capture 

actors. 

The packet blocks are first received by the Captures Con­

troller actor, which passes them to the appropriate Capture 

actor. The Capture actor identifies affiliation of packets to L3 

conversations by extracting the IP addresses of the packets 

and forwards them to appropriate L3 Conversation actors 

which, after identifying affiliation of packets to L4 conver­

sation by extracting the transport protocol and port num­

bers, forwards the packets to appropriate L4 Conversation 

actors. A t these actors, the process of reassembling depends 

on the transport protocol of the conversation and is per­

formed by either UDP Conversation Tracker or TCP Conver­

sation Tracker. 

T h e e n d p o i n t is a p a i r o f IP address a n d p o r t n u m b e r . W e c o n s i d e r that 

there is a su i tab le l e x i c o g r a p h i c o r d e r i n g o n a set o f endpo in t s . 
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L4 Load Balancer Reassembler 
Distributed A p p . protocol Distributed 

L4 Load Balancer k * Reassembler k * db. node ^ • dissector k * db. node 

L4 Load Balancer / * Reassembler / * Distributed A p p . protocol / * Distributed 
L4 Load Balancer Reassembler 

db. node • dissector db. node 

P C A P files or live 
network traffic 

Reconstructed L7 
Conversations 

L7 Conversations 
to parse 

App. protocol 
exports 

Figure 1. NTPAC's logical architecture 

Up Flow L7 PDU Up Flow L7 PDU 

Down Flow L7 PDU Down Flow L7 PDU 

Figure 2. Separation of packets into distinct L3 conversations, L4 conversations and finally L7 conversations. L7 conversations 

consist of Upflow and Downflow, which contain a sequence of reconstructed L7PDUs. 

Figure 3. Reassembler's actor hierarchy 

U D P P r o t o c o l Reassembl ing 

U D P is transferring application data as they are, without 

the use of any additional control packets which implement 

mechanisms such as flow control or reliable data delivery. 

UDP Conversation Tracker, therefore, treats every transmit­

ted datagram inside given L4 conversation as an individ­

ual L7 P D U (Protocol Data Unit). Another important aspect 

of the U D P protocol is that it is connection-less — it does 

not establish connections between communicating parties. 

To distinguish individual L7 Conversations (composed of a pair 

of Upflow and Downflow) inside single L4 conversation, UDP 

Conversation Tracker uses a simple heuristic based on a time 

delay between individual L7 PDUs. L7 P D U s in a given di­

rection are considered to be part of a single flow i f the time 

difference between their transmission and last recorded ac­

tivity (timestamp of the last L7 PDU) of a given flow is less 

than a defined value. Experimentally we set this value to 10 

minutes, but we are planning to further study U D P behavior 

of multiple protocols and define this threshold on application 

protocol bases. 

T C P P r o t o c o l Reassembl ing 

Processing of T C P protocol is different from handling U D P 

flows because we can use control information carried along 

with the data. TCP Conversation Tracker is capable of iden­

tifying connection initialization and its termination, han­

dling data retransmission and reordering. In the same way 

as a UDP Conversation Tracker, TCP Conversation Tracker also 

processes segments (TCP PDUs) in separate flows, which 

are later paired to form L7 conversations. To create this 

flows, it first stores segments in the so-called reassembling 

collection, in which segments are stored and ordered by their 

T C P sequence number. Both directions of communication 

have designated their reassembling collection. Before a seg­

ment is stored in reassembling collection, its sequence number 

is normalized by incrementing it by a count of detected se­

quence number overflows X 2 3 2 (space of T C P sequence num­

bers). Sequence number overflows can be caused by a natural 

overflow of a 32-bit integer sequence number or by estab­

lishing a new T C P connection, with ISN (Initial Sequence 

Number) lower as that of a previous connection. By storing 

segments in reassembling collection and ordering them by 

their normalized sequence numbers, we achieve that: 
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1. individual segments inside L7 conversation are or­

dered; 

2. we detect data retransmissions by comparing payloads 

of segments of which normalized sequence numbers 

are overlapping; 

3. individual L7 conversations inside L4 conversation are 

ordered by the time they were transmitted. 

A l g o r i t h m tcp_f low_reassembl ing( ) 

f o r a l l segment i n r e a s s e m b l i n g _ c o l l e c t i o n do 

i f SYN f l a g i s set t h e n 

I c l o se_ f low( ) 

| f low <— crea te new flow 

else i f FIN f l a g i s set t h e n 

| c l o se_ f low( ) 

else i f flow i s n i l then 

I f low <— crea te new flow 

| add_segment_to_pdu() 

else 

| add_segment_to_pdu() 

end 

r e t u r n flows 

Procedure c lo se_ f low( ) 

i f f low i s n i l t h e n 

| r e t u r n 

i f pdu i s not n i l then 

| add_pdu_to_flow() 

f l o w s . i n s e r t ( f l o w ) 

flow «— n i l 

r e t u r n 

Procedure add_segment_to_pdu() 

i f segment i s r e t r a n s m i s s i o n t h e n 

| r e t u r n 

i f pdu i s n i l t h e n 

| pdu «— crea te new pdu 

pdu.segments . insert (segment) 

i f PSH f l a g i s set t h e n 

| add_pdu_to_flow() 

r e t u r n 

Procedure add_pdu_to_flow() 

f l o w . p d u s . i n s e r t ( p d u ) 

pdu «— n i l 

r e t u r n 

A l g o r i t h m 1: T C P flow reassembling. 

After all segments of L4 conversation have been stored 

in an appropriate reassembling collection (for Up and Down 

direction), TCP Conversation Tracker iterates through both 

of them sequentially in order to reconstruct Upflows and Down-

flows. Simplified flow reassembling algorithm is shown in A l ­

gorithm 1. For each segment containing application data, 

it appends it to current L7 P D U (creates it at first, if it is not 
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already created). After it encounters packet with T C P P S H 

flag set, it completes current L7 P D U and adds it to the cur­

rent flow. Segments which do not contain application data, 

such as packets of T C P handshake or connection termina­

tion are used to differentiate individual T C P connections by 

creating appropriate flows with assigned created L7 PDUs. 

Created Upflows and Downflows are paired by their ISNs (Ini­

tial Sequence Numbers) or based on their overlap on time 

axis in case an ISN of a particular flow could not be deter­

mined (missing T C P handshake). 

L 7 C o n v e r s a t i o n storage 

L7 conversations reconstructed by L4 Conversation actors are 

passed to L7 Conversation Storage actor. This actor saves con­

tents (series of reconstructed L7 PDUs), as well as metadata 

(timestamps, endpoints and transport protocols) of these 

L7 conversations in a distributed database. O u r tool uses 

an abstract data access layer that eliminates any dependence 

on one database technology. Currently, our solution is pri­

marily based on the use of the Cassandra database engine 7 , 

which has the appropriate features — it has a distributed 

design, configurable replication factor per keyspace and con­

sistency factor per query. 

4.3 A p p l i c a t i o n pro toco l pars ing 

In the second stage, a subset of reconstructed L7 conversa­

tions is retrieved from the database and further processed 

to identify and extract interesting application messages: 

• First, Application protocol classifier block identifies 

an application protocol of the conversation. O u r so­

lution currently implements a simple application pro­

tocol classifier based on the database of known ports. 

However, a more advanced classifier can be used to uti­

lize pattern recognition or statistical methods [6, 16]. 

• Based on the recognized application protocol, the con­

versation is consumed by parsing module designed 

to the processing of a single application protocol such 

as H T T P , S M T P or D N S . The parsing module pro­

cesses the entire conversation by extracting individual 

application protocol messages and storing them back 

to the distributed database. 

The current implementation includes only H T T P and DNS 

parsers. Adding support for other application protocols re­

quires creating an application protocol parser. Implementing 

the parser is time-consuming and error-prone. Another op­

tion is to generate a parser using a suitable parser generator. 

Depending on whether the protocol is text or binary, differ­

ent types of generators can be used, for example, Spicy [25]. 

Kaitai Struct 8, etc. 

7 N o t e that a lso M S S Q L a n d A r a n g o D B are suppo r t ed . 
8 h t tps : ,7ka i t a i . i o / 
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5 Performance evaluation 
We focused our preliminary assessment on determining 

the performance parameters of the created tool. Dur ing 

the experiments, we considered both the data storage sce­

nario in the distributed database and the case where data 

analysis uses the output from the previous step directly. 

The goal is to demonstrate the scalability of the proposed so­

lution and show the available throughput in various possible 

configurations. We have considered two major test scenarios; 

Standalone process ing tests how fast is captured traffic 

processed on a single machine inside one process. This 

test-case shows total throughput of our processing 

algorithms (especially reassembling and application 

protocol parsing) on given machine type. Because 

the whole processing is running under one Common 

Language Runtime (CLR), it is expected to be faster 

than distributed processing with a low number of pro­

cessing nodes. This experiment provides a baseline 

to which other results are compared. 

C l u s t e r Process ing shows the scalability of our solution 

in a computing cluster. We tested it in a distributed en­

vironment with a different number of nodes. The test 

scenarios considered (i) processing with a single Load 

Balancer and different numbers of Reassembler nodes 

and (ii) a different number of Load Balancer and Re-

assembler nodes. 

For our test purposes, we have chosen multiple different 

computing environments described in Table 1. The E . l envi­

ronment consists of 14 workstations that are all connected 

to the same local network. Environment E.2 is a cluster-

integrated Google C loud Platform consisting of 12 virtual 

machines. E.3 is a mini-cluster of four server boards in a sin­

gle chassis. Finally, E.4 is a single powerful workstation. 

Table 1. Testing environments used for performance evalu­

ation. 

E.l EJ2 E3 E.4 

Machine Type 1 Kskl. •:• 
computers 

(iin'sde Ck'uii 
Platform (*) 

Mini cluster Wnrkslulinii 

Machines count 14 12 4 1 
CPU Type Intel i5-

3570K 
Intel XeonES Intel Xeon 

E5520 
Intel 
i7-5930K 

Physical Cores 4 2 4 6 
Logical Cores 4 4 8 12 
CPU Frequency :S.40C;HZ 2.60 GHz 2.26 GHz 3.50 GHz 
CPU Frequency 
Turbo - 1 core 

3.80 GHz 2.80 GHz 3.53 GHz 4.30 GHz 

RAM 8 GB 7 GB 48 GB 64 GB 
Sequential disk 73/67 MB/s 120/118 MB/s 282/265 MB/s 490/430 MB/s 

Network Card lGbps lOGbps lGbps lGbps 

(*) nl-highcpu-4 

As the source packet capture, we used 4.7 G B file from 

a well known M57-Patents Scenario 9. It captures real-world 

9 h t t p s : / / d i g i t a l c o r p o r a . o r g / c o r p o r a / s c e n a r i o s / m 5 7 - p a t e n t s - s c e n a r i o (last 

accessed 2019-07-03). 
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corporate network traffic over one month, consisting of 

5,707,845 frames. The size of the capture file is large enough 

to limit the overhead to a negligible part in the initialization 

phase but allows us to run all test cases in a reasonable time. 

To reduce the memory consumption of tracking of all 

processed conversations by the Reassembler nodes, its actors 

detect and remove inactive (timed out) conversations. Thus, 

the memory allocation corresponds to the number of active 

concurrent network flows within a particular time window. 

Each experiment was repeated 10 times. The calculated 

standard deviation was in the range of 5 - 10 %. Such a high 

value is due to the inherent non-deterministic behavior of the 

distributed system, including the effect of network commu­

nication, the garbage collection, and other operating system 

processes. 

5.1 S ingle-node E n v i r o n m e n t s 

We measured the individual processing stages in the stan­

dalone test scenario in environments E.3 and E.4. Table 2 

represents the performance achieved for each phase. Pre­

liminary results show that it is possible to read and decode 

packets from a file at approximately 3.8Gbps and 1.7 Gbps 

in test environments E.4 and E.3 respectively (second row of 

the table). The process of extracting conversations requires 

much more effort and therefore performance dropped to 

972 Gbps and 380 Gbps respectively what represents about 

75 % decrease compared to the previous phase. It suggests 

that this resource-intensive part could be most accelerated 

by distributed calculation. The last phase is the analysis 

of H T T P and D N S protocols, which resulted in a decrease 

in throughput of about 8 % compared to the previous phase. 

For comparison, Table 3 shows the results achieved by several 

commonly used network forensic tools (Wireshark, Network-

Miner) in the E.4 test environment. 

Table 2. Processing speeds of individual network capture 

processing phases in standalone test scenario performed 

on test environments E.4 and E.3. 

Workstation E.4 [Mbps] Server E.3 [Mbps] 

PCAP file reading 510! 5719 
Packet parsing 3853 1679 
1.7 ( Olivers;! I ion reassembling 942 380 
Application protocols parsing 880 358 

Table 3. Processing speeds of commonly used network foren­

sic tools measured on test environment Workstation E.4. 

NTPAC Netfox Wireshark NetworkMiner 
[Mbps] [Mbps] [Mbps] [Mbps] 

M57 Analysis 880 65.6 73.4 15.8 
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5.2 C l u s t e r e d E n v i r o n m e n t s 

Next, we compare the performance and scalability of our 

tool in a clustered test scenario executed in the test environ­

ment E . l . We have performed a series of experiments with 

the varying number of active Load Balancer and Reassembler 

nodes. 

Additionally, we have tested configuration in which the re­

sults were persisted in a distributed database 1 0, as well as the 

configuration, where these results were discarded so we mea­

sured performance without the overhead associated with 

database operations. 

Table 4. Performance measurements of clustered processing 

conducted in test environment E . l . 

Re assemblers $ 1 2 
[Mbps] [Mbps] [Mbps] 

4 
[Mbps] [Mbps] 

M 
[Mbps] 

1(1 
[Mbps] 

Load Balance is Without I't'iMiU'iici.' 

1 513 380 670 768 778 797 815 
2 310 574 1093 1370 1508 1542 
3 290 602 1136 1713 1945 2070 
•1 269 660 1258 l')71 2252 2580 

Load Balance rs With Persistence 

1 343 273 478 729 734 740 742 
2 247 482 801 1009 1123 1254 
3 501 930 1131 IWň 1438 
•1 503 949 1135 1375 1710 

Table 4 shows how the performance depends on the num­

ber of Reassembler nodes. Columns labeled 1 to 10 represent 

a number of participating Reassembler nodes. For compar­

ison, the column labeled S represents system performance 

in a stand-alone mode of the processing. First set of rows (la­

beled Load Balancers Without persistence) denote a varying 

number of participating Load Balancer nodes without the 

results being stored in a database. Similarly, the second set 

of rows (labeled Load Balancers W i t h Persistence) denote 

a varying number of participating Load Balancer nodes but 

with results being stored in a database. 

In the test results, we see that performance increases 

to the point where one Load Balancer cannot provide enough 

data for available Reassembler nodes. Adding additional Load 

Balancer nodes increases the throughput of the entire system 

until all Reassemblers are fully saturated, and the processing 

speed reaches its limit again. Increasing a number of both 

Load Balancer and Reassembler nodes allows a further in­

crease in overall throughput until the available hardware 

resources are exhausted. Data points marked with asterisks 

(*) represent incapability to complete the test run due to the 

overload of the Reassembler nodes in a given configuration 

(total number of active nodes). 

With the knowledge of the characteristics of the distributed 

system obtained from experiments in the E . l environment, 

1 0 T h e n u m b e r o f C a s s a n d r a nodes w a s e q u a l to the n u m b e r o f ac t ive Re­

assembler nodes. 
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we repeated the same set of experiments in E.2 (using up to 

8 Reassemblers and up to 4 Load Balancers) and E.3 (using 

up to 3 Reassemblers and single Load Balancer). The results 

shown in tables 5 and 6 show a similar trend in the rate of 

processing per number of individual modules. Note, that we 

are limited by the total number of instances that we can 

create in environment E.2. 

Table 5. Performance measurements of clustered processing 

conducted in test environment E.2. 

Reassemblers S 1 
[Mbps] [Mbps] 

2 
[Mbps] [Mbps] 

6 
[Mbps] 

M 
[Mbps] 

Load Balance is Without Persislťiiťť 

1 427 223 370 560 573 585 
2 170 334 706 916 994 
3 126 352 734 826 1016 
4 104 271 580 618 920 

Load Balance rs With Persistence 

1 248 171 255 459 497 498 
2 219 420 459 675 
3 383 452 558 
4 . . . . . 

Table 6. Performance measurements of clustered processing 

conducted in test environment E.3. 

Reassemblers S [Mbps] 1 [Mbps] 2 [Mbps] 3 [Mbps] 

1 — Without Persistence 358 233 407 453 

1— With Persistence 210 158 301 388 

W h e n comparing results from different environments, 

it is interesting that the highest performance was achieved 

in the local network, although the Google C loud Platform 

seems to have more powerful computing nodes and a faster 

network. This may be because G C P is a virtualized environ­

ment with shared hardware resources. 

6 Conclusion 
We have designed and implemented a system for forensic 

network analysis that can be used in high-speed networks 

for near real-time analysis. The distributed system is based 

on an actor model that, thanks to its good scalability, can 

run on a single machine as well as a computing cluster. 

The proposed distributed system is comprised of different 

classes of cooperating nodes capable of distributing inter­

cepted network traffic, processing identified network flows 

and storing reconstructed data into a distributed database. 

The resulting data consists of a description of network con­

versations and information from the extracted application 

communication. A t this point, DNS and H T T P are supported. 

The main goal of the system is to provide a scalable plat­

form for network communication processing that is primar­

ily designed to support a digital investigation. Experiments 

have demonstrated the feasibility of the proposed approach. 
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Processing throughput is scalable by adding additional pro­

cessing nodes. Experiments have also shown that the pro­

posed tool running on only one node can effectively use 

available resources and can offer the same or better perfor­

mance than existing tools. 

The N T P A C is open source, and available at https://github. 

com/nesfit /NTPAC under the M I T license. 
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Abstract—The availability of high-speed Internet enables new 
opportunities for various cybercrime activities. Security admin­
istrators and Law Enforcement Agency (LEA) officers call for 
powerful tools capable of providing network communication 
analysis of an enormous amount of network traffic as well 
as capable of analyzing an incomplete network data. Big data 
technologies were considered to implement tools for capturing, 
processing and storing packet traces representing network com­
munication. Often, these systems are resource intensive requiring 
a significant amount of memory, computing power, and disk 
space. The presented paper describes a novel approach to real­
time network traffic processing implemented in a distributed 
environment. The key difference to most existing systems is that 
the system is based on a light-weight actor model. The whole 
processing pipeline is represented in terms of actor nodes that 
can run in parallel. Also, the actor-model offers a solution that 
is highly configurable and scalable. The preliminary evaluation 
of a prototype implementation supports these general statements. 

Keywords-Network forensic analysis; Network traffic process­
ing; Actor model. 

I. I N T R O D U C T I O N 

The expansion of computer networks and Internet avail­
ability opens new opportunities for cybercrime activities and 
increases the number of security incidents associated with 
network applications. The number of connected devices grows, 
and traffic speed increases. Security administrators and Law 
Enforcement Agency (LEA) officers call for powerful tools 
that enable them to extract useful information from network 
communication [1]. The network forensics that is responsible 
for capturing, collecting and network data analyzing is becom­
ing more important [2]. 

In the forensic investigation, the network traffic is con­
tinuously captured from multiple sources. The captured net­
work data has a form of packet traces that have to be pro­
cessed and analyzed up to the application layer. The network 
forensic tool has to decode protocols at different network 
layers of the Transmission Control Protocol/Internet Proto­
col (TCP/IP) model and various encapsulations. For L E A offi­
cers, interesting information lies in application messages such 
as instant messaging, emails, voice, localizable information, 
documents, pictures, etc. The form and relevance of extracted 
artifacts may differ from case to case. Often, communication 
is encrypted. In this case, meta-data can be the only piece 
of information available. In all cases, the network forensic 
processing system has to be able to extract artifacts from 

the network traffic reliably, even if the packet capture is cor­
rupted, for instance, some connections are incomplete, packets 
are malformed, or chunks of packets were not recorded because 
of capturing device issues. 

The amount of data that needs to be processed to extract 
evidence from the network communication depends on the kind 
of a case that is investigated but usually gets large. It is very 
difficult to decode, extract and store the immense mass of in­
formation for further processing. We propose a distributed 
network forensic framework based on the actor model that 
is computation effective and capable of linear scalability. 
Scalable properties of actor model design for network forensics 
are promising, as shown by the Visibility Across Space and 
Time (VAST) platform [3]. Similarly to VAST, our solution 
provides real-time data ingestion and interactive data analysis, 
but in addition to VAST, we consider the full artifact extraction 
up to the application layer. Although it requires more compu­
tation resources, we demonstrate that it can still be achieved 
in a more straightforward and less resource consuming en­
vironment compared to Apache Hadoop technology, which 
is the norm for big data processing. 

In Section II, we describe tools used by network forensics 
practitioners. Section III addresses issues faced by investiga­
tors and our proposed solution, which architecture is broadly 
discussed in Section IV. Section V evaluates preliminary 
performance results, and Section V I concludes the paper. 

II. B A C K G R O U N D & R E L A T E D W O R K 
Network forensics is a process that identifies, captures 

and analyzes network traffic. Network forensic techniques 
are used by several network forensic frameworks [4]-[9] 
and tools intended for intrusion detection (Zeek, VAST, 
Moloch) [10]—[ 12], network security monitoring (Microsoft 
Network Monitor, TShark, Wireshark, tcpdump) [13]—[16], 
and network forensic investigation for L E A s (Netfox De­
tective, PyFlag, NetworkMiner, EnCase, XPlico) [17]—[21]. 
Commonly available forensics tools are implemented either 
as a classic desktop or command line application or a tradi­
tional client-server solution. 

To overcome the limitations of traditional tools, we pro­
pose to use distributed computing. The models for distributed 
processing [22] [23] are more suitable for real-time network 
forensic analysis from multiple sources, such as logs and cap­
tured communication. The models are based on an agent 
system, where numerous agents perform the collection task. 
The extracted information is sent to the forensic network server 
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and analyzed on this single node [24] only. The forensic server 
is the bottleneck that has to process all the data. To avoid this 
bottleneck, the Google Rapid Response (GRR) [25], a live 
forensic system, utilizes a cluster of servers. The system 
deploys agents running on users' computers that provide access 
to forensic information, e.g., remote raw disk and memory 
access. Processing of forensic data is done as flows. Each flow 
is maintained on the server. Server nodes run workers that 
process the active flows. Adding more server nodes enables 
to run more workers and thus it is possible to handle more 
clients simultaneously. 

Elimination of bottlenecks in the architecture offers scal­
ability and improved reliability. The actor model [26] is one 
of the attractive solutions that address the problem elegantly 
and efficiently. It comes with a separate unit called an actor. 
Actors execute independently and in parallel. They commu­
nicate with each other asynchronously via message passing, 
and their state is otherwise immutable. Actors are capable 
of spawning new actors, forming a parent-child relationship, 
allowing the creation of a tree-like structure of actors. Actor's 
current behavior determines how it processes the incoming 
messages. Every actor in an actor system is uniquely iden­
tified by an address which other actors use as destinations 
of the messages they want to send out. This address can 
identify actors at the local machine and also the ones at 
the remote machines, allowing easy means of communication 
between nodes of a cluster. Compared to another similar 
programming model, the Communicating Sequential Processes 
(CSP) [27], elementary units of computation - processes are 
anonymous and communicate with each other via established 
communication channels. The actor system is the key en-
abler for the V A S T system [3], In VAST, actors implement 
importing, archiving, indexing and exporting processed data. 
Actors live in nodes that map to system processes. The system 
scales by creating more nodes either on the single machine 
or a cluster of computers. 

Moloch is another tool, worth to mention, that uses princi­
ples of distributed computing for massive scale network traffic 
monitoring, full packet capturing and indexing [12]. Moloch 
system consists of sensors that capture the communication 
and Elasticsearch database that is a distributed search and ana­
lytics engine. The system scales by adding new nodes running 
Elasticsearch instances. 

III. P R O B L E M S T A T E M E N T A N D S O L U T I O N 

Our goal is to design and create a system capable of long-
term, high-speed, real-time network traffic filtering and pro­
cessing up to the application layer. The software solution 
should be scalable and hardware independent. To achieve this, 
we have to deal with the challenges elaborated in the rest of 
this section. 

A. Architectural Design 

How to create a system for packet filtering and analysis 
of communication that can identify application protocols, gets 
forensics artifacts and searches through them? 

Network forensics is a tedious work that strictly relies 
on completeness and precision of all undertaken steps to gain 
a piece of a puzzle that fits together as a shred of evidence. 
Considering the current speeds of regular users' home network 
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connection(s), a comprehensive classical analysis on a sin­
gle machine would require enormous computation resources. 
Try to imagine, that each network packet would be analyzed 
by many protocol dissectors with a goal to extract, for ex­
ample, an acknowledgment of email delivery. To achieve this 
goal, with optimal computational resources, we must revisit 
currently utilized methods and redesign them to work in a dis­
tributed environment which brings new challenges to architec­
ture design, application of algorithms, data synchronization, 
and so on. 

B. Scalability on Commodity Hardware 
How can the solution be scalable and hardware indepen­

dent despite the hardware limitations? 
Let us consider this imaginary demonstration. The math 

is simple, one computer with 1 Gbps Network Interface 
Card (NIC) that has a relatively simple task to capture traffic 
during full line load would be required to write to a disk under 
the constant speed of 1000Mbps fa 1 2 5 M B / s . Our system 
has to guarantee that no data loss occurs during the capture. 
A suspect can simultaneously download and upload data 
which means that the monitoring device cannot have only one 
1*1 Gbps NIC , but it needs 2*1 Gbps cards, one for uplink, 
one for downlink. Thus, the required speed of continuous 
disk writing would be 2 * 125 M B / s fa 250 M B / s . Now, 
if the requirement is to store the communication for one day, 
the disk capacity has to be 2 5 0 M B / s * 86400s fa 2 1 . 6 T B . 
This is achievable with commodity hardware, e.g., 2 * 12 T B 
drives with Redundant Array of Inexpensive Disks (RAID) 0 
or 4 * 12 T B with R A I D 1+0 — assuming higher write/read 
speed than 2 5 0 M B / s . However, what if only one day is not 
enough? For a typical forensic case, capturing period spawns 
through weeks or months. 

From our previous experiments, we know that a sin­
gle computation node is limited and commodity hardware 
is hardly sufficient to perform all required operations in real­
time and over long periods. Separation of frames into a conver­
sation which requires a dissection of the network protocols up 
to the application layer, which speed is roughly 300 Mbps [28, 
pp. 45-51] is not sufficient. On the other hand, we are confident 
that the application created and optimized for this singular pur­
pose can do the processing faster and breach the 1 Gbps line 
speed. Nevertheless, we do not believe that a single machine 
solution with commodity hardware is capable of doing overall 
analysis and extraction of information from the application 
layer. We have to design our solution as a distributed system 
across multiple machines. 

C. Overall Performance 
What scalability and acceleration of data processing 

can be achieved? 
The proposed solution is based on the actor model. Each 

actor represents an independent processing unit. The com­
munication between actors is managed by messaging. Actors 
have no shared state; thus all of them can work in parallel. 
If actors run on the same node, the message passing has little 
additional overhead compared to a function call or a loop. 
However, if actors scale over multiple nodes, messages need 
to be serialized. This process introduces latency and consumes 
part of the processing power. The scalability of the actor model 
is linear [3], 
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IV. A R C H I T E C T U R A L D E S I G N 
Incomplete data provided by unreliable traffic intercep­

tion can lead to inaccurate results; some information may 
be lost, some fabricated by reconstruction process [29]. Keep­
ing the above facts in mind, the processing cannot strictly 
follow Requests for Comments (RFCs) and behave like a ker­
nel network stack implementation, but it has to incorporate 
several heuristics. For example, to fill missing gaps in data, 
and to consider these fillings during application protocol 
processing, or never to join multiple frames into a single 
conversation unless it passes more advanced heuristic-based 
checks. Network forensic tools that we have worked with 
do mostly respect RFCs and thus may produce misleading 
results, as shown by Matousek et al. [29]. 

We propose a distributed architecture composed of com­
modity hardware that wil l be capable of linear scalability, 
and capable of efficient resource utilization. The overall ar­
chitecture is shown in Figure 1. 

At the top level, we have divided the entire process into 
the two main stages: 

• Data preprocessing — The reconstruction of conver­
sations at the application layer (L7) of the TCP/IP 
model. This process consists of consecutive segre­
gation of captured communication into the internet 
(L3) and transport (L4) conversations and deploying 
a reassembling heuristics [29] to recognize individual 
L7 conversations inside a parent L4 conversations and 
to reassemble their payloads with respect to data loss, 
reordering or duplication. Every L7 conversation holds 
information about the source and destination endpoints 
(IP addresses, ports), timestamps, type of transport 
protocol (UDP or TCP) and reassembled payloads 
of exchanged application messages. 

• Data analysis — The analysis of each application 
conversation consists of the identification of the appli­
cation protocol, and extraction of application events, 
e.g., visited web pages, exchanged emails, domain 
name queries, etc., with proper application protocol 
dissector that yields sets of forensic artifacts. 

A. Data Prepossessing 

The First stage is executed on a set of independent Re-
assembler nodes. These reconstruct L7 conversations from 
the stream of captured packets which can originate from Packet 
Capture (PCAP) files or can be captured from the live network 
interface. 

In the most common use-case, we have one source stream 
(i.e., one P C A P file) which we want to analyze. Therefore, 
to utilize multiple Reassemhler instances, we have to split 
packets from this stream into smaller sub-streams, which wil l 
be distributed among available Reassemhler instances. For this 
split, we cannot use a naive method such as Round Robin, 
because Reassemhler nodes operate independently of each 
other and to fully reconstruct L7 conversation a particular Re­
assemhler has to obtain all the pieces of that particular L7 con­
versation. In case we would use Round Robin, a situation 
could occur when half the packets from one L7 conversation 
would end up in one Reassemhler node and the second half 
in another; both nodes would have incomplete data and none 
of them would be able to reconstruct the conversation entirely. 

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5 

Our proposed solution to this problem is another type 
of node - L4 Load Balancer, which wil l be positioned in front 
of the Reassemhler nodes and which, as a name suggests, 
distributes packets based on their associations to L4 conversa­
tions each of which can consist of multiple L7 conversations. 
LA Load Balancer extracts source and destination IP addresses 
and ports and transport protocol from each packet of the source 
stream and uses this information to decide to which instance 
from the available Reassemhlers should it forward to. This 
way, all packets of a particular L7 conversation wi l l always 
be forwarded to only one Reassemhler instance. 

Reassemhlers build a tree-like structure of L 3 and L4 
conversations which are represented by the actors. Each re­
ceived packet is first forwarded to an appropriate L 3 con­
versation actor, which in turn forwards it further down to 
an appropriate L4 conversation actor which reassembles L7 
conversations. This segregation of packets into the individual 
L4 conversations before actual L7 conversation reassembling 
is required, as implemented reassembling heuristics expect to 
operate on packets from a single L4 conversation at the time. 
The use of a hierarchical actor design allows us to perform 
independent portions of the processing in parallel and also 
to easily implement management strategies such as passing 
management messages to a particular L3 conversation actor 
and its children L4 conversation actors. The reconstructed 
L7 conversations are stored in a distributed database, ready 
to be retrieved in the second stage of the execution. 

B. Data Analysis 

In the second stage, a subset of reconstructed L7 conver­
sations is retrieved from the distributed database and deliv­
ered to the Application protocol dissector nodes. For every 
L7 conversation, Application protocol dissector nodes identify 
the used application protocol and use a proper dissector module 
dedicated to the processing of a single application protocol, 
such as Hypertext Transfer Protocol (HTTP), Simple Mai l 
Transfer Protocol (SMTP) or Domain Name System (DNS), 
to extract application protocol messages from this L7 con­
versation. Obtained data are stored back into the distributed 
database. Processing of application messages is under normal 
circumstances possible only with unencrypted network com­
munication. From Secure Sockets Layer/Transport Layer Secu­
rity (SSL/TLS) communication which encapsulates application 
protocols, such as HTTP, we can extract only unencrypted por­
tions of this data such as the server's cryptographic certificate. 
Possible ways to decrypt and subsequently, parse the S S L / T L S 
communication is to own a private key of a given S S L / T L S 
server or to deploy an SSL/TLS intercepting proxy [30]. 

V. PRELIMINARY E V A L U A T I O N 

Our prototype implementation is based on C# actor system 
library Akka.NET. For testing and performance benchmarking, 
we have implemented two modes of operation: 

1) Offline — isolated execution which combines 
the functionality of a single L4 Load Balancer and 
Reassemhler node inside a single system's process. 
No inter-actor message serialization is therefore re­
quired. 

2) Online — distributed execution spanning across mul­
tiple cluster nodes. The inter-actor message serial­
ization is required as messages destined to remote 

34 

90 

http://Akka.NET


ICNS 2019: The Fifteenth International Conference on Networking and Services 

> L4 Load Balancer Distributed 
db. node 

App. protocol 
dissector 

L4 Load Balancer / * Reassembler / * Distributed ff 1̂ App. protocol 
L4 Load Balancer Reassembler 

db. node dissector 
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Figure 1: Architecture diagram showing the proposed system nodes with information flow between them. 

actors (nodes) have to leave an originating system's 
process and be transmitted over a computer network 
in a serialized format. This introduces additional 
latency and performance overhead. 

Additionally, for proof-of-concept benchmarking, the func­
tionality of Application protocol dissector nodes was included 
inside Reassembler nodes to eliminate distributed database 
as a middleman between them. In the following measurements, 
we focus on a raw network capture's processing performance 
of the so-far naive implementation. Currently, our prototype 
implementation supports the dissection of two application 
protocols (DNS and HTTP). 

We have measured the preliminary performance of the im­
plementation on two different hardware configurations: 

• Workstation — Intel i7-5930K 4.3GHz, 12cores, 
64 G B R A M , 512 G B SSD 

• Mini-cluster — 4x servers with Intel Xeon E5520, 
2.26 GHz, 8 cores, 48 G B R A M , 1TB SSD, 1 Gbps 
network 

We used a public data set of M57-Patents Scenario [31], 
that consists of real-world data captured over a month. 
We merged all network traces into one P C A P file of roughly 
4.8 G B and 5,707,845 frames. One large P C A P file simu­
lates our use-case of streamed-in communication that needs 
to be load-balanced from a single node. 

We started with measurements in an offline mode on a sin­
gle machine, firstly with a P C A P file parsing operation and 
incrementally added consequent operations and measured pro­
cessing speeds, as Table 1 describes. Preliminary evaluation 
suggests that the raw speed of roughly 3.8 Gbps, for P C A P file 
reading and packet parsing is sufficient. The process of recon­
structing L7 conversations that segregates IP flows by packet 
source and destination IP addresses, ports and transport proto­
col type with additional heuristics [29], that also reassembles 
T C P / U D P streams, is computationally heavier, reaching "only" 
942 Mbps, and is about 4x slower than only read and parsing. 
With added H T T P & DNS dissection, performance slightly 
decreased further down to 880 Mbps. 

T A B L E 1. P R O C E S S I N G S P E E D S O F O U R O F F L I N E T E S T 
S C E N A R I O O N A S I N G L E M A C H I N E 

Workstation 
[Mbps] 

Mini-cluster 
node [Mbps] 

P C A P file reading 5103 5719 
Packet parsing 3853 1679 
L7 Conversation tracking 942 380 
H T T P & DNS extraction 880 358 

The CPU frequency (performance per C P U core) plays 
a very important part in overall performance, that can be ob­
served if we compare our Workstation with node from Mini-

cluster — 880 Mbps vs. 358 Mbps. A l l other components 
except CPUs are otherwise roughly comparable as we can see 
by comparing the speed of " P C A P file reading". 

The scalability is described in Table 2 that shows perfor­
mance in online mode. The solution was deployed on Mini-
cluster. The first node was reading the captured communication 
from a P C A P file and load-balancing it to the rest that reassem­
bled L7 conversations and extracted H T T P and DNS artifacts. 
In the measurements, we can see an increase in the perfor­
mance with each added Reassembler. When compared with the 
results in Table 1, the performance of a distributed processing 
at the Mini-cluster exceeded that of a single node running in 
an offline mode. Nevertheless, further optimization is required 
to achieve linear scalability as a single LA Load Balancer 
fails to fully saturate available Reassemblers by distributing 
the packets fast enough. We have observed that serialization of 
messages containing the packets to process heavily contributes 
to the overall computational complexity and easily becomes 
a bottleneck of our solution. 

T A B L E 2. P R O C E S S I N G S P E E D S O F O U R O N L I N E T E S T 
S C E N A R I O M E A S U R E D O N M I N I - C L U S T E R 

Reassemblers count One [Mbps] Two [Mbps] Three [Mbps] 

H T T P & DNS extraction 233 407 453 

We compare our solution, called Network Traffic Pro­
cessing & Analysis Cluster (NTPAC), running in the offline 
mode at the Workstation with commonly used network forensic 
tools in Table 3. Our solution is an order of magnitude faster 
while delivering a comparable amount of results in terms of 
reconstructing L7 conversations and extracting H T T P and D N S 
artifacts. 

T A B L E 3. P R O C E S S I N G S P E E D S O F C O M M O N L Y U S E D N E T ­
W O R K F O R E N S I C T O O L S M E A S U R E D O N W O R K S T A T I O N 

NTPAC Netfox Wireshark NetworkMiner 
[Mbps] [Mbps] [Mbps] [Mbps] 

880 65.6 73.4 15.8 

V I . C O N C L U S I O N 
In this research, we proposed a system for distributed real­

time forensic network traffic analysis up to the application 
layer capable of large-scale communication processing. We in­
tend to create a system based on the actor model that scales 
linearly and is hardware independent. The implementation 
environment of the .NET Core framework and C# language 
enables rapid development compared to C/C++ that is used 
by V A S T and Moloch. Also, our solution is multiplatform 
and easily staged with Docker Swarm. Therefore, the deploy­
ment of the entire distributed application at the computation 
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cluster is reduced to one command. The solution is distributed 
under the M I T License and hosted as an open-source project 
on GitHub here [32]. 

In the near future, we plan to measure the performance 
of our solution using data from real-world cases. Because 
of legal reasons, deployment to public cloud infrastructure 
is out of the question. Therefore, we need to build a private 
one that consists of nodes with high C P U frequencies and 
lOGbps network interfaces. Additionally, we need to profile 
and optimize processing and distribution mechanisms, to ex­
pand the set of protocols supported by application protocol 
dissectors and to add support for tunneling mechanisms. 
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A B S T R A C T 

Currently used wireless communication technologies suffer security weaknesses that can be 
exploited allowing to eavesdrop or to spoof network communication. In this paper, we present 
a practical tool that can automate the attack on wireless security. The developed package 
called wifimitm provides functionality for the automation of MUM attacks in the wireless 
environment. The package combines several existing tools and attack strategies to bypass 
the wireless security mechanisms, such as WEP, WPA, and WPS. The presented tool can 
be integrated into a solution for automated penetration testing. Also, a popularization of 
the fact that such attacks can be easily automated should raise public awareness about the 
state of wireless security. 

Keywords: Man-in-the-Middle attack, accessing secured wireless networks, password crack­
ing, dictionary personalization, tampering network topology, impersonation, phishing 

1. I N T R O D U C T I O N 

Recent enhancements to wireless technology 
strengthen the benefits of wireless commu­
nication. It is convenient to access the net­
work from any location within the network 
coverage area. For most of the portable de­
vices, this is the only way to connect to the 
network. Installation and network setup are 
easy, and the network is further expandable. 
The main benefit of Wi-Fi , its accessibility 
makes this technology a suitable target of at­
tacks. A potential attacker needs to be in the 
physical proximity of a Wi-Fi network. The 

1This paper is an extended version of the original 
paper that has been presented at the 9th EAI Inter­
national Conference on Digital Forensics and Cyber 
Crime (Vondráček, Pluskal, & Ryšavý, 2018). 

proposed wireless security standards aim at 
prevention of such unauthorized access. Un­
fortunately, the first standard called W E P is 
so weak that it is possible to crack the pass­
word in a few seconds using a conventional 
laptop computer. The answer was the intro­
duction of stronger standard W P A and later 
even stronger WPA2. In 2017, Mathy Van-
hoef announced that he discovered a vulner­
ability in security mechanisms that use the 
four-way handshake (WPA and WPA2) and 
demonstrated how easily this vulnerability 
can be exploited. 

The main focus of this paper is security 
of wireless networks. It provides a study of 
widely used network technologies and mech­
anisms of wireless security. Analyzed tech-
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nologies and security algorithms suffer weak­
nesses that can be exploited to perform Man-
in-the-Middle attacks. A successful realiza­
tion of this kind of attack allows not only 
to eavesdrop on all the victim's network 
traffic but also to spoof his communication 
(Prowell, Kraus, k Borkin, 2010, pp. 101-
120; Callegati, Cerroni, k Ramilli, 2009). 

In an example scenario (Figure 1), the 
victim is a suspect conducting illegal activ­
ity on a target network. The attacker is 
a law-enforcement agency investigator with 
appropriate legal authorization to intercept 
the suspect's communication and to perform 
a direct attack on the network. In some 
cases, the suspect may be aware that his 
communication can be intercepted by the In­
ternet Service Provider and harden his net­
work. For example, he could use an over­
lay network technology, e.g., VPN (imple­
mented by L2TP, IPsec (Kent k Seo, 2005, 
pp. 09-10), PPTP) or anonymization net­
works (Tor, I2P, etc.) to create an encrypted 
tunnel configured on his gateway, for all 
his external communication. This concept 
is easy to implement and does not require 
any additional configuration on endpoint de­
vices. Generally, this would not be con­
sidered a properly secured network (Godber 
k Dasgupta, 2003, pp. 425-431), but this 
scheme, or similar, is often used by large ven­
dors like Cisco (Deal k Cisco Systems, 2006) 
or Microsoft (Thomas, 2017) for branch of­
fice deployment and can also be seen in home 
routers1. In such cases, intercepting traffic 
on the ISP level would not yield meaning­
ful results, because all the communication is 
encrypted by the hardening. On the other 
hand, direct attack on the suspect's L A N 
will intercept plain communication. But, 
even when an investigator is legally permit­
ted to carry out such an attack to acquire 

'Asus RT-AC5300 - Merlin WRT has an option 
to tunnel all traffic thought Tor. 

Page 60 

evidence, it is scarcely used, because it re­
quires expert domain knowledge. Thus, this 
process of evidence collection is very expen­
sive and human resource demanding. 

Internet ISP 

Suspect Investigator 

Figure 1. Example forensics scenario where 
the suspect has hardened his network and 
uses an encrypted tunnel from the gate­
way (AP). 

The aim of this research is to design, im­
plement and test a tool able to automate 
the process of accessing a secured WLAN 
and to perform data interception. Further­
more, this tool should be able to tamper with 
the network to collect more evidence by redi­
recting traffic to place itself in the middle 
of the communication and tamper with it, 
to access otherwise encrypted data in plain 
form. Using the automated tool should not 
require any expert knowledge from the in­
vestigator. 

We designed a generic framework, see Fig­
ure 3, capable of accessing and acquiring 
evidence from a wireless network regardless 
of used security mechanisms. This frame­
work can be split into several steps. First, 
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it is necessary for an investigator to ob­
tain access to the WLAN used by the sus­
pect. Therefore, this research focuses on 
exploitable weaknesses of particular secu­
rity mechanisms, see Section 2 for more de­
tails. Upon successful connection to the net­
work, the investigator needs to tamper with 
the network topology. For this purpose, 
weaknesses of several network technologies 
can be exploited. From this point on, the in­
vestigator can start to capture and break the 
encryption on the suspect's communication. 

Specialized tools focused on exploiting in­
dividual weaknesses in security mechanisms 
currently used by WLANs are already avail­
able. There are also specialized tools focused 
on individual steps of MUM attacks. Tools 
that were analyzed and used in implemen­
tation of the wifimitm package are outlined 
in Section 2. 

Based on the acquired knowledge, refer­
enced studies and practical experience from 
manual experiments, authors were able to 
create an attack strategy which is composed 
of a suitable set of available tools. The strat­
egy is then able to select and manage in­
dividual steps for a successful MUM at­
tack tailored to a specific WLAN configura­
tion. This strategy also includes options for 
impersonation and phishing for situations, 
when the network is properly secured, and 
the weakest part of the overall security is 
the suspect. 

The created software can perform a fully 
automated attack and requires zero knowl­
edge. We tested the implementation on 
carefully devised experiments, with available 
equipment. The tool is open source and can 
be easily incorporated into other software. 
The main use cases of this tool are found in 
automated penetration testing, forensic in­
vestigation, and education. 

© 2018 ADFSL 

2. S E C U R I T Y 
W E A K N E S S E S I N 

W L A N T E C H N O L O G I E S 
Following network technologies (Sec­
tions 2.1, 2.2), which find a significant 
utilization, unfortunately, suffer from 
security weaknesses in their protocols. 
These flaws can be used in the process of 
the MUM attack. 

2.1 Wireless Security 
Wired Equivalent Privacy (WEP) is a se­
curity algorithm introduced as a part of 
the IEEE 802.11 standard (Halsall, 2005, 
p. 665; IEEE-SA, 2012, pp. 1167-1169). To­
day, WEP is deprecated and superseded by 
subsequent algorithms, but is still sometimes 
used, as can be seen from Table 1 avail­
able from Wifileaks.cz2. Fluhrer, Mantin, 
and Shamir (2001) presented that WEP is 
broken. There are tools that provide access 
to wireless networks secured by WEP avail­
able (Tews, Weinmann, & Pyshkin, 2007). 
Regarding WEP secured WLANs, authenti­
cation can be either Open System Authenti­
cation (OSA) or Shared Key Authentication 
(SKA) (IEEE-SA, 2012, pp. 1170-1174). In 
the case of WEP OS A, any station (STA) 
can successfully authenticate to the Access 
Point (AP) (Robyns, 2014, pp. 4-10). WEP 
SKA provides authentication and security of 
transferred communication using a shared 
key. Confidentiality of transferred data is en­
sured by encryption using the RC4 stream 
cipher. Methods used for cracking access to 
WEP secured networks are based on anal­
ysis of transferred data with corresponding 
Initialization Vectors (IVs). 

Wi-Fi Protected Access® (WPA™, a sub­
set of 802. Hi) was developed by the Wi-Fi 
Alliance® as a reaction to increasing number 
of security flaws in WEP. The WPA is de-

2 h t t p : / / w w w . w i f i l e a k s . c z / s t a t i s t i k a / 
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signed to be backward hardware compatible 
with devices that used WEP, and vendors 
were expected to provide a firmware update 
to remedy the catastrophic situation with 
WEP. Therefore, for data confidentiality and 
integrity was chosen Temporal Key Integrity 
Protocol (TRIP). The main flaw of WPA se­
curity algorithm is associated with the TRIP 
and a four-way handshake. It can be identi­
fied at the beginning of client device's com­
munication, where an unsecured exchange of 
confidential information is performed during 
the handshake. An investigator can obtain 
this unsecured communication and use it for 
consecutive cracking of the Pairwise Master 
Rey (PMR) that is derived from Pre-Shared 
Rey (PSR) or negotiated using an 802. lx 
authentication stage in case of enterprise au­
thentication. 

Wi-Fi Protected Access® 2 (WPA2™, 
full implementation of 802.1 li) is a suc­
cessor of WPA, but security flaws of 
the WPA algorithm remain significant also 
for the WPA2. Besides TRIP, WPA2 
has mandatory support of Counter Mode 
GBC-MAC Protocol (CCMP). Both TRIP 
and CCMP ensure data confidentiality, au­
thentication, and access control. IEEE 
802.1 lad adds and 802.1 lac extends a 
new confidentiality protocol Galois/Counter 
Mode Protocol (CCMP). Information ex­
posed during the handshake can be once 
again used for the dictionary attack, which 
can be further improved by precomputing 
the PMRs (Kumkar, Tiwari, Tiwari, Gupta, 
k Shrawne, 2012, pp. 37-38; Liu, Jin, k 
Wang, 2010, p. 3). Precomputed lookup ta­
bles are already available online3. 

A critical security flaw in wireless net­
works secured by WPA or WPA 2 is the func­
tionality called Wi-Fi Protected Setup™ 
( WPS). This technology provides a comfort-

^https://www.renderlab.net/projects/ 
WPA-tables/ 
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Table 1. Following table summarizes WLAN 
statistics provided by Wifileaks.cz. Users of 
this service voluntarily scan and publish de­
tails about WLANs in the Czech Republic. 
Information in the table show that a signifi­
cant number of WLANs still use deprecated 
security algorithms. The statistics consist­
ing of 97 192 922 measurements of 2 548 054 
WLANs were published on May 26, 2017. 

Security Count Ratio 
WPA2 1 429 518 56 % 
W E P 393 579 15% 
W P A 375 984 15% 
open 67 388 3% 
other 281 585 11 % 

Table 2. Results of wardriving in Bratislava 
and Brno focused on UPC vulnerabili­
ties concerning default WPA2 PSR pass­
words (Klinec k Svi'tok, 2016b). Detailed 
article about these security flaws is available 
online (Klinec k Svi'tok, 2016a). 

Bratislava, 
Slovakia, 
2016-10-01 

Count Ratio 

Total networks 22 172 
UPC networks 3 092 13.95 % 
Vulnerable 
UPC networks 1 327 42.92 % U P C 

Brno, 
Czech Republic, 
2016-02-10 

Count Ratio 

Total networks 17 516 
UPC networks 2 868 16.37 % 
Vulnerable 
UPC networks 1 835 63.98 % U P C 
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Server Internet Gateway Attacker Client 

Figure 2. In an example network topology suitable for realization of MUM attack, the 
attacker's device acts towards the victim as a default gateway. A l l the communication routed 
outside the local network from the victim is sent to the default gateway, in this case to the 
attacker's device. From the attacker's device, the communication can be further routed to 
the real default gateway (Callegati et al., 2009). For the successful execution of this scenario, 
the attacker needs to be connected to the targeted local network. 

able and supposedly secure way of connect­
ing to the network. For a connection to 
the WLAN with WPS enabled, it is possible 
to use an individual PIN. However, the pro­
cess of connecting to the properly secured 
network by providing PIN is very prone 
to brute-force attacks (Heffner, 2011). Be­
cause WPS is a usual feature in today's ac­
cess points and that WPS is usually turned 
on by default, WPS can be a very com­
mon security flaw even in networks secured 
by WPA2 with a strong password. Cur­
rently, there are already available automated 
tools for exploiting WPS weaknesses, e.g., 
Reaver Open Source4. 

Recently, a critical vulnerability, Key Re­
installation Attacks (KRACKs), was discov­
ered by Vanhoef & Piessens, 2017 revealing 
a flaw in 801.Hi and related specifications, 
more precisely, in the description of the four-
way handshake. A security of CCMP and 
GCMP encryption methods expects that no 
Initialization Vector (IV) repeats under the 
same key. Authors showed that abusing this 
vulnerability, they can reinstall a Pairwise 
Transient Key (PTK) used for generation of 
Key Confirmation Key (KCK), Key Encryp­
tion Key (KEK), and Temporal Key (TK). 

4 h t t p s : / / c o d e . g o o g l e . c o m / a r c h i v e / p / 
reaver-wps/ 
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KCK and KEK are used for handshake pro­
tection and TK for data encryption. The re­
installation resets the incremental transmit 
packet number (nonce) and receiver packet 
number (replay counter) to the initial value. 
Therefore, the reinstallation violates the ex­
pectation of non reusable IV, which conse­
quently breaks TKIP, CCMP or GCMP pro­
tocols. As Vanhoef & Piessens, 2017 show, 
this also occasionally happens in regular con­
ditions, without an adversary. 

Newly purchased access points usually use 
WPA2 security by default. Currently, many 
access points can be found using default 
passwords not only for wireless network ac­
cess, but even for AP's web administra­
tion. With access to the AP's administra­
tion, the investigator could focus on chang­
ing the network topology by tampering the 
network configuration. Access to the net­
work management further allows the investi­
gator to lower security levels, disable attack 
detections, reconfigure DHCP together with 
DNS and also clear AP's logs. There are 
already implemented tools, which exploit re­
lations between SSIDs and default network 
passwords, e.g., upc_keys5 by Peter Geissler.6 

r , h t t p s : //haxx . i n / u p c - w i f i / 
fiUPC company is a major ISP in the Czech Re­

public, URL: https://www.upc.cz 
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These tools could be used in an attack on 
the network with default SSID to improve 
dictionary attack using possible passwords. 
High severity of these security flaws is also 
proven by the fact that a significant amount 
of WLANs was found using unchanged pass­
words, as it is shown in Table 2. 

2.2 Network Technologies 
vulnerable to M i t M 

Man-in-the-middle attacks are possible be­
cause of the very nature of existing network 
protocols. No designed for providing secu­
rity per see, the common network protocols 
lack strong authentication capabilities that 
would prevent their misuse by an attacker. 
Man-in-the-middle attacks assume that the 
attacker can divert legitimate communica­
tion. Switched Ethernet and secured wire­
less transmission separates the communica­
tion between two endpoints thus no other de­
vice should be able to see the conversation. 
Fortunately for the attacker, the insecurity 
of existing widely deployed protocols can be 
used. At the minimum, the following proto­
cols can be considered as suitable targets: 

1. DHCP automates network device con­
figuration without a user's intervention 
(Droms, 1997). 

2. ARP translates an IPv4 address to a 
destination MAC address of the next-
hop device in the local area net­
work (Plummer, 1982). 

3. IPv6 networks utilize ICMPv6 Neighbor 
Discovery functionality to achieve sim­
ilar functionality to ARP in IPv4 net­
works. 

Because of the lack of authentication and 
integrity checking, these protocols are vul­
nerable to spoofing attacks: 
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1. DHCP Spoofing generates fake DHCP 
communication. This attack can also 
be referred to as Rogue DHCP. An in­
vestigator can perform this kind of at­
tack to provide devices in the network 
with malicious configuration, most of­
ten a fake default gateway address or 
DNS address. 

2. ARP Spoofing provides the network de­
vices with fake ARP messages. This 
persuades the suspect's device to be­
lieve that the attacking device's MAC 
address is the default gateway's MAC 
address. 

3. IPv6 Neighbor Spoofing is a similar con­
cept to ARP Spoofing. 

From the available spoofing attacks, the 
ARP Spoofing technique was implemented in 
our tool. This method proved itself with rea­
sonable performance during experiments and 
it is simple to implement. 

Of course, there are counter-measures to 
spoofing attacks. The defense against spoof­
ing lies in implementing some extra function­
ality to network devices: 

1. DHCP Snooping is a countermeasure 
against DHCP Spoofing. This technique 
focuses on detection of forged DHCP 
communication. Network device acting 
as a DHCP snooper accepts only DHCP 
messages which are coming from con­
nections to the genuine DHCP server, 
others are discarded. This way, individ­
ual connections are classified as either 
trusted or untrusted. If the network 
contains an unknown DHCP server be­
hind an untrusted connection, it is re­
ferred to as Spurious DHCP Server 
(Cisco Systems, Inc., 2013, p. 54-2). 

2. Dynamic ARP Inspection {DAI) is 
based on analysis of ARP messages 
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transmitted over the network with aim 
to detect ARP Spoofing. Similarly, de­
vice performing DAI can have its con­
nections classified as trusted or un-
trusted. ARP messages from trusted 
connections are not checked. Analyz­
ing device maintains a trusted database 
of mapping of IP and MAC addresses 
in the corresponding LAN. ARP mes­
sages from untrusted connections can 
be verified against this trusted map­
ping database (Cisco Systems, Inc.. 
2013, p. 56-2). 

3. Neighbor Discovery Inspection (NDI) 
uses similar approach as above-
mentioned DAI, but to detect IPv6 
Neighbor Spoofing. Analyzing device 
verifies information transferred in 
Neighbor Discovery messages against 
its database of IP and MAC ad­
dress mappings. 

Although the mitigation techniques are 
known, they are applied mostly in the enter­
prise environments. In SOHO networks the 
devices either lack this feature or the protec­
tion is not enabled by the administrator. 

2.3 Man-in-the-Middle Attack 
The MUM refers to the situation, where 
the attacker's device is located in the net­
work topology between two participants of 
the communication (Figure 2). The attacker 
then acts as an intermediary and the net­
work traffic is routed through the attack­
ing device. This state of unauthorized and 
intentionally changed network topology en­
ables the attacker to eavesdrop on passed 
communication. The attacker is also able to 
focus on decryption of data and on changing 
the content of passed communication. That 
means that the attacker can inject harm­
ful content. The attacker's prioritized in­
tention is not only to take control over the 
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traffic but also to perform this attack with­
out anyone noticing it. This way, Man-in-
the-Middle Attack is endangers maintaining 
confidentiality and integrity, key parts of the 
CIA triad. 

HTTPS uses asymmetric cryptography 
with private and public keys to provide se­
cure HTTP communication. If the victim 
is communicating using HTTPS, successful 
realization of MitM attack is more diffi­
cult. During communication of web browser 
on client's device with a web server, these 
two parties exchange a certificate contain­
ing a public key for providing a secure data 
transfer. MitM attack, in this case, cap­
tures transferred certificate and replaces it 
with a forged one (Callegati et al., 2009). 
The forged certificate is at this point a self-
signed certificate. Upon reception of the 
self-signed certificate, victim's web browser 
can show some warning concerning possi­
ble risk. If the victim is not aware of the 
possible consequences, the victim can accept 
the certificate. In the case of success, both 
communicating devices are convinced of se­
cured HTTPS communication, but the at­
tacking device has the ongoing communica­
tion available. 

DNS Spoofing focuses on possibilities 
of forging DNS communication used for res­
olution of domain names and IP addresses. 
For the successful realization of this attack, 
the attacker needs to detect and intercept 
DNS messages in the network. The aim of 
this attack is to direct the victim to a differ­
ent device by providing a fake mapping of in­
quired domain name to a special IP address. 
The attacker is able to imitate the inquired 
service by running a similar rogue service on 
the provided spoofed IP address. If the vic­
tim is convinced that the inquired service is 
genuine, the attacker can then focus on cap­
turing confidential information and creden­
tials. The attacker can also use DNS Spoof­
ing for providing the real service, but with 
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Accessing wireless network 

Scan Crack Impersonate 
(phishing) 

Impersonate 
(phishing) 

Connect 

' • M 

Man-in-the-Middle attack 

Capturing network traffic stop 

t 

Tampering network topology stop 

i L 

Figure 3. During the first phase - Accessing wireless network, the tool is capable of an at­
tack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLANs. In a case of 
the dictionary attack on the device deployed by the UPC company, used dictionaries are per­
sonalized by the implicit passwords. In the case of properly secured WLAN, impersonation 
(phishing) can be employed. Using this method, an investigator impersonates the legitimate 
network to obtain the WLAN credentials from the user. During the second phase - Tamper­
ing network topology, the tool needs to continuously work on keeping the network stations 
(STAs) persuaded that the spoofed topology is the correct one. An investigator is now able 
to capture or modify the traffic. The successful MUM attack is established. 
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enclosed harmful content. DNS Spoofing can 
be effectively applied for spoofing fake web­
sites (Prowell et al., 2010, p. 112). If the 
attacker detects a DNS message, he inter­
cepts it and forges a reply for the victim. 
The victim receives forged mapping of do­
main name to IP address and starts commu­
nication with the fake device without notic­
ing the attack. The attacker then acts as 
the inquired service and therefore performs 
a MitM attack. 

2.4 Available Tools for 
Specific Phases of the 

M i t M Attack on 
Wireless Networks 

From perspective of the intended functional­
ity of the implemented tool, the whole pro­
cess of MitM attack on wireless networks 
can be divided into three main phases: Ac­
cessing wireless network, Tampering network 
topology and Capturing network traffic, as 
explained in Figure 3. 

To access secured wireless networks, 
Aircrack-ng suite7 is considered a reliable 
software solution. Considering the phase Ac­
cessing wireless network (Figure 3), follow­
ing tools were utilized. Airmon-ng can man­
age modes of a wireless interface. Airodump-
ng can be used to scan and detect attacked 
AP. Aircrack-ng together with aireplay-ng, 
airodump-ng and upc-keys can be utilized for 
cracking WEP OS A, WEP SKA, WPA PSK 
and WPA2 PSK. The tool wifiphisher8 can 
be used to perform impersonation and phish-
ing. Connection to the wireless network can 
be established by netctl9. 

MITMf10 with its Spoof plugin can be 
used during the Tampering network topology 

7http://www.aircrack-ng.org/  
s h t t p s : / / g i t h u b . c o m / s o p h r o n / w i f i p h i s h e r  
9https://www.archlinux.org/packages/ 

c o r e / a n y / n e t c t 1 / 
1 0https://github.com/byt3bl33d3r/MITMf 
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phase. For the realization of DNS Spoofing, 
it is possible to use tool dnsspoof which is 
a part of dsniff collection (Song, 2001). This 
collection of network auditing and penetra­
tion testing tools contains several advanced 
programs, which could be used for tamper­
ing network topology. 

Capturing traffic can be done by the tool 
dumpcap11, which is part of the Wireshark12 

distribution. Behaviour, usage and success 
rate of individual tools, as well as possibili­
ties of controlling them by the implemented 
tool, were analyzed. The software selected 
for individual tasks of the automated MitM 
attack were chosen from the researched va­
riety of available tools based on performed 
manual experiments, further described in 
the thesis (Vondráček, 2016). 

3. A T T A C K 
A U T O M A T I O N U S I N G 
W I F I M I T M P A C K A G E 

A N D W I F I M I T M C L I 
T O O L 

The implemented tool is currently intended 
to run on Arch Linux13, but it could be used 
on other platforms which would satisfy spec­
ified dependencies. This distribution was 
selected because it is very flexible and 
lightweight. Python 3.5 was selected as a pri­
mary implementation language for the auto­
mated tool and Bash was chosen for support­
ing tasks, e.g., installation of dependencies 
on Arch Linux and software wrappers. 

The functionality implemented in 
the wifimitm package could be directly 
incorporated into other software products 
based on Python language. This way 

1 1https://www.wireshark.org/docs/ 
man-pages/dumpcap.html 

1 2https://www.wireshark.org/  
1 3https://www.archlinux.org/ 
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Figure 4. This figure shows the basic structure of the developed application. The tool 
wifimitmcli uses a functionality offered by the package wifimitm. The package is also able to 
manipulate attack data useful for repeated attacks and capture files with intercepted traffic. 
Detailed structure of the package is described in section 3. 
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Figure 5. The figure shows a simplified flowchart of cracking WEP OS A or WEP SKA secured 
wireless network. Cracking procedure is a part of the first phase Accessing wireless network 
as described in Figure 3. If the given WLAN has already been successfully attacked, Attack 
Data (Section 3.1) contains the correct key. In such cases, repetitive cracking is unnecessary 
and is therefore skipped. 

the package would work as a software 
library. Schema of the wifimitm package is 
in Figure 4. 

The wifimitm, package consists of following 
modules. The access module offers an au­
tomated process of cracking selected WLAN. 
It uses modules wep and wpa2, which imple­
ment attacks and cracking based on the used 
security algorithm. The wep module is ca­
pable of fake authentication with the AP. 
ARP replay attack (to speed up gather­
ing of IVs) and cracking the key based on 
IVs. In the case of WPA2 secured net­
work, the wpa2 module can perform a dic­
tionary attack, personalize used dictionary 
and verify a password obtained by phish-
ing (Figure 4). Verification of the password 
and dictionary attacks are done with a pre­
viously captured handshake. The common 
module contains functionality which could 
be used in various parts of the process for 

© 2018 ADFSL 

scanning and capturing wireless communi­
cation in monitor mode. The common mod­
ule also offers a way to deauthenticate STAs 
from selected AP. 

If a dictionary attack against a correctly 
secured network fails, a phishing attack can 
be managed by the impersonation 1 4 mod­
ule. The topology module can be used to 
change network topology. It provides func­
tionality for ARP Spoofing. The capture 
module focuses on capturing network traf­
fic (Figure 4). It is intended to be used after 
the tool is successfully connected to the at­
tacked network and network topology was 
successfully changed into the one suitable for 
MitM attack. 

1 4 For details concerning individual phishing sce­
narios, please see wifiphisher's website, h t t p s : / / 
g i t h u b . c o m / s o p h r o n / w i f i p h i s h e r 
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Figure 6. This simplified flowchart illustrates cracking WPA PSK or WPA2 PSK secured 
network. Similarly as cracking in Figure 5, this procedure is also a part of the first phase 
Accessing wireless network (Figure 3). Cracking can also be skipped if the key is already 
known. As already described, impersonation (phishing) can be used in a case of unsuccessful 
cracking. 

3.1 Attack Data 

Various attacks executed against the selected 
AP require some information to be cap­
tured first. A R P request replay attack on 
WEP secured networks requires an A R P re­
quest to be obtained in order to start an at­
tacking procedure. Fake authentication in 
WEP SKA secured network needs PRGA 
XOR15 obtained from a detected authenti­
cation. Dictionary attack against WPA PSK 
and WPA2 PSK secured networks requires 
a captured handshake. Finally, for the suc­
cessful connection to a network, a correct key 
is required. When the required information 
is obtained, it can be saved for a later us­
age to speed up following or repetitive at­
tacks. Data from successful attacks could 
be even shared between users of the imple­
mented tool. 

1 5 S t r e a m of Pseudo Random Generation Algo­

rithm generated bits. 
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3.2 Dictionary Personalization 

Weaknesses in default network passwords 
could be exploited to improve dictionary at­
tacks against WPA PSK and WPA2 PSK 
security algorithms. The implemented tool 
incorporates upcJzeys for generation of pos­
sible default passwords if the selected net­
work matches the criteria. The upc-keys tool 
generates passwords, which are transferred 
to the cracking tool using pipes. With this 
approach, the implemented tool could be fur­
ther improved for example to support local­
ized dictionaries. 

3.3 Requirements 

The implemented automated tool depends 
on several other tools, which are being con­
trolled. The Python package can be au­
tomatically installed by its setup includ­
ing Python dependencies. Non-Python de­
pendencies can be satisfied by installation 
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Figure 7. This figure presents the information model of a process controlled by wifimitm. 
In this example, the incorporated tool is aireplay-ng from Aircrack-ng suite executing ARP 
replay attack to speed up gathering of IVs. State of the process is modeled using a FSM 
consisting of 5 states. In a case that the attacking device receives at least one deauthenti-
cation packet, the deauthenticated flag is set. Statistics contain overall information about 
processed packets. Useful file created by aireplay-ng during this procedure is a capture file 
containing ARP request. This file is part of the Attack Data, as outlined in Section 3.1. 
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Internet 

STA 1 wifimitm 

Figure 8. This figure presents the network 
topology used for the first performance test­
ing (Section 4.1) and success rate measure­
ments (Section 4.2). Results of this perfor­
mance testing are in Figure 10. 

scripts and wrappers, which are currently de­
veloped for Arch Linux. 

MITMf has a number of dependencies. 
Therefore, the installation script also cre­
ates a virtual environment dedicated to 
MITMf. After installation, MITMf can be 
easily run encapsulated in its environment. 
Wifiphisher is also installed in a virtual-
ized environment and run using a wrap­
per. Tool upc-keys is compiled during in­
stallation. Some changes in wifiphisher's 
source code were implemented, the installa­
tion script therefore applies a software patch. 
Other software dependencies are installed 
using a package manager. 

Due to the nature of concrete steps of 

the attack, a special hardware equipment 

is required. During the scanning and cap-
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Figure 9. This figure shows the network 
topology consisting of 8 STAs and 1 AP 
which was used for the second performance 
testing (Section 4.1). Results of this perfor­
mance testing are in Figure 11. 

turing of network traffic without being con­
nected to the network, an attacking device 
needs a wireless network interface in monitor 
mode. For sending forged packets, the wire­
less network interface also needs to be ca­
pable of packet injection. To be able to 
perform a phishing attack, a second wire­
less interface capable of master (AP) mode 
has to be available. The user can check 
whether his hardware is capable of packet 
injection using the aireplay-ng tool. Man­
aging monitor mode of interface is possible 
with the airmon-ng tool. 

3.4 Incorporation of tools 
The implemented tool needs to interact with 
other software tools in order to automate 
attack procedures. Incorporated tools com-
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municate using Standard output stream (std-
out), Standard error stream (stderr) and 
optionally using generated files. Wifimitm 
needs to continuously analyze all these out­
puts to be aware of current state of the 
controlled tool. Information contained in 
the output can be a summary of current 
progress, a notification that some event oc­
curred or a result of an intended action. 

To meet requirements for efficient incor­
poration of other tools so that the wifimitm 
package could interact with them, the up-
datableProcess module was developed. This 
module contains an abstract base class 
UpdatableProcess. Individual incorporated 
tools have dedicated classes inherited from 
the UpdatableProcess which are used for 
managing these tools from wifimitm. When 
a process is spawned, using an instance of 
class inherited from UpdatableProcess, it is 
assigned a temporary directory for its out­
puts. The running process is continuously 
writing to stdout and stderr. The outputs 
are periodically analyzed. Classes inherited 
from UpdatableProcess can implement a sig-
nalization of process' state using a Finite 
State Machine (FSM). Process' output can 
include notifications of events. Upon detec­
tion of such event, appropriate flags can be 
set. Some processes also output summary 
information, which can be used to update 
statistics. Continuously updated informa­
tion about the process can therefore consist 
of state, flags, statistics and created files as 
presented in Figure 7. 

4. E V A L U A T I O N 

The capabilities of the implemented tool 
were evaluated. Because the tool deploys 
man-in-the-middle type of attack, the tool 
necessary modifies the target environment. 
Thus we evaluated the footprint of the tool 
and the possibility to detect the running at­
tack by the victim. The next set of experi-
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ments were conducted to show how easy it is 
to gain the network communication for dif­
ferent wireless configurations. 

4.1 Attack's Performance 
Impact 

The first experiment examines wheathe the 
attack is observable from end-user perspec­
tive or disrupts regular communication on 
the network. A scheme of the networks 
used for this experiment is shown in Fig­
ures 8 and 9, modeling SOHO 1 6 environ­
ment. The STAs were correctly connected to 
the AP, and they were successfully commu­
nicating with the Internet. The implemented 
wifimitmcli tool was then started and auto­
matically attacked the network, as described 
in Section 3 and Figure 3. 

The performance impact of the wifimitm 
was compared using typologies presented in 
Figures 8 and 9. As the observed metric was 
selected a Round-Trip Time (RTT) value 
describing a delay that end-user might expe­
rience when the load on the Rl is increased. 

For the first case, only one client is con­
nected at the time. The Figure 10 plots 
RTT values measured between STA1 and 
its Internet gateway Rl. The x axe de­
notes each measurement, and on the y axe is 
shown corresponding delay in ma in a loga­
rithmic scale. 

The second case shows eight STAs con­
nected to Rl simultaneously, in Figure 9. 
Figure 11 shows an increase of RTT mea­
sured between each of STAx and Rl. 

Both cases were evaluated on the fact, 
whether the attack being performed was re­
vealed or whether the users had any suspi­
cion about the malicious transformation of 
their WLAN. By results comparison of both 
test cases, presented in Figures 10 and 11, 
can be concluded that regular user has no 
way of knowing whether the increase of la-

1 6 s m a l l office/home office 
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RTT STA1 - R l 

10000 ms 

1000 ms 

100 ms 

10 ms 

1 ms 

0 200 400 
0 usual communication * M i t M 

Figure 10. The first WLAN for perfor­
mance testing was the same as for the suc­
cess rate measurements described in Sec­
tion 4.2. Figure shows comparison of 
the measured RTT between STA1 and Rl 
during usual communication and during 
successful MitM attack. The results show 
the performance impact is not critical. Dis­
cussion with the users of the attacked net­
work proved this attack unrecognizable. 
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RTT STA1 - R l 

10000 ms 

1000 ms 

100 ms 
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0 200 400 

° usual communication - M i t M 

Figure 11. The second performance testing 
consisted of 8 STAs and 1 AP connected 
to the Internet - streaming videos, down­
loading large files, etc. The figure com­
pares the RTT between STA1 and Rl sim­
ilarly. The performance impact is more se­
vere than in Figure 10. Despite the perfor­
mance impact, the users had no suspicion 
that they were under MitM attack. In­
stead, they blamed the amount of devices 
for network congestion. 
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tency is caused by an attack, or by a new 
device connecting to the network, massive 
data transfer, or any other interference from 
the physical world. 

On the other hand, there is apparent lin­
ear segregation between measurements with 
and without attack in Figure 11. This obser­
vation submits a future challenge, whether 
this condition might be used as a feature for 
a wireless network diagnostic without direct 
access to Rl or any of STAs. 

4.2 Experiments Concerning 
Various Network Devices 

and Configurations 

The second experiment observes applicabil­
ity of the wifimitmcli tool in different SOHO 
environments based on multiple A P devices 
with a variety of commonly used security 
settings in combination with numerous end-
user devices. The experiment was considered 
successful if the wifimitmcli was able to per­
form all phases of M i t M attack, Figure 3, 
and place itself in the middle of communica­
tion to capture network traffic according to 
the concept of MitM, Section 2.3 and Fig­
ure 2. For the test case to be correct, no 
help from the investigator was allowed dur­
ing the attack performed by wifimitmcli. 

The first use-case was to test all combina­
tions of available A P devices with all avail­
able client ones. Figure 8 shows network 
topology used in this controlled laboratory 
experiment. Results of the success rate mea­
surements are shown in Tables 3 and 4. 

The second use-case was to test suc­
cess rate of the wifimitmcli tool in a non-
laboratory environment beyond our control 
on the end-user part. Figure 8 shows once 
again testing topology withLinksys WRPJ^OO 
device as an AP. Table 4 shows measure­
ments and success rate of observations of this 
use-case. The experiment was conducted 
during the author's presentation at the Brno 
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University of Technology, Faculty of Infor­
mation Technology where visitors were in­
vited to let their devices be attacked. 

Results of experiments present in Ta­
bles 3, 4 and the thesis (Vondráček, 2016, 
pp. 42-43) reveal the following conclusions: 

• Open - networks can be very easily at­
tacked. 

• WEP OSA and WEP SKA - secured 
networks can be successfully attacked 
even if they use a random password. 

• WPA PSK and WPA2 PSK - secured 
networks suffer from weak passwords 
(dictionary attack), default passwords 
and mistakes of users (impersonation 
and phishing). 

Consequently, results reveal feasibility 
and ease of MitM attack using the wifim-
itm, and its success rate in the target 
SOHO environments. 

5. C O N C L U S I O N S 
The goal of this research was to implement 
a tool that would be able to automate all 
the necessary steps to perform MitM attacks 
on WLANs. The authors searched for and 
analyzed a range of software and methods 
focused on penetration testing, communica­
tion sniffing and spoofing, password crack­
ing and hacking in general. To be able to 
design, implement and test the tool capa­
ble of such attacks, knowledge of different 
widespread security approaches was essen­
tial. The authors further focused on possibil­
ities of MitM attacks even in cases where the 
target WLAN is secured correctly. There­
fore, methods and tools for impersonation 
and phishing were also analyzed. 

The authors' work and research resulted 
in creation of the wifimitm Python package. 
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Table 3. This table presents results of the success rate measurements. A successful attack is 
marked using a checkmark symbol ( / ) and unsuccessful attack is marked using a times sym­
bol (x). In the case when the attack was not fully successful, the question mark (?) is used. 
Such partially successful test (? symbol) can for example happen in situation where the sus­
pect is sending only a portion of his traffic through the investigator. Some of the used STAs 
lack WEP SKA settings ( • symbol). Testing WPA PSK and WPA2 PSK networks were 
configured with password "12345678" and WEP secured networks used password "A_b#l". 

4 

V 1» 

,9° 
A? 

4 » # 

Linksys 
WRT610N 

open / / / / / 

Linksys 
WRT610N 

W E P OSA / / / / / Linksys 
WRT610N W E P SKA • • / / / 
Linksys 
WRT610N 

W P A PSK / / / / / 

Linksys 
WRT610N 

WPA2 PSK / / / / / 

Linksys 
WRT54G 

open / / / / / 

Linksys 
WRT54G 

W E P OSA / / / / / Linksys 
WRT54G W E P SKA • • / / / 
Linksys 
WRT54G W P A PSK / / / / / 

Linksys 
WRT54G 

WPA2 PSK / / / / / 

Linksys 
WRP400 

open / / / / / 

Linksys 
WRP400 

W E P OSA / / / / / Linksys 
WRP400 W E P SKA • • / / / 
Linksys 
WRP400 W P A PSK / / / / / 

Linksys 
WRP400 

WPA2 PSK / / / / / 

TP-LINK 
TL-WR841N 

open ? X / / / 

TP-LINK 
TL-WR841N 

W E P OSA ? X / / X TP-LINK 
TL-WR841N W E P SKA • • / / X 
TP-LINK 
TL-WR841N 

W P A PSK ? X / / X 

TP-LINK 
TL-WR841N 

WPA2 PSK ? X / / X 

D-Link 
DVA-G3671B 

open / / / / / 

D-Link 
DVA-G3671B 

W E P OSA / / / / / D-Link 
DVA-G3671B W E P SKA • • / / / 
D-Link 
DVA-G3671B 

W P A PSK / / / / / 

D-Link 
DVA-G3671B 

WPA2 PSK / / / / / 
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Table 4. The following table shows the re­
sults of public experiments. Testing network 
utilized Linksys WRP400 as an A P and end-
user devices of random people that agreed 
to participate in the experiment. A success­
ful attack is marked using a checkmark sym­
bol ( / ) . 

Model OS Attack 
HTC Desire 500 Android 4.1.2 / 
HTC Desire 820 Android 6.0.1 / 
Apple iPhone 6 iOS 10.3.1 / 
Apple iPhone 5s iOS 10.2.1 / 
Apple iPhone 5 iOS 10.3.1 / 
Apple iPhone 5c iOS 9.2.1 / 
Apple iPhone 4 iOS 7.1.2 / 

This package serves as a library which pro­
vides functionality for automation of MUM 
attacks on target WLANs. The developed 
package can also be easily incorporated into 
other tools. Another product of this re­
search is the wifimitmcli tool which incor­
porates the functionality of the wifimitm 
package. This tool automates the individ­
ual steps of a MUM attack and can be 
used from a CLI. The implemented software 
comes with a range of additions for conve­
nient usage, e.g., a script that checks and in­
stalls dependencies on Arch Linux, a Python 
setuptools setup script and of course a man­
ual page. 

The wifimitmcli tool, and therefore wifim­
itm as well, was tested during experiments 
with an available set of equipment. As 
the results show, the implemented software 
product is able to perform an automated 
MitM attack on WLANs successfully. 

Upon successful deployment and execu­
tion of the implemented tool, an investigator 
can eavesdrop or spoof the passing communi­
cation. The goal of the tool was to automate 
MitM attacks on PSK secured WLANs. It 
does not focus on dissecting further traffic 
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protections. This means that it does not 
interfere with SSL/TLS, VPN, or other en­
capsulations. Thanks to the tool's design, it 
can be easily used together with other soft­
ware specialized on interception of encapsu­
lated traffic. Traffic encapsulation is a suf­
ficient protection against this tool. From 
the WLAN administrators point of view, 
available defense mechanisms are outlined 
in Section 2.2. 

As explained earlier, all the suspect's net­
work traffic is passing through the attacking 
device during a successful MitM attack. Un­
fortunately, there could be users on the net­
work other than the ones that are subject 
to a court order. Making sure that only ap­
propriate traffic is being captured may be 
important depending on the nature of the 
court order or the legislation. This challenge 
may be solved by setting corresponding filter 
rules for traffic capture software. 

This research and its products can be uti­
lized in combination with other security re­
search carried out at the Brno University 
of Technology, Faculty of Information Tech­
nology. It can serve in investigations done 
by forensic researchers (Pluskal et al., 2015). 
It can also be used in automated penetration 
testing of WLANs. 

In the future iterations of the develop­
ment, the product could focus on exploit­
ing the weaknesses of the widely used WPS 
technology, incorporating techniques to per­
form KRACKs, or focus on detection of at­
tacks themselves. Concerning the current 
state of the product, it does not focus on 
enterprise WLANs, which also suffer from 
their weaknesses. 
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Abstract. Security mechanisms of wireless technologies often suffer 
weaknesses that can be exploited to perform Man-in-the-Middle attacks, 
allowing to eavesdrop or to spoof network communication. This paper 
focuses on possibilities of automation of these types of attacks using 
already available tools for specific tasks. Outputs of this research are 
the wifimitm Python package and the wifimitmcli CLI tool, both imple­
mented in Python. The package provides functionality for automation of 
MitM attacks and can be used by other software. The wifimitmcli tool 
is an example of such software that can automatically perform multiple 
MitM attack scenarios without any intervention from an investigator. 

The results of this research are intended to be used for automated pen­
etration testing and to help with forensic investigation. Finally, a pop­
ularization of the fact that such severe attacks can be easily automated 
can be used to raise public awareness about information security. 

Keywords: Man-in-the-Middle attack 
Accessing secured wireless networks • Password cracking 
Dictionary personalization • Tampering network topology 
Impersonation • Phishing 

1 In troduct ion 

The main focus of this paper is security of wireless networks. It provides 
a study of widely used network technologies and mechanisms of wireless secu­
rity. Analyzed technologies and security algorithms suffer weaknesses that can be 
exploited to perform Man-in-the-Middle attacks. A successful realization of this 
kind of attack allows not only to eavesdrop on all the victim's network traffic 
but also to spoof his communication [1], [16, pp. 101-120]. 

In an example scenario, the victim is a suspect conducting illegal activity 
on a target network. The attacker is a law-enforcement agency investigator with 
appropriate legal authorization to intercept the suspect's communication and to 
perform a direct attack on the network. In some cases, the suspect may be aware 
that his communication can be intercepted by the ISP 1 and harden his network. 

1 Internet Service Provider 

© I C S T Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018 
P. Matouäek and M . Schmiedecker (Eds.): I C D F 2 C 2017, L N I C S T 216, pp. 207-220, 2018. 
https://doi.org/10.1007/978-3-319-73697-6_16 
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For example, he could use an overlay network technology, e.g., VPN (imple­
mented by L2TP, IP sec [9, pp. 09-10], PPTP) or anonymization networks (Tor, 
I2P, etc.) to create an encrypted tunnel configured on his gateway, for all his 
external communication. This concept is easy to implement and does not require 
any additional configuration on endpoint devices. Generally, this would not be 
considered a properly secured network [5, pp. 425-431], but this scheme, or simi­
lar, is often used by large vendors like Cisco [2] or Microsoft [19] for branch office 
deployment and can also be seen in home routers2. In such cases, intercepting 
traffic on the ISP level would not yield meaningful results, because all the com­
munication is encrypted by the hardening. On the other hand, direct attack on 
the suspect's L A N will intercept plain communication. But, even when an inves­
tigator is legally permitted to carry out such an attack to acquire evidence, it is 
scarcely used, because it requires expert domain knowledge. Thus, this process 
of evidence collection is very expensive and human resource demanding. 

The aim of this research is to design, implement and test a tool able to auto­
mate the process of accessing a secured WLAN and to perform data interception. 
Furthermore, this tool should be able to tamper with the network to collect 
more evidence by redirecting traffic to place itself in the middle of the com­
munication and tamper with it, to access otherwise encrypted data in plain 
form. Using the automated tool should not require any expert knowledge from 
the investigator. 

We designed a generic framework, see Fig. 1, capable of accessing and acquir­
ing evidence from a wireless network regardless of used security mechanisms. This 
framework can be split into several steps. First, it is necessary for an investiga­
tor to obtain access to the WLAN used by the suspect. Therefore, this research 
focuses on exploitable weaknesses of particular security mechanisms. Upon suc­
cessful connection to the network, the investigator needs to tamper with the net­
work topology. For this purpose, weaknesses of several network technologies can 
be exploited. From this point on, the investigator can start to capture and break 
the encryption on the suspect's communication. 

Specialized tools focused on exploiting individual weaknesses in security 
mechanisms currently used by WLANs are already available. There are also 
specialized tools focused on individual steps of MitM attacks. Tools that were 
analyzed and used in implementation of the wifimitm package are outlined 
in Sect. 2. 

Based on the acquired knowledge, referenced studies and practical experience 
from manual experiments, authors were able to create an attack strategy which 
is composed of a suitable set of available tools. The strategy is then able to 
select and manage individual steps for a successful MitM attack tailored to 
a specific WLAN. This strategy also includes options for impersonation and 
phishing for situations, when the network is properly secured, and the weakest 
part of the overall security is the suspect. 

The created software can perform a fully automated attack and requires zero 
knowledge. We tested the final implementation on carefully devised experiments, 

2 Asus RT-AC5300 - Merl in W R T has an option to tunnel all traffic thought Tor. 
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Accessing wireless network 

Scan Crack Impersonate 
(phishing) 

Connect 

Man-in-the-Middle attack 

Capturing network traffic stop 

i L 

Tampering network topology stop 

IL 

Fig . 1. During the first phase - Accessing wireless network, the tool is capable of 
an attack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLANs. 
In a case of the dictionary attack on the device deployed by the U P C company, used 
dictionaries are personalized by the implicit passwords. In the case of properly secured 
WLAN, impersonation (phishing) can be employed. Using this method, an investigator 
impersonates the legitimate network to obtain the WLAN credentials from the user. 
During the second phase - Tampering network topology, the tool needs to continuously 
work on keeping the network stations (STAs) persuaded that the spoofed topology is 
the correct one. A n investigator is now able to capture or modify the traffic. The suc­
cessful MitM attack is established. 

with available equipment. The tool is open source and can be easily incorporated 
into other software. The main use cases of this tool are found in automated 
penetration testing, forensic investigation, and education. 

2 Securi ty Weaknesses in W L A N Technologies 

Following network technologies (Sects. 2.1 and 2.2), which find a significant uti­
lization, unfortunately, suffer from security weaknesses in their protocols. These 
flaws can be used in the process of the MitM attack. 

2.1 Wireless Security 

Wired Equivalent Privacy (WEP) is a security algorithm introduced as a part of 
the I E E E 802.11 standard [6, p. 665], [8, pp. 1167-1169]. At this point, WEP is 
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deprecated and superseded by subsequent algorithms, but is still sometimes used, 
as can be seen from Table 1 available from Wifileaks.cz3. WEP suffers from weak­
nesses and, therefore, it has been broken [4]. There are already implemented tools 
to provide access to wireless networks secured by WEP available [18]. Regarding 
WEP secured WLANs, authentication can be either Open System Authentica­
tion (OSA) or Shared Key Authentication (SKA) [8, pp. 1170-1174]. In the case 
of WEP OSA, any station (STA) can successfully authenticate to the Access 
Point (AP) [17, pp. 4-10]. WEP SKA provides authentication and security of 
transferred communication using a shared key. Confidentiality of transferred 
data is ensured by encryption using the RC'4 stream cipher. Methods used for 
cracking access to WEP secured networks are based on analysis of transferred 
data with corresponding Initialization Vectors (IVs). 

Table 1. Following table summarizes WLAN statistics provided by Wifileaks.cz. Users 
of this service voluntarily scan and publish details about WLANs in the Czech Repub­
lic. Information in the table show that a significant number of WLANs still use dep­
recated security algorithms. The statistics consisting of 97 192 922 measurements of 
2 548 054 WLANs were published on May 26, 2017. 

Security Count Ratio 

W P A 2 1 429 518 56% 

W E P 393 579 15% 

W P A 375 984 15% 

open 67 388 3% 

other 281 585 11% 

Wi-Fi Protected Access® (WPA) was developed by the W i - F i Alliance® as 
a reaction to increasing number of security flaws in WEP. The main flaw of WPA 
security algorithm can be identified at the beginning of client device's commu­
nication, where an unsecured exchange of confidential information is performed 
during the four-way handshake. A n investigator can obtain this unsecured com­
munication and use it for consecutive cracking of the Pre-Shared Key (PSK). 

Wi-Fi Protected Access® 2 (WPA2™) is a successor of WPA, but secu­
rity flaws of the WPA PSK algorithm remain significant also for the WPA2 
PSK. Information exposed during the handshake can be used for the dictionary 
attack, which can be further improved by precomputing the Pairwise Master 
Keys (PMKs) [12, pp. 37-38], [13, p. 3]. Precomputed lookup tables are already 
available online 4. 

A critical security flaw in wireless networks secured by WPA or WPA2 is 
the functionality called Wi-Fi Protected Setup™ (WPS). This technology was 
introduced with an aim to provide a comfortable and secure way of connecting 

3 http://www.wifileaks.cz/statistika/ 
4 https://www.renderlab.net/projects/WPA-tables/ 
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to the network. For a connection to the WLAN with WPS enabled, it is possi­
ble to use an individual PIN. However, the process of connecting to the prop­
erly secured network by providing PIN is very prone to brute-force attacks [7]. 
Because WPS is a usual feature in today's access points and that WPS is usually 
turned on by default, WPS can be a very common security flaw even in networks 
secured by WPA2 with a strong password. Currently, there are already available 
automated tools for exploiting WPS weaknesses, e.g., Reaver Open Source5. 

Newly purchased access points usually use WPA2 security by default. Cur­
rently, many access points can be found using default passwords not only for 
wireless network access, but even for AP's web administration. In a case of pos­
sible access to the AP's administration, the investigator could focus on chang­
ing the network topology by tampering the network configuration. Access to 
the network management further allows the investigator to lower security levels, 
disable attack detections, reconfigure DHCP together with DNS and also clear 
AP's logs. There are already implemented tools, which exploit relations between 
SSIDs and default network passwords, e.g., upc-keyse by Peter Geissler.7 These 
tools could be used in an attack on the network with default SSID to improve 
dictionary attack using possible passwords. High severity of these security flaws 
is also proven by the fact that a significant amount of WLANs was found using 
unchanged passwords, as it is shown in Table 2. 

Table 2. Results of wardriving in Bratislava and Brno focused on U P C vulnerabilities 
concerning default WPA2 PSK passwords [11]. Detailed article about these security 
flaws is available online [10]. 

Bratislava (capital of Slovakia) 2016-10-01 Count Ratio 

Total networks 22 172 

U P C networks 3 092 13.95% 

U P C networks, vulnerable 1 327 42.92% U P C 

Brno (city in the Czech Republic) 2016-02-10 Count Ratio 

Total networks 17 516 

U P C networks 2 868 16.37% 

U P C networks, vulnerable 1 835 63.98% U P C 

2.2 Network Technologies Used in W L A N s 

In the context of a M i t M attack on a WLAN, we are targeting some common 
network protocols: 

- DHCP automates network device configuration without a user's interven­
tion [3]. 

5 https://code.google.eom/archive/p/reaver-wps/ 
6 https:/ /haxx.in/upc-wifi/ 
7 U P C company is a major ISP in the Czech Republic, U R L : https://www.upc.cz 
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- ARP translates an IPv4 address to a destination MAC address of the next-
hop device in the local area network [14]. 

- IPv6 networks utilize ICMPvO Neighbor Discovery functionality to achieve 
similar functionality to ARP in IPv4 networks. 

These network protocols are vulnerable and a MitM attack is a coordinated 
attack on each of these protocols, effectively changing the network topology. 

- DHCP Spoofing generates fake DHCP communication. This attack can also 
be referred to as Rogue DHCP. A n investigator can perform this kind of 
attack to provide devices in the network with malicious configuration, most 
often a fake default gateway address or DNS address 

- ARP Spoofing provides the network devices with fake ARP messages. This 
persuades the suspect's device to believe that the attacking device's MAC 
address is the default gateway's MAC address. 

- IPv6 Neighbor Spoofing is a similar concept to ARP Spoofing. 

ARP Spoofing technique was selected from the researched methods. This method 
proved itself with reasonable performance during experiments. Possible counter-
measures to these attacks are further described in the thesis [20]. 

2.3 Available Tools for Specific Phases of the M i t M Attack 
on Wireless Networks 

From perspective of the intended functionality of the implemented tool, 
the whole process of MitM attack on wireless networks can be divided into 
three main phases: Accessing wireless network, Tampering network topology and 
Capturing network traffic, as explained in Fig. 1. 

To access secured wireless networks, Aircrack-ng suite8 is considered a reli­
able software solution. Considering the phase Accessing wireless network (Fig. 1), 
following tools were utilized. Airmon-ng can manage modes of a wireless inter­
face. Airodump-ng can be used to scan and detect attacked AP. Aircrack-ng 
together with aireplay-ng, airodump-ng and upc.keys can be utilized for crack­
ing WEP OSA, WEP SKA, WPA PSK and WPA2 PSK. The tool wifiphisher9 

can be used to perform impersonation and phishing. Connection to the wireless 
network can be established by netctl10. MITMf11 with its Spoof plugin can be 
used during the Tampering network topology phase. Capturing traffic can be done 
by the tool dumpcap12, which is part of the Wireshark13 distribution. Behaviour, 
usage and success rate of individual tools, as well as possibilities of controlling 
them by the implemented tool, were analyzed. The software selected for individ­
ual tasks of the automated MitM attack were chosen from the researched variety 

8 http://www.aircrack-ng.org/ 
9 https://github.com/sophron/wifiphisher 

1 0 https://www.archlinux.org/packages/core/any/netctl/ 
1 1 https://github.com/byt3bl33d3r/MITMf 
1 2 https://www.wireshark.org/docs/man-pages/dumpcap.html 
1 3 https://www.wireshark.org/ 
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of available tools based on performed manual experiments, further described in 
the thesis [20]. 

3 A t t a c k A u t o m a t i o n U s i n g Deve loped w i f i m i t m Package 
a n d wi f imi tmcl i T o o l 

The implemented tool is currently intended to run on Arch Linux14, but it could 
be used on other platforms which would satisfy specified dependencies. This 
distribution was selected because it is very flexible and lightweight. Python 3.5 
was selected as a primary implementation language for the automated tool and 
Bash was chosen for supporting tasks, e.g., installation of dependencies on Arch 
Linux and software wrappers. 

The functionality implemented in the wifimitm package could be directly 
incorporated into other software products based on Python language. This way 
the package would work as a software library. Schema of the wifimitm package 
is in Fig. 2. 

Entry points J 

wifimitmcli 

wifimitm 

Fig . 2. This figure shows the basic structure of the developed application. The tool 
wifimitmcli uses a functionality offered by the package wifimitm. The package is also 
able to manipulate attack data useful for repeated attacks and capture files with inter­
cepted traffic. Detailed structure of the package is described in Sect. 3. 

The wifimitm package consists of following modules. The access module 
offers an automated process of cracking selected WLAN. It uses modules wep 

1 4 https://www.archlinux.org/ 
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and wpa2, which implement attacks and cracking based on the used security 
algorithm. The wep module is capable of fake authentication with the AP, ARP 
replay attack (to speed up gathering of IVs) and cracking the key based on IVs. 
In the case of WPA2 secured network, the wpa2 module can perform a dictionary 
attack, personalize used dictionary and verify a password obtained by phishing. 
Verification of the password and dictionary attacks are done with a previously 
captured handshake. The common module contains functionality which could be 
used in various parts of the process for scanning and capturing wireless communi­
cation in monitor mode. The common module also offers a way to deauthenticate 
STAs from selected AP. 

If a dictionary attack against a correctly secured network fails, a phishing 
attack can be managed by the impersonat ion 1 5 module. The topology module 
can be used to change network topology. It provides functionality for ARP Spoof­
ing. The capture module focuses on capturing network traffic. It is intended to 
be used after the tool is successfully connected to the attacked network and net­
work topology was successfully changed into the one suitable for MitM attack. 

3.1 Attack Data 

Various attacks executed against the selected AP require some information to 
be captured first. A R P request replay attack on WEP secured networks requires 
an A R P request to be obtained in order to start an attacking procedure. Fake 
authentication in WEP SKA secured network needs PRGA XORw obtained 
from a detected authentication. Dictionary attack against WPA PSK and WPA2 
PSK secured networks requires a captured handshake. Finally, for the successful 
connection to a network, a correct key is required. When the required information 
is obtained, it can be saved for a later usage to speed up following or repetitive 
attacks. Data from successful attacks could be even shared between users of 
the implemented tool. 

3.2 Dictionary Personalization 

Weaknesses in default network passwords could be exploited to improve dictio­
nary attacks against WPA PSK and WPA2 PSK security algorithms. The imple­
mented tool incorporates upc-keys for generation of possible default passwords 
if the selected network matches the criteria. The upc-keys tool generates pass­
words, which are transferred to the cracking tool using pipes. Wi th this app­
roach, the implemented tool could be further improved for example to support 
localized dictionaries. 

For details concerning individual phishing scenarios, please see wifiphisher's website, 
https: / / github.com/sophron / wifiphisher 
Stream of Pseudo Random Generation Algorithm generated bits. 
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3.3 Requirements 

The implemented automated tool depends on several other tools, which are 
being controlled. The Python package can be automatically installed by its setup 
including Python dependencies. Non-Python dependencies can be satisfied by 
installation scripts and wrappers, which are currently developed for Arch Linux. 

MITMf has a number of dependencies. Therefore, the installation script also 
creates a virtual environment dedicated to MITMf. After installation, MITMf 
can be easily run encapsulated in its environment. Wifiphisher is also installed 
in a virtualized environment and run using a wrapper. Tool upc-keys is compiled 
during installation. Some changes in wifiphisher's source code were implemented, 
the installation script therefore applies a software patch. Other software depen­
dencies are installed using a package manager. 

Due to the nature of concrete steps of the attack, a special hardware equip­
ment is required. During the scanning and capturing of network traffic without 
being connected to the network, an attacking device needs a wireless network 
interface in monitor mode. For sending forged packets, the wireless network inter­
face also needs to be capable of packet injection. To be able to perform a phishing 
attack, a second wireless interface capable of master (AP) mode has to be avail­
able. The user can check whether his hardware is capable of packet injection 

STA 1 wifimitm S T A 4 wifimitm S T A 8 

Fig . 3. This figure shows the network 
topology used for the first performance 
testing (Sect. 4) and success rate mea­
surements (Sect. 5). Results of this per­
formance testing are in Fig. 5. 

F ig . 4. This figure shows the network 
topology consisting of 8 STAs and 1 AP 
which was used for the second perfor­
mance testing (Sect. 4). Results of this 
performance testing are in Fig. 6. 
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using the aireplay-ng tool. Managing monitor mode of interface is possible with 
the airmon-ng tool. 

4 At tack ' s Per formance Impact 

A scheme of the networks used for the experiments is shown in Figs. 3 and 4. 
The STAs were correctly connected to the AP and they were successfully 
communicating with the Internet. The implemented wifimitmcli tool was then 
started and automatically attacked the network. 

R T T STA1 - R l 

10000 ms 

1000 ms 

100 ms 

10 ms 
**$ "n* x*i \> x v * * x x XX. ^ ' 5 * . : 

0 200 400 

usual communication * M i t M 

R T T STA1 - R l 

10000 ms 

1000 ms 

100 ms 

xjxx, x x x ^ x x** x fx* 
x** ^ & Ä < x * * \ 5 « „ x J ' V ' x 

10 ms aV 

1 ms 

0 200 400 
0 usual communication « M i t M 

Fig . 5. The first WLAN for performance 
testing was the same as for the success rate 
measurements described in Sect. 5. Figure 
shows comparison of the measured RTT 
between STA1 and Rl during usual com­
munication and during successful MitM 
attack. The results show the performance 
impact is not critical. Discussion with 
the users of the attacked network proved 
this attack unrecognizable. 

F ig . 6. The second performance test­
ing consisted of 8 STAs and 1 AP 
connected to the Internet - stream­
ing videos, downloading large files, etc. 
The figure compares the RTT between 
STA1 and Rl similarly. The perfor­
mance impact is more severe than in 
Fig. 5. Despite the performance impact, 
the users had no suspicion that they 
were under MitM attack. Instead, they 
blamed the amount of devices for net­
work congestion. 
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The performance impact of the wifimitm was compared using setups based on 
S O H O 1 7 environment. Both experiments were also evaluated based on the fact, 
whether the attack being performed was revealed or whether the users had any 
suspicion about the malicious transformation of their WLAN. Results of the test­
ing are presented in Figs. 5 and 6. 

Table 3. This table presents results of the success rate measurements. A successful 
attack is marked using a checkmark symbol (V) and unsuccessful attack is marked 
using a times symbol (x) . In the case when the attack was not fully successful, the 
question mark (?) is used. Such partially successful test (? symbol) can for example 
happen in situation where the suspect is sending only a portion of his traffic through 
the investigator. Some of the used STAs lack WEP SKA settings ( • symbol). Testing 
WPA PSK and WPA2 PSK networks were configured with password "12345678" and 
WEP secured networks used password "A_b#l". 

Lenovo 
G580, 
Windows 
10 

Lenovo 
G505s, 
Windows 
8.1 

Dell 
Latitude E6500, 
Ubuntu 
17.04 

H T C 
Desire 500, 
Android 
4.1.2 

Apple 
iPhone 4, 
iOS 
7.1.2 

Linksys 
WRT610N 

open Linksys 
WRT610N W E P OSA 
Linksys 
WRT610N 

W E P S K A • • 

Linksys 
WRT610N 

W P A P S K 

Linksys 
WRT610N 

W P A 2 P S K 
Linksys 
WRT54G 

open Linksys 
WRT54G W E P OSA 
Linksys 
WRT54G 

W E P S K A • • 

Linksys 
WRT54G 

W P A P S K 

Linksys 
WRT54G 

W P A 2 P S K 
Linksys 
WRP400 

open Linksys 
WRP400 W E P OSA 
Linksys 
WRP400 

W E P S K A • • 

Linksys 
WRP400 

W P A P S K 

Linksys 
WRP400 

W P A 2 P S K 
T P - L I N K 
TL-WR841N 

open ? X T P - L I N K 
TL-WR841N W E P OSA ? X X 

T P - L I N K 
TL-WR841N 

W E P S K A • • X 

T P - L I N K 
TL-WR841N 

W P A P S K ? X X 

T P - L I N K 
TL-WR841N 

W P A 2 P S K ? X X 

D-Link 
DVA-G3671B 

open D-Link 
DVA-G3671B W E P OSA 
D-Link 
DVA-G3671B 

W E P S K A • • 

D-Link 
DVA-G3671B 

W P A P S K 

D-Link 
DVA-G3671B 

W P A 2 P S K 

1 7 Small office/home office. 
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5 Experiments Concerning Various Network 
Configurations and Devices 

The test was considered successful if the wifimitmcli was able to capture net­
work traffic according to the concept of MUM. For the test to be correct, no 
intervention (help) from the investigator was allowed during the attack per­
formed by wifimitmcli. Results of the success rate measurements are shown 
in Tables 3 and 4. 

Table 4. The following table shows the results of public experiments. Visitors 
of the Brno University of Technology, Faculty of Information Technology were invited 
to let their devices be attacked. Testing network utilized Linksys WRP400 device 
as an A P . A successful attack is marked using a checkmark symbol ( / ) . 

Model OS Attack 

H T C Desire 500 Android 4.1.2 / 
H T C Desire 820 Android 6.0.1 / 
Apple iPhone 6 iOS 10.3.1 / 
Apple iPhone 5s iOS 10.2.1 / 
Apple iPhone 5 iOS 10.3.1 / 
Apple iPhone 5c iOS 9.2.1 / 
Apple iPhone 4 iOS 7.1.2 / 

Results of experiments (Tables 3 and 4 and the thesis [20, pp. 42-43]) show, 
that open networks can be very easily attacked. WEP OSA and WEP SKA 
secured networks can be successfully attacked even if they use a random pass­
word. WPA PSK and WPA2 PSK secured networks suffer from weak passwords 
(dictionary attack), default passwords and mistakes of users (impersonation and 
phishing). As Figs. 5, 6 and Tables 3, 4 show, MUM attack using the wifimitm 
is successfully feasible in the target environments. 

6 Conclusions 

The goal of this research was to implement a tool that would be able to auto­
mate all the necessary steps to perform MUM attacks on WLANs. The authors 
searched for and analyzed a range of software and methods focused on pen­
etration testing, communication sniffing and spoofing, password cracking and 
hacking in general. To be able to design, implement and test the tool capable of 
such attacks, knowledge of different widespread security approaches was essen­
tial. The authors further focused on possibilities of MUM attacks even in cases 
where the target WLAN is secured correctly. Therefore, methods and tools for 
impersonation and phishing were also analyzed. 
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The authors' work and research resulted in creation of the wifimitm Python 
package. This package serves as a library which provides functionality for 
automation of MitM attacks on target WLANs. The developed package can 
also be easily incorporated into other tools. Another product of this research is 
the wifimitmcli tool which incorporates the functionality of the wifimitm pack­
age. This tool automates the individual steps of a MitM attack and can be used 
from a CLI. The implemented software comes with a range of additions for con­
venient usage, e.g., a script that checks and installs dependencies on Arch Linux, 
a Python setuptools setup script and of course a manual page. 

The wifimitmcli tool, and therefore wifimitm as well, was tested during exper­
iments with an available set of equipment. As the results show, the imple­
mented software product is able to perform an automated MitM attack on 
WLANs successfully. 

Upon successful deployment and execution of the implemented tool, an inves­
tigator can eavesdrop or spoof the passing communication. The goal of the tool 
was to automate MitM attacks on WLANs. It does not focus on dissecting fur­
ther traffic protections. This means that it does not interfere with SSL/TLS, 
VPN, or other encapsulations. Thanks to the tool's design, it can be easily 
used together with other software specialized on interception of encapsulated 
traffic. Traffic encapsulation is a sufficient protection against this tool. From 
the WLAN administrators point of view, available defense mechanisms are out­
lined in Sect. 2.2. 

As explained earlier, all the suspect's network traffic is passing through 
the attacking device during a successful MitM attack. Unfortunately, there could 
be users on the network other than the ones that are subject to a court order. 
Making sure that only appropriate traffic is being captured may be important 
depending on the nature of the court order or the legislation. This challenge may 
be solved by setting corresponding filter rules for traffic capture software. 

This research and its products can be utilized in combination with other 
security research carried out at the Brno University of Technology, Faculty 
of Information Technology. It can serve in investigations done by forensic 
researchers [15]. It can also be used in automated penetration testing of WLANs. 

In the future iterations of the development, the product could focus on 
exploiting the weaknesses of the widely used WPS technology. Concerning 
the current state of the product, it does not focus on enterprise WLANs, which 
also suffer from their own weaknesses. 

The authors disclaim any use of this research for any unlawful activities. 
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Chapter 10 

T R A F F I C C L A S S I F I C A T I O N A N D 
A P P L I C A T I O N I D E N T I F I C A T I O N 
I N N E T W O R K F O R E N S I C S 

Jan Pluskal , Ondrej Lichtner and Ondrej Rysavý 

Abstract Network traffic classification is an absolute necessity for network moni­
toring, security analyses and digital forensics. Without accurate traffic 
classification, the computational demands imposed by analyzing all the 
IP traffic flows are enormous. Classification can also reduce the number 
of flows that need to be examined and prioritized for analysis in forensic 
investigations. 

This chapter presents an automated feature elimination method based 
on a feature correlation matrix. Additionally, it proposes an enhanced 
statistical protocol identification method, which is compared against 
Bayesian network and random forests classification methods that offer 
high accuracy and acceptable performance. Each classification method 
is used with a subset of features that best suit the method. The methods 
are evaluated based on their ability to identify the application layer pro­
tocols and the applications themselves. Experiments demonstrate that 
the random forests classifier yields the most promising results whereas 
the proposed enhanced statistical protocol identification method pro­
vides an interesting trade-off between higher performance and slightly 
lower accuracy. 

Keywords: Protocol identification, application identification, machine learning 

1. In troduct ion 

Network traffic classification is an important technique used in net­
work monitoring, security analyses and digital forensics. In digital foren­
sics, file types can be identified by file extensions or by searching for 
magic numbers at the beginning of files; known files can be identified us­
ing databases of hash values. The identification of file types and filtering 
of known files reduce the amount of data that needs to be analyzed. Do-
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ing the same wi th network traffic is much more complicated because each 
data transfer contains specific and temporary characteristics that depend 
on the network state, network uti l izat ion and locations of communica­
tions endpoints. The correct classification of network traffic enables an 
automated analyzer to determine which application protocol parser to 
use to extract information carried by an I P flow (a packet sequence 
identified by the same source and destination IP addresses, transport 
protocol ports and transport protocol type). This , i n turn, helps speed 
up a forensic investigation by reducing the number of unclassified IP 
flows. 

Tradit ional traffic classification methods identify applications based 
on the T C P or U D P ports that are used. This provides only l imited ac­
curacy (60-80%) because many applications use random or non-standard 
ports [3, 24], for example, peer-to-peer applications, mult imedia stream­
ing applications, computer games and tunneled traffic. Advanced traf­
fic classification utilizes supervised machine learning methods based on 
payload analysis, statistical methods and hybr id approaches [17, 19, 26, 
27, 29]. Each technique has its advantages and disadvantages. For ex­
ample, payload analysis of encrypted communications is unacceptably 
inaccurate. Statistical and hybr id approaches demonstrate that it is 
not necessary to rely exclusively on packet content [5, 12, 21], but that 
it is possible to combine structural and behavioral features to increase 
detection accuracy [16]. 

Unsupervised machine learning methods can classify unknown net­
work traffic [9] into unlabeled clusters based on their similarity. A n 
expert investigator, upon inspection of a few samples of a cluster, can 
label the entire cluster. 

Several researchers have investigated machine learning approaches for 
traffic classification. Most of the research has focused on classifying net­
work traffic to identify the application layer protocol in order to support 
intelligent network filtering and security monitoring. Whi le traffic classi­
fication for network forensics stems from the same ideas, there are some 
notable differences. Network forensics analysis can be performed off-line 
on captured data. In this case, accuracy is more important than speed. 
Thus, a combination of several methods or applications that are slower, 
but more accurate, can be considered. 

In network forensics, an investigator can compensate for incorrect 
results by performing additional manual inspections of results. For ex­
ample, some methods return a probabili ty vector that can be inspected 
to consider different results. 

Addit ional ly, in network forensics, classification must be determin­
istic because forensic principles require that all results be verifiable. 
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Also, classification methods can be tuned by an investigator and can 
be repeated wi th different parameter sets to increase sensitivity while 
decreasing specificity. 

Machine learning algorithms for network traffic classification have 
been studied since the 1990s. The most common algorithms include 
support vector machines [12], decision tree algorithms [21] and proba­
bilistic [5] and statistical methods [16, 19], all of which involve supervised 
learning. The unsupervised A;-means clustering algorithm [9] groups traf­
fic based on its significant features. If the feature set is selected properly, 
a machine learning method can exceed 90% accuracy [26]. 

Surveys of classification methods by Nguyen and Armitage [27] and 
Namdev et al. [26] discuss protocol identification. Classification meth­
ods for encrypted traffic are reviewed in [29]. A l Khater and Overi l i [2] 
have proposed the use of machine learning algorithms to improve traf­
fic classification methods for digital forensic applications. Foroushani 
and Zincir-Heywood [10] have demonstrated the possibility of identi­
fying high-level application behaviors from encrypted network service 
communications. D a i et al . [6] and Miskovic et al. [23] have described 
methods for fingerprinting mobile applications based on their communi­
cations. E r m a n et al. [8] have explored flow-based classification and have 
proposed a semi-supervised classification method that can accommodate 
known and unknown applications. 

Whi le traffic classification has been applied extensively to network 
monitoring and security analysis, significantly less research has focused 
on traffic discrimination for network forensics. This research makes some 
key contributions to the field of network forensics. The first is the cre­
ation of a dataset that provides a means to reliably acquire ground 
t ru th for experiments. Typica l datasets use information inferred from 
1 7 - f i l t e r [28] or nmap [1] and, therefore, offer only approximations of 
the real information. Shang and Huang [28] have shown that the preci­
sion of these techniques is always one (no false positives), but the recall 
varies between 0.67 and 0.87. This means that 13-33% of the samples 
are not labeled and the researchers would have excluded them from the 
datasets because they lacked labels [1, 12]. Therefore, the remaining 
dataset is already classifiable v ia deep packet inspection and is less rele­
vant to finding better classification methods. In other cases, researchers 
do not include information about the data used i n their experiments, 
or the descriptions are vague and not reproducible [28], or they do not 
describe how to annotate data wi th labels without errors [5]. 

For these reasons, this research captured one week's worth of packet 
data in an environment wi th eight hosts, which translates to roughly 
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20 G B . The data was automatically tagged wi th complete information 
about the origin application. 

This research has also developed an enhanced statistical protocol iden­
tification (ESPI) method that leverages a machine-learning-based clas­
sifier. U p o n evaluating the results of related studies, two additional 
classifiers, a Bayesian network classifier and a random forests classifier, 
were selected for comparison. This chapter describes all three methods 
and shows that they can be used to identify application layer protocols 
and even the applications that used the protocols. This is important 
because application identification provides more information about net­
work traffic compared wi th what can be gleaned from the identified ap­
plication layer protocols. Consider a situation where H T T P S is used to 
create an encrypted tunnel. A tool capable of recognizing applications 
(e.g., Google Drive, iTunes and OneDrive) in network traffic instead of 
merely the application layer protocol (e.g., H T T P S ) is useful in several 
domains. Notably, in forensic analysis, application identification could 
significantly reduce the amount of data to be analyzed compared with 
conventional approaches. 

2. D a t a Co l l ec t ion a n d Preprocess ing 

Network traffic classification takes a network traffic capture file as in­
put, typically i n the P C A P format. The captured traffic is then split into 
a collection of layer 4 conversations represented by one or two IP flows 
for one-way or two-way communications, respectively. The experiments 
described in this chapter employed an annotated dataset captured by M i ­
crosoft Network Moni tor , which provides application labels for almost 
all conversations. The dataset contains regular network traffic generated 
by eight user workstations running the Windows operating system. The 
final capture file has the following characteristics: 

• P C A P File Size: 19.5 G B . 

• P C A P Format: Microsoft N e t M o n 2.x. 

• Capture Duration: 119 hours. 

> Number of Packets: 27,616,138. 

• Number of Layer 7 Conversations: 269,459. 

• Number of Applicat ion Protocols: 58. 

• Number of Communicat ing Applications: 93. 

Information about the dataset is available at p luskal . github . i o / 
Appldent and the dataset itself can be downloaded from n e s . f i t . 
vutbr.cz/AppIdent. 
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Before the capture file could be used, additional post-processing steps 
from previous work [22] were applied to enhance data extraction. The 
final post-processing step used a round of experiments wi th the enhanced 
statistical protocol identification method. Based on these ini t ia l results, 
a second instance of the dataset was created that contained ground t ruth 
about the application protocols. The ground t ru th supported manual 
hierarchical clustering analysis of the results. 

The post-processing steps improved the traffic classification accuracy 
by reducing the noise in the extracted features caused by the following 
items: 

• Important T C P session control information, such as synchroniza­
t ion segments and finalization segments, may be missing. 

• Sequence numbers may overflow in long-running T C P conversa­
tions. This can result i n incorrect interpretation, causing single 
conversations to be split or two unrelated IP flows to be joined 
into a single conversation. 

• The joining of capture files from multiple probes must address is­
sues related to possible packet duplication and the proper ordering 
of packets belonging to the same conversation. 

• Some IP packets may be missing or be duplicated (e.g., in the case 
of T C P retransmission). 

• Final ly, associated IP flows in bidirectional conversations must be 
paired correctly. 

Matousek et al. [22] have shown that other network forensic solu­
tions do not effectively address these issues. This implies that adopting 
the proposed additional steps would also be beneficial i n the context 
of network traffic classification. To address these issues, Netfox Detec­
tive (github.com/nesfit/NetfoxDetective), a custom tool created for 
these use cases, was used to process the captured P C A P files. 

2.1 A p p l i c a t i o n Conversat ions a n d Messages 

In addition to addressing the basic issues related to processing layer 4 
conversations, Netfox Detective also enabled the dataset to be processed 
to track layer 7 conversations and to approximate individual application 
messages. This increased the classification accuracy by identifying appli­
cation communications patterns. It also eliminated remnants of network 
packet fragmentation in the Internet layer and T C P retransmission in 
the transport layer. Packet fragmentation and T C P retransmission are 
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independent of application communications patterns and, thus, can neg­
atively impact classification. 

A n application message was identified in the reassembled stream based 
on the transport protocol. The following rules were used for identifica­
tion: 

• If a stream uses the U D P transport protocol, then the entire pay-
load of each U D P datagram is considered to be a single application 
message. 

• In the case of the T C P transport protocol, segments are separated 
into application messages based on packets wi th P S H , R S T or F I N 
flags, or based on timeouts. 

These rules are simple to implement and yield accurate approximations 
of application messages in most cases. 

3. Classif icat ion M e t h o d s 

Using machine learning algorithms to classify traffic is by no means a 
new concept in the field of network forensics. However, the typical use 
case is to identify the application protocol [27, 29]. In this research, the 
approach was expanded to also identify the application that created the 
traffic. This provides more information that can be used by a forensic 
investigator for easier and more precise analysis. 

This section describes revisions to the commonly-used feature sets [16, 
19, 25] to address the task at hand and presents a feature elimination 
method based on feature correlation to improve the accuracy of the 
created classifiers. Final ly , the proposed enhanced statistical protocol 
identification method is described along wi th two other classification 
methods from the literature that have yielded promising traffic identifi­
cation results. 

3.1 Feature Set 

The quality of a feature set directly influences classification accu­
racy [32]. Common features used for traffic classification are related to 
key aspects of packet communications and network architecture. These 
include port numbers, transport protocol type, starting sequence of pay-
load bytes, pattern occurrence, message length and message t iming. Re­
searchers have identified a list of possible features comprising 92 items 
that are invariant to network line characteristics [16, 19, 25]. The list is 
available at github.com/pluskal/AppIdent. 

Machine learning algorithms achieve the best performance when the 
selected features are orthogonal (i.e., no correlation exists between the 
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features) [14]. Several approaches have been proposed for calculating 
feature correlations, including the Pearson, Spearman, Kenda l l correla­
tion formulas [31] and covariance matr ix [13]. This research opted for 
the covariance matr ix method due to its ease of implementation. 

The covariance matr ix provides a correlation value for each pair of 
features. This matr ix was used to design an automated two-step pro­
cedure for eliminating features. In the first step, a covariance matr ix 
was calculated based on a chosen ratio of t raining data to verification 
data it/v). In the second step, based on a maximum allowed correla­
tion value, feature pairs wi th higher correlation values were identified 
and features that were, on average, more correlated wi th all the other 
features, were iteratively removed from the feature set. The resulting 
feature set was used by the selected classification method and could be 
evaluated to find the optimal set. 

In the experiments, more than 80% of the feature pairs had corre­
lation values of 0.5 or higher. Table 1 lists the features that remained 
after feature elimination was performed on sample data wi th training to 
verification ratios of 0.1 and 0.2, based on accepted correlation values 
up to 0.5. Note that the correlation column shows the maximal-allowed 
correlation values of features listed on the corresponding line and higher. 
These feature sets were used by the Bayesian network and random forests 
classifiers. 

Most of the features describe flow characteristics instead of individual 
packet characteristics. This confirms the assumption that relying on 
a signature or some pattern in packet content gives better results for 
encrypted or less-structured traffic. 

3.2 E n h a n c e d Stat ist ical P r o t o c o l Identification 

Hjelmvik [16] developed the statistical protocol identification (SPID) 
method for use wi th the NetworkMiner tool. The learning phase of 
the method creates a database of protocol fingerprints for identifying 
application protocols. The features uti l ized by the statistical protocol 
identification method are called "protocol attribute meters," each con­
veying different information. Some items are scalar values representing 
payload data size, number of packets in a session or port number. Other 
items are composite values, such as a tuple comprising packet direction, 
packet ordering, packet size and byte value frequency. 

The original implementation uses about 35 protocol attribute me­
ters and extracts information from the first few packets of IP flows to 
achieve better speed compared wi th other classification methods that 
analyze entire IP flows. The distance between the analyzed data to a 
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Table 1. Features remaining after elimination based o n i / w ratios of 0.1 and 0.2. 

Correlation Feature (t/v = 0.1) Feature (t/v = 0.2) 

BytePairsReoccuringDownFlow 
DirectionChanges 
First3BytesEqualDownFlow 
FirstBitPositionUpFlow 
FirstPayloadSize 
MinlnterArrivalTimeDownFlow 
MinlnterArrivalTimePackets 
UpAndDownFlow 
MinPacketLengthDownFlow 
NumberOfBytesDownFlow 
NumberOfPacketsUpFlow 
PacketLengthDistribution 
DownFlow 
PacketLengthDistribution 
UpFlow 

First3BytesEqualDownFlow 
FirstBitPositionUpFlow 

MinlnterArrivalTimePackets 
UpAndDownFlow 
MinPacketLengthDownFlow 

PacketLengthDistribution 
DownFlow 

ThirdQuartilelnter Arrival 
TimeUp 
ByteFrequencyUpFlow 
MaxSegmentSizeDown 
MaxSegmentSizeUp 
MinlnterArrivalTimePackets 
UpFlow 
NumberOfBytesUpFlow 
ThirdQuartilelnter Arrival 
TimeDown 

<0.25 PUSHPacketsDown 
ThirdQuartilelnter Arrival 
TimeDown 

PUSHPacketsDown 

NumberOfBytesUpFlow 

<0.3 
ByteFrequencyUpFlow 
MinPacketLengthUpFlow 
NumberOfPacketsPerTimeUp 

FirstPayloadSize 

MinPacketLengthUpFlow 

DirectionChanges 
BytePairsReoccuringDownFlow 

<0.4 MeanPacketLengthUpFlow 

<0.5 MeanPacketLengthUpFlow 

known protocol fingerprint is computed using the Kullback-Leibler d i ­
vergence and the best matching protocol fingerprint has the smallest 
sum of Kullback-Leibler divergences over all the attributes. Kohnen et 
al . [19] have developed a new version of the statistical protocol iden-
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tification method by adding support for U D P and handling streaming 
protocols using a different set of protocol attribute meters. 

The research described here has drawn on this work in creating the 
enhanced statistical protocol identification method. The research was 
motivated by the fact that a forensic investigator is more interested in 
the precision of identification than its speed (although quicker identi­
fication is important); therefore, completed conversations are analyzed 
instead of just the first few packets. Addit ional ly, as mentioned above, 
the intent is to identify application protocols as well as the applications 
themselves; therefore, approximated application messages instead of in ­
dividual packets are analyzed. The enhanced statistical protocol identi­
fication method also uses a different set of features (92 features selected 
as described in Section 3.1) and a different method for computing the 
distances between measured values and learned protocol fingerprints. 

The following three functions are employed: 

• Function / computes the divergence of a measured value to a fin­
gerprint value. 

• Function g returns a normalized feature value for an actual mea­
sured value. 

• Function w returns the weight of a feature for a protocol finger­
print. 

The divergence from a learned fingerprint is computed as the E u ­
clidean distance [7] of the weighted divergences for individual features: 

\ E(!».M'/.(9.(*,).C.)>2 ( ! ) 

where x\,...,xn denote the current flow protocol feature values; c i , c „ 
denote the normalized feature values in the protocol fingerprint; and 
Wi(c) denotes the weight of the ith feature in protocol fingerprint c. 

Equat ion (1) is used to compute the difference dx cj for each protocol 
fingerprint c 7 . The identified protocol or application k is the one such 
that dxck = min(dXfi\ ... d X ) C m ) . 

Compared wi th other machine learning methods, the enhanced sta­
tistical protocol identification method does not suffer from overfitting 
due to the use of correlated features because it assigns weights on a 
per-feature basis. This property renders the enhanced statistical proto­
col identification method readily extensible to classifying new protocols 
and incorporating features unique to the new protocols, which could be 
correlated wi th features of other protocols. 
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3.3 Bayes ian N e t w o r k Classifier 

The Bayesian network classifier [11] relies on Bayes' theorem, which 
defines the probabili ty of an event based on prior knowledge about the 
conditions related to the occurrence of the event. The classifier incorpo­
rates Bayesian belief networks that are constructed during the learning 
phase. A Bayesian network is a directed acyclic graph and a set of 
conditional probabili ty tables. Nodes in the network represent feature 
variables and edges represent conditional dependencies. The probability 
tables provide probabili ty functions for the nodes. 

A Bayesian network classifier identifies the application protocol by 
determining the node (or set of nodes) w i th the highest probabili ty for 
the given input feature values. The advantage of the Bayesian network 
classifier is that it also computes the probabili ty that the conversation 
belongs to the identified protocol. This information enables a forensic 
investigator to decide whether or not to analyze the conversation. 

3.4 R a n d o m Forests Classifier 

Random forests is an ensemble method that constructs multiple C4.5 
decision trees during the training phase; the trees are used for classifi­
cation in the verification phase, where the mode of the partial results 
is selected as the resulting class [4]. This makes the random forests 
classifier prone to overfitting [15]. Random forests are parametrized by 
multiple variables such as the forest count, join, and training to ver­
ification ratio. Op t ima l values for the parameters are determined by 
cross-validation and computation of an out-of-bag error that estimates 
the performance of specific parameter combinations. Because the classi­
fier computes the out-of-bag error, there is no need to employ a separate 
data verification phase. Therefore, the random forests classifier can be 
trained on the entire dataset, although this approach can be computa­
tionally expensive. 

4. E x p e r i m e n t a l Procedures a n d Resul ts 

This section presents the experimental procedures and the results ob­
tained using the three classification methods. The experiments were 
designed wi th three goals in mind . The first goal was to compare re­
sults yielded by machine learning and statistical methods that share the 
same base feature set, but involve fundamentally-different approaches 
to classification. The second goal was to observe how the training set 
size and feature elimination ratio impact the accuracy of application 
protocol and application classification. The th i rd goal was to prove (or 
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disprove) that application classifiers can identify network traffic based 
on the applications that generated the traffic. 

The Netfox Detective tool was employed as middleware for parsing 
and processing the captured traffic into application conversations and 
messages. The feature elimination algorithm and classification methods 
were implemented as modules in Netfox Detective for easy integration 
wi th input data. A standalone application was used to automate the 
experimental procedure wi th different parameters. The enhanced statis­
tical protocol identification method was implemented from scratch. The 
Bayesian network and random forests classifiers were implemented using 
the A c c o r d . N E T l ibrary of machine learning algorithms. 

4.1 E x p e r i m e n t a l Procedures 

A s mentioned above, Netfox Detective was used to parse and process 
the captured traffic and to extract the full set of feature values for the 
resulting conversations (feature vectors). Each feature vector was an­
notated wi th a label that identified the level of classification using the 
ground t ru th from the original capture file. The following labels were 
used: 

• Applicat ion Protocol: Each application protocol was labeled 
using a tuple wi th the components: (i) transport protocol type: 
and (ii) destination transport layer port or manually assigned label 
(e.g., TCPJittp). 

• Application: Each application was labeled using a tuple wi th the 
components: (i) transport protocol type; (ii) destination transport 
layer port or manually assigned label; and (iii) application process 
information (e.g., tcp_http_skypeexe). 

Because this task was time-intensive, but only had to be done once, 
the results were saved in a separate binary file. A custom application was 
developed to automatically execute the same experiment, but wi th dif­
ferent configuration parameter values (classification method, training to 
verification ratio and accepted correlation value for feature elimination). 

A l l the experiments involved the following five steps: 

• Step 1 (Dataset Generation): The available data was split 
into two disjoint datasets based on the training to verification ra­
tio. The first dataset was used for training and the second for 
verification. 

• Step 2: (Feature Elimination): The experiments using the 
Bayesian network and random forests classifiers used the training 
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dataset created in Step 1 wi th the feature elimination algorithm 
described in Section 3.1. The experiments using the enhanced 
statistical protocol identification method employed the accepted 
correlation value of one to include all the features; this is because, 
as explained i n Section 3.2, the enhanced statistical protocol iden­
tification method does not require feature elimination. 

Step 3: (Training): The training dataset created i n Step 1 was 
used to t rain the three classifiers: 

— Bayesian Network Classifier: A classifier was trained for 
each group of feature vectors wi th the same label. 

— Random Forests: The optimal parameters specified in Sec­
tion 3.4 corresponded to the most accurate classifier. 

— Enhanced Statistical Protocol Identification Classi­
fier: For each group of feature vectors wi th the same label, an 
application protocol fingerprint was computed using function 
9-

Step 4 (Verification): A cross-validation phase was used to de­
termine the best classifiers created in Step 3. Specifically, the 
classifiers were used to classify each conversation from the verifi­
cation dataset. They returned either: (i) multiple labels; or (ii) 
single labels: 

— Mult iple Labels: Mul t ip le labels were returned as a set 
of probabilities or distances. The set was ordered and the 
label w i th the highest probabili ty or shortest distance was 
selected. In the case of the Bayesian network classifier, each 
Bayesian classifier yielded a probabili ty of the current conver­
sation belonging to the class of interest (application protocol 
or application) represented by the classifier. In the case of 
the enhanced statistical protocol identification classifier, the 
Euclidean distance between the specific conversation to each 
application protocol or application fingerprint was returned. 

— Single Label: The random forests classifier returned a single 
label. 

Step 5 (Label Comparison): In each case, the label was com­
pared against the annotation and the statistical properties of each 
classification method were computed. 
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Table 2. Configurations of the classification methods. 

Classification Experiment Training to Highest Feature 
Method ID Verification Ratio Correlation Used 

B l 0.1 0.3 
B2 0.2 0.5 

Bayesian Network B3 
B4 

0.5 
0.1 

0.5 
0.2 

B5 0.2 0.25 
B6 0.5 0.25 

ESPI 
E S P I l 
ESPI2 

0.7 
0.2 

1 
1 

R F 1 0.1 0.4 
Random Forests R F 2 0.2 0.4 

R F 3 0.1 0.5 
R F 4 0.2 0.5 

4.2 E x p e r i m e n t a l Results 

The automated application ran many experiments wi th various con­
figurations of parameters wi th the goal of identifying the configurations 
that yielded the best results. The experiments were organized based on 
the classification methods. For better comparisons, the most successful 
experiments for each method wi th various training to verification ratios 
were employed. 

Table 2 lists the configurations of the classification methods wi th the 
best results. The last column specifies the highest feature correlation val­
ues used for feature elimination. The experiments were split into two cat­
egories. Experiments B l , B2 , B 3 , E S P I l , R F 1 and R F 2 used classifiers 
for application protocol identification, for which the complete dataset 
contained 58 application protocol tags. The remaining experiments B4 , 
B5 , B 6 , E S P I 2 , R F 3 and R F 4 used classifiers for application identifica­
tion, for which the complete dataset contained 93 application tags. A l l 
the experimental results are available at pluskal. github. io/AppIdent. 
The figures and tables in this section show the truncated results of the 
experiments. The truncation was performed by selecting the best exper­
iment in each category as a baseline. The 20 most accurately identified 
labels are shown for all the experiments in a category. 

The labels returned by the classification methods were compared wi th 
the ground t ru th from the original captured data and separated into four 
categories defined by the confusion matr ix in Table 3. Note that a classi-
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Confusion matrix for a single label (application protocol or application). 

Classification Result Positive Negative Total 
Ground Truth 

Positive True Positive (TP) False Positive (FP) P 
Negative False Negative (FN) True Negative (TN) N 

Total P' N' P+N 

fication result is positive when the classifier returns that the conversation 
can be labeled wi th the label and negative when it cannot. The ground 
t ru th is positive when the conversation in the dataset is actually labeled 
wi th the label and negative when it is not. 

The F-measure, also referred to as the balanced F-score [14], was used 
to compare the classification methods. This single score is computed as 
the harmonic mean of the precision and recall using the equation: 

„ „ precision x recall 
F = 2 x — (2 

precision + recall 

where the precision and recall are computed from the corresponding 
confusion matr ix values using the equations: 

TP 
precision = T p + p p (3) 

TP TP 
recall = —— —— = —— (4) 

TP + FN P w 

Figure 1 presents the visualization of the application protocol identi­
fication results. The two random forest classifiers ( R F 1 and R F 2 ) were 
very accurate. The Bayesian network classifier (B3) also performed very 
well, but it required a larger training set, a t raining to verification ratio 
of 0.5 and more features (see Table 2). 

Figure 2 presents the visualization of the application identification 
results. The two random forest classifiers again yielded the best results. 
However, i n this case, the Bayesian network classifiers were outperformed 
by the enhanced statistical protocol identification classifier, which also 
provided the best trade-off between performance and accuracy. 

Figure 3 provides the aggregate statistics for all the classes. The num­
ber in each cell corresponds to the number of labels that were classified 
wi th F-measures greater than or equal to the F-measure value. Note 
that the size of the shaded area in a cell is proportional to the number 
of labels classified i n the cell. 
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Figure 1. Performance of application protocol classifiers using the F-measure. 
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Figure 2. Performance of application classifiers using the F-measure. 

Figure 4 presents the results of the performance comparison of ap­
plication protocol classifiers. The first row shows the times required to 
complete al l the steps involved i n the experiments. The remaining rows 
show the F-measure scores of each evaluated method for the top 20 labels 
based on the most successful experiment i n the category. 

Figure 5 presents the results of the performance comparison of ap­
plication classifiers. Once again, the first row shows the times required 
to complete all the steps involved i n the experiments. The remaining 
rows show the F-measure scores of each evaluated method for the top 
20 labels based on the most successful experiment in the category. 
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Figure 4 presents the results of the performance comparison of ap­
plication protocol classifiers. The first row shows the times required to 
complete al l the steps involved i n the experiments. The remaining rows 
show the F-measure scores of each evaluated method for the top 20 labels 
based on the most successful experiment i n the category. 

Figure 5 presents the results of the performance comparison of ap­
plication classifiers. Once again, the first row shows the times required 
to complete all the steps involved i n the experiments. The remaining 
rows show the F-measure scores of each evaluated method for the top 
20 labels based on the most successful experiment in the category. 
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GreaterOrEqual 
F-Measure 

B1 B2 B3 ESPI1 RF1 RF2 B4 B5 B6 ESPI2 RF3 RF4 

0.0 58 58 58 58 58 58 93 93 93 93 93 93 
0.1 21 19 23 33 47 51 22 25 36 43 83 83 
0.2 16 18 23 31 45 47 22 23 34 40 77 77 
0.3 14 18 22 29 41 45 20 22 34 37 74 75 
0.4 14 16 22 29 40 43 19 22 30 36 68 70 
0.5 14 14 22 28 37 41 19 22 29 31 63 63 
0.6 13 14 22 26 36 39 16 20 27 27 54 58 
0.7 12 13 21 24 34 37 15 17 26 22 45 47 
0.8 11 12 19 21 32 36 13 13 26 20 38 41 
0.9 8 12 18 17 26 31 7 12 15 17 25 28 

Figure 3. Summary of classification method performance. 

AppProtocol B1 B2 B3 ESPI1 RF1 RF2 
Time [h] 1:01 1:08 1:13 0:50 2:41 13:21 
tcp_pop3tlsssl 0.00 0.00 0.00 0.00 0.92 0.97 
tcp_teamviewer 0.10 0.49 0.94 0.94 0.94 0.97 
tcp_icslap 0.29 0.97 0.99 0.27 0.96 0.98 
udp_spotify 0.99 0.99 1.00 0.15 0.99 0.99 
tcp_netbiosss 0.00 0.00 1.00 0.97 0.99 0.99 
udp_wsd 0.00 0.08 0.98 0.98 0.99 0.99 
udp_mdns 0.00 0.00 0.91 0.92 1.00 0.99 
udp_https 0.88 0.95 0.95 0.92 0.99 0.99 
udp_dhcps 0.83 0.91 0.98 0.99 0.99 0.99 
udp_teamviewer 0.00 0.00 0.00 0.66 0.93 0.99 
udp_onlinegames 0.98 0.98 0.99 0.04 0.99 0.99 
udp_stun 0.00 0.39 0.99 0.96 1.00 1.00 
tcp_http 0.97 0.99 1.00 0.96 1.00 1.00 
udp_dns 0.99 0.99 0.99 0.93 1.00 1.00 
tcp_https 1.00 1.00 1.00 0.99 1.00 1.00 
udp_ssdp 0.96 0.97 0.98 0.00 1.00 1.00 
udp_llmnr 0.99 0.99 0.99 1.00 1.00 1.00 
udpnatpmp 0.00 0.00 0.00 0.96 0.88 1.00 
udp_netbiosdgm 0.98 0.98 0.95 0.94 1.00 1.00 
udp_sapv1 0.00 0.00 0.00 0.75 1.00 1.00 

Figure 4- Performance comparison of application protocol classifiers. 

5. C o n c l u s i o n s 

This research has focused on the important network forensics problem 
of identifying network applications in addition to just application proto­
cols i n network traffic flows. It has studied various aspects of applying 
machine learning methods and the selection of features that character­
ize application behavior, such as message t iming, content length and 
T C P flags instead of features related to network line characteristics. A n 
automated feature elimination method based on the feature correlation 
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AppProtocol B4 B5 B6 ESPI2 RF3 RF4 
Time [h] 0:53 1:03 2:00 1:11 20:13 23:20 
tcp_smtptlsssl-thunderbirdexe 0.00 0.00 0.00 0.03 0.89 0.75 
tcp_https-firefoxexe 0.88 0.93 0.91 0.41 0.71 0.77 
tcp_https-svchostexe 0.00 0.00 0.00 0.00 0.71 0.77 
tcp_http-steamwebhelperexe 0.00 0.00 0.38 0.52 0.72 0.79 
tcp_icslap-system 0.00 0.00 0.00 0.00 0.70 0.81 
tcp_https-onedriveexe 0.00 0.03 0.82 0.00 0.72 0.81 
tc p_https-sky peexe 0.86 0.99 0.87 0.53 0.78 0.82 
tcp_http-utorrentexe 0.01 0.11 0.32 0.01 0.84 0.83 
tcp_http-teamviewer_serviceexe 0.00 0.00 0.00 0.87 0.88 0.86 
tcp_skype-skypeexe 0.27 0.24 0.00 0.96 0.51 0.87 
tc p_https-itunesexe 0.86 0.89 0.89 0.65 0.86 0.87 
tcp_https-utorrentexe 0.00 0.00 0.00 0.00 0.92 0.89 
tcp_dns-system 0.00 0.00 0.00 0.97 1.00 0.89 
tcp_ssh-winscpexe 0.00 0.00 0.00 0.51 0.65 0.91 
tcp_pop3tlsssl-thunderbirdexe 0.00 0.00 0.00 0.00 0.98 0.92 
tcp_http-spotifyexe 0.93 0.91 0.93 0.90 0.93 0.93 
tc p_tripe-spotif yexe 0.00 0.00 0.92 0.91 0.94 0.94 
tcpjabberssl-apsdaemonexe 0.00 0.72 0.81 0.91 0.94 0.95 
tcpjabber-pidginexe 0.00 0.00 0.00 0.97 0.94 0.97 
tcp_netbiosss-system 0.00 0.00 0.90 0.44 0.98 0.99 

Figure 5. Performance comparison of application classifiers. 

matrix was employed to improve the classification results. Add i t i ona l ly 
this research has developed the enhanced statistical protocol identifica­
tion method, which was compared against the Bayesian network and 
random forests classification methods from the literature that offer high 
accuracy and acceptable performance. 

The experimental results confirm that application protocols as well 
as the applications that generate network traffic can be classified with 
high confidence. For example, Ne tBIOS service and D N S were identi­
fied accurately and several common applications that use the H T T P ( S ) 
application protocol were identified wi th high accuracy. Similarly, it 
was possible to distinguish between communications traces of OneDrive, 
Skype, iTunes, Spotify, Steam and \xTorrent clients, although all of them 
use the same application protocol ( H T T P S ) . 

The random forests classifier achieved the best results, confirming the 
results obtained by other researchers [20, 30] who experimented with 
machine learning approaches for traffic classification. The enhanced sta­
tistical protocol identification classifier yielded better results than the 
Bayesian network classifier and was much faster than the Bayesian net­
work and random forests classifiers. 
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Classification accuracy is mainly determined by the quality of the se­
lected features. This research has employed features based on previous 
observations and intuit ion. Future research should focus on the system­
atic analysis and selection of feature sets that could improve classification 
accuracy and robustness. 

To improve the identification of applications that employ the same 
application protocol (e.g., removing errors when tcp_tittp_skypeexe is 
classified as tcp_tittp_f i r e f oxexe, or vice-versa), future research should 
focus on hierarchical classification methods. A n example is hierarchical 
clustering based on enhanced statistical protocol identification finger­
prints. A forensic investigator could then infer the actual application 
classes by visual cluster analysis. This approach could also be extended 
to other levels such as application message level. 

Future research should also consider combining multiple classifiers [18] 
to increase the confidence in the results. Research should also focus on 
semi-supervised classification methods [8] that enable the creation of 
models from partially-labeled data. 

Final ly, experiments should be conducted to extend the classification 
models and evaluate the properties of other datasets. The classifica­
t ion methods considered in this work require accurate models. Creating 
such models requires the analysis of large numbers of traffic samples. 
Experimenting wi th different datasets could provide more accurate clas­
sification models and valuable insights into the properties of individual 
classification methods. 

A reference implementation is available under an M I T license from 
G i t H u b at pluskal. github. io/Appldent. This includes the framework 
for parsing captured data, extracting features and eliminating features, 
along wi th the three classifiers described in this chapter and the stan­
dalone application that automated the experiments. The dataset is avail­
able at nes .f i t . vutbr. cz/AppIdent to facilitate the reproducibili ty of 
the experiments and to serve as a benchmarking platform for testing 
other machine-learning-based application identification methods. 
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A b s t r a c t . Network forensics is a method of obtaining and analyzing 
digital evidences from network sources. Network forensics includes data 
acquisition, selection, processing, analysis and presentation to investi­
gators. Due to high volumes of transmitted data the acquired informa­
tion can be incomplete, corrupted, or disordered which makes further 
reconstruction difficult. In this paper, we address the issue of advanced 
parsing and reconstruction of incomplete, corrupted, or disordered data 
packets. We introduce a technique that recovers T C P or U D P conversa­
tions so they could be further analyzed by application parsers. Presented 
technique is implemented in a new network forensic tool called Netfox 
Detective. We also discuss current challenges in parsing web mail com­
munication, SSL decryption and Bitcoins detection. 

K e y w o r d s : Network forensic tools • T C P reassembling • Traffic recon­
struction • Web mail • Bitcoin • SSL encryption 

1 Introduction 

Network forensics is an emerging area of digital forensics connected with the 
rapid network development. Many services and digital transactions are trans­
mitted over the Internet where criminal activities and security incidents also 
occur. Network forensics provides post-mortem investigation of unlawful behav­
ior using special tools that reconstruct a sequence of events occurred at the time 
of the attack. This reconstruction depends only on a captured network data. 
In some cases, these data are incomplete, corrupted, or out of order. In order 
to analyze the original communication using an incompletely captured data, 
advanced techniques of reconstruction and communication recovery are needed. 
Reconstruction of T C P streams is essential for any network forensic tool [1]. If 
the T C P reassembling fails, application data cannot be properly analyzed. 

Recovery of incomplete data in network forensics is a similar task to data 
recovery from damaged media, e.g., hard drives, CDs, or DVDs. If some data 
are missing, it can be either replaced by empty data units or approximated 
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from known data. The goal is to provide enough data enabling reconstruction 
of the original content. To guarantee an admissibility of forensic results newly 
introduced data must be unambiguously distinguished from the original ones. 

In this work, we deal with the analysis and reconstruction of incomplete 
or damaged network data. Our research includes the development of heuristic 
techniques that can detect incomplete or corrupted data on network and trans­
port layer and restore original sessions that can be further analyzed using usual 
application parsers. The proposed technique was implemented in a new network 
forensic tool Netfox Detective. 

1.1 Contribution 

The main contribution of this paper addresses practical issues connected with 
network data reconstruction and proposes advanced techniques for parsing and 
recovery of network conversations. These techniques in combination with 
advanced application recognition methods increase the accuracy of content recon­
struction. We also explain several issues connected with application analysis, 
especially with web mail services, SSL communication and Bitcoin transactions. 
We evaluate the implementation of proposed methods and compare them with 
other tools. 

The paper is organized as follows: section two surveys current approaches 
and results in the domain of network forensic tools; section three examines issues 
related to network data parsing and reconstruction with focus on T C P reassem­
bling and Layer 7 (L7, application) data reconstruction; section four deals with 
application detection and content analysis, which is demonstrated using exam­
ples of reconstruction of web mail, SSL traffic, and bitcoin transactions. 

2 Re la t ed Work 

There is a wide range of tools for network monitoring and forensics, i.e., Net­
work Security and Monitoring tools (NSMs) and Network Forensic Analysis 
Tools (NFATs). NSMs include network analyzers (Wireshark, tcpdump), IDS 
systems (snort, Bro), fingerprinting tools (nmap, pOf), and others [2]. NFATs 
have similar functionality as NSMs, in addition, they also assist in a network 
crime investigation. They capture an entire network traffic and allow an inves­
tigator to analyze it and reconstruct the original communication. Most of the 
NFAT tools are proprietary, nevertheless, open source NFATs also exist, e.g., 
PyFlag, Network Miner, or Xplico. 

In theory, parsing the network communication is straightforward. However, 
incompleteness and corruption of communication requires new methods involv­
ing robust parsers and complex recovery procedures. Surveys of different net­
work forensic frameworks can be found in [2,3]. These papers discuss various 
approaches to network forensics, major challenges, and list available tools. In 
our paper, we mostly focus on techniques of network data parsing and recovery. 
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There are not many published works describing techniques incorporated in 
NFAT implementations, partly due to the protection of intellectual properties of 
the tools. An exception is Cohen [1] that describes several challenges connected 
with the stream reassembling (termination of streams, out of sequence packets, 
missed packets) and the combination of streams into conversations. In our work, 
we deeply examine issues that are essential for every network forensic tool. In 
addition to [1], we present an algorithm that deals with these issues, and also 
works with sequence number overflow, which is not discussed by other authors. 
A detailed description of T C P reassembling is analyzed by Paxson in [4]. How­
ever, Paxson focuses on robustness of T C P reassembling in the presence of 
adversaries that is out of the interest of this paper. 

3 Data Parsing and Reconstruction 

NFATs are designed to parse captured data, process packet headers and recon­
struct high-level protocol units. Application data are regularly transmitted using 
T C P or UDP protocols over IP networks. By definition, IP communication does 
not provide reliable data exchange [5]. Application data are segmented into T C P 
packets and encapsulated into IP datagrams. Furthermore, IP datagrams can be 
fragmented into smaller IP datagrams when required by an underlying link-layer 
technology. The main goal of an NFAT is to extract and reconstruct original 
application data from possibly incomplete captured collection of IP datagrams. 
The method for assembling IP packet-based communications into conversations 
is based on the following assumptions: 

- An application conversation is distinguished by a pair of IP addresses, trans­
port ports and a protocol type. The conversation consists of a pair of flows 
because the most of sessions are bi-directional. 

- The beginning of a T C P session is identified by a synchronization T C P seg­
ment (SYN flag). A T C P segment with F IN/PSH/RST flag closes the session. 

- A T C P session consists of a collection of T C P segments each associated with 
a sequence number. A sequence number determines an offset of the segment 
content in the T C P stream [6]. 

- An application message can be transmitted in one or more T C P segments. 
Receiver must reassemble several T C P segments to obtain the original mes­
sage. 

- The IP fragmentation happens independently on the T C P segmentation. The 
IP defragmentation has to be accomplished before the application content 
reassembling. 

3.1 Challenges in T C P Reassembling 

During our research of network data analysis, following challenges connected 
with reassembling of T C P sessions have been identified: 
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- Missing FIN packets or overlapping of TCP conversations. 
Regularly, ephemeral source ports are dynamically assigned by OS to clients 
whenever a communication socket is created [7, p. 99]. It helps to distinguish 
several T C P sessions originating from the same node and targeting the same 
remote process. When the client finishes communication, these ports can be 
reused. Usually, the port number is not reused until the pool of ephemeral 
ports is exhausted. NFAT can exploit this behavior to recognize different 
T C P sessions safely. However, if there is a NAT translation along the com­
munication path observable port numbers can be reused quickly. In such case, 
different T C P sessions can receive the same key fields within a relatively short 
period. While end systems and NAT can accurately track the use of port num­
bers, for NFAT system it may pose a problem as there is a very short interval 
between two T C P sessions with the same identification. NFAT can proceed 
as follows: 
1. FIN segment can determine closing of the first session segment while SYN 

segment defines a new T C P session; 
2. if these segments are missing in a captured collection, a flow needs to be 

detected by analyzing sequence numbers; 
3. if sequence numbers of two sessions overlap, the analysis of timestamps of 

expected L4 packets have to be carried out. 
- Combination of two L7 flows into a L7 conversation. 

NFATs try to reconstruct original bi-directional communication between appli­
cations. If more T C P conversations use the same IP addresses and ports (see 
NAT problem above), these ports are not sufficient to unambiguously combine 
corresponding L7 flows into a whole L7 conversation. The proposed solution 
suggests considering initial T C P sequence numbers. T C P three-way hand­
shake starts with sending three synchronization segments between a sender 
and a receiver. The sender sends a SYN segment with his initial, randomly 
chosen, sequence number. The receiver replies with an SYN+ACK segment 
transmitting receiver's initial sequence number and sender's next sequence 
number. Based on hand-shake analysis, we can match initial T C P sequence 
numbers of every L7 flow and its opposite L7 flow, which is necessary to create 
bi-directional L7 conversation based on L4 header data only. If the hand-shake 
is not captured, L7 flows are considered as one-directional L7 conversations. 

- TCP sequence number overflow. 
Network data parsing and analysis is mostly based on a chronological order of 
packets in the flow using their sequence numbers. According to RFC 793 [6]. 
sequence numbers occupy space up to 2 3 2 — 1 Bytes, which gives possibil­
ity to transmit maximum 4.29 G B data. This value seems large enough to 
avoid sequence number overflow. However, since initial sequence numbers are 
generated randomly, maximum data size is lower than this theoretical value. 
Figure 1 shows a snapshot of the distribution of maximum T C P message sizes 
based on randomly generated initial sequence numbers as observed on 14,000 
T C P sessions. The picture does not show full distribution range. T C P ses­
sions with possible payload greater than 500 M B are excluded, because of 
their irrelevance for our study. However, these data show that T C P sequence 
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number overflow should be taken seriously. For example, we can see that the 
sequence number would overflow in 0,12 % of T C P sessions with payload up to 
5 M B . This situation can be solved by multi-pass processing of an L4 con­
versation and matching incomplete T C P sessions without SYNs when their 
initial sequence numbers are closed to 2 3 2 . 

F i g . 1. Probability of T C P Seq numbers overflow related to maximal L7 payload size. 

3.2 Building L7 PDUs from the P C A P File 

The process of network data parsing starts with the tracking of L3 conversations 
based on sender's and receiver's IP addresses, see Fig. 2. Further, L4 conversa­
tions are identified using port numbers and L4 protocol type, than L7 conversa­
tions are created. In case of UDP protocol, two U D P sessions running between 
the same pair of ports cannot be distinguished. For example, SIP applications 
regularly employ the same source and destination ports, e.g., 5060, for all SIP 
conversations. Therefore, a L4 UDP conversation is considered to be a L7 con­
versation. 

srcIPl <-> dstIP2 

L 3 conversation K 

srcIP3 <-> dstIP4 

L 3 conversation 

» d s t P o r t 2 H T T P Request 
L7 P D U 

srcPortl <-> dstPort2 S Y N + A C K <-> FlN^SKPoIt2 -> daPonl H T T P Response 
J L 4 conversation L 7 conversation [— ^LJ f low| H L 7 P D U | 

srcPort3 <-> dstPort4 

AL4 conversation 

srcPort5 <-> dstPortG 

HL4 conversation t 

U D P session 

•\ L 7 conversation I 

ycPor t3 - > dstPort4 g jp I N V I T E 

S Y N + A C K <-> F I N ^ | L 7 flow| 
| L 7 conversation I s r c p o r t 4 -> dstPort3 

S Y N + A C K <-> F I N 

~| L 7 conversation""] 

F i g . 2. Extraction of L7 PDUs from input packets. 

161 



74 P. Matousek et al. 

In case of T C P protocol, the T C P reassembling is the key element in recon­
struction. If all data have been properly captured, T C P reassembling is a simple 
task that involves port numbers, T C P sequence and acknowledgment numbers. 
If some packets are missing, a following procedure implementing our heuristic 
method can be applied to any network data. The procedure uses three heuris­
tic parameters: MaxLost, which represents the maximal length of missing data 
that can be restored, MaxTime, describing the maximal permitted time delay 
between two consequent packets using timestamps, and MaxPayload, represent­
ing the maximum pay load size in a T C P packet. Based on our experience, we 
use MaxLost = 4kB and MaxTime = 600 sec1. MaxPayload is computed on-
the-fly as the length of the T C P packet with the maximal size of a payload in 
the L7 flow. Thus, application messages are built from captured data using the 
following steps: 

1. Select L4 flows and sort packets using their sequence numbers. 
2. Process each L4 flow and create L7 flows using T C P handshake. Start with 

the first SYN packet. 
(a) Create a new L7 P D U if does not exist or if a previous L7 P D U was 

closed. 
(b) Check packet sequence number Sec/j+i. 
(c) If Seqi+i ^ Seqi + PSi (PS stands for a payload size obtained from the 

packet header), i.e., the expected packet is missing, check timestamps 
TS and sequence numbers Seq as follows: 

i . If TSi+i — TSi < MaxTime and Seqi+i — Seqi < MaxLost then a 
virtual packet will be created to replace the missing packet. 

ii . If TSi+i — TSi > MaxTime and Seqi+i — Seqi < MaxLost then 
there is an overlapping of T C P sessions because i + 1 packet belongs 
to a different L7 flow. Skip this packet and proceed with the next 
one. 

iii. If Seqi+i — Seqi > MaxLost then there are too many missing data. 
The flow cannot be fully restored. Close it and proceed with next 
SYN packet. 

(d) If Seqi+i = Seqi + PSi the expected packet is present, add it into the 
L7 PDU. 

(e) If F I N / R S T / P S H flag is found or PS = MaxPayload, close the L7 
P D U . 

(f) GOTO 2a. 
3. Process remaining packets without SYNs. Create new L7 flows using 

timestamps and sequence numbers only. 
4. Process every L7 flow and create L7 PDUs using T C P reassembling 

1 MaxLost was experimentally set to 4 kB, which is more than two times greater than 
maximal Ethernet P D U size, i.e., 1500 Bytes. MaxTime is six times greater than 
recommended T C P connection failure timeout as defined in R F C 1122. These values 
say that packet loss longer than 600 sees or missing 4 kB cannot be successfully 
recovered. 

162 



Advanced Techniques for Reconstruction of Incomplete Network Data 75 

- Add every packet of the L7 flow into the L7 P D U until F I N / R S T / P S H or 
PS = MaxPayload. Then close the L7 P D U and create new one for new 
packets. 

5. Combine opposite L7 flows into a L7 conversation using corresponding SYN 
and A C K numbers. 

The main benefit of this approach is the reconstruction of original U D P / T C P 
sessions even if some important packets are missing. Based on T C P initial Seq 
numbers, the algorithm combines two flows into a conversation. The algorithm 
deals with missing SYNs, FINs, overlapping sessions, or T C P numbers overflow­
ing. As the result, we have L7 P D U objects that can be processed on L7. 

Table 1 compares our approach with a few available NSMs or NFATs. For our 
study, we have chosen Wireshark, Microsoft Network Monitor, NetWitness and 
Network Miner. In the first test we used an artificially arranged dataset with 
(i) one FIN packet missing, (ii) one SYN packet missing, and (iii) two SYNs 
missing. Original 650 kB P C A P file contained 19 conversions. Further analysis 
showed that in case of missing SYNs and the same port numbers, Wireshark 
joins two conversations into one. MS Network Monitor works well with missing 
SYNs, but it is not able to properly close communication if a FIN is missing. 
In such case, it combines two conversations into one. NetWitness also joins two 
conversations into one. Network Miner works similarly to Wireshark. 

Table 1. Detection of network conversation when missing S Y N / F I N packets. 

File N F X Det Wireshark MS Monitor NetWitness Net Miner 

One F I N missing 19 19 18 17 19 
One S Y N missing 19 18 19 17 18 
Two SYNs missing 19 17 19 17 17 

The second test used 8 M B P C A P file with some packets randomly deleted. 
Table 2 shows results when 0%, 1%, 5%, or 10% of packets were removed. 
Original file contained 126 conversations. Netfox Detective shows number of L7 
conversations. 

Table 2. Detection of network conversations when some data are deleted. 

File N F X Det Wireshark MS Monitor NetWitness Net Miner 

0 % missing 126 126 132 128 76 
1 % missing 126 126 132 128 75 
5 % missing 129 125 129 127 71 
10 % missing 131 125 129 127 66 
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The table shows that Netfox Detective finds more L7 conversations than 
originally stored in the in-corrupted file. The reason is that when some packets 
are missing, a corrupted L7 conversation is divided into several L7 conversation 
due to the large number of missing packets or large timestamp difference, see 
Fig. 3. Wireshark and Net Witness also miss a conversation. However, since they 
consider all packets between the same src/dst ports as one conversation, missing 
packets usually did not reduce number of all conversations. MS Network Monitor 
also shows stable results. The results of Network Miner are very different but we 
are not able to say why. 

L 4 conversation 

L 7 conversation 

Corrupted 
L 7 conversation 

Recovered 
L 7 conversation 

H T T P client <-> server 

H T T P Req/Resp H T T P Req/Resp H T T P Req/Resp 

H T T P Req/Resp H T T P Req/Resp 

Resp H T T P Req/Resp H T T P Req/Resp 

F i g . 3. Recovery of corrupted conversations. 

3.3 Application Protocol Identification 

The result of previously described reconstruction methods are L7 PDUs that 
represent L7 objects (payloads) prepared for L7 parsing. Before L7 parsing, 
L7 protocol should be identified in order to choose the right L7 parser. There 
are many methods for application protocol identification. The easiest method 
is based on well-known port numbers assigned by Internet Assigned Numbers 
Authority (IANA). Unfortunately, this method does not work well with appli­
cations using dynamic ports, peer-to-peer communication, video streaming, etc. 
More advanced methods use payload inspection that is suitable for protocols 
that can be recognized by some characteristic patterns either in a header or 
payload. There are also methods based on protocol fingerprinting or statisti­
cal data. In our approach, we combine several methods for application protocol 
identification. 

1. Identification using extended IANA database. 
The first algorithm matches port numbers with extended IANA database of 
well-known ports. Our database extends IANA data by similarities, i.e., one 
input port number can match more applications. For example, Dropbox file 
hosting service can work on ports 80, 443, or 17500. Based on given application 
tags, L7 parser is chosen. Currently, our database can identify 1058 different 
application protocols. 

164 



Advanced Techniques for Reconstruction of Incomplete Network Data 77 

2. RTP Fingerprinting. 
If there is no match on input ports, RTP fingerprinting method is applied [8]. 
This method uses a multi-stage classifier that observes minimal RTP header 
length, RTP version number, and RTP payload type number. If a packet 
successfully passes this filtering, per-flow checking is applied using minimal 
number of packets in an RTP flow to reduce false positives. 

3. Statistical Protocol Identification (SPID). 
This method developed by Erik Hjelmvik [9] is based on supervised learn­
ing using pre-classified samples of captured network traffic where application 
protocols are correctly annotated. The algorithm generates protocol model 
database that stores application fingerprints. Currently, our database can 
identify 20 protocols with an ability to add new protocols. 

4 A p p l i c a t i o n Pa r s ing 

After building L7 PDUs and successful L7 protocol identification, application 
data can be processed by L7 parsers. As mentioned in Chap. 3, T C P / U D P 
streams are reconstructed without any knowledge of higher layers. This helps 
in case when an application parser is not implemented for a specific protocol. In 
that case application data can also be extracted from communication. 

Main goal of our approach is to augment the reconstruction process when 
some data are missing. As mentioned earlier if only a few data is missing, lost 
packets can be replaced by new packets with empty payload. If more packets are 
lost, an original stream will be recovered as a collection of shorter streams that 
formed the original stream. 

In this section, we will discuss how data reconstruction influences L7 process­
ing and data presentation in case of incomplete data. For demonstration, we 
choose three areas that build challenges for common network parsers: web mail 
communication, SSL/TLS encrypted traffic, and bitcoin transactions. 

4.1 Web M a i l Analysis 

Web mail communication is very popular today. Web mail servers employ H T T P 
protocol to encapsulate transactions between a user web browser and a web 
mail server. Mail exchange between web mail servers is mostly provided using 
SMTP protocol. Forensic analysis of web mail services is different from com­
mon web browsing. Many web mail servers utilize advanced web technologies 
like JavaScript, A J A X , JSON that dynamically create web pages. Analysis and 
interpretation of captured web mail data are limited due to the usage of web 
browser caches that store frequently used H T T P objects. These objects are not 
present in captured traffic, therefore, they are unavailable for forensic analysis. 

The web mail analysis includes two phases: (i) the identification of web mail 
data between other H T T P traffic and (ii) the analysis of captured web mail 
data. In addition, most of web mail transmissions are SSL/TLS encrypted, so 
SSL/TLS decryption is required if possible (see Sect. 4.2). If encrypted, web 
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mail traffic can be identified using a name or IP address of a particular web 
mail server, see Table 3. If not encrypted, a pattern matching on URLs can be 
applied. 

Table 3. Identification of web mail services during S S L / T L S handshake. 

Web mail service Server name Encoding 

seznarn.cz, email.cz email.seznam.cz FastRPC 
G mail mail-

attachment, googleuser 
content.com 

application/x-www-form-urlen coded 
;charset—utf-8 

Yahoo mail.yahoo.cz ap pli cat io n/j son 
multipart/form-data-incl JSON 

M S Live various application/x-www-form-urlen coded 
Centrum/ Atlas mail.centrum.cz application/x-www-form-urlen coded 

Roundcube private service hostname application/x-www-form-urlen coded 

Horde private service hostname multipart / form-data 

For processing of a captured web mail data, following observations were made: 

- Web mail messages transmitted over H T T P can be detected using URL pat­
terns: /mail/. * for Gmail, ol/mail.fpp for MS Live Mail, appid=YahooMailNeo 
for Yahoo, etc. However, these patterns usually change with a new version of 
the server. 

- The communication from a user towards the server is transmitted via POST 
method of H T T P protocol [10]. GET method is employed for listing mail 
folders. 

- Web mail messages are mostly encoded using simple key=value pairs in the 
URL. There are several types of actions that can be identified in a key field: 
compose-message, send-message, save-draft, get-inbox, delete-message. Each 
web mail service uses different names for these actions, so data analysis should 
be performed for every new web mail protocol. 

- Some web mail objects can be transmitted as JSON objects in M I M E struc­
ture, X M L - R P C objects, etc. 

- Because of dynamic web programming and client-based technologies (i.e., 
JavaScript), forensic page rendering of web mail is difficult and cannot be 
fully accomplished without having contents of web caches. Practically, inves­
tigator's view is limited to a simple textual form of analyzed data. 

4.2 SSL/TLS Detection and Encryption 

The SSL/TLS encryption is a big challenge for current NFAT tools because it 
completely hides the contents of the network communication. It forms a modular 
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framework that combines various cryptography mechanisms defined by a cipher 
suite [11]. Clients and servers can negotiate cipher suites to meet specific security 
and administrative policies during initial SSL/TLS handshake. The cipher suite 
defines following mechanisms: 

- A key exchange algorithm. General goal of the key exchange process is to 
create a pre-master secret known to the communicating parties that is used 
to generate the master secret. Using master secret encryption keys and M A C 
keys are generated. Most common key exchange algorithms are RSA, Diffie-
Hellman, E C D H , etc. 

- A peer authentication. TLS supports authentication of both peers, the server 
authentication with an unauthenticated client, and total anonymity. When­
ever the server is authenticated, the channel is secure against man-in-the-
middle attacks. Server authentication mostly requires a RSA or DSA certifi­
cate to prove an authenticity of the server side. 

- Message integrity. Message integrity is ensured using Message Authentication 
Code (MAC) algorithms like MD5, SHA1, or SHA256. A cryptographic hash 
(often called message digest) is computed using these algorithms and added 
to the end of each block. 

- A bulk cipher algorithm. This algorithm is used for a message encryption. 
The specification includes the cipher type (stream, block, A E A D [12]), the 
key size, the block size of the cipher (applied only to block ciphers), and the 
length of initialization vectors (or nonces). Common bulk ciphers are RC4. 
3DES, AES, IDEA, or Camellia. 

There are two basic approaches for SSL/TLS decryption [13]: 

- A getting server private key. This key can be used to calculate a session key 
that have encrypted the conversation. The session key is generated during the 
key exchange. 

- A MitM attack on SSL/TLS connection. Another method to get decrypted 
contents is to use man-in-the-middle (MitM) attack employing a special proxy 
server to track the communication between the client and server. At the same 
time, the communication with the user node employs different TLS keys gen­
erated by the proxy server. In this case, proxy server should offer a fake 
certificate in order to impersonate the original server. There are several tools 
implementing this proxy, e.g., SSLsplit, Fidler, etc. 

Bulk cipher algorithms incorporate methods of a block cipher or stream 
cipher encryption that defines how a block or stream of a plain text will be 
encrypted and how the encryption key is generated for each data block, e.g. 
C B C (Cipher Block Chaining), G C M (Galois/Counter). 

- The Cipher Block Chaining requires complete data for successful reconstruc­
tion because of data dependency, see Fig. 4A. If data are corrupted, successful 
analysis can be provided until the first error occurs in the stream. In such 
case, only meta information about the conversation are available, e.g. T C P 
completeness, probable conversation length, duration, etc. 
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F i g . 4. C B C and G S M encryption. 

- The Galois/Counter mode can be reconstructed even if some data are missing 
because cipher blocks are independent, see Fig. 4B. 

Currently, our tool Netfox Detective supports analysis and decryption of 
various cipher suites, see Table 4. 

Table 4. Cipher suites supported Netfox Detective. 

TlsRSAWithAesl28CbsSha TlsRSAWithAes256CbsSha 

TlsRSAWithAesl28CbsSha256 TlsRSAWithAes256CbsSha256 

TlsRSAWithAesl28GcmSha256 TlsRSAWithAes256GcmSha384 

TlsRSAWithRc4128Md5 TlsRSAWithRc4128Sha 

If a server key is available, this communication can be decrypted as presented 
in Fig. 5. This picture shows a successful decryption of web mail communication 
encrypted using TLS. 

4.3 Bitcoin Detection 

Bitcoins as currency (BTC) are getting more and more popular since 2008, 
especially because of their anonymity. Bitcoin network is secure by design against 
correlating transactions with individual users. However, forensic tools can at 
least detect bitcoin traffic within a network. 

Bitcoin operates over peer-to-peer (P2P) network consisting of two node 
kinds: (i) clients, which send, receive, or relay B T C transactions; and (ii) miners, 
which verify transactions using a special proof-of-work algorithm. 
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F i g . 5. Reconstruction of encrypted web mail data. 

BTC uses three different protocols for its functionality where each protocol 
has a different value for the forensic investigation. These protocols are as follows: 

1. Bitcoin v . l protocol2 is employed for P2P communication between peers (con­
nected nodes). For forensic analysis, its detection can help to identify the end 
stations running Bitcoin client software. The protocol runs over TCP, port 
8333. It transmits messages required for both a node discovery and Bitcoin 
transactions. 

Node discovery is provided twice in Bitcoin network: 

- Upon software start-up, a client looks for special domain names (e.g., bit-
coin.sipa.be, dnsseed.bluematt.me) in DNS in order to discover initial set of 
peers to get connected. Usually, the client uses a list of pre-configured stable 
nodes of the Bitcoin network. 

- Upon successful connection to a node, the client may request a list of neigh­
boring peers to expand its connectivity graph. 

The protocol messages that helps us to detect a communication within Bit-
coin P2P network area as follows: version and verack (useful for connection 
initiation), address (to detect a communication graph and provide informa­
tion of known nodes), and ping-pong (a keep-alive mechanism). For forensic 
purposes, also messages inv, tx, and block are important since they transmit 
valuable information about processed transactions. The list of all Bitcoin v . l 
messages is shown in Table 5. 

2 See https://bitcoint.org/en/developer-documenation, June, 2015. 
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Table 5. Bitcoin v . l protocol. 

Messages Description Message Description 

version, verack Opening messages tx, notfound Responses to getdata 

getaddr, addr Lis t of known peers ping, pong Keepalive messages 

inv A new object announcement alert Broadcast notification 

getdata Request for object value mempool Retrieving a transaction 

getblocks, blocks Retrieval of a block filterload/add Bloom filter operations 

getheaders, headers Retrieval of a header reject Negative response 

2. Another group of protocols (e.g., Getwork, Getworktemplate, Stratum) is 
used for work distribution for miners cooperating in the pool. The detection 
of these protocols implies an existence of bitcoin miner in the local network. 

3. The last protocol group involves remote procedure call (RPC) messages that 
are employed for remote control of various Bitcoin related services (e.g., 
remote wallets controlled by a smart phone, on-line trading on Bitcoin 
exchanges, etc.). 

Netfox Detective currently supports decoding of Bitcoin v l protocol that 
helps to detect devices that run Bitcoin clients, work as Bitcoin miners, or access 
Bitcoin related services, see Fig. 6. 

Fig. 6. Bitcoin analysis using Netfox Detective. 

Based on these information, it is possible to create Bitcoin communication 
graphs and correlate the pool member and mining rig owner. 
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Captured network data can be used to provide an evidence that the seized 
server really conducted Bitcoin transactions, see Fig. 7. 

«ith more than 1300PCAPs « th evidence 
6000transactions morethan 1 TB of data 

F i g . 7. Digital investigation of Bitcoin transactions. 

5 Conc lus ion 

Network forensics represent several challenges for security analysts. Network 
data are volatile what causes that communication traces are not captured com­
pletely. In addition, plenty of protocols are utilized in the current network com­
munication. Many network applications also employ application-level protocol 
H T T P only as a data channel offering end-to-end connection. With the increased 
amount of traffic being encrypted, it is even complicated to recognize classes of 
applications in the captured communication. 

In this paper, an overview of issues related to a recovery of the application 
content from captured traffic was presented. For identified problems, proposed 
methods were tested by implementing them in a novel network forensic tool. 
Based on the comparison to related tools, achieved results are promising for the 
further development of our NFAT tool. 

Future work is delineated by the stated facts. Because of widely used traffic 
encryption, NFAT tools have to analyze meta-information associated with the 
traffic, e.g., recognizing events from communication, identifying end users, or 
approximate the meaning of information hidden in the encrypted communica­
tion. Also, the amount of communication requires NFATs to handle big data 
from various sources. Finally, NFATs should be extensible to deal with various 
classes of applications, e.g., web mail or Bitcoin traffic. 
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Abstract 
Network forensics is a process of capturing, collecting and analysing network data 
for the purposes of information gathering, legal evidence, or intrusion detection. 
The new generation internet opens novel opportunities for cybercrime activities 
and security incidents using network applications. Security administrators and LEA 
(Law Enforcement Agency) officers are challenged to employ advanced tools and 
techniques in order to detect unlawful or unauthorized activities. In case of serious 
suspicion of crime activity, network forensics tools and techniques are used to find 
out legal evidences in a captured network communication that prove or disprove 
suspect's participation on that activity. 

Today, there are various commercial or free tools for network forensics analysis 
available, e.g., Wireshark, Network Miner, NetWitness, Xplico, Netlntercept, or 
PacketScan. Many of these tools lack the ability of successful reconstruction of 
communication when using incomplete, duplicated or corrupted input data. 
Investigators also require an advanced automatic processing of application data that 
helps them to see real contents of conversation that include chats, VoIP talks, file 
transmission, email exchange etc. 

Our research is focused on design and implementation of a modular framework for 
network forensics with advanced possibilities of application reconstruction. The 
proposed architecture consists of (i) input packet processing, (ii) an advanced 
reconstruction of L7 conversations, and (iii) application-based analysis and 
presentation of L7 conversations. Our approach employs various advanced 
reconstruction techniques and heuristics that enable to work even with corrupted 
or incomplete data, e.g. one-directional flows, missing synchronization, unbounded 
conversations, etc. 
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The proposed framework was implemented in a tool Netfox Detective developed 
by our research group. This paper shows its architecture from functional and 
logical point of view and its application on reconstruction of web mail traffic, VoIP 
and RTP transmissions. 

Keywords: network forensics, forensic tools, network traffic analysis, Web mail, 
SIP, RTP 

1 Introduction 

Network forensics is a discipline that deals with obtaining and analysing digital 
evidences from network sources. It is an extended phase of network security where 
the main goal of network forensics is to track and analyse network data in order to 
detect security incidents and present evidences of these incidents to security 
administrators or investigators. Network forensics use different supporting tools 
and devices that (i) obtain and collect data (firewalls, IDS systems, capturing tools), 
and (ii) process, analyse and reconstruct captured data. Network forensic tools are 
mostly used by security administrators and LEA officers that try to search network 
data for legal evidences of unlawful behaviour. The aim of the analysis is to 
establish high level facts such as attribution, intent, identity, timelines and other 
information which may be relevant to the security incident. 

Tools for network forensics can be classified into two main groups: Network 
Forensic Analysis Tools (NAFTs) that allow administrators to monitor network, 
gather all information about the traffic and assist in network crime investigation, 
and Network Security and Monitoring (NSM) tools that are focused more on 
network monitoring and management. There is a wide range of commercial and 
open-source NFATs and NSM tools [1]. The primary motivation behind NSM 
tools is network security from perspective of system administration. N S M tools are 
very useful in processing large amount of data in short time with limited 
functionality concerning application protocol dissection. NMS tools include 
(i) IDS/IPS systems for detection or prevention of malicious activity on network, 
(ii) statistical tools used for data retention to store meta-information about the 
traffic, (iii) packet capture and analyses tools that capture communication on local 
networks and analysing it. The most common NSMs focused on packet capturing 
and analyses are Wireshark, TCPdump, or Microsoft Network Monitor. These 
tools are also used for basic network forensic analysis. However, they are mostly 
oriented on simple analysis of internet and transport layers of TCP/IP model. Some 
of them even contain an application layer protocol dissector, but the provided 
information is a context-free parsed internal protocol structure. 
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In this work, we focus on NFATs. NFATs offer a wide range of research challenges 
in domain of analysis and reconstruction of captured traffic. Research challenges 
cover (i) network stream reassembling that include detection of TCP/UDP streams, 
dealing with out of sequence data, missing or corrupted packets, timestamps 
overflow, combing streams into bi-directional conversations etc. [2]; (ii) advanced 
identification of L7 applications using AI techniques, data mining or statistical 
methods [3]; (iii) processing and analysis of L7 application using application 
dissectors, (iv) identification and statistical processing of encrypted or tunnelled 
traffic, (v) efficient storage of big network data with parallel computation, 
(vi) correlation of different input data, etc. 

This paper describes architecture and implementation of a network forensic tool 
Netfox Detective developed by our team in frame of security research supported by 
Ministry of Interior of the Czech Republic. The tool is designed for advanced 
reconstruction and analysis of captured network data with focus on emails 
(including web mails), HTTP reconstruction and intelligent detection and 
reconstruction of Voice over IP. Our framework combines advanced techniques 
and heuristics for assembling captured data, identification of L7 traffic, 
reconstruction of original conversations, and presentation of L7 objects to an 
investigator. The proposed framework uses modular programming environment 
with well-defined API so new modules (application dissectors, processing engines) 
can be added without a need to re-build the entire application. It also supports 
parallel processing with efficient data storage. 

2 Related Work 

Network forensics was formally defined in 2001 on the First Digital Forensic 
Research Workshop [4] where also major issues were identified: (i) time, i.e., 
synchronization and integrity of data and time associated with events being 
analysed; (ii) performance, i.e., speed and effectiveness of processing and 
computation; (iii) complexity, i.e., general environment with multiple operating 
systems, network devices, different data formats, and (iv) collection, i.e., who will 
collect data, when, and what to be collected? 

After a decade of innovations and research, general process model for the network 
forensic analysis has been introduced [1]. General model was composed of blocks 
with separated functions and was divided into two layers: (i) lower layer that 
included preparation, detection, collection, and preservation; and (ii) upper layer 
containing examination, analysis, investigation, and presentation. 
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Overview of different frameworks based on distributed systems, soft computing, 
honeypots, graphs, formal methods, or aggregation can be found in [1], In that 
paper, Pilli et al. present a survey of current network forensic frameworks. Most of 
discussed frameworks were designed to as research tools to prove advanced 
approaches and techniques in the area of network forensics. Our tool presented in 
this paper employs some of these ideas but its development is driven by practical 
usability and deployment. 

On the field of free tools, there are several applications that were observed. 
NetWitness filters captured traffic by processing frames and creating a lexicon of 
identifiers found in different L3-L7 layers, e.g., IP addresses, email addresses, URIs, 
etc. An investigator searches this lexicon to filter interesting captured content. The 
result can be stored as filtered captured traffic or analysed by another NFAT. 
Another popular tool is NetworkMiner1 developed by Erik Hjelmvik, an author of 
Statistical Protocol Identifier (SPID) algorithm for application protocol detection 
[3]. NetworkMiner processes captured or online communication with an 
instantaneous analysis of application protocol. The analysed content is grouped 
into categories based on its characteristics, e.g. images, messages, credentials, files, 
frames, hosts, sessions. The tool lacks detailed views of captured data and is not 
able to backtrack objects to its original representation in captured packets. Xplico2 

is an open source NFAT platform composed of functional blocks. Application data 
are prepared by traffic decoder and then processed by manipulators. Xplico 
supports various application protocols, e.g., HTTP, SIP, IMAP/POP3/SMTP, 
FTP, etc. with ability to provide congruent investigation for multiple investigators 
at once. The tool provides a user interface via a web browser which is simple to use, 
but it is not suitable for advance analysis, e.g., advance filtering, getting data 
integrity statistics, etc. Nevertheless, Xplico is the most advanced open source 
NFAT available. 

3 Netfox Detective Architecture 

By testing available NFATs we discovered that none of these tools is sufficient to 
accurately extract incomplete network data. In addition, advanced processing of 
application protocols with user-friendly presentation was mostly missing and 
limited large deployment of these tools for investigators. To overcome these 
limitations, a new network forensics framework was proposed with advanced 
parsing features. 

1 See http://www.netresec.com/?page=NerworkMiner. 
2 See http://www.xplico.org. 
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Netfox (NETwork FOrensiCS) Detective is a NFAT framework operating upon 
four upper layers of generic process model of NFATs as described in [1]. The tool 
processes input network data stored in different PCAP formats3 using a generic 
algorithm that respects L2-L7 encapsulation of PDUs. As described in [2], 
advanced heuristics is employed to extract maximal amount of information from 
PDU headers. 

Q CaptLjreFle2 [̂ J Capturel Investigation! 
Workspaces 

DetectiveViews 

DetectiveViewModels 

DetectiveModels 

PaneView Models 

DataEntityViewModels 

PersistenceCollection<T> 

1 HTTP 
Snoopers J CoreController |- PmLib Frame 

Email StreamPDUProvider L3ConversationTracker L3Conversation 

IMS TLS Decrypter L4ConversationTracker L4Conversation 

1 Webmail 
L7ConversationTracker L7Conversation L7PDUS 

SIP Application Recognizer ProtocolPortDB RTP 1 SPID 

Figure 1: Functional architecture and data model of Netfox Detective. 

Netfox Detective has been designed to be used on Windows 7+ platform. To 
ensure proper behaviour and modular architecture as shown in Fig. 1, the Model-
View-Viewmodel ( M W M ) 4 design pattern has been chosen with asynchronous 
programing provided by .NET 4.5.2 and C# 6. When launching the tool, a new 
workspace is created or a recently used workspace is re-loaded. The workspace 
represents a directory structure in a file system where all data related to the 
workspace are stored. The workspace contains one or more investigations that can 
consists of one or more PCAP files, see Fig. 2. Data processing is controlled by 
Core Controller that communicates with PmLib module, Conversation trackers and 
Snoopers. Application Recognizers use different techniques to identify L7 
applications, see below. Application analysis and presentation of the results is 
implemented using L7 Snoopers over HTTP, Emails, IMs, Web mails, or SIP. 

3 E.g., see L i b P C A P and P C A P N G at https://wiki.wireshark.org/Development/LibpcapFileFormat (PcapNg), 
or M S Network Monitor P C A P at http://blogs.teclinet.eom/b/netmon/p/downloads.aspx. 
4 See https://msdn.microsoft.com/en-us/library/hh848246.aspx. 

178 

https://wiki.wireshark.org/Development/LibpcapFileFormat
http://blogs.teclinet.eom/b/netmon/p/downloads.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx


User 
Netfox Workspace Core 

User 
Detective Manager Controller 

>rkspace—•] 
r— Select W o r k s p a c e ^ T C r e a t e W c ^ P * ^ 
I—Create Investigation-^ I 

l-Create Investigations 
Select Investigation-^ 

Add Capture 
Add Capture— 

—Export SIP— 

—Show exports-
-Export SIP— 

I 

Figure 2: Logical interactions of presentation model. 

NFATs usually require flexible design with extensibility that allows addition of new 
features and propagation of these updates throughout the modular architecture 
without changing internal data structures. This can be implemented using 
document-oriented database that processes dynamic semi-structured data types in 
contrast to pre-defined types in relational databases where relations between data 
are fixed and must be defined in advance. Netfox Detective framework employs 
document-oriented database system MongoDB5. This approach ensures persistence 
across the entire framework using only one implementation for each data model. 
Basic data models Workspace, Investigation, Capture, and Investigationlnfo are listed 
in Fig. 3. 
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Figure 3: Database models used in Netfox Detective to ensure 
persistence of workspaces and investigations. 

1 See http://www.mongodb.org/about/. 
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Captured network data are processed using a pipeline that extracts crucial 
information for further analysis, see Fig. 4. At first, a PCAP file is added to an 
investigation and parsed in PmLib module that builds a frame collection. Each 
module LxConversationTracker asynchronously processes every new frame and 
creates an appropriate PersistenceCollection for X-th level conversation, e.g., for L3, 
L4, or L7 layer. The L7ConversationTracker builds application layer conversations 
over TCP or UDP sessions, and creates application protocol messages called 
L7PDUs without any syntactical knowledge of the particular application protocol. 
Conversation tracking and reconstruction uses port numbers and TCP sequence 
numbers to detect missing data or unclosed sessions. It also employs timestamps to 
increase accuracy of reconstruction. Detailed description of packet reassembling is 
described in [2]. 

NFX Core Packet L3Conu L4Conu L7Conv Application 
Detective Controller PmLib Dot Net Tracker Tracker Tracker Recognizer 

| -AddCapt U re>{_ 0 p e n C a p > | 

I—Parse framed. 
- F r a m e ^ ^ 

T ^ f rame— 
—^— New frame-, 
— L3 Conversation -
—I 1|_4 Conversation ' 

Track L7 conversations— 
L7 conversation ! -Recognizee 

Figure 4: Asynchronous capture file processing pipeline. 

The key issue for successful L7 analysis provided by application extractors (snoopers) 
is a correct identification of L7Conversations. Identification is provided by the 
Recognizer that assigns one or more application tags to a l./Conversation. The 
algorithm uses extended IANA database of well-known ports, RTP recognizer for 
dynamic RTP streams [5], or SPID algorithm [3] using statistical based 
identification. 

Snooper modules are dynamically loaded to Netfox Detective, therefore, no 
recompilation is needed when a new application parser (snooper) is added. The 
snooper is a reconstruction engine of the application protocol. Outputs of one 
snooper can be chained into another snooper for further reconstruction, e.g., outputs 
of HTTP analysis can become inputs of web mail snooper. Snoopers export the 
contents of conversations with corresponding meta-data obtained during the 
application protocol processing into a current investigation. 
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Figure 5: SIP application protocol data extraction using the SIP Snooper module. 

Each snooper defines its own models, views and view-models to provide a detailed 
presentation of reconstructed data, e.g, HTTP snooper shows reconstructed web 
pages, an email snooper lists reconstructed emails, VoIP snooper describes VoIP 
session with RTP streams to be replayed, etc. Example of SIP snooper processing is 
at Fig. 5. 

As mentioned above, snoopers provide a syntactical analysis of communication. 
Until this point, data processing has been based purely upon information obtained 
from layers L3 and L4. The snooper analyses a particular application protocol, i.e., it 
parses application messages. The snooper communicates with low level modules as 
PDUStreamReader, or PDUProvider that deal with missing or overlapping 
segments, TCP sequence number overflow, missing SYN and FIN packets, IP 
defragmentation, etc. The snooper processes logical L7PDUs as soon as all 
conversations have been successfully restored over L4. It receives data from the 
PDUStreamReader module. PDUProvider prepares input data for PDUStream­
Reader using one of four strategies shown on following example, see also Fig. 6: 

1. Broken Interlay — The first application message consists at maximum of 
PDU1 and PDU2 transmitted in Frame 1, 2, 3. The arrival of Frame 4 on 
client side signals that the application message has ended. This is typical 
for request/response protocols. The second application message is 
contained only in PDU3 and the third in PDU4. 

2. Continued Interlay — The first application message consists at maximum of 
PDU1, PDU2, and PDU4 without taking into account frames arriving in 
opposite direction. 
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Figure 6: Processing PDUs. 

3. Mixed Interlay — The first application message might consist of PDU1, 
PDU2, PDU3, and PDU4. This mode mixes PDUs from both directions 
into one bi-directional stream. 

4. Single Message Interlay 
single PDU. 

Every application message consists only of one 

Generally, one application message can be composed of one or more PDUs. When 
some frames are missing, a virtual frame is created in order to complete proper 
PDU processing by a snooper. Using this approach, succeeding un-corrupted 
message will be properly reassembled in contrast to MS Monitor that might 
misinterpret succeeding messages. 

4 Extracting Application Data 
Application protocol data extraction is a process of analysing application layer data 
streams, i.e., payloads of L7 conversations. This analysis requires knowledge of 
application protocol syntax as well as semantics to extract significant information 
for forensic analysis. Following examples of application processing demonstrate 
how L7 parsing is implemented in NetFox Detective. They also describe advanced 
techniques for reconstruction of incomplete or corrupted application data. 

4.1 Web mail 

Communication using emails is necessity for everyone today. A majority of users 
uses web browser to access their mail boxes and to operate with their mail accounts. 
Therefore, HTTP protocol is mostly used to tunnel web mail communication. 
Traditional email protocols like POP3, IMAP, and SMTP have been mostly put 
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aside from the end user perspective, even though they are still used among email 
providers. 

In this study, we have focused on web mail traffic analysis in order to create 
a general model that would be able to process web mail independently on particular 
service used. As it is seen in Table 1, following operations similar for all analysed 
web mail services can be identified despite the fact that general structure of web 
mail is not standardised and web mail providers implement various transmission 
methods how to deliver web mail contents, e.g., using RPC sessions, JSON 
applications, etc. Table 1 shows how basic web mail operations can be identified in 
URL or HTTP header payload using simple pattern matching. 

Operation Web mail patterns used in URL or H T T P header 

New Message Keywords: from, to, subject, cc, bcc, content/body, 
SendMessage. 

Message 
manipulation 

URL request/HTTP header: move, delete, 
MoveMessageTo Folder. 

Email header request URL request/HTTP header: list, search, GetlnboxData. 

Table 1: Common operations and methods of their detection. 

Web mail services can be divided based on data privacy protection into three 
groups: (i) web mail service with unencrypted authentication and mail 
transmission, e.g. zoznam.sk, tiscali.cz (ii) web mail services with encrypted 
authentication and unencrypted mail transmission, e.g., centrum.cz, atlas.cz and 
mujmail.cz (iii) web mail services with encrypted authentication and encrypted mail 
transmission, e.g., seznam.cz, gmail.com, email.cz. 

When web mail authentication is encrypted, web mail communication cannot be 
identified using standard URL analysis but other techniques can be employed. One 
possibility is to use client's header extension in SSL/TLS handshake where Hello 
message contains the server name. The server name might indicate that following 
SSL/TLS communication transmits web mail. Also, DNS resolution can be 
employed to detect web mail service, see Table 2. 

Web mail Server name Encoding 

seznam.cz, 
email.cz 

email.seznam.cz FastRPC 
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Gmail mail-
attachment.googleusercontent.com 

application/x-www-form-
urlencoded;charset=utf-8 

Yahoo mail.yahoo.cz application/json 
multipart/form-data - incl JSON 

MS Live application/x-www-form-
urlencoded 

Centrum 
/Atlas/Mujmail 

mail.centrum.cz application/x-www-form-
urlencoded 

Roundcube <private service hostname> application/x-www-form-
urlencoded 

Horde <private service hostname> multipart/form-data; 

Table 2: Identification of particular web mail service. 

4.2 Voice over IP 

Voice over IP (VoIP) is a technology for transmission of phone calls over IP 
infrastructure Main advantage of VoIP is that uses the same infrastructure for both 
data and voice transfers which save money but also reduce maintenance 
requirements. From point of view of network forensics, VoIP creates a new 
challenge for detection and interception of suspect's calls. Traditional call 
interception on telecommunication networks was subjected to strict and well-
known rules. VoIP works in flexible environment of IP networks with a large 
variety of application protocols and codecs. The most common VoIP technologies 
are SIP [6] for call signalling and RTP [7] for media transmission. Following 
section describes how SIP and RTP protocols can analysed. 

4.2.1 Signalling protocols 

Session Initiation Protocol (SIP) is an application layer protocol for signalling and 
controlling multimedia sessions over IP networks. It is mostly used for voice/video 
calls and instant messaging. It defines messages that establish, modify and terminate 
sessions between end points. SIP is a text-based protocol with some similarities to 
HTTP or SMTP. It serves mainly for user registration and establishing VoIP 
connection. Media streams (voice or video) are transmitted using RTP protocol [7] 
or its secured version SRTP [8]. Description of transmitted media stream is 
encoded using Session Description Protocol, SDP [9]. 
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SIP communication is independent on transport protocols and may use TCP, 
UDP or SCTP transport. The protocol utilizes a transaction based communication. 
Each transaction is represented by a request and at least one response. SIP protocol 
usually communicates on TCP/UDP ports 5060 or 5061 (encrypted sessions). 

4.2.2 SIP analysis 

The extraction algorithm iterates over L7 conversations identified by an application 
recognizer. Whenever a valid SIP message is obtained, it is processed by SIP 
snooper that extracts meta-data related to the call. SIP messages with the same Call-
ID form a SIP event. Generally, SIP snooper uses two basic methods INVITE for 
call establishment and REGISTER for authentication. However, this trivial 
processing is not sufficient when some messages are corrupted or missing. 

1 INVITE sip: 10.10.10.109 SIP/2.0 

2 Call-ID: D99151DA-1DD1-11 B2-B23A-BC0375BD6E00@ 10.10.10.214 

3 From: "unknown"<sip:10.10.10.2l4>;tag=30652209562016038532 

4 To: <sip:10.10.10.109> 

5 
c=IN IP4 10.10.10.214 

m=audio 49152 RTP/AVP 3 97 98 110 8 0 101 

Table 3: Example of data transmitted in a SIP message. 

Table 3 shows what kind of information can be obtained from SIP protocol: 
1. Request method or response code — this can be used to recognize a call. 
2. Call-ID — a unique identifier used for grouping corresponding messages. 
3. From header — identifies caller party. 
4. To header — identifies calling party. 
5. SDP body — identifies media stream, codecs, RTPports, etc. 

For network forensic purposes, several SIP message are interesting to get meta-data 
about call exchange, e.g, INVITE, BYE, and REFER as requests and 100 (Trying) 
and 180 (Ringing) as responses. Using these requests and responses, we are able to 
extract SIP calls even if captured signalling is incomplete. As depicted on example 
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in Fig. 7, even if INVITE message is lost, the same information can be obtained 
from related messages (marked by red dot). 

Endpoint Endpoint 

INVITF 

mf lTrv inp 
*w 18fl Rinpinp 
*w 
4 

AfK 

RTP mprlia strpam 

RYF 

> 

Figure 7: Typical message exchange during a SIP call. 

Another issue is pairing incomplete signalling data with media streams. Network 
Detective implements heuristic based on RTP and TCP timestamps that result in 
probabilistic correlation of reconstructed VoIP calls. Utilizing these strategies, we 
are able to provide better reconstruction in comparison with other tools, see 
Table 4. 

file NFX 
Detective 

Wireshark NetWitness PacketScan 

Complete PCAP 2 2 2 2 

PCAP without INVITE 2 0 2 0 

PCAP without 200 O K 2 2 2 2 

Table 4: Detection of VoIP calls when INVITE or 200 O K messages are missing. 

4.2.3 Real-time Transport Protocol (RTP) 

RTP [7] is a stateless application protocol used to transfer media streams over the 
network. The RTP also provides simple detection of lost packets and multiple 
streams synchronisation with minimal overhead. It is usually transferred over UDP 
due to minimal overhead and stateless behaviour. RTP does not retransmit lost 
packets because even if they had eventually arrived, they would have not been 
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needed any longer. RTP detection is not easy due to the dynamic port assignment. 
As a part of RTP standard is description of RTP Control Protocol (RTCP) 
messages that are used to deliver additional control session data, e.g., stream source 
description, sent data size counter, packet loose, jitter, etc. 

4.2.4 Detecting RTP without signalling protocols 

Common VoIP concepts separate signalling data (SIP/SDP) from media streams 
(RTP). Both protocols use their own PDUs and paths through the internet. When 
signalling data are missing, it is generally not easy to detect RTP stream with 
dynamic UDP ports and identify what kind of codec is used for voice or video data 
transmitted. Netfox Detective uses advanced detection algorithm to identify RTP 
as follows. For full algorithm, see [5]: 

1. RTP header contains a fixed version 2. 

2. Mostly all current VoIP applications use only UDP transport protocol with 
ports greater than 1024. 

3. Observed packets should have a minimal packet length as required by the 
standard unless extension flag is set. 

4. Typical RTP stream is collection of large number of small packets with the 
same SSRC identifier. 

RTP header contains Payload type (PT) for codec identification. This field is mostly 
used for statically mapped codecs like G.711, GSM, G.722, or G.729, see [10]. 
Dynamically assigned codecs like Speex, G.726, AMR, or Silk require 
identification information transmitted in signalling protocols. If signalling 
protocols are not present in a captured file, it is hard to identify the codec. In such 
case, it is possible to use an identification method based on ratio between payload 
size of RTP packets and timestamp differences between two successive packets. 
Since this ratio usually does not change, this method is sufficient for codecs 
identification without signalling data [5]. 

4.2.5 Incomplete RTP streams 

In case of incomplete or corrupted RTP packets, advanced reconstruction 
techniques have to be applied. Following case studies present some solutions how 
to reconstruct such data. 

The first case study (see Fig. 8) shows communication between Alice and Bob 
where a link towards Bob is lossy. In this case, Bob's phone will miss two RTP 
packets 2 and 4. When naive approach to decode a received audio stream is 
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applied, audio tracks would not be synchronized, see Fig. 9. This will complicate 
further reconstruction and forensics analysis. 

Alice 

1 2 3 4 5 

Bob 

Figure 8: Incomplete RTP streams. 

Al ice 

Figure 9: Naive RTP Reconstruction. 

For advanced RTP reconstruction, a following procedure is proposed: 

1. Compute the number of lost samples. 

Using RTP timestamps a difference between the last received packet and the 
next one after the loss can be calculated. Then, correlation between real-time 
and timestamp difference indicates how many packets were lost. Although this 
correlation is codec dependent it can be used for reconstruction. For example, 
if the last received packet had timestamp 1000 and the next received packet had 
timestamp 9000, we may assume that 8000 audio samples were lost. 

2. Reconstruction of missing samples. 

The knowledge of a codec used is important to encode raw audio data since the 
codec specifies the sampling rate that has been used. For example, codec G.711 
uses sample rate 8000 Hz. In case of 8000 lost samples with sampling rate 
8000 Hz one second audio is missing. Therefore, lost packet can be substitute 
with silence audio or white noise right after decoding to fill the specified gap 
and synchronize bi-directional audio steams. 

Example of RTP streams after reconstruction is depicted in Fig. 10. As it is seen 
now, timeline of both RTP streams is properly aligned that is important for proper 
forensic analysis. 
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Figure 10: Reconstructed RTP streams. 

5 Conclusions 

This paper presented a new framework for network forensics analysis developed 
during security research. This framework has modular architecture with focus on 
two important areas: stream reassembling and application reconstruction. Stream 
reassembling is an important part of the tool. If not done properly, some packets 
can be skipped without proper analysis. On the other hand, some streams can be 
reconstructed incorrectly and include frames that do not belong to the 
reconstructed stream. The main benefit of our study is proposal of different 
heuristics and techniques that are able to build streams from captured packets even 
if some packets are missing without a need to parsing application protocol. 
Proposed heuristics are used to detect missing SYN and FIN packets, to identify 
lost packets within a stream, to detect overlapped conversations, etc., so that TCP 
and UDP streams are properly reconstructed for further network forensics analysis. 

Following application reconstruction is provided by independent application 
snoopers that parse reconstructed L7 streams, extract application based meta-data, 
and visualize results to an investigator or security administrator. Application 
snoopers also implements advance techniques for proper reconstruction of 
incomplete application data as presented on web mails and VoIP communication. 
At the moment, Netfox Detective is able to work with any IP, TCP or UDP 
streams. It supports reconstruction of web pages, web mails, emails using SMTP, 
POP, or IMAP protocols, instant messaging protocols (XMPP, ICQ, Yahoo), and 
VoIP (SIP, RTP). The user interface allows an investigator to filter required 
conversations and expert interesting data for further analysis. 

In this research, we concentrated more on accurate data reassembling, parsing and 
reconstruction. Future research will be focused on efficient analysis of big data, 
distributed parsing and employment of advanced detection methods using machine 
learning, statistical based detection, etc. 
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