
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

METHODS FOR INTELLIGENT NETWORK FORENSICS
INTELIGENTNÍ SÍŤOVÉ FORENZNÍ METODY

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR JAN PLUSKAL
AUTOR PRÁCE

SUPERVISOR doc. Ing. ONDŘEJ RYŠAVÝ, Ph.D.
ŠKOLITEL

BRNO 2022

Abstract
This dissertation is a collection of the author's peer-reviewed papers, w i th a common topic
of computer network forensic analysis, published i n journals and conferences i n computer
science, d ig i ta l forensics. In contrast to understanding network forensics as a discipline
of network security monitoring, this work's merit is to a id law enforcement agency (L E A)
officers in conducting network forensic investigations. The dist inct ion lies i n put t ing em­
phasis on extracting evidence from i l l ic i t activities rather than detecting network attacks
or security incidents.

Th is work revisits methods used for the forensic investigation of captured network traf­
fic by cr i t ical ly analyzing tools commonly used by L E A investigators. The objective is to
identify weaknesses, design solutions, and propose new approaches. Par t icular interest is
given to processing incomplete network communicat ion that typical ly occurs in low-quality
interception provided by Internet Service Providers (ISPs). The proposed method involves
omit t ing missing parts and intelligently rewinding the protocol parsers to pass the missing
segments using information from transport and internet layers. Th is process allowed the cre­
ation of novel features for the applicat ion protocol identification, thus addi t ional ly enabling
applicat ion protocol identification and finer-grained applicat ion identification. Subsequent
research analyzed the performance characteristics of single-machine captured network com­
municat ion and designed, implemented, and evaluated a l inearly scalable architecture for
distr ibuted computat ion. Last ly, the problem of overlay and tunneled communicat ion was
tackled by thoroughly analyzing Generic Stream Encapsulat ion (G S E) .

The presented research is publ ic ly available, except for the l imitat ions enforced by the
publishing houses. W h e n applicable, methods have been implemented into the open source
network forensic investigation and analysis tool , Netfox Detective, and verified using en­
closed datasets. A l l data sets and results are available and referenced in their respective
publications.

Keywords
network forensic analysis, applicat ion protocol identification, captured network traffic pro­
cessing

Klíčová slova
síťová forenzní ana lýza , identifikace ap l ikačn ího protoklu, zp racován í zachycených dat

Reference
P L U S K A L , Jan . Methods for Intelligent Network Forensics. Brno , 2022. P h D thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor doc. Ing. O n d ř e j
Ryšavý , P h . D .

Rozšířený abstrakt
Tato d i se r t ačn í p r á c e je souborem v y b r a n ý c h recenzovaných p rac í autora spo jených té­

matem forenzní ana lýzy poč í t ačových sí t í . P r á c e byly pub l ikovány v p o s l e d n í m deset i le t í
v časopisech a konferencích zaměřuj íc ích se na oblast informatiky se special izací na dig­
i tá ln í forenzní ana lýzu . Tato p r á c e se ned ívá na síťovou forenzní a n a l ý z u jako discipl ínu
m o n i t o r o v á n í síťové bezpečnos t i , ale za j ímá se o pomoc př i fo renzním vyše t řován í kr imina l ­
isty z pol icejních složek (L E A) . Rozd í l spoč ívá spíše v z a m ě ř e n í se na z ískávání d ů k a z ů o
nezákonných č innos tech než na odha lován í síťových ú t o k ů nebo b e z p e č n o s t n í c h inc iden tů .

Následuj ící text uvád í p řeh led př i ložených č l ánků (v chronologickém p o ř a d í) v t é t o p rác i .
Č lánek V I I popisuje p r v n í i teraci na šeho síťového forenzního n á s t r o j e Netfox Detective.
Je uvedena prezentace jeho architektury u r č e n é pro jedno uživate lské p r o s t ř e d í p racovn í
stanice. Dokument popisuje výzvy a problémy, k t e r é bylo n u t n é pro ú s p ě š n ý n á v r h a im­
plementaci síťového forenzního n á s t r o j e vyřeš i t . Nejdůlež i tě j š ím p ř í n o s e m tohoto v ý z k u m u
bylo zjištění , že kval i ta v s t u p n í c h dat je mnohdy n ízká a je t ř e b a , aby b y l tento fakt zohled­
něn j iž v p o č á t k u n á v r h u síťového forenzního sys t ému .

Z tohoto d ů v o d u jsme se zaměř i l i na problematiku zpracován í neúp lných dat a naše
závěry publikovali v č l ánku V I . N e ú p l n o s t zachycené síťové komunikace m ů ž e bý t z p ů s o b e n a
někol ika vl ivy. Nejčas tě jš ími jsou zahozen í packetu z d ů v o d u p ře t ečen í vyrovnávac í p a m ě t i
sondy, odposlech na lince, kde je ap l ikováno a syme t r i cké směrován í , vy rovnáván í zá těže
mezi několik se rverů (load balancing). N a š í m ře šen ím je postavit heurist iky s v y u ž i t í m
informací ze síťové a t r a n s p o r t n í vrs tvy a p rovés t aproximaci u rčen í ap l ikačn ích zpráv .

Nav ržené heurist iky pro detekci z a č á t k u a konce ap l ikačn í z p r á v y je m o ž n é využ í t i pro
zpřesněn í identifikace ap l ikačn ích p ro toko lů . Č l á n e k V popisuje n á š v ý z k u m z t é t o oblasti ,
kde jsme porovnali t ř i M L algoritmy využívaj ící n á š framework pro zp racován í síťové ko­
munikace spolu s extraktory v l a s t n o s t í za ložených jak na s t a n d a r d n í c h ident i f iká torech, tak
na n á m i nově nav ržených ident i f iká torech s v y u ž i t í m výše zmíněných heuristik. Zkoumal i
jsme v z á j e m n é závislost i v l a s tnos t í , k t e r é jsou odl išné pro j edno t l ivé ap l ikačn í protokoly,
a navrhl i využ í t el iminaci takto kore lovaných v l a s tnos t í . V ý z k u m jsme uzavřel i n á v r h e m
s ta t i s t i cké metody, k t e r á zakomponovala výše z m í n ě n é poznatky.

Č lánek I V je z a m ě ř e n ý na vyše t řova te le , k t e ř í p ů s o b í v t e r é n u a získávají d ů k a z y p ř í m ý m
p ř í s t u p e m do zabezpečených W i - F i s í t í . T í m t o z p ů s o b e m je m o ž n é odhalit p ř í m o p ř ipo­
j e n á zař ízení , interagovat s n i m i a obstarat data, k t e r á jsou deta i lně jš í nežli b ě ž n ý záchy t na
ú rovn i poskytovatele p ř ipo jen í . C í l em u v e d e n é h o č l ánku je prozkoumat možnos t i p roveden í
a u t o m a t i z o v a n é penetrace b e z d r á t o v é s í tě a zp ros t ř edkován í p ř í m é h o p ř í s t u p u ke komu­
nikaci (Man-in- the-Middle) i pro vyše t řova te le , k t e ř í nema j í d o s t a t e č n é technické vzdě lán í
v I T oboru.

Ros touc í m n o ž s t v í dat p ř e n á š e n ý c h po síti zvyšuje v ý p o č e t n í n á r o k y na v ý p o č e t n í
p rvky analyzuj íc í zachycenou komunikaci . Vzhledem k tomu, že ve r t iká ln í škálování nen í
ud rž i t e lný proces, m ů ž e bý t na čase zaměř i t se na z m ě n u p ř í s t u p u a prozkoumat možnos t i
škálování do šířky, tedy p roveden í ana lýzy zachycené komunikace na více v ý p o č e t n í c h
prvcích než jeden p r acovn í stroj vyše t řova te le . V č l ánku III jsme se zaměř i l i na n á v r h
t akového s y s t é m u , k t e r ý respektuje dř íve z m í n ě n é způsoby zpracován í poškození komu­
nikace a zá roveň umožňu je zpracovat síťovou komunikaci na clusteru v ý p o č e t n í c h p r v k ů .

Pos ledn í identifikovanou výzvou, na kterou se v t é t o p rác i z a m ě ř í m e , je zpracován í
t u n e l o v a n é h o provozu. Č l á n e k II popisuje tune lovac í protokoly, se k t e r ý m i se mohou L E A
vyše t řova te lé b ě ž n ě setkat. V y b r a l i jsme jeden z komplexně jš í p ro toko lů , Generic Stream
Encapsulat ion (G S E ,) na k t e r é m ukazujeme možnos t i integrace podpory zpracován í do
na šeho síťového forenzního nás t ro j e .

Pos ledn í př i ložený č lánek I shrnuje tuto d i se r t ačn í p rác i popisem našeho síťového foren-
zního n á s t r o j e Netfox Detective, j a k o ž t o d e m o n s t r a č n í h o p r o s t ř e d í metod a koncep tů , k t e r é
tato p r á c e a př i ložené č l ánky popisuj í . S v y u ž i t í m tohoto n á s t r o j e ověřu jeme p ř e d s t a v e n é
metody v praxi .

P r e z e n t o v a n ý v ý z k u m je volně d o s t u p n ý vyjma č l ánků s o m e z e n ý m p ř í s t u p e m . Tam, kde
to bylo m o ž n é , by ly metody i m p l e m e n t o v á n y do na šeho n á s t r o j e pro forenzní vyše t řován í
a a n a l ý z u s í tě s o t e v ř e n ý m zd ro jovým k ó d e m a jsou p lně d o s t u p n é k o m u n i t ě . Me tody
byly ověřeny p o m o c í př i ložených d a t o v ý c h sad. Všechny d a t o v é sady a výs ledky jsou volně
d o s t u p n é a o d k a z o v a n é v p ř í s lušných publ ikac ích .

Methods for Intelligent Network Forensics

Declaration
I hereby declare that this P h D thesis was prepared as an original work by the author under
the supervision of doc. Ing. Onře j Ryšavý, P h . D . I have listed a l l the l i terary sources,
publications, and other sources, which were used dur ing the preparation of this thesis.

Jan P luska l
August 15, 2022

Acknowledgments
I want to express my deepest thanks to my supervisor O n d f ej, thank you for the opportuni ty
to become part of the NESCDFIT research group, to study and work under your supervision,
and to my colleagues - the members of our research group - guys, it has been my pleasure
to work wi th you!

M y gratitude belongs to my lifelong love and companion, whom I respect deeply, Ga l ina :
thank you for your support and willingness to stand by my side and always take care of
everything that is needed when I a m not there to support you and help you out. C la ra ,
our daughter, even though you don't realize it yet, you are my inspirat ion to overcome al l
hardships, to finish my duties just to get back home to you, and overall to become a better
version of myself. If you ever happen to read this, let me know how I managed it.

M y parents and grandparents, thank you for raising me this way and support ing me
throughout my life. Even though not a l l of you are wi th me today, your wisdom guided me
throughout my life, and your support was and continues to be invaluable to me.

V l a d i m i r , here goes my th i rd recipe for your students' cookbook. I hope you w i l l really
publish it! This one is for muffins, which are Clara ' s favorite.

Muffins

• 400 g p la in flour

• 2 pes baking powder

• 250 m l semi-skimmed mi lk

• 250 g sugar

• 200 g chocolatey, bo th dark and white combined

• 2 pes banana

• 250 g roast fat

The instructions are simple - mix a l l ingredients, f i l l the pucks, bake it for 45 minutes
on 200 °C and enjoy!

Contents

1 Introduction 3
1.1 Mot iva t ion 3
1.2 P rob lem Statement 4
1.3 Research G o a l and Objectives 5
1.4 Structure of the Dissertat ion Thesis 6

2 State of the A r t 7
2.1 Network Forensics 8
2.2 Network Forensic Tools 8
2.3 Cap tur ing and Processing of In/complete Network D a t a 13
2.4 App l i ca t i on Pro toco l Identification 14
2.5 Overlay and Tunneling Network Protocols 16
2.6 Network Forensics of B i g D a t a 17

3 Research Summary 18
3.1 Overview 18
3.2 Papers Included in this Dissertat ion 20

3.2.1 Paper I 20
3.2.2 Paper II 21
3.2.3 Paper III 22
3.2.4 Paper I V 23
3.2.5 Paper V 25
3.2.6 Paper V I 26
3.2.7 Paper V I I 28

3.3 Relevant Publ icat ions not Included i n this Dissertat ion 29
3.4 Research Projects and Grants 30
3.5 Software and Specimen 30
3.6 Invited Speeches, Presentations and Posters 31
3.7 Selected Relevant Supervised Theses 32
3.8 Other Supervised Theses 34

4 Conclusions 36
4.1 The Research Approach 36
4.2 Contr ibut ions 37
4.3 Future Work 38
4.4 F i n a l Notes 38

Bibl iography 39

1

A Included Papers 45
A . l Netfox detective: A novel open-source network forensics analysis tool 45
A . 2 Network Forensic Investigations of Tunneled Traffic: A Case Study 59
A . 3 Network Forensics i n G S E Overlay Networks 66
A . 4 Network Forensic Analys is for Lawful Enforcement on Steroids, Dis t r ibuted

and Scalable 77
A . 5 A Scalable Archi tecture for Network Traffic Forensics 87
A . 6 Automated Man- in - the -MiddleAt tack Against W i - F i Networks 93
A . 7 Au tomat ion of M i t M At t ack on W i - F i Networks 118
A . 8 Traffic Classification and App l i ca t i on Identification in Network Forensics . . 133
A . 9 Advanced Techniques for Reconstruct ion of Incomplete Network D a t a . . . 156
A . 10 Netfox Detective: A Too l for Advanced Network Forensics Analys is 173

2

Chapter 1

Introduction

The presented dissertation is a collection of peer-reviewed papers wi th a common topic of
computer network forensics. The paper's target audience are law enforcement investigators,
specialists, and programmers of network forensic tools. These papers reflect the author's
journey of gaining experience in computer network forensics, forensic investigation, and
law enforcement investigators' dai ly work. Struggling to improve the current state, I was
looking for solutions to the open questions proposed by the Law Enforcement Agencies
(L E A) practitioners.

1.1 Motivat ion

Tradi t ional Network Forensics, as the state-of-the-art Chapter 2 indicates, is focused on in­
cident detection and response (i.e., I D S / I P S system) i n the scope of network adminis t ra t ion
intended for smal l businesses, corporations, and cr i t ica l infrastructure networks.

This thesis aims to address the problem from the point of view of L E A investigators
whose modus operandi differs from those of network administrators. O f course, there is
related work focused on the L E A investigators' needs, but, as it appears, the current state
does not meet their demands, suggested by the constant innovation supported by national
grants such as VG20102015022, VI20172020062, VH20192021043.

This research dates back to 2014 (and continues onward), just after Snowden's leak,
when penetration of encryption on the public Internet services was not considered a "big
issue." A s history proves, eight years after, we can s t i l l encounter some services that do
not use encryption, e.g., some email transfer services, low-energy IoT communicat ion, and
pla in D N S . Some of them may leak metadata even when the actual content is encrypted
(like p r e - T L S 1.3 leaked service name identifiers (SNI)) .

Network forensic tools are becoming, as is usually the fate of an open source when it is
no longer maintained, inadequate for the task. Tha t is because, more often than not, they
are developed as academic research and supported by a grant project. After the project
ends and the tool has not been mass-publicized, not at the science conferences but among
the actual end-users, the project tends to be abandoned and no longer maintained. Due to
the rapid evolution of communicat ion, it is adrift and no longer entirely usable. Add i t i on ­
ally, these tools require expert knowledge because, i n the majority, they are single-purpose
solutions controlled by a command-line interface or a simple graphical user interface. L E A
officers without adequate t ra ining and deep domain knowledge w i l l l ikely not use them

3

or miss crucial evidence. A l so , there is the issue of v is ib i l i ty of such tools because L E A
investigators tend to "do the job," not the research of methodologies and tools.

In contrast, commercial products developed by teams of hundreds of employees wi th
proper founding can keep up w i t h the evolution and keep the tools entirely usable and
product ion ready. They typical ly use a user-friendly interface to process data sources and
provide the investigator w i th an easily understandable reports. Because of that, commercial
tools are de facto becoming standards admissible i n a court of law. These tools are intended
to be massively used by L E A , but because they are closed source, ever-suspicious investiga­
tors are wary of using them. Therefore, there is pressure for applied academic research to
produce open source, customizable, and reliable tools. A n addi t ional motivat ion to create
open source network forensic tools is that L E A investigators have approaches that need to
be kept confidential. Revealing them to a private company that supplied a commercial tool
is either inconceivable, or the cost for customization of such tool is economically unrea­
sonable. Therefore, the open source nature allows for such approaches' easy extendabil i ty
while maintaining the low cost of such modifications. Furthermore, these changes can be
rebased on the tool mainstream, thus al lowing for almost effortless tool upgrades.

Here we are, between open source single-purpose tools that are trustworthy but hard to
use and commercial ones "to fit a l l them easily usable tools" that are not customizable and
may not be trusted by some L E A investigators.

This research tries to help L E A investigators combat cybercrime by providing advanced
state-of-the-art methods for network forensic investigation packed i n a graphical applicat ion
that validates the results and allows pract ical applications.

In simple terms, this dissertation can be considered a cookbook on how to write your
network forensic investigation tool that is customizable to fit various use cases, the chal­
lenges you w i l l face, and the approach you can take to conquer them.

1.2 Problem Statement

The connection speed to the Internet in households, smal l businesses, and v i r tua l private
servers (V P S) rentable in data centers is experiencing unprecedented growth. Illegal ac­
tivit ies carried out on devices connected to the Internet pose various challenges to L E A
investigations.

Firs t , the amount of c r imina l activities conducted over the network increases wi th the
penetration of new digi ta l technologies amongst the populat ion, impl ica t ing the increase of
cases for d ig i ta l forensic investigators to solve. This fact creates a problem because there
is a shortage of I T specialists i n the L E A officers' lines.

Second, the increase in communicat ion speed generates more data to be processed by
forensic specialists, which requires increased computing power to process the data and,
furthermore, the introduct ion of appropriate methods to uti l ize the added resources to
scale well.

Due to the expert shortage, the solution seems to be the research of novel approaches, the
use of more sophisticated methodologies, and modern tools to be used by the investigators:
otherwise, processing the ever-increasing amount of data appears to be unsustainable.

4

1.3 Research Goal and Objectives

The goal is to revisit network forensic methods to improve their capabilities
and reliability for processing network communication and extracting evidence,
enabling the implementation of efficient tools for LEA investigators.

Therefore, the incentive of this dissertation is to help L E A investigators deal w i th Net­
work Forensic investigations in their dai ly work.

Dur ing the past eight years, I have been i n contact w i th mult iple L E A investigators,
L E A executives, and commercial vendors during private meetings, scientific conferences, or
closed business conferences organized directly for L E A s . D u r i n g this t ime, I realized that as
long as there is demand, there is a vendor that has a solution to L E A problems. B u t L E A s
are bureaucratic organizations wi th a fixed budget that requires planning, and adaptat ion
to novel problems occurs slowly.

To mitigate this conundrum, this dissertation states the following research objectives to
collect, update, or propose novel approaches to problems of network forensic investigation:
see the following description and Figure 1.1 for the visual representation of the linkage
between the objectives and the selected papers.

Captur ing and processing in/complete network data is a fundamental step for
network forensic investigation. Wi thou t the abi l i ty to robustly deal w i th missing parts
of the communicat ion, appl icat ion protocol parsers must stop on the first occurrence
of a missing piece of the communication, no matter how small or significant it is for
the investigation.

Appl icat ion protocol and finer-grained application identification are necessary
steps before using an applicat ion protocol parser to dissect the communicat ion. The
decision must be made to identify which applicat ion protocol is used i n the part icular
application flow. Taking the identification further, we may also deduce some valuable
meta-information, such as which applicat ion was used by the user. Furthermore, the
classifier should not expect that the communicat ion is entirely captured.

W h a t should be the architecture of a network forensic tool / scale or not to
scale are questions many ask. Is it better to run the tool on a single machine /
workstation environment, be centralized on dedicated server(s), or scale up past a
single computat ion unit and uti l ize spare resources on a cluster? Is the achievable
speed improvement worth the cost of the computat ion hardware?

Tunneled and overlay networks have been used to interconnect geographically sep­
arated networks or computer systems to allow end-to-end connectivity and possibly
add a security layer using encryption. For forensic investigators, such technology is
a significant factor, even though the data transported may not be fully read due to
encryption.

5

Revisit methods used in network forensics tools to improve
their capabilities of processing captured network

communication and extraction of evidence in order to relax
requirements on the technical expertise of LEA

investigators.

Tunnelled and overlay
networks

Architecture of
network forensic

tool/scale or not to
scale

Application protocol
and finergrained

applications
identification

Capturing and
processing of

[incomplete network
data

Paper I:
Netfox detective: A
novel open-source
network forensics

analysis tool

Paper
Network Forensic
Investigations of

Tunneled Traffic: A
Case Study

Paper
Network Forensic

Analysis for Lawful
Enforcement on

Steroids, Distributed
and Scalable

Paper IV:
Automated Man-in-
the-Middle Attack

Against Wi-Fi
Networks

Paper V:
Traffic Classification

and Application
Identification in

Network Forensics

Paper VI:
Advanced

Techniques for
Reconstruction of

Incomplete Network
Data

Paper VII:
Netfox Detective: A
tool for advanced
network forensics

analysis

Figure 1.1: Th is figure depicts relations between research goal, objectives and selected
papers.

These objectives and their solutions are implemented pr imar i ly in the Netfox Detective
network forensic tool , which demonstrates the val idi ty and verifies the usabil i ty of this
research i n real-world applications.

1.4 Structure of the Dissertation Thesis

The dissertation is a composit ion of the selected conference and journal publications of
the author accompanied by a rat ional introduct ion part. The seven selected peer-reviewed
papers summarize the contr ibution of this dissertation. A l l papers are attached i n their
original publ icized form.

The dissertation is organized as follows. The first chapter provides an introduction,
including motivat ion, a problem statement, and a brief description of the goal and research
objectives. The second chapter places the research i n its appropriate place by defining the
related work. The th i rd chapter summarizes the author's research and contributions. The
last chapter discusses the results, highlights contributions, and concludes this thesis.

Ü

Chapter 2

State of the A r t

Related work is a fundamental part of every research, so let us define the context for this
dissertation. This chapter is d ivided into six sections concerning the research objective
stated i n Section 1.3.

Fi rs t , let us clarify the meaning of network forensics and designate this dissertation
in this subdiscipline of computer forensics. Section 2.1 brings a broader in t roduct ion to
network forensics, as seen by various renowned authors i n this field. Mul t i p l e theoretical
frameworks are discussed to describe the recommended forensic approaches.

To develop advanced methods for forensic investigation of networks, it is necessary to
study existing tools, identify weaknesses, and design improvements. Section 2.2 provides
a brief overview of these tools. The dist inct ion between mult iple categories is made, and
various taxonomies are presented. Not ice that taxonomies classify tools into numerous
categories that may not correspond to each other. In other words, the authors may not
agree on the classification.

To do the advanced, we need to define the basics. Section 2.3 covers the approach to
processing network data. Dist inct ions are made between Network Security and Moni to r ing
(N S M) tools and Network Forensic and Analys is Tools (N F A T) . The crucial role of packet
loss intercepting is underscored by some suggestions for achieving it .

Before we can parse the network traffic, knowing which applicat ion protocol carried
the data is crucial . Section 2.4 covers related research for the identification of appl icat ion
protocols. Th is information is essential because we need to know the applicat ion protocol
used to apply an appropriate parser to extract valuable information. In some cases, when
data are encrypted, extraction of metadata, such as SNI1 in the case of T L S / S S L , or
categorization of applicat ion and content types, such as voice or text, could be essential.

Not a l l communicat ion is encapsulated i n the t radi t ional way (Ethernet j Wi-Fi) / (IPv4
I IPv6) / (TCP j UDP), but a significant amount of it is tunneled in overlay protocols such
as 6in4, Teredo, G S E , etc. Section 2.5 describes the processing capabilities of overlay
networks, mainly used i n N F A T s .

Lastly, because the amount of communicat ion required for forensic investigations today
increases, Section 2.6 introduces related research on parallel processing, scalability, and
dis t r ibutabi l i ty of network forensic tools.

1 Service Name Identifier reveals service hostname

7

2.1 Network Forensics

Let 's assume that the term network forensics might be sl ightly confusing. The common un­
derstanding is that network forensics is a cross-over between digi ta l forensics and computer
security [65]. It is concerned wi th the capture, recording, and analysis of network commu­
nication for for detecting and investigating incidents [53]. For simplicity, network forensics
deals w i th data traces acquired by passive or active network devices. The main goal of net­
work forensics is to investigate network evidence to determine whether there was a security
incident or other anomaly, provide evidence, and document their investigation [31].

Accord ing to Palmer, network forensics is the use of scientifically proven techniques
to collect, fuse, identify, examine, correlate, analyze, and document digi ta l evidence from
mult iple d igi ta l sources. The objective is to uncover facts related to planned intent or
successful measurement of unauthorized activities that are intended to disrupt, corrupt, or
compromise system components. Information gained during the investigation can be used
to respond to or recover from these i l l ic i t activities [52].

Network forensics can be described using various process models. The first, proposed
by Palmer [52] i n D F R W S 2001, is a linear model that contains these steps: identification,
preservation, collection, examination, analysis, presentation, and decision. Emanue l P i l l i
has updated this waterfall-like model w i th fast i teration shortcuts and called it a generic
process model [53]. The alternative to this model is the O S C A R process model, which
contains these steps: obtain information, strategize, collect evidence, analyze, and report.
Davidoff, who proposed it i n his book "Network forensics: t racking hackers through cy­
berspace" [15], simplified it and made it linear again.

A n inherent part of network forensics is its techniques (N F T) . We can study them
based on forensic process models, forensic tools, and forensic frameworks. K h a n , i n his
"Network forensics: Review, taxonomy, and open challenges" [34], reviews fundamentals
such as traceback-based N F T , converge network-based N F T , attack graph-based N F T ,
distributive-based N F T , and N F T using IDS .

2.2 Network Forensic Tools

Network forensics aims to make sense of volatile network communicat ion. Interpreting low-
level network protocols requires expert knowledge to see the bigger picture [10]. Specific
network forensic tools can be used to relax the requirement of expert knowledge and make
the network forensic investigation accessible to more investigators [22, 25]. These tools
should support the summarizat ion, clustering, and highlighting of relevant information [7],
such as extracting the content of t ransmit ted files and user credentials or performing ad­
di t ional analysis and visualizat ion i n an easily understandable form. M a n y single-purpose
network forensic tools are available (see more i n the upcoming sections), but their capabil­
ities, functionality, and usabil i ty are lacking behind t radi t ional forensic toolkits [10] such
as EnCase or Autopsy.

Network forensic tools are best described using taxonomies that categorize them accord­
ing to their properties. B y s tudying mult iple taxonomies, we can observe that authors may
disagree on the tool classification, i.e., one author classifies a tool as network monitor ing
and another as forensic analysis.

One of the first taxonomies [23] proposed in 2002 by Simon Garfinkel is based on mon­
i toring and recording network data; see Table 2.1. The first approach, catch it as you can,
tries to capture a l l data that pass through the network i n real-time and analyze them in

8

batches later. Th is approach requires a large amount of data storage [42] but may produce
better results because mult iple tools can be used to analyze these captured data. The
second approach, stop, look and listen, uses fi l trat ion to l imi t the amount of data captured
to deal w i th situations where it is not legal to record information unless for some specific
reason, such court order [23].

"catch it as you can" "stop, look, and listen"

Commerc ia l N e t V C R Network Fl igh t Recorder (N F R)
Netlntercept Sil lentRunner

O p e n source t cpdump snort intrusion detection system
windump NetWitness

"Carnivore" Internet wiretapping system

Table 2.1: Taxonomy of network forensic tools according to Simson Garfinkel , 2002, Table
source [77].

Meghanathan et a l . in 2009 proposed i n their taxonomy [45] to divide tools according
to their focus, emphasizing the growing interest i n domain-specific tools; see Table 2.2. The
authors c la im that the essential categories are email , web forensics, and packet sniffers.

E m a i l forensics I Packet sniffers I W e b forensics
emailTrackerPro
Smart W h o l s

A i r P c a p
Ethereal
W i n P c a p

Index.dat analyzer
Web His tor ian

Table 2.2: Taxonomy of network forensic tools according to Meghanathan et a l . , 2009,
Table source [77].

9

One of the most complex taxonomies was indisputably proposed by P i l l i and Joshi [53]
in 2010 in the D i g i t a l Investigation journal ; see Table 2.3. They introduce the term Network
Forensic Analytical Tools as opposed to Network Security Monitoring tools. Th is dist inct ion
is crucial i n dist inguishing tools designed for forensic investigators (N F A T) from those
intended for network administrators (N S M) . Th is taxonomy was updated i n 2016 by the
same authors [30]; see Table 2.4, resulting in more up-to-date categorization. Note that
the subcategories have changed slightly and that propr ie tary/commercia l N F A T s have been
reduced. This reduction in commercial tools is probably due to the increased secrecy around
t h e m 2 .

N F A T s

O p e n source NetworkMiner
P y F l a g
X p l i c o

Proprietary DeepSee
InfmiStream
Iris
NetDetector
Netlntercept
NetWitness
OmniPeek
SilentRunner

N S M tools

Fingerprint ing N m a p
POf

IDS B r o
Snort

Manipulat ion T C P R e p l a y
S i L K

Packet capture Argus
flow-tools
N f D u m p
Nessus
P A D S
Sebek
T C P D u m p
T C P F l o w
Wireshark

Pattern matching Ngrep
T C P X t r a c t

Statistic NetF low
Ntop
T C P D s t a t
T C P S t a t
T C P T r a c e

Table 2.3: Taxonomy of network forensic tools according to P i l l i and Joshi, 2010, Table
source [77].

2Authors observation obtained while discussing the problem with tool vendors on ISS World conference
during the past decade.

10

N S M tools

Intrusion detection B r o
systems (IDS) Snort
Network monitoring I P T r a f
tools Ntop

T C P S t a t
Visua lRoute

N F A T s

O p e n source P y F l a g
X p l i c o

Proprietary NetDetector
Netlntercept
OmniPeek

Network scanning
tools

Network sniffers and
packet analyzing
tools

A n g r y IP Scanner
N m a p
Wireless Network Watcher
Aircrack-ng
eMai lTrackerPro
Kismet
NetworkMiner
ngrep
WebScarab
Wireshark

Vulnerabil i ty Acune t ix W V S
assessment tools Metasploit

Nessus
Nik to
Yersinia
W i k t o

Table 2.4: Network forensic tools updated taxonomy according to P i l l i and Joshi, 2016,
Table source [77].

11

Davidoff and H a m proposed a taxonomy [15] i n 2012 based on the tool's functionality
and the investigation phase in which the tool can be used; see Table 2.5.

W A P discovery tools

O p e n source K i s M A C
Kismet
NetStumbler

Proprietary Skyhook

I D S / I P S
1 Traffic acquisition O p e n source B r o dumpcap

Snort l ibpcap
Proprietary Checkpoint IPS-1 tcpdump

Cisco I P S tshark
Corero Network Security winpcap
Enterasys I P S Wireshark
H P T ipp ingPoin t I P S
I B M Security N I P S
Sourcefire 3D System

Packet analysis

Protocol analysis tshark
tools Wireshark
Packet analysis Bless
tools ngrep

tshark
Wireshark

Flow analysis pcapcat
tools tcpflow

t cpXt rac t
tshark
Wireshark

Higher-layer traffic fmdsmtpinfo .py
analysis tools NetworkMiner

oftcat
smtpdump

Statistical flow analysis

Sensors Argus
softflowd
yaf

Flow record I P F I X
export protocols NetF low

sFlow
Collection systems Argus

flow-tools
nfdump
NfSen
S i L K (flowcap, rwflowpack)

Flow record Argus Client Tools (ra, racluster,
analysis tools ragraph, ragrep, rahisto, rasort)

Ethe rApe
F l o w T r a q
flow-tools
nfdump
NfSen
S i L K (PySiLK, rwcount, rwcut,
rwfilter, rwidsquery, rwpmatch,
rwstats, rwuniq)

Table 2.5: Taxonomy of network forensic tools according to Davidoff and H a m , 2012, Table source [77].

12

Complementary categorization can also be based on how the investigator interacts w i t h
the tool . Lub i s and Siahaan proposed to divide tools into console and GUI categories:
see Table 2.6.

Console-based tools GUI-based tools

A R P
Gnetcast - G N U
ifconfig
Network Mapper (Nmap)
ping
snoop
T C P dump
X p l i c o

E-detective
Netcat
Wireshark /E therea l

Table 2.6: Taxonomy of network forensic tools according to Lub is and Siahaan, 2016, Table
source [77].

The European Un ion Cyber Security Agency (E N I S A) developed a handbook [17] -
Introduction to Network Forensics based on the experience of the C S I R T community. Thei r
categorization is similar to Davidoff and H a m [15] based on the intended tool usage; see Ta­
ble 2.7.

Flow capture & analysis tools I Full-state analysis tools I IDS
Argus WireShark Snort

Packet capturing tools I Pat tern matching tools
tcpdump
dumpcap

ngrep

Table 2.7: Taxonomy of network forensic tools according to E N I S A , 2019, Table source [77].

Studying the taxonomies, we may observe that each author group focused on different
aspects. Garfinkel [23] concentrated on the volat i l i ty of the data and the granularity that
can be achieved wi th l imi ted computat ion resources. In contrast, Meghanathan et a l . [45]
showed concern for the applicat ion domain. P i l l i and Joshi [53, 30] extended categorization
by focusing on forensic investigators and network administrators. Davidoff and H a m [15]
created detailed categorization of N S M tools. Lub i s and Siahaan [40] and E N I S A [17] also
focused on N S M tools. Based on the presented taxonomies, we may conclude that the
development of generally usable open source N F A T tools have been put aside.

2.3 Capturing and Processing of In/complete Network Data

Network traffic is the most common data source for N F A T s [10, 22, 25, 66]. A l t h o u g h
there are tools, main ly N S M , al lowing online analysis, like Wireshark and T C P D u m p , this
approach is generally discouraged for forensics [12, 8] because of its bottom-up approach
that requires a large amount of manual labor. Forensic science involves repeatabili ty of
the investigation process [12], thus rendering these live N S M tools usable in prel iminary

13

investigation phases as a control mechanism functional for val idat ion of deployment of
Lawful Interception (LI) probes.

Captur ing data using L I probes is a complex problem. Due to the volat i l i ty of network
data, what is not captured is lost forever. Th is fact poses a challenge for the capturing.
The capturing appliances are software [4] or hardware [49, 32, 59] based.

Software-based appliances uti l ize the kernel functionality of the operating system to
capture packets not intended for the part icular interface that the interception is running
on (e.g., using promiscuous mode [4]). A naive approach may be to use pla in T C P D u m p ,
or Wireshark to capture the network traffic. A s several studies have shown [4, 16, 37, 3,
61, 5], this approach leads to severe packet loss. A sophisticated approach is to use a kernel
module-based tool , e.g., T C P D u m p compiled wi th P F R I N G , or a commercial solution
like ntop's n 2 d i s k ™ that is opt imized for the task and is already based on P F R I N G 3 .
E m p i r i c a l experience has shown that, as the vendor c la im, n 2 d i s k ™ can store network
traffic up to l O G b p s . Addi t ional ly , using F P G A - b a s e d N I C , n 2 d i s k ™ can store up to
4 0 G b p s 4 .

Hardware-based appliances are typical ly advanced solutions developed in general by pr i ­
vate companies. The i r detailed specification and addi t ional functionalities are not publ ic ly
available. Some vendors publ ish the specification in the form of white paper, e.g., NetQuest
that announces up to lOOGbps capabilities [49]. Another rare occurrence is research done
by Czech's N R E N C E S N E T on hardware-accelerated traffic processing on 100 Gbps net­
works [32, 59]. Other major players on the market providing not only packet interception
but also deep packet inspection (DPI) for L E A are Sandvine, E N E A Cosmos Div is ion , and
X C I , according to the ISS W o r l d Tra in ing conference [50].

Regarding the state-of-the-art interception appliances, empir ical observation shows that
not a negligible por t ion of intercepted network traffic provided to the L E A by ISPs is not
without packet loss. A commonly used approach is to uti l ize port mirror ing, i.e., SPAN
port on a switch that may introduce packet loss under a load [78]. Determinat ion of packet
loss on capturing probe is challenging by itself. The T C P reassembling can be used to
prove that some part of data t ransmit ted over a network was missing from the packet
trace. S t i l l , it does not necessarily prove that the capturing appliance is at fault because
of other possibilities like asymmetrical routing. To determine packet loss of protocols on
U D P , addi t ional analysis and understanding of applicat ion protocol are required (providing
that applicat ion protocol carries identifiers that can be used).

The practice has shown that network forensic practitioners need tools tolerant of packet
loss. These tools have to use applicat ion protocol parsers that do not stop on the first invalid
data but contain a robust parsing engine that allows for rewinding the inval id por t ion of
data streams.

2.4 Applicat ion Protocol Identification

The applicat ion protocol identification is an inherent part of network forensics. Wi thou t the
precise knowledge of the appl icat ion protocol in question, the N F A T or N S M tool cannot
extract crucial information carried by the protocol because the tool would not know which
applicat ion protocol parser to use.

3https://www.ntop.org/products/packet-capture/pf_ring/
4https://www.ntop.org/products/traffic-recording-replay/n2disk/

14

https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/traffic-recording-replay/n2disk/

In digi ta l forensics, par t icular ly storage device or mobile device forensics, the artifacts
are identified by matching the hashes of investigated files to well-known ones stored i n
databases like Vi rus T o t a l 5 . This approach filters the system or otherwise uninteresting files
and allows the investigator to focus only on ind iv idua l files that most l ikely contain the
digi ta l evidence.

This approach works very well for static / constant files but is not direct ly applicable
to computer networks because of their entropy. Transferring the same static file using the
same applicat ion protocol may result in data streams wi th different characteristics. The
data stream checksum would differ because of variable internet, transport, and applica­
t ion protocol fields. Addi t ional ly , external aspects dependent on the transfer media type,
network ut i l izat ion, and quali ty of the service (retransmissions) may also differ.

The most straightforward method of appl icat ion protocol identification is to use well-
known protocol port numbers. Th is method utilizes port numbers present i n the transport
protocols, either T C P or U D P . The accuracy of this method is about 60-80% [47, 6] and
hugely depends on a part icular sample of applications in question. Services may use random
protocol ports usually defined by a service administrator or used impl ic i t ly for services like
mul t imedia streaming, multiplayer games, or various types of traffic tunneling.

Because L E A is t radi t ional ly focused on extracting as much informat ion/meta informa­
t ion as possible, we need to go deeper and improve the accuracy. Tradit ionally, there are
several directions we may take [51, 33, 48, 71, 76, 64].

Supervised machine learning [28] tackles the problem wi th learning by example. The clas­
sification model is created using annotated data sets. Usually, applicat ion protocols
contained in the data set are classified wi th reasonable accuracy. Protocols that were
not part of the t raining set are often miss-classified into one of the known categories.

Unsupervised machine learning [19] is a technique that impl ic i t ly expects that there are
unknown applicat ion protocols i n the data set. Th is method does not require a data
set to be trained on. Categorizat ion is done on the data during the classification
process. Simi lar samples of applicat ion protocols are assigned to the same category.

Semi-supervised machine learning [18] is a combinat ion of the approaches above. The
sample applicat ion communicat ion is categorized using the clustering/unsupervised
methods, and by applying the supervised method/s , we may infer a correct label for
otherwise unclassified samples.

Machine learning methods require data preprocessing that is concluded wi th feature
extraction. In this domain, we recognize the following feature categories w i t h respective
extraction methods [51, 33, 48, 71, 48]:

Pay load analysis extracts features from the packet contents (payload/s). Th is method
works well for unencrypted / plain-text applicat ion protocols but poorly for encrypted
ones.

Statistical methods [28, 35, 24] do not look into the data but use metadata, such as
information about packet size, inter-packet delays, etc. Th is method also works for
encrypted applicat ion protocols.

5https://www.virustotal.com/

15

https://www.virustotal.com/

H y b r i d methods combine pay load analysis w i th statist ical models. Ut i l i zed features may
be a combinat ion of the methods mentioned above. These methods work well for
encrypted and unencrypted applicat ion protocols [9, 41].

Add i t i ona l sources summarising advances i n applicat ion protocol identification / classi­
fication are surveys by Nguyen and Armi tage [51], Namdev et a l . [48], and Velan et a l . [71],
who focused on encrypted traffic. Recently, J A 3 emerged as a defacto standard for finger­
print ing clients and J A 3 S for fingerprinting service providers (servers) [1]. The best results
were achieved by pair ing J A 3 and J A 3 S to identify client and server applications / services.
Note that this identifies part icular implementat ion of client/service that may change in
t ime due to service updates [2]. Mercury by M c G r e w et a l . (Cisco) [44] is similar, based on
a broader feature set. Even though it may seem that fingerprinting of S S L / T L S has been
solved (using J A 3 or Mercury) , Hejcman's bachelor thesis [26] shows that it may be further
refined.

The contr ibut ion of this thesis is based on the previous work of the following authors.
E r i k Hjelmvik 's S P I D [27, 28] statistical-based algori thm, further improved by Kohnen [36],
is a very lightweight a lgori thm capable of appl icat ion protocol identification on the fly from
the beginning of the flows. Foroushani and Zinc i r -Heywood [20] have shown i n graphical
details possibilities of separation of different encrypted applicat ion protocols using statis­
t ica l information extracted from the flows. D a i et a l . [14] and Miskovic et a l . [46] studied
communication-based fingerprinting of mobile applications. E r m a n et a l . [18] described
a flow-based semi-supervised classification method that can accommodate known and un­
known applications.

Due to a significant investment required to create and mainta in t radi t ional applicat ion
protocol identification methods, current research is exploring addi t ional paths. A survey
done by Wang et a l . [75], who summarized possibilities achievable by applying Deep Learn­
ing, shows promising results. Compared to the aforementioned t radi t ional methods, Deep
Learning may ease maintainabi l i ty and overcome l imitat ions posed by time-consuming,
costly handcrafted features and frequent feature updates.

Nowadays, a need for fine-grained classification arises. F u et a l . [21] evaluated their
system C U M M A for classifying mobile messaging app service usage by jo in t ly modeling
user behavioral patterns, network traffic characteristics, and temporal dependencies. Using
a statistical-based approach, they can segregate messages into classes such as text, audio
notes, pictures, stream voice calls, location sharing, and short videos. They showed that
this segregation is possible without decryption keys and deep packet inspection of contents.

2.5 Overlay and Tunneling Network Protocols

Overlay networks are becoming popular for creating v i r tua l / logical networks over physical
infrastructure. Overlays are no longer a domain of t radi t ional V P N protocols like P P T P ,
G R E , L 2 T P , and O p e n V P N . Novel , encrypted by design, protocols such as Hamachi , Ze-
roTier , and W i r e G u a r d are increasing their popularity. Addi t ional ly , the rise of anonymiza-
t ion networks like Freenet 6 , the Tor Pro jec t 7 , and the Internet Invisibi l i ty Project (I2P) 8

complicated forensic investigation even further.

6 https: //github.com/f reenet/f red
Thttps: //www.torproject.org/
8 https: //geti2p.net/en/

16

http://www.torproject.org/

Support for some overlay or tunneling protocols in N F A T tools is rare. Pyflag does
not have any support. Xplico supports L 2 T P , V L A N , and P P P . More comprehensive sup­
port for encapsulation is implemented in N S M tools, par t icular ly Wireshark and TShark .
NetworkMiner supports G R E , 802.IQ, P P P o E , V X L A N , OpenFlow, S O C K S , M P L S , E o M -
P L S , and E R S P A N .

The reason is most l ikely that N F A T s dissect protocols to extract information. E n ­
crypted overlay networks are not par t icular ly interesting in this regard. O n the other hand,
their presence may be a piece of helpful information for the investigator [67]. The i r detec­
t ion and meta-information about an encapsulated content extraction extend the topic of
applicat ion protocol identification; see Section 2.4. This lack of overlay protocol support i n
N F A T s opens up novel research opportunities i n this field.

2.6 Network Forensics of B i g Data

Network forensic investigation is no longer a domain that deals w i th smal l packet traces
of a few hundred megabytes [34]. The penetration of high-speed internet connection for
smal l businesses, residents, and even mobile devices is more significant than ever. The
boom of mul t imedia consumerism in teen generations [11] pushes network infrastructures
to unprecedented growth, and naturally, we would expect N F A T s to keep up.

Contradictory, the scientific community 's interest in developing parallel or even better
scalable and distr ibuted (so as not to confuse wi th cloud forensics) N F A T s has not in ­
creased i n the last decade or so. Val lent in has done thorough state-of-the-art research i n
this area i n his dissertation [69] under the supervision of Vern Paxson, who covered the years
2005-2015. Dupl ica t ing a detailed overview of this period i n this work would be wasteful.
Val lent in concludes that "The academic treatment of large-scale network forensics is strik­
ingly thin." and that "The last decade of research on network forensics paints a fragmented
picture: only occasional interest, even i n security-centric venues." Val lent in concluded his
research i n the publ icat ion called " { V A S T } : A Unified P la t fo rm for Interactive Network
Forensics" [70]. Recently, V A S T was used by other research groups [60] as a backend for
distr ibuted computat ion.

Since Vallentin 's time, several other authors have researched the acceleration possibil i­
ties of distr ibuted network forensics. D 'Alessandro investigated options of scalable network
traffic classification using distr ibuted support vector machines [13] which are a crossover
w i t h Section 2.4. Ryšavý, Rych lý and J e ř á b e k [63, 29, 62] used Apache based technolo­
gies, namely Hadoop, Spark, Kafka , Ignite. The i r research focused on identification and
clustering in big data network flow traces.

17

Chapter 3

Research Summary

This chapter summarizes the research included in this dissertation and the related contri­
butions of mine. The research presented can be commonly classified into computer science,
computer security, digi ta l forensics, and network forensics. Section 3.1 summarizes the
work and highlights motivations and contributions for the presented research. For better
navigation, see Figure 1.1, which shows the relationships between research objectives and
selected papers.

Section 3.2 compose a list of seven selected papers included in this dissertation. A brief
overview of each publ icat ion is provided i n a summary form containing motivat ion and
related contributions. A d d i t i o n a l information is included as abstract, original c i ta t ion form,
and references to publications that cited the paper. In case other publications preceded the
paper, its citations are also referenced.

Section 3.3 contains a list of my other publications related to this dissertation but not
included. The list consists of technical reports and student conference publications that
were published before my doctoral studies but bear witness to my interest i n this field since
I was an undergraduate student.

Section 3.4 lists nat ional and international projects i n which I have part icipated. Sec­
t ion 3.5 enumerates the software and specimens that I have contributed. Section 3.6 con­
tains a list of presentations, posters, and invi ted speeches I have given i n the last decade
concerning the research covered by this dissertation. Section 3.7 and Section 3.8 list related
/ unrelated bachelor and master theses I have supervised.

3.1 Overview

This dissertation aims to help law enforcement agency (L E A) investigators conducting a
cr iminal investigation to be more efficient i n their work and lower the requirements for their
prel iminary understanding of technical details, al lowing them to focus on the investigative
side. Us ing Network Forensic and Analys is Tools along the lines of regular investigators
provides them wi th the means to process captured network communicat ion directly and
extract information instead of wait ing for dedicated I T professionals to preprocess the data
for them. To achieve this goal, I have part icipated i n several grant projects that focused
on the needs of network forensic investigators, researched various problems, and helped
develop the tools mentioned earlier.

A l o n g the way, we have faced several difficulties that posed excit ing research challenges
beyond engineering and required a rigorous scientific approach to be solved. We were asked

18

to develop a network forensic investigation tool to consume the captured network commu­
nication and extract information from the applicat ion messages. W i t h this information, the
investigator can bui ld a case.

The first challenge was to design the applicat ion architecture. The paper VII, describes
the first i teration of the Netfox Detective applicat ion. We tr ied to separate it into layers w i t h
well-defined interfaces focusing only on their respective concerns. Th is paper elaborates on
several challenges that we have encountered i n this implementat ion. The most severe one
was a recognition that the quali ty of the input data varies, and forensic appl icat ion needs
to incorporate this into their design.

Therefore, paper VI investigates the steps to take to fully overcome Internet service
providers' inabi l i ty to capture network communicat ion without packet loss. O r face other
factors like asymmetric routing, load-balancing, etc., that causes the captured data to be
incomplete. We have developed several heuristics that uti l ize information from lower than
applicat ion protocol layers to create abstractions of applicat ion messages that appl icat ion
protocol parsers can parse to extract the contents to form the evidence.

Furthermore, we realized that these heuristics and applicat ion protocol abstractions
might contribute to more precise applicat ion protocol identification and maybe allow us to
identify the exact applications that generated the communicat ion. Paper V describes our
achievements i n this regard. The result was an implementat ion of a framework that could
extract features from applicat ion data flow and conversations to allow us to benchmark sev­
eral approaches and machine learning algorithms. Once again, a l l of this was implemented
in the Netfox Detective N F A T applicat ion.

Paper IV targets in-field L E A operatives that need to gather evidence directly from
a wireless local area network (W L A N) . A l l o w i n g the investigator to access the L A N directly,
compared wi th an investigation of captured network communicat ion on the Internet service
provider level, introduces several benefits discussed i n the paper. Au toma t ing this k ind of
Man- in- the-Middle attack complies w i th our goal of al lowing regular investigators to obtain
the needed evidence without wai t ing for an I T specialist to get it for them.

The increasing amount of data t ransmit ted over the network required investigating new
processing methods. The clear choice to increase the performance of something embarrass­
ingly parallel is to scale up the computat ion. Paper III describes our attempts to design
and implement a scalable framework for network forensics. Previous papers V I I , V I , and
V show our approach to network data processing i n a single process on a single machine.
This paper investigates these methods and scales the processing l inearly while maintaining
the same robust incomplete data processing.

The last challenge we identified was the processing of tunneled traffic. Paper II describes
the common tunneling protocols that L E A investigators can encounter. We chose one of the
most complex protocols, the Generic Stream Encapsulation, to demonstrate how a complex
tunneling protocol can be dissected by our processing framework while maintaining its
properties of robustness for incomplete data processing.

The final Paper I concludes this dissertation. Th is paper describes a l l the methods and
principles we have designed to overcome the challenges posed by the incomplete data pro­
cessing for network forensic analysis on a single machine. This paper introduces the final
version of the Netfox Detective tool as a Proof-of-concept platform to demonstrate the
correctness and usabil i ty of the methods designed for network forensic investigation. A d ­
ditionally, a crossover to Network Security Moni to r ing is shown by using the platform to
visualize SIP Fraud attacks i n cooperation wi th Czech N R E N C E S N E T .

19

3.2 Papers Included in this Dissertation

This section provides an overview of selected papers included in this dissertation. A n expla­
nation of its motivat ion is included in each paper, and direct contributions are mentioned.
The author's par t ic ipat ion i n creating the publ icat ion is noted wi th the conference / journal
ranking or impact factor.

3.2.1 P a p e r I

Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-source
network forensics analysis too l" . In: Forensic Science International: Digital Investigation
35 (2020), p. 301019. I S S N : 2666-2817

Author ' s part icipat ion: 50 % l

Impact factor: 1.805 (Q l)

M o t i v a t i o n a n d contr ibut ions

This is the most recently published paper that summarizes my research i n the area of
network forensics and the development of an open source network forensics and analysis tool

- Netfox Detect ive 2 . Th i s too l served as a Proof-of-Concept platform that demonstrated
the functionality of each feature described i n the previous papers (except for scalabili ty and
research related to W i F i) and therefore demonstrated its correctness.

This paper described Netfox Detective, a novel, easy-to-use, powerful network forensic
platform for top-down investigations. The tool covered the forensic model's examination,
analysis, and investigation phases as defined by P i l l i [55]. The following contributions are
provided i n detail:

1. Introduction of the investigation profiles that contained a l l necessary data for sharing
the case between mult iple investigators.

2. The new method to reassemble the T C P stream based on heuristics (the method itself
was previously published [45], but the tool contains an improved version).

3. Improved identification of application-level sessions wi th in T C P streams; the system
could identify more applicat ion sessions compared to other tools.

4. Support for analysis of traffic encapsulated i n the G S E protocol; to the best of my
knowledge, Netfox Detective had been the only open source N F A T that supported
G S E .

5. A novel web page reconstruction approach; compared to other tools, the tool not
only extracted objects from H T T P communicat ion but also reconstructed the page
entirely (rewriting sources of a l l intercepted objects like C S S , pictures, video streams,
etc.). Pages were stored as M A F F archives, including snapshots showing how the
page changed over t ime. JavaScript was interpreted, and part icular A P I calls were
mocked to be injected wi th intercepted ones, like R E S T A P I calls. The reconstruction
of a web page required analysis and correlation of mult iple L 7 conversations because
a page usually references (includes) data from various domains.

1 Author participation states the contribution index used for publication submission into the Czech na­
tional database of research, development and innovations (RIV).

2 https: //github.com/nesf i t /Net f oxDetective

20

T h e paper has been cited in:

• Kous ik Bar ik , Saptarshi Das, K a r a b i Konar , Bipasha Chakrabar t i Banik , and A r -
chita Banerjee. "Exp lo r ing user requirements of network forensic tools". In: Global
Transitions Proceedings 2.2 (2021), pp. 350-354

Abstract

Network forensics is a significant sub-discipline of digi ta l forensics, which has become in­
creasingly important in an age where everything is connected. To deal w i th the amounts of
data and other network challenges, practitioners require powerful tools that support them.
This paper highlights a novel open source network forensic tool named Netfox Detective
that outperforms existing tools such as Wireshark or Ne tworkMiner i n certain areas. For
instance, it provides a heuristically based engine for traffic processing that can be easily ex­
tended. O u r appl icat ion tolerates malformed or missing conversation segments using robust
parsers (we rely not solely on the R F C description but heuristics). Besides out l ining the
tool's architecture and basic processing concepts, we also explain how it can be extended.
Lastly, a comparison w i t h similar tools is presented, and a real-world scenario is discussed.

3.2.2 P a p e r II

Jan P luska l , M i c h a l Kou tenský , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Foren­
sic Investigations of Tunneled Traffic: A Case Study". In: Revue roumaine des sciences
techniques. Série Electrotechnique et Energétique 64.4 (2019), pp. 429-434. I S S N : 0035-4066

Author ' s part icipat ion: 25 %
Impact factor: 0.76 (Q3)

M o t i v a t i o n a n d contr ibut ions

The present paper provided an overview of the expected points i n the network topology that
law enforcement agencies (L E A) can use to conduct lawful interception. We summarized
the most used tunneling protocols and discussed their features concerning digi ta l forensic
analysis. For each protocol, the possibil i ty of content extraction was explained. Also , a brief
overview of methods for encapsulated traffic classification was provided. The problem
of connection recovery from tunneled communicat ion was demonstrated using the G S E
protocol as an example.

Abstract

The increasing importance of network forensics in the investigations conducted by L a w
Enforcement Agencies is indisputable. Today's Internet does not carry ordinary T C P / I P
traffic but utilizes many other encapsulations and tunneling protocols. Th is paper provides
an overview of the most used tunneling protocols and their features wi th regard to digi tal
forensic analysis. A generic stream encapsulation case study describes how the investigator
can obtain encapsulated applicat ion data from wi th in .

21

Preceding related paper: J an P luska l , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Net­
work Forensics in G S E Overlay Networks". In: Proceedings of the 6th Conference on the
Engineering of Computer Based Systems. A C M . 2019. I S B N : 9781450376365

Author ' s part icipat ion: 60 %
Conference ranking: N / A

3.2.3 P a p e r III

V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . "Network Forensic Analys is for Lawful
Enforcement on Steroids, Dis t r ibu ted and Scalable". In: Proceedings of the 6th Conference
on the Engineering of Computer Based Systems. A C M . 2019. I S B N : 9781450376365

Author ' s part icipat ion: 30 %
Conference ranking: N / A

M o t i v a t i o n a n d contr ibut ions

This paper described a scalable architecture design for processing network packet traces
at that t ime work i n progress. Accord ing to our previous research, the processing speed
of Netfox Detective, which was around 100 Mbps , seemed too slow, and we were looking
for acceleration possibilities. Because the task of conversation tracking and consequence
transport protocol processing (creating abstractions of applicat ion messages, possibly using
T C P reassembling and heuristics) is embarrassingly parallel , we realized that we could scale
the job on mult iple devices instead of one processing unit.

The contr ibution of this paper lies in the design, performance, and properties discussion
of a new Network Forensic and Analys is Too l (N E A T) - Network Traffic Processing &
Analysis Cluster (N T P A C) . This specimen utilizes distr ibuted computing architecture to
improve the performance of network traffic analysis while being less demanding on hardware
requirements than related systems.

To extract evidence from network packets, we must thoroughly analyze them, perform­
ing several consecutive operations such as packet dissecting, flow identification, network
stream composit ion, applicat ion protocol identification, and message parsing and artifact
extraction. Unl ike the other N F A T tools, N T P A C could correctly process captured mal­
formed traffic without yielding misleading evidence. N T P A C performed a forensic analysis
of network traffic i n high-speed networks. The system design used a scalable approach to
run the tool on a single machine and a computing cluster. Compared to other N F A T tools,
N T P A C was an order of magnitude faster and was scaling linearly.

T h e paper has been cited in:

• Danie l Gustavsson. Molnforensik: En litteraturstudie om tekniska utmaningar och
mójligheter inom IT-forensik mot molnet. 2020

Abstract

Forensic analysis of intercepted network traffic focuses on finding and extracting commu­
nication evidence, such as instant messaging, email , V o I P calls, local izat ion information,
documents, and images. Due to the amount of data captured, this process is t ime-consuming
and complicated. Most commonly used forensic network analysis tools have l imi ted capa­
bilities for extensive data processing. In this paper, we are introducing a new tool that

22

achieves better data processing performance using available computing resources through
distr ibuted processing. Thanks to the technology used, this tool can be used on commodi ty
hardware in a local area network, in a dedicated computing cluster, or cloud environment.

Preceding related paper: V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . " A Scal­
able Archi tecture for Network Traffic Forensics". In: The Fifteenth International Confer­
ence on Networking and Services ICNS 2019. Athens, G R : The International Academy,
Research and Industry Associat ion, 2019, pp. 32-36. I S B N : 9781612087115

Author ' s part icipat ion: 30 %
Conference ranking: B 3 (Qualis)

T h e paper has been cited in:

• Kous ik Bar ik , Saptarshi Das, K a r a b i Konar , Bipasha Chakrabar t i Banik , and A r -
chita Banerjee. "Exp lo r ing user requirements of network forensic tools". In: Global
Transitions Proceedings 2.2 (2021), pp. 350-354

3.2.4 P a p e r I V

M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . "Automated Man- in- the-Middle A t ­
tack Against W i - F i Networks". In: The Journal of Digital Forensics, Security and Law:
JDFSL 13.1 (2018), pp. 59-80. I S S N : 1558-7215

Author ' s part icipat ion: 30 %
Impact factor: N / A

M o t i v a t i o n a n d contr ibut ions

This paper is based on M a r t i n Vondráček ' s bachelor thesis [105], deals w i th the automation
of M i t M attack on W i - F i networks and is also supported by software [42]. Due to its wireless
nature, W i - F i networks constitute an ideal data source for L E A investigation. Captur ing
traces from local W i - F i may br ing new information because local services (non-routable on
the public internet) tend to be poorly secured. The addi t ional benefit of being connected
to the local network is the more offensive possibil i ty of conducting M i t M attacks. Various
commercial vendors developed and sold tact ical solutions to support this use case.

The contr ibution of this research was gathering state-of-the-art tools and approaches
for penetration of wireless networks and developing an overlay applicat ion that allowed for
a regular, non-technical person to operate i t . In this way, field L E A operators could gather
evidence from wireless networks without the complex knowledge of an I T professional.

Addi t ional ly , we focused on the detection possibilities of wireless attacks on devices
intended for home use. The analysis showed that even without enterprise-level monitoring
and logging, an attack on these low-power devices introduces a noticeable increase i n latency
that can be monitored, and an alert can be raised.

23

The paper has been cited in :

• T i n a W u , Frank Breitinger, and Stephen O'Shaughnessy. "D ig i t a l forensic tools:
Recent advances and enhancing the status quo". In: Forensic Science International:
Digital Investigation 34 (2020), p. 300999

• Mohamed A m i n e Khel i f , J o r d á n e Lorandel , Ol iv ie r Romain , Ma t th i eu Regnery, Denis
Baheux, and Gui l l aume B a r b u . "Toward a Hardware Man- in- the-Middle At tack on
P C I e Bus for Smart D a t a Replay" . In: 2019 22nd Euromicro Conference on Digital
System Design (DSD). I E E E . 2019, pp. 230-237

• Mohamed A m i n e Khel i f , J o r d á n e Lorandel , Ol iv ie r Romain , Ma t th i eu Regnery, Denis
Baheux, and Gui l laume Barbu . "Toward a hardware man-in-the-middle attack on pcie
bus". In: Microprocessors and Microsystems 77 (2020), p. 103198

• Cr i sp in R Jose. "Exp lo r ing Security Process Improvements for Integrating Security
Tools wi th in a Software App l i ca t i on Development Methodology". P h D thesis. C o l ­
orado Technical University, 2020

• C y n t h i a Valer ia M a z a Gonzalez and F a b i á n Gustavo Roch ina Manobanda . "Estado
del arte ut i l izando mapeo s i s t emá t i co de seguridad de redes domés t i c a s W I F I en
familias ecuatorianas". B . S . thesis. 2021

Current ly used wireless communicat ion technologies suffer security weaknesses that can
be exploited, al lowing eavesdropping or spoofing of network communicat ion. Th is paper
presents a pract ical tool that can automate the attack on wireless security. The package
developed, wif imi tm, provides functionality to automate M i t M attacks in a wireless en­
vironment. The package combines several existing tools and attack strategies to bypass
wireless security mechanisms, such as W E P , W P A , and W P S . The tool presented can be
integrated into a solution for automated penetration testing. Also , a popular izat ion of the
fact that such attacks can be easily automated should raise public awareness of the state
of wireless security.

Preceding related paper: M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . " A u ­
tomation of M i t M At t ack on W i - F i Networks". In: 9th International Conference on Digital
Forensics & Cyber Crime. V o l . 2018. 216. Springer International Publ i sh ing , 2017, pp. 207-

T h e paper has been cited in:

• T i n a W u . " D i g i t a l forensic investigation of IoT devices: tools and methods". P h D
thesis. Univers i ty of Oxford, 2020

• Due Le Tran , Thong Trung Tran, K h a n h Quoc Dang, Reem Alkanhe l , and A m m a r
Muthanna . "Malware Spreading M o d e l for Routers in W i - F i Networks". In: IEEE
Access 10 (2022). A l l Open Access, G o l d Open Access, pp. 61873-61891. D O I : 10 .
1109/ACCESS.2022.3182243

Abstract

220. I S B N : 9783319736969
Author ' s par t ic ipat ion

Conference ranking
3 0 %
N / A

24

3.2.5 P a p e r V

Jan P luska l , O n d ř e j Lichtner, and O n d ř e j R y š a v ý . "Traffic Classification and App l i ca t i on
Identification in Network Forensics". In: Fourteenth Annual IFIP WG 11.9 International
Conference on Digital Forensics. E d . by Gi lber t Peterson and Sujeet Shenoi. New Delh i ,
I N : Springer International Publ i sh ing , 2018, pp. 161-181. I S B N : 9783319992778

Author ' s part icipat ion: 40 %
Conference ranking: B 5 (Qualis)

M o t i v a t i o n a n d contr ibut ions

This paper introduced a novel approach to appl icat ion protocol identification and appl i ­
cation (that generated the communication) classification. The identification/classification
of the appl icat ion protocol is necessary for any Network Security Mon i to r ing tool or Net­
work Forensic Analys is Too l to extract any useful information from the applicat ion layer.
Tools use applicat ion parsers to extract this information, but without the knowledge of
the applicat ion protocol, the tool is unaware of which applicat ion parser to use. V a r i ­
ous applicat ion protocol parsers may consume any data; therefore, their acceptance of the
applicat ion data stream cannot be used for identification purposes. The abi l i ty to also iden­
tify an applicat ion that generated the communicat ion yields addi t ional value to a forensic
investigator.

The contributions of this paper are presented i n the following points:

Testbed that implemented three classification methods, namely Bayesian Network, R a n ­
dom Forests, and Enhanced Stat is t ical Probabi l i ty Identification, was presented. A d ­
ditionally, feature extraction was implemented as a modular framework allowing users
to create and experiment w i th new features. The entire testbed used G U I for ex­
perimenting wi th feature el imination, classification, and visual result analysis. The
analysis allowed for various feature comparisons and visualizat ion of the feature cor­
relation matr ix . The user could iterate and experiment w i th the testbed to proceed
wi th the hyperparameter tuning.

Dataset created i n laboratory environment in cooperation wi th various students simulat­
ing real act ivi ty / work on staged computers, over mult iple days containing 19,5 G B
of annotated captured network communicat ion i n the form of enhanced P C A P files.
Captur ing traffic using N a m o n 3 [115, 23], we have created a unique, annotated, cap­
tured network trace dataset that has been publ ic ly available since publicat ion.

Feature elimination as an automated process that allowed us to create op t imal classi­
fiers that omit correlated features for a part icular applicat ion protocol or appl icat ion
communication.

Classification of applications as a finer-grained complement to the identification of the
application protocol was described.

Bayesian Network classifier enhanced wi th automated feature el iminat ion was created
and trained on the aforementioned dataset.

R a n d o m Forests classifier enhanced wi th automated feature el iminat ion was created and
trained on the aforementioned dataset.

3 https: //jzlka.github.io/namon/

25

Enhanced Statistical Probabil i ty Identification method was developed, benchmark-
ed, and compared to a baseline formed by Bayesian Network and R a n d o m Forests
classifiers. In comparison, this method d id not embed explicit feature el iminat ion
because it is an inherent part of i t .

T h e paper has been cited in:

• H i l m a n d K h a n , Sarmad Hanif, and Bakht M u h a m m a d . " A survey of machine learning
applications in d igi ta l forensics". In: Trends in Computer Science and Information
Technology 6.1 (2021), pp. 020-024

• Kous ik Bar ik , A A b i r a m i , K a r a b i Konar , and Saptarshi Das. "Research Perspective
on D i g i t a l Forensic Tools and Investigation Process". In: Illumination of Artificial
Intelligence in Cybersecurity and Forensics. Springer, 2022, pp. 71-95

Abstract

Network traffic classification is essential for network monitoring, security analyses, and
digi ta l forensics. Wi thou t an accurate traffic classification, the computat ional demands
imposed by analyzing a l l IP traffic flows are enormous. Classification can also reduce the
number of flows that must be examined and priori t ized for analysis i n forensic investigations.

This chapter presents an automated feature el iminat ion method based on a feature
correlation matr ix . Addi t ional ly , it proposes an enhanced statist ical protocol identification
method compared to Bayesian network and random forests classification methods that
offer high accuracy and acceptable performance. E a c h classification method is used wi th
a subset of features that best suit the method. Methods are evaluated based on their abi l i ty
to identify the appl icat ion layer protocols and the applications themselves. Experiments
demonstrate that the random forests classifier yields the most promising results, while the
proposed enhanced statist ical protocol identification method provides an interesting trade­
off between higher performance and slightly lower accuracy.

3.2.6 P a p e r V I

Petr M a t o u š e k , Jan P luska l , O n d ř e j Ryšavý , V l a d i m í r Veselý, M a r t i n K m e t , F i l i p Karp í šek ,
and M a r t i n Vymlá t i l . "Advanced Techniques for Reconstruction of Incomplete Network
Da ta" . In: Digital Forensics and Cyber Crime. E d . by Joshua I. James and Frank Bre-
itinger. C h a m : Springer International Publ ish ing, 2015, pp. 69-84. I S B N : 9783319255125

Author ' s part icipat ion: 20 %
Conference ranking: N / A

M o t i v a t i o n a n d contr ibut ions

This paper deals w i t h the reconstruction of incomplete network data and thus answers
the research question proposed by the previous publ icat ion [72]. Because network data is
volatile and what is not captured is lost forever, we need to create a robust framework
supporting these robust applicat ion protocol parsers to extract as much information as
possible from the applicat ion conversation. Th is paper advances Netfox Framework, orig­
inal ly developed as a part of my master thesis [60], and adds addi t ional functionalities,
namely support for the processing of encrypted communicat ion implemented by Miros lav
S l ivka [92], and improved by V i l i a m Letavay [34].

26

The main contr ibution of this paper is the robust a lgori thm for reassembling potential ly
incomplete network data, its heuristics, and its abi l i ty to signal this information to the
applicat ion protocol parsers. This way, conversation tracking is not only using data from
Internet (L3) and Transport (L4) layers but also embeds the L 4 reassembling. L7PDUs are
introduced as abstractions of applicat ion messages.

The analysis showed that without this incorporation of reassembling into the conversa­
t ion tracking, the other N F A T s provided incorrect conversation tracking i n case part icular
parts of T C P signaling were missing, thus giving the investigators incorrect results. The
possibil i ty of jo ining mult iple T C P flows into one may lead to false evidence.

Furthermore, this paper presented a novel approach to Web Mail analysis. It used mul­
t iple H T T P decoders to process webmail communicat ion and search for patterns commonly
used in that communicat ion. Us ing this approach, we were able to extract the contents of
webmails from captured traces of several online email services.

The precondit ion for this webmail and other analyses was implementing S S L / T L S de­
crypt ion support into the tool . W i t h this module activated, it was possible to run appl i ­
cation protocol parsing modules (Snoopers) on decrypted traffic under one of the following
conditions. E i ther a private server key was included wi th the packet traces in case R S A
(non-ephemeral) key negotiation was used. O r pre-master secrets from M I T M proxy were
included.

Lastly, the paper discussed the possibilities of B i t co in traffic detection and metadata ex­
tract ion. Th is functionality was tested i n a real-world investigation and helped provide
evidence for a c r imina l investigation of foreign (E U) L E A .

T h e paper has been cited in:

• Yanchao Wang, Zhongqian Su, and D a y i Song. "F i l e Fragment Type Identification
wi th Convolut ional Neura l Networks". In: Proceedings of the 2018 International
Conference on Machine Learning Technologies. A C M . 2018, pp. 41-47

• D a v i d Muelas, Jorge E Lopez de Vergara, Javier Ramos, Jose Lu i s Garcia-Dorado, and
Javier A r a c i l . " O n the impact of T C P segmentation: Experience i n V o I P monitoring".
In: 2011 IF IP /IEEE Symposium on Integrated Network and Service Management
(IM). I E E E . 2017, pp. 708-713

• Haidong Ge, N i n g Zheng, L i n C a i , M i n g X u , Tong Qiao, Tao Yang , J inka i Sun, and
Sudeng H u . "Adapt ive C a r v i n g M e t h o d for L ive F L V Streaming". In: International
Conference on Collaborative Computing: Networking, Applications and Worksharing.
Springer. 2017, pp. 554-566

• D a v i d Muelas Recuenco. "Flexib le Network Moni to r ing and Traffic Analys is Tech­
niques for the Future Internet". P h D thesis. Univers idad A u t o n o m a de M a d r i d ,
2019

Abstract

Network forensics is a method of obtaining and analyzing digi ta l evidence from network
sources. Network forensics includes data acquisition, selection, processing, analysis and
presentation to investigators. Due to the large volumes of t ransmit ted data, acquired
information can be incomplete, corrupted, or disordered, making further reconstruction
difficult. In this paper, we address the issue of advanced parsing and reconstruction of

27

incomplete, corrupted, or disordered data packets. We introduce a technique that recovers
T C P or U D P conversations so that applicat ion parsers can further analyze them. The
presented method is implemented i n a new network forensic tool called Netfox Detective.
We also discuss current challenges in parsing webmail communicat ion, S S L decryption, and
B i t co in detection.

3.2.7 P a p e r V I I

Jan P luska l , Petr M a t o u š e k , O n d ř e j Ryšavý , M a r t i n K m e t , V l a d i m i r Veselý, F i l i p Karp í šek ,
and M a r t i n Vymlá t i l . "Netfox Detective: A tool for advanced network forensics analysis".
In: Proceedings of Security and Protection of Information (SPI) 2015. Brno , C Z : Brno
Univers i ty of Defence, 2015, pp. 147-163. I S B N : 9788072319978

Author ' s part icipat ion: 15 %
Conference ranking: N / A

M o t i v a t i o n a n d contr ibut ions

This paper describes the first i teration of the implementat ion of the Netfox Detective tool .
The focus is given on the Netfox Framework's architecture, that is, the implementat ion of
business logic and Netfox Detective, which stood for the implementat ion of the G U I .

The contr ibution of this work was the composit ion of several d ip loma theses and related
research projects. M y master thesis [60] produced the Netfox Framework, supported by
publications at student conferences [73, 65], which also contained a re-implementation of
my bachelor thesis [56], supported by publ icat ion at student conferences [57]. M a r t i n
Mares 's master thesis [41] developed the G U I - Netfox Detective. M a r t i n Kmet ' s master
thesis [28] dealt w i t h detecting of R T P traffic without signaling information obtained from
SIP. V l a d i m i r Vesely's PmLib [98] implemented logic to open P C A P files and parsed packets
up to the transport layer.

This paper proposed a research question regarding the importance of correct processing
of incomplete network data. The concrete method that allows the extraction of V o I P
communicat ion without signaling from SIP [28], even when a por t ion of the communicat ion
is missing, is presented wi th a more generic solution described in the following paper [45].

T h e paper has been cited in:

• Beatr iz Pa r r a de Gal lo . "Advances i n the appl icat ion of Ontologies in the area of
D ig i t a l Forensic Electronic M a i l " . In: IEEE Latin America Transactions 17.10 (2019),
pp. 1694-1705

• Carol ine Wanj i ra Machar ia . "Main ta in ing a bi tcoin address repository through fo­
cused web crawling". M A thesis. Strathmore University, 2017

Abstract

Network forensics is a process of capturing, collecting, and analyzing network data for infor­
mat ion gathering, legal evidence, or intrusion detection. The new Internet generation opens
novel opportunities for cybercrime activities and security incidents using network applica­
tions. Security administrators and L E A (Law Enforcement Agency) officers are challenged
to use advanced tools and techniques to detect unlawful or unauthorized activities. In case
of grave suspicion of c r imina l activity, network forensic tools and techniques are used to find

28

legal evidence in a captured network communicat ion that proves or disproves the suspect's
part icipat ion in that activity.

Today, various commercial or free tools for network forensic analysis are available, e.g.,
Wireshark, Network Miner , NetWitness , X p l i c o , Netlntercept, or PacketScan. M a n y of
these tools fail to successfully reconstruct communicat ion when using incomplete, dupl i ­
cated, or corrupted input data. Investigators also require advanced automatic processing
of applicat ion data that helps them to see the actual content of the conversation, including
chats, V o I P talks, file transmission, email exchange, etc.

Our research focuses on designing and implementing a modular framework for network
forensics w i th advanced possibilities for applicat ion reconstruction. The proposed archi­
tecture consists of (i) input packet processing, (ii) an advanced reconstruction of L 7 con­
versations, and (iii) application-based analysis and presentation of L 7 conversations. Our
approach employs various advanced reconstruction techniques and heuristics that work even
w i t h corrupted or incomplete data, e.g., one-directional flows, missing synchronization, un­
bounded conversations, etc.

The proposed framework was implemented in a tool called Netfox Detective developed
by our research group. This paper shows its architecture from a functional and logical
point of view and its applicat ion i n the reconstruction of webmail traffic, VoIP , and R T P
transmissions.

3.3 Relevant Publications not Included in this Dissertation

1. Jan P luska l . Netfox Detective 2.0 - Nástroj pro sítovou forenzní analýzu. Czech.
Tech. rep. F IT-TR-2017-06 , C Z , 2017, p. 16

Author ' s par t ic ipat ion: 100%

2. Jan P luska l , O n d ř e j Lichtner, and O n d ř e j Ryšavý . Netfox Detective - Identifikace
aplikačních protokolů pomocí algoritmů strojového učení. Czech. Tech. rep. F I T - T R -
2017-05, C Z , 2017, p. 19

Author ' s part icipat ion: 90 %

3. Jan P luska l , O n d ř e j Ryšavý , and V l a d i m i r Veselý. "NetFox - The network forensic
extandable analysis tool" . In: 6th AFCEA Student Conference Future of Information
and Communication Technology. Bucharest, R O : Universi ty Pol i tehnica of Bucharest,
2014, pp. 68-71. I S B N : 9786065510470

Author ' s part icipat ion: 90 %

4. Jan P luska l . "NetFox.Framework - The network forensic extandable analysis tool" .
In: Proceedings of the 20th Conference STUDENT EEICT 2014 Volume 2. Brno , C Z :
Brno Univers i ty of Technology, 2014, pp. 280-282. I S B N : 9788021449237

Author ' s par t ic ipat ion: 100%

5. Jan P luska l . " A n a l ý z a a rekonstrukce komunikace typu instant messaging (Y M S G a
I C Q) " . Czech. In: Proceedings of the 18th Conference Student EEICT 2012 Volume
1. Brno , C Z : Facul ty of Information Technology B U T , 2012, pp. 176-178. I S B N :

9788021444607

Author ' s par t ic ipat ion: 100%

29

3.4 Research Projects and Grants

1. T E N A C I T y : Travell ing intel l igENce Against C r i m e and Terrorism, team
member, EC EU - HORIZON EUROPE, 101074048, 2022-2025

2. Development of Decoder for IP Traffic, deputy team leader, team member,
VH20192021043, Ministry of the interior of the Czech Republic, 2019-2021

3. M o d e r n and O p e n Study Techniques, team member, O P V V V P 0 2 E S F , Min­
istry of Education, Youth and Sports Czech Republic, 2015-2020

4. Integrated Platform for Analysis of Digital D a t a from Security Incidents,
team member, VI20172020062, Ministry of the interior of the Czech Republic, 2017-
2018

5. Us ing Network Analysis Techniques to Prevent D a t a Loss, research leader,
Safetica, MPO, 2017

6. Research and application of advanced methods in I C T , team member, F I T -
S-14-2299, Brno University of Technology, 2014-2016

7. M o d e r n tools for detection and mitigation of cyber criminality on the New
Generation Internet, team member, VG20102015022, Ministry of the interior of
the Czech Republic, 2010-2015

3.5 Software and Specimen

1. Letavay V i l i a m , P lu ska l Jan, Veselý Vlad imí r , and Grég r M a t ě j . HTTP Keylogger -
tool for web activity monitoring, [Computer Software]. 2019

2. Letavay V i l i a m , P lu ska l Jan, and J e ř á b e k K a m i l . Banana Pi BPI-R2 Cluster Proto­
type. [Specimen]. 2018

3. P lu ska l Jan. SupportApp. [Computer Software]. 2018

4. P lu ska l Jan. Netfox Detective 2.0 - Nástroj pro sítovou forenzní analýzu. [Computer
Software]. 2017

5. Zuzelka Josef, P lu ska l Jan , R y š a v ý O n d ř e j , and M a t o u š e k Petr . Modul pro zpracování
zapouzdřeného sítového provozu. [Computer Software]. 2017

6. J a n e č e k Ví t , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Modul pro zpracování
zapouzdřeného sítového provozu. [Computer Software]. 2017

7. P lu ska l Jan. Appldent - Tool for Network Application Protocols Identification. [Com­
puter Software]. 2017

8. Vondráček M a r t i n , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Automation of
MitM Attack on WiFi Networks. [Computer Software]. 2016

9. M a r u š i c Marek, P lu ska l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Automatization of
MitM Attack for SSL/TLS Decryption, software. [Computer Software]. 2016

30

10. H v ě z d a M a t ě j , P lu ska l Jan , R y š a v ý O n d ř e j , and M a t o u š e k Petr . Network Forensics
Distrubuted Platform. [Computer Software]. 2016

11. Letavay V i l i a m , P l u s k a l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Reconstruction of
Captured Communication on iOS Platform. [Computer Software]. 2016

12. J a n e č e k Ví t , P lu ska l Jan, R y š a v ý O n d ř e j , and M a t o u š e k Petr . Web Traffic Data
Export to MAFF. [Computer Software]. 2016

13. P lu ska l Jan, K m e t M a r t i n , Ka rp í š ek F i l i p , R y š a v ý O n d ř e j , Veselý Vlad imí r , and
M a t o u š e k Petr . Netfox Detective - a network forensics tool for analyzing network
traffic. [Computer Software]. 2015

14. P lu ska l Jan, Veselý Vlad imí r , R y š a v ý O n d ř e j , and M a t o u š e k Petr . Netfox.Framework
- Network traffic decoder and content analyzer. [Computer Software]. 2013

3.6 Invited Speeches, Presentations and Posters

1. Jan P luska l . Workshop on Correlating Blockchain Activity with Real-Life Events and
Users. [Invited speech]. ISS W o r l d A s i a , Duba i , Uni ted A r a b Emirates, 2022

2. Jan P luska l . Intercepting and Collecting Web Evidence in the Times of TLS1.3 and
HTTP 3.0. [Invited speech]. ISS W o r l d A s i a , Duba i , Un i t ed A r a b Emirates , 2022

3. Jan P luska l . Intercepting and Collecting Web Evidence in the Times of TLS1.3 and
HTTP 3.0. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic , 2021

4. Jan P luska l and Veselý V lad imí r . Intercepting and Collecting Web Evidence in the
Times of TLS1.3 and HTTP 3.0. [Invited speech]. ISS W o r l d A s i a , Duba i , Uni ted
A r a b Emirates , 2021

5. Jan P luska l . Cryptocurrency Investigation Workshop. [Invited speech]. ISS W o r l d
As i a , Duba i , Un i t ed A r a b Emirates, 2020

6. Jan P luska l . Towards Fully Automated Infinitely Scalable and Maximally Effective
Password Cracking of Encrypted Documents. [Invited speech]. ISS W o r l d A s i a , Duba i ,
Un i t ed A r a b Emirates , 2020

7. Jan P luska l . ISS MEA 2020 - SSL/TLS Interception Workshop (TLS 1.3 Edition).
[Invited speech]. ISS W o r l d M E A , Duba i , Un i t ed A r a b Emirates, 2020

8. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech].
ISS W o r l d A s i a , K u a l a Lumpur , Malays ia , 2019

9. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech].
ISS W o r l d M E A , Duba i , Un i t ed A r a b Emirates , 2019

10. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech].
ISS W o r l d Europe, Prague, Czech Republ ic , 2019

11. Jan P l u s k a l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech].
ISS W o r l d A s i a , K u a l a Lumpur , Malays ia , 2018

31

12. Jan P luska l and Veselý V lad imí r . TLS/SSL Decryption Workshop. [Invited speech].
ISS W o r l d Europe, Prague, Czech Republ ic , 2018

13. Jan P luska l , O n d ř e j Ryšavý , and M a t o u š e k Petr . Detection, and Analysis of SIP
Fraud Attack on 100Gb Ethernet with NEMEA System. [Invited speech]. Cybersecu-
ri ty and Privacy, Pr i s t ina , Kosovo, 2017

14. Jan P luska l . Detection, and Analysis of SIP Fraud Attack on 100Gb Ethernet with
NEMEA System. [Presentation]. I R T F N M G R Workshop, Ber l in , 2016

15. Jan P luska l , O n d ř e j Ryšavý , and Petr M a t o u š e k . " O n the Identification of App l i ca ­
tions from Captured Network Traffic". In: 8th International Conference on Digital
Forensics & Cyber Crime. [Poster]. New York , 2016. U R L : https://prezi.com/
wnxlghgkocti

16. Jan P l u s k a l and O n d ř e j R y š a v ý . Network Forensic Tool Netfox Detective. [Invited
speech]. Cybersecuri ty and Privacy, Pr i s t ina , Kosovo, 2016

17. Jan P luska l , V lad imí r Veselý, M a t ě j Grégr , and O n d ř e j Ryšavý . TLS/SSL Decryption
Workshop. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic , 2016

18. Jan P l u s k a l and O n d ř e j R y š a v ý . Concepts of Intercepted Communication Processing
with Netfox Detective. [Invited speech]. ISS W o r l d Europe, Prague, Czech Republ ic ,
2015

3.7 Selected Relevant Supervised Theses

1. Š imon P o k o r n ý . " M i g refaktorizace Netfox Detective na . N E T 5". Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2021. U R L : https://www.fit.vut.cz/study/thesis/22857/

2. R icha rd Stehl ík . " Ú t o k na W i F i síť s v y u ž i t í m ESP32 /8266" . Czech. Master 's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2021.
U R L : https://www.fit.vut.cz/study/thesis/23435/

3. M a r t i n a Zembjaková . "Network Forensics Tools Survey and Taxonomy". Master 's
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology,
2021. U R L : https://www.fit.vut.cz/study/thesis/23022/

4. T o m á š Cikel. " B e z p e č n o s t n í a n a l ý z a d o m á c í IoT s í t ě" . Slovak. Bachelor's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2020.
U R L : https://www.fit.vut.cz/study/thesis/23135/

5. Juraj K u b i š . "SS7 Honeypoty - p r o a k t i v n í ochrana prot i p o d v o d ů m v mobi ln ích
s í t ích". Czech. Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty
of Information Technology, 2020. U R L : https://www.fit.vut.cz/study/thesis/
23130/

6. Jozef Zuzelka. "Con t ro l of Ex te rna l Devices on macOS to Prevent D a t a Leaks".
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2020. U R L : https://www.fit.vut.cz/study/thesis/22637/

32

https://prezi.com/
https://www.fit.vut.cz/study/thesis/22857/
https://www.fit.vut.cz/study/thesis/23435/
https://www.fit.vut.cz/study/thesis/23022/
https://www.fit.vut.cz/study/thesis/23135/
https://www.fit.vut.cz/study/thesis/
https://www.fit.vut.cz/study/thesis/22637/

7. T o m á š A m b r o ž . "Ana ly t i cké webové p r o s t ř e d í pro zp racován í síťové komunikace".
Czech. Master 's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22049/

8. Dan ie l Dušek . "Web App l i ca t i on Penetrat ion Testing Automat ion" . Master 's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019.
U R L : https://www.fit.vut.cz/study/thesis/21678/

9. L u k á š Pe t rov ič . " A n a l ý z a anomál i í v už iva te l ském chování" . Czech. Master 's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019.
U R L : https://www.fit.vut.cz/study/thesis/21474/

10. M a r t i n Vondráček . "Security Analys is of Immersive V i r t u a l Real i ty and Its Implica­
tions". Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22158/

11. S imon Pod l e sný . "Automatizace M I T M ú t o k ů za použ i t í j ednodeskového poč í t a če" .
Czech. Bachelor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/22142/

12. V i l i a m Letavay. "Zpracován í síťové komunikace v d i s t r i b u o v a n é m p r o s t ř e d í " . Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2018. U R L : https://www.fit.vut.cz/study/thesis/20432/

13. Hana S lámová . "Refaktorizace síťového forenzního n á s t r o j e Netfox Detective". Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2018. U R L : https://www.fit.vut.cz/study/thesis/20380/

14. T o m á š Chomo. "Identifikace ap l ikačn ích p ro toko lů" . Czech. Bachelor's thesis. Brno ,
C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2017. U R L :
https://www.fit.vut.cz/study/thesis/20191/

15. Jozef Zuzelka. " N á s t r o j pro zachycení síťového provozu s a p l i k a č n í m tagem". Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2017. U R L : https://www.fit.vut.cz/study/thesis/20013/

16. J i nd ř i ch Dudek. "Rekonstrukce zachycené komunikace ze sociálních s í t í " . Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18433/

17. M a t ě j Hvězda . "D i s t r i buované zp racován í zachycené síťové komunikace". Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18434/

18. V i l i a m Letavay. "Rekonstrukce zachycené komunikace na p l a t fo rmě i O S " . Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18557/

19. Marek Maruš i c . "Automatizace M i t M ú t o k u pro dešifrování S S L / T L S " . Czech. Bach­
elor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Information Tech­
nology, 2016. U R L : https://www.fit.vut.cz/study/thesis/18593/

33

https://www.fit.vut.cz/study/thesis/22049/
https://www.fit.vut.cz/study/thesis/21678/
https://www.fit.vut.cz/study/thesis/21474/
https://www.fit.vut.cz/study/thesis/22158/
https://www.fit.vut.cz/study/thesis/22142/
https://www.fit.vut.cz/study/thesis/20432/
https://www.fit.vut.cz/study/thesis/20380/
https://www.fit.vut.cz/study/thesis/20191/
https://www.fit.vut.cz/study/thesis/20013/
https://www.fit.vut.cz/study/thesis/18433/
https://www.fit.vut.cz/study/thesis/18434/
https://www.fit.vut.cz/study/thesis/18557/
https://www.fit.vut.cz/study/thesis/18593/

20. M a r t i n Vondráček . "Automat ion of M i t M At t ack on W i F i Networks". Bachelor's
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology,
2016. U R L : https://www.fit.vut.cz/study/thesis/18596/

21. T o m á š Bruckner. "Rekonstrukce zachycené komunikace a dolování dat na sociální
síti Facebook". Czech. Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology,
Facul ty of Information Technology, 2015. U R L : https : //www. f i t . vut. cz/study/
thesis/17307/

22. Zbyněk Lazá rek . " A u t o m a t i z o v a n á detekce t r a n s p o r t n í h o protokolu v zachycené
síťové komunikaci" . Czech. Bachelor's thesis. Brno , C Z : Brno Universi ty of Tech­
nology, Facul ty of Information Technology, 2015. U R L : https : //www. f i t . vut. cz/
study/thesis/17384/

3.8 Other Supervised Theses

1. Petr U r b á n e k . "Vytvořen í b r á n y pro c h y t r á zař ízení X i a o m i Aqara" . Czech. Bache­
lor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Tech­
nology, 2021. U R L : https://www.fit.vut.cz/study/thesis/23856/

2. D a v i d Spavor. "Gene rován í Blazor komponent z C # t ř í d " . Czech. Bachelor's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2021.
U R L : https://www.fit.vut.cz/study/thesis/23588/

3. M i c h a l Orl íček. " S y s t é m na s p r á v u p rog ramovac ích konvencí v projektu". Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2021. U R L : https://www.fit.vut.cz/study/thesis/23487/

4. Jan Lorenc. "Detekce anomá l i í na zák ladě stavu R Q A s y s t é m u " . Czech. Bachelor's
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology,
2021. U R L : https://www.fit.vut.cz/study/thesis/23935/

5. T o m á š Kolarč ík . "Detekce p ř í t o m n o s t i osob p o m o c í IoT senzorů" . Czech. Master 's
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology,
2021. U R L : https://www.fit.vut.cz/study/thesis/21429/

6. Petr D r á b e k . " M u l t i p l a t f o r m n í mobi ln í vče lařský den ík" . Czech. Bachelor's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2020.
U R L : https://www.fit.vut.cz/study/thesis/22789/

7. M i l a n M u č k a . "Nízkoenerge t ický G P S loká to r s p o u ž i t í m L o R a s í t ě" . Czech. Master 's
thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology,
2020. U R L : https://www.fit.vut.cz/study/thesis/22819/

8. Danie l Šerý. "Optimal izace L I N Q pro . N E T " . Czech. Bachelor's thesis. Brno , C Z :
Brno Univers i ty of Technology, Facul ty of Information Technology, 2020. U R L : https:
//www.fit.vut.cz/study/thesis/23085/

9. M i c h a l T ichý . " P ř e k l a d D o t V V M s t r á n e k do Accelerated Mobi le Pages". Czech.
Bachelor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Information
Technology, 2020. U R L : https://www.fit.vut.cz/study/thesis/22954/

34

https://www.fit.vut.cz/study/thesis/18596/
https://www.fit.vut.cz/study/thesis/23856/
https://www.fit.vut.cz/study/thesis/23588/
https://www.fit.vut.cz/study/thesis/23487/
https://www.fit.vut.cz/study/thesis/23935/
https://www.fit.vut.cz/study/thesis/21429/
https://www.fit.vut.cz/study/thesis/22789/
https://www.fit.vut.cz/study/thesis/22819/
http://www.fit.vut.cz/study/thesis/23085/
https://www.fit.vut.cz/study/thesis/22954/

10. T o m á š Žigo. "Rest A P I pro dotazy nad s í t í B i t c o i n " . Slovak. Bachelor's thesis. Brno ,
C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2020. U R L :
https://www.fit.vut.cz/study/thesis/22670/

11. R a d i m Blaha . "Jak u d ě l a t chytrou d o m á c n o s t p o m o c í open-source IoT?" . Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/21809/

12. Gabr ie la C h m e l a ř o v a . " N á v r h ú s p o r n ý c h IoT senzorů a s í tě chy t r é d o m á c n o s t i " .
Czech. Bachelor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/21338/

13. F i l i p Kalous . " N á s t r o j pro u s n a d n ě n í t e s tován í G U I webových ap l ikac í" . Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/21918/

14. L u k á š Kúš ik . "Open-source komponenty pro in te l igen tn í d ů m " . Czech. Bachelor's
thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Information Technology,
2019. U R L : https://www.fit.vut.cz/study/thesis/21784/

15. M i c h a l Motyčka . " P o r o v n á n í sof twarových architektur". Czech. Bachelor 's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019.
U R L : https://www.fit.vut.cz/study/thesis/21783/

16. M i c h a l Orl íček. " N á v r h technologického I T kurzu pro in t e rn í vzdě láván í" . Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/21582/

17. D a v i d P r ů d e k . "Detekce p ř í t o m n o s t i osob v m í s t n o s t i " . Czech. Bachelor's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019.
U R L : https://www.fit.vut.cz/study/thesis/21585/

18. M a r t i n Tomovič . " N á v r h chy t r é d o m á c n o s t i za pomoci open-source IoT" . Czech.
Master 's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2019. U R L : https://www.fit.vut.cz/study/thesis/21337/

19. Jakub Víšek. "Automatizace výdeje a úč tován í k á v y " . Czech. Bachelor's thesis.
Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information Technology, 2019.
U R L : https://www.fit.vut.cz/study/thesis/21472/

20. M i c h a l M r n u š t í k . "Mezi jazykový p ř e k l a d a č C#-JavaScr ip t pro D o t V V M " . Czech.
Bachelor's thesis. Brno , C Z : Brno Univers i ty of Technology, Facul ty of Information
Technology, 2018. U R L : https://www.fit.vut.cz/study/thesis/20958/

21. T o m á š Chovanec. "Rezervace vstupenek p o m o c í b o t ů na cha tovac ích p l a t fo rmách" .
Czech. Bachelor's thesis. Brno , C Z : Brno Universi ty of Technology, Facul ty of Infor­
mat ion Technology, 2017. U R L : https://www.fit.vut.cz/study/thesis/19343/

35

https://www.fit.vut.cz/study/thesis/22670/
https://www.fit.vut.cz/study/thesis/21809/
https://www.fit.vut.cz/study/thesis/21338/
https://www.fit.vut.cz/study/thesis/21918/
https://www.fit.vut.cz/study/thesis/21784/
https://www.fit.vut.cz/study/thesis/21783/
https://www.fit.vut.cz/study/thesis/21582/
https://www.fit.vut.cz/study/thesis/21585/
https://www.fit.vut.cz/study/thesis/21337/
https://www.fit.vut.cz/study/thesis/21472/
https://www.fit.vut.cz/study/thesis/20958/
https://www.fit.vut.cz/study/thesis/19343/

Chapter 4

Conclusions

This chapter summarizes the research presented i n this dissertation. The approach followed
is outlined, and the results obtained are discussed. Future research directions are proposed
based on the experience gained.

4.1 The Research Approach

This dissertation does not consist of basic research as is customary but describes the ad­
vances i n my applied research.

M y research began around 2012, w i th my bachelor thesis focused on the reconstruction
of Y M S G and O S C A R instant communicat ion protocols. I have realized that creating
single-purpose tools may br ing unnecessary overhead considering its maintainabi l i ty and
extensibili ty to cover addi t ional network protocols. In my master thesis, I developed a
framework for reconstructing captured network communicat ion that required abstracted
data preprocessing steps and provided a unified interface for appl icat ion protocol parsers
to improve this state. To my shame, I realized that I had not conducted rigorous state-of-
the-art research to compare the capabilities of existing network forensic tools, identify their
weaknesses, choose the research area, and improve the state-of-the-art.

A t the beginning of my doctoral studies, i n 2014, I started to experiment w i th the most
advanced open source network forensic and analysis tools and network security monitor ing
tools (according to P i l l i and Joshi [53]; see Table 2.3) at that time, namely Wireshark,
Network Monitor, Xplico, Network Miner, and PyFlag. W i t h these experiments, I gained
an understanding of the usabil i ty of these tools and also their capabilities. Us ing these
experiments combined w i t h the experience gained i n my previous work, I created a list
containing the four pr imary research objectives (see Section 1.3) I wanted to improve.

Dur ing the literature review, I realized that not a negligible number of research papers
do not allow for reproducibi l i ty of their results by lacking either a description or better
concrete implementat ion of the methods they describe. This observation has convinced
me to explain my experiments, input data, and results precisely and to attach a concrete
implementation wi th the datasets I used. Furthermore, my long-term goal was to create a
tool to help L E A investigators i n their dai ly work. I have used this opportuni ty to util ize
this tool as a base framework for my research experiments and have extended it to most of
my research results.

36

4.2 Contributions

This section summarizes my research contributions, while a complete and detailed de­
scription is provided along w i t h the attached papers in Section 3.2. The most significant
contr ibution of this work was the identification of research objectives, see Section 1.3, which
could enrich the state-of-the-art.

Contr ibut ions to the capturing and processing of in/complete network data
consist of identifying subopt imal mechanisms used in several N E A T and N S M tools [43,
54]. Th is may result i n inaccurate L4 and application conversation tracking, which yields
fewer conversations than actually occurred. Th is applies only in the case where the cap­
tured communicat ion was incomplete. Consequently, these tools w i l l extract artifacts from
the contents of the appl icat ion protocol and assign them to these inaccurately tracked
conversations. E a c h L 4 and applicat ion protocol conversation is assigned to an entity /
identity responsible for the communicat ion. Inaccurate conversation tracking merges mul­
t iple conversations into one, which may assign artifacts from the missed conversation to
the previously identified one, resulting i n the creation of false evidence. Furthermore, we
have determined that some N E A T and N S M tools [43, 54] are not fully implementing T C P
reassembling and cannot extract the content of an applicat ion message i f the TCP sequence
number overflows. Furthermore, concerning reassembling incomplete T C P conversations,
some tools [43, 54] stop the artifact extraction process after the first missing data occurs.
Th is approach may omit crucial evidence of act ivi ty that occurred i n the communicat ion
after the first missing data. In the publications mentioned above, we proposed a method to
remedy this si tuation using heuristics based on information from transport protocols. A s a
prel iminary step, we have considered the possibil i ty of capturing local network traffic using
M i t M proxies that are intrusively deployed on W i - F i networks [73, 74].

Contr ibut ions to application protocol and finer-grained application identifica­
tion are described in detai l in the enclosed papers [56, 54]. The major contr ibution of this
research is to show that not only can applicat ion protocols be identified using M L algo­
ri thms, but we can also identify, w i th a lower probabili ty, applications that were used to
generate that communicat ion. Secondary contributions are open source publ ic ly available
datasets for research verification and open source implementations of mult iple classification
algorithms that may serve as a playground for further research related to feature engi­
neering and hyper parameter tuning. Addi t ional ly , we revisited commonly used features for
applicat ion protocol classification and proposed adding new features based on information
gained by reassembling applicat ion messages. Th is approach may eliminate certain noise
introduced by IP fragmentation and T C P segmentation. Our addi t ional contr ibut ion to
feature engineering for t radi t ional M L algorithms was the introduct ion of automated fea­
ture el iminat ion based on feature correlation computed from our annotated dataset. The
last contr ibut ion was the proposit ion of a novel statistical-based method that inherently
contained feature el iminat ion and d id not require this addi t ional pre-training step.

Contr ibut ions to what should be the architecture of network forensic tool / scale
or not to scale research questions were addressed i n the publications [39, 38]. In this
research, we were looking for possibilities to increase the throughput of capture traffic
network processing using horizontal scalability. Inspired by Valentin 's [70] usage of the
actor model, we have designed and implemented a framework capable of linear scalabili ty
while respecting advanced processing features for heuristical handling of incomplete data
described in other enclosed publications [43, 56]. The overall contr ibution is a pract ical
demonstration supported by rigorous measurements that show the feasibility of horizontal

37

scalabili ty for increasing the performance of N F A T s . The secondary contr ibution is the
creation of a P o C specimen [72] composed of low-cost / low-power computers on a single
board.

Contr ibut ions to the processing of tunneled and overlay networks i n network foren­
sic analysis lie in identifying the need to address the underlying network encapsulation [55,
58, 54] correctly. Omi t t ing , for example, V L A N tags may m i x up unrelated flows, sim­
i lar ly to incorrect T C P reassembling of incomplete communicat ion. O u r contr ibut ion to
this topic is the analysis of Generic Stream Encapsulation (GSE) and the creation of its
P o C processing unit incorporated into our N F A T Netfox Detective tool , while being the
only N F A T tool that supports it.

This work la id the theoretical ground for a research project sponsored by the Czech
M i n i s t r y of Interior (VH20192021043).

4.3 Future Work

Considering the experience gained i n the field of Network Forensic Analys is , I would like
to outline future research directions that seem promising:

• Investigation of possible data sources for forensic investigation. A lawful interception
at the Internet Service Provider level is de facto standard, but addi t ional points in
the network infrastructure may also be beneficial. R ichard Stehlik's master thesis [68]
introduces one of the promising directions.

• A deeper analysis of appl icat ion communicat ion patterns and metadata extraction is
the key to fighting omnipresent encryption. Identifying not only an applicat ion pro­
tocol but also an applicat ion and type of communicat ion such as text, voice message,
interactive ca l l , etc., may allow the use of standardized analyt ical approaches for C a l l
De ta i l Records (C D R s) from the telecommunication world in the network forensic
investigation.

• A correlation of patterns observed from network traffic captured on mult iple points
in the network to prove that entities were i n contact, e.g., V o I P ca l l routed through a
third-party proxy may have the same characteristics on both sides of a broker; thus,
the correlation may identify cal l ing parties.

4.4 Final Notes

The presented dissertation outl ined research conducted i n the Networks and Dis t r ibuted
Systems Research Group (NESCDFIT), at the Facul ty of Information Technology, under
the Brno Universi ty of Technology i n the field of Network Forensic Analys is , which I have
part icipated i n i n the last decade. The goal of this research is consistent w i th the needs
of the Czech L a w Enforcement Agencies that supported the selected research objectives
presented in this work. The results of this research have been given to end users along the
lines of L E A investigators. To the best of my knowledge, they are being used or considered
for pract ical applications.

38

Bibliography

[1] John Althouse, Jeff A tk inson , and Josh Atk ins . J A3 - A method for profiling SS-
L/TLS Clients, https://github.com/salesforce/ja3/. 2017.

[2] Blake Anderson and D a v i d M c G r e w . " T L S Beyond the Browser: Combin ing E n d
Host and Network D a t a to Understand App l i ca t i on Behavior" . In: I M C '19. A m ­
sterdam, Netherlands: Associat ion for Comput ing Machinery, 2019, pp. 379-392.
I S B N : 9781450369480. D O l : 10.1145/3355369.3355601. U R L : https://doi.org/
10.1145/3355369.3355601.

[3] E Anderson and M A r l i t t . " F u l l packet capture and offline analysis on 1 and 10 gb
networks". In: (2006).

[4] Sabeel Ansa r i , S G Rajeev, and H S Chandrashekar. "Packet sniffing: a brief intro­
duct ion" . In: IEEE potentials 21.5 (2003), pp. 17-19.

[5] Pa l l av i A s r o d i a and V i s h a l Sharma. "Network monitor ing and analysis by packet
sniffing method". In: International Journal of Engineering Trends and Technology
(IJETT) 4.5 (2013), pp. 2133-2135.

[6] T o m A u l d , Andrew W Moore, and Stephen F G u l l . "Bayesian neural networks for
internet traffic classification". In: IEEE Transactions on neural networks 18.1 (2007),
pp. 223-239.

[7] Nicole Beebe. "D ig i t a l forensic research: The good, the bad and the unaddressed".
In: IFIP International Conference on Digital Forensics. Springer. 2009, pp. 17-36.

[8] Joshua Broadway, Benjamin Turnbul l , and J i l l Slay. "Improving the Analys is of
Lawful ly Intercepted Network Packet D a t a Captured for Forensic Analys i s" . In:
2008 Third International Conference on Availability, Reliability and Security. 2008,
pp. 1361-1368. D O l : 10.1109/ARES. 2008.122.

[9] Ehe Burszte in . "Probabi l is t ic identification for hard to classify protocol". In: IFIP
International Workshop on Information Security Theory and Practices. Springer.
2008, pp. 49-63.

[10] Eoghan Casey. "Network traffic as a source of evidence: tool strengths, weaknesses,
and future needs". In: Digital Investigation 1.1 (2004), pp. 28-43. ISSN: 1742-2876.

[11] Clement C h a u . "YouTube as a part icipatory culture". In: New directions for youth
development 2010.128 (2010), pp. 65-74.

[12] V i c k a Corey, Charles Peterman, Syb i l Shearin, Michae l S Greenberg, and James V a n
Bokkelen. "Network forensics analysis". In: IEEE Internet Computing 6.6 (2002),
pp. 60-66.

39

https://github.com/salesforce/ja3/
https://doi.org/

Valerio D'Alessandro, Byungchul Park, L u i g i Romano, Chr is tof Fetzer, et a l . "Scal­
able network traffic classification using distr ibuted support vector machines". In:
2015 IEEE 8th International Conference on Cloud Computing. I E E E . 2015, pp. 1008-
1012.

Shuaifu D a i , A l o k Tongaonkar, X i a o y i n Wang, Anton io Nucc i , and D a w n Song. "Net-
workProfiler: Towards automatic fingerprinting of A n d r o i d apps". In: Proceedings -
IEEE INFOCOM (2013), pp. 809-817. I S S N : 0743166X. D O I : 10. 1109/INFCOM.
2013.6566868.
Sherri Davidoff and Jonathan H a m . Network forensics: tracking hackers through
cyberspace. V o l . 2014. Prentice ha l l Upper Saddle River , 2012.

L u c a Der i et a l . "Improving passive packet capture: Beyond device pol l ing" . In:
Proceedings of SANE. V o l . 2004. Amsterdam, Netherlands. 2004, pp. 85-93.

E N I S A . Introduction to Network Forensics. Tech. rep. European U n i o n Agency for
Cybersecuri ty (E N I S A) , 2019. D O I : 10.2824/995110.
Jeffrey E r m a n , A n i r b a n Mahan t i , M a r t i n A r l i t t , Ira Cohen, and Carey Wi l l i amson .
"Offline/realtime traffic classification using semi-supervised learning". In: Perfor­
mance Evaluation 64.9 (2007), pp. 1194-1213.

Alessandro Finamore, Marco Me l l i a , and Miche la Meo. " M i n i n g unclassified traf­
fic using automatic clustering techniques". In: International Workshop on Traffic
Monitoring and Analysis. Springer. 2011, pp. 150-163.

V a h i d Aghaei Foroushani and A N u r Zinc i r -Heywood. "Investigating applicat ion
behavior i n network traffic traces". In: Computational Intelligence for Security and
Defense Applications (CISDA), 2013 IEEE Symposium on. I E E E . 2013, pp. 72-79.

Yanjie F u , H u i X i o n g , Xin j i ang L u , J i n Yang , and C a n Chen. "Service usage classi­
fication w i t h encrypted internet traffic in mobile messaging apps". In: IEEE Trans­
actions on Mobile Computing 15.11 (2016), pp. 2851-2864.

Simson Garfmkel. "D ig i t a l forensics research: The next 10 years". In: Digital Inves­
tigation 7 (2010), S64-S73.

Simson Garfmkel. "Network Forensics: Tapping the Internet". In: O'Reilly Network
(2002).

Gabr ie l Gomez Sena and Pablo Belzarena. " E a r l y traffic classification using support
vector machines". In: Proceedings of the 5th International Latin American Network­
ing Conference. A C M . 2009, pp. 60-66.

V i k r a m S Harichandran, Frank Breitinger, Ibrahim Baggi l i , and Andrew Marr ing ton .
" A cyber forensics needs analysis survey: Revis i t ing the domain's needs a decade
later". In: Computers & Security 57 (2016), pp. 1-13.

Lukas Hejcman. "Fingerpr int ing and Identification of T L S Connections". Bachelor's
thesis. Brno , C Z : B r n o Univers i ty of Technology, Facul ty of Information Technology,
2021. U R L : https://www.fit.vut.cz/study/thesis/23922/.
E r i k Hjelmvik. "The S P I D algorithm-statist ical protocol identification". In: Gavle,
Sweden, October (2008).

E r i k Hjelmvik and Wolfgang John. "The S P I D A l g o r i t h m " . In: Swedish National
Computer Networking Workshop. 2009, p. 21.

40

https://www.fit.vut.cz/study/thesis/23922/

K a m i l J e ř á b e k and O n d ř e j R y š a v ý . " B i g data network flow processing using Apache
Spark". In: Proceedings of the 6th conference on the engineering of computer based
systems. 2019, pp. 1-9.
R . C . Joshi and Emmanue l S. P i l l i . "Network Forensic Tools". In: Fundamentals of
Network Forensics. E d . by A . J . Sammes. Springer, 2016. Chap . 4, pp. 71-93. I S B N :

978-1-4471-7297-0. D O l : 10.1007/978-1-4471-7299-4{_>4.
R . C . Joshi and Emmanue l S. P i l l i . Fundamentals of Network Forensics. Springer,
2016.
L u k á š Kekely , Jan K u č e r a , V i k t o r P u š , Jan Kořenek , and Athanasius V . Vasilakos.
"Software Defined Moni to r ing of App l i ca t i on Protocols" . In: IEEE Transactions on
Computers 65.2 (2016), pp. 615-626. D O l : 10.1109/TC.2015.2423668.
Jawad Khal i fe , A m j a d Hajjar, and Jesus Diaz-Verdejo. " A mult i level taxonomy and
requirements for an op t imal traffic-classification model" . In: International Journal
of Network Management 24.2 (2014), pp. 101-120.
Suleman K h a n , A b d u l l a h G a n i , A i n u d d i n W a h i d A b d u l Wahab, M u h a m m a d Shiraz,
and Iftikhar A h m a d . "Network forensics: Review, taxonomy, and open challenges".
In: Journal of Network and Computer Applications 66 (2016), pp. 214-235. I S S N :

1084-8045. D O l : https : //doi . org/10 .1016/j . jnca. 2016 . 03 . 005. U R L : https :
//www.sciencedirect.com/science/article/pii/S1084804516300121.
Christopher K ö n n e n , Chr i s t i an Ubera l l , F lo r i an Adamsky , Veselin Rakocevic, M u t -
tukrishnan Rajarajan, and Rudol f J äge r . "Enhancements to Stat is t ical Pro toco l
IDentification (SPID) for Self-Organised QoS i n L A N s . " In: ICCCN. 2010, pp. 1-6.
Christopher K ö n n e n , Chr i s t i an Übera l l , F lo r i an Adamsky , Veselin Rakočev ié , M u t -
tukrishnan Rajarajan, and Rudol f J äge r . "Enhancements to Stat is t ical Pro toco l
IDentification (SPID) for self-organised QoS i n L A N s " . In: Proceedings - Interna­
tional Conference on Computer Communications and Networks, ICCCN. 2010.
Stefan Kornex l , Vern Paxson, Holger Dreger, A n j a Feldmann, and R o b i n Sommer.
"Bu i ld ing a t ime machine for efficient recording and retrieval of high-volume net­
work traffic". In: 5th Internet Measurement Conference. U S E N I X Associat ion. 2005,
pp. 267-272.
V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . " A Scalable Archi tecture for Net­
work Traffic Forensics". In: The Fifteenth International Conference on Networking
and Services ICNS 2019. Athens, G R : The International Academy, Research and
Industry Associat ion, 2019, pp. 32-36. I S B N : 9781612087115.
V i l i a m Letavay, Jan P luska l , and O n d ř e j Ryšavý . "Network Forensic Analys is for
Lawful Enforcement on Steroids, Dis t r ibuted and Scalable". In: Proceedings of the
6th Conference on the Engineering of Computer Based Systems. A C M . 2019. I S B N :

9781450376365.
A k h y a r Lub i s and A n d y s a h Pu te ra U t a m a Siahaan. "NetworkForensic App l i ca t i on
i n General Cases". In: IOSR Journal of Computer Engineering (IOSR-JCE) 18.6
(2016), pp. 41-44. D O l : 10.9790/0661-1806044144.
Y a n Luo , K e X i a n g , and Sanping L i . "Accelerat ion of decision tree searching for I P
traffic classification". In: Proceedings of the 4th ACM/IEEE Symposium on Archi­
tectures for Networking and Communications Systems. A C M . 2008, pp. 40-49.

41

http://www.sciencedirect.com/science/article/pii/S1084804516300121

Marie-Helen Maras . "Network Forensics: A n Introduction". In: Computer Foren-
sics: Cybercriminals, Laws, and Evidence. Second. Jones & Bart le t t Learning, 2015.
Chap. 12. I S B N : 978-1-4496-9222-3.
Petr M a t o u š e k , Jan P luska l , O n d ř e j Ryšavý , V l a d i m í r Veselý, M a r t i n K m e t , F i l i p
Karp í šek , and M a r t i n Vymlá t i l . "Advanced Techniques for Reconstruct ion of In­
complete Network Da ta" . In: Digital Forensics and Cyber Crime. E d . by Joshua I.
James and Frank Breit inger. C h a m : Springer International Publ ish ing, 2015, pp. 69-
84. I S B N : 9783319255125.
D a v i d M c G r e w , Brandon Enr ight , and Blake Anderson. Mercury: network metadata
capture and analysis, https://github.com/cisco/mercury. 2019.
Natarajan Meghanathan, Sumanth Reddy A l l a m , and Lore t ta A Moore . " T O O L S
A N D T E C H N I Q U E S F O R N E T W O R K F O R E N S I C S " . In: International Journal of
Network Security & Its Applications (IJNSA) 1.1 (Apr . 2009), pp. 14-25.
Stanislav Miskovic , Gene M o o Lee, Yong Liao , and M a r i o B a l d i . " A p p P r i n t : Au to ­
matic fingerprinting of mobile applications in network traffic". In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). V o l . 8995. Springer Verlag, 2015, pp. 57-69.
Andrew W Moore and Kons tan t ina Papagiannaki . "Toward the accurate identi­
fication of network applications". In: Passive and Active Network Measurement
3431 (2005). E d . by Constant inosEdi tor Dovrol is , pp. 41-54. U R L : http://www.
springerlink.com/index/re7ej Ouj 7eep2htl.pdf.
Neeraj Namdev, Shikha Agrawal , and Sanjay Si lkar i . "Recent advancement i n ma­
chine learning based internet traffic classification". In: Procedia Computer Science
60 (2015), pp. 784-791.
NetQuest . 1-9100 100/40/10G Interceptor Network Monitoring Access solutions for
today's intelligent packet optical transport networks. Jan . 2021. U R L : https : / /
netquestcorp . com/wp- content /uploads / 2021 / 01 /NQ-1 - 9100-Interceptor-
Datasheet-2.pdf (visited on 05/08/2022).
NetQuest . ISS World Training - Intelligent Support Systems for Lawful Interception,
Electronic Surveillance and Cyber Intelligence Gathering. M a y 2022. U R L : https :
//www.issworldtraining.com/ (visited on 05/08/2022).
T h u y T T Nguyen and Grenvi l le Armi tage . " A survey of techniques for internet
traffic classification using machine learning". In: IEEE Communications Surveys &
Tutorials 10.4 (2008), pp. 56-76.
Gary Palmer . " A Framework for D i g i t a l Forensic Scrience Par t of A R o a d M a p
for D i g i t a l Forensic Research". In: Digital Forensic Research Conference (DFRWS).
2001, pp. 15-20.
Emmanue l S. P i l l i , Ramesh C . Joshi, and Rajdeep Niyog i . "Network forensic frame­
works: Survey and research challenges". In: Digital Investigation 7.1 (2010), pp. 14-
27.
Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-
source network forensics analysis too l" . In: Forensic Science International: Digital
Investigation 35 (2020), p. 301019. I S S N : 2666-2817.

42

https://github.com/cisco/mercury
http://www
http://www.issworldtraining.com/

Jan P luska l , M i c h a l K o u t e n s k ý , M a r t i n Vondráček , and O n d ř e j R y š a v ý . "Network
Forensic Investigations of Tunneled Traffic: A Case Study". In: Revue roumaine des
sciences techniques. Série Electrotechnique et Energétique 64.4 (2019), pp. 429-434.
I S S N : 0035-4066.

Jan P luska l , O n d ř e j Lichtner, and O n d ř e j R y š a v ý . "Traffic Classification and A p p l i ­
cation Identification in Network Forensics". In: Fourteenth Annual IFIP WG 11.9
International Conference on Digital Forensics. E d . by Gi lber t Peterson and Sujeet
Shenoi. New Delh i , I N : Springer International Publ ish ing, 2018, pp. 161-181. I S B N :

9783319992778.

Jan P luska l , Pe t r M a t o u š e k , O n d ř e j Ryšavý , M a r t i n K m e t , V l a d i m i r Veselý, F i l i p
Karp í šek , and M a r t i n Vymlá t i l . "Netfox Detective: A tool for advanced network
forensics analysis". In: Proceedings of Security and Protection of Information (SPI)
2015. Brno , C Z : Brno Universi ty of Defence, 2015, pp. 147-163. I S B N : 9788072319978.

Jan P luska l , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Forensics i n G S E
Overlay Networks". In: Proceedings of the 6th Conference on the Engineering of
Computer Based Systems. A C M . 2019. I S B N : 9781450376365.

Zdenek Rosa, T o m á š Cejka, M a r t i n Zádník , and V i k t o r Pus . " B u i l d i n g a feedback
loop to capture evidence of network incidents". In: 2016 12th International Con­
ference on Network and Service Management (CNSM). 2016, pp. 292-296. D O I :
10 .1109/CNSM.2016.7818435.

M i n o o R o u h i , Q u i r i n Scheitle, Ol iver Gasser, Chr i s t i an W a h l , M a r c i n Nawrocki ,
Mat th ias Wáhl i sch , Raphael Hiesgen, and Thomas C Schmidt . "Incident Forensics
in Dis t r ibu ted High-Speed Networks". In: ().

Javier Rubio-Loyola , Dolors Sala, and A l i Ismail A l i . " M a x i m i z i n g packet loss moni­
toring accuracy for reliable trace collections". In: 2008 16th IEEE workshop on local
and metropolitan area networks. I E E E . 2008, pp. 61-66.

Marek R y c h l and O n d ř e j Rysav. " B i g data security analysis w i th tarzan platform".
In: Journal of Cyber Security and Mobility (2019), pp. 165-188.

Marek Rych lý and O n d ř e j R y š a v ý . " T A R Z A N : A n integrated platform for secu­
ri ty analysis". In: 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS). I E E E . 2017, pp. 561-567.

O l a Salman, Imad H Elha j j , A y m a n Kayss i , and A l i Chehab. " A review on machine
learning-based approaches for Internet traffic classification". In: Annals of Telecom­
munications 75.11 (2020), pp. 673-710.

F i l i p o Sharevski. Mobile Network Forensics: Emerging Research and Opportunities:
Emerging Research and Opportunities. I G I Globa l , 2018.

Leslie F . Sikos. "Packet analysis for network forensics: A comprehensive survey".
In: Forensic Science International: Digital Investigation 32 (2020), p. 200892. I S S N :

2666-2817. D O I : https://doi.Org / 1 0 . 1 0 1 6/j.fsidi . 2 0 1 9 . 2 0 0 8 9 2 . U R L : https:
//www.sciencedirect.com/science/article/pii /S1742287619302002 .

Danie l Spiekermann and Tobias Eggendorfer. "Towards D i g i t a l Investigation i n V i r ­
tua l Networks: A Study of Challenges and Open Problems". In: 2016 11th Interna­
tional Conference on Availability, Reliability and Security (ARES). 2016, pp. 406-
413. D O I : 10 .1109 /ARES.2016 .34 .

43

https://doi.Org/10.1016/j.fsidi.2019.200892
http://www.sciencedirect.com/science/article/pii/S1742287619302002

Richard Stehl ík . "Útok na W i F i síť s v y u ž i t í m ESP32 /8266" . Czech. Master 's thesis.
Brno , C Z : Brno Universi ty of Technology, Facul ty of Information Technology, 2021.
U R L : https://www.fit.vut.cz/study/thesis/23435/.
Matth ias Val lent in . "Scalable Network Forensics". P h D thesis. U C Berkeley, 2016.

Mat th ias Val lent in , Vern Paxson, and R o b i n Sommer. " { V A S T } : A Unified P la t form
for Interactive Network Forensics". In: 13th USENIX Symposium on Networked Sys­
tems Design and Implementation (NSDI16). 2016, pp. 345-362.

Petr Velan, M i l a n Čermák, Pavel Celeda, and M a r t i n D r a š a r . " A survey of methods
for encrypted traffic classification and analysis". In: International Journal of Network
Management 25.5 (2015), pp. 355-374.

Letavay V i l i a m , P lu ska l Jan, and J e ř á b e k K a m i l . Banana Pi BPI-R2 Cluster Pro­
totype. [Specimen]. 2018.

M a r t i n Vondráček , J an P luska l , and O n d ř e j Ryšavý . "Automated Man- in- the-Middle
At tack Against W i - F i Networks". In: The Journal of Digital Forensics, Security and
Law: JDFSL 13.1 (2018), pp. 59-80. ISSN: 1558-7215.

M a r t i n Vondráček , Jan P luska l , and O n d ř e j Ryšavý . "Automat ion of M i t M At t ack
on W i - F i Networks". In: 9th International Conference on Digital Forensics & Cyber
Crime. V o l . 2018. 216. Springer International Publ i sh ing , 2017, pp. 207-220. ISBN:
9783319736969.

P a n Wang, Xuej iao Chen , Feng Ye , and Z h i x i n Sun. " A Survey of Techniques for
Mobi le Service Encryp ted Traffic Classification Us ing Deep Learning" . In: IEEE
Access 7 (2019), pp. 54024-54033. D O l : 10.1109/ACCESS.2019.2912896.
Y i P e n g Wang, Xiaochun Y u n , Yongzheng Zhang, L iwe i Chen , and T iann ing Zang.
"Reth inking robust and accurate applicat ion protocol identification". In: Computer
Networks 129 (2017), pp. 64-78. ISSN: 1389-1286. D O l : https://doi.org / 1 0 . 1 0 1 6 /
j . comnet . 2017 . 09 . 006. U R L : https : / / www . sciencedirect . com/ science/
article/pii / S 1 3 8 9 1 2 8 6 1 7 3 0 3 5 7 2 .

M a r t i n a Zembjaková . "Network Forensics Tools Survey and Taxonomy". Master 's
thesis. Brno , C Z : B r n o Univers i ty of Technology, Facul ty of Information Technology,
2021. U R L : https://www.fit.vut.cz/study/thesis /23022/ .

J i an Zhang and A n d r e w Moore . "Traffic trace artifacts due to moni tor ing v i a port
mirror ing" . In: 2007 Workshop on End-to-End Monitoring Techniques and Services.
I E E E . 2007, pp. 1-8.

44

https://www.fit.vut.cz/study/thesis/23435/
https://doi.org/10.1016/
https://www.fit.vut.cz/study/thesis/23022/

Appendix A

Included Papers

A . l Net fox detective: A novel open-source network forensics
analysis tool

Jan P luska l , Frank Breitinger, and O n d ř e j R y š a v ý . "Netfox detective: A novel open-source
network forensics analysis too l" . In: Forensic Science International: Digital Investigation
35 (2020), p. 301019. ISSN: 2666-2817

45

Forensic Science International: Digital Investigation 35 (2020) 301019

Con ten t s l ists ava i l ab le at Sc i enceD i rec t

Forensic Science International: Digital Investigation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / f s i d i

Netfox detective: A novel open-source network forensics analysis tool

Jan Pluskal v , Frank Breitinger b, Ondřej Ryšavý 1

a Brno University of Technology, Faculty of information Technology, Božetěchova 2, Brno, Czech Republic
b Hilti Chair for Data and Application Security institute of information Systems, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490, Vaduz,
Liechtenstein

(D

A R T I C L E I N F O

Article history:
Received 21 January 2020
Received in rev ised form
16 June 2020
Accepted IS June 2020
Avai lable on l ine x x x

Keywords:
N e t w o r k forensics
Protocol analysis
W e b forensics
N e t w o r k forensic analysis tool
Lawful in tercept ion

A B S T R A C T

N e t w o r k f o r e n s i c s is a m a j o r s u b - d i s c i p l i n e o f d i g i t a l f o r e n s i c s w h i c h b e c o m e s m o r e a n d m o r e i m p o r t a n t

i n a n a g e w h e r e e v e r y t h i n g i s c o n n e c t e d . I n o r d e r t o c o p e w i t h t h e a m o u n t s o f d a t a a n d o t h e r c h a l l e n g e s

w i t h i n n e t w o r k s , p r a c t i t i o n e r s r e q u i r e p o w e r f u l t o o l s t h a t s u p p o r t t h e m . I n t h i s p a p e r , w e h i g h l i g h t a

n o v e l o p e n - s o u r c e n e t w o r k f o r e n s i c t o o l n a m e d — N e t f o x D e t e c t i v e — t h a t o u t p e r f o r m s e x i s t i n g t o o l s

s u c h as W i r e s h a r k o r N e t w o r k M i n e r i n c e r t a i n a r ea s . F o r i n s t a n c e , i t p r o v i d e s a h e u r i s t i c a l l y b a s e d e n g i n e

for t r a f f i c p r o c e s s i n g t h a t c a n b e e a s i l y e x t e n d e d . U s i n g r o b u s t p a r s e r s (w e a r e n o t s o l e l y r e l y i n g o n the

R F C d e s c r i p t i o n b u t u s e h e u r i s t i c s) , o u r a p p l i c a t i o n t o l e r a t e s m a l f o r m e d o r m i s s i n g c o n v e r s a t i o n s e g ­

m e n t s . B e s i d e s o u t l i n i n g t h e t o o l ' s a r c h i t e c t u r e a n d b a s i c p r o c e s s i n g c o n c e p t s , w e a l s o e x p l a i n h o w i t c a n

b e e x t e n d e d . L a s t l y , a c o m p a r i s o n w i t h o t h e r s i m i l a r t o o l s i s p r e s e n t e d as w e l l as a r e a l - w o r l d s c e n a r i o is

d i s c u s s e d .

© 2 0 2 0 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d .

1. Introduction

Network forensics aims to understand/reconstruct events from
network communication, which often requires expert knowledge
(interpreting the low-level network protocols in order to see the big
picture) (Casey, 2004). To eliminate some of the complexity,
adequate tools are essential (Garfinkel, 2010; Harichandran et al.,
2016). Specifically, tools should support investigators by summa­
rizing, clustering and highlighting relevant information (Beebe,
2009), e.g., provide contents of transmitted files, extract user cre­
dentials or perform analysis and visualize the data in an easily
understandable form. While there are many different network
forensic analysis tools (Pilli et al., 2010) out there (details discussed
in the upcoming sections), their functionalities, capabilities, and
usability are not keeping up with traditional forensics toolkits
(Casey, 2004) such as EnCase, 2020 or The Sleuth Kit (TSK) &
Autopsy, 2020.

Thematic classification: While network forensics and cloud fo­
rensics are related, the latter one is usually more complex, e.g., it
may involve Software Defined Networking (SDN (McKeown et al.,
2008)) which comes with additional evidence such as Logfiles
from the SDN controller, compute nodes or cloud controller

(Spiekermann et al., 2017). These networks also use state-of-the-art
networking technology (100—400 Gbps) that cannot be monitored
without hardware acceleration (typically FPGA), and even then,
only selected flows can be fully captured (Kekely et al., 2016) and
used for further, detailed examination. Netfox Detective is intended
for network forensic analysis and visualization on a PC and does not
compete with these tools, but uses them to filter and capture data.

Terms and definition: For readers not completely familiar with
the network terminology, we included an overview in Appendix A.

1.1. Analysis of network communication

Two of the most popular tools for Network Security Monitoring
(NSM) are Wireshark and TCPDUMP, 2020, which are commonly
used by network administrators to identify problems or security
incidents (Pilli et al., 2010). Wireshark provides a large number of
protocol parsers, can extract the content of the communication for
several application protocols and offers a detailed view of the
network communication. While it is one of the most powerful tools,
its bottom-up analysis approach means that finding and extracting
evidence often requires (intensive) labor and expert domain
knowledge. Nevertheless, Wireshark is continuously optimized,

* Cor re spond ing author.
E-mail addresses: ipluskal@fit .vutbr .cz Q. Pluskal) , Frank.Brei t inger@uni . l i (F. Brei t inger) , rysavy@fit.vutbr.cz (O. Ryšavý) .

https://doi.Org/10.1016/j.fsidi.2020.301019
2 6 6 6 - 2 8 1 7 / © 2 0 2 0 Elsevier L td . A l l r ights reserved.

46

http://www.elsevier.com/locate/fsidi
mailto:ipluskal@fit.vutbr.cz
mailto:Frank.Breitinger@uni.li
mailto:rysavy@fit.vutbr.cz
https://doi.Org/10.1016/j.fsidi.2020.301019

2]. Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019

and usage of analyzers and LUA plugins eases up the investigation.
Netfox Detective partially addresses this by implementing
advanced features such as heuristical TCP reassembling or L7
conversation tracking or reconstruction of forensic artifacts
extracted from the communication. Furthermore, Wireshark does
not scale well above hundreds of megabytes of source data, and
thus, data preprocessing is necessary for large inputs. TCPDUMP,
2020, on the other hand, has only a command line interface that
allows admins to inspect incoming and outgoing network traffic.

There are also more specialized tools that can extract valuable
forensic information, for instance, ngrep, 2020, ssldump, 2020, or
tcpxtract, 2020. These tools were created to solve specific problems
such as searching for a phrase in network communication, decod­
ing encrypted communication if a private key is known, or
extracting transferred files from network communication, respec­
tively. To take advantage of all tools, an investigator is required to
combine them. For repeating tasks, one may write scripts to speed
up the process and thus, reduce the amount of manual labor.

Without question, there are many practitioners who prefer
featureful open-source tools (Beebe, 2009; Farmer and Venema,
2009) although there is a risk that they are poorly documented,
out-of-date, and even abandoned (Garfinkel, 2010).

1.2. Expected properties for network forensic tools

According to Cohen (2008), a network forensic analysis tool
(NFAT) should provide a certain set of general features (listed as
items 1 —3 below). We further analyzed the demands and identified
some more specific features yielding the following list of
requirements:

1. Efficient processing of large capture files: Current investigations
deal with a big amount of data that needs to be analyzed. Tools
are required to provide at least partial results quickly.

2. Extraction of high-level information: Network communication
can be analyzed at different levels but for digital investigation
extracting artifacts from data sources is a priority.

3. Validation of results: Applying reliable procedures and the pos­
sibility to validate the integrity of results is a crucial requirement
on all forensic tools including NFATs.

4. Process non-standard or incomplete traffic: Network communi­
cation should be correctly processed regardless of the accept­
able deviations from the specification.

5. Robust data decapsulation: Even in the presence of IP fragmen­
tation and data stream multiplexing, the tool should be able to
identify and compose unique application level conversations.

6. Support for overlay networks: Network communication may be
encapsulated using tunneling techniques, e.g.. Virtual Private
Networks. If possible, detection and extraction are then fol­
lowed by the analysis of the encapsulated messages.

7. Application protocol identification: Services communicating on
non-standard or dynamic ports require advanced methods for
application identification. Without the correctly identified type
of communicating application, it is difficult to extract any high-
level information.

8. Investigation process: The tool should support the top-bottom
investigative process and guide the user. It is essential that
even non-expert personnel can operate NFAT and extract evi­
dence to support their cases.

The presented list is not exhaustive and stems from our expe­
rience in network traffic analysis and evaluation of existing NFATs.
Some requirements are conflicting, for instance, processing of large
data sources and in-depth analysis of conversations to extract high-
level artifacts.

1.3. Network forensic tools

Besides Network Security Monitoring (NSM) tools that are
intended for packet capturing, fingerprinting, or intrusion detec­
tion, there are some network forensic analysis tools (NFAT) spe­
cifically designed to support investigators. These aim to ease
analysis by automating artifacts extraction and providing intuitive
user interfaces. Usually, these tools have a top-down approach
which makes the analysis simpler and saves time. In the following
we briefly summarize the five prominent tools (numbers in
brackets related to Sec. 1.2 and show missing properties):

• Netlntercept was one of the first NFATs (Corey et al., 2002). It
accepts PCAP files (no live captures), reassembles TCP flows and
extracts artifacts from protocols running even on non-standard
ports. Note: Netlntercept is closed source and to the best of our
knowledge no longer available for download. Thus, we were
unable to perform a more detailed evaluation.

• PyFlag, 2020 [1, 3, 4, 6, 7, 8] "is a general purpose, open source,
forensic package which merges disk forensics, memory foren-
sics, and network forensics" (Cohen, 2008). By using specialized
scanners, PyFlag can understand several application protocols
and extract the communicated contents. However, according to
Forensics Wild, the tool is deprecated.1

• XPlico, 2020 [1, 3, 4, 5] is open source NFAT that is preinstalled
on major digital forensics distribution such as DEFT, Security
Onion and even Kali. It understands about 30 application pro­
tocols and can extract the content of emails. Session Initiation
Protocol (SIP) or web communication.

• NetworkMiner, 2020 [1, 3, 4, 8] is a passive network sniffer/
packet capturing tool that can detect operating systems, ses­
sions, hostnames, open ports, and more. It also allows extracting
files from about a dozen commonly used application protocols.
In the professional version, NetworkMinor also extracts VoIP
calls, supports Geo IP localization, performs port-independent
protocol identification, OS fingerprinting, and web browser
tracing.

• TCPFlow, 2020 [2,3,4, 5, 6,8] "captures data transmitted as part
of TCP connections (flows), and stores the data in a way that is
convenient for protocol analysis and debugging. Each TCP flow is
stored in its own file. Thus, the typical TCP flow will be stored in
two files, one for each direction. TCPFlow can also process stored
'tcpdump' packet flows". It is important to note that TCPflow
does not recognize IP fragments; therefore, reassembling of
such conversations will be malformed.

While these tools have different strengths, our tool provides
some unique features which are pointed out in Sec. 5.

1.4. Problem description

Although many tools have been developed/exist, several tools
are outdated, abandoned, or do not meet all expected properties
(see Sec. 1.2). Additionally, current tools are not intuitive (require
training), not (easily) expandable or can handle network traffic
captures in the order of magnitude of gigabytes which were re­
quirements/statements from the Lawful Enforcement Agency (LEA)
officers. Last, existing tools are not structured along the investiga­
tive process; commonly there is no case management, the linkage
between investigations, and verification of results which can be
helpful during investigations.

1 h t tps : / /www.forens icswik i .o rg /wik i /PyFlag%20 (last accessed 2019-08-17).

47

https://www.forensicswiki.org/wiki/PyFlag%20

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 3

Table 1
Performance of selected operat ions us ing the M 5 7 case P C A P files. M a c h i n e conf igura t ion: C P U i 7 - 4 7 9 0 , 4 . 0 0 G H z , 64 GB D D R 4 , Cruc ia l M X 1 0 0 SSD, W i n d o w s 10. Exper iments
were repeated 10-times, measured by time and Perfmon ut i l i t ies .

Opera t ion Backend+ Frontend + B a c k e n d ^ Wireshark* N e t w o r k M i n e r 1 t c p f l o w t , A

1 Tota l t ime 6 m 14s, ff= 15 .23s 9 m 3 6 s , (T = 3 0 . 1 2 s 8 m 4 8 s , < r = 17 .34s 41 m 23s, a ~ 124.43 s 13 m 39s, a ~ 64.21 s
2 M a x R A M usage 8.3GB 8.5 GB 7.1GB 20GB 243 M B
3 A v g C P U usage 76%, <r=8% 66%, ff= 18 % 12%, ff=3% 15%, ff=2 % 3%, ff=l %
4 Sessions (TCP + U D P) 118,709 118,709 98,084 49,865 93,619
5 TCP - miss ing 3.9%* 3.9%* 0.6%* N / A N / A
6 DNS - records 238,531 238,531 150,426 183,527 N / A
7 Emails 28 28 N / A 39 N / A
8 FTP 16 16 N / A 1 N / A
9 Comple t e W e b pages 6 6 N / A N / A N / A
10 Speed 101.8 M b p s 66.1 M b p s 72.1 M b p s 15.3 M b p s 46.5 M b p s

(t) To measure comparab le results, i n - m e m o r y database has been used,
(t) The too l was d o w n l o a d e d as a binary release.
(A) The tcpf low 1.4.4 was ran w i t h parameters -r fiie.pcap -a -Fm to do A L L pos t -process ing and spli t output i n 1 M directories.
(*)Netfox Detect ive computes TCP loss based on lost segment size (see Eq . (2)). F o r W i r e s h a r k , w e c o m p u t e d it by a p p l y i n g the tcp.anaiysis.iost_segment filter and then u t i l i zed
Eq. (1). This does not m e a n that the tool lost the data but they were not present i n the capture, i.e., the cap tur ing probe lost t hem.

1.5. Notes on legal requirements

Possible real-world usage of Netfox Detective, as well as other
NFAT tools, needs to be under the frame of legal requirements and
restrictions. Then conditions of the legal use of NFAT tools cannot
be stated world-wide. EU countries and even states of a single
country, e.g., the USA or Germany, have different laws about col­
lecting digital traces related to user activities (see ENISA (2019),
section 2.6). Network forensics necessary requires to gather IP ad­
dresses, packet captures, or log files that may contain all kinds of
private data, including passwords, usernames, credit card numbers,
etc. Specific laws regarding online services, protection of critical
infrastructures, and cybercrime or computer crime may apply to
the practice of digital investigation. Commonly they limit what data
can be acquired or the way in which data can be processed. The
presented tool is only technical equipment able to process captured
communication. Same as in the case for other NFAT, the tool is able
to extract various artifacts from network communication and it is
required that investigators have to abide by the law, especially since
matters may be taken to court. Often knowing what law applies to
the situation may be challenging and the advice of trained legal
experts is needed.

1.6. Contribution and paper structure

This paper provides Netfox Detective; a novel, easy-to-use,
powerful network forensic platform for top-down investigations.
Our tool covers examination, analysis, and investigation phases of
the forensic model as defined by P i l l i et al. (2010). In detail, we
provide the following contributions:

1. Introduction of investigation profiles that contain all necessary
data for sharing the case by just copying the investigation folder
— Sec 3.3.

2. The new method of TCP stream reassembling based on heuris­
tics (method itself was previously published (Matousek et al.,
2015), but the tool contains an improved version of it) — Sec
3.4 and Appendix E.

3. Improved identification of application-level sessions within TCP
streams; the system can identify more application sessions
compared to other tools (see Table 1) — Sec 3.4, Appendix E.

4. Seamless analysis across boundaries of multiple capture files
that ensures correct processing of long-running conversations
(i.e., overlapping conversations are processed correctly) — Sec
3.4. To the best ofourknowledge.no NFAT or NSM tool currently
has this functionality which is crucial for LEA forensic

investigation. Data sources in form of PCAP files are typically
split due to time or space constraints.

5. Support for analysis of traffic encapsulated in GSE protocol; to
the best our knowledge, Netfox Detective is the only open-
source NFAT that supports GSE — Sec 5.3.

6. Novel approach for web page reconstruction; in comparison to
other tools, we do not only extract objects from HTTP commu­
nication, but we also reconstruct the page entirely (rewriting
sources of all intercepted objects like CSS, pictures, video
streams, etc.). Pages are stored as a MAFF, 2020 archive
including snapshots that show how the page changed over time.
The JavaScript is interpreted, and particular API calls are mocked
to be injected with intercepted ones, like REST API calls — Sec
6.2. The reconstruction of a web-page requires analysis and
correlation of multiple L7 conversations, because a page usually
references (includes) data from multiple domains.

Note, the system has a modular architecture where processing
engine, data-access component, and visualization subsystem can
be used separately. The function related to packet capture file
processing, namely, file parsing, conversation tracking, application
protocol identification, application data extraction, and analysis can
also be used as a standalone console tool and integrated to auto­
mated investigation procedures and combined with other existing
tools.

The source code 2 is released on GitHub and under the Apache
Licence 2.0. Additional information can be found on Netfox
Detective's YouTube channel: https://goo.gI/fKM8Vs.

The remainder of this paper is organized as follows: Sec. 2 de­
scribes the system architecture, illustrates the frontend, and ex­
plains possibilities on how to extend Netfox Detective. Sec. 5
highlights some of the unique features of our tool as well as con­
tains a comparison with other prominent network forensics/secu-
rity tools. The last section concludes the paper.

2. Netfox Detective

Netfox Detective is a network forensic tool that was developed
to support digital forensic practitioners to analyze network cap­
tures and to extract evidence from packet traces quickly. The
development started off as PoC (Pluskal et al., 2015) with slower
processing pipeline and storage, a limited set of application pro­
tocol support, and capabilities in general. It allows to correctly

2 h t tps : / /g i thub.com/nesf i t /NetfoxDetect ive .

18

http://ofourknowledge.no
https://goo.gI/fKM8Vs
https://github.com/nesfit/NetfoxDetective

]. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 30WI9

"j Appldent [~| SipFraud ["

Analyzers

SQL
Database

Snoopers

Packet Capture
Processor

Packet Capture
Source

Fig. 1. The overview of Netfox Detective Architecture.

identify network conversations, parse common Internet protocols,
and extract metadata as well as content from the end-to-end
communication. Additionally, it is possible to extend the tool
with new functionality through a well-documented API.

The tool is a Windows application relying on the.NET Platform
and is available as an installation package that performs necessary
deployment steps. Our implementation exploits many advantages
of this platform like the rich graphical user interface provided by
Windows Presentation Foundation (WPF), short development
times due to a high abstraction language (C#), and availability of
many libraries provided through NuGet packages. Furthermore, the
implementation utilizes the Task Parallel Library (TPL) for parallel
processing.

The software consists of over 140,000 lines of code 3 organized in
about 110 projects. While it currently does not support live analysis,
it accepts a variety of different network capture formats such as
libPcap, 2020, Pcap-NG, 2020, and Network Monitor (MNM)
format.

Fig. 1 describes the architecture, which is composed of two main
components:

Frontend is primarily a rich visual user interface (GUI, see Fig. 2)
that is built on top of the backend and contains analysis capabilities
(Sharafaldin et al., 2019). Analyzers are frontend interfaces that
allow adding new functionality. Details are outlined in Sec. 3.2.

Backend is a network traffic processing engine that performs:
capture file processing, protocol parsing, traffic analysis, and met­
adata extraction. It is independent of the frontend (GUI) and comes
with its own CLI which allows to integrate it in automated pro­
cessing pipelines or to use it as a single-purpose tool. Snoopers are
backend interfaces that allow adding new functionality. Details are
outlined in Sec. 3.4.

2.1. Analyzers vs. snoopers

The tool can be extended through the implementation of
snoopers or analyzers. Analyzers have more advanced functionality
and different purpose than snoopers. The Analyzer API provides
access to data storage as well as the user interface. An analyzer can
be bound either to application or investigation scope. Thus, it is
possible to integrate highly specialized analyzers for specific cases.

Calcula ted by V i s u a l Studio (code metr ics) on the comple te imp lemen ta t i on ;
excludes w h i t e spaces, comment s , usings, a n d th i rd-par ty l ibraries.

Analyzers can create investigations, add capture files, or run any
operation supported by Netfox Detective or access any data.

On the other hand, snoopers can access information from the
processing pipeline through the database (metadata storage).
Snoopers can extract objects from the source data but may also
utilize other data such as flow records, log files, etc. Snoopers are
intended to parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers. More
details about analyzers and snoopers are provided in Appendix C
and Appendix B, respectively

Note, Netfox Detective is too complex to explain every detail in
this paper, and thus, we focus on some important design decisions
in the next section. We plan on releasing more information/details
over the years.

3. Design decisions

While we made many decisions along the way, the following
subsections discuss the most important ones: GUI design, investi­
gative process workflow, and packet processing pipeline.

3.1. No live captures

Netfox Detective does not support live captures but accepts
several input formats, which had several reasons. First, lawful
interception deployment contains one or more capturing probes
that store data on drives locally, or on remote storage (Invea, 2020).
Secondly, the analysis is often performed on more powerful
equipment rather than the capturing probe. Third, this was not a
requirement by LEA.

3.2. GUI design

The GUI follows the principles of Master/Detail screen layout
(Microsoft Corporation, 2017) supported by the navigator panels as
shown in Fig. 2. This organization is ideal for creating an efficient
user experience (Scott and Neil, 2009) when the user needs to
navigate between linked items (Beebe, 2009). The user interface
provides a high degree of customization, utilizing a grid layout of
dockable views. The application has three main areas, namely, left-
hand side, upper right and lower right, that host basic visual
components:

• Investigation Explorer is the main navigation panel of the appli­
cation. It organizes Captures, Logs, Detected Events and Expor­
ted objects (see the left blue box in Fig. 2). More details about the
structure are given in Fig. 3, and discussed in the Investigation
Explorer paragraph.

• Conversation View provides a list of all tracked conversations in
source capture files (see left red box).

• Conversation Detail provides information for the selected con­
versation. The presented content may contain links for addi­
tional data and detailed information on the target object (see
right red box).

• Detail View, e.g., Export Detail, provides additional information
for specific object types. The content uses links to navigate via
multiple views (see the black box at the bottom).

• Conversation Explorer contains a list of conversations that were
associated with investigated objects, e.g., conversation or export
object (see right blue box).

• Output Window contains a list of events generated during the
processing. These events may be informative, warnings or errors
raised during source data processing (see the green box, only
partially shown).

49

http://the.NET

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 5

DETECTIVE INVLb' GAIILJN VIEW ANALYZERS HELP

D B E
i T B Captures

H fb.chatpcapng
r B i o g !

fi Deterad Evert5

• DNS (0)

m Facebook (1)

• HTTP (1)

• FTP (0)

m iOS Hangouts (0)

• ICQ (0)

• IMAP (0)

• MAFF (0]

m iOSMeiieryyi jOj

• MQTT (0)

m POP (0)

• RTF (0)

^0 iSL/T.S
Cypher key file;

Application pre

- Details

192.16B.0.10:C - 3

1ji^bodt

8/9/2018 12:57:10 PI
6/9/2018 12:57:1 J PI
6/9/2018 12:57:14 PI
s/9/2018 12:57:25 PI
6/9/2018 12:5732 PI
6/9/2018 12:57:32 PI
fi/9/2018 12:5732 PI

I0000777784S239 T valu

1000*717346233

Loren ipsum

7553 1730

10001 r717846239

Loren ipsum dolor:

Fig. 2. A screenshot of the UI design of Netfox Detective w i t h highlighted dockable locations. Each pane can be moved and docked to any dockable location inside the Netfox
Detective window, or drag & dropped outside the w i n d o w to materialize a new one w i t h the same dockable properties. This way, an investigator split the application across
mult iple screens.

XUSERPROFILE0/.
Netfox Detective Workspaces
L <Workspacejnam.e>

, I n v e s t i g a t i o n s
< Inve st i g a t i o n jname>

Database
Exports

— Logs
S e t t i n g s
Sources
Temp

1 <Investigationjname> .nf i
1 <Workspace_name>.nfw

Fig. 3. The structure of an investigation folder. A l l workspaces are stored under the
user's profile folder. Each workspace and each investigation has its name — suffixed
w i t h GUID for uniqueness. Each investigation contains a database, exports (extracted
data from traffic), logs, settings, sources (copies of source data, e.g., PCAPs), and temp
(for temporary data generated by snoopers and analyzers). Metadata about the
workspace and investigation is stored i n *.njw, *.nfi files, respectively.

3.3. Investigative process workflow

The application was designed according to already well-
established concepts known from Integrated Development Environ­
ments that programmers use to organize complex software designs
(Microsoft Corporation, 2017). With respect to digital forensics, we
consider an Investigation to be an equivalent to a project; In­
vestigations are combined into a Workspace that is equivalent to a
Solution. An investigator can choose on which Investigation(s) s/he
wants to work on and add data in the form of PCAP files or logs. Data
is processed, and all gathered information is stored in an Inves­
tigation's scope; nothing is shared beyond that. In case several

PCAPs are added (e.g., cause they have been split previously), across
analysis is conducted (they will be treated as one PCAP internally
for tracking and reconstruction of events).While data is never
shared between investigations, we allow opening multiple in­
vestigations (in separate docked panes) which allow comparing
data from multiple sources.

3.4. Packet processing pipeline

To master the challenges of parsing and to polish all information
gathered, it consists of several interconnected implementation
blocks which compose a packet processing pipeline. The pipeline
(lower right-hand side of Fig. 1) performs (i) packet file loading and
processing, (ii) conversation tracking, (iii) application recognition
and (iv) extracted (meta)data storing. Thus, the processing pipeline
handles the identification of protocols for each packet, performs
defragmentation, and does stream reassembly for TCP communi­
cation (L7 Tracker). A detailed view is provided in Fig. 4. Note, the
snoopers allow to extend the backend and will be discussed in Sec.
Appendix C.

Packet file loading and processing, (i.e., components Packet Cap­
ture Source, Packet Capture Processor, L3-L7 Trackers, and Appl-
dent): Source packet capture files are processed by the
corresponding packet file loader depending on their file type. The
processing of the frames is sequentially where each loaded frame is
dissected into the low-level protocols to identify its key properties,
such as a physical address, network address, or ports. The dissected
packet is forwarded to the next component (i.e., L3 Tracker) which
performs further processing.

Conversation Tracking. Conversation tracking is a critical
component of the system as it examines each dissected packet and
associates it with the corresponding conversation.1 A conversation
is considered as the basic data object for further analysis. The
system identifies conversations at different network layers:

4 Note, conversat ions are also cal led b i - f lows i n some li terature.

50

]. Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019

Controller
GUI FrameworkAPI Capture

Processor

L3Conv
Tracker

L4Conv
Tracker

L7Conv
Tracker

Appldent DbContext

Process
Capture

For each Frame

Process
Frame -Process Frame*

—Store New L3 Converss

—Store New L4 Conversation-^
-Process Frame^ R e c o g n i z e L 7^

Conversation

Fig. 4. Abstract capture file processing scheme w i t h a sequential passage. Data dependencies between models are omit ted . The ultimate goal is to identify and collect application
level conversations. In order to accomplish this, communica t ion at low levels need to be properly identified, messages parsed, relevant data extracted, and packet composed. This is
achieved by conversation trackers.

• Packets sharing the same source and destination addresses
belong to the same network layer conversation (L3). Every pair
of devices shares a single L3 conversation.

• Packets with the same network source and destination ad­
dresses, transport layer source and destination ports and a
specific transport protocol belong to the same transport layer
conversation (L4). At this layer, the conversation mostly corre­
sponds to a pair of TCP streams or UDP data exchanges.

• Lastly, application layer conversations (L7) are identified using
various TCP heuristics we have developed previously (Matousek
et al., 2015) and improved for this article. The difference is in the
handling of corner cases in TCP reassembling, namely the
computation with seq. numbers, order of processing of colliding
TCP sequences, and remaining sequences without introductory,
or conclusive TCP flags, for details, compare Appendix E
2.e.(ii—iii), 2.h, 4, 5 and original paper. The heuristics solve the
problem when dealing with incomplete data or multiple ses­
sions that are merged into a single transport layer conversation.
L7 conversations reflect a single session between a client and a
server application.

Correct identification of conversations from source packets is a
challenging task as several issues may arise, e.g., out of sequence
packets, missing packets, fragmented packets, or missing termi­
nation packets. To succeed, we use several heuristics to identify and
collect as many conversations as possible, even in corrupted or
incomplete data sources. Additionally, the tool addresses the need
for fast processing by using available processor cores, implement­
ing concurrent conversations processing.

Metadata Storage (database). Extracted information, e.g., con­
versations at different layers, application layer data units, and other
relevant information, is stored in a SQL database. The bulk insert
method is used to obtain better performance. Thus integrity is not
guaranteed until all data is inserted. The user interface is aware of
this and handles temporally incomplete data correctly. The data­
base is accessed through persistence providers that allow to easily
add support for different databases.5

3.5. Security considerations

Netfox Detective is intended for a single-user environment, i.e.,
it runs on an investigator's desktop. Therefore, the system does not
include user management, authentication, or authorization. The
designated way to share investigation between multiple in­
vestigators is to export/import the workspace. This decision allows
to enable the more extensive use of our tool by investigators that
prefer disconnected systems to protect sensitive data against

5 Current ly , the too l supports Microsof t SQL and i n - m e m o r y data storage.

misuse. Netfox Detective, therefore, does not require a certification
process to be usable inside LEA.

4. Testing

Given the complexity of our application, testing was (is) an
essential part throughout the development process, where we
followed a Test-Driven Development (TDD) methodology. TDD re­
quires writing tests first, then production code that passes the tests
and lastly to refactor the code to improve its structure. We utilized
unit tests, which then also ensures integration/regression testing
and ensures the correctness of new versions. Because our focus is
very specific (network data parsing and analysis), mocking the data
would be tedious (Osherove, 2015). Therefore, we omit the unit
tests in favor of integration/system tests that use data loaded from
PCAP files processed (in-time of the test) by our processing
pipeline.

To develop and test modules (snoopers/analyzers), we started
by collecting testing data first, where we either downloaded
available PCAPs or created our ground of truth utilizing our private
networks. In the latter case, we then filtered the captured data
using Wireshark, which ensured that we only deal with one
application message, action, or scenario at a time. If Wireshark
supported the application protocol, we compared both results (ours
and Wireshark's).

In the beginning, we also used Microsoft Network Monitor, 2020
(MNM), which allowed us to develop parsers written in Network
Parsing Language (NPL). In other words, we created parsers for two
different frameworks and compared results. Given that M N M is
outdated, and this is not the most reliable method for testing, we
abandoned M N M .

After carving basic events from the protocol messages worked
correctly (single packet), we created more complex scenarios (e.g.,
a login scenario which has multiple packets) and manually verified
the results. Lastly, we created a comprehensive dataset and
extracted key data (e.g., the summary of extracted events) which
we then used as benchmark data for new version testing to prevent
regression bugs. Currently, Netfox Detective contains 1000+ tests
that are automatically executed whenever new code is committed
and run approximately 46min. In case that a regression bug is
found, the merge is denied until the bug is fixed.

5. Evaluation

The rest of this section discusses the efficiency (see Sec. 5.1)
followed by a summary of carving capabilities. In Sec. 5.3 we
compare Netfox Detective to other exiting tools before we provide a
real-world example. The last section explains the seciweb; a very
unique feature of our application.

51

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 7

5.1. Efficiency assessment

Although Netfox Detective is an offline analysis tool, runtime/
memory footprint are essential aspects. Thus, this section discusses
the runtime efficiency in comparison with Wireshark and Net-
workMiner. To measure the efficiency, we used the M57, 2020 M57-
Patent scenario 6 PCAP files which consist of several PCAP files with
a total size of 4.8GB and 5,707,845 frames (we combined them into
a single PCAP). Note, given that each tool performs very different
tasks, this is only a rough comparison.

The results are provided in Table 1. As can be seen, Netfox
Framework is slightly faster than Wireshark despite the TCP reas­
sembling of all sessions. Note, when opening the case the 2nd time,
all data is extracted from the database which is completed in a
matter of seconds. However, we require more memory footprint
(RAM). Netfox Detective is slightly slower than Netfox Framework
as it visualizes the information. NetworkMiner is about 4—7 times
slower than the other tools. The average CPU usage is not reaching
100% with Netfox Framework and Netfox Detective because of the
thread synchronization, I/O operations. Garbage Collection, and
back pressure in the processing pipeline that balances overall
performance and resource utilization. Overall, the Mbps per tool
vary between 15 and 100.

Additional efficiency indicators are given in Table 2, where we
focus on rows 12 and 13 (processing speed and parallel processing;
remaining rows are discussed in Sec. 5.3). As shown, Netfox De­
tective allows parallel processing, which should make it faster than
the deprecated PyFlag. On the other hand, Cohen (2008) points out
that PyFlag is not intended for high-speed. Concerning XPlico, more
research is needed as it also processes data in parallel, and we did
not find information on processing speed.

5.2. Event carving capabilities

The next important aspect for forensics is event carving, i.e.,
restoring particular events such as an FTP Login, a DNS query or
sending emails from a comprehensive stream. This section pri­
marily focuses on NetworkMiner (NM) and Netfox Framework and
their capabilities; Wireshark does not incorporate advanced
forensic features such as emails or web page reconstruction as it is
intended for Network Security Monitoring (Sira, 2003; Pilli et al.,
2010).

For comparison, we decided to focus on detected sessions, TCP
reassembling, and DNS records where the results are shown in
Table 1. These properties strongly depend on how a tool was
implemented. Higher numbers reflect finer granularity (this does
not mean that higher (or lower) numbers are better).

Sessions: the number of TCP and UDP sessions recognized by
each tool. This feature strongly depended on the mechanism
handling missing fragments, see Appendix E. Ithere is no packet
loss; the tools should report the same number of TCP sessions; UDP
sessions can differ in case the tool uses an inactivity timeout
threshold to split UDP sessions (the UDP protocol does not carry
any signaling information that can be used to determine the end of
a session).

TCP missing: signifies how much information is lost and cannot
be recovered, e.g., capturing problems, packet loss, or storage is­
sues. All issues are related to actions that occurred before pro­
cessing of the capture file, i.e., they are not caused by Netfox
Detective. There are different ways to calculate the loss as shown in
Eq . (l)orEq . (2) :

6 h t tps: / /digi ta lcorpora.org/corpora/scenarios/m57-patents-scenario%20 (last
accessed 2019-08-17) .

lost.packets / alLpackets[%\ (1)

lost .bytes / alLbytes[%] (2)

Netfox Detective uses the Eq. (2) as we believe that if a sequence
of packets is lost, their count is unknown and can be approximated
using a heuristic based approach on M T U or previously observed
segment sizes. However, we had to utilize Eq. (1) as Wireshark does
not explicitly count lost_bytes.

DNS records: the number of events carved from DNS traffic.
Netfox Detective extracts much more events compared to N M that
only considers DNS response packets (Mockapetris, 1987b) and
ignores query packets (Mockapetris, 1987a). N M also ignores some
other record types such as PTR, SRV or M X that may carry valuable
forensic information, e.g., a mapping of IP address to the domain
name (PTR), a definition of the service location (the hostname and
port number (SRV)), or domain names of mailing servers (MX). This
additional information may be useful in case of DNS spoofing at­
tacks/investigations (Huber et al., 2010). Lastly, N M only shows the
first record from an answer section. In contrast, Netfox Framework
processes all, i.e., all records from Question, Answer, Authority,
Additional from both packet types (not only response).

Emails and errors: reflects the number of extracted emails. NM
identifies more emails as Netfox Framework currently only con­
siders emails sent through the SMTP protocol; N M also processes
emails sent through webmail. 7

FTP: the number of events identified in the FTP session. While
N M extracts only transferred files, Netfox Detective and Wireshark
show other related (meta-)information about the FTP sessions such
as the login or list-command.

Web pages: the number of reconstructed web pages using our
module. In total, 182 HTTP objects were found which created six
MAFFArchives containing full offline web page snapshots including
CSS and other downloaded objects. For additional details we refer
to Sec. 6.2.

In summary: each of the tools has its strengths and weaknesses,
and one has to choose the best tool for the job. For instance, Netfox
Detective has focused on carving capabilities from conversations
containing missing data.

5.3. Comparison to existing tools

This section compares Netfox Detective against other applica­
tions concerning capabilities, functionality, and features. A sum­
marized overview with is provided in Table 2 and is discussed in the
upcoming paragraphs.

In its current version, Netfox Detective does not allow live data
capture or PCAP-over-IP and thus is not as flexible as NetworkMiner,
2020 or XPlico, 2020. However, it supports various capture file
types. Note, this was a design decision: we work under the premise
that data is gathered on capturing probes and uploaded for analysis
after the capture ends (or parts of the ongoing capture are
provided).

In terms of support for encapsulation protocols, NetworkMinor
has a wide variety of supported protocols. However, to the best of
our knowledge, Netfox Detective, and Wireshark are currently the
only applications that support Generic Stream Encapsulation (GSE).
In comparison to other protocols, GSE frequently uses multiple
encapsulations, whereas other protocols usually do not. That re­
quires a significant change in the tool's architecture.

7 This was a scenario w e have not cons idered . W e w i l l update ou r m o d u l e i n the
near future.

52

https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario%20

]. Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019

Netfox Detect ive i n compar i son to major open-source n e t w o r k forensic tools. The p rov ided in format ion was gathered from official sources p rov ided by the too l authors. N / A
indicates that w e cou ld not find any details regard ing the par t icular feature. W e del iberately do not add any in format ion that is not stated by authors, such as process ing speed.

Netfox Detective N e t w o r k M i n e r PyFlag

R\iiurc

Live data capture NO
PCAP-over-IP NO
Supported file
types
IPv6

Encapsulation
protocols

l ibPcap, P c a p - N G , M N M

YES
GRE, 802.1 a GSE

6 Application
Protocol
Identification

7 Supported
application
protocols

SPID, N B A R , ESPI, Bayessian, R a n d o m Forests

HTTP, SSL/TLS, M A F F . X M P P , Y M S G , OSCAR, Facebook Messenger ,
Hangouts , Twi t te r , XChat , I M A P , P O P 3 , S M T P , G m a i l , Yahoo , RTP, SIP,
Minecraf t , Warcraf t , Facebook, Stra tum, DNS, FTP, SPDY, M Q T T

S Applications YES
Identification

9 OS Fingerprinting YES (using typica l appl icat ions)
10 Credentials Facebook, I M A P , S M T P , POP3

Extraction
11 Incomplete or TCP data loss, IPv4 fragmentat ion

malformed
communication

12 Processing speed 100 M b p s
13 Parallel

processing
14 Advanced

analytical views
15 Persistent

storage
16 Querying/

filtering

YES

MSSQL, i n - m e m o r y

3-rd par ty tools on S(

YES
YES
l ibPcap

YES
L2TP, V L A N , PPP

YES
YES

l ibPcap, P c a p - N G

YES

G R E , 802.1 a PPPoE, L L M N R ,
V X L A N , OpenF low, SOCKS,
M P L S a n d E o M P L S
SPID, PIPI

FTP, TFTP, HTTP, S M B . S M B 2 , HTTP, POP3, S M T P , I M A P , SIP, DNS,
S M T P , POP3, I M A P , Y o u T u b e RTP, SDP, FTP, DNS, IRC, IPP, HTTP,

PJL, M M S , SLL M S N ,
G m a i l

NO N O N O

YES N O N O
S M T P , HTTP Digest N O N O
Authen t i ca t ion
N / A N O N O

1 1 . 9 2 - 1 8 . 4 9 M b p s N / A
YES

C S V / E x c e l / X M L / C A S E / J S O N - L D SQLite, M y S Q L or PostgreSQL VFS

k e y w o r d search 3 - r d party tools on SQL DB YES

Rows 6—8 deal with application and their protocols. While
Netfox Detective uses a variety of different algorithms to identify
the protocol, NetworkMiner and XPlico rely on SPID and PIPI.
Furthermore, Netfox Detective tries to identify applications as well
as application protocols, e.g., HTTPS-Firefox, HTTPS-Chrome
(Pluskal et al., 2018). However, further testing is required to make a
qualified decision which tool works the most reliable. Concerning
supported application protocols, our tool supports a wide variety of
different ones, including some unique protocols like Facebook
Messenger, Hangouts, Twitter, or Warcraft. Note, since those are
implemented using snoopers, there will be more in the future.

OS fingerprint (row 9) is supported by NetworkMiner and Net­
fox Detective. While we rely on the Appldent analyzer, N M uses
statistical based SPID algorithm (Hjelmvik and John, 2009).

In case that user credentials are observed in a communication,
Netfox Detective, and NetworkMiner allow to extract them where
the two tools focus on different protocols. Another major feature is
the handling of malformed, incomplete network traffic. This is
based on our previous work (Matousek et al., 2015) where we
showed that the risks of undesired association of the unrelated
conversation fragments yielding twisted evidence. We could not
find information for NetworkMiner; however, as shown in Table 1,
NetworkMiner identifies significantly fewer sessions (maybe due to
combining unrelated conversations). Advanced analytical views
address visualization capabilities where Netfox Detective is very
flexible due to the Analyzer API (see Sec. B), which ensures that the
tool can be extended with pluggable modules. In terms of XPlico,
we were unable to find detailed information; besides a reference to
a PHP Framework named cake-php. 8

h t tp : / /w ik i .xp l i co .o rg /doku .php7 id = interface (last accessed 2019-08-17).

Row 16 addresses the querying/filtering capabilities of the cor­
responding tools. NetworkMiner, 2020, Wireshark, 2020 and
PyFlag, 2020 include basic query functionality (e.g., keyword
searches), XPlico and Netfox Detective require third-party tools
(e.g., one may query the database using analytical third-party ap­
plications or write a new snooper). If support for hitherto appli­
cation protocol is required, the advanced investigator can create a
new snooper module that will be dynamically be loaded without a
need of recompilation of the Netfox Detective. In comparison to
Wireshark, creation of a new snooper is straightforward imperative
programming based on an enriched API of a data stream that
handles several types of application protocol behaviors, like
request-response, asynchronous message exchange, etc., that helps
to handle missing/not-captured data.

To sum it up: While there are aspects where other applications
like NetworkMiner are superior, Netfox Detective has a lot of
unique functionality/features and is under active development —
new features can be expected. Especially the number of supported
application protocols, the incomplete or malformed communica­
tion handling make and the expandability, make it a great forensics
tool. Additionally, we believe that one of the major difference is
usability and the amount of expertise needed (especially compared
with Wireshark).

6. Example features

This section presents two of the many advanced features of
Netfox Detective and have been chosen as they make Netfox De­
tective unique. These features have been tested in real deployments
and helped LEA investigators to solve cases. Given their complexity,
we also provide brief video summaries at the beginning of the
corresponding sections. More videos about its capabilities can be

53

http://wiki.xplico.org/doku.php7id

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019

Workspace manager Envesllgation manager

Hard drive Delay buffer

Fig. 5. This figure describes SIP Fraud Analyzer. The v iew is an interactive animat ion that reflects the actual state of the deployed 100CE hardware-accelerated network card w i t h the
IPFIX collector and the N E M E A system that detects network incidents based on IPFIX records. SIP Fraud is visualized on the upper right side w i t h a count currently analyzed
messages, i.e., 6200. At the bottom, a tree-like structure visualizes a prefix tree that is an interpretation of the attack. The root node i n an interconnection between the same roots of
telephone number attacked from different IP addresses. The path from a leaf node to the root aggregate node represents a prefix combined w i t h a PSTN number that was tried to be
called. Sensitive information, as a part of called number and IP addresses, was omit ted.

found on Netfox Detective's YouTube channel. 9

6.1. An example: SIP fraud analysis

This section reviews Netfox Detective in use based on a simu­
lated SIP (Session Initiation Protocol) Fraud case. The SIP Fraud
attack exploits a misconfiguration of the SIP server where the
attacker tries to guess a secret prefix that is used to initiate a call
from a VoIP network to PSTN (public switched telephone network).
If the attacker finds the correct prefix, the Gateway (Callee) replies
with a 200 OK SIP message. The attacker then uses the discovered
prefix to initiate a call on a premium number. The costs of the call
are charged to the owner and will profit the attacker. A visual
summary can be found here: http://y2u.be/P2W9uANYKyI.

To tackle the challenge, we developed the SIP Fraud Analyzer
that can perform a postmortem analysis of possible SIP fraud at­
tacks in given PCAPs. The exact procedure is best explained by
Fig. 5. The upper part is an interactive animation that reflects the
actual state of the system (commodity server with hardware-
accelerated network card), the IPFIX collector and NEMEA system
(Cejka et al., 2016) (note, this is not part of Netfox Detective but
external equipment/software). In a nutshell, the hardware (left-
hand side) captures information and forwards it to NEMEA. Once an
attack (or false-positive thereof) is identified (Jansky et al., 2017),
NEMEA notifies the appliance, which then captures all evidence
(generates a PCAP) and stores it on the hard drive. This file then
serves as input for Netfox Detective.

Knowing the workflow, we now focus on the analyzer and its
responsibilities. First, NEMEA can notify Netfox Detective about its
current state which allows us to update the view (e.g., the red arrow
pointing from NEMEA to FPGA). Thus, an investigator can see (live)
the current processing. Second, NEMEA can notify Netfox Detective
when capturing is completed and trigger the analyzer to download
and visualize the PCAP (the bottom pane in the figure).

Fig. 5 shows the SIP Fraud Analyzer main view that visualizes
the attack pattern. The evidence has the form of prefix guessing
activity represented by several SIP INVITE messages that differ by
the prefix of the callee number (here it is the number 031 ...
@65518... and a lot of seemingly random prefixes which reflect the
attacker guessing them). In other words, if the analyzer shows a
graph like this, one knows an attack occurred; if we find 200 OK
message, we know that the attack was successful.

The system was tested/developed with a confidential dataset
from the National Research and Education Network (NREN). During
the experimental deployment of this system, we were able to
successfully extract evidence, and based on that we informed vic­
tims about their misconfiguration in SIP's PBX. 1 0

6.2. Reconstruction of web pages

Another feature of the Netfox Detective is web page recon­
struction which can be viewed here: http://y2u.be/CP02rhe5Xs8.
First, the SnooperHTTP extracts all HTTP objects and stores the

' h t tps : / /goo .g l / f i iMSVs
P B X - Private branch exchange used to relay VoIP c o m m u n i c a t i o n to the PSTN

- pub l i c s w i t c h e d te lephone ne twork .

54

http://y2u.be/P2W9uANYKyI
http://y2u.be/CP02rhe5Xs8
https://goo.gl/fiiMSVs

10]. Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019

contents on disk. Second, SnooperMAFF iterates through the HTTP
objects to identify all HTML documents. Subsequent analysis of
these documents yields all linked objects, e.g., CSS files, JavaScript
scripts, media streams, and so on. Lastly, all references to web re­
sources are rewritten (e.g., <a href = "http://... /photo.png" will be
replaced by <a href = "./photo.png"), and then the HTML docu­
ments including all resources are packed into Mozilla Archive
Format (MAFF) archive.

The self-contained MAFF archive 1 1 contains all data that is
related to each web page that was viewed. Experimentally, in case
of the dynamic web that loads data continuously, we try to create
multiple so-called snapshots that approximate how the web page
may have looked. The snapshot is created with each significant
change to the web page. The investigator is warned that this is
experimental approximation and not an accurate replica. We do
this approximation by interpreting JavaScript scripts and supplying
it with resources previously extracted. Hence, we can reconstruct
some dynamic pages like webmails, chats, or video streaming ser­
vices. These approximations are stored inside the MAFF archive as
additional tabs.

Note, web page reconstruction is only possible if the session is
established using plain HTTP. Otherwise, it requires the investigator
to get into the middle of the communication using a M i t M proxy
like SSLSplit, 2020 that can capture unencrypted traffic or store SSL/
TLS session keys (Rescorla, 2018).

7. Conclusions

The amount of data sent over networks increases daily, and so
does the number of devices connected to it. Additionally, analyzing
the data becomes more complex due to encryption, the large
number of different protocols or tunneling. As a consequence,
forensic investigators are overwhelmed with data (possible evi­
dence), and traditional workflows are outdated (i.e., manually
combing several specialized tools like SSLSplit, 2020, TShark, 2020,
or Wireshark, 2020). To cope with these challenges, it requires
automated, extendable tools that support practitioners by sum­
marizing data and providing visualization, which allows easy
comprehension of the information (Beebe, 2009).

In this article, we presented Netfox Detective which is a
comprehensive open-source network forensic analysis tool (NFAT)
available under the Apache 2.0 License. By design, our application
can be expanded by implementing new modules; backend modules
are called snoopers and frontend modules (which allow more
complexity) are named analyzers. To enable researchers to create
new modules, we have a well-documented API including several
examples. The GUI follows the principles of a Master/Detail screen
layout and uses dockable views, which makes it intuitive and easy-
to-use. We achieve better performance than comparable tools
because of the parallel pipeline processing. As a side note: it was
used by CESNET 1 2 for SIP Fraud Detection as mentioned in Sec. 6.1.

The evaluation and comparison with existing tools show that
Netfox Detective has a good efficiency as it makes use of all cores.
Additionally, it has some unique features, that cannot be found in
any other NFAT, e.g., a large number of supported application pro­
tocols as listed in Table 2, support for GSE tunneling, or heuristic
extraction from malformed data.

For the future, we plan on expanding Netfox Detective by

1 1 Note, M o z i l l a d i scon t inued M A F F suppor t i n newer Firefox versions. W e advise
u s ing S e a M o n k e y w i t h M A F F p lug in ht tps: / /addons. thunderbird.net /en-us/
seamonkey/addon/mozi l l a -a rch ive- format / ,

1 2 CESNET is a developer and operator of na t iona l e-infrastructure for science,
research, deve lopment , and educat ion in Czech Republ ic .

creating new modules (features), e.g., finding similarities using
approximate matching (Breitinger et al., 2014). We also plan on
changing the mechanisms for data processing to allow computation
on clusters. In terms of interoperability, we intend to add exporting
capabilities into standard formats, e.g.. Advanced Forensic Format
(Cohen et al., 2009) or CybOX (Casey et al., 2015). Lastly, we want to
create training sessions and material which will allow practitioners
to become familiar with our tool.

Acknowledgement

This article has been supported by the Ministry of Education,
Youth and Sports from the National Program of Sustainability (NPU
II) project IT4Innovations excellence in science (no. LQ1602).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.Org/10.1016/j.fsidi.2020.301019.

Appendix A. Terminology and definition

There are several definitions in the community regarding flow,
conversation, etc. For this work, we used the Microsoft Network
Monitor (MNM) terminology 1 3 which is very close to the well
established terminology used by Kurose and Ross (2016).

Frame is a data link layer (12) protocol data unit
Packet is an internet layer (L3) protocol data unit.
Datagram is a transport layer (14) protocol data unit
Protocol/application message is a application layer (L7) proto­

col data unit (PDU). A message is a collection of one or more L7
PDUs.

13 flow is a sequence of packets having the same source and
destination IP addresses. It represents an uni-directional transmission
of packets between two network nodes.

13 conversation is a pair of L3 flows with mutually transposed
source and destination IP addresses. It represents bi-directional
transmission between two network nodes.

lAflow is a sequence of packets with the same source and desti­
nation IP addresses and ports, and an 14 protocol number. It represents
uni-directional communication between processes, e.g., data sent by
an HTTP client to an HTTP server, possibly in several 14 half sessions.
An 14 flow consists of one or more 17 flows.

L4 conversation is a pair of L4 flows with mutually transposed
L3 and L4 identifiers (src/dst IP addresses and src/dst ports). It
represents bi-directional communication between processes, e.g.,
requests and responses between an HTTP client and server. The L4
conversation may contain several L4 sessions (L7 conversations)
between the same network nodes using the identical src/dst ports
and the L4 protocol.

L7flow is a part of the 14 flow that represents a transport session,
e.g, one UDP or TCP session. For TCP, an 17 flow is bounded by its initial
SYN packet and its closing FIN or RST packet. For UDP, an 17 flow
corresponds to an 14 flow. One 14 flow may include several 17 flows
that are logically independent, e.g., several TCP sessions (HTTP re­
quests) with the same src/dst ports and IP addresses may compose one
14 flow. A TCP 17 flow also includes starting SYN and ACK packets
without any 17 payload, if present.

L7 PDU represents an approximation of an application message,
e.g., HTTP request. L7 PDU is a logical object that contains an L7
payload of one or more packets belonging to the same L7 flow. It is

1 3 The t e rmino logy was de t e rmined by s tudy o f M N M manua l , and b l o g — https://
blogs. technet .microsoft .com/netmon/(las t accessed 2019-08-17).

55

https://addons.thunderbird.net/en-us/
https://doi.Org/10.1016/j.fsidi.2020.301019

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 11

created using TCP reassembling. L7 PDU objects are processed by
application parsers called L7 Snoopers. In a case of UDP, an L7 PDU
is created for every L4 payload, i.e., there is an 1:1 relation between
UDP payload and application message.

L7 conversation is a pair of 17 flows. It represents logical appli­
cation data that are subjected to the forensic analysis. 17 flows are
interconnected to the conversation according to SYN and SYN + ACK
sequence numbers in TCP. An 17 conversation includes meta data such
as timestamps of the first and last PDU— selected from both directions
whichever is prior and posterior, number of frames of 17 conversation,
collection of virtual frames representing missing (expected) frames,
type of encryption, cipher keys (for TLS decryption), collection of
probable application tags (types of 17 protocol, e.g., HTTP, SMTP, etc.).

L7 Snooper is an application data analyzer (application parser,
dissector). Snooper reads L7 PDUs from L7 conversations and per­
forms L7 processing, analysis, and visualization. L7 snoopers can
co-operate with each other, e.g., SIP snooper co-operates with RTP
snooper, WebMail snoopers with HTTP snooper, etc.

L7 Analyzer is a less strict abstraction, module that encapsulates
predefined behavior that applies to processed data or directly controls
data processing. 17 Analyzers have full access to Netfox Detective
platform and can change, extend any functionality used for processing
or analysis.

information about the running processes.1 4 Note, the training data
was annotated with the application process instead of the appli­
cation protocol. On the other hand, our backend engine was
extended to extract the process information for learning purposes.
The feature vector characterizing the application protocol was
specified according to the work by Moore et al. (2013), and
customized for L7 conversation-based approach instead of packet-
based.

The classification mode of the analyzer is used for annotating
conversation with recognized protocols and applications. It is not
an easy task, and the precision varies for the classification methods
and the target set of applications. For more details see Pluskal et al.
(2018) who demonstrated that it is possible to distinguish between
communications traces of OneDrive, Skype, iTunes, Spotify, Steam
and [Horrent clients, although all of them use HTTPS.

Usually, traffic classification is a black box (e.g., in security
software/hardware like IDS/IPS) and depends on the model. How­
ever, for practitioners, it may be helpful to get more insight and
therefore Appldent can provide additional computed results in a
visual manner. In other words, we implemented views allowing the
comparison of the classification results of different methods, clas­
sifier performance analysis, and hyper-parameter tuning.

srcPorl l ->dstPort2 HTTP R e q u e s t

Capture file

Capture file

srclPl <-> dstIP2

L3 conversation It

sreIP3 <-> dstlP4

L3 conversation I

srcPortl <->dstPort2
J L 4 conversation I

-| L4 conversation \

srcPort5 <-> dstPort6

N L4 conversation .

SYN+ACK <-> FIN.
-* | L7 conversation]^

UDP session

-| L7 conversation

SYN+ACK <-> FIN
•| L7 conversation |
SYN+ACK <-> FIN
1 L7 conversation

srcPort2 ->ds iPor t l HTTP Response
- H L 7 flowl *-|L7 PDU I

rcPorl3 -> dstPort4 SIP INVITE

- I L 7 P D U I •\L7 flow|—

\ i SIP A L K
^ [L T f l ^ ^JL7PDlj|

srcPort4 - > dstPorO

Fig. A.6. Figure describes relations between encapsulations on various levels of ne tworking stack reflected by object hierarchy serving as containers. Data is segregated into a
particular container based on common identifiers described i n Section Append ix A . One 13 Conversation can contain frames from mult iple capture files and have a relation one to
many w i t h 14 Conversations. The rest of graph is read similarly.

Appendix B. Analyzers (Frontend Modules)

Analyzers extend Netfox Detective with more advanced func­
tionality that cannot be implemented as snoopers. The Analyzer API
provides access to data storage as well as the user interface. An
analyzer can be bound either to application or investigation scope.
Thus, it is possible to integrate highly specialized analyzers for
specific cases. In order to grasp the concept of analyzers, we discuss
their capabilities based on the Appldent — an application identifi­
cation analyzer. Appldent assigns an application protocol (or even
network application) to every flow in the source data. The goal of
the analyzer is to recognize applications (e.g., Google Drive, iTunes,
or OneDrive) in network traffic instead of just the application layer
protocol used (e.g., HTTPS).

The analyzer is implemented using machine-learning
(Christodorescu et al., 2015) and statistical methods, in particular,
Bayesian belief network. Random Forests, and Enhanced Statistical
Probability Identification, to make the decision. Because supervised
learning methods are used, there are two running modes:

The learning mode is used to build the models which required
annotated data. To generate the data, we produced local network
traffic and captured the communication using Microsoft Network
Monitor, which automatically enriches the capture with

Appendix C. Snoopers (Backend Modules)

The backend supports modules, called snoopers, that can access
information from the processing pipeline through the database
(metadata storage). Snoopers extract objects from the source data
but may also utilize other data such as regular log files. Therefore,
snoopers parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers.
These extracted objects are then either stored in the database or
pushed to the Investigation Explorer (grouped by a protocol) or can
be accessed from the special Export Overview pane where they are
grouped by event type, e.g., emails, images, chat messages. The
following protocols for metadata and/or content extraction are
supported:

• Common internet protocols: DNS, SPDY, and SSL/TLS.
• Selected application protocols: HTTP(S), MAP, POP3, SMTP, and

FTP.
• Email services: Gmail, Yahoo, and other webmails.
• Instant messaging: XMPP, YMSG, OSCAR, Facebook Messenger,

Hangouts, and XChat

1 4 In deta i l , M N M creates a Process Info table that stores in fo rmat ion on the socket
a n d the process that created it.

56

]. Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 12

• Social networks and gaming: Twitter, Facebook, Minecraft, and
Warcraft.

• Bitcoin communication: Stratum.
• Voice over IP systems: FTP and SIP.
• Internet ofThings communication: MQTT.

If the communication is not encrypted (or the server's private
key is provided, and the server's configuration allows it), the
snoopers can extract the communication content, e.g., transmitted
files. For secured communication, only traffic metadata is available.

In order to create new snoopers, there are three abstract classes
that need to be inherited:

SnooperBase can be seen as the extractor that will handle the
identification of objects. The registration of a new snooper and its
integration is automated as long as the snooper's DLL resides in the
root directory of the application. Details about the snooperBase are
provided at the end of this subsection.

SnooperExportObjectBase stores the actual objects. For
instance, an application protocol parser will dissect the commu­
nication and create instances of domain objects. Those objects
might also implement various interfaces like IChatMessage, ICall,
[EMail, IPhotoMessage, etc. to automatically integrate exported
objects in generic views.

SnooperExportBase encapsulates (meta-)information about
the export process. For instance, the source of an L7 conversation.
Additionally, it contains all extracted objects SnooperExport- Ob­
ject Base.

SnooperBase. To create a new snooper, a new class that inherits
from the abstract class SnooperBase including the class members,

such as Name, Description, KnownApplicationPorts, CreateSno-
oper Export, and ProcessConversation, needs to be implemented.
Additionally, the class defines multiple abstract methods that
represent callback functions executed during conversation pro­
cessing. An example is given in Appendix D. The functionality has to
be implemented in the following methods:

• On Conversation Processing Begin — any relevant activity for
creating a new object to be populated by the module.

• On Conversation Processing End — any required processing
before the new object is stored in the database.

• On Before Protocol Parsing and On After Protocol Parsing — takes
care of the internal state of an object and handles exceptional
cases that are assigned to 'parsing state'.

• On Before Data Exporting and On After Data Exporting — takes
care of the internal state of an object and handles exceptional
cases that are assigned to information 'extraction state'.

Each snooper is executed on-demand, on the selected PCAP or a
collection of them, according to the tool configuration. While
modules can use the information provided by other modules, their
basic use case is to implement extraction capabilities for applica­
tion protocols. For more complex analysis, we use analyzers.

Appendix D. Abstract code for an Example Protocol snooper
creation

public class SnooperExample : SnooperBase {
public override string Name => "Example Protocol";
protected override SnooperExportBase CreateSnooperExport0

f throw new NotlmplementedExceptionQ; }
public override string Description => "Description of Example Protocol";
public override int [] KnownApplicationPorts => new[] { 42 };

protected override void ProcessConversationQ
•C

//we need a stream to read from
var stream • new PDUStreamBasedProvider(this.CurrentConversation,

EfcPDUProviderType.Breamed);
// now we can create a reader for the stream
var reader = new PDUStreamReader(stream, Encoding.GetEncoding(437), true);

// reader w i l l spawn messages, cycle through them
do
{

this.DnBeforeProtocolParsingO;

// parse the protocol
var message = new ExampleProtocolParseMsg(reader);
i f (!message.Valid){

//TODO report error

}

this. DnAf terProtocolParsingO ;
// TODD some additional integrity checks perhaps
this.DnBeforeDataExportingO;

var exportedObjact - new SnooperExportedDataObjectExampleProtocol
(this.SnooperExportH.. .>;

this.SnooperExport.AddExportObject(exportedObject);

this.DnAfterDataExportingO;
1- while (reader.NewMessageO);

>
}

57

Piuskai et ai. / Forensic Science International: Digital Investigation 35 (2020) 301019 13

Appendix E. Simplified reassembling algorithm implemented
in Netfox Detective.

1. Select L4 flows and sort packets u s ing the i r sequence numbers .
2. Process each L4 flow accordingly :
(a) Start f o l l o w i n g i tera t ion w i t h a S Y N packet, i.e., P,.
(b) Increment Sen,, i.e., Seq f + = 1.
(c) Create a new L7 F l o w to be a co l lec t ion of L7 PDUs for f o l l o w i n g a lgor i thm.

Set Pirijt = Pj.
(d) Create a n e w L7 P D U i f does not exist o r i f a previous L7 P D U was c losed, (e) If

Seqj^Seqj_i + \Pj_-, | (the expected packet is miss ing , check t imes tamps TS
and sequence numbers Seq as fo l lows:

i . If TSj - TS(_i < MaxTime and Sea;, - Seq,-_] < MaxLost then a v i r tua l packet w i l l
be created to replace the m i s s i n g packet.

i i . If T5j - TSj_i > MaxTime and Seq, - S e a , . , < MaxLost then there is an
ove r l app ing of TCP sessions because i packet, i.e., this packet , belongs to a
different L7 flow. Skip this packet and proceed w i t h the next one.

h i . If Seq, - Seqj.] > MaxLost then there are too many m i s s i n g data. The flow
cannot be fully res tored. Close it a n d proceed w i t h next S Y N packet.

(f) If Seq, = = Seqj_] + \Pj_i | the P, packet is expected, i.e., P, contains f o l l o w i n g
data segment, add it into the L7 P D U created i n 2 d.

(g) If F IN/RST/PSH flag is found or |P| = = MaxPayload, close the L7 P D U ,
(h) If P j n f r = = Pit break i tera t ion.
(i) Increment i , i.e., i+ = 1 and GOTO 2 d.
3. If there remains any S Y N packet i n the current L4 flow, GOTO 2a
4. If the L4 flow contains any unprocessed packet, i.e., captured c o m m u n i c a t i o n

is i ncomple te and heur is t ic methods (2e) have to be appl ied .
5. Select packet P, that has m a x i m a l Seqt - Seq^ and GOTO 2c
6. C o m b i n e opposi te L7 flows into an L7 conversa t ion u s ing co r re spond ing S Y N

and A C K numbers .

P, — represents the packet on the i-th index
\Pj\ — represents a payload size obtained from the packet header
Seq, — represents sequence number of packet on i-th index
PiJlit — stores the reference to the packet that the reassembling
algorithm started with
TSj — represents time stamp of the packet on the i-th index
MaxTime — variable, empirically set to 600 s
MaxLost — variable, empirically set to 3800 B
MaxPayload — variable, empirically set to maximal expected
MTU

References

Beebe, N . , 2009 . Dig i ta l forensic research: the good , the bad a n d the unaddressed.
In: IFIP Internat ional Conference on Dig i ta l Forensics. Springer, pp . 17—36,

Breitinger, F., Gu t tman , B., M c C a r r i n , M . , Roussev, V . , W h i t e , D., 2014. A p p r o x i m a t e
M a t c h i n g : Def in i t ion and Terminology. Special Publ ica t ion 800-168. Na t iona l
Institute of Standards and Technologies. ht tps: / /doi .org/10.6028/NIST.SP.800-
168.

Casey, E., 2004 . N e t w o r k traffic as a source o f ev idence : too l strengths, weaknesses,
and future needs. Digit . Invest. 1, 2 8 - 4 3 .

Casey, E., Back, G., B a r n u m , S., 2015. Leveraging c y b o x ™ to s tandardize represen­
tat ion a n d exchange of d ig i ta l forensic in format ion . Digi t . Invest. 12, S102-S110 ,

Cejka, T., Bartos, V . , Svepes, M . , Rosa, Z. , Kubatova , H . , 2016. Nemea : a f ramework for
ne twork traffic analysis. In: N e t w o r k a n d Service M a n a g e m e n t (C N S M) , 2016
12th Internat ional Conference on . IEEE, pp . 1 9 5 - 2 0 1 .

Chris todorescu, M . , H u , X . , Schales, D.L., Sailer, R., S toeckl in , M.P. , W a n g , T.,
W h i t e , A . M . , 2015. Identif icat ion and classification of w e b traffic inside
encrypted n e t w o r k tunnels . US Patent 9 (106), 536.

Cohen, M . , Gar f inke l , S., Schatz, B., 2009 . Ex tend ing the advanced forensic format to
accommoda te m u l t i p l e data sources, logical evidence, arbi trary in format ion
and forensic w o r k f l o w . Digi t . Invest. 6, S 5 7 - S 6 8 .

Cohen, M . L , 2008 . PyFlag - an advanced n e t w o r k forensic f ramework. Digi t . Invest.
5 , 1 1 2 - 1 2 0 .

Corey, V . , Peterman, C , Shear in , S., Greenberg , M.S. , V a n Bokke len , J., 2 0 0 2 . N e t w o r k
forensics analysis. IEEE Internet Comput . 6, 6 0 - 6 6 .

EnCase, 2020 (cited January 2020) . h t tps : / /www.guidancesof tware .com/encase-
forensic.

ENISA, 2019. In t roduct ion to ne twork forensics (cited January 2020) . h t t p s : / / w w w .
enisa .europa.eu/ topics / t ra inings-for-cybersecur i ty-specia l is ts /onl ine- t ra ining-

mater ia l /documents / in t roduct ion- to-ne twork-forens ics-handbook.pdf ,
Farmer, D., V e n e m a , W. , 2009 . Forensic Discovery, first ed. A d d i s o n - W e s l e y

Professional.
Garf inkel , S .L, 2010. Dig i ta l forensics research: the next 10 years. Digi t . Invest. 7,

S 6 4 - S 7 3 .
Har ichandran , V.S. , Brei t inger , F., Baggi l i , L, M a r r i n g t o n , A . , 2016. A cyber forensics

needs analysis survey: r ev i s i t ing the domain ' s needs a decade later. Comput .
Secur. 5 7 , 1 - 1 3 .

Hje lmvik , E., John, W. , 2009 . Statistical p ro tocol ident i f ica t ion w i t h s p i d : pre­
l i m i n a r y results. In: Swed i sh Na t iona l C o m p u t e r N e t w o r k i n g W o r k s h o p ,
pp. 3 9 9 - 4 1 0 .

Huber, M . , M u l a z z a n i , M . , W e i p p l , E., 2010. W h o o n earth is "mr. cypher" : auto­
mated fr iend inject ion attacks on social n e t w o r k i n g sites. In: Rannenberg , IC,
Varadharajan, V . , Weber , C. (Eds.), Securi ty a n d Privacy - Si lver L in ings in the
Cloud. Spr inger Ber l in Heide lberg , Ber l in , He ide lberg , pp . 8 0 - 8 9 .

Invea, 2020 (cited January 2020) . h t tps : / /www. invea lawfu l in te rcep t ion .com,
J anský , T., Čejka, T., Ba r toš , V . , 2017. H u n t i n g sip authent ica t ion attacks efficiently.

In: Tuncer, D., Koch , R., Badonne l , R., Stiller, B. (Eds.), Securi ty of Ne tworks and
Services i n an A l l - C o n n e c t e d W o r l d . Spr inger Internat ional Pub l i sh ing , Cham,
pp. 1 2 5 - 1 3 0 .

Kekely, L., Kučera , J., Pus, V. , K o ř e n e k , J., Vas i lakos , A . V . , 2016. Software defined
mon i to r i ng of appl ica t ion protocols . IEEE Trans. C o m p u t . 65, 6 1 5 - 6 2 6 ,

Kurose, J.F., Ross, K . W . , 2016. Compute r N e t w o r k i n g : a T o p - D o w n A p p r o a c h , v o l . 7.
A d d i s o n Wesley , Boston.

l ibPcap, 2 0 2 0 (cited January 2020) . h t tps : / /www. tcpdump.org / ,
M 5 7 , 2020 (cited January 2020) . h t tps : / /d ig i ta lcorpora .org/corpora /scenar ios /m57-

patents-scenario,
Maff, 2 0 2 0 (cited January 2020) . h t tp : / /maf .mozdev.org/maff-specif icat ion.html ,
M a t o u š e k , P., P luska l , J., Ryšavý, 0. , Vese lý , V. , K m e ť , M . , Ka rp í šek , F., V y m l á t i l , M . ,

2015. A d v a n c e d techniques for recons t ruc t ion o f incomple te ne twork data.
lecture notes of the inst i tute for compute r sciences. Soc. Info. T e l e c o m m u n . Eng.
6 9 - 8 4 , 2015.

M c K e o w n , N . , Ande r son , T., Ba lakr i shnan , H . , Parulkar , G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008 . Openf low: enab l ing innova t ion i n campus net­
works . Comput . C o m m u n . Rev. 38, 6 9 - 7 4 .

Microsof t Corpora t ion , 2017. Master /deta i l s - w i n d o w s u w p appl ica t ions (cited
January 2020) . h t tps : / /docs .mic rosof t . com/en-us /windows/uwp/des ign /
controls-and-pat terns/master-detai ls ,

Microsof t N e t w o r k M o n i t o r , 2020 (cited January 2020) . https://blogs.technet.
microsof t . com/ne tmon/ .

Mockape t r i s , P., 1987a. RFC 1034 D o m a i n Names - Concepts and Facil i t ies.
Mockape t r i s , P., 1987b. RFC 1035 D o m a i n Names - Implementa t ion and

Specificat ion.
M o o r e , A . , Zuev, D., Crogan, M . , 2013. Discr imina tors for Use i n F low-Based Clas­

sification. Q w e e n M a r y Univers i ty of London . Technical Report,
N e t w o r k M i n e r , 2020 (ci ted January 2020) . h t tps : / /www.ne t resec .com/?

page=NetworkMine r ,
ngrep, 2020 (cited January 2020) . ht tps: / /gi thub.com/jpr5/ngrep,
Osherove, R., 2015. The A r t of Uni t Testing. MITP-Ver lags G m b H & Co. K G .
Pcap-Ng, 2020 (cited January 2020) . h t tps : / /g i thub.com/pcapng/pcapng/ ,
P i l l i , E.S., Joshi , R.C., N i y o g i , R., 2010. N e t w o r k forensic f rameworks : survey and

research chal lenges. Digi t . Invest. 7 , 1 4 - 2 7 .
Pluskal , J., Lichtner , 0., Rysavy, 0. , 2018. Traffic classif ication and appl ica t ion i den ­

t if icat ion i n n e t w o r k forensics. In: Peterson, G., Shenoi , S. (Eds.), Advances i n
Digi ta l Forensics X I V . Spr inger Internat ional Publ i sh ing , Cham, pp . 161-181,

Pluskal , J., M a t o u š e k , P., Ryšavý, 0. , K m e ť , M . , Vese lý , V. , Ka rp í šek , F., V y m l á t i l , M . ,
2015. Netfox detect ive: a too l for advanced n e t w o r k forensics analysis. Pro­
ceedings o f Securi ty and Protec t ion of Informat ion (SPI) 2015. Univers i ty of
Defence i n Brno, pp . 1 4 7 - 1 6 3 .

PyFlag, 2020 (cited January 2020) . h t tps : / /g i thub.com/py4n6/pyf lag .
Rescorla, E., 2018. The Transport Layer Securi ty (TLS) Protocol V e r s i o n 1.3. RFC,

p. 8446 .
Scott, B., N e i l , T., 2009 . Des ign ing W e b Interfaces: Pr inciples and Patterns for Rich

Interactions. O'Rei l ly M e d i a , Inc,
Sharafaldin, L, Lashkar i , A . H . , Ghorban i , AA., 2019. A n Evalua t ion F ramework for

N e t w o r k Securi ty Visua l iza t ions . Compute r s & Security,
Sira, R., 2003 . N e t w o r k forensics analysis tools: an ove rv iew of an emerg ing tech­

nology. GSEC 1 ,1 -10 vers ion .
Sp iekermann , D., Keller , J., Eggendorfer, T., 2017. N e t w o r k forensic inves t iga t ion i n

openf low ne tworks w i t h forcon. Digit . Invest. 20 , S 6 6 - S 7 4 . D F R W S 2017
Europe.

s s ldump, 2020 (cited January 2020) . ht tp:/ /ssldump.sourceforge.net ,
SSLSpli t , 2020 (cited January 2020) . h t tps : / /www.roe .ch /SSLspl i t .
T C P D U M P , 2020 (cited January 2020) . h t t p s : / /www. tcpdump.o rg / .
T C P F l o w , 2020 (cited January 2020) . h t tps : / /g i thub.com/s imsong/ tcpf low,
tcpxtract , 2 0 2 0 (cited January 2020) . http:// tcpxtract.sourceforge.net/ ,
The Sleuth Ki t (TSK) & Autopsy, 2020 (cited January 2020) . ht tps: / /www.sleut .hki t .

org/ .
TShark, 2020 (cited January 2020) . h t tps : / /www.wireshark .org /docs /man-pages /

t shark.html ,
Wireshark , 2020 (cited January 2020) . h t tps : / /www.wi resha rk .o rg / ,
X P l i c o , 2 0 2 0 (cited January 2020) . h t tps : / /wwwjcp l i co .o rg / .

58

file:///Pj_-
file:///Pj_i
https://doi.org/10.6028/NIST.SP.800-
https://www.guidancesoftware.com/encase-
https://www
http://enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-
https://www.invealawfulinterception.com
https://www.tcpdump.org/
https://digitalcorpora.org/corpora/scenarios/m57-
http://maf.mozdev.org/maff-specification.html
https://docs.microsoft.com/en-us/windows/uwp/design/
https://blogs.technet
http://microsoft.com/netmon/
https://www.netresec.com/
https://github.com/jpr5/ngrep
https://github.com/pcapng/pcapng/
https://github.com/py4n6/pyflag
http://ssldump.sourceforge.net
https://www.roe.ch/SSLsplit
https://www.tcpdump.org/
https://github.com/simsong/tcpflow
http://tcpxtract.sourceforge.net/
https://www.sleut.hkit
https://www.wireshark.org/docs/man-pages/
https://www.wireshark.org/
https://wwwjcplico.org/

A.2 Network Forensic Investigations of Tunneled Traffic: A
Case Study

Jan P luska l , M i c h a l Kou tenský , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Foren­
sic Investigations of Tunneled Traffic: A Case Study". In: Revue roumaine des sciences
techniques. Série Electrotechnique et Energétique 64.4 (2019), pp. 429-434. ISSN: 0035-
4066

59

ri Rev. Roum. Sei. Techn.— Éleclrolechn. el Énerg.
™ Vol. 64, 4, pp. 429-434, Bucaresl, 2019

N E T W O R K F O R E N S I C I N V E S T I G A T I O N S O F T U N N E L E D T R A F F I C :
A C A S E S T U D Y

J A N P L U S K A L 1 , M I C H A L K O U T E N S K Ý 1 , M A R T I N V O N D R Á Č E K 1 , O N D Ř E J R Y Š A V Ý 1

Key words: Network traffic forensics, Generic stream encapsulation, Network forensic and analysis tool.

The increasing importance of network forensics in the investigations conducted by Law Enforcement Agencies is indisputable.
Today's Internet does not carry ordinary T C P / I P traffic but utilizes many other encapsulations and tunneling protocols. In this
paper, we overview the most used tunneling protocols and their features concerning digital forensic analysis. A case study of
generic stream encapsulation describes how the investigator can obtain encapsulated application data from within.

1 INTRODUCTION

Internet applications use different communication
protocols to exchange content. Most of network forensic
analysis tools can correctly identify the communicating
application and extract the content communication if
encryption is not used. However, encryption is not the only
obstacle for network forensic tools. Application
communication can be also encapsulated in other protocols
that provide an extra network layer in addition to the
Internet's T C P / I P stack. These tunneling protocols are
supposed to protect the encapsulated communication. It
may be because the carried protocol is not compatible with
the transport network technology or the additional security
is necessary. Tunneling protocols are the basis for building
virtual private networks. The local traffic needs to be sent
over the Internet, which opens various possibilities for
attackers. By using tunneling protocols, it is possible to
protect the encapsulated communication with strong
encryption to avoid eavesdropping and communication
alteration. However, this benefit of network security
represents a challenge for network forensics.

This publication extends the original paper "Network
forensics in generic stream encapsulation (G S E) overlay
networks" published in In 6th Conference on the
Engineering of Computer Based Systems (E C B S '19),
September 2-3, 2019, Bucharest, Romania [1].

1.1. P R O B L E M D E S C R I P T I O N

Network data acquisition faces many challenges. One of
the complications for evidence recovery from captured
network data is the use of encryption and tunneling. W h e n
end-to-end encryption was used the content of messages is
protected but it is still possible to identify individual
connections. In the case of tunneling protocols, multiple
connections are multiplexed in the tunnel. The original
design goal of tunneling protocols was to interconnect
networks through possible incompatible network
technology. The captured content o f the tunnel can be
easily extracted, and individual connections recovered.
However, modem tunneling protocols include security
measures by applying encryption to transferred content.
Therefore, connections can only be recovered at exit points
of the tunnel.

1.2. C O N T R I B U T I O N A N D P A P E R S T R U C T U R E

The present paper provides an overview the common

points in the network topology that can be used by law
enforcement agencies (L E A) to conduct lawful interception.
We provide a summary of most used tunneling protocols
and discuss their features with respect to digital forensic
analysis. F o r each protocol, the possibility of content
extraction is explained. Also , a brief overview of methods
for the classification of encapsulated traffic is provided.
The issue o f connection recovery from tunneled
communication is demonstrated using the G S E protocol as
an example.

2. LAWFUL INTERCEPTION POINTS IN
NETWORK TOPOLOGY

The goal of lawful network data acquisition is to collect
enough information for evidence extraction. A s most of the
Internet traffic is encrypted, the analysis of metadata
represents the most important approach. There are many
possible locations in the network topology that may be used
for lawful interception and their selection depends on
various circumstances. This section describes the locations
and adequate techniques used to collect digital evidence out
of network devices.

The end-user machine is the place where any kind of
data is presented to the user, or stored. If encryption is used
to protect data in transfer, this is the place where it happens.
If the device can be accessed by an investigator, several
techniques for obtaining the evidence v ia the installation of
agent software that can intercept A P I hooks [2], capture
network traffic [3], capture screen [4] or maliciously
modify [5].

Internet service provider (ISP) The most typical lawful
interception probe deployment occurs in the ISP
network [6]. The L E A possessing a search warrant can [7]
compel the ISP to reveal the retained data [6] or to intercept
the suspect's communication [8] using L E A ' s deployed
network probes [6]. Technically, there are several types of
interception or traffic manipulation that can be done.

Network layer defines a physical connection between
devices connected to a shared segment identified by M A C
addresses that are resolved by A R P protocol. A R P can be
misused to redirect the communication to an interception
device [9], but it can also be error-prone [10]. The common
encapsulation and tunneling protocols are V L A N , L 2 T P
described in Section 3.

Internet layer The majority of traffic interception probes
assume that traffic is redirected into them Interception
rules that are typically based on the IP address of the

1 Brno University of Technology, Faculty of Information Technology, Bozelechova 2, 61266 Brno, Czech Republic,
E-mails: {ipluskal, koulenmi, ivondracek, rysavy }@fil.vulbr.cz.

60

430 Network forensic investigation of tunneled traffic: A case study 2

suspect, defines which IP flows should be intercepted, i.e.,
captured for future analysis. Interception up to 1 Gbps
speeds can be done on regular P C s without additional
configuration. Speeds up to 10 Gbps require that data are
not copied between the kernel and userspace, e.g., usage
p f r i n g [11], or n2disk [11]. Speeds past the 10 Gbps [12]
requires custom kernel optimizations, e.g., pf_ring and C P U
core to N I C queue mapping. Typica l encapsulations are
IPsec. P P T P . IPIP. 6in4 described in Section 3.

Transport & application layer O n the transport layer,
we may utilize "policy-based-routing" to define rules that
describe coinmunication we are interested in to capture, or
redirect to capturing probe. Typica l encapsulation protocols
are G R E , S S T P , A y i y a described in Section 3. O n the
application layer, we can go deeper and manipulate
communication, e.g., conduct S S L / I L S inspection,
filtering, or capturing [13, 14].

Datacenter accommodates the complexity of network
architecture to their size [15]. Smaller providers [16] use
from common network design segmenting a network into
smaller subsets o n Internet layer, mid to large
providers [17, 18], and cloud providers commonly use
software defined networking (S D N) [19] to create virtual
networks over well-designed base network layer.
Customers can usually define network typologies
dynamically as they create their visualized
infrastructures [18]. A l l protocols described in Section 3
can be used.

3 ENCAPSULATION AND TUNNELING
PROTOCOLS

The structure of the T C P / I P networking stack used o n the
Internet is quite rigid. There is a fixed number of layers,
each providing certain functionality. This setup works fine
for common scenarios, but occasionally the need to use a
different configuration arises.

Encapsulation is a core concept for computer networks
and is the basis for the layer model. A s data moves
downwards through the stack, from application to the
physical medium, the contents get wrapped-encapsulated-
at each layer in additional protocol information. W h e n
processing received data, each layer interprets its own
information and forwards the encapsulated payload to the
layer above.

Tunneling and encapsulation are likewise strongly
related concepts. While common protocols encapsulate data
o f higher layer protocols, tunneling protocols may also
encapsulate data of protocols of the same or lower layers.

Table 1

Summary of tunneling protocol features

Protocol Authentication Encryption
IPSec Built-in Built-in
G R E No No
PPTP Using P P P Using P P P
L 2 T P Using P P P Using P P P
SSTP Using SSL Using SSL
IPIP No No
6m4 No No
Ayiya No No

Tins effectively allows extending the stack, repeating
some layers multiple times, and can be considered a form of
recursion.

C o m m o n use-cases for tunneling include transporting
data over network segments with an unsupported network

or data-link layer protocols or providing the illusion of

being connected to a remote L A N via V P N .

3.1. C O M M O N T U N N E L I N G P R O T O C O L S

There exist a number of tunneling protocols varying in
their application and scope. Some have very narrowly
defined capabilities while others attempt to be general and
extensible, see Table 1 for comparison.

IPsec is a suite of protocols that work with the IP family
to provide confidentiality and integrity of transmitted
data [20]. While not strictly a tunneling protocol, it can
operate in a tunneling mode where the secured IP packet is
encapsulated in a new packet. The operation of IPsec
roughly consists o f three components: security association
(SA), authentication header (A H) [21] and encapsulating
security payload (ESP) [22]. W h e n a party is interested in
communicating securely, it negotiates a S A winch holds the
necessary cryptographic parameters. Afterward, the
communicating parties can include A H in their packets,
winch can be used to verify the integrity o f the received
data. A H achieves this by computing a hash from the fields
of the IP header as well as the included payload and the S A .
It is the last property that differentiates A H from a basic
checksum and protects the data from being modified in
transit. A s A H protects parts of the IP header in addition to
the payload, it also provides a form of authentication. The
E S P can provide integrity as wel l as cotrfidentiality using
encryption. In transport mode. E S P only encrypts the
payload; in the aforementioned tunneling mode, E S P
encrypts both the IP header and the payload and
encapsulates them in a new IP header.

GRE is an encapsulation protocol developed by Cisco to
allow for encapsulation of link and network protocols in a
generic way [23]. The protocol itself is very simple and
provides no security features such as encryption or
authentication. The payload packet is encapsulated in the
G R E header, which is then encapsulated in the delivery
protocol. The G R E header contains a protocol number
identifying the encapsulated protocol. Additionally, a
checksum might be present. Earlier R F C s included several
other fields that specified, e.g., the number of allowed
recursions of encapsulation or routing information [23].
Their use has been deprecated [24].

PPTP is a tunneling protocol originally designed to cany
PPP traffic over IP networks [25]. It operates on the link
layer and uses a client/server model, where the server is
called the P P T P network server and the client P P T P access
concentrator. F o r encapsulation of the payload, P P T P uses
an enhanced version of G R E . E a c h P A C - P N S pair
establishes a tunnel and a control connection which runs
over T C P . This control connection is used to manage both
the tunnel and any user sessions using it. P P T P uses
security mechanisms from P P P for authentication and
encryption; the most commonly known are Password
Authentication Protocol and Challenge-Handshake
Authentication Protocol.

L 2 T P aims to tunnel PPP packets in a way that is as
transparent as possible [26]. It decouples the layer 2 and
PPP endpoints. allowing them to exist at different devices
connected by a packet-switched network. The overall
design is reminiscent of that of P P T P . The two endpoints
are called the L 2 T P Network Server and L 2 T P Access
Concentrator, fi l l ing similar roles as their P P T P
equivalents. These two endpoints establish a tunnel which

61

3 Jan Pluskal et at. 431

consists of a control connection and zero or more sessions.
The control channel is reliable, while the channel used for
transmitting data messages is not. In IP networks, the
transport protocol to carry the L 2 T P messages is U D P .
which avoids the issues brought by stacking several T C P
connections on top of each other. L 2 T P supports the
C H A P - l i k e tunnel authentication mechanism but provides
no integrity or confidentiality, leveraging features provided
by PPP instead. However, it is commonly used in
combination with IPsec to encrypt the payload via E S P
and/or A H .

SSTP tunnels P P P frames over S S L / T L S , using T C P as
its transport protocol [27]. In this case, security is provided
by S S L using encryption and integrity checking. The
structure of the S S T P header is quite simple, with the only
interesting field being the C flag. W h e n set, the
encapsulated payload contains an S S T P control message;
otherwise the higher-lay er protocol.

IPIP is a protocol meant to alter the normal routing
process by encapsulating the IPv4 packet in another IPv4
packet and sending it to an intermediate node [28]. The
entry point of the tunnel wraps the IPv4 packet in another
IPv4 header destined to the tunnel endpoint. After
traversing the tunnel, the inner IPv4 packet is decapsulated
and processed normally, routed and forwarded to its true
destination. The protocol is simple, using no additional
headers, as it is limited to one type of outer-inner protocol;
most of the complexity lies in rules on how to properly
handle I C M P messages. O n its own, it provides no
additional security features over basic IPv4.

6in4 is a transition mechanism allowing IPv6 traffic to
traverse networks with only IPv4 support [29]. A tunnel is
established between two devices, and the IPv6 traffic is
transported by encapsulating it in IPv4. A special IP
protocol number is defined for this purpose. 6in4 itself
provides no security-related features such as authentication
or integrity.

Ayiya attempts to solve some o f the issues that
transition protocols such as 6in4 have with establishing
tunnels that travel through N A T s . [30] These N A T s need
to be manually reconfigured to properly handle 6in4,
which in some cases is not possible. A y i y a solves this by
tunneling IP traffic not directly over IP, as is the case with
6in4 or IPIP, but over a transport layer protocol such as
T C P or U D P . It aims to be general, independent of both
the payload protocol and the transport protocol being
used, thus the name Anyth ing in Anything. It is even
possible to tunnel the payload protocol directly over the
network protocol, i n the ve in of IPIP. for IP over IP
tunnels with minimal overhead where possible. A y i y a
defines a custom header that is placed between the
payload and the delivery protocol. The header contains an
identity field to help determine which sender the packet
has originated from, as the source port number and IP
address may change arbitrarily during the connection, due
to N A T . D H C P , IPv6 privacy extensions etc. A n operation
code field may specify special handling o f the received
packet, such as echoing it back to the sender. In addition,
it contains an optional signature and authentication,
providing some security features out of the box. A
heartbeat message is used to keep the tunnel open, as not
receiving any packets for a certain period of time results
in closing the tunnel.

3.2. I D E N T I F I C A T I O N O F E N C A P S U L A T I O N
P R O T O C O L S

T o properly parse a protocol and extract information
from it. it is necessary to correctly identify it. A s there is
no field identifying the application protocol in common
transport protocol headers (T C P . U D P) . and port numbers
alone aren't sufficient to identify the protocol being used,
several approaches have been developed to solve this
issue.

Deep packet inspection (DPI) is a content-based
method that attempts to identify protocols by looking
inside the payload [31]. It looks for known signatures in
the transmitted data to identify the data flow as a
particular protocol. The signature matching process can be
as simple as looking for a value in the first few bytes of
the payload (application header) or complex heuristics
requiring access to whole flows. D P I achieves high
accuracy; the chief downside of this approach is that it
needs to be able to access the data being transmitted to
function properly, and it needs to inspect every packet
passing through the interface. If the application uses
encryption, D P I fails to provide meaningful results.

Connection patterns can be used to classify traffic into
categories without inspecting the payload [32]. Sequences
of flows are matched against heuristics using a set of
rules. A s different types of traffic (such as web or P2P)
display different connection patterns over time, this
information is sufficient to categorize the observed flows.
Whi le significantly simpler and less computationally
intensive than D P I , this method only achieves rough
categorization; it does not identify specific protocols.

Statistical methods are based o n flow properties such
as duration, packet size or arrival times [33].
Measurements of various protocol attributes are taken, and
these are compared to existing models. It is possible to
include some D P I attributes and treat them as statistical
properties, resulting in a hybrid approach. Creating
models by extracting fingerprints can be done manually;
however, this is a very time-consuming process. Avai lable
algorithms, therefore, try to automate the process of
creating new protocol models, requiring only pre-
classified training data instead, uti l izing machine
learning [34].

A s tunneling protocols work above the network or
transport layer, these approaches can be used to detect
encapsulated traffic as well . Few of the protocols
described in the previous section provide encryption by
themselves, and most offer some kind o f signature
available in the header that can be matched. Moreover , the
accuracy of identification is of high priority, as we don't
want to simply categorize the traffic to gather statistics but
identify the encapsulated traffic as well . F o r this we need
to correctly identify the protocol being used; DPI ,
therefore, appears to be a reasonable choice for
encapsulation identification. The problem is further
complicated by the possibility of IPsec being used to
secure the tunneled traffic independent of the protocol
being used; this is, in fact, the recommended approach by
L 2 T P [26]. Addit ional ly , tunneling protocols can tunnel
other tunneling protocols, recursively extending the
number o f layers; to properly extract the application data,
it is necessary to identify and decapsulate each of those
protocols in turn properly.

62

4?2 Network forensic investigation of tunneled traffic: A case study 4

D V B - S 2 , G S E

Fig. 1 - This example scenario is presenting a professional application
of DVB-S2 and GSE, This architecture offers point-to-point or point-
to-multipoint connections over a satellite link in both directions.
Traffic between site A and site B is carried using generic stream
encapsulation. The figure is based on the GSE implementation
guidelines [37].

CSE

DVB-S2
u ate band

"'••"n":i :s

m'iTj en n i

Fig. 2 - The figure shows the encapsulation of network layer PDUs
into GSE packets and transmission of GSE packets inside physical

layer baseband frames. GSE packets and baseband frames consist of a
header (shown as a grey block) and a data field (shown as white space).
GSE packet carrying the last fragment also contains CRC-32 (shown as

a block with pattern). The figure is based on GSE protocol
specification [35, p. 10],

4 GENERIC STREAM ENCAPSULATION (GSE)
CASE STUDY

Network protocol generic stream encapsulation (G S E)

was defined by the digital video broadcasting project

(D V B) , and it offers a way to transport IP traffic over a

generic physical layer, usually over D V B physical

infrastructure [35, p. 6], G S E , as a native IP encapsulation

protocol o n D V B bearers, was introduced with the second-

generation satellite transmission system called D V B - S 2

(Fig. 1). Generic data transmission on the first generation of

D V B standards was formerly possible using the multi­

protocol encapsulation (M P E) o n M P E G T S packets.

However, M P E suffered significant overhead. G S E is also

included in the Satlabs System Recommendations for D V B -

R C S terminals [36].

Outline of GSE procedures operation of G S E allows

transmission of variable size generic data encapsulated into

baseband frames. G S E can encapsulate not only IPv4 traffic

but a wide range of other protocols including IPv6,

Ethernet, A T M , M P E G , and others. It supports addressing

using 6-Byte M A C addresses, 3-Byte addresses, and even a

M A C address-less mode [35, p. 6[. Encapsulation and

decapsulation procedures performed by the D V B broadcast

bearers are transparent to the rest of the network topology

and the carried traffic. Shall a network layer P D U be

transmitted over a satellite connection. G S E packets serve

as a data link layer (Fig. 1).

Uwptr TP
l i e . work

Overlay
technology

Luti:e:f TP

m i . v. o i k

Dala link
layer

Fig. 3 - Example of IP traffic encapsulated in the GSE layer, which is
carried by another IP traffic. The resulting virtual topology can be

characterized as an established overlay network.

This G S E layer provides encapsulation, fragmentation, and

slicing. Created G S E packets are then carried in baseband

frames, e.g., D V B - S 2 , on the physical layer (Fig. 2). The

receiving side performs a reassembly process, integrity

check, and a final decapsulation of transmitted P D U s [38].

Moreover, it is also possible to transport G S E packets

over, for example, standard IP network infrastructure. In

this case, the D V B - S 2 traffic can be carried like a generic

pay load on the application layer with the use of the U D P as

a transport layer. Therefore, given U D P datagrams carry

D V B - S 2 baseband frames, which further carry G S E packets

encapsulating selected protocol communication. This

approach effectively establishes an overlay network

infrastructure, because IP traffic can practically carry G S E

packets, which can carry another layer of IP traffic. A t this

point, the U D P / I P layer below G S E can be considered the

carrier (encapsulating) traffic whereas, for example, the IP

layer above G S E can be described as the carried

(encapsulated) traffic. This approach is presented in F ig . 3.

According to specifications and recommendations

published by SatLabs, the implementation of a receiver

with an Ethernet interface can be divided into a

demodulation/decoding device, and a device focused on

baseband processing. In such a case, the L3 Mode

Adaptation Receiver Header can be prepended to received

data [39, p. 10]. The receiving device would then process

DVB-S2 L3 Mode Adaptation Receiver Header, DVBS2
baseband frame, and GSE packets to analyze transmitted

conununication.

Fragmentation, slicing, padding and reassembly

process A s noted earlier, G S E procedures can encapsulate

different protocol data units in one or more G S E packets. In

general, G S E packets have variable lengths, and they can be

sent in different baseband frames individually or in a group.

Therefore, fragmentation, slicing, padding and

reassembling can occur. In this context, fragmentation

refers to a situation when a P D U and extension header is

fragmented into multiple G S E packets (Fig. 2). Slicing

indicates a case when a G S E packet itself is divided into

several contiguous baseband frames [35, p. 8[. Noted

slicing, therefore, refers to physical layer fragmentation,

which shall be transparent to the G S E layer [37, p. 27].

Concerning D V B - S 2 applications, G S E slicing does not

occur [37, p. 31].

Shall a single P D U be fragmented into several G S E

packets, each packet is assigned a fragmentation identifier

(Frag ID) label in the G S E header [35, p. 17]. Frag ID is

used to match fragments belonging to the same original

63

5 Jan Pluskal et al. 433

P D U . This approach enables the simultaneous transmission
of fragments from up to 256 different original P D U s . G S E
packets carrying a complete P D U and G S E packets with
P D U fragments can be distinguished using start and end
flags in the G S E header. The protocol of carried P D U is
indicated by protocol type/extension field in the G S E
header of the first fragmented packet and every not
fragmented packet. The packet with the last P D U fragment
further carries a C R C - 3 2 field used to check integrity after
the reassembly process (Fig. 2). It is important to note that
for example, D V B - S 2 allows multiplexed transmission of
multiple streams, each identified by its input stream
identifier (ISI) [37, p. 32] in baseband header [40, p. 20].
The reassembly process has to be carried out independently
for each received stream [35, p. 21]. Some of the possible
G S E packet formats are presented in the technical
specification [35, pp. 31-32].

3 Fun.: No. 0 PCOfl a m , :

I Crftat 00 01 0? 03 04 OS 06 07 ASO
-n.

• 000 0< 00 21 Ot Dl BC 00 U ..• j
OOld " " " M " Z Z " ","t\

;' ' - - . S i EE E5EEEEEE
z : s " " : :

Fig, 4 - View of the frame content of the Netfox Detective presenting a
frame carrying eight other encapsulated frames. It is possible to navigate

between encapsulated frames using shown links labeled with GUID of the
target frame.

Concerning G S E addressing modes noted earlier, an
additional fourth mode called label re-use can be used
when multiple G S E packets are carried in a single baseband
frame. Shall label re-use be indicated, current G S E packet
without address belongs to the same address as the last
previously processed G S E packet. A more detailed analysis
of G S E protocol is beyond this paper's scope. G S E packet
format is defined in the protocol specification [35, p. 12].
Further information can be found in standards,
recommendations, and guidelines covering G S E and D V B -
S2 [35, 41, 42, 37, 43].

4.1. E V A L U A T I O N

Every layer of decapsulated traffic is subject to further

network forensic analysis performed by the Netfox

Detective 1 . The information is presented in the G U I . The

view informs the user whether the current frame in

encapsulated or not. It is also possible to navigate between

views showing individual encapsulating frames (Fig. 4) and

encapsulated frames. The implementation has been

evaluated on publicly available d a t a s e t 2 , and results

(amount of correctly identified and extracted G S E

communications) were comparable to the reference

Wireshark implementation. A set of integration tests was

implemented that verify the correct processing of G S E

traffic in future releases and prohibit regression bugs from

being introduced.

1 https://github.com/nesfit/NetfoxDetective
1 https://wiki.wirestork.org/DVB-S2 (last accessed 2019-12-12),

5 CONCLUSIONS

Network forensic analysis currently faces many
challengesthat stems from the fact that most of the Internet
traffic is encrypted. Thus, the analysis relies o n the
metadata of messages and the behavioral characteristics of
the communication. In this paper, we have considered
another issue for network forensics, namely, the use of
tunneling protocols. We have identified the problem that
tunneling represents for evidence extraction. Then we have
presented an overview of different existing tunneling
protocols and their characteristics with respect to digital
forensics. Finally, we have demonstrated the case study
using the G S E protocol, which allows transporting IP traffic
via satellite connections. The experimental G S E protocol
analyzer implements the method for full content extraction.
Thus it can be used to preprocess the data for network
forensic analysis tools that are unable to directly cope with
tunneled communication. If tunneling protocols apply
encryption to protect the encapsulated traffic, the content
extraction is not possible in general. However, several
approaches were proposed for the detection of the
application class of encapsulated communication. The
paper provides a brief overview. Their adaptation for
different tunneling protocols belongs to the intentions of
our future work.

Received on December 1, 2019

R E F E R E N C E S

1. J . Pluskal, M , Vondráček, O. Ryšavý, Network ' Forensics in GSE
Overlay Networks, In: Proceedings of the 6th Conference on the
Engineering of Computer Based Systems, A C M , 2019,

2, V, Lif l iand, A . M . Ben-Menahem, Encrypted network traffic interception
and inspection, US Patent 8,578,486, 2013.

3. L. Temoshenko, H. Nton, C. M Parker, R. L K ing , J. D. Douglas, N. A
Mitchell, G. R Evertort, D. W. Currie, System and method for
intercepting packets in a pipeline network processor, US Patent
7,046,663,, 2006,

4, S, Belikovetsky, O, HaCohen, N, Lauderdale, Deception using screen
capture, US Patent 10,425,445, 2019,

5, D, Javaheri, M . Hosseinzadeh, A. M . Rahmani, Detection and
Elimination of Spyware and Ransomware by Intercepting Kernel-
Level System Routines, IEEE Access 6 , 78321- 78332 (2018),

6, A, Imbimbo, F, Attanasio, Apparatuses, methods, and computer
program products for data retention and lawful intercept for law
enforcement agencies, US Patent 9, 204,293, 2015,

7. M . Ponsford, The Lawful Access Fallacy: Voluntary Warrantless
Disclosures. (ustomer Privacy: and Government Requests for
Subscriber Information, Canadian Journal of Law & Technology
15,7(2017).

8. A. Mufioz, M , Urueňa Pascual, R. Aparicio Moremlla, G. Rodriguez de
los Santos Lopez. Digital Wiretap Warrant: Improving the security
ofETSI Lawful Interception (2015),

9, A, Foss, Method for automatic traffic interception, U S Patent 7,567,573,
2009,

10, P. Branch, Ana Pavlicic, G, Annitage, Using XÍAC addresses in the
lawful interception of IP traffic, In: Proc Australian
Telecommunications Networks & Applications Conference
(ATNAC) , pp. 9 - 11,2004,

11. L. Deri et at. Improving passive packet capture: Beyond device
polling. In: Proceedings of S A N E , 2004, Amsterdam, Netherlands,
pp. 85-93, 2004,

12. L. Deri, A. Cardigliano, F, Fusco, 10 Gbit line rate packet-to-disk
using n2disk, In: 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) , pp. 441-
446,2013,

13, S, Aryan, H, Aryan, J A, Ualderman, Internet censorship in Iran: A
first look, Presented as part of the 3rd {USENIX}, In: Workshop
on Free and Open Communications on the Internet, 2013.

14. P. Winter, T. Pulls, J. Fuss, ScrambleSuit: A Polymorph Network
Protocol to Circumvent Censorship. arXiv preprint
arXiv:1305.3199(2013),

64

https://github.com/nesfit/NetfoxDetective
https://wiki.wirestork.org/DVB-S2

434 Network forensic investigation of tunneled traffic: A case study 6

15, D. Spiekemrann, J. Keller, T. Eggendorfer, Improving Lawful
Interception in Virtual Datacenters, In: Proceedings of the Central
European Cybersecurity Conference, 2018.

16, L, Reilh, Method and system for lawful interception of packet switched
netM'ork services, US Patent 7,447,909, 2008.

17, J. Cartmell, A. Chandra, P. R Chitrapu, Lawful interception for local
selected IP traffic offload and local IP access performed at a non-
core gateway, US Patent 9,591,031, 2017,

18, G. AmatO, Lawful intercept management modules and methods for LI-
configuration of an internal interception function in a cloud based
network, US Patent 9,866,435, 2018.

19, N. McKeown, SofbA> are-defined networking, I N F O C O M keynote talk
17, 2, pp. 30-32 (2009),

20, Karen Seo, S, Kent, Security Architecture for the Internet Protocol,
R F C 4301,2005,

21, S. Kent, IP Authentication Header, R F C 4302, 2005,
22, S. Kent, IP Encapsulating Security Payload (ESP), R F C 4303, 2005,
23, D, Farinacci, S.P. Hanks, T. L i , P.S. Traina. 1994. Generic Routing

Encapsulation (GRE), RFC 1701.
24, T, L i , D, Farinacci, S.P. Hanks, D. Meyer, P.S. Traina, Generic

Routing Encapsulation (GRE), R F C 2784, 2000.
25, G, Zorn, G.-S. Pal l , K. Hamzeh, Point-toPoint Tunneling Protocol

(PPTP), R F C 2637, 1999,
26, A .J , Valencia, G. Zorn, W. Palter, G.-S. Pal l , M . Townsley, A , Rubens

Layer Two Tunneling Protocol "L2TP", R F C 2661, 1999,
27, Microsoft Corporation. Secure Socket Tunneling Protocol (SSTP) (18

ed.), 2018.
28, C. E. Perkins, IP Encapsulation within IP, R F C 2003, 1996,,
29, R, E, Gill igan, E, Nordmark, Basic Transition Mechanisms for IPv6

Hosts and Routers, R F C 4213, 2005,
30, J, Massar, AYIYA: Anything In Anything. Internet-Draft draft-massar-

v6ops-ayiya-02. Internet Engineering Task Force,
https://datetracker.ietf.org/doc/htiiil/draft-massar-v6ops-ayiya-02
Work in Progress, 2004,

31, A .W. Moore, K, Papagiannaki, Toward the accurate identification of
network applications, In: Lecture Notes in Computer Science,
3431, pp. 41-54, 2005.

32, W. John, S, Tafvelin, Heuristics to classify Internet backbone traffic
based on connection patterns. 2008 International Conference on
Information Networking, ICOIN (2008), pp. 1-5.

33, E. Iljelnivik. W. John. Statistical protocol identification with \pid:
Preliminary results. In: Swedish National Computer Networking
Workshop, pp. 399-410, 2009.

34, S. Zander, T. Nguyen, G. Armitage, Automated traffic classification
and application identification using machine learning. In:
Proceedings - Conference on Local Computer Networks, L C N
2005, pp. 250-257, 2005,

35, ETSI, ETSI TS 102 606-1 Vl.2.1 - Digital Video Broadcasting (DVB);
Generic Stream Encapsulation (GSE); Part 1: Protocol, European
Telecommunications Standards Institute, 2014,

36, SatLabs Group, SatLabs System Recommendations Version 2.1.2,
2010.

37, ETSI, ETSI TS 102 771 Vl.2.1 - Digital Video Broadcasting (DVB);
Generic Stream Encapsulation (GSE) implementation guidelines.
European Telecommunications Standards Institute, 2011.

38, D V B Project Office, DVB-GSE - Generic Stream Encapsulation. DVB
Project Office,
https://www .dvb .org/ resources/pub lic/factshee ts/dvb-
gse_factsheet.pdf, 2015,

39, SatLabs Group, Mode Adaptation Input and Output Interfaces for
DVB-S2 equipment Version 1.3, 2008.

40, ETSI, ETSI EN 302 307-1 VI.4.1 - Digital Video Broadcasting (DVB);
Second generation framing structure, channel coding and
modulation systems for Broadcasting, Interactive Services, News
(lathering and other broadband satellite applications. Part 1:
DVB-S2, European Telecommunications Standards Institute, 2014,

41, ETSI, ETSI TS 102 606-2 VI.1.1 - Digital Video Broadcasting (DVB);
Generic Stream Encapsulation (GSE); Part 2: Logical Link
Control (LLC), European Telecommunications Standards Institute,
2014.

42, ETSI, ETSI TS 102 606-3 VI.1.1 - Digital Video Broadcasting (DVB);
Generic Stream Encapsulation (GSE); Part 3: Robust Header
Compression (ROIIC) for IP, European Telecommunications
Standards Institute, 2014.

43, ETSI, ETSI TR 102 376-1 Vl.2.1 - Digital Video Broadcasting (DVB);
Implementation guidelines for the second generation system for
Broadcasting, Interactive Services, News Gathering and other
broadband satellite applications; Part 1: DVB-S2; Part 1: DVB-
S2, European Telecommunications Standards Institute, 2015,

65

https://datetracker.ietf.org/doc/htiiil/draft-massar-v6ops-ayiya-02
https://www

A.3 Network Forensics in G S E Overlay Networks

Jan P luska l , M a r t i n Vondráček , and O n d ř e j Ryšavý . "Network Forensics i n G S E Overlay
Networks". In: Proceedings of the 6th Conference on the Engineering of Computer Based
Systems. A C M . 2019. ISBN: 9781450376365

66

Network Forensics in GSE Overlay Networks
J a n P l u s k a l

Brno University of Technology

Brno, Czech Republic

ipluskal@fit.vutbr.cz

M a r t i n V o n d r á č e k

Brno University of Technology

Brno, Czech Republic

xvondr20@stud.fit.vutbr.cz

O n d ř e j R y š a v ý

Brno University of Technology

Brno, Czech Republic

rysavy@fit.vutbr.cz

Abstract
The importance of captured network traffic as a data-source

for law enforcement crime investigation has increased be­

cause many devices are Internet-enabled and the data com­

munication might yield crucial evidence for an investigation.

There are many points in the Internet Service Provider's

infrastructure where the network traffic might be captured.

One of them is a satellite connection, D V B - S 2 , which use

Generic Stream Encapsulation (GSE) protocol that carries

IP traffic. Current tools for network traffic forensic analysis

do not support G S E . In this paper, we describe principles

of GSE, methods for GSE traffic analysis and the extension for

an existing network forensic tool that performs G S E traffic

processing and extraction of encapsulated communication.

CCS Concepts • A p p l i e d c o m p u t i n g —> N e t w o r k f o r e n ­

sics; • Ne tworks —> Network monitoring; Network protocols;

Transport protocols; Application layer protocols; • Socia l

and profess iona l topics —> Computer crime.

Keywords network traffic forensics, generic streaming en­

capsulation, network forensic and analysis tool

A C M Reference Format:
Jan Pluska l , Mar t in Vondráček, and Ondřej Ryšavý. 2019. Network
Forensics in G S E Over lay Networks . In 6th Conference on the En­
gineering of Computer Based Systems (ECBS '19), September 2-3,
2019, Bucharest, Romania. A C M , N e w York, N Y , U S A , 10 pages.
https://doi.org/10.1145/3352700.3352712

1 Introduction
The digital forensics is becoming a domain of skilled oper­

atives employed in Law Enforcement Agencies (LEA) that

are tasked to investigate crimes. The ir data-sources might

vary, like seized mobile phones, computers, or other storage

P e r m i s s i o n to m a k e d i g i t a l o r h a r d cop ies o f a l l o r pa r t o f this w o r k for

p e r s o n a l o r c l a s s r o o m use is g r a n t e d w i t h o u t fee p r o v i d e d that cop i e s

are n o t m a d e or d i s t r i b u t e d for p ro f i t o r c o m m e r c i a l a d v a n t a g e a n d that

cop ies bea r th i s n o t i c e a n d the f u l l c i t a t i o n o n the f i rs t page . C o p y r i g h t s

for c o m p o n e n t s o f th i s w o r k o w n e d b y o the rs t h a n the au thor (s) m u s t

be h o n o r e d . A b s t r a c t i n g w i t h c red i t is p e r m i t t e d . T o c o p y o t h e r w i s e , o r

repub l i sh , to pos t o n servers or to redis t r ibute to lists, requi res p r i o r specif ic

p e r m i s s i o n a n d / o r a fee. Reques t p e r m i s s i o n s f r o m p e r m i s s i o n s @ a c m . o r g .

ECBS '19, September 2-3, 2019, Bucharest, Romania

© 2019 C o p y r i g h t h e l d b y the owne r / au tho r (s) . P u b l i c a t i o n r ights l i c e n s e d

to A C M .

A C M I S B N 978-1-4503-7636-5/19/09. . . $15.00

h t t p s : / / do i . o rg / ! 0.1145/3352700.3352712

devices. Several cases use a lawfully intercepted network

traffic as a valued data-source [2].

Al though the analysis of network communication was

not considered the primary area of digital forensics, its im­

portance has increased as most of the devices are Internet-

enabled. Performing network forensic analysis requires ade­

quate tool support [13, 14]. A typical network forensics anal­

ysis tool provides features that aid an investigator to reveal

evidence in network communication [l]. Instead of provid­

ing network protocol details, the forensic tool is expected

to extract contents of transmitted files, perform a keyword

search, identify user credentials, and more [2, 19].

M a n y complex and functionally rich network analysis

tools require expert knowledge of operators necessary to cor­

rectly pre-process the data to suit the too l The field oper­

atives are experienced criminal investigators but usually

not computer experts. Therefore, tools they use need to be

straight-forward, provide top-to-bottom analysis, and re­

quire as few expert knowledge as possible.

The overlay networks are becoming widely used by Inter­

net Service Providers (ISPs) that are interconnecting various

public places, businesses, campuses, or regular home inter­

net connections. Technologies can be fiber-optic, metallic

ethernet, 3G, 4G, 5G or satellite connection D VB-S2 that uses

G S E to encapsulate IP traffic [6, 8-11].

Our motivation behind the implementation of G S E ana­

lyzer stems from the interest expressed by L E A investigators

that seek a tool capable of analysis Internet communica­

tion encapsulated in various tunneling protocols. The offi­

cers prefer open-source network forensic and analysis tools

(NEATs) [l , 12], even though they might be poorly docu­

mented, out-of-date, and even abandoned [13].

1.1 P r o b l e m D e s c r i p t i o n

The G S E is nowadays commonly used for Internet traffic

encapsulation in satellite networks. As its name suggests, it

is a generic method of encapsulation and can occur on Data

Link, or Application layer even recursively. The L E A s strug­

gle to perform network forensics on data captured with GSE

encapsulation, but because commonly used tools for network

forensics do not process it, it is a difficult task.

1.2 C o n t r i b u t i o n a n d Paper Structure

This paper introduces the issues and methods of forensic

analysis of the G S E protocol. In the next section, we list

the most used Network Forensic Analysis Tools (NEAT) and

B I D H T B t l N K 4 >

67

mailto:ipluskal@fit.vutbr.cz
mailto:xvondr20@stud.fit.vutbr.cz
mailto:rysavy@fit.vutbr.cz
https://doi.org/10.1145/3352700.3352712
mailto:permissions@acm.org
https://doi.org/

ECBS '19, September 2-3, 2019, Bucharest, Romania

Network Security Monitoring (NSM) tools and their capa­

bilities in processing tunneling traffic, in particular, G S E

protocol. It is interesting that to our knowledge, none of the

NFATs support GSE. Next, we provide a detailed description

of Netfox Detective architecture, and atop of it, we describe

the principles of G S E processing. The goal of the present

work is to provide advanced information for network foren­

sic practitioners that need to deal with GSE communication.

We also implemented the G S E processing as an extension

to our own N E A T making it available to the wider body

of digital investigators.

2 Related Work
Network forensic practitioners commonly use two types

of tools — the N S M and the N E A T [13]. This section mainly

focuses on tunneling protocols support in related tools and

their usability for network forensic investigation conducted

by L E A officers.

NSM tools are intended for a high-level insight into the net­

work communication. Such tools are usually fast and scal­

able; thus can process high volumes of network data on high­

speed networks up to hundreds of gigabits per second. These

tools provide information typically from lower layers, i.e.,

Internet and Transport, and only partially from Application,

where they parse only well-known protocols; rarely they sup­

port overlay networks. Also, these tools are guided strictly

by standards and usually do not include heuristics or more

in-depth analysis to extract additional content. They operate

online, and most cannot process malformed or incomplete

communication. The incomplete communication is a typical

case when interception is done on commodity hardware in­

side ISP infrastructure. Therefore, these tools are used mostly

by network operators for measurements, accounting, and in­

cident detection. N S M tools provide the bottom-up approach

showing dissected packets and letting the investigator con­

duct expert analysis.

The most commonly known N S M tool is Wireshark [27]

that supports the following encapsulation protocols: GSE,

GRE, Ayiya, G T P v l , L2TP, SSTP, PPTP, IPIP, IPsec, 6in4, etc.

It supports the broadest range of network and application

protocols. Wireshark defines an API that can be used to ex­

tend its functionality by a new protocol dissector. Note that

it is the only tool supporting GSE\

Some N S M tools can be integrated, and more sophisticated

analysis can be done programmatically, like TShark [27],

T C P D u m p [24], T C P F l o w [26], NfDump [18], Suricata [23]

(Teredo, GRE), Zeek [29] (Ayiya, Teredo, G T P v l , GRE), M o ­

loch [16] (GRE) that can analyze live or intercepted com­

munication. They can be parts of scripts that can do one or

more tasks, but still can not be compared to N E A T carving

and analytical capabilities.

Jan Pluskal, Martin V o n d r á č e k , and O n d ř e j R y š a v ý

NFAT Our focus is to provide a tool for L E A operatives

to extract forensically important information mostly from

the application layer of communication. This intent perfectly

fits into the category of NFATs that is intended for in-depth

traffic analysis, that is mainly performed offline on captured

communication. NFATs provide the same amount of informa­

tion as N S M tools but also add extra information extracted

from the application layer. They conduct a thoughtful analy­

sis of the traffic and use the extracted data to infer informa­

tion that helps the investigator. The information is usually

provided in a synoptic, easily navigable user interface be­

cause NFATs are intended to be used even by field operatives

without specialized training.

Popular NFATs are NetworkMiner [17] (GRE, 802.IQ, PP-

PoE, V X L A N , OpenFlow, S O C K S , M P L S , and EoMPLS) , Py-

Flag [3, 20], XPlico [28] (L2TP, V L A N , PPP), Netlntercept [5].

No N F A T supports G S E as far as we know.

3 Netfox Detective in Depths
In this section, we present Netfox Detective, a network ana­

lysis desktop application created for the Windows platform.

We discuss the low-level network traffic processing parts

to be able to explain the extension of G S E decapsulation

support. The tool is composed of two parts:

Netfox F r a m e w o r k (backend, details see Sec. 3.1) is net­

work traffic processing engine that provides all kinds

of functionality starting from capture file loading, go­

ing through traffic processing, extraction and ending

with traffic analysis.

Netfox Detect ive (frontend, details see Figs. 10, 11)

is a visualization tool that depends on the backend

for processing part but extending it with analytic ca­

pabilities to interpret extracted data.

For a high-level overview of the tool architecture see Fig. 1.

Note, Netfox Framework is a separate set of . N E T assemblies

that have no dependency on Netfox Detective and can oper­

ate separately. However, the framework does not have any

CLI and therefore has to be incorporated into an application.

O n the other hand, Netfox Detective has a direct dependency

on the Netfox Framework and is compiled with it, e.g., it uses

types that are defined in Netfox Framework.

3.1 Netfox F r a m e w o r k

Netfox Framework is the backend, and it is responsible for

parsing and preparing all information gathered. For instance,

it identifies used protocols, to overcome fragmentation (L3)

and segmentation (L4). In its current version, it does not sup­

port live capture but can process standard input file formats

such: libPCAP, Microsoft Network Monitor cap, andPCAP-ng.

Link Layer Once an input file is loaded, it is processed

frame by frame (L2). The lowest used protocols type (e.g.,

L r N K T Y P E _ E T H E R N E T (IEEE 802.3), LrNKTYPE_IEEE802_ 11

R I O H T • L i N K 4 >

68

Network Forensics in C S E Overlay Networks ECBS '19, September 2-3, 2019, Bucharest, Romania

I Appldent || Analyzer] loCWindsor Container Detective Vie wMod el s

I Si p Fraud |rÄnalyierViewModels |

Analýz erModels
Detect iveModeľ

Po ne View Models

DataE nti ty Vi e wM od e I s

Netto xF ra m e work A PI

L3Conve rsatio nTracker

L4Conve rsatio nTracker

L7Conve rsatio nTracker

~|| UPI

Application Recog n i a

R TP I SPID j ESPI j] B

L4Conversati

LľConversati •OUs j

ProtocolPortDB

Figure 1. The figure describes the abstraction of Netfox Detective and Netfox Framework architecture. The upper part of the

diagram above the line represents visual parts of the tool. Below the line, components of Netfox Framework are drawn in

a hierarchical view.

(IEEE 802.11), LFNKTYPE_PPP, etc.) is stored in the pcap_fi-

le_header' structure, and we use it to load the first protocol

parser. A good overview of the Link-Layer header type values

is provided by [25].

Next, we utilize the frame header and its Logical L ink

Controller header (LLC) where the main field is a unique

identifier of the L3 protocol (e.g., IPv4, IPv6).

Notice that sometimes it might not be stored in the cap­

ture file. L ink layer usually does not carry any forensically

significant information; thus it is generally omitted and LINK-

TYPE_RAW, LINKTYPE_NULL l ink layer types are used.

Internet Layer Similarly, both IPv4 and IPv6 contain an

identification of an upper layer. (Note, IPv4 names the field

'protocol'; IPv6 names it 'Next Header') which allows us

to choose an appropriate L4 parser. A s long as the proto­

col/next header is present, we can parse the communication

deterministically, usually up-to the transport layer.

Transport Layer The transport layer carries no informa­

tion about the subsequent protocol; therefore, the continu­

ing application layer needs to be identified by other means

to be correctly processed. We can do this identification using

several methods (e.g., port-based classification, deep-packet

inspection, probabilistic and statistical methods based on ma­

chine learning). Typical encapsulation with protocol exam­

ples is presented in Fig. 2.

3.2 C o n v e r s a t i o n T r a c k i n g

This section provides a comparison of ISO/OSI and TCP/IP

models with denoted layer names and samples of typical

protocols used on particular layers. The logical approach

to process network data is to create a forest of trees with

roots based on identifiers extracted from the lowest layer

of the network encapsulation model and continue with upper

^ M i n e c r a f t l l Warcraft~j| Bitcoin | ^
D L H]

I POP3 irTicebook || XMPP || SPDY|
?Ť^ě71| XChaťll MQTTI

I SMTP II Handouts II ICQ || RTP I
~|| YMSG IITŤpI

TCP UDP

IPv6 IPv4

Figure 2. This figure provides the comparison of ISO/OSI

and T C P / I P models with denoted layer names and samples

of typical protocols used on particular layers. Netfox De­

tective supports all protocols that are enumerated on this

figure.

encapsulation levels. This way, conversations on all levels

are created, which also sets boundaries, and specific traffic

can be targeted for analysis and information extraction.

Besides, each layer has its specifics that need to be taken

into account before processing ongoing layer.

IPv4 (L3) f r a g m e n t a t i o n can occur, and packets need

to be defragmented before further processing. Frag­

ments are identified by Fragment Offset and bit More

Fragments (MF) set in the Flags field. As long as M F bit

is set, defragmentation process has to buffer packets

and further process them in bulk, because fragments

do not carry headers from upper layers, thus cannot

be processed separately and in parallel.

T C P (L4) segmentat ion occurs regularly. Segments are

agnostic to processing mechanisms, carry all required

headers and can be processed in parallel. The posi­

tion of a segment in transmission buffer is defined by

B I D H T B L 1 N K 4 >

69

ECBS '19, September 2-3, 2019, Bucharest, Romania

the difference of initial sequence number (SYN packet's

SEQ) and the particular segment's SEQ.

A p p l i c a t i o n messages are not implicitly denoted be­

cause each application protocol has its structure and

is not parsed on this level of processing. To obtain at

least some level of abstraction, we can deduce bound­

aries of application messages from the transport layer.

E.g., T C P ' s field Flags contains the PSH bit that is set

when the last segment of a particular application mes­

sage is created. In other words, when flushQ is called

on network socket which is typically done to notify

the kernel that message is to be dispatch right away.

Our unique mechanism of processing network commu­

nication [15], mainly L4 segregation shown that even mal­

formed or corrupted captures could be used as data-source

and carving modules can extract otherwise lost information.

We accomplish this during the last processing step, that cre­

ates L7PDUs, which are the approximations of application

messages.

3.3 Netfox Detect ive A r c h i t e c t u r e

Netfox Detective was designed to be modular and modules

to be inter-operable, but also to work as self-contained l i ­

braries to be used by other tools. This way, we have created

a framework for network forensics and analytic application

supporting the forensic investigation.

Fig. 1 describes the decomposition of the tool to small

interconnected building blocks/modules. In the bottom part,

the architecture of Netfox Framework processing network

communication that is interconnected with Netfox Detective

by NetfoxFrameworkAPI. This API enables easy incorporation

of Netfox Framework with any additional software that may

use it as a platform. Furthermore, this part is divided into

two groups, the execution and model parts.

Execution part, on the left-bottom side of NetfoxFrame­

workAPI, consists of modules that by their composition en­

sures polymorphic behavior and extensibility. Each new net­

working protocol that is to be supported requires the creation

of its tracking building block and connection into the process­

ing pipeline. The communication interface between building

blocks is defined by their interfaces that buffer inputs and

outputs that encapsulates data in models.

Model part consists of blocks below DbContext. Models

serve as data carriers for parsed, extracted state information,

e.g., for L3 conversation it is the source and destination IP

address with a collection of other models representing Frames.

Models are persisted with DbContext and also accessible

through it to higher layers.

To ensure fast parallel processing on a single computa­

tion node with shared memory, i.e., an application running

a single process, we used Task Parallel Library (TPL). This ap­

proach enables the creation of functional blocks that improve

modularity. Each block processes immutable data; thus, all

Jan Pluskal, Martin V o n d r á č e k , and O n d ř e j R y š a v ý

blocks might run in parallel and together create an oriented

graph, a Data Flow 1 . The Netfox Framework combines buffer­

ing blocks that interconnect execution blocks to maximize

the utilization of resources due to different time complexities

of data processing in the functional blocks. Also, this intro­

duces a back-pressure mechanism that is used as memory

management to slow down faster blocks that might other­

wise overwhelm the system and cause resource depletion

and consequently, a disk swapping or an application crash.

3.4 C a p t u r e F i l e Process ing

In Netfox Framework, capture file processing is initiated by

a method call of AddCapture in NetfoxFrameworkAPI. In the

current implementation, the tool processes captured traffic

in formats libPCAP, PCAP-ng and MNM Cap (Microsoft Net­

work Monitor). Fig. 3 describes a sequence of execution calls

and model passing through execution pipeline, a layer by

layer to describe logical processing in an abstracted manner.

Modules are designed to ensure concurrent processing

thus they do process immutable data only. Majority of mod­

ules also do run in parallel instances to increase a degree

of parallelism further. This design also enables with some

modifications of processing pipeline to scale up and run

the data flow graph in a distributed environment. That is

achieved with T P L Data Flow which also enables to change

interconnection of execution block to extend the process­

ing of capabilities to process new network encapsulations

(tunneling protocols).

The rest of this section describes processing blocks and

their interconnections denoted on Fig. 4.

C o n t r o l l e r C a p t u r e P r o c e s s o r

ControllerCaptureProcessor block is used to oversee captured

traffic processing. This module interconnects particular func­

tional and buffering block to a processing pipeline reflecting

typical network layered encapsulation. A new processing

data flow pipeline is created for each job. That leads to segre­

gation of data potentially originated from multiple cases and

guarantees that no data might be reconstructed into false

evidence. The processing has two reading phases.

Firstly, a path to file or files with captured communication

is passed to the CaptureProcessorBlock that takes care of pars­

ing of particular P C A P file format and retrieving raw frames.

The output of this block is PmCapture object collection meta

information about the capture file and frames encapsulated

in objects oiPmFrame. PmFrame is obtained in the sequential

streamed one-way passage of capture file and contains only

information about its position in the capture file.

Secondly, additional meta information used in further pro­

cessing without actual payload is filled in the second read

by IndexMetaFramesBlock. This segregation is due to a way

how frames are stored in various P C A P file formats. Some

1 h t t p s : / / m s d n . r n i c r o s o f t . c o r n / c s - c z / l i b i a r y . h h ^ 8 6 0 3 (v - v s . l l O) . a s p x

R I 1 H T I L I N K 4 >

70

https://msdn.rnicrosoft.corn/cs-cz/libiary

Network Forensics in C S E Overlay Networks ECBS '19, September 2-3, 2019, Bucharest, Romania

GUI FrameworkAPI
Controller

Processor

L3Conv UConv
Appldent DbContext

Add .
Capture^^ Capture ^

Fo reach Frame

- E T *
)

Store
-Process Frame»

New L3 Conversation •

—Store N?w LA Conversations
-Process Frames Recognize 1.7̂

1 Conversation
i Store

Store L7->
Frame •

Add .
Capture^^ Capture ^

Figure 3. Abstract capture file processing scheme with a sequential passage. Data dependencies between models are omitted.

New conversations are stored in relational database triggered by the processing of a first frame belonging to it.

1 CaptureProcessor Block | ^|
1 L3L4Corivers

: "
o n , r" t , r 1

Fllelnfo 1 ^ —captu reFile— 1—

1 P races sC apt ureFile (-1 IridexMetaFra

I

esBlock 1

Pnframe |

—
•» I L 1 h

—
•» L3ConversatioriStatistics

L3Coriversatiori I PmFrame—^ PnHetaFramesBijff erBlock |—Pm L 1 h

—•
« „ „ , I L 1 h

—•

L7CoriversatioriTr acker Block
J

—k>| storeCap cures Block | | storeL3CoriversatioriBlock \< '

•> PmFrame m ProcessFrameBlock —i 1

» L4Conversatior, | L_J

„„„,„,,„„ - » , „ , L ^ „ „ „ m || , „ ™ L . s „ t l , U t , . „ k - J

— 1

^ H — t o Statistics — • storel_7StatisticsBlock | store PntaptureL-lCo rivers at ioriBlock
PracessL4 J P m (: a p t L I . e L 7 (: c

1 Conversations lock | 1 nversation —• s torePm: apt urel_7 Comers at ion Block |
— • store L4CoriversatioriBlock

Figure 4. The figure describes the scheme of the functional and buffering block based on T P L Data Flow. This schema describes

the decomposition of processing units to perform actions like reading frames from capture files, tracking conversations on L3.

L4 levels and furthermore on L7 application layer with the approximation of application messages and application protocol

identification.

formats (e.g., M N M) contains a frame table with this meta-

information in place and spares the first P C A P read. Execu­

tion of IndexMetaFramesBlock block, which is a non-blocking

read from P C A P file with parsing of (L2), L3, L4 layers, is done

with the maximal level of parallelism. Layer 2 might be omit­

ted in case that P C A P is captured without it.

L 3 L 4 C o n v e r s a t i o n T r a c k e r

L3L4ConversationTracker takes care of the creation of con­

versations on particular levels inside the ProcessPacketBlock.

A PmFrame(s) (packets) with the same IP source and destina­

tion address compose an L3Conversation. This L4 conversa­

tion if furthermore a collection of smaller L4 conversations

that composes PmFrame(s) (datagrams) with the same IP

source and destination address and T C P or U D P source and

destination ports and L4 protocol type (i.e., U D P or TCP) .

In the time when conversations on layer L3 and L4 are

created, meta-information in the form of PmFrames is still

kept in memory. Because of that, complementary to the con­

versation creation, conversation statistics are generated as

well. Statistics on both levels are updated by data processed

from each PmFrame passing through ProcessPacketBlock.

Because the processing model in Netfox Framework is based

on IP communication, all non-IP communication is tracked

in special aggregation conversations. These conversations

have invalid LP addresses as identifiers, i.e., 0.0.0.0 and [::]

on L3 level, and invalid endpoints on L4, i.e., 0.0.0.0:0 and [::]:0

as both source and destination. Similarly, L3 conversations

containing an unknown transport protocol are aggregated

into first L4 conversation with valid IP addresses but invalid

transport ports, i.e., 0 port number.

L 7 C o n v e r s a t i o n T r a c k e r

L7ConversationTracker is a core of our reassembling engine

currently supporting T C P and U D P transport protocols. Vari­

ous T C P heuristics [15] are used to separated IP flow commu­

nication, i.e., L4 conversations to finer-grained units based

on application session We call them L7 conversations.

This module processes incoming datagrams in parallel

respecting the following scheme. For each newly processed

L4 conversation it creates a new Task and stores it into

a dictionary keyed by an L4 conversation key. A l l conse­

quently processed datagrams wil l be forwarded into this

71

ECBS '19, September 2-3, 2019, Bucharest, Romania

task. Tasks run in parallel on multiple cores and are sched­

uled by the TaskScheduler inside C o m m o n Language Run­

time (CLR), which makes them much lighter than regular OS

threads because they are running on existing threads stored

in the ThreadPool. After a task is done or paused, the thread

is returned into the ThreadPool, and a new task is immedi­

ately executed on it. This way, the overhead is minimal, and

parallel processing improves performance rapidly.

Based on the transport protocol type, appropriate reassem-

bler is selected, and the datagram is passed to it for the pro­

cessing. Reassemblers incorporate heuristics [15] for ad­

vanced network traffic processing capable of accurate pro­

cessing of even malformed, or missing frames.

U D P reassembler uses timeouts to separate consequen­

tial U D P sessions. Because of a lack of information

from U D P protocol, application messages are created

as an ordered sequence of L7 PDUs. Each L7 P D U con­

tains only one datagram.

T C P reassembler is more complex and uses properties

of T C P protocol like sequence numbers, flags (mainly

S Y N , FIN, RST, PSH) in combination with timeouts.

Based on T C P properties, approximations of applica­

tion messages are created in the form of the ordered

sequence of L7 PDUs. Each L7 P D U contains one or

more datagrams composing the application message.

TCP Reassembler This solves an issue with the ambiguity

of L4 conversations captured in one or many simultaneously

processed captures. Typically this happens when static ports

are used at server and client side. In a case when a packet loss

corrupts capture, it may happen that multiple T C P sessions

would be merged into one because from a network point

of view, communication would match the regular schema.

A T C P finite state machine would process this merged com­

munication and report missing data but would lack further

information. That would result in ambiguity in determina­

tion who was communicating, whether there were one or

more identities involved.

Both reassemblers (TCP and UDP) produce L 7 Conversa­

tions that contain collections of data and non-data frames.

Non-data frames are frames without payloads that serve

for signaling purposes like T C P A C K s , or frames with pay-

loads that are malformed, or retransmitted. These frames do

not participate in final stream creation, but their presence

is either way recorded for auxiliary forensic intents.

L7PDUs Data frames are stored inside L7 PDUs . One L7

P D U represents a data stream that is an approximation of an

application message. A n application message is considered

to be a sequence of datagrams containing one user action,

e.g., the user sends a message on online chat, or an email,

or downloads a picture, etc. Although, one application mes­

sage can span across multiple L7 PDUs, scarcely, one L7

P D U would contain multiple application messages. This also

Jan Pluskal, Martin V o n d r á č e k , and O n d ř e j R y š a v ý

serves as a check-pointing mechanism in case that module ex­

tracting data from the application protocol is unable to parse

the data stream due to corruption or unknown content cor­

rectly. We observed that this happens a lot when proprietary

application protocols are involved because of their volatile

nature and closed specification.

Storage B l o c k s

Storage blocks are used to assure asynchronous persistence

of gathered meta-information in the form of outputs of all

functional blocks, i.e., L3, L4, L7 Conversations with statis­

tics, L7 PDUs and Frames. Data is stored in S Q L database in

bulk operations to achieve higher performance with a cost

of delay introduced with buffering. Buffering and database

storing operations run in separate tasks. This way, both ser­

vices run in parallel and do not block one-another under

ideal circumstances. Storage buffering is highly memory

consumptive; therefore, in case that database is slower then

processing, back-pressure mechanism protects processing

pipeline against memory deprivation lowering its perfor­

mance.

4 Decapsulation of Overlay Network
Communication

Available network technologies provide ways to encapsu­

late various network protocols inside carrier traffic. This

approach practically establishes an overlay network on top

of an existing network infrastructure. The virtual topology

of such an overlay network is usually different than the phys­

ical topology. Encapsulation methods can aim to maintain

security Confidentiality, Integrity, and Availability (CIA) triad.

As already explained, the goal of Netfox Detective is to offer

an extensive forensic analysis of captured traffic. To fulfill

this goal and provide a broader range of use-cases, our re­

search and development further focused on the processing

of encapsulated traffic. This section, therefore, outlines sev­

eral encountered challenges and explains how the analysis

of encapsulated satellite traffic was solved.

4.1 G e n e r i c S tream E n c a p s u l a t i o n

Network protocol Generic Stream Encapsulation (GSE) was

defined by the Digital Video Broadcasting Project (DVB), and

it offers a way to transport IP traffic over generic physical

layer, usually over D V B physical infrastructure [8, p. 6]. GSE.

as a native IP encapsulation protocol on D V B bearers, was

introduced with the second-generation satellite transmission

system called DVB-S2 (Figure 5). Generic data transmission

on the first generation of D V B standards was formerly pos­

sible using the Multi-Protocol Encapsulation (MPE) on M P E G -

TS packets. However, M P E suffered significant overhead.

G S E is also included in Satlabs System Recommendations

for D V B - R C S terminals [22].

B I D H T B L 1 N K 4 >

72

Network Forensics in C S E Overlay Networks ECBS '19, September 2-3, 2019, Bucharest, Romania

Figure 5. This example scenario is presenting a profes­

sional application of D V B - S 2 and G S E . This architecture

offers point-to-point or point-to-multipoint connections over

a satellite link in both directions. Traffic between Site A and

Site B is carried using Generic Stream Encapsulation. The

figure is based on the G S E implementation guidelines [6].

Outline of GSE Procedures Operation of GSE allows trans­

mission of variable size generic data encapsulated into base­

band frames. G S E can encapsulate not only IPv4 traffic but

a wide range of other protocols including IPv6, Ethernet,

A T M , M P E G , and others. It supports addressing using 6-Byte

M A C addresses, 3-Byte addresses, and even a M A C address-

less mode [8, p. 6]. Encapsulation and decapsulation proce­

dures performed by the D V B broadcast bearers are transpar­

ent to the rest of the network topology and the carried traffic.

Shall a network layer P D U be transmitted over a satellite

connection, GSE packets serve as a data link layer (Figure 5).

This G S E layer provides encapsulation, fragmentation, and

slicing. Created G S E packets are then carried in baseband

frames, e.g. DVB-S2, on the physical layer (Figure 6). The re­

ceiving side performs a reassembly process, integrity check

and a final decapsulation of transmitted PDUs [4].

Moreover, it is also possible to transport GSE packets over,

for example, standard IP network infrastructure. In this case,

the D V B - S 2 traffic can be carried like a generic payload

on the application layer with the use of User Datagram Pro­

tocol (UDP) as a transport layer. Therefore, given U D P data­

grams carry DVB-S2 baseband frames, which further carry

G S E packets encapsulating selected protocol communica­

tion. This approach effectively establishes an overlay net­

work infrastructure, because IP traffic can practically carry

G S E packets, which can carry another layer of IP traffic. At

this point, the UDP/LP layer below G S E can be considered

the carrier (encapsulating) traffic while, for example, the IP

CSE
packci s

D V B - S 2

ttrtf rrrrfi
] ü

Figure 6. The figure shows the encapsulation of network

layer PDUs into GSE packets and transmission of GSE pack­

ets inside physical layer baseband frames. G S E packets and

baseband frames consist of a header (shown as a grey block)

and a data field (shown as white space). GSE packet carrying

the last fragment also contains CRC-32 (shown as a block

with pattern). The figure is based on GSE protocol specifica­

tion [8, p. 10].

Upper IP
norwurk

()V(T]UV
t cclino]oa,y

Lower IP
]:civ,-(iik

- c

F igure 7. Example of LP traffic encapsulated in G S E layer,

which is carried by another IP traffic. The resulting virtual

topology can be characterized as an established overlay net­

work.

layer above GSE can be described as the carried (encapsulated)

traffic. This approach is presented in Figure 7.

According to specifications and recommendations pub­

lished by SatLabs, implementation of a receiver with Eth­

ernet interface can be divided into demodulation/decoding

device, and a device focused on baseband processing. In such

case, L3 Mode Adaptation Receiver Header can be prepended

to received data [21, p. 10]. The receiving device would then

process DVB-S2 L3 Mode Adaptation Receiver Header, DVB-

S2 baseband frame, and GSE packets to analyze transmitted

communication.

Fragmentation, Slicing, Padding and Reassembly Pro­

cess As noted earlier, G S E procedures can encapsulate dif­

ferent protocol data units in one or more GSE packets. In gen­

eral, GSE packets have variable length, and they can be sent

in different baseband frames individually or in a group. There­

fore, fragmentation, slicing, padding and reassembling can

73

ECBS '19, September 2-3, 2019, Bucharest, Romania Jan Pluskal, Martin V o n d r á č e k , and Ondrej R y š a v ý

occur. In this context, fragmentation refers to a situation

when a P D U and Extension Header is fragmented into mul­

tiple G S E packets (Figure 6). Slicing indicates a case when

a G S E packet itself is divided into several contiguous base­

band frames [8, p. 8]. Noted slicing, therefore, refers to phys­

ical layer fragmentation, which shall be transparent to the

G S E layer [6, p. 27]. Concerning DVB-S2 applications, GSE

slicing (fragmentation into baseband frames) does not oc­

cur [6, p. 31].

Shall a single P D U be fragmented into several GSE packets,

each packet is assigned a Fragmentation Identifier (Frag ID)

label in the G S E header [8, p. 17]. Frag ID is used to match

fragments belonging to the same original P D U . This ap­

proach enables the simultaneous transmission of fragments

from up to 256 different original PDUs. G S E packets carry­

ing a complete P D U and G S E packets with P D U fragments

can be distinguished using start and end flags in the G S E

header. The protocol of carried P D U is indicated by Pro­

tocol Type/Extension field in the G S E header of the first

fragmented packet and every not fragmented packet. The

packet with the last P D U fragment further carries a CRC-32

field used to check integrity after the reassembly process

(Figure 6). It is important to note that for example, DVB-S2

allows multiplexed transmission of multiple streams, each

identified by its Input Stream Identifier (ISI) [6, p. 32] in base­

band header [7, p. 20]. The reassembly process has to be

carried out independently for each received stream [8, p. 21].

Some of the possible G S E packet formats are presented in

the technical specification [8, pp. 31-32].

Concerning G S E addressing modes noted earlier, an ad­

ditional fourth mode called label re-use can be used when

multiple GSE packets are carried in a single baseband frame.

Shall label re-use be indicated, current G S E packet without

address belongs to the same address as the last previously

processed G S E packet. More detailed analysis of G S E proto­

col is beyond this paper's scope. GSE packet format is defined

in the protocol specification [8, p. 12]. Further information

can be found in standards, recommendations, and guidelines

covering G S E and DVB-S2 [8], [9], [10], [6], [11].

Implementation Outline O u r main goal was to success­

fully decapsulate and process GSE protocol used as an over­

lay network technology (Figure 7). M a i n challenges were

represented by correct decapsulation of fragmented traffic

including timeout detection and also including support for

recursive encapsulation. A s outlined earlier, this approach

represents the transmission of following protocols layered

on top of each other:

• upper IP as an overlay network layer,

• G S E packets transmitted inside a D V B - S 2 baseband

frame with Mode Adaptation Header,

• lower IP and U D P as a network and a transport layer,

• Ethernet as a data link layer.

0..* Oocapsulat.odFromFramoH

P m F rame Base
0..*

Ľiicapnulat i'< I F m m i v

P m F ra ineE nc apsu lated
Fragments 1..* < <Interface> >

I Fragment
P m F ra ineE nc apsu lated

< <Interface> >

I Fragment

< <Interface> >

I Fragment

GsoHoadoi P D U ^

X

Mix U'Ai lapt at it >nH(vi(IITI.J! Ijl'lriHjl'UK II 11 i 1L It 1" GsePacke t

Figure 8. Extension of object model focused on the process­

ing of GSE-encapsulated frames (simplified).

Design of the extension of the object model concerning

the processing of encapsulated communication (Figure 8)

is quite straightforward and reflects above-described pro­

tocol layers. Instance of BaseBandFrame composes of Mod-

eAdaptationHeaderL3, BaseBandHeader, and several user pack­

ets. These user packets are, in this case, G S E packets. The

instance of GsePacket includes GseHeader and carries the en­

capsulated P D U . Properties of these instances store values

of specific protocol fields from the processed frame, e.g.,

address label, length, fragment ID, encapsulated protocol

type, checksum, etc. A l l designed model classes make use

of factory methods for parsing corresponding instances from

network traffic. These Parse methods, therefore, take an in­

stance of PDUStreamReader, which is responsible for provid­

ing a correct sequence of bytes belonging to the lower P D U ,

as described above.

Because G S E packets can represent fragments of the en­

capsulated P D U , GsePacket class implements Fragment in­

terface utilized during reassembly procedures. With the chal­

lenge of correct reassembly and decapsulation, a new type

of network traffic frame was introduced. Class PmFrameEn-

capsulated inheriting from PmFrameBase represents a frame

encapsulated in one or more carrier datagrams. Carrier data­

grams can be either baseband frames or encapsulation pack­

ets. The instance of PmFrameEncapsulated has references

to individual fragments which form the given frame.

Processing of GSE-encapsulated communication is man­

aged by L7DvbS2GseDecapsulatorBlock (Figure 9) dynami­

cally connected to the frame processing pipeline, which was

described in Figure 4. This T P L block aims to decapsulate

frames from GSE packets used as an overlay network technol­

ogy. Connection to the pipeline is established using Broad-

castBlock, which is capable of forwarding L7Conversations

B I D H T B L l f J K 4 >

74

Network Forensics in C S E Overlay Networks ECBS '19, September 2-3, 2019, Bucharest, Romania

from the L7ConversationTrackerBlock to the StoreL7Conver-

sationBlock (as in the standard pipeline topology presented

in Figure 4) and also to the noted L7DvbS2GseDecapsulator-

Block (Figure 9). Due to the possible amount of false positive

detections of G S E layer, decapsulation procedures are op­

tional. M a i n Netfox Detective application settings include

such option to enable Decapsulation during capture file import

for communication of Generic Stream Encapsulation (GSE)

inside DVB-S2 baseband frames with Mode Adaptation Header

L3 sent as Layer 7 PDU. Shall this option be enabled, C o n ­

tra Her Cap tureProces so r instantiates and connects L7DvbS2-

GseDecapsulatorBlock to the pipeline.

7 C o nversat io n T r a c k e r B lockj

L 7 C o nversat io n

f L7Conversat ionBroadcaster j

r~L7Conversat ion—LL7Conversation—^

^ StoreL7Conversat ionBlock j ^ L7DvbS2GseDecapsu la to r j

L 7 C o nversat ion I 'ii 1I ran ir-lvm-i | i--n. <-< I

III l i l
Database DecapsulatedFrames

Figure 9. Scheme illustrating the connection

of L7DvbS2GseDecapsulatorBlock to the frame pro­

cessing pipeline using BroadcastBlock placed between

L7ConversationTrackerBlock and StoreL7ConversationBlock.

Standard pipeline topology is shown in Figure 4.

Because GSE packets, which can encapsulate IP traffic, can

be transmitted inside another UDP/IP, recursive encapsula­

tion can happen. In such an edge case, several G S E overlay

networks could be created on top of each other. That implies

that a frame decapsulated from G S E packets must be sepa­

rately processed and analyzed for the presence of another

G S E layer. The challenge of recursive encapsulation is han­

dled by ControllerCaptureProcessor, as well. Shall the frame

processing pipeline finish with some decapsulated frames, an­

other pipeline is established, and these decapsulated frames

are further processed.

The decapsulation procedure performed by L7DvbS2Gse-

DecapsulatorBlock is following. Instantiated PDUStreamReader

handles reading bytes of the input conversation and then

parsing of a G S E layer is attempted. U p o n successful de­

tection of G S E layer, D V B - S 2 baseband frames are passed

to the GseReassemblingDecapsulator. It outputs frames which

have type PmFrameEncapsulated and are ready for further

processing by consequential blocks.

The GseReassemblingDecapsulator manages decapsulation

of frames encapsulated inside G S E packets, which are car­

ried in baseband frames. The decapsulator is capable of re­

assembly procedure according to the specification [8, p. 21].

Reassembling distinguishes single input stream and multiple

input streams based on ISI explained earlier. The reassembly

procedure utilizes GseReassemblyBujfer for each fragment ID

and for each stream identifier processed. The decapsulator,

therefore, decapsulates frames from G S E packets in base­

band frames. In the case of G S E fragmentation, given G S E

packet (fragment) is added to the corresponding reassembly

buffer. Upon successful reassembly, the carried frame is then

decapsulated, too. Each GseReassemblyBujfer holds a counter

of processed baseband frames, which is used to detect a P D U

reassembly time-out error, as defined in the specification [8].

4.2 E v a l u a t i o n

Every layer of decapsulated traffic is subject to further net­

work forensic analysis performed by the Netfox Detective.

The information is presented in the GUI. The view informs

the user whether the current frame in encapsulated or not. It

is also possible to navigate between views showing individ­

ual encapsulating frames (see Figure 10) and encapsulated

frames (see Figure 11).

The implementation has been evaluated on publicly avail­

able datasets 2 , and results (amount of correctly identified

and extracted GSE communications) were comparable to the

reference Wireshark implementation. A set of integration

tests was implemented that verify the correct processing

of GSE traffic in future releases and prohibit regression bugs

from being introduced.

1 ! „ . „ . , . .

-S=;10W=I= 5100D.tr,; 774 J! Z l " l m " * " ^

-: E„:1..,1.f:i-:.saî .= «-isa=-̂ M-Eo91-ä=3ä:«r5acS

Figure l O . V i e w of the frame contentof the Netfox Detective

presenting a frame carrying eight other encapsulated frames.

It is possible to navigate between encapsulated frames using

shown links labeled with GUID of the target frame.

The main goal was to process GSE traffic used as the tun­

neling protocol in satellite communication networks. The

current implementation of GSE processing module does not

support for D V B - S 2 baseband frames that can be used as

the physical layer. The decapsulation procedure also does

not handle G S E labels, because of the limitation of the Net­

fox Framework tool that does not support tracking multiple

LI conversations. Stream LD and fragment LD is correctly

2 h t t p s : / / w i k i . w i r e s h a r k . o r g/DVB - S 2 (last accessed 2019-04-17),

75

http://5100D.tr
https://wiki.wireshark.org/DVB-S2

ECBS '19, September 2-3, 2019, Bucharest, Romania Jan Pluskal, Martin V o n d r á č e k , and Ondrej R y š a v ý

F igure 11. Frame content view of Netfox Detective (as in Fig­

ure 10) analyzing a frame that was decapsulated from another

frame of the lower layer.

utilized during G S E reassembling. However, the stream ID

value is not used to separate L l conversations.

5 Conclusion
Network traffic analysis is often conducted as a part of dig­

ital investigation. In most cases, Internet communication

is analyzed, but sometimes the interesting communication

is encapsulated in some tunneling protocol because of the

network technology used. In this paper, we have presented

the analysis of GSE protocol and the implementation of foren­

sic data extraction enabling to access the encapsulated In­

ternet traffic. The proposed implementation was evaluated

against the Wireshark tool, the only available implementa­

tion of G S E analysis module in common N S M tools. The

forensics tool Netfox Detective is publicly available (https:

//github.com/nesfit/NetfoxDetective) for all network foren­

sic practitioners to use, including open-source source codes

that can be freely modified, or integrated into other newly

implemented tools.

References
[l] N i c o l e Beebe . 2009. D i g i t a l fo rens ic research : T h e g o o d , the b a d a n d

the unaddres sed . I n IFIP International Conference on Digital Forensics.

Spr inger , 1 7 - 3 6 .

[2] E o g h a n C a s e y . 2004. N e t w o r k traffic as a s o u r c e o f ev idence : t o o l

s t rengths , w e a k n e s s e s , a n d fu ture needs . Digital Investigation 1, 1

(2004), 28 - 43. ht tps: / /doi .Org /10.1016/j .di in.2003.12.002

[3] M . I . C o h e n . 2008. P y F l a g - A n A d v a n c e d N e t w o r k Fo rens i c F r a m e w o r k .

Digital Investigation 5 (Sept. 2008), 112-120. ht tps: / /doi .org/10.1016/j .

diin.2008.05.016

[4] D V B P r o j e c t Off ice . 2015. D V B - G S E - Generic Stream Encapsulation.

D V B P r o j e c t Off ice . U R L : h t t p s : / / w w w . d v b . o r g / r e s o u r c e s / p u b l i c /

facts hee t s /dvb- gse_factsheet .pdf .

[5] S a n d s t o r m E n t e r p r i s e s . 2003. N e t l n t e r c e p t .

[6] E T S I . 2011 . ETSI TS 102 771 Vl.2.1 - Digital Video Broadcast­

ing (DVB); Generic Stream Encapsulation (GSE) implementation

guidelines. E u r o p e a n T e l e c o m m u n i c a t i o n s S tandards Ins t i tu te .

U R L : h t t p s : / /www.e t s i . o rg /de l i ve r / e t s i _ t s / 102700_102799 /102771 /01 .

02.01_60/ts_102771 v010201p.pdf .

[7] E T S I . 2014. ETSI EN 302 307-1 Vl.4.1 -Digital Video Broadcasting (DVB);

Second generation framing structure, channel coding and modulation

systems for Broadcasting, Interactive Services, News Gathering and other

broadband satellite applications; Part 1: DVB-S2. E u r o p e a n T e l e c o m m u ­

n i c a t i o n s S tandards Ins t i tu te . U R L : h t t p : / / w w w . e t s i . o r g / d e l i v e r / e t s i _

en/302300_302399/30230701/01.04.0 l_60/en_30230701 v010401p.pdf .

[8] E T S I . 2014. ETSI TS 102 606-1 Vl.2.1 - Digital Video Broadcast­

ing (DVB); Generic Stream Encapsulation (GSE); Part 1: Proto­

col. E u r o p e a n T e l e c o m m u n i c a t i o n s S tandards Ins t i tu te . U R L :

h t tp s : / /www.e t s i . o rg /de l ive r / e t s i_ t s /102600_102699 /10260601 /01 .02 .

01_60/tS_10260601 v010201p.pdf .

[9] E T S I . 2014. ETSI TS 102 606-2 Vl.1.1 - Digital Video Broadcast­

ing (DVB); Generic Stream Encapsulation (GSE); Part 2: Logical Link

Control (LLC). E u r o p e a n T e l e c o m m u n i c a t i o n s S t anda rds Ins t i tu te .

U R L : h t tps : / /www.ets i .org/del iver /e ts i_ ts /102600_102699/10260602/01.

01.01_60/ ts_10260602v010101p.pdf .

[10] E T S I . 2014. ETSI TS 102 606-3 Vl.1.1-Digital Video Broadcasting (DVB);

Generic Stream Encapsulation (GSE); Part 3: Robust Header Compression

(ROHC) for IP. E u r o p e a n T e l e c o m m u n i c a t i o n s S t anda rds Ins t i tu te .

U R L : h t tps : / /www.ets i .org/del iver /e ts i_ ts /102600_102699/10260603/01.

01.01_60/ ts_10260603v010101p.pdf .

[11] E T S I . 2015. ETSITR 102 376-1 Vl.2.1 - Digital Video Broadcasting (DVB);

Implementation guidelines for the second generation system for Broad­

casting, Interactive Services, News Gathering and other broadband satel­

lite applications; Part 1: DVB-S2; Part 1: DVB-S2. E u r o p e a n T e l e c o m m u ­

n ica t ions Standards Inst i tute. U R L : h t tps : / /www.e t s i . o rg /de l ive r / e t s i_

t r /102300_102399/10237601/01.02.01_60/tr_10237601 v010201p.pdf .

[12] D a n F a r m e r a n d W i e t s e V e n e m a . 2009. Forensic Discovery (1st ed.).

A d d i s o n - W e s l e y P r o f e s s i o n a l .

[13] S i m s o n L G a r f i n k e l . 2010. D i g i t a l forensics research: T h e next 10 years .

Digital Investigation 7 (2010), S 6 4 - S 7 3 .

[14] V i k r a m S H a r i c h a n d r a n , F r a n k Bre i t inge r , I b r a h i m B a g g i l i , a n d A n d r e w

M a n - i n i t o n . 2016. A cyber forensics needs ana lys is su rvey : R e v i s i t i n g

the d o m a i n ' s needs a decade later. Computers & Security 57 (2016),

1-13.

[15] P e t r M a t o u š e k , J a n P l u s k a l , O n d ř e j R y š a v ý , V l a d i m í r V e s e l ý , M a r ­

t i n K m e t , F i l i p K a r p í š e k , a n d M a r t i n V y m l á t i l . 2015. A d v a n c e d

T e c h n i q u e s for R e c o n s t r u c t i o n o f I n c o m p l e t e N e t w o r k D a t a . Lec­

ture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering 2015, 157 (2015), 6 9 - 8 4 . ht tp:

/ / w w w . f i t .vut br.cz/ r e s e a r c h / v i e w _ p u b . p h p ? i d = 10864

[16] M o l o c h , c i t ed A p r i l 2019. U R L : h t tps : / /molo .ch .

[17] N e t w o r k M i n e r . c i t e d A p r i l 2019. U R L : h t t p s : / / w w w . n e t r e s e c . c o m /

? p a g e = N e t w o r k M i n e r .

[18] N f D u m p . c i t ed A p r i l 2019. U R L : h t t p s : / / g i t h u b . c o m / p h a a g / n f d u m p .

[19] E m m a n u e l S. P i l l i , R . C . J o s h i , a n d Ra jdeep N i y o g i . 2010. N e t w o r k

Forens ic F r a m e w o r k s : Su rvey a n d Resea r ch Cha l l enges , Digital Inves­

tigation 7, 1-2 (Oc t . 2010), 1 4 - 2 7 . h t tps : / /doi .Org/10.1016/ j .d i in .2010.

02.003

[20] P y F l a g . c i t e d A p r i l 2019. U R L : h t t p s : / / g i t h u b . c o m / p y 4 n 6 / p y f l a g .

[21] Sa tLabs G r o u p . 2008. Mode Adaptation Input and Output In­

terfaces for DVB-S2 equipment Version 1.3. Sa tLabs G r o u p .

U R L : h t t p : / / s a t l a b s . o r g / p d f / s l _ 5 6 1 _ M o d e _ A d a p t a t i o n _ l n p u t _ a n d _

O u t p u t _ l n t e r f a c e s _ f o r _ D V B - S 2 _ E q u i p m e n t _ v l - 3 . p d f .

[22] Sa tLabs G r o u p . 2010. SatLabs System Recommendations Version

2.1.2. Sa tLabs G r o u p . U R L : h t t p : / / s a t l a b s . o r g / p d f / S a t L a b s _ S y s t e m _

R e c o m m e n d a t ions_v2-1.2_f inal .pdf .

[23] Sur ica ta . c i t ed A p r i l 2019. U R L : h t tps : / / su r ica ta - ids .o rg .

[24] T C P D U M P . c i t ed A p r i l 2019. U R L : h t t p s : / / w w w . t c p d u m p . o r g / .

[25] T c p d u m p / L i b p c a p . 2018. L I N K - L A Y E R H E A D E R T Y P E S . ht tps:

/ / w w w . t c p d u m p . o r g / l i n k t y p e s . h t m l

[26] T C P F l o w . c i t ed A p r i l 2019. U R L : h t t p s : / / g i t hub . com/s imsong / t cp f low.

[27] W i r e s h a r k . c i t e d A p r i l 2019. U R L : h t t p s : / / w w w . w i r e s h a r k . o r g / .

[28] X P l i c o . c i t ed A p r i l 2019. U R L : h t t p s : / / w w w . x p l i c o . o r g / .

[29] Z e e k . c i t e d A p r i l 2019. U R L : h t t p s : / / w w w . z e e k . o r g .

B I D H T B L 1 N K 4 >

76

https://doi.Org/10.1016/j.diin.2003.12.002
https://doi.org/10.1016/j
https://www.dvb.org/resources/public/
https://www.etsi.org/deliver/etsi_ts/102700_102799/102771/01
http://www.etsi.org/deliver/etsi_
https://www.etsi.org/deliver/etsi_ts/102600_102699/10260601/01.02
https://www.etsi.org/deliver/etsi_ts/102600_102699/10260602/01
https://www.etsi.org/deliver/etsi_ts/102600_102699/10260603/01
https://www.etsi.org/deliver/etsi_
http://www.fi
http://br.cz/
https://molo.ch
https://www.netresec.com/
https://github.com/phaag/nfdump
https://doi.Org/10.1016/j.diin.2010
https://github.com/py4n6/pyflag
http://satlabs.org/pdf/sl_561_Mode_Adaptation_lnput_and_
http://satlabs.org/pdf/SatLabs_System_
https://suricata-ids.org
https://www.tcpdump.org/
http://www.tcpd
http://ump.org/linktypes.html
https://github.com/simsong/tcpflow
https://www.wireshark.org/
https://www.xplico.org/
https://www.zeek.org

A.4 Network Forensic Analysis for Lawful Enforcement on
Steroids, Distributed and Scalable

V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . "Network Forensic Analys is for Lawful
Enforcement on Steroids, Dis t r ibu ted and Scalable". In: Proceedings of the 6th Conference
on the Engineering of Computer Based Systems. A C M . 2019. I S B N : 9781450376365

77

Network Forensic Analysis for Lawful Enforcement
on Steroids, Distributed and Scalable

V i l i a m L e t a v a y

Brno University of Technology

Brno, Czech republic

iletavay@fit.vutbr.cz

J a n P l u s k a l

Brno University of Technology

Brno, Czech republic

ipluskal@fit.vutbr.cz

O n d ř e j R y š a v ý

Brno University of Technology

Brno, Czech republic

rysavy@fit.vutbr.cz

Abstract
Forensic analysis of intercepted network traffic focuses on

finding and extracting communication evidence, such as in­

stant messaging, email, VoIP calls, localization information,

documents, images. Due to the amount of data captured, this

process is time-consuming and complicated. Most commonly

used forensic network analysis tools have limited capabilities

for large data processing. In this paper, we are introducing

a new tool that achieves better data processing performance

using available computing resources through distributed

processing. Thanks to the technology used, this tool can

be used on commodity hardware in a local area network,

in a dedicated computing cluster or cloud environment.

CCS Concepts • A p p l i e d c o m p u t i n g —> N e t w o r k f o r e n -

sics; • Ne tworks —> Network monitoring; Network protocols;

Transport protocols; Application layer protocols; • Socia l

and profess iona l topics —> Computer crime.

Keywords Network Forensics, Network Traffic Processing.

Distributed Computing

A C M Reference Format:
V i l i a m Letavay, Jan P luska l , and Ondřej Ryšavý. 2019. Ne twork
Forensic Analys is for Lawfu l Enforcement on Steroids, Distributed
and Scalable. In 6th Conference on the Engineering of Computer
Based Systems (ECBS '19), September 2-3, 2019, Bucharest, Romania.
A C M , New York, NY , U S A , 9 pages, https://doi.org/10-1145/3352700.
3352720

1 Introduction
Network administrators, cyber-security analysts, and digital

forensic investigators capture and analyze network com­

munication to reveal the attack patterns or recover digital

P e r m i s s i o n to m a k e d i g i t a l o r h a r d cop ies o f a l l o r pa r t o f this w o r k for

p e r s o n a l o r c l a s s r o o m use is g r a n t e d w i t h o u t fee p r o v i d e d that cop i e s

are n o t m a d e or d i s t r i b u t e d for p ro f i t o r c o m m e r c i a l a d v a n t a g e a n d that

cop ies bea r th i s n o t i c e a n d the f u l l c i t a t i o n o n the f i rs t page . C o p y r i g h t s

for c o m p o n e n t s o f th i s w o r k o w n e d b y o the rs t h a n the au thor (s) m u s t

be h o n o r e d . A b s t r a c t i n g w i t h c red i t is p e r m i t t e d . T o c o p y o t h e r w i s e , o r

repub l i sh , to pos t o n servers or to redis t r ibute to lists, requi res p r i o r specif ic

p e r m i s s i o n a n d / o r a fee. Reques t p e r m i s s i o n s f r o m p e r m i s s i o n s @ a c m . o r g .

ECBS '19, September 2-3, 2019, Bucharest, Romania

© 2019 C o p y r i g h t h e l d b y the owne r / au tho r (s) . P u b l i c a t i o n r ights l i c e n s e d

to A C M .

A C M I S B N 978-1-4503-7636-5/19/09. . . $15.00

ht tps: / /doi .org/10.1145/3352700.3352720

evidence. The traditional tools used to process captured com­

munication have limited scalability. For instance, Wireshark

is an excellent tool for troubleshooting and security analysis.

However, performing analysis of captured files of several

gigabytes is cumbersome. Current computing platforms of­

fer tremendous computation power. It is mainly because

of its multi-core architecture. The number of cores available

per C P U constantly grows 1 , contrary to the C P U frequency

that is essential for single threaded applications.

However, modifying commonly used single-threaded net­

work forensic tools, e.g., PyFlag, NetworkMiner, to utilize

the full potential of modern processors is a complex task

which would require extensive modification of their code

base. Therefore, new tools for network forensic analysis are

in high demand [9, 14].

Even more computing power can be obtained by distribut­

ing the workload among a cluster of machines. Availability

of industrial strength technology for distributed data process­

ing and scalable storage led to the emergence of distributed

network security analysis systems, e.g., M o l o c h 2 , Apache

Spot 3 , or Apache M e t r o n 4 . Academic research also yields

to implementations of scalable network security monitoring

systems [26].

Regardless of the technology used, these systems aim

to provide a high performance distributed computing envi­

ronment for network security monitoring (NSM). These tools

are especially useful for real-time data processing and com­

plement other systems to defend against cyber threats such

as IDS, firewalls, or SIEM. While these tools are also useful

for network forensic analysis, forensic investigation favors

the depth, accuracy, and reliability of processing over the fast

response time. W h e n investigating, it is necessary to reliably

analyze any artifact that can be extracted, even though the

source data may be corrupted and may not be complete.

1.1 C o n t r i b u t i o n

This paper discusses the design, performance, and proper­

ties of a new Network Forensic and Analysis Tool (NEAT) —

' E x a m p l e o f the s ta te-of- the-ar t C P U a v a i l a b l e o n the m a r k e t — A M D

E P Y C R o m e 64 cores 128 threads, 2.35 G H z ; In te l® X e o n Ph i™ 7290F, 72 cores..

1.5 G H z ; In t e l® X e o n ® P l a t i n u m S 1 S 0 M 28 cores, 56 threads, 2.5 G H z
2 h t t p s : / /mo lo . ch / (last accessed 2019-07-03).
3 h t t p : / / s p o t . i n c u b a t o r . a p a c h e . o r g / (last accessed 2019-07-03).
4 h t t p : / / m e t r o n . a p a c h e . o r g / (last accessed 2019-07-03).

B I D H T B L 1 N K 4 >

78

mailto:iletavay@fit.vutbr.cz
mailto:ipluskal@fit.vutbr.cz
mailto:rysavy@fit.vutbr.cz
https://doi.org/10-1
mailto:permissions@acm.org
https://doi.org/10.1145/3352700.3352720
https://molo.ch/
http://spot.incubator.apache.org/
http://metron.apache.org/

ECBS '19, September 2-3, 2019, Bucharest, Romania

Network Traffic Processing & Analysis Cluster (N T P A C) —

that utilizes distributed computing architecture to improve

the performance of network traffic analysis while being

less demanding on hardware requirements than related sys­

tems. To extract the evidence from network packets, we need

to thoroughly analyze them which means to perform several

consecutive operations such as packet dissecting, flow iden­

tification, network stream composition, application protocol

identification, and message parsing and artifact extraction

(see Section 3). Contrary to the other N E A T tools (see Sec­

tion 2.4), N T P A C is able to correctly process captured traffic

that is malformed without yielding misleading evidence (see

Section 4.2). N T P A C performs forensic network traffic analy­

sis at high-speed networks. The system design uses a scalable

approach that enables to run the tool on a single machine

as well as on a computing cluster, in comparison with other

NFATs tools, N T P A C is an order of magnitude faster and

scales (see Section 3).

1.2 Paper Structure

Initially, background and related work are discussed pre­

senting an overview of current network forensic and secu­

rity monitoring tools. The architecture of N T P A C is intro­

duced, and the major architectural components are outlined.

The paper then provides a preliminary evaluation of the per­

formance that focuses on demonstrating the throughput

and scalability of the tool. Finally, we discuss h'mitations

and future work.

2 Background and Related Work
This section provides a background for the paper and lists

the related work. First, the actor model and network packet

capture analysis are presented. Then we overview existing

network forensic tools and frameworks.

2.1 A c t o r M o d e l

Actor model offers to solve the problems related to parallel

and distributed computing elegantly and efficiently. The ac­

tor model was first introduced as a theoretical computation

model highly influenced by Lisp, Simula and packet switch­

ing in computer networks [7]. It defines a fundamental con­

cept called actor system that is composed of tiny building

blocks called actors that execute independently and mas­

sively in parallel. The actor is in the distributed world an

abstraction of what is an object in Object-Oriented Program­

ming; in other words, it bounds data with computation.

Actors communicate asynchronously via message passing.

Actor system guarantees at most one delivery, which means

that any message can get lost at any time but cannot be deliv­

ered twice or more. Actor's state changes only as a reaction

on a received message. Actor's behavior determines how

to process the incoming message by creating another actor

sending a message to another actor, changing its state.

Viliam Letavay, Jan Pluskal and O n d ř e j R y š a v ý

The composition of actors in the actor system is hierarchi­

cal. Each actor is responsible for any other actor it creates,

i.e., the creation of a parent-child relationship. A n Actor is de­

signed to be as simple as possible, typically without complex

inner integrity checks, exception handling, etc. Thus, it can

crash at any time. Parent actor is responsible for its children

and knows how to deal with children's failures. This con­

cept greatly simplifies the computation model and allows

a programmer to focus only on the most important part that

is the core application's functionality and frees him/her from

the need of use of synchronization tools (such as mutexes).

2.2 Packet C a p t u r e A n a l y s i s

Network traffic analysis aims to reveal traces of network

attacks and find answers to questions about the incident

investigation. Packet analysis starts with dissecting network

traffic which performs the following steps: i) loading PCAP

files, parsing the P C A P file, and extracting individual packets,

ii) dissecting packets with low-level protocol parsers, including

Ethernet, IP, IPv6, T C P or U D P , iii) collecting TCP packets

into streams, and iv) applying higher level protocol parsers

to get the required information or extract artifacts.

However, in many cases, it is not possible to obtain plain

content from communication because of encryption. Then

at least some form of valuable forensic information can

be identified, for instance, identities of users [1, 18], de­

vices [17] or applications [16] based on extracted metadata.

Depending on the goal and available tools there are nu­

merous analytic approaches to network packet analysis:

• The bottom-up approach is a prevalent method used

by Network Security Monitoring (NSM) [24] oriented

analysis that supports several tools, most notably Wire-

shark. A l l packets are parsed and presented to the in­

vestigator who uses filtering, querying and reassem­

bling to identify and extract required artifacts.

• The top-down approach assumes that the Network

Forensic and Analysis Tool (NEAT) [15], e.g., Network-

Miner, Xplico, PyFlag, NetfoxDetective, can extract in­

formation from packets into conversations or other

higher level artifacts. These applications visualize this

high-level information to the investigator that can then

drill down into details if necessary.

• Search based approach considers network communica­

tion being just another data format in which it is pos­

sible to search for keywords or patterns [11, 20].

2.3 N e t w o r k Securi ty M o n i t o r i n g Too l s

Network forensic methods were implemented in various

N S M tools, e.g., Wireshark, T C P dump, IDS systems (Snort,

Zeek), fingerprinting tools (Nmap, pOf), and tools to identify

and analyze security threats. As [15] observes, N S M tools are

primarily used by network administrators and are intended

for detailed bottom-up analysis that requires advanced skills.

R I O H T • L i N K 4 >

79

Distributed Network Forensics

Lukashin [12] presented a scalable internet traffic analysis

system, which can process multi-terabytes libpcap dump

files. It utilizes Apache Spark for data processing to ana­

lyze captured packets. The system performs basic analy­

sis and lacks some advanced features required by network

forensics. Other approaches to the big data network security

analysis were presented by various researchers [2, 19, 30].

Currently, Apache Metron and Apache Spot projects are

the most vital. They are frameworks for security analysis

of IT threats, enabling to process also firewall and appli­

cation logs, emails, intrusion-detection reports, and so on.

Although they are primarily focusing on network security,

they can be valuable as sources of forensic data.

Additionally, there are special appliances for network se­

curity monitoring based on custom made F P G A chips that

can perform up to 100 Gbps deep packet analysis and ex­

port NetFlow with additional information extracted from

application protocols [8].

2.4 N e t w o r k Forens ic A n a l y s i s Too l s

The investigators of Law Enforcement Agencies deal with the

enormous number of cases. They require specialized tools

that perform top-down analysis and save valuable time [3].

The following list is a selection of notable open-source tools

that were designed to support the investigators:

P y F l a g is full-fledged N E A T which is intended for disk,

memory, and network forensics. PyFlag's design in­

corporates the concept of a Virtual File System [4].

It implements a specific loader for each supported

data source. PyFlag enables to reassemble the content

of the communication, e.g., web pages, email conver­

sation.

N e t w o r k M i n e r is an open source tool that integrates packet

sniffing and higher-layer protocol analyzing capabili­

ties into a tool for passive network forensic analysis.

X p l i c o is a modular N E A T It consists of the input mod­

ule handling the loading source data, decoding mod­

ule equipped with protocol dissectors for decoding

the traffic and exporting the content, and the output

module organizing decoded data and presenting them

to the user. Xpl ico is a client-server application that

can analyze P C A P files as large as several gigabytes.

Whi le all these tools are very useful for investigators

as they offer a variety of advanced features, their scalability

is limited because they run on either a single computer or in

a traditional client-server architecture.

2.5 B i g D a t a Forens ics

As distributed frameworks matured, new tools for big data

security analysis and digital forensics were designed. Such

tools are usually intended for the forensic investigation con­

ducted by network administrators on corporate networks.

ECBS '19, September 2-3, 2019, Bucharest, Romania

They usually serve as a complement to Intrusion Detection

Systems enabling to capture and analyze hi-speed communi­

cation at scale.

Agent-based systems for digital forensics were considered

in the literature [21, 22, 29]. These models are more suit­

able for real-time network forensic analysis from multiple

sources, such as logs and captured communication. In these

systems, numerous agents perform data collection tasks.

The extracted information is then sent to the forensic server

and analyzed on this single node only [10], which makes this

node to be the bottleneck of the whole system.

The V A S T system builds upon Vallentin's previous work

— The NLDS Cluster [28] which distributes the workload

across multiple workers running Zeek to investigate online

network traffic and extract Zeek events. The V A S T system

itself goes further and distributes Zeek events to workers

running in a computing cluster which allows for on-line

analysis and interactive queries. Distribution of raw packets

is also supported as a 4-tuple with payload up to the speed

of 3 . l G b / s (the libpcap reading speed). According to Val-

lentin [27] the system does not guarantee that the storage

will be able to keep up with the incoming traffic of this speed.

3 Traffic Processing
The goal of N T P A C is to capture and analyze network com­

munication enabling to extract available information. De­

pending on the case, the forensic investigator may be inter­

ested in the content or metadata of application messages.

N T P A C handles captured packets according to the following

procedure in order to reassemble application messages:

• N T P A C organizes captured packets into separate net­

work layer conversations based on their source and

destination LP addresses, providing IP conversation.

• N T P A C then splits LP conversations into T C P / U D P

conversations based on the source and destination port

numbers and the transport protocol type, as shown

in figure 2.

• N T P A C reassembles application conversations from

packets separated into individual T C P / U D P conversa­

tions. This method utilizes heuristics [13] to recognize

multiple application communication multiplexed into

a stream of packets of one T C P / U D P conversation

caused for example by port reuse.

Because application message extraction is a computation­

ally challenging task, it is a good candidate to run on a com­

puter cluster to improve overall system performance.

Extraction of the artifacts from application messages as­

sumes that we correctly identified the application protocols.

Methods based on known port numbers, characteristics pat­

terns in the payload of packets, using statistical methods

or machine learning [16] approach can be applied.

R I O H T • L i N K 4 >

80

ECBS '19, September 2-3, 2019, Bucharest, Romania

However, in many cases, application information cannot

be extracted because the content is encrypted. In fact, ap­

proximately 76 % of H T T P traffic (at the time of writing

this paper) is transmitted by S S L / T L S 5 . In this situation,

we cannot extract application messages, but it is possible

to get metadata from the SSL/TLS protocol itself, for exam­

ple, cryptographic information, certificate data, etc. The only

exception is two possible situations in which we can decrypt

encrypted application data [5]:

1. We have access to the server's private key used in the ini­

tialization of an SSL/TLS session, we want to decrypt,

and cipher-suites not supporting forward secrecy is used.

2. We can perform a Man-In-The-Middle attack with an

SSL/TLS proxy [23] and store session keys.

Most agencies cannot use these techniques because of legal

restrictions. For this reason, we did not consider implement­

ing SSL/TLS encryption techniques in our tool.

4 System architecture
The architecture consists of multiple modules that form the

processing pipeline (see Figurel) . A t the highest level, the

N T P A C workflow can be divided into two main phases:

D a t a pre-process ing reconstructs application layer con­

versations (L7 conversation). Each of these conversa­

tions is made up of source and destination endpoints,

tfmestamps, and other information that is needed for

subsequent processing.

D a t a analys is identifies application protocols in recon­

structed conversations and uses an appropriate ap­

plication protocol decoder to reconstruct application

events from given conversations, such as visited web

pages, sent emails, queried domains, etc. The output

of this phase is a set of forensic artifacts.

These phases correspond to low-level analysis and high-

level analysis. The separation of data pre-processing from the

data analysis enables to use the actor-based computational

model and offer the ability to distribute the computation.

In the rest of the section, details will be given for each module

of the processing pipeline.

4.1 L o a d b a l a n c i n g

The job of the Load Balancer nodes is to split the input packet

stream, i.e., P C A P file or live traffic, into sub-streams that are

then delivered to the reassembling nodes. To avoid the prob­

lem of sending packets from the same conversation to dif­

ferent reassemble nodes, the Load Balancer calculates the

key used to select the destination node from the appropriate

protocol fields.

The Eq . 1 calculates the routing key based on communica­

tion endpoints (EP_A and EP_B) and the transport protocol

used. Value n represents the number of active Reassembler

5 https://1etsencrypt.0rg/s tats/

Viliam Letavay, Jan Pluskal and O n d ř e j R y š a v ý

nodes.

Hash(EPA • EPB • Protocol) mod n (1)

Since all packets from the same conversation (i.e. in both

directions of the conversation) should produce the same rout­

ing key, we defined an ordering relation < for the endpoints 6

and ensured that EPA < EPg by swapping them if necessary.

Whi le the Load Balancers process each packet individu­

ally, the data is delivered to Reassemblers in batches. This

technique helps to decrease network and processing cost of

the data distribution.

Back pressure mechanism is used to control the data flow

between the nodes. To increase throughput, a Load Balancer

can submit multiple batches in parallel to the target Reassem­

blers.

IPv4 fragmentation is a challenge for Load Balancers. Frag­

mentation splits one IP packet into multiple IP packets so

that the encapsulated transport layer segment header only

occurs in the first IP fragment. The Load Balancer must,

therefore, rebuild the IP fragments to identify the routing

key for all fragments of a segment, before it can send them

to an appropriate Reassembler.

4.2 C o n v e r s a t i o n R e a s s e m b l i n g

Reassembler reconstructs conversations, i.e., two-way traffic

layer flows, in batches of packets received from Load Bal­

ancers. The reassembly process is designed to reconstruct

incomplete and corrupted data, using various heuristic tech­

niques [13]. Reassembling is done in several steps until

two corresponding flows are assembled, which is illustrated

in Figure 2. The entire processing is mapped to actors per­

forming individual steps. Individual L3 and L4 conversations

are represented by corresponding actors, which form an ac­

tor hierarchy as shown in figure 3. L3 Conversation actors

are managed by Capture actors, which stands for a source

capture being analyzed. To enable an analysis of multiple

captures at the same time, multiple Capture actors can be ini­

tiated. The Captures Controller actor manages all capture

actors.

The packet blocks are first received by the Captures Con­

troller actor, which passes them to the appropriate Capture

actor. The Capture actor identifies affiliation of packets to L3

conversations by extracting the IP addresses of the packets

and forwards them to appropriate L3 Conversation actors

which, after identifying affiliation of packets to L4 conver­

sation by extracting the transport protocol and port num­

bers, forwards the packets to appropriate L4 Conversation

actors. A t these actors, the process of reassembling depends

on the transport protocol of the conversation and is per­

formed by either UDP Conversation Tracker or TCP Conver­

sation Tracker.

T h e e n d p o i n t is a p a i r o f IP address a n d p o r t n u m b e r . W e c o n s i d e r that

there is a su i tab le l e x i c o g r a p h i c o r d e r i n g o n a set o f endpo in t s .

R I I H T I L I N K 4 >

81

https://1etsencrypt.0rg/s

Distributed Network Forensics ECBS '19, September 2-3, 2019, Bucharest, Romania

L4 Load Balancer Reassembler
Distributed A p p . protocol Distributed

L4 Load Balancer k * Reassembler k * db. node ^ • dissector k * db. node

L4 Load Balancer / * Reassembler / * Distributed A p p . protocol / * Distributed
L4 Load Balancer Reassembler

db. node • dissector db. node

P C A P files or live
network traffic

Reconstructed L7
Conversations

L7 Conversations
to parse

App. protocol
exports

Figure 1. NTPAC's logical architecture

Up Flow L7 PDU Up Flow L7 PDU

Down Flow L7 PDU Down Flow L7 PDU

Figure 2. Separation of packets into distinct L3 conversations, L4 conversations and finally L7 conversations. L7 conversations

consist of Upflow and Downflow, which contain a sequence of reconstructed L7PDUs.

Figure 3. Reassembler's actor hierarchy

U D P P r o t o c o l Reassembl ing

U D P is transferring application data as they are, without

the use of any additional control packets which implement

mechanisms such as flow control or reliable data delivery.

UDP Conversation Tracker, therefore, treats every transmit­

ted datagram inside given L4 conversation as an individ­

ual L7 P D U (Protocol Data Unit). Another important aspect

of the U D P protocol is that it is connection-less — it does

not establish connections between communicating parties.

To distinguish individual L7 Conversations (composed of a pair

of Upflow and Downflow) inside single L4 conversation, UDP

Conversation Tracker uses a simple heuristic based on a time

delay between individual L7 PDUs. L7 P D U s in a given di­

rection are considered to be part of a single flow i f the time

difference between their transmission and last recorded ac­

tivity (timestamp of the last L7 PDU) of a given flow is less

than a defined value. Experimentally we set this value to 10

minutes, but we are planning to further study U D P behavior

of multiple protocols and define this threshold on application

protocol bases.

T C P P r o t o c o l Reassembl ing

Processing of T C P protocol is different from handling U D P

flows because we can use control information carried along

with the data. TCP Conversation Tracker is capable of iden­

tifying connection initialization and its termination, han­

dling data retransmission and reordering. In the same way

as a UDP Conversation Tracker, TCP Conversation Tracker also

processes segments (TCP PDUs) in separate flows, which

are later paired to form L7 conversations. To create this

flows, it first stores segments in the so-called reassembling

collection, in which segments are stored and ordered by their

T C P sequence number. Both directions of communication

have designated their reassembling collection. Before a seg­

ment is stored in reassembling collection, its sequence number

is normalized by incrementing it by a count of detected se­

quence number overflows X 2 3 2 (space of T C P sequence num­

bers). Sequence number overflows can be caused by a natural

overflow of a 32-bit integer sequence number or by estab­

lishing a new T C P connection, with ISN (Initial Sequence

Number) lower as that of a previous connection. By storing

segments in reassembling collection and ordering them by

their normalized sequence numbers, we achieve that:

82

ECBS '19, September 2-3, 2019, Bucharest, Romania

1. individual segments inside L7 conversation are or­

dered;

2. we detect data retransmissions by comparing payloads

of segments of which normalized sequence numbers

are overlapping;

3. individual L7 conversations inside L4 conversation are

ordered by the time they were transmitted.

A l g o r i t h m tcp_f low_reassembl ing()

f o r a l l segment i n r e a s s e m b l i n g _ c o l l e c t i o n do

i f SYN f l a g i s set t h e n

I c l o se_ f low()

| f low <— crea te new flow

else i f FIN f l a g i s set t h e n

| c l o se_ f low()

else i f flow i s n i l then

I f low <— crea te new flow

| add_segment_to_pdu()

else

| add_segment_to_pdu()

end

r e t u r n flows

Procedure c lo se_ f low()

i f f low i s n i l t h e n

| r e t u r n

i f pdu i s not n i l then

| add_pdu_to_flow()

f l o w s . i n s e r t (f l o w)

flow «— n i l

r e t u r n

Procedure add_segment_to_pdu()

i f segment i s r e t r a n s m i s s i o n t h e n

| r e t u r n

i f pdu i s n i l t h e n

| pdu «— crea te new pdu

pdu.segments . insert (segment)

i f PSH f l a g i s set t h e n

| add_pdu_to_flow()

r e t u r n

Procedure add_pdu_to_flow()

f l o w . p d u s . i n s e r t (p d u)

pdu «— n i l

r e t u r n

A l g o r i t h m 1: T C P flow reassembling.

After all segments of L4 conversation have been stored

in an appropriate reassembling collection (for Up and Down

direction), TCP Conversation Tracker iterates through both

of them sequentially in order to reconstruct Upflows and Down-

flows. Simplified flow reassembling algorithm is shown in A l ­

gorithm 1. For each segment containing application data,

it appends it to current L7 P D U (creates it at first, if it is not

Viliam Letavay, Jan Pluskal and O n d ř e j R y š a v ý

already created). After it encounters packet with T C P P S H

flag set, it completes current L7 P D U and adds it to the cur­

rent flow. Segments which do not contain application data,

such as packets of T C P handshake or connection termina­

tion are used to differentiate individual T C P connections by

creating appropriate flows with assigned created L7 PDUs.

Created Upflows and Downflows are paired by their ISNs (Ini­

tial Sequence Numbers) or based on their overlap on time

axis in case an ISN of a particular flow could not be deter­

mined (missing T C P handshake).

L 7 C o n v e r s a t i o n storage

L7 conversations reconstructed by L4 Conversation actors are

passed to L7 Conversation Storage actor. This actor saves con­

tents (series of reconstructed L7 PDUs), as well as metadata

(timestamps, endpoints and transport protocols) of these

L7 conversations in a distributed database. O u r tool uses

an abstract data access layer that eliminates any dependence

on one database technology. Currently, our solution is pri­

marily based on the use of the Cassandra database engine 7 ,

which has the appropriate features — it has a distributed

design, configurable replication factor per keyspace and con­

sistency factor per query.

4.3 A p p l i c a t i o n pro toco l pars ing

In the second stage, a subset of reconstructed L7 conversa­

tions is retrieved from the database and further processed

to identify and extract interesting application messages:

• First, Application protocol classifier block identifies

an application protocol of the conversation. O u r so­

lution currently implements a simple application pro­

tocol classifier based on the database of known ports.

However, a more advanced classifier can be used to uti­

lize pattern recognition or statistical methods [6, 16].

• Based on the recognized application protocol, the con­

versation is consumed by parsing module designed

to the processing of a single application protocol such

as H T T P , S M T P or D N S . The parsing module pro­

cesses the entire conversation by extracting individual

application protocol messages and storing them back

to the distributed database.

The current implementation includes only H T T P and DNS

parsers. Adding support for other application protocols re­

quires creating an application protocol parser. Implementing

the parser is time-consuming and error-prone. Another op­

tion is to generate a parser using a suitable parser generator.

Depending on whether the protocol is text or binary, differ­

ent types of generators can be used, for example, Spicy [25].

Kaitai Struct 8, etc.

7 N o t e that a lso M S S Q L a n d A r a n g o D B are suppo r t ed .
8 h t tps : ,7ka i t a i . i o /

R I 1 H T I L I N K 4 >

83

Distributed Network Forensics

5 Performance evaluation
We focused our preliminary assessment on determining

the performance parameters of the created tool. Dur ing

the experiments, we considered both the data storage sce­

nario in the distributed database and the case where data

analysis uses the output from the previous step directly.

The goal is to demonstrate the scalability of the proposed so­

lution and show the available throughput in various possible

configurations. We have considered two major test scenarios;

Standalone process ing tests how fast is captured traffic

processed on a single machine inside one process. This

test-case shows total throughput of our processing

algorithms (especially reassembling and application

protocol parsing) on given machine type. Because

the whole processing is running under one Common

Language Runtime (CLR), it is expected to be faster

than distributed processing with a low number of pro­

cessing nodes. This experiment provides a baseline

to which other results are compared.

C l u s t e r Process ing shows the scalability of our solution

in a computing cluster. We tested it in a distributed en­

vironment with a different number of nodes. The test

scenarios considered (i) processing with a single Load

Balancer and different numbers of Reassembler nodes

and (ii) a different number of Load Balancer and Re-

assembler nodes.

For our test purposes, we have chosen multiple different

computing environments described in Table 1. The E . l envi­

ronment consists of 14 workstations that are all connected

to the same local network. Environment E.2 is a cluster-

integrated Google C loud Platform consisting of 12 virtual

machines. E.3 is a mini-cluster of four server boards in a sin­

gle chassis. Finally, E.4 is a single powerful workstation.

Table 1. Testing environments used for performance evalu­

ation.

E.l EJ2 E3 E.4

Machine Type 1 Kskl. •:•
computers

(iin'sde Ck'uii
Platform (*)

Mini cluster Wnrkslulinii

Machines count 14 12 4 1
CPU Type Intel i5-

3570K
Intel XeonES Intel Xeon

E5520
Intel
i7-5930K

Physical Cores 4 2 4 6
Logical Cores 4 4 8 12
CPU Frequency :S.40C;HZ 2.60 GHz 2.26 GHz 3.50 GHz
CPU Frequency
Turbo - 1 core

3.80 GHz 2.80 GHz 3.53 GHz 4.30 GHz

RAM 8 GB 7 GB 48 GB 64 GB
Sequential disk 73/67 MB/s 120/118 MB/s 282/265 MB/s 490/430 MB/s

Network Card lGbps lOGbps lGbps lGbps

(*) nl-highcpu-4

As the source packet capture, we used 4.7 G B file from

a well known M57-Patents Scenario 9. It captures real-world

9 h t t p s : / / d i g i t a l c o r p o r a . o r g / c o r p o r a / s c e n a r i o s / m 5 7 - p a t e n t s - s c e n a r i o (last

accessed 2019-07-03).

ECBS '19, September 2-3, 2019, Bucharest, Romania

corporate network traffic over one month, consisting of

5,707,845 frames. The size of the capture file is large enough

to limit the overhead to a negligible part in the initialization

phase but allows us to run all test cases in a reasonable time.

To reduce the memory consumption of tracking of all

processed conversations by the Reassembler nodes, its actors

detect and remove inactive (timed out) conversations. Thus,

the memory allocation corresponds to the number of active

concurrent network flows within a particular time window.

Each experiment was repeated 10 times. The calculated

standard deviation was in the range of 5 - 10 %. Such a high

value is due to the inherent non-deterministic behavior of the

distributed system, including the effect of network commu­

nication, the garbage collection, and other operating system

processes.

5.1 S ingle-node E n v i r o n m e n t s

We measured the individual processing stages in the stan­

dalone test scenario in environments E.3 and E.4. Table 2

represents the performance achieved for each phase. Pre­

liminary results show that it is possible to read and decode

packets from a file at approximately 3.8Gbps and 1.7 Gbps

in test environments E.4 and E.3 respectively (second row of

the table). The process of extracting conversations requires

much more effort and therefore performance dropped to

972 Gbps and 380 Gbps respectively what represents about

75 % decrease compared to the previous phase. It suggests

that this resource-intensive part could be most accelerated

by distributed calculation. The last phase is the analysis

of H T T P and D N S protocols, which resulted in a decrease

in throughput of about 8 % compared to the previous phase.

For comparison, Table 3 shows the results achieved by several

commonly used network forensic tools (Wireshark, Network-

Miner) in the E.4 test environment.

Table 2. Processing speeds of individual network capture

processing phases in standalone test scenario performed

on test environments E.4 and E.3.

Workstation E.4 [Mbps] Server E.3 [Mbps]

PCAP file reading 510! 5719
Packet parsing 3853 1679
1.7 (Olivers;! I ion reassembling 942 380
Application protocols parsing 880 358

Table 3. Processing speeds of commonly used network foren­

sic tools measured on test environment Workstation E.4.

NTPAC Netfox Wireshark NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps]

M57 Analysis 880 65.6 73.4 15.8

R I 1 H T I L I N K 4 >

81

https://digitalcorpora.org/corpora/scenarios/m57-

ECBS '19, September 2-3, 2019, Bucharest, Romania

5.2 C l u s t e r e d E n v i r o n m e n t s

Next, we compare the performance and scalability of our

tool in a clustered test scenario executed in the test environ­

ment E . l . We have performed a series of experiments with

the varying number of active Load Balancer and Reassembler

nodes.

Additionally, we have tested configuration in which the re­

sults were persisted in a distributed database 1 0, as well as the

configuration, where these results were discarded so we mea­

sured performance without the overhead associated with

database operations.

Table 4. Performance measurements of clustered processing

conducted in test environment E . l .

Re assemblers $ 1 2
[Mbps] [Mbps] [Mbps]

4
[Mbps] [Mbps]

M
[Mbps]

1(1
[Mbps]

Load Balance is Without I't'iMiU'iici.'

1 513 380 670 768 778 797 815
2 310 574 1093 1370 1508 1542
3 290 602 1136 1713 1945 2070
•1 269 660 1258 l')71 2252 2580

Load Balance rs With Persistence

1 343 273 478 729 734 740 742
2 247 482 801 1009 1123 1254
3 501 930 1131 IWň 1438
•1 503 949 1135 1375 1710

Table 4 shows how the performance depends on the num­

ber of Reassembler nodes. Columns labeled 1 to 10 represent

a number of participating Reassembler nodes. For compar­

ison, the column labeled S represents system performance

in a stand-alone mode of the processing. First set of rows (la­

beled Load Balancers Without persistence) denote a varying

number of participating Load Balancer nodes without the

results being stored in a database. Similarly, the second set

of rows (labeled Load Balancers W i t h Persistence) denote

a varying number of participating Load Balancer nodes but

with results being stored in a database.

In the test results, we see that performance increases

to the point where one Load Balancer cannot provide enough

data for available Reassembler nodes. Adding additional Load

Balancer nodes increases the throughput of the entire system

until all Reassemblers are fully saturated, and the processing

speed reaches its limit again. Increasing a number of both

Load Balancer and Reassembler nodes allows a further in­

crease in overall throughput until the available hardware

resources are exhausted. Data points marked with asterisks

(*) represent incapability to complete the test run due to the

overload of the Reassembler nodes in a given configuration

(total number of active nodes).

With the knowledge of the characteristics of the distributed

system obtained from experiments in the E . l environment,

1 0 T h e n u m b e r o f C a s s a n d r a nodes w a s e q u a l to the n u m b e r o f ac t ive Re­

assembler nodes.

V i l i a m Letavay , J an P l u s k a l and O n d ř e j R y š a v ý

we repeated the same set of experiments in E.2 (using up to

8 Reassemblers and up to 4 Load Balancers) and E.3 (using

up to 3 Reassemblers and single Load Balancer). The results

shown in tables 5 and 6 show a similar trend in the rate of

processing per number of individual modules. Note, that we

are limited by the total number of instances that we can

create in environment E.2.

Table 5. Performance measurements of clustered processing

conducted in test environment E.2.

Reassemblers S 1
[Mbps] [Mbps]

2
[Mbps] [Mbps]

6
[Mbps]

M
[Mbps]

Load Balance is Without Persislťiiťť

1 427 223 370 560 573 585
2 170 334 706 916 994
3 126 352 734 826 1016
4 104 271 580 618 920

Load Balance rs With Persistence

1 248 171 255 459 497 498
2 219 420 459 675
3 383 452 558
4

Table 6. Performance measurements of clustered processing

conducted in test environment E.3.

Reassemblers S [Mbps] 1 [Mbps] 2 [Mbps] 3 [Mbps]

1 — Without Persistence 358 233 407 453

1— With Persistence 210 158 301 388

W h e n comparing results from different environments,

it is interesting that the highest performance was achieved

in the local network, although the Google C loud Platform

seems to have more powerful computing nodes and a faster

network. This may be because G C P is a virtualized environ­

ment with shared hardware resources.

6 Conclusion
We have designed and implemented a system for forensic

network analysis that can be used in high-speed networks

for near real-time analysis. The distributed system is based

on an actor model that, thanks to its good scalability, can

run on a single machine as well as a computing cluster.

The proposed distributed system is comprised of different

classes of cooperating nodes capable of distributing inter­

cepted network traffic, processing identified network flows

and storing reconstructed data into a distributed database.

The resulting data consists of a description of network con­

versations and information from the extracted application

communication. A t this point, DNS and H T T P are supported.

The main goal of the system is to provide a scalable plat­

form for network communication processing that is primar­

ily designed to support a digital investigation. Experiments

have demonstrated the feasibility of the proposed approach.

B I D H T B L 1 N K 4 >

85

Distributed Network Forensics ECBS '19, September 2-3, 2019, Bucharest, Romania

Processing throughput is scalable by adding additional pro­

cessing nodes. Experiments have also shown that the pro­

posed tool running on only one node can effectively use

available resources and can offer the same or better perfor­

mance than existing tools.

The N T P A C is open source, and available at https://github.

com/nesfit /NTPAC under the M I T license.

References
[1] G . A l o t i b i , N . C l a r k e , F u d o n g L i , a n d S. F u r n e l l . 2016. U s e r p r o f i l i n g

f r o m n e t w o r k traffic v i a n o v e l ap p l i c at i o n - l e v e l i n t e r a c t i o n s . I n 2016

11th International Conference for Internet Technology and Secured Trans­

actions (ICITST). 279-285 . ht tps: / /doi .org/10.1109/ICITST.2016.7856712

[2] M . A u p e t i t , Y . Z h a u n i a r o v i c h , G . Vas i l i ad i s , M . Dac ie r , a n d Y . Boshmaf .

2016. V i s u a l i z a t i o n o f act ionable k n o w l e d g e to mi t iga te D R D o S attacks,

In 2016 IEEE Symposium on Visualization for Cyber Security (VizSec).

1-8. h t tps : / /do i .o rg /10 .1109 /VIZSEC.2016 .7739577

[3] N i c o l e Beebe . 2009. D i g i t a l fo rens ic research : T h e g o o d , the b a d a n d

the unaddres sed . I n IFIP International Conference on Digital Torensics.

Spr inger , 1 7 - 3 6 .

[4] M I C o h e n . 2008. P y F l a g - A n a d v a n c e d n e t w o r k fo rens ic f r a m e w o r k .

Digital investigation 5 (2008), S112-S120 .

[5] S h e r r i D a v i d o f f a n d J o n a t h a n H a m . 2012. Network Forensics: Tracking

Hackers through Cyberspace. P r e n t i c e H a l l .

[6] A l i c e Es te , F r a n c e s c o G a r g i u l o , F r a n c e s c o G r i n g o l i , L u c a S a l g a r e l l i ,

a n d C a r l o Š a n s o n e . 2008. P a t t e r n r e c o g n i t i o n a p p r o a c h e s for clas­

s i f y i n g ip flows. I n Joint IAPR International Workshops on Statistical

Techniques in Pattern Recognition (SPR) and Structural and Syntactic

Pattern Recognition (SSPR). Spr inger , 885-895 . ht tps: / /doi .org/10.1007/

978-3-540-89689-0_92

[7] C a r l H e w i t t , Pe te r B i s h o p , a n d R i c h a r d Ste iger . 1973. S e s s i o n 8 for ­

m a l i s m s for a r t i f i c ia l in te l l igence a u n i v e r s a l m o d u l a r actor f o r m a l i s m

for a r t i f i c i a l i n t e l l i g e n c e . I n Advance Papers of the Conference, V o l . 3.

S tanford R e s e a r c h Ins t i tu te , 235.

[8] L . K e k e l y , J . K u č e r a , V . P u š , J . K o ř e n e k , a n d A . V . V a s i l a k o s . 2016.

S o f t w a r e D e f i n e d M o n i t o r i n g o f A p p l i c a t i o n P r o t o c o l s . IEEE Trans.

Comput. 65, 2 (Feb 2016), 6 1 5 - 6 2 6 . h t t p s : / / d o i . o r g / 1 0 . n 0 9 A T C . 2 0 1 5 .

2423668

[9] S u l e m a n K h a n , A b d u l l a h G a n i , A i n u d d i n W a h i d A b d u l W a h a b ,

M u h a m m a d S h i r a z , a n d I f t i k h a r A h m a d . 2016. N e t w o r k fo rens ics :

Rev iew, t axonomy, a n d o p e n chal lenges . Journal of Network and Com­

puter Applications 66 (2016), 214 - 235. ht tps: / /doi .Org /10.1016/j . jnca.

2016.03.005

[10] S u l e m a n K h a n , A b d u l l a h G a n i , A i n u d d i n W a h i d A b d u l W a h a b ,

M u h a m m a d S h i r a z , a n d I f t i k h a r A h m a d . 2016. N e t w o r k fo rens ics :

Rev iew, t axonomy, a n d o p e n chal lenges . Journal of Network and Com­

puter Applications 66 (2016), 2 1 4 - 2 3 5 .

[l l] M a r k L o n g w o r t h , J o h n D A b r o m a v a g e , T o d d A M o o r e , Scot t V T o t m a n ,

a n d V i n c e R o m a n o . 2006. S y s t e m a n d m e t h o d for n e t w o r k secur i ty .

U S Pa t en t 7,016,951.

[12] A l e x e y L u k a s h i n , L e o n i d L a b o s h i n , V l a d i m i r Z a b o r o v s k y , a n d V l a d i m i r

M u l u k h a . 2014. D i s t r i b u t e d P a c k e t Trace P r o c e s s i n g M e t h o d for Infor­

m a t i o n Secu r i t y A n a l y s i s . I n Internet of Things. Smart Spaces, and Next

Generation Networks and System*. Se rgey B a l a n d i n , S e r g e y A n d r e e v ,

a n d Y e v g e n i K o u c h e r y a v y (Eds.) . S p r i n g e r I n t e r n a t i o n a l P u b l i s h i n g ,

C h a m , 5 3 5 - 5 4 3 .

[13] P e t r M a t o u š e k , J a n P l u s k a l , O n d ř e j R y š a v ý , V l a d i m í r V e s e l ý , M a r t i n

K m e ť , F i l i p K a r p í š e k , a n d M a r t i n V y m l á t i l . 2015. A d v a n c e d tech­

niques for r econs t ruc t i on o f i ncomple t e n e t w o r k data. I n International

Conference on Digital Forensics and Cyber Crime. Sp r inge r , 69 -84 .

[14] E r i k E N o r t h r o p a n d H e a t h e r R L i p f o r d . 2014. E x p l o r i n g the u sab i l i t y

o f o p e n source n e t w o r k forensic tools . I n Proceedings of the 2014 ACM

Workshop on Security Information Workers. A C M , 1-8.

[15] E m m a n u e l S P i l l i , R a m e s h C J o s h i , a n d Ra jdeep N i y o g i . 2010. N e t ­

w o r k fo rens ic f r a m e w o r k s : S u r v e y a n d r e sea rch cha l l enges , digital

investigation 7, 1-2 (2010), 14 -27 .

[16] J a n P l u s k a l , O n d ř e j L i c h t n e r , a n d O n d ř e j R y š a v ý . 2018. Traff ic C l a s s i ­

fication a n d A p p l i c a t i o n I d e n t i f i c a t i o n i n N e t w o r k F o r e n s i c s . I n IFIP

International Conference on Digital I'orensics. Sp r inge r , 161-181.

[17] L i b o r P o l č á k a n d B a r b o r a F r a n k o v á . 2015. C l o c k - S k e w - B a s e d C o m ­

puter Ident i f ica t ion : T raps a n d Pi t fa l l s . J UCS 21, 9 (2015), 1210-1233,

[18] L i b o r P o l č á k , R a d e k H r a n i c k ý , a n d T o m á š M a r t í n e k . 2014. O n l d e n t i t i e s

i n M o d e r n N e t w o r k s . Journal of Digital Forensics, Security and Law 9,

2 (2014), 2.

[19] N . P r o m r i t a n d A . M i n g k h w a n . 2015. Tra f f ic F l o w C l a s s i f i c a t i o n a n d

V i s u a l i z a t i o n for N e t w o r k Fo rens i c A n a l y s i s . I n 2015 IEEE 29th Interna­

tional Conference on Advanced Information Networking and Applications.

358-364 . h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / A I N A 2 0 1 5 . 2 0 7

[20] G i l R a v i v . 2013. M e t h o d s for user p r o f i l i n g for detect ing ins ider threats

based o n i n t e r n e t s e a r c h pa t t e rns a n d fo rens ic s o f s e a r c h k e y w o r d s .

U S Pa t en t 8,375,452.

[21] W e i R e n . 2004. O n A R e f e r e n c e M o d e l o f D i s t r i b u t e d C o o p e r a t i v e

N e t w o r k , F o r e n s i c s Sys t em. . I n

[22] W e i R e n a n d H a i J i n . 2005. D i s t r i b u t e d agent-based rea l t ime n e t w o r k

i n t r u s i o n forens ics s y s t e m a rch i t ec tu re des ign . I n Advanced Informa­

tion Networking and Applications, 2005. AINA 2005. 19th Internationa!

Conference on, V o l . 1. I E E E , 177-182 .

[23] E r i c R e s c o r l a . 2018. T h e T r a n s p o r t L a y e r S e c u r i t y (T L S) P r o t o c o l

V e r s i o n 1.3. R F C 8446. h t tp s : / / do i .o rg /10 .17487 /RFC8446

[24] R o m m e l S i r a . 2003. N e t w o r k forens ics ana lys i s too ls : a n o v e r v i e w o f

an e m e r g i n g t e c h n o l o g y . GSEC, version 1 (2003), 1-10.

[25] R o b i n Sommer , J o h a n n a A m a n n , a n d Se th H a l l . 2016. Sp i cy : a u n i f i e d

deep packe t i n s p e c t i o n f r a m e w o r k for safe ly d i s sec t ing a l l y o u r data.

Acsac (2016). h t tps : / /do i .o rg /10 .1145 /2991079 .299n00

[26] M a t t h i a s V a l l e n t i n , D o m i n i k C h a r o u s s e t , T h o m a s C S c h m i d t , V e r n

P a x s o n , a n d Ics i U C B e r k e l e y . 2014. N a t i v e A c t o r s : H o w to Scale

N e t w o r k F o r e n s i c s . Sigcomm 2014 (2014). h t tps : / /do i .o rg /10 .1145/

2619239.2631471

[27] M a t t h i a s V a l l e n t i n , V e r n P a x s o n , a n d R o b i n S o m m e r . 2016. V A S T : A

U n i f i e d P l a t f o r m for In terac t ive N e t w o r k Forensics . . I n NSDI. 345-362 .

[28] M a t t h i a s V a l l e n t i n , R o b i n Sommer , J a s o n Lee , C r a i g Leres , V e r n P a x s o n ,

a n d B r i a n T i e r n e y . 2007. T h e N I D S cluster: Scalable , s ta teful n e t w o r k

i n t r u s i o n de tec t ion o n c o m m o d i t y h a r d w a r e . I n International Workshop

on Recent Advances in Intrusion Detection. Spr inger , 107-126.

[29] D i a n g a n g W a n g , T a o L i , S u n j u n L i u , J i a n h u a Z h a n g , a n d C a i m i n g

L i u . 2007. D y n a m i c a l n e t w o r k forens ics b a s e d o n i m m u n e agent . I n

Natural Computation, 2007. ICNC 2007. Third Internationa! Conference

on, V o l . 3. I E E E , 651 -656 .

[30] M . W u l l i n k , G . C . M . M o u r a , M . M Ä i j l l e r , a n d C . H e s s e l m a n . 2016.

E N T R A D A : A h i g h - p e r f o r m a n c e n e t w o r k traffic data s t r eaming w a r e ­

house . I n NOMS 2016 - 2016IEEE/IFIPNetwork Operations and Man­

agement Symposium. 9 1 3 - 9 1 8 . h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / N O M S . 2 0 1 6 .

7502925

B I D H T B L 1 N K 4 >

86

https://github
https://doi.org/10.1109/ICITST.2016.7856712
https://doi.org/10.1109/VIZSEC.2016.7739577
https://doi.org/10.1007/
https://doi.org/10.n09ATC.2015
https://doi.Org/10.1016/j.jnca
https://doi.org/10.1109/AINA2015.207
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/2991079.299n00
https://doi.org/10.1145/
https://doi.org/10.1109/NOMS.2016

A.5 A Scalable Architecture for Network Traffic Forensics

V i l i a m Letavay, Jan P luska l , and O n d ř e j R y š a v ý . " A Scalable Archi tecture for Network
Traffic Forensics". In: The Fifteenth International Conference on Networking and Services
ICNS 2019. Athens, G R : The International Academy, Research and Industry Associat ion,
2019, pp. 32-36. I S B N : 9781612087115

87

ICNS 2019: The Fifteenth International Conference on Networking and Services

A Scalable Architecture for Network Traffic Forensics

Viliam Letavay Jan Pluskal Ondřej Ryšavý

Faculty of Information Technology
Brno University of Technology

Brno 61266, C Z

Faculty of Information Technology
Brno University of Technology

Brno 61266, C Z

Faculty of Information Technology
Brno University of Technology

Brno 61266, C Z
Email: i l e t a v a y @ f i t . v u t b r . c z Email: i p l u s k a l @ f i t . v u t b r . c z Email: r y s a v y @ f i t . v u t b r . c z

Abstract—The availability of high-speed Internet enables new
opportunities for various cybercrime activities. Security admin­
istrators and Law Enforcement Agency (LEA) officers call for
powerful tools capable of providing network communication
analysis of an enormous amount of network traffic as well
as capable of analyzing an incomplete network data. Big data
technologies were considered to implement tools for capturing,
processing and storing packet traces representing network com­
munication. Often, these systems are resource intensive requiring
a significant amount of memory, computing power, and disk
space. The presented paper describes a novel approach to real­
time network traffic processing implemented in a distributed
environment. The key difference to most existing systems is that
the system is based on a light-weight actor model. The whole
processing pipeline is represented in terms of actor nodes that
can run in parallel. Also, the actor-model offers a solution that
is highly configurable and scalable. The preliminary evaluation
of a prototype implementation supports these general statements.

Keywords-Network forensic analysis; Network traffic process­
ing; Actor model.

I. I N T R O D U C T I O N

The expansion of computer networks and Internet avail­
ability opens new opportunities for cybercrime activities and
increases the number of security incidents associated with
network applications. The number of connected devices grows,
and traffic speed increases. Security administrators and Law
Enforcement Agency (LEA) officers call for powerful tools
that enable them to extract useful information from network
communication [1]. The network forensics that is responsible
for capturing, collecting and network data analyzing is becom­
ing more important [2].

In the forensic investigation, the network traffic is con­
tinuously captured from multiple sources. The captured net­
work data has a form of packet traces that have to be pro­
cessed and analyzed up to the application layer. The network
forensic tool has to decode protocols at different network
layers of the Transmission Control Protocol/Internet Proto­
col (TCP/IP) model and various encapsulations. For L E A offi­
cers, interesting information lies in application messages such
as instant messaging, emails, voice, localizable information,
documents, pictures, etc. The form and relevance of extracted
artifacts may differ from case to case. Often, communication
is encrypted. In this case, meta-data can be the only piece
of information available. In all cases, the network forensic
processing system has to be able to extract artifacts from

the network traffic reliably, even if the packet capture is cor­
rupted, for instance, some connections are incomplete, packets
are malformed, or chunks of packets were not recorded because
of capturing device issues.

The amount of data that needs to be processed to extract
evidence from the network communication depends on the kind
of a case that is investigated but usually gets large. It is very
difficult to decode, extract and store the immense mass of in­
formation for further processing. We propose a distributed
network forensic framework based on the actor model that
is computation effective and capable of linear scalability.
Scalable properties of actor model design for network forensics
are promising, as shown by the Visibility Across Space and
Time (VAST) platform [3]. Similarly to VAST, our solution
provides real-time data ingestion and interactive data analysis,
but in addition to VAST, we consider the full artifact extraction
up to the application layer. Although it requires more compu­
tation resources, we demonstrate that it can still be achieved
in a more straightforward and less resource consuming en­
vironment compared to Apache Hadoop technology, which
is the norm for big data processing.

In Section II, we describe tools used by network forensics
practitioners. Section III addresses issues faced by investiga­
tors and our proposed solution, which architecture is broadly
discussed in Section IV. Section V evaluates preliminary
performance results, and Section V I concludes the paper.

II. B A C K G R O U N D & R E L A T E D W O R K
Network forensics is a process that identifies, captures

and analyzes network traffic. Network forensic techniques
are used by several network forensic frameworks [4]-[9]
and tools intended for intrusion detection (Zeek, VAST,
Moloch) [10]—[12], network security monitoring (Microsoft
Network Monitor, TShark, Wireshark, tcpdump) [13]—[16],
and network forensic investigation for L E A s (Netfox De­
tective, PyFlag, NetworkMiner, EnCase, XPlico) [17]—[21].
Commonly available forensics tools are implemented either
as a classic desktop or command line application or a tradi­
tional client-server solution.

To overcome the limitations of traditional tools, we pro­
pose to use distributed computing. The models for distributed
processing [22] [23] are more suitable for real-time network
forensic analysis from multiple sources, such as logs and cap­
tured communication. The models are based on an agent
system, where numerous agents perform the collection task.
The extracted information is sent to the forensic network server

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5

88

mailto:iletavay@fit.vutbr.cz
mailto:ipluskal@fit.vutbr.cz
mailto:rysavy@fit.vutbr.cz

ICNS 2019: The Fifteenth International Conference on Networking and Services

and analyzed on this single node [24] only. The forensic server
is the bottleneck that has to process all the data. To avoid this
bottleneck, the Google Rapid Response (GRR) [25], a live
forensic system, utilizes a cluster of servers. The system
deploys agents running on users' computers that provide access
to forensic information, e.g., remote raw disk and memory
access. Processing of forensic data is done as flows. Each flow
is maintained on the server. Server nodes run workers that
process the active flows. Adding more server nodes enables
to run more workers and thus it is possible to handle more
clients simultaneously.

Elimination of bottlenecks in the architecture offers scal­
ability and improved reliability. The actor model [26] is one
of the attractive solutions that address the problem elegantly
and efficiently. It comes with a separate unit called an actor.
Actors execute independently and in parallel. They commu­
nicate with each other asynchronously via message passing,
and their state is otherwise immutable. Actors are capable
of spawning new actors, forming a parent-child relationship,
allowing the creation of a tree-like structure of actors. Actor's
current behavior determines how it processes the incoming
messages. Every actor in an actor system is uniquely iden­
tified by an address which other actors use as destinations
of the messages they want to send out. This address can
identify actors at the local machine and also the ones at
the remote machines, allowing easy means of communication
between nodes of a cluster. Compared to another similar
programming model, the Communicating Sequential Processes
(CSP) [27], elementary units of computation - processes are
anonymous and communicate with each other via established
communication channels. The actor system is the key en-
abler for the V A S T system [3], In VAST, actors implement
importing, archiving, indexing and exporting processed data.
Actors live in nodes that map to system processes. The system
scales by creating more nodes either on the single machine
or a cluster of computers.

Moloch is another tool, worth to mention, that uses princi­
ples of distributed computing for massive scale network traffic
monitoring, full packet capturing and indexing [12]. Moloch
system consists of sensors that capture the communication
and Elasticsearch database that is a distributed search and ana­
lytics engine. The system scales by adding new nodes running
Elasticsearch instances.

III. P R O B L E M S T A T E M E N T A N D S O L U T I O N

Our goal is to design and create a system capable of long-
term, high-speed, real-time network traffic filtering and pro­
cessing up to the application layer. The software solution
should be scalable and hardware independent. To achieve this,
we have to deal with the challenges elaborated in the rest of
this section.

A. Architectural Design

How to create a system for packet filtering and analysis
of communication that can identify application protocols, gets
forensics artifacts and searches through them?

Network forensics is a tedious work that strictly relies
on completeness and precision of all undertaken steps to gain
a piece of a puzzle that fits together as a shred of evidence.
Considering the current speeds of regular users' home network

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5

connection(s), a comprehensive classical analysis on a sin­
gle machine would require enormous computation resources.
Try to imagine, that each network packet would be analyzed
by many protocol dissectors with a goal to extract, for ex­
ample, an acknowledgment of email delivery. To achieve this
goal, with optimal computational resources, we must revisit
currently utilized methods and redesign them to work in a dis­
tributed environment which brings new challenges to architec­
ture design, application of algorithms, data synchronization,
and so on.

B. Scalability on Commodity Hardware
How can the solution be scalable and hardware indepen­

dent despite the hardware limitations?
Let us consider this imaginary demonstration. The math

is simple, one computer with 1 Gbps Network Interface
Card (NIC) that has a relatively simple task to capture traffic
during full line load would be required to write to a disk under
the constant speed of 1000Mbps fa 1 2 5 M B / s . Our system
has to guarantee that no data loss occurs during the capture.
A suspect can simultaneously download and upload data
which means that the monitoring device cannot have only one
1*1 Gbps NIC , but it needs 2*1 Gbps cards, one for uplink,
one for downlink. Thus, the required speed of continuous
disk writing would be 2 * 125 M B / s fa 250 M B / s . Now,
if the requirement is to store the communication for one day,
the disk capacity has to be 2 5 0 M B / s * 86400s fa 2 1 . 6 T B .
This is achievable with commodity hardware, e.g., 2 * 12 T B
drives with Redundant Array of Inexpensive Disks (RAID) 0
or 4 * 12 T B with R A I D 1+0 — assuming higher write/read
speed than 2 5 0 M B / s . However, what if only one day is not
enough? For a typical forensic case, capturing period spawns
through weeks or months.

From our previous experiments, we know that a sin­
gle computation node is limited and commodity hardware
is hardly sufficient to perform all required operations in real­
time and over long periods. Separation of frames into a conver­
sation which requires a dissection of the network protocols up
to the application layer, which speed is roughly 300 Mbps [28,
pp. 45-51] is not sufficient. On the other hand, we are confident
that the application created and optimized for this singular pur­
pose can do the processing faster and breach the 1 Gbps line
speed. Nevertheless, we do not believe that a single machine
solution with commodity hardware is capable of doing overall
analysis and extraction of information from the application
layer. We have to design our solution as a distributed system
across multiple machines.

C. Overall Performance
What scalability and acceleration of data processing

can be achieved?
The proposed solution is based on the actor model. Each

actor represents an independent processing unit. The com­
munication between actors is managed by messaging. Actors
have no shared state; thus all of them can work in parallel.
If actors run on the same node, the message passing has little
additional overhead compared to a function call or a loop.
However, if actors scale over multiple nodes, messages need
to be serialized. This process introduces latency and consumes
part of the processing power. The scalability of the actor model
is linear [3],

33

89

ICNS 2019: The Fifteenth International Conference on Networking and Services

IV. A R C H I T E C T U R A L D E S I G N
Incomplete data provided by unreliable traffic intercep­

tion can lead to inaccurate results; some information may
be lost, some fabricated by reconstruction process [29]. Keep­
ing the above facts in mind, the processing cannot strictly
follow Requests for Comments (RFCs) and behave like a ker­
nel network stack implementation, but it has to incorporate
several heuristics. For example, to fill missing gaps in data,
and to consider these fillings during application protocol
processing, or never to join multiple frames into a single
conversation unless it passes more advanced heuristic-based
checks. Network forensic tools that we have worked with
do mostly respect RFCs and thus may produce misleading
results, as shown by Matousek et al. [29].

We propose a distributed architecture composed of com­
modity hardware that wil l be capable of linear scalability,
and capable of efficient resource utilization. The overall ar­
chitecture is shown in Figure 1.

At the top level, we have divided the entire process into
the two main stages:

• Data preprocessing — The reconstruction of conver­
sations at the application layer (L7) of the TCP/IP
model. This process consists of consecutive segre­
gation of captured communication into the internet
(L3) and transport (L4) conversations and deploying
a reassembling heuristics [29] to recognize individual
L7 conversations inside a parent L4 conversations and
to reassemble their payloads with respect to data loss,
reordering or duplication. Every L7 conversation holds
information about the source and destination endpoints
(IP addresses, ports), timestamps, type of transport
protocol (UDP or TCP) and reassembled payloads
of exchanged application messages.

• Data analysis — The analysis of each application
conversation consists of the identification of the appli­
cation protocol, and extraction of application events,
e.g., visited web pages, exchanged emails, domain
name queries, etc., with proper application protocol
dissector that yields sets of forensic artifacts.

A. Data Prepossessing

The First stage is executed on a set of independent Re-
assembler nodes. These reconstruct L7 conversations from
the stream of captured packets which can originate from Packet
Capture (PCAP) files or can be captured from the live network
interface.

In the most common use-case, we have one source stream
(i.e., one P C A P file) which we want to analyze. Therefore,
to utilize multiple Reassemhler instances, we have to split
packets from this stream into smaller sub-streams, which wil l
be distributed among available Reassemhler instances. For this
split, we cannot use a naive method such as Round Robin,
because Reassemhler nodes operate independently of each
other and to fully reconstruct L7 conversation a particular Re­
assemhler has to obtain all the pieces of that particular L7 con­
versation. In case we would use Round Robin, a situation
could occur when half the packets from one L7 conversation
would end up in one Reassemhler node and the second half
in another; both nodes would have incomplete data and none
of them would be able to reconstruct the conversation entirely.

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5

Our proposed solution to this problem is another type
of node - L4 Load Balancer, which wil l be positioned in front
of the Reassemhler nodes and which, as a name suggests,
distributes packets based on their associations to L4 conversa­
tions each of which can consist of multiple L7 conversations.
LA Load Balancer extracts source and destination IP addresses
and ports and transport protocol from each packet of the source
stream and uses this information to decide to which instance
from the available Reassemhlers should it forward to. This
way, all packets of a particular L7 conversation wi l l always
be forwarded to only one Reassemhler instance.

Reassemhlers build a tree-like structure of L 3 and L4
conversations which are represented by the actors. Each re­
ceived packet is first forwarded to an appropriate L 3 con­
versation actor, which in turn forwards it further down to
an appropriate L4 conversation actor which reassembles L7
conversations. This segregation of packets into the individual
L4 conversations before actual L7 conversation reassembling
is required, as implemented reassembling heuristics expect to
operate on packets from a single L4 conversation at the time.
The use of a hierarchical actor design allows us to perform
independent portions of the processing in parallel and also
to easily implement management strategies such as passing
management messages to a particular L3 conversation actor
and its children L4 conversation actors. The reconstructed
L7 conversations are stored in a distributed database, ready
to be retrieved in the second stage of the execution.

B. Data Analysis

In the second stage, a subset of reconstructed L7 conver­
sations is retrieved from the distributed database and deliv­
ered to the Application protocol dissector nodes. For every
L7 conversation, Application protocol dissector nodes identify
the used application protocol and use a proper dissector module
dedicated to the processing of a single application protocol,
such as Hypertext Transfer Protocol (HTTP), Simple Mai l
Transfer Protocol (SMTP) or Domain Name System (DNS),
to extract application protocol messages from this L7 con­
versation. Obtained data are stored back into the distributed
database. Processing of application messages is under normal
circumstances possible only with unencrypted network com­
munication. From Secure Sockets Layer/Transport Layer Secu­
rity (SSL/TLS) communication which encapsulates application
protocols, such as HTTP, we can extract only unencrypted por­
tions of this data such as the server's cryptographic certificate.
Possible ways to decrypt and subsequently, parse the S S L / T L S
communication is to own a private key of a given S S L / T L S
server or to deploy an SSL/TLS intercepting proxy [30].

V. PRELIMINARY E V A L U A T I O N

Our prototype implementation is based on C# actor system
library Akka.NET. For testing and performance benchmarking,
we have implemented two modes of operation:

1) Offline — isolated execution which combines
the functionality of a single L4 Load Balancer and
Reassemhler node inside a single system's process.
No inter-actor message serialization is therefore re­
quired.

2) Online — distributed execution spanning across mul­
tiple cluster nodes. The inter-actor message serial­
ization is required as messages destined to remote

34

90

http://Akka.NET

ICNS 2019: The Fifteenth International Conference on Networking and Services

> L4 Load Balancer Distributed
db. node

App. protocol
dissector

L4 Load Balancer / * Reassembler / * Distributed ff 1̂ App. protocol
L4 Load Balancer Reassembler

db. node dissector

Packet source Packets to process Reconstructed L7 conversations L7 conversations lo d

Figure 1: Architecture diagram showing the proposed system nodes with information flow between them.

actors (nodes) have to leave an originating system's
process and be transmitted over a computer network
in a serialized format. This introduces additional
latency and performance overhead.

Additionally, for proof-of-concept benchmarking, the func­
tionality of Application protocol dissector nodes was included
inside Reassembler nodes to eliminate distributed database
as a middleman between them. In the following measurements,
we focus on a raw network capture's processing performance
of the so-far naive implementation. Currently, our prototype
implementation supports the dissection of two application
protocols (DNS and HTTP).

We have measured the preliminary performance of the im­
plementation on two different hardware configurations:

• Workstation — Intel i7-5930K 4.3GHz, 12cores,
64 G B R A M , 512 G B SSD

• Mini-cluster — 4x servers with Intel Xeon E5520,
2.26 GHz, 8 cores, 48 G B R A M , 1TB SSD, 1 Gbps
network

We used a public data set of M57-Patents Scenario [31],
that consists of real-world data captured over a month.
We merged all network traces into one P C A P file of roughly
4.8 G B and 5,707,845 frames. One large P C A P file simu­
lates our use-case of streamed-in communication that needs
to be load-balanced from a single node.

We started with measurements in an offline mode on a sin­
gle machine, firstly with a P C A P file parsing operation and
incrementally added consequent operations and measured pro­
cessing speeds, as Table 1 describes. Preliminary evaluation
suggests that the raw speed of roughly 3.8 Gbps, for P C A P file
reading and packet parsing is sufficient. The process of recon­
structing L7 conversations that segregates IP flows by packet
source and destination IP addresses, ports and transport proto­
col type with additional heuristics [29], that also reassembles
T C P / U D P streams, is computationally heavier, reaching "only"
942 Mbps, and is about 4x slower than only read and parsing.
With added H T T P & DNS dissection, performance slightly
decreased further down to 880 Mbps.

T A B L E 1. P R O C E S S I N G S P E E D S O F O U R O F F L I N E T E S T
S C E N A R I O O N A S I N G L E M A C H I N E

Workstation
[Mbps]

Mini-cluster
node [Mbps]

P C A P file reading 5103 5719
Packet parsing 3853 1679
L7 Conversation tracking 942 380
H T T P & DNS extraction 880 358

The CPU frequency (performance per C P U core) plays
a very important part in overall performance, that can be ob­
served if we compare our Workstation with node from Mini-

cluster — 880 Mbps vs. 358 Mbps. A l l other components
except CPUs are otherwise roughly comparable as we can see
by comparing the speed of " P C A P file reading".

The scalability is described in Table 2 that shows perfor­
mance in online mode. The solution was deployed on Mini-
cluster. The first node was reading the captured communication
from a P C A P file and load-balancing it to the rest that reassem­
bled L7 conversations and extracted H T T P and DNS artifacts.
In the measurements, we can see an increase in the perfor­
mance with each added Reassembler. When compared with the
results in Table 1, the performance of a distributed processing
at the Mini-cluster exceeded that of a single node running in
an offline mode. Nevertheless, further optimization is required
to achieve linear scalability as a single LA Load Balancer
fails to fully saturate available Reassemblers by distributing
the packets fast enough. We have observed that serialization of
messages containing the packets to process heavily contributes
to the overall computational complexity and easily becomes
a bottleneck of our solution.

T A B L E 2. P R O C E S S I N G S P E E D S O F O U R O N L I N E T E S T
S C E N A R I O M E A S U R E D O N M I N I - C L U S T E R

Reassemblers count One [Mbps] Two [Mbps] Three [Mbps]

H T T P & DNS extraction 233 407 453

We compare our solution, called Network Traffic Pro­
cessing & Analysis Cluster (NTPAC), running in the offline
mode at the Workstation with commonly used network forensic
tools in Table 3. Our solution is an order of magnitude faster
while delivering a comparable amount of results in terms of
reconstructing L7 conversations and extracting H T T P and D N S
artifacts.

T A B L E 3. P R O C E S S I N G S P E E D S O F C O M M O N L Y U S E D N E T ­
W O R K F O R E N S I C T O O L S M E A S U R E D O N W O R K S T A T I O N

NTPAC Netfox Wireshark NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps]

880 65.6 73.4 15.8

V I . C O N C L U S I O N
In this research, we proposed a system for distributed real­

time forensic network traffic analysis up to the application
layer capable of large-scale communication processing. We in­
tend to create a system based on the actor model that scales
linearly and is hardware independent. The implementation
environment of the .NET Core framework and C# language
enables rapid development compared to C/C++ that is used
by V A S T and Moloch. Also, our solution is multiplatform
and easily staged with Docker Swarm. Therefore, the deploy­
ment of the entire distributed application at the computation

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5

91

ICNS 2019: The Fifteenth International Conference on Networking and Services

cluster is reduced to one command. The solution is distributed
under the M I T License and hosted as an open-source project
on GitHub here [32].

In the near future, we plan to measure the performance
of our solution using data from real-world cases. Because
of legal reasons, deployment to public cloud infrastructure
is out of the question. Therefore, we need to build a private
one that consists of nodes with high C P U frequencies and
lOGbps network interfaces. Additionally, we need to profile
and optimize processing and distribution mechanisms, to ex­
pand the set of protocols supported by application protocol
dissectors and to add support for tunneling mechanisms.

V I I . A C K N O W L E D G E M E N T

This work was supported by B U T project "ICT Tools,
Methods and Technologies for Smart Cities" (2017-2019),
no. FIT-S-17-3964.

R E F E R E N C E S

[1] N . Beebe, "Digital forensic research: The good, the bad and the
unaddressed," in IFIP International Conference on Digital Forensics.
Springer, 2009, pp. 17-36.

[2] E. S. Pi l l i , R. C. Joshi, and R. Niyogi, "Network, forensic frameworks:
Survey and research challenges," digital investigation, vol. 7, no. 1-2,
2010, pp. 14-27.

[3] M . Vallentin, "Scalable network forensics," Ph.D. dissertation, UC
Berkeley, 2016.

[4] S. Rekhis, J. Krichene, and N . Boudriga, "Digfornet: digital forensic
in networking," in IFIP International Information Security Conference.
Springer, 2008, pp. 637-651.

[5] A . Almulhem and I. Traore, "Experience with engineering a network
forensics system," in International Conference on Information Network­
ing. Springer, 2005, pp. 62-71.

[6] W. Wang and T. E. Daniels, "A graph based approach toward network
forensics analysis," A C M Transactions on Information and System
Security (TISSEC), vol. 12, no. 1, Oct. 2008, pp. 4:l^t:33.

[7] N . L. Beebe and J. G. Clark, "A hierarchical, objectives-based frame­
work for the digital investigations process," Digital Investigation, vol. 2,
no. 2, 2005, pp. 147-167.

[8] S. Perumal, "Digital forensic model based on malaysian investigation
process," International Journal of Computer Science and Network
Security, vol. 9, no. 8, 2009, pp. 38-44.

[9] W. Halboob, R. Mahmod, M . Abulaish, H . Abbas, and K. Saleem,
"Data warehousing based computer forensics investigation framework,"
in 2015 12th International Conference on Information Technology-New
Generations (ITNG). IEEE, 2015, pp. 163-168.

[10] Zeek, [retrieved: April , 2019]. [Online]. Available:
https://www.zeek.org/

[11] Vast, [retrieved: April , 2019]. [Online]. Available: http://vast.io/
[12] Moloch, [retrieved: Apri l , 2019]. [Online]. Available: https://molo.ch/

[13] Microsoft Network Monitor, [retrieved: Apri l , 2019]. [Online]. Avail­
able: https://support.microsoft.com/en-us/help/933741/information-
about-network-monitor-3

[14] TShark, [retrieved: Apri l , 2019]. [Online]. Available:
https://www.wireshark.org/docs/man-pages/tshark.html

[15] Wireshark, [retrieved: April , 2019]. [Online]. Available:
https://www.wireshark.org/

[16] TCPDUMP, [retrieved: April , 2019]. [Online]. Available:
https://www.tcpdump.org/

[17] Netfox Detective, [retrieved: April , 2019]. [Online]. Available:
https://github.com/nesfit/NetfoxDetective

[18] PyFlag, [retrieved: April , 2019]. [Online]. Available:
https://github.com/py4n6/pyflag

[19] NetworkMiner, [retrieved: Apri l , 2019],
https://www.netresec.com/7page~NetworkMiner.

Copyright (c) IARIA. 2019. ISBN: 978-1-61208-711-5

[20] EnCase, [retrieved: April , 2019]. [Online]. Available:
https://www.guidancesoftware.com/encase-forensic

[21] XPlico, [retrieved: April , 2019]. [Online]. Available:
https://www.xplico.org/

[22] W. Ren and H. Jin, "Distributed agent-based real time network intru­
sion forensics system architecture design," in Advanced Information
Networking and Applications, 2005. AINA 2005. 19th International
Conference on, vol. 1. IEEE, 2005, pp. 177-182.

[23] D. Wang, T. L i , S. L iu , J. Zhang, and C. Liu , "Dynamical network
forensics based on immune agent." in Natural Computation, 2007. ICNC
2007. Third International Conference on, vol. 3. IEEE, 2007, pp. 651-
656.

[24] S. Khan, A. Gani, A . W. A . Wahab, M . Shiraz, and I. Ahmad, "Network
forensics: Review, taxonomy, and open challenges," Journal of Network
and Computer Applications, vol. 66, 2016, pp. 214-235.

[25] M . Cohen, D. Bilby, and G. Caronni, "Distributed forensics
and incident response in the enterprise," Digital Investigation,
vol. 8, 2011, pp. S101 - SI 10, the Proceedings of
the Eleventh Annual DFRWS Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287611000363

[26] C. Hewitt, P. Bishop, and R. Steiger, "A universal modular actor formal­
ism for artificial intelligence," in Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, ser. IJCAI'73. Morgan
Kaufmann Publishers Inc., 1973, pp. 235-245.

[27] C. A . R. Hoare, "Communicating sequential processes," Commun.
A C M , vol. 21, no. 8, Aug. 1978, pp. 666-677.

[28] J. Pluskal, "Framework for captured network communication process­
ing," Master's thesis, FIT BUT, 2014.

[29] P. Matousek et al., "Advanced techniques for reconstruction of incom­
plete network data," in International Conference on Digital Forensics
and Cyber Crime. Springer, 2015, pp. 69-84.

[30] S. Davidoff and J. Ham, Network Forensics: Tracking Hackers through
Cyberspace. Prentice Hall, 2012.

[31] M57-Patents Scenario, [retrieved: April , 2019]. [Online]. Available:
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

[32] NTPAC, [retrieved: April , 2019]. [Online]. Available:
https://github.com/nesfit/NTPAC/

36

92

https://www.zeek.org/
http://vast.io/
https://molo.ch/
https://support.microsoft.com/en-us/help/933741/information-
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/
https://www.tcpdump.org/
https://github.com/nesfit/NetfoxDetective
https://github.com/py4n6/pyflag
https://www.netresec.com/7page~NetworkMiner
https://www.guidancesoftware.com/encase-forensic
https://www.xplico.org/
http://www.sciencedirect.com/science/article/pii/S174228761
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://github.com/nesfit/NTPAC/

A.6 Automated Man-in-the-MiddleAttack Against W i - F i Net­
works

M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . "Automated Man- in- the-Middle A t ­
tack Against W i - F i Networks". In: The Journal of Digital Forensics, Security and Law:
JDFSL 13.1 (2018), p p . 59-80. ISSN: 1558-7215

93

T H E J O U R N A L O F

D I G I T A L F O R E N S I C S ,
S E C U R I T Y A N D L A W

Journal of Digital Forensics,
Security and Law

Volume 13 Number 1 Article 9

3-31-2018

Automated Man-in-the-Middle Attack Against Wi-Fi Networks

Martin Vondráček

Brno University of Technology, Brno, Czech Republic, xvondr20@stud.fit.vutbr.cz

Jan Pluskal

Brno University of Technology, Brno, Czech Republic, ipluskal@fit.vutbr.cz

Ondřej Ryšavý
Brno University of Technology, Brno, Czech Republic, rysavy@fit.vutbr.cz

Follow this and additional works at: https://commons.erau.edu/jdfsl

d f Part of the Digital Communications and Networking Commons, Forensic Science and Technology

Commons, Information Security Commons, OS and Networks Commons, and the Software Engineering

Commons

Recommended Citation
Vondráček, Martin; Pluskal, Jan; and Ryšavý, Ondřej (2018) "Automated Man-in-the-Middle Attack Against
Wi-Fi Networks," Journal of Digital Forensics, Security and Law. Vol. 13 : No. 1 .Article 9.
DOI: https://doi.Org/10.15394/jdfsl.2018.1495
Available at: https://commons.erau.edU/jdfsl/vol13/iss1/9

Purdue This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

U ST I V E R s T Y

94

mailto:xvondr20@stud.fit.vutbr.cz
mailto:ipluskal@fit.vutbr.cz
mailto:rysavy@fit.vutbr.cz
https://commons.erau.edu/jdfsl
https://doi.Org/1
https://commons.erau.edU/jdfsl/vol13/iss1/9
mailto:commons@erau.edu

Automated Man-in-the-Middle Attack Against Wi-Fi Networks

Cover Page Footnote
This paper is an extended version of the original paper that has been presented at the 9th EAI
International Conference on Digital Forensics and Cyber Crime (Vondráček, Pluskal, & Ryšavý, 2018). This
work was supported by Ministry of Interior of the Czech Republic project "Integrated platform for analysis
of digital data from security incidents" VI20172020062; Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II) project "IT4lnnovations
excellence in science" LQ1602; and by BUT internal project "ICT tools, methods and technologies for
smart cities" FIT-S-17-3964.

This article is available in Journal of Digital Forensics, Security and Law: https://commons.erau.edu/jdfsl/vol13/iss1/
9

95

https://commons.erau.edu/jdfsl/vol13/iss1/

Automated Man-in-the-Middle Attack Against JDFSL V13N1

A U T O M A T E D M A N - I N - T H E - M I D D L E
A T T A C K A G A I N S T WI-FI N E T W O R K S

Martin Vondráček Jan Pluskal Ondřej Ryšavý
Brno University of Technology

Faculty of Information Technology
Božetěchova 2, Brno, Czech Republic

{xvondr20}@stud.fit.vutbr.cz, {ipluskal,rysavy}@fit.vutbr.cz

A B S T R A C T

Currently used wireless communication technologies suffer security weaknesses that can be
exploited allowing to eavesdrop or to spoof network communication. In this paper, we present
a practical tool that can automate the attack on wireless security. The developed package
called wifimitm provides functionality for the automation of MUM attacks in the wireless
environment. The package combines several existing tools and attack strategies to bypass
the wireless security mechanisms, such as WEP, WPA, and WPS. The presented tool can
be integrated into a solution for automated penetration testing. Also, a popularization of
the fact that such attacks can be easily automated should raise public awareness about the
state of wireless security.

Keywords: Man-in-the-Middle attack, accessing secured wireless networks, password crack­
ing, dictionary personalization, tampering network topology, impersonation, phishing

1. I N T R O D U C T I O N

Recent enhancements to wireless technology
strengthen the benefits of wireless commu­
nication. It is convenient to access the net­
work from any location within the network
coverage area. For most of the portable de­
vices, this is the only way to connect to the
network. Installation and network setup are
easy, and the network is further expandable.
The main benefit of Wi-Fi , its accessibility
makes this technology a suitable target of at­
tacks. A potential attacker needs to be in the
physical proximity of a Wi-Fi network. The

1This paper is an extended version of the original
paper that has been presented at the 9th EAI Inter­
national Conference on Digital Forensics and Cyber
Crime (Vondráček, Pluskal, & Ryšavý, 2018).

proposed wireless security standards aim at
prevention of such unauthorized access. Un­
fortunately, the first standard called W E P is
so weak that it is possible to crack the pass­
word in a few seconds using a conventional
laptop computer. The answer was the intro­
duction of stronger standard W P A and later
even stronger WPA2. In 2017, Mathy Van-
hoef announced that he discovered a vulner­
ability in security mechanisms that use the
four-way handshake (WPA and WPA2) and
demonstrated how easily this vulnerability
can be exploited.

The main focus of this paper is security
of wireless networks. It provides a study of
widely used network technologies and mech­
anisms of wireless security. Analyzed tech-

© 2018 ADFSL Page 59

96

http://vutbr.cz

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

nologies and security algorithms suffer weak­
nesses that can be exploited to perform Man-
in-the-Middle attacks. A successful realiza­
tion of this kind of attack allows not only
to eavesdrop on all the victim's network
traffic but also to spoof his communication
(Prowell, Kraus, k Borkin, 2010, pp. 101-
120; Callegati, Cerroni, k Ramilli, 2009).

In an example scenario (Figure 1), the
victim is a suspect conducting illegal activ­
ity on a target network. The attacker is
a law-enforcement agency investigator with
appropriate legal authorization to intercept
the suspect's communication and to perform
a direct attack on the network. In some
cases, the suspect may be aware that his
communication can be intercepted by the In­
ternet Service Provider and harden his net­
work. For example, he could use an over­
lay network technology, e.g., VPN (imple­
mented by L2TP, IPsec (Kent k Seo, 2005,
pp. 09-10), PPTP) or anonymization net­
works (Tor, I2P, etc.) to create an encrypted
tunnel configured on his gateway, for all
his external communication. This concept
is easy to implement and does not require
any additional configuration on endpoint de­
vices. Generally, this would not be con­
sidered a properly secured network (Godber
k Dasgupta, 2003, pp. 425-431), but this
scheme, or similar, is often used by large ven­
dors like Cisco (Deal k Cisco Systems, 2006)
or Microsoft (Thomas, 2017) for branch of­
fice deployment and can also be seen in home
routers1. In such cases, intercepting traffic
on the ISP level would not yield meaning­
ful results, because all the communication is
encrypted by the hardening. On the other
hand, direct attack on the suspect's L A N
will intercept plain communication. But,
even when an investigator is legally permit­
ted to carry out such an attack to acquire

'Asus RT-AC5300 - Merlin WRT has an option
to tunnel all traffic thought Tor.

Page 60

evidence, it is scarcely used, because it re­
quires expert domain knowledge. Thus, this
process of evidence collection is very expen­
sive and human resource demanding.

Internet ISP

Suspect Investigator

Figure 1. Example forensics scenario where
the suspect has hardened his network and
uses an encrypted tunnel from the gate­
way (AP).

The aim of this research is to design, im­
plement and test a tool able to automate
the process of accessing a secured WLAN
and to perform data interception. Further­
more, this tool should be able to tamper with
the network to collect more evidence by redi­
recting traffic to place itself in the middle
of the communication and tamper with it,
to access otherwise encrypted data in plain
form. Using the automated tool should not
require any expert knowledge from the in­
vestigator.

We designed a generic framework, see Fig­
ure 3, capable of accessing and acquiring
evidence from a wireless network regardless
of used security mechanisms. This frame­
work can be split into several steps. First,

© 2018 ADFSL

97

Automated Man-in-the-Middle Attack Against JDFSL V13N1

it is necessary for an investigator to ob­
tain access to the WLAN used by the sus­
pect. Therefore, this research focuses on
exploitable weaknesses of particular secu­
rity mechanisms, see Section 2 for more de­
tails. Upon successful connection to the net­
work, the investigator needs to tamper with
the network topology. For this purpose,
weaknesses of several network technologies
can be exploited. From this point on, the in­
vestigator can start to capture and break the
encryption on the suspect's communication.

Specialized tools focused on exploiting in­
dividual weaknesses in security mechanisms
currently used by WLANs are already avail­
able. There are also specialized tools focused
on individual steps of MUM attacks. Tools
that were analyzed and used in implemen­
tation of the wifimitm package are outlined
in Section 2.

Based on the acquired knowledge, refer­
enced studies and practical experience from
manual experiments, authors were able to
create an attack strategy which is composed
of a suitable set of available tools. The strat­
egy is then able to select and manage in­
dividual steps for a successful MUM at­
tack tailored to a specific WLAN configura­
tion. This strategy also includes options for
impersonation and phishing for situations,
when the network is properly secured, and
the weakest part of the overall security is
the suspect.

The created software can perform a fully
automated attack and requires zero knowl­
edge. We tested the implementation on
carefully devised experiments, with available
equipment. The tool is open source and can
be easily incorporated into other software.
The main use cases of this tool are found in
automated penetration testing, forensic in­
vestigation, and education.

© 2018 ADFSL

2. S E C U R I T Y
W E A K N E S S E S I N

W L A N T E C H N O L O G I E S
Following network technologies (Sec­
tions 2.1, 2.2), which find a significant
utilization, unfortunately, suffer from
security weaknesses in their protocols.
These flaws can be used in the process of
the MUM attack.

2.1 Wireless Security
Wired Equivalent Privacy (WEP) is a se­
curity algorithm introduced as a part of
the IEEE 802.11 standard (Halsall, 2005,
p. 665; IEEE-SA, 2012, pp. 1167-1169). To­
day, WEP is deprecated and superseded by
subsequent algorithms, but is still sometimes
used, as can be seen from Table 1 avail­
able from Wifileaks.cz2. Fluhrer, Mantin,
and Shamir (2001) presented that WEP is
broken. There are tools that provide access
to wireless networks secured by WEP avail­
able (Tews, Weinmann, & Pyshkin, 2007).
Regarding WEP secured WLANs, authenti­
cation can be either Open System Authenti­
cation (OSA) or Shared Key Authentication
(SKA) (IEEE-SA, 2012, pp. 1170-1174). In
the case of WEP OS A, any station (STA)
can successfully authenticate to the Access
Point (AP) (Robyns, 2014, pp. 4-10). WEP
SKA provides authentication and security of
transferred communication using a shared
key. Confidentiality of transferred data is en­
sured by encryption using the RC4 stream
cipher. Methods used for cracking access to
WEP secured networks are based on anal­
ysis of transferred data with corresponding
Initialization Vectors (IVs).

Wi-Fi Protected Access® (WPA™, a sub­
set of 802. Hi) was developed by the Wi-Fi
Alliance® as a reaction to increasing number
of security flaws in WEP. The WPA is de-

2 h t t p : / / w w w . w i f i l e a k s . c z / s t a t i s t i k a /

Page 61

98

http://Wifileaks.cz2
http://www.wifileaks.cz/statistika/

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

signed to be backward hardware compatible
with devices that used WEP, and vendors
were expected to provide a firmware update
to remedy the catastrophic situation with
WEP. Therefore, for data confidentiality and
integrity was chosen Temporal Key Integrity
Protocol (TRIP). The main flaw of WPA se­
curity algorithm is associated with the TRIP
and a four-way handshake. It can be identi­
fied at the beginning of client device's com­
munication, where an unsecured exchange of
confidential information is performed during
the handshake. An investigator can obtain
this unsecured communication and use it for
consecutive cracking of the Pairwise Master
Rey (PMR) that is derived from Pre-Shared
Rey (PSR) or negotiated using an 802. lx
authentication stage in case of enterprise au­
thentication.

Wi-Fi Protected Access® 2 (WPA2™,
full implementation of 802.1 li) is a suc­
cessor of WPA, but security flaws of
the WPA algorithm remain significant also
for the WPA2. Besides TRIP, WPA2
has mandatory support of Counter Mode
GBC-MAC Protocol (CCMP). Both TRIP
and CCMP ensure data confidentiality, au­
thentication, and access control. IEEE
802.1 lad adds and 802.1 lac extends a
new confidentiality protocol Galois/Counter
Mode Protocol (CCMP). Information ex­
posed during the handshake can be once
again used for the dictionary attack, which
can be further improved by precomputing
the PMRs (Kumkar, Tiwari, Tiwari, Gupta,
k Shrawne, 2012, pp. 37-38; Liu, Jin, k
Wang, 2010, p. 3). Precomputed lookup ta­
bles are already available online3.

A critical security flaw in wireless net­
works secured by WPA or WPA 2 is the func­
tionality called Wi-Fi Protected Setup™
(WPS). This technology provides a comfort-

^https://www.renderlab.net/projects/
WPA-tables/

Page 62

Table 1. Following table summarizes WLAN
statistics provided by Wifileaks.cz. Users of
this service voluntarily scan and publish de­
tails about WLANs in the Czech Republic.
Information in the table show that a signifi­
cant number of WLANs still use deprecated
security algorithms. The statistics consist­
ing of 97 192 922 measurements of 2 548 054
WLANs were published on May 26, 2017.

Security Count Ratio
WPA2 1 429 518 56 %
W E P 393 579 15%
W P A 375 984 15%
open 67 388 3%
other 281 585 11 %

Table 2. Results of wardriving in Bratislava
and Brno focused on UPC vulnerabili­
ties concerning default WPA2 PSR pass­
words (Klinec k Svi'tok, 2016b). Detailed
article about these security flaws is available
online (Klinec k Svi'tok, 2016a).

Bratislava,
Slovakia,
2016-10-01

Count Ratio

Total networks 22 172
UPC networks 3 092 13.95 %
Vulnerable
UPC networks 1 327 42.92 % U P C

Brno,
Czech Republic,
2016-02-10

Count Ratio

Total networks 17 516
UPC networks 2 868 16.37 %
Vulnerable
UPC networks 1 835 63.98 % U P C

© 2018 ADFSL

99

https://www.renderlab.net/projects/
http://Wifileaks.cz

Automated Man-in-the-Middle Attack Against JDFSL V13N1

Server Internet Gateway Attacker Client

Figure 2. In an example network topology suitable for realization of MUM attack, the
attacker's device acts towards the victim as a default gateway. A l l the communication routed
outside the local network from the victim is sent to the default gateway, in this case to the
attacker's device. From the attacker's device, the communication can be further routed to
the real default gateway (Callegati et al., 2009). For the successful execution of this scenario,
the attacker needs to be connected to the targeted local network.

able and supposedly secure way of connect­
ing to the network. For a connection to
the WLAN with WPS enabled, it is possible
to use an individual PIN. However, the pro­
cess of connecting to the properly secured
network by providing PIN is very prone
to brute-force attacks (Heffner, 2011). Be­
cause WPS is a usual feature in today's ac­
cess points and that WPS is usually turned
on by default, WPS can be a very com­
mon security flaw even in networks secured
by WPA2 with a strong password. Cur­
rently, there are already available automated
tools for exploiting WPS weaknesses, e.g.,
Reaver Open Source4.

Recently, a critical vulnerability, Key Re­
installation Attacks (KRACKs), was discov­
ered by Vanhoef & Piessens, 2017 revealing
a flaw in 801.Hi and related specifications,
more precisely, in the description of the four-
way handshake. A security of CCMP and
GCMP encryption methods expects that no
Initialization Vector (IV) repeats under the
same key. Authors showed that abusing this
vulnerability, they can reinstall a Pairwise
Transient Key (PTK) used for generation of
Key Confirmation Key (KCK), Key Encryp­
tion Key (KEK), and Temporal Key (TK).

4 h t t p s : / / c o d e . g o o g l e . c o m / a r c h i v e / p /
reaver-wps/

© 2018 ADFSL

KCK and KEK are used for handshake pro­
tection and TK for data encryption. The re­
installation resets the incremental transmit
packet number (nonce) and receiver packet
number (replay counter) to the initial value.
Therefore, the reinstallation violates the ex­
pectation of non reusable IV, which conse­
quently breaks TKIP, CCMP or GCMP pro­
tocols. As Vanhoef & Piessens, 2017 show,
this also occasionally happens in regular con­
ditions, without an adversary.

Newly purchased access points usually use
WPA2 security by default. Currently, many
access points can be found using default
passwords not only for wireless network ac­
cess, but even for AP's web administra­
tion. With access to the AP's administra­
tion, the investigator could focus on chang­
ing the network topology by tampering the
network configuration. Access to the net­
work management further allows the investi­
gator to lower security levels, disable attack
detections, reconfigure DHCP together with
DNS and also clear AP's logs. There are
already implemented tools, which exploit re­
lations between SSIDs and default network
passwords, e.g., upc_keys5 by Peter Geissler.6

r , h t t p s : //haxx . i n / u p c - w i f i /
fiUPC company is a major ISP in the Czech Re­

public, URL: https://www.upc.cz

Page 63

100

https://code.google.com/archive/p/
https://www.upc.cz

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

These tools could be used in an attack on
the network with default SSID to improve
dictionary attack using possible passwords.
High severity of these security flaws is also
proven by the fact that a significant amount
of WLANs was found using unchanged pass­
words, as it is shown in Table 2.

2.2 Network Technologies
vulnerable to M i t M

Man-in-the-middle attacks are possible be­
cause of the very nature of existing network
protocols. No designed for providing secu­
rity per see, the common network protocols
lack strong authentication capabilities that
would prevent their misuse by an attacker.
Man-in-the-middle attacks assume that the
attacker can divert legitimate communica­
tion. Switched Ethernet and secured wire­
less transmission separates the communica­
tion between two endpoints thus no other de­
vice should be able to see the conversation.
Fortunately for the attacker, the insecurity
of existing widely deployed protocols can be
used. At the minimum, the following proto­
cols can be considered as suitable targets:

1. DHCP automates network device con­
figuration without a user's intervention
(Droms, 1997).

2. ARP translates an IPv4 address to a
destination MAC address of the next-
hop device in the local area net­
work (Plummer, 1982).

3. IPv6 networks utilize ICMPv6 Neighbor
Discovery functionality to achieve sim­
ilar functionality to ARP in IPv4 net­
works.

Because of the lack of authentication and
integrity checking, these protocols are vul­
nerable to spoofing attacks:

Page 64

1. DHCP Spoofing generates fake DHCP
communication. This attack can also
be referred to as Rogue DHCP. An in­
vestigator can perform this kind of at­
tack to provide devices in the network
with malicious configuration, most of­
ten a fake default gateway address or
DNS address.

2. ARP Spoofing provides the network de­
vices with fake ARP messages. This
persuades the suspect's device to be­
lieve that the attacking device's MAC
address is the default gateway's MAC
address.

3. IPv6 Neighbor Spoofing is a similar con­
cept to ARP Spoofing.

From the available spoofing attacks, the
ARP Spoofing technique was implemented in
our tool. This method proved itself with rea­
sonable performance during experiments and
it is simple to implement.

Of course, there are counter-measures to
spoofing attacks. The defense against spoof­
ing lies in implementing some extra function­
ality to network devices:

1. DHCP Snooping is a countermeasure
against DHCP Spoofing. This technique
focuses on detection of forged DHCP
communication. Network device acting
as a DHCP snooper accepts only DHCP
messages which are coming from con­
nections to the genuine DHCP server,
others are discarded. This way, individ­
ual connections are classified as either
trusted or untrusted. If the network
contains an unknown DHCP server be­
hind an untrusted connection, it is re­
ferred to as Spurious DHCP Server
(Cisco Systems, Inc., 2013, p. 54-2).

2. Dynamic ARP Inspection {DAI) is
based on analysis of ARP messages

© 2018 ADFSL

101

Automated Man-in-the-Middle Attack Against JDFSL V13N1

transmitted over the network with aim
to detect ARP Spoofing. Similarly, de­
vice performing DAI can have its con­
nections classified as trusted or un-
trusted. ARP messages from trusted
connections are not checked. Analyz­
ing device maintains a trusted database
of mapping of IP and MAC addresses
in the corresponding LAN. ARP mes­
sages from untrusted connections can
be verified against this trusted map­
ping database (Cisco Systems, Inc..
2013, p. 56-2).

3. Neighbor Discovery Inspection (NDI)
uses similar approach as above-
mentioned DAI, but to detect IPv6
Neighbor Spoofing. Analyzing device
verifies information transferred in
Neighbor Discovery messages against
its database of IP and MAC ad­
dress mappings.

Although the mitigation techniques are
known, they are applied mostly in the enter­
prise environments. In SOHO networks the
devices either lack this feature or the protec­
tion is not enabled by the administrator.

2.3 Man-in-the-Middle Attack
The MUM refers to the situation, where
the attacker's device is located in the net­
work topology between two participants of
the communication (Figure 2). The attacker
then acts as an intermediary and the net­
work traffic is routed through the attack­
ing device. This state of unauthorized and
intentionally changed network topology en­
ables the attacker to eavesdrop on passed
communication. The attacker is also able to
focus on decryption of data and on changing
the content of passed communication. That
means that the attacker can inject harm­
ful content. The attacker's prioritized in­
tention is not only to take control over the

© 2018 ADFSL

traffic but also to perform this attack with­
out anyone noticing it. This way, Man-in-
the-Middle Attack is endangers maintaining
confidentiality and integrity, key parts of the
CIA triad.

HTTPS uses asymmetric cryptography
with private and public keys to provide se­
cure HTTP communication. If the victim
is communicating using HTTPS, successful
realization of MitM attack is more diffi­
cult. During communication of web browser
on client's device with a web server, these
two parties exchange a certificate contain­
ing a public key for providing a secure data
transfer. MitM attack, in this case, cap­
tures transferred certificate and replaces it
with a forged one (Callegati et al., 2009).
The forged certificate is at this point a self-
signed certificate. Upon reception of the
self-signed certificate, victim's web browser
can show some warning concerning possi­
ble risk. If the victim is not aware of the
possible consequences, the victim can accept
the certificate. In the case of success, both
communicating devices are convinced of se­
cured HTTPS communication, but the at­
tacking device has the ongoing communica­
tion available.

DNS Spoofing focuses on possibilities
of forging DNS communication used for res­
olution of domain names and IP addresses.
For the successful realization of this attack,
the attacker needs to detect and intercept
DNS messages in the network. The aim of
this attack is to direct the victim to a differ­
ent device by providing a fake mapping of in­
quired domain name to a special IP address.
The attacker is able to imitate the inquired
service by running a similar rogue service on
the provided spoofed IP address. If the vic­
tim is convinced that the inquired service is
genuine, the attacker can then focus on cap­
turing confidential information and creden­
tials. The attacker can also use DNS Spoof­
ing for providing the real service, but with

Page 65

102

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Accessing wireless network

Scan Crack Impersonate
(phishing)

Impersonate
(phishing)

Connect

' • M

Man-in-the-Middle attack

Capturing network traffic stop

t

Tampering network topology stop

i L

Figure 3. During the first phase - Accessing wireless network, the tool is capable of an at­
tack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLANs. In a case of
the dictionary attack on the device deployed by the UPC company, used dictionaries are per­
sonalized by the implicit passwords. In the case of properly secured WLAN, impersonation
(phishing) can be employed. Using this method, an investigator impersonates the legitimate
network to obtain the WLAN credentials from the user. During the second phase - Tamper­
ing network topology, the tool needs to continuously work on keeping the network stations
(STAs) persuaded that the spoofed topology is the correct one. An investigator is now able
to capture or modify the traffic. The successful MUM attack is established.

Page 66 © 2018 ADFSL

103

Automated Man-in-the-Middle Attack Against JDFSL V13N1

enclosed harmful content. DNS Spoofing can
be effectively applied for spoofing fake web­
sites (Prowell et al., 2010, p. 112). If the
attacker detects a DNS message, he inter­
cepts it and forges a reply for the victim.
The victim receives forged mapping of do­
main name to IP address and starts commu­
nication with the fake device without notic­
ing the attack. The attacker then acts as
the inquired service and therefore performs
a MitM attack.

2.4 Available Tools for
Specific Phases of the

M i t M Attack on
Wireless Networks

From perspective of the intended functional­
ity of the implemented tool, the whole pro­
cess of MitM attack on wireless networks
can be divided into three main phases: Ac­
cessing wireless network, Tampering network
topology and Capturing network traffic, as
explained in Figure 3.

To access secured wireless networks,
Aircrack-ng suite7 is considered a reliable
software solution. Considering the phase Ac­
cessing wireless network (Figure 3), follow­
ing tools were utilized. Airmon-ng can man­
age modes of a wireless interface. Airodump-
ng can be used to scan and detect attacked
AP. Aircrack-ng together with aireplay-ng,
airodump-ng and upc-keys can be utilized for
cracking WEP OS A, WEP SKA, WPA PSK
and WPA2 PSK. The tool wifiphisher8 can
be used to perform impersonation and phish-
ing. Connection to the wireless network can
be established by netctl9.

MITMf10 with its Spoof plugin can be
used during the Tampering network topology

7http://www.aircrack-ng.org/
s h t t p s : / / g i t h u b . c o m / s o p h r o n / w i f i p h i s h e r
9https://www.archlinux.org/packages/

c o r e / a n y / n e t c t 1 /
1 0https://github.com/byt3bl33d3r/MITMf

© 2018 ADFSL

phase. For the realization of DNS Spoofing,
it is possible to use tool dnsspoof which is
a part of dsniff collection (Song, 2001). This
collection of network auditing and penetra­
tion testing tools contains several advanced
programs, which could be used for tamper­
ing network topology.

Capturing traffic can be done by the tool
dumpcap11, which is part of the Wireshark12

distribution. Behaviour, usage and success
rate of individual tools, as well as possibili­
ties of controlling them by the implemented
tool, were analyzed. The software selected
for individual tasks of the automated MitM
attack were chosen from the researched va­
riety of available tools based on performed
manual experiments, further described in
the thesis (Vondráček, 2016).

3. A T T A C K
A U T O M A T I O N U S I N G
W I F I M I T M P A C K A G E

A N D W I F I M I T M C L I
T O O L

The implemented tool is currently intended
to run on Arch Linux13, but it could be used
on other platforms which would satisfy spec­
ified dependencies. This distribution was
selected because it is very flexible and
lightweight. Python 3.5 was selected as a pri­
mary implementation language for the auto­
mated tool and Bash was chosen for support­
ing tasks, e.g., installation of dependencies
on Arch Linux and software wrappers.

The functionality implemented in
the wifimitm package could be directly
incorporated into other software products
based on Python language. This way

1 1https://www.wireshark.org/docs/
man-pages/dumpcap.html

1 2https://www.wireshark.org/
1 3https://www.archlinux.org/

Page 67

104

http://www.aircrack-ng.org/
https://github.com/sophron/wifiphisher
https://www.archlinux.org/packages/
https://github.com/byt3bl33d3r/MITMf
https://www.wireshark.org/docs/
https://www.wireshark.org/
https://www.archlinux.org/

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Entry points

wifimitmcli

wifimitm
Captured

Traffic
Attack Data

updatableProcess capture

topology

wpa2

model

Dictionaries

impersonation common

requirements

Figure 4. This figure shows the basic structure of the developed application. The tool
wifimitmcli uses a functionality offered by the package wifimitm. The package is also able to
manipulate attack data useful for repeated attacks and capture files with intercepted traffic.
Detailed structure of the package is described in section 3.

Page 1 © 2018 ADFSL

105

Automated Man-in-the-Middle Attack Against JDFSL V13N1

Figure 5. The figure shows a simplified flowchart of cracking WEP OS A or WEP SKA secured
wireless network. Cracking procedure is a part of the first phase Accessing wireless network
as described in Figure 3. If the given WLAN has already been successfully attacked, Attack
Data (Section 3.1) contains the correct key. In such cases, repetitive cracking is unnecessary
and is therefore skipped.

the package would work as a software
library. Schema of the wifimitm package is
in Figure 4.

The wifimitm, package consists of following
modules. The access module offers an au­
tomated process of cracking selected WLAN.
It uses modules wep and wpa2, which imple­
ment attacks and cracking based on the used
security algorithm. The wep module is ca­
pable of fake authentication with the AP.
ARP replay attack (to speed up gather­
ing of IVs) and cracking the key based on
IVs. In the case of WPA2 secured net­
work, the wpa2 module can perform a dic­
tionary attack, personalize used dictionary
and verify a password obtained by phish-
ing (Figure 4). Verification of the password
and dictionary attacks are done with a pre­
viously captured handshake. The common
module contains functionality which could
be used in various parts of the process for

© 2018 ADFSL

scanning and capturing wireless communi­
cation in monitor mode. The common mod­
ule also offers a way to deauthenticate STAs
from selected AP.

If a dictionary attack against a correctly
secured network fails, a phishing attack can
be managed by the impersonation 1 4 mod­
ule. The topology module can be used to
change network topology. It provides func­
tionality for ARP Spoofing. The capture
module focuses on capturing network traf­
fic (Figure 4). It is intended to be used after
the tool is successfully connected to the at­
tacked network and network topology was
successfully changed into the one suitable for
MitM attack.

1 4 For details concerning individual phishing sce­
narios, please see wifiphisher's website, h t t p s : / /
g i t h u b . c o m / s o p h r o n / w i f i p h i s h e r

Page 69

106

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Figure 6. This simplified flowchart illustrates cracking WPA PSK or WPA2 PSK secured
network. Similarly as cracking in Figure 5, this procedure is also a part of the first phase
Accessing wireless network (Figure 3). Cracking can also be skipped if the key is already
known. As already described, impersonation (phishing) can be used in a case of unsuccessful
cracking.

3.1 Attack Data

Various attacks executed against the selected
AP require some information to be cap­
tured first. A R P request replay attack on
WEP secured networks requires an A R P re­
quest to be obtained in order to start an at­
tacking procedure. Fake authentication in
WEP SKA secured network needs PRGA
XOR15 obtained from a detected authenti­
cation. Dictionary attack against WPA PSK
and WPA2 PSK secured networks requires
a captured handshake. Finally, for the suc­
cessful connection to a network, a correct key
is required. When the required information
is obtained, it can be saved for a later us­
age to speed up following or repetitive at­
tacks. Data from successful attacks could
be even shared between users of the imple­
mented tool.

1 5 S t r e a m of Pseudo Random Generation Algo­

rithm generated bits.

Page 70

3.2 Dictionary Personalization

Weaknesses in default network passwords
could be exploited to improve dictionary at­
tacks against WPA PSK and WPA2 PSK
security algorithms. The implemented tool
incorporates upcJzeys for generation of pos­
sible default passwords if the selected net­
work matches the criteria. The upc-keys tool
generates passwords, which are transferred
to the cracking tool using pipes. With this
approach, the implemented tool could be fur­
ther improved for example to support local­
ized dictionaries.

3.3 Requirements

The implemented automated tool depends
on several other tools, which are being con­
trolled. The Python package can be au­
tomatically installed by its setup includ­
ing Python dependencies. Non-Python de­
pendencies can be satisfied by installation

© 2018 ADFSL

107

Automated Man-in-the-Middle Attack Against JDFSL V13N1

ARP Replay

Process just started.

H)

Process has
been terminated.

Flags

deauthenticated

(
Waiting

!; for a beacon frame.

J
\

r
Waiting

for an A R P request.

>

Got A R P request, sending packets.

Statistics

read
A C K s
A R P s
sent
pps

Files

replay_arp.cap

Figure 7. This figure presents the information model of a process controlled by wifimitm.
In this example, the incorporated tool is aireplay-ng from Aircrack-ng suite executing ARP
replay attack to speed up gathering of IVs. State of the process is modeled using a FSM
consisting of 5 states. In a case that the attacking device receives at least one deauthenti-
cation packet, the deauthenticated flag is set. Statistics contain overall information about
processed packets. Useful file created by aireplay-ng during this procedure is a capture file
containing ARP request. This file is part of the Attack Data, as outlined in Section 3.1.

© 2018 ADFSL Page 71

108

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Internet

STA 1 wifimitm

Figure 8. This figure presents the network
topology used for the first performance test­
ing (Section 4.1) and success rate measure­
ments (Section 4.2). Results of this perfor­
mance testing are in Figure 10.

scripts and wrappers, which are currently de­
veloped for Arch Linux.

MITMf has a number of dependencies.
Therefore, the installation script also cre­
ates a virtual environment dedicated to
MITMf. After installation, MITMf can be
easily run encapsulated in its environment.
Wifiphisher is also installed in a virtual-
ized environment and run using a wrap­
per. Tool upc-keys is compiled during in­
stallation. Some changes in wifiphisher's
source code were implemented, the installa­
tion script therefore applies a software patch.
Other software dependencies are installed
using a package manager.

Due to the nature of concrete steps of

the attack, a special hardware equipment

is required. During the scanning and cap-

Page 72

Figure 9. This figure shows the network
topology consisting of 8 STAs and 1 AP
which was used for the second performance
testing (Section 4.1). Results of this perfor­
mance testing are in Figure 11.

turing of network traffic without being con­
nected to the network, an attacking device
needs a wireless network interface in monitor
mode. For sending forged packets, the wire­
less network interface also needs to be ca­
pable of packet injection. To be able to
perform a phishing attack, a second wire­
less interface capable of master (AP) mode
has to be available. The user can check
whether his hardware is capable of packet
injection using the aireplay-ng tool. Man­
aging monitor mode of interface is possible
with the airmon-ng tool.

3.4 Incorporation of tools
The implemented tool needs to interact with
other software tools in order to automate
attack procedures. Incorporated tools com-

© 2018 ADFSL

109

Automated Man-in-the-Middle Attack Against JDFSL V13N1

municate using Standard output stream (std-
out), Standard error stream (stderr) and
optionally using generated files. Wifimitm
needs to continuously analyze all these out­
puts to be aware of current state of the
controlled tool. Information contained in
the output can be a summary of current
progress, a notification that some event oc­
curred or a result of an intended action.

To meet requirements for efficient incor­
poration of other tools so that the wifimitm
package could interact with them, the up-
datableProcess module was developed. This
module contains an abstract base class
UpdatableProcess. Individual incorporated
tools have dedicated classes inherited from
the UpdatableProcess which are used for
managing these tools from wifimitm. When
a process is spawned, using an instance of
class inherited from UpdatableProcess, it is
assigned a temporary directory for its out­
puts. The running process is continuously
writing to stdout and stderr. The outputs
are periodically analyzed. Classes inherited
from UpdatableProcess can implement a sig-
nalization of process' state using a Finite
State Machine (FSM). Process' output can
include notifications of events. Upon detec­
tion of such event, appropriate flags can be
set. Some processes also output summary
information, which can be used to update
statistics. Continuously updated informa­
tion about the process can therefore consist
of state, flags, statistics and created files as
presented in Figure 7.

4. E V A L U A T I O N

The capabilities of the implemented tool
were evaluated. Because the tool deploys
man-in-the-middle type of attack, the tool
necessary modifies the target environment.
Thus we evaluated the footprint of the tool
and the possibility to detect the running at­
tack by the victim. The next set of experi-

© 2018 ADFSL

ments were conducted to show how easy it is
to gain the network communication for dif­
ferent wireless configurations.

4.1 Attack's Performance
Impact

The first experiment examines wheathe the
attack is observable from end-user perspec­
tive or disrupts regular communication on
the network. A scheme of the networks
used for this experiment is shown in Fig­
ures 8 and 9, modeling SOHO 1 6 environ­
ment. The STAs were correctly connected to
the AP, and they were successfully commu­
nicating with the Internet. The implemented
wifimitmcli tool was then started and auto­
matically attacked the network, as described
in Section 3 and Figure 3.

The performance impact of the wifimitm
was compared using typologies presented in
Figures 8 and 9. As the observed metric was
selected a Round-Trip Time (RTT) value
describing a delay that end-user might expe­
rience when the load on the Rl is increased.

For the first case, only one client is con­
nected at the time. The Figure 10 plots
RTT values measured between STA1 and
its Internet gateway Rl. The x axe de­
notes each measurement, and on the y axe is
shown corresponding delay in ma in a loga­
rithmic scale.

The second case shows eight STAs con­
nected to Rl simultaneously, in Figure 9.
Figure 11 shows an increase of RTT mea­
sured between each of STAx and Rl.

Both cases were evaluated on the fact,
whether the attack being performed was re­
vealed or whether the users had any suspi­
cion about the malicious transformation of
their WLAN. By results comparison of both
test cases, presented in Figures 10 and 11,
can be concluded that regular user has no
way of knowing whether the increase of la-

1 6 s m a l l office/home office

Page 73

110

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

RTT STA1 - R l

10000 ms

1000 ms

100 ms

10 ms

1 ms

0 200 400
0 usual communication * M i t M

Figure 10. The first WLAN for perfor­
mance testing was the same as for the suc­
cess rate measurements described in Sec­
tion 4.2. Figure shows comparison of
the measured RTT between STA1 and Rl
during usual communication and during
successful MitM attack. The results show
the performance impact is not critical. Dis­
cussion with the users of the attacked net­
work proved this attack unrecognizable.

Page 74

RTT STA1 - R l

10000 ms

1000 ms

100 ms

1 HIS •>«•»"» »• ~ °°"> ° oo ooo o

0 200 400

° usual communication - M i t M

Figure 11. The second performance testing
consisted of 8 STAs and 1 AP connected
to the Internet - streaming videos, down­
loading large files, etc. The figure com­
pares the RTT between STA1 and Rl sim­
ilarly. The performance impact is more se­
vere than in Figure 10. Despite the perfor­
mance impact, the users had no suspicion
that they were under MitM attack. In­
stead, they blamed the amount of devices
for network congestion.

© 2018 ADFSL

111

Automated Man-in-the-Middle Attack Against JDFSL V13N1

tency is caused by an attack, or by a new
device connecting to the network, massive
data transfer, or any other interference from
the physical world.

On the other hand, there is apparent lin­
ear segregation between measurements with
and without attack in Figure 11. This obser­
vation submits a future challenge, whether
this condition might be used as a feature for
a wireless network diagnostic without direct
access to Rl or any of STAs.

4.2 Experiments Concerning
Various Network Devices

and Configurations

The second experiment observes applicabil­
ity of the wifimitmcli tool in different SOHO
environments based on multiple A P devices
with a variety of commonly used security
settings in combination with numerous end-
user devices. The experiment was considered
successful if the wifimitmcli was able to per­
form all phases of M i t M attack, Figure 3,
and place itself in the middle of communica­
tion to capture network traffic according to
the concept of MitM, Section 2.3 and Fig­
ure 2. For the test case to be correct, no
help from the investigator was allowed dur­
ing the attack performed by wifimitmcli.

The first use-case was to test all combina­
tions of available A P devices with all avail­
able client ones. Figure 8 shows network
topology used in this controlled laboratory
experiment. Results of the success rate mea­
surements are shown in Tables 3 and 4.

The second use-case was to test suc­
cess rate of the wifimitmcli tool in a non-
laboratory environment beyond our control
on the end-user part. Figure 8 shows once
again testing topology withLinksys WRPJ^OO
device as an AP. Table 4 shows measure­
ments and success rate of observations of this
use-case. The experiment was conducted
during the author's presentation at the Brno

© 2018 ADFSL

University of Technology, Faculty of Infor­
mation Technology where visitors were in­
vited to let their devices be attacked.

Results of experiments present in Ta­
bles 3, 4 and the thesis (Vondráček, 2016,
pp. 42-43) reveal the following conclusions:

• Open - networks can be very easily at­
tacked.

• WEP OSA and WEP SKA - secured
networks can be successfully attacked
even if they use a random password.

• WPA PSK and WPA2 PSK - secured
networks suffer from weak passwords
(dictionary attack), default passwords
and mistakes of users (impersonation
and phishing).

Consequently, results reveal feasibility
and ease of MitM attack using the wifim-
itm, and its success rate in the target
SOHO environments.

5. C O N C L U S I O N S
The goal of this research was to implement
a tool that would be able to automate all
the necessary steps to perform MitM attacks
on WLANs. The authors searched for and
analyzed a range of software and methods
focused on penetration testing, communica­
tion sniffing and spoofing, password crack­
ing and hacking in general. To be able to
design, implement and test the tool capa­
ble of such attacks, knowledge of different
widespread security approaches was essen­
tial. The authors further focused on possibil­
ities of MitM attacks even in cases where the
target WLAN is secured correctly. There­
fore, methods and tools for impersonation
and phishing were also analyzed.

The authors' work and research resulted
in creation of the wifimitm Python package.

Page 75

112

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Table 3. This table presents results of the success rate measurements. A successful attack is
marked using a checkmark symbol (/) and unsuccessful attack is marked using a times sym­
bol (x). In the case when the attack was not fully successful, the question mark (?) is used.
Such partially successful test (? symbol) can for example happen in situation where the sus­
pect is sending only a portion of his traffic through the investigator. Some of the used STAs
lack WEP SKA settings (• symbol). Testing WPA PSK and WPA2 PSK networks were
configured with password "12345678" and WEP secured networks used password "A_b#l".

4

V 1»

,9°
A?

4 » #

Linksys
WRT610N

open / / / / /

Linksys
WRT610N

W E P OSA / / / / / Linksys
WRT610N W E P SKA • • / / /
Linksys
WRT610N

W P A PSK / / / / /

Linksys
WRT610N

WPA2 PSK / / / / /

Linksys
WRT54G

open / / / / /

Linksys
WRT54G

W E P OSA / / / / / Linksys
WRT54G W E P SKA • • / / /
Linksys
WRT54G W P A PSK / / / / /

Linksys
WRT54G

WPA2 PSK / / / / /

Linksys
WRP400

open / / / / /

Linksys
WRP400

W E P OSA / / / / / Linksys
WRP400 W E P SKA • • / / /
Linksys
WRP400 W P A PSK / / / / /

Linksys
WRP400

WPA2 PSK / / / / /

TP-LINK
TL-WR841N

open ? X / / /

TP-LINK
TL-WR841N

W E P OSA ? X / / X TP-LINK
TL-WR841N W E P SKA • • / / X
TP-LINK
TL-WR841N

W P A PSK ? X / / X

TP-LINK
TL-WR841N

WPA2 PSK ? X / / X

D-Link
DVA-G3671B

open / / / / /

D-Link
DVA-G3671B

W E P OSA / / / / / D-Link
DVA-G3671B W E P SKA • • / / /
D-Link
DVA-G3671B

W P A PSK / / / / /

D-Link
DVA-G3671B

WPA2 PSK / / / / /

Page 76 © 2018 ADFSL

113

Automated Man-in-the-Middle Attack Against JDFSL V13N1

Table 4. The following table shows the re­
sults of public experiments. Testing network
utilized Linksys WRP400 as an A P and end-
user devices of random people that agreed
to participate in the experiment. A success­
ful attack is marked using a checkmark sym­
bol (/) .

Model OS Attack
HTC Desire 500 Android 4.1.2 /
HTC Desire 820 Android 6.0.1 /
Apple iPhone 6 iOS 10.3.1 /
Apple iPhone 5s iOS 10.2.1 /
Apple iPhone 5 iOS 10.3.1 /
Apple iPhone 5c iOS 9.2.1 /
Apple iPhone 4 iOS 7.1.2 /

This package serves as a library which pro­
vides functionality for automation of MUM
attacks on target WLANs. The developed
package can also be easily incorporated into
other tools. Another product of this re­
search is the wifimitmcli tool which incor­
porates the functionality of the wifimitm
package. This tool automates the individ­
ual steps of a MUM attack and can be
used from a CLI. The implemented software
comes with a range of additions for conve­
nient usage, e.g., a script that checks and in­
stalls dependencies on Arch Linux, a Python
setuptools setup script and of course a man­
ual page.

The wifimitmcli tool, and therefore wifim­
itm as well, was tested during experiments
with an available set of equipment. As
the results show, the implemented software
product is able to perform an automated
MitM attack on WLANs successfully.

Upon successful deployment and execu­
tion of the implemented tool, an investigator
can eavesdrop or spoof the passing communi­
cation. The goal of the tool was to automate
MitM attacks on PSK secured WLANs. It
does not focus on dissecting further traffic

© 2018 ADFSL

protections. This means that it does not
interfere with SSL/TLS, VPN, or other en­
capsulations. Thanks to the tool's design, it
can be easily used together with other soft­
ware specialized on interception of encapsu­
lated traffic. Traffic encapsulation is a suf­
ficient protection against this tool. From
the WLAN administrators point of view,
available defense mechanisms are outlined
in Section 2.2.

As explained earlier, all the suspect's net­
work traffic is passing through the attacking
device during a successful MitM attack. Un­
fortunately, there could be users on the net­
work other than the ones that are subject
to a court order. Making sure that only ap­
propriate traffic is being captured may be
important depending on the nature of the
court order or the legislation. This challenge
may be solved by setting corresponding filter
rules for traffic capture software.

This research and its products can be uti­
lized in combination with other security re­
search carried out at the Brno University
of Technology, Faculty of Information Tech­
nology. It can serve in investigations done
by forensic researchers (Pluskal et al., 2015).
It can also be used in automated penetration
testing of WLANs.

In the future iterations of the develop­
ment, the product could focus on exploit­
ing the weaknesses of the widely used WPS
technology, incorporating techniques to per­
form KRACKs, or focus on detection of at­
tacks themselves. Concerning the current
state of the product, it does not focus on
enterprise WLANs, which also suffer from
their weaknesses.

A C K N O W L E D G E M E N T S
This work was supported by Ministry of In­
terior of the Czech Republic project "Inte­
grated platform for analysis of digital data

Page 77

114

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

from security incidents" VI20172020062:
Ministry of Education, Youth and Sports
of the Czech Republic from the National
Programme of Sustainability (NPU II)
project "IT4Innovations excellence in sci­
ence" LQ1602; and by B U T internal project
"ICT tools, methods and technologies for
smart cities" FIT-S-17-3964.

A U T H O R
B I O G R A P H I E S

Martin Vondráček is currently pursuing
Master's degree in Intelligent Systems at the
Brno University of Technology. He has com­
pleted the Bachelor's degree with honours
at the same university in 2016 and received
dean's award and rector's award later that
year. His interest in Computer Science in­
creased during his thesis work at the Uni­
versity of Malta in 2016 and exchange study
of Computer Forensics at the University of
South Wales in 2017. He presented outcomes
of his research at conferences ICDF2C and
Excel@FIT. He is dedicated to research, in­
formation security, computer networks and
software development.
Jan Pluskal is a Ph.D. student at FIT
BUT, freelance lecturer and programmer.
He is mostly interested in computer network
forensics, machine learning, distributed com­
puting and C# programming. The main au­
thor of Netfox Detective - a tool for network
forensic analysis. In his free time, he plays
around with home automation IoT technolo­
gies to ease up daily routines of his family.
Ondřej Ryšavý received the Ph.D. degree
in computer science from the Brno Univer­
sity of Technology, Brno, Czech Republic, in
2005. He is an Associate Professor with the
Department of Information Systems, Brno
University of Technology, Brno. His research
interests include computer networking and,
in particular, network monitoring, network

Page 78

security and forensics, and network architec­
tures. His work is focused on improving net­
work security through data analysis by ap­
plication of data mining, statistics, and dis­
tributed computing.

R E F E R E N C E S
Callegati, F., Cerroni, W., k Ramilli, M .

(2009, Jan). Man-in-the-middle
attack to the HTTPS protocol.
Security Privacy, IEEE, 78-81. doi:
10.1109/MSP.2009.12

Cisco Systems, Inc. (2013). Catalyst 6500
release 12.2sx software configuration
guide. Retrieved on January 29, 2018,
from http: //www. Cisco. com/c/en/
us/ td/docs/switches/ lan/
catalyst6500/ios/12-2SX/
configuration/guide/book.html

Deal, R., k Cisco Systems, I. (2006). The
complete cisco vpn configuration
guide. Cisco Press. Retrieved on
January 30, 2018, from
https: / /books.google.cz/
books?id=ms-8AAAACAAJ

Droms, R. (1997, March). Dynamic Host
Configuration Protocol (RFC No.
2131). Internet Engineering Task
Force. RFC 2131 (DRAFT
STANDARD). Retrieved on January
30, 2018, from h t t p : / /
www.ietf .org/rfc/rfc2131.txt

Fluhrer, S., Mantin, I., k Shamir, A.
(2001). Weaknesses in the key
scheduling algorithm of RC4. In
S. Vaudenay k A . Youssef (Eds.),
Selected areas in cryptography (pp.
1-24). Springer Berlin Heidelberg.
Retrieved on January 30, 2018, from
ht tp: / /dx.doi .org/10.1007/
3-540-45537-X_l doi:
10.1007/3-540-45537-XT

Godber, A., k Dasgupta, P. (2003).
Countering rogues in wireless

© 2018 ADFSL

115

https://books.google.cz/
http://www.ietf.org/rfc/rfc2131.txt
http://dx.doi.org/10

Automated Man-in-the-Middle Attack Against JDFSL V13N1

networks. In Proceedings of the
international conference on parallel
processing workshops (Vol.
2003-January, pp. 425-431). Institute
of Electrical and Electronics
Engineers Inc. doi:
10.1109/ICPPW.2003.1240398

Halsall, F. (2005). Computer networking
and the internet. Addison-Wesley.
Retrieved on January 22, 2016, from
https: / /books.google.cz/
books?id=QadX5XErZ9IC

Heffner, C. (2011). Cracking WPA in 10
hours or less - /dev/ttysO. Retrieved
on April 4, 2016, from
http://www.devttysO.com/2011/
12/cracking-wpa-in-10-hours-or
- l e s s /

IEEE-SA. (2012, March). IEEE standard
for information
technology-telecommunications and
information exchange between
systems local and metropolitan area
networks-specific requirements part
11: Wireless L A N medium access
control (MAC) and physical layer
(PHY) specifications. IEEE Std
802.11-2012 (Revision of IEEE Std
802.11-2007), 1-2793. doi:
10.1109/IEEESTD.2012.6178212

Kent, S., & Seo, K . (2005, December).
Security Architecture for the Internet
Protocol (RFC No. 4301). Internet
Engineering Task Force. RFC 4301
(PROPOSED STANDARD).
Retrieved on January 30, 2018, from
ht tps : / /www.ie t f .org/ r fc /
rfc4301.txt

Klinec, D., & Svitok, M . (2016a). UPC
UBEE EVW3226 WPA2 password
reverse engineering, rev 3. Retrieved
on January 30, 2018, from
https://deadcode.me/blog/2016/
07/01/UPC-UBEE-EVW3226-WPA2
-Revers ing.html

© 2018 ADFSL

Klinec, D., & Svitok, M . (2016b).
Wardriving Bratislava 10/2016.
Retrieved on January 30, 2018, from
https://deadcode.me/blog/2016/
11/05/Wardriving-Bratislava-lO
-2016.html

Kumkar, V. , Tiwari, A. , Tiwari, P., Gupta,
A., k Shrawne, S. (2012).
Vulnerabilities of wireless security
protocols (WEP and WPA2).
International Journal of Advanced
Research in Computer Engineering &
Technology (IJ ARGET), 1(2), 34-38.
Retrieved on January 30, 2018, from
ht tp: / / i jarcet .org/wp-content /
uploads/
IJARCET-V0L-l-ISSUE-2-34-38.pdf

Liu, Y . , Jin, Z., & Wang, Y . (2010, Sept).
Survey on security scheme and
attacking methods of W P A / W P A 2 .
In 2010 6th international conference
on wireless communications
networking and mobile computing
(wicom) (pp. 1-4). doi:
10.1109/WICOM.2010.5601275

Plummer, D. (1982, November). Ethernet
Address Resolution Protocol: Or
Converting Network Protocol
Addresses to 48. bit Ethernet Address
for Transmission on Ethernet
Hardware (RFC No. 826). Internet
Engineering Task Force. RFC 826
(INTERNET STANDARD).
Retrieved on January 30, 2018, from
ht tp : / /www.ie t f .org / r fc /
rfc826.txt

Pluskal, J., Matoušek, P., Ryšavý, O.,
Kmet, M . , Veselý, V. , Karpíšek, F., &
Vymlátil, M . (2015). Netfox
detective: A tool for advanced
network forensics analysis. In
Proceedings of security and protection
of information (spi) 2015 (pp.
147-163). Brno University of Defence.

Page 79

116

https://books.google.cz/
http://www.devttysO.com/2011/
https://www.ietf.org/rfc/
https://deadcode.me/blog/2016/
https://deadcode.me/blog/2016/
http://ijarcet.org/wp-content/
http://www.ietf.org/rfc/

JDFSL V13N1 Automated Man-in-the-Middle Attack Against

Retrieved on January 30, 2018, from
ht tp : / /www.f i t .vutbr .cz /
research/view_pub.php?id=10863

Prowell, S., Kraus, R., k Borkin, M .
(2010). Chapter 6 -
man-in-the-middle. In S. Prowell,
R. Kraus, & M . Borkin (Eds.), Seven
deadliest network attacks (pp.
101-120). Boston: Syngress.
Retrieved on January 30, 2018, from
http://www.sciencedirect.com/
s c i e n c e / a r t i c l e / p i i /
B9781597495493000067 doi:
http://dx.doi.org/10.1016/
B978-1-59749-549-3.00006-7

Robyns, P. (2014). Wireless network
privacy (Master's thesis, Hasselt
University, Hasselt). Retrieved on
January 30, 2018, from h t t p : / /
hdl.handle.net/1942/17516

Song, D. (2001, Dec), dsniff. Retrieved on
January 27, 2018, from h t t p : / /
www.monkey.org/~dugsong/dsniff

Tews, E., Weinmann, R.-P., & Pyshkin, A.
(2007). Breaking 104 bit W E P in less
than 60 seconds. In S. Kim, M . Yung,
& H.-W. Lee (Eds.), Information
security applications (pp. 188-202).
Springer Berlin Heidelberg. Retrieved
on January 30, 2018, from
ht tp: / /dx.doi .org/10.1007/
978-3-540-77535-5-14 doi:
10.1007/978-3-540-77535-5_14

Thomas, O. (2017). Windows server 2016
inside out. Pearson Education.
Retrieved on January 30, 2018, from
https: / /books.google.cz/
books?id=rLfDDgAAQBAJ

Vanhoef, M . , & Piessens, F. (2017). Key
reinstallation attacks: Forcing nonce
reuse in WPA2. In Proceedings of the
24th acm conference on computer and
communications security (ccs). A C M .

Vondráček, M . (2016). Automation of MUM
attack on WiFi networks (Bachelor's

Page 80

thesis, Brno University of Technology
Faculty of Information Technology).
Retrieved on January 30, 2018, from
ht tp: / /www.fi t .vutbr .cz/s tudy/
DP/BP.php?id=18596

Vondráček, M . , Pluskal, J., & Ryšavý, O.
(2018). Automation of M i t M attack
on Wi-F i networks. In P. Matoušek &
M . Schmiedecker (Eds.), Digital
forensics and cyber crime (pp.
207-220). Cham: Springer
International Publishing.

© 2018 ADFSL

117

http://www.fit.vutbr.cz/
http://www.sciencedirect.com/
http://dx.doi.org/10.1016/
http://www.monkey.org/~dugsong/dsniff
http://dx.doi.org/10.1007/
https://books.google.cz/
http://www.fit.vutbr.cz/study/

A . 7 Automation of M i t M Attack on W i - F i Networks

M a r t i n Vondráček , Jan P luska l , and O n d ř e j R y š a v ý . "Automat ion of M i t M At t ack on
W i - F i Networks". In: 9th International Conference on Digital Forensics & Cyber Crime.
V o l . 2018. 216. Springer International Publ ish ing, 2017, pp. 207-220. I S B N : 9783319736969

118

Automation of M i t M Attack on W i - F i Networks

Martin Vondráček^ \ Jan Pluskal, and Ondřej Ryšavý

Brno University of Technology, Božetěchova 2, Brno, Czech Republic
xvondr20@stud.fit.vutbr.cz, {ipluskal,rysavy}@fit.vutbr.cz

http://www.fit.vutbr.cz/
https://mvondracek.github.io/wifimitm/

Abstract. Security mechanisms of wireless technologies often suffer
weaknesses that can be exploited to perform Man-in-the-Middle attacks,
allowing to eavesdrop or to spoof network communication. This paper
focuses on possibilities of automation of these types of attacks using
already available tools for specific tasks. Outputs of this research are
the wifimitm Python package and the wifimitmcli CLI tool, both imple­
mented in Python. The package provides functionality for automation of
MitM attacks and can be used by other software. The wifimitmcli tool
is an example of such software that can automatically perform multiple
MitM attack scenarios without any intervention from an investigator.

The results of this research are intended to be used for automated pen­
etration testing and to help with forensic investigation. Finally, a pop­
ularization of the fact that such severe attacks can be easily automated
can be used to raise public awareness about information security.

Keywords: Man-in-the-Middle attack
Accessing secured wireless networks • Password cracking
Dictionary personalization • Tampering network topology
Impersonation • Phishing

1 In troduct ion

The main focus of this paper is security of wireless networks. It provides
a study of widely used network technologies and mechanisms of wireless secu­
rity. Analyzed technologies and security algorithms suffer weaknesses that can be
exploited to perform Man-in-the-Middle attacks. A successful realization of this
kind of attack allows not only to eavesdrop on all the victim's network traffic
but also to spoof his communication [1], [16, pp. 101-120].

In an example scenario, the victim is a suspect conducting illegal activity
on a target network. The attacker is a law-enforcement agency investigator with
appropriate legal authorization to intercept the suspect's communication and to
perform a direct attack on the network. In some cases, the suspect may be aware
that his communication can be intercepted by the ISP 1 and harden his network.

1 Internet Service Provider

© I C S T Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matouäek and M . Schmiedecker (Eds.): I C D F 2 C 2017, L N I C S T 216, pp. 207-220, 2018.
https://doi.org/10.1007/978-3-319-73697-6_16

119

mailto:xvondr20@stud.fit.vutbr.cz
http://www.fit.vutbr.cz/
https://mvondracek.github.io/wifimitm/
https://doi.org/10.1007/978-3-319-73697-6_16

208 M . Vondracek et al.

For example, he could use an overlay network technology, e.g., VPN (imple­
mented by L2TP, IP sec [9, pp. 09-10], PPTP) or anonymization networks (Tor,
I2P, etc.) to create an encrypted tunnel configured on his gateway, for all his
external communication. This concept is easy to implement and does not require
any additional configuration on endpoint devices. Generally, this would not be
considered a properly secured network [5, pp. 425-431], but this scheme, or simi­
lar, is often used by large vendors like Cisco [2] or Microsoft [19] for branch office
deployment and can also be seen in home routers2. In such cases, intercepting
traffic on the ISP level would not yield meaningful results, because all the com­
munication is encrypted by the hardening. On the other hand, direct attack on
the suspect's L A N will intercept plain communication. But, even when an inves­
tigator is legally permitted to carry out such an attack to acquire evidence, it is
scarcely used, because it requires expert domain knowledge. Thus, this process
of evidence collection is very expensive and human resource demanding.

The aim of this research is to design, implement and test a tool able to auto­
mate the process of accessing a secured WLAN and to perform data interception.
Furthermore, this tool should be able to tamper with the network to collect
more evidence by redirecting traffic to place itself in the middle of the com­
munication and tamper with it, to access otherwise encrypted data in plain
form. Using the automated tool should not require any expert knowledge from
the investigator.

We designed a generic framework, see Fig. 1, capable of accessing and acquir­
ing evidence from a wireless network regardless of used security mechanisms. This
framework can be split into several steps. First, it is necessary for an investiga­
tor to obtain access to the WLAN used by the suspect. Therefore, this research
focuses on exploitable weaknesses of particular security mechanisms. Upon suc­
cessful connection to the network, the investigator needs to tamper with the net­
work topology. For this purpose, weaknesses of several network technologies can
be exploited. From this point on, the investigator can start to capture and break
the encryption on the suspect's communication.

Specialized tools focused on exploiting individual weaknesses in security
mechanisms currently used by WLANs are already available. There are also
specialized tools focused on individual steps of MitM attacks. Tools that were
analyzed and used in implementation of the wifimitm package are outlined
in Sect. 2.

Based on the acquired knowledge, referenced studies and practical experience
from manual experiments, authors were able to create an attack strategy which
is composed of a suitable set of available tools. The strategy is then able to
select and manage individual steps for a successful MitM attack tailored to
a specific WLAN. This strategy also includes options for impersonation and
phishing for situations, when the network is properly secured, and the weakest
part of the overall security is the suspect.

The created software can perform a fully automated attack and requires zero
knowledge. We tested the final implementation on carefully devised experiments,

2 Asus RT-AC5300 - Merl in W R T has an option to tunnel all traffic thought Tor.

120

Automation of M i t M Attack on W i - F i Networks 209

Accessing wireless network

Scan Crack Impersonate
(phishing)

Connect

Man-in-the-Middle attack

Capturing network traffic stop

i L

Tampering network topology stop

IL

Fig . 1. During the first phase - Accessing wireless network, the tool is capable of
an attack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLANs.
In a case of the dictionary attack on the device deployed by the U P C company, used
dictionaries are personalized by the implicit passwords. In the case of properly secured
WLAN, impersonation (phishing) can be employed. Using this method, an investigator
impersonates the legitimate network to obtain the WLAN credentials from the user.
During the second phase - Tampering network topology, the tool needs to continuously
work on keeping the network stations (STAs) persuaded that the spoofed topology is
the correct one. A n investigator is now able to capture or modify the traffic. The suc­
cessful MitM attack is established.

with available equipment. The tool is open source and can be easily incorporated
into other software. The main use cases of this tool are found in automated
penetration testing, forensic investigation, and education.

2 Securi ty Weaknesses in W L A N Technologies

Following network technologies (Sects. 2.1 and 2.2), which find a significant uti­
lization, unfortunately, suffer from security weaknesses in their protocols. These
flaws can be used in the process of the MitM attack.

2.1 Wireless Security

Wired Equivalent Privacy (WEP) is a security algorithm introduced as a part of
the I E E E 802.11 standard [6, p. 665], [8, pp. 1167-1169]. At this point, WEP is

121

210 M . Vondracek et al.

deprecated and superseded by subsequent algorithms, but is still sometimes used,
as can be seen from Table 1 available from Wifileaks.cz3. WEP suffers from weak­
nesses and, therefore, it has been broken [4]. There are already implemented tools
to provide access to wireless networks secured by WEP available [18]. Regarding
WEP secured WLANs, authentication can be either Open System Authentica­
tion (OSA) or Shared Key Authentication (SKA) [8, pp. 1170-1174]. In the case
of WEP OSA, any station (STA) can successfully authenticate to the Access
Point (AP) [17, pp. 4-10]. WEP SKA provides authentication and security of
transferred communication using a shared key. Confidentiality of transferred
data is ensured by encryption using the RC'4 stream cipher. Methods used for
cracking access to WEP secured networks are based on analysis of transferred
data with corresponding Initialization Vectors (IVs).

Table 1. Following table summarizes WLAN statistics provided by Wifileaks.cz. Users
of this service voluntarily scan and publish details about WLANs in the Czech Repub­
lic. Information in the table show that a significant number of WLANs still use dep­
recated security algorithms. The statistics consisting of 97 192 922 measurements of
2 548 054 WLANs were published on May 26, 2017.

Security Count Ratio

W P A 2 1 429 518 56%

W E P 393 579 15%

W P A 375 984 15%

open 67 388 3%

other 281 585 11%

Wi-Fi Protected Access® (WPA) was developed by the W i - F i Alliance® as
a reaction to increasing number of security flaws in WEP. The main flaw of WPA
security algorithm can be identified at the beginning of client device's commu­
nication, where an unsecured exchange of confidential information is performed
during the four-way handshake. A n investigator can obtain this unsecured com­
munication and use it for consecutive cracking of the Pre-Shared Key (PSK).

Wi-Fi Protected Access® 2 (WPA2™) is a successor of WPA, but secu­
rity flaws of the WPA PSK algorithm remain significant also for the WPA2
PSK. Information exposed during the handshake can be used for the dictionary
attack, which can be further improved by precomputing the Pairwise Master
Keys (PMKs) [12, pp. 37-38], [13, p. 3]. Precomputed lookup tables are already
available online 4.

A critical security flaw in wireless networks secured by WPA or WPA2 is
the functionality called Wi-Fi Protected Setup™ (WPS). This technology was
introduced with an aim to provide a comfortable and secure way of connecting

3 http://www.wifileaks.cz/statistika/
4 https://www.renderlab.net/projects/WPA-tables/

122

http://Wifileaks.cz3
http://Wifileaks.cz
http://www.wifileaks.cz/statistika/
https://www.renderlab.net/projects/WPA-tables/

Automation of M i t M Attack on W i - F i Networks 211

to the network. For a connection to the WLAN with WPS enabled, it is possi­
ble to use an individual PIN. However, the process of connecting to the prop­
erly secured network by providing PIN is very prone to brute-force attacks [7].
Because WPS is a usual feature in today's access points and that WPS is usually
turned on by default, WPS can be a very common security flaw even in networks
secured by WPA2 with a strong password. Currently, there are already available
automated tools for exploiting WPS weaknesses, e.g., Reaver Open Source5.

Newly purchased access points usually use WPA2 security by default. Cur­
rently, many access points can be found using default passwords not only for
wireless network access, but even for AP's web administration. In a case of pos­
sible access to the AP's administration, the investigator could focus on chang­
ing the network topology by tampering the network configuration. Access to
the network management further allows the investigator to lower security levels,
disable attack detections, reconfigure DHCP together with DNS and also clear
AP's logs. There are already implemented tools, which exploit relations between
SSIDs and default network passwords, e.g., upc-keyse by Peter Geissler.7 These
tools could be used in an attack on the network with default SSID to improve
dictionary attack using possible passwords. High severity of these security flaws
is also proven by the fact that a significant amount of WLANs was found using
unchanged passwords, as it is shown in Table 2.

Table 2. Results of wardriving in Bratislava and Brno focused on U P C vulnerabilities
concerning default WPA2 PSK passwords [11]. Detailed article about these security
flaws is available online [10].

Bratislava (capital of Slovakia) 2016-10-01 Count Ratio

Total networks 22 172

U P C networks 3 092 13.95%

U P C networks, vulnerable 1 327 42.92% U P C

Brno (city in the Czech Republic) 2016-02-10 Count Ratio

Total networks 17 516

U P C networks 2 868 16.37%

U P C networks, vulnerable 1 835 63.98% U P C

2.2 Network Technologies Used in W L A N s

In the context of a M i t M attack on a WLAN, we are targeting some common
network protocols:

- DHCP automates network device configuration without a user's interven­
tion [3].

5 https://code.google.eom/archive/p/reaver-wps/
6 https:/ /haxx.in/upc-wifi/
7 U P C company is a major ISP in the Czech Republic, U R L : https://www.upc.cz

123

https://code.google.eom/archive/p/reaver-wps/
https://haxx.in/upc-wifi/
https://www.upc.cz

212 M . Vondracek et al.

- ARP translates an IPv4 address to a destination MAC address of the next-
hop device in the local area network [14].

- IPv6 networks utilize ICMPvO Neighbor Discovery functionality to achieve
similar functionality to ARP in IPv4 networks.

These network protocols are vulnerable and a MitM attack is a coordinated
attack on each of these protocols, effectively changing the network topology.

- DHCP Spoofing generates fake DHCP communication. This attack can also
be referred to as Rogue DHCP. A n investigator can perform this kind of
attack to provide devices in the network with malicious configuration, most
often a fake default gateway address or DNS address

- ARP Spoofing provides the network devices with fake ARP messages. This
persuades the suspect's device to believe that the attacking device's MAC
address is the default gateway's MAC address.

- IPv6 Neighbor Spoofing is a similar concept to ARP Spoofing.

ARP Spoofing technique was selected from the researched methods. This method
proved itself with reasonable performance during experiments. Possible counter-
measures to these attacks are further described in the thesis [20].

2.3 Available Tools for Specific Phases of the M i t M Attack
on Wireless Networks

From perspective of the intended functionality of the implemented tool,
the whole process of MitM attack on wireless networks can be divided into
three main phases: Accessing wireless network, Tampering network topology and
Capturing network traffic, as explained in Fig. 1.

To access secured wireless networks, Aircrack-ng suite8 is considered a reli­
able software solution. Considering the phase Accessing wireless network (Fig. 1),
following tools were utilized. Airmon-ng can manage modes of a wireless inter­
face. Airodump-ng can be used to scan and detect attacked AP. Aircrack-ng
together with aireplay-ng, airodump-ng and upc.keys can be utilized for crack­
ing WEP OSA, WEP SKA, WPA PSK and WPA2 PSK. The tool wifiphisher9

can be used to perform impersonation and phishing. Connection to the wireless
network can be established by netctl10. MITMf11 with its Spoof plugin can be
used during the Tampering network topology phase. Capturing traffic can be done
by the tool dumpcap12, which is part of the Wireshark13 distribution. Behaviour,
usage and success rate of individual tools, as well as possibilities of controlling
them by the implemented tool, were analyzed. The software selected for individ­
ual tasks of the automated MitM attack were chosen from the researched variety

8 http://www.aircrack-ng.org/
9 https://github.com/sophron/wifiphisher

1 0 https://www.archlinux.org/packages/core/any/netctl/
1 1 https://github.com/byt3bl33d3r/MITMf
1 2 https://www.wireshark.org/docs/man-pages/dumpcap.html
1 3 https://www.wireshark.org/

124

http://www.aircrack-ng.org/
https://github.com/sophron/wifiphisher
https://www.archlinux.org/packages/core/any/netctl/
https://github.com/byt3bl33d3r/MITMf
https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/

Automation of M i t M Attack on W i - F i Networks 213

of available tools based on performed manual experiments, further described in
the thesis [20].

3 A t t a c k A u t o m a t i o n U s i n g Deve loped w i f i m i t m Package
a n d wi f imi tmcl i T o o l

The implemented tool is currently intended to run on Arch Linux14, but it could
be used on other platforms which would satisfy specified dependencies. This
distribution was selected because it is very flexible and lightweight. Python 3.5
was selected as a primary implementation language for the automated tool and
Bash was chosen for supporting tasks, e.g., installation of dependencies on Arch
Linux and software wrappers.

The functionality implemented in the wifimitm package could be directly
incorporated into other software products based on Python language. This way
the package would work as a software library. Schema of the wifimitm package
is in Fig. 2.

Entry points J

wifimitmcli

wifimitm

Fig . 2. This figure shows the basic structure of the developed application. The tool
wifimitmcli uses a functionality offered by the package wifimitm. The package is also
able to manipulate attack data useful for repeated attacks and capture files with inter­
cepted traffic. Detailed structure of the package is described in Sect. 3.

The wifimitm package consists of following modules. The access module
offers an automated process of cracking selected WLAN. It uses modules wep

1 4 https://www.archlinux.org/

125

https://www.archlinux.org/

214 M . Vondráček et al.

and wpa2, which implement attacks and cracking based on the used security
algorithm. The wep module is capable of fake authentication with the AP, ARP
replay attack (to speed up gathering of IVs) and cracking the key based on IVs.
In the case of WPA2 secured network, the wpa2 module can perform a dictionary
attack, personalize used dictionary and verify a password obtained by phishing.
Verification of the password and dictionary attacks are done with a previously
captured handshake. The common module contains functionality which could be
used in various parts of the process for scanning and capturing wireless communi­
cation in monitor mode. The common module also offers a way to deauthenticate
STAs from selected AP.

If a dictionary attack against a correctly secured network fails, a phishing
attack can be managed by the impersonat ion 1 5 module. The topology module
can be used to change network topology. It provides functionality for ARP Spoof­
ing. The capture module focuses on capturing network traffic. It is intended to
be used after the tool is successfully connected to the attacked network and net­
work topology was successfully changed into the one suitable for MitM attack.

3.1 Attack Data

Various attacks executed against the selected AP require some information to
be captured first. A R P request replay attack on WEP secured networks requires
an A R P request to be obtained in order to start an attacking procedure. Fake
authentication in WEP SKA secured network needs PRGA XORw obtained
from a detected authentication. Dictionary attack against WPA PSK and WPA2
PSK secured networks requires a captured handshake. Finally, for the successful
connection to a network, a correct key is required. When the required information
is obtained, it can be saved for a later usage to speed up following or repetitive
attacks. Data from successful attacks could be even shared between users of
the implemented tool.

3.2 Dictionary Personalization

Weaknesses in default network passwords could be exploited to improve dictio­
nary attacks against WPA PSK and WPA2 PSK security algorithms. The imple­
mented tool incorporates upc-keys for generation of possible default passwords
if the selected network matches the criteria. The upc-keys tool generates pass­
words, which are transferred to the cracking tool using pipes. Wi th this app­
roach, the implemented tool could be further improved for example to support
localized dictionaries.

For details concerning individual phishing scenarios, please see wifiphisher's website,
https: / / github.com/sophron / wifiphisher
Stream of Pseudo Random Generation Algorithm generated bits.

126

http://github.com/sophron

Automation of M i t M Attack on W i - F i Networks 215

3.3 Requirements

The implemented automated tool depends on several other tools, which are
being controlled. The Python package can be automatically installed by its setup
including Python dependencies. Non-Python dependencies can be satisfied by
installation scripts and wrappers, which are currently developed for Arch Linux.

MITMf has a number of dependencies. Therefore, the installation script also
creates a virtual environment dedicated to MITMf. After installation, MITMf
can be easily run encapsulated in its environment. Wifiphisher is also installed
in a virtualized environment and run using a wrapper. Tool upc-keys is compiled
during installation. Some changes in wifiphisher's source code were implemented,
the installation script therefore applies a software patch. Other software depen­
dencies are installed using a package manager.

Due to the nature of concrete steps of the attack, a special hardware equip­
ment is required. During the scanning and capturing of network traffic without
being connected to the network, an attacking device needs a wireless network
interface in monitor mode. For sending forged packets, the wireless network inter­
face also needs to be capable of packet injection. To be able to perform a phishing
attack, a second wireless interface capable of master (AP) mode has to be avail­
able. The user can check whether his hardware is capable of packet injection

STA 1 wifimitm S T A 4 wifimitm S T A 8

Fig . 3. This figure shows the network
topology used for the first performance
testing (Sect. 4) and success rate mea­
surements (Sect. 5). Results of this per­
formance testing are in Fig. 5.

F ig . 4. This figure shows the network
topology consisting of 8 STAs and 1 AP
which was used for the second perfor­
mance testing (Sect. 4). Results of this
performance testing are in Fig. 6.

127

216 M . Vondräcek et al.

using the aireplay-ng tool. Managing monitor mode of interface is possible with
the airmon-ng tool.

4 At tack ' s Per formance Impact

A scheme of the networks used for the experiments is shown in Figs. 3 and 4.
The STAs were correctly connected to the AP and they were successfully
communicating with the Internet. The implemented wifimitmcli tool was then
started and automatically attacked the network.

R T T STA1 - R l

10000 ms

1000 ms

100 ms

10 ms
**$ "n* x*i \> x v * * x x XX. ^ ' 5 * . :

0 200 400

usual communication * M i t M

R T T STA1 - R l

10000 ms

1000 ms

100 ms

xjxx, x x x ^ x x** x fx*
x** ^ & Ä < x * * \ 5 « „ x J ' V ' x

10 ms aV

1 ms

0 200 400
0 usual communication « M i t M

Fig . 5. The first WLAN for performance
testing was the same as for the success rate
measurements described in Sect. 5. Figure
shows comparison of the measured RTT
between STA1 and Rl during usual com­
munication and during successful MitM
attack. The results show the performance
impact is not critical. Discussion with
the users of the attacked network proved
this attack unrecognizable.

F ig . 6. The second performance test­
ing consisted of 8 STAs and 1 AP
connected to the Internet - stream­
ing videos, downloading large files, etc.
The figure compares the RTT between
STA1 and Rl similarly. The perfor­
mance impact is more severe than in
Fig. 5. Despite the performance impact,
the users had no suspicion that they
were under MitM attack. Instead, they
blamed the amount of devices for net­
work congestion.

128

Automation of M i t M Attack on W i - F i Networks 217

The performance impact of the wifimitm was compared using setups based on
S O H O 1 7 environment. Both experiments were also evaluated based on the fact,
whether the attack being performed was revealed or whether the users had any
suspicion about the malicious transformation of their WLAN. Results of the test­
ing are presented in Figs. 5 and 6.

Table 3. This table presents results of the success rate measurements. A successful
attack is marked using a checkmark symbol (V) and unsuccessful attack is marked
using a times symbol (x) . In the case when the attack was not fully successful, the
question mark (?) is used. Such partially successful test (? symbol) can for example
happen in situation where the suspect is sending only a portion of his traffic through
the investigator. Some of the used STAs lack WEP SKA settings (• symbol). Testing
WPA PSK and WPA2 PSK networks were configured with password "12345678" and
WEP secured networks used password "A_b#l".

Lenovo
G580,
Windows
10

Lenovo
G505s,
Windows
8.1

Dell
Latitude E6500,
Ubuntu
17.04

H T C
Desire 500,
Android
4.1.2

Apple
iPhone 4,
iOS
7.1.2

Linksys
WRT610N

open Linksys
WRT610N W E P OSA
Linksys
WRT610N

W E P S K A • •

Linksys
WRT610N

W P A P S K

Linksys
WRT610N

W P A 2 P S K
Linksys
WRT54G

open Linksys
WRT54G W E P OSA
Linksys
WRT54G

W E P S K A • •

Linksys
WRT54G

W P A P S K

Linksys
WRT54G

W P A 2 P S K
Linksys
WRP400

open Linksys
WRP400 W E P OSA
Linksys
WRP400

W E P S K A • •

Linksys
WRP400

W P A P S K

Linksys
WRP400

W P A 2 P S K
T P - L I N K
TL-WR841N

open ? X T P - L I N K
TL-WR841N W E P OSA ? X X

T P - L I N K
TL-WR841N

W E P S K A • • X

T P - L I N K
TL-WR841N

W P A P S K ? X X

T P - L I N K
TL-WR841N

W P A 2 P S K ? X X

D-Link
DVA-G3671B

open D-Link
DVA-G3671B W E P OSA
D-Link
DVA-G3671B

W E P S K A • •

D-Link
DVA-G3671B

W P A P S K

D-Link
DVA-G3671B

W P A 2 P S K

1 7 Small office/home office.

129

218 M . Vondráček et al.

5 Experiments Concerning Various Network
Configurations and Devices

The test was considered successful if the wifimitmcli was able to capture net­
work traffic according to the concept of MUM. For the test to be correct, no
intervention (help) from the investigator was allowed during the attack per­
formed by wifimitmcli. Results of the success rate measurements are shown
in Tables 3 and 4.

Table 4. The following table shows the results of public experiments. Visitors
of the Brno University of Technology, Faculty of Information Technology were invited
to let their devices be attacked. Testing network utilized Linksys WRP400 device
as an A P . A successful attack is marked using a checkmark symbol (/) .

Model OS Attack

H T C Desire 500 Android 4.1.2 /
H T C Desire 820 Android 6.0.1 /
Apple iPhone 6 iOS 10.3.1 /
Apple iPhone 5s iOS 10.2.1 /
Apple iPhone 5 iOS 10.3.1 /
Apple iPhone 5c iOS 9.2.1 /
Apple iPhone 4 iOS 7.1.2 /

Results of experiments (Tables 3 and 4 and the thesis [20, pp. 42-43]) show,
that open networks can be very easily attacked. WEP OSA and WEP SKA
secured networks can be successfully attacked even if they use a random pass­
word. WPA PSK and WPA2 PSK secured networks suffer from weak passwords
(dictionary attack), default passwords and mistakes of users (impersonation and
phishing). As Figs. 5, 6 and Tables 3, 4 show, MUM attack using the wifimitm
is successfully feasible in the target environments.

6 Conclusions

The goal of this research was to implement a tool that would be able to auto­
mate all the necessary steps to perform MUM attacks on WLANs. The authors
searched for and analyzed a range of software and methods focused on pen­
etration testing, communication sniffing and spoofing, password cracking and
hacking in general. To be able to design, implement and test the tool capable of
such attacks, knowledge of different widespread security approaches was essen­
tial. The authors further focused on possibilities of MUM attacks even in cases
where the target WLAN is secured correctly. Therefore, methods and tools for
impersonation and phishing were also analyzed.

130

Automation of M i t M Attack on W i - F i Networks 219

The authors' work and research resulted in creation of the wifimitm Python
package. This package serves as a library which provides functionality for
automation of MitM attacks on target WLANs. The developed package can
also be easily incorporated into other tools. Another product of this research is
the wifimitmcli tool which incorporates the functionality of the wifimitm pack­
age. This tool automates the individual steps of a MitM attack and can be used
from a CLI. The implemented software comes with a range of additions for con­
venient usage, e.g., a script that checks and installs dependencies on Arch Linux,
a Python setuptools setup script and of course a manual page.

The wifimitmcli tool, and therefore wifimitm as well, was tested during exper­
iments with an available set of equipment. As the results show, the imple­
mented software product is able to perform an automated MitM attack on
WLANs successfully.

Upon successful deployment and execution of the implemented tool, an inves­
tigator can eavesdrop or spoof the passing communication. The goal of the tool
was to automate MitM attacks on WLANs. It does not focus on dissecting fur­
ther traffic protections. This means that it does not interfere with SSL/TLS,
VPN, or other encapsulations. Thanks to the tool's design, it can be easily
used together with other software specialized on interception of encapsulated
traffic. Traffic encapsulation is a sufficient protection against this tool. From
the WLAN administrators point of view, available defense mechanisms are out­
lined in Sect. 2.2.

As explained earlier, all the suspect's network traffic is passing through
the attacking device during a successful MitM attack. Unfortunately, there could
be users on the network other than the ones that are subject to a court order.
Making sure that only appropriate traffic is being captured may be important
depending on the nature of the court order or the legislation. This challenge may
be solved by setting corresponding filter rules for traffic capture software.

This research and its products can be utilized in combination with other
security research carried out at the Brno University of Technology, Faculty
of Information Technology. It can serve in investigations done by forensic
researchers [15]. It can also be used in automated penetration testing of WLANs.

In the future iterations of the development, the product could focus on
exploiting the weaknesses of the widely used WPS technology. Concerning
the current state of the product, it does not focus on enterprise WLANs, which
also suffer from their own weaknesses.

The authors disclaim any use of this research for any unlawful activities.

References

1. Callegati, F . , Cerroni, W . , Ramil l i , M . : Man-in-the-middle attack to the H T T P S
protocol. I E E E Security Privacy 7, 78-81 (2009)

2. Deal, R., Cisco Systems Inc.: The Complete Cisco V P N Configuration Guide. Cisco
Press Networking Technology Series. Cisco Press, Indianapolis (2006)

3. Droms, R.: Dynamic host configuration protocol. R F C 2131, I E T F , March 1997

131

220 M . Vondráček et al.

4. Fluhrer, S., Mantin, I., Shamir, A . : Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A . (eds.) Selected Areas in Cryptography. L N C S ,
pp. 1-24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_l

5. Godber, A . , Dasgupta, P.: Countering rogues in wireless networks, vol. 2003-
January, pp. 425-431. Institute of Electrical and Electronics Engineers Inc. (2003)

6. Halsall, F . : Computer Networking and the Internet. Addison-Wesley, Boston (2005)
7. Heffner, C : Cracking W P A in 10 hours or less -/dev/ttysO (2011). http:/ /www.

devttys0.com/2011 /12/cracking-wpa-in-10-hours-or-less/
8. I E E E - S A . I E E E standard for information technology-telecommunications and

information exchange between systems local and metropolitan area networks-
specific requirements part 11: Wireless L A N medium access control (M A C) and
physical layer (P H Y) specifications. I E E E Std 802.11-2012 (Revision of I E E E Std
802.11-2007), pp. 1-2793, March 2012

9. Kent, S., Seo, K : Security Architecture for the Internet Protocol. R F C 4301, I E T F ,
December 2005

10. Klinec, D. , Svítok, M . : U P C U B E E EVW3226 W P A 2 password reverse engi­
neering, rev 3. ht tps: / /deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-
WPA2-Reversing.html. Accessed 5 Nov 2016

11. Klinec, D. , Svítok, M . : Wardriving Bratislava 10/2016, 5 November 2016. https://
deadcode. me/blog/2016/11 / 0 5 / Wardri ving-Bratislava-10-2016. html

12. Kumkar, V . , Tiwari , A . , Tiwari , P., Gupta, A . , Shrawne, S.: Vulnerabilities of
wireless security protocols (W E P and W P A 2) . Int. J . Adv . Res. Comput. Eng.
Technol. (I J A R C E T) 1(2), 34-38 (2012)

13. L i u , Y . , Jin, Z., Wang, Y . : Survey on security scheme and attacking methods of
W P A / W P A 2 . In: 2010 6th International Conference on Wireless Communications
Networking and Mobile Computing (W i C O M) , pp. 1-4, September 2010

14. Plummer, D. : Ethernet address resolution protocol: or converting network protocol
addresses to 48.bit ethernet address for transmission on ethernet hardware. R F C
826, I E T F , November 1982

15. Pluskal, J . , Matoušek, P., Ryšavý, O., Kmet, M . , Veselý, V . , Karpíšek, F . , Vymlátil ,
M . : Netfox detective: a tool for advanced network forensics analysis. In: Proceedings
of Security and Protection of Information (SPI) 2015, pp. 147-163. Brno University
of Defence (2015)

16. Prowell, S., Kraus, R., Borkin, M . : Man-in-the-middle. In: Prowell, S., Kraus, R.,
Borkin, M . (eds.) Seven Deadliest Network Attacks, pp. 101-120. Syngress, Boston
(2010)

17. Robyns, P.: Wireless network privacy. Master's thesis. Hasselt University, Hasselt
(2014)

18. Tews, E . , Weinmann, R.-P. , Pyshkin, A . : Breaking 104 bit W E P in less than 60
seconds. In: K i m , S., Yung, M . , Lee, H . -W. (eds.) Information Security Applica­
tions. L N C S , pp. 188-202. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77535-5-14

19. Thomas, O.: Windows Server 2016 Inside Out. Inside Out. Pearson Education,
London (2017)

20. Vondráček, M . : Automation of M i t M attack on W i F i networks. Bachelor's thesis.
Brno University of Technology, Faculty of Information Technology (2016)

132

https://doi.org/10.1007/3-540-45537-X_l
http://www
http://devttys0.com/201
https://deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-
https://doi.org/10.1007/

A.8 Traffic Classification and Applicat ion Identification in
Network Forensics

Jan P luska l , Ondrej Lichtner, and O n d ř e j R y š a v ý . "Traffic Classification and App l i ca t i on
Identification in Network Forensics". In: Fourteenth Annual IFIP WG 11.9 International
Conference on Digital Forensics. E d . by Gi lber t Peterson and Sujeet Shenoi. New Delh i ,
I N : Springer International Publ i sh ing , 2018, pp. 161-181. I S B N : 9783319992778

133

Chapter 10

T R A F F I C C L A S S I F I C A T I O N A N D
A P P L I C A T I O N I D E N T I F I C A T I O N
I N N E T W O R K F O R E N S I C S

Jan Pluskal , Ondrej Lichtner and Ondrej Rysavý

Abstract Network traffic classification is an absolute necessity for network moni­
toring, security analyses and digital forensics. Without accurate traffic
classification, the computational demands imposed by analyzing all the
IP traffic flows are enormous. Classification can also reduce the number
of flows that need to be examined and prioritized for analysis in forensic
investigations.

This chapter presents an automated feature elimination method based
on a feature correlation matrix. Additionally, it proposes an enhanced
statistical protocol identification method, which is compared against
Bayesian network and random forests classification methods that offer
high accuracy and acceptable performance. Each classification method
is used with a subset of features that best suit the method. The methods
are evaluated based on their ability to identify the application layer pro­
tocols and the applications themselves. Experiments demonstrate that
the random forests classifier yields the most promising results whereas
the proposed enhanced statistical protocol identification method pro­
vides an interesting trade-off between higher performance and slightly
lower accuracy.

Keywords: Protocol identification, application identification, machine learning

1. In troduct ion

Network traffic classification is an important technique used in net­
work monitoring, security analyses and digital forensics. In digital foren­
sics, file types can be identified by file extensions or by searching for
magic numbers at the beginning of files; known files can be identified us­
ing databases of hash values. The identification of file types and filtering
of known files reduce the amount of data that needs to be analyzed. Do-

© I F I P International Federation for Information Processing 2018
Published by Springer Nature Switzerland A G 2018. A l l Rights Reserved
G . Peterson and S. Shenoi (Eds.): Advances in Digi ta l Forensics X I V , I F I P A I C T 532, pp. 161-181, 2018.
https://doi.org/10.1007/978-3-319-99277-8_10

134

https://doi.org/10.1007/978-3-319-99277-8_10

162 ADVANCES IN DIGITAL FORENSICS XIV

ing the same wi th network traffic is much more complicated because each
data transfer contains specific and temporary characteristics that depend
on the network state, network uti l izat ion and locations of communica­
tions endpoints. The correct classification of network traffic enables an
automated analyzer to determine which application protocol parser to
use to extract information carried by an I P flow (a packet sequence
identified by the same source and destination IP addresses, transport
protocol ports and transport protocol type). This , i n turn, helps speed
up a forensic investigation by reducing the number of unclassified IP
flows.

Tradit ional traffic classification methods identify applications based
on the T C P or U D P ports that are used. This provides only l imited ac­
curacy (60-80%) because many applications use random or non-standard
ports [3, 24], for example, peer-to-peer applications, mult imedia stream­
ing applications, computer games and tunneled traffic. Advanced traf­
fic classification utilizes supervised machine learning methods based on
payload analysis, statistical methods and hybr id approaches [17, 19, 26,
27, 29]. Each technique has its advantages and disadvantages. For ex­
ample, payload analysis of encrypted communications is unacceptably
inaccurate. Statistical and hybr id approaches demonstrate that it is
not necessary to rely exclusively on packet content [5, 12, 21], but that
it is possible to combine structural and behavioral features to increase
detection accuracy [16].

Unsupervised machine learning methods can classify unknown net­
work traffic [9] into unlabeled clusters based on their similarity. A n
expert investigator, upon inspection of a few samples of a cluster, can
label the entire cluster.

Several researchers have investigated machine learning approaches for
traffic classification. Most of the research has focused on classifying net­
work traffic to identify the application layer protocol in order to support
intelligent network filtering and security monitoring. Whi le traffic classi­
fication for network forensics stems from the same ideas, there are some
notable differences. Network forensics analysis can be performed off-line
on captured data. In this case, accuracy is more important than speed.
Thus, a combination of several methods or applications that are slower,
but more accurate, can be considered.

In network forensics, an investigator can compensate for incorrect
results by performing additional manual inspections of results. For ex­
ample, some methods return a probabili ty vector that can be inspected
to consider different results.

Addit ional ly, in network forensics, classification must be determin­
istic because forensic principles require that all results be verifiable.

135

Pluskal, Lichtner & Rysavý 163

Also, classification methods can be tuned by an investigator and can
be repeated wi th different parameter sets to increase sensitivity while
decreasing specificity.

Machine learning algorithms for network traffic classification have
been studied since the 1990s. The most common algorithms include
support vector machines [12], decision tree algorithms [21] and proba­
bilistic [5] and statistical methods [16, 19], all of which involve supervised
learning. The unsupervised A;-means clustering algorithm [9] groups traf­
fic based on its significant features. If the feature set is selected properly,
a machine learning method can exceed 90% accuracy [26].

Surveys of classification methods by Nguyen and Armitage [27] and
Namdev et al. [26] discuss protocol identification. Classification meth­
ods for encrypted traffic are reviewed in [29]. A l Khater and Overi l i [2]
have proposed the use of machine learning algorithms to improve traf­
fic classification methods for digital forensic applications. Foroushani
and Zincir-Heywood [10] have demonstrated the possibility of identi­
fying high-level application behaviors from encrypted network service
communications. D a i et al . [6] and Miskovic et al. [23] have described
methods for fingerprinting mobile applications based on their communi­
cations. E r m a n et al. [8] have explored flow-based classification and have
proposed a semi-supervised classification method that can accommodate
known and unknown applications.

Whi le traffic classification has been applied extensively to network
monitoring and security analysis, significantly less research has focused
on traffic discrimination for network forensics. This research makes some
key contributions to the field of network forensics. The first is the cre­
ation of a dataset that provides a means to reliably acquire ground
t ru th for experiments. Typica l datasets use information inferred from
1 7 - f i l t e r [28] or nmap [1] and, therefore, offer only approximations of
the real information. Shang and Huang [28] have shown that the preci­
sion of these techniques is always one (no false positives), but the recall
varies between 0.67 and 0.87. This means that 13-33% of the samples
are not labeled and the researchers would have excluded them from the
datasets because they lacked labels [1, 12]. Therefore, the remaining
dataset is already classifiable v ia deep packet inspection and is less rele­
vant to finding better classification methods. In other cases, researchers
do not include information about the data used i n their experiments,
or the descriptions are vague and not reproducible [28], or they do not
describe how to annotate data wi th labels without errors [5].

For these reasons, this research captured one week's worth of packet
data in an environment wi th eight hosts, which translates to roughly

136

164 ADVANCES IN DIGITAL FORENSICS XIV

20 G B . The data was automatically tagged wi th complete information
about the origin application.

This research has also developed an enhanced statistical protocol iden­
tification (ESPI) method that leverages a machine-learning-based clas­
sifier. U p o n evaluating the results of related studies, two additional
classifiers, a Bayesian network classifier and a random forests classifier,
were selected for comparison. This chapter describes all three methods
and shows that they can be used to identify application layer protocols
and even the applications that used the protocols. This is important
because application identification provides more information about net­
work traffic compared wi th what can be gleaned from the identified ap­
plication layer protocols. Consider a situation where H T T P S is used to
create an encrypted tunnel. A tool capable of recognizing applications
(e.g., Google Drive, iTunes and OneDrive) in network traffic instead of
merely the application layer protocol (e.g., H T T P S) is useful in several
domains. Notably, in forensic analysis, application identification could
significantly reduce the amount of data to be analyzed compared with
conventional approaches.

2. D a t a Co l l ec t ion a n d Preprocess ing

Network traffic classification takes a network traffic capture file as in­
put, typically i n the P C A P format. The captured traffic is then split into
a collection of layer 4 conversations represented by one or two IP flows
for one-way or two-way communications, respectively. The experiments
described in this chapter employed an annotated dataset captured by M i ­
crosoft Network Moni tor , which provides application labels for almost
all conversations. The dataset contains regular network traffic generated
by eight user workstations running the Windows operating system. The
final capture file has the following characteristics:

• P C A P File Size: 19.5 G B .

• P C A P Format: Microsoft N e t M o n 2.x.

• Capture Duration: 119 hours.

> Number of Packets: 27,616,138.

• Number of Layer 7 Conversations: 269,459.

• Number of Applicat ion Protocols: 58.

• Number of Communicat ing Applications: 93.

Information about the dataset is available at p luskal . github . i o /
Appldent and the dataset itself can be downloaded from n e s . f i t .
vutbr.cz/AppIdent.

137

Pluskal, Lichtner & Rysavy 165

Before the capture file could be used, additional post-processing steps
from previous work [22] were applied to enhance data extraction. The
final post-processing step used a round of experiments wi th the enhanced
statistical protocol identification method. Based on these ini t ia l results,
a second instance of the dataset was created that contained ground t ruth
about the application protocols. The ground t ru th supported manual
hierarchical clustering analysis of the results.

The post-processing steps improved the traffic classification accuracy
by reducing the noise in the extracted features caused by the following
items:

• Important T C P session control information, such as synchroniza­
t ion segments and finalization segments, may be missing.

• Sequence numbers may overflow in long-running T C P conversa­
tions. This can result i n incorrect interpretation, causing single
conversations to be split or two unrelated IP flows to be joined
into a single conversation.

• The joining of capture files from multiple probes must address is­
sues related to possible packet duplication and the proper ordering
of packets belonging to the same conversation.

• Some IP packets may be missing or be duplicated (e.g., in the case
of T C P retransmission).

• Final ly, associated IP flows in bidirectional conversations must be
paired correctly.

Matousek et al. [22] have shown that other network forensic solu­
tions do not effectively address these issues. This implies that adopting
the proposed additional steps would also be beneficial i n the context
of network traffic classification. To address these issues, Netfox Detec­
tive (github.com/nesfit/NetfoxDetective), a custom tool created for
these use cases, was used to process the captured P C A P files.

2.1 A p p l i c a t i o n Conversat ions a n d Messages

In addition to addressing the basic issues related to processing layer 4
conversations, Netfox Detective also enabled the dataset to be processed
to track layer 7 conversations and to approximate individual application
messages. This increased the classification accuracy by identifying appli­
cation communications patterns. It also eliminated remnants of network
packet fragmentation in the Internet layer and T C P retransmission in
the transport layer. Packet fragmentation and T C P retransmission are

138

http://github.com/nesfit/NetfoxDetective

166 ADVANCES IN DIGITAL FORENSICS XIV

independent of application communications patterns and, thus, can neg­
atively impact classification.

A n application message was identified in the reassembled stream based
on the transport protocol. The following rules were used for identifica­
tion:

• If a stream uses the U D P transport protocol, then the entire pay-
load of each U D P datagram is considered to be a single application
message.

• In the case of the T C P transport protocol, segments are separated
into application messages based on packets wi th P S H , R S T or F I N
flags, or based on timeouts.

These rules are simple to implement and yield accurate approximations
of application messages in most cases.

3. Classif icat ion M e t h o d s

Using machine learning algorithms to classify traffic is by no means a
new concept in the field of network forensics. However, the typical use
case is to identify the application protocol [27, 29]. In this research, the
approach was expanded to also identify the application that created the
traffic. This provides more information that can be used by a forensic
investigator for easier and more precise analysis.

This section describes revisions to the commonly-used feature sets [16,
19, 25] to address the task at hand and presents a feature elimination
method based on feature correlation to improve the accuracy of the
created classifiers. Final ly , the proposed enhanced statistical protocol
identification method is described along wi th two other classification
methods from the literature that have yielded promising traffic identifi­
cation results.

3.1 Feature Set

The quality of a feature set directly influences classification accu­
racy [32]. Common features used for traffic classification are related to
key aspects of packet communications and network architecture. These
include port numbers, transport protocol type, starting sequence of pay-
load bytes, pattern occurrence, message length and message t iming. Re­
searchers have identified a list of possible features comprising 92 items
that are invariant to network line characteristics [16, 19, 25]. The list is
available at github.com/pluskal/AppIdent.

Machine learning algorithms achieve the best performance when the
selected features are orthogonal (i.e., no correlation exists between the

139

http://github.com/pluskal/AppIdent

Pluskal, Lichtner & Rysavy 167

features) [14]. Several approaches have been proposed for calculating
feature correlations, including the Pearson, Spearman, Kenda l l correla­
tion formulas [31] and covariance matr ix [13]. This research opted for
the covariance matr ix method due to its ease of implementation.

The covariance matr ix provides a correlation value for each pair of
features. This matr ix was used to design an automated two-step pro­
cedure for eliminating features. In the first step, a covariance matr ix
was calculated based on a chosen ratio of t raining data to verification
data it/v). In the second step, based on a maximum allowed correla­
tion value, feature pairs wi th higher correlation values were identified
and features that were, on average, more correlated wi th all the other
features, were iteratively removed from the feature set. The resulting
feature set was used by the selected classification method and could be
evaluated to find the optimal set.

In the experiments, more than 80% of the feature pairs had corre­
lation values of 0.5 or higher. Table 1 lists the features that remained
after feature elimination was performed on sample data wi th training to
verification ratios of 0.1 and 0.2, based on accepted correlation values
up to 0.5. Note that the correlation column shows the maximal-allowed
correlation values of features listed on the corresponding line and higher.
These feature sets were used by the Bayesian network and random forests
classifiers.

Most of the features describe flow characteristics instead of individual
packet characteristics. This confirms the assumption that relying on
a signature or some pattern in packet content gives better results for
encrypted or less-structured traffic.

3.2 E n h a n c e d Stat ist ical P r o t o c o l Identification

Hjelmvik [16] developed the statistical protocol identification (SPID)
method for use wi th the NetworkMiner tool. The learning phase of
the method creates a database of protocol fingerprints for identifying
application protocols. The features uti l ized by the statistical protocol
identification method are called "protocol attribute meters," each con­
veying different information. Some items are scalar values representing
payload data size, number of packets in a session or port number. Other
items are composite values, such as a tuple comprising packet direction,
packet ordering, packet size and byte value frequency.

The original implementation uses about 35 protocol attribute me­
ters and extracts information from the first few packets of IP flows to
achieve better speed compared wi th other classification methods that
analyze entire IP flows. The distance between the analyzed data to a

140

168 ADVANCES IN DIGITAL FORENSICS XIV

Table 1. Features remaining after elimination based o n i / w ratios of 0.1 and 0.2.

Correlation Feature (t/v = 0.1) Feature (t/v = 0.2)

BytePairsReoccuringDownFlow
DirectionChanges
First3BytesEqualDownFlow
FirstBitPositionUpFlow
FirstPayloadSize
MinlnterArrivalTimeDownFlow
MinlnterArrivalTimePackets
UpAndDownFlow
MinPacketLengthDownFlow
NumberOfBytesDownFlow
NumberOfPacketsUpFlow
PacketLengthDistribution
DownFlow
PacketLengthDistribution
UpFlow

First3BytesEqualDownFlow
FirstBitPositionUpFlow

MinlnterArrivalTimePackets
UpAndDownFlow
MinPacketLengthDownFlow

PacketLengthDistribution
DownFlow

ThirdQuartilelnter Arrival
TimeUp
ByteFrequencyUpFlow
MaxSegmentSizeDown
MaxSegmentSizeUp
MinlnterArrivalTimePackets
UpFlow
NumberOfBytesUpFlow
ThirdQuartilelnter Arrival
TimeDown

<0.25 PUSHPacketsDown
ThirdQuartilelnter Arrival
TimeDown

PUSHPacketsDown

NumberOfBytesUpFlow

<0.3
ByteFrequencyUpFlow
MinPacketLengthUpFlow
NumberOfPacketsPerTimeUp

FirstPayloadSize

MinPacketLengthUpFlow

DirectionChanges
BytePairsReoccuringDownFlow

<0.4 MeanPacketLengthUpFlow

<0.5 MeanPacketLengthUpFlow

known protocol fingerprint is computed using the Kullback-Leibler d i ­
vergence and the best matching protocol fingerprint has the smallest
sum of Kullback-Leibler divergences over all the attributes. Kohnen et
al . [19] have developed a new version of the statistical protocol iden-

141

Pluskal, Lichtner & Rysavy 169

tification method by adding support for U D P and handling streaming
protocols using a different set of protocol attribute meters.

The research described here has drawn on this work in creating the
enhanced statistical protocol identification method. The research was
motivated by the fact that a forensic investigator is more interested in
the precision of identification than its speed (although quicker identi­
fication is important); therefore, completed conversations are analyzed
instead of just the first few packets. Addit ional ly, as mentioned above,
the intent is to identify application protocols as well as the applications
themselves; therefore, approximated application messages instead of in ­
dividual packets are analyzed. The enhanced statistical protocol identi­
fication method also uses a different set of features (92 features selected
as described in Section 3.1) and a different method for computing the
distances between measured values and learned protocol fingerprints.

The following three functions are employed:

• Function / computes the divergence of a measured value to a fin­
gerprint value.

• Function g returns a normalized feature value for an actual mea­
sured value.

• Function w returns the weight of a feature for a protocol finger­
print.

The divergence from a learned fingerprint is computed as the E u ­
clidean distance [7] of the weighted divergences for individual features:

\ E(!».M'/.(9.(*,).C.)>2 (!)

where x\,...,xn denote the current flow protocol feature values; c i , c „
denote the normalized feature values in the protocol fingerprint; and
Wi(c) denotes the weight of the ith feature in protocol fingerprint c.

Equat ion (1) is used to compute the difference dx cj for each protocol
fingerprint c 7 . The identified protocol or application k is the one such
that dxck = min(dXfi\ ... d X) C m) .

Compared wi th other machine learning methods, the enhanced sta­
tistical protocol identification method does not suffer from overfitting
due to the use of correlated features because it assigns weights on a
per-feature basis. This property renders the enhanced statistical proto­
col identification method readily extensible to classifying new protocols
and incorporating features unique to the new protocols, which could be
correlated wi th features of other protocols.

142

170 ADVANCES IN DIGITAL FORENSICS XIV

3.3 Bayes ian N e t w o r k Classifier

The Bayesian network classifier [11] relies on Bayes' theorem, which
defines the probabili ty of an event based on prior knowledge about the
conditions related to the occurrence of the event. The classifier incorpo­
rates Bayesian belief networks that are constructed during the learning
phase. A Bayesian network is a directed acyclic graph and a set of
conditional probabili ty tables. Nodes in the network represent feature
variables and edges represent conditional dependencies. The probability
tables provide probabili ty functions for the nodes.

A Bayesian network classifier identifies the application protocol by
determining the node (or set of nodes) w i th the highest probabili ty for
the given input feature values. The advantage of the Bayesian network
classifier is that it also computes the probabili ty that the conversation
belongs to the identified protocol. This information enables a forensic
investigator to decide whether or not to analyze the conversation.

3.4 R a n d o m Forests Classifier

Random forests is an ensemble method that constructs multiple C4.5
decision trees during the training phase; the trees are used for classifi­
cation in the verification phase, where the mode of the partial results
is selected as the resulting class [4]. This makes the random forests
classifier prone to overfitting [15]. Random forests are parametrized by
multiple variables such as the forest count, join, and training to ver­
ification ratio. Op t ima l values for the parameters are determined by
cross-validation and computation of an out-of-bag error that estimates
the performance of specific parameter combinations. Because the classi­
fier computes the out-of-bag error, there is no need to employ a separate
data verification phase. Therefore, the random forests classifier can be
trained on the entire dataset, although this approach can be computa­
tionally expensive.

4. E x p e r i m e n t a l Procedures a n d Resul ts

This section presents the experimental procedures and the results ob­
tained using the three classification methods. The experiments were
designed wi th three goals in mind . The first goal was to compare re­
sults yielded by machine learning and statistical methods that share the
same base feature set, but involve fundamentally-different approaches
to classification. The second goal was to observe how the training set
size and feature elimination ratio impact the accuracy of application
protocol and application classification. The th i rd goal was to prove (or

143

Pluskal, Lichtner & Rysavy 171

disprove) that application classifiers can identify network traffic based
on the applications that generated the traffic.

The Netfox Detective tool was employed as middleware for parsing
and processing the captured traffic into application conversations and
messages. The feature elimination algorithm and classification methods
were implemented as modules in Netfox Detective for easy integration
wi th input data. A standalone application was used to automate the
experimental procedure wi th different parameters. The enhanced statis­
tical protocol identification method was implemented from scratch. The
Bayesian network and random forests classifiers were implemented using
the A c c o r d . N E T l ibrary of machine learning algorithms.

4.1 E x p e r i m e n t a l Procedures

A s mentioned above, Netfox Detective was used to parse and process
the captured traffic and to extract the full set of feature values for the
resulting conversations (feature vectors). Each feature vector was an­
notated wi th a label that identified the level of classification using the
ground t ru th from the original capture file. The following labels were
used:

• Applicat ion Protocol: Each application protocol was labeled
using a tuple wi th the components: (i) transport protocol type:
and (ii) destination transport layer port or manually assigned label
(e.g., TCPJittp).

• Application: Each application was labeled using a tuple wi th the
components: (i) transport protocol type; (ii) destination transport
layer port or manually assigned label; and (iii) application process
information (e.g., tcp_http_skypeexe).

Because this task was time-intensive, but only had to be done once,
the results were saved in a separate binary file. A custom application was
developed to automatically execute the same experiment, but wi th dif­
ferent configuration parameter values (classification method, training to
verification ratio and accepted correlation value for feature elimination).

A l l the experiments involved the following five steps:

• Step 1 (Dataset Generation): The available data was split
into two disjoint datasets based on the training to verification ra­
tio. The first dataset was used for training and the second for
verification.

• Step 2: (Feature Elimination): The experiments using the
Bayesian network and random forests classifiers used the training

144

http://Accord.NET

ADVANCES IN DIGITAL FORENSICS XIV

dataset created in Step 1 wi th the feature elimination algorithm
described in Section 3.1. The experiments using the enhanced
statistical protocol identification method employed the accepted
correlation value of one to include all the features; this is because,
as explained i n Section 3.2, the enhanced statistical protocol iden­
tification method does not require feature elimination.

Step 3: (Training): The training dataset created i n Step 1 was
used to t rain the three classifiers:

— Bayesian Network Classifier: A classifier was trained for
each group of feature vectors wi th the same label.

— Random Forests: The optimal parameters specified in Sec­
tion 3.4 corresponded to the most accurate classifier.

— Enhanced Statistical Protocol Identification Classi­
fier: For each group of feature vectors wi th the same label, an
application protocol fingerprint was computed using function
9-

Step 4 (Verification): A cross-validation phase was used to de­
termine the best classifiers created in Step 3. Specifically, the
classifiers were used to classify each conversation from the verifi­
cation dataset. They returned either: (i) multiple labels; or (ii)
single labels:

— Mult iple Labels: Mul t ip le labels were returned as a set
of probabilities or distances. The set was ordered and the
label w i th the highest probabili ty or shortest distance was
selected. In the case of the Bayesian network classifier, each
Bayesian classifier yielded a probabili ty of the current conver­
sation belonging to the class of interest (application protocol
or application) represented by the classifier. In the case of
the enhanced statistical protocol identification classifier, the
Euclidean distance between the specific conversation to each
application protocol or application fingerprint was returned.

— Single Label: The random forests classifier returned a single
label.

Step 5 (Label Comparison): In each case, the label was com­
pared against the annotation and the statistical properties of each
classification method were computed.

145

Pluskal, Lichtner & Rysavy 173

Table 2. Configurations of the classification methods.

Classification Experiment Training to Highest Feature
Method ID Verification Ratio Correlation Used

B l 0.1 0.3
B2 0.2 0.5

Bayesian Network B3
B4

0.5
0.1

0.5
0.2

B5 0.2 0.25
B6 0.5 0.25

ESPI
E S P I l
ESPI2

0.7
0.2

1
1

R F 1 0.1 0.4
Random Forests R F 2 0.2 0.4

R F 3 0.1 0.5
R F 4 0.2 0.5

4.2 E x p e r i m e n t a l Results

The automated application ran many experiments wi th various con­
figurations of parameters wi th the goal of identifying the configurations
that yielded the best results. The experiments were organized based on
the classification methods. For better comparisons, the most successful
experiments for each method wi th various training to verification ratios
were employed.

Table 2 lists the configurations of the classification methods wi th the
best results. The last column specifies the highest feature correlation val­
ues used for feature elimination. The experiments were split into two cat­
egories. Experiments B l , B2 , B 3 , E S P I l , R F 1 and R F 2 used classifiers
for application protocol identification, for which the complete dataset
contained 58 application protocol tags. The remaining experiments B4 ,
B5 , B 6 , E S P I 2 , R F 3 and R F 4 used classifiers for application identifica­
tion, for which the complete dataset contained 93 application tags. A l l
the experimental results are available at pluskal. github. io/AppIdent.
The figures and tables in this section show the truncated results of the
experiments. The truncation was performed by selecting the best exper­
iment in each category as a baseline. The 20 most accurately identified
labels are shown for all the experiments in a category.

The labels returned by the classification methods were compared wi th
the ground t ru th from the original captured data and separated into four
categories defined by the confusion matr ix in Table 3. Note that a classi-

146

174

Table 3.

ADVANCES IN DIGITAL FORENSICS XIV

Confusion matrix for a single label (application protocol or application).

Classification Result Positive Negative Total
Ground Truth

Positive True Positive (TP) False Positive (FP) P
Negative False Negative (FN) True Negative (TN) N

Total P' N' P+N

fication result is positive when the classifier returns that the conversation
can be labeled wi th the label and negative when it cannot. The ground
t ru th is positive when the conversation in the dataset is actually labeled
wi th the label and negative when it is not.

The F-measure, also referred to as the balanced F-score [14], was used
to compare the classification methods. This single score is computed as
the harmonic mean of the precision and recall using the equation:

„ „ precision x recall
F = 2 x — (2

precision + recall

where the precision and recall are computed from the corresponding
confusion matr ix values using the equations:

TP
precision = T p + p p (3)

TP TP
recall = —— —— = —— (4)

TP + FN P w

Figure 1 presents the visualization of the application protocol identi­
fication results. The two random forest classifiers (R F 1 and R F 2) were
very accurate. The Bayesian network classifier (B3) also performed very
well, but it required a larger training set, a t raining to verification ratio
of 0.5 and more features (see Table 2).

Figure 2 presents the visualization of the application identification
results. The two random forest classifiers again yielded the best results.
However, i n this case, the Bayesian network classifiers were outperformed
by the enhanced statistical protocol identification classifier, which also
provided the best trade-off between performance and accuracy.

Figure 3 provides the aggregate statistics for all the classes. The num­
ber in each cell corresponds to the number of labels that were classified
wi th F-measures greater than or equal to the F-measure value. Note
that the size of the shaded area in a cell is proportional to the number
of labels classified i n the cell.

147

Pluskal, Lichtner & Rysavy 175

• tcp_pop3tlsssl

udp_wsd

i udp_onlinegames

udp_ssdp

tcp_team viewer

udp_mdns

udp_stun

udp_llmnr

B3

t c p j c s l a p

• u d p h t t p s

tcp_http

i udp_natpmp

RF1

i udp_spotify

udp_dhcps

u d p d n s

udp_netbiosdgm

RF2

tcp_netbiosss

udp_teamviewer

• t c p h t t p s

udp_sapv1

Figure 1. Performance of application protocol classifiers using the F-measure.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

B4 BS

tcpsmtpt lsssl - thunderbirdexe

• tcphttp-steamwebhelperexe

tcp_https-skypeexe

tcp_skype-skypeexe

tcp_dns-system

tcp_http-spotifyexe

tcp jabber -p idginexe

B6 ESPI 2

tcp_https-firefoxexe

t c p i c s l a p - s y s t e m

• tcphttp-utorrentexe

• tcpht tps- i tunesexe

t c p s s h - w i n s c p e x e

tcp_tripe-spotifyexe

t c p n e t b i o s s s - s y s t e m

RF3 RF4

tcp_https-svchostexe

tcpht tps-onedr iveexe

tcp_http-teamviewer_serviceexe

tcphttps-utorrentexe

• tcp_pop3tlsssl-thunderbirdexe

• t cp jabberss l -apsdaemonexe

Figure 2. Performance of application classifiers using the F-measure.

Figure 4 presents the results of the performance comparison of ap­
plication protocol classifiers. The first row shows the times required to
complete al l the steps involved i n the experiments. The remaining rows
show the F-measure scores of each evaluated method for the top 20 labels
based on the most successful experiment i n the category.

Figure 5 presents the results of the performance comparison of ap­
plication classifiers. Once again, the first row shows the times required
to complete all the steps involved i n the experiments. The remaining
rows show the F-measure scores of each evaluated method for the top
20 labels based on the most successful experiment in the category.

148

Pluskal, Lichtner & Rysavy 175

• tcp_pop3tlsssl

udp_wsd

i udp_onlinegames

udp_ssdp

tcp_team viewer

udp_mdns

udp_stun

udp_llmnr

B3

t c p j c s l a p

• u d p h t t p s

tcp_http

i udp_natpmp

RF1

i udp_spotify

udp_dhcps

u d p d n s

udp_netbiosdgm

RF2

tcp_netbiosss

udp_teamviewer

• t c p h t t p s

udp_sapv1

Figure 1. Performance of application protocol classifiers using the F-measure.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

B4 BS

tcpsmtpt lsssl - thunderbirdexe

• tcphttp-steamwebhelperexe

tcp_https-skypeexe

tcp_skype-skypeexe

tcp_dns-system

tcp_http-spotifyexe

tcp jabber -p idginexe

B6 ESPI 2

tcp_https-firefoxexe

t c p i c s l a p - s y s t e m

• tcphttp-utorrentexe

• tcpht tps- i tunesexe

t c p s s h - w i n s c p e x e

tcp_tripe-spotifyexe

t c p n e t b i o s s s - s y s t e m

RF3 RF4

tcp_https-svchostexe

tcpht tps-onedr iveexe

tcp_http-teamviewer_serviceexe

tcphttps-utorrentexe

• tcp_pop3tlsssl-thunderbirdexe

• t cp jabberss l -apsdaemonexe

Figure 2. Performance of application classifiers using the F-measure.

Figure 4 presents the results of the performance comparison of ap­
plication protocol classifiers. The first row shows the times required to
complete al l the steps involved i n the experiments. The remaining rows
show the F-measure scores of each evaluated method for the top 20 labels
based on the most successful experiment i n the category.

Figure 5 presents the results of the performance comparison of ap­
plication classifiers. Once again, the first row shows the times required
to complete all the steps involved i n the experiments. The remaining
rows show the F-measure scores of each evaluated method for the top
20 labels based on the most successful experiment in the category.

149

176 ADVANCES IN DIGITAL FORENSICS XIV

GreaterOrEqual
F-Measure

B1 B2 B3 ESPI1 RF1 RF2 B4 B5 B6 ESPI2 RF3 RF4

0.0 58 58 58 58 58 58 93 93 93 93 93 93
0.1 21 19 23 33 47 51 22 25 36 43 83 83
0.2 16 18 23 31 45 47 22 23 34 40 77 77
0.3 14 18 22 29 41 45 20 22 34 37 74 75
0.4 14 16 22 29 40 43 19 22 30 36 68 70
0.5 14 14 22 28 37 41 19 22 29 31 63 63
0.6 13 14 22 26 36 39 16 20 27 27 54 58
0.7 12 13 21 24 34 37 15 17 26 22 45 47
0.8 11 12 19 21 32 36 13 13 26 20 38 41
0.9 8 12 18 17 26 31 7 12 15 17 25 28

Figure 3. Summary of classification method performance.

AppProtocol B1 B2 B3 ESPI1 RF1 RF2
Time [h] 1:01 1:08 1:13 0:50 2:41 13:21
tcp_pop3tlsssl 0.00 0.00 0.00 0.00 0.92 0.97
tcp_teamviewer 0.10 0.49 0.94 0.94 0.94 0.97
tcp_icslap 0.29 0.97 0.99 0.27 0.96 0.98
udp_spotify 0.99 0.99 1.00 0.15 0.99 0.99
tcp_netbiosss 0.00 0.00 1.00 0.97 0.99 0.99
udp_wsd 0.00 0.08 0.98 0.98 0.99 0.99
udp_mdns 0.00 0.00 0.91 0.92 1.00 0.99
udp_https 0.88 0.95 0.95 0.92 0.99 0.99
udp_dhcps 0.83 0.91 0.98 0.99 0.99 0.99
udp_teamviewer 0.00 0.00 0.00 0.66 0.93 0.99
udp_onlinegames 0.98 0.98 0.99 0.04 0.99 0.99
udp_stun 0.00 0.39 0.99 0.96 1.00 1.00
tcp_http 0.97 0.99 1.00 0.96 1.00 1.00
udp_dns 0.99 0.99 0.99 0.93 1.00 1.00
tcp_https 1.00 1.00 1.00 0.99 1.00 1.00
udp_ssdp 0.96 0.97 0.98 0.00 1.00 1.00
udp_llmnr 0.99 0.99 0.99 1.00 1.00 1.00
udpnatpmp 0.00 0.00 0.00 0.96 0.88 1.00
udp_netbiosdgm 0.98 0.98 0.95 0.94 1.00 1.00
udp_sapv1 0.00 0.00 0.00 0.75 1.00 1.00

Figure 4- Performance comparison of application protocol classifiers.

5. C o n c l u s i o n s

This research has focused on the important network forensics problem
of identifying network applications in addition to just application proto­
cols i n network traffic flows. It has studied various aspects of applying
machine learning methods and the selection of features that character­
ize application behavior, such as message t iming, content length and
T C P flags instead of features related to network line characteristics. A n
automated feature elimination method based on the feature correlation

150

Pluskal, Lichtner & Rysavy 177

AppProtocol B4 B5 B6 ESPI2 RF3 RF4
Time [h] 0:53 1:03 2:00 1:11 20:13 23:20
tcp_smtptlsssl-thunderbirdexe 0.00 0.00 0.00 0.03 0.89 0.75
tcp_https-firefoxexe 0.88 0.93 0.91 0.41 0.71 0.77
tcp_https-svchostexe 0.00 0.00 0.00 0.00 0.71 0.77
tcp_http-steamwebhelperexe 0.00 0.00 0.38 0.52 0.72 0.79
tcp_icslap-system 0.00 0.00 0.00 0.00 0.70 0.81
tcp_https-onedriveexe 0.00 0.03 0.82 0.00 0.72 0.81
tc p_https-sky peexe 0.86 0.99 0.87 0.53 0.78 0.82
tcp_http-utorrentexe 0.01 0.11 0.32 0.01 0.84 0.83
tcp_http-teamviewer_serviceexe 0.00 0.00 0.00 0.87 0.88 0.86
tcp_skype-skypeexe 0.27 0.24 0.00 0.96 0.51 0.87
tc p_https-itunesexe 0.86 0.89 0.89 0.65 0.86 0.87
tcp_https-utorrentexe 0.00 0.00 0.00 0.00 0.92 0.89
tcp_dns-system 0.00 0.00 0.00 0.97 1.00 0.89
tcp_ssh-winscpexe 0.00 0.00 0.00 0.51 0.65 0.91
tcp_pop3tlsssl-thunderbirdexe 0.00 0.00 0.00 0.00 0.98 0.92
tcp_http-spotifyexe 0.93 0.91 0.93 0.90 0.93 0.93
tc p_tripe-spotif yexe 0.00 0.00 0.92 0.91 0.94 0.94
tcpjabberssl-apsdaemonexe 0.00 0.72 0.81 0.91 0.94 0.95
tcpjabber-pidginexe 0.00 0.00 0.00 0.97 0.94 0.97
tcp_netbiosss-system 0.00 0.00 0.90 0.44 0.98 0.99

Figure 5. Performance comparison of application classifiers.

matrix was employed to improve the classification results. Add i t i ona l ly
this research has developed the enhanced statistical protocol identifica­
tion method, which was compared against the Bayesian network and
random forests classification methods from the literature that offer high
accuracy and acceptable performance.

The experimental results confirm that application protocols as well
as the applications that generate network traffic can be classified with
high confidence. For example, Ne tBIOS service and D N S were identi­
fied accurately and several common applications that use the H T T P (S)
application protocol were identified wi th high accuracy. Similarly, it
was possible to distinguish between communications traces of OneDrive,
Skype, iTunes, Spotify, Steam and \xTorrent clients, although all of them
use the same application protocol (H T T P S) .

The random forests classifier achieved the best results, confirming the
results obtained by other researchers [20, 30] who experimented with
machine learning approaches for traffic classification. The enhanced sta­
tistical protocol identification classifier yielded better results than the
Bayesian network classifier and was much faster than the Bayesian net­
work and random forests classifiers.

151

178 ADVANCES IN DIGITAL FORENSICS XIV

Classification accuracy is mainly determined by the quality of the se­
lected features. This research has employed features based on previous
observations and intuit ion. Future research should focus on the system­
atic analysis and selection of feature sets that could improve classification
accuracy and robustness.

To improve the identification of applications that employ the same
application protocol (e.g., removing errors when tcp_tittp_skypeexe is
classified as tcp_tittp_f i r e f oxexe, or vice-versa), future research should
focus on hierarchical classification methods. A n example is hierarchical
clustering based on enhanced statistical protocol identification finger­
prints. A forensic investigator could then infer the actual application
classes by visual cluster analysis. This approach could also be extended
to other levels such as application message level.

Future research should also consider combining multiple classifiers [18]
to increase the confidence in the results. Research should also focus on
semi-supervised classification methods [8] that enable the creation of
models from partially-labeled data.

Final ly, experiments should be conducted to extend the classification
models and evaluate the properties of other datasets. The classifica­
t ion methods considered in this work require accurate models. Creating
such models requires the analysis of large numbers of traffic samples.
Experimenting wi th different datasets could provide more accurate clas­
sification models and valuable insights into the properties of individual
classification methods.

A reference implementation is available under an M I T license from
G i t H u b at pluskal. github. io/Appldent. This includes the framework
for parsing captured data, extracting features and eliminating features,
along wi th the three classifiers described in this chapter and the stan­
dalone application that automated the experiments. The dataset is avail­
able at nes .f i t . vutbr. cz/AppIdent to facilitate the reproducibili ty of
the experiments and to serve as a benchmarking platform for testing
other machine-learning-based application identification methods.

References

[1] S. Alcock and R . Nelson, Libprotoident: Traffic Classification Us­
ing Lightweight Packet Inspection, Technical Report , W A N D Net­
work Research Group, Computer Science Department, University
of Waikato, Hamil ton, New Zealand, 2012.

[2] N . A l Khater and R . Overi l l , Forensic network traffic analysis, Pro­
ceedings of the Second International Conference on Digital Security
and Forensics, 2015.

152

Pluskal, Lichtner & Rysavy 179

[3] T . A u l d , A . Moore and S. G u l l , Bayesian neural networks for In­
ternet traffic classification, IEEE Transactions on Neural Networks,
vol . 18(1), pp. 223-239, 2007.

[4] L . Breiman, Random forests, Machine Learning, vol. 45(1), pp. 5 -
32, 2001.

[5] E . Bursztein, Probabil ist ic identification of hard to classify proto­
cols, Proceedings of the Second IFIP WG 11.2 International Confer­
ence on Information Security Theory and Practices: Smart Devices,
Convergence and Next Generation Networks, pp. 49-63, 2008.

[6] S. Da i , A . Tongaonkar, X . Wang, A . Nucci and D . Song, Net-
workProfiler: Towards automatic fingerprinting of A n d r o i d apps,
Proceedings of the IEEE International Conference on Computer
Communications, pp. 809-817, 2013.

[7] M . Deza and E . Deza, Encyclopedia of Distances, Springer-Verlag,
Ber l in Heidelberg, Germany, 2009.

[8] J . E rman , A . Mahant i , M . A r l i t t , I. Cohen and C . Wil l iamson,
Offline/real-time traffic classification using semi-supervised learn­
ing, Performance Evaluation, vol. 64(9-12), pp. 1194-1213, 2007.

[9] A . Finamore, M . Me l l i a and M . Meo, M i n i n g unclassified traffic us­
ing automatic clustering techniques, Proceedings of the Third Inter­
national Conference on Traffic Monitoring and Analysis, pp. 150-
163, 2011.

[10] V . Foroushani and A . Zincir-Heywood, Investigating application be­
havior i n network traffic traces, Proceedings of the IEEE Symposium
on Computational Intelligence for Security and Defense Applica­
tions, pp. 72-79, 2013.

[11] N . Friedman, D . Geiger and M . Goldszmidt , Bayesian network clas­
sifiers, Machine Learning, vol. 29(2-3), pp. 131-163, 1997.

[12] G . Gomez Sena and P. Belzarena, Ea r ly traffic classification us­
ing support vector machines, Proceedings of the Fifth International
Latin American Networking Conference, pp. 60-66, 2009.

[13] I. Guyon and A . Elisseeff, A n introduction to variable and feature
selection, Journal of Machine Learning Research, vol . 3(March), pp.
1157-1182, 2003.

[14] J . Han, M . Kamber , and J . Pei , Data Mining: Concepts and Tech­
niques, Morgan Kaufmann Publishers, Wal tham, Massachusetts,
2012.

[15] T . Hastie, R . Tibshi rani and J . Friedman, The Elements of Statis­
tical Learning - Data Mining, Inference and Prediction, Springer,
New York , 2009.

153

180 ADVANCES IN DIGITAL FORENSICS XIV

[16] E . Hjelmvik, The S P I D Algor i thm - Statistical Protocol Identifica­
tion, Gavle, Sweden (www.iis.se/docs/The_SPID_Algorithm_-_
Statistical_Protocol_IDentification.pdf), 2008.

[17] J . Khalife, A . Hajjar and J . Diaz-Verdejo, A multilevel taxonomy
and requirements for an optimal traffic-classification model, Inter­
national Journal of Network Management, vol. 24(2), pp. 101-120,
2014.

[18] J . Ki t t l e r , Combining classifiers: A theoretical framework, Pattern
Analysis and Applications, vol. 1(1), pp. 18-27, 1998.

[19] C . Kohnen, C . Uberal l , F . Adamsky, V . Rakocevic, M . Rajarajan
and R . Jager, Enhancements to statistical protocol identification
(SPID) for self-organized QoS in L A N s , Proceedings of the Nine­
teenth International Conference on Computer Communications and
Networks, 2010.

[20] J . L i , S. Zhang, Y . X u a n and Y . Sun, Identifying Skype traffic
by random forests, Proceedings of the International Conference on
Wireless Communications, Networking and Mobile Computing, pp.
2841-2844, 2007.

[21] Y . Luo , K . X i a n g and S. L i , Acceleration of decision tree searching
for IP traffic classification, Proceedings of the Fourth ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems, pp. 40-49, 2008.

[22] P . Matousek, J . Pluskal , O . Rysavy, V . Vesely, M . Kmet , F .
Karpisek and M . V y m l a t i l , Advanced techniques for reconstruction
of incomplete network data, Proceedings of the Seventh Interna­
tional Conference on Digital Forensics and Cyber Crime, pp. 69-84,
2015.

[23] S. Miskovic, G . Lee, Y . Liao and M . Ba ld i , A p p P r i n t : Automat ic
fingerprinting of mobile applications i n network traffic, Proceedings
of the Sixteenth International Conference on Passive and Active
Measurement, pp. 57-69, 2015.

[24] A . Moore and K . Papagiannaki, Toward the accurate identifica­
tion of network applications, Proceedings of the Sixth International
Workshop on Passive and Active Network Measurement, pp. 41-54,
2005.

[25] A . Moore, D . Zuev and M . Crogan, Discriminators for Use in Flow-
Based Classification, Technical Report RR-05-13, Department of
Computer Science, Queen Mary, Universi ty of London, London,
Uni ted Kingdom, 2013.

154

http://www.iis.se/docs/The_SPID_Algorithm_-_

Pluskal, Lichtner & Rysavy 181

[26] N . Namdev, S. Agrawal and S. Silkari , Recent advancements i n ma­
chine learning based Internet traffic classification, Procedia Com­
puter Science, vol. 60, pp. 784-791, 2015.

[27] T . Nguyen and G . Armitage, A survey of techniques for Internet
traffic classification using machine learning, IEEE Communications
Surveys and Tutorials, vol . 10(4), pp. 56-76, 2008.

[28] C . Shen and L . Huang, O n the detection accuracy of the 1 7 - f i l t e r
a n d O p e n D P I , Proceedings of the Third International Conference on
Networking and Distributed Computing, pp. 119-123, 2012.

[29] P . Velan, M . Cermak, P. Celeda and M . Drasar, A survey of meth­
ods for encrypted traffic classification and analysis, International
Journal of Network Management, vol. 25(5), pp. 355-374, 2015.

[30] Y . Wang and S. Y u , Machine learned real-time traffic classifiers,
Proceedings of the Second International Symposium on Intelligent
Information Technology Applications, vol . 3, pp. 449-454, 2008.

[31] I. Zezula, O n multivariate Gaussian copulas, Journal of Statistical
Planning and Inference, vol. 139(11), pp. 3942-3946, 2009.

[32] L . Zhen and L . Qiong, A new feature selection method for Internet
traffic classification using M L , Physics Procedia, vol. 33, pp. 1338-
1345, 2012.

155

A.9 Advanced Techniques for Reconstruction of Incomplete
Network Data

Petr M a t o u š e k , Jan P luska l , O n d ř e j Ryšavý , V l a d i m í r Veselý, M a r t i n K m e t , F i l i p Karp í šek ,
and M a r t i n Vymlá t i l . "Advanced Techniques for Reconstruction of Incomplete Network
Da ta" . In: Digital Forensics and Cyber Crime. E d . by Joshua I. James and Frank Bre-
itinger. C h a m : Springer International Publ i sh ing , 2015, pp. 69-84. I S B N : 9783319255125

156

Advanced Techniques for Reconstruction
of Incomplete Network Data

Petr Matoušek'^ ' , Jan Pluskal, Ondřej Ryšavý, Vladimír Veselý,
Martin Kmet, Filip Karpíšek, and Martin Vymlátil

Brno University of Technology, Božetěchova 2, Brno, Czech Republic
{ m a t o u s p , i p l u s k a l , r y s a v ý , i v e s e l ý , i k m e t , i k a r p i s e k } @ f i t . v u t b r . c z ,

xvymla01@ s t u d . f i t . v u t b r . c z
h t tp : / /www. f i t . vu tb r . cz

A b s t r a c t . Network forensics is a method of obtaining and analyzing
digital evidences from network sources. Network forensics includes data
acquisition, selection, processing, analysis and presentation to investi­
gators. Due to high volumes of transmitted data the acquired informa­
tion can be incomplete, corrupted, or disordered which makes further
reconstruction difficult. In this paper, we address the issue of advanced
parsing and reconstruction of incomplete, corrupted, or disordered data
packets. We introduce a technique that recovers T C P or U D P conversa­
tions so they could be further analyzed by application parsers. Presented
technique is implemented in a new network forensic tool called Netfox
Detective. We also discuss current challenges in parsing web mail com­
munication, SSL decryption and Bitcoins detection.

K e y w o r d s : Network forensic tools • T C P reassembling • Traffic recon­
struction • Web mail • Bitcoin • SSL encryption

1 Introduction

Network forensics is an emerging area of digital forensics connected with the
rapid network development. Many services and digital transactions are trans­
mitted over the Internet where criminal activities and security incidents also
occur. Network forensics provides post-mortem investigation of unlawful behav­
ior using special tools that reconstruct a sequence of events occurred at the time
of the attack. This reconstruction depends only on a captured network data.
In some cases, these data are incomplete, corrupted, or out of order. In order
to analyze the original communication using an incompletely captured data,
advanced techniques of reconstruction and communication recovery are needed.
Reconstruction of T C P streams is essential for any network forensic tool [1]. If
the T C P reassembling fails, application data cannot be properly analyzed.

Recovery of incomplete data in network forensics is a similar task to data
recovery from damaged media, e.g., hard drives, CDs, or DVDs. If some data
are missing, it can be either replaced by empty data units or approximated
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, L N I C S T 157, pp. 69-84, 2015.
DOI: 10.1007/978-3-319-25512-5-6

157

mailto:xvymla01@stud.fit.vutbr.cz
http://www.fit.vutbr.cz

70 P. Matoušek et al.

from known data. The goal is to provide enough data enabling reconstruction
of the original content. To guarantee an admissibility of forensic results newly
introduced data must be unambiguously distinguished from the original ones.

In this work, we deal with the analysis and reconstruction of incomplete
or damaged network data. Our research includes the development of heuristic
techniques that can detect incomplete or corrupted data on network and trans­
port layer and restore original sessions that can be further analyzed using usual
application parsers. The proposed technique was implemented in a new network
forensic tool Netfox Detective.

1.1 Contribution

The main contribution of this paper addresses practical issues connected with
network data reconstruction and proposes advanced techniques for parsing and
recovery of network conversations. These techniques in combination with
advanced application recognition methods increase the accuracy of content recon­
struction. We also explain several issues connected with application analysis,
especially with web mail services, SSL communication and Bitcoin transactions.
We evaluate the implementation of proposed methods and compare them with
other tools.

The paper is organized as follows: section two surveys current approaches
and results in the domain of network forensic tools; section three examines issues
related to network data parsing and reconstruction with focus on T C P reassem­
bling and Layer 7 (L7, application) data reconstruction; section four deals with
application detection and content analysis, which is demonstrated using exam­
ples of reconstruction of web mail, SSL traffic, and bitcoin transactions.

2 Re la t ed Work

There is a wide range of tools for network monitoring and forensics, i.e., Net­
work Security and Monitoring tools (NSMs) and Network Forensic Analysis
Tools (NFATs). NSMs include network analyzers (Wireshark, tcpdump), IDS
systems (snort, Bro), fingerprinting tools (nmap, pOf), and others [2]. NFATs
have similar functionality as NSMs, in addition, they also assist in a network
crime investigation. They capture an entire network traffic and allow an inves­
tigator to analyze it and reconstruct the original communication. Most of the
NFAT tools are proprietary, nevertheless, open source NFATs also exist, e.g.,
PyFlag, Network Miner, or Xplico.

In theory, parsing the network communication is straightforward. However,
incompleteness and corruption of communication requires new methods involv­
ing robust parsers and complex recovery procedures. Surveys of different net­
work forensic frameworks can be found in [2,3]. These papers discuss various
approaches to network forensics, major challenges, and list available tools. In
our paper, we mostly focus on techniques of network data parsing and recovery.

158

Advanced Techniques for Reconstruction of Incomplete Network Data 71

There are not many published works describing techniques incorporated in
NFAT implementations, partly due to the protection of intellectual properties of
the tools. An exception is Cohen [1] that describes several challenges connected
with the stream reassembling (termination of streams, out of sequence packets,
missed packets) and the combination of streams into conversations. In our work,
we deeply examine issues that are essential for every network forensic tool. In
addition to [1], we present an algorithm that deals with these issues, and also
works with sequence number overflow, which is not discussed by other authors.
A detailed description of T C P reassembling is analyzed by Paxson in [4]. How­
ever, Paxson focuses on robustness of T C P reassembling in the presence of
adversaries that is out of the interest of this paper.

3 Data Parsing and Reconstruction

NFATs are designed to parse captured data, process packet headers and recon­
struct high-level protocol units. Application data are regularly transmitted using
T C P or UDP protocols over IP networks. By definition, IP communication does
not provide reliable data exchange [5]. Application data are segmented into T C P
packets and encapsulated into IP datagrams. Furthermore, IP datagrams can be
fragmented into smaller IP datagrams when required by an underlying link-layer
technology. The main goal of an NFAT is to extract and reconstruct original
application data from possibly incomplete captured collection of IP datagrams.
The method for assembling IP packet-based communications into conversations
is based on the following assumptions:

- An application conversation is distinguished by a pair of IP addresses, trans­
port ports and a protocol type. The conversation consists of a pair of flows
because the most of sessions are bi-directional.

- The beginning of a T C P session is identified by a synchronization T C P seg­
ment (SYN flag). A T C P segment with F IN/PSH/RST flag closes the session.

- A T C P session consists of a collection of T C P segments each associated with
a sequence number. A sequence number determines an offset of the segment
content in the T C P stream [6].

- An application message can be transmitted in one or more T C P segments.
Receiver must reassemble several T C P segments to obtain the original mes­
sage.

- The IP fragmentation happens independently on the T C P segmentation. The
IP defragmentation has to be accomplished before the application content
reassembling.

3.1 Challenges in T C P Reassembling

During our research of network data analysis, following challenges connected
with reassembling of T C P sessions have been identified:

159

72 P. Matousek et al.

- Missing FIN packets or overlapping of TCP conversations.
Regularly, ephemeral source ports are dynamically assigned by OS to clients
whenever a communication socket is created [7, p. 99]. It helps to distinguish
several T C P sessions originating from the same node and targeting the same
remote process. When the client finishes communication, these ports can be
reused. Usually, the port number is not reused until the pool of ephemeral
ports is exhausted. NFAT can exploit this behavior to recognize different
T C P sessions safely. However, if there is a NAT translation along the com­
munication path observable port numbers can be reused quickly. In such case,
different T C P sessions can receive the same key fields within a relatively short
period. While end systems and NAT can accurately track the use of port num­
bers, for NFAT system it may pose a problem as there is a very short interval
between two T C P sessions with the same identification. NFAT can proceed
as follows:
1. FIN segment can determine closing of the first session segment while SYN

segment defines a new T C P session;
2. if these segments are missing in a captured collection, a flow needs to be

detected by analyzing sequence numbers;
3. if sequence numbers of two sessions overlap, the analysis of timestamps of

expected L4 packets have to be carried out.
- Combination of two L7 flows into a L7 conversation.

NFATs try to reconstruct original bi-directional communication between appli­
cations. If more T C P conversations use the same IP addresses and ports (see
NAT problem above), these ports are not sufficient to unambiguously combine
corresponding L7 flows into a whole L7 conversation. The proposed solution
suggests considering initial T C P sequence numbers. T C P three-way hand­
shake starts with sending three synchronization segments between a sender
and a receiver. The sender sends a SYN segment with his initial, randomly
chosen, sequence number. The receiver replies with an SYN+ACK segment
transmitting receiver's initial sequence number and sender's next sequence
number. Based on hand-shake analysis, we can match initial T C P sequence
numbers of every L7 flow and its opposite L7 flow, which is necessary to create
bi-directional L7 conversation based on L4 header data only. If the hand-shake
is not captured, L7 flows are considered as one-directional L7 conversations.

- TCP sequence number overflow.
Network data parsing and analysis is mostly based on a chronological order of
packets in the flow using their sequence numbers. According to RFC 793 [6].
sequence numbers occupy space up to 2 3 2 — 1 Bytes, which gives possibil­
ity to transmit maximum 4.29 G B data. This value seems large enough to
avoid sequence number overflow. However, since initial sequence numbers are
generated randomly, maximum data size is lower than this theoretical value.
Figure 1 shows a snapshot of the distribution of maximum T C P message sizes
based on randomly generated initial sequence numbers as observed on 14,000
T C P sessions. The picture does not show full distribution range. T C P ses­
sions with possible payload greater than 500 M B are excluded, because of
their irrelevance for our study. However, these data show that T C P sequence

160

Advanced Techniques for Reconstruction of Incomplete Network Data 73

number overflow should be taken seriously. For example, we can see that the
sequence number would overflow in 0,12 % of T C P sessions with payload up to
5 M B . This situation can be solved by multi-pass processing of an L4 con­
versation and matching incomplete T C P sessions without SYNs when their
initial sequence numbers are closed to 2 3 2 .

F i g . 1. Probability of T C P Seq numbers overflow related to maximal L7 payload size.

3.2 Building L7 PDUs from the P C A P File

The process of network data parsing starts with the tracking of L3 conversations
based on sender's and receiver's IP addresses, see Fig. 2. Further, L4 conversa­
tions are identified using port numbers and L4 protocol type, than L7 conversa­
tions are created. In case of UDP protocol, two U D P sessions running between
the same pair of ports cannot be distinguished. For example, SIP applications
regularly employ the same source and destination ports, e.g., 5060, for all SIP
conversations. Therefore, a L4 UDP conversation is considered to be a L7 con­
versation.

srcIPl <-> dstIP2

L 3 conversation K

srcIP3 <-> dstIP4

L 3 conversation

» d s t P o r t 2 H T T P Request
L7 P D U

srcPortl <-> dstPort2 S Y N + A C K <-> FlN^SKPoIt2 -> daPonl H T T P Response
J L 4 conversation L 7 conversation [— ^LJ f low| H L 7 P D U |

srcPort3 <-> dstPort4

AL4 conversation

srcPort5 <-> dstPortG

HL4 conversation t

U D P session

•\ L 7 conversation I

ycPor t3 - > dstPort4 g jp I N V I T E

S Y N + A C K <-> F I N ^ | L 7 flow|
| L 7 conversation I s r c p o r t 4 -> dstPort3

S Y N + A C K <-> F I N

~| L 7 conversation""]

F i g . 2. Extraction of L7 PDUs from input packets.

161

74 P. Matousek et al.

In case of T C P protocol, the T C P reassembling is the key element in recon­
struction. If all data have been properly captured, T C P reassembling is a simple
task that involves port numbers, T C P sequence and acknowledgment numbers.
If some packets are missing, a following procedure implementing our heuristic
method can be applied to any network data. The procedure uses three heuris­
tic parameters: MaxLost, which represents the maximal length of missing data
that can be restored, MaxTime, describing the maximal permitted time delay
between two consequent packets using timestamps, and MaxPayload, represent­
ing the maximum pay load size in a T C P packet. Based on our experience, we
use MaxLost = 4kB and MaxTime = 600 sec1. MaxPayload is computed on-
the-fly as the length of the T C P packet with the maximal size of a payload in
the L7 flow. Thus, application messages are built from captured data using the
following steps:

1. Select L4 flows and sort packets using their sequence numbers.
2. Process each L4 flow and create L7 flows using T C P handshake. Start with

the first SYN packet.
(a) Create a new L7 P D U if does not exist or if a previous L7 P D U was

closed.
(b) Check packet sequence number Sec/j+i.
(c) If Seqi+i ^ Seqi + PSi (PS stands for a payload size obtained from the

packet header), i.e., the expected packet is missing, check timestamps
TS and sequence numbers Seq as follows:

i . If TSi+i — TSi < MaxTime and Seqi+i — Seqi < MaxLost then a
virtual packet will be created to replace the missing packet.

ii . If TSi+i — TSi > MaxTime and Seqi+i — Seqi < MaxLost then
there is an overlapping of T C P sessions because i + 1 packet belongs
to a different L7 flow. Skip this packet and proceed with the next
one.

iii. If Seqi+i — Seqi > MaxLost then there are too many missing data.
The flow cannot be fully restored. Close it and proceed with next
SYN packet.

(d) If Seqi+i = Seqi + PSi the expected packet is present, add it into the
L7 PDU.

(e) If F I N / R S T / P S H flag is found or PS = MaxPayload, close the L7
P D U .

(f) GOTO 2a.
3. Process remaining packets without SYNs. Create new L7 flows using

timestamps and sequence numbers only.
4. Process every L7 flow and create L7 PDUs using T C P reassembling

1 MaxLost was experimentally set to 4 kB, which is more than two times greater than
maximal Ethernet P D U size, i.e., 1500 Bytes. MaxTime is six times greater than
recommended T C P connection failure timeout as defined in R F C 1122. These values
say that packet loss longer than 600 sees or missing 4 kB cannot be successfully
recovered.

162

Advanced Techniques for Reconstruction of Incomplete Network Data 75

- Add every packet of the L7 flow into the L7 P D U until F I N / R S T / P S H or
PS = MaxPayload. Then close the L7 P D U and create new one for new
packets.

5. Combine opposite L7 flows into a L7 conversation using corresponding SYN
and A C K numbers.

The main benefit of this approach is the reconstruction of original U D P / T C P
sessions even if some important packets are missing. Based on T C P initial Seq
numbers, the algorithm combines two flows into a conversation. The algorithm
deals with missing SYNs, FINs, overlapping sessions, or T C P numbers overflow­
ing. As the result, we have L7 P D U objects that can be processed on L7.

Table 1 compares our approach with a few available NSMs or NFATs. For our
study, we have chosen Wireshark, Microsoft Network Monitor, NetWitness and
Network Miner. In the first test we used an artificially arranged dataset with
(i) one FIN packet missing, (ii) one SYN packet missing, and (iii) two SYNs
missing. Original 650 kB P C A P file contained 19 conversions. Further analysis
showed that in case of missing SYNs and the same port numbers, Wireshark
joins two conversations into one. MS Network Monitor works well with missing
SYNs, but it is not able to properly close communication if a FIN is missing.
In such case, it combines two conversations into one. NetWitness also joins two
conversations into one. Network Miner works similarly to Wireshark.

Table 1. Detection of network conversation when missing S Y N / F I N packets.

File N F X Det Wireshark MS Monitor NetWitness Net Miner

One F I N missing 19 19 18 17 19
One S Y N missing 19 18 19 17 18
Two SYNs missing 19 17 19 17 17

The second test used 8 M B P C A P file with some packets randomly deleted.
Table 2 shows results when 0%, 1%, 5%, or 10% of packets were removed.
Original file contained 126 conversations. Netfox Detective shows number of L7
conversations.

Table 2. Detection of network conversations when some data are deleted.

File N F X Det Wireshark MS Monitor NetWitness Net Miner

0 % missing 126 126 132 128 76
1 % missing 126 126 132 128 75
5 % missing 129 125 129 127 71
10 % missing 131 125 129 127 66

163

76 P. Matoušek et al.

The table shows that Netfox Detective finds more L7 conversations than
originally stored in the in-corrupted file. The reason is that when some packets
are missing, a corrupted L7 conversation is divided into several L7 conversation
due to the large number of missing packets or large timestamp difference, see
Fig. 3. Wireshark and Net Witness also miss a conversation. However, since they
consider all packets between the same src/dst ports as one conversation, missing
packets usually did not reduce number of all conversations. MS Network Monitor
also shows stable results. The results of Network Miner are very different but we
are not able to say why.

L 4 conversation

L 7 conversation

Corrupted
L 7 conversation

Recovered
L 7 conversation

H T T P client <-> server

H T T P Req/Resp H T T P Req/Resp H T T P Req/Resp

H T T P Req/Resp H T T P Req/Resp

Resp H T T P Req/Resp H T T P Req/Resp

F i g . 3. Recovery of corrupted conversations.

3.3 Application Protocol Identification

The result of previously described reconstruction methods are L7 PDUs that
represent L7 objects (payloads) prepared for L7 parsing. Before L7 parsing,
L7 protocol should be identified in order to choose the right L7 parser. There
are many methods for application protocol identification. The easiest method
is based on well-known port numbers assigned by Internet Assigned Numbers
Authority (IANA). Unfortunately, this method does not work well with appli­
cations using dynamic ports, peer-to-peer communication, video streaming, etc.
More advanced methods use payload inspection that is suitable for protocols
that can be recognized by some characteristic patterns either in a header or
payload. There are also methods based on protocol fingerprinting or statisti­
cal data. In our approach, we combine several methods for application protocol
identification.

1. Identification using extended IANA database.
The first algorithm matches port numbers with extended IANA database of
well-known ports. Our database extends IANA data by similarities, i.e., one
input port number can match more applications. For example, Dropbox file
hosting service can work on ports 80, 443, or 17500. Based on given application
tags, L7 parser is chosen. Currently, our database can identify 1058 different
application protocols.

164

Advanced Techniques for Reconstruction of Incomplete Network Data 77

2. RTP Fingerprinting.
If there is no match on input ports, RTP fingerprinting method is applied [8].
This method uses a multi-stage classifier that observes minimal RTP header
length, RTP version number, and RTP payload type number. If a packet
successfully passes this filtering, per-flow checking is applied using minimal
number of packets in an RTP flow to reduce false positives.

3. Statistical Protocol Identification (SPID).
This method developed by Erik Hjelmvik [9] is based on supervised learn­
ing using pre-classified samples of captured network traffic where application
protocols are correctly annotated. The algorithm generates protocol model
database that stores application fingerprints. Currently, our database can
identify 20 protocols with an ability to add new protocols.

4 A p p l i c a t i o n Pa r s ing

After building L7 PDUs and successful L7 protocol identification, application
data can be processed by L7 parsers. As mentioned in Chap. 3, T C P / U D P
streams are reconstructed without any knowledge of higher layers. This helps
in case when an application parser is not implemented for a specific protocol. In
that case application data can also be extracted from communication.

Main goal of our approach is to augment the reconstruction process when
some data are missing. As mentioned earlier if only a few data is missing, lost
packets can be replaced by new packets with empty payload. If more packets are
lost, an original stream will be recovered as a collection of shorter streams that
formed the original stream.

In this section, we will discuss how data reconstruction influences L7 process­
ing and data presentation in case of incomplete data. For demonstration, we
choose three areas that build challenges for common network parsers: web mail
communication, SSL/TLS encrypted traffic, and bitcoin transactions.

4.1 Web M a i l Analysis

Web mail communication is very popular today. Web mail servers employ H T T P
protocol to encapsulate transactions between a user web browser and a web
mail server. Mail exchange between web mail servers is mostly provided using
SMTP protocol. Forensic analysis of web mail services is different from com­
mon web browsing. Many web mail servers utilize advanced web technologies
like JavaScript, A J A X , JSON that dynamically create web pages. Analysis and
interpretation of captured web mail data are limited due to the usage of web
browser caches that store frequently used H T T P objects. These objects are not
present in captured traffic, therefore, they are unavailable for forensic analysis.

The web mail analysis includes two phases: (i) the identification of web mail
data between other H T T P traffic and (ii) the analysis of captured web mail
data. In addition, most of web mail transmissions are SSL/TLS encrypted, so
SSL/TLS decryption is required if possible (see Sect. 4.2). If encrypted, web

165

78 P. Matoušek et al.

mail traffic can be identified using a name or IP address of a particular web
mail server, see Table 3. If not encrypted, a pattern matching on URLs can be
applied.

Table 3. Identification of web mail services during S S L / T L S handshake.

Web mail service Server name Encoding

seznarn.cz, email.cz email.seznam.cz FastRPC
G mail mail-

attachment, googleuser
content.com

application/x-www-form-urlen coded
;charset—utf-8

Yahoo mail.yahoo.cz ap pli cat io n/j son
multipart/form-data-incl JSON

M S Live various application/x-www-form-urlen coded
Centrum/ Atlas mail.centrum.cz application/x-www-form-urlen coded

Roundcube private service hostname application/x-www-form-urlen coded

Horde private service hostname multipart / form-data

For processing of a captured web mail data, following observations were made:

- Web mail messages transmitted over H T T P can be detected using URL pat­
terns: /mail/. * for Gmail, ol/mail.fpp for MS Live Mail, appid=YahooMailNeo
for Yahoo, etc. However, these patterns usually change with a new version of
the server.

- The communication from a user towards the server is transmitted via POST
method of H T T P protocol [10]. GET method is employed for listing mail
folders.

- Web mail messages are mostly encoded using simple key=value pairs in the
URL. There are several types of actions that can be identified in a key field:
compose-message, send-message, save-draft, get-inbox, delete-message. Each
web mail service uses different names for these actions, so data analysis should
be performed for every new web mail protocol.

- Some web mail objects can be transmitted as JSON objects in M I M E struc­
ture, X M L - R P C objects, etc.

- Because of dynamic web programming and client-based technologies (i.e.,
JavaScript), forensic page rendering of web mail is difficult and cannot be
fully accomplished without having contents of web caches. Practically, inves­
tigator's view is limited to a simple textual form of analyzed data.

4.2 SSL/TLS Detection and Encryption

The SSL/TLS encryption is a big challenge for current NFAT tools because it
completely hides the contents of the network communication. It forms a modular

166

http://seznarn.cz
http://email.cz
http://email.seznam.cz
http://content.com
http://mail.yahoo.cz
http://mail.centrum.cz

Advanced Techniques for Reconstruction of Incomplete Network Data 79

framework that combines various cryptography mechanisms defined by a cipher
suite [11]. Clients and servers can negotiate cipher suites to meet specific security
and administrative policies during initial SSL/TLS handshake. The cipher suite
defines following mechanisms:

- A key exchange algorithm. General goal of the key exchange process is to
create a pre-master secret known to the communicating parties that is used
to generate the master secret. Using master secret encryption keys and M A C
keys are generated. Most common key exchange algorithms are RSA, Diffie-
Hellman, E C D H , etc.

- A peer authentication. TLS supports authentication of both peers, the server
authentication with an unauthenticated client, and total anonymity. When­
ever the server is authenticated, the channel is secure against man-in-the-
middle attacks. Server authentication mostly requires a RSA or DSA certifi­
cate to prove an authenticity of the server side.

- Message integrity. Message integrity is ensured using Message Authentication
Code (MAC) algorithms like MD5, SHA1, or SHA256. A cryptographic hash
(often called message digest) is computed using these algorithms and added
to the end of each block.

- A bulk cipher algorithm. This algorithm is used for a message encryption.
The specification includes the cipher type (stream, block, A E A D [12]), the
key size, the block size of the cipher (applied only to block ciphers), and the
length of initialization vectors (or nonces). Common bulk ciphers are RC4.
3DES, AES, IDEA, or Camellia.

There are two basic approaches for SSL/TLS decryption [13]:

- A getting server private key. This key can be used to calculate a session key
that have encrypted the conversation. The session key is generated during the
key exchange.

- A MitM attack on SSL/TLS connection. Another method to get decrypted
contents is to use man-in-the-middle (MitM) attack employing a special proxy
server to track the communication between the client and server. At the same
time, the communication with the user node employs different TLS keys gen­
erated by the proxy server. In this case, proxy server should offer a fake
certificate in order to impersonate the original server. There are several tools
implementing this proxy, e.g., SSLsplit, Fidler, etc.

Bulk cipher algorithms incorporate methods of a block cipher or stream
cipher encryption that defines how a block or stream of a plain text will be
encrypted and how the encryption key is generated for each data block, e.g.
C B C (Cipher Block Chaining), G C M (Galois/Counter).

- The Cipher Block Chaining requires complete data for successful reconstruc­
tion because of data dependency, see Fig. 4A. If data are corrupted, successful
analysis can be provided until the first error occurs in the stream. In such
case, only meta information about the conversation are available, e.g. T C P
completeness, probable conversation length, duration, etc.

167

80 P. Matousek et al.

F i g . 4. C B C and G S M encryption.

- The Galois/Counter mode can be reconstructed even if some data are missing
because cipher blocks are independent, see Fig. 4B.

Currently, our tool Netfox Detective supports analysis and decryption of
various cipher suites, see Table 4.

Table 4. Cipher suites supported Netfox Detective.

TlsRSAWithAesl28CbsSha TlsRSAWithAes256CbsSha

TlsRSAWithAesl28CbsSha256 TlsRSAWithAes256CbsSha256

TlsRSAWithAesl28GcmSha256 TlsRSAWithAes256GcmSha384

TlsRSAWithRc4128Md5 TlsRSAWithRc4128Sha

If a server key is available, this communication can be decrypted as presented
in Fig. 5. This picture shows a successful decryption of web mail communication
encrypted using TLS.

4.3 Bitcoin Detection

Bitcoins as currency (BTC) are getting more and more popular since 2008,
especially because of their anonymity. Bitcoin network is secure by design against
correlating transactions with individual users. However, forensic tools can at
least detect bitcoin traffic within a network.

Bitcoin operates over peer-to-peer (P2P) network consisting of two node
kinds: (i) clients, which send, receive, or relay B T C transactions; and (ii) miners,
which verify transactions using a special proof-of-work algorithm.

168

Advanced Techniques for Reconstruction of Incomplete Network Data tsl

F i g . 5. Reconstruction of encrypted web mail data.

BTC uses three different protocols for its functionality where each protocol
has a different value for the forensic investigation. These protocols are as follows:

1. Bitcoin v . l protocol2 is employed for P2P communication between peers (con­
nected nodes). For forensic analysis, its detection can help to identify the end
stations running Bitcoin client software. The protocol runs over TCP, port
8333. It transmits messages required for both a node discovery and Bitcoin
transactions.

Node discovery is provided twice in Bitcoin network:

- Upon software start-up, a client looks for special domain names (e.g., bit-
coin.sipa.be, dnsseed.bluematt.me) in DNS in order to discover initial set of
peers to get connected. Usually, the client uses a list of pre-configured stable
nodes of the Bitcoin network.

- Upon successful connection to a node, the client may request a list of neigh­
boring peers to expand its connectivity graph.

The protocol messages that helps us to detect a communication within Bit-
coin P2P network area as follows: version and verack (useful for connection
initiation), address (to detect a communication graph and provide informa­
tion of known nodes), and ping-pong (a keep-alive mechanism). For forensic
purposes, also messages inv, tx, and block are important since they transmit
valuable information about processed transactions. The list of all Bitcoin v . l
messages is shown in Table 5.

2 See https://bitcoint.org/en/developer-documenation, June, 2015.

169

http://sipa.be
https://bitcoint.org/en/developer-documenation

82 P. Matoušek et al.

Table 5. Bitcoin v . l protocol.

Messages Description Message Description

version, verack Opening messages tx, notfound Responses to getdata

getaddr, addr Lis t of known peers ping, pong Keepalive messages

inv A new object announcement alert Broadcast notification

getdata Request for object value mempool Retrieving a transaction

getblocks, blocks Retrieval of a block filterload/add Bloom filter operations

getheaders, headers Retrieval of a header reject Negative response

2. Another group of protocols (e.g., Getwork, Getworktemplate, Stratum) is
used for work distribution for miners cooperating in the pool. The detection
of these protocols implies an existence of bitcoin miner in the local network.

3. The last protocol group involves remote procedure call (RPC) messages that
are employed for remote control of various Bitcoin related services (e.g.,
remote wallets controlled by a smart phone, on-line trading on Bitcoin
exchanges, etc.).

Netfox Detective currently supports decoding of Bitcoin v l protocol that
helps to detect devices that run Bitcoin clients, work as Bitcoin miners, or access
Bitcoin related services, see Fig. 6.

Fig. 6. Bitcoin analysis using Netfox Detective.

Based on these information, it is possible to create Bitcoin communication
graphs and correlate the pool member and mining rig owner.

170

Advanced Techniques for Reconstruction of Incomplete Network Data 83

Captured network data can be used to provide an evidence that the seized
server really conducted Bitcoin transactions, see Fig. 7.

«ith more than 1300PCAPs « th evidence
6000transactions morethan 1 TB of data

F i g . 7. Digital investigation of Bitcoin transactions.

5 Conc lus ion

Network forensics represent several challenges for security analysts. Network
data are volatile what causes that communication traces are not captured com­
pletely. In addition, plenty of protocols are utilized in the current network com­
munication. Many network applications also employ application-level protocol
H T T P only as a data channel offering end-to-end connection. With the increased
amount of traffic being encrypted, it is even complicated to recognize classes of
applications in the captured communication.

In this paper, an overview of issues related to a recovery of the application
content from captured traffic was presented. For identified problems, proposed
methods were tested by implementing them in a novel network forensic tool.
Based on the comparison to related tools, achieved results are promising for the
further development of our NFAT tool.

Future work is delineated by the stated facts. Because of widely used traffic
encryption, NFAT tools have to analyze meta-information associated with the
traffic, e.g., recognizing events from communication, identifying end users, or
approximate the meaning of information hidden in the encrypted communica­
tion. Also, the amount of communication requires NFATs to handle big data
from various sources. Finally, NFATs should be extensible to deal with various
classes of applications, e.g., web mail or Bitcoin traffic.

171

84 P. Matousek et al.

Acknowledgment . Research in this paper was supported by project "Modern Tools
for Detection and Mitigation of Cyber Criminality on the New Generation Internet",
no. VG20102015022 granted by Ministry of the Interior of the Czech Republic and an
internal University project "Research and application of advanced methods in ICT" ,
no. FIT-S-14-2299 granted by Brno University of Technology.

References

1. Cohen, M.I. : PyFlag - an advanced network forensic framework. Digit. Investig. 5,
112-120 (2008)

2. P i l l i , E.S., Joshi, R .C. , Niyogi, R.: Network forensic frameworks: survey and
research challenges. Digit. Investig. 7, 14-27 (2010)

3. Hunt, R., Zeadally, S.: Network forensics: an analysis of techniques, tools, and
trends. Computer 45, 36-43 (2012)

4. Dharmapurikar, S., Paxson, V. : Robust T C P stream reassembly in the presence of
adversaries. In: U S E N I X Security Symposium. (2005)

5. Postel, J.: Internet Protocol. R F C 791 (1981)
6. Postel, J.: Transmission Control Protocol. R F C 793 (1981)
7. Stevens, W. , Fenner, B . , Rudoff, A . M . : U N I X Network Programming: The Sockets

Networking A P I , 3rd edn. Addison-Wesley, Reading (2004)
8. Matousek, P., Rysavy, O., Kmet, M . : Fast R T P detection and codecs classification

in internet traffic. J . Digit. Forensics Secur. Law 2014, 99-110 (2014)
9. Hjelmvik, E . , John, W.: Statistical protocol identification with SPID: preliminary

results. In: Swedish National Computer Networking Workshop (2009)
10. Fielding, R., Gettys, J . , Mogul, J . , Frystyk, H . , Masinter, L . , Leach, P., Barners-

Lee, T.: Hypertext Transfer Protocol - H T T P / 1 . 1 . I E T F R F C 2616 (1999)
11. Dierks, T., Rescorla, E . : The Transport Layer Security (TLS) Protocol Version 1.2.

I E T F R F C 5246 (2008)
12. McGrew, D.: A n Interface and Algorithms for Authenticated Encryption. I E T F

R F C 5116 (2008)
13. Davidoff, S., Ham, J.: Network Forensics: Tracking Hackers through Cyberspace,

1st edn. Prentice Hall, Upper Saddle River (2012)

172

A.10 Netfox Detective: A Tool for Advanced Network Foren-
sics Analysis

Jan P luska l , Pe t r M a t o u š e k , O n d ř e j Ryšavý , M a r t i n K m e t , V l a d i m i r Veselý, F i l i p Karp í šek ,
and M a r t i n Vymlá t i l . "Netfox Detective: A tool for advanced network forensics analysis".
In: Proceedings of Security and Protection of Information (SPI) 2015. Brno , C Z : Brno
Univers i ty of Defence, 2015, pp. 147-163. I S B N : 9788072319978

173

Netfox Detective: A Tool for Advanced Network Forensics
Analysis

J. Pluskal, P. Matoušek, O. Ryšavý, M. Kmeť, V. Veselý, F. Karpíšek, M.
Vymlátil

{ipluskal,matousp,rysavy,ilmiet,ivesely}@fit.vutbr.cz,
{xkarpi03,xvymla01 }@stud.fit.vutbr.cz

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Abstract
Network forensics is a process of capturing, collecting and analysing network data
for the purposes of information gathering, legal evidence, or intrusion detection.
The new generation internet opens novel opportunities for cybercrime activities
and security incidents using network applications. Security administrators and LEA
(Law Enforcement Agency) officers are challenged to employ advanced tools and
techniques in order to detect unlawful or unauthorized activities. In case of serious
suspicion of crime activity, network forensics tools and techniques are used to find
out legal evidences in a captured network communication that prove or disprove
suspect's participation on that activity.

Today, there are various commercial or free tools for network forensics analysis
available, e.g., Wireshark, Network Miner, NetWitness, Xplico, Netlntercept, or
PacketScan. Many of these tools lack the ability of successful reconstruction of
communication when using incomplete, duplicated or corrupted input data.
Investigators also require an advanced automatic processing of application data that
helps them to see real contents of conversation that include chats, VoIP talks, file
transmission, email exchange etc.

Our research is focused on design and implementation of a modular framework for
network forensics with advanced possibilities of application reconstruction. The
proposed architecture consists of (i) input packet processing, (ii) an advanced
reconstruction of L7 conversations, and (iii) application-based analysis and
presentation of L7 conversations. Our approach employs various advanced
reconstruction techniques and heuristics that enable to work even with corrupted
or incomplete data, e.g. one-directional flows, missing synchronization, unbounded
conversations, etc.

174

The proposed framework was implemented in a tool Netfox Detective developed
by our research group. This paper shows its architecture from functional and
logical point of view and its application on reconstruction of web mail traffic, VoIP
and RTP transmissions.

Keywords: network forensics, forensic tools, network traffic analysis, Web mail,
SIP, RTP

1 Introduction

Network forensics is a discipline that deals with obtaining and analysing digital
evidences from network sources. It is an extended phase of network security where
the main goal of network forensics is to track and analyse network data in order to
detect security incidents and present evidences of these incidents to security
administrators or investigators. Network forensics use different supporting tools
and devices that (i) obtain and collect data (firewalls, IDS systems, capturing tools),
and (ii) process, analyse and reconstruct captured data. Network forensic tools are
mostly used by security administrators and LEA officers that try to search network
data for legal evidences of unlawful behaviour. The aim of the analysis is to
establish high level facts such as attribution, intent, identity, timelines and other
information which may be relevant to the security incident.

Tools for network forensics can be classified into two main groups: Network
Forensic Analysis Tools (NAFTs) that allow administrators to monitor network,
gather all information about the traffic and assist in network crime investigation,
and Network Security and Monitoring (NSM) tools that are focused more on
network monitoring and management. There is a wide range of commercial and
open-source NFATs and NSM tools [1]. The primary motivation behind NSM
tools is network security from perspective of system administration. N S M tools are
very useful in processing large amount of data in short time with limited
functionality concerning application protocol dissection. NMS tools include
(i) IDS/IPS systems for detection or prevention of malicious activity on network,
(ii) statistical tools used for data retention to store meta-information about the
traffic, (iii) packet capture and analyses tools that capture communication on local
networks and analysing it. The most common NSMs focused on packet capturing
and analyses are Wireshark, TCPdump, or Microsoft Network Monitor. These
tools are also used for basic network forensic analysis. However, they are mostly
oriented on simple analysis of internet and transport layers of TCP/IP model. Some
of them even contain an application layer protocol dissector, but the provided
information is a context-free parsed internal protocol structure.

175

In this work, we focus on NFATs. NFATs offer a wide range of research challenges
in domain of analysis and reconstruction of captured traffic. Research challenges
cover (i) network stream reassembling that include detection of TCP/UDP streams,
dealing with out of sequence data, missing or corrupted packets, timestamps
overflow, combing streams into bi-directional conversations etc. [2]; (ii) advanced
identification of L7 applications using AI techniques, data mining or statistical
methods [3]; (iii) processing and analysis of L7 application using application
dissectors, (iv) identification and statistical processing of encrypted or tunnelled
traffic, (v) efficient storage of big network data with parallel computation,
(vi) correlation of different input data, etc.

This paper describes architecture and implementation of a network forensic tool
Netfox Detective developed by our team in frame of security research supported by
Ministry of Interior of the Czech Republic. The tool is designed for advanced
reconstruction and analysis of captured network data with focus on emails
(including web mails), HTTP reconstruction and intelligent detection and
reconstruction of Voice over IP. Our framework combines advanced techniques
and heuristics for assembling captured data, identification of L7 traffic,
reconstruction of original conversations, and presentation of L7 objects to an
investigator. The proposed framework uses modular programming environment
with well-defined API so new modules (application dissectors, processing engines)
can be added without a need to re-build the entire application. It also supports
parallel processing with efficient data storage.

2 Related Work

Network forensics was formally defined in 2001 on the First Digital Forensic
Research Workshop [4] where also major issues were identified: (i) time, i.e.,
synchronization and integrity of data and time associated with events being
analysed; (ii) performance, i.e., speed and effectiveness of processing and
computation; (iii) complexity, i.e., general environment with multiple operating
systems, network devices, different data formats, and (iv) collection, i.e., who will
collect data, when, and what to be collected?

After a decade of innovations and research, general process model for the network
forensic analysis has been introduced [1]. General model was composed of blocks
with separated functions and was divided into two layers: (i) lower layer that
included preparation, detection, collection, and preservation; and (ii) upper layer
containing examination, analysis, investigation, and presentation.

176

Overview of different frameworks based on distributed systems, soft computing,
honeypots, graphs, formal methods, or aggregation can be found in [1], In that
paper, Pilli et al. present a survey of current network forensic frameworks. Most of
discussed frameworks were designed to as research tools to prove advanced
approaches and techniques in the area of network forensics. Our tool presented in
this paper employs some of these ideas but its development is driven by practical
usability and deployment.

On the field of free tools, there are several applications that were observed.
NetWitness filters captured traffic by processing frames and creating a lexicon of
identifiers found in different L3-L7 layers, e.g., IP addresses, email addresses, URIs,
etc. An investigator searches this lexicon to filter interesting captured content. The
result can be stored as filtered captured traffic or analysed by another NFAT.
Another popular tool is NetworkMiner1 developed by Erik Hjelmvik, an author of
Statistical Protocol Identifier (SPID) algorithm for application protocol detection
[3]. NetworkMiner processes captured or online communication with an
instantaneous analysis of application protocol. The analysed content is grouped
into categories based on its characteristics, e.g. images, messages, credentials, files,
frames, hosts, sessions. The tool lacks detailed views of captured data and is not
able to backtrack objects to its original representation in captured packets. Xplico2

is an open source NFAT platform composed of functional blocks. Application data
are prepared by traffic decoder and then processed by manipulators. Xplico
supports various application protocols, e.g., HTTP, SIP, IMAP/POP3/SMTP,
FTP, etc. with ability to provide congruent investigation for multiple investigators
at once. The tool provides a user interface via a web browser which is simple to use,
but it is not suitable for advance analysis, e.g., advance filtering, getting data
integrity statistics, etc. Nevertheless, Xplico is the most advanced open source
NFAT available.

3 Netfox Detective Architecture

By testing available NFATs we discovered that none of these tools is sufficient to
accurately extract incomplete network data. In addition, advanced processing of
application protocols with user-friendly presentation was mostly missing and
limited large deployment of these tools for investigators. To overcome these
limitations, a new network forensics framework was proposed with advanced
parsing features.

1 See http://www.netresec.com/?page=NerworkMiner.
2 See http://www.xplico.org.

177

http://www.netresec.com/?page=NerworkMiner
http://www.xplico.org

Netfox (NETwork FOrensiCS) Detective is a NFAT framework operating upon
four upper layers of generic process model of NFATs as described in [1]. The tool
processes input network data stored in different PCAP formats3 using a generic
algorithm that respects L2-L7 encapsulation of PDUs. As described in [2],
advanced heuristics is employed to extract maximal amount of information from
PDU headers.

Q CaptLjreFle2 [̂ J Capturel Investigation!
Workspaces

DetectiveViews

DetectiveViewModels

DetectiveModels

PaneView Models

DataEntityViewModels

PersistenceCollection<T>

1 HTTP
Snoopers J CoreController |- PmLib Frame

Email StreamPDUProvider L3ConversationTracker L3Conversation

IMS TLS Decrypter L4ConversationTracker L4Conversation

1 Webmail
L7ConversationTracker L7Conversation L7PDUS

SIP Application Recognizer ProtocolPortDB RTP 1 SPID

Figure 1: Functional architecture and data model of Netfox Detective.

Netfox Detective has been designed to be used on Windows 7+ platform. To
ensure proper behaviour and modular architecture as shown in Fig. 1, the Model-
View-Viewmodel (M W M) 4 design pattern has been chosen with asynchronous
programing provided by .NET 4.5.2 and C# 6. When launching the tool, a new
workspace is created or a recently used workspace is re-loaded. The workspace
represents a directory structure in a file system where all data related to the
workspace are stored. The workspace contains one or more investigations that can
consists of one or more PCAP files, see Fig. 2. Data processing is controlled by
Core Controller that communicates with PmLib module, Conversation trackers and
Snoopers. Application Recognizers use different techniques to identify L7
applications, see below. Application analysis and presentation of the results is
implemented using L7 Snoopers over HTTP, Emails, IMs, Web mails, or SIP.

3 E.g., see L i b P C A P and P C A P N G at https://wiki.wireshark.org/Development/LibpcapFileFormat (PcapNg),
or M S Network Monitor P C A P at http://blogs.teclinet.eom/b/netmon/p/downloads.aspx.
4 See https://msdn.microsoft.com/en-us/library/hh848246.aspx.

178

https://wiki.wireshark.org/Development/LibpcapFileFormat
http://blogs.teclinet.eom/b/netmon/p/downloads.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx

User
Netfox Workspace Core

User
Detective Manager Controller

>rkspace—•]
r— Select W o r k s p a c e ^ T C r e a t e W c ^ P * ^
I—Create Investigation-^ I

l-Create Investigations
Select Investigation-^

Add Capture
Add Capture—

—Export SIP—

—Show exports-
-Export SIP—

I

Figure 2: Logical interactions of presentation model.

NFATs usually require flexible design with extensibility that allows addition of new
features and propagation of these updates throughout the modular architecture
without changing internal data structures. This can be implemented using
document-oriented database that processes dynamic semi-structured data types in
contrast to pre-defined types in relational databases where relations between data
are fixed and must be defined in advance. Netfox Detective framework employs
document-oriented database system MongoDB5. This approach ensures persistence
across the entire framework using only one implementation for each data model.
Basic data models Workspace, Investigation, Capture, and Investigationlnfo are listed
in Fig. 3.

A Create)
A Quid
A n -i" in:Z if.::c • '-'s
A rTvi-ibgationif iWirtii
> r.. " C . T • 1:T
A Njmt
A Work üpaccD i ret t cry I rtfo
A Wcrtip*t»f1klnfo

|--r:-|fj--|r •
C M

f
' PrcperUM

A •! .r1 -. i- IV ' I • |V
A Ei cortlGroupl
A UConnnrtow

I P L-iCenvcrsBdc ns
A L7C6fW«rMllO<1t
A Operation Logs
A 'sneopeftMfwrts

Capture

A FiWnfo

A Capture

A nv«jt>gttC4

- PropflllH
A Audis«

A DatEbäi-sDi-ertor, Inf̂
A QMcr.ptinri
ft E> DörtlDi'r*ttüryhf ü
> . Guid
A InvestHjatwwiFileln-fi}
A LMlR«.«ntlyLK«0

> N i m
A S^ingiDiiwtorylnrc.
A Sdul«CapturfT>r«elD l̂r<fe
A (̂XJ iccDiTctMylnifB
A lr<4 ö^Q-FT I Of, In Ho
A S&L.[CcNe l̂crwD"rKtw^,ln4rj
A Ir^ip&rKWfyn**

Figure 3: Database models used in Netfox Detective to ensure
persistence of workspaces and investigations.

1 See http://www.mongodb.org/about/.

179

http://www.mongodb.org/about/

Captured network data are processed using a pipeline that extracts crucial
information for further analysis, see Fig. 4. At first, a PCAP file is added to an
investigation and parsed in PmLib module that builds a frame collection. Each
module LxConversationTracker asynchronously processes every new frame and
creates an appropriate PersistenceCollection for X-th level conversation, e.g., for L3,
L4, or L7 layer. The L7ConversationTracker builds application layer conversations
over TCP or UDP sessions, and creates application protocol messages called
L7PDUs without any syntactical knowledge of the particular application protocol.
Conversation tracking and reconstruction uses port numbers and TCP sequence
numbers to detect missing data or unclosed sessions. It also employs timestamps to
increase accuracy of reconstruction. Detailed description of packet reassembling is
described in [2].

NFX Core Packet L3Conu L4Conu L7Conv Application
Detective Controller PmLib Dot Net Tracker Tracker Tracker Recognizer

| -AddCapt U re>{_ 0 p e n C a p > |

I—Parse framed.
- F r a m e ^ ^

T ^ f rame—
—^— New frame-,
— L3 Conversation -
—I 1|_4 Conversation '

Track L7 conversations—
L7 conversation ! -Recognizee

Figure 4: Asynchronous capture file processing pipeline.

The key issue for successful L7 analysis provided by application extractors (snoopers)
is a correct identification of L7Conversations. Identification is provided by the
Recognizer that assigns one or more application tags to a l./Conversation. The
algorithm uses extended IANA database of well-known ports, RTP recognizer for
dynamic RTP streams [5], or SPID algorithm [3] using statistical based
identification.

Snooper modules are dynamically loaded to Netfox Detective, therefore, no
recompilation is needed when a new application parser (snooper) is added. The
snooper is a reconstruction engine of the application protocol. Outputs of one
snooper can be chained into another snooper for further reconstruction, e.g., outputs
of HTTP analysis can become inputs of web mail snooper. Snoopers export the
contents of conversations with corresponding meta-data obtained during the
application protocol processing into a current investigation.

180

NFX
Detective

Core
Controller

SnooperSip SipParser
PDUStream

Reader
PDU

Provider
PmLib

-Export SIP-

loop 7
loop 7

-Process—P1

-Get t ine—H
I - G et Data-

ExportReport -(

! < - - U n e K - - t 7 P D . - - i
- M s g p- I I

1 1 r
I

•GetFrame-H

Figure 5: SIP application protocol data extraction using the SIP Snooper module.

Each snooper defines its own models, views and view-models to provide a detailed
presentation of reconstructed data, e.g, HTTP snooper shows reconstructed web
pages, an email snooper lists reconstructed emails, VoIP snooper describes VoIP
session with RTP streams to be replayed, etc. Example of SIP snooper processing is
at Fig. 5.

As mentioned above, snoopers provide a syntactical analysis of communication.
Until this point, data processing has been based purely upon information obtained
from layers L3 and L4. The snooper analyses a particular application protocol, i.e., it
parses application messages. The snooper communicates with low level modules as
PDUStreamReader, or PDUProvider that deal with missing or overlapping
segments, TCP sequence number overflow, missing SYN and FIN packets, IP
defragmentation, etc. The snooper processes logical L7PDUs as soon as all
conversations have been successfully restored over L4. It receives data from the
PDUStreamReader module. PDUProvider prepares input data for PDUStream­
Reader using one of four strategies shown on following example, see also Fig. 6:

1. Broken Interlay — The first application message consists at maximum of
PDU1 and PDU2 transmitted in Frame 1, 2, 3. The arrival of Frame 4 on
client side signals that the application message has ended. This is typical
for request/response protocols. The second application message is
contained only in PDU3 and the third in PDU4.

2. Continued Interlay — The first application message consists at maximum of
PDU1, PDU2, and PDU4 without taking into account frames arriving in
opposite direction.

181

Client Server

PDU3: F4

-Frame 1 •

_Frame 2 .
PSH

Frame 3 .
PSH

-Frame 4 -
Frame 5

PSH

PDU1: F1+F2

PDU2: F3

PDU4: F5

Figure 6: Processing PDUs.

3. Mixed Interlay — The first application message might consist of PDU1,
PDU2, PDU3, and PDU4. This mode mixes PDUs from both directions
into one bi-directional stream.

4. Single Message Interlay
single PDU.

Every application message consists only of one

Generally, one application message can be composed of one or more PDUs. When
some frames are missing, a virtual frame is created in order to complete proper
PDU processing by a snooper. Using this approach, succeeding un-corrupted
message will be properly reassembled in contrast to MS Monitor that might
misinterpret succeeding messages.

4 Extracting Application Data
Application protocol data extraction is a process of analysing application layer data
streams, i.e., payloads of L7 conversations. This analysis requires knowledge of
application protocol syntax as well as semantics to extract significant information
for forensic analysis. Following examples of application processing demonstrate
how L7 parsing is implemented in NetFox Detective. They also describe advanced
techniques for reconstruction of incomplete or corrupted application data.

4.1 Web mail

Communication using emails is necessity for everyone today. A majority of users
uses web browser to access their mail boxes and to operate with their mail accounts.
Therefore, HTTP protocol is mostly used to tunnel web mail communication.
Traditional email protocols like POP3, IMAP, and SMTP have been mostly put

182

aside from the end user perspective, even though they are still used among email
providers.

In this study, we have focused on web mail traffic analysis in order to create
a general model that would be able to process web mail independently on particular
service used. As it is seen in Table 1, following operations similar for all analysed
web mail services can be identified despite the fact that general structure of web
mail is not standardised and web mail providers implement various transmission
methods how to deliver web mail contents, e.g., using RPC sessions, JSON
applications, etc. Table 1 shows how basic web mail operations can be identified in
URL or HTTP header payload using simple pattern matching.

Operation Web mail patterns used in URL or H T T P header

New Message Keywords: from, to, subject, cc, bcc, content/body,
SendMessage.

Message
manipulation

URL request/HTTP header: move, delete,
MoveMessageTo Folder.

Email header request URL request/HTTP header: list, search, GetlnboxData.

Table 1: Common operations and methods of their detection.

Web mail services can be divided based on data privacy protection into three
groups: (i) web mail service with unencrypted authentication and mail
transmission, e.g. zoznam.sk, tiscali.cz (ii) web mail services with encrypted
authentication and unencrypted mail transmission, e.g., centrum.cz, atlas.cz and
mujmail.cz (iii) web mail services with encrypted authentication and encrypted mail
transmission, e.g., seznam.cz, gmail.com, email.cz.

When web mail authentication is encrypted, web mail communication cannot be
identified using standard URL analysis but other techniques can be employed. One
possibility is to use client's header extension in SSL/TLS handshake where Hello
message contains the server name. The server name might indicate that following
SSL/TLS communication transmits web mail. Also, DNS resolution can be
employed to detect web mail service, see Table 2.

Web mail Server name Encoding

seznam.cz,
email.cz

email.seznam.cz FastRPC

183

http://zoznam.sk
http://tiscali.cz
http://centrum.cz
http://atlas.cz
http://mujmail.cz
http://seznam.cz
http://gmail.com
http://email.cz
http://seznam.cz
http://email.cz
http://email.seznam.cz

Gmail mail-
attachment.googleusercontent.com

application/x-www-form-
urlencoded;charset=utf-8

Yahoo mail.yahoo.cz application/json
multipart/form-data - incl JSON

MS Live application/x-www-form-
urlencoded

Centrum
/Atlas/Mujmail

mail.centrum.cz application/x-www-form-
urlencoded

Roundcube <private service hostname> application/x-www-form-
urlencoded

Horde <private service hostname> multipart/form-data;

Table 2: Identification of particular web mail service.

4.2 Voice over IP

Voice over IP (VoIP) is a technology for transmission of phone calls over IP
infrastructure Main advantage of VoIP is that uses the same infrastructure for both
data and voice transfers which save money but also reduce maintenance
requirements. From point of view of network forensics, VoIP creates a new
challenge for detection and interception of suspect's calls. Traditional call
interception on telecommunication networks was subjected to strict and well-
known rules. VoIP works in flexible environment of IP networks with a large
variety of application protocols and codecs. The most common VoIP technologies
are SIP [6] for call signalling and RTP [7] for media transmission. Following
section describes how SIP and RTP protocols can analysed.

4.2.1 Signalling protocols

Session Initiation Protocol (SIP) is an application layer protocol for signalling and
controlling multimedia sessions over IP networks. It is mostly used for voice/video
calls and instant messaging. It defines messages that establish, modify and terminate
sessions between end points. SIP is a text-based protocol with some similarities to
HTTP or SMTP. It serves mainly for user registration and establishing VoIP
connection. Media streams (voice or video) are transmitted using RTP protocol [7]
or its secured version SRTP [8]. Description of transmitted media stream is
encoded using Session Description Protocol, SDP [9].

184

http://attachment.googleusercontent.com
http://mail.yahoo.cz
http://mail.centrum.cz

SIP communication is independent on transport protocols and may use TCP,
UDP or SCTP transport. The protocol utilizes a transaction based communication.
Each transaction is represented by a request and at least one response. SIP protocol
usually communicates on TCP/UDP ports 5060 or 5061 (encrypted sessions).

4.2.2 SIP analysis

The extraction algorithm iterates over L7 conversations identified by an application
recognizer. Whenever a valid SIP message is obtained, it is processed by SIP
snooper that extracts meta-data related to the call. SIP messages with the same Call-
ID form a SIP event. Generally, SIP snooper uses two basic methods INVITE for
call establishment and REGISTER for authentication. However, this trivial
processing is not sufficient when some messages are corrupted or missing.

1 INVITE sip: 10.10.10.109 SIP/2.0

2 Call-ID: D99151DA-1DD1-11 B2-B23A-BC0375BD6E00@ 10.10.10.214

3 From: "unknown"<sip:10.10.10.2l4>;tag=30652209562016038532

4 To: <sip:10.10.10.109>

5
c=IN IP4 10.10.10.214

m=audio 49152 RTP/AVP 3 97 98 110 8 0 101

Table 3: Example of data transmitted in a SIP message.

Table 3 shows what kind of information can be obtained from SIP protocol:
1. Request method or response code — this can be used to recognize a call.
2. Call-ID — a unique identifier used for grouping corresponding messages.
3. From header — identifies caller party.
4. To header — identifies calling party.
5. SDP body — identifies media stream, codecs, RTPports, etc.

For network forensic purposes, several SIP message are interesting to get meta-data
about call exchange, e.g, INVITE, BYE, and REFER as requests and 100 (Trying)
and 180 (Ringing) as responses. Using these requests and responses, we are able to
extract SIP calls even if captured signalling is incomplete. As depicted on example

185

in Fig. 7, even if INVITE message is lost, the same information can be obtained
from related messages (marked by red dot).

Endpoint Endpoint

INVITF

mf lTrv inp
*w 18fl Rinpinp
*w
4

AfK

RTP mprlia strpam

RYF

>

Figure 7: Typical message exchange during a SIP call.

Another issue is pairing incomplete signalling data with media streams. Network
Detective implements heuristic based on RTP and TCP timestamps that result in
probabilistic correlation of reconstructed VoIP calls. Utilizing these strategies, we
are able to provide better reconstruction in comparison with other tools, see
Table 4.

file NFX
Detective

Wireshark NetWitness PacketScan

Complete PCAP 2 2 2 2

PCAP without INVITE 2 0 2 0

PCAP without 200 O K 2 2 2 2

Table 4: Detection of VoIP calls when INVITE or 200 O K messages are missing.

4.2.3 Real-time Transport Protocol (RTP)

RTP [7] is a stateless application protocol used to transfer media streams over the
network. The RTP also provides simple detection of lost packets and multiple
streams synchronisation with minimal overhead. It is usually transferred over UDP
due to minimal overhead and stateless behaviour. RTP does not retransmit lost
packets because even if they had eventually arrived, they would have not been

186

needed any longer. RTP detection is not easy due to the dynamic port assignment.
As a part of RTP standard is description of RTP Control Protocol (RTCP)
messages that are used to deliver additional control session data, e.g., stream source
description, sent data size counter, packet loose, jitter, etc.

4.2.4 Detecting RTP without signalling protocols

Common VoIP concepts separate signalling data (SIP/SDP) from media streams
(RTP). Both protocols use their own PDUs and paths through the internet. When
signalling data are missing, it is generally not easy to detect RTP stream with
dynamic UDP ports and identify what kind of codec is used for voice or video data
transmitted. Netfox Detective uses advanced detection algorithm to identify RTP
as follows. For full algorithm, see [5]:

1. RTP header contains a fixed version 2.

2. Mostly all current VoIP applications use only UDP transport protocol with
ports greater than 1024.

3. Observed packets should have a minimal packet length as required by the
standard unless extension flag is set.

4. Typical RTP stream is collection of large number of small packets with the
same SSRC identifier.

RTP header contains Payload type (PT) for codec identification. This field is mostly
used for statically mapped codecs like G.711, GSM, G.722, or G.729, see [10].
Dynamically assigned codecs like Speex, G.726, AMR, or Silk require
identification information transmitted in signalling protocols. If signalling
protocols are not present in a captured file, it is hard to identify the codec. In such
case, it is possible to use an identification method based on ratio between payload
size of RTP packets and timestamp differences between two successive packets.
Since this ratio usually does not change, this method is sufficient for codecs
identification without signalling data [5].

4.2.5 Incomplete RTP streams

In case of incomplete or corrupted RTP packets, advanced reconstruction
techniques have to be applied. Following case studies present some solutions how
to reconstruct such data.

The first case study (see Fig. 8) shows communication between Alice and Bob
where a link towards Bob is lossy. In this case, Bob's phone will miss two RTP
packets 2 and 4. When naive approach to decode a received audio stream is

187

applied, audio tracks would not be synchronized, see Fig. 9. This will complicate
further reconstruction and forensics analysis.

Alice

1 2 3 4 5

Bob

Figure 8: Incomplete RTP streams.

Al ice

Figure 9: Naive RTP Reconstruction.

For advanced RTP reconstruction, a following procedure is proposed:

1. Compute the number of lost samples.

Using RTP timestamps a difference between the last received packet and the
next one after the loss can be calculated. Then, correlation between real-time
and timestamp difference indicates how many packets were lost. Although this
correlation is codec dependent it can be used for reconstruction. For example,
if the last received packet had timestamp 1000 and the next received packet had
timestamp 9000, we may assume that 8000 audio samples were lost.

2. Reconstruction of missing samples.

The knowledge of a codec used is important to encode raw audio data since the
codec specifies the sampling rate that has been used. For example, codec G.711
uses sample rate 8000 Hz. In case of 8000 lost samples with sampling rate
8000 Hz one second audio is missing. Therefore, lost packet can be substitute
with silence audio or white noise right after decoding to fill the specified gap
and synchronize bi-directional audio steams.

Example of RTP streams after reconstruction is depicted in Fig. 10. As it is seen
now, timeline of both RTP streams is properly aligned that is important for proper
forensic analysis.

188

Alice

1 silence 3 silence 5

1 2 3 4 5

Bob

Figure 10: Reconstructed RTP streams.

5 Conclusions

This paper presented a new framework for network forensics analysis developed
during security research. This framework has modular architecture with focus on
two important areas: stream reassembling and application reconstruction. Stream
reassembling is an important part of the tool. If not done properly, some packets
can be skipped without proper analysis. On the other hand, some streams can be
reconstructed incorrectly and include frames that do not belong to the
reconstructed stream. The main benefit of our study is proposal of different
heuristics and techniques that are able to build streams from captured packets even
if some packets are missing without a need to parsing application protocol.
Proposed heuristics are used to detect missing SYN and FIN packets, to identify
lost packets within a stream, to detect overlapped conversations, etc., so that TCP
and UDP streams are properly reconstructed for further network forensics analysis.

Following application reconstruction is provided by independent application
snoopers that parse reconstructed L7 streams, extract application based meta-data,
and visualize results to an investigator or security administrator. Application
snoopers also implements advance techniques for proper reconstruction of
incomplete application data as presented on web mails and VoIP communication.
At the moment, Netfox Detective is able to work with any IP, TCP or UDP
streams. It supports reconstruction of web pages, web mails, emails using SMTP,
POP, or IMAP protocols, instant messaging protocols (XMPP, ICQ, Yahoo), and
VoIP (SIP, RTP). The user interface allows an investigator to filter required
conversations and expert interesting data for further analysis.

In this research, we concentrated more on accurate data reassembling, parsing and
reconstruction. Future research will be focused on efficient analysis of big data,
distributed parsing and employment of advanced detection methods using machine
learning, statistical based detection, etc.

189

6 Acknowledgment

Presented research results were supported by project "Modern Tools for Detection
and Mitigation of Cyber Criminality on the New Generation Internet", no.
VG20102015022 granted by Ministry of the Interior of the Czech Republic and by
project "Research and application of advanced methods in ICT", no. FIT-S-14-
2299 granted by Brno University of Technology.

References

[1] S. E. Pilli, R. Joshi and R. Niyogi, "Network forensic frameworks: Survey
and research challenges.," Digital Investigation, pp. 14-27, 2010.

[2] P. Matoušek, J. Pluskal, O. Ryšavý, V. Veselý, M . Kmet, F. Karpíšek and M .
Vymlátil, "Advanced Techniques for Reconstruction of Incompleted
Network Data," in International Conference on DigitalForensics & Cyber
Crime, Seoul, 2015.

[3] E. Hjelmvik and W. John, "Statistical protocol identification with SPID:
preliminary results.," in Siveedish National Computer Networking Workshop.,
2009.

[4] G. Palmer, "A Road Map For Digitial Forensic Research," in First Digital
Forensic Research Workshop (DFRWS), Utica, New York, 2001.

[5] P. Matoušek, O. Ryšavý and M . Kmet, "Fast RTP Detection and Codecs
Classification in Internet Traffic.," Journal of Digital Forensics, Security and
Law, pp. 99-110, 2014.

[6] H . Schulzrinne, J. Rosenberg, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M . Handley and E. Schooler, SLP: Session Lnitiation Protocol, IETF
RFC 3261, 2002.

[7] H . Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A Transport
Protocol for Real-Time Applications, IETF RFC 3550, 2003.

[8] M . Baugher, D. McGrew, M . Naslund, E. Carrara and K. Norrman, The
Secure Real-time Transport Protocol (SRTP), IETF RFC 3711, 2004.

[9] M . Handley and V. P. C. Jacobson, SDP: Session Description Protocol, IETF
RFC 4566, 2006.

[10] H . Schulzrinne and S. Casner, RTP Profile for Audio and Video Conferences,
IETF RFC 3551, 2003.

190

