
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SIMULATION AND ANALYSIS OF
QUANTUM CIRCUITS
SIMULACE A ANALÝZA KVANTOVÝCH OBVODŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SÁRA JOBRANOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Jobranová Sára

Programme: Information Technology

Category: Formal Verification

Academic year: 2023/24

Assignment:

1. Study the theory of quantum computation.
2. Study techniques of simulation, analysis, and verification of quantum circuits.
3. Propose techniques for simulation or analysis of quantum circuits. Get inspired by existing

approaches based on decision diagrams and tree automata.
4. Implement the proposed techniques in a tool.
5. Compare the tool to existing tools, focusing on the speed and other parameters (precision, etc.).
6. Evaluate the achieved results and discuss possibilities of further development.

Literature:
• M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th anniversary

ed. Cambridge ; New York: Cambridge University Press, 2010.
• Y.-H. Tsai, J.-H. R. Jiang, and C.-S. Jhang, “Bit-Slicing the Hilbert Space: Scaling Up Accurate

Quantum Circuit Simulation,” in 2021 58th ACM/IEEE Design Automation Conference (DAC), Dec.
2021, pp. 439–444. doi: 10.1109/DAC18074.2021.9586191.

• Y.-F. Chen, K.-M. Chung, O. Lengál, J.-A. Lin, W.-L. Tsai, and D.-D. Yen, “An Automata-Based
Framework for Verification and Bug Hunting in Quantum Circuits,” Proc. ACM Program. Lang., vol.
7, no. PLDI, p. 156:1218-156:1243, erven 2023, doi: 10.1145/3591270.

• Y.-F. Chen, K.-M. Chung, O. Lengál, J.-A. Lin, and W.-L. Tsai, “AutoQ: An Automata-Based
Quantum Circuit Verifier,” in Computer Aided Verification, C. Enea and A. Lal, Eds., in Lecture Notes
in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 139–153. doi: 10.1007/978-3-
031-37709-9_7.

• M. Sistla, S. Chaudhuri, and T. Reps, “Symbolic Quantum Simulation with Quasimodo,” in Computer
Aided Verification, C. Enea and A. Lal, Eds., in Lecture Notes in Computer Science. Cham: Springer
Nature Switzerland, 2023, pp. 213–225. doi: 10.1007/978-3-031-37709-9_11.

Requirements for the semestral defence:
First two items from the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Lengál Ondřej, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 6.11.2023

Bachelor's Thesis Assignment
154537

Simulation and Analysis of Quantum CircuitsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
Simulation of quantum circuits is a key tool for future advancements in the promising field
of quantum computing. Due to the fact that this task is very computationally demanding,
the performance of state-of-the-art simulators on more complex circuits is still far from
satisfactory. In this thesis, we propose a new approach to simulate quantum circuits and
present an implementation based on this approach. Our simulation technique allows for
accurate simulation and is based on multi-terminal binary decision diagrams. We extended
the usual process of a decision diagram-based simulation by symbolic execution of repeating
structures in a quantum circuit (such as loops), where we compute the big-step semantics
of this structure and do not re-evaluate the gates. We show that symbolic loop execution
significantly accelerates the simulation and that the implemented tool is not only competi-
tive with other state-of-the-art simulators, but also greatly outperforms the state of the art
for many quantum circuits.

Abstrakt
Simulace kvantových obvodů je klíčovým nástrojem pro další výzkum v oblasti kvantové
výpočetní techniky, která je velmi perspektivní. Jedná se však o velmi výpočetně náročný
problém, a z tohoto důvodu jsou i u moderních nástrojů při simulaci komplexních ob-
vodů z hlediska výkonu značné rezervy. V této práci představíme nový přístup k simulaci
kvantových obvodů a nástroj implementovaný na základě tohoto přístupu. Tato technika
umožňuje přesnou simulaci a je založena na multi-terminálních binárních rozhodovacích di-
agramech. Také rozšiřuje standardní proces simulace založené na rozhodovacích diagramech
o symbolickou exekuci opakujících se struktur v kvantovém obvodě (např. smyček), kdy se
spočítá sémantika jednoho opakování této struktury a neprovádíme tudíž opětovné vyhod-
nocování hradel. Ukázali jsme, že symbolické provádění smyček výrazně urychluje simu-
laci a že implementovaný nástroj je nejen konkurenceschopný s ostatními nejmodernějšími
simulátory, ale také tyto simulátory pro mnoho kvantových obvodů značně překonává.

Keywords
Quantum computing, Simulation of quantum circuits, Multi-terminal binary decision dia-
grams, Symbolic execution

Klíčová slova
Kvantové výpočty, Simulace kvantových obvodů, Multi-terminální binární rozhodovací di-
agramy, Symbolická exekuce

Reference
JOBRANOVÁ, Sára. Simulation and Analysis of Quantum Circuits. Brno, 2024. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Ondřej Lengál, Ph.D.

Rozšířený abstrakt
Potenciál kvantových počítačů má řadu zajímavých důsledků nejen přímo v oblasti infor-
mačních technologií (např. pro kryptografii), ale i v mnoha dalších odvětvích jako je fyzika,
chemie či finance. Především kvůli technickým problémům, které provází sestavení a provoz
kvantového počítače, se jedná o oblast pomalého, avšak stále trvajícího výzkumu a pokroku.
Z důvodu problematické dostupnosti kvantových počítačů (zejména z finančního hlediska)
a omezeným možnostem pozorování stavu reálného kvantového systému (pouze pomocí
nevratné operace měření qubitu) jsou nástroje umožňující efektivní simulaci kvantových
obvodů na klasických počítačích pro další pokrok v oblasti kvantových výpočtů nezbytné.
Tento úkol je však výpočetně velmi náročný kvůli poměru velikosti stavového prostoru kla-
sického bitu ve srovnání s velikostí stavového prostoru qubitu, a proto i u nejmodernějších
simulátorů není výkon pro netriviální obvody stále uspokojivý.

V této práci popisujeme nový přístup k simulaci kvantových obvodů na klasických počí-
tačích a jeho implementaci v nástroji MEDUSA. Představená simulační technika je založena
na multi-terminálních binárních rozhodovacích diagramech (MTBDD), kdy kvantový stav
interpretujeme jako funkci a reprezentujeme ji pomocí MTBDD, a využívá již dříve před-
stavenou algebraickou reprezentaci komplexních čísel, díky čemuž MEDUSA provádí přesnou
simulaci. Nejen že je přesná simulace klíčová např. pro řešení testu ekvivalence kvantových
obvodů, ale zároveň se použitím přesné reprezentace komplexních čísel vyhneme poten-
ciálním numerickým nestabilitám. Pro aplikaci kvantových hradel se používají speciální
MTBDD procedury namísto použití pouze standardního rozhraní pro operace s MTBDD
(pomocí procedur Apply a Restrict), jak je tomu obvyklé.

Jelikož pro reprezentaci kvantového stavu využíváme MTBDD, jsme schopni simulo-
vat opakující se struktury (např. smyčky) v kvantovém obvodu pouze symbolicky. To je
velmi výhodné, protože smyčky jsou často klíčovou součástí mnoha kvantových algoritmů.
V praxi to znamená, že vypočítáme, jak se změní kvantový stav po jedné iteraci smyčky
(toto reprezentujeme pomocí určitých algebraických výrazů nad proměnnými, které před-
stavují jednotlivé pravděpodobnostní amplitudy v původním kvantovém stavu) a následně
spočítáme nový kvantový stav dle těchto algebraických výrazů a počtu iterací smyčky. To
znamená, že díky této tzv. symbolické exekuce smyček není potřeba opakovaně vyhodnoco-
vat hradla v těle smyčky.

Implementovaný nástroj MEDUSA jsme porovnali s několika nejmodernějšími simulátory,
a to jak verzi se symbolickou exekucí smyček, tak verzi bez ní. Verze bez symbolické ex-
ekuce se ukázala jako kompetetivní s ostatními simulátory, a dokonce tyto další nástroje
pro některé typy obvodů i značně překonala (zejména pokud vezmeme v potaz pouze přesné
simulátory). Verze se symbolickou exekucí škálovala během simulace všech měřených ob-
vodů (implementujících různé kvantové algoritmy obsahující smyčky) podstatně lépe než
všechny ostatní nástroje, což ukazuje, že symbolická exekuce smyček vede k výraznému
zrychlení simulace. Stejné chování lze očekávat i v případě rozšíření symbolické exekuce
smyček pro další moderní simulátory založené na rozhodovacích diagramech.

Z hlediska další práce je prostor pro další optimalizace simulátoru, také je v plánu
rozšířit současnou množinu podporovaných kvantových operací. Dále by bylo možné rozšířit
funkcionalitu implementovaného nástroje pro účely verifikace kvantových obvodů.

Simulation and Analysis of Quantum Circuits

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ondřej Lengál, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Sára Jobranová

May 14, 2024

Acknowledgements
I would like to thank my supervisor Ing. Ondřej Lengál, Ph.D. for his time, patience, and
guidance throughout this work. I would also like to express my thanks to all of my loved
ones for the immense support and encouragement they have given me while I have been
working on this thesis.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Quantum Computing . 5

2.1.1 Qubits . 6
2.1.2 Quantum Gates . 9
2.1.3 Quantum Circuits . 10
2.1.4 Quantum Algorithms . 11

2.2 Decision Diagrams . 12
2.2.1 Binary Decision Diagrams . 12
2.2.2 Multi-Terminal Binary Decision Diagrams 17

3 Previous Work on Quantum Circuit Simulation 18
3.1 Vector-based Approach . 18
3.2 Decision Diagram-based Approaches . 18
3.3 Tensor Networks-based, ZX-calculus-based, and Other Approaches 20

4 MTBDD-based Quantum Circuit Representation 22
4.1 Algebraic Representation of Complex Numbers 22
4.2 Quantum Circuit Representation Using MTBDDs 23

4.2.1 Universal Update Formulae For Quantum Gates 24
4.2.2 Permutation-based Update Formulae For Quantum Gates 25

5 Implementation 29
5.1 Architecture of the Simulator . 29
5.2 Standard Execution . 30
5.3 Symbolic Execution . 31

6 Experimental Evaluation 36
6.1 Experimental Environment and Used Simulators 36
6.2 Benchmark Overview . 37
6.3 Evaluation of Symbolic Execution Performance Impact 37
6.4 Evaluation of MTBDD-based Simulator Performance 40

7 Conclusion 42

Bibliography 43

A All Experimental Results 49

1

B Submitted Paper 61

C Contents of the Included Storage Media 71

2

Chapter 1

Introduction

Quantum computing is an intriguing field of computer science that leverages the principles of
quantum mechanics to perform computations in ways that classical computers are unable
to. The concept of quantum computing originated in the early 1980s, when physicist
Richard Feynman introduced quantum computers as efficient means for simulating quantum
mechanics in his lecture [14]. Soon followed the emergence of the first quantum algorithms
and the interest in this field continued to grow in the 1990s [25] with the discovery of Shor’s
algorithm for factoring and Grover’s search algorithm, as these breakthroughs demonstrated
the potential of this novel paradigm for computation to efficiently solve certain problems
that would be practically unsolvable on classical computers.

Yet, a lot of uncertainties are still present in this field. This is mainly due to the many
technical challenges that arise when building and operating a quantum computer—it is
only within recent years that technology has sufficiently advanced to allow for quantum
computing (although this hardware still has a largely experimental character). Actually,
a research from 2019 claims to have achieved this promise of an unmatched performance of
quantum computers compared to classical computers in some specific tasks, or the so-called
quantum supremacy [2]. There is an ongoing research on the practical usage of quantum
computers in many different fields, such as physics [45], chemistry [23], and finance [19].

Still, the ability to simulate the behaviour of quantum circuits on classical computers is
a vital tool for understanding the potential of quantum computers and for future research
in this field for two reasons. The first one is the still ongoing unavailability of quantum
computers, especially because of the price of building such a system. The second reason
is that in a real system, we need to measure a qubit to make observations about its state,
which leads to the collapse of the state of the qubit (this operation is irreversible). This
means that it is not possible to directly examine the probability amplitudes of a real system,
which is thus achievable only in simulation. It is, however, not an easy task to perform the
needed calculations efficiently due to the ratio of the size of the state space of a classical
bit in comparison with the size of the state space of a qubit.

Today, several simulators of quantum circuits exist, however, when discussing the cur-
rent state of the art in terms of performance, there is still a lot of room for improvement
when it comes to many complex circuits, and especially more complex circuits with a large
number of qubits. For this reason, this work introduces a new tool for quantum circuit sim-
ulation. This simulator is based on Multi-Terminal Binary Decision Diagrams (MTBDDs)
in combination with algebraic complex number representation for accurately representing
the state of the simulated system. The implemented tool also supports symbolic execution
of loops in the circuit, where one iteration of the given loop is expressed by a single symbolic

3

operation. It is shown that this symbolic loop execution leads to a significant acceleration
of the simulation. Furthermore, this work provides an experimental comparison with the
current state of the art, showing not only that the implemented simulator keeps up with
the current state-of-the-art tools, but also demonstrating superior performance of the im-
plemented simulator for various quantum circuits (especially if we consider only accurate
simulators). This is particularly profound when we consider quantum circuits that contain
loops (so that we can take advantage of the symbolic execution of the loop), such as cir-
cuits that implement Grover’s search algorithm, quantum counting, and period finding (the
latter two without the inverse quantum Fourier transform).

First, we will go through the necessary theory regarding quantum computing and re-
lated key concepts and MTBDDs in Chapter 2. Then, in Chapter 3, this thesis covers the
basic characteristics of current approaches to classical quantum circuit simulation, with
a focus on providing an overview of the underlying data structures used in current state-
of-the-art tools. We continue with the aforementioned key principles of the implemented
simulator (MTBDDs whose leaves represent complex numbers in algebraic form) in Chap-
ter 4. Finally, this thesis describes the architecture and further specifics of the implemented
simulator in Chapter 5 and provides an experimental comparison of the performance of the
implemented simulator with the state of the art in Chapter 6.

4

Chapter 2

Preliminaries

This chapter covers the basic concepts of quantum computing needed for this thesis, espe-
cially those regarding quantum circuits and their simulation. First, we present the prop-
erties of a single qubit, then of a multi-qubit system. Next, we will move on to quantum
logic gates, quantum circuits, and then briefly to well-known quantum algorithms. Then
this chapter also introduces binary decision diagrams (BDDs) and their generalised mod-
ification called multi-terminal binary decision diagrams (MTBDDs), as the implemented
simulator is MTBDD-based.

2.1 Quantum Computing
Quantum computing leverages the principles of quantum mechanics to provide the potential
for solving certain complex problems much more efficiently than with classical computing.
This section uses information presented in [25]. The following notation overview draws
from [8].

In this thesis, we use the usual notation, where C denotes the set of complex numbers,
Z denotes the set of integers, and N denotes the set of natural numbers. We use V𝑛 to
represent the finite-dimensional vector space of dimension 𝑛 (𝑛 ∈ N), i.e., the set of all
vectors over V of length 𝑛.

If not stated otherwise, all matrices and vectors in this work are assumed to be over C.
The complex conjugate of a complex number 𝑧 = 𝑎+𝑏𝑖 is the complex number 𝑧 = 𝑎−𝑏𝑖 and
the transpose of an 𝑚× 𝑛 matrix 𝐴 = (𝑎𝑥𝑦) is the 𝑛×𝑚 matrix 𝐴𝑇 such that 𝐴𝑇 = (𝑎𝑦𝑥).
Then the conjugate transpose of a matrix 𝐴 = (𝑎𝑥𝑦) is the matrix 𝐴† = (𝑎𝑦𝑥). We denote
the identity matrix of an arbitrary dimension as I and the inverse matrix of a matrix 𝐴 is
the matrix 𝐴−1 such that 𝐴 ·𝐴−1 = I. A square matrix 𝐴 is unitary if 𝐴−1 = 𝐴†.

Given a 𝑚× 𝑛 matrix 𝐴 = (𝑎𝑥𝑦) and a 𝑘× 𝑙 matrix 𝐵, the Kronecker product 𝐴⊗𝐵 is
the 𝑚𝑘 × 𝑛𝑙 matrix 𝐴⊗𝐵 = (𝑎𝑥𝑦𝐵), e.g.,

(︂
2 + 𝑖 0
−𝑖 3

)︂
⊗
(︂
5 1
𝑖 0

)︂
=

⎛⎜⎜⎝(2 + 𝑖) ·
(︂
5 1
𝑖 0

)︂
0 ·
(︂
5 1
𝑖 0

)︂
−𝑖 ·

(︂
5 1
𝑖 0

)︂
3 ·
(︂
5 1
𝑖 0

)︂
⎞⎟⎟⎠ =

⎛⎜⎜⎝
10 + 5𝑖 2 + 𝑖 0 0
−1 + 2𝑖 0 0 0
−5𝑖 −𝑖 15 3
1 0 3𝑖 0

⎞⎟⎟⎠ .

A row vector of length 𝑙 is a 1× 𝑙 matrix, a column vector of length 𝑙 is a 𝑙× 1 matrix.
Given vectors 𝑢, 𝑣, the operation 𝑢 ⊗ 𝑣 denotes the tensor product of the two vectors,
which is consistent with the previously defined Kronecker product operation. From now

5

on, the Dirac notation (also known as the bra-ket notation) is used for vectors, since it is the
standard notation used for quantum mechanics. An example of the relationship between
the Dirac and column matrix notation of a vector can be seen here:

|0⟩ =
(︂
1
0

)︂
, |1⟩ =

(︂
0
1

)︂
.

We often denote 𝑢⊗ 𝑣 simply as |𝑢𝑣⟩ and |𝑢𝑛⟩ represents the operation

|𝑢⟩ ⊗ |𝑢⟩ ⊗ . . .⊗ |𝑢⟩⏟ ⏞
𝑛 times

.

Also, in the following, the qubit with the lowest index, 𝑞0, is the most significant (the
topmost qubit in the circuit diagram).

2.1.1 Qubits

Just as bits are the foundation for classical computation, qubits (quantum bits) are the
foundation for quantum computation. Further, just as classical bits are described by their
state (either 0 or 1), qubits are also described by their quantum state (usually also referred
to simply as their state). Equivalent to states 0 and 1 of a classical bit are states |0⟩ and |1⟩,
respectively, of a qubit. States |0⟩ and |1⟩ are called the computational basis states—they
form the orthonormal basis for the vector space C2 (the vector space of a qubit’s state as
will become apparent momentarily).

A qubit’s state |𝜓⟩ can generally be in a linear combination called a superposition of
the aforementioned computational basis states

|𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩ ,

where 𝛼, 𝛽 ∈ C are the probability amplitudes for the respective basis states. A single
qubit’s state is therefore a two-dimensional complex vector and it is sometimes also called
a state vector.

Apart from the computational basis states, the following states of a single qubit are
also essential:

|+⟩ = 1√
2
· (|0⟩+ |1⟩),

|−⟩ = 1√
2
· (|0⟩ − |1⟩).

These states can be thought of as halfway between |0⟩ and |1⟩, and play a key role in many
quantum algorithms.

Therefore, a qubit’s state can be in a superposition of |0⟩ and |1⟩, so not necessarily
purely only either |0⟩ or |1⟩, but rather somewhere on the continuum between |0⟩ and |1⟩.
However, in a real system, it is impossible to precisely determine the state of the qubit, i.e.,
find out the values of the probability amplitudes 𝛼 and 𝛽.

Qubit Measurement

We can only make observations about a given qubit’s state when we measure the qubit.
However, upon measurement, a qubit’s state collapses into one particular basis state. There-
fore, the only possible results of the measurement are the states |0⟩ or |1⟩ and the only thing

6

that is determined by the initial unobservable state of a qubit is the probability with which
we measure the result of either |0⟩ or |1⟩, as this is determined by the probability amplitudes
𝛼 and 𝛽, respectively:

𝒫(|0⟩) = |𝛼|2,
𝒫(|1⟩) = |𝛽|2.

A single qubit’s state is therefore more precisely a two-dimensional unit complex vector, as
it has to be a unit vector (a vector of magnitude 1) to satisfy the probability constraint

|𝛼|2 + |𝛽|2 = 1,

i.e., the sum of the probabilities must be 1. So, if the result of our measurement is the
state |0⟩, then such a qubit now has a state with 𝛼 = 1, 𝛽 = 0 and it is not possible
to reverse its previous state (values of 𝛼, 𝛽). The new state’s 𝛼 and 𝛽 reflect both the
collapse of the quantum state and the probability constraint. Similarly, when the result of
the measurement is the state |1⟩, this qubit has a new state with 𝛼 = 0, 𝛽 = 1.

Systems with Multiple Qubits

Generally an 𝑛-qubit system’s state |𝜓′⟩ can be in a superposition of all the system’s
computational basis states ⃒⃒

𝜓′⟩︀ = ∑︁
𝑖∈{0,1}𝑛

𝛼𝑖 · |𝑖⟩ ,

and therefore is generally a 2𝑛-dimensional unit complex vector, where, again, 𝛼𝑖 ∈ C are
the probability amplitudes of the corresponding basis states. Similarly to a state of a single
qubit, we call this vector the state vector of the given system. The basis states for an
𝑛-qubit system again form the orthonormal basis of the system’s vector space, which is
clearly C2𝑛—so if, for example, we have a system where 𝑛 = 2, the computational basis
states for this system are |00⟩, |01⟩, |10⟩ and |11⟩ (similarly to the possible states 00, 01,
10 and 11 of the classical 2-bit system).

Just as with a single qubit, even with a multi-qubit system, we cannot observe the
state of this system directly, i.e., we cannot precisely determine the values of the individual
probability amplitudes. The only thing that is observable about a multi-qubit system’s state
is the result of measuring a certain subset of the qubits of the given system. Similar to
when we measure a qubit of a single-qubit system, if we measure the values of all 𝑛 qubits
of an 𝑛-qubit system, we get one of the computational basis states |{0, 1}𝑛⟩, where the
probability of measuring this result is determined by the corresponding amplitude

𝒫(|𝑖⟩) = |𝛼𝑖|2,

where 𝑖 ∈ {0, 1}𝑛. So, for example, if we have a 2-qubit system and we measure both the
qubits, we get the result |00⟩ with the probability |𝛼00|2, the result |01⟩ with the probability
|𝛼01|2 and so on.

However, as mentioned above, we can measure only a subset of these qubits. The
probability with which a qubit’s measured value will be |0⟩ or |1⟩ is determined by all the
probability amplitudes of the given system corresponding to the computational basis states,
where this qubit’s value is 0 or 1, respectively. For example, the probability that qubit 𝑞𝑗
will collapse into |1⟩ is for an n-qubit system calculated as

𝒫(𝑞𝑗 = |1⟩) =
∑︁

𝑖∈{0,1}𝑛−1−𝑗×{1}×{0,1}𝑗
|𝛼𝑖|2 . (2.1)

7

Naturally, when a qubit 𝑞𝑗 collapses into |1⟩ after measurement, all the probability am-
plitudes corresponding to contradicting basis states (where 𝑞𝑗 is 0) are set to the value
0. Then, the remaining non-zero amplitudes must be normalized by multiplication with
the coefficient

𝑐 =
1√︀

𝒫(𝑞𝑗 = |1⟩)
, (2.2)

in order to keep the sum of all the state’s probability amplitudes as 1 (the probability in
the denominator is generally the probability with which the measurement result occurred).
Likewise, if the result of the measurement of the qubit 𝑞𝑗 is |0⟩, all amplitudes for basis
states where 𝑞𝑗 is 1 are zeroed and the amplitudes are re-normalized with 𝑐 = 1√

𝒫(𝑞𝑗=|0⟩)
.

Equations 2.1 and 2.2 can be easily modified using the same logic to measure an arbitrary
subset of the system’s qubits.

Quantum Entanglement

Quantum entanglement is a phenomenon fundamental to quantum mechanics in general
and is crucial for fast quantum algorithms, quantum teleportation, and quantum error-
correction. It is important to note that there is still an ongoing research on this subject,
as a complete theory of quantum entanglement does not yet exist and a better understand-
ing of this important aspect of quantum mechanics could result in novel and promising
applications of quantum computing.

Quantum entanglement is an extraordinary behaviour that some quantum states can
exhibit—we refer to these states as EPR states or EPR pairs and they are named after
A. Einstein, B. Podolsky and N. Rosen, who first brought attention to the concept of quan-
tum entanglement in their famous paper [13] in 1935. Specifically, if we talk about 2-qubit
maximally entangled states, we may also refer to these states as Bell states (named after
J. Bell who further investigated the EPR paradox and provided great insights on this sub-
ject). The interesting consequence of the properties of EPR states is that the measurement
results of the individual qubits are correlated (this correlation has no equivalent in classical
physics). This means, that after measuring one of the entangled qubits, the measurement
of the other entangled qubits will always yield the same result (regardless of the physical
distance between the qubits themselves). So, for example, if we have one of the Bell states

|𝜓⟩ = 1√
2
· (|00⟩+ |11⟩), (2.3)

and we want to measure for instance the first qubit 𝑞0, then according to Equation 2.1
we have

𝒫(𝑞0 = |0⟩) = 𝒫(𝑞0 = |1⟩) =
1

2
.

However, when we obtain the result of this measurement, for example 𝑞0 = |0⟩, then when
measuring the second qubit 𝑞1, contrary to intuition we have

𝒫(𝑞1 = |0⟩) = 1,

𝒫(𝑞1 = |1⟩) = 0.

Not only that, but if we have an EPR state, some correlation between the measurement
results still occurs even when we first perform additional operations on one of the qubits

8

𝑋

or
(︂
0 1
1 0

)︂

(a) Pauli-X gate

𝑌

(︂
0 −𝑖
𝑖 0

)︂

(b) Pauli-Y gate

𝑍

(︂
1 0
0 −1

)︂

(c) Pauli-Z gate

𝐻 1√
2

(︂
1 1
1 −1

)︂
(d) Hadamard gate

𝑆

(︂
1 0
0 𝑖

)︂
(e) S (phase) gate

𝑇

(︃
1 0

0 𝑒
𝑖𝜋
4

)︃
(f) T (𝜋/8) gate

𝑅𝑥

(︀
𝜋
2

)︀
1√
2

(︂
1 −𝑖
−𝑖 1

)︂
(g) X-axis rotation by 𝜋

2 gate

𝑅𝑦

(︀
𝜋
2

)︀
1√
2

(︂
1 −1
1 1

)︂
(h) Y-axis rotation by 𝜋

2 gate

Figure 2.1: Examples of single-qubit gates and their matrix representation

(the specific correlation will depend on the operations and the initial state). Note also that
entangled states cannot be written as a tensor product of states of the individual qubits,
e.g., there are no states |𝑢⟩, |𝑣⟩ of a single qubit such that |𝜓⟩ = |𝑢⟩ ⊗ |𝑣⟩, where |𝜓⟩ is the
Bell state specified by Equation 2.3.

2.1.2 Quantum Gates

Quantum gates are means for altering a system’s quantum state. And since the quantum
state is a vector, it is quite natural to represent operations on quantum states as matrices.
The only restriction on a matrix to represent a valid quantum gate is that it must be
unitary (to maintain the principles of quantum mechanics). Therefore, all quantum gates
are also reversible.

The simplest case of quantum gates are single-qubit gates, which can be represented as
2× 2 matrices. Some examples are shown in Figure 2.1, the most important of these gates
are the Pauli-X gate and the Hadamard gate. The X gate is an equivalent of a classical NOT
gate. The Hadamard gate transforms the basis states |0⟩ and |1⟩ into equal superpositions
and is a fundamental gate for many quantum algorithms.

There are naturally also multi-qubit gates. Some examples can be seen in Figure 2.2,
where 𝑞𝑐, 𝑞′𝑐 are control qubits and 𝑞𝑡, 𝑞′𝑡 are target qubits. The behaviour of multi-qubit
gates is generally such that if all the control qubits are set to |1⟩, the given operation is
performed on the target qubits, else the target qubits’ state is not altered. For example,
CNOT and CCNOT may perform the X gate on the target qubit and Fredkin gate may
swap the target qubits.

Then it is simple to update the system’s quantum state, as the calculation is carried
out as a matrix multiplication of the gate matrix with the system’s state vector (example
is shown in Figure 2.3). Sometimes, it may be necessary to modify the gate matrix so
it has the right dimensions for the multiplication (e.g., when we apply X gate on one of
the qubits in a 2-qubit system, as is depicted in Figure 2.4), since we must always apply
the operation on the system’s whole state vector due to a possible entanglement of qubits.

9

𝑞𝑐

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
𝑞𝑡

(a) Controlled-NOT (CNOT) gate

𝑞𝑐

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠
𝑞𝑡 𝑍

(b) Controlled-Z (CZ) gate

𝑞𝑐

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑞′𝑐

𝑞𝑡

(c) Toffoli (CCNOT) gate

.

𝑞𝑐

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑞𝑡

𝑞′𝑡

(d) Fredkin (controlled-swap) gate

Figure 2.2: Examples of multi-qubit gates and their matrix representation

𝑞0 |0⟩ 𝐻 |𝜓′⟩

|𝜓′⟩ = 1√
2

(︂
1 1
1 −1

)︂
· |0⟩ = 1√

2

(︂
1 1
1 −1

)︂
·
(︂
1
0

)︂
= 1√

2

(︂
1
1

)︂
= 1√

2
· (|0⟩+ |1⟩)

Figure 2.3: Example Hadamard gate application using the matrix representation

We achieve this by performing the tensor product of the properly sized identity matrix with
the gate matrix.

It is also important to note that similarly as some sets of classical logical gates are
universal (e.g., NAND), meaning they can express and thus compute any Boolean function,
there are also universal quantum gate sets. Such a set is sufficient to create a quantum
circuit approximating an arbitrary unitary operation with an arbitrary precision. Example
of an universal set can be the Hadamard, CNOT, S, and T gate (the standard universal
gate set, also called Clifford + T gate set) or the Hadamard, CNOT, S, and Toffoli gate.

2.1.3 Quantum Circuits

A quantum circuit, just like a classical circuit, consists of wires (which transfer information)
and operations on qubits. The operations that alter the transferred information can be
either quantum gates or qubit measurements. Every quantum circuit also has its input
state, i.e., the initial state vector of the system. For an n-qubit circuit, this is usually |0𝑛⟩
(or some other computational basis state).

However, there are also a few differences between quantum and classical circuits. Quan-
tum circuits must be acyclic and also it is not possible to join the wires (performing logical

10

𝑞0 |0⟩ 𝑋
|𝜓′⟩ 𝑈 = 𝑋 ⊗ I =

(︂
0 1
1 0

)︂
⊗
(︂
1 0
0 1

)︂
=

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠
𝑞1 |0⟩

|𝜓′⟩ = 𝑈 · |00⟩ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ = |10⟩

Figure 2.4: Pauli-X gate application in a 2-qubit system using the matrix representation
(the gate matrix when applied to 𝑞0 is denoted as 𝑈)

𝑞0 |0⟩ 𝐻

|00⟩ or |11⟩
𝑞1 |0⟩

Figure 2.5: Example circuit that creates a Bell state with measurements at the end

OR on the inputs) as it is not reversible or split the wires (performing copies of the input),
because it is not possible to duplicate qubits due to the no-cloning theorem [44, 11].

Figure 2.5 shows an example of a quantum circuit that has an initial state of |00⟩ and
it creates one of the Bell states |𝑞0𝑞1⟩ = 1√

2
· (|00⟩ + |11⟩). Finally, both the qubits are

measured and we get either the result |00⟩ or |11⟩. It is also worth noting that the wires in
the quantum circuit (depicted as lines) are more abstract than the wires in classical circuit
diagrams and may not strictly represent a physical wire—they simply visualize the flow of
the qubits.

2.1.4 Quantum Algorithms

The main motivation behind the research of quantum computation is the potential to sig-
nificantly surpass the limits of what is possible on classical computers for certain computa-
tional tasks. Currently, there are two main branches of algorithms that form this potential,
quantum search algorithms and algorithms based on the quantum Fourier transform. The
effectiveness of these algorithms is based on interference (interference of probability am-
plitudes can lead to the enhancement or suppression of specific measurement outcomes)
and quantum parallelism (this concept allows processing of multiple possibilities simultane-
ously), both of which take advantage of quantum superposition.

The aim of Grover’s algorithm [18], known as a quantum search algorithm, is to ef-
ficiently locate a specific item or solution within an unsorted search space by iteratively
amplifying the probability of the correct solution. This algorithm offers quadratic speedup
over the most efficient classical algorithms. Applications of quantum search include deter-
mining statistics of an unordered set or to speed up the solution of some NP problems.

To not be mistaken, the quantum Fourier transform (QFT) is analogous to the discrete
Fourier transform and it is only more efficient when performed on a quantum state (it does
not offer any speedup on classical data). However, thanks to the principles of QFT, we can

11

perform phase estimation (estimate the phase of a unitary operator’s eigenvalue). This is
fundamental for the famous Shor’s algorithm, providing an exponential speedup compared
to classical algorithms for solving the problem of factorization and discrete logarithm. Note
that both of these problems can be reduced to the problem of finding a period of a given
periodic function—this can be effectively solved with the period finding [22] algorithm.
Another example of an algorithm that utilizes phase estimation is quantum counting [4]
(based on Grover’s algorithm), which estimates the number of solutions to a computational
problem in a quadratic speedup compared to classical counting algorithms.

Also worth mentioning is also the the Bernstein-Vazirani algorithm [3], which solves
the following problem: given an oracle implementing a Boolean function 𝑓(𝑥) = 𝑥 · 𝑠
(𝑓 : {0, 1}𝑛 → {0, 1}), find the hidden string 𝑠. Although this algorithm has little practical
use, it provides a great demonstration of the capabilities of quantum computers (note that
it does not fit neatly into either of the branches of quantum algorithms mentioned above).

2.2 Decision Diagrams
Decision diagrams are an important data structure used widely in formal verification, circuit
design, artificial intelligence, and many more areas. There are many different types of
decision diagrams, this section will however present only those necessary for the purposes of
this thesis, namely Binary Decision Diagrams (BDDs) and Multi-Terminal Binary Decision
Diagrams (MTBDDs). Note that this section draws, among other things, from [38]. In the
following, we use 𝑓 |𝑣𝑖=𝑐 to denote a restriction of the function 𝑓 (𝑐 is a constant value), i.e.,

𝑓 |𝑣𝑖=𝑐(𝑣0, . . . , 𝑣𝑖, . . . , 𝑣𝑛−1) = 𝑓(𝑣0, . . . , 𝑣𝑖−1, 𝑐, 𝑣𝑖+1, . . . , 𝑣𝑛−1).

2.2.1 Binary Decision Diagrams

A Reduced Ordered Binary Decision Diagram (ROBDD) is a data structure that can be
efficiently used for encoding Boolean functions as was suggested by Bryant [5]. Commonly,
ROBDDs are simply referred to as Binary Decision Diagrams (BDDs) and the same holds
true throughout this work.

Let 𝑓 be a Boolean function 𝑓(𝑣0, . . . , 𝑣𝑛−1) : {0, 1}𝑛 → {0, 1}, where {𝑣0, . . . , 𝑣𝑛−1} =
𝑉 , and let ≺ be a total ordering on 𝑉 . Then a BDD representing 𝑓 is a rooted directed
acyclic graph (DAG) with two types of nodes—nonterminal (internal) nodes and terminal
(leaf) nodes—satisfying the following properties:

• Each nonterminal node 𝑥 corresponds to a single input variable 𝑣𝑖, 𝑖 ∈ {0, . . . , 𝑛− 1}.
We denote this as var(𝑥) = 𝑣𝑖.

• Each nonterminal node 𝑥 has two child nodes low(𝑥) and high(𝑥), a low and a high
successor, respectively. Suppose that var(𝑥) = 𝑣𝑖. If low(𝑥) is a nonterminal node,
then it holds that var(low(𝑥)) = 𝑣𝑗 such that 𝑣𝑖 ≺ 𝑣𝑗 . Likewise, if high(𝑥) is a nonter-
minal node, then it holds that var(high(𝑥)) = 𝑣𝑘 such that 𝑣𝑖 ≺ 𝑣𝑘. It is worth noting
that among other things, this ordering constraint ensures that the graph is acyclic.

• All terminal nodes 𝑥 are of a value val(𝑥) ∈ {0, 1} so that it holds 𝑓r𝑜𝑜𝑡 = 𝑓 , where
𝑓r𝑜𝑜𝑡 is the Boolean function represented by the root node of the BDD. A general
definition for a Boolean function 𝑓𝑥 represented by a node 𝑥 is as follows:

1. If 𝑥 is a terminal node, then 𝑓𝑥 = val(𝑥).

12

𝑣0

𝑣1 𝑣1

𝑣2 𝑣2 𝑣2 𝑣2

𝑣3 𝑣3 𝑣3 𝑣3 𝑣3 𝑣3 𝑣3 𝑣3

0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
(a) Binary decision tree

𝑣0

𝑣1

𝑣2

1 0
(b) BDD

Figure 2.6: Different representations of the Boolean function 𝑓(𝑣0, 𝑣1, 𝑣2, 𝑣3) : (𝑣0 ∨ 𝑣1)∧ 𝑣2,
where 𝑣0 ≺ 𝑣1 ≺ 𝑣2 ≺ 𝑣3

2. If 𝑥 is a nonterminal node and var(𝑥) = 𝑣𝑖, then 𝑓𝑥 = 𝑣𝑖 · 𝑓low(𝑥) + 𝑣𝑖 · 𝑓high(𝑥).

I.e., val(𝑥) equals to the evaluation of 𝑓 , where all the input variables 𝑣𝑖, for 𝑖 ∈
{0, . . . , 𝑛 − 1} are assigned a truth value based on whether low(𝑦𝑖) or high(𝑦𝑖) is on
the path to 𝑥 (𝑦𝑖 is the node corresponding to 𝑣𝑖, i.e., var(𝑦𝑖) = 𝑣𝑖).

• There is no node 𝑥 such that low(𝑥) = high(𝑥). Also, there are no two distinct nodes
𝑥1, 𝑥2 such that they represent the same Boolean function 𝑓𝑥1 = 𝑓𝑥2 .

It is also important to mention that this form of representation of Boolean functions is
canonical (w.r.t. ≺) thanks to the reduction property. Note that throughout this thesis, we
often abuse notation and use a BDD and the Boolean function it represents interchangeably.

If we were to construct a BDD without removing any redundant isomorphism (i.e.,
not removing any unnecessary nodes with identical successors and not merging nodes that
represent the same Boolean function), meaning we would construct a diagram representing
a Boolean function 𝑓 only based on the Shannon’s expansion:

𝑓(𝑣0, . . . , 𝑣𝑖, . . . , 𝑣𝑛−1) = 𝑣𝑖 · 𝑓 |𝑣𝑖=0(𝑣0, . . . , 𝑣𝑛−1) + 𝑣𝑖 · 𝑓 |𝑣𝑖=1(𝑣0, . . . , 𝑣𝑛−1), (2.4)

we would get a complete binary decision tree. An example of a BDD compared to a complete
binary decision tree can be seen in Figure 2.6—even a simple Boolean function clearly
benefits from the compact representation BDDs offer. The subgraph sharing does not only
provide efficiency in the sheer size of the representation, but also for further performance of
BDD algorithms, as the operation is performed on the subgraph only once. It can be seen
that the graph does not contain any redundant nodes, e.g., representing the variable 𝑣4,
which does not affect the result of the function in any way. Throughout this work, we will
depict BDDs and their variants in such a way that the nonterminal nodes are circular, the
leaf nodes are rectangular, a dashed edge denotes a low successor and a solid edge denotes
a high successor.

For the purposes of the following algorithms, we use root(𝛽) to denote the root node
of a BDD 𝛽 and |𝛽| to denote the number of all nodes (both terminal and nonterminal)
of 𝛽. In addition to this, we use id(𝑥) to denote a unique identifier of the node 𝑥, where

13

𝑣0

𝑣1

0 1
(a) BDD 𝛽1 representing

𝑓1(𝑣0, 𝑣1, 𝑣2) : 𝑣0 ∨ 𝑣1, where 𝑣0 ≺ 𝑣1 ≺ 𝑣2

𝑣0

𝑣1

𝑣2

1 0
(b) BDDs 𝛽2 representing

𝑓2(𝑣0, 𝑣1, 𝑣2) : 𝑣0 ∧ (𝑣1 ∨ 𝑣2), where
𝑣0 ≺ 𝑣1 ≺ 𝑣2

𝑣0

𝑣1

𝑣2

0 0 1 0
(c) Result of ApplyFrom(root(𝛽1), root(𝛽2),∧)

𝑣0

𝑣1

1 0
(d) Final result of the Apply after reduction

Figure 2.7: Example of Apply(𝛽1, 𝛽2,∧), where ∧ is the standard AND operation

id(𝑥) ∈ {0, . . . , |𝛽|−1}. Further, let us define IsLeaf (𝑥) to be a function which returns true
if the node 𝑥 is a terminal node and false otherwise. Also we assume that if IsLeaf (𝑥) = true
in a BDD 𝛽 representing 𝑓(𝑣0, . . . , 𝑣𝑛−1), it holds that var(𝑥) = 𝑛.

To perform operations on BDDs, a standard procedure Apply is used. Let *𝑜𝑝 be
a binary operator and let 𝛽1, 𝛽2 be BDDs that represent Boolean functions 𝑓1(𝑣0, . . . , 𝑣𝑛−1)
and 𝑓2(𝑣0, . . . , 𝑣𝑛−1), respectively. Result of Apply(𝛽1, 𝛽2, *𝑜𝑝) is the BDD 𝛽 representing
the function 𝑓1 *𝑜𝑝 𝑓2. The semantics of this procedure is shown in Algorithm 1. It consists
of two operations—a recursive function implementing the Apply itself followed by reducing
the resulting BDD (i.e., removing redundant isomorphism in the DAG as described at the
beginning of this section).

The basis of Apply(𝛽1, 𝛽2, *𝑜𝑝) is formed by the following recursion:

𝑓1 *𝑜𝑝 𝑓2 = 𝑣𝑖 · (𝑓1|𝑣𝑖=0 *𝑜𝑝 𝑓2|𝑣𝑖=0) + 𝑣𝑖 · (𝑓1|𝑣𝑖=1 *𝑜𝑝 𝑓2|𝑣𝑖=1).

It is easy to see that the algorithm is based on Shannon’s expansion of Boolean functions (see
Equation 2.4). Note that the recursion shown in Algorithm 1 is only a naive implementation
of Apply, where it is possible that Apply would be evaluated over certain sub-DAGs of 𝛽1
and 𝛽2 multiple times. In practice, the implementation of Apply therefore uses result
caching, where we check if the Apply result over these subgraphs is already known before
proceeding with a further recursion. The main idea is that the algorithm traverses both

14

BDDs simultaneously and performs the given operation *𝑜𝑝 on the corresponding leaf nodes
of 𝛽1 and 𝛽2, while trying to unfold the structure of these diagrams as little as possible.

Because 𝛽1 and 𝛽2 can be reduced in different ways (e.g., not all nonterminal nodes
from 𝛽1 have to be in 𝛽2) the resulting DAG is not necessarily a BDD and we have to
reduce it. This operation is described closely in Algorithm 2, however, the main principle
of the algorithm is that we sort all the BDD nodes into lists according to the variables
they represent, and then we process these lists from the leaf nodes upwards, gradually
removing redundant nodes. The time complexity of Reduce on BDD 𝛽 is 𝑂(|𝛽| · log |𝛽|)
(it is influenced mainly by the time needed to sort the lists). The time complexity of the
whole Apply operation if we use caching is 𝑂(|𝛽1| · |𝛽2|). An example of running the Apply
procedure can be seen in Figure 2.7.

Intuitively, sometimes we may want to perform a unary operation on the BDD. In this
case, we can just simplify the recursion in the binary Apply procedure so that it structurally
traverses the specified BDD and if the currently processed node is a leaf, it performs the
specified operation on it. Throughout this thesis, we refer to this operation as a unary Apply.

Algorithm 1: Apply procedure
Input: root nodes of BDDs 𝛽1, 𝛽2 representing Boolean functions 𝑓1(𝑣0, . . . , 𝑣𝑛−1)

and 𝑓2(𝑣0, . . . , 𝑣𝑛−1), respectively, where {𝑣0, . . . , 𝑣𝑛−1} is ordered w.r.t. ≺,
and a binary operator *𝑜𝑝

Output: root node of BDD 𝛽 representing 𝑓1 *𝑜𝑝 𝑓2
1 begin
2 root(𝛽)← ApplyFrom(root(𝛽1), root(𝛽2), *𝑜𝑝);
3 return Reduce(root(𝛽));
4 end
5 Function ApplyFrom(𝑥1, 𝑥2: nodes, *𝑜𝑝: binary operator) : node is
6 𝑥← New(node);
7 if IsLeaf (𝑥1) and IsLeaf (𝑥2) then
8 val(𝑥)← val(𝑥1) *𝑜𝑝 val(𝑥2);
9 else

10 if var(𝑥1) = var(𝑥2) then
11 var(𝑥)← var(𝑥1);
12 low(𝑥)← ApplyFrom(low(𝑥1), low(𝑥2));
13 high(𝑥)← ApplyFrom(high(𝑥1), high(𝑥2));
14 else if var(𝑥1) ≺ var(𝑥2) or IsLeaf (𝑥2) then
15 var(𝑥)← var(𝑥1);
16 low(𝑥)← ApplyFrom(low(𝑥1), 𝑥2);
17 high(𝑥)← ApplyFrom(high(𝑥1), 𝑥2);
18 else
19 var(𝑥)← var(𝑥2);
20 low(𝑥)← ApplyFrom(𝑥1, low(𝑥2));
21 high(𝑥)← ApplyFrom(𝑥1, high(𝑥2));
22 end
23 end
24 return 𝑥;
25 end

15

Algorithm 2: Reduction of a BDD 𝛽 representing function 𝑓(𝑣0, . . . , 𝑣𝑛−1) [5]
1 Function Reduce(𝑟𝑜𝑜𝑡: node) : node is
2 reducedGraphNodes ← New(array[|𝛽|]);
3 nodeList ← New(array[𝑛+ 1]);
4 put each node 𝑥 of the BDD on the list at nodeList[var(𝑥)];
5 nextId ← −1;
6 for 𝑖← 𝑛 to 0 do
7 currentNodes ← ∅;
8 for each 𝑥 in nodeList[𝑖] do
9 if IsLeaf (𝑥) then

10 add <key , 𝑥> to currentNodes, key = val(𝑥);
11 else if id(low(𝑥)) = id(high(𝑥)) then

// Redundant node
12 id(𝑥)← id(low(𝑥));
13 else
14 add <key , 𝑥> to currentNodes, key = (id(low(𝑥)), id(high(𝑥)));
15 end
16 end
17 sort elements of currentNodes by key ;
18 oldKey ← (−1;−1); // Initialize as an unmatchable key
19 for each <key , 𝑥> in currentNodes removed in order do
20 if key = oldkey then

// Matches an existing node
21 id(𝑥)← nextId ;
22 else

// Unique node
23 nextId ← nextId + 1;
24 id(𝑥)← nextId ;
25 reducedGraphNodes[nextId]← 𝑥;
26 low(𝑥)← reducedGraphNodes[id(low(𝑥))];
27 high(𝑥)← reducedGraphNodes[id(high(𝑥))];
28 oldKey ← key ;
29 end
30 end
31 end
32 return reducedGraphNodes[id(root)];
33 end

16

𝑣0

𝑣1

𝑣2 𝑣2

0 2 3 5

Figure 2.8: Example MTBDD for the function 𝑓(𝑣0, 𝑣1, 𝑣2) =

{︃
3𝑣1 + 2𝑣2 if 𝑣0,
5 otherwise,

where 𝑣0 ≺ 𝑣1 ≺ 𝑣2 and + in this case represents arithmetic addition

2.2.2 Multi-Terminal Binary Decision Diagrams

There are many modifications of BDDs, one of them being Multi-Terminal Binary Decision
Diagrams (MTBDDs) [15]. MTBDDs are a generalised variant of BDDs, the only difference
is that MTBDD’s terminal nodes can have an arbitrary value, not only 0 or 1. Because of
that, MTBDDs can represent any function 𝑓(𝑣0, . . . , 𝑣𝑛−1) : {0, 1}𝑛 → D, for any D ̸= ∅
with finitely representable elements. Thus, MTBDDs provide efficient representation of
matrices, especially sparse matrices. Not only that, but the complexity of basic matrix op-
erations performed on MTBDDs is not greater than the complexity of these operations over
any standard matrix representation. As with BDDs, this representation is also canonical
(w.r.t. the variable ordering). An example MTBDD is shown in Figure 2.8.

Given the little differences between BDDs and MTBDDs, one can easily extend the
previously mentioned Apply algorithm (Algorithm 1) to MTBDDs as well. We simply let
*𝑜𝑝 be a map D1 × D2 → D, where D1, D2 are the value domains for MTBDDs 𝜇1 and
𝜇2, respectively, and D ̸= ∅. Just as with BDDs, we use caching and result reusing to
great advantage in MTBDD Apply. Of course, the unary Apply procedure can be trivially
extended to MTBDDs as well.

17

Chapter 3

Previous Work on Quantum
Circuit Simulation

The aim of this chapter is to provide an overview of the state-of-the-art quantum circuit
simulators and to delve into the main principles these tools are based on. The emphasis in
this chapter is only on an overview of the data structures used, for more detailed information
and comparison of these approaches one can refer to [36, 41, 32], from which this chapter
draws. However, the main data structures used in the classical simulation of quantum
circuits can be divided into the following categories: vectors and matrices, i.e. arrays
(although not very practical), various variants of decision diagrams, tensor networks, and
ZX-calculus. As with all data structures, there is a question of the ideal compromise
between compactness of the representation and efficiency of manipulation operations.

3.1 Vector-based Approach
As mentioned in Section 2.1.2, simulation based on vector representation of the quantum
state and matrix representation of the applied gates comes quite naturally. However, this
approach has some serious limitations in terms of scalability of the simulated circuits,
as these structures (the state vector and gate matrices) grow exponentially in size w.r.t.
the number of qubits in the circuit. Due to these memory requirements, this simulation
method is practically unusable for even slightly larger circuits (with roughly 50 and more
qubits) [28].

This approach is available as a native simulator backend option for the open-source
Qiskit framework [43] developed by IBM. Qiskit provides a set of tools for both defining
and simulating quantum circuits, as well as connecting to IBM’s cloud services to run
quantum circuits on real quantum hardware.

3.2 Decision Diagram-based Approaches
Approaches based on some variant of decision diagrams are very popular when simulating
quantum circuits. These data structures provide a compact representation of quantum
states and operations on them by taking advantage of existing redundancies. The main idea
behind this representation is that we assume the individual system’s basis states determine
the path through which we traverse the diagram. Then by obtaining the leaf value for this
path, we obtain the probability amplitude corresponding to this base vector.

18

1

1√
2

1

1

-1
1

(a) WBDD

1√
2
− 1√

2

(b) CFLOBDD

1

1√
2

11

11 -11

(c) WCFLOBDD

Figure 3.1: Different representations of the Hadamard gate matrix [31] (see Figure 2.1d)
that are used in Quasimodo. The first variable is the row variable, the second is the column
variable, and exit edges are denoted as dotted arrows. These diagrams use the same notation
as in the original paper, where leaf values are denoted by both a node and an exit edge and
the nodes are not labeled with their variables (otherwise the diagrams would not be clear
for CFLOBDDs and WCFLOBDDs, which use variable sharing). For better readability,
some edges are coloured.

Classic BDDs are used, for example, in SliQSim [33]. This simulator also utilizes the
algebraic complex number representation further introduced in Section 4.1. Then the sys-
tem’s quantum state is represented with a series of BDDs, where each BDD represents
a single bit from one of the integers, which together form a single probability amplitude
(calling this method bit-slicing).

However, modifications of BDDs are used more often than regular BDDs for quantum
circuit simulation. These modifications include the previously mentioned MTBDDs, used,
for example, by Quasimodo [30]. This tool can operate on several built-in data structures,
including, among others, Weighted Binary Decision Diagrams (WBDDs). They differ from
regular BDDs in that the edges in a WBDD are weighted, in this case with a complex
value. Then, when evaluating a leaf value, all the weights on the path to this leaf node are
multiplied with the leaf value.

Another variant on BDDs used in Quasimodo are Context-Free-Language Ordered Bi-
nary Decision Diagrams (CFLOBDDs) [29] and Weighted Context-Free-Language Ordered
Binary Decision Diagrams (WCFLOBDDs) [31]. The difference between CFLOBDDs and
BDDs is that CFLOBDDs allow certain procedure calls within their structure (by reusing
groupings), which can offer additional compactness. This means that CFLOBDDs can
reuse not only sub-DAGs like BDDs, but also the ”middle of the DAG“, which can result in
structures that are (in the best case) exponentially more succinct than BDDs. WCFLOB-
DDs are CFLOBDDs where certain edges are weighted (specifically the entry edge and the
edges of the innermost groupings). Also the terminal values must be binary. Examples of
these representations used in Quasimodo can be seen in Figure 3.1. In CFLOBDDs and
WCFLOBDDs, the ovals represent the individual variable sharing groupings.

19

𝑥𝑦

1

1√
2

1 1 1 -1

(a) QMDD [26]

𝑥

𝑦

1

1

𝑍1

11

(b) LIMDD [35]

𝑥

𝑦

1

1√
2

1

1
-1

1

(c) TDD

Figure 3.2: Different decision diagram representations of the Hadamard gate matrix (see
Figure 2.1d). In these figures, 𝑥 denotes the row variable, and 𝑦 denotes the column variable.

In the above-mentioned cases, quantum gates are represented as certain operations over
the given decision diagrams. Another approach is to represent quantum operations using
Quantum Multiple-valued Decision Diagrams (QMDDs) [26], which is relatively common in
practice, for example in the DDSIM simulator [47]. The main idea is that QMDDs can suc-
cinctly represent gate matrices by repeatedly partitioning such matrix into 4 sub-matrices.
Each nonterminal node in the QMDD therefore has 4 successors and the edges in this
decision diagram are again weighted. Node merging in QMDDs happens up to constant
complex factors (unlike with BDDs or MTBDDs, where two nodes representing functions
𝑓 , 𝑔 are only merged if 𝑓 = 𝑔).

It is also worth mentioning the Local Invertible Map Decision Diagrams (LIMDDs) [35,
37], which are a generalization of QMDDs. LIMDDs can be more succinct than QMDDs
due to a different node merging strategy allowing also merging of nodes that are equivalent
up to tensor product of single-qubit Pauli gate operations. However, as usual, the price
for this succinctness is a slowdown of manipulation operations, precisely a cubic factor
overhead w.r.t. QMDDs.

Another interesting example are Tensor Decision Diagrams (TDDs) [20], which combine
decision diagrams with tensor networks (more about them in the next section). This data
structure extends the concept of BDDs and provides a way to efficiently represent and
manipulate high-dimensional tensors. TDDs also use weighted edges and the individual
nonterminal nodes in a TDD represent indices in the tensor network representing the given
quantum circuit. Examples of these decision diagrams (QMDDs, LIMDDs and TDDs) can
be seen in Figure 3.2.

It is also worth noting that most of the above mentioned tools (except SliQSim, which
uses the algebraic representation of complex numbers described in more detail in Section 4.1
and is thus accurate) use floating point numbers for complex number representation, which
can lead to numerical instabilities [46, 27]. Accurate simulation is also critical for tasks
such as quantum circuit equivalence checking [39].

3.3 Tensor Networks-based, ZX-calculus-based, and Other
Approaches

We can also take advantage of redundancies present in the vector-based simulation with
tensor networks (TNs). In such a simulation, a quantum state and gates are represented by

20

... 𝛼
... = |0 . . . 0⟩ ⟨0 . . . 0|+ 𝑒𝑖𝛼 |1 . . . 1⟩ ⟨1 . . . 1|

... 𝛼
... = |+ . . .+⟩ ⟨+ . . .+|+ 𝑒𝑖𝛼 |− . . .−⟩ ⟨− . . .−|

= |00⟩+ |11⟩ = ⟨00|+ ⟨11|

=

(︂
1 0
0 1

)︂
= 1√

2

(︂
1 1
1 −1

)︂

=

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
Figure 3.3: ZX-diagram examples and their semantics [40]

tensors, therefore we can view a quantum circuit as a tensor network. Then the simulation
of a quantum circuit can be performed through contraction of its TN.

Special types of TNs are used to decompose high-dimensional tensors into lower-
dimensional tensors, such as Matrix Product States (MPS). With MPS, a quantum state is
represented as a product of matrices. This simulation method is used, e.g., as one of the
available simulator backend options for the Qiskit framework. This method seems to be
efficient when the amount of entanglement between qubits is limited [34].

Another formalism we can use to simulate quantum circuits is a graphical language
called ZX-calculus [40], introduced by Coecke and Duncan in 2008 [9]. It consists of ZX-
diagrams, schemes built from wires and two types of nodes (Z-spiders and X-spiders) similar
to a classical quantum circuit diagrams, and a set of their rewrite (simplification) rules.
Some ZX-diagrams and their semantics can be seen in Figure 3.3.

For the purposes of simulation, we would like to perform automated rewriting of ZX-
diagrams and therefore we use more restricted ZX-diagrams called graph-like ZX-diagrams
(e.g., they may only contain Z-spiders and not X-spiders). Then the simulation itself is done
by further decomposition and simplification of this graph-like ZX-diagram. In this context,
it is important to mention the QuiZX [21] simulator, which is based on the ZX-calculus.

Of course, this is not an exhaustive list of all the methods used to simulate quantum
circuits, but only an overview of the most commonly used used ones. An example of a tool
that takes a completely different approach is Quokka# [24]. This simulator encodes the
quantum circuit into the Boolean model counting problem of a formula in the conjunctive
normal form (CNF) and then solves these constraints by a weighted model counter.

21

Chapter 4

MTBDD-based Quantum Circuit
Representation

This chapter discusses the fundamentals specific for this implementation of a quantum
circuit simulator. These concepts are crucial in ensuring that the simulator can operate at
the required speed with reasonable computing power, while maintaining accuracy. Before
we get to the MTBDD-based simulation itself, it is necessary to introduce an algebraic
representation of complex numbers, which is used for MTBDD’s leaf node values. Then we
take a closer look at how MTBDDs are used for the simulation itself, both for representing
the quantum state of the system and performing the quantum gate operations on this
quantum state.

4.1 Algebraic Representation of Complex Numbers
One of the problems quantum simulators face is the complex number representation as it
has to be accurate yet it must not slow down the whole implementation. In this work, we
utilize the algebraic representation presented and used in [33, 8, 7], which was originally
proposed in [27].

The formula for exact algebraic representation is for 𝑧 ∈ C as follows:

𝑧 =

(︂
1√
2

)︂𝑘

· (𝑎+ 𝑏𝜔 + 𝑐𝜔2 + 𝑑𝜔3), (4.1)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ Z and 𝜔 = 𝑒
𝑖𝜋
4 (it is the unit vector which makes an angle of 45∘ with

the positive part of the real axis of the complex plane). Thus, a complex number can be
represented as an integer 4-tuple (𝑎, 𝑏, 𝑐, 𝑑) and the coefficient 𝑘 for normalization. Not only
is this encoding convenient by itself, it is also trivial to multiply a complex number in this
form by 𝜔 or its power, as 𝜔4 = −1 (one simply needs to rotate the four coefficients and
negate some of them accordingly). This is very useful as many quantum gates multiply the
state vector by some power of 𝜔.

Even though this method does not cover the entire set of complex numbers (C is un-
countable while Z5 is countable), the subset is sufficient for a quantum circuit simulation
without loss of generality. Not only is it able to represent with perfect accuracy all oper-
ations that can be realized exactly by the universal Clifford + T gate set, but since this
subset is a dense subset of C, it allows to approximate any operation and quantum state
with arbitrary precision.

22

𝑞0

𝑞1 𝑞1

𝛼00 𝛼01 𝛼10 𝛼11

(a) Original state |𝜓⟩

𝑞0

𝑞1 𝑞1

𝛼01 𝛼00 𝛼11 𝛼10

(b) X gate applied to 𝑞1

𝑞0

𝑞1 𝑞1

𝛼00+𝛼10√
2

𝛼01+𝛼11√
2

𝛼00−𝛼10√
2

𝛼01−𝛼11√
2

(c) Hadamard gate applied to 𝑞0

𝑞0

𝑞1 𝑞1

𝛼00 𝛼01 𝛼11 𝛼10

(d) CNOT gate (the result is the same
for both combinations of control and

target qubits)

Figure 4.1: Example of MTBDD-based quantum state representation and its transforma-
tions caused by gate application (a dashed edge denotes the value |0⟩, solid edge denotes
the value |1⟩)

4.2 Quantum Circuit Representation Using MTBDDs
As stated in Chapter 3.1, the classic representation of quantum state as a vector is not very
convenient. Not only does the size of the system’s state vector itself grow exponentially
with the number of qubits, meaning it is of the length 2𝑛 for an n-qubit system, but this
also means that one needs 2𝑛 × 2𝑛 matrices for representing quantum gates. Instead, the
implemented simulator uses an MTBDD to represent the system’s quantum state, which
greatly reduces the memory requirements of the tool.

This representation is quite intuitive, as we will show in an example. Let us assume we
have an arbitrary quantum circuit with two qubits, 𝑞0 and 𝑞1. We describe the state |𝜓⟩ of
this system as

|𝜓⟩ = 𝛼00 · |00⟩+ 𝛼01 · |01⟩+ 𝛼10 · |10⟩+ 𝛼11 · |11⟩ . (4.2)

The MTBDD representation of this state |𝜓⟩ is shown in Figure 4.1a. The graph is read
so that the low successor (dashed) represents 0 and the high successor (solid) represents 1
in the computational basis state and the leaf value is then the corresponding probability
amplitude of this basis state. In other words, we view the system’s state as a function
𝑓 : {0, 1}𝑛 → C, where the evaluation of input variables corresponds to a computational
basis state and the value of this function for the given input corresponds to the probability
amplitude of this basis state. To clarify, in the implementation itself, complex probability

23

amplitudes are represented algebraically according to Equation 4.1. This means that the
leaves of the state’s MTBDD actually contain an integer 4-tuple (𝑎, 𝑏, 𝑐, 𝑑). The coefficient
𝑘 is kept separate because we only modify this coefficient with gate operations; the gate
operations always alter the 𝑘 coefficients of the complex amplitudes of the whole system
in the same way (they always have the same value throughout the whole MTBDD). This
means that we cannot use the smallest possible 𝑘 to make this representation unique [27].
However, this is not an issue from a practical point of view because the uniqueness is
clearly achieved as the value of 𝑘 is fixed for the whole MTBDD (i.e., it is not possible
that different leaves representing the same value are present in this MTBDD). It is worth
re-emphasizing that this representation is perfectly accurate for the currently supported
gates (see Table 4.1).

Application of gates on this representation of the state vector consists of transforming
the MTBDD according to the matrix representation of the gates—see Figure 4.1 for some
examples. The simulation uses two approaches to apply gates on the state’s MTBDD. In
the first approach, the gate application is executed using the universal update formulae as
a sequence of operations over the MTBDD using the standard Apply procedure. The second
approach uses permutation-based update formulae, which execute the gate application in
a single custom Apply. This results in a less computationally demanding operation, but the
drawback is that this approach can only be used for single qubit gates.

4.2.1 Universal Update Formulae For Quantum Gates

This method of performing the gate operations using universal update formulae for the
system’s MTBDD was presented in [8]. The main idea of this approach is that a sequence
of elementary operations is used to construct the resulting MTBDD. These operations are
on the one hand classical arithmetic operations using the standard Apply procedure and
also projection and restriction.

Let 𝑇 (𝑏0, ..., 𝑏𝑛−1) : {0, 1}𝑛 → Z4 be the function that is represented by the system’s
MTBDD. Projections 𝑇𝑞𝑡 and 𝑇𝑞𝑡 are used to fix the value of the target qubit 𝑞𝑡 to 1 or 0,
respectively:

𝑇𝑞𝑡(𝑏0, ..., 𝑏𝑡, ..., 𝑏𝑛−1) = 𝑇 (𝑏0, ..., 1, ..., 𝑏𝑛−1)

𝑇𝑞𝑡(𝑏0, ..., 𝑏𝑡, ..., 𝑏𝑛−1) = 𝑇 (𝑏0, ..., 0, ..., 𝑏𝑛−1).

Restrictions 𝐵𝑞𝑡 , 𝐵𝑞𝑡 only output the value (or the complemented value, respectively) of
the target qubit 𝑞𝑡 in the given basis state, i.e.,

𝐵𝑞𝑡(𝑏0, ..., 𝑏𝑡, ..., 𝑏𝑛−1) = 𝑏𝑡

𝐵𝑞𝑡(𝑏0, ..., 𝑏𝑡, ..., 𝑏𝑛−1) = 𝑏𝑡.

If we look at these operations directly from a DAG point of view, projections 𝑇𝑞𝑡 , 𝑇𝑞𝑡 set
both target qubits successors to the same subgraph—the subgraph of the high successor in
the case of 𝑇𝑞𝑡 and the subgraph of the low successor in the case of 𝑇𝑞𝑡 . The restriction 𝐵𝑞𝑡

consists of construction of a diagram that represents the function

𝑓(𝑏𝑡) =

{︃
1 if 𝑏𝑡,
0 if 𝑏𝑡.

Similarly performing 𝐵𝑞𝑡 constructs a diagram representing

𝑓(𝑏𝑡) =

{︃
1 if 𝑏𝑡,
0 if 𝑏𝑡.

24

Table 4.1: Universal update formulae for MTBDD gate application [8] (target qubits are
denoted as 𝑞𝑡 and control qubits are denoted as 𝑞𝑐, 𝑞𝑐′ , if the gate uses them)

Gate Update formula
X[𝑞𝑡] 𝐵𝑞𝑡 · 𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇𝑞𝑡
Y[𝑞𝑡] 𝜔2 · (𝐵𝑞𝑡 · 𝑇𝑞𝑡 −𝐵𝑞𝑡 · 𝑇𝑞𝑡)
Z[𝑞𝑡] 𝐵𝑞𝑡 · 𝑇 −𝐵𝑞𝑡 · 𝑇
H[𝑞𝑡] 1√

2
· (𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇𝑞𝑡 −𝐵𝑞𝑡 · 𝑇)

S[𝑞𝑡] 𝐵𝑞𝑡 · 𝑇 + 𝜔2 ·𝐵𝑞𝑡 · 𝑇
T[𝑞𝑡] 𝐵𝑞𝑡 · 𝑇 + 𝜔 ·𝐵𝑞𝑡 · 𝑇
Rx
(︀
𝜋
2

)︀
[𝑞𝑡]

1√
2
· (𝑇 − 𝜔2 · (𝐵𝑞𝑡 · 𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇𝑞𝑡))

Ry
(︀
𝜋
2

)︀
[𝑞𝑡]

1√
2
· (𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇 −𝐵𝑞𝑡 · 𝑇𝑞𝑡)

CNOT[𝑞𝑐, 𝑞𝑡] 𝐵𝑞𝑐 · 𝑇 +𝐵𝑞𝑐 · (𝐵𝑞𝑡 · 𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇𝑞𝑡)
CZ[𝑞𝑐, 𝑞𝑡] 𝐵𝑞𝑐 · 𝑇 +𝐵𝑞𝑐 · (𝐵𝑞𝑡 · 𝑇 −𝐵𝑞𝑡 · 𝑇)
Toffoli[𝑞𝑐, 𝑞𝑐′ , 𝑞𝑡] 𝐵𝑞𝑐 · 𝑇 +𝐵𝑞𝑐 · (𝐵𝑞𝑐′ · 𝑇 +𝐵𝑞𝑐′ · (𝐵𝑞𝑡 · 𝑇𝑞𝑡 +𝐵𝑞𝑡 · 𝑇𝑞𝑡))

Using all the previously mentioned operations, we can represent the semantics of quan-
tum gate application on the system’s MTBDD using update formulae. All operations from
now on use a shorthand notation, e.g., 𝐵𝑞𝑡 instead of 𝐵𝑞𝑡(𝑏0, ..., 𝑏𝑛−1), since all the further
shown operations are over 𝑏0, ..., 𝑏𝑛−1. The update formulae for all the supported gates
are shown in Table 4.1. As an example, consider the formula for the X gate. First, let us
take a look at the semantics of this gate. Assume a two qubit quantum circuit with qubits
𝑞0, 𝑞1 whose state |𝜓⟩ is described by Equation 4.2. The operation X[𝑞0] could be then
expressed as

|𝜓⟩ = 𝛼10 · |00⟩+ 𝛼11 · |01⟩+ 𝛼00 · |10⟩+ 𝛼01 · |11⟩ . (4.3)

The projections in the formula give us MTBDDs representing these states

𝑇𝑞0 = 𝛼10 · |00⟩+ 𝛼11 · |01⟩+ 𝛼10 · |10⟩+ 𝛼11 · |11⟩
𝑇𝑞0 = 𝛼00 · |00⟩+ 𝛼01 · |01⟩+ 𝛼00 · |10⟩+ 𝛼01 · |11⟩ .

If we combine it with the restrictions we get

𝐵𝑞0 · 𝑇𝑞0 = 1 · 𝛼10 · |00⟩+ 1 · 𝛼11 · |01⟩+ 0 · 𝛼10 · |10⟩+ 0 · 𝛼11 · |11⟩ = 𝛼10 · |00⟩+ 𝛼11 · |01⟩
𝐵𝑞0 · 𝑇𝑞0 = 0 · 𝛼00 · |00⟩+ 0 · 𝛼01 · |01⟩+ 1 · 𝛼00 · |10⟩+ 1 · 𝛼01 · |11⟩ = 𝛼00 · |10⟩+ 𝛼01 · |11⟩.

and when we add those two intermediate results up, we get exactly the expression in
Equation 4.3. This particular operation is illustrated using decision diagrams in Figure 4.2.

4.2.2 Permutation-based Update Formulae For Quantum Gates

Though the universal update formulae can be used for all the gates mentioned in Table 4.1,
we use permutation-based update formulae instead for all the mentioned single-qubit gates
(X, Y, Z, H, S, T, Rx

(︀
𝜋
2

)︀
, Ry

(︀
𝜋
2

)︀
) and the CZ gate. The advantage of this approach is that it

allows us to execute the gate application in a single custom Apply rather than in a sequence
of operations, which allows for a less computationally intensive workload. However, the
drawback is that since MTBDDs are DAGs, once we process a node, we cannot return to it
later during a single traversal of the MTBDD. However, if the control qubit has a greater

25

𝑞0

𝑞1 𝑞1

𝛼00 𝛼01 𝛼10 𝛼11

(a) Original state representing 𝑇

𝑞0

1 0

· 𝑞1

𝛼10 𝛼11

=

𝑞0

𝑞1

0𝛼10 𝛼11

(b) 𝐵𝑞0 · 𝑇𝑞0

𝑞0

0 1

· 𝑞1

𝛼00 𝛼01

=

𝑞0

𝑞1

0 𝛼00 𝛼01

(c) 𝐵𝑞0 · 𝑇𝑞0

𝑞0

𝑞1 𝑞1

𝛼10 𝛼11 𝛼00 𝛼01

(d) 𝐵𝑞0 · 𝑇𝑞0 +𝐵𝑞0 · 𝑇𝑞0

Figure 4.2: Execution of X[𝑞0] using the universal update formula, expressed in terms of
decision diagrams

index than the target qubit, i.e., the control qubit is less significant than the target qubit, we
would have to perform this backward traversal to properly alter the graph. This means that
this single-traversal approach cannot be generally extended to multi-qubit gates. However,
there is one exception and that is the controlled phase gates, such as CZ gate. This is
because these gates are symmetric in the sense that it does not matter which qubit is the
control qubit and which is the target qubit—the rotation is performed only in the case they
are both set to |1⟩.

To illustrate this, we shall take a closer look at the main idea of this specialized Apply
for single-qubit gates. This recursive algorithm gradually traverses the whole tree and if
it encounters a node representing the target qubit (the qubit the gate is applied to), it
performs the gate operation 𝒢 on this node and returns the result. For example, if we
consider the gate Z, 𝒢Z keeps the low successor the same and multiplies the high successor
with −1. Thus, this function does not necessarily reach all leaf nodes of the MTBDD, since
it stops the recursion when it is clear that no more changes will occur in the subgraph.
However, we have to consider the case when the node representing the target qubit 𝑞𝑡 is not
present in the graph as it is reduced. This is not a problem for the X gate, because if the
node is missing, it means that its low and high successors are the same, which in turn means
that if we swap these two successors, the result will be identical to the current subgraph. For
this reason, the X gate actually uses a standard unary Apply, which does not address this
case. However, all other mentioned single-qubit gates perform some arithmetic operation
on at least one of the successors, which means we have to generate this target qubit node
manually. For even better performance, this algorithm uses caching of all computed results

26

(it stores the root node of the current subgraph, operation 𝒢, 𝑞𝑡, and, of course, the result
of this operation). This custom operation is described in more detail in Algorithm 3.

The algorithm for controlled phase gate application (presented in Algorithm 4) is con-
ceptually the same as the algorithm for single-qubit gates. The only difference is that it
also checks for the control qubit nodes and lets the recursion continue only for the high
successor of these nodes (the low subtrees always remain the same). It must also make sure
that the control qubit node is always present, and if not, create it manually.

Algorithm 3: Execution of a single-qubit gate operation 𝒢[𝑞𝑡]
Input: root node of MTBDD 𝜇 representing 𝑇 (𝑏0, . . . , 𝑏𝑛−1) : {0, 1}𝑛 → Z4, where

{𝑏0, . . . , 𝑏𝑛−1} is ordered w.r.t. ≺, a unary gate operator 𝒢, and an index
of the target qubit 𝑞𝑡

Output: root node of MTBDD 𝜇𝒢 representing 𝒢[𝑞𝑡](𝜇)
1 begin
2 root(𝜇𝒢)← ApplyGateFrom(root(𝜇),𝒢, 𝑞𝑡);
3 return Reduce(root(𝜇𝒢));
4 end
5 Function ApplyGateFrom(𝑥: node, 𝒢: unary gate operator, 𝑞𝑡: integer) : node is
6 if is in cache then
7 return cached result;
8 end
9 result ← 𝑥;

// All gate operations applied to zero are again zero, so return
the result immediately

10 if 𝑥 is not a zero leaf then
11 if IsLeaf (𝑥) or 𝑞𝑡 ≺ var(𝑥) then

// Missing target node, create it manually
12 result ← New(node);
13 var(result)← 𝑞𝑡;
14 low(result)← low(𝑥);
15 high(result)← high(𝑥);
16 end
17 if var(result) = 𝑞𝑡 then
18 result ← 𝒢(result);
19 else

// Recursion
20 result ← New(node);
21 var(result)← var(𝑥);
22 low(result)← ApplyGateFrom(low(𝑥),𝒢, 𝑞𝑡);
23 high(result)← ApplyGateFrom(high(𝑥),𝒢, 𝑞𝑡);
24 end
25 Put result into cache;
26 end
27 return result ;
28 end

27

Algorithm 4: Execution of a controlled phase gate operation 𝒞𝒢𝜙[𝑞𝑐, 𝑞𝑡]
Input: root node of MTBDD 𝜇 representing 𝑇 (𝑏0, . . . , 𝑏𝑛−1) : {0, 1}𝑛 → Z4, where

{𝑏0, . . . , 𝑏𝑛−1} is ordered w.r.t. ≺, a unary phase gate operator 𝒢𝜙, an
index of the control qubit 𝑞𝑐, and an index of the target qubit 𝑞𝑡

Output: root node of MTBDD 𝜇𝒢 representing 𝒞𝒢𝜙[𝑞𝑐, 𝑞𝑡](𝜇)
1 begin
2 if 𝑞𝑐 > 𝑞𝑡 then
3 Swap(𝑞𝑐, 𝑞𝑡); // This can be done only for controlled phase
4 end
5 root(𝜇𝒢)← ApplyCPhGateFrom(root(𝜇),𝒢𝜙, 𝑞𝑐, 𝑞𝑡);
6 return Reduce(root(𝜇𝒢));
7 end
8 Function ApplyCPhGateFrom(𝑥: node, 𝒢𝜙: unary gate op., 𝑞𝑐, 𝑞𝑡: integer) : node is
9 if is in cache then

10 return cached result;
11 end
12 result ← 𝑥;

// All gate operations applied to zero are again zero, so return
the result immediately

13 if 𝑥 is not a zero leaf then
14 if IsLeaf (𝑥) or 𝑞𝑐 ≺ var(𝑥) then

// Missing control node, create it manually
15 result ← New(node);
16 var(result)← 𝑞𝑐;
17 low(result)← low(𝑥);
18 high(result)← high(𝑥);
19 end
20 if var(result) = 𝑞𝑐 then
21 high(result)← 𝒢𝜙[𝑞𝑡](high(result));
22 else

// Recursion
23 result ← New(node);
24 var(result)← var(𝑥);
25 low(result)← ApplyCPhGateFrom(low(𝑥),𝒢𝜙, 𝑞𝑐, 𝑞𝑡);
26 high(result)← ApplyCPhGateFrom(high(𝑥),𝒢𝜙, 𝑞𝑐, 𝑞𝑡);
27 end
28 Put result into cache;
29 end
30 return result ;
31 end

28

Chapter 5

Implementation

This chapter focuses on the implemented quantum circuit simulator called MEDUSA. To
get an idea of the basic components of the implementation, let us first look at the the
underlying key concepts of the simulator as a whole. We will then go on to examine the
two supported simulation modes: standard execution and symbolic execution, in more
detail. Standard execution is the mode in which regular simulation and the process of
qubit measurement takes place, while symbolic execution consists of converting a classical
representation into a symbolic representation, followed by symbolic simulation, and a final
evaluation of all symbolic variables to convert the symbolic representation back into the
classical representation.

5.1 Architecture of the Simulator
The implemented simulator MEDUSA (Multi-Terminal Binary DEcision Diagram-based
QUantum SimulAtor) is written in C. The reason for this is the fact that C is a low-
level programming language well known for its efficiency and high performance. This is
useful because performance is absolutely critical for this type of tool, since it must perform
a large number of computationally non-trivial computations. Not only that, but this also
gives access to an extensive set of C libraries.

MEDUSA is built on top of the Sylvan [12] library. Sylvan is a parallel BDD library
including, among others, MTBDDs and their operations. Even though not all features of
Sylvan were utilized in the implementation—e.g., parallelism support is not very suitable
for the problems that MEDUSA solves (also confirmed by a few experimental results)—it
provides a convenient framework for custom MTBDDs and custom MTBDD operations.

Due to the character of the algebraic representation of complex numbers introduced
in Section 4.1 and the fact that we store the coefficient 𝑘 globally for the whole MTBDD
(meaning we cannot reduce the coefficients used for this representation in any way), the
values of the integers needed for this representation increase exponentially. For this reason,
there is a need for arbitrary integer precision, which is achieved using the general arbitrary
precision arithmetic library GMP [17].

To specify the quantum circuit to be simulated, MEDUSA accepts an OpenQASM (Open
Quantum Assembly Language) [10] file as input. OpenQASM is a standard programming
language for the description of quantum circuits and algorithms. The supported set of gates
is identical to the gates for which their MTBDD update formulae are defined in Table 4.1.

29

(︁
1√
2

)︁1
· 𝑞0

𝑞1 𝑞1

1 + 0𝜔 + 0𝜔2 + 0𝜔3 0 + 0𝜔 + 0𝜔2 + 0𝜔3

Figure 5.1: MTBDD representing the Bell state |𝜓⟩ = 1√
2
· (|00⟩+ |11⟩)

The simulation itself proceeds in such a way that the parser module gradually pro-
cesses the input OpenQASM file and applies individual gate operations to the state vector
represented by the MTBDD accordingly. In the process, it can switch from the standard
execution mode to the symbolic execution mode and back (more details on these modes are
in the next two sections).

The result of the simulation are output in a DOT file, which contains a reduced MTBDD
representing the end state of the simulated circuit. This MTBDD can then be plotted using
a tool such as Graphviz [16]. Each leaf value is equal to a probability amplitude represented
algebraically as described in Chapter 4. In the output leaf values, the complete coefficient 5-
tuple (𝑎, 𝑏, 𝑐, 𝑑, 𝑘) is shown in each individual leaf. This allows us to reduce these coefficients
so that the representation of this complex number uses the smallest possible value of 𝑘,
which in turn results in better readability. However, despite this coefficient reduction
for each of the complex amplitudes, these coefficients can be quite large as 𝑎, 𝑏, 𝑐, 𝑑 grow
exponentially during the simulation. In this case, if some coefficient is exceptionally large,
MEDUSA uses a symbolic variable instead of this large value in the DOT file and also outputs
a text file with mapping of these symbolic variables to their actual values. It is possible to
let MEDUSA directly calculate the probabilities of measuring the corresponding basis states
from the probability amplitudes and output these probabilities as the MTBDD’s leaf values
in the DOT file instead. Another possible output of the simulation is, of course, the result
of the qubit measurements, i.e., how many times each basis vector has been measured.

5.2 Standard Execution
The standard execution mode is the default simulation mode, where a regular simulation of
the given circuit takes place. The main ideas of the used simulation technique, namely the
representation of the simulated circuit’s state vector with an MTBDD and the application
of quantum gates on this MTBDD, were described in detail in Chapter 4. As mentioned
in the previous section, MEDUSA uses the Sylvan library for the custom 4-tuple MTBDD
and for custom operations on this MTBDD type. An example of this representation of the
simulated system’s state can be seen in Figure 5.1. Note that since Sylvan itself ensures
the reduction property of the decision diagrams using hash tables and other internal checks,
there is no need to explicitly call any implementation of the Reduce procedure anywhere
during the simulation. The initial state of the simulation corresponds to all qubits in the
circuit having the value |0⟩.

30

In addition to the already mentioned gates, MEDUSA also supports the operation of qubit
measurement. More precisely, MEDUSA only supports the qubit measurement operation at
the end of the circuit, however, this is not restrictive in any way as qubit measurements
can always be moved from anywhere in the circuit to its end [25]. The main idea of the
algorithm implementing this operation is as follows. First, we order the qubits to be mea-
sured according to the qubit ordering (since Sylvan does not support variable reordering
in the decision diagrams, we have to start from the root and continue exactly according to
the variable ordering of the MTBDD). We then sum up all the probabilities of the basis
states, where the currently measured qubit is |1⟩, while taking into account the results
of the already measured qubits. Note that while calculating these intermediate probabili-
ties, we switch from the algebraic representation of complex numbers to classical floating
point representation in order to properly count for the reduced nodes skipped during the
MTBDD traversal. However, the potential loss of accuracy is unavoidable at this stage as
we need to represent the final probability of qubit being |1⟩ with a floating point number
anyway to generate the measurement result. Also the probability normalization factor is
not necessarily algebraically representable in this way.

The operation of measuring the probability of a single qubit being |1⟩ is implemented
using a custom unary Apply. The probability normalization factor 𝑐 (see Equation 2.2)
caused by the previous measurements can be applied to this result at the very end of
the probability calculation, because we can always pull a constant out of summation (see
Equation 2.1). An example of the probability calculation needed for qubit measurement
and the effects of qubit measurement on the subsequent probability calculations can be seen
in Figure 5.2.

5.3 Symbolic Execution
MEDUSA also supports symbolic execution, which consists of simulating the circuit only
symbolically. This allows us, for example, to compute the big-step semantics of loops in
the quantum circuit. This in turn leads to a significant acceleration of the calculation
for circuits that use loops with more than just a few iterations, because there is no need
to reevaluate the individual gates in each iteration. We represent the modification of the
system’s MTBDD caused by a single loop iteration with symbolic update formulae. Then
MEDUSA computes the end result by repeated (corresponding to the number of iterations)
substitution of the symbolic variables in the symbolic update formulae with the actual
values of probability amplitude coefficients. This is particularly useful because loops are
often a key element of quantum algorithms, for example in algorithms that are based on
amplitude amplification (Grover’s search algorithm, quantum counting) or algorithms that
use phase estimation (Shor’s algorithm).

For simplicity, assume that our system’s MTBDD represents some function
𝑓 : {0, 1}𝑛 → C (i.e., the leaves contain the complex number itself instead of the integer
4-tuple). Suppose MTBDD 𝜇 represents the quantum state just before the start of a loop in
the quantum circuit. Let S be an infinite set of symbolic variable names and TS be the set
of terms over S. Symbolic execution uses a pair of symbolic MTBDDs: (i) an MTBDD 𝜇𝛼
with the variable mapping (this MTBDD represents the variable mapping partial function
𝛼 : C ⇀ S, where the domain is the set of all leaf values of 𝜇), and (ii) an MTBDD 𝜇′𝛼
with the symbolic values of these variables, which are expressions (terms) over S (i.e., 𝜇′𝛼
represents the partial function 𝜏 : S ⇀ TS, where the domain is the set of all leaf values of
𝜇𝛼). Note that 𝜇𝛼 is specific to 𝜇 at the start of the loop. This means that the current im-

31

(︁
1√
2

)︁1
· 𝑞0

𝑞1 𝑞1

1 + 0𝜔 + 0𝜔2 + 0𝜔3 0 + 0𝜔 + 0𝜔2 + 0𝜔3

𝒫(𝑞0 = |1⟩) =
∑︁

𝑖∈{10,11}

|𝛼𝑖|2 = |0|2 +

⃒⃒⃒⃒
⃒
(︂

1√
2

)︂1

· (1 + 0𝜔 + 0𝜔2 + 0𝜔3)

⃒⃒⃒⃒
⃒
2

=
1

2

(a) Calculation of the probability 𝒫(𝑞0 = |1⟩)

(︁
1√
2

)︁1
· 𝑞0

𝑞1 𝑞1

1 + 0𝜔 + 0𝜔2 + 0𝜔3 0 + 0𝜔 + 0𝜔2 + 0𝜔3

𝒫(𝑞1 = |1⟩) =
∑︁

𝑖∈{01,11}

|𝑐 · 𝛼𝑖|2 = 𝑐2 ·
∑︁

𝑖∈{01,11}

|𝛼𝑖|2 =

⎛⎝ 1√︁
1
2

⎞⎠2

·
(︀
|0|2 + |0|2

)︀
= 2 · 0 = 0

(b) Calculation of the probability 𝒫(𝑞1 = |1⟩) after we measured 𝑞0 and got the result |0⟩
(𝑐 denotes the probability normalization coefficient)

Figure 5.2: Example of the measurement operation on one of the Bell states

32

plementation could not, for example, reuse the symbolic MTBDD pair used for simulating
loop 𝐿 on 𝜇1 for an input MTBDD 𝜇2 if 𝜇1 ̸= 𝜇2 (unless 𝜇1 and 𝜇2 have the same structure
and only differ in the leaf values). On the other hand, this allows us to take advantage of
the compactness that MTBDDs offer.

In order to keep the number of symbolic variables used as small as possible, in the initial
abstraction we introduce variables only for the distinct leaf values of 𝜇, because we expect
basis states with the same valued probability amplitudes to transform equally during the
loop execution. Of course, this may not always be true, which is why we check if there are
any conflicting values for the same variable after simulating one iteration of the loop. If so,
we introduce more variables and run the loop iteration again. If not, we evaluate the result
and update 𝜇 accordingly. This evaluation is done by using 𝜏 to obtain the final values of
the symbolic variables and then replacing the variables in 𝜇𝛼 with these values.

This loop summarization algorithm is described in more detail in Algorithm 5. Here,
rng(𝑓) denotes the range of the function 𝑓 , e.g., if 𝑓 : X → Y, then rng(𝑓) = Y. Also,
𝑓(𝑥) = ⊥ for 𝑥 ∈ X denotes that there is no 𝑦 ∈ Y such that (𝑥, 𝑦) ∈ 𝑓 . We denote
the operation representing a single loop iteration as 𝐶 (𝐶𝑆 represents the symbolic execu-
tion of this operation), and 𝑓 [𝑝0, . . . , 𝑝𝑘−1] denotes the closure of function 𝑓 with param-
eters 𝑝0, . . . , 𝑝𝑘−1 passed by reference to the variables specified in the Data declaration
of 𝑓 . Figure 5.3 shows an example of a run of this loop summarization algorithm. The
trees for all MTBDDs are shown instead for easier demonstration. First, we perform the
initial abstraction of the input MTBDD 𝜇0. However, after symbolically simulating the
loop operation 𝐶 with the initial abstraction, there are conflicting symbolic update values
for the variable 𝑏. Therefore, we introduce an additional variable 𝑐. After performing the
loop operation on this abstraction, no more changes are introduced with the Refine opera-
tion, and we can evaluate the result using the just obtained symbolic MTBDD pair and the
input MTBDD 𝜇0. The symbolic simulation is run on 𝜇′𝛼 in the same way as the simulation
is run on 𝜇 in the standard execution, i.e., using the gate operations defined in Section 4.2.
Note that this version of loop summarization does not support nested loops and assumes
that the loops do not contain qubit measurement operations, however, it could be extended
to support both.

This algorithm can be trivially extended for the 4-tuple MTBDD that is used in the
actual implementation. The only difference is, that in 𝜇𝛼 and 𝜇′𝛼, there is also a 4-tuple
of the corresponding values (4 symbolic variables for 𝜇𝛼, 4 symbolic expressions over these
variables). The symbolic expressions are implemented as singly linked lists, where each
element consists of a signed integer coefficient and a symbolic variable. There is an implicit
addition operation between the elements of this list. The only other operations with these
symbolic expressions needed for the symbolic simulation are subtraction and multiplication
by some constant, both of which are accomplished by manipulating the coefficients.

33

Algorithm 5: Loop summarization
Input: An MTBDD 𝜇
Output: An MTBDD 𝜇𝛼 over S and a mapping 𝜏 : S→ TS

1 begin
2 𝛼← ∅ (type 𝛼 : C⇀ S); // Initial abstraction
3 𝜇refined𝛼 ← UnaryApply(𝜇, Abstract[𝛼]);
4 repeat
5 𝜇𝛼 ← 𝜇refined𝛼 ;
6 𝜇′𝛼 ← 𝐶𝑆(𝜇𝛼);
7 𝜏 ← ∅ (type 𝜏 : S⇀ TS); // Update
8 𝜎 ← ∅ (type 𝜎 : S⇀ S); // Refinement substitution
9 𝜇refined𝛼 ← Apply(𝜇𝛼, 𝜇′𝛼, Refine[𝜏, 𝜎, 𝛼]);

10 until 𝜇𝛼 = 𝜇refined𝛼 ;
11 return (𝜇𝛼, 𝜏);
12 end
13 Function Abstract(val : C) : S is

Data: 𝛼 : C⇀ S
14 if 𝛼(val) = ⊥ then
15 let 𝑠new ∈ S ∖ rng(𝛼) be a fresh symbolic variable;
16 𝛼← 𝛼 ∪ {val ↦→ 𝑠new};
17 end
18 return 𝛼(val);
19 end
20 Function Refine(lhs: S, rhs: TS) : S is

Data: 𝜏 : S⇀ TS, 𝜎 : S⇀ S, 𝛼 : C⇀ S
21 if 𝜏(lhs) = ⊥ then
22 𝜏 ← 𝜏 ∪ {lhs ↦→ rhs};
23 end
24 else if ⊭ 𝜏(lhs) = rhs then
25 if 𝜎(lhs) = ⊥ then
26 let 𝑠new ∈ S ∖ rng(𝛼) be a fresh symbolic variable;
27 𝜎 ← 𝜎 ∪ {lhs ↦→ 𝑠new};
28 end
29 return 𝜎(lhs);
30 end
31 return lhs;
32 end

34

𝐶1 𝐶2

𝑞0 |0⟩ 𝑇 𝑇

𝑞1 |0⟩ 𝑋 𝑋

𝜇0 𝜇1 𝜇2

(a) The simulated circuit with two iterations of loop
operation 𝐶

𝑞0

𝑞1 𝑞1

1 0 0 0
(b) Initial state 𝜇0

𝑞0

𝑞1 𝑞1

𝑎 𝑏 𝑏 𝑏

(c) Initial abstraction 𝜇0
𝛼 of 𝜇0

𝑞0

𝑞1 𝑞1

𝑏 𝑎 𝑏𝜔 𝑏𝜔

(d) Result 𝜇′0
𝛼 we get after

applying 𝐶𝑆 to 𝜇0
𝛼

𝑞0

𝑞1 𝑞1

𝑎 𝑏 𝑐 𝑐

(e) Refined abstraction 𝜇1
𝛼 of 𝜇0

𝑞0

𝑞1 𝑞1

𝑏 𝑎 𝑐𝜔 𝑐𝜔

(f) Result 𝜇′1
𝛼 we get after

applying 𝐶𝑆 to 𝜇1
𝛼

𝑞0

𝑞1 𝑞1

0 1 0 0
(g) Evaluated result 𝜇1 after

the first iteration

𝑞0

𝑞1 𝑞1

1 0 0 0
(h) Evaluated result 𝜇2 after the

second iteration

Figure 5.3: Example of symbolic loop execution (uses full trees instead of MTBDDs
for clarity)

35

Chapter 6

Experimental Evaluation

This chapter presents the experimental results of the performance of the implemented simu-
lator MEDUSA compared to other state-of-the-art tools. The experiments consisted of simulat-
ing two sets of benchmark circuits: Loops and StraightLine. The aim of the benchmark
set Loops was to evaluate the impact of using symbolic execution for loop simulation, and
the aim of the benchmark set StraightLine was to compare the proposed MTBDD-based
approach itself with the state of the art. We show that the implemented MTBDD-based
simulator not only keeps up with current state-of-the-art simulators in terms of perfor-
mance, but also that the symbolic loop simulation leads to a noticeable acceleration of the
simulation that far exceeds the capabilities of the state of the art.

6.1 Experimental Environment and Used Simulators
All the experiments were conducted on a machine with the following parameters:

OS Debian GNU/Linux 12 (bookworm)
Number of CPUs 2
CPU model Intel Xeon X5650 (2.67 GHz)
RAM 32 GiB

The timeout limit was set to 60 minutes. The performance of MEDUSA was compared
with these state-of-the-art quantum circuit simulators: SliQSim [33], DDSIM [47] (v1.21.0),
Quasimodo [30], Quokka# [24]. It is worth mentioning again that of the measured sim-
ulators, MEDUSA and SliQSim are the only accurate simulators (other simulators rely on
floating point complex number representation). For more details on the importance of
accurate simulation and all the above-mentioned tools in general, see Chapter 3. In the
following, Quas[𝐵] denotes Quasimodo with the backend option 𝐵, since Quasimodo sup-
ports multiple different decision diagram backend options. Note that we performed the
experiments only on the Quasimodo’s BDD, WBDD (which uses the DDSIM’s decision di-
agram package), and CFLOBDD backend options, because the WCFLOBDD backend is
currently in a rather experimental state (some gates have not been implemented yet for
this backend option).

It is also worth mentioning that during the experiments with Quasimodo, some bugs
in this tool were discovered, reported to the authors1, and subsequently fixed (all results

1See https://github.com/trishullab/Quasimodo/issues/8 and https://github.com/trishullab/
Quasimodo/issues/9

36

https://github.com/trishullab/Quasimodo/issues/8
https://github.com/trishullab/Quasimodo/issues/9
https://github.com/trishullab/Quasimodo/issues/9

shown for Quasimodo were measured after fixing these bugs). We refer to the implemented
simulator with the symbolic loop simulation enabled as MEDUSA𝑙𝑜𝑜𝑝 and without the symbolic
loop simulation enabled as MEDUSA𝑏𝑎𝑠𝑒.

6.2 Benchmark Overview
The experiments consisted of measuring the simulation runtime on the above-mentioned
tools for various quantum circuits specified in OpenQASM. Specifically, for all the decision
diagram-based simulators (all simulators except Quokka#), the time to reach the final quan-
tum state in the respective representation was measured. Since Quokka# does not explicitly
compute the representation of the final quantum state, the time to obtain the probability
that the first qubit is |0⟩ was measured instead. As was already mentioned, the experiments
were conducted on two sets of benchmark circuits, Loops and StraightLine (both sets
do not contain any measurement operations in the circuits).

The benchmark set Loops contains quantum circuits with explicitly specified loops
with a fixed number of iterations (if some tool did not support the loop syntax, the loops
were unfolded for them). These quantum circuits implement either (i) the Grover’s search
algorithm (Grover), (ii) quantum counting (QC), or (iii) period finding (PF). The circuits
implementing Grover’s search have a single solution. Note that the circuits implementing
(ii) and (iii) do not include the final part with the inverse Quantum Fourier Transform
(QFT). This is because the implemented simulator does not currently support rotations by
𝜋
2𝑛 for an arbitrary 𝑛 ∈ N, which is a necessary operation for the inverse QFT. The reason
for this is that the used algebraic representation of complex numbers (see Section 4.1)
cannot represent rotations that are not multiples of 𝜋

4 . However, this could be solved, for
example, by using to a finer base rotation than 𝜋

4 to preserve the accuracy of the algebraic
representation, or by switching to a floating point representation of complex numbers.

The circuits implementing quantum counting and period finding use the naming con-
vention of form ⟨𝐹𝑅⟩_⟨𝑆𝑅⟩_⟨𝑀𝑇 ⟩, where 𝐹𝑅 and 𝑆𝑅 denote the number of qubits in
the first and the second register, respectively, and 𝑀𝑇 denotes the number of randomly
generated multi-control Toffoli gates in the oracle. For all these benchmark circuits it holds
that 𝑆𝑅 =

⌊︀
𝐹𝑅
2

⌋︀
and 𝑀𝑇 ∈ {5, 10, 15}.

The second benchmark set, StraightLine, consists only of circuits without loops,
namely: circuits implementing (i) the Bernstein-Vazirani algorithm (BV, 99 circuits),
(ii) multi-control Toffoli gates (MCToffoli, 97 circuits), (iii) the Grover’s search algo-
rithm (MOG, 9 circuits, specifically multi-oracle version with unfolded loops), and also
(iv) randomly generated circuits (Random, 97 circuits), (v) benchmarks from the toolkit
Feynman [1] (Feynman, 42 circuits), (vi) RevLib [42] reversible circuits (RevLib, 80 cir-
cuits), and (vii) modified versions of some of the RevLib benchmarks taken from [33]
(RevLib-H, 16 circuits, the modification consists of adding a Hadamard gate at each unas-
signed input). Benchmark circuits (i)-(iv) are taken from the repository2 of the AutoQ [8, 7]
tool for quantum circuit verification.

6.3 Evaluation of Symbolic Execution Performance Impact
First, let us evaluate the results of the Loops benchmark set. The focus of this benchmark
set was to examine the impact of symbolic loop execution, i.e., whether the symbolic execu-

2Available at: https://github.com/alan23273850/AutoQ/

37

https://github.com/alan23273850/AutoQ/

Table 6.1: Selected results for the Loops benchmark set The columns “#q” and “#G”
denote the number of qubits and gates (counted with unfolded loops), respectively. Times
are given in seconds (“0” denotes a time <0.5 s), memory in MiB. TO denotes a timeout,
num denotes the fastest time, and num denotes the fastest accurate simulator (MEDUSA

or SliQSim). Quokka# is omitted as it did not finish for any of the circuits in this bench-
mark set.

MEDUSA𝑙𝑜𝑜𝑝 MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

G
ro

ve
r

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
10 20 2,136 0 116 0 40 0 12 0 34 11 570 0 449 TO TO
13 26 8,037 0 137 1 47 7 13 0 49 650 3,405 0 459 TO TO
16 32 27,956 0 162 4 97 99 14 2 55 TO TO 1 492 TO TO
20 40 140,721 0 187 32 387 3,176 25 12 118 TO TO 73 769 TO TO
22 44 310,367 0 196 84 1,088 TO TO 32 254 TO TO 583 1,083 TO TO
23 46 461,646 1 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO
26 52 1,473,184 1 210 568 4,505 TO TO TO TO TO TO TO TO TO TO
29 58 4,676,916 2 215 2,190 10,032 TO TO TO TO TO TO TO TO TO TO
33 66 21,328,090 20 220 TO TO TO TO TO TO TO TO TO TO TO TO
37 74 95,794,310 349 229 TO TO TO TO TO TO TO TO TO TO TO TO
40 80 292,359,936 3,290 251 TO TO TO TO TO TO TO TO TO TO TO TO

P
F

07_03_10 10 2,294 23 1,891 0 27 0 12 0 30 0 458 0 442 0 440
13_06_10 19 245,744 66 2,090 2 28 4 32 1 213 10 458 1 446 4 442
16_08_05 24 1,507,322 83 600 8 24 23 130 4 1,235 61 458 7 449 34 442
19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 1,580 459 198 452 2,160 455
22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 TO TO TO TO 849 454 TO TO
22_11_15 33 448,790,444 128 1,662 3,020 27 TO TO TO TO TO TO 2,650 454 TO TO
28_14_15 42 37,312,528,274 233 1,935 TO TO TO TO TO TO TO TO TO TO TO TO
31_15_15 46 277,025,390,495 673 1,973 TO TO TO TO TO TO TO TO TO TO TO TO

Q
C

07_03_15 11 6,108 24 2,092 0 42 1 12 0 33 0 459 0 443 1 446
08_04_10 13 11,999 31 2,115 1 44 4 13 0 38 1 459 0 444 TO TO
09_04_10 14 24,032 38 2,127 1 54 15 14 0 46 2 459 0 445 TO TO
10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 TO TO
11_05_05 17 81,898 52 2,116 5 109 TO TO 0 65 TO TO 0 447 TO TO
12_06_05 19 188,390 219 7,394 TO TO TO TO 941 144 TO TO TO TO TO TO
12_06_15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO TO TO
13_06_15 20 753,593 919 9,502 TO TO TO TO TO TO TO TO TO TO TO TO

tion leads to a noticeable acceleration of the simulation for practically applicable quantum
algorithms. Some selected results can be seen in Table 6.1 (for all results, see Table A.1).
For each simulator, this table includes the largest circuit in each benchmark subset that
it was able to successfully simulate within the timeout limit. The runtimes of the simu-
lators can be also seen in Figure 6.1 (for PF and QC subsets, only the results with a 5
multi-control Toffoli gates in the oracle are shown for clarity). Quokka# is not included
in the presented results because it did not finish successfully for any of the circuits in the
benchmark set (it timed out for the smallest circuit in the Grover subset and it does not
support the multi-control X gate, which is present in all PF and QC circuits).

If we take a look at the performance of MEDUSA𝑙𝑜𝑜𝑝 and MEDUSA𝑏𝑎𝑠𝑒 (the only difference
between them is whether they use symbolic execution or not), we can clearly see that
the symbolic execution allows the simulator to scale much better with increasing circuit
complexity. Although this speed-up often comes at the cost of higher memory usage, this
can probably be further optimized, since it seems that in these simulated circuits it was not

38

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of qubits

0

500

1000

1500

2000

2500

3000

Ru
nt

im
e

[s
]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

(a) Grover’s search

10 15 20 25 30 35 40 45
Number of qubits

0

500

1000

1500

2000

Ru
nt

im
e

[s
]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

(b) Period finding

12 14 16 18 20
Number of qubits

0

200

400

600

800
Ru

nt
im

e
[s

]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

(c) Quantum counting

Figure 6.1: Runtimes on the Loops benchmark set (the results for quantum counting and
period finding show all the circuits with 5 multi-control Toffoli gates in the oracle)

the symbolic execution itself that was the most memory-intensive task, but the subsequent
variable evaluation, where there is definitely some room for further optimization. It is
important to mention that this leads to the assumption that the symbolic execution would
provide a significant performance improvement if extended to other simulators based on
decision diagrams.

Not only does the symbolic execution of loops lead to a noticeable acceleration of the
simulation for MEDUSA𝑏𝑎𝑠𝑒, but MEDUSA𝑙𝑜𝑜𝑝 scaled much better than all other simulators
on all benchmark subsets. This is especially true for Grover (MEDUSA𝑙𝑜𝑜𝑝 was able to
simulate circuits with up to 80 qubits, while the best performing simulator other than
MEDUSA achieved at most a circuit with 46 qubits) and PF (MEDUSA𝑙𝑜𝑜𝑝 was able to simulate
a circuit with over 277 billion gates in less than 12 minutes). However, MEDUSA𝑙𝑜𝑜𝑝 did
not perform as well on some smaller but still complex circuits (e.g., for QC), because the
symbolic representation for these circuits is not trivial, but at the same time the loops

39

in these circuits have relatively few iterations, so symbolic execution tends to cause an
extra overhead.

Note that the performance of MEDUSA𝑏𝑎𝑠𝑒 on the Loops benchmark circuits is also
quite impressive, although this was not the main goal of these experiments. Especially
for Grover benchmark circuits, MEDUSA𝑏𝑎𝑠𝑒 scales exceptionally well and surpasses other
state-of-the-art tools in the size of the circuits it managed to simulate.

6.4 Evaluation of MTBDD-based Simulator Performance
As mentioned earlier, the second benchmark set StraightLine was used to compare
MEDUSA𝑏𝑎𝑠𝑒 with other state-of-the-art simulators. Some selected results are shown in Ta-
ble 6.2 (for all results, see Table A.2). MEDUSA𝑙𝑜𝑜𝑝 is omitted from these results, as it would
give exactly the same results as MEDUSA𝑏𝑎𝑠𝑒 because these circuits do not contain loops.
In addition to this, the results for BV and MCToffoli are not presented, since all the
circuits in these two categories were trivial for all the simulators—all of them managed to
simulate the largest BV circuit (100 qubits, 251 gates) in less than 0.1 seconds and the
largest MCToffoli circuit (198 qubits, 197 gates) in less than 0.2 seconds. Note that the
errors we encountered using Quas[CFLOBDD] and Quas[BDD] were caused by not supporting
certain gates present in the circuits (specifically, 𝑅𝑥

(︀
𝜋
2

)︀
and 𝑅𝑦

(︀
𝜋
2

)︀
). Quas[WBDD] also does

not support the 𝑅𝑥

(︀
𝜋
2

)︀
and 𝑅𝑦

(︀
𝜋
2

)︀
gates, but it does support the

√
𝑋 and

√
𝑌 gates (which

are equivalent to 𝑅𝑥

(︀
𝜋
2

)︀
and 𝑅𝑦

(︀
𝜋
2

)︀
, respectively, up to a global phase factor that can be

ignored [25]), so we used these gates instead. Similarly, the simulation errors with Quokka#
were caused by the fact that Quokka# does not support the multi-control X gate, which is
present in all RevLib-H circuits.

If we take a closer look at the performance of MEDUSA𝑏𝑎𝑠𝑒, it is obvious that this simulator
is competitive with the current state of the art, especially if we focus only on accurate
simulators. Specifically, MEDUSA𝑏𝑎𝑠𝑒 is clearly the best available accurate simulator for all the
non-trivial Feynman circuits, on the other hand, it struggles with some Random circuits.
It is important to mention that RevLib-H circuits were challenging for all simulators—
the selected circuits include only those where none of the tools timed out. SliQSim was
the best performing simulator on RevLib-H as it was able to simulate 14 of the circuits,
whereas DDSIM and Quas[CFLOBDD] managed to simulate 6 of the circuits and MEDUSA𝑏𝑎𝑠𝑒,
Quas[WBDD], and Quas[BDD] managed to simulate 5 of the circuits. Quokka# failed to
simulate any of the circuits because, again, these circuits contain the multi-control X gate,
which is currently not supported by Quokka#.

Combined with the fact that MEDUSA𝑏𝑎𝑠𝑒 also performed notably well on the Loops
benchmark set, it is shown that the implemented MTBDD-based simulator is an interest-
ing and useful alternative to the available quantum circuit simulation tools, as it is often
complementary to the current state of the art (especially if we consider only accurate sim-
ulation tools).

40

Table 6.2: Selected results for the StraightLine benchmark set. The columns “#q” and
“#G” denote the number of qubits and gates, respectively. Times are given in seconds
(“0.00” denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR denotes
an error, num denotes the fastest time, and num denotes the fastest accurate simulator
(MEDUSA or SliQSim). Quokka# is not marked as the fastest because it does not compute
the quantum state representation.

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

F
ey

nm
an

gf232_mult 96 3,322 0.26 40 1.35 13 0.10 71 0.66 460 0.11 502 0.82 450 0.87 45
gf264_mult 192 12,731 1.82 66 17.11 20 0.75 126 2.59 464 0.68 601 4.43 462 3.56 149
gf2128_mult 384 50,043 20.40 231 264.81 38 5.28 235 10.50 478 4.76 1,159 27.60 498 15.39 570
gf2256_mult 768 198,395 163.00 1,635 TO TO 41.21 538 43.30 531 38.50 4,989 238.00 633 71.28 2,324
hwb8 12 6,446 0.16 38 3.70 13 0.03 33 0.95 460 0.04 443 1.03 444 TO TO
hwb10 16 31,764 0.80 51 84.20 15 0.21 38 4.72 466 0.22 447 1.56 445 TO TO
hwb11 15 87,789 2.64 103 660.93 22 0.49 70 12.80 475 0.52 449 1.51 448 TO TO
hwb12 20 171,482 5.80 205 2,568.02 35 1.13 133 27.20 510 1.35 456 6.43 457 3,193.79 1,070

M
O

G 10 30 2,433 0.20 42 1.26 12 0.08 34 9.08 595 0.05 456 TO TO 62.68 40
11 33 3,746 0.36 45 3.12 13 0.13 42 48.80 906 0.08 462 TO TO 167.01 56

R
an

do
m

85 85 255 1.00 52 0.47 15 2.12 64 ERR ERR 0.11 485 ERR ERR 0.03 12
86 86 258 15.30 214 0.48 14 2.25 72 ERR ERR 3.25 553 ERR ERR 0.07 12
89 89 267 9.48 105 0.67 14 0.72 66 ERR ERR 0.59 492 ERR ERR 0.06 13
93 93 279 1.68 62 0.32 13 0.18 68 ERR ERR 0.11 494 ERR ERR 0.05 12
94 94 282 79.60 337 0.78 18 4.45 76 ERR ERR 74.30 521 ERR ERR 0.08 13
97 97 291 5.70 118 0.42 13 1.47 78 ERR ERR 0.42 525 ERR ERR 0.03 13
99 99 297 9.58 173 0.38 12 2.61 79 ERR ERR 0.67 526 ERR ERR 0.08 13

R
ev

Li
b

apex5_290 1,025 2,909 1.75 62 0.37 44 1.03 536 0.26 467 1.33 1,214 3.95 516 2.11 73
cps_292 923 2,763 1.19 58 0.21 31 1.25 485 0.22 465 1.09 1,035 2.82 528 1.39 60
frg2_297 1,219 3,724 2.32 93 0.50 49 1.52 633 0.32 469 1.90 1,307 6.25 498 2.15 84
seq_314 1,617 5,990 4.96 98 1.35 109 4.11 835 0.54 477 3.71 1,776 14.00 537 3.65 124

R
ev

Li
b-

H

add64_184 193 385 0.20 204 0.03 14 0.10 118 0.10 460 0.08 545 0.06 446 ERR ERR
cpu_register_32_405 328 1,978 0.46 214 0.09 15 0.42 195 0.57 469 0.70 668 0.33 457 ERR ERR
e64-bdd_295 195 516 1.98 239 2.49 14 2.00 127 0.62 477 0.54 614 1.91 496 ERR ERR
ex5p_296 206 736 7.61 283 12.03 21 3.57 132 0.99 490 1.15 691 6.23 549 ERR ERR
hwb9_304 170 774 33.00 663 13.51 20 12.17 114 3.61 560 4.90 1,105 21.70 570 ERR ERR

41

Chapter 7

Conclusion

In this thesis, we presented a novel approach to quantum circuit simulation on classical
computers and introduced a tool implementing this approach. The implemented simulator,
called MEDUSA, is accurate and based on MTBDDs. An essential feature of MEDUSA is
symbolic execution of loops, which leads to a significant acceleration of the simulation as
shown by the conducted experiments, where no other state-of-the-art simulator managed
to scale nearly as well. For circuits that do not contain loops, MEDUSA has proven to not
only keep up with other simulators in general, but for some circuits it even demonstrates
superior performance—especially when considering only accurate simulators. Based on this
thesis, a paper [6] (see Appendix B) was written and submitted to ICCAD’24 at the time
of writing.

In terms of future work, it would be useful to perform certain quantum operations
more efficiently (e.g., qubit measurement, or control gates other than control phase gates)
and to better optimize the final evaluation during symbolic execution to be less memory
demanding. However, these are only minor improvements. A more substantial improvement
would be to extend the current simulation technique to support rotations by 𝜋

2𝑛 for an
arbitrary 𝑛 ∈ N while maintaining accuracy, or to implement some additional optimization
preprocessing procedure that would take advantage of the fact that some operations can
be done more efficiently in simulation than on a real quantum computer. Another possible
direction would be to extend the functionality of the implemented tool for the purpose of
quantum circuit verification.

42

Bibliography

[1] Amy, M. Towards Large-scale Functional Verification of Universal Quantum
Circuits. In: Selinger, P. and Chiribella, G., ed. Proceedings 15th International
Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June
2018. 2018, vol. 287, p. 1–21. EPTCS. DOI: 10.4204/EPTCS.287.1. Available at:
https://doi.org/10.4204/EPTCS.287.1.

[2] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C. et al. Quantum
supremacy using a programmable superconducting processor. Nature. October 2019,
vol. 574, no. 7779, p. 505–510. DOI: 10.1038/s41586-019-1666-5. ISSN 1476-4687.
Available at: https://doi.org/10.1038/s41586-019-1666-5.

[3] Bernstein, E. and Vazirani, U. V. Quantum complexity theory. In: Kosaraju,
S. R., Johnson, D. S. and Aggarwal, A., ed. Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego,
CA, USA. ACM, 1993, p. 11–20. DOI: 10.1145/167088.167097. Available at:
https://doi.org/10.1145/167088.167097.

[4] Brassard, G., Høyer, P. and Tapp, A. Quantum Counting. In: Larsen, K. G.,
Skyum, S. and Winskel, G., ed. Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998,
Proceedings. Springer, 1998, vol. 1443, p. 820–831. Lecture Notes in Computer
Science. DOI: 10.1007/BFB0055105. Available at:
https://doi.org/10.1007/BFb0055105.

[5] Bryant, R. E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers. 1986, vol. 35, no. 8, p. 677–691. DOI: 10.1109/TC.1986.1676819.
Available at: https://doi.org/10.1109/TC.1986.1676819.

[6] Chen, T.-F., Chen, Y.-F., Jiang, J.-H. R., Jobranová, S. and Lengál, O.
Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop
Summarization. Submitted to ICCAD’24. 2024.

[7] Chen, Y., Chung, K., Lengál, O., Lin, J. and Tsai, W. AutoQ: An
Automata-Based Quantum Circuit Verifier. In: Enea, C. and Lal, A., ed. Computer
Aided Verification - 35th International Conference, CAV 2023, Paris, France, July
17-22, 2023, Proceedings, Part III. Springer, 2023, vol. 13966, p. 139–153. Lecture
Notes in Computer Science. DOI: 10.1007/978-3-031-37709-9_7. ISBN
978-3-031-37709-9. Available at: https://doi.org/10.1007/978-3-031-37709-9_7.

[8] Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W. et al. An Automata-Based
Framework for Verification and Bug Hunting in Quantum Circuits. Proc. ACM

43

https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/167088.167097
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-031-37709-9_7

Program. Lang. New York, NY, USA: Association for Computing Machinery. June
2023, vol. 7, PLDI, p. 1218–1243. DOI: 10.1145/3591270. Available at:
https://doi.org/10.1145/3591270.

[9] Coecke, B. and Duncan, R. Interacting Quantum Observables. In: Aceto, L.,
Damgård, I., Goldberg, L. A., Halldórsson, M. M., Ingólfsdóttir, A. et al.,
ed. Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations. Berlin, Heidelberg: Springer, 2008, vol. 5126, p. 298–310. Lecture Notes
in Computer Science. DOI: 10.1007/978-3-540-70583-3_25. ISBN 978-3-540-70583-3.
Available at: https://doi.org/10.1007/978-3-540-70583-3_25.

[10] Cross, A. W., Bishop, L. S., Smolin, J. A. and Gambetta, J. M. Open Quantum
Assembly Language. 2017. DOI: 10.48550/arXiv.1707.03429. Available at:
https://doi.org/10.48550/arXiv.1707.03429.

[11] Dieks, D. Communication by EPR devices. Physics Letters A. November 1982,
vol. 92, no. 6, p. 271–272. DOI: https://doi.org/10.1016/0375-9601(82)90084-6. ISSN
0375-9601. Available at:
https://www.sciencedirect.com/science/article/pii/0375960182900846.

[12] Dijk, T. van and Pol, J. van de. Sylvan: Multi-Core Decision Diagrams. In: Baier,
C. and Tinelli, C., ed. Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Springer, 2015, vol. 9035, p. 677–691. Lecture Notes
in Computer Science. DOI: 10.1007/978-3-662-46681-0_60. Available at:
https://doi.org/10.1007/978-3-662-46681-0_60.

[13] Einstein, A., Podolsky, B. and Rosen, N. Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete? Phys. Rev. American Physical Society.
May 1935, vol. 47, p. 777–780. DOI: 10.1103/PhysRev.47.777. Available at:
https://link.aps.org/doi/10.1103/PhysRev.47.777.

[14] Feynman, R. P. Simulating physics with computers. International Journal of
Theoretical Physics. June 1982, vol. 21, no. 6, p. 467–488. DOI: 10.1007/BF02650179.
ISSN 1572-9575. Available at: https://doi.org/10.1007/BF02650179.

[15] Fujita, M., McGeer, P. C. and Yang, J. C. Multi-Terminal Binary Decision
Diagrams: An Efficient Data Structure for Matrix Representation. Formal Methods in
System Design. April 1997, vol. 10, 2/3, p. 149–169. DOI: 10.1023/A:1008647823331.
ISSN 1572-8102. Available at: https://doi.org/10.1023/A:1008647823331.

[16] Gansner, E. R. and North, S. C. An open graph visualization system and its
applications to software engineering. Softw. Pract. Exp. 2000, vol. 30, no. 11,
p. 1203–1233. DOI:
10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N. Available at:
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N.

44

https://doi.org/10.1145/3591270
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.48550/arXiv.1707.03429
https://www.sciencedirect.com/science/article/pii/0375960182900846
https://doi.org/10.1007/978-3-662-46681-0_60
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://doi.org/10.1007/BF02650179
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N

[17] Granlund, T. and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library [online]. 6.2.1th ed. 2020 [cit. 2024-04-14]. Available at:
http://gmplib.org/.

[18] Grover, L. K. A Fast Quantum Mechanical Algorithm for Database Search. In:
Miller, G. L., ed. Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. ACM,
1996, p. 212–219. DOI: 10.1145/237814.237866. Available at:
https://doi.org/10.1145/237814.237866.

[19] Herman, D., Googin, C., Liu, X., Sun, Y., Galda, A. et al. Quantum computing
for finance. Nature Reviews Physics. Springer Science and Business Media LLC. July
2023, vol. 5, no. 8, p. 450–465. DOI: 10.1038/s42254-023-00603-1. ISSN 2522-5820.
Available at: http://dx.doi.org/10.1038/s42254-023-00603-1.

[20] Hong, X., Zhou, X., Li, S., Feng, Y. and Ying, M. A Tensor Network based
Decision Diagram for Representation of Quantum Circuits. ACM Trans. Design
Autom. Electr. Syst. New York, NY, USA: Association for Computing Machinery.
June 2022, vol. 27, no. 6, p. 60:1–60:30. DOI: 10.1145/3514355. ISSN 1084-4309.
Available at: https://doi.org/10.1145/3514355.

[21] Kissinger, A. and Wetering, J. van de. Simulating quantum circuits with
ZX-calculus reduced stabiliser decompositions. Quantum Science and Technology.
IOP Publishing. July 2022, vol. 7, no. 4, p. 044001. DOI: 10.1088/2058-9565/ac5d20.
ISSN 2058-9565. Available at: http://dx.doi.org/10.1088/2058-9565/ac5d20.

[22] Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem.
Electron. Colloquium Comput. Complex. 1996, TR96-003. Available at:
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html.

[23] McArdle, S., Endo, S., Aspuru Guzik, A., Benjamin, S. C. and Yuan, X.
Quantum computational chemistry. Reviews of Modern Physics. American Physical
Society (APS). March 2020, vol. 92, no. 1. DOI: 10.1103/revmodphys.92.015003.
ISSN 1539-0756. Available at: http://dx.doi.org/10.1103/RevModPhys.92.015003.

[24] Mei, J., Bonsangue, M. and Laarman, A. Simulating Quantum Circuits by Model
Counting. In: CAV’24 (to appear). 2024. DOI: 10.48550/ARXIV.2403.07197.
Available at: https://doi.org/10.48550/arXiv.2403.07197.

[25] Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010. ISBN
978-1-107-00217-3.

[26] Niemann, P., Wille, R., Miller, D. M., Thornton, M. A. and Drechsler, R.
QMDDs: Efficient Quantum Function Representation and Manipulation. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, vol. 35, no. 1, p. 86–99. DOI:
10.1109/TCAD.2015.2459034. Available at:
https://doi.org/10.1109/TCAD.2015.2459034.

[27] Niemann, P., Zulehner, A., Drechsler, R. and Wille, R. Overcoming the
Tradeoff Between Accuracy and Compactness in Decision Diagrams for Quantum
Computation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, vol. 39,

45

http://gmplib.org/
https://doi.org/10.1145/237814.237866
http://dx.doi.org/10.1038/s42254-023-00603-1
https://doi.org/10.1145/3514355
http://dx.doi.org/10.1088/2058-9565/ac5d20
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
http://dx.doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.48550/arXiv.2403.07197
https://doi.org/10.1109/TCAD.2015.2459034

no. 12, p. 4657–4668. DOI: 10.1109/TCAD.2020.2977603. Available at:
https://doi.org/10.1109/TCAD.2020.2977603.

[28] Raedt, H. D., Jin, F., Willsch, D., Nocon, M., Yoshioka, N. et al. Massively
parallel quantum computer simulator, eleven years later. Computer Physics
Communications. 2019, vol. 237, p. 47–61. DOI: 10.1016/J.CPC.2018.11.005. ISSN
0010-4655. Available at: https://doi.org/10.1016/j.cpc.2018.11.005.

[29] Sistla, M., Chaudhuri, S. and Reps, T. W. CFLOBDDs: Context-Free-Language
Ordered Binary Decision Diagrams. CoRR. 2022, abs/2211.06818. DOI:
10.48550/ARXIV.2211.06818. Available at:
https://doi.org/10.48550/arXiv.2211.06818.

[30] Sistla, M., Chaudhuri, S. and Reps, T. W. Symbolic Quantum Simulation with
Quasimodo. In: Enea, C. and Lal, A., ed. Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part III. Springer, 2023, vol. 13966, p. 213–225. Lecture Notes in Computer Science.
DOI: 10.1007/978-3-031-37709-9_11. Available at:
https://doi.org/10.1007/978-3-031-37709-9_11.

[31] Sistla, M., Chaudhuri, S. and Reps, T. W. Weighted Context-Free-Language
Ordered Binary Decision Diagrams. CoRR. 2023, abs/2305.13610. DOI:
10.48550/ARXIV.2305.13610. Available at:
https://doi.org/10.48550/arXiv.2305.13610.

[32] Thanos, D., Villoria, A., Brand, S., Mei, A.-J. Q. J., Coopmans, T. et al. A
Knowledge Compilation Map for Quantum Information. In: SPIN’24 (to appear).
2024. Available at:
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf.

[33] Tsai, Y., Jiang, J. R. and Jhang, C. Bit-Slicing the Hilbert Space: Scaling Up
Accurate Quantum Circuit Simulation. In: 58th ACM/IEEE Design Automation
Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021. IEEE, 2021,
p. 439–444. DOI: 10.1109/DAC18074.2021.9586191. Available at:
https://doi.org/10.1109/DAC18074.2021.9586191.

[34] Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum
Computations. Physical Review Letters. American Physical Society (APS). October
2003, vol. 91, no. 14. DOI: 10.1103/physrevlett.91.147902. ISSN 1079-7114. Available
at: http://dx.doi.org/10.1103/PhysRevLett.91.147902.

[35] Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V. and Laarman, A.
LIMDD: A Decision Diagram for Simulation of Quantum Computing Including
Stabilizer States. Quantum. September 2023, vol. 7, p. 1108. DOI:
10.22331/Q-2023-09-11-1108. ISSN 2521-327X. Available at:
https://doi.org/10.22331/q-2023-09-11-1108.

[36] Vinkhuijzen, L., Coopmans, T. and Laarman, A. A Knowledge Compilation Map
for Quantum Information. CoRR. 2024, abs/2401.01322. DOI:
10.48550/ARXIV.2401.01322. Available at:
https://doi.org/10.48550/arXiv.2401.01322.

46

https://doi.org/10.1109/TCAD.2020.2977603
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.48550/arXiv.2211.06818
https://doi.org/10.1007/978-3-031-37709-9_11
https://doi.org/10.48550/arXiv.2305.13610
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf
https://doi.org/10.1109/DAC18074.2021.9586191
http://dx.doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.22331/q-2023-09-11-1108
https://doi.org/10.48550/arXiv.2401.01322

[37] Vinkhuijzen, L., Grurl, T., Hillmich, S., Brand, S., Wille, R. et al. Efficient
Implementation of LIMDDs for Quantum Circuit Simulation. In: Caltais, G.
and Schilling, C., ed. Model Checking Software - 29th International Symposium,
SPIN 2023, Paris, France, April 26-27, 2023, Proceedings. Springer, 2023, vol. 13872,
p. 3–21. Lecture Notes in Computer Science. DOI: 10.1007/978-3-031-32157-3_1.
Available at: https://doi.org/10.1007/978-3-031-32157-3_1.

[38] Vojnar, T. Static Analysis and Verification (SAV), lecture Binary Decision
Diagrams: Slides for the course at Faculty of Information Technology, Brno
University of Technology [online]. 2023 [cit. 2024-01-20]. Available at:
https://www.fit.vutbr.cz/study/courses/SAV/public/.

[39] Wei, C., Tsai, Y., Jhang, C. and Jiang, J. R. Accurate BDD-based unitary
operator manipulation for scalable and robust quantum circuit verification. In:
Oshana, R., ed. DAC ’22: 59th ACM/IEEE Design Automation Conference, San
Francisco, California, USA, July 10 - 14, 2022. New York, NY, USA: ACM, 2022,
p. 523–528. DOI: 10.1145/3489517.3530481. Available at:
https://doi.org/10.1145/3489517.3530481.

[40] Wetering, J. van de. ZX-calculus for the working quantum computer scientist.
December 2020. ArXiv preprint arXiv:2012.13966. Available at:
http://dx.doi.org/10.1088/2058-9565/ac5d20.

[41] Wille, R., Burgholzer, L., Hillmich, S., Grurl, T., Ploier, A. et al. The basis
of design tools for quantum computing: arrays, decision diagrams, tensor networks,
and ZX-calculus. In: Oshana, R., ed. DAC ’22: 59th ACM/IEEE Design
Automation Conference, San Francisco, California, USA, July 10 - 14, 2022. ACM,
July 2022, p. 1367–1370. DOI: 10.1145/3489517.3530627. Available at:
https://doi.org/10.1145/3489517.3530627.

[42] Wille, R., Große, D., Teuber, L., Dueck, G. W. and Drechsler, R. RevLib:
An Online Resource for Reversible Functions and Reversible Circuits. In: 38th IEEE
International Symposium on Multiple-Valued Logic (ISMVL 2008), 22-23 May 2008,
Dallas, Texas, USA. IEEE Computer Society, 2008, p. 220–225. DOI:
10.1109/ISMVL.2008.43. Available at: https://doi.org/10.1109/ISMVL.2008.43.

[43] Wille, R., Meter, R. V. and Naveh, Y. IBM’s Qiskit Tool Chain: Working with
and Developing for Real Quantum Computers. In: Teich, J. and Fummi, F.,
ed. Design, Automation & Test in Europe Conference & Exhibition, DATE 2019,
Florence, Italy, March 25-29, 2019. IEEE, 2019, p. 1234–1240. DOI:
10.23919/DATE.2019.8715261. Available at:
https://doi.org/10.23919/DATE.2019.8715261.

[44] Wootters, W. K. and Zurek, W. H. A single quantum cannot be cloned. Nature.
October 1982, vol. 299, no. 5886, p. 802–803. DOI: 10.1038/299802a0. ISSN
1476-4687. Available at: https://doi.org/10.1038/299802a0.

[45] Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C. et al. Quantum
computational advantage using photons. Science. 2020, vol. 370, no. 6523,
p. 1460–1463. DOI: 10.1126/science.abe8770. Available at:
https://www.science.org/doi/abs/10.1126/science.abe8770.

47

https://doi.org/10.1007/978-3-031-32157-3_1
https://www.fit.vutbr.cz/study/courses/SAV/public/
https://doi.org/10.1145/3489517.3530481
http://dx.doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1145/3489517.3530627
https://doi.org/10.1109/ISMVL.2008.43
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.1038/299802a0
https://www.science.org/doi/abs/10.1126/science.abe8770

[46] Zulehner, A., Hillmich, S. and Wille, R. How to Efficiently Handle Complex
Values? Implementing Decision Diagrams for Quantum Computing. In: Pan, D. Z.,
ed. Proceedings of the International Conference on Computer-Aided Design, ICCAD
2019, Westminster, CO, USA, November 4-7, 2019. ACM, 2019, p. 1–7. DOI:
10.1109/ICCAD45719.2019.8942057. Available at:
https://doi.org/10.1109/ICCAD45719.2019.8942057.

[47] Zulehner, A. and Wille, R. Advanced Simulation of Quantum Computations.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, vol. 38, no. 5,
p. 848–859. DOI: 10.1109/TCAD.2018.2834427. Available at:
https://doi.org/10.1109/TCAD.2018.2834427.

48

https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/TCAD.2018.2834427

Appendix A

All Experimental Results

Table A.1: Results for the Loops benchmark set. The columns “#q” and “#G” denote
the number of qubits and gates (counted with unfolded loops), respectively. Times are
given in seconds (“0” denotes a time <0.5 s), memory in MiB. TO denotes a timeout,
num denotes the fastest time, and num denotes the fastest accurate simulator (MEDUSA

or SliQSim). Quokka# is omitted as it did not finish for any of the circuits in this bench-
mark set.

MEDUSA𝑙𝑜𝑜𝑝 MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

G
ro

ve
r

5 10 170 0 89 0 30 0 12 0 29 0 458 0 442 0 441
6 12 301 0 94 0 35 0 12 0 30 0 459 0 443 0 442
7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
8 16 813 0 104 0 38 0 12 0 30 1 478 0 445 TO TO
9 18 1,319 0 109 0 38 0 12 0 31 4 511 0 447 TO TO
10 20 2,136 0 116 0 40 0 12 0 34 11 570 0 449 TO TO
11 22 3,337 0 122 0 42 1 12 0 34 39 774 0 450 TO TO
12 24 5,163 0 134 0 44 3 12 0 39 128 1,228 0 453 TO TO
13 26 8,037 0 137 1 47 7 13 0 49 650 3,405 0 459 TO TO
14 28 12,115 0 145 1 56 17 13 1 50 TO TO 0 470 TO TO
15 30 18,618 0 153 2 69 40 13 1 52 TO TO 0 472 TO TO
16 32 27,956 0 162 4 97 99 14 2 55 TO TO 1 492 TO TO
17 34 42,334 0 167 7 116 239 15 3 64 TO TO 2 532 TO TO
18 36 63,133 0 174 12 185 568 17 5 75 TO TO 7 539 TO TO
19 38 94,876 0 180 20 256 1,334 19 8 89 TO TO 22 612 TO TO
20 40 140,721 0 187 32 387 3,176 25 12 118 TO TO 73 769 TO TO
21 42 210,367 0 191 53 779 TO TO 20 173 TO TO 207 794 TO TO
22 44 310,367 0 196 84 1,088 TO TO 32 254 TO TO 583 1,083 TO TO
23 46 461,646 1 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO
24 48 678,601 1 205 683 3,669 TO TO TO TO TO TO TO TO TO TO
25 50 1,005,355 1 206 353 3,553 TO TO TO TO TO TO TO TO TO TO
26 52 1,473,184 1 210 568 4,505 TO TO TO TO TO TO TO TO TO TO
27 54 2,174,689 1 212 3,200 11,103 TO TO TO TO TO TO TO TO TO TO
28 56 3,178,178 1 213 1,940 10,042 TO TO TO TO TO TO TO TO TO TO
29 58 4,676,916 2 215 2,190 10,032 TO TO TO TO TO TO TO TO TO TO
30 60 6,819,806 3 216 TO TO TO TO TO TO TO TO TO TO TO TO
31 62 10,008,932 5 219 TO TO TO TO TO TO TO TO TO TO TO TO

Continued on next page

49

Table A.1 (continued from previous page)

MEDUSA𝑙𝑜𝑜𝑝 MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

G
ro

ve
r

32 64 14,566,326 10 220 TO TO TO TO TO TO TO TO TO TO TO TO
33 66 21,328,090 20 220 TO TO TO TO TO TO TO TO TO TO TO TO
34 68 30,985,878 41 222 TO TO TO TO TO TO TO TO TO TO TO TO
35 70 45,276,660 84 224 TO TO TO TO TO TO TO TO TO TO TO TO
36 72 65,677,990 171 226 TO TO TO TO TO TO TO TO TO TO TO TO
37 74 95,794,310 349 229 TO TO TO TO TO TO TO TO TO TO TO TO
38 76 138,767,877 814 234 TO TO TO TO TO TO TO TO TO TO TO TO
39 78 202,070,979 1,550 242 TO TO TO TO TO TO TO TO TO TO TO TO
40 80 292,359,936 3,290 251 TO TO TO TO TO TO TO TO TO TO TO TO
41 82 425,106,417 TO TO TO TO TO TO TO TO TO TO TO TO TO TO

P
F

07_03_05 10 897 22 204 0 22 0 12 0 29 0 457 0 442 0 440
07_03_10 10 2,294 23 1,891 0 27 0 12 0 30 0 458 0 442 0 440
07_03_15 10 3,437 23 2,017 0 35 0 12 0 32 0 458 0 442 0 440
10_05_05 15 17,402 44 1,922 0 31 0 13 0 34 1 458 0 445 0 441
10_05_10 15 34,793 44 2,084 0 39 1 15 0 40 1 464 0 449 1 446
10_05_15 15 52,184 45 2,104 0 38 1 16 0 47 2 462 0 447 1 443
13_06_05 19 106,497 65 1,992 1 26 2 21 0 97 4 458 0 446 2 441
13_06_10 19 245,744 66 2,090 2 28 4 32 1 213 10 458 1 446 4 442
13_06_15 19 384,991 66 2,112 21 102 82 51 11 329 21 588 33 590 137 481
16_08_05 24 1,507,322 83 600 8 24 23 130 4 1,235 61 458 7 449 34 442
16_08_10 24 3,407,837 88 2,116 16 40 67 260 14 2,712 137 461 15 458 186 451
16_08_15 24 5,439,422 87 2,111 34 64 470 412 48 4,336 222 472 281 593 459 479
19_09_05 28 9,961,473 108 2,092 211 28 157 799 23 8,289 402 458 48 451 286 443
19_09_10 28 26,214,370 109 2,133 172 32 392 1,976 61 21,286 1,050 459 130 452 1,630 450
19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 1,580 459 198 452 2,160 455
22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 TO TO TO TO 849 454 TO TO
22_11_10 33 310,378,445 127 1,387 1,480 39 TO TO TO TO TO TO 1,810 454 TO TO
22_11_15 33 448,790,444 128 1,662 3,020 27 TO TO TO TO TO TO 2,650 454 TO TO
25_12_05 37 1,107,296,249 147 2,081 TO TO TO TO TO TO TO TO TO TO TO TO
25_12_10 37 2,348,810,196 147 2,140 TO TO TO TO TO TO TO TO TO TO TO TO
25_12_15 37 3,388,997,557 166 2,211 TO TO TO TO TO TO TO TO TO TO TO TO
28_14_05 42 9,395,240,954 229 1,152 TO TO TO TO TO TO TO TO TO TO TO TO
28_14_10 42 22,548,578,249 238 1,680 TO TO TO TO TO TO TO TO TO TO TO TO
28_14_15 42 37,312,528,274 233 1,935 TO TO TO TO TO TO TO TO TO TO TO TO
31_15_05 46 79,456,894,971 662 1,351 TO TO TO TO TO TO TO TO TO TO TO TO
31_15_10 46 171,798,691,792 693 1,810 TO TO TO TO TO TO TO TO TO TO TO TO
31_15_15 46 277,025,390,495 673 1,973 TO TO TO TO TO TO TO TO TO TO TO TO
34_17_05 51 876,173,328,368 TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Q
C

07_03_05 11 3,822 23 2,033 0 40 1 12 0 31 0 459 0 443 1 446
07_03_10 11 4,965 24 2,058 0 40 1 12 0 32 0 458 0 443 0 446
07_03_15 11 6,108 24 2,092 0 42 1 12 0 33 0 459 0 443 1 446
08_04_05 13 8,684 32 2,992 17 506 60 21 1 41 60 952 3 587 TO TO
08_04_10 13 11,999 31 2,115 1 44 4 13 0 38 1 459 0 444 TO TO
08_04_15 13 15,314 31 2,128 1 50 5 13 0 33 122 1,542 0 444 TO TO
09_04_05 14 17,389 42 3,581 73 2,325 483 80 4 52 266 2,085 24 1,020 TO TO
09_04_10 14 24,032 38 2,127 1 54 15 14 0 46 2 459 0 445 TO TO
09_04_15 14 30,675 38 2,126 2 62 20 14 0 37 970 5,546 0 446 TO TO
10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 TO TO
10_05_10 16 56,282 61 6,006 872 3,487 TO TO 24 61 TO TO 694 5,054 TO TO
10_05_15 16 77,765 45 2,164 6 110 TO TO 1 65 TO TO 0 447 TO TO
11_05_05 17 81,898 52 2,116 5 109 TO TO 0 65 TO TO 0 447 TO TO
11_05_10 17 112,603 96 6,661 TO TO TO TO 98 90 TO TO TO TO TO TO
11_05_15 17 155,590 52 2,163 TO TO TO TO 1 125 TO TO TO TO TO TO

Continued on next page

50

Table A.1 (continued from previous page)

MEDUSA𝑙𝑜𝑜𝑝 MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Q
C

12_06_05 19 188,390 219 7,394 TO TO TO TO 941 144 TO TO TO TO TO TO
12_06_10 19 258,005 238 7,536 TO TO TO TO 1,227 200 TO TO TO TO TO TO
12_06_15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO TO TO
13_06_05 20 376,807 891 8,891 TO TO TO TO TO TO TO TO TO TO TO TO
13_06_10 20 516,054 934 9,166 TO TO TO TO TO TO TO TO TO TO TO TO
13_06_15 20 753,593 919 9,502 TO TO TO TO TO TO TO TO TO TO TO TO
14_07_05 22 884,705 TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Table A.2: Results for the StraightLine benchmark set. The columns “#q” and “#G”
denote the number of qubits and gates, respectively. Times are given in seconds (“0.00”
denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR denotes an
error, num denotes the fastest time, and num denotes the fastest accurate simulator
(MEDUSA or SliQSim). Quokka# is not marked as the fastest because it does not compute
the quantum state representation.

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

B
V

1 2 6 0.02 21 0.01 12 0.00 29 0.02 456 0.00 438 0.00 439 0.07 11
2 3 8 0.00 21 0.01 12 0.00 29 0.00 457 0.00 438 0.00 439 0.00 11
3 4 11 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.00 11
4 5 13 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.00 11
5 6 16 0.00 21 0.01 12 0.00 29 0.00 456 0.00 440 0.00 439 0.00 11
6 7 18 0.00 21 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.00 11
7 8 21 0.00 22 0.01 12 0.00 29 0.01 456 0.01 441 0.00 439 0.00 11
8 9 23 0.00 22 0.01 12 0.00 29 0.01 456 0.01 441 0.00 439 0.00 11
9 10 26 0.00 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 439 0.00 11
10 11 28 0.01 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 439 0.00 11
11 12 31 0.01 23 0.01 12 0.00 29 0.01 458 0.01 443 0.00 439 0.00 11
12 13 33 0.01 23 0.01 12 0.00 29 0.01 458 0.01 443 0.00 440 0.00 11
13 14 36 0.01 23 0.01 12 0.00 29 0.01 458 0.01 444 0.00 440 0.00 11
14 15 38 0.01 24 0.01 12 0.00 29 0.01 457 0.01 444 0.00 440 0.00 11
15 16 41 0.01 25 0.01 12 0.00 29 0.01 458 0.01 445 0.00 440 0.00 11
16 17 43 0.01 25 0.01 12 0.00 29 0.01 458 0.01 445 0.00 440 0.00 11
17 18 46 0.01 25 0.01 12 0.00 29 0.01 458 0.01 446 0.00 440 0.01 11
18 19 48 0.01 25 0.01 12 0.00 29 0.01 458 0.01 446 0.00 440 0.01 11
19 20 51 0.01 26 0.01 12 0.00 29 0.01 457 0.01 447 0.00 440 0.01 11
20 21 53 0.01 26 0.01 12 0.00 29 0.02 458 0.01 447 0.00 440 0.01 11
21 22 56 0.01 26 0.01 12 0.00 29 0.02 458 0.01 448 0.00 440 0.01 11
22 23 58 0.01 27 0.01 12 0.00 29 0.02 458 0.01 448 0.00 440 0.01 11
23 24 61 0.01 27 0.01 12 0.00 29 0.02 458 0.01 449 0.00 440 0.01 11
24 25 63 0.01 27 0.01 12 0.00 29 0.02 457 0.01 449 0.00 440 0.01 11
25 26 66 0.01 28 0.01 12 0.00 29 0.02 458 0.01 450 0.01 440 0.01 11
26 27 68 0.01 28 0.01 12 0.00 29 0.02 458 0.01 450 0.01 440 0.01 11
27 28 71 0.01 29 0.01 12 0.00 29 0.02 458 0.01 451 0.01 440 0.01 11
28 29 73 0.07 29 0.01 12 0.00 29 0.02 457 0.01 451 0.01 440 0.01 11

Continued on next page

51

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

B
V

29 30 76 0.02 29 0.01 12 0.00 29 0.02 458 0.01 452 0.01 440 0.01 11
30 31 78 0.01 29 0.01 12 0.00 29 0.02 458 0.01 453 0.01 440 0.01 11
31 32 81 0.01 30 0.01 12 0.00 29 0.02 458 0.01 453 0.01 440 0.01 11
32 33 83 0.01 30 0.01 12 0.00 41 0.02 458 0.01 453 0.01 440 0.01 11
33 34 86 0.01 31 0.01 12 0.00 39 0.03 458 0.01 454 0.01 440 0.01 11
34 35 88 0.01 31 0.01 12 0.00 42 0.03 458 0.01 454 0.01 440 0.01 11
35 36 91 0.01 31 0.01 12 0.00 41 0.03 458 0.01 455 0.01 440 0.01 11
36 37 93 0.01 32 0.01 12 0.00 41 0.03 458 0.01 455 0.01 440 0.01 11
37 38 96 0.01 32 0.01 12 0.00 42 0.03 458 0.01 456 0.01 441 0.01 11
38 39 98 0.01 32 0.01 12 0.01 41 0.03 458 0.01 457 0.01 441 0.01 11
39 40 101 0.02 33 0.01 12 0.01 44 0.03 458 0.01 457 0.01 440 0.01 11
40 41 103 0.02 33 0.01 12 0.01 45 0.03 458 0.01 458 0.01 440 0.01 11
41 42 106 0.02 35 0.01 12 0.01 42 0.03 458 0.01 458 0.01 441 0.01 11
42 43 108 0.02 34 0.01 12 0.01 46 0.03 458 0.01 459 0.01 441 0.01 11
43 44 111 0.02 34 0.01 12 0.01 45 0.03 458 0.01 459 0.01 441 0.01 11
44 45 113 0.02 34 0.01 12 0.01 45 0.03 458 0.01 460 0.01 441 0.01 11
45 46 116 0.02 34 0.01 12 0.01 48 0.03 458 0.01 460 0.01 441 0.01 11
46 47 118 0.02 34 0.01 12 0.01 47 0.03 458 0.01 461 0.01 441 0.01 11
47 48 121 0.02 35 0.02 12 0.01 45 0.03 458 0.02 461 0.01 441 0.01 11
48 49 123 0.02 35 0.02 12 0.01 48 0.03 458 0.01 462 0.01 441 0.01 11
49 50 126 0.02 35 0.02 12 0.01 49 0.04 458 0.02 463 0.02 441 0.01 11
50 51 128 0.02 35 0.02 12 0.01 48 0.04 458 0.02 463 0.02 441 0.01 11
51 52 131 0.02 37 0.02 12 0.01 49 0.04 458 0.02 464 0.02 441 0.01 11
52 53 133 0.02 36 0.01 12 0.01 48 0.04 458 0.02 464 0.02 441 0.01 11
53 54 136 0.02 36 0.02 12 0.01 51 0.04 458 0.02 465 0.02 441 0.01 11
54 55 138 0.02 36 0.02 12 0.01 50 0.04 458 0.02 465 0.02 441 0.01 11
55 56 141 0.02 36 0.02 12 0.01 53 0.04 458 0.02 466 0.02 441 0.01 11
56 57 143 0.02 36 0.02 12 0.01 51 0.04 458 0.02 466 0.02 441 0.01 11
57 58 146 0.02 36 0.02 12 0.01 51 0.04 458 0.02 467 0.02 441 0.01 11
58 59 148 0.02 38 0.02 12 0.01 52 0.04 458 0.02 467 0.02 441 0.01 11
59 60 151 0.02 37 0.02 12 0.01 51 0.04 458 0.02 468 0.02 441 0.01 11
60 61 153 0.02 37 0.02 12 0.01 51 0.04 458 0.02 468 0.02 441 0.01 11
61 62 156 0.02 37 0.02 12 0.01 53 0.04 458 0.02 469 0.02 441 0.01 11
62 63 158 0.02 37 0.02 12 0.01 52 0.04 458 0.02 469 0.02 441 0.01 11
63 64 161 0.02 37 0.02 12 0.01 53 0.04 458 0.02 470 0.03 442 0.01 11
64 65 163 0.02 37 0.02 12 0.01 53 0.05 458 0.02 470 0.03 442 0.01 11
65 66 166 0.02 37 0.02 12 0.01 54 0.05 458 0.02 471 0.03 442 0.01 11
66 67 168 0.02 37 0.02 12 0.01 54 0.05 458 0.02 471 0.03 442 0.01 11
67 68 171 0.02 41 0.02 12 0.01 55 0.05 458 0.02 472 0.03 442 0.01 11
68 69 173 0.02 37 0.02 12 0.02 55 0.05 458 0.02 472 0.03 442 0.01 12
69 70 176 0.03 37 0.02 12 0.02 56 0.05 458 0.02 473 0.03 442 0.01 12
70 71 178 0.03 37 0.02 12 0.02 56 0.05 458 0.02 474 0.03 442 0.01 12
71 72 181 0.03 37 0.02 12 0.02 57 0.05 458 0.02 474 0.03 442 0.01 12
72 73 183 0.03 37 0.02 12 0.02 57 0.05 458 0.02 475 0.03 442 0.01 12
73 74 186 0.03 37 0.02 12 0.02 58 0.06 458 0.03 475 0.03 442 0.01 12
74 75 188 0.03 37 0.03 12 0.02 59 0.06 458 0.02 476 0.03 442 0.01 12

Continued on next page

52

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

B
V

75 76 191 0.03 37 0.03 12 0.02 59 0.06 458 0.03 476 0.04 442 0.01 12
76 77 193 0.03 37 0.03 12 0.02 60 0.06 458 0.03 477 0.04 442 0.01 12
77 78 196 0.04 37 0.03 12 0.02 60 0.06 458 0.03 477 0.04 442 0.01 12
78 79 198 0.03 37 0.03 12 0.02 60 0.06 458 0.03 478 0.04 442 0.01 12
79 80 201 0.03 40 0.03 12 0.02 61 0.06 458 0.03 478 0.04 442 0.01 12
80 81 203 0.03 38 0.03 12 0.02 61 0.06 458 0.03 479 0.04 442 0.01 12
81 82 206 0.03 37 0.03 12 0.02 62 0.06 458 0.03 479 0.04 442 0.01 12
82 83 208 0.03 37 0.03 12 0.02 62 0.06 458 0.03 480 0.04 442 0.01 12
83 84 211 0.03 39 0.03 12 0.02 63 0.06 458 0.03 480 0.04 443 0.01 12
84 85 213 0.03 37 0.03 12 0.00 64 0.06 458 0.03 481 0.04 443 0.01 12
85 86 216 0.03 38 0.03 12 0.00 64 0.06 458 0.03 481 0.05 443 0.01 12
86 87 218 0.03 38 0.03 12 0.00 64 0.06 458 0.03 482 0.05 443 0.01 12
87 88 221 0.03 39 0.03 12 0.00 65 0.06 458 0.03 482 0.05 443 0.01 12
88 89 223 0.03 38 0.03 12 0.00 65 0.07 458 0.03 484 0.05 443 0.01 12
89 90 226 0.03 37 0.03 12 0.00 66 0.07 458 0.03 484 0.05 443 0.01 12
90 91 228 0.03 38 0.03 12 0.00 66 0.07 458 0.03 485 0.05 443 0.01 12
91 92 231 0.03 37 0.03 12 0.00 67 0.07 458 0.03 485 0.05 443 0.01 12
92 93 233 0.03 38 0.03 12 0.00 67 0.07 458 0.03 486 0.05 443 0.01 12
93 94 236 0.03 40 0.03 12 0.00 68 0.07 458 0.03 486 0.06 443 0.01 12
94 95 238 0.03 38 0.03 12 0.00 68 0.07 458 0.03 487 0.06 443 0.01 12
95 96 241 0.03 38 0.04 12 0.00 69 0.07 458 0.03 487 0.06 443 0.02 12
96 97 243 0.03 37 0.04 13 0.00 69 0.07 458 0.03 488 0.06 443 0.01 12
97 98 246 0.03 38 0.04 13 0.01 70 0.07 458 0.03 488 0.06 444 0.01 12
98 99 248 0.03 37 0.04 13 0.01 71 0.07 458 0.03 489 0.06 443 0.01 12
99 100 251 0.03 40 0.04 13 0.01 71 0.07 458 0.04 489 0.06 444 0.02 12

F
ey

nm
an

adder_8 24 330 0.02 34 0.03 12 0.00 29 0.06 458 0.01 449 0.03 441 0.09 13
barenco_tof_3 5 20 0.00 22 0.01 12 0.00 29 0.00 456 0.00 439 0.00 440 0.01 11
barenco_tof_4 7 34 0.00 22 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.01 12
barenco_tof_5 9 50 0.01 23 0.01 12 0.00 29 0.01 456 0.01 441 0.00 440 0.01 12
barenco_tof_10 19 130 0.01 28 0.01 12 0.00 29 0.03 458 0.01 446 0.01 440 0.03 12
csla_mux_3 15 70 0.01 25 0.01 12 0.00 29 0.01 458 0.01 444 0.00 440 0.01 12
csum_mux_9 30 140 0.01 30 0.01 12 0.00 29 0.03 457 0.01 452 0.01 440 0.06 12
gf24_mult 12 65 0.02 24 0.01 12 0.00 29 0.02 458 0.01 443 0.00 440 0.03 12
gf25_mult 15 97 0.01 26 0.01 12 0.00 29 0.02 458 0.01 444 0.01 440 0.02 12
gf26_mult 18 135 0.01 28 0.01 12 0.00 29 0.04 458 0.01 446 0.01 440 0.05 12
gf27_mult 21 179 0.02 32 0.01 12 0.00 29 0.04 457 0.01 447 0.01 441 0.04 13
gf28_mult 24 243 0.02 32 0.02 12 0.00 29 0.05 458 0.01 449 0.02 441 0.05 13
gf29_mult 27 285 0.02 36 0.02 12 0.00 29 0.06 458 0.01 450 0.03 441 0.06 14
gf210_mult 30 347 0.03 35 0.03 12 0.00 29 0.07 458 0.01 452 0.04 442 0.08 14
gf216_mult 48 875 0.07 38 0.11 12 0.01 48 0.18 458 0.03 463 0.18 445 0.21 19
gf232_mult 96 3,322 0.26 40 1.35 13 0.10 71 0.66 460 0.11 502 0.82 450 0.87 45
gf264_mult 192 12,731 1.82 66 17.11 20 0.75 126 2.59 464 0.68 601 4.43 462 3.56 149
gf2128_mult 384 50,043 20.40 231 264.81 38 5.28 235 10.50 478 4.76 1,159 27.60 498 15.39 570
gf2256_mult 768 198,395 163.00 1,635 TO TO 41.21 538 43.30 531 38.50 4,989 238.00 633 71.28 2,324
grover_5 9 351 0.02 34 0.03 12 0.00 29 0.12 459 0.01 441 0.26 442 TO TO
ham15-low 17 213 0.02 30 0.01 12 0.00 29 0.04 458 0.01 445 0.01 440 0.54 12
ham15-med 17 452 0.02 34 0.04 12 0.00 29 0.10 458 0.01 445 0.07 441 TO TO
ham15-high 20 1,798 0.06 38 0.49 12 0.01 30 0.37 458 0.02 447 0.41 443 TO TO
hwb6 7 109 0.01 24 0.01 12 0.00 29 0.03 458 0.01 440 0.00 440 13.79 12
hwb8 12 6,446 0.16 38 3.70 13 0.03 33 0.95 460 0.04 443 1.03 444 TO TO
hwb10 16 31,764 0.80 51 84.20 15 0.21 38 4.72 466 0.22 447 1.56 445 TO TO
hwb11 15 87,789 2.64 103 660.93 22 0.49 70 12.80 475 0.52 449 1.51 448 TO TO
hwb12 20 171,482 5.80 205 2,568.02 35 1.13 133 27.20 510 1.35 456 6.43 457 3,193.79 1,070

Continued on next page

53

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

F
ey

nm
an

mod5_4 5 23 0.00 22 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.04 11
mod_adder_1024 28 1,435 0.06 38 0.31 12 0.01 29 0.30 458 0.02 451 0.34 443 0.23 21
mod_mult_55 9 49 0.01 23 0.01 12 0.00 29 0.01 457 0.01 441 0.00 440 0.01 12
mod_red_21 11 108 0.01 25 0.01 12 0.00 29 0.02 458 0.01 442 0.00 440 0.04 12
qcla_adder_10 36 181 0.02 33 0.01 12 0.00 42 0.04 458 0.01 455 0.01 441 0.03 12
qcla_com_7 24 153 0.01 30 0.01 12 0.00 29 0.03 458 0.01 449 0.01 440 0.10 12
qcla_mod_7 26 294 0.02 33 0.02 12 0.00 29 0.07 458 0.01 450 0.03 441 TO TO
qft_4 5 159 ERR ERR 0.01 12 0.00 29 ERR ERR ERR ERR ERR ERR 0.11 12
rc_adder_6 14 90 0.01 26 0.01 12 0.00 29 0.02 458 0.01 444 0.00 440 0.04 12
tof_3 5 15 0.00 21 0.00 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
tof_4 7 25 0.00 22 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.01 11
tof_5 9 35 0.01 23 0.01 12 0.00 29 0.01 458 0.01 441 0.00 439 0.01 11
tof_10 19 85 0.01 27 0.01 12 0.00 29 0.02 458 0.01 446 0.00 440 0.02 12
vbe_adder_3 10 50 0.01 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 440 0.03 12

M
C

T
of

fo
li

3 6 5 0.02 21 0.00 12 0.00 29 0.02 457 0.00 440 0.00 439 0.01 11
4 8 7 0.00 21 0.01 12 0.00 29 0.00 457 0.01 441 0.00 439 0.01 11
5 10 9 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 439 0.01 12
6 12 11 0.00 22 0.01 12 0.00 29 0.00 456 0.01 443 0.00 440 0.02 12
7 14 13 0.01 23 0.01 12 0.00 29 0.00 456 0.01 444 0.00 439 0.01 12
8 16 15 0.01 23 0.01 12 0.00 29 0.00 456 0.01 445 0.00 439 0.01 12
9 18 17 0.01 23 0.01 12 0.00 29 0.00 456 0.01 446 0.00 440 0.02 12
10 20 19 0.01 24 0.01 12 0.00 29 0.00 456 0.01 447 0.00 440 0.02 12
11 22 21 0.01 24 0.01 12 0.00 29 0.00 456 0.01 448 0.00 440 0.02 12
12 24 23 0.01 24 0.01 12 0.00 29 0.00 456 0.01 449 0.00 440 0.02 12
13 26 25 0.01 25 0.01 12 0.00 29 0.00 456 0.01 450 0.00 440 0.02 12
14 28 27 0.01 25 0.01 12 0.00 29 0.00 456 0.01 451 0.00 440 0.02 12
15 30 29 0.01 25 0.01 12 0.00 29 0.00 456 0.01 452 0.00 440 0.02 12
16 32 31 0.01 26 0.01 12 0.00 29 0.00 456 0.01 453 0.00 440 0.03 12
17 34 33 0.01 26 0.01 12 0.00 40 0.00 456 0.01 454 0.00 440 0.03 12
18 36 35 0.01 26 0.01 12 0.00 41 0.00 456 0.01 455 0.00 440 0.03 12
19 38 37 0.01 27 0.01 12 0.00 42 0.00 457 0.01 456 0.00 440 0.03 12
20 40 39 0.01 27 0.01 12 0.00 42 0.00 456 0.01 457 0.00 440 0.03 12
21 42 41 0.01 28 0.01 12 0.00 46 0.00 456 0.01 458 0.00 440 0.03 12
22 44 43 0.01 27 0.01 12 0.00 47 0.00 456 0.01 459 0.00 440 0.03 13
23 46 45 0.01 29 0.01 12 0.00 47 0.00 456 0.01 460 0.00 440 0.03 12
24 48 47 0.01 27 0.01 12 0.00 49 0.00 456 0.01 461 0.00 440 0.04 12
25 50 49 0.01 30 0.01 12 0.00 50 0.00 456 0.01 462 0.00 440 0.04 12
26 52 51 0.01 30 0.01 12 0.00 48 0.00 456 0.01 463 0.00 440 0.04 13
27 54 53 0.01 30 0.01 12 0.00 49 0.00 457 0.01 464 0.00 440 0.04 13
28 56 55 0.01 31 0.01 12 0.00 51 0.01 456 0.01 465 0.00 440 0.04 13
29 58 57 0.03 31 0.01 12 0.00 50 0.02 456 0.01 466 0.00 440 0.06 13
30 60 59 0.03 31 0.01 12 0.00 51 0.01 456 0.01 467 0.00 440 0.05 13
31 62 61 0.02 32 0.01 12 0.00 53 0.00 456 0.01 468 0.00 440 0.05 13
32 64 63 0.02 32 0.01 12 0.00 53 0.00 456 0.01 469 0.00 440 0.05 13
33 66 65 0.02 32 0.01 12 0.00 54 0.00 457 0.02 470 0.00 440 0.05 13
34 68 67 0.02 33 0.01 12 0.00 55 0.00 456 0.02 471 0.00 440 0.05 13
35 70 69 0.02 33 0.01 12 0.00 56 0.00 457 0.02 472 0.00 440 0.05 13
36 72 71 0.02 33 0.01 12 0.00 57 0.00 457 0.02 473 0.00 441 0.05 13
37 74 73 0.02 34 0.01 12 0.00 58 0.00 456 0.02 474 0.00 441 0.05 13
38 76 75 0.02 34 0.01 12 0.00 59 0.00 456 0.02 475 0.00 441 0.05 13

Continued on next page

54

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

M
C

T
of

fo
li

39 78 77 0.02 34 0.01 12 0.00 60 0.00 456 0.02 476 0.00 440 0.06 13
40 80 79 0.02 34 0.01 12 0.00 61 0.00 457 0.02 477 0.01 441 0.06 13
41 82 81 0.02 35 0.01 12 0.00 62 0.00 456 0.02 478 0.01 441 0.06 13
42 84 83 0.02 35 0.01 12 0.00 63 0.00 457 0.02 479 0.01 441 0.06 14
43 86 85 0.03 35 0.01 12 0.00 64 0.00 456 0.02 480 0.01 441 0.06 14
44 88 87 0.02 36 0.01 12 0.00 65 0.00 457 0.02 481 0.01 441 0.06 14
45 90 89 0.02 36 0.01 12 0.00 66 0.00 457 0.02 483 0.01 441 0.07 14
46 92 91 0.03 36 0.01 12 0.00 67 0.00 456 0.02 483 0.01 441 0.07 14
47 94 93 0.02 36 0.01 12 0.00 68 0.00 457 0.02 485 0.01 441 0.07 14
48 96 95 0.02 36 0.01 12 0.00 69 0.00 457 0.02 485 0.01 441 0.07 14
49 98 97 0.02 36 0.01 12 0.00 70 0.00 457 0.02 486 0.01 441 0.07 14
50 100 99 0.02 36 0.01 12 0.00 71 0.00 457 0.02 488 0.01 441 0.07 14
51 102 101 0.03 36 0.01 12 0.00 72 0.00 456 0.02 488 0.01 441 0.07 14
52 104 103 0.03 37 0.01 12 0.00 73 0.00 456 0.02 489 0.01 441 0.08 14
53 106 105 0.03 37 0.01 12 0.00 74 0.00 457 0.02 490 0.01 441 0.07 14
54 108 107 0.03 37 0.01 12 0.00 75 0.00 457 0.02 491 0.01 441 0.08 14
55 110 109 0.03 37 0.01 12 0.00 76 0.00 456 0.03 493 0.01 441 0.08 14
56 112 111 0.03 37 0.01 12 0.00 77 0.00 457 0.03 494 0.01 441 0.08 14
57 114 113 0.03 37 0.01 12 0.00 78 0.00 457 0.03 494 0.01 441 0.08 14
58 116 115 0.03 37 0.01 12 0.00 79 0.00 457 0.03 495 0.01 441 0.08 15
59 118 117 0.03 37 0.01 12 0.00 80 0.00 457 0.03 496 0.01 442 0.09 15
60 120 119 0.03 37 0.01 12 0.00 81 0.00 456 0.03 497 0.01 441 0.09 15
61 122 121 0.03 37 0.01 12 0.00 82 0.00 457 0.03 498 0.01 442 0.09 15
62 124 123 0.03 37 0.01 12 0.00 83 0.00 457 0.03 499 0.01 442 0.09 15
63 126 125 0.03 37 0.01 12 0.00 84 0.00 456 0.03 500 0.01 442 0.09 15
64 128 127 0.03 37 0.01 12 0.00 85 0.00 457 0.03 501 0.01 442 0.09 15
65 130 129 0.03 37 0.01 12 0.00 86 0.00 457 0.03 502 0.01 442 0.10 15
66 132 131 0.03 37 0.01 12 0.00 87 0.00 457 0.03 504 0.01 442 0.09 15
67 134 133 0.03 37 0.01 12 0.00 88 0.00 456 0.03 505 0.01 442 0.10 15
68 136 135 0.03 37 0.01 12 0.00 89 0.00 456 0.03 505 0.01 442 0.10 15
69 138 137 0.03 37 0.01 12 0.00 90 0.00 457 0.03 506 0.01 442 0.10 15
70 140 139 0.03 38 0.01 12 0.00 91 0.00 456 0.03 508 0.01 442 0.10 15
71 142 141 0.04 39 0.01 13 0.00 92 0.00 456 0.03 508 0.01 442 0.10 15
72 144 143 0.04 37 0.01 13 0.00 93 0.00 456 0.03 509 0.01 442 0.10 15
73 146 145 0.04 38 0.01 13 0.00 94 0.00 456 0.03 511 0.02 442 0.10 16
74 148 147 0.04 39 0.01 13 0.00 95 0.00 457 0.03 511 0.02 442 0.11 16
75 150 149 0.04 37 0.01 13 0.00 96 0.00 456 0.04 513 0.01 442 0.11 16
76 152 151 0.04 37 0.01 13 0.00 97 0.00 457 0.03 513 0.01 442 0.11 16
77 154 153 0.04 38 0.02 13 0.00 98 0.00 457 0.04 516 0.02 443 0.11 16
78 156 155 0.04 38 0.01 13 0.00 99 0.00 456 0.04 517 0.02 442 0.11 16
79 158 157 0.04 38 0.01 13 0.00 100 0.00 457 0.04 518 0.02 443 0.12 16
80 160 159 0.04 37 0.01 13 0.01 101 0.00 457 0.04 519 0.02 443 0.13 16
81 162 161 0.04 37 0.01 13 0.01 102 0.00 457 0.04 520 0.02 443 0.11 16
82 164 163 0.04 40 0.01 13 0.01 103 0.00 456 0.04 521 0.02 443 0.12 16
83 166 165 0.05 38 0.01 13 0.01 104 0.00 456 0.04 522 0.02 443 0.12 16
84 168 167 0.04 40 0.01 13 0.01 105 0.00 457 0.04 523 0.02 443 0.12 16

Continued on next page

55

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

M
C

T
of

fo
li

85 170 169 0.05 38 0.01 13 0.01 106 0.00 457 0.04 523 0.02 443 0.12 16
86 172 171 0.04 38 0.01 13 0.01 107 0.00 457 0.04 525 0.02 443 0.12 16
87 174 173 0.04 40 0.01 13 0.01 108 0.00 456 0.04 526 0.02 443 0.13 17
88 176 175 0.04 37 0.01 13 0.01 109 0.00 457 0.04 527 0.02 443 0.13 17
89 178 177 0.05 37 0.01 13 0.01 110 0.00 457 0.04 528 0.02 443 0.13 16
90 180 179 0.04 38 0.01 13 0.01 111 0.00 458 0.05 529 0.02 443 0.13 17
91 182 181 0.05 38 0.01 13 0.01 112 0.00 457 0.05 530 0.02 443 0.13 17
92 184 183 0.04 38 0.01 13 0.01 113 0.00 457 0.05 530 0.02 443 0.13 17
93 186 185 0.04 38 0.02 13 0.01 114 0.00 458 0.05 531 0.02 443 0.13 17
94 188 187 0.05 39 0.01 13 0.01 115 0.00 458 0.05 533 0.02 443 0.14 17
95 190 189 0.04 38 0.02 13 0.01 116 0.00 458 0.05 533 0.02 444 0.14 17
96 192 191 0.05 39 0.02 13 0.01 117 0.00 458 0.05 535 0.02 443 0.14 17
97 194 193 0.05 40 0.02 13 0.01 118 0.00 457 0.05 535 0.02 444 0.14 17
98 196 195 0.05 38 0.01 13 0.01 119 0.00 458 0.05 537 0.02 444 0.15 17
99 198 197 0.06 38 0.02 15 0.01 120 0.00 457 0.05 538 0.02 444 0.15 17

M
O

G

3 9 64 0.01 26 0.01 12 0.00 29 0.01 458 0.01 441 0.00 440 0.03 12
4 12 123 0.01 31 0.01 12 0.00 29 0.02 458 0.01 443 0.02 440 0.10 12
5 15 202 0.02 35 0.02 12 0.00 29 0.03 458 0.01 444 0.12 441 0.30 13
6 18 357 0.03 37 0.04 12 0.01 30 0.11 460 0.01 446 3.67 446 1.04 15
7 21 552 0.05 38 0.07 12 0.01 30 0.20 462 0.02 448 75.40 473 2.67 17
8 24 939 0.08 38 0.17 12 0.02 30 1.06 485 0.02 451 45.60 467 8.00 21
9 27 1,492 0.12 40 0.45 12 0.04 32 3.15 515 0.03 452 TO TO 20.73 28
10 30 2,433 0.20 42 1.26 12 0.08 34 9.08 595 0.05 456 TO TO 62.68 40
11 33 3,746 0.36 45 3.12 13 0.13 42 48.80 906 0.08 462 TO TO 167.01 56

R
an

do
m

3 3 9 0.00 21 0.01 12 0.00 29 ERR ERR 0.01 438 ERR ERR 0.03 11
4 4 12 0.00 21 0.01 12 0.00 29 ERR ERR 0.00 439 ERR ERR 0.01 12
5 5 15 0.00 21 0.01 12 0.00 29 ERR ERR 0.01 439 ERR ERR 0.02 12
6 6 18 0.00 22 0.01 12 0.00 29 ERR ERR 0.00 440 ERR ERR 0.01 12
7 7 21 0.00 22 0.01 12 0.00 29 ERR ERR 0.01 440 ERR ERR 0.01 11
8 8 24 0.00 22 0.01 12 0.00 29 ERR ERR 0.01 441 ERR ERR 0.02 12
9 9 27 0.01 23 0.01 12 0.00 29 ERR ERR 0.01 441 ERR ERR 0.00 12
10 10 30 0.00 22 0.01 12 0.00 29 ERR ERR 0.01 442 ERR ERR 0.01 12
11 11 33 0.01 24 0.01 12 0.00 29 ERR ERR 0.01 442 ERR ERR 0.01 12
12 12 36 0.01 25 0.01 12 0.00 29 ERR ERR 0.01 443 ERR ERR 0.01 11
13 13 39 0.01 24 0.01 12 0.00 29 ERR ERR 0.01 443 ERR ERR 0.01 11
14 14 42 0.01 25 0.01 12 0.00 29 ERR ERR 0.01 444 ERR ERR 0.01 12
15 15 45 0.01 28 0.01 12 0.00 29 ERR ERR 0.01 444 ERR ERR 0.02 12
16 16 48 0.01 29 0.01 12 0.00 29 ERR ERR 0.01 445 ERR ERR 0.01 12
17 17 51 0.01 25 0.01 12 0.00 29 ERR ERR 0.01 445 ERR ERR 0.01 12
18 18 54 0.01 27 0.01 12 0.00 29 ERR ERR 0.01 446 ERR ERR 0.02 12
19 19 57 0.01 31 0.02 12 0.00 30 ERR ERR 0.01 446 ERR ERR 0.01 12
20 20 60 0.02 32 0.02 12 0.00 29 ERR ERR 0.01 447 ERR ERR 0.01 12
21 21 63 0.02 33 0.02 12 0.00 29 ERR ERR 0.01 447 ERR ERR 0.01 12
22 22 66 0.01 27 0.01 12 0.00 29 ERR ERR 0.01 448 ERR ERR 0.01 12
23 23 69 0.02 32 0.02 12 0.00 29 ERR ERR 0.01 448 ERR ERR 0.02 12
24 24 72 0.01 29 0.01 12 0.00 29 ERR ERR 0.01 449 ERR ERR 0.01 12

Continued on next page

56

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

R
an

do
m

25 25 75 0.03 36 0.02 12 0.00 29 ERR ERR 0.01 449 ERR ERR 0.01 12
26 26 78 0.02 35 0.04 12 0.00 29 ERR ERR 0.01 450 ERR ERR 0.02 12
27 27 81 0.02 35 0.04 12 0.00 29 ERR ERR 0.01 450 ERR ERR 0.02 12
28 28 84 0.03 37 0.05 12 0.01 29 ERR ERR 0.01 451 ERR ERR 0.02 12
29 29 87 0.02 33 0.02 12 0.00 29 ERR ERR 0.01 451 ERR ERR 0.01 12
30 30 90 0.02 35 0.05 12 0.00 29 ERR ERR 0.01 452 ERR ERR 0.02 12
31 31 93 0.03 37 0.05 12 0.00 29 ERR ERR 0.01 453 ERR ERR 0.04 12
32 32 96 0.02 36 0.04 12 0.01 29 ERR ERR 0.01 453 ERR ERR 0.02 12
33 33 99 0.05 37 0.10 12 0.01 41 ERR ERR 0.02 454 ERR ERR 0.03 12
34 34 102 0.03 37 0.05 12 0.01 41 ERR ERR 0.01 454 ERR ERR 0.01 12
35 35 105 0.04 37 0.09 13 0.00 40 ERR ERR 0.01 455 ERR ERR 0.02 12
36 36 108 0.03 38 0.05 12 0.01 43 ERR ERR 0.01 456 ERR ERR 0.03 12
37 37 111 0.05 38 0.10 12 0.01 40 ERR ERR 0.01 456 ERR ERR 0.01 12
38 38 114 0.02 36 0.05 12 0.00 42 ERR ERR 0.01 456 ERR ERR 0.02 12
39 39 117 0.03 39 0.06 12 0.00 41 ERR ERR 0.01 457 ERR ERR 0.01 12
40 40 120 0.04 37 0.07 12 0.00 43 ERR ERR 0.01 458 ERR ERR 0.03 12
41 41 123 0.04 38 0.12 13 0.01 45 ERR ERR 0.02 459 ERR ERR 0.02 12
42 42 126 0.05 40 0.11 12 0.01 45 ERR ERR 0.02 459 ERR ERR 0.02 12
43 43 129 0.02 35 0.03 12 0.00 45 ERR ERR 0.01 459 ERR ERR 0.02 12
44 44 132 0.03 39 0.07 12 0.00 46 ERR ERR 0.02 459 ERR ERR 0.03 12
45 45 135 0.08 38 0.12 12 0.01 46 ERR ERR 0.02 461 ERR ERR 0.01 12
46 46 138 0.20 40 0.19 12 0.05 46 ERR ERR 0.03 463 ERR ERR 0.02 12
47 47 141 0.06 37 0.05 12 0.00 45 ERR ERR 0.02 461 ERR ERR 0.02 12
48 48 144 0.03 37 0.05 12 0.01 47 ERR ERR 0.02 462 ERR ERR 0.01 12
49 49 147 0.04 38 0.13 14 0.01 48 ERR ERR 0.02 462 ERR ERR 0.02 12
50 50 150 0.06 40 0.12 12 0.01 50 ERR ERR 0.03 463 ERR ERR 0.01 12
51 51 153 0.03 40 0.11 14 0.01 48 ERR ERR 0.02 463 ERR ERR 0.02 12
52 52 156 0.04 37 0.07 12 0.01 49 ERR ERR 0.02 464 ERR ERR 0.04 12
53 53 159 0.14 40 0.08 12 0.03 49 ERR ERR 0.03 465 ERR ERR 0.02 12
54 54 162 0.08 37 0.12 12 0.01 49 ERR ERR 0.02 465 ERR ERR 0.02 12
55 55 165 0.18 40 0.21 12 0.04 49 ERR ERR 0.03 467 ERR ERR 0.03 12
56 56 168 0.05 37 0.08 13 0.01 51 ERR ERR 0.02 466 ERR ERR 0.04 12
57 57 171 0.17 42 0.14 12 0.02 52 ERR ERR 0.03 467 ERR ERR 0.04 12
58 58 174 0.06 38 0.09 12 0.02 51 ERR ERR 0.02 467 ERR ERR 0.03 12
59 59 177 0.08 38 0.19 15 0.02 51 ERR ERR 0.02 468 ERR ERR 0.05 12
60 60 180 0.21 42 0.20 12 0.09 51 ERR ERR 0.05 469 ERR ERR 0.02 12
61 61 183 0.08 40 0.09 13 0.02 51 ERR ERR 0.02 469 ERR ERR 0.02 12
62 62 186 0.05 40 0.13 14 0.01 53 ERR ERR 0.02 469 ERR ERR 0.02 12
63 63 189 0.10 40 0.18 14 0.04 53 ERR ERR 0.03 470 ERR ERR 0.02 12
64 64 192 0.05 38 0.12 14 0.01 53 ERR ERR 0.02 470 ERR ERR 0.02 12
65 65 195 0.09 39 0.18 13 0.01 53 ERR ERR 0.03 472 ERR ERR 0.02 12
66 66 198 0.05 38 0.12 15 0.01 54 ERR ERR 0.02 472 ERR ERR 0.04 12
67 67 201 0.63 48 0.24 14 0.26 54 ERR ERR 0.13 481 ERR ERR 0.06 12
68 68 204 0.43 44 0.19 13 0.15 55 ERR ERR 0.07 477 ERR ERR 0.04 12
69 69 207 0.18 42 0.23 14 0.02 55 ERR ERR 0.03 474 ERR ERR 0.05 12
70 70 210 0.16 40 0.14 13 0.04 56 ERR ERR 0.04 475 ERR ERR 0.02 12

Continued on next page

57

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

R
an

do
m

71 71 213 0.07 38 0.18 14 0.01 56 ERR ERR 0.03 475 ERR ERR 0.02 12
72 72 216 0.21 42 0.23 13 0.04 57 ERR ERR 0.04 476 ERR ERR 0.04 12
73 73 219 0.38 46 0.24 12 0.22 57 ERR ERR 0.06 479 ERR ERR 0.06 12
74 74 222 0.39 43 0.33 13 0.49 58 ERR ERR 0.08 480 ERR ERR 0.04 12
75 75 225 0.30 42 0.24 12 0.07 59 ERR ERR 0.05 478 ERR ERR 0.06 12
76 76 228 0.41 44 0.18 12 0.09 59 ERR ERR 0.05 481 ERR ERR 0.02 12
77 77 231 0.82 50 0.37 13 0.45 60 ERR ERR 0.07 481 ERR ERR 0.03 12
78 78 234 0.70 46 0.30 14 0.40 60 ERR ERR 0.14 486 ERR ERR 0.03 12
79 79 237 0.31 42 0.29 14 0.12 60 ERR ERR 0.05 482 ERR ERR 0.03 12
80 80 240 0.23 42 0.26 14 0.05 61 ERR ERR 0.04 481 ERR ERR 0.03 12
81 81 243 0.34 44 0.29 12 0.22 62 ERR ERR 0.06 483 ERR ERR 0.02 12
82 82 246 0.22 42 0.21 14 0.05 62 ERR ERR 0.04 481 ERR ERR 0.03 12
83 83 249 0.44 44 0.25 12 0.14 63 ERR ERR 0.07 484 ERR ERR 0.03 12
84 84 252 0.16 39 0.28 13 0.05 63 ERR ERR 0.04 483 ERR ERR 0.08 12
85 85 255 1.00 52 0.47 15 2.12 64 ERR ERR 0.11 485 ERR ERR 0.03 12
86 86 258 15.30 214 0.48 14 2.25 72 ERR ERR 3.25 553 ERR ERR 0.07 12
87 87 261 0.58 46 0.28 12 0.15 64 ERR ERR 0.06 486 ERR ERR 0.15 13
88 88 264 0.15 39 0.30 16 0.04 65 ERR ERR 0.04 483 ERR ERR 0.03 12
89 89 267 9.48 105 0.67 14 0.72 66 ERR ERR 0.59 492 ERR ERR 0.06 13
90 90 270 0.53 44 0.24 13 0.07 66 ERR ERR 0.06 488 ERR ERR 0.03 12
91 91 273 0.33 44 0.25 12 0.03 66 ERR ERR 0.04 486 ERR ERR 0.03 12
92 92 276 0.33 42 0.36 13 0.13 67 ERR ERR 0.06 489 ERR ERR 0.07 12
93 93 279 1.68 62 0.32 13 0.18 68 ERR ERR 0.11 494 ERR ERR 0.05 12
94 94 282 79.60 337 0.78 18 4.45 76 ERR ERR 74.30 521 ERR ERR 0.08 13
95 95 285 0.25 40 0.34 15 0.07 68 ERR ERR 0.06 488 ERR ERR 0.03 12
96 96 288 0.40 44 0.34 14 0.10 69 ERR ERR 0.06 493 ERR ERR 0.12 13
97 97 291 5.70 118 0.42 13 1.47 78 ERR ERR 0.42 525 ERR ERR 0.03 13
98 98 294 0.57 48 0.32 14 0.11 70 ERR ERR 0.06 494 ERR ERR 0.03 12
99 99 297 9.58 173 0.38 12 2.61 79 ERR ERR 0.67 526 ERR ERR 0.08 13

R
ev

Li
b

0410184_169 14 46 0.01 23 0.01 12 0.00 29 0.00 458 0.01 444 0.00 440 0.01 12
4gt11_82 5 12 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 440 0.01 11
4gt11_83 5 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
4gt11_84 5 3 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
4gt11-v1_85 5 4 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
4mod5-bdd_287 7 8 0.00 21 0.01 12 0.00 29 0.00 456 0.01 440 0.00 439 0.01 11
add8_172 25 32 0.01 24 0.01 12 0.00 29 0.01 458 0.01 449 0.00 440 0.06 12
add16_174 49 64 0.01 30 0.01 12 0.00 49 0.01 458 0.01 462 0.00 440 0.13 12
add32_183 97 128 0.03 37 0.01 12 0.00 70 0.02 458 0.03 487 0.01 441 0.39 13
add64_184 193 256 0.05 37 0.02 13 0.02 118 0.04 459 0.06 537 0.04 445 1.28 15
alu-v0_27 5 6 0.00 21 0.00 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
alu-v1_28 5 7 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
alu-v1_29 5 7 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
alu-v2_33 5 7 0.00 21 0.01 12 0.00 29 0.00 458 0.01 439 0.00 439 0.01 11
alu-v3_34 5 7 0.00 21 0.01 12 0.00 29 0.00 457 0.00 439 0.00 439 0.01 11
alu-v3_35 5 7 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
alu-v4_37 5 7 0.00 21 0.01 12 0.00 29 0.00 457 0.00 439 0.00 440 0.01 11
alu-bdd_288 7 9 0.00 19 0.01 12 0.00 29 0.00 456 0.01 440 0.00 439 0.01 11
apex2_289 498 1,746 0.40 44 0.10 16 0.29 271 0.13 462 0.41 750 0.80 485 0.91 46
apex5_290 1,025 2,909 1.75 62 0.37 44 1.03 536 0.26 467 1.33 1,214 3.95 516 2.11 73
avg8_325 320 1,757 0.21 40 0.07 14 0.12 182 0.12 461 0.31 633 0.30 457 TO TO

Continued on next page

58

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

R
ev

Li
b

avg16_324 576 3,484 0.52 46 0.17 18 0.52 311 0.22 465 1.03 806 1.25 491 TO TO
bw_291 87 307 0.03 37 0.02 12 0.01 64 0.02 458 0.03 482 0.02 443 0.14 16
cnt3-5_179 16 25 0.01 23 0.01 12 0.00 29 0.00 458 0.01 445 0.00 440 0.05 12
cps_292 923 2,763 1.19 58 0.21 31 1.25 485 0.22 465 1.09 1,035 2.82 528 1.39 60
cycle10_293 39 78 0.01 29 0.01 12 0.00 41 0.02 458 0.01 456 0.00 440 0.03 12
decod24-v0_38 4 6 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.03 11
decod24-v2_43 4 6 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
decod24-enable_125 6 9 0.00 21 0.01 12 0.00 29 0.00 456 0.01 440 0.00 440 0.01 11
decod24-bdd_294 6 11 0.00 21 0.01 12 0.00 29 0.00 456 0.00 440 0.00 439 0.01 11
e64-bdd_295 195 387 0.06 38 0.02 13 0.03 119 0.03 458 0.07 543 0.06 448 0.11 16
ex-1_166 3 4 0.00 21 0.00 12 0.00 29 0.00 456 0.00 438 0.00 440 0.01 11
ex1_226 6 7 0.00 21 0.01 12 0.00 29 0.00 457 0.01 440 0.00 439 0.02 11
ex5p_296 206 647 0.08 40 0.03 13 0.06 124 0.05 459 0.09 548 0.10 449 0.28 21
fredkin_6 3 3 0.00 21 0.01 12 0.00 29 0.00 456 0.00 438 0.00 440 0.03 11
frg2_297 1,219 3,724 2.32 93 0.50 49 1.52 633 0.32 469 1.90 1,307 6.25 498 2.15 84
ham3_102 3 5 0.00 21 0.01 12 0.00 29 0.00 457 0.00 438 0.00 439 0.01 11
ham7_106 7 25 0.00 21 0.01 12 0.00 29 0.00 458 0.01 440 0.00 439 0.04 11
ham7_299 21 61 0.01 24 0.01 12 0.00 29 0.00 457 0.01 447 0.00 440 0.02 12
ham15_298 45 153 0.01 30 0.01 12 0.00 45 0.02 458 0.01 460 0.01 440 0.04 13
hwb5_300 28 88 0.01 31 0.01 12 0.00 29 0.01 458 0.01 451 0.00 440 0.04 13
hwb6_301 46 159 0.02 31 0.01 12 0.00 45 0.01 458 0.01 460 0.01 441 0.07 14
hwb7_302 73 281 0.03 37 0.02 12 0.01 58 0.03 458 0.02 475 0.02 442 0.13 16
hwb8_303 112 449 0.05 38 0.02 12 0.02 77 0.04 459 0.04 497 0.04 444 0.21 19
hwb9_304 170 699 0.09 38 0.03 13 0.05 106 0.06 460 0.08 530 0.08 449 0.36 24
mini_alu_305 10 20 0.00 22 0.01 12 0.00 29 0.00 456 0.01 442 0.00 440 0.01 11
mod5adder_306 32 96 0.01 28 0.01 12 0.00 29 0.01 458 0.01 453 0.00 440 0.04 13
mod5d2_70 5 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
mod5mils_71 5 5 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
one-two-three-v2_100 5 8 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11
one-two-three-v3_101 5 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
parity_247 17 32 0.01 23 0.01 12 0.00 29 0.01 458 0.01 445 0.00 439 0.01 11
pdc_307 619 2,080 0.74 48 0.15 21 0.63 332 0.19 464 0.58 812 1.20 505 1.03 49
peres_9 3 2 0.00 21 0.00 12 0.00 29 0.00 456 0.00 438 0.00 439 0.01 11
plus63mod4096_309 23 49 0.01 26 0.01 12 0.00 29 0.00 458 0.01 448 0.00 440 0.01 12
plus63mod8192_310 25 53 0.01 26 0.01 12 0.00 29 0.00 458 0.01 449 0.00 440 0.01 12
plus127mod8192_308 25 54 0.01 26 0.01 12 0.00 29 0.00 458 0.01 449 0.00 440 0.01 12
rd32_270 5 9 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
rd32_271 5 9 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
rd32_272 5 6 0.00 21 0.00 12 0.00 29 0.00 457 0.00 439 0.00 440 0.01 11
rd53_138 8 12 0.00 21 0.01 12 0.00 29 0.00 456 0.01 441 0.00 439 0.01 12
rd53_311 13 34 0.01 23 0.01 12 0.00 29 0.00 458 0.01 443 0.00 440 0.02 12
rd73_140 10 20 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 440 0.01 12
rd73_312 25 73 0.01 25 0.01 12 0.00 29 0.01 458 0.01 449 0.00 440 0.03 12
rd84_142 15 28 0.01 23 0.01 12 0.00 29 0.00 456 0.01 444 0.00 440 0.02 12
rd84_313 34 104 0.01 28 0.01 12 0.00 40 0.01 458 0.01 454 0.00 440 0.04 13
seq_314 1,617 5,990 4.96 98 1.35 109 4.11 835 0.54 477 3.71 1,776 14.00 537 3.65 124
spla_315 489 1,709 0.40 44 0.10 17 0.37 266 0.13 462 0.39 747 0.72 485 0.89 46
sym6_316 14 29 0.01 23 0.01 12 0.00 29 0.00 457 0.01 444 0.00 440 0.02 12
sym9_146 12 28 0.00 22 0.01 12 0.00 29 0.00 456 0.01 443 0.00 439 0.02 12
sym9_192 12 28 0.00 22 0.01 12 0.00 29 0.00 457 0.01 443 0.00 440 0.02 12
sym9_317 27 62 0.01 26 0.01 12 0.00 29 0.01 458 0.01 450 0.00 440 0.03 12
sys6-v0_111 10 20 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 440 0.01 12

Continued on next page

59

Table A.2 (continued from previous page)

MEDUSA𝑏𝑎𝑠𝑒 SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

R
ev

Li
b

urf1_149 9 11,554 0.46 22 0.33 14 0.04 33 0.12 458 0.07 441 0.16 440 TO TO
urf2_152 8 5,030 0.07 22 0.15 13 0.02 34 0.06 458 0.03 441 0.07 440 TO TO
urf3_155 10 26,468 0.34 22 0.75 17 0.08 40 0.25 458 0.13 442 0.38 441 2,902.70 881
urf4_187 11 32,004 0.38 21 0.90 18 0.10 45 0.31 458 0.19 442 0.44 441 TO TO
urf5_158 9 10,276 0.43 22 0.29 14 0.03 32 0.12 458 0.06 441 0.15 440 TO TO
urf6_160 15 10,740 0.13 23 0.31 14 0.03 32 0.14 458 0.08 445 0.17 441 TO TO
xor5_254 6 7 0.02 21 0.00 12 0.00 29 0.01 457 0.02 440 0.00 439 0.12 11

R
ev

Li
b-

H

_443 261 1,701 TO TO 71.67 154 TO TO TO TO TO TO TO TO ERR ERR
add64_184 193 385 0.20 204 0.03 14 0.10 118 0.10 460 0.08 545 0.06 446 ERR ERR
apex2_289 498 1,803 TO TO 1,430.24 77 TO TO TO TO TO TO TO TO ERR ERR
callif_32_439 130 754 TO TO 1.80 35 TO TO TO TO TO TO TO TO ERR ERR
cps_292 923 3,165 TO TO 2,650.41 144 TO TO 1,390.00 5,788 TO TO TO TO ERR ERR
cpu_alu_16bit_400 405 6,552 ERR ERR TO TO TO TO TO TO TO TO TO TO ERR ERR
cpu_control_unit_402 392 1,537 TO TO 474.11 138 TO TO TO TO TO TO TO TO ERR ERR
cpu_register_32_405 328 1,978 0.46 214 0.09 15 0.42 195 0.62 469 0.71 668 0.34 457 ERR ERR
e64-bdd_295 195 516 1.98 239 2.50 14 2.03 127 0.66 477 0.54 614 1.99 496 ERR ERR
ex5p_296 206 736 7.61 283 12.15 21 3.57 133 1.03 489 1.15 691 6.42 548 ERR ERR
hwb9_304 170 774 33.00 663 13.58 20 12.09 115 3.75 559 4.98 1,105 22.10 570 ERR ERR
lu_326 299 831 TO TO 7.72 33 TO TO TO TO TO TO TO TO ERR ERR
nestedif2_32_445 263 1,304 TO TO 316.18 126 TO TO TO TO TO TO TO TO ERR ERR
pdc_307 619 2,319 TO TO TO TO TO TO TO TO TO TO TO TO ERR ERR
spla_315 489 1,747 TO TO 918.54 167 2,737.81 772 1,810.00 5,642 TO TO TO TO ERR ERR
varops_32_447 224 1,402 TO TO 94.46 109 TO TO TO TO TO TO TO TO ERR ERR

60

Appendix B

Submitted Paper

The following pages include a paper that was written on the basis of this thesis and, at the
time of writing, submitted to ICCAD’24.

61

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AcceleratingQuantum Circuit Simulation with
Symbolic Execution and Loop Summarization

ABSTRACT
Quantum circuit simulation is the basic tool for reasoning over
quantum programs. Despite the tremendous advance in the simula-
tor technology in the recent years, the performance of simulators
is still unsatisfactory on non-trivial circuits, which slows down the
development of new quantum systems. In this work, we develop
a loop summarizing simulator based on multi-terminal binary deci-
sion diagrams (MTBDDs) with efficiently customized quantum gate
operations. The simulator is capable of automatic loop summariza-
tion using symbolic execution, which saves repetitive computation
for circuits with iterative structures. Experimental results show the
simulator outperforms state-of-the-art simulators on some standard
circuits, such as Grover’s algorithm, by several orders of magnitude.

1 INTRODUCTION
The development of quantum computers started in 1980s with
the promise to solve problems challenging for classical computers.
Later, quantum algorithms more efficient than their best classi-
cal counterparts for certain problems started appearing, such as
Shor’s algorithm for integer factoring [27] or Grover’s algorithm for
search in an unstructured database [20]. With multiple major play-
ers investing into quantum and the consistent improvement of the
hardware, it seems that quantum computers will occupy a promi-
nent role in the future. The development of quantum algorithms is
an extremely challenging task so adequate computer-aided support
is needed for debugging and reasoning over quantum programs.

Debugging quantum programs is primarily done through simula-
tion, which is considerably more challenging in the quantum world
as compared to the classical world. This is because, in the quantum
world, we need to keep track of a potentially exponentially sized
quantum state that assigns every classical state a complex amplitude
instead of keeping track of a single evolving classical program state.

Simulators of quantum programs have advanced tremendously
in recent years, moving from the basic vector- and matrix-based
representation [26] into representations based on decision dia-
grams [25, 28, 30, 32, 33, 36], graphical languages [15], or model
counting [24]. Despite this advance, simulating quantum circuits
of a moderate size is still considered infeasible. Therefore, faster
simulators are needed to provide quantum developers with basic
means to observe behaviour of quantum programs.

In this paper, we focus on accelerating the simulation of quan-
tum circuits that contain repetition of some sub-structure. Some
notable examples of such circuits include Grover’s search [20], pe-
riod finding [23], and quantum counting [10]. Current standards
for describing quantum circuits, such as the OpenQASM 3.0 for-
mat [16], allow describing such repeated sub-structures compactly
using loops or hierarchical gate definitions.

Our method for accelerating simulation involves computing
a symbolic summary of a sequence of quantum gates that occur
repeatedly, such as a loop body or the definition of a hierarchical
gate. This summary is computed with respect to a particular quan-
tum state and can be reused to execute the sequence of quantum

gates from any state that shares the same high-level structure, i.e.,
computational bases with the same amplitudes in the first state will
also have the same amplitudes in the second state, though these
amplitude values may differ from those in the first state. We de-
rive these summaries using symbolic execution, which is similar to
standard quantum simulation but instead computes symbolic terms
that remember the arithmetic operations to be performed, rather
than computing the results of arithmetic operations over numbers.

Moreover, similarly to [30], we represent quantum states alge-
braically for exact simulation without numerical precision loss,
which is crucial in tasks such as equivalence checking [34]. Un-
like [30], which works only for concrete value simulation, ours
allows symbolic simulation thanks to the use of multi-terminal bi-
nary decision diagrams (MTBDDs) [5, 17]. We customize MTBDD
procedures for efficient quantum gate execution instead of using
only standard MTBDD functions Apply and Restrict as usual.

Our experimental evaluation shows that our proposed approach
can significantly speed up simulation for some well-established
quantum circuits. This allows us to tackle circuits of sizes that were
previously considered infeasible.

2 PRELIMINARIES
We use B = {0, 1} to denote the Booleans and fix a set X =
{𝑥1, . . . , 𝑥𝑛} of Boolean variables with an implicit order 𝑥1 < 𝑥2 <
· · · < 𝑥𝑛 ; we use ®𝑥 to denote (𝑥1, . . . , 𝑥𝑛). Given an arbitrary
set 𝑆 ≠ ∅, a pseudo-Boolean function is a function 𝑓 : B𝑛 → 𝑆 .
If 𝑆 = B, then 𝑓 is a Boolean function. We use 𝜔 to denote the
complex number 𝑒

𝑖𝜋
4 , i.e., the unit vector that makes an angle of

45◦ with the positive real axis in the complex plane.

2.1 Decision diagrams
Given an arbitrary nonempty set 𝑆 with finitely representable
elements (in other words, a countable set), we define a multi-
terminal binary decision diagram (MTBDD) [17]1 as a graph 𝐺 =
(𝑁,𝑇 , low, high, root, var) where𝑁 is the set of internal nodes,𝑇 ⊆ 𝑆
is the set of leaf nodes (𝑇 ∩𝑁 = ∅,𝑇 ≠ ∅), low, high : 𝑁 → (𝑁 ∪𝑇)
are the low- and high-successor edges, root ∈ 𝑁 ∪𝑇 is the root node,
and var : 𝑁 → X is the node-variable mapping, with the following
three restrictions:
(i) (connectivity) every node from 𝑁 ∪𝑇 is reachable from root

over some sequence of low and high edges,
(ii) (order) for every 𝑢, 𝑣 ∈ 𝑁 , if low(𝑢) = 𝑣 or high(𝑢) = 𝑣 , then

var (𝑢) < var (𝑣), and
(iii) (reducedness) there is no node 𝑢 ∈ 𝑁 such that low(𝑢) =

high(𝑢).
Each node 𝑣 ∈ 𝑁 ∪ 𝑇 represents a pseudo-Boolean function J𝑣K
defined inductively as follows:

(1) if 𝑣 ∈ 𝑇 , then J𝑣K(®𝑥) = 𝑣 , and
(2) if 𝑣 ∈ 𝑁 and var (𝑣) = 𝑥𝑖 , then

1sometimes also known as an algebraic decision diagram (ADD) [5]; both are general-
izations of reduced ordered binary decision diagrams (ROBDDs or just BDDs) [11]

2024-05-06 13:41. Page 1 of 1–9.

62

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝑢 : 𝑥1

𝑣 : 𝑥2

𝑏𝑎

(a) MTBDD𝑀𝑞 for 𝑞

𝑢′ : 𝑥1

𝑣 ′ : 𝑥2

𝑏𝑎

(b) Applying 𝑋2 to 𝑞

𝑥1

𝑥2

𝑏𝜔2 𝑎𝜔2𝑎

(c) Applying 𝑆1 to 𝑞

𝑥1

𝑥2 𝑥2

𝑎+𝑏√
2

2𝑎√
2

𝑎−𝑏√
2 0

(d) Applying 𝐻1 to 𝑞

𝑥1

𝑥2

𝑏𝑎

(e) Applying𝐶𝑋 1
2 to 𝑞

Figure 1: Examples of applying quantum gates on MTBDD-based representation of the state 𝑞 = 𝑎 |00⟩ + 𝑎 |01⟩ + 𝑏 |10⟩ + 𝑎 |11⟩.
Dashed edges denote low edges, solid edges denote high edges.

J𝑣K(®𝑥) =
{
Jlow(𝑣)K(®𝑥) if 𝑥𝑖 = 0 and
Jhigh(𝑣)K(®𝑥) if 𝑥𝑖 = 1.

Moreover, we impose the following additional restriction on 𝐺 :
(iv) (canonicity) there are no two nodes 𝑢 ≠ 𝑣 such that J𝑢K = J𝑣K.
𝐺 then represents the function J𝐺K defined as JrootK. We abuse
notation and confuse a pseudo-Boolean function with the MTBDD
that represents it and also we use a node 𝑟 to denote the MTBDD
rooted from 𝑟 and vice versa.

The following standard MTBDD operations will be used in the
paper. The apply(𝑓1, 𝑓2, op2) operation is used to combine two
MTBDDs 𝑓1 and 𝑓2 through a binary operation op2 : 𝑆 × 𝑆 → 𝑆
performed on the corresponding leaf notes, obtaining the MTBDD
representing the pseudo-Boolean function {®𝑥 ↦→ op2 (𝑓1 (®𝑥), 𝑓2 (®𝑥)) |
®𝑥 ∈ B𝑛}. The monadic_apply(𝑓 , op) operation updates the leaves
of the MTBDD 𝑓 with a unary operation op1 : 𝑆 → 𝑆 , obtain-
ing the MTBDD representing the pseudo-Boolean function {®𝑥 ↦→
op1 (𝑓 (®𝑥)) | ®𝑥 ∈ B𝑛}. We often use lambda expression for defin-
ing op1/2. Additionally, MTBDDs provide the spawn(𝑙, ℎ, 𝑥) func-
tion that works as follows: (i) if 𝑙 = ℎ, then the result is 𝑙 (this
enforces the (reducedness) invariant), otherwise (ii) the result is the
unique node𝑛 such that low(𝑛) = 𝑙 , high(𝑛) = ℎ, and var (𝑛) = 𝑥 (in
practice, a cache is used; this enforces the (canonicity) invariant).

2.2 Quantum Computing Fundamentals
Quantum computers are programmed through quantum gates, and
every time a gate is applied, the global quantum state is updated.
A quantum circuit is a series of gate applications, combined with
programming constructs like loop or hierarchical gate definitions
that allow for a more concise presentation [16].

Quantum states: In a traditional computer system with 𝑛 bits,
a state is represented by 𝑛 Boolean values. In the quantum world,
such states are referred to as computational basis states. For example,
in a system with three bits labeled 𝑥1, 𝑥2, and 𝑥3, the computational
basis state |011⟩ indicates that the value of 𝑥1 is 0 and the values
of 𝑥2 and 𝑥3 are 1.

In a quantum system, an 𝑛-qubit quantum state is a probabilis-
tic distribution over 𝑛-bit computational basis states, denoted ei-
ther as a column vector (𝑎0, . . . , 𝑎2𝑛−1)𝑇 (given here as a trans-
posed row vector) or as a formal sum

∑
𝑗∈{0,1}𝑛 𝑎 𝑗 · | 𝑗⟩, where

𝑎0, 𝑎1, . . . , 𝑎2𝑛−1 ∈ C are complex amplitudes satisfying the prop-
erty that

∑
𝑗∈{0,1}𝑛 |𝑎 𝑗 |2 = 1. Intuitively, |𝑎 𝑗 |2 is the probability that

when we measure the quantum state in the computational basis,
we obtain the classical state | 𝑗⟩; these probabilities must sum up

to 1 for all basis states. We can view a quantum state as a function
that maps each computational basis state in B𝑛 to a complex ampli-
tude in C and represent them using MTBDDs; cf. Figure 1a for an
MTBDD𝑀𝑞 representing the state 𝑞 = 𝑎 |00⟩+𝑎 |01⟩+𝑏 |10⟩+𝑎 |11⟩
(for some 𝑎, 𝑏 ∈ C s.t. 𝑎 ≠ 𝑏 and 3|𝑎 |2 + |𝑏 |2 = 1).

Quantum gates: There are two main types of quantum gates
that are used in state-of-the-art quantum computers: single-qubit
gates and controlled gates. Our work supports all commonly used
gates except the arbitrary rotation single-qubit gate due to the
use a precise complex number representation proposed in [37]
(cf. Sec. 5). We note that the set of supported gates is much larger
than what is required to achieve (approximate) universal quantum
computation. One can achieve this with, e.g., either (i) Clifford gates
(H, S, and CNOT) and T [8] or (ii) Toffoli and H [3].

Single-qubit gates. In general, a single-qubit gate is presented as
a unitary complex matrix. We directly support the following gates:

X =

(
0 1
1 0

)
, Y =

(
0 −𝑖
𝑖 0

)
, Z =

(
1 0
0 −1

)
,

S =

(
1 0
0 𝑖

)
, T =

(
1 0
0 𝜔

)
, H =

1√
2

(
1 1
1 −1

)
,

RX
(𝜋
2

)
=

1√
2

(
1 −𝑖
−𝑖 1

)
, RY

(𝜋
2

)
=

1√
2

(
1 −1
1 1

)
.

For a single-qubit gate U, we often use a subscript to denote the
qubit that it is applied to, e.g., U𝑖 means we apply U to qubit 𝑥𝑖 .

The X gate is the quantum “negation” gate. Applying gate X to
a single-qubit state

(
𝑙
ℎ

)
produces the state X ·

(
𝑙
ℎ

)
=
(
ℎ
𝑙

)
. In the

case of an MTBDD-based representation of
(
𝑙
ℎ

)
, which would have

a root node with the low-successor 𝑙 ∈ 𝑇 and high-successor ℎ ∈ 𝑇 ,
this would effectively mean swapping the low and high successors
of the root. For the general case, applying X𝑖 to a quantum state’s
MTBDD swaps the high and low-successor edges of all nodes at
level 𝑖 . See Figure 1b for an example of applying X2 to the MTBDD
𝑀𝑞 introduced above (the edges leaving 𝑣 ′ got swapped).

Behaviours of Z, S, and T gates are similar to each other. In
particular, applying the gates to

(
𝑙
ℎ

)
produces the states Z ·

(
𝑙
ℎ

)
=(

𝑙
−ℎ

)
, S ·

(
𝑙
ℎ

)
=
(

𝑙
𝑖 ·ℎ

)
, and T ·

(
𝑙
ℎ

)
=
(

𝑙
𝜔 ·ℎ

)
, which multiply the

|1⟩-position with −1, 𝑖 , and 𝜔 , respectively. Similarly, applying Z,
S, and T to a quantum state’s MTBDD multiplies all leaves in the

2024-05-06 13:41. Page 2 of 1–9.

63

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop Summarization

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

high-subtrees of all nodes at level 𝑖 with −1, 𝑖 , and 𝜔 , respectively
(cf. Figure 1c for an example of applying S1 to𝑀𝑞).

The last group of single-qubit gates we mention includes H
(the Hadamard gate), RX

(𝜋
2
)
, and RY

(𝜋
2
)
. These gates are more

challening for implementation, since they fuse the amplitudes of
the two basis states to form a new state. Taking H as an example,
it updates the state

(
𝑙
ℎ

)
to the state 𝐻 ·

(
𝑙
ℎ

)
= 1√

2
·
(
𝑙+ℎ
𝑙−ℎ

)
. See

Figure 1d for the result of applying H1 to𝑀𝑞 . We refer the readers
to Sec. 3 for the corresponding MTBDD constructions.

Controlled gates. A controlled gate CU uses another quantum
gate U as its parameter. We often use CU𝑐𝑡 to denote applying the
controlled-gate with control qubit 𝑥𝑐 and target qubit 𝑥𝑡 . The effect
of the controlled-U gate is that the gate U𝑡 is applied only when
the control qubit 𝑥𝑐 has the value 1. For example, the controlled-X
gate CNOT12 has the control qubit 𝑥1 and would apply X2 when 𝑥1
is valued 1. See Figure 1e for an example of applying CNOT12 to𝑀𝑞

(in this particular case, the result is the same as in Figure 1b).

3 ALGORITHM FOR QUANTUM GATES
Single-qubit gates. In Algorithm 1, we present our procedure for

applying single-qubit gates to anMTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root,
var) at the target qubit 𝑥𝑡 . The procedure performs the operations
on𝑀𝑞 directly, as opposed to the standard approach (used, e.g., in
SliQSim [30]), which uses only the standard (MT)BDD interface
(in particular, functions Apply and Restrict).

The algorithm can be seen as a modification of a standard recur-
sive monadic_apply function. In particular, it performs a depth-first
search (Line 5) until it reaches a node with 𝑥𝑡 , in which case it will
perform the semantic of the gate on the successors. The semantic
differs based on the particular gate, and was already briefly dis-
cussed in Sec. 2.2. We, however, need to be careful about “don’t
care” edges, i.e., edges that skip some variable in the MTBDD (such
as the low edge from 𝑢 in Figure 1a). In such a situation, we need
to stop the recursion and perform the gate operation by virtually
materializing the missing node (with low and high successors be-
ing the same), cf. Line 9. For example, when applying X2 to the
state 𝑞 in Figure 1a, we have 𝑙 ′ = ℎ′ = 𝑎 when handling the low-
successor of𝑢. Calling spawn(𝑎, 𝑎, 𝑥2)will just return the 𝑎 leaf. On
the other hand, high(𝑢′) will be set to spawn(high(𝑣), low(𝑣), 𝑥2) =
spawn(𝑎, 𝑏, 𝑥2) = 𝑣 ′.

To apply T, S, and Z gates, we use the monadic_apply function
to multiply the leaf nodes of high-successors of the nodes labelled
by 𝑥𝑡 with 𝜔 , 𝜔2, and −1, respectively. When applying 𝑆1 to the
state𝑞, one step would be computing monadic_apply(𝑣, 𝜆𝑥 (𝜔2 ·𝑥))
and connecting the result to the high-successor of the new root via
the spawn function (Figure 1c). Meanwhile, the Y gate does for each
node at level 𝑖 the following: (1) it multiplies the high-successor
with −𝜔2 and sets it as the new low-successor, and (2) it multiplies
the low-successor with 𝜔2 and sets it as the new high-successor.

For each node at level 𝑖 , applying the H, RX
(𝜋
2
)
, or RY

(𝜋
2
)
gates

merges the high and low-successors using the apply function, creat-
ing new high and low-successors according to the gate’s behaviour.
In the case of the H gate, the new low-successor is apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 (1√

2
· (𝑥 + 𝑦))) and the new high-successor is apply(𝑙 ′, ℎ′,

𝜆𝑥,𝑦 (1√
2
· (𝑥−𝑦))). When applying𝐻1 to the state 𝑞, we haveℎ′ = 𝑣

Algorithm 1: Execution of a single-qubit gate U𝑡

Input:MTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root, var),
target qubit 𝑥𝑡 , single qubit gate U

Output:MTBDD representing U𝑡 (𝑀𝑞)
1 return recurse(root);

2 Function recurse(node)
3 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
4 if 𝑖 < 𝑡 then
5 𝑙new ← recurse(l); ℎnew ← recurse(h);
6 return spawn(𝑙new , ℎnew , 𝑥𝑖);
7 else // 𝑖 ≥ 𝑡 or a leaf
8 if 𝑖 = 𝑡 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
9 else 𝑙 ′ ← ℎ′ ← node;

10 if U = X then return spawn(ℎ′, 𝑙 ′, 𝑥𝑡) ;
11 if U ∈ {T, S,Z} then
12 if 𝑈 = 𝑇 then 𝑐 ← 𝜔 ;
13 if 𝑈 = 𝑆 then 𝑐 ← 𝜔2;
14 if 𝑈 = 𝑍 then 𝑐 ← −1;
15 ℎnew ←monadic_apply(ℎ′, 𝜆𝑥 (𝑐 · 𝑥));
16 return spawn(𝑙 ′, ℎnew , 𝑥𝑡);
17 if U = Y then
18 𝑙new ←monadic_apply(ℎ′, 𝜆𝑥 (−𝜔2 · 𝑥));
19 ℎnew ←monadic_apply(𝑙 ′, 𝜆𝑥 (𝜔2 · 𝑥));
20 return spawn(𝑙new , ℎnew , 𝑥𝑡);
21 if U = H then
22 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√

2
· (𝑥 + 𝑦)));

23 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝑦)));

24 return spawn(𝑙new , ℎnew , 𝑥𝑡);
25 if U = RX

(𝜋
2
)
then

26 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝜔2 · 𝑦)));

27 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑦 − 𝜔2 · 𝑥)));

28 return spawn(𝑙new , ℎnew , 𝑥𝑡);
29 if U = RY

(𝜋
2
)
then

30 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 − 𝑦)));

31 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 + 𝑦)));

32 return spawn(𝑙new , ℎnew , 𝑥𝑡);

and 𝑙 ′ = 𝑎. Fusing the two via apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 (1√
2
· (𝑥 +𝑦))) gives

us the low-successor of the root in Figure 1d and via apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 (1√

2
· (𝑥 − 𝑦))) gives us the high-successor of the root.

Controlled gates. Our procedure for applying controlled-U gates
to𝑀𝑞 at the control qubit 𝑥𝑐 for some quantum gate U is presented
in Algorithm 2. The procedure involves three steps. First, in𝑀𝑙 , we
will store a copy of𝑀𝑞 modified such that every base with 𝑥𝑐 = 1
has amplitude 0 (Line 1). Second, we compute an MTBDD U𝑡 (𝑀)
using some of Algorithms 1 and 2 (depending on U, which can again
be a controlled gate) and modify it such that every base with 𝑥𝑐 = 0
has amplitude 0 (Line 2). Finally, both MTBDDs are summed up

2024-05-06 13:41. Page 3 of 1–9.

64

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2: Execution of a controlled gate CU𝑐𝑡
Input:MTBDD𝑀 = (𝑁,𝑇 , low, high, root, var),

control qubit 𝑥𝑐 , target qubit 𝑥𝑡 , single qubit gate U
Output:MTBDD representing CU𝑐𝑡 (𝑀𝑞)

1 𝑀𝑙 ← recurse(root, L);
2 𝑀ℎ ← recurse(U𝑡 (𝑀𝑞), H);
3 return apply(𝑀𝑙 , 𝑀ℎ, 𝜆𝑥,𝑦 (𝑥 + 𝑦));
4 Function recurse(node, dir)
5 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
6 if 𝑖 < 𝑐 then
7 𝑙new ← recurse(l, dir); ℎnew ← recurse(h, dir);
8 return spawn(𝑙new , ℎnew , 𝑥𝑖);
9 else // 𝑖 ≥ 𝑐 or a leaf
10 if 𝑖 = 𝑐 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
11 else 𝑙 ′ ← ℎ′ ← node;

12 if dir = L then return spawn(𝑙 ′, 0, 𝑥𝑐) ;
13 else return spawn(0, ℎ′, 𝑥𝑐) ;

using the apply function (Line 3), which will, effectively, combine
the two MTBDDs together (one operand of the plus will always
be 0). We note that the Toffoli gate can be obtained by using the
CNOT gate for U. We also note that a specialized more efficient
version of the algorithm for phase gates (such as Z, S, and T) can
be used, which we omit here because of space constraints.

Memoization. In order to avoid redundant computation, calls to
the recurse functions in Algorithms 1 and 2 should be memoized
similarly as in standard implementations of apply for (MT)BDDs [11].

Concrete execution and symbolic execution. Our gate operations
work for both concrete and symbolic amplitude values. When leaf
values are concrete, e.g., when 𝑥 = 1

2 and 𝑦 = 1
4 , the function

𝜆𝑥,𝑦 (1√
2
· (𝑥 + 𝑦))) will compute the value 1√

2
· (12 + 1

4) = 3
4
√
2
.

When leaf values are symbolic, e.g, , when 𝑥 = 𝑥0 and 𝑦 = 𝑦0, the
same function will compute the symbolic term 1√

2
· (𝑥0 + 𝑦0)).

4 LOOP SUMMARIZATION
Our main contribution is an optimization that targets algorithms
with loops2, such as various amplitude amplification algorithms [9],
with the most famous one being Grover’s unstructured search [20].
The optimization is particularly effective in the case that the number
of distinct amplitudes is small (which is the case for amplitude
amplification algorithms, where there are typically only a limited
number of different amplitudes at the beginning of a loop body, e.g.,
high amplitude, low amplitude, and zero).

Intuitively, the optimization works as follows. Consider a circuit
with the following loop (in the OpenQASM 3.0 format [16]):

for int i in [1:K] { C; }

where 𝐶 is the unitary for the loop body composed of standard
gates and 𝐾 is a constant. When a simulation of the circuit arrives
to the loop with a quantum state 𝑞 represented by an MTBDD𝑀𝑞 ,
2In particular, in the basic version of the optimization presented here, we assume the
loop bodies are unitaries, i.e., do not contain measurements, and that they are not
nested; the technique can be extended to non-unitary loops and nested loops as well.

Algorithm 3: Loop summarization
Input: An MTBDD𝑀𝑞 , a loop body 𝐶
Output: An MTBDD𝑀𝛼 over S and a mapping 𝜏 : S→ TS

1 𝛼 ← ∅ (type 𝛼 : C ⇀ S); // init abstraction

2 𝑀
refined
𝛼 ← monadic_apply(𝑀𝑞, abstract[𝛼]);

3 repeat
4 𝑀𝛼 ← 𝑀

refined
𝛼 ;

5 𝑀′𝛼 ← 𝐶𝑆 (𝑀𝛼);
6 𝜏 ← ∅ (type 𝜏 : S ⇀ TS); // update

7 𝜎 ← ∅ (type 𝜎 : S ⇀ S); // refinement subst

8 𝑀
refined
𝛼 ← apply(𝑀𝛼 , 𝑀

′
𝛼 , refine[𝜏, 𝜎, 𝛼]);

9 until𝑀𝛼 = 𝑀refined
𝛼 ;

10 return (𝑀𝛼 , 𝜏);
11 Function abstract(val)

Data: 𝛼 : C ⇀ S
12 if 𝛼 (val) = ⊥ then
13 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
14 𝛼 ← 𝛼 ∪ {val ↦→ 𝑠new};
15 return 𝛼 (val);
16 Function refine(lhs, rhs)

Data: 𝜏 : S ⇀ TS, 𝜎 : S ⇀ S, 𝛼 : C ⇀ S
17 if 𝜏 (lhs) = ⊥ then
18 𝜏 ← 𝜏 ∪ {lhs ↦→ rhs};
19 else if ⊭ 𝜏 (lhs) = rhs then
20 if 𝜎 (lhs) = ⊥ then
21 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
22 𝜎 ← 𝜎 ∪ {lhs ↦→ 𝑠new};
23 return 𝜎 (lhs);
24 return lhs;

it will first create an MTBDD 𝑀𝛼 with leaves containing sym-
bolic variables (from a set S, which is some infinite set of symbolic
names). Then, it will run the circuit 𝐶 of the loop body with𝑀𝛼 as
its input, with operations being done symbolically, i.e., instead of
a single number, the leaves of the resulting MTBDD 𝑀′𝛼 contain
terms over S; we denote the set of terms over S as TS.𝑀′𝛼 contains
information about how each of the computational bases needs to
be updated. The information in𝑀′𝛼 is, however, fine-tuned for𝑀𝑞 ,
which can make the representation quite compact. This fine-tuning
is done in the initial step called abstraction, when symbolic vari-
ables are being introduced—we start by introducing one symbolic
variable for every distinct leaf value present in𝑀𝑞 . The assumption
is that computational bases with the same value will behave simi-
larly in the algorithm. This does not need to hold, so after 𝑀′𝛼 is
computed, we check it by observing whether bases mapping to the
same symbolic variable in𝑀𝛼 also map to the same update in𝑀′𝛼 . If
not, we introduce more symbolic variables (for the differing bases)
and run the algorithm again, until the condition holds.

The formal algorithm is given in Algorithm 3. In the algorithm,
we use the following formal notation: 𝑓 [𝑝1, . . . , 𝑝𝑘] denotes the
closure of function 𝑓 with parameters 𝑝1, . . . , 𝑝𝑘 assigned to the

2024-05-06 13:41. Page 4 of 1–9.

65

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop Summarization

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑥

𝑦

10

(a) Concrete
state𝑀𝑞

𝑥

𝑦

𝑏𝑎

(b) Initial abstrac-
tion𝑀𝛼1 of𝑀𝑞

𝑥

𝑦

𝑏𝜔 𝑎𝜔𝑎

(c) After applying
T𝑥 to𝑀𝛼1

𝑥

𝑦

𝑎𝜔 𝑏𝜔𝑎

(d) End of first
iteration𝑀 ′𝛼1

𝑥

𝑦

𝑏 𝑐𝑎

(e) Refined abstrac-
tion𝑀𝛼2 of𝑀𝑞

𝑥

𝑦

𝑐𝜔 𝑏𝜔𝑎

(f) End of second
iteration𝑀 ′𝛼2

𝑥

𝑦

𝜔0

(g) Result of𝑀𝑞

after𝑀 ′𝛼2

Figure 2: An example run of Algorithm 3 on the circuit in Figure 3.

variables in the Data declaration of 𝑓 (passed by reference). Given
a (partial) function 𝑓 of the type 𝑓 : 𝑋 ⇀ 𝑌 , we use rng(𝑓) to denote
the range of 𝑓 , i.e., the set {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑦}. Moreover,
given an 𝑥 ∈ 𝑋 , if there is no (𝑥,𝑦) ∈ 𝑓 , we write 𝑓 (𝑥) = ⊥.

Example 1. We first demonstrate a run of the algorithm on the
example toy circuit in Figure 3. The circuit starts in the state 𝑞
with the qubit 𝑥 set to 1 and qubit 𝑦 set to 0. Then, it performs 𝐾
executions of the loop body 𝐶 . In each execution of the loop body,
first, the T gate gets applied to 𝑥 , performing the multiplication
of its |1⟩ amplitude by 𝜔 and then CNOT of 𝑦 controlled by 𝑥
is performed. Therefore, the resulting state after 𝐾 executions is
𝐾𝜔 |11⟩ if𝐾 is odd and𝐾𝜔 |10⟩ if𝐾 is even. The run of Algorithm 3
on the circuit is demonstrated in Figure 2.
𝑀𝑞 is in Figure 2a. In Figure 2b, we can see the initial abstrac-

tion 𝑀𝛼1 of 𝑀𝑞 after Line 2; in this case, 𝛼1 = {0 ↦→ 𝑎, 1 ↦→ 𝑏}
for symbolic variables 𝑎 and 𝑏. Then, we run (Line 5) the loop
body with𝑀𝛼1 , obtaining first the tree in Figure 2c (after 𝑇𝑥) and
then the tree𝑀′𝛼1 in Figure 2d (after CNOT𝑥𝑦). Then, when we call
apply(𝑀𝛼1 , 𝑀

′
𝛼1 , refine[𝜏1, 𝜎1, 𝛼1]) at Line 8, we realize that the

inital abstraction 𝛼1 was too coarse (going from left to right, we
will construct 𝜏1 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑎𝜔} for bases |00⟩, |01⟩, and
|10⟩; then, when processing |11⟩, which would give us 𝑎 ↦→ 𝑏𝜔 ,
which is in conflict with 𝑎 ↦→ 𝑎, we will introduce a new sym-
bolic variable 𝑐 for the base |11⟩ and obtain a new abstraction𝑀𝛼2
(cf. Figure 2e). Then, in the second iteration of the refinement loop,
we will run the loop body on 𝑀𝛼2 (cf. Figure 2f), obtaining 𝑀′𝛼2 .
Running apply(𝑀𝛼2 , 𝑀

′
𝛼2 , refine[𝜏2, 𝜎2, 𝛼2]) will not find any in-

consistency this time (𝜏2 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑐𝜔, 𝑐 ↦→ 𝑏𝜔}), so we can
terminate the refinement. Applying 𝑀′𝛼2 on 𝑀𝑞 with 𝜏2 once, we
obtain the tree in Figure 2g. □

Formally, the algorithm computes a summary for a sequence of
gates𝐶 w.r.t. a quantum state𝑞 (represented by anMTBDD𝑀𝑞). The
summary is a pair (𝑀𝛼 , 𝜏) where𝑀𝛼 is a stable abstraction of𝑀𝑞

(w.r.t. 𝐶) and 𝜏 denotes how the symbolic variables should be up-
dated during one loop iteration, computed as follows. On Line 2, we

𝐶1 𝐶2

𝑥 : |1⟩ T T

𝑦 : |0⟩
. . .

Figure 3: An example circuit for loop summarization

perform the initial abstraction of𝑀𝑞 , obtaining an MTBDD𝑀refined
𝛼

with one symbolic variable from S (the set of symbolic variables) for
every amplitude occurring in𝑀𝑞 (the mapping is remembered in 𝛼).
Then, we execute the sequence of gates 𝐶 over 𝑀𝑞 obtaining 𝑀′𝑞 ,
where the resulting amplitudes are represented by symbolic terms
over S (Line 5). On Line 8, we collect into 𝜏 the information about
how the symbolic variables were updated and check whether all
bases mapping to the same symbolic variable are updated in the
same way—if not (on Line 19, we emphasize that we do not just
check the identity of the two symbolic terms but, instead, check
their semantic equivalence), we refine the abstraction (by introduc-
ing new symbolic variables for bases that have a different update)
and try again. When we reach the fixpoint, we return the resulting
abstracted MTBDD𝑀𝛼 together with the updates 𝜏 .

5 IMPLEMENTATION
We implemented the proposed techniques in a prototype called
Tool publicly available on GitHub. Tool is written in C and uses
the Sylvan library [31] for handling MTBDDs (we, however, do not
use its multi-threading features) and the GNU GMP library [1] for
handling integers of arbitrary length. We use two configurations of
Tool: with (Toolloop) and without (Toolbase) loop summarization.

To achieve accuracy, we represent complex numbers algebraically
as proposed in [37] and first realized in [30] (used also later in [12,
13]). The algebraic representation is given by the form(1√

2

)
𝑘 (𝑎 + 𝑏𝜔 + 𝑐 𝜔2 + 𝑑 𝜔3), (1)

where 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑘 are integers. A complex number is then rep-
resented by a five-tuple (𝑎, 𝑏, 𝑐, 𝑑, 𝑘). Although it only represents
a countable subset of C, it can approximate any complex number
up to a specified precision and suffices to support a set of quantum
gates for universal quantum computation. The algebraic represen-
tation also allows for efficient encoding of some operations. For
example, because 𝜔4 = −1, the multiplication of (𝑎, 𝑏, 𝑐, 𝑑, 𝑘) by
𝜔 can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first en-
try, namely (−𝑑, 𝑎, 𝑏, 𝑐, 𝑘), which represents the complex number(1√

2
)𝑘 (−𝑑 + 𝑎𝜔 + 𝑏𝜔2 + 𝑐 𝜔3).

6 EXPERIMENTAL RESULTS
Simulators. We compared the performance of Tool against the

following state-of-the-art quantum circuit simulators: SliQSim [30],
Quasimodo [28], DDSIM [38] (v1.21.0), and Quokka# [24]. For

2024-05-06 13:41. Page 5 of 1–9.

66

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of qubits

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

[s
]

TOOL-loop
TOOL-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

(a) Grover’s search

10 15 20 25 30 35 40 45
Number of qubits

0

500

1000

1500

2000

Ru
nt

im
e

[s
]

TOOL-loop
TOOL-base
SliQSim
DDSIM
Quasimodo WBDD

(b) Period finding

12 14 16 18 20
Number of qubits

0

200

400

600

800

Ru
nt

im
e

[s
]

TOOL-loop
TOOL-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD

(c) Quantum counting

Figure 4: Runtimes of the simulators on the Loops benchmark.

Quasimodo, which contains 3 different backends (BDD, WBDD,
and CFLOBDD), we use Quas[𝐵] to denote the version that uses
backend 𝐵 (we note that its WBDD backend uses a decision diagram
package from DDSIM). To the best of our knowledge, only Tool
and SliQSim perform accurate simulation (using algebraic encoding
of complex numbers) while the other tools use floating-point num-
bers (with possible numerical errors). The importance of accurate
simulation has been demonstrated in applications such as quantum
circuit equivalence checking [34]. All experiments were conducted
on a server with two Intel Xeon X5650 (2.67GHz) CPUs, 32GiB of
RAM running Debian GNU/Linux 12, with the timeout of 60min.

Benchmarks. We performed experiments on the following two
benchmark sets of quantum circuits in OpenQASM:

• Loops: This benchmark set contains circuits containing
loops with fixed numbers of iterations. The particular cir-
cuits are implementations of Grover’s search algorithm [20]
(with a single solution), quantum counting [10], and period
finding [23], the last two without the final inverse quan-
tum Fourier transform (QFT)3. For quantum counting and
period finding, we created several families of circuits with
increasing size, denoted as ⟨𝐹𝑅⟩_⟨𝑆𝑅⟩_⟨𝑀𝑇 ⟩, where 𝐹𝑅 de-
notes the number of qubits in the first register, 𝑆𝑅 denotes
the number of qubits in the second register (cf. [10]), and𝑀𝑇
denotes the number of randomly generated multi-control
Toffoli gates in the oracle. We always set 𝑆𝑅 =

⌊
𝐹𝑅
2
⌋
and

𝑀𝑇 ∈ {5, 10, 15}. We unfolded the loops for tools that did
not support them.

• StraightLine: This benchmark set contains circuits with-
out loops implementing Bernstein-Vazirani’s algorithm [7]
(from 2 to 100 qubits{ 99 circuits), multi-control Toffoli
gates (from 6 to 198 qubits with a step of 2{ 97 circuits),
benchmarks from the toolkit Feynman [4] (43 circuits),
multi-oracle version of Grover’s search (without loops;

3We did not include the inverse QFT because it requires rotations by 𝜋
2𝑛 for arbitrary𝑛,

which are not supported by our prototype, since it uses the algebraic encoding of
complex numbers from Sec. 5. Note that this is not a conceptual limitation; one could
solve it precisely by, e.g., dynamically refining the algebraic encoding to use finer base
rotation than 𝜋

4 , in particular 𝜋
2𝑛 , or, not preserving accuracy, one could convert the

algebraic encoding into floating-point numbers and continue with them. We wish to
develop such solutions in our future work.

9 circuits; MOG) from [2], randomly generated circuits
from [2] (97 circuits), RevLib benchmarks [35] (80 circuits),
and modifications of certain RevLib benchmarks from [30]
(16 circuits) denoted as RevLib-H (these were obtained by
inserting an H gate at each unassigned input).

The experiments measured the time it took for the final quantum
state to be obtained in the respective representation with the ex-
ception of Quokka#, where we measured the time to obtain the
probability of the first qubit being zero (Quokka# does not compute
the representation of the whole quantum state). The benchmarks
did not contain measurements.

Research questions. We were interested in the following two key
research questions related to the proposed approach.

RQ1 What is the impact of loop summarization on the per-
formance of quantum simulators?

RQ2 How does the MTBDD-based representation with cus-
tom gate operations compare to other simulators?

RQ1: Loop Summarization
For answering the first research question, which is the main tar-
get of this paper, we ran the simulators on the Loops benchmark
set. The results can be seen in Figure 4 (for period finding and
quantum counting, we show results for the families of circuits with
oracle composed of 5 random multi-control Toffoli gates). More-
over, in Table 1, we give selected concrete results (we included for
every simulator the largest circuit in the family where it finished).
Quokka# is not included since it did not finish on any of the circuits.
We also encountered some issues when running Quas[CFLOBDD]
(internal error) andQuas[BDD] (incorrect implementation of the
multi-control Toffoli mcx gate), which are labelled as ERR .

We first focus on comparing the performance of Toolloop and
Toolbase , which differ only in loop summarization. The results
show that in all three algorithms, Toolloop scales much better than
Toolbase—it manages to simulate circuits of a size (the number of
gates) one to three orders of magnitude larger. According to the
results, the amount of necessary computation is significantly de-
creased, so we believe that we can expect a similar behaviour if loop
summarization is implemented for other representations. There-
fore, the answer to RQ1 is that the impact of loop summarization is
profound for the performance of the simulator on circuits with loops.

2024-05-06 13:41. Page 6 of 1–9.

67

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AcceleratingQuantum Circuit Simulation with Symbolic Execution and Loop Summarization

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Results for the Loops benchmark set (for every family, we include circuits which were the largest ones that some of the
simulators managed to simulate before timeout). The columns “#q” and “#G” denote the number of qubits and gates (after loop
unrolling) respectively. Times are given in seconds (“0” denotes a time <0.5 s), memory in MiB. TO denotes a timeout, ERR
denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Tool or SliQSim).

Toolloop Toolbase SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Gr
ov
er

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
11 22 3,337 0 122 0 42 1 12 0 34 37 774 0 450 TO TO
14 28 12,115 0 145 1 56 17 13 1 50 3,530 9,532 0 470 TO TO
20 40 140,721 0 187 32 387 3,176 25 12 118 TO TO 73 769 TO TO
22 44 310,367 0 196 85 1,088 TO TO 32 254 TO TO 583 1,083 TO TO
23 46 461,646 0 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO
29 58 4,676,916 2 214 2,190 10,032 TO TO TO TO TO TO TO TO TO TO
40 80 292,359,936 3,290 251 TO TO TO TO TO TO TO TO TO TO TO TO

Pe
rio

d
Fi
nd

in
g 16_08_05 24 1,507,322 83 600 8 24 23 130 4 1,235 ERR ERR 7 449 ERR ERR

19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 ERR ERR 198 452 ERR ERR
22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 TO TO ERR ERR 849 454 ERR ERR
22_11_15 33 448,790,444 128 1,662 3,020 27 TO TO TO TO ERR ERR 2,650 454 ERR ERR
31_15_15 46 277,025,390,495 673 1,973 TO TO TO TO TO TO ERR ERR TO TO ERR ERR

Co
un

tin
g 10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 ERR ERR

11_05_05 17 81,898 52 2,116 5 109 TO TO 0 65 TO TO 0 447 ERR ERR
12_06_15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO ERR ERR
13_06_15 20 753,593 919 9,502 TO TO TO TO TO TO TO TO TO TO ERR ERR

Let us also compare the performance with the other simulators
in this benchmark set. We can see that in the case of Grover’s al-
gorithm (Figure 4a), Toolloop managed to verify instances of a size
far beyond the capabilities of any other simulator, in particular
80 qubits. The second best-performing simulator was Toolbase ,
which scaled up to 58 qubits, followed byQuas[WBDD] (46 qubits),
DDSIM (44 qubits), and SliQSim (40 qubits). The situation is simi-
lar for period finding (Figure 4b), where Toolloop can scale up to
46 qubits, while the second best ones, Quas[WBDD] and Toolbase ,
can scale only to 33 qubits. Let us note the size of the largest period
finding circuit that Toolloop managed to simulate in 12 minutes:
over 277 billion gates. To the best of our knowledge, no existing
quantum simulator is able to scale up to circuits of this size. Similar
situation repeats for quantum counting, Toolloop can, again, scale
up to circuits of complexities that no other simulator could handle
(although, due to the complexity of the circuits, it does not perform
so well on smaller-sized circuits).

RQ2: MTBDD-Based Simulator
To answer the second research question, in addition to the results
from the Loops benchmark set, we also evaluated the performance
of simulators on the StraightLine benchmark (these circuits did
not use loops, so we do not include Toolloop , since it would be
the same as Toolbase). Due to space limitations, we present only
selected results. We chose circuits that took over one second to
finish for three better-performing tools Toolbase , SliQSim, and
DDSIM. However, RevLib-H circuits were challenging for most
tools, except for SliQSim which solved 13 cases. Both Toolbase and
DDSIM solved 5 cases in RevLib-H. SliQSim splits amplitude values
into bits and uses multiple BDDs to store a quantum state, resulting
in better compression in this benchmark. Instead of showing a large
table filled with TO , we show only the 5 solved cases in RevLib-
H and refer readers to [30] for a more extensive comparison of
SliQSim and DDSIM. Note that some tools had issues on some of
the benchmarks. In particular,Quas[CFLOBDD] andQuas[BDD]

failed on some circuits from Random (because they did not support
the S gate) and also (together withQuokka#) on some circuits in
RevLib-H (because they do not support the multi-control Toffoli).

The results show that Toolbase is competitive to other simula-
tors and in many cases, especially for the particularly challenging
benchmarks from Feynman, is the best available accurate simulator.
For the Loops benchmark, as mentioned previously, Toolbase is per-
forming well also compared to other simulators: it is the best one on
Grover and performs well also on the other two (it beats SliQSim,
the only other accurate simulator). To conclude, the answer to RQ2
is that the MTBDD-based representation with custom gate operations
is competitive to other simulators, often complementary to the other
accurate simulator SliQSim.

7 RELATEDWORK
DDSIM [38] is a quantum circuit simulator based on quantum
multiple-valued decision diagrams (QMDDs) [25], which support
representation and multiplication of state vectors and operator
matrices. In [22], a QMDD variant, called tensor decision diagrams
(TDDs), is proposed to support contraction operation and allows
tensor-network-like quantum circuit simulation. The TDD perfor-
mance is comparable to DDSIM [22].

SliQSim [30] exploits the standard reduced ordered binary deci-
sion diagrams (ROBDDs, or just BDDs) [11] to represent quantum
states exactly with an algebraic number system and achieves precise
quantum operations through Boolean formula manipulation. Note
that similarly to Tool, the supported quantum gate set of SliQSim,
though universal, is restricted to those algebraically representable.

The paper [13] proposes verification of quantum circuits using
tree automata to model their pre- and post-conditions. This method
helps create an automatic verification framework that checks the
correctness of the quantum circuit against a user-specified specifica-
tion. Tree automata, similarly to decision diagrams, can efficiently
represent identical subtrees using the same structure. Furthermore,
they can use non-deterministic choice to represent multiple states

2024-05-06 13:41. Page 7 of 1–9.

68

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Selection of results for the StraightLine benchmark. The columns “#q” and “#G” denote the number of qubits and
gates respectively. Times are given in seconds (“0.00” denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR
denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Tool or SliQSim). We do
not mark Quokka# as the fastest because it does not compute the quantum state representation.

Toolbase SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Fe
yn

ma
n

gf232_mult 96 3,322 0.26 39 1.34 12 0.10 70 0.72 459 0.11 501 0.91 449 0.86 45
gf264_mult 192 12,731 1.82 65 17.11 19 0.74 126 2.76 463 0.68 600 4.35 461 3.56 148
gf2128_mult 384 50,043 20.40 231 264.81 37 5.28 234 10.70 477 4.76 1,158 27.40 498 15.39 570
gf2256_mult 768 198,395 163.00 1,634 TO TO 41.21 538 42.50 531 38.50 4,988 231.00 632 71.28 2,324
hwb8 12 6,446 0.16 38 3.69 12 0.03 33 1.04 460 0.03 443 1.09 443 TO TO
hwb10 16 31,764 0.79 50 84.20 15 0.21 38 4.74 465 0.22 447 1.70 445 TO TO
hwb11 15 87,789 2.64 103 660.92 22 0.49 70 12.70 474 0.51 448 1.59 448 TO TO
hwb12 20 171,482 5.80 204 2,568.02 34 1.13 132 26.90 509 1.35 455 6.48 457 3,193.78 1,069

M
O
G 10 30 2,433 0.20 41 1.25 12 0.07 34 9.50 594 0.05 456 TO TO 62.68 40

11 33 3,746 0.36 44 3.12 12 0.12 42 52.00 905 0.08 462 TO TO 167.00 56

Ra
nd

om

85 85 255 0.99 51 0.46 14 2.11 63 ERR ERR 0.10 485 ERR ERR 0.03 12
86 86 258 15.30 213 0.47 14 2.24 72 ERR ERR 3.25 553 ERR ERR 0.07 12
89 89 267 9.48 105 0.67 14 0.72 65 ERR ERR 0.59 491 ERR ERR 0.06 12
93 93 279 1.68 61 0.32 13 0.18 67 ERR ERR 0.10 493 ERR ERR 0.04 12
94 94 282 79.60 337 0.77 17 4.45 76 ERR ERR 74.30 521 ERR ERR 0.07 12
97 97 291 5.70 117 0.42 13 1.46 77 ERR ERR 0.42 524 ERR ERR 0.03 12
99 99 297 9.58 173 0.38 12 2.61 78 ERR ERR 0.67 525 ERR ERR 0.08 12

Re
vL

ib

apex5_290 1,025 2,909 1.75 61 0.37 43 1.02 535 0.30 466 1.33 1,214 4.16 516 2.10 72
cps_292 923 2,763 1.19 57 0.20 30 1.25 484 0.24 464 1.09 1,035 2.99 527 1.38 59
frg2_297 1,219 3,724 2.32 93 0.49 48 1.51 633 0.36 468 1.90 1,307 6.32 497 2.15 84
seq_314 1,617 5,990 4.96 97 1.35 108 4.11 834 0.62 476 3.71 1,775 13.90 536 3.65 124

Re
vL

ib
-H

add64_184 193 385 0.19 203 0.02 13 0.09 117 ERR ERR 0.07 545 ERR ERR ERR ERR
cpu_register_32_405 328 890 0.46 213 0.08 14 0.41 194 ERR ERR 0.70 668 ERR ERR ERR ERR
e64-bdd_295 195 452 1.98 238 2.48 13 2.00 126 0.65 476 0.54 613 ERR ERR ERR ERR
ex5p_296 206 655 7.61 283 12.02 21 3.56 132 ERR ERR 1.15 691 ERR ERR ERR ERR
hwb9_304 170 708 33.00 662 13.50 20 12.16 114 ERR ERR 4.90 1,105 ERR ERR ERR ERR

in the same structure. We took inspiration from their extension to
symbolic amplitudes in [12] to develop our symbolic execution.

SymQV [6] encodes quantum circuit verification problems into
SMT with the theory of real numbers, using variables in trigono-
metric functions, e.g., sin𝑥 , which might lose precision in corner
cases. Their approach requires 2𝑛 variables to encode a 𝑛-qubit
circuit in the worst case. A polynomial SMT encoding of quantum
circuits was introduced in [14], where an extension of array theory,
named the theory of cartesian arrays (CaAL), was proposed and used
to encode quantum gates. However, empirical results suggest that
both methods are effective for small quantum circuits only.

Quasimodo [28] is a simulation tool with multiple backends,
including BDDs, weighted BDDs (using the backend of DDSIM),
and context-free language ordered binary decision diagrams (CFLOB-
DDs) [29], which combine BDDs with pushdown automata.

Hong et al. [21] proposed symbolic tensor decision diagrams
(symTDDs) for symbolically executing and representing quantum
circuits and quantum states. However, in quantum circuit simula-
tion, parameters are typically predetermined, rendering the utility
of this approach mainly for parameterized quantum circuit equiva-
lence checking rather than simulation.

Quokka# [24] extended the standard stabilizer formalism [18]
to present a general pure state using its stabilizers. The representa-
tion circumvents complex numbers and only requires manipulating
weights in real (possibly negative) numbers for the supported quan-
tum gate operations. Thereby, quantum circuit simulation can be
encoded into a weighted model counting problem. Quokka# only

supports Clifford+T and rotation gates (which is, however, univer-
sal). Experimental results show the advantages of Quokka# on
certain benchmarks such as quantum Fourier transform (QFT) and
variational quantum eigensolver (VQE) circuits.

Although Clifford circuits should be efficiently simulatable ac-
cording to the Gottesman–Knill theorem [19], simulating them in
decision diagrams may suffer from exponential growth in size. To
overcome this problem, Vinkhuijzen et al. [32, 33] proposed the
local invertible map decision diagrams (LIMDDs), a data structure
based on QMDD that further merges nodes that are equivalent up to
a local invertible map (LIM). LIMDDs successfully combine decision
diagrams and the stabilizer formalism, and they efficiently over-
come the challenge of exponential growth in decision diagrams on
Clifford circuits. The authors of [32, 33] demonstrated that LIMDDs
are more scalable in simulating QFT circuits than QMDDs.

8 CONCLUSION
We presented a technique for accelerating the simulation of quan-
tum circuits with loops by computing the loops’ summaries using
symbolic execution. The experiments show that this technique en-
ables the simulation of quantum circuits previously believed to be
infeasible. In the future, we wish to further develop the loop sum-
marization technique by integrating it with other data structures
for quantum state simulation. Moreover, we wish to look at the
problem of automatically generalizing a computed summary into
a closed-form formula (such as the description “𝐾𝜔 |11⟩ if 𝐾 is odd
and 𝐾𝜔 |10⟩ if 𝐾 is even” from Example 1), and, potentially, use the
technique also in the verification framework of [13].

2024-05-06 13:41. Page 8 of 1–9.

69

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop Summarization

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2022. GMP: The GNUMultiple Precision Arithmetic Library. https://gmplib.org/
[2] 2024. The AutoQ repository. https://github.com/alan23273850/AutoQ/
[3] Dorit Aharonov. 2003. A Simple Proof that Toffoli and Hadamard are Quantum

Universal. https://doi.org/10.48550/arxiv.quant-ph/0301040
[4] Matthew Amy. 2018. Towards Large-scale Functional Verification of Universal

Quantum Circuits. In Proceedings 15th International Conference on Quantum
Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018 (EPTCS), Peter
Selinger and Giulio Chiribella (Eds.), Vol. 287. 1–21. https://doi.org/10.4204/
EPTCS.287.1

[5] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, et al. 1997. Algebraic Decision
Diagrams and Their Applications. FMSD 10, 2/3 (1997), 171–206. https://doi.org/
10.1023/A:1008699807402

[6] Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling. 2023. symQV:
Automated Symbolic Verification of Quantum Programs. In Formal Methods - 25th
International Symposium, FM 2023, Lübeck, Germany,March 6-10, 2023, Proceedings
(Lecture Notes in Computer Science), Marsha Chechik, Joost-Pieter Katoen, and
Martin Leucker (Eds.), Vol. 14000. Springer, 181–198. https://doi.org/10.1007/978-
3-031-27481-7_12

[7] Ethan Bernstein and Umesh V. Vazirani. 1993. Quantum complexity theory. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
May 16-18, 1993, San Diego, CA, USA, S. Rao Kosaraju, David S. Johnson, and
Alok Aggarwal (Eds.). ACM, 11–20. https://doi.org/10.1145/167088.167097

[8] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani P. Roychowdhury, and Farrokh
Vatan. 2000. A new universal and fault-tolerant quantum basis. Inf. Process. Lett.
75, 3 (2000), 101–107. https://doi.org/10.1016/S0020-0190(00)00084-3

[9] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. 2002. Quantum
amplitude amplification and estimation. InQuantum computation and information
(Washington, DC, 2000). Contemp. Math., Vol. 305. Amer. Math. Soc., Providence,
RI, 53–74. https://doi.org/10.1090/conm/305/05215

[10] Gilles Brassard, Peter Høyer, and Alain Tapp. 1998. Quantum Counting. In Au-
tomata, Languages and Programming, 25th International Colloquium, ICALP’98,
Aalborg, Denmark, July 13-17, 1998, Proceedings (Lecture Notes in Computer Sci-
ence), Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel (Eds.), Vol. 1443.
Springer, 820–831. https://doi.org/10.1007/BFB0055105

[11] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers 35, 8 (1986), 677–691. https://doi.org/10.1109/TC.
1986.1676819

[12] Yu-Fang Chen, Kai-Min Chung, Ondrej Lengál, Jyun-Ao Lin, and Wei-Lun Tsai.
2023. AutoQ: An Automata-Based Quantum Circuit Verifier. In Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part III (Lecture Notes in Computer Science), Constantin Enea
and Akash Lal (Eds.), Vol. 13966. Springer, 139–153. https://doi.org/10.1007/978-
3-031-37709-9_7

[13] Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and
Di-De Yen. 2023. An Automata-Based Framework for Verification and Bug
Hunting in Quantum Circuits. Proc. ACM Program. Lang. 7, PLDI, Article 156
(jun 2023), 26 pages. https://doi.org/10.1145/3591270

[14] Yu-Fang Chen, Philipp Rümmer, and Wei-Lun Tsai. 2023. A Theory of Cartesian
Arrays (with Applications in Quantum Circuit Verification). In International
Conference on Automated Deduction. Springer, 170–189.

[15] Bob Coecke and Ross Duncan. 2008. Interacting Quantum Observables. In
Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations (Lecture Notes in Computer Science), Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz (Eds.), Vol. 5126. Springer, 298–310. https://doi.org/10.1007/978-3-
540-70583-3_25

[16] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S.
Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M.
Gambetta, and Blake R. Johnson. 2022. OpenQASM 3: A Broader and Deeper
Quantum Assembly Language. ACM Transactions on Quantum Computing 3, 3,
Article 12 (sep 2022), 50 pages. https://doi.org/10.1145/3505636

[17] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. 1997. Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix
Representation. Formal Methods Syst. Des. 10, 2/3 (1997), 149–169. https://doi.
org/10.1023/A:1008647823331

[18] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. Ph.D.
Dissertation. California Institute of Technology.

[19] Daniel Gottesman. 1998. The Heisenberg representation of quantum computers.
arXiv preprint quant-ph/9807006 (1998).

[20] Lov K. Grover. 1996. A Fast QuantumMechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, Gary L. Miller
(Ed.). ACM, 212–219. https://doi.org/10.1145/237814.237866

[21] X. Hong, W. Huang, W. Chien, Y. Feng, M. Hsieh, S. Li, C. Yeh, and M. Ying. 2023.
Decision Diagrams for Symbolic Verification of Quantum Circuits. In 2023 IEEE
International Conference on Quantum Computing and Engineering (QCE). IEEE
Computer Society, Los Alamitos, CA, USA, 970–977. https://doi.org/10.1109/
QCE57702.2023.00111

[22] Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying. 2022.
A Tensor Network based Decision Diagram for Representation of Quantum
Circuits. ACM Trans. Des. Autom. Electron. Syst. 27, 6, Article 60 (jun 2022),
30 pages. https://doi.org/10.1145/3514355

[23] Alexei Y. Kitaev. 1996. Quantum measurements and the Abelian Stabilizer
Problem. Electron. Colloquium Comput. Complex. TR96-003 (1996). ECCC:TR96-
003 https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html

[24] Jingyi Mei, Marcello Bonsangue, and Alfons Laarman. 2024. Simulating Quantum
Circuits by Model Counting. In CAV’24 (to appear). https://arxiv.org/abs/2403.
07197

[25] Philipp Niemann, Robert Wille, D. Michael Miller, Mitchell A. Thornton, and
Rolf Drechsler. 2016. QMDDs: Efficient Quantum Function Representation and
Manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 1 (2016),
86–99. https://doi.org/10.1109/TCAD.2015.2459034

[26] Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Nocon, Naoki Yoshioka,
Nobuyasu Ito, Shengjun Yuan, and Kristel Michielsen. 2019. Massively parallel
quantum computer simulator, eleven years later. Comput. Phys. Commun. 237
(2019), 47–61. https://doi.org/10.1016/J.CPC.2018.11.005

[27] Peter W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, NewMexico, USA, 20-22 November 1994. IEEE Computer Society, 124–134.
https://doi.org/10.1109/SFCS.1994.365700

[28] Meghana Sistla, Swarat Chaudhuri, and Thomas W. Reps. 2023. Symbolic Quan-
tum Simulation with Quasimodo. In Computer Aided Verification - 35th Inter-
national Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
III (Lecture Notes in Computer Science), Constantin Enea and Akash Lal (Eds.),
Vol. 13966. Springer, 213–225. https://doi.org/10.1007/978-3-031-37709-9_11

[29] Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps. 2023. CFLOBDDs:
Context-free-language ordered binary decision diagrams. ACM Transactions on
Programming Languages and Systems (2023).

[30] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang. 2021. Bit-Slicing
the Hilbert Space: Scaling Up Accurate Quantum Circuit Simulation. In 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021. IEEE, 439–444. https://doi.org/10.1109/DAC18074.2021.
9586191

[31] Tom van Dijk and Jaco van de Pol. 2017. Sylvan: multi-core framework for
decision diagrams. Int. J. Softw. Tools Technol. Transf. 19, 6 (2017), 675–696.
https://doi.org/10.1007/S10009-016-0433-2

[32] Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Al-
fons Laarman. 2023. LIMDD: A Decision Diagram for Simulation of Quan-
tum Computing Including Stabilizer States. Quantum 7 (2023), 1108. https:
//doi.org/10.22331/Q-2023-09-11-1108

[33] Lieuwe Vinkhuijzen, Thomas Grurl, Stefan Hillmich, Sebastiaan Brand, Robert
Wille, and Alfons Laarman. 2023. Efficient Implementation of LIMDDs for
Quantum Circuit Simulation. In Model Checking Software - 29th International
Symposium, SPIN 2023, Paris, France, April 26-27, 2023, Proceedings (Lecture Notes
in Computer Science), Georgiana Caltais and Christian Schilling (Eds.), Vol. 13872.
Springer, 3–21. https://doi.org/10.1007/978-3-031-32157-3_1

[34] Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R. Jiang. 2022.
Accurate BDD-based unitary operator manipulation for scalable and robust quan-
tum circuit verification. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC ’22). Association for Computing Machinery, New York, NY,
USA, 523–528. https://doi.org/10.1145/3489517.3530481

[35] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler.
2008. RevLib: An Online Resource for Reversible Functions and Reversible
Circuits. In 38th IEEE International Symposium on Multiple-Valued Logic (ISMVL
2008), 22-23 May 2008, Dallas, Texas, USA. IEEE Computer Society, 220–225.
https://doi.org/10.1109/ISMVL.2008.43

[36] Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to Efficiently
Handle Complex Values? Implementing Decision Diagrams for Quantum Com-
puting. In Proceedings of the International Conference on Computer-Aided Design,
ICCAD 2019, Westminster, CO, USA, November 4-7, 2019, David Z. Pan (Ed.). ACM,
1–7. https://doi.org/10.1109/ICCAD45719.2019.8942057

[37] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille. 2019. Ac-
curacy and Compactness in Decision Diagrams for Quantum Computation.
In 2019 Design, Automation and Test in Europe Conference (DATE). 280–283.
https://doi.org/10.23919/DATE.2019.8715040

[38] Alwin Zulehner and Robert Wille. 2019. Advanced Simulation of Quantum
Computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 5 (2019),
848–859. https://doi.org/10.1109/TCAD.2018.2834427

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

2024-05-06 13:41. Page 9 of 1–9.

70

Appendix C

Contents of the Included Storage
Media

/
medusa/..MEDUSA implementation

benchmarks/.................................All benchmark circuits
loops/...................................Loops circuits
straightline/...........................StraightLine circuits

doc/ .. Doxygen HTML documentation
src/ .. Source files
Makefile....................................For build purposes
README.md...................................Build and usage instructions
MEDUSA......................................Executable

thesis-src/....................................LATEX source files of the thesis
thesis.pdf.....................................Digital version of the thesis

71

	Introduction
	Preliminaries
	Quantum Computing
	Qubits
	Quantum Gates
	Quantum Circuits
	Quantum Algorithms

	Decision Diagrams
	Binary Decision Diagrams
	Multi-Terminal Binary Decision Diagrams

	Previous Work on Quantum Circuit Simulation
	Vector-based Approach
	Decision Diagram-based Approaches
	Tensor Networks-based, ZX-calculus-based, and Other Approaches

	MTBDD-based Quantum Circuit Representation
	Algebraic Representation of Complex Numbers
	Quantum Circuit Representation Using MTBDDs
	Universal Update Formulae For Quantum Gates
	Permutation-based Update Formulae For Quantum Gates

	Implementation
	Architecture of the Simulator
	Standard Execution
	Symbolic Execution

	Experimental Evaluation
	Experimental Environment and Used Simulators
	Benchmark Overview
	Evaluation of Symbolic Execution Performance Impact
	Evaluation of MTBDD-based Simulator Performance

	Conclusion
	Bibliography
	All Experimental Results
	Submitted Paper
	Contents of the Included Storage Media

