
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SIMULATION AND ANALYSIS OF
QUANTUM CIRCUITS
SIMULACE A ANALÝZA KVANTOVÝCH OBVODŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SÁRAJOBRANOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

B a c h e l o r ' s T h e s i s A s s i g n m e n t

Institut:
Student:
Programme:
Title:
Category:

Department of Intelligent Systems (DITS)
Jobranovä Sara
Information Technology
Simulation and Analysis of Quantum Circuits
Formal Verification

154537

Academic year: 2023/24

Assignment:

1. Study the theory of quantum computation.
2. Study techniques of simulation, analysis, and verification of quantum circuits.
3. Propose techniques for simulation or analysis of quantum circuits. Get inspired by existing

approaches based on decision diagrams and tree automata.
4. Implement the proposed techniques in a tool.
5. Compare the tool to existing tools, focusing on the speed and other parameters (precision, etc.).
6. Evaluate the achieved results and discuss possibilities of further development.

• M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th anniversary
ed. Cambridge ; New York: Cambridge University Press, 2010.

• Y.-H. Tsai, J.-H. R. Jiang, and C.-S. Jhang, "Bit-Slicing the Hilbert Space: Scaling Up Accurate
Quantum Circuit Simulation," in 2027 58th ACM/IEEE Design Automation Conference (DAC), Dec.
2021, pp. 439-444. doi: 10.1109/DAC18074.2021.9586191.

• Y.-F. Chen, K.-M. Chung, O. Lengal, J.-A. Lin, W.-L. Tsai, and D.-D. Yen, "An Automata-Based
Framework for Verification and Bug Hunting in Quantum Circuits," Proc. ACM Program. Lang., vol.
7, no. PLDI, p. 156:1218-156:1243, erven 2023, doi: 10.1145/3591270.

• Y.-F. Chen, K.-M. Chung, O. Lengal, J.-A. Lin, and W.-L. Tsai, "AutoQ: An Automata-Based
Quantum Circuit Verifier," in Computer Aided Verification, C. Enea and A. Lai, Eds., in Lecture Notes
in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 139-153. doi: 10.1007/978-3-
031-37709-9_7.

• M. Sistla, S. Chaudhuri, and T. Reps, "Symbolic Quantum Simulation with Quasimodo," in Computer
Aided Verification, C. Enea and A. Lai, Eds., in Lecture Notes in Computer Science. Cham: Springer
Nature Switzerland, 2023, pp. 213-225. doi: 10.1007/978-3-031 -37709-9_11.

Requirements for the semestral defence:
First two items from the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Lengal Ondrej, Ing., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023
Submission deadline: 9.5.2024
Approval date: 6.11.2023

Literature:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
Simulat ion of quantum circuits is a key tool for future advancements i n the promising field
of quantum computing. Due to the fact that this task is very computat ional ly demanding,
the performance of state-of-the-art simulators on more complex circuits is s t i l l far from
satisfactory. In this thesis, we propose a new approach to simulate quantum circuits and
present an implementat ion based on this approach. Our s imulat ion technique allows for
accurate s imulat ion and is based on mul t i - terminal binary decision diagrams. We extended
the usual process of a decision diagram-based simulation by symbolic execution of repeating
structures in a quantum circuit (such as loops), where we compute the big-step semantics
of this structure and do not re-evaluate the gates. We show that symbolic loop execution
significantly accelerates the s imulat ion and that the implemented tool is not only competi
tive wi th other state-of-the-art simulators, but also greatly outperforms the state of the art
for many quantum circuits.

Abstrakt
Simulace kvan tových o b v o d ů je k l íčovým n á s t r o j e m pro dalš í v ý z k u m v oblasti kvan tové
v ý p o č e t n í techniky, k t e r á je velmi p e r s p e k t i v n í . J e d n á se však o velmi v ý p o č e t n ě n á r o č n ý
p rob l ém, a z tohoto d ů v o d u jsou i u m o d e r n í c h n á s t r o j ů př i simulaci komplexn ích ob
v o d ů z hlediska výkonu značné rezervy. V t é t o p rác i p ř e d s t a v í m e nový p ř í s t u p k simulaci
kvan tových o b v o d ů a n á s t r o j i m p l e m e n t o v a n ý na zák ladě tohoto p ř í s t u p u . Tato technika
umožňu je p ř e s n o u simulaci a je za ložena na m u l t i - t e r m i n á l n í c h b i n á r n í c h rozhodovac ích d i
agramech. Také rozšiřuje s t a n d a r d n í proces simulace za ložené na rozhodovac ích diagramech
o symbolickou exekuci opakuj íc ích se s truktur v k v a n t o v é m obvodě (nap ř . smyček) , kdy se
s p o č í t á s é m a n t i k a jednoho opakován í t é t o s t ruktury a n e p r o v á d í m e tud íž o p ě t o v n é vyhod
nocování hradel. Ukáza l i jsme, že symbol ické p rováděn í smyček v ý r a z n ě urychluje simu
laci a že i m p l e m e n t o v a n ý n á s t r o j je nejen konkurenceschopný s o s t a t n í m i ne jmoderně j š ími
s imulá tory , ale t a k é tyto s i m u l á t o r y pro mnoho kvan tových o b v o d ů z n a č n ě p řekonává .

Keywords
Quantum computing, Simulat ion of quantum circuits, Mul t i - t e rmina l binary decision dia
grams, Symbolic execution

Klíčová slova
Kvantové výpoč ty , Simulace kvan tových obvodů , M u l t i - t e r m i n á l n í b i n á r n í rozhodovac í d i
agramy, Symbol ická exekuce

Reference
J O B R A N O V Á , Sá ra . Simulation and Analysis of Quantum Circuits. Brno , 2024. Bache
lor's thesis. B rno Universi ty of Technology, Facul ty of Information Technology. Supervisor
Ing. O n d ř e j Lengá l , P h . D .

Rozšířený abstrakt
P o te nc i á l kvan tových p o č í t a č ů m á ř a d u za j ímavých důs l edků nejen p ř í m o v oblasti infor
m a č n í c h technologi í (nap ř . pro kryptografii) , ale i v mnoha dalš ích odvě tv ích jako je fyzika,
chemie či finance. P ř e d e v š í m kvůl i t e c h n i c k ý m p r o b l é m ů m , k t e r é provází ses tavení a provoz
kvan tového poč í t ače , se j e d n á o oblast p o m a l é h o , av šak s tá le t rva j íc ího v ý z k u m u a pokroku.
Z d ů v o d u p r o b l e m a t i c k é dostupnosti kvan tových p o č í t a č ů (ze jména z f inančního hlediska)
a o m e z e n ý m m o ž n o s t e m pozorován í stavu r eá lného kvan tového s y s t é m u (pouze p o m o c í
n e v r a t n é operace m ě ř e n í qubitu) jsou n á s t r o j e umožňuj íc í efekt ivní simulaci kvan tových
o b v o d ů na klas ických poč í t ač ích pro dalš í pokrok v oblasti kvan tových v ý p o č t ů n e z b y t n é .
Tento úkol je v šak v ý p o č e t n ě velmi n á r o č n ý kvůl i p o m ě r u velikosti s t avového prostoru kla
sického b i tu ve s r o v n á n í s velikostí s t avového prostoru qubi tu , a proto i u ne jmoderně j š ích
s i m u l á t o r ů nen í výkon pro ne t r iv iá ln í obvody s tá le uspokoj ivý.

V t é t o p rác i popisujeme nový p ř í s t u p k simulaci kvan tových o b v o d ů na klas ických počí
t ač ích a jeho implementaci v nás t ro j i MEDUSA. P ř e d s t a v e n á s imulačn í technika je za ložena
na m u l t i - t e r m i n á l n í c h b i n á r n í c h rozhodovac ích diagramech (M T B D D) , kdy k v a n t o v ý stav
interpretujeme jako funkci a reprezentujeme j i p o m o c í M T B D D , a využ ívá již dř íve p řed
stavenou algebraickou reprezentaci komplexn ích čísel, d íky čemuž MEDUSA provád í přesnou
simulaci . Nejen že je p ř e s n á simulace klíčová n a p ř . pro řešení testu ekvivalence kvan tových
obvodů , ale zá roveň se p o u ž i t í m p ře sné reprezentace komplexn ích čísel vyhneme poten
c iá ln ím n u m e r i c k ý m n e s t a b i l i t á m . P r o apl ikaci kvan tových hradel se používa j í speciá ln í
M T B D D procedury n a m í s t o použ i t í pouze s t a n d a r d n í h o r o z h r a n í pro operace s M T B D D
(pomoc í procedur Apply a Restrict), jak je tomu obvyklé .

Jel ikož pro reprezentaci kvan tového stavu v y u ž í v á m e M T B D D , jsme schopni simulo
vat opakuj íc í se s t ruktury (např . smyčky) v k v a n t o v é m obvodu pouze symbolicky. To je
velmi v ý h o d n é , p ro tože smyčky jsou ča s to klíčovou součás t í mnoha kvan tových a lgo r i tmů .
V prax i to z n a m e n á , že v y p o č í t á m e , jak se z m ě n í k v a n t o v ý stav po j e d n é i teraci smyčky
(toto reprezentujeme p o m o c í u rč i tých a lgebra ických v ý r a z ů nad p r o m ě n n ý m i , k t e r é p řed
s tavuj í j edno t l ivé p r a v d ě p o d o b n o s t n í ampl i tudy v p ů v o d n í m k v a n t o v é m stavu) a nás l edně
s p o č í t á m e nový k v a n t o v ý stav dle t ě ch to a lgebra ických v ý r a z ů a p o č t u i te rac í smyčky. To
z n a m e n á , že d íky t é t o tzv. symbolické exekuce smyček nen í p o t ř e b a opakovaně vyhodnoco
vat hradla v tě le smyčky.

I m p l e m e n t o v a n ý n á s t r o j MEDUSA jsme porovnali s někol ika ne jmoderně j š ími s imulá tory ,
a to jak verzi se symbolickou exekucí smyček, tak verzi bez ní . Verze bez symbol ické ex
ekuce se u k á z a l a jako k o m p e t e t i v n í s o s t a t n í m i s imulá tory , a dokonce tyto dalš í ná s t ro j e
pro n ě k t e r é typy o b v o d ů i z n a č n ě p ř e k o n a l a (ze jména pokud vezmeme v potaz pouze p řesné
s i m u l á t o r y) . Verze se symbolickou exekucí škálovala b ě h e m simulace všech m ě ř e n ý c h ob
v o d ů (implementu j íc ích r ů z n é kvan tové algori tmy obsahuj íc í smyčky) p o d s t a t n ě lépe než
všechny o s t a t n í ná s t ro j e , což ukazuje, že symbol i cká exekuce smyček vede k v ý r a z n é m u
zrychlení simulace. S te jné chování lze očekáva t i v p ř í p a d ě rozší ření symbol ické exekuce
smyček pro dalš í m o d e r n í s i m u l á t o r y za ložené na rozhodovac ích diagramech.

Z hlediska dalš í p r á c e je prostor pro dalš í optimalizace s imu lá to ru , t a k é je v p l á n u
rozšíř i t současnou m n o ž i n u p o d p o r o v a n ý c h kvan tových operac í . Dá le by bylo m o ž n é rozšíř i t
funkcionalitu i m p l e m e n t o v a n é h o n á s t r o j e pro účely verifikace kvan tových obvodů .

Simulation and Analysis of Quantum Circuits

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ondfej Lengal , P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Sara Jobranova
M a y 14, 2024

Acknowledgements
I would like to thank my supervisor Ing. Ondfej Lengal , P h . D . for his time, patience, and
guidance throughout this work. I would also like to express my thanks to a l l of my loved
ones for the immense support and encouragement they have given me while I have been
working on this thesis.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Quan tum Comput ing 5

2.1.1 Qubi ts 6
2.1.2 Quan tum Gates 9
2.1.3 Quan tum Circui t s 10
2.1.4 Quan tum Algor i thms 11

2.2 Decision Diagrams 12
2.2.1 B i n a r y Decision Diagrams 12
2.2.2 Mu l t i -Te rm in a l B i n a r y Decision Diagrams 17

3 Previous W o r k on Quantum Circui t Simulation 18
3.1 Vector-based Approach 18
3.2 Decision Diagram-based Approaches 18
3.3 Tensor Networks-based, ZX-calculus-based, and Other Approaches 20

4 M T B D D - b a s e d Q u a n t u m Circui t Representation 22
4.1 Algebraic Representation of Complex Numbers 22
4.2 Quan tum Ci rcu i t Representation Us ing M T B D D s 23

4.2.1 Universal Update Formulae For Quan tum Gates 24
4.2.2 Permutation-based Update Formulae For Quan tum Gates 25

5 Implementation 29
5.1 Archi tecture of the Simulator 29
5.2 Standard Execut ion 30
5.3 Symbolic Execut ion 31

6 Experimental Evaluat ion 36
6.1 Exper imenta l Environment and Used Simulators 36
6.2 Benchmark Overview 37
6.3 Evalua t ion of Symbolic Execut ion Performance Impact 37

6.4 Evalua t ion of M T B D D - b a s e d Simulator Performance 40

7 Conclusion 42

Bibl iography 43

A A l l Experimental Results 49

1

B Submitted Paper 61

C Contents of the Included Storage M e d i a 71

2

Chapter 1

Introduction

Quantum computing is an intr iguing field of computer science that leverages the principles of
quantum mechanics to perform computations i n ways that classical computers are unable
to. The concept of quantum computing originated i n the early 1980s, when physicist
R ichard Feynman introduced quantum computers as efficient means for s imulat ing quantum
mechanics i n his lecture [14]. Soon followed the emergence of the first quantum algorithms
and the interest in this field continued to grow in the 1990s [25] w i th the discovery of Shor's
algori thm for factoring and Grover 's search algori thm, as these breakthroughs demonstrated
the potential of this novel paradigm for computat ion to efficiently solve certain problems
that would be pract ical ly unsolvable on classical computers.

Yet , a lot of uncertainties are s t i l l present in this field. Th is is mainly due to the many
technical challenges that arise when bui ld ing and operating a quantum computer—it is
only wi th in recent years that technology has sufficiently advanced to allow for quantum
computing (although this hardware s t i l l has a largely experimental character). Actual ly ,
a research from 2019 claims to have achieved this promise of an unmatched performance of
quantum computers compared to classical computers i n some specific tasks, or the so-called
quantum supremacy [2]. There is an ongoing research on the pract ical usage of quantum
computers i n many different fields, such as physics [45], chemistry [23], and finance [19].

S t i l l , the abi l i ty to simulate the behaviour of quantum circuits on classical computers is
a v i t a l tool for understanding the potential of quantum computers and for future research
in this field for two reasons. The first one is the s t i l l ongoing unavailabil i ty of quantum
computers, especially because of the price of bui ld ing such a system. The second reason
is that i n a real system, we need to measure a qubit to make observations about its state,
which leads to the collapse of the state of the qubit (this operation is irreversible). This
means that it is not possible to directly examine the probabi l i ty amplitudes of a real system,
which is thus achievable only i n simulat ion. It is, however, not an easy task to perform the
needed calculations efficiently due to the ratio of the size of the state space of a classical
bit in comparison wi th the size of the state space of a qubit .

Today, several simulators of quantum circuits exist, however, when discussing the cur
rent state of the art in terms of performance, there is s t i l l a lot of room for improvement
when it comes to many complex circuits, and especially more complex circuits w i th a large
number of qubits. For this reason, this work introduces a new tool for quantum circuit sim
ulat ion. This simulator is based on Mul t i -T e rmi na l B ina ry Decision Diagrams (M T B D D s)
i n combinat ion w i t h algebraic complex number representation for accurately representing
the state of the simulated system. The implemented tool also supports symbolic execution
of loops in the circuit , where one i teration of the given loop is expressed by a single symbolic

3

operation. It is shown that this symbolic loop execution leads to a significant acceleration
of the simulat ion. Furthermore, this work provides an experimental comparison w i t h the
current state of the art, showing not only that the implemented simulator keeps up wi th
the current state-of-the-art tools, but also demonstrating superior performance of the im
plemented simulator for various quantum circuits (especially if we consider only accurate
simulators). Th is is par t icular ly profound when we consider quantum circuits that contain
loops (so that we can take advantage of the symbolic execution of the loop), such as cir
cuits that implement Grover 's search algori thm, quantum counting, and period finding (the
latter two without the inverse quantum Fourier transform).

Firs t , we w i l l go through the necessary theory regarding quantum computing and re
lated key concepts and M T B D D s i n Chapter 2. Then , i n Chapter 3, this thesis covers the
basic characteristics of current approaches to classical quantum circuit s imulation, w i th
a focus on providing an overview of the underlying data structures used i n current state-
of-the-art tools. We continue wi th the aforementioned key principles of the implemented
simulator (M T B D D s whose leaves represent complex numbers i n algebraic form) i n Chap
ter 4. Final ly , this thesis describes the architecture and further specifics of the implemented
simulator i n Chapter 5 and provides an experimental comparison of the performance of the
implemented simulator w i th the state of the art i n Chapter 6.

4

Chapter 2

Preliminaries

This chapter covers the basic concepts of quantum computing needed for this thesis, espe
cial ly those regarding quantum circuits and their s imulat ion. Fi rs t , we present the prop
erties of a single qubit , then of a mult i -qubit system. Next , we w i l l move on to quantum
logic gates, quantum circuits, and then briefly to well-known quantum algorithms. Then
this chapter also introduces binary decision diagrams (B D D s) and their generalised mod
ification called mul t i - terminal binary decision diagrams (M T B D D s) , as the implemented
simulator is M T B D D - b a s e d .

2.1 Quantum Computing

Quantum computing leverages the principles of quantum mechanics to provide the potential
for solving certain complex problems much more efficiently than wi th classical computing.
This section uses information presented in [25]. The following notat ion overview draws
from [8].

In this thesis, we use the usual notation, where C denotes the set of complex numbers,
Z denotes the set of integers, and N denotes the set of natural numbers. We use V™ to
represent the finite-dimensional vector space of dimension n (n € N) , i.e., the set of a l l
vectors over V of length n.

If not stated otherwise, a l l matrices and vectors in this work are assumed to be over C .
The complex conjugate of a complex number z = a+bi is the complex number z = a —hi and
the transpose of an m x n mat r ix A = (axy) is the n x m mat r ix AT such that AT = (ayx).
Then the conjugate transpose of a mat r ix A = (axy) is the mat r ix A* = (ayx). We denote
the identity mat r ix of an arbi trary dimension as I and the inverse mat r ix of a mat r ix A is
the mat r ix A - 1 such that A • A - 1 = I. A square matr ix A is unitary if A - 1 = A'.

Given a m x n mat r ix A = (axy) and a k x I mat r ix B, the Kronecker product A ® B is
the mk x nl mat r ix A <g) B = (axyB), e.g.,

A row vector of length I is a 1 x I matr ix , a column vector of length Z is a I x 1 matr ix .
Given vectors u, v, the operation u <8> v denotes the tensor product of the two vectors,
which is consistent w i t h the previously defined Kronecker product operation. F r o m now

0
0
15
3i

0
3

5

on, the Dirac notation (also known as the bra-ket notation) is used for vectors, since it is the
standard notat ion used for quantum mechanics. A n example of the relationship between
the Di rac and column matr ix notat ion of a vector can be seen here:

We often denote u <8> v s imply as \uv) and \un) represents the operation

\u) (8) |u) <8> . . . <8> \u).
" v '

n times
Also , i n the following, the qubit w i th the lowest index, qo, is the most significant (the
topmost qubit i n the circuit diagram).

2.1.1 Q u b i t s

Just as bits are the foundation for classical computat ion, qubits (quantum bits) are the
foundation for quantum computat ion. Further, just as classical bits are described by their
state (either 0 or 1), qubits are also described by their quantum state (usually also referred
to s imply as their state). Equivalent to states 0 and 1 of a classical bit are states |0) and |1),
respectively, of a qubit . States |0) and |1) are called the computational basis states—they
form the orthonormal basis for the vector space C 2 (the vector space of a qubit 's state as
w i l l become apparent momentari ly) .

A qubit 's state \tp) can generally be i n a linear combinat ion called a superposition of
the aforementioned computat ional basis states

|V> = a |0) + / ? | l> ,

where a,/3 G C are the probability amplitudes for the respective basis states. A single
qubit 's state is therefore a two-dimensional complex vector and it is sometimes also called
a state vector.

Apar t from the computat ional basis states, the following states of a single qubit are
also essential:

|+) = • (|0) + | 1 » ,

l-> = ^- (|o>-| i» .

These states can be thought of as halfway between |0) and |1), and play a key role i n many
quantum algorithms.

Therefore, a qubit 's state can be in a superposition of |0) and |1), so not necessarily
purely only either |0) or |1), but rather somewhere on the cont inuum between |0) and |1).
However, i n a real system, it is impossible to precisely determine the state of the qubit , i.e.,
find out the values of the probabil i ty amplitudes a and f3.

Qubit Measurement

We can only make observations about a given qubit 's state when we measure the qubit .
However, upon measurement, a qubit 's state collapses into one part icular basis state. There
fore, the only possible results of the measurement are the states |0) or |1) and the only thing

G

that is determined by the in i t i a l unobservable state of a qubit is the probabi l i ty w i th which
we measure the result of either |0) or |1), as this is determined by the probabi l i ty amplitudes
a and /?, respectively:

V(\0)) = \a\2,

V(\l)) = m 2 .
A single qubit 's state is therefore more precisely a two-dimensional unit complex vector, as
it has to be a unit vector (a vector of magnitude 1) to satisfy the probabil i ty constraint

l«|2 + |/?|2 = l,
i.e., the sum of the probabilities must be 1. So, i f the result of our measurement is the
state |0), then such a qubit now has a state wi th a = 1, /3 = 0 and it is not possible
to reverse its previous state (values of a, j3). The new state's a and j3 reflect bo th the
collapse of the quantum state and the probabil i ty constraint. Similarly, when the result of
the measurement is the state |1), this qubit has a new state w i t h a = 0, /3 = 1.

Systems with Mul t ip le Qubits

Generally an n-qubit system's state \tp') can be i n a superposition of a l l the system's
computat ional basis states

1^') = £ a » ' l *) >
«e{o,i} n

and therefore is generally a 2 n -d imensional unit complex vector, where, again, on £ C are
the probabil i ty amplitudes of the corresponding basis states. S imi lar ly to a state of a single
qubit, we cal l this vector the state vector of the given system. The basis states for an
n-qubit system again form the orthonormal basis of the system's vector space, which is
clearly C2™—so if, for example, we have a system where n = 2, the computat ional basis
states for this system are 100), |01), 110) and |11) (similarly to the possible states 00, 01,
10 and 11 of the classical 2-bit system).

Just as w i th a single qubit , even wi th a mult i -qubit system, we cannot observe the
state of this system directly, i.e., we cannot precisely determine the values of the ind iv idua l
probabil i ty amplitudes. The only th ing that is observable about a mult i -qubit system's state
is the result of measuring a certain subset of the qubits of the given system. Simi lar to
when we measure a qubit of a single-qubit system, i f we measure the values of a l l n qubits
of an n-qubit system, we get one of the computat ional basis states |{0,1}™), where the
probabil i ty of measuring this result is determined by the corresponding amplitude

P(|i» = N 2 ,
where i G {0,1}™. So, for example, if we have a 2-qubit system and we measure bo th the
qubits, we get the result 100) w i th the probabil i ty |aoo|2> the result 101) w i t h the probabi l i ty
«011 2 and so on.

However, as mentioned above, we can measure only a subset of these qubits. The
probabil i ty w i t h which a qubit 's measured value w i l l be |0) or |1) is determined by a l l the
probabil i ty amplitudes of the given system corresponding to the computat ional basis states,
where this qubit 's value is 0 or 1, respectively. For example, the probabil i ty that qubit qj
w i l l collapse into |1) is for an n-qubit system calculated as

P t e = | i » = £ N 2 • (2. i)
ie{o,i}™-1--'x {1} x{o,ip

7

Natural ly, when a qubit qj collapses into |1) after measurement, a l l the probabil i ty am
plitudes corresponding to contradicting basis states (where qj is 0) are set to the value
0. Then , the remaining non-zero amplitudes must be normalized by mul t ip l ica t ion wi th
the coefficient

C = ; , (2.2)
V ^ = |i»

in order to keep the sum of a l l the state's probabil i ty amplitudes as 1 (the probabi l i ty in
the denominator is generally the probabil i ty w i th which the measurement result occurred).
Likewise, i f the result of the measurement of the qubit qj is |0), a l l amplitudes for basis
states where o, is 1 are zeroed and the amplitudes are re-normalized wi th c = , , 1 , = .

Equations 2.1 and 2.2 can be easily modified using the same logic to measure an arbi trary
subset of the system's qubits.

Q u a n t u m Entanglement

Quantum entanglement is a phenomenon fundamental to quantum mechanics i n general
and is crucial for fast quantum algorithms, quantum teleportation, and quantum error-
correction. It is important to note that there is s t i l l an ongoing research on this subject,
as a complete theory of quantum entanglement does not yet exist and a better understand
ing of this important aspect of quantum mechanics could result in novel and promising
applications of quantum computing.

Quan tum entanglement is an extraordinary behaviour that some quantum states can
exhibit—we refer to these states as EPR states or EPR pairs and they are named after
A . Einste in , B . Podolsky and N . Rosen, who first brought attention to the concept of quan
t u m entanglement in their famous paper [13] i n 1935. Specifically, if we talk about 2-qubit
maximal ly entangled states, we may also refer to these states as Bell states (named after
J . B e l l who further investigated the E P R paradox and provided great insights on this sub
ject). The interesting consequence of the properties of E P R states is that the measurement
results of the ind iv idua l qubits are correlated (this correlation has no equivalent in classical
physics). Th is means, that after measuring one of the entangled qubits, the measurement
of the other entangled qubits w i l l always yie ld the same result (regardless of the physical
distance between the qubits themselves). So, for example, i f we have one of the B e l l states

| ^ = 4 - (l ° °) + l 1 1)) ' (2 - 3)

and we want to measure for instance the first qubit qo, then according to Equa t ion 2.1
we have

P(<R> = | 0 » = P (* > = | 1 » = ^

However, when we obtain the result of this measurement, for example qo = |0), then when
measuring the second qubit qi, contrary to in tui t ion we have

P(Qi = | 0 » = 1,

P(qi = \l)) = 0.

Not only that, but i f we have an E P R state, some correlation between the measurement
results s t i l l occurs even when we first perform addi t ional operations on one of the qubits

8

— x —

or

-0-

0 1
1 0

(a) Paul i-X gate

— Y —
0 -i
1 0

(b) Paul i -Y gate

— Z —
1 0
0 - 1

(c) Pauli-Z gate

— H —
1 1

V2 V l - l

(d) Hadamard gate

S
1 0
0 i

(e) S (phase) gate

1 0
177

0 e^r

(f) T (tt/8) gate

Ä r (§) 1
V2 -1 1

1 - 1
V i 1

(g) X-axis rotation by f gate (h) Y-axis rotation by f gate

Figure 2.1: Examples of single-qubit gates and their matr ix representation

(the specific correlation w i l l depend on the operations and the in i t i a l state). Note also that
entangled states cannot be wri t ten as a tensor product of states of the ind iv idua l qubits,
e.g., there are no states \u), \v) of a single qubit such that = \u) (g) \v), where \tp) is the
B e l l state specified by Equa t ion 2.3.

2.1.2 Q u a n t u m G a t e s

Quantum gates are means for altering a system's quantum state. A n d since the quantum
state is a vector, it is quite natural to represent operations on quantum states as matrices.
The only restriction on a mat r ix to represent a val id quantum gate is that it must be
unitary (to mainta in the principles of quantum mechanics). Therefore, a l l quantum gates
are also reversible.

The simplest case of quantum gates are single-qubit gates, which can be represented as
2 x 2 matrices. Some examples are shown i n Figure 2.1, the most important of these gates
are the P a u l i - X gate and the Hadamard gate. The X gate is an equivalent of a classical N O T
gate. The Hadamard gate transforms the basis states |0) and |1) into equal superpositions
and is a fundamental gate for many quantum algorithms.

There are natural ly also mult i-qubit gates. Some examples can be seen i n Figure 2.2,
where qc, q'c are control qubits and qt, q't are target qubits. The behaviour of mult i-qubit
gates is generally such that i f a l l the control qubits are set to |1), the given operation is
performed on the target qubits, else the target qubits ' state is not altered. For example,
C N O T and C C N O T may perform the X gate on the target qubit and Fredkin gate may
swap the target qubits.

Then it is simple to update the system's quantum state, as the calculat ion is carried
out as a mat r ix mul t ip l ica t ion of the gate matr ix wi th the system's state vector (example
is shown in Figure 2.3). Sometimes, it may be necessary to modify the gate mat r ix so
it has the right dimensions for the mul t ip l ica t ion (e.g., when we apply X gate on one of
the qubits in a 2-qubit system, as is depicted i n Figure 2.4), since we must always apply
the operation on the system's whole state vector due to a possible entanglement of qubits.

9

-e-

(\ 0 0 0\
0 1 0 0
0 0 0 1

\ 0 0 1 oj

(a) Controlled-NOT (CNOT) gate

Qt — (5 —

(c) Toffoli (C C N O T) gate

/I 0 0 o\
0 1 0 0
0 0 1 0

\o 0 0 - 1 /

(b) Controlled-Z (CZ) gate

/I 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 qc -
0 0 0 1 0 0 0 0

Qt -
0 0 0 0 1 0 0 0

Qt -

0 0 0 0 0 1 0 0 Q't-
0 0 0 0 0 0 0 1

Vo 0 0 0 0 0 1 0^

(I 0 0 0 0 0 0 0 \
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

Vo 0 0 0 0 0

0 0
0 0

0 0 0 0
1 0 0 0

1 0
0 0
0 1/

(d) Fredkin (controlled-swap) gate

Figure 2.2: Examples of mult i -qubit gates and their mat r ix representation

90 |0) — H — W

w>-*(i - i) - i ° > - a (! -i)'(J)=^0)=a- (|o>+|1))

Figure 2.3: Example Hadamard gate applicat ion using the matr ix representation

We achieve this by performing the tensor product of the properly sized identity mat r ix wi th
the gate matr ix .

It is also important to note that s imilar ly as some sets of classical logical gates are
universal (e.g., N A N D) , meaning they can express and thus compute any Boolean function,
there are also universal quantum gate sets. Such a set is sufficient to create a quantum
circuit approximating an arbi trary uni tary operation wi th an arbi trary precision. Example
of an universal set can be the Hadamard , C N O T , S, and T gate (the standard universal
gate set, also called Clifford + T gate set) or the Hadamard , C N O T , S, and Toffoli gate.

2.1.3 Q u a n t u m C i r c u i t s

A quantum circuit, just like a classical circuit , consists of wires (which transfer information)
and operations on qubits. The operations that alter the transferred information can be
either quantum gates or qubit measurements. Every quantum circuit also has its input
state, i.e., the in i t i a l state vector of the system. For an n-qubit circuit , this is usually |0 n)
(or some other computat ional basis state).

However, there are also a few differences between quantum and classical circuits. Quan
t u m circuits must be acyclic and also it is not possible to jo in the wires (performing logical

10

qo |0)

Qi |0)
W)

W) = U • |00)

0 1\ A

1 o J ® (o

/ o o i o^ fo\
O O O l 0 0
1 0 0 0 0 1

\ 0 1 0 Oy w w

0 1 o \
0 0 0 1
1 0 0 0

\ o 1 0 o)

|10)

Figure 2.4: P a u l i - X gate applicat ion i n a 2-qubit system using the mat r ix representation
(the gate mat r ix when applied to qo is denoted as U)

q0 |0> —[H_

Q l |0> -0-
|00) or |11)

Figure 2.5: Example circuit that creates a B e l l state wi th measurements at the end

O R on the inputs) as it is not reversible or split the wires (performing copies of the input) ,
because it is not possible to duplicate qubits due to the no-cloning theorem [44, 11].

Figure 2.5 shows an example of a quantum circuit that has an in i t i a l state of 100) and
it creates one of the B e l l states \qoq\) = 4= • (100) + |11)). F inal ly , bo th the qubits are
measured and we get either the result 100) or |11). It is also worth noting that the wires in
the quantum circuit (depicted as lines) are more abstract than the wires in classical circuit
diagrams and may not str ict ly represent a physical wire—they s imply visualize the flow of
the qubits.

2.1.4 Q u a n t u m A l g o r i t h m s

The main motivat ion behind the research of quantum computat ion is the potential to sig
nificantly surpass the l imits of what is possible on classical computers for certain computa
t ional tasks. Currently, there are two main branches of algorithms that form this potential ,
quantum search algorithms and algorithms based on the quantum Fourier transform. The
effectiveness of these algorithms is based on interference (interference of probabil i ty am
plitudes can lead to the enhancement or suppression of specific measurement outcomes)
and quantum parallelism (this concept allows processing of mult iple possibilities simultane
ously), bo th of which take advantage of quantum superposition.

The a i m of Grover's algorithm [18], known as a quantum search algori thm, is to ef
ficiently locate a specific i tem or solution wi th in an unsorted search space by iteratively
amplifying the probabil i ty of the correct solution. This a lgori thm offers quadratic speedup
over the most efficient classical algorithms. Appl ica t ions of quantum search include deter
mining statistics of an unordered set or to speed up the solution of some N P problems.

To not be mistaken, the quantum Fourier transform (Q F T) is analogous to the discrete
Fourier transform and it is only more efficient when performed on a quantum state (it does
not offer any speedup on classical data). However, thanks to the principles of Q F T , we can

11

perform phase estimation (estimate the phase of a uni tary operator's eigenvalue). Th is is
fundamental for the famous Shor's algorithm, providing an exponential speedup compared
to classical algorithms for solving the problem of factorization and discrete logari thm. Note
that both of these problems can be reduced to the problem of finding a period of a given
periodic function—this can be effectively solved wi th the period finding [22] algori thm.
Another example of an algori thm that utilizes phase estimation is quantum counting [4]
(based on Grover 's algori thm), which estimates the number of solutions to a computat ional
problem in a quadratic speedup compared to classical counting algorithms.

Also wor th mentioning is also the the Bernstein-Vazirani algorithm [3], which solves
the following problem: given an oracle implementing a Boolean function f(x) = x • s
(/ : {0,1}™ —>• {0,1}) , find the hidden str ing s. A l t h o u g h this a lgori thm has l i t t le pract ical
use, it provides a great demonstration of the capabilities of quantum computers (note that
it does not fit neatly into either of the branches of quantum algorithms mentioned above).

2.2 Decision Diagrams

Decision diagrams are an important data structure used widely in formal verification, circuit
design, art if icial intelligence, and many more areas. There are many different types of
decision diagrams, this section w i l l however present only those necessary for the purposes of
this thesis, namely B i n a r y Decision Diagrams (B D D s) and M u l t i - T e r m i n a l B i n a r y Decision
Diagrams (M T B D D s) . Note that this section draws, among other things, from [38]. In the
following, we use f \ V i = c to denote a restriction of the function / (c is a constant value), i.e.,

f\Vi=c(vQ, ...,Vi}.. .,Vn-l) = f(vQ, . . .,Vi-l,C,Vi+l, .. .,Vn-l).

2.2.1 B i n a r y D e c i s i o n D i a g r a m s

A Reduced Ordered Binary Decision Diagram (R O B D D) is a data structure that can be
efficiently used for encoding Boolean functions as was suggested by Bryant [5]. Commonly,
R O B D D s are s imply referred to as Binary Decision Diagrams (B D D s) and the same holds
true throughout this work.

Let / be a Boolean function f(vo,..., u n - i) : {0,1}™ —>• {0,1}, where {vo,..., vn-{\ =
V, and let -< be a to ta l ordering on V. Then a B D D representing / is a rooted directed
acyclic graph (D A G) wi th two types of nodes—nonterminal (internal) nodes and terminal
(leaf) nodes—satisfying the following properties:

• Each nonterminal node x corresponds to a single input variable Vi, i € { 0 , . . . , n — 1}.
We denote this as var(x) = Vi.

• Each nonterminal node x has two chi ld nodes low(x) and high(x), a low and a high
successor, respectively. Suppose that var(x) = Uj. If low(x) is a nonterminal node,
then it holds that var(low(x)) = Vj such that Vi ~< Vj. Likewise, if high(x) is a nonter
mina l node, then it holds that var(high(x)) = Vk such that Vi -< Vk- It is wor th noting
that among other things, this ordering constraint ensures that the graph is acyclic.

• A l l terminal nodes x are of a value val(x) G {0,1} so that it holds froot = f, where
froot is the Boolean function represented by the root node of the B D D . A general
definition for a Boolean function fx represented by a node x is as follows:

1. If x is a terminal node, then fx = val(x).

12

(a) Binary decision tree (b) B D D

Figure 2.6: Different representations of the Boolean function f(vo, v\, V2, V3): (vo Vv\) AV2,
where VQ ~< v\ -< V2 ~< V3

2. If x is a nonterminal node and var{x) = Vi, then fx = v% • fiow(x) + vi " fhigh(x)-

I.e., val(x) equals to the evaluation of / , where a l l the input variables Vi, for i G
{ 0 , . . . , n — 1} are assigned a t ru th value based on whether low(yi) or high(yi) is on
the path to x (m is the node corresponding to Vi, i.e., var(yi) = Vi).

• There is no node x such that low{x) = high(x). A l so , there are no two distinct nodes
xi, X2 such that they represent the same Boolean function fXl = fX2.

It is also important to mention that this form of representation of Boolean functions is
canonical (w.r.t. -<) thanks to the reduction property. Note that throughout this thesis, we
often abuse notat ion and use a B D D and the Boolean function it represents interchangeably.

If we were to construct a B D D without removing any redundant isomorphism (i.e.,
not removing any unnecessary nodes wi th identical successors and not merging nodes that
represent the same Boolean function), meaning we would construct a diagram representing
a Boolean function / only based on the Shannon's expansion:

f(v0, ...,Vi,.. .,Vn-l) = V~i • f\Vi=o(v0, . . .,Vn-l) + Vi • f\Vi=i(v0,.. .,vn-i), (2.4)

we would get a complete binary decision tree. A n example of a B D D compared to a complete
binary decision tree can be seen i n Figure 2.6—even a simple Boolean function clearly
benefits from the compact representation B D D s offer. The subgraph sharing does not only
provide efficiency i n the sheer size of the representation, but also for further performance of
B D D algorithms, as the operation is performed on the subgraph only once. It can be seen
that the graph does not contain any redundant nodes, e.g., representing the variable W 4 ,
which does not affect the result of the function in any way. Throughout this work, we w i l l
depict B D D s and their variants i n such a way that the nonterminal nodes are circular, the
leaf nodes are rectangular, a dashed edge denotes a low successor and a solid edge denotes
a high successor.

For the purposes of the following algorithms, we use root{j3) to denote the root node
of a B D D p and \/3\ to denote the number of a l l nodes (both terminal and nonterminal)
of j3. In addi t ion to this, we use id(x) to denote a unique identifier of the node x, where

13

(a) B D D fa representing (b) BDDs fa representing
fi{v0,vi,v2): v0 V u i , where v0 -< v\ -< v2 f2{vo, Vi, v2): vo A (ui V n 2) , where

«0 -< « 1 ~< V2

(c) Result of ApplyFrom(root(fa), root(fa), A) (d) Final result of the Apply after reduction

Figure 2.7: Example of Apply(fa, /?2, A) , where A is the standard A N D operation

id(x) G { 0 , . . . , |/3| — 1}. Further, let us define IsLeaf(x) to be a function which returns true
if the node x is a terminal node and false otherwise. A l so we assume that if IsLeaf(x) = true
in a B D D j3 representing f(vo,..., vn-\), it holds that var(x) = n.

To perform operations on B D D s , a standard procedure Apply is used. Let * o p be
a binary operator and let fa, fa be B D D s that represent Boolean functions fi(vo,..., vn-\)
and f2(vo, • • • ,vn-i), respectively. Result of Apply (fa, fa, *op) is the B D D j3 representing
the function f\ *0p $2- The semantics of this procedure is shown i n A l g o r i t h m 1. It consists
of two operations—a recursive function implementing the Apply itself followed by reducing
the resulting B D D (i.e., removing redundant isomorphism i n the D A G as described at the
beginning of this section).

The basis of Apply(fa, fa, *op) is formed by the following recursion:

fl *op h = v~i- (fl\vi=0 *op f2\vi=o) + Vi • (fl\vi=l *op f2\vi=l)-

It is easy to see that the a lgori thm is based on Shannon's expansion of Boolean functions (see
Equa t ion 2.4). Note that the recursion shown i n A l g o r i t h m 1 is only a naive implementat ion
of Apply, where it is possible that Apply would be evaluated over certain s u b - D A G s of fa
and fa mult iple times. In practice, the implementat ion of Apply therefore uses result
caching, where we check if the Apply result over these subgraphs is already known before
proceeding wi th a further recursion. The main idea is that the a lgori thm traverses both

14

B D D s simultaneously and performs the given operation * o p on the corresponding leaf nodes
of j3\ and fa, while t ry ing to unfold the structure of these diagrams as l i t t le as possible.

Because fa and fa can be reduced in different ways (e.g., not a l l nonterminal nodes
from fa have to be i n fa) the resulting D A G is not necessarily a B D D and we have to
reduce i t . Th is operation is described closely i n A l g o r i t h m 2, however, the main principle
of the algori thm is that we sort a l l the B D D nodes into lists according to the variables
they represent, and then we process these lists from the leaf nodes upwards, gradually
removing redundant nodes. The time complexity of Reduce on B D D j3 is 0{\j3\ • log |/51)
(it is influenced mainly by the time needed to sort the lists). The t ime complexity of the
whole Apply operation i f we use caching is 0 (| / ? i | • \fa\). A n example of running the Apply
procedure can be seen i n Figure 2.7.

Intuitively, sometimes we may want to perform a unary operation on the B D D . In this
case, we can just simplify the recursion i n the binary Apply procedure so that it s tructural ly
traverses the specified B D D and if the currently processed node is a leaf, it performs the
specified operation on i t . Throughout this thesis, we refer to this operation as a unary Apply.

A l g o r i t h m 1: Apply procedure

Input: root nodes of B D D s fa, fa representing Boolean functions fi(vo,... , w n - i)
and f2(vo,..., vn-\), respectively, where {vo,..., vn-\} is ordered w.r.t.
and a binary operator * o p

Output: root node of B D D j3 representing f\ *op J2
1 begin
2
3

root{j3) <— ApplyFrom(rooi(^i), root (fa),* op);
return Reduce (root (/?)):

4 end

5 Function ApplyFrom(xi, X2- nodes, * o p : binary operator) : node is
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

op •
x <— -/Vew;(node):
if IsLeaf(xi) and IsLeaf{x2) then

val(x) <— val(xi) *op val(x2)'-
else

if var(xi) = var(x2) then
var(x) <— var(xi):
low(x) <— ApplyFrom(k>w;(£i), low{x2))'-
high(x) <— ApplyFrom(/ii(//i(xi), high{x2))'-

else if var(xi) ~< var{x2) or IsLeaf{x2) then
var(x) <— var(xi):

ApplyFrom(low;(xi), X2):
ApplyFrom(/wg/i(xi), £2):

low(x)
high(x)

else
var(x)
low(x)
high(x)

var(x2)]
ApplyFrom(xi, low(x2))]

- ApplyFrom(xi, high(x2))]
end

end
return x:

2 5 end

15

A l g o r i t h m 2: Reduct ion of a B D D j3 representing function f(vo,... ,vn-\) [5]

l Function Reduce(root: node) : node is
reducedGraphNodes <— 7Vew;(array[|/3|]);
nodeList <— TVew; (array [n + 1]):
put each node x of the B D D on the list at nodeList[var(x)];
nextld < 1;
for i <— n to 0 do

currentNodes <— 0:
for each x in nodeList[i] do

if IsLeaf(x) then
add <key, x> to currentNodes, key = val(x);

else if id(low(x)) = id(high(x)) then
/ / Redundant node
id(x) <— id (low (x));

else
add <key, x> to currentNodes, key = (id (low (x)), id (high (x)));

end
end
sort elements of currentNodes by key,
oldKey 4— (—1; — 1); / / I n i t i a l i z e as an unmatchable key
for each <key, x> in currentNodes removed in order do

if A:ey = oldkey then
/ / Matches an ex is t ing node
i(i(x) <— nextld;

else
/ / Unique node
nextld <— nextld + 1;
i(i(x) <— nextld;
reducedGraphNodes[nextId] <— x:
low(x) <— reducedGraphNodes[id(low(x))\;
high(x) <— reducedGraphNodes[id(high(x))\;
oldKey <— A:ey:

end
end

end

return reducedGraphNodes[id(root)\;
33 end

16

Figure 2.8: Example M T B D D for the function f(vo, v\, V2)
3wi + 2v2 i f v0,

otherwise,

where VQ ~< v\ -< V2 and + in this case represents ari thmetic addi t ion

2.2.2 M u l t i - T e r m i n a l B i n a r y D e c i s i o n D i a g r a m s

There are many modifications of B D D s , one of them being Multi-Terminal Binary Decision
Diagrams (M T B D D s) [15]. M T B D D s are a generalised variant of B D D s , the only difference
is that M T B D D ' s terminal nodes can have an arbi trary value, not only 0 or 1. Because of
that, M T B D D s can represent any function /(VQ, . . . , w n - i) : {0,1}™ —> D , for any D / 0
w i th finitely representable elements. Thus, M T B D D s provide efficient representation of
matrices, especially sparse matrices. Not only that, but the complexity of basic mat r ix op
erations performed on M T B D D s is not greater than the complexity of these operations over
any standard mat r ix representation. A s wi th B D D s , this representation is also canonical
(w.r.t. the variable ordering). A n example M T B D D is shown in Figure 2.8.

Given the l i t t le differences between B D D s and M T B D D s , one can easily extend the
previously mentioned Apply a lgori thm (Algor i thm 1) to M T B D D s as well . We s imply let

'•op be a map D i x D 2 where D i , D 2 are the value domains for M T B D D s \x\ and
1^2, respectively, and D / 0 . Just as w i t h B D D s , we use caching and result reusing to
great advantage in M T B D D Apply. O f course, the unary Apply procedure can be t r iv ia l ly
extended to M T B D D s as well .

17

Chapter 3

Previous Work on Quantum
Circuit Simulation

The a im of this chapter is to provide an overview of the state-of-the-art quantum circuit
simulators and to delve into the main principles these tools are based on. The emphasis in
this chapter is only on an overview of the data structures used, for more detailed information
and comparison of these approaches one can refer to [36, 41, 32], from which this chapter
draws. However, the main data structures used in the classical s imulat ion of quantum
circuits can be divided into the following categories: vectors and matrices, i.e. arrays
(although not very practical) , various variants of decision diagrams, tensor networks, and
ZX-calculus . A s wi th a l l data structures, there is a question of the ideal compromise
between compactness of the representation and efficiency of manipulat ion operations.

3.1 Vector-based Approach

A s mentioned in Section 2.1.2, s imulat ion based on vector representation of the quantum
state and mat r ix representation of the applied gates comes quite naturally. However, this
approach has some serious l imitat ions i n terms of scalabili ty of the simulated circuits,
as these structures (the state vector and gate matrices) grow exponentially i n size w.r.t.
the number of qubits in the circuit . Due to these memory requirements, this s imulat ion
method is pract ical ly unusable for even slightly larger circuits (with roughly 50 and more
qubits) [28].

This approach is available as a native simulator backend option for the open-source
Q i s k i t framework [43] developed by I B M . Q i s k i t provides a set of tools for both defining
and simulat ing quantum circuits, as well as connecting to I B M ' s cloud services to run
quantum circuits on real quantum hardware.

3.2 Decision Diagram-based Approaches

Approaches based on some variant of decision diagrams are very popular when simulat ing
quantum circuits. These data structures provide a compact representation of quantum
states and operations on them by taking advantage of existing redundancies. The main idea
behind this representation is that we assume the ind iv idua l system's basis states determine
the path through which we traverse the diagram. Then by obtaining the leaf value for this
path, we obtain the probabil i ty ampli tude corresponding to this base vector.

18

(a) W B D D (b) C F L O B D D (c) W C F L O B D D

Figure 3.1: Different representations of the Hadamard gate matr ix [31] (see Figure 2.Id)
that are used i n Quasimodo. The first variable is the row variable, the second is the column
variable, and exit edges are denoted as dotted arrows. These diagrams use the same notat ion
as i n the original paper, where leaf values are denoted by both a node and an exit edge and
the nodes are not labeled wi th their variables (otherwise the diagrams would not be clear
for C F L O B D D s and W C F L O B D D s , which use variable sharing). For better readability,
some edges are coloured.

Classic B D D s are used, for example, i n SliQSim [33]. This simulator also utilizes the
algebraic complex number representation further introduced i n Section 4.1. T h e n the sys
tem's quantum state is represented wi th a series of B D D s , where each B D D represents
a single bit from one of the integers, which together form a single probabil i ty amplitude
(calling this method bit-slicing).

However, modifications of B D D s are used more often than regular B D D s for quantum
circuit s imulat ion. These modifications include the previously mentioned M T B D D s , used,
for example, by Quasimodo [30]. This tool can operate on several bui l t - in data structures,
including, among others, Weighted Binary Decision Diagrams (W B D D s) . They differ from
regular B D D s in that the edges in a W B D D are weighted, in this case wi th a complex
value. Then, when evaluating a leaf value, a l l the weights on the path to this leaf node are
mult ipl ied wi th the leaf value.

Another variant on B D D s used in Quasimodo are Context-Free-Language Ordered Bi
nary Decision Diagrams (C F L O B D D s) [29] and Weighted Context-Free-Language Ordered
Binary Decision Diagrams (W C F L O B D D s) [31]. The difference between C F L O B D D s and
B D D s is that C F L O B D D s allow certain procedure calls wi th in their structure (by reusing
groupings), which can offer addi t ional compactness. This means that C F L O B D D s can
reuse not only s u b - D A G s like B D D s , but also the „middle of the D A G " , which can result in
structures that are (in the best case) exponentially more succinct than B D D s . W C F L O B
D D s are C F L O B D D s where certain edges are weighted (specifically the entry edge and the
edges of the innermost groupings). A l so the terminal values must be binary. Examples of
these representations used i n Quasimodo can be seen i n Figure 3.1. In C F L O B D D s and
W C F L O B D D s , the ovals represent the ind iv idua l variable sharing groupings.

19

(a) Q M D D [26] (b) L I M D D [35] (c) T D D

Figure 3.2: Different decision diagram representations of the Hadamard gate mat r ix (see
Figure 2.Id). In these figures, x denotes the row variable, and y denotes the column variable.

In the above-mentioned cases, quantum gates are represented as certain operations over
the given decision diagrams. Another approach is to represent quantum operations using
Quantum Multiple-valued Decision Diagrams (Q M D D s) [26], which is relatively common in
practice, for example in the DDSIM simulator [47]. The main idea is that Q M D D s can suc
cinct ly represent gate matrices by repeatedly par t i t ioning such mat r ix into 4 sub-matrices.
Each nonterminal node i n the Q M D D therefore has 4 successors and the edges i n this
decision diagram are again weighted. Node merging i n Q M D D s happens up to constant
complex factors (unlike w i th B D D s or M T B D D s , where two nodes representing functions
/, g are only merged i f / = g).

It is also worth mentioning the Local Invertible Map Decision Diagrams (L I M D D s) [35,
37], which are a generalization of Q M D D s . L I M D D s can be more succinct than Q M D D s
due to a different node merging strategy allowing also merging of nodes that are equivalent
up to tensor product of single-qubit P a u l i gate operations. However, as usual, the price
for this succinctness is a slowdown of manipulat ion operations, precisely a cubic factor
overhead w.r.t. Q M D D s .

Another interesting example are Tensor Decision Diagrams (T D D s) [20], which combine
decision diagrams wi th tensor networks (more about them in the next section). Th is data
structure extends the concept of B D D s and provides a way to efficiently represent and
manipulate high-dimensional tensors. T D D s also use weighted edges and the ind iv idua l
nonterminal nodes in a T D D represent indices i n the tensor network representing the given
quantum circuit . Examples of these decision diagrams (Q M D D s , L I M D D s and T D D s) can
be seen in Figure 3.2.

It is also worth noting that most of the above mentioned tools (except S l i Q S i m , which
uses the algebraic representation of complex numbers described i n more detail i n Section 4.1
and is thus accurate) use floating point numbers for complex number representation, which
can lead to numerical instabilities [46, 27]. Accurate s imulat ion is also cr i t ica l for tasks
such as quantum circuit equivalence checking [39].

3.3 Tensor Networks-based, ZX-calculus-based, and Other
Approaches

We can also take advantage of redundancies present in the vector-based simulat ion wi th
tensor networks (TNs) . In such a simulation, a quantum state and gates are represented by

20

= | 0 . . . 0) (0 . . . 0 | + e i a | l . . . l) (l . . . l |

= | + . . . +) (+ . . . + | + e l °

C = 100}+ |11>)

1 0
0 1

. . . - } (- . .

(00| + (11|

± 1 1

l l - 1

(I 0 0 o \
0 0 1 0
0 1 0 0

\ o 0 0 1/

Figure 3.3: Z X -d i ag r am examples and their semantics [40]

tensors, therefore we can view a quantum circuit as a tensor network. Then the s imulat ion
of a quantum circuit can be performed through contraction of its T N .

Special types of T N s are used to decompose high-dimensional tensors into lower-
dimensional tensors, such as Matrix Product States (M P S) . W i t h M P S , a quantum state is
represented as a product of matrices. Th is s imulat ion method is used, e.g., as one of the
available simulator backend options for the Qiskit framework. This method seems to be
efficient when the amount of entanglement between qubits is l imi ted [34].

Another formalism we can use to simulate quantum circuits is a graphical language
called ZX-calculus [40], introduced by Coecke and Duncan in 2008 [9]. It consists of ZX-
diagrams, schemes buil t from wires and two types of nodes (Z-spiders and X-spiders) similar
to a classical quantum circuit diagrams, and a set of their rewrite (simplification) rules.
Some ZX-diagrams and their semantics can be seen i n Figure 3.3.

For the purposes of simulation, we would like to perform automated rewrit ing of Z X -
diagrams and therefore we use more restricted ZX-diagrams called graph-like ZX-diagrams
(e.g., they may only contain Z-spiders and not X-spiders) . Then the s imulat ion itself is done
by further decomposition and simplification of this graph-like ZX-d iag ram. In this context,
it is important to mention the QuiZX [21] simulator, which is based on the ZX-calculus .

Of course, this is not an exhaustive list of a l l the methods used to simulate quantum
circuits, but only an overview of the most commonly used used ones. A n example of a tool
that takes a completely different approach is Quokka# [24]. T h i s simulator encodes the
quantum circuit into the Boolean model counting problem of a formula i n the conjunctive
normal form (C N F) and then solves these constraints by a weighted model counter.

21

Chapter 4

M T B D D - b a s e d Quantum Circuit
Representation

This chapter discusses the fundamentals specific for this implementat ion of a quantum
circuit simulator. These concepts are crucial i n ensuring that the simulator can operate at
the required speed wi th reasonable computing power, while maintaining accuracy. Before
we get to the M T B D D - b a s e d s imulat ion itself, it is necessary to introduce an algebraic
representation of complex numbers, which is used for M T B D D ' s leaf node values. T h e n we
take a closer look at how M T B D D s are used for the s imulat ion itself, bo th for representing
the quantum state of the system and performing the quantum gate operations on this
quantum state.

4.1 Algebraic Representation of Complex Numbers

One of the problems quantum simulators face is the complex number representation as it
has to be accurate yet it must not slow down the whole implementation. In this work, we
util ize the algebraic representation presented and used i n [33, 8, 7], which was originally
proposed in [27].

The formula for exact algebraic representation is for z £ C as follows:

where a, b,c,d,k £ Z and LO = (it is the unit vector which makes an angle of 45° wi th
the positive part of the real axis of the complex plane). Thus, a complex number can be
represented as an integer 4-tuple (a, 6, c, d) and the coefficient k for normalizat ion. Not only
is this encoding convenient by itself, it is also t r i v i a l to mul t ip ly a complex number i n this

negate some of them accordingly). This is very useful as many quantum gates mul t ip ly the
state vector by some power of oo.

Even though this method does not cover the entire set of complex numbers (C is un
countable while Z 5 is countable), the subset is sufficient for a quantum circuit s imulation
without loss of generality. Not only is it able to represent w i t h perfect accuracy a l l oper
ations that can be realized exactly by the universal Clifford + T gate set, but since this
subset is a dense subset of C , it allows to approximate any operation and quantum state
wi th arbi trary precision.

(4.1)

form by oo or its power, as oo4 1 (one s imply needs to rotate the four coefficients and

22

(a) Original state \ip)

(c) Hadamard gate applied to qo

(b) X gate applied to q\

(d) C N O T gate (the result is the same
for both combinations of control and

target qubits)

Figure 4.1: Example of M T B D D - b a s e d quantum state representation and its transforma
tions caused by gate applicat ion (a dashed edge denotes the value |0), solid edge denotes
the value |1))

4.2 Quantum Circuit Representation Using M T B D D s

A s stated i n Chapter 3.1, the classic representation of quantum state as a vector is not very
convenient. Not only does the size of the system's state vector itself grow exponentially
wi th the number of qubits, meaning it is of the length 2™ for an n-qubit system, but this
also means that one needs 2 n x 2™ matrices for representing quantum gates. Instead, the
implemented simulator uses an M T B D D to represent the system's quantum state, which
greatly reduces the memory requirements of the tool .

This representation is quite intuit ive, as we w i l l show i n an example. Let us assume we
have an arbi t rary quantum circuit w i th two qubits, qo and q\. We describe the state \tp) of
this system as

|V) = «oo • |00> + aoi • |01) + « i o • |10) + a n • |11). (4.2)

The M T B D D representation of this state \tp) is shown i n Figure 4.1a. The graph is read
so that the low successor (dashed) represents 0 and the high successor (solid) represents 1
in the computat ional basis state and the leaf value is then the corresponding probabil i ty
amplitude of this basis state. In other words, we view the system's state as a function
/ : {0,1}™ —>• C , where the evaluation of input variables corresponds to a computat ional
basis state and the value of this function for the given input corresponds to the probabil i ty
amplitude of this basis state. To clarify, i n the implementat ion itself, complex probabil i ty

23

amplitudes are represented algebraically according to Equa t ion 4.1. Th is means that the
leaves of the state's M T B D D actually contain an integer 4-tuple (a, b, c, d). The coefficient
k is kept separate because we only modify this coefficient w i th gate operations; the gate
operations always alter the k coefficients of the complex amplitudes of the whole system
in the same way (they always have the same value throughout the whole M T B D D) . This
means that we cannot use the smallest possible k to make this representation unique [27].
However, this is not an issue from a pract ical point of view because the uniqueness is
clearly achieved as the value of k is fixed for the whole M T B D D (i.e., it is not possible
that different leaves representing the same value are present in this M T B D D) . It is worth
re-emphasizing that this representation is perfectly accurate for the currently supported
gates (see Table 4.1).

App l i ca t ion of gates on this representation of the state vector consists of transforming
the M T B D D according to the mat r ix representation of the gates—see Figure 4.1 for some
examples. The simulation uses two approaches to apply gates on the state's M T B D D . In
the first approach, the gate appl icat ion is executed using the universal update formulae as
a sequence of operations over the M T B D D using the standard Apply procedure. The second
approach uses permutation-based update formulae, which execute the gate appl icat ion in
a single custom Apply. Th is results i n a less computat ional ly demanding operation, but the
drawback is that this approach can only be used for single qubit gates.

4.2.1 U n i v e r s a l U p d a t e F o r m u l a e F o r Q u a n t u m G a t e s

This method of performing the gate operations using universal update formulae for the
system's M T B D D was presented i n [8]. The main idea of this approach is that a sequence
of elementary operations is used to construct the resulting M T B D D . These operations are
on the one hand classical ar i thmetic operations using the standard Apply procedure and
also projection and restriction.

Let T(bo,bn-i): {0,1}™ —> Z 4 be the function that is represented by the system's
M T B D D . Projections Tqt and are used to fix the value of the target qubit qt to 1 or 0,
respectively:

Restrictions Bqt, B-^ only output the value (or the complemented value, respectively) of
the target qubit qt i n the given basis state, i.e.,

If we look at these operations directly from a D A G point of view, projections Tqt, Tgj set
both target qubits successors to the same subgraph—the subgraph of the high successor in
the case of Tqt and the subgraph of the low successor in the case of Tgj. The restriction Bqt

consists of construction of a diagram that represents the function

Tqt (bo,bt,

Tqj(bo,bt,

bn-i) = T(b0,-., 1, . . . , 6 n - i)

bn-i) = T(bo, . . . ,0 , . . . , 6 „ _ i) .

Bqt(bo,...,bt,...,bn-1) = bt

Bw(b0, . . . , b t , b n - i) = bt.

Similar ly performing B-gj constructs a diagram representing

24

Table 4.1: Universal update formulae for M T B D D gate applicat ion [8] (target qubits are
denoted as qt and control qubits are denoted as qc, qc>, i f the gate uses them)

Gate Update formula

X[<ft]

Y[ft] • (Bqt • Tqj - Bqj • Tqt)

Z[(ft] BqJ • T - Bqt • T

H[(ft] 75 • (Tqi + Bqt • Tqt ~ Bqt • T)

S[(ft] BW-T + LU2 -Bqt-T

T[(ft] BqJ -T + 0J • Bqt • T
Rx(f) [ft] j=.(T-tv2-(Bqt-Tw+Bw •Tqt))

Ry(f) 75 • (% + Bqt • T — Bqj • Tqt)

CNOT[qc,qt] Bq^ T' + Bgc- (B-gj • Tqt + Bqt • %)

CZ[qc,qt] Bq^ T' + Bgc- (B-gj • T — Bqt • T)
ToSoli[qc,qc/,qt] Bq7 T + Bgc- (Bqj • T + Bqd • (Bgj • Tqt + Bqt • Tgj))

Using a l l the previously mentioned operations, we can represent the semantics of quan
t u m gate applicat ion on the system's M T B D D using update formulae. A l l operations from
now on use a shorthand notation, e.g., Bqt instead of Bqt(bo,6n-i)> since a l l the further
shown operations are over bo, ...,bn-i. The update formulae for a l l the supported gates
are shown i n Table 4.1. A s an example, consider the formula for the X gate. Fi rs t , let us
take a look at the semantics of this gate. Assume a two qubit quantum circuit w i th qubits
qo, qi whose state \tp) is described by Equa t ion 4.2. The operation X[qo] could be then
expressed as

|V) = a io • |00> + a n • |01> + aoo • |10) + «o i • | H) • (4.3)

The projections i n the formula give us M T B D D s representing these states

Tqo = « i o • |00> + « n • |01> + « i o • |10) + « n • |11)

% = «oo • |00) + «oi • |01) + «oo • 110) + ao i • | H) •

If we combine it w i th the restrictions we get

B^ • Tqo = 1 • « i o • |00> + 1 • « n • |01) + 0 • a i o • |10) + 0 • a n • |11) = « io • |00) + « n • |01)

Bqo • = 0 • «oo • |00> + 0 • «o i • |01> + 1 • «00 • |10) + 1 • «01 • | H) = «oo • 110) + «o i - | H) .

and when we add those two intermediate results up, we get exactly the expression in
Equa t ion 4.3. Th i s part icular operation is i l lustrated using decision diagrams in Figure 4.2.

4.2.2 P e r m u t a t i o n - b a s e d U p d a t e F o r m u l a e F o r Q u a n t u m G a t e s

Though the universal update formulae can be used for a l l the gates mentioned in Table 4.1,
we use permutation-based update formulae instead for a l l the mentioned single-qubit gates
(X , Y , Z , H , S, T , R x (f) , R y (f)) and the C Z gate. The advantage of this approach is that it
allows us to execute the gate applicat ion i n a single custom Apply rather than i n a sequence
of operations, which allows for a less computat ional ly intensive workload. However, the
drawback is that since M T B D D s are D A G s , once we process a node, we cannot return to it
later dur ing a single traversal of the M T B D D . However, i f the control qubit has a greater

25

(c) Bqo • ! % (d) B-^ • Tqo + Bqo • T w

Figure 4.2: Execut ion of X[go] using the universal update formula, expressed in terms of
decision diagrams

index than the target qubit , i.e., the control qubit is less significant than the target qubit , we
would have to perform this backward traversal to properly alter the graph. This means that
this single-traversal approach cannot be generally extended to mult i -qubit gates. However,
there is one exception and that is the controlled phase gates, such as C Z gate. Th i s is
because these gates are symmetric i n the sense that it does not matter which qubit is the
control qubit and which is the target qubit—the rotat ion is performed only in the case they
are bo th set to |1).

To il lustrate this, we shall take a closer look at the main idea of this specialized Apply
for single-qubit gates. This recursive a lgori thm gradually traverses the whole tree and i f
it encounters a node representing the target qubit (the qubit the gate is applied to), it
performs the gate operation Q on this node and returns the result. For example, i f we
consider the gate Z, Qi keeps the low successor the same and multiplies the high successor
w i th —1. Thus, this function does not necessarily reach a l l leaf nodes of the M T B D D , since
it stops the recursion when it is clear that no more changes w i l l occur in the subgraph.
However, we have to consider the case when the node representing the target qubit qt is not
present i n the graph as it is reduced. This is not a problem for the X gate, because i f the
node is missing, it means that its low and high successors are the same, which i n turn means
that i f we swap these two successors, the result w i l l be identical to the current subgraph. For
this reason, the X gate actually uses a standard unary Apply, which does not address this
case. However, a l l other mentioned single-qubit gates perform some ari thmetic operation
on at least one of the successors, which means we have to generate this target qubit node
manually. For even better performance, this a lgori thm uses caching of a l l computed results

26

(it stores the root node of the current subgraph, operation Q, qt, and, of course, the result
of this operation). Th is custom operation is described in more detai l i n A l g o r i t h m 3.

The a lgori thm for controlled phase gate appl icat ion (presented i n A l g o r i t h m 4) is con
ceptually the same as the a lgori thm for single-qubit gates. The only difference is that it
also checks for the control qubit nodes and lets the recursion continue only for the high
successor of these nodes (the low subtrees always remain the same). It must also make sure
that the control qubit node is always present, and i f not, create it manually.

A l g o r i t h m 3: Execut ion of a single-qubit gate operation G[qt]
Input: root node of M T B D D // representing T(bo, • • •, & n - i) : {0,1}™ —>• Z 4 , where

{bo, • • • j bn-i} is ordered w.r.t . -<, a unary gate operator Q, and an index
of the target qubit qt

Output: root node of M T B D D fig representing G[qt]([j)
l begin

root(ng) <— ApplyGateFrom(root(//), Q, qt);
return Reduce (root (fig));

4 end

5 Function ApplyGateFrom(x: node, Q: unary gate operator, qt'. integer) : node is
if is i n cache then

return cached result:
end
result <— x;
/ / A l l gate operations applied to zero are again zero, so return

the resul t immediately
if x is not a zero leaf then

if IsLeaf(x) or qt -< var(x) then
/ / Missing target node, create i t manually
result <— New (node);
var(result) <— qt;
low (result) <— low(x);
high(result) <— high(x);

end
if var(result) = qt then

result <— Q(result);
else

/ / Recursion
result <— New (node);
var(result) <— var(x);
low (result) <— ApplyGateFrom(/ow;(x), Q, qt);
high(result) <— ApplyGateFrom(/wg/i(x), Q, qt);

end
P u t result into cache:

end
return result;

28 end

27

A l g o r i t h m 4: Execut ion of a controlled phase gate operation CGv[qc,qt]

Input: root node of M T B D D fi representing T (6 0 , • • •, bn-\): {0 ,1}" —> Z 4 , where
{&o> • • •, bn-i} is ordered w.r.t . -<, a unary phase gate operator Qv, an
index of the control qubit qc, and an index of the target qubit qt

Output: root node of M T B D D fig representing CQv[qc, qt](fi)
l begin

if qc > qt then
Swap(qc,qt); II This can be done only for control led phase

end
root (fig) «— ApplyCPhGateFrom(rooi(/x), Q^, qc, qt);
return Reduce(root(fig));

7 end

8 Function ApplyCPhGateFrom(ar. node, Q^: unary gate op., qc,qt- integer) : node is
if is i n cache then

return cached result:
end
result 4— X)
/ / A l l gate operations applied to zero are again zero, so return

the result immediately
if x is not a zero leaf then

if IsLeaf(x) or qc -< var(x) then
/ / Missing control node, create i t manually
result <— New (node):
var(result) <— qc;
low (result) <— low(x);
high(result) <— high(x);

end

if var (result) =
high(result)

else
/ / Recursion
result <— New (node):
var(result) <— var(x);
low (result) <— ApplyCPhGateFrom(fo«;(a;), Qv, qc, qt);
high(result) <— ApplyCPhGateFrom(/ug/i(x), Qv, qc, qt);

end
P u t result into cache;

end
return result;

. then
G<p[qt](high(result));

31 end

28

Chapter 5

Implementation

This chapter focuses on the implemented quantum circuit simulator called MEDUSA. To
get an idea of the basic components of the implementation, let us first look at the the
underlying key concepts of the simulator as a whole. We w i l l then go on to examine the
two supported simulation modes: standard execution and symbolic execution, in more
detail . Standard execution is the mode i n which regular s imulat ion and the process of
qubit measurement takes place, while symbolic execution consists of converting a classical
representation into a symbolic representation, followed by symbolic simulation, and a final
evaluation of a l l symbolic variables to convert the symbolic representation back into the
classical representation.

5.1 Architecture of the Simulator

The implemented simulator MEDUSA [Multi-Terminal Binary DEcision Diagram-based
QUantum SimulAtor) is wri t ten in C . The reason for this is the fact that C is a low-
level programming language well known for its efficiency and high performance. Th i s is
useful because performance is absolutely cr i t ica l for this type of tool , since it must perform
a large number of computat ional ly non- t r iv ia l computations. Not only that, but this also
gives access to an extensive set of C libraries.

MEDUSA is buil t on top of the Sylvan [12] l ibrary. Sylvan is a parallel B D D l ibrary
including, among others, M T B D D s and their operations. E v e n though not a l l features of
Sylvan were ut i l ized i n the implementation—e.g., parallel ism support is not very suitable
for the problems that MEDUSA solves (also confirmed by a few experimental results)—it
provides a convenient framework for custom M T B D D s and custom M T B D D operations.

Due to the character of the algebraic representation of complex numbers introduced
in Section 4.1 and the fact that we store the coefficient k globally for the whole M T B D D
(meaning we cannot reduce the coefficients used for this representation i n any way), the
values of the integers needed for this representation increase exponentially. For this reason,
there is a need for arbi trary integer precision, which is achieved using the general arbi trary
precision ari thmetic l ibrary GMP [17].

To specify the quantum circuit to be simulated, MEDUSA accepts an O p e n Q A S M (Open
Quan tum Assembly Language) [10] file as input . O p e n Q A S M is a standard programming
language for the description of quantum circuits and algorithms. The supported set of gates
is identical to the gates for which their M T B D D update formulae are defined i n Table 4.1.

29

Figure 5.1: M T B D D representing the B e l l state |i/>) = 4= • (|00) + |11))

The simulation itself proceeds i n such a way that the parser module gradually pro
cesses the input O p e n Q A S M file and applies ind iv idua l gate operations to the state vector
represented by the M T B D D accordingly. In the process, it can switch from the standard
execution mode to the symbolic execution mode and back (more details on these modes are
in the next two sections).

The result of the s imulat ion are output i n a D O T file, which contains a reduced M T B D D
representing the end state of the simulated circuit . Th is M T B D D can then be plotted using
a tool such as Graphviz [16]. E a c h leaf value is equal to a probabil i ty ampli tude represented
algebraically as described in Chapter 4. In the output leaf values, the complete coefficient 5-
tuple (a, 6, c, d, k) is shown in each ind iv idua l leaf. This allows us to reduce these coefficients
so that the representation of this complex number uses the smallest possible value of k,
which in tu rn results in better readability. However, despite this coefficient reduction
for each of the complex amplitudes, these coefficients can be quite large as a, 6, c, d grow
exponentially dur ing the simulat ion. In this case, if some coefficient is exceptionally large,
MEDUSA uses a symbolic variable instead of this large value i n the D O T file and also outputs
a text file w i t h mapping of these symbolic variables to their actual values. It is possible to
let MEDUSA directly calculate the probabilit ies of measuring the corresponding basis states
from the probabil i ty amplitudes and output these probabilit ies as the M T B D D ' s leaf values
in the D O T file instead. Another possible output of the simulation is, of course, the result
of the qubit measurements, i.e., how many times each basis vector has been measured.

5.2 Standard Execution

The standard execution mode is the default s imulat ion mode, where a regular s imulat ion of
the given circuit takes place. The main ideas of the used simulat ion technique, namely the
representation of the simulated circuit 's state vector w i t h an M T B D D and the applicat ion
of quantum gates on this M T B D D , were described i n detai l in Chapter 4. A s mentioned
in the previous section, MEDUSA uses the Sylvan l ibrary for the custom 4-tuple M T B D D
and for custom operations on this M T B D D type. A n example of this representation of the
simulated system's state can be seen in Figure 5.1. Note that since Sylvan itself ensures
the reduction property of the decision diagrams using hash tables and other internal checks,
there is no need to expl ici t ly ca l l any implementat ion of the Reduce procedure anywhere
during the simulat ion. The in i t i a l state of the s imulat ion corresponds to a l l qubits i n the
circuit having the value |0).

30

In addi t ion to the already mentioned gates, MEDUSA also supports the operation of qubit
measurement. More precisely, MEDUSA only supports the qubit measurement operation at
the end of the circuit , however, this is not restrictive in any way as qubit measurements
can always be moved from anywhere i n the circuit to its end [25]. The main idea of the
algori thm implementing this operation is as follows. F i r s t , we order the qubits to be mea
sured according to the qubit ordering (since Sylvan does not support variable reordering
in the decision diagrams, we have to start from the root and continue exactly according to
the variable ordering of the M T B D D) . We then sum up a l l the probabilities of the basis
states, where the currently measured qubit is |1), while taking into account the results
of the already measured qubits. Note that while calculating these intermediate probabil i
ties, we switch from the algebraic representation of complex numbers to classical floating
point representation in order to properly count for the reduced nodes skipped during the
M T B D D traversal. However, the potential loss of accuracy is unavoidable at this stage as
we need to represent the final probabil i ty of qubit being |1) wi th a floating point number
anyway to generate the measurement result. A l s o the probabil i ty normalizat ion factor is
not necessarily algebraically representable i n this way.

The operation of measuring the probabil i ty of a single qubit being |1) is implemented
using a custom unary Apply. The probabil i ty normalizat ion factor c (see Equa t ion 2.2)
caused by the previous measurements can be applied to this result at the very end of
the probabil i ty calculation, because we can always pu l l a constant out of summation (see
Equat ion 2.1). A n example of the probabil i ty calculation needed for qubit measurement
and the effects of qubit measurement on the subsequent probabi l i ty calculations can be seen
in Figure 5.2.

5.3 Symbolic Execution

MEDUSA also supports symbolic execution, which consists of simulat ing the circuit only
symbolically. Th is allows us, for example, to compute the big-step semantics of loops in
the quantum circuit . Th is in tu rn leads to a significant acceleration of the calculation
for circuits that use loops w i th more than just a few iterations, because there is no need
to reevaluate the ind iv idua l gates i n each iteration. We represent the modification of the
system's M T B D D caused by a single loop i teration wi th symbolic update formulae. Then
MEDUSA computes the end result by repeated (corresponding to the number of iterations)
subst i tut ion of the symbolic variables i n the symbolic update formulae w i t h the actual
values of probabi l i ty ampli tude coefficients. Th is is part icular ly useful because loops are
often a key element of quantum algorithms, for example i n algorithms that are based on
amplitude amplification (Grover's search algori thm, quantum counting) or algorithms that
use phase estimation (Shor's algorithm).

For simplicity, assume that our system's M T B D D represents some function
/ : {0,1}™ —> C (i.e., the leaves contain the complex number itself instead of the integer
4-tuple). Suppose M T B D D /j, represents the quantum state just before the start of a loop in
the quantum circuit . Let § be an infinite set of symbolic variable names and T§ be the set
of terms over S. Symbolic execution uses a pair of symbolic M T B D D s : (i) an M T B D D fia

wi th the variable mapping (this M T B D D represents the variable mapping par t ia l function
a: C — S , where the domain is the set of a l l leaf values of fi), and (ii) an M T B D D fi'a

wi th the symbolic values of these variables, which are expressions (terms) over § (i.e., fi'a

represents the par t ia l function r : § — T § , where the domain is the set of a l l leaf values of
fia). Note that \ia is specific to /J, at the start of the loop. This means that the current im-

31

J _
V2

1 + OUJ + OUJ2 + Ou;

P (g 0 = | l » - ^ i
ie{io,n}

^ ' c d 2 = | 0 | 2 +
V2

(1 + Ou; + 0u>2 + Ow 3 '

(a) Calculation of the probability V(qo = |1))

n « i = i i)) ^ | c - a j | 2 = c 2 - ^ | a j | 2

ie{oi,n} ie{oi,ii}

0 | 2 + |0 | 2) = 2 - 0 = 0

(b) Calculation of the probability V(q\ = |1)) after we measured go and got the result |0)
(c denotes the probability normalization coefficient)

Figure 5.2: Example of the measurement operation on one of the B e l l states

32

plementation could not, for example, reuse the symbolic M T B D D pair used for s imulat ing
loop L on for an input M T B D D fi2 i f Mi ^ 2 (unless fii a n d H2 have the same structure
and only differ i n the leaf values). O n the other hand, this allows us to take advantage of
the compactness that M T B D D s offer.

In order to keep the number of symbolic variables used as smal l as possible, i n the initial
abstraction we introduce variables only for the distinct leaf values of //, because we expect
basis states w i t h the same valued probabi l i ty amplitudes to transform equally dur ing the
loop execution. O f course, this may not always be true, which is why we check if there are
any conflicting values for the same variable after s imulat ing one i teration of the loop. If so,
we introduce more variables and run the loop i teration again. If not, we evaluate the result
and update \x accordingly. Th is evaluation is done by using r to obtain the final values of
the symbolic variables and then replacing the variables i n \xa w i th these values.

This loop summarization a lgori thm is described i n more detail in A l g o r i t h m 5. Here,
rng(f) denotes the range of the function / , e.g., i f / : X —>• Y , then rng(f) = Y . A l so ,
f(x) = _ L for x G X denotes that there is no y G Y such that (x, y) G / . We denote
the operation representing a single loop i teration as C (C5 represents the symbolic execu
t ion of this operation), and /[po> • • • iPk-i] denotes the closure of function / w i th param
eters po, • • • ,Pk-i passed by reference to the variables specified i n the D a t a declaration
of / . Figure 5.3 shows an example of a run of this loop summarizat ion algori thm. The
trees for a l l M T B D D s are shown instead for easier demonstration. F i rs t , we perform the
in i t i a l abstraction of the input M T B D D JJLQ. However, after symbolical ly simulat ing the
loop operation C w i t h the in i t i a l abstraction, there are conflicting symbolic update values
for the variable 6. Therefore, we introduce an addi t ional variable c. After performing the
loop operation on this abstraction, no more changes are introduced wi th the Refine opera
t ion, and we can evaluate the result using the just obtained symbolic M T B D D pair and the
input M T B D D JJLQ . The symbolic s imulat ion is run on fi'a i n the- same way as the simulation
is run on /j, i n the standard execution, i.e., using the gate operations defined i n Section 4.2.
Note that this version of loop summarizat ion does not support nested loops and assumes
that the loops do not contain qubit measurement operations, however, it could be extended
to support both.

This a lgori thm can be t r iv ia l ly extended for the 4-tuple M T B D D that is used i n the
actual implementation. The only difference is, that i n fia and fi'a, there is also a 4-tuple
of the corresponding values (4 symbolic variables for / i Q , 4 symbolic expressions over these
variables). The symbolic expressions are implemented as singly l inked lists, where each
element consists of a signed integer coefficient and a symbolic variable. There is an impl ic i t
addi t ion operation between the elements of this list. The only other operations w i th these
symbolic expressions needed for the symbolic simulation are subtraction and mul t ip l ica t ion
by some constant, bo th of which are accomplished by manipulat ing the coefficients.

33

A l g o r i t h m 5: Loop summarizat ion

Input: A n M T B D D u
Output: A n M T B D D \ia over § and a mapping r : § —> Tg

l begin

2
3
4
5
6
7
8

9

10
11
12 end

refined

repeat

Ma *
Ma *
r

(type a: C —1 S);

<— UnaryApply(u, Abstract [a]):

// I n i t i a l abstraction

refined t

) (type r : S -
) (type a : §

refined

until u Q = u,
return (u a , r

Apply(/x<
refined.

Ts);

Refine[r, cr,a]);

// Update

// Refinement substitution

13 Function A b s t r a c t e d / : C) : S is
Data: a: C §

14 if a(val) = _ L then
15 let s n e w G § \ rng(a) be a fresh symbolic variable:
16 a <- a U {ual 4 « „ } ;
17 end
is return a(val);
19 end

2 0 Function Ref ine(//is: S, r/is: Tg) : § is
Data: r : § T s , a: § §, a: C §
if r(lhs) = i - then

r < - r U {//is H-> r/is}:
end
else if >̂ r(lhs) = rhs then

if a(lhs) = _ L then
let s „ e j i , € S \ rng(a) be a fresh symbolic variable:
a <— er U {//is I—>• s n e T O } :

end
return o~(lhs);

end
return //is:

21
22
23
24
25
26
27
28
29
30
31
32 end

31

Mo Ml M 2

90 |0)

91 |0)

(a) The simulated circuit with two iterations of loop (b) Initial state /xo
operation C

(c) Initial abstraction /z° of /io (d) Result fi'® we get after (e) Refined abstraction \x\ of (J,Q
applying Cs to

(f) Result / i ^ we get after (g) Evaluated result \i\ after (h) Evaluated result /i2 after the
applying Cs to /i„ the first iteration second iteration

Figure 5.3: Example of symbolic loop execution (uses full trees instead of M T B D D s
for clarity)

35

Chapter 6

Experimental Evaluation

This chapter presents the experimental results of the performance of the implemented simu
lator MEDUSA compared to other state-of-the-art tools. The experiments consisted of simulat
ing two sets of benchmark circuits: L O O P S and S T R A I G H T L I N E . The a im of the benchmark

set L O O P S was to evaluate the impact of using symbolic execution for loop simulation, and
the a im of the benchmark set S T R A I G H T L I N E was to compare the proposed M T B D D - b a s e d
approach itself w i th the state of the art. We show that the implemented M T B D D - b a s e d
simulator not only keeps up w i t h current state-of-the-art simulators in terms of perfor
mance, but also that the symbolic loop simulat ion leads to a noticeable acceleration of the
simulation that far exceeds the capabilities of the state of the art.

6.1 Experimental Environment and Used Simulators

A l l the experiments were conducted on a machine wi th the following parameters:

O S Debian G N U / L i n u x 12 (bookworm)

Number of C P U s 2

C P U model Intel X e o n X5650 (2.67 G H z)

R A M 32 G i B

The timeout l imi t was set to 60 minutes. The performance of MEDUSA was compared
wi th these state-of-the-art quantum circuit simulators: SliQSim [33], DDSIM [47] (vl .21.0) ,
Quasimodo [30], Quokka# [24]. It is wor th mentioning again that of the measured sim
ulators, MEDUSA and SliQSim are the only accurate simulators (other simulators rely on
floating point complex number representation). For more details on the importance of
accurate s imulat ion and a l l the above-mentioned tools i n general, see Chapter 3. In the
following, Quas [I?] denotes Quasimodo w i th the backend option B, since Quasimodo sup
ports mult iple different decision diagram backend options. Note that we performed the
experiments only on the Quasimodo's B D D , W B D D (which uses the DDSIM's decision di
agram package), and C F L O B D D backend options, because the W C F L O B D D backend is
currently in a rather experimental state (some gates have not been implemented yet for
this backend option).

It is also worth mentioning that during the experiments w i th Quasimodo, some bugs
in this tool were discovered, reported to the authors 1 , and subsequently fixed (all results

1See https://github.eom/trishullab/Quasimodo/issues/8 and https://github.com/trishullab/
Quasimodo/issues/9

36

https://github.eom/trishullab/Quasimodo/issues/8
https://github.com/trishullab/

shown for Quasimodo were measured after fixing these bugs). We refer to the implemented
simulator w i th the symbolic loop simulat ion enabled as MEDUSA;

oop
 and without the symbolic

loop simulation enabled as MEDUSA{,
ase
.

6.2 Benchmark Overview

The experiments consisted of measuring the simulat ion runtime on the above-mentioned
tools for various quantum circuits specified i n O p e n Q A S M . Specifically, for a l l the decision
diagram-based simulators (all simulators except Quokka#), the t ime to reach the final quan
t u m state in the respective representation was measured. Since Quokka# does not expl ic i t ly
compute the representation of the final quantum state, the t ime to obtain the probabil i ty
that the first qubit is | 0) was measured instead. A s was already mentioned, the experiments
were conducted on two sets of benchmark circuits, L O O P S and S T R A I G H T L I N E (both sets
do not contain any measurement operations i n the circuits).

The benchmark set L O O P S contains quantum circuits w i th expl ic i t ly specified loops
wi th a fixed number of iterations (if some tool d id not support the loop syntax, the loops
were unfolded for them). These quantum circuits implement either (i) the Grover 's search
algori thm (G R O V E R) , (ii) quantum counting (Q C) , or (iii) period finding (P F) . The circuits
implementing Grover 's search have a single solution. Note that the circuits implementing
(ii) and (iii) do not include the final part w i t h the inverse Quan tum Fourier Transform
(Q F T) . Th is is because the implemented simulator does not currently support rotations by
^ for an arbi t rary n £ N , which is a necessary operation for the inverse Q F T . The reason
for this is that the used algebraic representation of complex numbers (see Section 4 . 1)
cannot represent rotations that are not multiples of j . However, this could be solved, for
example, by using to a finer base rotat ion than j to preserve the accuracy of the algebraic
representation, or by switching to a floating point representation of complex numbers.

The circuits implementing quantum counting and period finding use the naming con
vention of form (FR)_(SR)_{MT), where FR and SR denote the number of qubits in
the first and the second register, respectively, and MT denotes the number of randomly
generated mult i -control Toffoli gates i n the oracle. For a l l these benchmark circuits it holds
that SR = L̂ J and MT G { 5 , 1 0 , 1 5 } .

The second benchmark set, S T R A I G H T L I N E , consists only of circuits without loops,
namely: circuits implementing (i) the Bernstein-Vazirani a lgor i thm (B V , 9 9 circuits),
(ii) mult i -control Toffoli gates (M C T O F F O L I , 9 7 circuits), (iii) the Grover 's search algo
r i thm (M O G , 9 circuits, specifically multi-oracle version wi th unfolded loops), and also
(iv) randomly generated circuits (R A N D O M , 9 7 circuits), (v) benchmarks from the toolki t
Feynman [1] (F E Y N M A N , 4 2 circuits), (vi) RevLib [42] reversible circuits (R E V L I B , 8 0 cir
cuits), and (vii) modified versions of some of the RevLib benchmarks taken from [33]
(R E V L I B - H , 1 6 circuits, the modification consists of adding a Hadamard gate at each unas-
signed input) . Benchmark circuits (i)-(iv) are taken from the reposi tory 2 of the AutoQ [8, 7]
tool for quantum circuit verification.

6.3 Evaluation of Symbolic Execution Performance Impact

Firs t , let us evaluate the results of the L O O P S benchmark set. The focus of this benchmark
set was to examine the impact of symbolic loop execution, i.e., whether the symbolic execu-

2Available at: https://github.com/alan23273850/AutoQ/

3 7

https://github.com/alan23273850/AutoQ/

Table 6.1: Selected results for the L O O P S benchmark set The columns "#q" and " # G "
denote the number of qubits and gates (counted wi th unfolded loops), respectively. Times
are given i n seconds ("0" denotes a t ime <0.5 s), memory in M i B . T O denotes a timeout,

num denotes the fastest time, and num denotes the fastest accurate simulator (MEDUSA
or SliQSim). Quokka# is omit ted as it d id not finish for any of the circuits i n this bench
mark set.

MEDUSA^ MEDUSA^ SliQSim DDSIM Quas[CFLGBDD] Quas [WBDD] Quas[BDD]
c i r c u i t # q # G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
10 20 2,136 0 116 0 40 0 12 0 34 11 570 0 449 T O T O

13 26 8,037 0 137 1 47 7 13 0 49 650 3,405 0 459 T O T O

16 32 27,956 0 162 4 97 99 14 2 55 T O T O 1 492 T O T O

V
E

R
 20 40 140,721 0 187 32 387 3,176 25 12 118 T O T O 73 769 T O T O

V
E

R

22 44 310,367 0 196 84 1,088 T O T O 32 254 T O T O 583 1,083 T O T O

G
R

O

23 46 461,646 1 200 136 1,735 T O T O T O T O T O T O 1,750 1,708 T O T O

G
R

O

26 52 1,473,184 1 210 568 4,505 T O T O T O T O T O T O T O T O T O T O

29 58 4,676,916 2 215 2,190 10,032 T O T O T O T O T O T O T O T O T O T O

33 66 21,328,090 20 220 T O T O T O T O T O T O T O T O T O T O T O T O

37 74 95,794,310 349 229 T O T O T O T O T O T O T O T O T O T O T O T O

40 80 292,359,936 3,290 251 T O T O T O T O T O T O T O T O T O T O T O T O

07_ _03_ .10 10 2,294 23 1,891 0 27 0 12 0 30 0 458 0 442 0 440

13. _06_ .10 19 245,744 66 2,090 2 28 4 32 1 213 10 458 1 446 4 442

16. _08_ .05 24 1,507,322 83 600 8 24 23 130 4 1,235 61 458 7 449 34 442

19. _09_ .15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 1,580 459 198 452 2,160 455
22. _11_ .05 33 146,800,628 125 922 1,830 38 2,046 10,293 T O T O T O T O 849 454 T O T O

22. _11_ .15 33 448,790,444 128 1,662 3,020 27 T O T O T O T O T O T O 2,650 454 T O T O

28. _14_ .15 42 37,312,528,274 233 1,935 T O T O T O T O T O T O T O T O T O T O T O T O

31. 15 .15 46 277,025,390,495 673 1,973 T O T O T O T O T O T O T O T O T O T O T O T O

07. 03 .15 11 6,108 24 2,092 0 42 1 12 0 33 0 459 0 44.", 1 446
08. _04_ .10 13 11,999 31 2,115 1 44 4 13 0 38 1 459 0 444 T O T O

09. _04_ .10 14 24,032 38 2,127 1 54 15 14 0 46 2 459 0 445 T O T O

u 10. _05_ .05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 T O T O

CT 11. _05_ .05 17 81,898 52 2,116 5 109 T O T O 0 65 T O T O 0 447 T O T O

12. _06_ .05 19 188,390 219 7,394 T O T O T O T O 941 144 T O T O T O T O T O T O

12. _06_ .15 19 376,760 250 7,691 T O T O T O T O 1,280 294 T O T O T O T O T O T O

13. _06_ .15 20 753,593 919 9,502 T O T O T O T O T O T O T O T O T O T O T O T O

t ion leads to a noticeable acceleration of the s imulat ion for pract ical ly applicable quantum
algorithms. Some selected results can be seen i n Table 6.1 (for a l l results, see Table A . l) .
For each simulator, this table includes the largest circuit i n each benchmark subset that
it was able to successfully simulate w i th in the timeout l imi t . The runtimes of the simu
lators can be also seen i n Figure 6.1 (for P F and Q C subsets, only the results w i th a 5
mult i-control Toffoli gates in the oracle are shown for clar i ty) . Quokka# is not included
in the presented results because it d id not finish successfully for any of the circuits i n the
benchmark set (it t imed out for the smallest circuit i n the G R O V E R subset and it does not
support the mult i-control X gate, which is present i n a l l P F and Q C circuits).

If we take a look at the performance of MEDUSA/
oop

 and MEDUSAf,
ase

 (the only difference
between them is whether they use symbolic execution or not), we can clearly see that
the symbolic execution allows the simulator to scale much better w i th increasing circuit
complexity. A l t h o u g h this speed-up often comes at the cost of higher memory usage, this
can probably be further optimized, since it seems that i n these simulated circuits it was not

3 8

Number of qubits

(a) Grover's search

Number of qubits Number of qubits

(b) Period finding (c) Quantum counting

Figure 6.1: Runtimes on the L O O P S benchmark set (the results for quantum counting and
period finding show a l l the circuits w i th 5 mult i -control Toffoli gates i n the oracle)

the symbolic execution itself that was the most memory-intensive task, but the subsequent
variable evaluation, where there is definitely some room for further opt imizat ion. It is
important to mention that this leads to the assumption that the symbolic execution would
provide a significant performance improvement i f extended to other simulators based on
decision diagrams.

Not only does the symbolic execution of loops lead to a noticeable acceleration of the
simulation for MEDUSA{, a s e, but MEDUSA/ o o p scaled much better than a l l other simulators
on a l l benchmark subsets. Th is is especially true for G R O V E R (MEDUSA/ 0 0 |) was able to
simulate circuits w i t h up to 80 qubits, while the best performing simulator other than
MEDUSA achieved at most a circuit w i th 46 qubits) and P F (MEDUSA; o o p was able to simulate
a circuit w i th over 277 b i l l ion gates i n less than 12 minutes). However, MEDUSA; o o p d id
not perform as well on some smaller but s t i l l complex circuits (e.g., for Q C) , because the
symbolic representation for these circuits is not t r iv ia l , but at the same t ime the loops

39

in these circuits have relatively few iterations, so symbolic execution tends to cause an
extra overhead.

Note that the performance of MEDUSAf,
ase

 on the L O O P S benchmark circuits is also
quite impressive, al though this was not the ma in goal of these experiments. Especial ly
for G R O V E R benchmark circuits, MEDUSA{,

ase
 scales exceptionally well and surpasses other

state-of-the-art tools in the size of the circuits it managed to simulate.

6.4 Evaluation of M T B D D - b a s e d Simulator Performance

A s mentioned earlier, the second benchmark set S T R A I G H T L I N E was used to compare
MEDUSA;, a s e w i th other state-of-the-art simulators. Some selected results are shown in Ta
ble 6.2 (for a l l results, see Table A . 2) . MEDUSA;

oop
 is omit ted from these results, as it would

give exactly the same results as MEDUSAf,
ase

 because these circuits do not contain loops.
In addi t ion to this, the results for B V and M C T O F F O L I are not presented, since a l l the
circuits i n these two categories were t r i v i a l for a l l the simulators—all of them managed to
simulate the largest B V circuit (1 0 0 qubits, 2 5 1 gates) i n less than 0 .1 seconds and the
largest M C T O F F O L I circuit (1 9 8 qubits, 1 9 7 gates) in less than 0 . 2 seconds. Note that the
errors we encountered using Quas [CFLOBDD] and Quas [BDD] were caused by not supporting
certain gates present i n the circuits (specifically, Rx{%) and -Rj/(§))• Quas [WBDD] also does
not support the Rx{^) and Ry(^) gates, but it does support the \[X and yjY gates (which
are equivalent to Rx{\) and Ry(^), respectively, up to a global phase factor that can be
ignored [25]), so we used these gates instead. Similar ly, the simulat ion errors w i th Quokka#
were caused by the fact that Quokka# does not support the mult i -control X gate, which is
present i n a l l R E V L I B - H circuits.

If we take a closer look at the performance of MEDUSAf,
ase
, it is obvious that this simulator

is competit ive wi th the current state of the art, especially i f we focus only on accurate
simulators. Specifically, MEDUSAf,

ase
 is clearly the best available accurate simulator for a l l the

non-tr ivia l F E Y N M A N circuits, on the other hand, it struggles w i t h some R A N D O M circuits.
It is important to mention that R E V L I B - H circuits were challenging for a l l simulators—
the selected circuits include only those where none of the tools t imed out. SliQSim was
the best performing simulator on R E V L I B - H as it was able to simulate 1 4 of the circuits,
whereas DDSIM and Quas [CFLOBDD] managed to simulate 6 of the circuits and MEDUSAf,

ase
,

Quas [WBDD], and Quas [BDD] managed to simulate 5 of the circuits. Quokka# failed to
simulate any of the circuits because, again, these circuits contain the mult i -control X gate,
which is currently not supported by Quokka#.

Combined w i t h the fact that MEDUSAf,
ase

 also performed notably well on the L O O P S
benchmark set, it is shown that the implemented M T B D D - b a s e d simulator is an interest
ing and useful alternative to the available quantum circuit s imulat ion tools, as it is often
complementary to the current state of the art (especially if we consider only accurate sim
ulat ion tools).

4 0

Table 6 . 2 : Selected results for the S T R A I G H T L I N E benchmark set. The columns "#q" and
" # G " denote the number of qubits and gates, respectively. Times are given i n seconds
("0.00" denotes a t ime <0.01 s), memory in M i B . T O denotes a timeout, E R R denotes
an error, num denotes the fastest t ime, and num denotes the fastest accurate simulator
(MEDUSA or SliQSim). Quokka# is not marked as the fastest because it does not compute
the quantum state representation.

MEDUSA ,̂«, SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
c i r c u i t # q # G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

gf232_mult 96 3,322 0.26 40 1.35 13 0.10 71 0.00 400 0.11 502 0.82 450 0.87 45
gf264_mult 192 12,731 1.82 66 17.11 20 0.75 126 2.59 404 0.08 601 4.43 402 3.56 149
gf2128_mult 384 50,043 20.40 231 264.81 38 5.28 235 10.50 478 4.76 1,159 27.60 498 15.39 570

| gf2256_mult 768 198,395 163.00 1,635 TO TO 41.21 538 43.30 531 38.50 4,989 238.00 633 71.28 2,324
5 hwb8 a
^ hwblO

12 6,446 0.16 38 3.70 13 0.03 33 0.95 460 0.04 443 1.03 444 TO TO 5 hwb8 a
^ hwblO 16 31,764 0.80 51 84.20 15 0.21 38 4.72 466 0.22 447 1.56 445 TO TO

hwbll 15 87,789 2.64 103 660.93 22 0.49 70 12.80 475 0.52 449 1.51 Uh TO TO
hwbl2 20 171,482 5.80 205 2,568.02 35 1.13 133 27.20 510 1.35 450 0.43 457 3,193.79 1,070

O 10 30 2,433 0.20 42 1.20 12 0.08 34 9.08 595 0.05 450 TO TO 02.08 40

1 " 33 3,746 0.30 45 3.12 13 0.13 42 48.80 900 0.08 402 TO TO 167.01 50
85 85 255 1.00 52 0.47 15 2.12 04 ERR ERR 0.11 485 ERR ERR 0.03 12
86 86 258 15.30 214 0.48 14 2.25 72 ERR ERR 3.25 553 ERR ERR 0.07 12

S 89 89 267 9.48 105 0.67 14 0.72 66 ERR ERR 0.59 492 ERR ERR 0.00 13

XD
t

93 279 1.08 62 0.32 13 0.18 68 ERR ERR 0.11 494 ERR ERR 0.05 12
^ 9 4 94 282 79.60 337 0.78 18 4.45 76 ERR ERR 74.30 521 ERR ERR 0.08 13

97 97 291 5.70 118 0.42 13 1.47 78 ERR ERR 0.42 525 ERR ERR 0.03 13
99 99 297 9.58 173 0.38 12 2.01 79 ERR ERR 0.67 520 ERR ERR 0.08 13
apex5_290 1,025 2,909 1.75 02 0.37 44 1.03 530 0.26 407 1.33 1,214 3.95 510 2.11 73

£ cps_292 923 2,763 1.19 58 0.21 31 1.25 485 0.22 465 1.09 1,035 2.82 528 1.39 60
a frg2 297

scq_314
1,219 3,724 2.32 93 0.50 49 1.52 633 0.32 469 1.90 1,307 6.25 498 2.15 84 a frg2 297

scq_314 1,617 5,990 4.90 98 1.35 109 4.11 835 0.54 477 3.71 1,770 14.00 537 3.05 124
add64_184 193 385 0.20 204 0.03 14 0.10 118 0.10 400 0.08 545 0.00 440 ERR ERR

^ cpu_register 32
j e64-bdd_295

_405 328 1,978 0.40 214 0.09 15 0.42 195 0.57 469 0.70 668 0.33 457 ERR ERR ^ cpu_register 32
j e64-bdd_295 195 516 1.98 239 2.49 14 2.00 127 0.02 477 0.54 614 1.91 496 ERR ERR
a ex5p_296 206 736 7.61 283 12.03 21 3.57 132 0.99 490 1.15 691 6.23 549 ERR ERR

hwb9_304 170 774 33.00 003 13.51 20 12.17 114 3.01 500 4.90 1,105 21.70 570 ERR ERR

41

Chapter 7

Conclusion

In this thesis, we presented a novel approach to quantum circuit s imulat ion on classical
computers and introduced a tool implementing this approach. The implemented simulator,
called MEDUSA, is accurate and based on M T B D D s . A n essential feature of MEDUSA is
symbolic execution of loops, which leads to a significant acceleration of the s imulat ion as
shown by the conducted experiments, where no other state-of-the-art simulator managed
to scale nearly as well . For circuits that do not contain loops, MEDUSA has proven to not
only keep up wi th other simulators i n general, but for some circuits it even demonstrates
superior performance—especially when considering only accurate simulators. Based on this
thesis, a paper [6] (see Append ix B) was wri t ten and submit ted to I C C A D ' 2 4 at the time
of wri t ing.

In terms of future work, it would be useful to perform certain quantum operations
more efficiently (e.g., qubit measurement, or control gates other than control phase gates)
and to better optimize the final evaluation during symbolic execution to be less memory
demanding. However, these are only minor improvements. A more substantial improvement
would be to extend the current s imulat ion technique to support rotations by ^ for an
arbitrary n £ N while maintaining accuracy, or to implement some addi t ional opt imizat ion
preprocessing procedure that would take advantage of the fact that some operations can
be done more efficiently in s imulat ion than on a real quantum computer. Another possible
direction would be to extend the functionality of the implemented tool for the purpose of
quantum circuit verification.

42

Bibliography

[1] A M Y , M . Towards Large-scale Funct ional Verification of Universal Quan tum
Circui ts . In: S E L I N G E R , P . and C H I R I B E L L A , C , ed. Proceedings 15th International
Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-lth June
2018. 2018, vol . 287, p . 1-21. E P T C S . D O I : 10 .4204 /EPTCS.287 .1 . Available at:
h t tp s : //doi.org/10.4204/EPTCS.287.1.

[2] A R U T E , F . , A R Y A , K . , B A B B U S H , R . , B A C O N , D . , B A R D I N , J . C . et a l . Quan tum

supremacy using a programmable superconducting processor. Nature. October 2019,
vol . 574, no. 7779, p. 505-510. D O I : 10.1038/s41586-019-1666-5. I S S N 1476-4687.
Available at: ht tps: / /doi .org/10.1038/s41586-019-1666-5.

[3] B E R N S T E I N , E . and V A Z I R A N I , U . V . Quan tum complexity theory In: K O S A R A J U ,

S. R . , J O H N S O N , D . S. and A G G A R W A L , A . , ed. Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego,
CA, USA. A C M , 1993, p. 11-20. D O I : 10.1145/167088.167097. Available at:
https://doi.org/10.1145/167088.167097.

[4] B R A S S A R D , C , H O Y E R , P . and T A P P , A . Quan tum Count ing . In: L A R S E N , K . C ,

S K Y U M , S. and W I N S K E L , C , ed. Automata, Languages and Programming, 25th
International Colloquium, ICALP'98, Aalborg, Denmark, July 13-17, 1998,
Proceedings. Springer, 1998, vol . 1443, p. 820-831. Lecture Notes in Computer
Science. D O I : 10.1007/BFB0055105. Available at:
h t tp s : //doi.org/10.1007/BFb0055105.

[5] B R Y A N T , R . E . Graph-Based Algor i thms for Boolean Funct ion Manipu la t ion . IEEE
Trans. Computers. 1986, vo l . 35, no. 8, p. 677-691. D O I : 10 .1109/TC. 1986.1676819.
Available at: https://doi.org/10.1109/TC.1986.1676819.

[6] C H E N , T . - F . , C H E N , Y . - F . , J I A N G , J . - H . R . , J O B R A N O V Ä , S. and L E N G Ä L , O.

Accelerat ing Quan tum Ci rcu i t Simulat ion wi th Symbolic Execu t ion and Loop
Summarizat ion. Submitted to ICC AD'24. 2024.

[7] C H E N , Y . , C H U N G , K . , L E N G Ä L , O. , L I N , J . and T S A I , W . A u t o Q : A n

Automata-Based Quan tum Ci rcu i t Verifier. In: E N E A , C . and L A L , A . , ed. Computer
Aided Verification - 35th International Conference, CAV 2023, Paris, France, July
11-22, 2023, Proceedings, Part III. Springer, 2023, vol . 13966, p. 139-153. Lecture
Notes i n Computer Science. D O I : 10.1007/978-3-031-37709-9_7. I S B N
978-3-031-37709-9. Available at: ht tps: / /doi .org/10.1007/978-3-031-37709-9_7.

[8] C H E N , Y . , C H U N G , K . , L E N G Ä L , O. , L I N , J . , T S A I , W . et a l . A n Automata-Based

Framework for Verification and B u g Hunt ing i n Quan tum Circui ts . Proc. ACM

43

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/167088.167097
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-031-37709-9_7

Program. Lang. New York , N Y , U S A : Associat ion for Compu t ing Machinery. June
2023, vol . 7, P L D I , p. 1218-1243. D O I : 10.1145/3591270. Available at:
https://doi.org/10.1145/3591270.

[9] C O E C K E , B . and D U N C A N , R . Interacting Quan tum Observables. In: A C E T O , L . ,
D A M G A R D , I., G O L D B E R G , L . A . , H A L L D O R S S O N , M . M . , I N G O L F S D O T T I R , A . et a l . ,
ed. Automata, Languages and Programming, 35th Lnternational Colloquium, LCALP
2008, Reykjavik, Lceland, July 7-11, 2008, Proceedings, Part J J - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations. Ber l in , Heidelberg: Springer, 2008, vol . 5126, p. 298-310. Lecture Notes
in Computer Science. D O I : 10.1007/978-3-540-70583-3_25. I S B N 978-3-540-70583-3.
Available at: https://doi.org/10.1007/978-3-540-70583-3_25.

[10] C R O S S , A . W . , B I S H O P , L . S., S M O L I N , J . A . and G A M B E T T A , J . M . Open Quantum
Assembly Language. 2017. D O I : 10.48550/arXiv.l707.03429. Available at:
https://doi.org/10.48550/arXiv.1707.03429.

[11] D I E K S , D . Communica t ion by E P R devices. Physics Letters A. November 1982,
vol . 92, no. 6, p. 271-272. D O I : https://doi.org/10.1016/0375-9601(82)90084-6. I S S N
0375-9601. Available at:
https: //www. sciencedirect.com/science/article/pii/0375960182900846.

[12] D I J K , T . van and P O L , J . van de. Sylvan: M u l t i - C o r e Decision Diagrams. In: B A I E R ,
C . and T I N E L L I , C , ed. Tools and Algorithms for the Construction and Analysis of
Systems - 21st Lnternational Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Springer, 2015, vol . 9035, p. 677-691. Lecture Notes
in Computer Science. D O I : 10.1007/978-3-662-46681-0_60. Available at:
https://doi.org/10.1007/978-3-662-46681-0_60.

[13] E I N S T E I N , A . , P O D O L S K Y , B . and R O S E N , N . C a n Quantum-Mechanica l Descr ipt ion
of Phys ica l Real i ty Be Considered Complete? Phys. Rev. Amer ican Phys ica l Society.
M a y 1935, vol . 47, p. 777-780. D O I : 10.1103/PhysRev.47.777. Available at:
https://link.aps.org/doi/10.1103/PhysRev.47.777.

[14] F E Y N M A N , R . P . Simulat ing physics w i th computers. Lnternational Journal of
Theoretical Physics. June 1982, vol . 21, no. 6, p. 467-488. D O I : 10.1007/BF02650179.
I S S N 1572-9575. Available at: https://doi.org/10.1007/BF02650179.

[15] F U J I T A , M . , M C G E E R , P . C . and Y A N G , J . C . M u l t i - T e r m i n a l B ina ry Decision
Diagrams: A n Efficient D a t a Structure for M a t r i x Representation. Formal Methods in
System Design. A p r i l 1997, vol . 10, 2 /3 , p. 149-169. D O I : 10.1023/A:1008647823331.
I S S N 1572-8102. Available at: https://doi.org/10.1023/A:1008647823331.

[16] G A N S N E R , E . R . and N O R T H , S. C . A n open graph visualizat ion system and its
applications to software engineering. Softw. Pract. Exp. 2000, vol . 30, no. 11,
p. 1203-1233. D O I :
10 .1002/1097-024X(200009)30:1K1203: :AID-SPE338>3.0 .CO;2-N. Available at:
https://doi.org/10.1002/1097-024XC200009)30: I K 1203: :AID-SPE338>3.0.C0;2-N.

44

https://doi.org/10.1145/3591270
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.1016/0375-9601(82)90084-6
http://sciencedirect.com/science/article/pii/0375960182900846
https://doi.org/10.1007/978-3-662-46681-0_60
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://doi.org/10.1007/BF02650179
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1002/1097-024XC200009

[17] G R A N L U N D , T . and T H E G M P D E V E L O P M E N T T E A M . GNU MP: The GNU Multiple

Precision Arithmetic Library [online]. 6.2.1th ed. 2020 [cit. 2024-04-14]. Available at:
http: / / gmplib.org/.

[18] G R O V E R , L . K . A Fast Quan tum Mechanical A l g o r i t h m for Database Search. In:
M I L L E R , G . L . , ed. Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. A C M ,
1996, p. 212-219. D O I : 10.1145/237814.237866. Available at:
https://doi.org/10.1145/237814.237866.

[19] H E R M A N , D . , G O O G I N , C . , L I U , X . , S U N , Y . , G A L D A , A . et a l . Quan tum computing

for finance. Nature Reviews Physics. Springer Science and Business M e d i a L L C . J u l y
2023, vol . 5, no. 8, p. 450-465. D O I : 10.1038/s42254-023-00603-l. I S S N 2522-5820.
Available at: http://dx.doi.org/10.1038/s42254-023-00603-l.

[20] H O N G , X . , Z H O U , X . , L i , S., F E N G , Y . and YlNG, M . A Tensor Network based

Decision Diagram for Representation of Quan tum Circui t s . ACM Trans. Design
Autom. Electr. Syst. New York , N Y , U S A : Associa t ion for Comput ing Machinery.
June 2022, vol . 27, no. 6, p. 60:1-60:30. D O I : 10.1145/3514355. I S S N 1084-4309.
Available at: https://doi.org/10.1145/3514355.

[21] K I S S I N G E R , A . and W E T E R I N G , J . van de. Simulat ing quantum circuits w i th
ZX-calculus reduced stabiliser decompositions. Quantum Science and Technology.
I O P Publ i sh ing . J u l y 2022, vol . 7, no. 4, p. 044001. D O I : 10.1088/2058-9565/ac5d20.
I S S N 2058-9565. Available at: http://dx.doi.org/10.1088/2058-9565/ac5d20.

[22] K I T A E V , A . Y . Quan tum measurements and the A b e l i a n Stabilizer Prob lem.
Electron. Colloquium Comput. Complex. 1996, TR96-003. Available at:
https: //eccc.weizmann.ac.il/eccc-reports/ 1996/TR96-003/index.html.

[23] M C A R D L E , S., E N D O , S., A S P U R U G U Z I K , A . , B E N J A M I N , S. C . and Y U A N , X .

Quan tum computat ional chemistry. Reviews of Modern Physics. Amer ican Phys ica l
Society (A P S) . M a r c h 2020, vol . 92, no. 1. D O I : 10.1103/revmodphys.92.015003.
I S S N 1539-0756. Available at: http://dx.doi.org/10.1103/RevModPhys.92.015003.

[24] M E I , J . , B O N S A N G U E , M . and L A A R M A N , A . Simulat ing Quan tum Circui t s by M o d e l
Count ing . In: CAV'24 (to appear). 2024. D O I : 10.48550/ARXIV.2403.07197.
Available at: https://doi.org/10.48550/arXiv.2403.07197.

[25] N I E L S E N , M . A . and C H U A N G , I. L . Quantum Computation and Quantum

Information: 10th Anniversary Edition. Cambridge Univers i ty Press, 2010. I S B N
978-1-107-00217-3.

[26] N I E M A N N , P. , W I L L E , R . , M I L L E R , D . M . , T H O R N T O N , M . A . and D R E C H S L E R , R .

Q M D D s : Efficient Quan tum Funct ion Representation and Manipu la t ion . IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, vo l . 35, no. 1, p. 86-99. D O I :
10.1109/TCAD.2015.2459034. Available at:
https://doi.org/10.1109/TCAD.2015.2459034.

[27] N I E M A N N , P. , Z U L E H N E R , A . , D R E C H S L E R , R . and W I L L E , R . Overcoming the

Tradeoff Between Accuracy and Compactness i n Decision Diagrams for Quan tum
Computa t ion . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, vol . 39,

45

http://gmplib.org/
https://doi.org/10.1145/237814.237866
http://dx.doi.org/10.1038/s42254-023-00603-l
https://doi.org/10.1145/3514355
http://dx.doi.org/10.1088/2058-9565/ac5d20
http://weizmann.ac.il/
http://dx.doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.48550/arXiv.2403.07197
https://doi.org/10.1109/TCAD.2015.2459034

no. 12, p. 4657-4668. D O I : 10.1109/TCAD.2020.2977603. Available at:
https://doi.org/10.1109/TCAD.2020.2977603.

[28] R A E D T , H . D . , J I N , F . , W I L L S C H , D . , N O C O N , M . , Y O S H I O K A , N . et a l . Massively
parallel quantum computer simulator, eleven years later. Computer Physics
Communications. 2019, vol . 237, p. 47-61. D O I : 10.1016/J.CPC.2018.11.005. I S S N
0010-4655. Available at: https://doi.org/10.1016/j.cpc.2018.11.005.

[29] S I S T L A , M . , C H A U D H U P J , S. and R E P S , T . W . C F L O B D D S : Context-Free-Language
Ordered B i n a r y Decision Diagrams. CoRR. 2022, abs/2211.06818. D O I :
10.48550/ARXIV.2211.06818. Available at:
https : //doi.org/10.48550/arXiv.2211.06818.

[30] S I S T L A , M . , C H A U D H U P J , S. and R E P S , T . W . Symbolic Quan tum Simulat ion wi th
Quasimodo. In: E N E A , C . and L A L , A . , ed. Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 11-22, 2023, Proceedings,
Part III. Springer, 2023, vol . 13966, p. 213-225. Lecture Notes i n Computer Science.
D O I : 10.1007/978-3-031-37709-9_ll . Available at:
https://doi.org/10.1007/978-3-031-37709-9_ll.

[31] S I S T L A , M . , C H A U D H U P J , S. and R E P S , T . W . Weighted Context-Free-Language
Ordered B i n a r y Decision Diagrams. CoRR. 2023, abs/2305.13610. D O I :
10.48550/ARXIV.2305.13610. Available at:
https://doi.org/10.48550/arXiv.2305.13610.

[32] T H A N O S , D . , V I L L O M A , A . , B R A N D , S., M E I , A . - J . Q . J . , C O O P M A N S , T . et a l . A
Knowledge Compi la t ion M a p for Quan tum Information. In: SPIN'24 (to appear).
2024. Available at:
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf.

[33] T S A I , Y . , J I A N G , J . R . and J H A N G , C . B i t -S l i c ing the Hi lber t Space: Scaling U p
Accurate Quan tum Ci rcu i t Simulat ion. In: 58th ACM/IEEE Design Automation
Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021. I E E E , 2021,
p. 439-444. D O I : 10.1109/DAC18074.2021.9586191. Available at:
https://doi.org/10.1109/DAC18074.2021.9586191.

[34] V I D A L , G . Efficient Classical Simulat ion of Slightly Entangled Quan tum
Computat ions . Physical Review Letters. Amer i can Phys ica l Society (A P S) . October
2003, vol . 91, no. 14. D O I : 10.1103/physrevlett.91.147902. I S S N 1079-7114. Available
at: http://dx.doi.org/10.1103/PhysRevLett.91.147902.

[35] V I N K H U I J Z E N , L . , C O O P M A N S , T . , E L K O U S S , D . , D U N J K O , V . and L A A R M A N , A .
L I M D D : A Decision Diagram for Simulat ion of Quan tum Comput ing Including
Stabilizer States. Quantum. September 2023, vol . 7, p. 1108. D O I :
10.22331/Q-2023-09-11-1108. I S S N 2521-327X. Available at:
https://doi.org/10.22331/q-2023-09-ll-1108.

[36] V I N K H U I J Z E N , L . , C O O P M A N S , T . and L A A R M A N , A . A Knowledge Compi la t ion M a p
for Quan tum Information. CoRR. 2024, abs/2401.01322. D O I :
10.48550/ARXIV.2401.01322. Available at:
https : //doi.org/10.48550/arXiv.2401.01322.

46

https://doi.org/10.1109/TCAD.2020.2977603
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1007/978-3-031-37709-9_ll
https://doi.org/10.48550/arXiv.2305.13610
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf
https://doi.org/10.1109/DAC18074.2021.9586191
http://dx.doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.22331/q-2023-09-ll-1108

[37] ViNKHUUZEN, L . , G R U R L , T . , H I L L M I C H , S., B R A N D , S., W I L L E , R . et a l . Efficient
Implementation of L I M D D s for Quan tum Ci rcu i t Simulat ion. In: C A L T A I S , G .
and S C H I L L I N G , C . , ed. Model Checking Software - 29th International Symposium,
SPIN 2023, Paris, France, April 26-27, 2023, Proceedings. Springer, 2023, vol . 13872,
p. 3-21. Lecture Notes in Computer Science. D O I : 10.1007/978-3-031-32157-3_l.
Available at: https://doi.org/10.1007/978-3-031-32157-3_l.

[38] V O J N A R , T . Static Analysis and Verification (SAV), lecture Binary Decision
Diagrams: Slides for the course at Faculty of Information Technology, Brno
University of Technology [online]. 2023 [cit. 2024-01-20]. Available at:
h t tp s : //www. fit .vu tbr.cz/s tudy/courses/SAV /publ ic / .

[39] W E I , C , T S A I , Y . , J H A N G , C . and J I A N G , J . R . Accurate B D D - b a s e d uni tary
operator manipulat ion for scalable and robust quantum circuit verification. In:
O S H A N A , R . , ed. DAC '22: 59th ACM/IEEE Design Automation Conference, San
Francisco, California, USA, July 10 - 14, 2022. New York , N Y , U S A : A C M , 2022,
p. 523-528. D O I : 10.1145/3489517.3530481. Available at:
https://doi.org/10.1145/3489517.3530481.

[40] W E T E R I N G , J . van de. ZX-calculus for the working quantum computer scientist.
December 2020. A r X i v preprint arXiv:2012.13966. Available at:
http://dx.doi.org/10.1088/2058-9565/ac5d20.

[41] W I L L E , R . , B U R G H O L Z E R , L . , H I L L M I C H , S., G R U R L , T . , P L O I E R , A . et a l . The basis
of design tools for quantum computing: arrays, decision diagrams, tensor networks,
and ZX-ca lcu lus . In: O S H A N A , R . , ed. DAC '22: 59th ACM/IEEE Design
Automation Conference, San Francisco, California, USA, July 10 - 14, 2022. A C M ,
J u l y 2022, p. 1367-1370. D O I : 10.1145/3489517.3530627. Available at:
https://doi.org/10.1145/3489517.3530627.

[42] W I L L E , R . , G R O S S E , D . , T E U B E R , L . , D U E C K , G . W . and D R E C H S L E R , R . R e v L i b :
A n Onl ine Resource for Reversible Functions and Reversible Ci rcui t s . In: 38th IEEE
International Symposium on Multiple-Valued Logic (ISMVL 2008), 22-23 May 2008,
Dallas, Texas, USA. I E E E Computer Society, 2008, p. 220-225. D O I :
10 .1109/ISMVL.2008.43. Available at: https://doi.org/10.1109/ISMVL.2008.43.

[43] W I L L E , R . , M E T E R , R . V . and N A V E H , Y . I B M ' S Qisk i t Too l Cha in : Work ing wi th
and Developing for R e a l Quan tum Computers . In: T E I C H , J . and F U M M I , F . ,
ed. Design, Automation & Test in Europe Conference & Exhibition, DATE 2019,
Florence, Italy, March 25-29, 2019. I E E E , 2019, p. 1234-1240. D O I :
10.23919/DATE.2019.8715261. Available at:
h t tp s : //doi.org/10.23919/DATE.2019.8715261.

[44] W O O T T E R S , W . K . and Z U R E K , W . H . A single quantum cannot be cloned. Nature.
October 1982, vol . 299, no. 5886, p. 802-803. D O I : 10.1038/299802a0. I S S N
1476-4687. Available at: https://doi.org/10.1038/299802a0.

[45] Z H O N G , H . - S . , W A N G , H . , D E N G , Y . - H . , C H E N , M . - C , P E N G , L . - C . et a l . Quan tum
computat ional advantage using photons. Science. 2020, vo l . 370, no. 6523,
p. 1460-1463. D O I : 10.1126/science.abe8770. Available at:
h t tp s : //www. science.org/doi/abs/10.1126/science.abe8770.

47

https://doi.org/10.1007/978-3-031-32157-3_l
http://fit.vutbr.cz/
https://doi.org/10.1145/3489517.3530481
http://dx.doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1145/3489517.3530627
https://doi.org/10.1109/ISMVL.2008.43
https://doi.org/10.1038/299802a0
http://science.org/doi/abs/

[46] Z U L E H N E R , A . , H I L L M I C H , S. and W I L L E , R . H O W to Efficiently Handle Complex
Values? Implementing Decision Diagrams for Quan tum Comput ing . In: P A N , D . Z . ,
ed. Proceedings of the International Conference on Computer-Aided Design, ICC AB
2019, Westminster, CO, USA, November 4-7, 2019. A C M , 2019, p. 1-7. D O I :
10.1109/ICCAD45719.2019.8942057. Available at:
https://doi.org/10.1109/ICCAD45719.2019.8942057.

[47] Z U L E H N E R , A . and W I L L E , R . Advanced Simulat ion of Quan tum Computat ions .
IEEE Trans. Comput. Aided Bes. Integr. Circuits Syst. 2019, vol . 38, no. 5,
p. 848-859. D O I : 10.1109/TCAD.2018.2834427. Available at:
https://doi.org/10.1109/TCAD.2018.2834427.

18

https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/TCAD.2018.2834427

Appendix A

A l l Experimental Results

Table A . l : Results for the L O O P S benchmark set. The columns "#q" and " # G " denote
the number of qubits and gates (counted wi th unfolded loops), respectively. Times are
given in seconds ("0" denotes a t ime <0.5s), memory in M i B . T O denotes a timeout,

num denotes the fastest time, and num denotes the fastest accurate simulator (MEDUSA
or SliQSim). Quokka# is omit ted as it d id not finish for any of the circuits i n this bench
mark set.

MEDUSA / o o p M E D U S A ^ S l iQS im DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]

circuit #q #G time mem time mem time mem time mem time mem time mem time mem
5 10 170 0 89 0 30 0 12 0 29 0 458 0 442 0 441

6 12 301 0 94 0 35 0 12 0 30 0 459 0 443 0 442

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445

8 16 813 0 104 0 38 0 12 0 30 1 478 0 445 TO TO

9 18 1,319 0 109 0 38 0 12 0 31 1 511 0 447 TO TO

10 20 2,136 0 116 0 40 0 12 0 34 11 570 0 449 TO TO

11 22 3,337 0 122 0 42 1 12 0 34 39 774 0 450 TO TO

12 24 5,163 0 134 0 11 3 12 0 39 128 1,228 0 453 TO TO

13 26 8,037 0 137 1 47 7 13 0 49 650 3,405 0 459 TO TO

14 28 12,115 0 145 1 56 17 13 1 50 TO TO 0 470 TO TO

15 30 18,618 0 153 2 69 40 13 1 52 TO TO 0 472 TO TO

16 32 27,956 0 162 1 97 99 14 2 55 TO TO 1 492 TO TO

« 17 34 42,334 0 167 7 116 239 15 3 64 TO TO 2 532 TO TO

£ 18 36 63,133 0 174 12 185 568 17 5 75 TO TO 7 539 TO TO

O 19 38 94,876 0 180 20 256 1,334 19 8 89 TO TO 22 612 TO TO

20 40 140,721 0 187 32 387 3,176 25 12 U S TO TO 73 769 TO TO

21 42 210,367 0 191 53 779 TO TO 20 173 TO TO 207 794 TO TO

22 11 310,367 0 196 84 1,088 TO TO 32 254 TO TO 583 1,083 TO TO

23 46 461,646 1 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO

24 48 678,601 1 205 683 3,669 TO TO TO TO TO TO TO TO TO TO

25 50 1,005,355 1 206 353 3,553 TO TO TO TO TO TO TO TO TO TO

26 52 1,473,184 1 210 568 4,505 TO TO TO TO TO TO TO TO TO TO

27 54 2,174,689 1 212 3,200 11,103 TO TO TO TO TO TO TO TO TO TO

28 56 3,178,178 1 213 1,940 10,042 TO TO TO TO TO TO TO TO TO TO

29 58 4,676,916 2 215 2,190 10,032 TO TO TO TO TO TO TO TO TO TO

30 60 6,819,806 3 216 TO TO TO TO TO TO TO TO TO TO TO TO

31 62 10,008,932 5 219 TO TO TO TO TO TO TO TO TO TO TO TO

Continued on next page

49

Table A . l (continued from previous page)

MEDUSA;oop MEDUSA 6 o s e SliQSim DDSIM Quas [CFLDBDD] Quas [WBDD] Quas [BDD]

circuit #q #G time mem time mem time mem time mem time mem time mem time mem
32 64 14,566,326 10 220 T O T O T O T O T O T O T O T O T O T O T O T O

33 66 21,328,090 20 220 T O T O T O T O T O T O T O T O T O T O T O T O

34 68 30,985,878 41 222 T O T O T O T O T O T O T O T O T O T O T O T O

35 70 45,276,660 84 224 T O T O T O T O T O T O T O T O T O T O T O T O

—
E
>

36 72 65,677,990 171 226 T O T O T O T O T O T O T O T O T O T O T O T O

G
R

O

37 74 95,794,310 349 229 T O T O T O T O T O T O T O T O T O T O T O T O

G
R

O

38 76 138,767,877 814 234 T O T O T O T O T O T O T O T O T O T O T O T O

39 78 202,070,979 1,550 242 T O T O T O T O T O T O T O T O T O T O T O T O

40 80 292,359,936 3,290 251 T O T O T O T O T O T O T O T O T O T O T O T O

41 82 425,106,417 T O T O T O T O T O T O T O T O T O T O T O T O T O T O

07 03 05 10 897 22 204 0 22 0 12 0 29 0 157 0 112 0 no

07_ .03. .10 10 2,294 23 1,891 0 27 0 12 0 30 0 458 0 442 0 440

07_ .03. .15 10 3,437 23 2,017 0 35 0 12 0 32 0 458 0 442 0 440

10. .05. .05 15 17,402 44 1,922 0 31 0 13 0 34 1 458 0 445 0 441

10. .05. .10 15 34,793 44 2,084 0 39 1 15 0 40 1 464 0 449 1 446

10. .05. .15 15 52,184 45 2,104 0 38 1 16 0 47 2 462 0 447 1 443

13. .06. .05 19 106,497 65 1,992 1 26 2 21 0 97 1 458 0 446 2 441

13. .06. .10 19 245,744 66 2,090 2 28 1 32 1 213 10 458 1 446 1 442

13. .06. .15 19 384,991 66 2,112 21 102 82 51 11 329 21 588 33 590 137 481

16. .08. .05 24 1,507,322 83 600 8 24 23 130 4 1,235 61 458 7 449 34 442

16. .08. .10 24 3,407,837 88 2,116 16 40 67 260 14 2,712 137 461 15 458 186 451

16. .08. .15 24 5,439,422 87 2,111 34 64 470 412 48 4,336 222 472 281 593 459 479

19. .09. .05 28 9,961,473 108 2,092 211 28 157 799 23 8,289 402 458 48 451 286 443

fin 19. .09. .10 28 26,214,370 109 2,133 172 32 392 1,976 61 21,286 1,050 459 130 452 1,630 450

19. .09. .15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 1,580 459 198 452 2,160 155

22. 11 .05 33 146,800,628 125 922 1,830 38 2,046 10,293 T O T O T O T O 849 454 T O T O

22. 11 .10 33 310,378,445 127 1,387 1,480 39 T O T O T O T O T O T O 1,810 454 T O T O

22. 11 .15 33 448,790,444 128 1,662 3,020 27 T O T O T O T O T O T O 2.650 454 T O T O

25. .12. .05 37 1,107,296,249 147 2,081 T O T O T O T O T O T O T O T O T O T O T O T O

25. .12. .10 37 2,348,810,196 147 2,140 T O T O T O T O T O T O T O T O T O T O T O T O

25. .12. .15 37 3,388,997,557 166 2,211 T O T O T O T O T O T O T O T O T O T O T O T O

28. .14. .05 42 9,395,240,954 229 1,152 T O T O T O T O T O T O T O T O T O T O T O T O

28. .14. .10 42 22,548,578,249 238 1,680 T O T O T O T O T O T O T O T O T O T O T O T O

28. .14. .15 42 37,312,528,274 233 1,935 T O T O T O T O T O T O T O T O T O T O T O T O

31. .15. .05 46 79,456,894,971 662 1,351 T O T O T O T O T O T O T O T O T O T O T O T O

31. .15. .10 46 171,798,691,792 693 1,810 T O T O T O T O T O T O T O T O T O T O T O T O

31. .15. .15 46 277,025,390,495 673 1,973 T O T O T O T O T O T O T O T O T O T O T O T O

34. .17. .05 51 876,173,328,368 T O T O T O T O T O T O T O T O T O T O T O T O T O T O

07. .03. .05 11 3,822 23 2,033 0 40 1 12 0 31 0 459 0 443 1 446

07. .03. .10 11 4,965 24 2,058 0 40 1 12 0 32 0 458 0 443 0 446
07. .03. .15 11 6,108 24 2,092 0 42 1 12 0 33 0 459 0 443 1 446

08. .04. .05 13 8,684 32 2,992 17 506 60 21 1 41 60 952 3 587 T O T O

08. .04. .10 13 11,999 31 2,115 1 44 1 13 0 38 1 459 0 444 T O T O

08. .04. .15 13 15,314 31 2,128 1 50 5 13 0 33 122 1,542 0 444 T O T O

09. .04. .05 14 17,389 42 3,581 73 2,325 483 80 4 52 266 2,085 24 1,020 T O T O

Q
C

09. .04. .10 14 24,032 38 2,127 1 54 15 14 0 46 2 459 0 445 T O T O Q
C

09. .04. .15 14 30,675 38 2,126 2 62 20 14 0 37 970 5,546 0 446 T O T O

10. .05. .05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 T O T O

10. .05. .10 16 56,282 61 6,006 872 3,487 T O T O 24 61 T O T O 694 5,054 T O T O

10. .05. .15 16 77,765 15 2,164 6 110 T O T O 1 65 T O T O 0 447 T O T O

11 .05. .05 17 81,898 52 2,116 5 109 T O T O 0 65 T O T O 0 447 T O T O

11 .05. .10 17 112,603 96 6,661 T O T O T O T O 98 90 T O T O T O T O T O T O

11 05 .15 17 155,590 52 2,163 T O T O T O T O 1 125 T O T O T O T O T O T O

Continued on next page

50

Table A . l (continued from previous page)

MEDUSA / o o p MEDUS A (, a s e Sl iQSim DDSIM Quas[CFLOBDD] Quas [WBDD] Quas[BDD]

circuit #q #G time mem time mem time mem time mem time mem time mem time mem
12_ _06_ 05 19 188,390 219 7,394 TO TO TO TO 941 144 TO TO TO TO TO TO

12 _06_ _10 19 258,005 238 7,536 TO TO TO TO 1,227 200 TO TO TO TO TO TO

12 _06_ _15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO TO TO
o
a 13 _06_ _05 20 376,807 891 8,891 TO TO TO TO TO TO TO TO TO TO TO TO o
a

13 _06_ _10 20 516,054 934 9,166 TO TO TO TO TO TO TO TO TO TO TO TO

13 _06_ _15 20 753,593 919 9.502 TO TO TO TO TO TO TO TO TO TO TO TO

14_ 07_ _05 22 884,705 TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Table A . 2 : Results for the S T R A I G H T L I N E benchmark set. The columns "#q" and " # G "
denote the number of qubits and gates, respectively. Times are given in seconds ("0.00"
denotes a t ime <0.01s), memory i n M i B . T O denotes a timeout, E R R denotes an
error, num denotes the fastest t ime, and num denotes the fastest accurate simulator
(MEDUSA or SliQSim). Quokka# is not marked as the fastest because it does not compute
the quantum state representation.

M E D U S A 6 a s e S l i Q S i m DDSIM Quas [CFLOBDD] Quas [WBDD] Quas [BDD] Quokka#

circuit #q # G time mem time mem time mem time mem time mem time mem time mem

1 2 6 0.02 21 0.01 12 0.00 29 0.02 456 0.00 438 0.00 439 0.07 11
2 3 8 0.00 21 0.01 12 0.00 29 0.00 457 0.00 438 0.00 439 0.00 11

3 4 11 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.00 11
4 5 13 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.00 11

5 6 16 0.00 21 0.01 12 0.00 29 0.00 456 0.00 440 0.00 439 0.00 11

6 7 18 0.00 21 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.00 11

7 8 21 0.00 22 0.01 12 0.00 29 0.01 456 0.01 441 0.00 439 0.00 11

8 9 23 0.00 22 0.01 12 0.00 29 0.01 456 0.01 441 0.00 439 0.00 11

9 10 26 0.00 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 439 0.00 11

10 11 28 0.01 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 439 0.00 11

11 12 31 0.01 23 0.01 12 0.00 29 0.01 458 0.01 443 0.00 439 0.00 11
12 13 33 0.01 23 0.01 12 0.00 29 0.01 458 0.01 443 0.00 440 0.00 11

13 14 36 0.01 23 0.01 12 0.00 29 0.01 458 0.01 444 0.00 440 0.00 11

> 1 4 15 38 0.01 24 0.01 12 0.00 29 0.01 457 0.01 444 0.00 440 0.00 11

« 15 16 41 0.01 25 0.01 12 0.00 29 0.01 458 0.01 445 0.00 440 0.00 11

16 17 43 0.01 25 0.01 12 0.00 29 0.01 458 0.01 445 0.00 440 0.00 11

17 18 46 0.01 25 0.01 12 0.00 29 0.01 458 0.01 446 0.00 440 0.01 11

18 19 48 0.01 25 0.01 12 0.00 29 0.01 458 0.01 446 0.00 440 0.01 11

19 20 51 0.01 26 0.01 12 0.00 29 0.01 457 0.01 447 0.00 440 0.01 11

20 21 53 0.01 26 0.01 12 0.00 29 0.02 458 0.01 447 0.00 440 0.01 11
21 22 56 0.01 26 0.01 12 0.00 29 0.02 458 0.01 448 0.00 440 0.01 11
22 23 58 0.01 27 0.01 12 0.00 29 0.02 458 0.01 448 0.00 440 0.01 11

23 24 61 0.01 27 0.01 12 0.00 29 0.02 458 0.01 449 0.00 440 0.01 11
24 25 63 0.01 27 0.01 12 0.00 29 0.02 457 0.01 449 0.00 440 0.01 11

25 26 66 0.01 28 0.01 12 0.00 29 0.02 458 0.01 450 0.01 440 0.01 11

26 27 68 0.01 28 0.01 12 0.00 29 0.02 458 0.01 450 0.01 440 0.01 11

27 28 71 0.01 29 0.01 12 0.00 29 0.02 458 0.01 451 0.01 440 0.01 11

28 29 73 0.07 29 0.01 12 0.00 29 0.02 457 0.01 451 0.01 440 0.01 11

Continued on next page

51

Table A . 2 (continued from previous page)

M E D U S A 6 a s e S l i Q S i m DDSIM Quas [CFLOBDD] Quas [WBDD] Quas [BDD] Quokka#

circuit #q # G time mem time mem time mem time mem time mem time mem time mem

29 30 76 0.02 29 0.01 12 0.00 29 0.02 458 0.01 452 0.01 440 0.01 11

30 31 78 0.01 29 0.01 12 0.00 29 0.02 458 0.01 453 0.01 440 0.01 11

31 32 81 0.01 30 0.01 12 0.00 29 0.02 458 0.01 453 0.01 440 0.01 11

32 33 83 0.01 30 0.01 12 0.00 41 0.02 458 0.01 453 0.01 440 0.01 11

33 34 86 0.01 31 0.01 12 0.00 39 0.03 458 0.01 454 0.01 440 0.01 11

34 35 88 0.01 31 0.01 12 0.00 42 0.03 458 0.01 454 0.01 440 0.01 11

35 36 91 0.01 31 0.01 12 0.00 41 0.03 458 0.01 455 0.01 440 0.01 11

36 37 93 0.01 32 0.01 12 0.00 41 0.03 458 0.01 455 0.01 440 0.01 11

37 38 96 0.01 32 0.01 12 0.00 42 0.03 458 0.01 456 0.01 441 0.01 11

38 39 98 0.01 32 0.01 12 0.01 41 0.03 458 0.01 457 0.01 441 0.01 11

39 40 101 0.02 33 0.01 12 0.01 44 0.03 458 0.01 457 0.01 440 0.01 11

40 41 103 0.02 33 0.01 12 0.01 45 0.03 458 0.01 458 0.01 440 0.01 11

41 42 106 0.02 35 0.01 12 0.01 42 0.03 458 0.01 458 0.01 441 0.01 11

42 43 108 0.02 34 0.01 12 0.01 46 0.03 458 0.01 459 0.01 441 0.01 11

43 44 i l l 0.02 34 0.01 12 0.01 45 0.03 458 0.01 459 0.01 441 0.01 11

44 45 113 0.02 34 0.01 12 0.01 45 0.03 458 0.01 460 0.01 441 0.01 11

45 46 116 0.02 34 0.01 12 0.01 48 0.03 458 0.01 460 0.01 441 0.01 11

46 47 118 0.02 34 0.01 12 0.01 47 0.03 458 0.01 461 0.01 441 0.01 11

47 48 121 0.02 35 0.02 12 0.01 45 0.03 458 0.02 461 0.01 441 0.01 11

48 49 123 0.02 35 0.02 12 0.01 48 0.03 458 0.01 462 0.01 441 0.01 11

49 50 126 0.02 35 0.02 12 0.01 49 0.04 458 0.02 463 0.02 441 0.01 11

50 51 128 0.02 35 0.02 12 0.01 48 0.04 458 0.02 463 0.02 441 0.01 11

« 52

52 131 0.02 37 0.02 12 0.01 49 0.04 458 0.02 464 0.02 441 0.01 11

« 52 53 133 0.02 36 0.01 12 0.01 48 0.04 458 0.02 464 0.02 441 0.01 11

53 54 136 0.02 36 0.02 12 0.01 51 0.04 458 0.02 465 0.02 441 0.01 11

54 55 138 0.02 36 0.02 12 0.01 50 0.04 458 0.02 465 0.02 441 0.01 11

55 56 141 0.02 36 0.02 12 0.01 53 0.04 458 0.02 466 0.02 441 0.01 11

56 57 143 0.02 36 0.02 12 0.01 51 0.04 458 0.02 466 0.02 441 0.01 11

57 58 146 0.02 36 0.02 12 0.01 51 0.04 458 0.02 467 0.02 441 0.01 11

58 59 148 0.02 38 0.02 12 0.01 52 0.04 458 0.02 467 0.02 441 0.01 11

59 60 151 0.02 37 0.02 12 0.01 51 0.04 458 0.02 468 0.02 441 0.01 11

60 61 153 0.02 37 0.02 12 0.01 51 0.04 458 0.02 468 0.02 441 0.01 11

61 62 156 0.02 37 0.02 12 0.01 53 0.04 458 0.02 469 0.02 441 0.01 11

62 63 158 0.02 37 0.02 12 0.01 52 0.04 458 0.02 469 0.02 441 0.01 11

63 64 161 0.02 37 0.02 12 0.01 53 0.04 458 0.02 470 0.03 442 0.01 11

64 65 163 0.02 37 0.02 12 0.01 53 0.05 458 0.02 470 0.03 442 0.01 11

65 66 166 0.02 37 0.02 12 0.01 54 0.05 458 0.02 471 0.03 442 0.01 11

66 67 168 0.02 37 0.02 12 0.01 54 0.05 458 0.02 471 0.03 442 0.01 11

67 68 171 0.02 41 0.02 12 0.01 55 0.05 458 0.02 472 0.03 442 0.01 11

68 69 173 0.02 37 0.02 12 0.02 55 0.05 458 0.02 472 0.03 442 0.01 12

69 70 176 0.03 37 0.02 12 0.02 56 0.05 458 0.02 473 0.03 442 0.01 12

70 71 178 0.03 37 0.02 12 0.02 56 0.05 458 0.02 474 0.03 442 0.01 12

71 72 181 0.03 37 0.02 12 0.02 57 0.05 458 0.02 474 0.03 442 0.01 12

72 73 183 0.03 37 0.02 12 0.02 57 0.05 458 0.02 475 0.03 442 0.01 12

73 74 186 0.03 37 0.02 12 0.02 58 0.06 458 0.03 475 0.03 442 0.01 12

74 75 188 0.03 37 0.03 12 0.02 59 0.06 458 0.02 476 0.03 442 0.01 12

Continued on next page

52

Table A . 2 (continued from previous page)

MEDUSA(,ase SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
c i r c u i t # q # G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

75 76 191 0.03 37 0.03 12 0.02 59 0.06 458 0.03 476 0.04 442 0.01 12
76 77 193 0.03 37 0.03 12 0.02 60 0.06 458 0.03 477 0.04 442 0.01 12

77 78 196 0.04 37 0.03 12 0.02 60 0.06 458 0.03 477 0.04 442 0.01 12
78 79 198 0.03 37 0.03 12 0.02 60 0.06 458 0.03 478 0.04 442 0.01 12
79 80 201 0.03 40 0.03 12 0.02 61 0.06 458 0.03 478 0.04 442 0.01 12

80 81 203 0.03 38 0.03 12 0.02 61 0.06 458 0.03 479 0.04 442 0.01 12
81 82 206 0.03 37 0.03 12 0.02 62 0.06 458 0.03 479 0.04 442 0.01 12
82 83 208 0.03 37 0.03 12 0.02 62 0.06 458 0.03 480 0.04 442 0.01 12
83 84 211 0.03 39 0.03 12 0.02 63 0.06 458 0.03 480 0.04 443 0.01 12
84 85 213 0.03 37 0.03 12 0.00 64 0.06 458 0.03 481 0.04 443 0.01 12
85 86 216 0.03 38 0.03 12 0.00 64 0.06 458 0.03 481 0.05 443 0.01 12

86 87 218 0.03 38 0.03 12 0.00 64 0.06 458 0.03 482 0.05 443 0.01 12

88
88 221 0.03 39 0.03 12 0.00 65 0.06 458 0.03 482 0.05 443 0.01 12

88 89 223 0.03 38 0.03 12 0.00 65 0.07 458 0.03 484 0.05 443 0.01 12
89 90 226 0.03 37 0.03 12 0.00 66 0.07 458 0.03 484 0.05 443 0.01 12

90 91 228 0.03 38 0.03 12 0.00 66 0.07 458 0.03 485 0.05 443 0.01 12
91 92 231 0.03 37 0.03 12 0.00 67 0.07 458 0.03 485 0.05 443 0.01 12
92 93 233 0.03 38 0.03 12 0.00 67 0.07 458 0.03 486 0.05 443 0.01 12
93 94 236 0.03 40 0.03 12 0.00 68 0.07 458 0.03 486 0.06 443 0.01 12
94 95 238 0.03 38 0.03 12 0.00 68 0.07 458 0.03 487 0.06 443 0.01 12
95 96 241 0.03 38 0.04 12 0.00 69 0.07 458 0.03 487 0.06 443 0.02 12
96 97 243 0.03 37 0.04 13 0.00 69 0.07 458 0.03 488 0.06 443 0.01 12

97 98 246 0.03 38 0.04 13 0.01 70 0.07 458 0.03 488 0.06 444 0.01 12
98 99 248 0.03 37 0.04 13 0.01 71 0.07 458 0.03 489 0.06 443 0.01 12

99 100 251 0.03 40 0.04 13 0.01 71 0.07 458 0.04 489 0.06 444 0.02 12

adder_8 24 330 0.02 34 0.03 12 0.00 29 0.06 458 0.01 449 0.03 441 0.09 13
barenco_tof_ _3 5 20 0.00 22 0.01 12 0.00 29 0.00 456 0.00 439 0.00 440 0.01 11
barenco_tof_ J 7 34 0.00 22 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.01 12
barenco_tof_ _5 9 50 0.01 23 0.01 12 0.00 29 0.01 456 0.01 441 0.00 440 0.01 12
barenco_tof_ JO 19 130 0.01 28 0.01 12 0.00 29 0.03 458 0.01 446 0.01 440 0.03 12
csla_mux_3 15 70 0.01 25 0.01 12 0.00 29 0.01 458 0.01 444 0.00 440 0.01 12
csum_mux_ 9 30 140 0.01 30 0.01 12 0.00 29 0.03 457 0.01 452 0.01 440 0.06 12
gf24_mult 12 65 0.02 24 0.01 12 0.00 29 0.02 458 0.01 443 0.00 440 0.03 12
gf25_mult 15 97 0.01 26 0.01 12 0.00 29 0.02 458 0.01 444 0.01 440 0.02 12
gf26_mult 18 135 0.01 28 0.01 12 0.00 29 0.04 458 0.01 446 0.01 440 0.05 12
gf27_mult 21 179 0.02 32 0.01 12 0.00 29 0.04 457 0.01 447 0.01 441 0.04 13
gf28_mult 24 243 0.02 32 0.02 12 0.00 29 0.05 458 0.01 449 0.02 441 0.05 13
gf29_mult 27 285 0.02 36 0.02 12 0.00 29 0.06 458 0.01 450 0.03 441 0.06 14

1 g£2 1 0_mult 30 347 0.03 35 0.03 12 0.00 29 0.07 458 0.01 452 0.04 442 0.08 14
>• gf21 6 mult

gf232_mult
48 875 0.07 38 0.11 12 0.01 48 0.18 458 0.03 463 0.18 445 0.21 19 >• gf21 6 mult

gf232_mult 96 3,322 0.26 40 1.35 13 0.10 71 0.66 460 0.11 502 0.82 450 0.87 45
gf264_mult 192 12,731 1.82 66 17.11 20 0.75 126 2.59 464 0.68 601 4.43 462 3.56 149
gf21 2 8_mult 384 50,043 20.40 231 264.81 38 5.28 235 10.50 478 4.76 1,159 27.60 498 15.39 570
gf22 5 6_mult 768 198,395 163.00 1,635 TO TO 41.21 538 43.30 531 38.50 4,989 238.00 633 71.28 2,324

grover_5 9 351 0.02 34 0.03 12 0.00 29 0.12 459 0.01 441 0.26 442 TO TO
haml5-low 17 213 0.02 30 0.01 12 0.00 29 0.04 458 0.01 445 0.01 440 0.54 12

haml5-med 17 452 0.02 34 0.04 12 0.00 29 0.10 458 0.01 445 0.07 441 TO TO
haml5-high 20 1,798 0.06 38 0.49 12 0.01 30 0.37 458 0.02 447 0.41 443 TO TO
liwb6 7 109 0.01 24 0.01 12 0.00 29 0.03 458 0.01 440 0.00 440 13.79 12
hwbS 12 6,446 0.16 38 3.70 13 0.03 33 0.95 460 0.04 443 1.03 444 TO TO
hwblO 16 31,764 0.80 51 84.20 15 0.21 38 4.72 466 0.22 447 1.56 445 TO TO
hwbll 15 87,789 2.64 103 660.93 22 0.49 70 12.80 475 0.52 449 1.51 448 TO TO
hwbl2 20 171,482 5.80 205 2,568.02 35 1.13 133 27.20 510 1.35 456 6.43 457 3,193.79 1,070

Continued on next page

53

Table A . 2 (continued from previous page)

MEDUSA 6 a s e Sl iQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#

circuit #q #G time mem time mem time mem time mem time mem time mem time mem

mod5_4 5 23 0.00 22 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.04 11

mod adder 1024 28 1,435 0.06 38 0.31 12 0.01 29 0.30 458 0.02 451 0.34 443 0.23 21

mod_mult_55 9 1!) 0.01 23 0.01 12 0.00 29 0.01 457 0.01 441 0.00 440 0.01 12

mod_red_21 11 108 0.01 25 0.01 12 0.00 29 0.02 458 0.01 442 0.00 440 0.04 12

qela adder 10 36 181 0.02 33 0.01 12 0.00 42 0.04 458 0.01 455 0.01 441 0.03 12

qela com 7 24 153 0.01 30 0.01 12 0.00 29 0.03 458 0.01 449 0.01 440 0.10 12

g qela mod 7 26 291 0.02 33 0.02 12 0.00 29 0.07 458 0.01 450 0.03 441 TO TO

> qft 4
H

T> 159 ERR ERR 0.01 12 0.00 29 ERR ERR ERR ERR ERR ERR 0.11 12

^ rc_adder_6 14 90 0.01 26 0.01 12 0.00 29 0.02 458 0.01 444 0.00 440 0.04 12

tof 3 5 lr> 0.00 21 0.00 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

tof_4 7 2r> 0.00 22 0.01 12 0.00 29 0.01 456 0.01 440 0.00 439 0.01 11

tof 5 9 35 0.01 23 0.01 12 0.00 29 0.01 458 0.01 441 0.00 439 0.01 11

tof 10 19 Sr> 0.01 27 0.01 12 0.00 29 0.02 458 0.01 446 0.00 440 0.02 12

vbe_adder_3 10 50 0.01 23 0.01 12 0.00 29 0.01 456 0.01 442 0.00 440 0.03 12

3 6 5 0.02 21 0.00 12 0.00 29 0.02 457 0.00 440 0.00 439 0.01 11

4 8 7 0.00 21 0.01 12 0.00 29 0.00 457 0.01 441 0.00 439 0.01 11

5 10 !) 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 439 0.01 12

6 12 11 0.00 22 0.01 12 0.00 29 0.00 456 0.01 443 0.00 440 0.02 12

7 14 13 0.01 23 0.01 12 0.00 29 0.00 456 0.01 444 0.00 439 0.01 12

8 16 lr> 0.01 23 0.01 12 0.00 29 0.00 456 0.01 445 0.00 439 0.01 12

9 18 17 0.01 23 0.01 12 0.00 29 0.00 456 0.01 446 0.00 440 0.02 12

10 20 19 0.01 24 0.01 12 0.00 29 0.00 456 0.01 447 0.00 440 0.02 12

11 22 21 0.01 24 0.01 12 0.00 29 0.00 456 0.01 448 0.00 440 0.02 12

12 24 23 0.01 24 0.01 12 0.00 29 0.00 456 0.01 449 0.00 440 0.02 12

13 26 2r> 0.01 25 0.01 12 0.00 29 0.00 456 0.01 450 0.00 440 0.02 12

14 28 27 0.01 25 0.01 12 0.00 29 0.00 456 0.01 451 0.00 440 0.02 12

15 30 29 0.01 25 0.01 12 0.00 29 0.00 456 0.01 452 0.00 440 0.02 12

16 32 31 0.01 26 0.01 12 0.00 29 0.00 456 0.01 453 0.00 440 0.03 12

17 34 33 0.01 26 0.01 12 0.00 40 0.00 456 0.01 454 0.00 440 0.03 12

18 36 35 0.01 26 0.01 12 0.00 41 0.00 456 0.01 455 0.00 440 0.03 12

3 19 38 37 0.01 27 0.01 12 0.00 42 0.00 457 0.01 456 0.00 440 0.03 12

1 20
40 39 0.01 27 0.01 12 0.00 42 0.00 456 0.01 457 0.00 440 0.03 12

H 21

1-
42 11 0.01 28 0.01 12 0.00 46 0.00 456 0.01 458 0.00 440 0.03 12 H 21

1- 44 43 0.01 27 0.01 12 0.00 47 0.00 456 0.01 459 0.00 440 0.03 13

23 46 15 0.01 29 0.01 12 0.00 47 0.00 456 0.01 460 0.00 440 0.03 12

24 48 17 0.01 27 0.01 12 0.00 49 0.00 456 0.01 461 0.00 440 0.04 12

25 50 49 0.01 30 0.01 12 0.00 50 0.00 456 0.01 462 0.00 440 0.04 12

26 52 r>l 0.01 30 0.01 12 0.00 48 0.00 456 0.01 463 0.00 440 0.04 13

27 54 53 0.01 30 0.01 12 0.00 49 0.00 457 0.01 464 0.00 440 0.04 13

28 56 55 0.01 31 0.01 12 0.00 51 0.01 456 0.01 465 0.00 440 0.04 13

29 58 57 0.03 31 0.01 12 0.00 50 0.02 456 0.01 466 0.00 440 0.06 13

30 60 59 0.03 31 0.01 12 0.00 51 0.01 456 0.01 467 0.00 440 0.05 13

31 62 61 0.02 32 0.01 12 0.00 53 0.00 456 0.01 468 0.00 440 0.05 13

32 64 63 0.02 32 0.01 12 0.00 53 0.00 456 0.01 469 0.00 440 0.05 13

33 66 (ir> 0.02 32 0.01 12 0.00 54 0.00 457 0.02 470 0.00 440 0.05 13

34 68 67 0.02 33 0.01 12 0.00 55 0.00 456 0.02 471 0.00 440 0.05 13

35 70 69 0.02 33 0.01 12 0.00 56 0.00 457 0.02 472 0.00 440 0.05 13

36 72 71 0.02 33 0.01 12 0.00 57 0.00 457 0.02 473 0.00 441 0.05 13

37 74 73 0.02 34 0.01 12 0.00 58 0.00 456 0.02 474 0.00 441 0.05 13

38 76 75 0.02 34 0.01 12 0.00 59 0.00 456 0.02 475 0.00 441 0.05 13

Continued on next page

54

Table A . 2 (continued from previous page)

M E D U S A 6 a s e S l i Q S i m DDSIM Quas [CFLOBDD] Quas [WBDD] Quas [BDD] Quokka#

circuit #q # G time mem time mem time mem time mem time mem time mem time mem

39 78 77 0.02 34 0.01 12 0.00 60 0.00 456 0.02 476 0.00 440 0.06 13

40 80 79 0.02 34 0.01 12 0.00 61 0.00 457 0.02 477 0.01 441 0.06 13

41 82 81 0.02 35 0.01 12 0.00 62 0.00 456 0.02 478 0.01 441 0.06 13

42 84 83 0.02 35 0.01 12 0.00 63 0.00 457 0.02 479 0.01 441 0.06 14

43 86 85 0.03 35 0.01 12 0.00 64 0.00 456 0.02 480 0.01 441 0.06 14

44 88 87 0.02 36 0.01 12 0.00 65 0.00 457 0.02 481 0.01 441 0.06 14

45 90 89 0.02 36 0.01 12 0.00 66 0.00 457 0.02 483 0.01 441 0.07 14

46 92 91 0.03 36 0.01 12 0.00 67 0.00 456 0.02 483 0.01 441 0.07 14

47 94 93 0.02 36 0.01 12 0.00 68 0.00 457 0.02 485 0.01 441 0.07 14

48 96 95 0.02 36 0.01 12 0.00 69 0.00 457 0.02 485 0.01 441 0.07 14

49 98 97 0.02 36 0.01 12 0.00 70 0.00 457 0.02 486 0.01 441 0.07 14

50 100 99 0.02 36 0.01 12 0.00 71 0.00 457 0.02 488 0.01 441 0.07 14

51 102 101 0.03 36 0.01 12 0.00 72 0.00 456 0.02 488 0.01 441 0.07 14

52 104 103 0.03 37 0.01 12 0.00 73 0.00 456 0.02 489 0.01 441 0.08 14

53 106 105 0.03 37 0.01 12 0.00 74 0.00 457 0.02 490 0.01 441 0.07 14

54 108 107 0.03 37 0.01 12 0.00 75 0.00 457 0.02 491 0.01 441 0.08 14

55 110 109 0.03 37 0.01 12 0.00 76 0.00 456 0.03 493 0.01 441 0.08 14

56 112 i l l 0.03 37 0.01 12 0.00 77 0.00 457 0.03 494 0.01 441 0.08 14

57 114 113 0.03 37 0.01 12 0.00 78 0.00 457 0.03 494 0.01 441 0.08 14

58 116 115 0.03 37 0.01 12 0.00 79 0.00 457 0.03 495 0.01 441 0.08 15

59 118 117 0.03 37 0.01 12 0.00 80 0.00 457 0.03 496 0.01 442 0.09 15

3 60
0

120 119 0.03 37 0.01 12 0.00 81 0.00 456 0.03 497 0.01 441 0.09 15

t 61 122 121 0.03 37 0.01 12 0.00 82 0.00 457 0.03 498 0.01 442 0.09 15
o
EH 62
Ü
2 63

124 123 0.03 37 0.01 12 0.00 83 0.00 457 0.03 499 0.01 442 0.09 15 o
EH 62
Ü
2 63

126 125 0.03 37 0.01 12 0.00 84 0.00 456 0.03 500 0.01 442 0.09 15

64 128 127 0.03 37 0.01 12 0.00 85 0.00 457 0.03 501 0.01 442 0.09 15

65 130 129 0.03 37 0.01 12 0.00 86 0.00 457 0.03 502 0.01 442 0.10 15

66 132 131 0.03 37 0.01 12 0.00 87 0.00 457 0.03 504 0.01 442 0.09 15

67 134 133 0.03 37 0.01 12 0.00 88 0.00 456 0.03 505 0.01 442 0.10 15

68 136 135 0.03 37 0.01 12 0.00 89 0.00 456 0.03 505 0.01 442 0.10 15

69 138 137 0.03 37 0.01 12 0.00 90 0.00 457 0.03 506 0.01 442 0.10 15

70 140 139 0.03 38 0.01 12 0.00 91 0.00 456 0.03 508 0.01 442 0.10 15

71 142 141 0.04 39 0.01 13 0.00 92 0.00 456 0.03 508 0.01 442 0.10 15

72 144 143 0.04 37 0.01 13 0.00 93 0.00 456 0.03 509 0.01 442 0.10 15

73 146 145 0.04 38 0.01 13 0.00 94 0.00 456 0.03 511 0.02 442 0.10 16

74 148 147 0.04 39 0.01 13 0.00 95 0.00 457 0.03 511 0.02 442 0.11 16

75 150 149 0.04 37 0.01 13 0.00 96 0.00 456 0.04 513 0.01 442 0.11 16

76 152 151 0.04 37 0.01 13 0.00 97 0.00 457 0.03 513 0.01 442 0.11 16

77 154 153 0.04 38 0.02 13 0.00 98 0.00 457 0.04 516 0.02 443 0.11 16

78 156 155 0.04 38 0.01 13 0.00 99 0.00 456 0.04 517 0.02 442 0.11 16

79 158 157 0.04 38 0.01 13 0.00 100 0.00 457 0.04 518 0.02 443 0.12 16

80 160 159 0.04 37 0.01 13 0.01 101 0.00 457 0.04 519 0.02 443 0.13 16

81 162 161 0.04 37 0.01 13 0.01 102 0.00 457 0.04 520 0.02 443 0.11 16

82 164 163 0.04 40 0.01 13 0.01 103 0.00 456 0.04 521 0.02 443 0.12 16

83 166 165 0.05 38 0.01 13 0.01 104 0.00 456 0.04 522 0.02 443 0.12 16

84 168 167 0.04 40 0.01 13 0.01 105 0.00 457 0.04 523 0.02 443 0.12 16

Continued on next page

55

Table A . 2 (continued from previous page)

MEDUSA 6 a s e S l i Q S i m DDSIM Quas [CFLOBDD] Quas [WBDD] Quas [BDD] Quokka#

circuit #q #G time mem time mem time mem time mem time mem time mem time mem

85 170 169 0.05 38 0.01 13 0.01 106 0.00 457 0.04 523 0.02 443 0.12 16

86 172 171 0.04 38 0.01 13 0.01 107 0.00 457 0.04 525 0.02 443 0.12 16

87 174 173 0.04 40 0.01 13 0.01 108 0.00 456 0.04 526 0.02 443 0.13 17

88 176 175 0.04 37 0.01 13 0.01 109 0.00 457 0.04 527 0.02 443 0.13 17

89 178 177 0.05 37 0.01 13 0.01 110 0.00 457 0.04 528 0.02 443 0.13 16

„ 90 180 179 0.04 38 0.01 13 0.01 111 0.00 458 0.05 529 0.02 443 0.13 17

p 91 182 181 0.05 38 0.01 13 0.01 112 0.00 457 0.05 530 0.02 443 0.13 17

o 92 184 183 0.04 38 0.01 13 0.01 113 0.00 457 0.05 530 0.02 443 0.13 17

Ü 93 186 185 0.04 38 0.02 13 0.01 114 0.00 458 0.05 531 0.02 443 0.13 17

^ 94 188 187 0.05 39 0.01 13 0.01 115 0.00 458 0.05 533 0.02 443 0.14 17

95 190 189 0.04 38 0.02 13 0.01 116 0.00 458 0.05 533 0.02 444 0.14 17

96 192 191 0.05 39 0.02 13 0.01 117 0.00 458 0.05 535 0.02 443 0.14 17

97 194 193 0.05 40 0.02 13 0.01 118 0.00 457 0.05 535 0.02 444 0.14 17

98 196 195 0.05 38 0.01 13 0.01 119 0.00 458 0.05 537 0.02 444 0.15 17

99 198 197 0.06 38 0.02 15 0.01 120 0.00 457 0.05 538 0.02 444 0.15 17

3 9 64 0.01 26 0.01 12 0.00 29 0.01 458 0.01 441 0.00 440 0.03 12

4 12 123 0.01 31 0.01 12 0.00 29 0.02 458 0.01 443 0.02 440 0.10 12

5 15 202 0.02 35 0.02 12 0.00 29 0.03 458 0.01 444 0.12 441 0.30 13

6

O 7

18 357 0.03 37 0.04 12 0.01 30 0.11 460 0.01 446 3.67 446 1.04 15 6

O 7 21 552 0.05 38 0.07 12 0.01 30 0.20 462 0.02 448 75.40 473 2.67 17
S 8 24 939 0.08 38 0.17 12 0.02 30 1.06 485 0.02 451 45.60 467 8.00 21

9 27 1,492 0.12 40 0.45 12 0.04 32 3.15 515 0.03 452 T O T O 20.73 28

10 30 2,433 0.20 42 1.26 12 0.08 34 9.08 595 0.05 456 T O T O 62.68 40

11 33 3,746 0.36 45 3.12 13 0.13 42 48.80 906 0.08 462 T O T O 167.01 56

3 3 9 0.00 21 0.01 12 0.00 29 E R R E R R 0.01 438 E R R E R R 0.03 11

4 4 12 0.00 21 0.01 12 0.00 29 E R R E R R 0.00 439 E R R E R R 0.01 12

5 5 15 0.00 21 0.01 12 0.00 29 E R R E R R 0.01 439 E R R E R R 0.02 12

6 6 18 0.00 22 0.01 12 0.00 29 E R R E R R 0.00 440 E R R E R R 0.01 12

7 7 21 0.00 22 0.01 12 0.00 29 E R R E R R 0.01 440 E R R E R R 0.01 11

8 8 24 0.00 22 0.01 12 0.00 29 E R R E R R 0.01 441 E R R E R R 0.02 12

9 9 27 0.01 23 0.01 12 0.00 29 E R R E R R 0.01 441 E R R E R R 0.00 12

10 10 30 0.00 22 0.01 12 0.00 29 E R R E R R 0.01 442 E R R E R R 0.01 12

11 11 33 0.01 24 0.01 12 0.00 29 E R R E R R 0.01 442 E R R E R R 0.01 12

12 12 36 0.01 25 0.01 12 0.00 29 E R R E R R 0.01 443 E R R E R R 0.01 11

8 1 3 13 39 0.01 24 0.01 12 0.00 29 E R R E R R 0.01 443 E R R E R R 0.01 11

§ 14 14 42 0.01 25 0.01 12 0.00 29 E R R E R R 0.01 444 E R R E R R 0.01 12
0 3 15 15 45 0.01 28 0.01 12 0.00 29 E R R E R R 0.01 444 E R R E R R 0.02 12

16 16 48 0.01 29 0.01 12 0.00 29 E R R E R R 0.01 445 E R R E R R 0.01 12

17 17 51 0.01 25 0.01 12 0.00 29 E R R E R R 0.01 445 E R R E R R 0.01 12

18 18 54 0.01 27 0.01 12 0.00 29 E R R E R R 0.01 446 E R R E R R 0.02 12

19 19 57 0.01 31 0.02 12 0.00 30 E R R E R R 0.01 446 E R R E R R 0.01 12

20 20 60 0.02 32 0.02 12 0.00 29 E R R E R R 0.01 447 E R R E R R 0.01 12

21 21 63 0.02 33 0.02 12 0.00 29 E R R E R R 0.01 447 E R R E R R 0.01 12

22 22 66 0.01 27 0.01 12 0.00 29 E R R E R R 0.01 448 E R R E R R 0.01 12

23 23 69 0.02 32 0.02 12 0.00 29 E R R E R R 0.01 448 E R R E R R 0.02 12

24 24 72 0.01 29 0.01 12 0.00 29 E R R E R R 0.01 449 E R R E R R 0.01 12

Continued on next page

56

Table A . 2 (continued from previous page)

M E D U S A 6 a s e S l i Q S i m DDSIM Quas [CFLOBDD] Quas [WBDD] Quas [BDD] Quokka#

circuit #q # G time mem time mem time mem time mem time mem time mem time mem

25 25 75 0.03 36 0.02 12 0.00 29 ERR ERR 0.01 449 ERR ERR 0.01 12

26 26 78 0.02 35 0.04 12 0.00 29 ERR ERR 0.01 450 ERR ERR 0.02 12

27 27 81 0.02 35 0.04 12 0.00 29 ERR ERR 0.01 450 ERR ERR 0.02 12

28 28 84 0.03 37 0.05 12 0.01 29 ERR ERR 0.01 451 ERR ERR 0.02 12

29 29 87 0.02 33 0.02 12 0.00 29 ERR ERR 0.01 451 ERR ERR 0.01 12

30 30 90 0.02 35 0.05 12 0.00 29 ERR ERR 0.01 452 ERR ERR 0.02 12

31 31 93 0.03 37 0.05 12 0.00 29 ERR ERR 0.01 453 ERR ERR 0.04 12

32 32 96 0.02 36 0.04 12 0.01 29 ERR ERR 0.01 453 ERR ERR 0.02 12

33 33 99 0.05 37 0.10 12 0.01 41 ERR ERR 0.02 454 ERR ERR 0.03 12

34 34 102 0.03 37 0.05 12 0.01 41 ERR ERR 0.01 454 ERR ERR 0.01 12

35 35 105 0.04 37 0.09 13 0.00 40 ERR ERR 0.01 455 ERR ERR 0.02 12

36 36 108 0.03 38 0.05 12 0.01 43 ERR ERR 0.01 456 ERR ERR 0.03 12

37 37 111 0.05 38 0.10 12 0.01 40 ERR ERR 0.01 456 ERR ERR 0.01 12

38 38 114 0.02 36 0.05 12 0.00 42 ERR ERR 0.01 456 ERR ERR 0.02 12

39 39 117 0.03 39 0.06 12 0.00 41 ERR ERR 0.01 457 ERR ERR 0.01 12

40 40 120 0.04 37 0.07 12 0.00 43 ERR ERR 0.01 458 ERR ERR 0.03 12

41 41 123 0.04 38 0.12 13 0.01 45 ERR ERR 0.02 459 ERR ERR 0.02 12

42 42 126 0.05 40 0.11 12 0.01 45 ERR ERR 0.02 459 ERR ERR 0.02 12

43 43 129 0.02 35 0.03 12 0.00 45 ERR ERR 0.01 459 ERR ERR 0.02 12

44 44 132 0.03 39 0.07 12 0.00 46 ERR ERR 0.02 459 ERR ERR 0.03 12

45 45 135 0.08 38 0.12 12 0.01 46 ERR ERR 0.02 461 ERR ERR 0.01 12

46
—<

46 138 0.20 40 0.19 12 0.05 46 ERR ERR 0.03 463 ERR ERR 0.02 12

O 47
Q

47 141 0.06 37 0.05 12 0.00 45 ERR ERR 0.02 461 ERR ERR 0.02 12

5 48 48 144 0.03 37 0.05 12 0.01 47 ERR ERR 0.02 462 ERR ERR 0.01 12

* 49 49 147 0.04 38 0.13 14 0.01 48 ERR ERR 0.02 462 ERR ERR 0.02 12

50 50 150 0.06 40 0.12 12 0.01 50 ERR ERR 0.03 463 ERR ERR 0.01 12

51 51 153 0.03 40 0.11 14 0.01 48 ERR ERR 0.02 463 ERR ERR 0.02 12

52 52 156 0.04 37 0.07 12 0.01 49 ERR ERR 0.02 464 ERR ERR 0.04 12

53 53 159 0.14 40 0.08 12 0.03 49 ERR ERR 0.03 465 ERR ERR 0.02 12

54 54 162 0.08 37 0.12 12 0.01 49 ERR ERR 0.02 465 ERR ERR 0.02 12

55 55 165 0.18 40 0.21 12 0.04 49 ERR ERR 0.03 467 ERR ERR 0.03 12

56 56 168 0.05 37 0.08 13 0.01 51 ERR ERR 0.02 466 ERR ERR 0.04 12

57 57 171 0.17 42 0.14 12 0.02 52 ERR ERR 0.03 467 ERR ERR 0.04 12

58 58 174 0.06 38 0.09 12 0.02 51 ERR ERR 0.02 467 ERR ERR 0.03 12

59 59 177 0.08 38 0.19 15 0.02 51 ERR ERR 0.02 468 ERR ERR 0.05 12

60 60 180 0.21 42 0.20 12 0.09 51 ERR ERR 0.05 469 ERR ERR 0.02 12

61 61 183 0.08 40 0.09 13 0.02 51 ERR ERR 0.02 469 ERR ERR 0.02 12

62 62 186 0.05 40 0.13 14 0.01 53 ERR ERR 0.02 469 ERR ERR 0.02 12

63 63 189 0.10 40 0.18 14 0.04 53 ERR ERR 0.03 470 ERR ERR 0.02 12

64 64 192 0.05 38 0.12 14 0.01 53 ERR ERR 0.02 470 ERR ERR 0.02 12

65 65 195 0.09 39 0.18 13 0.01 53 ERR ERR 0.03 472 ERR ERR 0.02 12

66 66 198 0.05 38 0.12 15 0.01 54 ERR ERR 0.02 472 ERR ERR 0.04 12

67 67 201 0.63 48 0.24 14 0.26 54 ERR ERR 0.13 481 ERR ERR 0.06 12

68 68 204 0.43 44 0.19 13 0.15 55 ERR ERR 0.07 477 ERR ERR 0.04 12

69 69 207 0.18 42 0.23 14 0.02 55 ERR ERR 0.03 474 ERR ERR 0.05 12

70 70 210 0.16 40 0.14 13 0.04 56 ERR ERR 0.04 475 ERR ERR 0.02 12

Continued on next page

57

Table A . 2 (continued from previous page)

MEDUSA 6 a s e Sl iQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#

circuit #q #G time mem time mem time mem time mem time mem time mem time mem
71 71 213 0.07 38 0.18 14 0.01 56 ERR ERR 0.03 475 ERR ERR 0.02 12

72 72 216 0.21 42 0.23 13 0.04 57 ERR E R R 0.04 476 ERR ERR 0.04 12

73 73 219 0.38 46 0.24 12 0.22 57 ERR E R R 0.06 479 ERR ERR 0.06 12

74 74 222 0.39 43 0.33 13 0.49 58 ERR E R R 0.08 480 ERR ERR 0.04 12

75 75 225 0.30 42 0.24 12 0.07 59 ERR E R R 0.05 478 ERR ERR 0.06 12

76 76 228 0.41 44 0.18 12 0.09 59 ERR E R R 0.05 481 ERR ERR 0.02 12

77 77 231 0.82 50 0.37 13 0.45 60 ERR E R R 0.07 481 ERR ERR 0.03 12

78 78 234 0.70 46 0.30 14 0.40 60 ERR E R R 0.14 486 ERR ERR 0.03 12

79 79 237 0.31 42 0.29 14 0.12 60 ERR E R R 0.05 482 ERR ERR 0.03 12

80 80 240 0.23 42 0.26 14 0.05 61 ERR E R R 0.04 481 ERR ERR 0.03 12

81 81 243 0.34 44 0.29 12 0.22 62 ERR E R R 0.06 483 ERR ERR 0.02 12

82 82 246 0.22 42 0.21 14 0.05 62 ERR E R R 0.04 481 ERR ERR 0.03 12

83 83 249 0.44 44 0.25 12 0.14 63 ERR E R R 0.07 484 ERR ERR 0.03 12

2 84 o
§ 8 5

84 252 0.16 39 0.28 13 0.05 63 ERR E R R 0.04 483 ERR ERR 0.08 12 2 84 o
§ 8 5 85 255 1.00 52 0.47 15 2.12 64 ERR E R R 0.11 485 ERR ERR 0.03 12

tí 86 86 258 15.30 214 0.48 14 2.25 72 ERR E R R 3.25 553 ERR ERR 0.07 12

87 87 261 0.58 46 0.28 12 0.15 64 ERR E R R 0.06 486 ERR ERR 0.15 13

88 88 264 0.15 39 0.30 16 0.04 65 ERR E R R 0.04 483 ERR ERR 0.03 12

89 89 267 9.48 105 0.67 14 0.72 66 ERR E R R 0.59 492 ERR ERR 0.06 13

90 90 270 0.53 44 0.24 13 0.07 66 ERR E R R 0.06 488 ERR ERR 0.03 12

91 91 273 0.33 44 0.25 12 0.03 66 ERR E R R 0.04 486 ERR ERR 0.03 12

92 92 276 0.33 42 0.36 13 0.13 67 ERR E R R 0.06 489 ERR ERR 0.07 12

93 93 279 1.68 62 0.32 13 0.18 68 ERR E R R 0.11 494 ERR ERR 0.05 12

94 94 282 79.60 337 0.78 18 4.45 76 ERR E R R 74.30 521 ERR ERR 0.08 13

95 95 285 0.25 40 0.34 15 0.07 68 ERR E R R 0.06 488 ERR ERR 0.03 12

96 96 288 0.40 44 0.34 14 0.10 69 ERR E R R 0.06 493 ERR ERR 0.12 13

97 97 291 5.70 118 0.42 13 1.47 78 ERR E R R 0.42 525 ERR ERR 0.03 13

98 98 294 0.57 48 0.32 14 0.11 70 ERR E R R 0.06 494 ERR ERR 0.03 12

99 99 297 9.58 173 0.38 12 2.61 79 ERR ERR 0.67 526 ERR ERR 0.08 13

0410184 169 14 46 0.01 23 0.01 12 0.00 29 0.00 458 0.01 444 0.00 440 0.01 12

4gt l l 82 r> 12 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 440 0.01 11

4gt l l 83 r> 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

4gt l l 84 r> 3 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

4gt l l -v l 85 r> 4 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

4mod5-bdd 287 7 8 0.00 21 0.01 12 0.00 29 0.00 456 0.01 440 0.00 439 0.01 11

add8 172 25 32 0.01 24 0.01 12 0.00 29 0.01 458 0.01 449 0.00 440 0.06 12

add16 174 49 64 0.01 30 0.01 12 0.00 49 0.01 458 0.01 462 0.00 440 0.13 12

add32 183 97 128 0.03 37 0.01 12 0.00 70 0.02 458 0.03 487 0.01 441 0.39 13

0 add64 184

^ alu-vO 27

tí alu-vl 28

193 256 0.05 37 0.02 13 0.02 118 0.04 459 0.06 537 0.04 445 1.28 15 0 add64 184

^ alu-vO 27

tí alu-vl 28

r> 6 0.00 21 0.00 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

0 add64 184

^ alu-vO 27

tí alu-vl 28 r> 7 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

alu-vl 29 r> 7 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

alu-v2 33 r> 7 0.00 21 0.01 12 0.00 29 0.00 458 0.01 439 0.00 439 0.01 11

alu-v3 34 r> 7 0.00 21 0.01 12 0.00 29 0.00 457 0.00 439 0.00 439 0.01 11

alu-v3 35 r> 7 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

alu-v4 37 r> 7 0.00 21 0.01 12 0.00 29 0.00 457 0.00 439 0.00 440 0.01 11

alu-bdd 288 7 9 0.00 19 0.01 12 0.00 29 0.00 456 0.01 440 0.00 439 0.01 11

apcx2 289 498 1,746 0.40 44 0.10 16 0.29 271 0.13 462 0.41 750 0.80 485 0.91 46

apcxS 290 1,025 2,909 1.75 62 0.37 44 1.03 536 0.26 467 1.33 1,214 3.95 516 2.11 73

avg8_325 320 1,757 0.21 40 0.07 14 0.12 182 0.12 461 0.31 633 0.30 457 TO TO

Continued on next page

58

Table A . 2 (continued from previous page)

M E D U S A t e e S l i Q S i m DDSIM Quas [CFLGBDD] Quas[WBDD] Quas[BDD] Quokka#

c i r c u i t # q # G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

avgl6_324 576 3,484 0.52 46 0.17 18 0.52 311 0.22 465 1.03 806 1.25 491 TO TO
bw_291 87 307 0.03 37 0.02 12 0.01 64 0.02 458 0.03 482 0.02 443 0.14 16

ent3-5_179 16 25 0.01 23 0.01 12 0.00 29 0.00 458 0.01 445 0.00 440 0.05 12
eps_292 923 2,763 1.19 58 0.21 31 1.25 485 0.22 465 1.09 1,035 2.82 528 1.39 60
cyclel0_293 39 78 0.01 29 0.01 12 0.00 41 0.02 458 0.01 456 0.00 440 0.03 12

decod24-v0_38 4 (i 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.03 11

decod24-v2_43 4 (i 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

decod24-enable_ 125 (i !) 0.00 21 0.01 12 0.00 29 0.00 456 0.01 440 0.00 440 0.01 11
decod24-bdd_294 (i 11 0.00 21 0.01 12 0.00 29 0.00 456 0.00 440 0.00 439 0.01 11

e64-bdd_295 195 387 0.06 38 0.02 13 0.03 119 0.03 458 0.07 543 0.06 448 0.11 16
ex-l_166 3 4 0.00 21 0.00 12 0.00 29 0.00 456 0.00 438 0.00 440 0.01 11

exl_226 (i 7 0.00 21 0.01 12 0.00 29 0.00 457 0.01 440 0.00 439 0.02 11

ex5p_296 206 G47 0.08 40 0.03 13 0.06 124 0.05 459 0.09 548 0.10 449 0.28 21

fredkin_6 3 3 0.00 21 0.01 12 0.00 29 0.00 456 0.00 438 0.00 440 0.03 11

frg2_297 1,219 3,724 2.32 93 0.50 49 1.52 633 0.32 469 1.90 1,307 6.25 498 2.15 84
ham3_102 3 5 0.00 21 0.01 12 0.00 29 0.00 457 0.00 438 0.00 439 0.01 11

ham7_106 7 25 0.00 21 0.01 12 0.00 29 0.00 458 0.01 440 0.00 439 0.04 11

ham7_299 21 (.1 0.01 24 0.01 12 0.00 29 0.00 457 0.01 447 0.00 440 0.02 12

haml5_298 45 153 0.01 30 0.01 12 0.00 45 0.02 458 0.01 460 0.01 440 0.04 13
hwb5_300 28 88 0.01 31 0.01 12 0.00 29 0.01 458 0.01 451 0.00 440 0.04 13
hwb6_301 46 159 0.02 31 0.01 12 0.00 45 0.01 458 0.01 460 0.01 441 0.07 14
hwb7_302 73 281 0.03 37 0.02 12 0.01 58 0.03 458 0.02 475 0.02 442 0.13 16
hwb8_303 112 449 0.05 38 0.02 12 0.02 77 0.04 459 0.04 497 0.04 444 0.21 19
hwb9_304 170 699 0.09 38 0.03 13 0.05 106 0.06 460 0.08 530 0.08 449 0.36 24

mini_alu_305 10 20 0.00 22 0.01 12 0.00 29 0.00 456 0.01 442 0.00 440 0.01 11

mod5adder_306 32 90 0.01 28 0.01 12 0.00 29 0.01 458 0.01 453 0.00 440 0.04 13
mod5d2_70 5 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

mod5mils_71 5 5 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

one-two-three-v2 _100 5 8 0.00 21 0.01 12 0.00 29 0.00 458 0.00 439 0.00 439 0.01 11

one-two-three-v3 _101 5 8 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

parity_247 17 32 0.01 23 0.01 12 0.00 29 0.01 458 0.01 445 0.00 439 0.01 11

pde_307 619 2,080 0.74 48 0.15 21 0.63 332 0.19 464 0.58 812 1.20 505 1.03 49

peres_9 3 2 0.00 21 0.00 12 0.00 29 0.00 456 0.00 438 0.00 439 0.01 11

plus63mod4096_ 309 23 49 0.01 26 0.01 12 0.00 29 0.00 458 0.01 448 0.00 440 0.01 12
plus63mod8192_ 310 25 53 0.01 26 0.01 12 0.00 29 0.00 458 0.01 449 0.00 440 0.01 12
plusl27mod8192 _308 25 54 0.01 26 0.01 12 0.00 29 0.00 458 0.01 449 0.00 440 0.01 12

rd32_270 5 !) 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11

rd32_271 5 !) 0.00 21 0.01 12 0.00 29 0.00 456 0.00 439 0.00 439 0.01 11
rd32_272 5 (i 0.00 21 0.00 12 0.00 29 0.00 457 0.00 439 0.00 440 0.01 11

rd53_138 8 12 0.00 21 0.01 12 0.00 29 0.00 456 0.01 441 0.00 439 0.01 12

rd53_311 13 .",4 0.01 23 0.01 12 0.00 29 0.00 458 0.01 443 0.00 440 0.02 12

rd73_140 10 20 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 440 0.01 12
rd73_312 25 73 0.01 25 0.01 12 0.00 29 0.01 458 0.01 449 0.00 440 0.03 12
rd84_142 15 28 0.01 23 0.01 12 0.00 29 0.00 456 0.01 444 0.00 440 0.02 12

rd84_313 34 104 0.01 28 0.01 12 0.00 40 0.01 458 0.01 454 0.00 440 0.04 13
seq_314 1,617 5,990 4.96 98 1.35 109 4.11 835 0.54 477 3.71 1,776 14.00 537 3.65 124

spla_315 489 1,709 0.40 44 0.10 17 0.37 266 0.13 462 0.39 747 0.72 485 0.89 46
sym6_316 14 29 0.01 23 0.01 12 0.00 29 0.00 457 0.01 444 0.00 440 0.02 12

sym9_146 12 28 0.00 22 0.01 12 0.00 29 0.00 456 0.01 443 0.00 439 0.02 12

sym9_192 12 28 0.00 22 0.01 12 0.00 29 0.00 457 0.01 443 0.00 440 0.02 12

sym9_317 27 62 0.01 26 0.01 12 0.00 29 0.01 458 0.01 450 0.00 440 0.03 12

sys6-v0_lll 10 20 0.00 22 0.01 12 0.00 29 0.00 457 0.01 442 0.00 440 0.01 12

Continued on next page

59

Table A . 2 (continued from previous page)

M E D U S A ^ S l i Q S i m DDSIM Quas[CFLOBDD] Quas[WBDD] Quas [BDD] Quokka#

c i r c u i t # q # G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

urfl_149 9 11,554 0.46 22 0.33 14 0.04 33 0.12 458 0.07 441 0.10 440 TO TO
urf2_152 8 5,030 0.07 22 0.15 13 0.02 34 0.06 458 0.03 441 0.07 440 TO TO

cq urf3_155
^ urf4_187
PH urf5_158

10 20,408 0.34 22 0.75 17 0.08 40 0.25 458 0.13 442 0.38 441 2,902.70 SSI cq urf3_155
^ urf4_187
PH urf5_158

11 32,004 0.38 21 0.90 LS 0.10 45 0.31 458 0.19 442 0.44 441 TO TO
cq urf3_155
^ urf4_187
PH urf5_158 9 10,270 0.43 22 0.29 14 0.03 32 0.12 458 0.06 441 0.15 440 TO TO

urf6_160 15 10,740 0.13 23 0.31 14 0.03 32 0.14 458 0.08 445 0.17 441 TO TO
xor5_254 0 7 0.02 21 0.00 12 0.00 29 0.01 457 0.02 440 0.00 439 0.12 11
_443 261 1,701 TO TO 71.67 154 TO TO TO TO TO TO TO TO ERR ERR
add04_184 193 385 0.20 204 0.03 14 0.10 US 0.10 400 0.08 545 0.00 440 ERR ERR
apcx2_289 498 1,803 TO TO 1,430.24 77 TO TO TO TO TO TO TO TO ERR ERR
callif_32_439 130 754 TO TO 1.80 35 TO TO TO TO TO TO TO TO ERR ERR
cps_292 923 3,105 TO TO 2,050.41 144 TO TO 1,390.00 5,788 TO TO TO TO ERR ERR
cpu_alu_10bit_400 405 0,552 ERR ERR TO TO TO TO TO TO TO TO TO TO ERR ERR
cpu_control_unit_402 392 1,537 TO TO 474.11 138 TO TO TO TO TO TO TO TO ERR ERR

ffl cpu_rcgistcr_32_405 328 1,978 0.46 214 0.09 15 0.42 195 0.62 469 0.71 668 0.34 457 ERR ERR
> e64-bdd 295
Pi cx5p_290

195 516 1.98 239 2.50 14 2.03 127 0.66 477 0.54 614 1.99 490 ERR ERR > e64-bdd 295
Pi cx5p_290 206 736 7.61 283 12.15 21 3.57 133 1.03 489 1.15 691 6.42 548 ERR ERR

hwb9_304 170 774 33.00 663 13.58 20 12.09 115 3.75 559 4.98 1.105 22.10 570 ERR ERR
lu_326 299 831 TO TO 7.72 33 TO TO TO TO TO TO TO TO ERR ERR
ncstcdif2_32_445 263 1,304 TO TO 316.18 120 TO TO TO TO TO TO TO TO ERR ERR
pdc_307 619 2,319 TO TO TO TO TO TO TO TO TO TO TO TO ERR ERR
spla_315 489 1,747 TO TO 918.54 167 2,737.81 772 1.Ml).1)1) 5.042 TO TO TO TO ERR ERR
varops_32_447 224 1,402 TO TO 94.46 109 TO TO TO TO TO TO TO TO ERR ERR

60

Appendix B

Submitted Paper

The following pages include a paper that was wri t ten on the basis of this thesis and, at the
t ime of wri t ing, submit ted to I C C A D ' 2 4 .

61

Accelerating Quantum Circuit Simulation with
Symbolic Execution and Loop Summarization

ABSTRACT
Quantum circuit simulation is the basic tool for reasoning over
quantum programs. Despite the tremendous advance in the simula
tor technology in the recent years, the performance of simulators
is still unsatisfactory on non-trivial circuits, which slows down the
development of new quantum systems. In this work, we develop
a loop summarizing simulator based on multi-terminal binary deci
sion diagrams (MTBDDs) with efficiently customized quantum gate
operations. The simulator is capable of automatic loop summariza
tion using symbolic execution, which saves repetitive computation
for circuits with iterative structures. Experimental results show the
simulator outperforms state-of-the-art simulators on some standard
circuits, such as Grover's algorithm, by several orders of magnitude.

1 INTRODUCTION
The development of quantum computers started in 1980s with
the promise to solve problems challenging for classical computers.
Later, quantum algorithms more efficient than their best classi
cal counterparts for certain problems started appearing, such as
Shor's algorithm for integer factoring [27] or Grover's algorithm for
search in an unstructured database [20]. With multiple major play
ers investing into quantum and the consistent improvement of the
hardware, it seems that quantum computers wi l l occupy a promi
nent role in the future. The development of quantum algorithms is
an extremely challenging task so adequate computer-aided support
is needed for debugging and reasoning over quantum programs.

Debugging quantum programs is primarily done through simula
tion, which is considerably more challenging in the quantum world
as compared to the classical world. This is because, in the quantum
world, we need to keep track of a potentially exponentially sized
quantum state that assigns every classical state a complex amplitude
instead of keeping track of a single evolving classical program state.

Simulators of quantum programs have advanced tremendously
in recent years, moving from the basic vector- and matrix-based
representation [26] into representations based on decision dia
grams [25, 28, 30, 32, 33, 36], graphical languages [15], or model
counting [24]. Despite this advance, simulating quantum circuits
of a moderate size is still considered infeasible. Therefore, faster
simulators are needed to provide quantum developers with basic
means to observe behaviour of quantum programs.

In this paper, we focus on accelerating the simulation of quan
tum circuits that contain repetition of some sub-structure. Some
notable examples of such circuits include Grover's search [20], pe
riod finding [23], and quantum counting [10]. Current standards
for describing quantum circuits, such as the O P E N Q A S M 3.0 for
mat [16], allow describing such repeated sub-structures compactly
using loops or hierarchical gate definitions.

Our method for accelerating simulation involves computing
a symbolic summary of a sequence of quantum gates that occur
repeatedly, such as a loop body or the definition of a hierarchical
gate. This summary is computed with respect to a particular quan
tum state and can be reused to execute the sequence of quantum
2024-05-06 13:41. Page 1 o f 1-9.

gates from any state that shares the same high-level structure, i.e.,
computational bases with the same amplitudes in the first state wil l
also have the same amplitudes in the second state, though these
amplitude values may differ from those in the first state. We de
rive these summaries using symbolic execution, which is similar to
standard quantum simulation but instead computes symbolic terms
that remember the arithmetic operations to be performed, rather
than computing the results of arithmetic operations over numbers.

Moreover, similarly to [30], we represent quantum states alge
braically for exact simulation without numerical precision loss,
which is crucial in tasks such as equivalence checking [34]. Un
like [30], which works only for concrete value simulation, ours
allows symbolic simulation thanks to the use of multi-terminal bi
nary decision diagrams (MTBDDs) [5, 17]. We customize MTBDD
procedures for efficient quantum gate execution instead of using
only standard MTBDD functions Apply and Restrict as usual.

Our experimental evaluation shows that our proposed approach
can significantly speed up simulation for some well-established
quantum circuits. This allows us to tackle circuits of sizes that were
previously considered infeasible.

2 PRELIMINARIES
We use B = {0,1} to denote the Booleans and fix a set X =
{x\,..., xn } of Boolean variables with an implicit order x\ < X2 <
••• < xn; we use x to denote (x\,... ,xn). Given an arbitrary
set 5 ^ 0, a pseudo-Boolean function is a function f: B " —» S.
If 5 = B , then / is a Boolean function. We use co to denote the
complex number e ~, i.e., the unit vector that makes an angle of
45° with the positive real axis in the complex plane.

2.1 Decision diagrams
Given an arbitrary nonempty set S with finitely representable
elements (in other words, a countable set), we define a multi-
terminal binary decision diagram (MTBDD) [17]1 as a graph G =
(N, T, low, high, root, var) where N is the set of internal nodes, T Q S
is the set of leaf nodes (T n N = 0, T *. 0), low, high: N -» (N U T)
are the low- and high-successor edges, root € N U T is the root node,
and var: N —> X is the node-variable mapping, with the following
three restrictions:

(i) (connectivity) every node from N U T is reachable from root
over some sequence of low and high edges.

(ii) (order) for every u, v € N, if low(u) = v or high(u) — v, then
var(u) < var(v), and

(iii) (reducedness) there is no node u € N such that low(u) =
high(u).

Each node v € JV U T represents a pseudo-Boolean function [o]
defined inductively as follows:

(1) if v € T, then = v, and
(2) i f v € N and var(v) = xi, then

' somet imes also k n o w n as an algebraic decision diagram (A D D) [5]; bo th are general
izations of reduced ordered binary decision diagrams (R O B D D s or just B D D s) [l l]

62

g [___]
(a) M T B D D Mq for g (b) Applying X2 to g (c) Applying 5] to q (d) Applying Ht to g

[_J l_J
(e) Applying CX* to g

Mm ••

a |01> + 6 |10> + a |11>.

to 1 for all basis states. We can view a quantum state as a function
that maps each computational basis state in B " to a complex ampli
tude in C and represent them using MTBDDs; cf. Figure l a for an
MTBDD Mq representing the state q = a |00)+a|01)+6 |10)+a 111)
(for some a, beC s.t. a * b and 3|a| 2 + |6| 2 = 1).

Q u a n t u m gates: There are two main types of quantum gates
that are used in state-of-the-art quantum computers: single-qubit
gates and controlled gates. Our work supports all commonly used
gates except the arbitrary rotation single-qubit gate due to the
use a precise complex number representation proposed in [37]
(cf. Sec. 5). We note that the set of supported gates is much larger
than what is required to achieve (approximate) universal quantum
computation. One can achieve this with, e.g., either (i) Clifford gates
(H, S, and CNOT) and T [8] or (ii) Toffoli and H [3].

Single-qubit gates. In general, a single-qubit gate is presented as
a unitary complex matrix. We directly support the following gates:

F i g u r e 1: E x a m p l e s o f a p p l y i n g q u a n t u m gates o n M T B D D - b a s e d r e p r e s e n t a t i o n o f the state q = a |00) -
D a s h e d edges denote low edges, sol id edges denote high edges.

J[/OW(D)1(X) ifxj =0and

\lhigh(vMx) ifXi = l.

Moreover, we impose the following additional restriction on G:

(iv) (canonicity) there are no two nodes u v such that [[u]] = [0] .

G then represents the function defined as [root]. We abuse

notation and confuse a pseudo-Boolean function with the MTBDD

that represents it and also we use a node r to denote the M T B D D

rooted from r and vice versa.
The following standard M T B D D operations wil l be used in the

paper. The apply (J\,fz, ° p 2) ° P e r a t i ° n is used to combine two
MTBDDs f\ and _/_ through a binary operation op2: S X S —» S
performed on the corresponding leaf notes, obtaining the M T B D D
representing the pseudo-Boolean function {x r—> op2(fi(x), _/_(3c)) |
x G B " } . The monadic_apply(/, op) operation updates the leaves
of the M T B D D f with a unary operation op^: S —> S, obtain
ing the M T B D D representing the pseu do-Boolean function {x \—>
°Pl (/(•*)) I * € B " } . We often use lambda expression for defin
ing opli2. Additionally, MTBDDs provide the spawn (7, h, x) func
tion that works as follows: (i) if / = h, then the result is / (this
enforces the (reducedness) invariant), otherwise (ii) the result is the
unique node n such that low(n) = I, high(n) = h, and var(n) = x (in
practice, a cache is used; this enforces the (canonicity) invariant).

2.2 Quantum Computing Fundamentals
Quantum computers are programmed through quantum gates, and
every time a gate is applied, the global quantum state is updated.
A quantum circuit is a series of gate applications, combined with
programming constructs like loop or hierarchical gate definitions
that allow for a more concise presentation [16].

Q u a n t u m states: In a traditional computer system with n bits,
a state is represented by n Boolean values. In the quantum world,
such states are referred to as computational basis states. For example,
in a system with three bits labeled x\, X2, and X 3 , the computational
basis state |011) indicates that the value of x\ is 0 and the values
of X2 and X 3 are 1.

In a quantum system, an n-qubit quantum state is a probabilis
tic distribution over n-bit computational basis states, denoted ei
ther as a column vector (ao,..., a 2 " - l) T (given here as a trans
posed row vector) or as a formal sum 2 /e{0 l} B aj ' \J)> w n e r e

ao, a\ fl2"-l € C are complex amplitudes satisfying the prop
erty that 2^" e {01}" I aj 12 — 1 • Intuitively, | aj \2 is the probability that
when we measure the quantum state in the computational basis,
we obtain the classical state these probabilities must sum up

Rx

-\i 0)

•)• R Y

1 0
0 -

V2 U

V 2 I 1

For a single-qubit gate U , we often use a subscript to denote the
qubit that it is applied to, e.g., U,- means we apply U to qubit Xj.

The X gate is the quantum "negation" gate. Applying gate X to

a single-qubit state | £ j produces the state X - = | ^ j . I n the

case of an MTBDD-based representation of ^ which would have
a root node with the /ow-successor / € T and /iJg7i-successor h G T,
this would effectively mean swapping the low and high successors
of the root. For the general case, applying X,- to a quantum state's
M T B D D swaps the high and low-successor edges of all nodes at
level i. See Figure lb for an example of applying X 2 to the MTBDD
Mq introduced above (the edges leaving v' got swapped).

Behaviours of Z, S, and T gates are similar to each other. In

particular, applying the gates to 1 M produces the states Z • I / J =

, an 1 d T \co-h , which multiply the

I Imposition with —1, i, and co, respectively. Similarly, applying Z.
S, and T to a quantum state's M T B D D multiplies all leaves in the

2024-05-06 13:41. Page 2 of 1-9.

63

file:///co-h

Acce le ra t ing Q u a n t u m Ci rcu i t S imu la t i on w i t h S y m b o l i c Execut ion and Loop Summar i za t ion

high-subtrees of all nodes at level i with —1, i, and co, respectively
(cf. Figure lc for an example of applying Si to Mq).

The last group of single-qubit gates we mention includes H
(the Hadamard gate), R x (j) , and R Y (^) - These gates are more
challening for implementation, since they fuse the amplitudes of
the two basis states to form a new state. Taking H as an example,
it updates the state (M to the state H • { {) = 4= • I M)• See

V2
Figure Id for the result of applying H i to Mq. We refer the readers
to Sec. 3 for the corresponding M T B D D constructions.

Controlled gates. A controlled gate C U uses another quantum
gate U as its parameter. We often use CU£ to denote applying the
controlled-gate with control qubit xc and target qubit xt. The effect
of the controlled-U gate is that the gate Uj is applied only when
the control qubit xc has the value 1. For example, the controlled-X
gate CNOT* has the control qubit x\ and would apply X 2 when x\
is valued 1. See Figure le for an example of applying CNOT* to Mq
(in this particular case, the result is the same as in Figure lb).

3 A L G O R I T H M FOR Q U A N T U M GATES
Single-qubit gates. In Algorithm 1, we present our procedure for

applying single-qubit gates to an MTBDD Mq = (N, T, low, high, root,
var) at the target qubit xt. The procedure performs the operations
on Mq directly, as opposed to the standard approach (used, e.g., in
S L I Q S I M [30]), which uses only the standard (MT)BDD interface
(in particular, functions Apply and Restrict).

The algorithm can be seen as a modification of a standard recur
sive monadic_apply function. In particular, it performs a depth-first
search (Line 5) until it reaches a node with xt, in which case it wi l l
perform the semantic of the gate on the successors. The semantic
differs based on the particular gate, and was already briefly dis
cussed in Sec. 2.2. We, however, need to be careful about "don't
care" edges, i.e., edges that skip some variable in the MTBDD (such
as the low edge from u in Figure la). In such a situation, we need
to stop the recursion and perform the gate operation by virtually
materializing the missing node (with low and high successors be
ing the same), cf. Line 9. For example, when applying X 2 to the
state q in Figure la , we have V = h' = a when handling the low-
successor of u. Calling spawn (a, a, X2) wi l l just return the a leaf. On
the other hand, high(u') will be set to spawn (high(v), low(v), xz) =
spawn(a, b, X2) = v'.

To apply T, S, and Z gates, we use the monadic_apply function
to multiply the leaf nodes of high-successors of the nodes labelled
by Xt with co, co2, and —1, respectively. When applying Si to the
state q, one step would be computing monadic_apply(y, Xx(co2 -x))
and connecting the result to the /ng/i-successor of the new root via
the spawn function (Figure lc). Meanwhile, the Y gate does for each
node at level i the following: (1) it multiplies the /ng/i-successor
with — co2 and sets it as the new /ow-successor, and (2) it multiplies
the /ow-successor with co2 and sets it as the new /iJg7i-successor.

For each node at level i, applying the H , R x (j) , or Ry(^) gates
merges the high and low-successors using the apply function, creat
ing new high and low-successors according to the gate's behaviour.
In the case of the H gate, the new low-successor is apply(!', h',
hc,y{-j= • (x + y))) and the new /lig/i-successor is apply(/', h',

Ax, y(^t • (x — y)))- When applying Hi to the state q, we have h' = 0

2024-05-06 13:41. Page 3 o f 1-9.

A l g o r i t h m 1: Execution of a single-qubit gate

Input: M T B D D Mq = (N, T, low, high, root, var),
target qubit xt, single qubit gate U

O u t p u t : M T B D D representing U* (Mq)
1 r e t u r n recurse(rooO;

2 F u n c t i o n recurse(node)
I «— !ow(node);ft <— high(node);xi *— var(node);

i f i < t t h e n

<— recurse(0; <— recurse(ft);

r e t u r n spawn(!„
e w
, h n e w , Xj);

else / / i > t or a leaf

i f i = t t h e n I' <- I; h! <- h •

else V <— h' <— node;

i f U = X t h e n r e t u r n spawn (h!, V, xt) ;

i f U G {T, S, Z} t h e n

i f U = T t h e n c co;

i£ U = S t h e n c <— co2;

i f U = Zthenc < 1;

hnew *— monadic_apply(/i', Xx(c • x));
r e t u r n spawn(?', h n e w , xt);

i f U = Y t h e n

Ifiew *—monadic_apply(/i', Xx(-o)2 • x));

hnew monadic_apply(!', Ax(co2 -x)) ;

r e t u r n spawn(!„
e w
, h n e w , xt);

i f U = H t h e n

Inew <-apply(/
/

)
/i /

)Ax
J
y(^ • (x + y)));

hnew <-apply(/', ti,Ax,y(±= • (x-y)));

r e t u r n spawn(/„
e w
, h n e w , xt);

i f U = R
x
(f) t h e n

Inew *-apply(/ ' ,/i ' , A x , y (^ • (x - co2 • y)))

hnew <-apply(/', h',Xx,y(^= • (y - co2 • x));

r e t u r n spawn(/„
e w
, h n e w , xt);

i f U = R
Y
(f) t h e n

Inew <-apply(/',/i',Ax,i/(^= • (x-y)));

hnew <-apply(/', h',Xx,y(^= • (x + y)));

r e t u r n spawn(/„
e w
, h n e w , xt);

and / ' = a. Fusing the two via apply(/', h', Ax, y(-^=-(x + y))) gives
us the /ow-successor of the root in Figure Id and via apply(/', h',
Ax,y(-^= • (x — y))) gives us the /ng/i-successor of the root.

Controlled gates. Our procedure for applying controlled-\J gates
to Mq at the control qubit xc for some quantum gate U is presented
in Algorithm 2. The procedure involves three steps. First, in M / , we
wil l store a copy of Mq modified such that every base with xc = 1
has amplitude 0 (Line 1). Second, we compute an M T B D D Uf (M)
using some of Algorithms 1 and 2 (depending on U, which can again
be a controlled gate) and modify it such that every base with xc = 0
has amplitude 0 (Line 2). Finally, both MTBDDs are summed up

64

- var(node);

- recurse(/j, dir);

A l g o r i t h m 2: Execution of a controlled gate CU£

Input: MTBDD M = (N, T, low, high, root, var),

control qubit xc, target qubit xt, single qubit gate U
O u t p u t : M T B D D representing C\Jc

t(Mq)
1 Mi <— recurse(roof, L);

2 M/j <— recurse(U((Af g) ,H) ;

3 r e t u r n apply(M/, M/j, Äx, y(x + y));

4 F u n c t i o n recurse(node, dir)

I <— /ow(node);/i <— /ii^/i(node);x,- •

i f i < c t h e n

Inew <— recurse(/, dir);hnew <

r e t u r n s p a w n (/ „ e w , h n e w , Xj);

else / / i > c or a l e a f

i f i = c t h e n I' <— I; h' <— h ;

else f <— A ' <— node;

i f dir = L t h e n r e t u r n spawn(/',0,x c) ;

else r e t u r n spawn (0 , / i ' ,x c) ;

using the apply function (Line 3), which wil l , effectively, combine
the two MTBDDs together (one operand of the plus wi l l always
be 0). We note that the Toffoli gate can be obtained by using the
CNOT gate for U . We also note that a specialized more efficient
version of the algorithm for phase gates (such as Z, S, and T) can
be used, which we omit here because of space constraints.

Memoization. In order to avoid redundant computation, calls to
the recurse functions in Algorithms 1 and 2 should be memoized
similarly as in standard implementations of apply for (MT)BDDs [11].

Concrete execution and symbolic execution. Our gate operations

work for both concrete and symbolic amplitude values. When leaf
values are concrete, e.g., when x = ^ and y = | , the function
^,y(^ • (x + y))) wi l l compute the value ^= • (\ + \) =
When leaf values are symbolic, e.g,, when x = XQ and y = yo, the
same function wil l compute the symbolic term 4= • (XQ + yo)).

4 LOOP SUMMARIZATION
Our main contribution is an optimization that targets algorithms
with loops 2, such as various amplitude amplification algorithms [9],
with the most famous one being Grover's unstructured search [20].
The optimization is particularly effective in the case that the number
of distinct amplitudes is small (which is the case for amplitude
amplification algorithms, where there are typically only a limited
number of different amplitudes at the beginning of a loop body, e.g.,
high amplitude, low amplitude, and zero).

Intuitively, the optimization works as follows. Consider a circuit
with the following loop (in the O P E N Q A S M 3.0 format [16]):

f o r i n t i i n [1 :K] { C; }

where C is the unitary for the loop body composed of standard
gates and K is a constant. When a simulation of the circuit arrives
to the loop with a quantum state q represented by an M T B D D Mq,

In particular, i n the basic vers ion of the op t imiza t ion presented here, we assume the
loop bodies are unitaries, i.e., do not con t a in measurements , a n d that they are not
nested; the technique can be extended to non-uni ta ry loops and nested loops as wel l .

A l g o r i t h m 3: Loop summarization

Input: A n M T B D D Mq, a loop body C
O u t p u t : A n M T B D D Ma over S and a mapping r: S —» T§

1 a <— (ft (type er: C ^ S); / / i n i t a b s t r a c t i o n

2 Mr^ne<i *— m o n a d i c _ a p p l y (M (? , a b s t r a c t e r]) ;

3 repeat

M a ^ M r f n e d ;

Mf

a^Cs(Ma);

T <- 0 (type r: S -> T s) ; / / update
tx 0 (type er: S —1 S); / / refinement subst

^refined ^_ g p p i y ^ j ^ r e f ine[r, er, er]);

u n t i l Ma

refined

io r e t u r n (Ma, r);

n F u n c t i o n abstract (va l)
Data: cr: C - » S
i f er(val) = J_ t h e n

let Snew € § \ rng(cr) be a fresh symbolic var.;

a <— a U {val i - » snew};

r e t u r n er(val);

\,a: C -
16 F u n c t i o n refine(lhs, rhs)

Data: r: S -»• T s ,cr : S -»
i f r(lhs) = _L t h e n
[r < - r U {Ihs t -» rhs};

else i f h r(lhs) = rhs t h e n

i f cr(lhs) = - L t h e n
I \ rng(cr) be a fresh symbolic var.;

r U {Ihs ^ snew};

let s n e w

r e t u r n tr(lhs);

r e t u r n Ihs;

it wi l l first create an M T B D D Ma with leaves containing sym
bolic variables (from a set S, which is some infinite set of symbolic
names). Then, it will run the circuit C of the loop body with Ma as
its input, with operations being done symbolically, i.e., instead of
a single number, the leaves of the resulting M T B D D M'a contain
terms over S; we denote the set of terms over S as T § . M'a contains
information about how each of the computational bases needs to
be updated. The information in M'a is, however, fine-tuned for Mq,
which can make the representation quite compact. This fine-tuning
is done in the initial step called abstraction, when symbolic vari
ables are being introduced—we start by introducing one symbolic
variable for every distinct leaf value present in Mq. The assumption
is that computational bases with the same value wi l l behave simi
larly in the algorithm. This does not need to hold, so after M'a is
computed, we check it by observing whether bases mapping to the
same symbolic variable in Ma also map to the same update in M'a. If
not, we introduce more symbolic variables (for the differing bases)
and run the algorithm again, until the condition holds.

The formal algorithm is given in Algorithm 3. In the algorithm,
we use the following formal notation: / [p i , . . .>p/J denotes the
closure of function / with parameters p\,... ,p^ assigned to the

2024-05-06 13:41. Page 4 o f 1-9.

65

Acce le ra t ing Q u a n t u m Ci rcu i t S imu la t i on w i t h S y m b o l i c Execut ion and Loop Summar i za t ion

<|) <f> <*> <|> <|>
469 i V \

*™ i / S r
471 A/ X,

[oj •
(a) Concrete
state Mo

(b) Initial abstrac
tion Ma, of Mo

Y ® \

[a] [fef] [̂ 7] [a] [affl| [b] [l | L*J
(c) After applying
TV to Ma,

(d) End of first
iteration M',

(e) Refined abstrac
tion M a , of MQ

K
(f) End of second
iteration M'

4 v
iff

(g) Result ofMg
after M '

Figure 2: A n example r u n o f A l g o r i t h m 3 o n the c ircuit i n F igure 3.

variables in the Data declaration of f (passed by reference). Given
a (partial) function f of the type f:X—^ Y, we use rng(/) to denote
the range of f, i.e., the set {y € Y \ 3x € X: f(x) = y}. Moreover,
given an x € X, if there is no (x, y) € f, we write /(x) = _L

Example 1. We first demonstrate a run of the algorithm on the
example toy circuit in Figure 3. The circuit starts in the state q
with the qubit x set to 1 and qubit y set to 0. Then, it performs K
executions of the loop body C. In each execution of the loop body,
first, the T gate gets applied to x, performing the multiplication
of its |1) amplitude by co and then CNOT of y controlled by x
is performed. Therefore, the resulting state after K executions is
Ko)\U) if i f is odd and Ko) | 10) i f K is even. The run of Algorithm 3
on the circuit is demonstrated in Figure 2.

Mq is in Figure 2a. In Figure 2b, we can see the initial abstrac
tion Mai of Mq after Line 2; in this case, a.\ = {0 a, 1 i—» b]
for symbolic variables a and b. Then, we run (Line 5) the loop
body with Mai, obtaining first the tree in Figure 2c (after Tx) and
then the tree M'a^ in Figure 2d (after CNOTy). Then, when we call
a p p l y (M a i , M'ai, r e f i n e [r i , o\, a\\) at Line 8, we realize that the
inital abstraction a.\ was too coarse (going from left to right, we
wil l construct n = {a H a, f> H aco] for bases |00), |01), and
|10); then, when processing |11), which would give us a t—> bco,
which is in conflict with a i—> a, we wi l l introduce a new sym
bolic variable c for the base |11) and obtain a new abstraction Ma2

(cf. Figure 2e). Then, in the second iteration of the refinement loop,
we wi l l run the loop body on Ma2 (cf. Figure 2f), obtaining M'ai.
Running a p p l y (M a 2 , M'a2, ref ine[r2, (72, « 2]) wi l l not find any in
consistency this time fa = {a a,b ceo, c bco}), so we can
terminate the refinement. Applying M'a2 on Mq with T2 once, we
obtain the tree in Figure 2g. •

Formally, the algorithm computes a summary for a sequence of
gates C w.r.t. a quantum state q (represented by an MTBDD Mq). The
summary is a pair (Ma, T) where Ma is a stable abstraction of Mq
(w.r.t. C) and r denotes how the symbolic variables should be up
dated during one loop iteration, computed as follows. On Line 2, we

.refined

Ci c2

Figure 3: A n e x a m p l e circuit for l o o p s u m m a r i z a t i o n

2024-05-06 13:41. Page 5 o f 1-9.

perform the initial abstraction of Mq, obtaining an MTBDD Ma'
with one symbolic variable from S (the set of symbolic variables) for
every amplitude occurring in Mq (the mapping is remembered in a).
Then, we execute the sequence of gates C over Mq obtaining Mq.
where the resulting amplitudes are represented by symbolic terms
over S (Line 5). On Line 8, we collect into r the information about
how the symbolic variables were updated and check whether all
bases mapping to the same symbolic variable are updated in the
same way—if not (on Line 19, we emphasize that we do not just
check the identity of the two symbolic terms but, instead, check
their semantic equivalence), we refine the abstraction (by introduc
ing new symbolic variables for bases that have a different update)
and try again. When we reach the fixpoint, we return the resulting
abstracted M T B D D Ma together with the updates r.

5 IMPLEMENTATION
We implemented the proposed techniques in a prototype called
T O O L publicly available on GitHub. T O O L is written in C and uses
the S Y L V A N library [31] for handling MTBDDs (we, however, do not
use its multi-threading features) and the G N U GMP library [1] for
handling integers of arbitrary length. We use two configurations of
TOOL: with (TooL/ 0 0p) and without (TooL^ f l s e) loop summarization.

To achieve accuracy, we represent complex numbers algebraically
as proposed in [37] and first realized in [30] (used also later in [12.
13]). The algebraic representation is given by the form

(1)

where a, b, c, d, and k are integers. A complex number is then rep
resented by a five-tuple (a, b, c, d, k). Although it only represents
a countable subset of C, it can approximate any complex number
up to a specified precision and suffices to support a set of quantum
gates for universal quantum computation. The algebraic represen
tation also allows for efficient encoding of some operations. For
example, because &>4 = —1, the multiplication of (a, b, c, d, k) by
co can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first en
try, namely (— d, a, b, c, k), which represents the complex number
(-±=)k(-d + aco + bco2 +cco3).

6 EXPERIMENTAL RESULTS
Simulators. We compared the performance of T O O L against the

following state-of-the-art quantum circuit simulators: S L I Q S I M [30],
Q U A S I M O D O [28], D D S I M [38] (vl.21.0), and Q U O K K A # [24]. For

66

(a) G r o v e r ' s s e a r c h (b) P e r i o d f i n d i n g

Figure 4: R u n t i m e s o f the s imulators o n the L O O P S b e n c h m a r k .

(c) Q u a n t u m c o u n t i n g

Q U A S I M O D O , which contains 3 different backends (BDD, WBDD.
and CFLOBDD), we use Q U A S [B] to denote the version that uses
backend B (we note that its WBDD backend uses a decision diagram
package from DDSJM). To the best of our knowledge, only T O O L
and S L I Q S I M perform accurate simulation (using algebraic encoding
of complex numbers) while the other tools use floating-point num
bers (with possible numerical errors). The importance of accurate
simulation has been demonstrated in applications such as quantum
circuit equivalence checking [34]. A l l experiments were conducted
on a server with two Intel Xeon X5650 (2.67 GHz) CPUs, 32 GiB of
R A M running Debian GNU/Linux 12, with the timeout of 60 min.

Benchmarks. We performed experiments on the following two
benchmark sets of quantum circuits in O P E N Q A S M :

• L O O P S : This benchmark set contains circuits containing
loops with fixed numbers of iterations. The particular cir
cuits are implementations of Grover's search algorithm [20]
(with a single solution), quantum counting [10], and period
finding [23], the last two without the final inverse quan
tum Fourier transform (Q F T) 3 . For quantum counting and
period finding, we created several families of circuits with
increasing size, denoted as (FR)_(SR)_(MT), where FR de
notes the number of qubits in the first register, SR denotes
the number of qubits in the second register (cf. [10]), and M T
denotes the number of randomly generated multi-control
Toffoli gates in the oracle. We always set SR = [^rj a n d
MT € {5,10,15}. We unfolded the loops for tools that did
not support them.

• S T R A I G H T L I N E : This benchmark set contains circuits with
out loops implementing Bernstein-Vazirani's algorithm [7]
(from 2 to 100 qubits 99 circuits), multi-control Toffoli
gates (from 6 to 198 qubits with a step of 2 97 circuits),
benchmarks from the toolkit F E Y N M A N [4] (43 circuits),
multi-oracle version of Grover's search (without loops;

3 W e did not include the inverse Q F T because it requires rotations b y ^ for arbitrary n,
w h i c h are not suppor ted b y ou r pro to type , since it uses the algebraic encod ing of
complex numbers f rom Sec. 5. Note that this is not a conceptual l i m i l a l i o n ; one could
solve it precisely by, e.g., dynamical ly refining the algebraic encoding to use finer base
rota t ion than j , i n par t icular ^ j - , or, not p reserv ing accuracy, one cou ld convert the
algebraic encod ing into f loating-point numbers and cont inue w i t h them. W e w i s h to
develop such solut ions i n our future work .

9 circuits; MOG) from [2], randomly generated circuits
from [2] (97 circuits), R E V L I B benchmarks [35] (80 circuits),
and modifications of certain R E V L I B benchmarks from [30]
(16 circuits) denoted as R E V L I B - H (these were obtained by
inserting an H gate at each unassigned input).

The experiments measured the time it took for the final quantum
state to be obtained in the respective representation with the ex
ception of Q U O K K A # , where we measured the time to obtain the
probability of the first qubit being zero (QUOKKA# does not compute
the representation of the whole quantum state). The benchmarks
did not contain measurements.

Research questions. We were interested in the following two key
research questions related to the proposed approach.

R Q l What is the impact of loop summarization on the per
formance of quantum simulators?

RQ2 How does the MTBDD-based representation with cus
tom gate operations compare to other simulators?

R Q l : Loop Summarization
For answering the first research question, which is the main tar
get of this paper, we ran the simulators on the L O O P S benchmark
set. The results can be seen in Figure 4 (for period finding and
quantum counting, we show results for the families of circuits with
oracle composed of 5 random multi-control Toffoli gates). More
over, in Table 1, we give selected concrete results (we included for
every simulator the largest circuit in the family where it finished).
QUOKKA# is not included since it did not finish on any of the circuits.
We also encountered some issues when running QTJAS [CFLOBDD]
(internal error) and Q U A S [B D D] (incorrect implementation of the
multi-control Toffoli mcx gate), which are labelled as E R R .

We first focus on comparing the performance of TooL / 0 0 p and
TooL£ f l s e , which differ only in loop summarization. The results
show that in all three algorithms, TooL / 0 0 p scales much better than
TooL£ f l s e—it manages to simulate circuits of a size (the number of
gates) one to three orders of magnitude larger. According to the
results, the amount of necessary computation is significantly de
creased, so we believe that we can expect a similar behaviour if loop
summarization is implemented for other representations. There
fore, the answer to R Q l is that the impact of loop summarization is
profound for the performance of the simulator on circuits with loops.

2024-05-06 13:41. Page 6 o f 1-9.

67

Acce le ra t ing Q u a n t u m Ci rcu i t S imu la t i on w i t h S y m b o l i c Execut ion and Loop Summar i za t ion

697 Table 1: Results for the L O O P S b e n c h m a r k set (for every family, we include circuits w h i c h were the largest ones that some o f the 755

698 s imulators managed to simulate before timeout). T h e c o l u m n s "#q" and "#G" denote the n u m b e r o f qubits and gates (after l o o p 756

699 unrol l ing) respectively. T i m e s are g i v e n i n seconds ("0" denotes a time <0.5 s), m e m o r y i n M i B . T O denotes a t imeout, E R R 757

700 denotes a n error, n u m denotes the fastest t ime, and n u m denotes the fastest accurate s i m u l a t o r (T O O L or S L I Q S I M) . 758

701 759
T O O L ; o o ; i T o o L f c a s t S L I Q S I M D D S 1 M Q U A S [C F L O B D D] Q U A S [W B D D] Q U A S [B D D]

c ircu i t #q #G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m
703 761

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
11 22 3,337 0 122 0 42 1 12 0 34 37 774 0 450 T O T O

7 0 5 14 28 12,115 0 145 1 56 17 13 1 50 3,530 9,532 0 470 T O T O 7 6 3

706 £ 20 40 140,721 0 187 32 387 3,176 25 12 118 T O T O 73 769 T O T O 764
707 J 22 44 310,367 0 196 85 1,088 T O T O 32 254 T O T O 583 1,083 T O T O 765
7 0 g 23 46 461,646 0 200 136 1,735 T O T O T O T O T O T O 1,750 1,708 T O T O 7 6 F I

29 58 4,676,916 2 214 2,190 10,032 T O T O T O T O T O T O T O T O T O T O
40 80 292,359,936 3,290 251 T O T O T O T O T O T O T O T O T O T O T O T O

710 768
9> 16 08 05 24 1,507,322 83 600 8 24 23 130 4 1,235 E R R E R R 7 449 E R R E R R

711 3 - - 769
1 19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 E R R E R R 198 452 E R R E R R
f*H 22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 T O T O E R R E R R 849 454 E R R E R R

7 1 3 1= 22_11_15 33 448,790,444 128 1,662 3,020 27 T O T O T O T O E R R E R R 2,650 454 E R R E R R 7 7 1

714 | 31_15_15 46 277,025,390,495 673 1,973 T O T O T O T O T O T O E R R E R R T O T O E R R E R R 772
7 1 5 ao 10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 E R R E R R 7 7 3

716 j§ 11_05_05 17 81,898 52 2,116 5 109 T O T O 0 65 T O T O 0 447 E R R E R R 774
7 1 7 | 12_06_15 19 376,760 250 7,691 T O T O T O T O 1,280 294 T O T O T O T O E R R E R R 7 7 5

U 13_06_15 20 753,593 919 9,502 T O T O T O T O T O T O T O T O T O T O E R R E R R
719 777

Let us also compare the performance with the other simulators failed on some circuits from R A N D O M (because they did not support 7 7 g

7 2 1 in this benchmark set. We can see that in the case of Grover's al- the S gate) and also (together with QUOKKA#) on some circuits in 7 7 Q

7 2 2 gorithm (Figure 4a), TooL / 0 C p managed to verify instances of a size R E V L I B - H (because they do not support the multi-control TofFoli). 7 g 0

„„ far beyond the capabilities of any other simulator, in particular The results show that TooL^ f l s e is competitive to other simula-
7 2 4 80 qubits. The second best-performing simulator was TooL^ f l s e , tors and in many cases, especially for the particularly challenging 7 8 2

7 2 5 which scaled up to 58 qubits, followed by QUAS [WBDD] (46 qubits), benchmarks from F E Y N M A N , is the best available accurate simulator. 7 8 3

7 2 6 D D S I M (44 qubits), and S L I Q S I M (40 qubits). The situation is simi- For the LOOPS benchmark, as mentioned previously, TooL^ f l s e is per- J M

7 2 7 lar for period finding (Figure 4b), where TooL / 0 0 p can scale up to forming well also compared to other simulators: it is the best one on 7 8 5

7 2 8 46 qubits, while the second best ones, Q U A S [W B D D] and TooL^ f l s e , Grover and performs well also on the other two (it beats S L I Q S I M , 7 8 F I

J 2 9 can scale only to 33 qubits. Let us note the size of the largest period the only other accurate simulator). To conclude, the answer to R Q 2 7 G 7

7 3 0 finding circuit that TooL / 0 0 p managed to simulate in 12 minutes: is that the MTBDD-based representation with custom gate operations 78g

7 3 1 over 277 billion gates. To the best of our knowledge, no existing is competitive to other simulators, often complementary to the other J89

7 3 2 quantum simulator is able to scale up to circuits of this size. Similar accurate simulator SLIQSIM. JQ(J

7 3 3 situation repeats for quantum counting, TooL / 0 0 p can, again, scale j RELATED W O R K 7 9 1

up to circuits of complexities that no other simulator could handle r _ n 1 . . , . , ,
' 3 4 , , , R D D S I M [38] is a quantum circuit simulator based on quantum 792

(although, due to the complexity of the circuits, it does not perform ,,. , , , , . . / A u n n \ r ^ i i- i ™a 7 3 5 v all ' d) multiple-valued decision diagrams (QMDDs) [25J, which support 7 9 3

7 3 6 representation and multiplication of state vectors and operator 7 9 4

737 RQ2: MTBDD-Based Simulator matrices. In [22], a Q M D D variant, called tensor decision diagrams "5
7 3 8 To answer the second research question, in addition to the results (TDDs), is proposed to support contraction operation and allows 7 9 6

7 3 9 from the LOOPS benchmark set, we also evaluated the performance tensor-nerwork-like quantum circuit simulation. The T D D perfor- 7 9 7

7 4 0 of simulators on the S T R A I G H T L I N E benchmark (these circuits did mance is comparable to DDSIM [22].
7 4 1 not use loops, so we do not include TooL / 0 0 p, since it would be S L I Q S I M [30] exploits the standard reduced ordered binary deci- 799

7 4 2 the same as TooL^ f l s e) . Due to space limitations, we present only sion diagrams (ROBDDs, or just BDDs) [11] to represent quantum 8 0 C

7 4 3 selected results. We chose circuits that took over one second to states exactly with an algebraic number system and achieves precise 8 0 1

744 finish for three better-performing tools TooL^ f l s e , S L I Q S I M , and quantum operations through Boolean formula manipulation. Note 8 0 2

7 4 5 DDSIM. However, R E V L I B - H circuits were challenging for most that similarly to TOOL, the supported quantum gate set of S L I Q S I M , 8 0 3

7 4 6 tools, except for S L I Q S I M which solved 13 cases. Both TooL^ f l s e and though universal, is restricted to those algebraically re presentable. 8 0 4

7 4 7 DDSIM solved 5 cases in R E V L I B - H . S L I Q S I M splits amplitude values The paper [13] proposes verification of quantum circuits using 805
7 4 8 into bits and uses multiple BDDs to store a quantum state, resulting tree automata to model their pre- and post-conditions. This method 8 0 6

7 4 9 in better compression in this benchmark. Instead of showing a large helps create an automatic verification framework that checks the 8 0 7

7 5 0 table filled with T O , we show only the 5 solved cases in R E V L I B - correctness of the quantum circuit against a user-specified specifica- 8 0 8

7 5 1 H and refer readers to [30] for a more extensive comparison of tion. Tree automata, similarly to decision diagrams, can efficiently 8 0 9

7 5 2 S L I Q S I M and DDSIM. Note that some tools had issues on some of represent identical subtrees using the same structure. Furthermore, 8 1 C

7 5 3 the benchmarks. In particular, Q U A S [C F L O B D D] and Q U A S [B D D] they can use non-deterministic choice to represent multiple states 8 1 1

7 5 4 2024-05-06 13:41. Page 7 o f 1-9. 8 1 2

(i . N

Table 2: Selection of results for the S T R A I G H T L I N E benchmark. The columns "#q" and " # G " denote the number of qubits and
gates respectively. Times are given in seconds ("0.00" denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR
denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (T O O L or S L I Q S I M) . We do
not mark Q U O K K A # as the fastest because it does not compute the quantum state representation.

8 7
S L I Q S I M D D S I M Q U A S [C F L O B D D] Q U A S [W B D D] Q U A S [B D D] Q U O K K A #

•ilH c i r c u i t #q #G t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m t i m e m e m

B19 g f 2 3 2 _ m u l t 96 3,322 0.26 39 1.34 12 0.10 70 0.72 459 0.11 501 0.91 449 0.86 45
820 g f 2 6 4 _ m u l t 192 12,731 1.82 65 17.11 19 0.74 126 2.76 463 0.68 600 4.35 461 3.56 148

S21 7 g f 2 1 2 8 _ m u l t 384 50,043 20.40 231 264.81 37 5.28 234 10.70 477 4.76 1,158 27.40 498 15.39 570

822 g f 2 2 5 6 _ m u l t 768 198,395 163.00 1,634 T O T O 41.21 538 42.50 531 38.50 4,988 231.00 632 71.28 2,324
7 hwb8 12 6,446 0.16 38 3.69 12 0.03 33 1.04 460 0.03 443 1.09 443 T O T O

h w b l O 16 31,764 0.79 50 84.20 15 0.21 38 4.74 465 0.22 447 1.70 445 T O T O
824 h w b l l 15 87,789 2.64 103 660.92 22 0.49 70 12.70 474 0.51 448 1.59 448 T O T O

825 h w b l 2 20 171,482 5.80 204 2,568.02 34 1.13 132 26.90 509 1.35 455 6.48 457 3,193.78 1,069

82fi o 10 30 2,433 0.20 41 1.25 12 0.07 34 9.50 594 0.05 456 T O T O 62.68 40

827
c
%

11 33 3,746 0.36 44 3.12 12 0.12 42 52.00 905 0.08 462 T O T O 167.00 56

828 85 85 255 0.99 51 0.46 14 2.11 63 E R R E R R 0.10 485 E R R E R R 0.03 12

829 86 86 258 15.30 213 0.47 14 2.24 72 E R R E R R 3.25 553 E R R E R R 0.07 12
829

3 89 89 267 9.48 105 0.67 14 0.72 65 E R R E R R 0.59 491 E R R E R R 0.06 12
830 t

7,
93 93 279 1.68 61 0.32 13 0.18 67 E R R E R R 0.10 493 E R R E R R 0.04 12

S31 i 94 94 282 79.60 337 0.77 17 4.45 76 E R R E R R 74.30 521 E R R E R R 0.07 12

97 97 291 5.70 117 0.42 13 1.46 77 E R R E R R 0.42 524 E R R E R R 0.03 12

Ml
99 99 297 9.58 173 0.38 12 2.61 78 E R R E R R 0.67 525 E R R E R R 0.08 12

834 apex5_290 1,025 2,909 1.75 61 0.37 43 1.02 535 0.30 466 1.33 1,214 4.16 516 2.10 72 834
cps_292 923 2,763 1.19 57 0.20 30 1.25 484 0.24 464 1.09 1,035 2.99 527 1.38 59

835 frg2_297 1,219 3,724 2.32 93 0.49 48 1.51 633 0.36 468 1.90 1,307 6.32 497 2.15 84
836 seq_314 1,617 5,990 4.96 97 1.35 108 4.11 834 0.62 476 3.71 1,775 13.90 536 3.65 124

837 add64_184 193 385 0.19 203 0.02 13 0.09 117 E R R E R R 0.07 545 E R R E R R E R R E R R

838 X cpu_register_32_405 328 890 0.46 213 0.08 14 0.41 194 E R R E R R 0.70 668 E R R E R R E R R E R R

839 e64-bdd_295 195 452 1.98 238 2.48 13 2.00 126 0.65 476 0.54 613 E R R E R R E R R E R R 839
> ex5p_296 206 655 7.61 283 12.02 21 3.56 132 E R R E R R 1.15 691 E R R E R R E R R E R R

840 hwb9_304 170 708 33.00 662 13.50 20 12.16 114 E R R E R R 4.90 1,105 E R R E R R E R R E R R

in the same structure. We took inspiration from their extension to
symbolic amplitudes in [12] to develop our symbolic execution.

SymQV [6] encodes quantum circuit verification problems into
SMT with the theory of real numbers, using variables in trigono
metric functions, e.g., sinx, which might lose precision in corner
cases. Their approach requires 2n variables to encode a rc-qubit
circuit in the worst case. A polynomial SMT encoding of quantum
circuits was introduced in [14], where an extension of array theory
named the theory of cartesian arrays (CaAL), was proposed and used
to encode quantum gates. However, empirical results suggest that
both methods are effective for small quantum circuits only.

Q U A S I M O D O [28] is a simulation tool with multiple backends.
including BDDs, weighted BDDs (using the backend of DDSIM).
and context-free language ordered binary decision diagrams (CFLOB-
DDs) [29], which combine BDDs with pushdown automata.

Hong et al. [21] proposed symbolic tensor decision diagrams
(symTDDs) for symbolically executing and representing quantum
circuits and quantum states. However, in quantum circuit simula
tion, parameters are typically predetermined, rendering the utility
of this approach mainly for parameterized quantum circuit equiva
lence checking rather than simulation.

Q U O K K A # [24] extended the standard stabilizer formalism [18]
to present a general pure state using its stabilizers. The representa
tion circumvents complex numbers and only requires manipulating
weights in real (possibly negative) numbers for the supported quan
tum gate operations. Thereby, quantum circuit simulation can be
encoded into a weighted model counting problem. Q U O K K A # only

supports Clifford+T and rotation gates (which is, however, univer
sal). Experimental results show the advantages of Q U O K K A # on
certain benchmarks such as quantum Fourier transform (QFT) and
variational quantum eigensolver (VQE) circuits.

Although Clifford circuits should be efficiently simulatable ac
cording to the Gottesman-Knill theorem [19], simulating them in
decision diagrams may suffer from exponential growth in size. To
overcome this problem, Vinkhuijzen et al. [32, 33] proposed the
local invertible map decision diagrams (LIMDDs), a data structure
based on QMDD that further merges nodes that are equivalent up to
a local invertible map (LIM). LIMDDs successfully combine decision
diagrams and the stabilizer formalism, and they efficiently over
come the challenge of exponential growth in decision diagrams on
Clifford circuits. The authors of [32, 33] demonstrated that LIMDDs
are more scalable in simulating QFT circuits than QMDDs.

8 CONCLUSION
We presented a technique for accelerating the simulation of quan
tum circuits with loops by computing the loops' summaries using
symbolic execution. The experiments show that this technique en
ables the simulation of quantum circuits previously believed to be
infeasible. In the future, we wish to further develop the loop sum
marization technique by integrating it with other data structures
for quantum state simulation. Moreover, we wish to look at the
problem of automatically generalizing a computed summary into
a closed-form formula (such as the description "Kco |11) if K is odd
and Kco | 10) if K is even" from Example 1), and, potentially, use the
technique also in the verification framework of [13].

2024-05-06 13:41. Page 8 o f 1-9.

69

A c c e l e r a t i n g Q u a n t u m C i r c u i t S i m u l a t i o n w i t h S y m b o l i c Execut ion and L o o p S u m m a r i z a t i o n

REFERENCES
[1] 2022. G M P : The G N U M u l t i p l e Prec is ion A r i t h m e t i c Library , ht tps: / /gmplib.org/
[2] 2024. The A U T O Q reposi tory. ht tps: / /gi thub.com/alan23273850/AutoQ/
[3] Dor i t Aharonov . 2003. A Simple P r o o f that Toffoli and H a d a m a r d are Quan tum

Unive r sa l , https:/ /doi.org/10.48550/arxiv.quant-ph/0301040
[4] M a t t h e w A m y . 2018. Towards Large-scale Func t iona l Ver i f ica t ion o f Unive r sa l

Q u a n t u m C i r c u i t s . I n Proceedings 15th International Conference on Quantum
Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018 (EPTCS), Peter
Sel inger a n d G i u l i o C h i r i b e l l a (Eds.), V o l . 287. 1-21. https:/ /doi.org/10.4204/
EPTCS.287.1

[5] R. Iris Bahar, E r i c a A . F r o h m , Char les M . Gaona , et a l . 1997. A lgeb ra i c D e c i s i o n
Diagrams and The i r Appl ica t ions . FMSD 10, 2/3 (1997), 171-206. https://doi.org/
10.102 3 /A: 1008699807402

[6] F a b i a n Baue r -Marqua r t , Stefan Leue, a n d C h r i s t i a n S c h i l l i n g . 2023. s y m Q V :
Automated Symbol ic Verification of Quan tum Programs. In Formal Methods- 25th
InternationalSympo.sium. I'M202-3. Li/beck, Germany.. March 6-10. 2023,Proceedings
(Lecture Notes in Computer Science). M a r s h a C h e c h i k . J o o s l - P i c l c r Ka toen , and
M a r t i n L e u c k e r (Eds.), V o l . 14000. Springer, 181-198. https://doi.org/10.1007/978-
3-031-27481-7_12

[7] E t h a n Berns t e in a n d U m e s h V. V a z i r a n i . 1993. Q u a n t u m complex i ty theory. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
May 16-18, 1993, San Diego, CA, USA, S. Rao Kosara ju , D a v i d S . Johnson , and
A l o k A g g a r w a l (Eds.). A C M , 11-20. https://doi.org/10.1145/167088.167097

[8] P. Oscar B o y k i n , Tal Mor , M a t t h e w Pulver, V w a n i P. Roychowdhury , and Far rokh
Vatan. 2000. A new universal and fault-tolerant quan tum basis. Inf. Process. Lett.
75, 3 (2000), 101-107. https://doi.org/10.1016/S0020-0190(00)00084-3

[9] Gi l l e s Brassard , Peter H a v e r , M i c h e l e M o sea, and A l a i n Tapp. 2002. Q u a n t u m
amplitude amplif icat ion and estimation. In Quantum computation and information
(Washington, DC, 2000). Contemp. M a t h . , V o l . 305. Amer . M a t h . Soc., Providence,
RI, 53-74. https://doi.org/10.1090/conm/305/05215

[10] Gi l l e s Brassard, Peter H o y e r , and A l a i n Tapp. 1998. Q u a n t u m C o u n t i n g . In Au
tomata, Languages and Programming, 25th International Colloquium, ICALP'98.
Aalborg, Denmark, July 13-17, 1998, Proceedings (Lecture Notes in Computer Sci
ence), K i m Guldst rand Larsen, Sven Skyum, and G l y n n W i n s k c l (Eds.), V o l . 1443.
Springer, 820-831. https:/ /doi.org/10.1007/BFB0055105

[l l] Randal E . Bryant . 1986. Graph-Based A l g o r i t h m s for Boolean Func t i on M a n i p u
la t ion. IEEE Trans. Computers 35, 8 (1986), 677-691. https: / /doi .org/10.1109/TC.
1986.1676819

[12] Yu-Fang C h e n , K a i - M i n C h u n g , Ondrej Lenga l , J y u n - A o L i n , and W e i - L u n Tsai .
2023. A u t o Q : A n Automata-Based Quan tum Circu i t Verifier. In Computer Aided
Verification - 35th International Conference, CAV2023, Paris, France, July 17-22,
2023, Proceedings, Part III (Lecture Notes in Computer Science). Cons t ant i n E n e a
and A k a s h L a i (Eds.), V o l . 13966. Springer, 139-153. https://doLorg/10.1007/978-
3-031-377 09-9_7

[13] Yu-Fang Chen , K a i - M i n C h u n g , Ondie j Lengal . J y u n - A o L i n , W e i - L u n Tsai , and
D i - D e Y e n . 2023. A n A u t o m a t a - B a s e d F r a m e w o r k for Ver i f i ca t ion a n d B u g
H u n t i n g i n Q u a n t u m Ci r cu i t s . Proc. ACM Program. Lang. 7, P L D I , A r t i c l e 156
(jun 2023), 26 pages, https://doi.org/10.1145/3591270

[14] Yu-Fang Chen , Ph i l ipp Rummer, and W e i - L u n Tsai. 2023. A Theory of Cartesian
A r r a y s (w i t h A p p l i c a t i o n s i n Q u a n t u m C i r c u i t Ver i f ica t ion) . I n International
Conference on Automated Deduction. Springer, 170-189.

[15] B o b Coecke and Ross D u n c a n . 2008. In teract ing Q u a n t u m Observables . In
Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations (Lecture Notes in Computer Science), L u c a A c e t o , Ivan D a m g a r d .
Lesl ie A n n Go ldbe rg , M a g n u s M . H a l l d o r s s o n , A n n a Ingolfsdott ir , a n d Igor
W a l u k i e w i c z (Eds.), V o l . 5126. Springer, 298-310. https://doi.org/10.1007/978-3-
540-70583-3_25

[16] A n d r e w Cross , A l i j a v a d i - A b h a r i , T h o m a s Alexander , N i e l D e Beaudrap, L e v S.
B i shop , Steven H e i d e l , C o l m A . R y a n , Prasahnt Sivarajah, J o h n S m o l i n , J a y M .
Gambet ta , a n d B l a k e R. J o h n s o n . 2022. O p e n Q A S M 3: A Broader and Deeper
Q u a n t u m A s s e m b l y Language. ACM 'Transactions on Quantum Computing 3, 3.
A r t i c l e 12 (sep 2022), 50 pages, https://doi.org/10.1145/3505636

[17] M a s a h i r o Fuji ta , Pa t r i ck C . M c G e e r , and Je r ry C h i h - Y u a n Yang . 1997. M u l t i -
T e r m i n a l B i n a r y D e c i s i o n D i a g r a m s : A n Efficient D a t a Structure for M a t r i x
Representat ion. Formal Methods Syst. Des. 10, 2/3 (1997), 149-169. ht tps: / /doi .
org/10.1023/A: 100864782 3331

[18] D a n i e l Go t t e sman . 1997. Stabilizer codes and quantum error correction. P h . D .
Disser ta t ion. Ca l i fo rn i a Institute o f Technology.

[19] Dan ie l Gottesman. 1998. The Heisenberg representation of quan tum computers.
arXivpreprint quant-ph/9807006 (1998).

[20] L o v K . Grover. 1996. A Fast Quantum Mechanica l A l g o r i t h m for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, G a r y L . M i l l e r
(Ed.). A C M , 212-219. https://doi.org/10.1145/237814.237866

2024-05-06 13:41. Page 9 o f 1-9.

[21] X . H o n g , W . Huang , W . Ch ien , Y. Feng, M . Hs ieh , S. L i C . Yeh, and M . Y i n g . 2023.
Dec i s i on Diagrams for Symbol ic Verif icat ion of Q u a n t u m Circui ts . In 2023 IEEE
International Conference on Quantum Computing and Engineering (QCE). I E E E
C o m p u t e r Society, L o s A l a m i t o s , C A , U S A , 970-977. ht tps: / /doi .org/10.1109/
QCE57702.2023.00111

[22] X i n H o n g , X i a n g z h e n Z h o u , Sanjiang L i , Yuan Feng, and Mingsheng Y i n g . 2022.
A Tensor N e t w o r k based D e c i s i o n D i a g r a m for Representa t ion o f Q u a n t u m
Ci r cu i t s . ACM Trans. Des. Autom. Electron. Syst. 27, 6, A r t i c l e 60 (jun 2022),
30 pages, https://doi.org/10.1145/3514355

[23] A l e x e i Y . Ki taev . 1996. Q u a n t u m measurements a n d the A b e l i a n Stabil izer
P rob lem. Electron. Colloquium Comput. Complex. TR96-003 (1996). E C C C : T R 9 6 -
003 https: / /eccc.weizmann.ac.h7eccc-reports/1996/TR96-003/index.htrnl

[24] J i n g y i M e i . M a i c c l l o Bon.sangue. and Alfons Laarinan. 2024. Simulat ing Quantum
C i r c u i t s b y M o d e l C o u n t i n g . I n CAV'24 (to appear), ht tps: / /arxiv.org/abs/2403.
07197

[25] P h i l i p p N i e m a n n , Rober t W i l l e , D . M i c h a e l M i l l e r , M i t c h e l l A . T h o r n t o n , and
R o l f Drechsler . 2016. Q M D D s : Efficient Q u a n t u m Func t ion Representat ion and
M a n i p u l a t i o n . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 1 (2016),
86-99. ht tps: / /doi .org/10.1109/TCAD.2015.2459034

[26] H a n s D e Racdt. Fengp ing J in , D e n n i s W i l l s c h , M a d i t a N o c o n , N a o k i Yosh ioka ,
N o b u y a s u Ito, Shengjun Y u a n , and Kr i s t e l Mich ie l s en . 2019. M a s s i v e l y para l le l
q u a n t u m computer s imulator , e leven years later. Comput. Phys. Commun. 237
(2019), 47-61 . https:/ /doi .Org /10.1016/J.CPC.2018.ll .005

[27] Peter W. Shor. 1994. A l g o r i t h m s for Quan tum Compula t ion : Discrete Logari thms
and Fac to r ing . In 35th Annual Symposium on Foundations of Computer Science.
Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society, 124-134.
https://doi.org/10.1109/SFCS.1994.365700

[28] Meghana Sistla, Swara l Chaudhur i , and Thomas W . Reps. 2023. Symbol ic Quan
t u m S i m u l a t i o n w i t h Quas imodo . I n Computer Aided Verification - 35th Inter
national Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
III (Lecture Notes in Computer Science), C o n s t a n t i n E n e a a n d A k a s h L a i (Eds.),
V o l . 13966. Springer, 213-225. h t tps : / /doLorg/10.1007/978-3-031-37709-9_l l

[29] M e g h a n a A p a r n a S i s t l a , Swarat Chaudhur i , and Thomas Reps. 2023. C F L O B D D s :
Context-free-language ordered b ina ry decis ion diagrams. ACM Transactions on
Programming Languages and Systems (2023).

[30] Y u a n - H u n g Tsa i , J i e - H o n g R. J iang , and C h i a o - S h a n Jhang . 2021. B i t - S l i c i n g
the H i l b e r t Space: Sca l ing U p Accu ra t e Q u a n t u m C i r c u i t S i m u l a t i o n . I n 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021. I E E E , 439-444. h t tps : / /do i .o rg /10 .1109/DACl8074.2021 .
9586191

[31] T o m v a n D i j k a n d Jaco v a n de P o l . 2017. S y l v a n : mul t i -core f ramework for
dec i s ion diagrams. Int. J. Soflw. Toots Technol. Transf. 19, 6 (2017), 675-696.
https:/ /doi.org/10.1007/Sl0009-016-0433-2

[32] L i e u w e V i n k h u i j z e n , T i m C o o p m a n s , D a v i d E l k o u s s , V e d r a n D u n j k o , a n d A l
fons L a a r m a n . 2023. L I M D D : A D e c i s i o n D i a g r a m for S i m u l a t i o n o f Q u a n
t u m C o m p u t i n g Inc lud ing Stabi l izer Slates. Quantum 7 (2023), 1108. https:
/ /doi .org /10 .22331/Q-2023-09- l l -1108

[33] L i e u w e V i n k h u i j z e n , T h o m a s G r u r l , Stefan H i l h n i c h , Sebastiaan B r a n d , Robert
W i l l e , a n d A l f o n s L a a r m a n . 2023. Efficient Imp lemen ta t ion o f L I M D D s for
Q u a n t u m C i r c u i t S i m u l a t i o n . In Mode! Checking Software - 29th International
Symposium, S P I N 2023, Paris, France, April 26-27, 2023, Proceedings (Lecture Notes
in Computer Science). Ceorgiana (..'altars and Chr i s t i an Sch i l l ing (Lds.). Vol . VM>72.
Springer, 3 -21 . ht tps: / /doi .org/10.1007/978-3-031-32157-3_l

[34] C h u n - Y u W e i , Y u a n - H u n g Tsai , Ch i ao -Shan Jhang, and J i e - H o n g R . J i a n g . 2022.
Accurate BDD-based uni tary operator manipula t ion for scalable and robust quan
tum circuit verification. In Proceedings of the 3'Hh ACM/IEEE Design Automation
Conference (DAC '22). A s s o c i a t i o n for C o m p u t i n g M a c h i n e r y , N e w Y o r k , N Y ,
U S A , 523-528. https://doi.org/10.1145/3489517.3530481

[35] Robert W i l l e , D a n i e l G r o ß e , L i s a Teuber, Gerhard W . Dueck , and R o l f Drechsler.
2008. R e v L i b : A n O n l i n e Resource for Revers ible F u n c t i o n s a n d Revers ible
Ci rcu i t s . In 38th IEEE Internationa! Symposium on Multiple-Valued Logic (ISMVL
2008), 22-23 May 2008, Dallas, Texas, USA. I E E E C o m p u t e r Society , 220-225.
ht tps: / /doi .org/10.1109/ISMVL.2008.43

[36] A l w i n Zulehner , Stefan H i l l m i c h , a n d Rober t W i l l e . 2019. H o w to Eff ic ient ly
Handle C o m p l e x Values? Implement ing Dec i s i on Diagrams for Q u a n t u m C o m
put ing. In Proceedings of the International Conference on Computer-Aided Design,
ICCAD2019, Westminster, CO, USA, November 4-7, 2019, D a v i d Z . P a n (Ed.). A C M ,
1-7. https:/ /doi.org/10.1109/ICCAD45719.2019.8942057

[37] A l w i n Zulehner , P h i l i p p N i e m a n n , R o l f Drechsler , and Rober t W i l l e . 2019. A c
curacy and Compac tness i n D e c i s i o n D i a g r a m s for Q u a n t u m C o m p u t a t i o n .
In 2019 Design, Automation and Test in Europe Conference (DATE). 280-283.
https:/ /doi.org/10.23919/DATE.2019.8715040

[38] A l w i n Z u l e h n e r and Rober t W i l l e . 2019. A d v a n c e d S i m u l a t i o n o f Q u a n t u m
Computa t ions . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 5 (2019),
848-859. https: / /doi .org/10.1109/TCAD.2018.2834427

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
I'M

1044

70

https://gmplib.org/
https://github.com/alan23273850/AutoQ/
https://doi.org/10.48550/arxiv.quant-ph/0301040
https://doi.org/10.4204/
https://doi.org/
https://doi.org/10.1007/978-
https://doi.org/10.1145/167088.167097
https://doi.org/10.1016/S0020-
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1007/BFB0055105
https://doi.org/10.1109/TC
https://doLorg/10.1007/978-
https://doi.org/10.1145/3591270
https://doi.org/10.1007/978-3-
https://doi.org/10.1145/3505636
https://doi
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/
https://doi.org/10.1145/3514355
https://eccc.weizmann.ac.h7eccc-reports/1996/TR96-003/index.htrnl
https://arxiv.org/abs/2403
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.Org/10.1016/J.CPC.2018.ll.005
https://doi.org/10.1109/SFCS.1994.365700
https://doLorg/10.1007/978-3-031-37709-9_ll
https://doi.org/10.1109/DACl8074.2021
https://doi.org/10.1007/Sl0009-016-0433-2
https://doi.org/10.1007/978-3-031-32157-3_l
https://doi.org/10.1145/3489517.3530481
https://doi.org/10.1109/ISMVL.2008.43
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.23919/DATE.2019.8715040
https://doi.org/10.1109/TCAD.2018.2834427

Appendix C

Contents of the Included Storage
Media

/
_ medusa/ MEDUSA implementation

benchmarks/ A l l benchmark circuits
loops/ L O O P S circuits
s t r a i g h t l i n e / S T R A I G H T L I N E circuits

doc/ Doxygen H T M L documentation
src/ Source files
Makefile For bu i ld purposes
README. md B u i l d and usage instructions

_ MEDUSA Executable
_ t h e s i s - s r c / LMpX source files of the thesis
_ t h e s i s .pdf D ig i t a l version of the thesis

71

