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A B S T R A C T

This thesis addresses the research on modern methods in automatic Flight Control
System design and evaluation, as seen from the perspective of state-of-the-art and fu-
ture utilization on Unmanned Aerial Systems. The thesis introduces a Flight Control
System design process with a special emphasis on the Model-Based Design approach.
An integral part of this process is the creation of the aircraft’s mathematical model
employed in the flight control laws synthesis and the composition of a simulation
framework for the evaluation of the automatic Flight Control System’s stability and
performance. The core of this thesis is aimed at flight control laws synthesis built
around a unique blend of optimal and adaptive control theory. The researched flight
control laws originating from the proposed design process were integrated into an ex-
perimental digital Flight Control System. The final chapter of the thesis introduces the
evaluation of the designed automatic Flight Control System and is divided into three
phases. The first phase contains the Robustness Evaluation, which investigates the
stability and robustness of the designed control system within the frequency domain.
The second phase is the controller’s Performance Evaluation employing computer
simulations using created mathematical models in the time domain. As for the final
phase, the designed Flight Control System is integrated into an experimental aircraft
platform, serving as a testbed for future Unmanned Aerial Systems, and subjected to
a series of flight tests.
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A B S T R A K T

Tato práce je zaměřena na výzkum moderních metod automatického řízení letu a
jejich ověření s ohledem na současný stav poznání a budoucí využití bezpilotních
letadlových systémů. Práce představuje proces návrhu automatického systému řízení
letu s důrazem na přístupy z oblasti návrhu založeného na modelování (Model-Based
Design). Nedílnou součástí tohoto procesu je tvorba matematického modelu letounu,
který byl využit k syntéze zákonů řízení a k vytvoření simulačního rámce pro evalu-
aci stability a kvality regulace automatického systému řízení letu. Jádro této práce se
věnuje syntéze zákonů řízení založených na unikátní kombinaci teorie optimálního a
adaptivního řízení. Zkoumané zákony řízení byly integrovány do digitálního systému
řízení letu, jenž umožňuje vysoce přesné automatické létání. Závěrečná část práce se
zabývá ověřením a analýzou navrženého systému řízení letu a je rozdělena do 3 fází.
První fáze ověření obsahuje evaluaci robustnosti a analyzuje stabilitu a robustnost
navrženého systému řízení letu ve frekvenční oblasti. Druhá fáze, evaluace kvality
regulace, probíhala v rámci počítačových simulací s využitím vytvořených matemat-
ických modelů v časové oblasti. V poslední fázi ověření došlo k integraci navrženého
systému řízení letu do experimentálního letounu, sloužícího jako testovací platforma
pro budoucí bezpilotní letadlové systémy a jeho evaluaci v rámci série letových exper-
imentů.
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1I N T R O D U C T I O N

The market segment of Unmanned Aerial Systems (UAS) experienced a remarkable
upturn over the period of last decades. The UAS utilization evolved in a response to
emerging new advanced technologies and an associated high demand for application
flexibility in serving the surveillance, entertainment industry and cargo transport. Var-
ious manned aircraft platforms, which were originally designed for sport and recre-
ational flying, could play an important role in the future UAS development, providing
accessible and flexible airframes enabling a cost-efficient holistic design and develop-
ment. A seamless system integration into the air traffic network places strict demands
on operational safety, reliability and robustness of UAS. Addressed elements serve as
prerequisites for the future design of advanced automatic flight control techniques in
this fast evolving segment.

Higher demands on flight endurance and load carrying capacity motivate the con-
version of traditionally piloted aircraft to an Unmanned Aerial Vehicle (UAV). How-
ever, increased safety requirements have to be considered during such transformation,
as well as proper training of UAV operators. Inexperienced UAV operators with limited
flight experience can be ill-prepared for solving critical in flight situations related to
bad weather conditions, failures or emergencies, which can suddenly evolve into se-
rious accidents. New technologies aimed at enhanced UAV automation and safety
improvements are therefore quickly being introduced to the market. However, these
rapidly emerging solutions require thorough testing during the design, development
and pre-production stages [5, 15].

This thesis introduces the reader to a Model Based Design (MBD) approach in the
Flight Control System (FCS) development, harmonized with the state-of-the-art stan-
dards, best practices and regulatory requirements. The MBD process usually starts
with the aircraft dynamic model development and simulation framework components
description. This phase is followed by the control system synthesis and is concluded
with system evaluation performed at first within the simulation environment and
subsequently during real flight experiments.

1.1 state-of-the-art in flight control system design

State-of-the-art control law designs, applied to large transport aircraft FCS, benefit
from employing the classical control theory using linear control techniques for a con-
trol law synthesis. The Stability Augmentation System (SAS) or Control Augmentation
System (CAS) are usually composed of a cascade of transfer functions and designed
by employing linear control techniques. A linear approach to control system synthesis
has several advantages over the nonlinear one, e.g., the linear control system synthesis
is widely introduced in the literature, along with the apparatus for linear closed-loop
system stability determination. Another advantage is in the linear control system de-

1



1.1 state-of-the-art in flight control system design 2

sign’s acceptance by the certification authorities, as the stability of the closed-loop can
be determined.

The task of SAS is not to navigate the aircraft to a specific heading or climb to a de-
fined altitude, but to assist the pilot in stabilizing the aircraft’s attitude. This system
is usually necessary for most high-performance aircraft with intentionally reduced
stability. The SAS uses the information from onboard sensors, usually from rate gyro-
scopes and accelerometers, to produce negative feedback to damp out the oscillatory
aircraft motion. A good practice in FCS engineering is to design the longitudinal and
lateral-directional SAS separately, as the associated longitudinal and lateral-directional
modes can be decoupled for most of the flight phases. Basic types of SAS are the pitch,
roll, and yaw dampers that utilize the angular rate measurements to stabilize the
aircraft motion. Figure 1.1 shows a block diagram of an angular rate SAS.

Figure 1.1: Stability Augmentation System.

A CAS is usually employed when high precision command tracking is required.
Tasks executed by high-performance aircraft, as maneuvering to its physical limits,
require precise control of selected variables, namely the acceleration or angular rates.
When compared to SAS, which "only" improves the aircraft handling qualities, the CAS
enables the pilot to perform various tasks dependent on precise command tracking,
for example, high load factor maneuvering, flight path tracking during an approach
and landing, or maneuvering during precise targeting. Basic variables employed in the
design of respective CAS are the pitch-rate, normal and lateral accelerations. Figure 1.2
depicts a block diagram of acceleration CAS which also contains the pitch rate stability
augmentation introduced in Figure 1.1 and a PI-controller for reference acceleration
tracking.

In most cases, the FCS system serves navigation purposes as maintaining com-
manded altitude, heading, Mach number or airspeed. Other modes may involve an
automatic control of specified climb rate or aircraft attitude. All these modes enable
pilot overload reduction during the flight. Concerning the mentioned features, the FCS
design must comply with legislation specific time domain evaluation criteria, namely
the steady-state error, rising time and overshoot during transient motion. The FCS de-
sign shall consider respective transient effects during the FCS engage and disengage
phases. The best practice is to initiate commanded variables with current values to
avoid unwanted and, in some cases, unsafe oscillations, originating from a large dif-
ference between commanded and current measured value. Figure 1.3 shows a block
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Figure 1.2: Control Augmentation System.

diagram of an altitude-hold FCS. It contains feedback loops of pitch rate stability aug-
mentation, pitch angle hold, and above that, an altitude hold loop containing the
controller GC, in a transfer function form [50].

Figure 1.3: Altitude-hold mode.

One of the classical control approach limitations is that a control system’s complex-
ity rises with an increasing number of loops (angular rates, attitude, navigation, etc.)
and the number of inputs/outputs (measured states and control commands). This lim-
itation can be resolved by employing modern control design techniques that consider
the aircraft model in a state-space representation and assesses the FCS for all of its
inputs and outputs at once by solving one matrix equation. This unifying approach
augments the difference in classical control design, which resolves every single loop
separately.

Boeing researchers Wise and Lavretsky successfully employed a modern control de-
sign technique known as Linear Quadratic Regulator (LQR). The LQR is a Multi-Input
Multi-Output (MIMO) linear control approach that relies on the controlled plant in
state-space representation. The LQR is according to [34] one of the most widely used
control algorithms. It is a state feedback control technique with excellent robustness
characteristics in gain and phase margins and outstanding regulation performance.
It is successful in minimizing control usage and has a convenient implementation.
This technique solves problems of regulation, but it can easily be extended to com-
mand tracking system by adding an integral term. However, this method has some
drawbacks as well. For the stability margins to be guaranteed, all states have to be
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observable. The LQR lacks the noise attenuation capabilities, thus the best practice dic-
tates to use a noise-canceling filter to cancel out the sensor noise. Another drawback
of the LQR method is the fact that it requires tuning of weighting matrices. These
matrices are necessary for feedback gain calculations. Since the LQR can be used as a
baseline control technique for the FCS design, it will be described in detail in following
chapters.

A common practice in the FCS integration process is to manually tune the FCS pa-
rameters. This practice consumes time and imposes additional costs. On the other
hand, the approach introduced in this thesis is focused on Model-Based Design. It
utilizes high fidelity aircraft dynamics model for analytic computation of controller
settings.

1.2 goals and contribution of the thesis

This work’s main contribution can be seen in the complexity and completeness of
the FCS design process. It begins with the composition and analysis of a Light Sport
Aircraft (LSA) mathematical model, which is later employed in the FCS design. The
aircraft model will be used in the simulation framework core that serves the FCS
evaluation. The process will continue by investigating various control system methods,
their implementation on the target hardware platform and evaluation of their stability,
robustness characteristics and performance during computer simulations. Availability
permitting, the testing can be optionally augmented by utilization of high fidelity 6

DoF full flight simulator. The whole design process is finalized with the integration of
a complete FCS into an experimental aircraft and an execution of flight tests. Figure 1.4
shows the experimental LSA, which will be used as a testing platform for the designed
FCS.

Figure 1.4: Testing platform for Flight Control System design.

1.2.0.1 High Fidelity 6 DoF Nonlinear Aircraft Model

One of the most critical elements of a model-based FCS design is the composition of a
controlled plant’s high fidelity dynamics model. High fidelity mathematical represen-
tation of a real aircraft has to account for its various subsystems as the aerodynamics,
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mass and inertia model, sensor and actuator models, etc. to build a reliable frame-
work for the FCS design. Model validation will be performed by comparing the model
outputs to measurements collected during flight experiments. Flight measurement
data collection and its processing using modern system identification techniques con-
tributes to the high fidelity design process.

1.2.0.2 Investigation of Modern Flight Control Methods

Since an experimental LSA has been selected as a testing platform for the FCS imple-
mentation, the focus is aimed at linear state feedback or output feedback classes of
control methods that can be augmented by the adaptation loop. The relatively limited
flight envelope of an experimental LSA, defined by its applicable range of velocities
and altitudes, enables a linear baseline controller design. As one of the design re-
quirements is the overall robustness of the control system, the LQR technique will be
explored. Model uncertainties will be canceled using adaptive augmentation of the
baseline controller using Model Reference Adaptive Control (MRAC) method with its
implementation tailored for the LSA dynamic model.

1.2.0.3 Practical Evaluation of the Designed Flight Control System

The FCS design process will be finalized with the flight experiment proving suitability
of the researched design approach. The in-flight testing provides full evaluation po-
tential compared to computer simulation, and underlines the relevancy of the whole
design process. The experience to be gained during the flight test leads to an in-
disputable improvement potential for the whole FCS design process. The evaluation
procedure will be composed of a series of automatic flight tasks, e.g., coordination
in turns, maintaining aircraft attitude in steady level flight or optional heading and
altitude changes. The evaluation framework will be inspired by the SAE-AS94900

standard Flight Control Systems - Design, Installation, and Test of Piloted Military
Aircraft. Using this standard augments the relevancy of the FCS design.

1.2.0.4 Automatic Approach System for Light Sport Aircraft

The Automatic Approach System (AAS), as a component of the Automatic Landing
System, can be found onboard large transport aircraft. This technology requires both
the aircraft and the airport to be equipped with sophisticated and expensive radio-
navigation equipment, Instrument Landing System (ILS), which provides the aircraft
with information about its precise position relative to the airport runway. The AAS
will utilize a combination of smart affordable technologies as Inertial Measurement
Unit (IMU), Global Navigation Satellite System (GNSS), and Air Data Measurement
unit. The AAS can therefore play an essential role in the segment of safety features at
airports not equipped with ILS. Concerning the above mentioned statement, a success-
ful implementation of an AAS designed without radio navigation technologies can be
seen as one of the main contributions of this thesis.
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1.2.0.5 Research Goals

The thesis itself focuses on the research of modern control theory methods, their ap-
plication in unmanned aviation, stability and performance evaluation during the com-
puter simulations and flight experiments. The following list summarizes the main
research goals of the thesis.

• Research and implement a high fidelity 6 DoF nonlinear model of a LSA for the
FCS design and evaluation.

• Research and implement suitable aircraft control techniques.

• Evaluate researched control approaches using a high fidelity FCS design frame-
work.

• Integrate the researched FCS control laws into an experimental digital control
system onboard a LSA and perform series of practical flight test evaluations.

1.3 outline of the thesis

The introductory part of this thesis, summarizing historical development of automatic
flight control systems, is followed by Chapter 2 dedicated to Flight Dynamics theory,
which starts with introducing the 6 DoF nonlinear aircraft model, introduces all as-
pects of the aircraft motion accounting for respective forces and moments acting on
the aircraft and its position changes. The aircraft motion itself is described by a set of
first order differential equations called Equations of Motion (EOM). The chapter con-
tinues with the description of the linearization process, which leads to state-space rep-
resentation of linear models. The linear models are used in the subsequent FCS design
process steps. The general linearization algorithm is followed by forming respective
linear state-space models that describe the longitudinal and lateral-directional motion
of modeled aircraft.

The thesis continues with Chapter 3 that describes components for building an air-
craft simulation model. The chapter starts with a description of the mass and inertia
models and the definition of the gravity model. The subsequent sections introduce
the aircraft propulsion system virtualization, composed of a piston engine model
supplemented with propeller characteristics and models of sensor and actuator dy-
namics. The chapter continues with a mathematical description of the surrounding
atmosphere, which contains details on continuous turbulence models further utilized
within the simulation framework. The turbulence models use Dryden spectral repre-
sentation taken form MIL-HDBK-1797 [8]. The subsequent section describes abstrac-
tion of aerodynamic forces and moments. The chapter is concluded with a description
of the Plant model, which is a combination of the aircraft dynamics model with mod-
els of sensors and actuators.

Chapter 4 introduces the parameter estimation process employed to improve the
aircraft dynamics model fidelity. The chapter describes in detail state estimation tech-
niques, as Kalman Filter, and introduces the Equation-Error method used for aerody-
namic parameter estimation. It is concluded with the results of aerodynamic parame-
ter estimation.
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Chapter 5 describes the design of the control system itself. This chapter starts
with a description of the baseline controller design, which contains a LQR tailored
for command tracking purposes. Furthermore, it includes a description of the Linear
Quadratic Gaussian (LQG) method, which is a Kalman Filter containing extension of
LQR. The Kalman Filter serves as a state estimator for the case when not all states
are observable. The adaptive augmentation of the baseline controller called MRAC,
which utilizes the Lyapunov stability theory of dynamic systems, is introduced as a
next component of Chapter 5 and is responsible for canceling out the matched model
uncertainties that may influence aircraft dynamics.

Chapter 6 describes the digital FCS implementation process. The first sections de-
scribe the implementation of the researched control laws. The chapter is concluded
with the code generation process description.

The performance of the researched FCS is evaluated in Chapter 7. The first part sum-
marizes computer simulations results and employs robustness and performance eval-
uation tools in frequency and time domains. The following sections present results
of flight experiments. They describe the results of the designed FCS testing during
aerial navigation when the test pilot performed heading command and altitude or
airspeed select tasks. The SAE-AS94900 inspired evaluation of the FCS is introduced
in this chapter. The last section of this chapter introduces an AAS results through mea-
surements of aircraft state and control actions during a test flown automatic approach
procedure. The final chapter summarizes the thesis and suggests directions for future
research.



2F L I G H T D Y N A M I C S

This chapter introduces the description of aircraft motion through a set of first or-
der nonlinear differential equation known as EOM. These equations define the trans-
lational and rotational velocities, derived using second Newton’s law. The set also
contains kinematic and navigation differential equations describing aircraft attitude,
respectively, its position. The following parts describe simplifications made to the non-
linear model. This simplification process is known as linearization. Linear models in
state-space representation are prerequisites to FCS design techniques investigated in
this thesis for the flight control design tasks.

The mathematical notation used in this thesis is based on following standards [24,
25, 26].

2.1 nonlinear equations of motion

Before the rigid body nonlinear equations of motion for an aircraft will be defined, we
will summarize the assumptions made during the modeling process in the following
list [30, 49]:

• Reference point is in the Center of Gravity (CG).

• Rigid body aircraft
(
d
dt

)B
(~rRP) = (~̇rRP)B.

• Non-rotating Earth ( ~ωIEK ) = ~0.

• Flat Earth (~ωEOK ) = ~0.

• Quasi-steady mass ṁ = dm
dt ≈ 0.

• Quasi-steady mass distribution
(
d
dt

)B
IR = 0.

Some of these assumptions will contribute to the Equations of Motion simplifica-
tion. The previously stated assumptions are valid, as we are addressing a LSA with
a fairly limited flight envelope whose dynamics is rather slow as it usually flies at
subsonic speeds and small angles of attack. In another case, if for example, the high-
performance fighter aircraft would be described, it would be necessary to consider
the effects of rotating spherical Earth, variable aircraft mass, and the equations of
motion would become much complex. The extensive description of translational and
rotational equations of motion can be found in [3, 10, 48, 41].

The translational motion is influenced by different types of forces acting on the
aircraft, namely the aerodynamic forces originating from the airflow over the airframe,
gravitational forces caused by Earth’s gravity and propulsion forces due to aircraft
propulsion system.

8



2.1 nonlinear equations of motion 9

The linear momentum time variation is equal to the sum of all external forces acting
on the rigid aircraft, as introduced in equation (2.1).

d~p

dt
=

∑
~F =

d

dt

∫
~̇rP(t) · ρ(t) · dV (2.1)

The following equation represents a vector in the Body-Fixed Frame (BFF), rotating
at an angular rate ω: (

d(·)
dt

)
I

=

(
d(·)
dt

)
B

+ ~ω× (·), (2.2)

where subscripts I and B refer to the Inertial and the BFF, respectively. Equation 2.3
shows the translational equations of motion in a vector format in the BFF.

( ~̇VK)B =
1

m
· (~FGT )B − (~ωK)B × (~VK)B, (2.3)

where the variable (~FGT )B describes the vector of total (T ) forces acting in the air-
craft CG (G) notated in the BFF (B) that can be described by the sum of gravitational,
aerodynamic and propulsion forces

(~FGT )B =
∑

(~FG)B = (~FGG)B + (~FGA)B + (~FGP )B, (2.4)

and the variable (~VK)B is the vector of aircraft kinematic velocities (K) expressed in
the BFF

(~VK)B = [uK, vK,wK]T (2.5)

The derivation of the rotational rigid-body equations of motion is also based on
Newton’s second law. Let ~H be an angular momentum, then the angular momentum
time derivation equals the sum of all external moments acting on the body.

d~H

dt
=

∑
~M =

d

dt
(~rP(t)× ~VP(t) ·m) (2.6)

As the angular momentum is simply given by the equation 2.7.

~H = I · ~ω (2.7)

Variable I defines the inertia tensor and ~ω is the angular rate vector.

~ω = [p,q, r]T (2.8)

is the angular rate vector. The vector differential that defines the time variation of
angular rates is expressed by equation 2.9,

( ~̇ωIBK )BB = (IG)−1BB


Externalmoments︷ ︸︸ ︷∑

( ~MG)B −

Inertia cross coupling︷ ︸︸ ︷
( ~ωIBK )B × (IG)BB(~ω

IB
K )B

 (2.9)
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where
∑

( ~MG)B is the sum of all momentum acting in the aircraft’s CG and matrix
IBB is the aircraft inertia tensor.

The aircraft’s attitude in flight is defined using quaternions. This technique has a
major advantage over the standard Euler angles stemming from avoiding the manip-
ulation of singularities arising from the aircraft pitch angle reaching the value of ±π2 .
The attitude differential equations are shown in equation 2.10.

q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0

−


q0

q1

q2

q3

 (2.10)

A mandatory condition the quaternions must fulfill is its unit normalization intro-
duced in equation 2.11.

q20 + q
2
1 + q

2
2 + q

2
3 = 1 (2.11)

The following functions were employed for the transformation of the quaternions
to standard Euler angles that describe the aircraft attitude with respect to the North-
East-Down (NED) frame. φ

θ

ψ

 =


tan−1(2 q1q2+q0q3

q20+q
2
1−q

2
2−q

2
3

)

sin−1(−2[q1q3 − q0q2])

tan−1(2 q2q3+q0q1
q20−q

2
1−q

2
2+q

2
3

)

 (2.12)

The aircraft position can be defined in different frames, the most used ones are the
NED frame, that has cartesian coordinates and expresses aircraft position with respect
to selected reference point and the spherical WGS-84 frame and describes aircraft
position using geodetic latitude, longitude and height. The position equations using
NED frame are introduced in 2.13. The translational velocities uk, vk and wk, are
transformed from BFF to NED frame. ṗN

ṗE

ṗD


O

=

 VN

VE

VD


O

=MOB

 uK

vK

wK


B

= V

 cos(χ) cos(γ)

sin(χ) cos(γ)

− sin(γ)

 (2.13)

MOB is a 3×3 transformation matrix defining the relationship between the NED
frame and the BFF using Euler angles and trigonometric functions. Another type of
position differential equation can be described by airspeed V , the flight path angle γ,
and flight path azimuth χ often called track. Position in NED frame is defined by the
vector

pO = [pN,pE,pD] (2.14)

and accounts for a Flat-Earth assumption. Transforming the position vector from
Flat-Earth to the geodetic coordinates or inversely is a common process shown in
thesis Appendix.
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However, the geodetic coordinates can be computed by using the aircraft velocities
as well

λ̇G =

(
vK

(Nµ + hG) cos(µG)

)E
O

(2.15)

µ̇G =

(
uK

Mµ + hG

)E
O

(2.16)

ḣG = (−wK)
E
O , (2.17)

where the variable λG describes the geodetic longitude, variable µG is geodetic
latitude and hG the geodetic height. The additional variables Mµ and Nµ are defined
by equations

Mµ = a
1− e2

(1− e2 sin2(µG))3/2

= Nµ
1− e2

1− e2 sin2(µG)
(2.18)

Nµ =
a√

1− e2 sin2(µG)
(2.19)

2.2 aircraft state-space representation

The aircraft model to be utilized in the FCS design contains the aircraft’s longitudinal
and lateral-directional motion description in the form of its state-space representation
introduced in the previous section. As defined in previous section, it is possible to
decouple the overall state-space model the longitudinal and lateral-directional motion.
The condition for steady level flight can be defined by equations 2.20-2.25.

β = φ = p = q = r = 0 (2.20)

V̇ = α̇ = q̇ = θ̇ = γ̇ = ḣ = 0 (2.21)

β̇ = φ̇ = ψ̇ = ṗ = ṙ = 0 (2.22)

V = V0 (2.23)

α = α0 (2.24)

θ = θ0 (2.25)

The subscript 0 in equations 2.23 - 2.25 denotes the trim condition. The longitudi-
nal motion’s state vector xlon contains following listed flight quantities: airspeed V ,
angle of attack α, pitch rate q, flight path angle γ and altitude h. The input vector of
longitudinal motion ulon is composed of the throttle lever position δT and the eleva-
tor deflection δe. Based on linearized longitudinal equations it is possible to express
the components of the longitudinal state-space model, i.e. the system dynamic matrix
Alon and system input matrix Blon, that will be composed of coefficients computed
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during the linearization process. The experience shows, that derivatives CLα̇ , CDα̇
and Cmα̇ are very small, therefore the coefficients Zα̇, Xα̇ and Mα̇ can be neglected,
which simplifies the resulting state-space model.

Equations 2.26 through 2.29 introduce the longitudinal motion’s state-space model
with the state vector xlon and the input vector ulon,

ẋlon = Alonxlon +Blonulon (2.26)

ylon = Clonxlon, (2.27)

where
xlon = [V ,α,q,γ,h]T (2.28)

ulon = [δT , δe]T (2.29)

Equations 2.30 and 2.31 introduce the internal structures of the longitudinal model’s
state matrix Alon and the input matrix Blon [50].

Alon =



XV Xα Xq −g cos(γ0) Xh

ZV Zα Zq + 1 − g
V0

cos(γ0) Zh

MV Mα Mq 0 Mh

−ZV −Zα −Zq
g
V0

cos(γ0) −Zh

sin(γ0) 0 0 V0 cos(γ0) 0


(2.30)

Blon =


XδT Xδe

ZδT Zδe

MδT Mδe

−ZδT −Zδe
0 0

 (2.31)

Variables X,Z,M are force and moment coefficients, that are constant for specified
trim point condition defined by a combination of velocity and altitude, and are com-
puted during linearization process derived in the previous section. Variables V0,γ0
are aircraft states at a trim point. In case of fully observable state vector, the output
matrix Clon from equation 2.27 is represented by a simple 5×5 identity matrix [18].

The lateral-directional motion model state xlat is composed of flight quantities in-
cluding sideslip angle β, roll angle φ, heading angle ψ, roll rate p and yaw rate r. In-
put variables of lateral-directional motion are the aileron δa and rudder δr deflections,
which create the input vector ulat. As the derivative of angle of sideslip doesn’t have
a significant effect on the lateral-directional model dynamics, the related derivatives
Yβ̇, Lβ̇ and Nβ̇ can be neglected. This assumption simplifies the lateral-directional
model’s system matrix Alat and input matrix Blat.

The following equations define the state-space representation of lateral-directional
dynamics [50].

ẋlat = Alatxlat +Blatulat (2.32)

ylat = Clatxlat (2.33)
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xlat = [β,φ,ψ,p, r]T (2.34)

ulat = [δa, δr]T (2.35)

Equations 2.36 and 2.37 introduce internal structures of the lateral-directional
model’s state matrix Alat and the input matrix Blat.

Alat =



Yβ
g
V0

cos(α0) 0 Yp + sin(α0) Yr − cos(α0)

0 0 0 1 tan(θ0)

0 0 0 0 1
cosθ0

Lβ 0 0 Lp Lr

Nβ 0 0 Np Nr


(2.36)

Blat =


Yδa Yδr

0 0

0 0

Lδa Lδr

Nδa Nδr

 (2.37)

Variables Y,L,N are, similarly to the longitudinal case, the force and moment coef-
ficients, which are constant for the specified trim point and are computed during the
linearization process. Variables V0, α0, θ0 again refer to aircraft state at trim point.
The output matrix Clat from equation 2.33 is a 5×5 the identity matrix as in the
longitudinal motion, which means that all lateral-directional states are assumed to be
observable.



3A I R C R A F T S I M U L AT I O N M O D E L

This chapter introduces the subsystems and mathematical background necessary for
building an aircraft simulation model, which will be used throughout the following
chapters as part of the researched designed flight control system framework. In fact,
the Equations of Motion derived in the previous chapter and their linearized state-
space models cover only one part of the model, namely the aircraft dynamics, as
shown in Figure 3.1. The remaining necessary flight simulation subsystems will be
described in the following sections. The chapter starts with a description of the mass,
inertia and gravity models. The subsequent paragraphs are dedicated to the model-
ing of the propulsion system, and sensor and actuator dynamics. The sensor model
is built up around a stochastic description of the measurement noise using the Allan
variance technique to precisely express its noise characteristics. The dynamics of both,
sensor and actuator models can be conveniently expressed using second-order trans-
fer functions. The chapter continues with the description of the atmospheric model,
which contains a detailed specification of the continuous turbulence model inevitable
in the evaluation of the researched flight control system’s performance. The final sec-
tion describes in detail the aerodynamic model.

Figure 3.1: State representation of an aircraft simulation model. Source [19]

14
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Chapter 3 is concluded with a description of a plant model, which is a combination
of the aircraft and actuator dynamics. This model will be used in the subsequent
chapters for the flight control system design.

3.1 mass , inertia and gravity model

The aircraft total weight m is computed as a sum of empty weight mconf at specific
balance configuration and weight of other elements mi, accounting for the crew, fuel
or payload [31]. Total weight calculation formula is shown in equation 3.1.

m = mconf +
∑
i

mi (3.1)

An instantaneous CG position xCG is defined by elementary weights and associated
known CG positions of respective configuration elements using equation 3.2.

xCG =
xCGconfmconf +

∑
i xCGimi

m
(3.2)

In order to calculate the rotational dynamics of a simulated aircraft, it is inevitable
to carefully compose the resulting inertia tensor IBB [16, 28]. Equation 3.3 shows
the inertia tensor’s structure, while equations 3.4-3.9 introduce the tensor’s elements
computation.

IBB =

 Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 (3.3)

Ixx =

∫
m
(y2 + z2)dm (3.4)

Iyy =

∫
m
(x2 + z2)dm (3.5)

Izz =

∫
m
(x2 + y2)dm (3.6)

Ixy =

∫
m
(xy)dm (3.7)

Iyz =

∫
m
(yz)dm (3.8)

Ixz =

∫
m
(xz)dm (3.9)
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The Gravity model is defined by force and moment vectors shown in equations
3.10-3.11, along with their transformations from NED frame to BFF. These transfor-
mations are necessary from the model compatibility perspective as other models as
aerodynamics or propulsion are developed in BFF [51].

(~FG)B =MBO ·

 XG

YG

ZG


0

=MBO ·

 0

0

m · g


0

(3.10)

( ~MG)B =MBO ·

 LG

MG

NG


0

= ~0 (3.11)

3.2 propulsion system model

The thrust of a propulsion system, made of for example 4-stroke reciprocity com-
bustion engine and propeller, is computed using propeller characteristics containing
advance ratio J, thrust coefficient CT , propeller diameter Dprop and propeller or
engine revolutions nprop. At first, the advance ratio is defined by equation 3.12.

J =
V

npropDprop
(3.12)

The thrust coefficient CT can be defined as a function of the advance ratio J. Using
the state-of-the-art engineering practice is to approximate this function by a lookup
table. The last step is expressing the thrust T using equation 3.13 [46].

T = CTρn
2
propD

4 (3.13)

The engine model can be defined using a function relating the engine revolutions
to the throttle lever position and the instantaneous operating condition.

3.3 actuator model

An important aspect of a digital FCS design is the consideration of the actuator’s
dynamic effects. The modeled actuator dynamics, with its time delays, influences the
aircraft’s overall dynamic behavior. The actuator model dynamics can be described
by a second order transfer function, with properties expressed in terms of its natural
frequency ωact and damping ζact as shown in the equation (3.14) [12].

Fact(s) =
ω2act

s2 + 2ζactωacts+ω2act
(3.14)

To conveniently combine the actuator model with the state-space representations
of the aircraft’s longitudinal and lateral-directional motion, the transfer function
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Fact(s) can be transformed into its state-space representation as introduced in equa-
tions (3.15) and (3.16).

ẋact = Aactxact +Bactuact (3.15)

yact = Cactxact (3.16)

The actuator’s state-space model for longitudinal motion contains a state vector
composed of the throttle and elevator deflections along with their associated deflec-
tion rates. The actuator model inputs for the longitudinal motion are the respective
command values defined in the equation 3.19. The lateral-directional state-space ac-
tuator model, on the other hand, contains a state vector composed of aileron and
rudder deflections and their associated rates. The actuator model inputs for the
lateral-directional motion are the command values defined by equation 3.20. Equa-
tions 3.17 and 3.18 show the actuator model state vectors for the longitudinal and
lateral-directional motion cases, while equations 3.19 and 3.20, as stated above, show
the respective actuator model input vectors for the longitudinal and lateral-directional
case.

xact,lon =
[
δ̇T , δT , δ̇e, δe

]T (3.17)

xact,lat =
[
δ̇a, δa, δ̇r, δr

]T (3.18)

uact,lon =
[
δTcmd , δecmd

]T (3.19)

uact,lat = [δacmd , δrcmd ]
T (3.20)

The actuator’s state matrix Aact, input matrix Bact and output matrix Cact are
introduced in equations 3.21, 3.22, 3.23, 3.24 and 3.25 respectively, and have the same
structure for both, the longitudinal and the lateral-directional motion.

Aact,lon =


−2ζδTωδT −ω2δT 0 0

1 0 0 0

0 0 −2ζδeωδe −ω2δe
0 0 1 0

 (3.21)

Bact,lon =


ω2δT 0

0 0

0 ω2δe
0 0

 (3.22)

Variables ζ and ω represent the actuator’s damping and natural frequency for
thrust and elevator actuator model, respectively. This model is a part of the longi-
tudinal dynamics.

Aact,lat =


−2ζδaωδa −ω2δa 0 0

1 0 0 0

0 0 −2ζδrωδr −ω2δr
0 0 1 0

 (3.23)
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Bact,lat =


ω2δa 0

0 0

0 ω2δr
0 0

 (3.24)

The lateral-directional motion’s actuator model contains natural frequency ω and
damping ζ characteristics differentiated by subscripts δa, δr for the aileron and the
rudder control respectively.

The output matrix Cact introduced in the equation (3.25) is identical for both, the
longitudinal and the lateral-directional actuator model, and consist of only two rows,
as only the control surface deflections, without the respective rates, are assumed to be
measurable [30].

Cact =

[
0 1 0 0

0 0 0 1

]
(3.25)

3.4 sensor model

An unmanned aircraft’s sensor network contains several measurement units that influ-
ence aircraft state variables in a different manner. The aircraft’s accelerations, angular
rates and Euler angles can be measured by Micro Electro Mechanical System (MEMS)
IMU, usually equipped with a magnetometer to sense the magnetic field. The airspeed
and pressure altitude are acquired through a pitot-static system. Finally, the position
of an aircraft is sensed by a GNSS receiver. Almost all sensors add some errors into the
measurement, either it is noise, drift or time delay.

3.4.1 Sensor dynamics

State-of-the-art sensors for UAV applications are mostly based on the MEMS technology.
The dynamics of such sensor can be conveniently modeled as a second-order linear
system and described by a transfer function. Example of sensor transfer function is
shown in equation 3.26.

Fsens(s) =
ω2sens

s2 + 2ζsensωsenss+ω2sens
(3.26)

The sensor dynamics is characterized by its natural frequency ωsens and by
the sensor damping ζsens. A block diagram of sensor dynamics implementation
is shown in Figure 3.2.

3.4.2 Noise characteristics estimation

This section describes the process of sensor noise and bias estimations, which are
needed for high fidelity sensor modeling. Once estimated these parameters are added
to the clean signal in order to create precise sensor output signal comparable to the
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Figure 3.2: Block diagram of sensor dynamics.

real sensor output. The sensor bias can be computed through the utilization of a sim-
ple mean calculation over selected signal length under steady conditions, as described
in equation 3.27. In the case of specific forces, the signal needs to be compensated for
gravity effects [21].

b =
1

N

N∑
i=1

Ai (3.27)

Figure 3.3: Time clusters for Allan variance calculation.

Signal noise power can be estimated by employing the Allan variance technique.
This method is usually applicable to oscillator frequency stability measurements. The
advantage of this approach is that it can be used without data-sheet information
and based only on the measured sensor signal. For this thesis’s purpose, the Allan
variance calculation of a gyroscope signal will be used for the algorithm explanation.
The first step of computing Allan variance is the integration of measured angular
velocity samples ω(t) over the time span t, which results in angle θ(t).
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The Allan variance σ2(τ) can be computed as a function of τ and <> , which is
an expression for ensemble average. Equation 3.28 shows the Allan variance formula

σ2(τ) =
1

2τ2
< (θk+2m − 2θk+m + θk)

2 > (3.28)

Variable τ is the so called cluster time, and its width is defined by the parameter m
as defined in the following equation.

τ = m · dt (3.29)

After explaining ensemble average, the result could be written by equation 3.30.

σ2(τ) =
1

2τ2(N− 2m)

N−2m∑
k=1

[
(θk+2m − 2θk+m + θk)

2
]

(3.30)

The parameter N is the total number of samples and m, as mentioned above, the
number of samples in an overlapping cluster time τ. This version of Allan variance
algorithm is called overlapping due to the time clusters defined by the parameter τ
being overlapping, as shown in Figure 3.3. The noise characteristics can be estimated
using the above-defined algorithm in a laboratory experiment, in which accelerometer
and gyroscope signals are recorded under steady conditions. The noise characteristics
are then extracted from measured signals.

3.5 atmospheric model

Future implementations of an aircraft dynamic model include an atmospheric model
compliant to the international standard ISO 2533, which is useful for altitude ranges
from -2 to 20 km (from the troposphere to lower stratosphere)[27]. This model is used
to calculate important physical quantities, namely the air temperature T , air density ρ,
Mach number M and dynamic pressure q̄. The first step in using the ISO 2533 model
is to calculate the geopotential height HG, which is necessary for the calculation of
the air temperature, static pressure and air density.

HG =
rE · h
rE + h

(3.31)

Following expressions define the above mentioned physical quantities for geopo-
tential heights from -2 to 11 km:

T = (1+ γTR ·
HG
TS

) · TS (3.32)

pstat = (1+ γTR ·
HG
TS

)
nTR
nTR−1 · pS (3.33)

ρ = (1+ γTR ·
HG
TS

)
1

nTR−1 · ρS (3.34)
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Table 3.1: Atmospheric constants.

Name Nomenclature Value Units

Sea Level Temperature TS 288.15 [K]
Sea Level Density ρS 1.225 [kg ·m−3]
Sea Level Pressure pS 1.013×105 [Pa]
Troposphere constant nTR 1.235 [1]
Lapse Rate γTR -6.5×10−3 [K ·m−1]
11 Km Temperature T11 216.65 [K]
11 Km Density ρ11 0.364 [kg ·m−3]
11 Km Pressure p11 2.263×104 [Pa]
Ideal Gas Constant R 287.05 [J ·kg−1K−1]
Adiabatic index κ 1.41 [1]

The isothermal character of the stratosphere higher layers leads to different modi-
fied for temperature, static pressure and air density computation for altitudes between
11 and 20 km. Constants for both atmospheric layers are given in Table 3.1.

T = T11 (3.35)

pstat = p11 · e
−

g0
R·T11

·(HG−11000) (3.36)

ρ = ρ11 · e
−

g0
R·T11

·(HG−11000) (3.37)

Finally, with the availability for the air density and airspeed, it is possible to define
the dynamic pressure and Mach number essential for expressing aerodynamic forces
and moments.

q̄ =
1

2
· ρ · V (3.38)

M =
V√

κ · R · T
(3.39)

3.5.1 Continuous Atmospheric Turbulence Model

The continuous atmospheric turbulence model as described in this thesis was taken
from the standard MIL-HDBK-1797 [8]. The model estimates continuous turbulence
contributions to aircraft translational and rotational velocities based on the aircraft
altitude, velocity, attitude and user setting of wind speed at 20ft altitude (low alti-
tude model) supplemented by the probability of exceedance coefficient (high altitude
model). The user may adjust parameters according to requested turbulence severity.
Table 3.2 shows parameter settings for 3 levels of turbulence severity: light, moderate
and severe.
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Table 3.2: Severity parameters for high and low altitude conditions turbulence models.

Severity Wind velocity at 20 ft [kts] Probability of exceedance [1]

Light 15 10
-2

Moderate 30 10
-3

Severe 45 10
-5

3.5.1.1 Forming Filters

Equations 3.40-3.45 describe linear filters which process white noise on input and
generate transtational and rotational velocities affecting the aircraft state. Linear filter
parameters are adjusted with respect to scale lengths Lu,Lv,Lw, turbulence inten-
sities σu,σv,σw, aircraft airspeed V and altitude h. Filter structure is identical for
low and high altitude conditions. Following subsection describes differences in scale
lengths and turbulence intensities. Parameter bw represents the aircraft’s wing span
[8].

Fu(s) = σu

√
2Lu

πV
· 1

1+ Lu
V s

(3.40)

Fv(s) = σv

√
Lv

πV
·
1+

√
3Lv
V s

(1+ Lv
V s)

2
(3.41)

Fw(s) = σw

√
Lw

πV
·
1+

√
3Lw
V

(1+ Lw
V s)

2
(3.42)

Fp(s) = σw

√
0.8
V
·

( π
4bw

)1/6

L
1/3
w (1+ (4bwπV )s)

(3.43)

Fq(s) =
± sV

1+ (4bwπV )s
· Fw(s) (3.44)

Fr(s) =
± sV

1+ (3bwπV )s
· Fv(s) (3.45)

3.5.1.2 Low Altitude Model

The low altitude model describes scale lengths and turbulence intensities for altitudes
below 1000 ft. Scale lengths are affected only by the aircraft altitude, while turbulence
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intensities are influenced by wind speed W20 at 20ft above the ground. The velocity
vector orientation in low altitude model is defined in the BFF [8].

Lu = Lv =
h

(0.177+ 0.000823h)1.2 (3.46)

Lw = h (3.47)

σw = 0.1W20 (3.48)

σu = σv =
σw

(0.177+ 0.000823h)0.4 (3.49)

3.5.1.3 Medium/High Altitude Model

The high altitude model describes turbulence behavior above 2000 ft. The scale lengths
are constant as shown in equation 3.50, and turbulence intensities are defined by a 2D
lookup table, the graphical representation of which is shown in Figure 3.4. Inputs
to the lookup table are the aircraft altitude and the probability of exceedance, set by
the user according to requested turbulence severity. The velocity vector of the high
altitude model is defined in BFF.

Lu = Lv = Lw = 1750ft (3.50)

σu = σv = σw (3.51)

Figure 3.4: Continuous turbulence intensities based on the probability of exceedance. Source [8]

The medium altitude velocities and angular rates between 1000 ft and 2000 ft are
determined as a linear interpolation between low and high altitude results and are
expressed in the BFF axis frame [8].
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3.5.1.4 Turbulence Model Structure

The inputs to the turbulence model described by a block diagram in Figure 3.5 are
the geodetic altitude h, Euler angles φ, θ,ψ, airspeed V , wind speed at 20 ft above
ground W20 and the probability of exceedance. Outputs that influence the aircraft
simulation model are turbulence induced velocities and angular rates in BFF. The
turbulence model contains three main subsystems, as shown in Figure 3.5, the Low
Altitude Model, the High Altitude Model, and the function for assembling the turbu-
lence contributions. The white noise generator block computes turbulence intensities
and scale lengths. The Turbulence Filter blocks include implementation of linear filters
from equations 3.40-3.45.

Figure 3.5: Continuous atmospheric turbulence model.
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3.6 aerodynamic model

Aerodynamic forces and moments are influenced by the shape of the aircraft and its
configuration. Equations 3.52 and 3.53 introduce aerodynamic forces and moments as
functions of the mean aerodynamic chord c̄, wing area S, wingspan bw, air density ρ,
airspeed V , and aerodynamic force and moment coefficients of the modeled aircraft
[36].  D

Q

L

 =
1

2
ρV2︸ ︷︷ ︸
q̄

S

 CD

CQ

CL

 (3.52)

 LA

MA

NA

 =
1

2
ρV2︸ ︷︷ ︸
q̄

S

 bw 0 0

0 c̄ 0

0 0 bw


 Cl

Cm

Cn

 (3.53)

Applicable drag CD, side-force CQ and lift CL coefficients, together with the roll
Cl, pitch Cm and yaw Cn moment coefficients are defined by the following set of
equations [30, 50].

CD = CD0 +CDαα+CDα̇
α̇c̄

2V
+CDq

qc̄

2V
+CDδe δe (3.54)

CQ = CQββ+CQβ̇
β̇bw

2V
+CQp

pbw

2V
+CQr

rbw

2V
+CQδa δa +CQδr δr (3.55)

CL = CL0 +CLαα+CLα̇
α̇c̄

2V
+CLq

qc̄

2V
+CLδe δe (3.56)

Cl = Clββ+Clβ̇
β̇bw

2V
+Clp

pbw

2V
+Clr

rbw

2V
+Clδa δa +Clδr δr (3.57)

Cm = Cm0 +Cmαα+Cmα̇
α̇c̄

2V
+Cmq

qc̄

2V
+Cmδe δe (3.58)

Cn = Cnββ+Cnβ̇
β̇bw

2V
+Cnp

pbw

2V
+Cnr

rbw

2V
+Cnδa δa +Cnδr δr (3.59)

3.7 plant model

The plant model is made of a combination of the aircraft and the actuator state-space
model connected via control surface deflections. The output of the plant is a com-
bination of the already defined state vector of the longitudinal or lateral-directional
aircraft model and the actuator state as defined by the equation 3.60

xpl = [xlat/lon, xact]T (3.60)
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The plant system for a longitudinal and lateral-directional motion can be defined
by equations 3.61 and 3.62.

ẋpl =

[
Alat/lon Blat/lonCact

04×5 Aact

]
︸ ︷︷ ︸

Apl

xpl +

[
05×2

Bact

]
︸ ︷︷ ︸

Bpl

uact (3.61)

ypl =
[
1 0

]
︸ ︷︷ ︸
Cpl

[
xlon/lat

xact

]
(3.62)

When assigning equations 2.30, 2.31, 3.21, 3.22 to the equation 3.61 we get the plant
dynamic matrix Apl lon expressed by the equation 3.63 and input matrix Bpl lon
shown in equation 3.64.

Apl lon =

XV Xα Xq −g cosγ0 Xh 0 XδT 0 Xδe

ZV Zα Zq − g
V0

cosγ0 Zh 0 ZδT 0 Zδe

0 Mα 0 Mq Mh 0 MδT 0 Mδe

−ZV −Zα −Zq + g
V0

cosγ0 −Zh 0 0 0 0

sinγ0 0 0 −V0 cosγ0 0 0 0 0 0

0 0 0 0 0 −2ζδTωδT −ω2δT 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −2ζδeωδe −ω2δe
0 0 0 0 0 0 0 1 0


(3.63)

Bpl lon =



0 0

0 0

0 0

0 0

0 0

ω2δT 0

0 0

0 ω2δe
0 0



(3.64)
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The dynamic matrix of lateral-directional plant model is shown in equation 3.65.
Similarly, as the input matrix of longitudinal plant model, we can describe the input
matrix of the lateral-directional plant model by equation 3.66

Apl lat =

Yβ
g
V0

0 Yp + s(α0) Yr − c(α0) 0 Yδa 0 Yδr

0 0 0 1 t(θ0) 0 0 0 0

0 0 0 0 1
c(θ0)

0 0 0 0

Lβ 0 0 Lp Lr 0 Lδa 0 Lδr

Nβ 0 0 Np Nr 0 Nδa 0 Nδr

0 0 0 0 0 −2ζδaωδa −ω2δa 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −2ζδrωδr −ω2δr
0 0 0 0 0 0 0 1 0


(3.65)

Bpl lat =



0 0

0 0

0 0

0 0

0 0

ω2δa 0

0 0

0 ω2δr
0 0



(3.66)

Both dynamic and input matrices of longitudinal and lateral-directional plant mod-
els contain information about the aircraft and actuator dynamics. Equation 3.67 de-
scribes the output matrix, which is the same for the longitudinal, as well as lateral-
directional plant model. The plant model is shown in a form in which it will be later
utilized in the sections dedicated to the FCS design process.

Cpl =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

 (3.67)
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The process of building an aircraft mathematical model from flight testing campaigns
generally relies on System Identification techniques. The aim of this chapter is intro-
duce the aerodynamic model parameter estimation algorithms. There are two main
approaches to creating models. The first one is called the mathematical modeling
and is based on the knowledge of laws of physics used for the description of system
dynamics. This approach is rather analytical. The other approach uses the system’s
input-output data collected during test campaigns. This approach is rather experi-
mental. The analytical approach has limited use in modeling systems with complex
structure and unknown parameters. At this point, the parameter estimation approach
on experimental data needs to be used. The mathematical models obtained through
identification have following features:

• It is relatively easy to create them, but their validity can be limited to the sur-
roundings of a certain working point.

• Mathematical models created via identification usually do not have true physi-
cal meaning.

• Assistance of domain expert is usually necessary during the process of the math-
ematical model identification.

The expert opinion about choosing the right model structure or selecting and pre-
processing the correct input-output data for parameter estimation can be a better strat-
egy than performing the trial and error process of choosing the right model structure
and data set.

The motivation for creating mathematical models can be driven from the desire of
better understanding the modeled systems. An identified mathematical model of an
aircraft can be employed either in the process of control system design or for creating
high fidelity flight simulators. The identified aircraft model can be used for a baseline
FCS design and can also serve as a reference model in the adaptive flight control
design , which will be introduced in the subsequent chapters. Figure 4.1 describes a
general aircraft parameter estimation process using the input-output data, a priory
model values and selected model structure.

Following paragraphs will introduce the basic aerodynamic model structure used in
the parameter estimation along with the Equation Error Method estimation technique,
which will be explained later. The estimation algorithms presented in this chapter are
inspired by [28, 30]. The interested reader is referred to [11, 14, 37, 40] for more in-
depth insight into system identification and parameter estimation.

28
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Figure 4.1: System identification process.

4.1 model for parameter estimation

The aircraft model used for parameter estimation describes contains a structure made
of force and moment coefficients. Equations 4.1 - 4.6 show a sample model structure
that to be used for actual parameter estimation.

CD = CD0 +CDαα+CDδe δe (4.1)

CY = CY0 +CYββ+CYδr δr (4.2)

CL = CL0 +CL0α+CLδe δe (4.3)

Cl = Cl0 +Clββ+Clδa δa +Clδr δr +Clp
pbw

2V
+Clr

rbw

2V
(4.4)

Cm = Cm0 +Cmαα+Cmδe δe +Cmq
qc̄

2V
(4.5)

Cn = Cn0 +Cnββ+Cnδa δa +Cnδr δr +Cnp
pbw

2V
+Cnr

rbw

2V
(4.6)

The model can be described in a simplified form by equation 4.7.

z = XθP + ν (4.7)

where the parameters to be estimated are formed in the vector θP . An example of
the parameter vector for a roll moment coefficient Cl is shown in equation 4.8.

θP = [Cl0 ,Clβ ,Clδa ,Clδr ,Clp ,Clr ]
T (4.8)

The vector of measured states, called regressors, of the roll moment coefficient Cl
is formed in equation 4.9.

X = [1,β, δa, δr,
pbw

2V0
,
rbw

2V0
] (4.9)



4.1 model for parameter estimation 30

The vector of the so called measurements z that forms left side of equation 4.7, is
for the roll moment coefficient example expressed by equation 4.10.

z = [Cl(1),Cl(2), . . . ,Cl(N)]T (4.10)

Parameter N represents the number of measured data points used for parameter
estimation. Since the data contains the measured noise and errors, and the model
itself is only an approximation, it is suitable to define the vector of equation errors ν
that is expressed by equation 4.11

ν = [ν(1),ν(2), . . . ,ν(N)]T (4.11)

The dimensionless force and moment coefficients, expressed in the equation 4.10,
are computed from variables measured during the flight experiment with using the
knowledge of the equations of motion and laws of physics. Forces coefficients in BFF
are computed using the acceleration measurements and thrust estimates.

CX =
max − T

q̄S
(4.12)

CY =
may

q̄S
(4.13)

CZ =
maz

q̄S
(4.14)

These coefficients are converted in the next step using rotation about the measured
angle of attack to the stability axis frame, which is often used for expressing the
aerodynamic force and moment coefficients. This rotation does not affect the side-
force coefficient CY , which remains the same.

CD = −CX cos(α) −CZ sin(α) (4.15)

CL = −CZ cos(α) +CX sin(α) (4.16)

Moment coefficient computations are based on the moment equations of motion
and the knowledge of moments of inertia and rotational accelerations that are usually
computed as a numerical derivative of angular rate signals.

Cl =
Ix

q̄Sbw

[
ṗ−

Ixz

Ix
(pq+ ṙ) +

(Iz − Iy)

Ix
qr

]
(4.17)

Cm =
Iy

q̄Sc̄

[
q̇+

(Ix − Iz)

Iy
pr+

Ixz

Iy
(p2 − r2)

]
(4.18)

Cn =
Iz

q̄Sbw

[
ṙ−

Ixz

Iz
(ṗ− qr) +

(Iy − Ix)

Iz
pq

]
(4.19)
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4.2 equation error method

In its most basic form, the Equation Error Method becomes the parameter estimator
based on the minimization of the sum of squared differences, i.e., the least-squares
estimator. This type of estimator requires a type of model that is linear in parameters.
The advantages of the least-squares estimator are simple implementation and low
computational complexity. The aerodynamic force and moment coefficients equations
4.1-4.6 fulfill the condition of linearity in parameter fits to the required model struc-
ture expressed in equation 4.10. As stated above, the least square estimator minimizes
the sum of squared differences defined by criterion J(θP) within the equation 4.20.

J(θP) =
1

2
(z−XθP)

T (z−XθP)

=
1

2
[θTPX

TXθP − θTPX
T z− zTXθP + zT z] (4.20)

The vector of parameters θP that minimizes quadratic criterion J(θP) is defined by
equation 4.21

dJ(θP)

dθP
= −zTX+ θTP(X

TX) = 0 (4.21)

and by expressing the parameter vector θP form equation 4.21 its least square esti-
mate can be expressed by equation 4.22.

θ̂P = (XTX)−1XT z (4.22)

The analysis of parameter estimate given by equation 4.22 can be done assuming
that the regressor X is without error, and the noise within the measurement z is white
and Gaussian. In that case, the output estimate ŷ can be expressed using equation
4.23, which leads to computation of measurement variance σ2 defined by equation
4.24. Resulting estimate covariance matrix Pij and standard deviation s, which is the
squared root of estimate covariance, can be expressed using equations 4.25 and 4.26.

ŷ = Xθ̂P (4.23)

σ̂2 =
(z− ŷ)T (z− ŷ)

N−np
(4.24)

cov(θ̂P) = E[(θ̂P − θP)(θ̂P − θP)
T ] = σ̂2(XTX)−1

= [Pij] where i, j = 1, 2, . . . ,np (4.25)

s(θ̂Pj) =
√
Pjj (4.26)

4.3 state estimation techniques

The state estimation is a technique that computes the state of a dynamic system
from the measured variables. The use-cases of state estimation, which is widely used
throughout the control system design, include the signal noise suppression, signal re-
construction (in aerospace applications known as flight path reconstruction) and data
fusion that improves the accuracy of the state estimate by combining different sensors,
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widely used in navigation systems as Global Positioning System (GPS) or robotics
application. One of the most utilized techniques for state estimation, which will be
described in this section, is the Kalman filter. The Kalman filter was co-invented by
Rudolph Kalman in 1958 during his work on the Apollo project navigation computer
and became quickly popular, especially among the engineering community. The rea-
son was its transparency. In contrast to the Wiener filter, which is based on frequency
description and spectral factorization, the Kalman filter operates in the time domain
and with system state variables. More details about the state estimation topics can
be found in [1, 7, 29]. Kalman filter is a linear optimal state estimator in the means
of minimal variance, and its basic working principle is the calculation of weighted
average between the measured and predicted state, where the weight (Kalman gain)
depends on the uncertainty of the measurement, the higher the uncertainty, the lower
the weight. It can be expressed by a general equation 4.27

xestimated = xpredicted +K · (zmeasured − zpredicted) (4.27)

The motivation of using state estimation within the task of parameter estimation is
that the result of parameter estimation, i.e., the identified model is directly influenced
by the quality of input-output data used. If the data is noisy and biased or some
necessary variables are missing, it is highly likely that the parameter estimator’s per-
formance will be poor. In other words, if there is garbage at the input to the parameter
estimator, there will be garbage at the output as well. Another utilization of state esti-
mation techniques is related to the control system design. The state estimator, namely
the Kalman filter, is an integral part of the LQG control technique, which will be re-
searched in detail in Chapter 5. The LQG control approach combines the Kalman filter
with the state feedback control. The Kalman filter assumes stochastic, affine, linear
and time-variant system in a form defined by equations 4.28 and 4.29.

ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t) x(t0) = x0 (4.28)

z(t) = H(t)x(t) +D(t)u(t) + v(t) t = ti, i = 1, 2, . . . (4.29)

Matrices A,B,G,H,D are assumed to be known and possibly time-varying. The
variable w(t) is the process continuous white noise and v(t) is the measurement white
noise. The noise characteristics, namely the process noise mean E [w(t)], process noise
covariance E

[
w(t)w(t)T

]
, measurement noise mean E [v(t)] and measurement noise

covariance E
[
v(t)v(t)T

]
are introduced in equations 4.30-4.33

E [w(t)] = 0 (4.30)

E
[
w(t)w(t)T

]
= Q(t) (4.31)

E [v(t)] = 0 (4.32)

E
[
v(t)v(t)T

]
= R(t) (4.33)

Before the definition of the Kalman filter algorithm it is necessary to discretize the
continuous system expressed in equations 4.28 and 4.29, which results in a following
discrete linear system described by equations 4.34 and 4.35.

ẋk+1 = Φk+1xk+1 +Ψk+1uk+1 + Γk+1wk+1 (4.34)

zk+1 = Hk+1xk+1 +Dk+1uk+1 + vk+1 (4.35)
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Table 4.1: Kalman filter variables definition.

Description Variable

Current real system state xk

One step ahead real system state xk+1

Current optimal estimated system state x̂k,k

One step ahead state prediction x̂k+1,k

One step ahead optimal state estimation x̂k+1,k+1

Variable Φk+1 represents the system transition matrix, Ψk+1 is the input distribu-
tion matrix, and Γk+1 defines the noise input matrix. Table 4.1 defines some variables
that will be used throughout the Kalman filter description.

The first step in the Kalman filter definition is expressing the one step ahead state
prediction described by equation 4.36, which is followed by the computation of the
state prediction error covariance matrix expressed by equation 4.37.

x̂k+1,k = Φk+1,kx̂k +Ψk+1,kuk, x̂0,0 = x̂0 (4.36)

Pk+1,k = ΦkPk,kΦ
T
k + Γk+1,kQdΓ

T
k+1,k, P0,0 = P0 (4.37)

The subsequent step is the Kalman gain calculation, which represents the relative
weight of difference between the measurement and estimate.

Kk+1 = Pk+1,kH
T
k+1(Hk+1Pk+1,kH

T
k+1 + Rk+1)

−1 (4.38)

Afterwards the measurement update of the state estimate is introduced in equation
4.39.

x̂k+1,k+1 = x̂k+1,k +Kk+1 (zk+1 −Hk+1x̂k+1,k)︸ ︷︷ ︸
Measurement error

(4.39)

As stated in equation 4.27 the optimal estimate x̂k+1,k+1 is a combination of the bi-
ased state estimate x̂k+1,k and the estimated measurement error scaled by the Kalman
gain Kk+1. The state estimation error covariance matrix is computed at the end of the
recursive cycle using equation 4.40. In other words, the sample covariance matrix
Pk+1,k+1 can be expressed in terms of the old covariance matrix Pk+1,k.

Pk+1,k+1 = (I−Kk+1Hk+1)Pk+1,k (4.40)

The Kalman filter described by equations 4.36-4.40 is intentionally introduced in
its recursive form as it is the most appropriate way for easy and straightforward
implementation. After performing the last step, that is the computation of the state
estimation error covariance matrix, the recursive cycle starts again from the equation
4.36, therefore it is referred to as a state prediction computation.
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To determine the noise covariance matrices Q and R, it is possible to use the knowl-
edge of the sensor calibration process. If the system input vector is defined by equa-
tion 4.41, then each input has a standard deviation defined by vector Σu specified in
equation 4.42.

u = [u1, . . . ,un]T (4.41)

Σu = [σu1, . . . ,σun] (4.42)

Equivalently if the measurement vector z is expressed by equation 4.43, then the
corresponding standard deviation vector Σz is defined by equation 4.44

z = [z1, . . . , zm] (4.43)

Σz = [σz1, . . . ,σzm] (4.44)

The noise covariance matrices Q and R can be defined in the form of a diagonal
matrix containing the squared input and measurement standard deviations.

Q =


σ2u1 0 0

0
. . . 0

0 0 σun

 , R =


σ2z1 0 0

0
. . . 0

0 0 σzm

 (4.45)

Considerations in the following list need to be made when implementing the ordi-
nary linear Kalman filter.

• System assumed in the state estimator needs to be linear.

• System model (matrices A,B,H,D) needs to be known.

• Noise covariance matrices Q,R need to be known.

• The R matrix should be based on sensor noise measurements.

• Stochastic input noise represents both sensor noise and model uncertainties.

• The initial guess of the covariance matrix P0 should be selected large for un-
known initial state error.

• Initial state estimate x̂0 can be selected arbitrarily.

• The system has to be fully observable to guarantee the Kalman filter conver-
gence.

As stated above, the ordinary Kalman filter can only estimate the state of a linear
system. However, in practice, the system and measurement equations can become
nonlinear. In that case, the Extended Kalman Filter (EKF) that linearizes the system
and measurement equation around their nominal values can be used. However, when
using the EKF, the state estimates are no longer guaranteed to converge to an optimally
estimated state. Other versions of the Kalman filter, as the Iterated EKF or Unscented
Kalman Filter (UKF), only improve the convergence of the state estimate. Similarly to
the case of EKF they do not guarantee an optimal state estimate.
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This chapter contains the theoretical background and practical aspects of modern
Flight Control System (FCS) design.

The LQR is a state feedback control method known to provide an excellent design
robustness capability. However, two deficiencies emerge when considering the LQR
implementation into an automatic flight control system. The first implementation de-
ficiency of the LQR method is that it is a state feedback approach requiring all system
states to be measurable. The second implication is the fact that this method is unable
to provide sufficient noise attenuation. In order to mitigate the previously introduced
challenges, an optimal estimation technique (Kalman filter), along with optimal reg-
ulation, can be used to create an output feedback strategy known as LQG. In other
words, the LQG control is a combination of Kalman filter and LQR. Even though the
LQG provides reduced tracking performance and stability margins when compared
to LQR, its robustness can be regained by employing the so-called Loop Transfer
Recovery (LTR) technique. The cost for the recovery includes an obvious trade-off
between the controller’s stability margins and its noise attenuation capability. The
linear-quadratic control topic is described in more detail in the following references
[4, 13, 32, 44, 52].

5.1 lqr-based flight control system synthesis

Since controlling an aircraft requires command tracking capabilities, e.g., maintaining
specified airspeed, altitude or heading, the basic LQR algorithm has to be augmented
with an integral error dynamics, which guarantees the steady-state error minimiza-
tion of the controlled variables. The LQR based FCS design requires availability of a
linear state-space system. Based on the assumption from Chapter 2, that a linearized
aircraft model can be decoupled into longitudinal and lateral-directional motion mod-
els, the FCS for both models will be researched individually. Figure 5.1 shows the
design scheme for an LQR based FCS. It contains three main subsystems, namely the
Plant, which is a combination of the aircraft and actuator dynamics, the negative state
feedback matrix KLQR, and an Integral Error Dynamics.

The LQR might be employed assuming the full availability of the Design System
state xDS, yielding a control law as graphically illustrated in Figure 5.1.

u = −KLQR · xDS (5.1)

At first, the baseline controller for the longitudinal motion model will be expressed.
The plant state is defined in the form of the following vector

xPLlon = [V ,α,q,γ,h, δ̇T , δT , δ̇e, δe]T , (5.2)

35
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Figure 5.1: The LQR system scheme.

which is a combination of the longitudinal motion model state and the actuator
model state. Selected controlled variables in the reference signal r are the commanded
airspeed Vcmd and altitude hcmd.

r = [Vcmd,hcmd]T (5.3)

The Integral Error dynamics state vector xIE contains respective airspeed and alti-
tude errors, as introduced in equation 5.4.

xIE = [eV , eh]T (5.4)

The Integral Error dynamics for the longitudinal motion FCS is described below by
the equation 5.5.

ẋIE︷ ︸︸ ︷[
ėV

ėh

]
=

AIE︷ ︸︸ ︷[
0 0

0 0

] xIE︷ ︸︸ ︷[
eV

eh

]
+

BIE︷ ︸︸ ︷[
−1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

]
xPLlon

+

[
1 0

0 1

]
︸ ︷︷ ︸

Br

[
Vcmd

hcmd

]
︸ ︷︷ ︸

r

(5.5)

The system for the longitudinal FCS design is a combination of an Integral Error
dynamics and a Plant model as show in equation 5.6.[

ẋPLlon

ẋIE

]
︸ ︷︷ ︸

ẋDS

=

[
APLlon 09×2

BIE AIE

]
︸ ︷︷ ︸

ADS

[
xPLlon

xIE

]
︸ ︷︷ ︸

xDS

+

[
BPLlon

02×1

]
︸ ︷︷ ︸

BDS

u+

[
09×2

Br

]
r

(5.6)
The lateral-directional plant model’s state vector is composed of the sideslip β, roll

φ and headingψ angle, roll p and yaw r rates, the aileron δa and rudder δr deflections,
and their respective rates as shown in equation 5.7.

xPLlat = [β,φ,ψ,p, r, ˙δa, δa, δ̇r, δr]T (5.7)
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The controlled variables for the lateral-directional FCS are the sideslip and heading
angle commands, which define the content of the reference signal r.

xIE = [eβ, eψ]T (5.8)

r = [βcmd,ψcmd]T (5.9)

The integral error dynamics state vector xIE for the lateral-directional FCS can be
expressed using equation 5.10.

ẋIE︷ ︸︸ ︷[
ėβ

ėψ

]
=

AIE︷ ︸︸ ︷[
0 0

0 0

] xIE︷ ︸︸ ︷[
eβ

eψ

]
+

BIE︷ ︸︸ ︷[
−1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

]
xPLlat

+

[
1 0

0 1

]
︸ ︷︷ ︸

Br

[
βcmd

ψcmd

]
︸ ︷︷ ︸

r

(5.10)

Similarly to the longitudinal FCS design, the Design System used for the lateral-
directional controller can be defined in the form of equation 5.11.[

ẋPLlat

ẋIE

]
︸ ︷︷ ︸

ẋDS

=

[
APLlat 09×2

BIE AIE

]
︸ ︷︷ ︸

ADS

[
xPLlat

xIE

]
︸ ︷︷ ︸

xDS

+

[
BPLlat

02×1

]
︸ ︷︷ ︸

BDS

u+

[
09×2

Br

]
r (5.11)

The Design System defined by matrices ADS and BDS, from equations 5.6 and 5.6.
is used for the computation of the feedback gain matrix KLQR, which is then used for
expressing the closed-loop system. The closed system, shown in equation 5.12, will
have an identical structure for the longitudinal and the lateral-directional model.

ẋcl =

([
APL 09×2

BIE AIE

]
−

[
BPL

02×1

]
KLQR

)
xcl +

[
09×2

Br

]
r (5.12)

5.1.1 LQG-based Flight Control System Synthesis

For Linear Time Invariant (LTI) systems with normally distributed process and mea-
surement noise, the optimal state estimator with respect to the minimal variance is
the Kalman Filter [34]. The system for a LQG controller design is described by the
equation 5.13.

ẋDS = ADSxDS +BDSuc +

[
09×2

Br

]
r+wDS (5.13)

Subscript DS stands for Design System, which is a combination of Plant and Inte-
gral Error dynamics. Variable wDS represents the Design System’s process noise. The
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estimator used in the LQG control design can be expressed by equations 5.14 and 5.15,
which is the Kalman filter form.

˙̂xDS = ÂDSx̂DS +

[
09×2

Br

]
r+ LLQG(yDS − ŷDS) (5.14)

ŷDS = ĈDSx̂DS (5.15)

Figure 5.2 shows the combination of the feedback gain matrix KLQR and a Kalman
Filter in a closed loop with a state-space Plant description. Variables x̂ and ŷ repre-
sents system’s state and output estimates, while variables w and n are the process
and measurement noise.

Figure 5.2: The LQG control system scheme.

The LQG closed loop system is expressed by equation 5.16.

ẋcl =

 ẋPL

ẋIE
˙̂xDS

 = Aclxcl +


09×2

Br[
09×2

Br

]
 r+

 wDS

02×1

011×1

 (5.16)
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The closed-loop system state matrix Acl is composed of all subsystems as the Plant,
Integral Error dynamics and Kalman Filter dynamics, as introduced in the following
equation 5.17 [9].

Acl =

 APL 09×2 −BPLKLQR

BIE AIE 02×11

LxPLCPL LxIE Akf

 , (5.17)

where the state matrix of the Kalman Filter Akf is expressed by equation 5.18.

Akf =

([
ÂPL 09×2

BIE AIE

]
−

[
B̂PL

02×11

]
KLQR − LLQGĈDS

)
(5.18)

5.1.2 Loop Transfer Recovery

A significant advantage of the LQG controller design approach lies in the possibility to
estimate the missing states, i.e., so the designer doesn’t need to have complete knowl-
edge of the state vector. The next advantage is in the noise attenuation capabilities.
However, the cost for these features is the system’s closed-loop robustness reduction.
The idea behind the Loop Transfer Recovery (LTR) technique is to modify the LQG
design in order to restore the LQR closed-loop system’s robustness. The modification
of the LQR gains is not recommended. Instead, tuning of the Kalman filter gain is pro-
posed as a better way to achieve the excellent robustness features of the LQR approach
[47].

The LTR method parametrizes both process and measurement noise covariances
utilized in the solution of the Riccati equation. The original covariances Q,R are
recalculated according to the following expressions introduced in equations 5.19 and
5.20 [56].

Qn = Q+
ν+ 1

ν
B̄B̄T (5.19)

Rn =
ν+ 1

ν
R (5.20)

Matrix B̄ is created by adding columns to matrix B.

B̄ = [BX], X ∈nx×(ny−nu) (5.21)

The matrix X should complete the column rank of matrix B in a way such that
the matrix CB̄ is invertible and that the corresponding extended system C(sI −
A)−1B̄ should be a minimum phase, which means the system and its inversion are
stable. The reason for the minimum phase requirement is, the system dynamics C(sI−
A)−1B̄ is inverted within the Kalman filter, and if it contains negative zeros, the closed-
loop system becomes unstable. The extended Riccati equation is a combination of
equation and equations 5.19, 5.20 and it is expressed in equation 5.22 [47].

APricc + PriccA
T +Q+ B̄B̄T − PriccC

TR−1CPricc

+
1

ν
(B̄B̄T − PriccC

TR−1CPricc) = 0 (5.22)
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5.2 model reference adaptive control

In practice, the dynamic model used for the controller design is not fully identical
to the real controlled plant due to the parametric uncertainties (e.g. differences in
aerodynamic parameters). Therefore, even a robust LQR design introduced in the pre-
vious section may not provide sufficient robustness to meet the design requirements.
Moreover, the design could be too conservative to provide good tracking performance,
which leads to a gain adaptation controller design.

The motivation for designing the adaptive control systems is summarized in the
following list [22].

• Current FCS design (LQR) assumes an exact knowledge of aircraft dynamics avail-
able through respective state-space matrices A,B,C,D.

• Covering larger part of the flight envelope (due to adaptation of control system
parameters) than linear FCS, which is designed for only one point of the flight
envelope.

• Current LQR based FCS design is not fault-tolerant.

• Various uncertainties can influence the aircraft model’s fidelity.

• The aircraft dynamics can change due to unexpected structural or system fail-
ures.

The concept used in this work for adaptive augmentation of the LQR baseline FCS
is called Model Reference Adaptive Control (MRAC). The core idea behind the MRAC
design is the online modification or adaptation of controller gains considering the
error between the Plant and the desired reference system. Within the so-called Direct
MRAC approach, the controller gains are computed by an adaptation law in order to
minimize the error between the plant and reference system response. Figure 5.3 shows
the MRAC based adaptive control design concept.

The stability concept used in the MRAC design is Lyapunov’s direct stability method
in combination with the so-called Massachusetts Institute of Technology (MIT) rule,
which creates the adaptation law basis. As this approach guarantees only the stability
and not the asymptotic stability, the Barbalat’s Lemma is used for proving the asymp-
totic stability of the error. The following subsection will introduce the Lyapunov sta-
bility concept, namely the Lyapunov direct method, that will play a critical role in the
adaptive control law derivation process. The Lyapunov stability theory is well covered
in references [33, 39, 43].

5.2.1 Derivation of Adaptive Control Law

As shown in Figure 5.3 the complete input to the plant is composed of 3 main sig-
nals, namely the baseline controller input ubl provided by the LQR control system,
the adaptive augmentation input uad and the model uncertainty. The adaptive aug-
mentation’s main purpose is the uncertainty suppression. The adaptive control law
derivation process with LQR baseline controller is summarized in the following list
[20, 23, 34]:
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Figure 5.3: MRAC system block diagram.

1. Define the plant dynamics with model uncertainty.

2. Augment the plant dynamics with an Integral Error dynamics and create a De-
sign System

3. Close the loop with LQR based control law.

4. Define matching conditions and the reference model for MRAC.

5. Define the control law composed of baseline controller and adaptation rule.

6. Define the tracking error between the reference state and the plant state.

7. Express error dynamics.

8. Define the Lyapunov function candidate.

9. Solve the Lyapunov equation.

10. Express the Lyapunov function derivative.

11. Form an adaptation law.

Lets consider the plant dynamics with a state-dependent matched uncertainty
f(xPL),

ẋPL = APLxPL +BPLΛ(u+ f(xPL)), (5.23)

f(xPL) = θTφ(xPL), (5.24)

where unknown parameter λ represents the input uncertainty. The matched un-
certainty f(xPL) is composed of an unknown parameter matrix θ and known n-
dimensional regressor vector φ(xPL).
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The combination of a Plant and an Integral Error dynamics is to be used as a sys-
tem for the following MRAC design, resulting in a state-space representation shown
in equation 5.28. The system is called the Design System since it is used for MRAC
controller design and thus contains the subscript DS.

ADS =

[
APL 09×2

BIE AIE

]
(5.25)

BDS =

[
BPL

02×2

]
(5.26)

The whole open loop extended plant dynamics is expressed in equation 5.28. Its
state xDS is defined by equation 5.27.

xDS = [xPL, xIE]T (5.27)

It contains the plant dynamics state xPL defined by equations 5.2, 5.7 and the Inte-
gral Error dynamics state xIE described in equations 5.4, 5.8 as well as the reference
input r expressed by equations 5.3, 5.9.

ẋDS = ADSxDS +BDSΛ(u+ θTφ(xPL)) +Brefr (5.28)

Now we can set up the matching condition expressed by equations 5.29 and 5.30,
which define the dynamics of a Reference model (subscript ref), which is to be fol-
lowed by the Plant with an uncertainty.

Aref = ADS +BDSΛK
T
LQR (5.29)

Bref =

[
09×2

Br

]
(5.30)

The Reference model inputs are the signal commands and the output is an ideal
state xref. The dynamics of the Reference model is described by equation 5.31.

ẋref = Arefxref +Brefr (5.31)

The total control input u is composed of three main components as defined by
equation 5.32 namely the base-line control input ubl, defined in foregoing section,
and an adaptation component uad, responsible for canceling the unknown matched
uncertainties f(xPL) introduced into the Plant dynamics [34].

u = ubl + uad + f(xPL) (5.32)

The baseline control input ubl is calculated as a product of the negative LQR feed-
back gain KLQR and the Design System state xDS. The adaptation input uad is com-
posed of an input gain matrix estimate K̂u and an uncertainty gain matrix estimate
θ̂.

u = −KLQRxDS︸ ︷︷ ︸
ubl

+(−K̂Tuubl − θ̂
Tφ(xPL))︸ ︷︷ ︸

uad

+ θTφ(xPL)︸ ︷︷ ︸
f(xPL)

(5.33)
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To express the estimate of the previously mentioned gain matrices K̂u and θ̂, it
becomes necessary to compute the tracking error as a difference between the Design
System’s state and the state of the reference system, which is introduced in equation
5.34.

etr = xDS − xref (5.34)

Based on the equation 5.34 it is possible to define the error dynamics equation 5.35,
which will in the next steps lead to the definition of a Lyapunov function V(etr,∆θ̄).

ėtr = Arefetr −BDSΛ∆θ̄
T φ̄ (5.35)

Term θ̄ represents an extended adaptive parameter matrix and φ̄ is an extended
regressor defined by equations 5.36 and 5.37 respectively.

θ̄ = [Ku, θ] (5.36)

φ̄ = [ubl,φ] (5.37)

The difference between the adaptive parameter matrix θ and its estimate θ̂ is
expressed by equation 5.38 and it is necessary for the Lyapunov function V(etr,∆θ̄)
computation.

∆θ̄ = θ̄− ˆ̄θ (5.38)

In order to express the parameter update laws and to assure the closed-loop stability
of error dynamics, we define the quadratic Lyapunov function V(etr,∆θ̄), known as
the "kinetic energy" of the errors in the system, defined by equation 5.39.

V(etr,∆θ̄) = eTtrPlyapetr + trace(∆θ̄
T Γ−1
θ̄
∆θ̄Λ) (5.39)

Matrix Γθ̄ is a symmetric positive definite and defines the learning rate of an
adaptive controller and matrix Plyap is the solution of Lyapunov algebraic equation
introduced in equation 5.40. The Lyapunov equation solution is used as a measure to
guarantee the stability of an error dynamics in a closed-loop system.

PlyapAref +A
T
refPlyap = −Q (5.40)

The solution of the equation 5.40 is employed to estimate the input and uncertainty
gain matrices. In order to define the structure of the MRAC update laws, the time
derivative of the above mentioned Lyapunov function V̇(etr,∆θ̄) results in equation
5.41.

V̇(etr,∆θ̄) = −eTtrQetr − 2e
T
trPlyapBDSΛ∆θ̄

T φ̄+ 2trace(∆θ̄T Γ−1
θ̄

˙̂θΛ) (5.41)

Then we apply the vector trace identity aTb = trace(baT ) to express the derivative
of the Lyapunov function in a form suitable for the MRAC update laws synthesis,
which results in equation 5.42. This design strategy aims to dissipate the energy and
thus push the derivative of the Lyapunov function to be non-positive, which assures
that the Lyapunov function will be non increasing.

V̇(e,∆θ̄) = −eTQe+ 2trace(∆θ̄T {Γ−1
θ̄

˙̄̂
θ− φ̄eTtrPlyapBDS}Λ) (5.42)
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The condition of a negative semi-definite derivation of the Lyapunov function,
which guarantees the stability of a closed-loop system according to Lyapunov’s di-
rect method for assessing uniform stability of nonautonomous systems described in
[39], is achieved by the definition of the update law in equation 5.43.

˙̄̂
θ = Γθ̄φ̄(ubl, xPL)e

T
trPlyapBDS (5.43)

The matrix Γθ̄ can be expressed by equation 5.44 and contains the adaptation rates
for uncertainties Γu and Γθ.

Γθ̄ =

[
Γu 0n×m

0N×m Γθ

]
(5.44)

The update law in a form of equation 5.43 guarantees the time derivative of Lya-
punov function V̇(etr,∆θ̄) becomes

V̇(etr,∆θ̄) = −eTQe ĺ 0 (5.45)

and thus negative semi-definite. According to Barbalat’s lemma defined in reference
[34] the tracking error etr is forced to zero asymptotically as t→∞. Considering the
θ̄ and φ̄ are composed variables as shown in equations 5.36 and 5.37, the update law
defined by equation 5.43 can be split into equations 5.46 and 5.47 to define update
laws for variables Ku and θ̂.

˙̂Ku = Γuuble
T
trPlyapBDS (5.46)

˙̂θ = Γθφ(xP)e
T
trPlyapBDS (5.47)

Update laws in representation defined by equations 5.46 and 5.47 is suitable for the
MRAC algorithm implementation.

5.2.2 Projection Algorithm

As the MRAC algorithm itself does not fully guarantee the parameter convergence,
a robustness modification of MRAC laws known as the "projection algorithm" has to
be employed. The projection algorithm holds the estimated parameters within pre-
defined boundaries and does not allow for a parameter drift, causing unexpected
controller behavior [23]. The projection algorithm’s first step is to define the convex
function that defines the boundaries within a parameter space. This function is intro-
duced in equation 5.48

f(θ̂) =
1

ε

n∑
i=1

∣∣∣∣∣ θ̂i
θi,max

∣∣∣∣∣
p

−
1

ε
+ 1 ĺ 0, (5.48)

where the variable θ̂i is the estimate of ith adaptive parameter and the variable
θi,max is the boundary of ith adaptive parameter estimate. The variables p and
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ε define parameter space boundaries. The gradient of the convex function necessary
to compute the projection is defined by equation 5.49.

∇f(θ̂) = 2(1+ ε)

εθmax
θ̂ (5.49)

The projection algorithm itself is defined for 3 cases:

• No scaling, if not in transition zone, i.e. f(θ̂) < 0

• No scaling, if f(θ̂) ľ 0 and vertical component of ˙̂θ points away from the
boundary

• Scaling, if f(θ̂) ľ 0 and the vertical component of ˙̂θ points to the boundary

Three projection cases shown in equation 5.50 were described in reference [35].

˙̂θ = Proj(θ̂, ˙̂θ) =


˙̂θ if f(θ̂) < 0

˙̂θ if f(θ̂) ľ 0,∇f(θ̂)T ˙̂θ
˙̂θ− f(θ̂) ∇f(θ̂)

T

‖∇f(θ̂)‖
˙̂θ ∇f(θ̂)‖∇f(θ̂)‖ if f(θ̂) ľ 0,∇f(θ̂)T ˙̂θ

(5.50)

5.2.3 Hedging

Hard input nonlinearities due to the actuator saturation can cause a serious challenge
to the adaptive control system operation. The solution is to employ a technique known
as hedging, which modifies the reference model dynamics defined by equation 5.31

and enhances it by the difference between saturated input Rs(u) and computed input
u [2, 38]. Equation 5.51 describes the input saturation while equation 5.52 expresses
the difference ∆u.

Rs(u) =


u if umin < u < umax

umax if u > umax

umin if u < umin

(5.51)

∆u = Rs(u) − u (5.52)

The new dynamics of the reference model, including the information about actua-
tors saturation, is defined by equation 5.53.

ẋ∗ref = Arefx
∗
ref +Brefr+BPL(∆u) (5.53)

The modified reference model state x∗ref is used for computing the new tracking
error eU = xDS − x

∗
ref which propagate to a new definition of update laws [34], as

shown in equations 5.54 and 5.55, respectively.

˙̂Ku = Γuuble
T
UPBDS (5.54)

˙̂θ = Γθφ(xP)e
T
UPBDS (5.55)
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The rapid prototyping environment MATLAB® /Simulink® was selected for the FCS
implementation due to its strong capabilities in control system design and analysis.

The FCS algorithms introduced in Chapter 5 were at first implemented in the
Simulink® environment using its block diagrams. The utilization of the block dia-
grams instead of the classical programming improves readability, traceability and en-
ables convenient and allows easy modifications of the implemented system, making
it useful for rapid prototyping. The next step in the implementation process was the
code generation for a target hardware platform used in the experimental aircraft plat-
form.

6.1 linear quadratic regulator implementation

The LQR controller implemented in Simulink® environment is shown in Figure 6.1.
The controller structure is based on the algorithm introduced in Chapter 5. The refer-
ence input vector r is composed of 3 command signals, the airspeed Vcmd, altitude
hcmd and heading ψcmd. The controller structure itself contains two main parts,
namely the Integral Error Dynamics (used for the command tracking) and feedback
gain KLQR. The simulation model also contains Actuator Saturation, representing ac-
tuator’s physical limits, Plant Dynamics and Sensor Noise.

Figure 6.1: LQR simulation model implemented in Simulink® .

The Plant Dynamics structure introduced in Figure 6.2 contains the throttle, eleva-
tor, aileron and rudder actuator models connected to the Aircraft Dynamics subsys-
tem in state-space representation. Inputs of the Plant Dynamics subsystems are the
commanded control signals generated by the control system. Actuator models process
control signals. Every actuator model generates control deflection and rate signal. The
control deflections create the input vector to the Aircraft Dynamics subsystem. The

46
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output vector of the Plant Dynamics model xPL is composed of the aircraft states and
actuator deflections and rates.

Figure 6.2: Plant dynamics structure.

The actuator dynamics is modeled using a second-order transfer function. The throt-
tle actuator structure shown in Figure 6.3, based on the actuator model introduced in
Chapter 3.

Figure 6.3: Actuator dynamics structure.

6.2 linear quadratic gaussian controller implementation

The LQG control system implementation in a form of Simulink® block diagram is
shown in Figure 6.4. The control system was implemented using the algorithms intro-
duced in Chapter 5. Three main components of LQG controller are the Integral Error
Dynamics, Kalman filter and LQR state feedback KLQR. The Plant Dynamics subsys-
tem remaining the same as introduced in Figure 6.2.

The Kalman filter is implemented as a state-space model, which containing the in-
formation about controlled plant dynamics in the form of state-space matrices A, B, C,
combined with the difference between estimated output ŷ and Design System output
yDS multiplied by Kalman gain L.
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Figure 6.4: LQG simulation model implemented in Simulink® .

6.3 model reference adaptive control implementation

The MRAC implementation using the Simulink® block diagrams is shown in Figure 6.5.
Its design augments the previously described LQR controller selected as the baseline
control system. The MRAC system is composed of the Reference Model and Input and
State Update Laws. The Reference Model, is extended with the Hedging input uH to
overcome the actuator saturation.

Figure 6.5: MRAC simulation model implemented in Simulink® .
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Structure of the Reference Model subsystem is shown in Figure 6.6. The Reference
Model dynamics was implemented in a form of a state-space representation defined
by matrices Aref and Bref expressed by equations 5.29 and 5.30.

Figure 6.6: MRAC Reference Model subsystem.

The Update Laws defined by equations 5.46 and 5.47 were implemented using a
Matlab Function block as introduced in Figure 6.7.

Figure 6.7: MRAC Input Update Law subsystem.

Hedging modification described in Chapter 5 was implemented as a subtraction of
the saturated and non-saturated input command signal multiplied by the reference
model input matrix Bref as shown in Figure 6.8.

Figure 6.8: MRAC Hedging subsystem.
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6.4 code generation

The control algorithms implemented using functional blocks in Simulink® can be
converted into low-level code like C/C++ directly within MATLAB® environment.
This process is called code generation. The generated code can be integrated into a
larger project or compiled through a third-party toolchain, and the executable files
can be deployed to the target hardware. The code generation process is introduced in
block diagram in Figure 6.9 [17].

Figure 6.9: Code generation and deployment to the target hardware. Source [17]

The FCS implementations details described in the previous subsections were used
mainly for the design and evaluation purposes. They contained the modeled aircraft
dynamics and were implemented as continuous-time models. However, the model
used for the code generation shall be implemented as a discrete-time model and shall
contain only the FCS with defined inputs and outputs.

Figure 6.10 shows the FCS implementation in Simulink® used for code generation
with colored inputs and outputs. The blue input ports are used for the aircraft state
measurements while the orange input ports are used as command inputs. The yellow
output ports send the computed control surfaces and throttle lever deflections to the
actuators.
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Figure 6.10: Simulink® FCS model used for code generation.
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This chapter introduces the robustness, performance and flight test evaluations per-
formed with the researched Flight Control System (FCS). The robustness evaluation
employs frequency response based techniques as frequency response plots, resulting
stability margins or sensitivity functions. The performance evaluation uses offline
computer simulations, resulting in time-domain performance analysis using step re-
sponse characteristics. The robustness evaluation focuses on the baseline controller
as it employs techniques suitable for linear systems. This evaluation concept can not
be used for adaptive control system designs due to its parameter changes. The per-
formance evaluation validates both, the baseline and the adaptive control design’s,
time-domain performance. The longitudinal and lateral-directional control systems
are to be evaluated separately. The actual flight test evaluation will be investigated
in two parts. The first part will focus on the compliance to the criteria inspired by
SAE-AS94900 standard for the FCS design, while within the second part an automatic
approach to an airport will be tested.
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7.1 robustness evaluation

The robustness characteristics of designed controllers can be investigated within the
frequency domain. The LQG based control techniques generally have worse robustness
properties than the LQR based approach due to the additional dynamics introduced by
the Kalman filter. Different controller designs can be compared using the robustness
evaluation. A favorable robustness can be observed for the case of the LQR design
approach, while its noise attenuation exhibits fairly poor results. The LQG design
offers good results in noise cancellation but exhibits fairly low stability margins. A
good compromise between these two techniques is the utilization of the LTR approach,
which improves the stability margins with the noise attenuation potential.

7.1.1 Longitudinal Controller Robustness

Tables 7.1 and 7.2 show the computed gain and phase margins in throttle and elevator
actuator cuts.

Table 7.1: Comparison of robustness in actuator cut (δT ) for different controllers.

Controller type Gain Margin [dB] Phase Margin [°]

LQR ∞ 80.82

LQG -18.71 -19.95

LTR(ν = 10) -13.21 -117.78

LTR(ν = 1) 40.11 103.57

LTR(ν = 0.1) 177.71 52.77

LTR(ν = 0.01) 126.68 84.44

Table 7.2: Comparison of robustness in actuator cut (δe) for different controllers.

Controller type Gain Margin [dB] Phase Margin [°]

LQR -36.16 83.69

LQG 10.25 31.61

LTR(ν = 10) 5.39 28.01

LTR(ν = 1) 8.92 43.49

LTR(ν = 0.1) 26.04 112.39

LTR(ν = 0.01) 12.87 89.81

Figures 7.1 and 7.2 show Bode plots for plant input loop-cuts at throttle and elevator
actuators. Stability margins recovery can be observed with the LTR parameter being
tuned. Bode plots show an additional roll-off at high frequencies caused by the state
estimator and thus good noise attenuation performance for the LQG/LTR techniques.
The LQR design suffers from insufficient noise attenuation performance as it does not
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contain any state estimator. In the case of noisy measurements, a noise suppression
algorithm has to be implemented (e.g., notch filter), which introduces additional time
delays in the control loop performance.
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Figure 7.1: Bode plots in throttle actuator cut of different employed controllers.
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Figure 7.2: Bode plots in elevator actuator cut of different employed controllers.
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Figures 7.3 and 7.4 show the Nyquist curves for the Plant input loop-cuts and
present the stability margins recovery for the LTR parameter examination, as was also
the case for the Bode plots above. The best controller designs, assessed from the per-
spective of the respective gain and phase margins, are according to the Nyquist plots
the LTR based designs with parameters v1 = 0.1 and v2 = 0.01. These designs repre-
sent a balanced combination of robustness and noise attenuation.
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Figure 7.3: Nyquist plots in throttle actuator cut of different employed controllers.
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Figure 7.4: Nyquist plots in elevator actuator cut of different employed controllers.

Figures 7.5 and 7.6 present the sensitivity functions for velocity and altitude loops.
The sensitivity function is for the investigated case defined as a transfer function from
an input reference signal to an output regulation error. The maximum sensitivity
peaks are presented in Tables 7.1 and 7.2 and show adequate sensitivity to process
disturbances [54].



7.1 robustness evaluation 56

10-4 10-2 100 102 104 106

Frequency [rad s-1]

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 [
d

B
]

LQR

LQG

LTR(v = 10)

LTR(v = 1)

LTR(v = 0.1)

LTR(v = 0.01)

Figure 7.5: Sensitivity functions for different controller types - sensor cut in velocity measure-
ment loop.
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Figure 7.6: Sensitivity functions for different controller types - sensor cut in altitude measure-
ment loop.
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Table 7.3: Comparison of sensitivity function maximum in sensor cuts (V , h) for different con-
trollers.

Controller type Max. Sensitivity - V [1] Max. Sensitivity - h [1]

LQR 1.18 1.11

LQG 1.19 1.00

LTR(ν = 10) 1.32 1.43

LTR(ν = 1) 1.38 1.01

LTR(ν = 0.1) 1.32 1.01

LTR(ν = 0.01) 1.18 1.02

7.1.2 Lateral-directional Controller Robustness

This subsection provides insight into the robustness characteristics of the researched
lateral-directional FCS. Different types of controllers, namely the LQR, LQG, and its
modifications using the LTR techniques are compared in frequency domain charac-
teristics. The stability margins in actuator cut and sensitivity function maximums in
sensor cut loop transfer functions are presented in Tables 7.4 and 7.5.

Table 7.4: Comparison of robustness in actuator cut (δa) for different controllers.

Controller type Gain Margin [dB] Phase Margin [°]

LQR ∞ 66.48

LQG 4.93 17.61

LTR(ν = 10) 18.67 53.30

LTR(ν = 1) -18.55 45.14

LTR(ν = 0.1) 14.67 40.83

LTR(ν = 0.01) -5.52 -37.66

Table 7.5: Comparison of robustness in actuator cut (δr) for different controllers.

Controller type Gain Margin [dB] Phase Margin [°]

LQR ∞ 92.56

LQG 4.29 34.69

LTR(ν = 10) 38.18 47.18

LTR(ν = 1) 36.43 65.97

LTR(ν = 0.1) 26.39 39.79

LTR(ν = 0.01) 25.15 -81.02

The values of gain and phase margins in Tables 7.4 and 7.5 show the robustness
deterioration when compared to the LQR and LQG controller. The stability margins of
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the LQG control were restored utilizing the LTR modification. The best values of gain
margin, phase margin and sensitivity function maximum were achieved when setting
the LTR parameter ν = 10.

Figures 7.7 and 7.8 show Bode plots of loop transfer functions formed in aileron and
rudder input loop-cuts. The Bode plots show again the insufficient high frequency
noise attenuation capabilities of the LQR controller when compared to the LQG or LTR
and stability robustness improvement of the LTR designs.
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Figure 7.7: Bode plots in aileron actuator cut of different employed controllers.
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Figure 7.8: Bode plots in rudder actuator cut of different employed controllers.
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Figures 7.9 and 7.10 show the Nyquist plots representing the loop transfer func-
tion’s frequency response in aileron and rudder actuator cuts. The best stability and
robustness characteristics according to the Nyquist plot were performed by the LQR,
while the LTR modifications improved the stability characteristics of theLQG control
system.
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Figure 7.9: Nyquist plots in aileron actuator cut of different employed controllers.
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Figure 7.10: Bode plots in rudder actuator cut of different employed controllers.
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The sensitivity functions computed at the plant outputs β and ψ (so called sensor
cuts) are shown in Figures 7.11 and 7.12.
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Figure 7.11: Sensitivity functions for different controller types - sensor cut in angle of sideslip
loop.
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Figure 7.12: Sensitivity functions for different controller types - sensor cut in heading loop.
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Table 7.6: Comparison of sensitivity function maximum in sensor cuts (β, ψ) for different con-
trollers.

Controller type Max. Sensitivity - β [1] Max. Sensitivity - ψ [1]

LQR 1.19 1.12

LQG 1.53 1.87

LTR(ν = 10) 1.23 1.27

LTR(ν = 1) 1.23 1.38

LTR(ν = 0.1) 1.37 4.46

LTR(ν = 0.01) 1.34 2.20

7.2 performance evaluation

The FCS performance can be evaluated by observing the step responses of the closed-
loop system. Step response characteristics, namely the rise time, settling time, over-
shoot, peak value and peak time can be selected as the main performance indicators.
The baseline and adaptive controller performances are to be analyzed separately, and
both are divided into longitudinal and lateral-directional parts, respectively.

7.2.1 Baseline Controller Evaluation

The baseline controller performance was evaluated in computer simulations using
the aircraft dynamics in a form of a state-space model introduced in Chapter 2 with
modeled actuator dynamics and sensor noise described in Chapter 3. The two designs,
the LQR and LQG were considered as baseline controllers, and their performances were
compared.

7.2.1.1 Longitudinal control

Five different state variables (airspeed V , angle of attack α, pitch rate q, flight path
angle γ and altitude h) and 2 control input variables (elevator δe and throttle δT
deflection) were observed for a time-domain performance analysis. The airspeed and
altitude were chosen as controlled variables. Step changes of reference airspeed and
altitude were performed during the simulation. Figures 7.13, 7.14 and 7.15 show the
step response of controlled variables for LQR and LQG control design approaches. As
the LQG control employed the Kalman filter for the state estimation, it shows better
noise attenuation performance. The control variables, the throttle δT and elevator δe
deflections remained within the saturation limits given by the physical limits of the
aircraft.

The time performance characteristics mentioned in the previous paragraph are
shown in Table 7.7. Both controlled variables have almost no steady-state error and
small overshoot. Short settling time and rise time proves that weight matrices Q and
R were selected correctly [54].
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Figure 7.13: Comparison of longitudinal LQR & LQG controllers - command tracking.
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Figure 7.14: Comparison of longitudinal LQR & LQG controllers - plant states.
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Figure 7.15: Comparison of longitudinal LQR & LQG controllers - plant inputs.

Table 7.7: Time performance characteristics for controlled longitudinal variables in climb.

Command step ∆V (+5 m·s-1) ∆h (+30 m)

Rise Time [s] 3.13 0.84

Settling Time [s] 5.74 7.09

Overshoot [%] 0.00 7.74

Peak [1] 59.99 5.39

Peak Time [s] 8.94 1.88
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7.2.1.2 Lateral-directional control

The control task performed by the lateral-directional controller is composed of head-
ing angle ψ command tracking and angle of sideslip β regulation to 0 in order to
perform the coordinated turn. Figure 7.16 shows the lateral-directional variables con-
trolled by the LQR and LQG controllers.
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Figure 7.16: Lateral-directional LQR & LQG controllers comparison - command tracking.

Figure 7.17 shows the lateral-directional model states during the heading ψ control
task. The Kalman filter state estimates are displayed for the case of the LQG controller,
which is the reason why the LQG variables contain less noise. Figure 7.18 displays
lateral-directional plant inputs during the heading angle command tracking task. The
control deflections did not exceed the actuator’s physical limits, due to a conservative
controller setting.
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Figure 7.17: Comparison of lateral-directional LQR & LQG controllers - plant states.
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Figure 7.18: Comparison of lateral-directional LQR & LQG controllers - plant inputs.

Table 7.8: Time performance characteristics for controlled lateral-directional variables in level
flight.

Command step ∆β (0°) ∆ψ (+ 30°)

Rise Time [s] 0.00 5.88

Settling Time [s] 22.81 13.61

Overshoot [%] - 0.01

Peak [-] 4.86 30.00

Peak Time [s] 7.13 26.84

7.2.2 Adaptive Control System Evaluation

The performance of the adaptive FCS was tested with a simulation model based on the
data collected during flight experiments with the utilization of system identification al-
gorithms. The control system maintained preselected airspeed while performing step
changes in altitude. During the simulation, a matched uncertainty was introduced
to the model in the 250

th second. The matched uncertainty affects only the moment
equation in the Plant Dynamics and can be directly compensated for by the control
surface deflection. The uncertainty was composed of a control effectiveness loss of
50% and a linear state-dependent uncertainty defined by the equations 7.1 and 7.2.

f(α,q) = kαα+ kqq (7.1)

f(β,p, r) = kββ+ kpp+ krr (7.2)

where kα,kq,kβ,kp,kr are parameters of uncertainty. The parameter values used
in the computer simulations are shown in Table 7.9.
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Table 7.9: Control surfaces uncertainty parameter values.

Control element kα [1] kq [1] kβ [1] kp [1] kr [1]

Uncertainty - δe -2.53 -1.06 - - -
Uncertainty - δa - - -0.21 0.03 -0.99

Uncertainty - δr - - -0.21 -13.15 3.13

7.2.2.1 Adaptive longitudinal control

During the first simulation, the uncertainty mentioned above was injected into a
closed-loop system, which contained only the baseline controller without any adap-
tation. The uncertainty caused rough oscillations in the altitude control loop, and
the closed-loop system became unstable. The instability caused by untcertainty men-
tioned above is observable in Figure 7.19 after 250

th second of simulation.
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Figure 7.19: Airspeed and altitude control using baseline controller.

Figure 7.20 shows tracked signals of airspeed V and altitude h under active adap-
tation process. An uncertainty that started the adaptation process was introduced in
the 250

th second. A small oscillatory response to the first step input occurred after the
introduction of the uncertainty. Right after the second step response, the controller
maintained minimal overshoot and similar rise time as before the introduction of the
uncertainty.

Figure 7.21 shows the remaining states (angle of attack α, pitch rate q and flight
path angle γ) in the simulation model to demonstrate the adaptation process. Again,
small oscillations are present after the introduction of uncertainty. However, the adap-
tive controller stabilizes the closed-loop system.

The control surface deflections (throttle δT and elevator δe) are shown in Figure
7.22 and again demonstrate the ability of the adaptive controller to overcome the
uncertainty. The control variables remained within the actuator’s physical limits. In
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Figure 7.20: Airspeed and altitude control using MRAC
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Figure 7.21: Longitudinal state variables under MRAC.
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case the actuators would saturate, the hedging algorithm would modify the reference
model to compensate for the saturation effect.
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Figure 7.22: Longitudinal input variables under MRAC.

Figure 7.23 demonstrates the change of the adaptive parameters θ̂ and Ku when
compensating for the injected uncertainty described in equations 7.1 and 7.2. All eight
monitored parameters converge to the optimal values. In the case of a parameter drift,
the projection algorithm described in Section 5.2 would keep the parameters within
the defined boundaries [53].
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Figure 7.23: Evolution of longitudinal adaptive parameters.
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7.2.2.2 Adaptive lateral-directional control

The second set of simulations was focused on lateral-directional motion control. The
adaptive control system was supposed to track the given heading while maintaining a
minimal sideslip angle with the presence of the above-defined uncertainty introduced
in the 250

th second of the simulation run. Figure 7.24 shows the behavior of the LQR
baseline controller without any adaptation under the influence of uncertainty. Violent
oscillations can be observed after the onset of the introduced uncertainty.
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Figure 7.24: Sideslip and heading control using baseline controller.

Figure 7.25 depicts the tracking capabilities of a lateral MRAC controller. The FCS
maintains favorable tracking performance of heading angle even after the onset of
uncertainty and keeps minimal overshoots and steady-state error. The sideslip angle
remains within the 3 degrees interval, which is acceptable.

The remaining lateral-directional states i.e., roll and yaw rates, and the roll angle,
can be seen in Figure 7.26. This figure shows a slight oscillation during the first step
response after the uncertainty onset. The MRAC controller shows adaptation and a
smooth transition during a heading change maneuver in the 400

th second.
As seen in Figure 7.27, the control surface deflection remains within the actuator’s

physical limit. The adaptation process can be seen after the onset of the uncertainty.
The reaction to the first step under the uncertainty conditions is slightly oscillatory,
while the MRAC controller’s reaction to the second heading change is smoother with
a minor change in the amplitude.

Figure 7.28 demonstrates the change of adaptive parameters θ̂ and Ku in order to
compensate for the injected uncertainty introduced in equations 7.1 and 7.2. As can be
seen in Figure 7.28, all eight monitored parameters converge to their optimal values.
In the case of a parameter drift, the projection algorithm described in the previous
section would keep the parameters within the defined boundaries.

The uncertainty for the lateral-directional motion control case was introduced dur-
ing a steady level flight. However, the MRAC controller needs to adapt a sufficient
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Figure 7.25: Sideslip and heading control using MRAC.
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Figure 7.26: Lateral-directional state variables under MRAC.
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Figure 7.27: Lateral-directional input variables under MRAC.

system excitation, which is why significant parameter changes are observable at the
300

th second of the simulation during a heading change and not instantly when the
uncertainty is introduced [53].
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Figure 7.28: Evolution of lateral-directional adaptive parameters.
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7.2.2.3 Adaptive control performance evaluation

As the adaptation gains change throughout the simulation, the only relevant evalu-
ation criteria are the time domain performance characteristics as the rise time, set-
tling time, overshoot, peak value and peak time. Values of mentioned criteria were
monitored after a state-dependent uncertainty was introduced into the simulation. Ta-
ble 7.10 shows time-domain performance characteristics for longitudinal and lateral-
directional simulation cases [53].

Table 7.10: Time-domain performance characteristics for longitudinal and lateral-directional
cases.

Command step ∆V (+10 m·s-1) ∆h (+300 m) ∆ψ (+70°)

Rise Time [s] 17.28 36.58 12.01

Settling Time [s] 67.33 46.31 19.32

Overshoot [%] 0.24 0.00 1.32

Peak Value [-] 90.22 3300.00 70.91

Peak Time [s] 66.67 100.00 22.64

As the lateral-directional MRAC controller was designed to track the target heading
signal while driving the sideslip angle to zero, the time domain performance charac-
teristics are shown only for the heading angle.
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7.3 flight test evaluation

The operational functionality of the FCS algorithms designed for the automatic flight
and automated landing approach has been experimentally confirmed in flight exper-
iments performed with an experimental LSA. This section is divided into two sub-
sections. The first subsection describes the automatic flight results with manually in-
serted command values of altitude, airspeed and heading. The second subsection is
focused on a complex task of automatic landing approach.

7.3.1 Flight Control System Evaluation

An important part of the FCS evaluation is the examination of qualitative indicators
of automatic control. The reference SAE-AS94900 [42] was employed in evaluation of
the FCS design.

7.3.1.1 Coordination in Steady Banked Turns

Figure 7.29 shows the aircraft trajectory in an FCS coordinated turn during practical
flight experiments. The figure also contains the time series of the angle of sideslip β
and lateral acceleration ay. The quantitative limits for this task specified by reference
[42] are shown in respective graphs.

• Increment of angle of sideslip β shall not exceed ±2◦.

• Lateral acceleration ay shall not exceed 0.03 g during steady banks.
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Figure 7.29: Coordinated steady banked turns.

Based on the evaluation of observed criteria defined by regulation [42] the designed
FCS fulfills the conditions expressed in paragraph 3.2.4.1.3.1.
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7.3.1.2 Lateral Acceleration Limits During Roll Maneuver

Figure 7.30 depicts aircraft motion characteristics during roll maneuver with activated
FCS. The graphs show time series of lateral acceleration ay, roll rate p and roll angle
φ in aircraft’s BFF. Every graph contains the quality of control limits taken from para-
graph 3.2.4.1.3.2 "Lateral acceleration limits, rolling" of the reference [42]. A short
overview of the mentioned criteria is listed below:

• The lateral acceleration ay in aircraft BFF shall not exceed ±0.1g for flight con-
dition with roll rate up to 30°·s-1.

• The limits shall be fulfilled for flight in constant altitude and continuous rolling
from one side to the other for maximum roll rate achieved by the FCS.
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Figure 7.30: Aircraft characteristics during roll motion.

The limit roll angle of 20° comes from an internal setting of the FCS, while the limit
roll rate value 10°·s-1 comes from paragraph 3.2.4.2.3 "Heading select" of the reference
[42]. Based on the criteria defined by the reference [42], the designed FCS complies to
the requirements of paragraph 3.2.4.1.3.2 of mentioned regulation.
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7.3.1.3 Coordination in Steady Level Flight

Figure 7.31 depicts the aircraft trajectory in FCS controlled steady level flight during
a flight test. The figure with aircraft trajectory is completed with plots showing time
series of the aerodynamic angle of sideslip β and lateral acceleration ay during steady
level flight. The limit values for FCS performance evaluation are shown in graphs
of the angle of sideslip β and lateral acceleration ay, respectively. The short list of
performance criteria defined by paragraph 3.2.4.1.3.3 "Coordination in straight and
level flight" of reference [42] are described below:

• The angle of sideslip shall not exceed ±1◦ from the steady-state value in steady
level flight.

• The lateral acceleration ay at the center of gravity shall not exceed ±0.02g.

17.47 17.48 17.49 17.5

Longitude [deg]

48.98

48.985

48.99

48.995

49

L
a
ti
tu

d
e
 [
d
e
g
]

1

2

380 400 420 440 460 480

-2

0

2
 [
d
e
g
]

1 2

Measurement

SAE limits

380 400 420 440 460 480

Time [s]

-0.02

0

0.02

a
y
 [
m

s
-2

]

1 2

Figure 7.31: Angle of sideslip in steady level flight.

Considering the measurements acquired during the practical flight evaluation, the
designed autopilot fulfills criteria of paragraph 3.2.4.1.3.3 from reference [42].
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7.3.1.4 Attitude Hold

Figure 7.32 shows the aircraft trajectory in a steady level flight during the FCS flight
test. The aircraft trajectory is augmented by time series of aircraft attitudes described
by respective Euler angles, i.e., roll angle φ and pitch angle θmeasured in steady level
flight. Both graphs with measured aircraft attitude contain respective limit values
taken from paragraph 3.2.4.2.1 "Attitude Hold (Pitch and Roll)" of reference [42]. A
short list of mentioned criteria is described below:

• For non-turbulent air, the static precision shall be kept within the limits ±0.5◦
for pitch angle and ±1◦ for roll angle with respect to steady-state values.

• In case of a flight in the turbulent atmosphere, the offset in pitch angle shall be
lower than 5° RMS, and the offset in roll angle shall not exceed 10° RMS.
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Figure 7.32: Attitude hold mode in steady level flight.

Referring to pitch and roll angle measurements in attitude hold mode it can be
concluded that the designed autopilot fulfills conditions of paragraph 3.2.4.2.1 taken
from the reference [42].
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7.3.1.5 Heading Hold

Figure 7.33 introduces an aircraft trajectory during a steady level flight controlled by
the researched FCS for the purpose of the flight performance evaluation. The aircraft
trajectory is shown in combination with a graph of heading measurement during
the steady level flight. The heading measurement graph contains flight performance
evaluation limits taken from paragraph 3.2.4.2.2 "Heading Hold" of reference [42]. A
short list of mentioned criteria is shown below:

• The steady offset to the reference heading under calm air conditions shall be
kept within the range of ±0.5◦.

• The offset from the reference heading atmospheric turbulence shall not exceed
5◦ RMS
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Figure 7.33: Heading hold mode in steady level flight.

Based on the recorded heading measurement during the flight performance evalu-
ation, it can be concluded that the researched autopilot fulfills conditions defined by
the paragraph 3.2.4.2.2 of reference [42].
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7.3.1.6 Heading Select

Figure 7.34 shows the aircraft trajectory during a heading change controlled by the
FCS as a part of the flight experiment. The figure also contains the aircraft’s trajectory
during heading change maneuver, commanded and measured heading and measured
roll rate p. Both graphs contain limits for control quality evaluations taken from the
paragraph 3.2.4.2.3 "Heading Select" of reference [42]. A short overview of the men-
tioned criteria is listed below:

• After activation, the FCS shall perform a coordinated turn towards the selected
direction with minimal heading change, while maintaining the tolerances men-
tioned in the subsection Heading Hold.

• The autopilot shall not overshoot the selected heading by more than 1.5◦ in
clean configuration and by more than 2.5° in configuration with flaps.

• The coordinated turn enter and exit shall be quick and continuous.

• The roll rate p shall not exceed 10°·s-1.
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Figure 7.34: Heading select mode in level right turn.

Based on the evaluation of monitored criteria defined by reference [42], it can be
concluded that the researched FCS fulfills conditions of paragraph 3.2.4.2.3.
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7.3.1.7 Altitude Select and Hold

Figure 7.35 shows the aircraft trajectory controlled by the FCS during a flight test. The
figure with aircraft trajectory is shown in combination with the time series of aircraft
pressure altitude h and normal acceleration az. These graphs contain FCS evaluation
limits, which were taken from paragraph 3.2.4.2.4 "Altitude Hold and Altitude Select"
of reference [42]. A short review of the mentioned criteria is listed below:

• For the vertical speed below ±2000 ft ·min−1, engaging the autopilot shall lead
to maintaining current pressure altitude or setting commanded altitude that
would be maintained by the autopilot. Acceleration in z-axis shall not exceed
±0.5 g.

• Minimal control accuracy for altitude below 30000 ft:

– For roll angle 0°-1°, the altitude accuracy shall be within the range ±30 ft.
– For roll angle 1°-30°, the altitude accuracy shall be within the range ±60 ft

or 0.3%, consider the larger limit.

• After autopilot engage or after any vertical speed instability lower than or equal
to 2000 ft ·min−1, the specified instability shall be recovered until 30 s.

• Periodical oscillations shall have a period of at least 20 s.
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Figure 7.35: Altitude select mode.

Based on the evaluation of monitored criteria defined by reference [42], the re-
searched FCS fulfills conditions of paragraph 3.2.4.2.4.

7.3.1.8 Airspeed Hold

Figure 7.36 shows an aircraft trajectory in steady level flight maintained by the FCS
during flight experiments. The figure with flight trajectory is shown in combination
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with a graph of airspeed time history during automatic flight. It shows limits of flight
quality criteria, which were taken from paragraph 3.2.4.2.6 Airspeed Hold in reference
[42]. A short list of mentioned criteria is described below:

• The airspeed during FCS engagement is taken as a reference value.

• The airspeed shall be maintained within ±2% boundary of reference value or
±5 kts.

• Any periodical oscillation within the above mentioned limits shall have a mini-
mum period of 20 s.
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Figure 7.36: Indicated Airspeed hold mode in steady level flight.

Based on the above-described requirements defined by the reference [42] it is obvi-
ous that the designed FCS fulfills the conditions specified by paragraph 3.2.4.2.6. The
airspeed remains within a ±2% boundary during the observed period, the pitch angle
does not exceed ±5° limit specified in the previous subsections.
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7.3.2 Automatic Approach System Evaluation

The functionality of the researched algorithm for the automatic flight, including au-
tonomous approach for landing was proven feasible through a series of flight experi-
ments performed on an experimental LSA equipped with a digital FCS introduced in
Chapters 5 and 6. The flight experiments were performed at the LKKU airport at the
end of the year 2018 [6].

Figure 7.37: Experimental aircraft approach to LKKU RWY 20 in an automatic mode.

The experiment was designed to consist of a flight along a predefined rectangular
trajectory inspired by a regular flying circuit pattern. During the flight experiment, the
test pilot approached the 1

st WayPoint (WPT) of the trajectory illustrated in Figure 7.38

in a steady level flight at altitude 1000 ft AGL and 60 kts Indicated Airspeed (IAS).
The actual automatic approach mode was engaged by the pilot using a dedicated
push-button on the control stick. Figure 7.37 shows the experimental aircraft’s in-
strument panel, containing the digital autopilot’s Primary Flight Display (PFD) and
Multifunction Display (MFD) set to an automatic approach for landing mode during
the landing maneuver.

The weather conditions including the wind speed and direction, air temperature,
and QNH encountered during the presented experiment are listed in Table 7.11. Ef-
fects of wind, occasional atmospheric turbulence and low temperatures were success-
fully managed by the researched digital FCS, which steered the aircraft towards the
runway.

Figure 7.38 shows the flight test trajectory conveniently defined by four WPTs and
the position of the LKKU’s runway in the WGS-84 coordinate system. The blue line
indicates the aircraft’s position while the red marker indicates the point when the
autopilot has been engaged the autopilot is engaged. Grey circles mark WPT position
of the flight test trajectory.
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Figure 7.38: Trajectory flown during the automatic landing approach experiment.

Table 7.11: Weather conditions at LKKU at the time of the experiment.

Quantity Value Unit

Wind Speed 7 [kts]
Wind Direction 350 [°]
Temperature -2 [°C]
QNH 1014 [hPa]

As illustrated in Figure 7.38, the FCS guides the experimental aircraft directly to-
wards the 1

st WPT and than follows the predefined flying pattern. Minor oscillations
can be observed after passing 1

st and 2
nd WPT. These can be attributed to the wind

conditions, which are represented by an arrow in Figure 7.38.
Figure 7.39 shows the principal quantities controlled by the FCS, namely the air-

speed V , altitude h and aircraft heading ψ. Altitude and airspeed command values
are defined by fixed step functions related to the current WPT towards which the air-
craft is flying. The vertical speed was limited to -2 m·s-1 during most of the descent
and -1 m·s-1 right before touchdown. This limit is responsible for the ramp shape of
the altitude command signal. The heading command is computed continuously, in
order to navigate the aircraft along the predefined trajectory considering the actual
aircraft position. The algorithm for computing the heading command is introduced in
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thesis Appendix. It is noticeable to mention that minor differences in maintaining the
target airspeed V occurred during the descent. However, the FCS was able to guide
the aircraft to the runway.
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Figure 7.39: Measured flight quantities during automatic landing approach.

Figures 7.40 and 7.41 depict the rest of the aircraft states, namely the values which
describe the lateral-directional motion i.e. the lateral acceleration ay, roll rate p and
roll angle φ. The roll angle φ rotation to -20°, introducing a turn in the trajectory is
observable after passing each WPT. The lateral acceleration ay is maintained close to 0
g, as the FCS is performing a coordinated turn and compensates the lateral acceleration
through the use of the rudder. The roll rate p is maintained within ±10°·s-1 interval.
The longitudinal motion is described by normal acceleration az, pitch rate q and
pitch angle θ. The decrease in pitch angle θ is observable after passing 2

nd WPT as the
FCS initiates a descent. Since the digital FCS was set conservatively, the accelerations
almost never exceeded the ±0.2 g acceleration range [55]. Both Figures 7.40 and 7.41

illustrate the design limits of the FCS inspired by the reference [42].
The digital 4-axis FCS controlled the elevator, rudder, ailerons and throttle lever. Fig-

ure 7.42 shows their deflections during an automatic flight and approach for landing.
It is observable that the FCS is set very conservatively since changes in control sur-
face deflections are rather slow and do not exceed operational limits illustrated by
respective red boundaries.

Since the complete flight experiment was performed in clean aircraft configuration,
it was not allowed to use flaps as aerodynamic breaks. This explains the steady-state
error in airspeed during the descent maneuver, when thrust control reached its lowest
limit. Other aircraft states remained within the design limits introduced in subsections
7.3.1.1 - 7.3.1.8.
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Figure 7.40: Longitudinal variables.
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Figure 7.41: Lateral-directional variables.

7.3.2.1 Automatic Landing Approach Performance Evaluation

The performance evaluation criteria were inspired by the reference [45] focused on
the development of the auto-land system for a general aviation class of aircraft. The
document recommends that pitch angle before the touchdown shall be larger than
5° otherwise, the front gear could be damaged during the automatic landing. The ver-
tical speed before the touchdown shall remain within the interval of 〈0.3; 2.0〉 m·s-1.
Greater values could be unpleasant for the pilot. The automatic landing approach sys-
tem shall prevent the aircraft from stall, thus the airspeed V during touchdown shall
remain above the stall speed, which is declared by the manufacturer at 42 kts, which is
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Figure 7.42: Control deflections.

21.6 m·s-1. The designed automatic approach system for fixed-wing experimental LSA
complied with the above-mentioned requirements, as can be seen in Table 7.12, which
summarizes the performance metrics results, consisting of different aircraft variables
measured during the final phase of an automatic landing approach. These variables
are the pitch attitude θ, vertical speed VS, airspeed V and normal acceleration az [55].

Table 7.12: Measured flight quantities during the automatic approach final phase.

Quantity Value Unit

Pitch angle 5.4 [°]
Vertical speed -0.33 [m·s-1]
Airspeed 25 [m·s-1]
Normal acceleration 1.01 [g]



8C O N C L U S I O N

This chapter summarizes and discusses the research on modern FCS introduced in this
thesis in light of the main goals and contributions specified in Chapter 1. This chapter
is logically divided into three sections. The first section serves as the thesis summary
and contains a concluding remark on most of its chapters. The second section lists
main contributions and the last section proposes the direction of future research fo-
cused on the modern FCS technologies.

8.1 summary

This thesis demonstrates a modern FCS design, implementation, and stability and per-
formance evaluation using computer simulations and flight tests tailored for a fixed-
wing LSA. Chapter 2 was dedicated to the definition of the aircraft’s 6DoF nonlinear
model. A precise model and selected structure of the controlled plant, in our case rep-
resenting an experimental LSA, is essential in designing a well performing FCS. The
nonlinear aircraft dynamic model was developed from Newton’s laws, in a form of
Equations of Motion. The nonlinear system was then linearized to express the aircraft
dynamics in a form of a linear state-space model suitable for the FCS research and de-
velopment. Chapter 3 focused on the description of respective subsystems that repre-
sent a suitable simulation environment and which enabled the first tests of researched
control strategies. Models describing the aircraft propulsion, aerodynamic properties,
actuator and sensor dynamics, or atmospheric model, represent an integral part of
the simulation framework. Leveraging the aircraft’s aerodynamic model fidelity was
achieved through utilization of the parameter estimation methods described in Chap-
ter 4. The aerodynamic force and moment coefficients were estimated using the Equa-
tion Error method over a range of measured flight parameters. This chapter also
presents the state estimation technique, namely the Kalman filter, employed in the
FCS design. Chapter 5 introduced the necessary theory on three control system meth-
ods, which enabled their proper understanding and follow on research. This chapter
started with a robust LQR controller and its adjustment to the command tracking task.
Then a more complex LQG controller containing the Kalman filter was researched. The
chapter was concluded with the MRAC technique that augments previously defined
control system to overcome model uncertainties. Chapter 6 described the implemen-
tation of the designed FCS using MATLAB® / Simulink® environment. This chapter
introduced the implementation of the control system methods from Chapter 5 and
the low-level code generation for the target hardware platform. Chapter 7 presented
the designed FCS’s stability and performance evaluations results. The FCS evaluation
was divided into three main parts. The first part was focused on the FCS stability and
robustness evaluation in the frequency domain. Its conclusion confirm the LQR being
a more robust FCS design method than the LQG. The second part was dedicated to the
investigation of the time-domain performance of implemented designs in computer
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simulations. The LQG controller showed significant noise-attenuation capabilities due
to the Kalman filter’s presence in the design. The MRAC augmentation, on the other
hand, presented its ability to overcome model uncertainties that influenced the aircraft
dynamics. The chapter was concluded by presenting the flight experiment results that
proved the suitability of the researched FCS.

8.2 thesis contributions

The following list summarizes the main contributions of this thesis.

• High fidelity 6DoF nonlinear aircraft simulation model of an experimental LSA
platform refined with estimated aerodynamic coefficients originating from pa-
rameter estimation process on measured flight data.

• The FCS design based on the robust LQR control strategy, with its implementation
tailored specifically for a LSA.

• The MRAC based adaptive augmentation of a linear FCS evaluated in computer
simulations.

• Three-phase evaluation of the designed FCS, including robustness and stability
evaluation, time-domain performance evaluation in the simulation environment
and a flight experiment evaluation.

8.3 future development

The future development should account for a higher level of aircraft autonomy. Fea-
tures as automatic take-off and landing should provide a useful extension to the pro-
posed FCS. The next step could account for a transformation from the experimental
LSA platform to Remotely Piloted Aircraft Systems (RPAS) by designing the ground
control station with Command and Control (C2) link to the aircraft, taking the pilot
out of the flight deck and controlling the aircraft remotely.
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