
Digital Multi-Channel Audio Workstation for
Live Performance

Master thesis

Study programme: N2612 – Electrical engineering and informatics
Study branch: 1802T007 – Information technology

Author: Bc. Daniel Louda
Supervisor: doc. Ing. Zbyněk Koldovský, Ph.D.
Consultants: Ing. Jiří Málek, Ph.D

Fernando Perdigão

Liberec 2019

Zadání diplomové práce

Digitální vícekanálová audio stanice
pro živá vystoupení

Jméno a příjmení: Bc. Daniel Louda
Osobní číslo: M16000177
Studijní program: N2612 Elektrotechnika a informatika
Studijní obor: Informační technologie
Zadávající katedra: Ústav informačních technologií a elektroniky
Akademický rok: 2017/2018

Zásady pro vypracování:
1. Seznamte se s knihovnami PortAudio a Qt pro C++. Zvolte si vhodné vývojové nástroje pro jazyk C++

a vhodné API (např. ASIO).

2. Vytvořte aplikaci pro míchání audio signálů v reálném čase s následujícími možnostmi: -možnost
vícestopého záznamu/přehrávání -import/export WAV souborů -přidávání/ubíraní mono/stereo stop
-nastavení pevného nebo plovoucího tempa, ve druhém případě řízeného vybraným audio vstupem
-výstup synchronizace tempa na MIDI a metronomu do vybrané audio stopy -možnost vložení VST
pluginu do signálové cesty před výstupem -správa souborů a playlistů s rychlým načítáním

3. Upravte grafické uživatelské prostředí aplikace tak, aby bylo vhodné pro ovládání při živých vystoupení.
Ověřte aplikaci v reálném provozu.

4. Text práce zpracujte v anglickém jazyce.

Rozsah grafických prací: Dle potřeby dokumentace

Rozsah pracovní zprávy: cca 40-50 stran

Forma zpracování práce: tištěná/elektronická

Jazyk zpracování práce: Angličtina

Seznam odborné literatury:
[1] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory,

John Wiley & Sons, Inc.,2002.

[2] U. Zolzer, DAFX: Digital Audio Effects, John Wiley & Sons, 2002.

Vedoucí práce: doc. Ing. Zbyněk Koldovský, Ph.D.
Ústav informačních technologií a elektroniky

Konzultanti práce: Ing. Jiří Málek, Ph.D.
Ústav informačních technologií a elektroniky

Fernando Perdigao
Universidade de Coimbra, Portugalsko

Datum zadání práce: 19. října 2017

Předpokládaný termín odevzdání: 14. května 2018

L. S.

prof. Ing. Zdeněk Plíva, Ph.D.
děkan

prof. Ing. Ondřej Novák, CSc.
vedoucí ústavu

V Liberci 19. října 2017

Declaration

I hereby certify I have been informed that my master thesis is fully
governed by Act No. 121/2000 Coll., the Copyright Act, in partic-
ular Article 60 – School Work.

I acknowledge that the Technical University of Liberec (TUL) does
not infringe my copyrights by using my master thesis for the TUL’s
internal purposes.

I am aware of my obligation to inform the TUL on having used
or granted license to use the results of my master thesis; in such
a case the TUL may require reimbursement of the costs incurred
for creating the result up to their actual amount.

I have written my master thesis myself using the literature listed
below and consulting it with my thesis supervisor and my tutor.

At the same time, I honestly declare that the texts of the printed
version of my master thesis and of the electronic version uploaded
into the IS STAG are identical.

30. 4. 2019 Bc. Daniel Louda

Digital Multi-Channel Audio Workstation
for Live Performance

Abstract

Whenever there is complex audio playback or recording necessary,
audio workstations have been used to fit the needs of musicians
and sound engineers. In this thesis, research and development of
a digital audio workstation (DAW) is described. A software DAW
is an application for personal computers that uses internal or ex-
ternal sound card to obtain, process and output audio in real-time,
allowing application to be used during live performances where low
latency output is mandatory. Application is implemented in C++
using Qt graphical framework and PortAudio audio I/O library. It
allows users to create custom routing between sound card input and
output channels as well as audio files. Several features like creating
and saving of a playlist settings or displaying graph of a signal in
time were implemented. Interface for signal processing units was
designed and four processing units were created that can be applied
on any input selected by the user. These units are: Volume Pro-
cessing Unit to control the volume of the signal, VST Processing
Unit that allows usage of open standard for application indepen-
dent DSP blocks called VST Plug-ins, Tempo Processing Unit that
implements state-of-the-art algorithm for detecting tempo of a song
using spectral flux and MIDI Process Unit for sending pre-defined
MIDI message triggered by musical onset to selected MIDI device.

Keywords: digital audio workstation, music processing, onset de-
tection

4

Digitální vícekanálová audio stanice pro živá
vystoupení

Abstrakt

Digitální audio stanice (DAW) jsou využívány muzikanty
a zvukovými inženýry, kdykoliv je vyžadováno komplexní
přehrávání nebo nahrávání zvuku. Vývoj DAW specializované pro
živá vystoupené je popsán v této práci. Softwarová DAW pro živá
vystoupení je aplikace pro osobní počítače, která využívá interní
nebo externí zvukovou kartu k přijímání a odesílání signálu s min-
imální latencí. Signál může být dle nastavení aplikace zpracován
a vyhodnocován. Aplikace je implementovaná v programovacím
jazyce C++ s použitím grafického frameworku Qt a knihovny Por-
tAudio pro práci se zvukovými vstupy a výstupy. Umožňuje uži-
vatelům vytvoření a uložení vlastních pravidel pro přesměrování
a slučování vstupů a výstupů zvukové karty a zvukových souborů.
Jsou implementovány funkce jako zobrazení grafu signálu v čase
nebo vytváření playlistů. Bylo navrhnuto rozhraní pro zpracování
signálu a implementovány čtyři jednotky, které je možné apliko-
vat na libovolný vstup. Tyto jednotky jsou: Volume Processing
Unit pro úpravu hlasitosti signálu, VST Processing Unit, která
umožňuje využití otevřeného standardu pro nezávisle DSP bloky
nazvané VST Plug-in, Tempo Processing Unit, která implementuje
moderní algoritmus pro detekci tempa na základě analýzy spek-
trální diference a MIDI Process Unit pro odesílání předdefinovaných
MIDI zpráv při detekci první doby.

Klíčová slova: digitální audio stanice, zpracování hudby, detekce
tempa

5

Acknowledgements

I would like to express enormous thanks to all the people that made
this paper possible. You know who you are.

6

Contents

List of abbreviations . 9

1 Introduction 10
1.1 Available Alternatives . 11

1.1.1 Ableton Live . 11
1.1.2 Steinberg Cubase . 11

2 Fundamentals on Musical Tempo and Beat Analysis 12
2.1 State of the Art . 12
2.2 Onset Detection . 13

2.2.1 Energy-Based Novelty . 13
2.2.2 Spectral-Based Novelty . 14
2.2.3 Phase-Based Novelty . 16
2.2.4 Complex-Domain Novelty . 18

2.3 Tempo Analysis . 18
2.3.1 Tempogram . 19
2.3.2 Fourier Tempogram . 20
2.3.3 Autocorrelation Tempogram 21

2.4 Conclusion . 21

3 VST 25
3.1 Basic Conception . 25
3.2 VST Plug-in . 25

3.2.1 Processor . 26
3.2.2 Edit Controller . 28
3.2.3 Private Communication . 28

4 MIDI 30
4.1 MIDI Interface . 30
4.2 Windows OS Support . 30

5 Development 31
5.1 Requirements Analysis . 31

5.1.1 Functional Requirements . 31
5.1.2 Graphical Requirements . 31
5.1.3 Non-Functional Requirements 31

5.2 Software Development Model . 31

7

5.3 Environment . 32
5.3.1 Compiler . 33

5.4 Libraries . 33
5.4.1 Qt Framework . 33
5.4.2 FFTW . 34
5.4.3 libsndfile . 34
5.4.4 PortAudio . 34

5.5 Implementation . 37
5.5.1 Graphical User Interface . 37
5.5.2 Features . 43

5.6 Debugging . 54
5.7 Deployment . 55

6 Results and Conclusion 56
6.1 Libraries . 56
6.2 Application . 56
6.3 Future Work . 57

8

List of abbreviations
DSP Digital Signal Processing
DAW Digital Audio Workstation
PA PortAudio
CPU central processing unit
GPU graphic processing unit
STFT short-time Fourier transform
FFT fast Fourier transform
VST Virtual Studio Technology
SDK software development kit
API application programming interface
MIDI Musical Instrument Digital Interface
I/O input/output
OS operating system
ASIO Audio Stream Input/Output
ALSA Advanced Linux Sound Architecture
HTML HyperText Markup Language
CSS Cascading Style Sheets
MS Microsoft
GNU GNU’s Not Unix
GCC GNU Compiler Collection
MSYS Minimal SYStem
MSVC Microsoft Visual C++
bpm beats per minute
CLI Command Line Interface

9

1 Introduction

Whenever there is complex sound recording, editing or producing necessary, people
have been using audio workstations to perform such tasks. It took almost 50 years
from the first reel-to-reel recording to the creation of the first digital audio work-
station (DAW) in the 1970s. This was made possible by making computers smaller,
more capable and affordable. As this trend continued, DAWs were becoming more
available for the sound engineers. Higher computational power allowed bigger possi-
bilities for the features that manufactures implemented and thus transitioning from
the bulky, simple and expensive first attempts to the state-of-the-art devices we call
digital audio workstations today.

As a DAW could be considered a software application, integrated standalone unit
or complex architecture of devices connected and controlled by a central computer.
Personal computers and software implementations allowed for the wide spread of
digital audio workstations and made them affordable choices for both professional
and non-professional usage while maintaining high functionality.

The goal of this thesis is to create an open-source application for musicians or
audio engineers that allows real-time sound card input to output routing and to
implement some of the features traditionally used by digital audio workstations to
enhance user experience while using this application during live performances.

In this paper, an implementation of an application in C++ targeting operating
system Microsoft Windows is described. The application is created with an empha-
sis on live performances and implements a set of features. Proposed digital audio
workstation features graphical user interface created in Qt framework, playlist cre-
ation, ability to record input, custom signal routing settings that can be saved and
loaded from an XML file, ability to use independent audio processing blocks called
VST Plug-ins, ability to respond to musical onset with MIDI messages and tempo
detection. Suitable libraries are selected for the real-time input to output routing,
fast Fourier transform and audio file import and export.

In the theoretical part of the paper, topics necessary for the development are
covered. First, state-of-the-art algorithms for onset detection and tempo analysis
from the audio signal are described. After that, a brief introduction to Virtual
Studio Technology (VST) and MIDI follows. In the practical part of the thesis, the
development of the proposed application is described together with the environment
and libraries best fitting the needs of a DAW.

10

1.1 Available Alternatives
In the field of software Digital Audio Workstations there are several options to choose
from. Two notable ones are described below.

1.1.1 Ableton Live
Ableton Live is a DAW for MS Windows and MacOS that includes features for
both music production and live performances. The basic musical building blocks of
Ableton Live are called clips. A clip is a piece of musical material: a melody, a drum
pattern, a bassline or a complete song. Ableton Live allows users to record and alter
clips, and to create larger musical structures from them: songs, scores, remixes, DJ
sets or stage show. Ableton Live operates in two different modes or views that can
hold clips – Session view or Arrangement view. The Arrangement is a layout of
clips along a musical timeline; the Session is a real-time-oriented “launching base”
for clips [2].

The first version of Ableton Live was released in 2001 and Ableton Live is still
under active development with the latest version 10 being released in February 2018.
Ableton Live has a proprietary license and is currently being sold in three editions
– Intro, Standard and Suite for 79, 349 and 599 EUR respectively1. These editions
differ in available sound banks, a number of software instruments and a number of
audio and MIDI effects.

1.1.2 Steinberg Cubase
Steinberg Cubase is a DAW developed by Steinberg that was originally created for
the Atari ST computer in 1989, making it one of the oldest software digital audio
workstation that is still being developed. In the 1999 Steinberg introduced virtual
instrument interface for software synthesizers known as VSTi. This allowed third-
party developers to create and sell virtual instruments for Cubase and contributed
to its popularity. Latest version 9.5 is available on Microsoft Windows and macOS.
Steinberg Cubase is used for recording, mixing and editing of music. Three editions
are currently available - Pro, Artist, and Elements being sold for 99.99, 309 and 559
EUR2. All editions feature 64-bit floating-point audio engine with up to 192 kHz
but differ at a number of physical inputs and outputs available, a number of MIDI
tracks available for recording and mixing and a number of instrument tracks and
VST instruments slots [18].

1According to https://www.ableton.com/en/shop/live/
2According to https://www.steinberg.net/en/shop/cubase.html

11

2 Fundamentals on Musical Tempo and
Beat Analysis

In music terminology, beat is the regularly occurring pattern of rhythmic stresses
in music [10]. It is intuitively defined as periodic pulses or rhythm that people tap
along while listening to a musical piece. These pulses are defined by their phase
and period. Tempo refers to the rate of the pulses and thus setting the speed or
pace of a musical piece. It is usually measured in beats per minute or bpm for
short, meaning how many of these periodic pulses we perceive in a minute [10].
In modern songs, the tempo is usually constant throughout the song, although it
is not a necessity. In classical music, on the other hand, the tempo is more often
defined by Italian terms like Allegro or Largo, giving a rough estimate of the speed
of the musical piece. The tempo in classical music is often changing during the song
giving the artist another possibility of expressing ideas. Extraction of tempo from
a musical piece is an important area in music processing and while it is simple and
straightforward for humans to determine the tempo, more complex algorithms are
needed for the automated tempo extraction and beat tracking.

2.1 State of the Art
The start of the new beat is usually accompanied by a change of the song in some
form. In most of the tempo extraction methods first step is to determine these
changes. This step is called onset detection and results in a so-called novelty
curve that represents level of change in the musical piece as a function of time[3].
Later on novelty curve is analyzed to extract tempo and beat information from
the musical piece. Several methods of estimating onsets of the signal have been
proposed. For example, in “Music Onset Detection Based on Resonator Time Fre-
quency Image” by Zhou, Mattavelli, and Zoia[21], “A Comparison of Sound Onset
Detection Algorithms with Emphasis on Psychoacoustically Motivated Detection
Functions” by Collins[4] or “Extracting Predominant Local Pulse Information From
Music Recordings” by Grosche and Muller[9]. The next step of analyzing onsets to
be able to determine tempo and beat positions of a musical piece has been described
for example in “Beat Tracking by Dynamic Programming” by P. W. Ellis[13], “OB-
TAIN” by Mottaghi et al.[11] or in Fundamentals of Music Processing by Müller[12].
Some of the possibilities of onset detection are described in this chapter, together
with two methods for extracting tempo information using the detected onsets.

12

2.2 Onset Detection
The objective of onset detection is to find out the starting time of notes or other
events in music. In order to detect onsets we also need to define related terms
which are attack, transient and decay as seen on Figure 2.1 with piano note on
the left and idealized amplitude envelope on the right. Attack of the note is the
part where the sound of the note builds up. Transient may be described as a noise-
like sound component of short duration and high amplitude typically occurring at
the beginning of a musical tone or a more general sound event [12]. Onset, unlike
attack transient or decay, refers to an exact point in time rather than an interval
thus giving us good candidates for detecting beats. To determine this point in time
changes in the signal are analyzed. In some cases, like playing a note on the piano or
percussive instruments, we can determine the onset of the note by the sudden change
in signal amplitude envelope. On the other hand, some instruments like violin have
a far more subtle increase in signals amplitude making the onset detection harder.
An example can be seen on Figure 2.2 where waveform and amplitude envelope of
a piano and violin is shown with attack (A), decay (D), sustain (S) and release(R)
marked. Because of this phenomenon, several approaches of onset detection are
described in the following chapters.

Figure 2.1: Illustration of attack, transient, onset and decay of a note.[12]

2.2.1 Energy-Based Novelty
This method is utilizing the fact that playing a note is often connected with a change
in signals energy. To demonstrate this waveform of a piano note can be observed on
Figure 2.2. To extract an information about changes in energy in a given time frame
of the discrete signal x a discrete window function w is defined which is applied on
x to determine local sections. Window function w is a bell-shaped function centered
at time zero. w(m) for m ∈ [−M : M] consists of nonzero samples of w for some
M ∈ N. The local energy of x in a time frame n (n ∈ Z) with regard to the w

13

is defined by the following equation.

Ex
w(n) =

M∑
m=−M

|x(n+m)w(m)|2 (2.1)

In order to detect changes in local energy discrete derivative is calculated. This
is done by subtracting subsequent samples of the local energy function Ex

w. The
result will yield the information about changes in local energy. Halfwave rectifica-
tion is used because for the detection of onsets only positive values have relevant
information (increases in signals energy). Halfwave rectification for r ∈ R is defined
as

|r|≥0 =
r + |r|

2
. (2.2)

From this point, energy-based novelty function for n ∈ Z is obtained.

∆Energy(n) = |Ex
w(n+ 1)− Ex

w(n)|≥0 (2.3)

Applying the knowledge that the human ear perceives sound in a logarithmic way
leads to further enhancing the results obtained from (2.3). This means that even
weaker energy signal parts could change our way of perceiving sound and rhythm.
To take this into account switching into logarithmic decibel scale or logarithmic
compression is advised. After applying this, following equations are obtained.

∆Log
Energy(n) = |log(Ex

w(n+ 1))− log(Ex
w(n))|≥0 (2.4)

or
∆Log

Energy(n) = |log(E
x
w(n+ 1)

Ex
w(n)

)|≥0 (2.5)

demonstrating that human perception of differences in energy can be seen as a ratio
between subsequent local energies rather than their subtraction.

Further enhancement of this method is possible by decomposing the signal into
several subbands and applying energy-based novelty function separately on each of
them and combining the results afterwards. Subband frequencies could be set by
applying knowledge about the used instrument and their corresponding frequency
ranges and thus increasing the robustness of this algorithm.

2.2.2 Spectral-Based Novelty
In some cases, using energy-based novelty for detecting note onsets does not deliver
meaningful results. Such cases could be when onsets are masked by other sound
events played at the same time or when sustain phase of a note played with vibrato
on musical instruments is having a bigger change in local energy than attack phase
of the note making it much harder to detect. Note onsets are typically accompanied
not only with a change in signals energy as shown in 2.2 but also with a change
in frequency. In this section, it is described how to detect onsets by observing
changes in a frequency spectrum. To be able to analyze the discrete signal x in

14

Figure 2.2: Waveform and amplitude envelope of piano (left) and violin (right)
playing the same note. [12]

time-frequency domain, signal is transformed using the discrete short-time Fourier
transform X defined as

X [m, k] =
∞∑

n=−∞

x[n]w[n−m]e−2πjkn/N (2.6)

with m ∈ Z and k ∈ [0 : N − 1] where N is the length of DFT, for example 1024.
The next step is to compute the difference between subsequent spectral vectors

and therefore obtaining the spectral-based novelty function or in other words
spectral flux.

The first step is to use logarithmic compression to enhance weak spectral com-
ponents. Doing this will take into account the logarithmic nature of sound intensity
and balances out the dynamic range of the signal. Using logarithmic compression
on magnitude spectrogram |X | gives

Y = log(1 + γ|X |) (2.7)

for a given constant γ ≥ 1. By selecting bigger γ, weaker spectral components are
enhanced that might contain relevant information for detection onsets. On the other
hand, it could lead to amplifying non-relevant noise-like features.

After that, the first temporal derivative of logarithmically compressed magnitude
spectrogram is computed. The equation for temporal discrete derivative follows.

∆Log
Spectral(n) =

N/2∑
k=0

Y [n+ 1, k]− Y [n, k] (2.8)

Same as in energy-based novelty, negative values are disregarded since we are only
interested in positive ones to detect onsets. Using the halfwave rectifier defined in
(2.2) gives us the following equation.

∆Log
Spectral(n) =

N/2∑
k=0

|Y [n+ 1, k]− Y [n, k]|≥0 (2.9)

15

The result can be further enhanced by subtracting the local average. Local
average function µ(n) with window length 2M + 1 in a time n is defined as

µ(n) =
1

2M + 1

M∑
−M

∆Log
Spectral(n+m). (2.10)

Local average is now subtracted from the spectral flux and halfwave rectified result-
ing in the following equation for n ∈ Z.

∆̄Log
Spectral(n) = |∆Log

Spectral(n)− µ(n)|≥0 (2.11)

First 40 seconds of a rock song and related waveform and spectral-based novelty
curve can be seen in Figure 2.3. Peaks in novelty curve represent changes in the
frequency spectrum and are good candidates for estimating beat positions. The
height of the peaks represents how much the signal changed and can be understood
as a confidence in the beat position.

2.2.3 Phase-Based Novelty
In this section onset detection method is described similar to the spectral-based
method. Information is obtained from the short-time Fourier transform, but this
time, in contrast to the one described earlier, phase of the signal is analyzed to
detect onsets of musical events. This is possible because of fact that notes in the
transient phase have an unstable phase as appose to the stationary tones that have
stable phase.

Consider X (n, k) ∈ C a complex-valued Fourier coefficient of the given frequency
index k ∈ [0 : K] in the time frame n ∈ Z, where K = N/2 is the frequency index
corresponding to the Nyquist frequency. Using polar coordinates,

X (n, k) = |X (n, k)| · e2πjφ(n,k) (2.12)

equation is obtained, where φ(n, k) ∈ [0 : 1] describes phases. Assume that |X (n, k)|
is large and signal x is locally stationary around time frame n. By observing the
phase in subsequent time frames one can deduct that if the differences in phase in
subsequent time frames are increasing in a way that is linear in a hop size H of
STFT. Meaning the differences in this region are approximately constant.

φ(n, k)− φ(n− 1, k) ≈ φ(n− 1, k)− φ(n− 2, k) (2.13)

At this point, a first-order difference of phases is calculated with

φ′(n, k) = φ(n, k)− φ(n− 1, k), (2.14)

making the second-order difference

φ′′(n, k) = φ′(n, k)− φ′(n− 1, k). (2.15)

16

Figure 2.3: Waveform (top) and spectral-based novelty curve (bottom) of a song.

17

During the steady regions of x one obtain φ′′(n, k) ≈ 0 on the other hand during
a transient phase of note the phase is behaving in an unpredictable manner. This
information is used to obtain phase-based novelty function which is defined as the
following equation.

∆Phase(n) =
K∑
k=0

|φ′′(n, k)| (2.16)

2.2.4 Complex-Domain Novelty
In this onset detection method phase information is weighted with the magnitude
of the spectral coefficient to increase the robustness of the onset detection. This
is done because if |X (n, k)|2 is small, phase φ(n, k) may not behave as expected
because of the small noise-like variations from the signal x that could happen even
in steady regions of x. Using the fact that phase and magnitude differences in the
subsequent frames are approximately constant in the steady regions a steady-state
estimate X̂ could be obtained from the following equation.

X̂ (n+ 1, k) = |X (n, k)| · e2πi(φ(n,k)+φ′(n,k)) (2.17)

X̂ (n+1, k) is the estimation of how the signal is expected to behave in the following
time index n+1. By subtracting the actual Fourier coefficient X (n+1, k) from our
estimate X̂ (n + 1, k) a X ′(n + 1, k) is obtained that reflects the difference between
the expectation and the reality.

X ′(n+ 1, k) = |X̂ (n+ 1, k)−X (n+ 1, k)| (2.18)

At this point, it is possible to detect how much the signal changed, large values of
X ′(n, k) suggesting that a beat onset took place around time frame n. Since we
are only interested in note onsets only positive magnitudes are selected. This step
is described as

X+(n, k) =

{
X ′(n, k) for |X (n, k)| > |X (n− 1, k)|
0 for |X (n, k)| ≤ |X (n− 1, k)|

. (2.19)

Summing the values of X+(n, k) across all frequency coefficients gives us the
complex-domain novelty function ∆Complex.

∆Complex(n) =
K∑
k=0

X+(n, k) (2.20)

2.3 Tempo Analysis
In this section it is described how to take advantage of novelty functions that were
previously defined to analyze tempo of a song. Using the knowledge that the beat
positions correspond with previously detected onsets and that the beats are at least

18

in a short time period equally spaced it is possible to determine the tempo of a mu-
sical piece at a given time. Taking into account that tempo does not have to be
constant throughout the musical piece, two methods are described that estimate the
tempo of a signal. To visualize tempo information in a musical piece tempogram
is introduced to showcase changes of a tempo in a signal.

2.3.1 Tempogram
Similar to the spectrogram, tempogram represents time-frequency information about
the signal. Frequency is in this case represented by tempo τ measured in beats per
minute (BPM) satisfying the formula for frequency f = 1/T given in Hz, where T
is the length of the period.

τ = f · 60 (2.21)
For example, spikes in novelty function spaced with a 0.25 second period T results
in a frequency of f = 4Hz or 240 BPM. A Discrete tempogram T (n, τ) is defined
as a function of time frame t and tempo τ that demonstrates how well signal around
time t corresponds with the tempo τ .

Figure 2.4: Tempogram of a metronome with increasing tempo.

19

Figure 2.5: Tempogram of a song from Figure 2.3 with roughly constant tempo.

2.3.2 Fourier Tempogram
In this method, Fourier transformation is applied on a novelty function to obtain
a tempogram. Using a finite length window function w centered at n = 0, for
example, Hann window. For the given frequency f ∈ R≥0 and time frame n ∈ Z
Fourier coefficient is defined as

F(n, ω) =
∑
m∈Z

∆(m)w(m− n)e−2πiωm. (2.22)

To obtain Fourier tempogram in beats per minute rather than a Hz equation below
is used.

T F (n, τ) = |F(n, τ)/60| (2.23)
Because humans are only capable of perceiving tempo in some frequencies, Θ

can only consist of tempi between 30 BPM and 600 BPM. (This information could
be used to lower the computational power of the algorithm). Size of the window
also plays an important role, bigger the windowing function more precise values we
can obtain about the tempo, on the other hand, making it harder to detect sudden
changes in tempo. On contrary, shorter windowing function will give us a lower
resolution of the detected tempo but better detection of the tempo change. In
practice windowing function lengths of 4-12 seconds are suitable.

Example of Fourier tempogram can be seen in 2.5. It demonstrates that the
algorithm is not only detecting the original tempo but also tempo harmonics –
integer multiples of the original tempo. Tempo harmonics can be negated by making
the range of possible tempi lower.

20

2.3.3 Autocorrelation Tempogram
Another method to extract tempo information from the novelty curve is using au-
tocorrelation. Autocorrelation is a tool used to find repeating patters in the signal
by comparing the original signal with a shifted version of itself. It is defined as

Rxx(ℓ) =
∑
m∈Z

x(m)x(m+ ℓ). (2.24)

For a discrete, real-valued signal x at lag ℓ ∈ Z. As in the case of Fourier tem-
pogram, window function of a finite length centered around n = 0 is created. By
applying window function w on a novelty function ∆ a windowed novelty function
∆w,n is obtained

∆w,n = ∆(m)w(m− n) (2.25)
for m ∈ Z. By combining equations 2.24 and 2.25 a short-time autocorrelation
is obtained.

A(n, ℓ) =
∑
m∈Z

∆(m)w(m− n)∆(m+ ℓ)w(m− n+ ℓ) (2.26)

This will result in a time-lag representation of the musical piece. It is possible
to convert time-lag representation to tempo representation by knowing the time
resolution of the novelty function. If one time frame of novelty function corresponds
to the r seconds, then a time-lag of ℓ corresponds to the r · ℓ seconds. Using the
2.21 formula following equation is obtained and used to convert Y-axis to tempo
representation.

τ =
60

r · ℓ
BPM (2.27)

Autocorrelation tempogram of a song with tempo representation of Y-axis can
be seen on Figure 2.6. This tempogram apart from the original tempo also detects
the tempo subharmonics – integer divisors of the tempo.

2.4 Conclusion
Different approaches for detecting onsets yield different results and are suitable for
different applications. The rate of successfully detected onsets depends on factors
like a genre of a song or used instruments. Comparison of different approaches for
detection onsets can be seen in Figure 2.7 that shows 5 seconds of violin and piano
recording. Spectral difference corresponds to the spectral-based novelty described in
this chapter. Other possible methods such as wavelet regularity modulus or negative
log-likelihood are not covered in this paper and are described in “A Tutorial on Onset
Detection in Music Signals” by Bello et al.

The extraction of tempo information is possible using methods described in this
chapter. As seen in Figures 2.6 and 2.5 both approaches have different properties.
Fourier tempogram method is not only detecting tempo of the musical piece but also
tempo harmonics and autocorrelation method is also detecting tempo subharmonics.

21

Figure 2.6: Autocorrelation tempogram of a song with time-lag (top) and tempo
(bottom) representation of Y-axis.

22

Figure 2.7: Comparision of different approaches for detecting onsets [3].

23

Spectral-based novelty algorithm and Fourier tempogram is implemented in the
application for tempo analysis of audio input because of the detection accuracy when
dealing with instruments with longer attack phase of the note as opposed to the
energy-based novelty. On the other hand, energy-based novelty is implemented in
the application to detect onsets when fast computation and low delay is necessary.

24

3 VST

Virtual Studio Technology (VST) is a software interface for creating audio plug-ins
and their integration in audio processing applications. Developed by Steinberg in
1996, VST became standard on the field of audio plug-ins. Since the first version
VST undertook major changes throughout the years. One of the bigger changes was
an introduction of VST version 2.0 in 1999, featuring the ability for VST plug-ins to
receive MIDI signals. This change made possible for creating virtual instruments.
VST 3.0 came out in 2008 with additional features added like audio inputs for VST
instruments. Note that versions 2.x and 3.x are not compatible since VST SDK was
changed in a major way to allow the new features and to remove some limitations
of the older version 2. VST is still under active development by Steinberg with new
features being added every version. To this date, the latest version is 3.6.9 and it
is the one described in this section [17][20].

3.1 Basic Conception
A VST Plug-in is typically an audio effect or virtual instrument that can be used
across applications and operating systems. It does not work as a standalone and
requires a hosting application called VST Host, usually in a form of a digital audio
workstation. For the VST Host, plug-in is like a black box with defined capabilities
based on which interfaces plug-in implements.

3.2 VST Plug-in
VST 3 audio effect or instrument consists of two parts processing part and edit
controller part. Each with corresponding interfaces, processing part implements
IAudioProcessor and IComponent interfaces and edit controller part implements
the IEditController interface. The processing part handles signal processing and
edit controller part handles the graphical user interface and communication between
user and plug-in in a form of parameter changes. This change introduced in version
3 allows for the complete separation of the two components enabling them to run
in different contexts or even on different computers. Making possible for the GUI
component to be updated with much lower frequency than the processing compo-
nent.

25

Figure 3.1: VST 3 Plug-in [17].

3.2.1 Processor
This part of VST Plug-in that handles processing of audio is split into two interfaces
named IComponent and IAudioProcessor. Reason for this is to have one generic
processing interface IComponent and one audio specific interface IAudioProcessor
to allow for the non-audio plug-ins in the future versions of VST. To be able
to use the processor it has to be configured first while being inactive. To do
this ProcessSetup struct is used to pass all the parameters to the processing
unit. These parameters can not be changed while the processor is active. Af-
ter that, it is possible for the host to change the number of channels in an au-
dio bus if that does not happen the default values of the plug-in are used. Next
the processor has to be activated using the IComponent::setActive(true) and
IAudioProcessor::setProcessing(true). At this point, the component is ready
to process audio data. This is done in the following way. Processing of audio is done
in a IAudioProcessor::process method. All the data mandatory for the process-
ing are passed to the method by the ProcessData structure. List of some of the
attributes of ProcessData with brief descriptions follows.

• numSamples – number of samples to process

• numInputs – number of audio input busses

• numOutputs – number of audio output busses

• inputs – buffers of input busses

• outputs – buffers of output busses

• inputParameterChanges – incoming parameter changes for this block

• outputParameterChanges – outgoing parameter changes for this block

When the processing is over VST Host must call
IAudioProcessor::setProcessing(false) after the last process call. De-
tailed workflow of the processing part from the VST documentation can be seen in
Figure 3.2.

26

Figure 3.2: VST 3 Process Workflow [17].

27

3.2.2 Edit Controller
Edit Controller is part of the VST Plug-in that implements IEditController in-
terface and handles graphical user interface. It is also responsible for the parameter
management. Since the processing component and the edit controller component
does not communicate with each other directly, passing the parameters rely on host
implementation of IComponentHandler interface. The job of the edit controller is to
transfer changes of parameters that were triggered by the user action in GUI of the
plug-in to the IComponentHandler and from that point, it is on VST Host to pass
it to the processing component.

Figure 3.3: VST 3 Standard Communication [17].

3.2.3 Private Communication
It is possible for the two components of VST Plug-in to communicate with each
other privately by using IMessage interface. This communication is unknown to
the VST Host. To allow communication between processor and edit controller
component hosting application has to establish a connection between them using
the IConnectionPoint. Diagram of the communication can be seen in Figure 3.4.
From the processor point of view, this communication should be performed outside
the process method to not break the real-time audio processing. Separate timer to
handle the messaging is advised.

28

Figure 3.4: VST 3 Private Communication [17].

29

4 MIDI

MIDI (Musical Instrument Digital Interface) is a technical standard defined orig-
inally by the Midi 1.0 specification in 1982 that describes hardware and software
for the exchange of musical event messages between digital musical instruments.
A wide variety of MIDI instruments is available such as keyboards, sequencers or
computers (software instruments) or even lighting instruments. Rather than trans-
porting sampled signal digital messages are sent through the interface that carries
information about music such as note’s notation, pitch or velocity. MIDI is also
used for the synchronization of instruments. To keep all the instruments updated
about the current tempo and beat position in time.

4.1 MIDI Interface
MIDI interface consists of three ports – IN, OUT and THRU. IN is the input for
of the MIDI devices and allows the device to receive MIDI messages. OUT is used
to send MIDI messages to other devices and THRU is used to daisy-chain MIDI
devices together. According to Andrew Swift (1997), ”At first glance it may seem
unnecessary to have the THRU port, since you could simply chain devices together
using the output from the OUT port. The digital information is sent serially at
a rate of 3000 bytes per second, by switching a current of approximately 5mA on
and off. If the OUT port was used this current may be too small to drive any of the
devices.” [19].

4.2 Windows OS Support
From Windows 2000 onward, the operating system has built-in support for handling
MIDI devices and exposes a C language interface for establishing a connection,
sending messages, etc. by including the appropriate header file in the application
source code. This, as a preferred way for handling MIDI on Windows OS, is how
the MIDI message exchange is implemented in the application.

30

5 Development

The application is developed for personal computers with operating systemMicrosoft
Windows although programming language and used libraries open possibilities for
later ports to different operating systems. The program is written in C/C++ with
Qt graphical framework and PortAudio (PA) audio I/O library. Since the goal of this
work is to develop a DAW, in this chapter objectives are reorganized as a functional,
non-functional and graphical requirements for better understanding the implemen-
tation process and later on described in a more detailed manner.

5.1 Requirements Analysis
The following requirements were created through the analysis of goals of this paper.

5.1.1 Functional Requirements
Functional requirements of application are organized and described in Table 5.1.

5.1.2 Graphical Requirements
Requirements that are based on user interaction with application. Requirements for
controlling program using the graphical user interface (GUI) or displaying informa-
tion about state of a program are listed in a Table 5.2

5.1.3 Non-Functional Requirements
The only non-functional requirement si to achieve as low latency as possible for the
selected device.

5.2 Software Development Model
The development of this application is using the incremental build model, which
applies the waterfall model incrementally. One iteration of the waterfall model
is called increment and it adds new functionality from the requirements. Deployment
of software is done at the end of each increment. This helps to evaluate the status of
software by examining the feedback from the end-users. Because it deploys partially-
functioning software it also avoids long development time.

31

Number Name Description
1 Input/Output Routing Ability to route selected inputs to selected outputs.
2 Sound Card Output Ability to use sound card output channels as out-

put.
3 WAV File Input Ability to use audio files (.WAV) as inputs.
4 VST Plugin Ability to apply VST Plug-in on selected input.
5 Recording Output Ability to use file (WAV.) as an output.
6 Playlist Creation Ability to store information about settings for each

song.
7 Add Song to Playlist Ability to add songs to playlist.
8 Remove Song from

Playlist
Ability to remove songs from playlist.

9 Add Line to Song Ability to add lines to song.
10 Configure Device Ability to select only used channels in device and

assign them custom names. Use these when select-
ing line’s inputs and outputs.

11 Song Control Ability to control songs. Includes: Next song,
Stop song, Previous song, Play song.

12 Playlist Save Ability to save playlist into file (.xml).
13 Playlist Load Ability to load playlist from file (.xml).
14 Configure Device Save Ability to save configure device information into

file (.xml).
15 Configure Device Load Ability to load configure device information from

file (.xml).

Table 5.1: Functional requirements

The development of the digital audio workstation consists of increments that
are created from a group or a single requirement and are analyzed, designed, imple-
mented and tested. At first, the core of application – audio I/O is implemented, the
next increment consists of a graphical user interface. The following increments add
functionality from the defined requirements resulting in a finished application when
all the requirements are met.

5.3 Environment
Proposed application is targeting operating system Microsoft Windows. Libraries
used in this project were selected to fit the needs of the application and to fulfill
requirements. The application was developed in programming language C++ under
the c++11 standard to allow for the usage of the new features introduced in c++11.

32

Number Name Description
1 Menu Bar Ability to control program functions through menu

bar.
2 Top Bar Ability to access most frequently used functions of

the application via buttons on the main window
below Menu Bar.

2.1 Play button Starts the playback.
2.2 Stop button Stops the playback.
2.3 Pause button Pauses the playback.
2.4 Backward button Scroll the timeline backwards.
2.5 Forward button Scroll the timeline forward.
3 Display Input to Output

Line
Ability to display sound inputs to outputs as a line.

4 Display Graph Ability to display signal as a 2D graph.
5 Control Line Ability to use GUI elements to make changes to

line settings.
5.1 Select I/O Button for selecting inputs and outputs.
5.2 Mute Button for muting the line.
5.3 Fx Button for processing unit selection.
6 Playlist Creation Ability to store information about settings for each

song.
7 Logging Window Ability to display messages to user with levels of

importance defined as Debug, Info, Warning,
Critical and Fatal.

8 Display Playlist Ability to display playlist and current song.

Table 5.2: Graphical requirements

5.3.1 Compiler
At the beginning of this project, MinGW was used as a compiler. It is an open
source software development environment for MS Windows. It contains among
others a GCC compiler as well as collection of GNU utilities known as MSYS.
During the development, the application switched to MSVC compiler because of
MinGW compatibility issues with VST SDK.

5.4 Libraries

5.4.1 Qt Framework
Qt framework is used to create a graphical user interface to allow simple human-
computer interaction needed for live music performances. Qt framework contains an
integrated development environment called Qt Creator that is used in this project
as well as all the required libraries for software development in Qt. Qt also extends

33

the capabilities of C++ with features and mechanics that might not be present in
the language itself (depending on the C++ standard in use) such as Signals and
Slots for communication between objects, variety of containers or guarded pointers.
Base class of all objects in Qt is called Q_OBJECT. By deriving from this class it
is possible to use the Qt features such as Signals and Slots on custom objects.

Life of a QObject

QObjects – classes that inherit the QObject are organized as a tree. When creating
a new object, a pointer to parent can be passed as a parameter creating a parent-child
relationship. In this relationship when a parent is being deleted, it sends a signal
to the children causing the deletion of them as well and this process cascades to
the grand-children and so on. When a child is being deleted it informs the parent
and is removed from its children list. When creating objects on the heap using the
keyword new objects can be created in any order and Qt mechanics take care that
the object is destroyed and memory deallocated exactly once when the object is no
longer needed, for example when a parent was destroyed. On the other hand, while
creating Q_OBJECTs on the stack the C++ standard states that the destructors of
the local objects are called in the reversed order of their initialization.

5.4.2 FFTW
FFTW is a C subroutine library used for calculations of discrete Fourier transform.
Library can be downloaded from the official website as a pre-compiled package with
dynamic libraries for 64-bit Windows operating systems. FFTW is selected because
the C-style interface fits the C/C++ nature of the application and because it is the
”Fastest Fourier Transform in the West”[7]. It features multi-dimensional transform,
parallel transform and is portable to any platform with the C compiler. Description
of this library is not in the scope of this paper, further information about the usage
can be found in the official documentation1.

5.4.3 libsndfile
Libsndfile is an audio library created by Erik de Castro Lopo for reading and writ-
ing audio files. The library is written in C and supports a variety of formats such
as WAV, FLAC, and OGG. Lightweight C++ wrapper is distributed together with
the library as one header include that takes care about things like memory man-
agement and proper file opening and closing. In the proposed application libsndfile
is used only for creating audio files during recording.

5.4.4 PortAudio
PortAudio is an open source audio library written in C that creates cross-platform
API above platform-specific native audio APIs like ASIO or ALSA that are called

1Available at http://www.fftw.org/fftw3_doc/.

34

http://www.fftw.org/fftw3_doc/

Host APIs. Relationships between HostAPIs and PortAudio can be seen in the
diagram in Figure 5.1. This allows PortAudio to be used on a range of sound APIs on
various operating systems with as little changes to source code as possible. It is low
latency and low-level library which is critical when creating an audio application for
live performances.

Figure 5.1: Relation between PortAudio API and Host APIs. [15]

PortAudio library processing model works with Devices and Streams. Devices
are hardware audio interfaces like external or internal sound cards accessible on the
hosting platform. PortAudio provides utility functions to provide information about
devices names and capabilities like supported sample rates and a number of input
and output channels. The stream represents an active flow of audio data between
application and devices. Streams support both either one of input or output for
example in a case of playing an audio file or simultaneous input and output. Stream
properties are defined using the Pa_OpenStream method parameters. It is possible
to define the sample rate of the stream, sample format, buffer size and latency.
PortAudio is capable of using 8, 16, 24 and 32-bit integers and 32-bit floating points
as a sample format regardless of the Host API. Two possible methods for audio
communication between application and stream exists – asynchronous callback that
calls user-defined callback function whenever audio data is available or required or
synchronous read and write functions.

PortAudio Callback Method

The Callback I/O method is periodically calling a callback function passed in the
Pa_OpenStream method that implements the PaStreamCallback signature. The
callback is returning paContinue value indicating that stream should continue. By
returning PaComplete or PaAbort values it is possible to deactivate the stream from
the callback function. While PaComplete cancels the stream after the last buffer has
finished playing, PaAbort cancels the stream as soon as possible. Because stream
callback function is often operating with very high or real-time priority in a special

35

thread or interrupt handler there are some restrictions to the code allowed in the
callback to produce glitch-free audio. It is important to avoid operations that can
take an unbounded amount of time to execute like memory allocation/deallocation,
I/O operations concerning both file system as well as a console I/O, such as printf
method, mutex operations or OS API function calls.

Read/Write I/O Method

This method, on the other hand, provides a synchronous read/write interface for
acquiring and playing audio. This method typically has higher latency then callback
method, but it could be used for example from programming languages that do not
support asynchronous callbacks. Instead of the callback function, audio data are
read by the Pa_ReadStream method and written with the Pa_WriteStream method.
In the case of internal buffers being full, these calls will be ignored making them
safe to call in a tight loop. Selection of the method is done via the parameter in
Pa_OpenStream function call.

Before using PortAudio library it has to be initialized by calling the
Pa_Initialize function and terminated after usage by calling Pa_Terminate
function. After successful initialization stream can be opened by calling the
Pa_OpenStream function. Properties of the stream are set by the following pa-
rameters [15].

• PaStream** stream

• const PaStreamParameters * inputParameters

• const PaStreamParameters * outputParameters

• double sampleRate

• unsigned long framesPerBuffer

• PaStreamFlags streamFlags

• PaStreamCallback* streamCallback

• void* userData

stream is the address of a PaStream pointer that will receive a pointer to the opened
stream. inputParameters and outputParameters are structures that define used de-
vice, the number of channels, sample format and latency. Optionally they can also
set Host API specific data structure containing additional information for the device
setup and stream processing. sampleRate parameter determines the sample rate of
the stream. framesPerBuffer defines the number of frames passed to the stream
callback function or preferred block granularity for a blocking read/write stream.
streamFlags are modifiers of the streaming process behavior, for example, disabling
clipping of out of range samples or disabling default dithering. Several flags can
be combined together using the bitwise or operator (|). streamCallback is a pointer

36

to the user-defined function that is responsible for processing and filling input and
output buffers. If this parameter is NULL stream is opened in a blocking read/write
mode. userData is a user-defined pointer that is passed to the callback function
allowing to access a pointed object in the callback.

Build

To be able to use PortAudio in an application source code was downloaded from the
official website and build targetting the demanded audio API, in this case, ASIO.
To build the library with the MinGW compiler following commands was used.

./configure --with-winapi=asio --with-asiodir=../ASIOSDK2.3
make

To build the library with the MSVC compiler, a Visual Studio project file (*.vcx-
proj) is distributed with the source code of the library. The project file contains most
of the configuration required to compile the library. The project file was opened in
Visual Studio 2015 and the library was built. For both cases (MinGW and MSVC)
it is required to have the ASIO SDK folder set while compiling the library with
ASIO API support. ASIO is a sound card driver protocol created by Steinberg to
provide a low-latency interface between application and sound card. ASIO SDK
is required to build ASIO support. It is free to download from Steinberg’s web-
site. This will result in the creation of PortAudio example programs and library file
portaudio_x64.lib that is linked to the application.

5.5 Implementation
Implementation details of the proposed application are described in this section. It
consists of describing the implementation of GUI and implementation of functional
features.

5.5.1 Graphical User Interface
To be able to control the application Qt graphical framework was used to create
a suitable GUI. In this section implementation of the graphical part of the appli-
cation is split into several sections and described in detail. Application window
consists of following parts:

Top Menu

Top menu of the application features a set of actions available to the user to control
the program using the GUI. The menu consists of the following groups

• File

• Devices

37

Figure 5.2: Configure Devices window.

• Playlist

• Help

File includes a selection to exit the application. Devices includes actions connected
with sound card settings. First one is configure devices, it triggers a method that
displays a list of available sound cards as well as information about the API, latency,
number of inputs/outputs and sample rate (Figure 5.2). It also allows a user the
select the channels to use and assign custom names to them to ease the future
recognition. It is possible to test the outputs using QPushButtons assigned to each
output channel. This will result in a sine wave played in a selected output channel.
Next two items under the devices menu are save devices configuration and load
devices configurations, these actions trigger method that loads previously saved
configuration from a .xml file or saves the current configuration into the .xml file.
Playlist menu consists of actions that deal with playlist creation. Namely New
Playlist that creates a blank playlist, Load Playlist – action that loads previously
saved playlist, Save Playlist – action that saves the current playlist into the .xml
file, Add Song – Adds a new song into the current playlist and Add Line that
adds a new LineWidget into the song. In the Help section it is possible to display
information about the application and licence as well as information about the
PortAudio version using the About item and About PortAudio item. All actions
from the menu are accessible through the Alt + [key] keyboard shortcut, where
[key] stands for the first letter of the name of the item.

38

Figure 5.3: TopBar Layout

Top Section

This part serves as the main control area of the application. It derives from the
QWiget class making it possible to connect it to the rest of the applications using
the asynchronous signals and slots mechanism. Deriving from QWidget also handles
the memory management. When an object derived from QObject and is created on
the heap using new operator i.e.

TopBar *topBar = new TopBar(QWidget* parent);

it counts the number of references to that object and when the number drops to
zero, the object is deleted from memory. This makes implementation easier for the
programmer and decreases the chances of memory leaks or dangling pointers.

This class contains five QPushButtons with fixed size and each with a custom
icon to represent the following actions

• Play

• Stop

• Pause

• Forward

• Backward

When a user presses the button, signal is emitted informing the rest of the appli-
cation about the action. In the middle of the Top Bar, QSpinBox is created to
represent tempo of the current song. The area on the right serves to display infor-
mation about the name of the current playlist using QLabel and shows the list of
songs in the current playlist using the QListWidget. It is possible to shuffle through
the songs by clicking on their name. Playlist widget is connected to the rest of the
application in a way that it automatically refreshes the list when action is performed
that changed the current state of a playlist. Buttons on the right are used to add
or remove a song from the playlist. When they are clicked the corresponding signal
is emitted. All widgets in the Top Bar are in a QHBoxLayout stretched to separate
each section.

39

Middle Section

This is the part visualizing settings for a current song and displaying a graph of
a signal in time for each input. It allows a user to define their own routing rules and
to apply filters on a signal. Because of variable size of this section the root widget
is QScrollArea allowing the scrolling behavior in the case that the size of elements
inside this widget exceeds its space. Inside the QScrollArea there is a dynamic ar-
ray of LineWidgets that refreshes whenever a current song is changed. LineWidget
is a graphical representation of route from one input to one output. For reasons
described earlier it is derived from QWidget and serves to apply settings for one
line as well as show graph of the signal in time. Parent widget of LineWidget
is a QGroupBox that serves as a container for the widgets inside and enables label-
ing of the respective LineWidgests to distinguish them from each other. All the
widgets inside the QGroupBox are sorted using the QGridLayout. As seen on Fig.
5.4 LineWidget consists of two QPushButtons, one opens dialog window (Fig. 5.5)
for setting input and output of the line the other one opens a dialog window to
select digital signal processing units from an available list. LineWidget also has
one custom two-state button called StatePushButton deriving from QPushButton
to add the two-state logic to the QPushButton using the QStateMachine, Qt imple-
mentation of a finite state machine. These buttons allows user the select mute for
the current line. In the middle of LineWidget there is a QTabWidget a class that
provides a stack of tabbed widgets and it is used to display the graphical interface
of the currently selected processing units. In the right part, a QChartView that in-
cluded QChart was used to display the graph of a signal in time during the playback.
Both these components are part of the QtCharts module and are not part of the Qt
core.

Because of performance issues of these two objects a custom object called
AudioGraphWidget was later on created for displaying graph of a signal.
AudioGraphWidget inherits QWidget class and overrides the paintEvent method.
This allows to define a custom look for the derived widget, in this case a graph.
Graph is designed to show the n values passed to the widget. n is set during the
drawing part based on the width of the widget. To get the basic information about
time length of a signal, scale along the x-axis is implemented to display one second
and ten second marks in the graph. To display a point in time in the graph, two
markers are implemented, visualized as a horizontal line. One is used to display
the current point in time where the signal is being processed or played and the sec-
ond one to allow a user to define a point in time from which the playback should
start, typical use case being to start a song from a place other than the beginning.
This second marker can be set with a left mouse click. This feature is possible by
reimplementing the mousePressEvent method of the QWidget. Exact time point
is calculated from the x-coordinate of the mouse button press and the relative po-
sition of the currently displayed signal in the audio file. Values of audio levels and
information about the progressing current time line are passed to the object using
signals and slots. These signals are connected with the Queued Connection option
specified, making the slot invoked when control returns to the event loop of the

40

Figure 5.4: Middle section layout.

receiver’s thread rather than being performed from the caller’s thread.

Bottom section

Bottom section only consists of one custom widget called LogWindow. Its pur-
pose is to display information about ongoing events in the application in a form
of messages with timestamps and priority levels. LogWindow derives from the
QTableWidget and sorts the messages in a table-like fashion. LogWindow is con-
nected to the Qt messaging system QMessageLogger in a way that calling a Qt
functions like qDebug, qInfo, qWarning, qCritical, or qFatal anywhere in the ap-
plication during the lifetime of MainWindow will result in a new row in the LogWindow
containing the message and some additional information. Each row contains infor-
mation about the time of the message, its level of importance, location of
the code that triggered the message including relative path and row number, con-
text from which it was called (class and function name) and the message itself.
This functionality was made possible by creating LogWindow as a static object in
MainWindow class and calling the Qt global directive qInstallMessageHandler in
the Main class of the project with pointer to the method as argument that redirects
the messages to the LogWindow if it is created, if not standard console output is used
to print them.

Global Look

By default, Qt uses the predefined style for the application depending on the op-
erating system and version of Qt. How to change the global look of the appli-
cation is described in this chapter. Styles for the application are set using the

41

Figure 5.5: Select Line I/O window.

QApplication::setStyle(QStyle* style) method, where the QStyle is an ab-
stract base class that encapsulates the look and feel of a GUI. In order to im-
plement custom style a class CustomStyle is created that inherits QProxyStyle
which is a convenience class that simplifies dynamically overriding QStyle ele-
ments. Virtual methods of QProxyStyle class polish(QPalette &palette) and
polish(QApplication *app) are implemented. First one sets the colors of the
palette while the second one is responsible for loading the custom stylesheet file and
setting the stylesheet of the application. Stylesheet file includes the information
about the look of Qt widgets. It is similar to the CSS known from HTML.

This results in a change of the application window, but the title bar and
frame will remain the same since this is taken care of by the Windows API it-
self. It is possible to change the style of the frame and title bar of the window
by creating a custom top-level QWidget that contains the window itself and set
its properties using QWidget::setWindowFlags to Qt::FramelessWindowHint and
Qt::WindowSystemMenuHint making the top level widget borderless and without
frame. This was implemented in a FramelessWindow class. A custom top title
bar was created using QToolButtonss with appropriate logic and look to behave
as a maximalize, minimalize and close buttons. QLabel is used to display the
name of the window.

Application window

Application window is a FramelessWindow with MainWindow inside. MainWindow
consists of Top Menu, Top Bar, Middle section and bottom section put together using
QVBoxLayout. Top Bar and Middle Section are aligned to the top, while LogWindow
is aligned to the bottom using QSplitter making it hideable and resizeable.

42

Figure 5.6: Playlist hierarchy.

5.5.2 Features
Implementation of functional requirements is divided into several paragraphs and
described in this section.

Routing and Playlist Settings

Application routes desired input to output based on a user selection. Every routing
possibility between a set of inputs and set of outputs can be broken down to a set
of 1:1 connections between input and output. This connection is called Line and its
implemented in a class Line. It stores information about the input and output of
a Line in a form of struct LineIOInfo. LineIOInfo defines a type of the I/O and
information depending on the type, path the to file in the case of audio file or id of
a channel in the case of a sound card. Line class also contains information about
id and used signal processing units as well as a set of functions connected with Line
features.

One step above in the playlist hierarchy is a song. It is implemented in a class
Song and contains a std::vector<Line*> representing all the routing settings
as well as the name of and tempo of a song.

On top of settings hierarchy is a playlist implemented in a Playlist class. It
stores songs in a form of std::vector<Song*>, playlist name and set of functions
to ease working with objects in playlist hierarchy. Example of playlist structure can
be seen in Figure 5.6.

Saving and Loading Playlist Settings

To be able to store the current playlist or load previously created playlist in the form
of .xml file a PlaylistXML class was created that implements this functionality. It
takes a pointer to the Playlist object as a parameter and either creates a .xml
file based on the current playlist using the QXmlStreamWriter or loads playlist
settings from a .xml file using QXmlStreamReader while checking for errors in the
file. Example of playlist settings from Figure 5.6 is shown below. Playlist consists
of two songs; the first song has one Line connecting input channel on index 0 to
output channel on index 0. The second song has two Lines, first one connecting

43

input channel 0 to output channel 1 and second Line has an input file of given path
and output on output channel 0.
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<playl i st>

<name>Concert</name>
<songs>

<song id=”0” name=” F i r s t ␣ song ” bpm=”120”>
<l ine id=”0”>

<input type=”Channel ”>
<channel id=”0”/>

</ input>
<output type=”Channel ”>

<channel id=”0”/>
</output>

</ l ine>
</song>
<song id=”1” name=”Second␣ song ” bpm=”120”>

<l ine id=”0”>
<input type=”Channel ”>

<channel id=”0”/>
</ input>
<output type=”Channel ”>

<channel id=”1”/>
</output>

</ l ine>
<l ine id=”1”>

<input type=” F i l e ”>
< f i l e path=”C:/example . wav”/>

</ input>
<output type=”Channel ”>

<channel id=”0”/>
</output>

</ l ine>
</song>

</songs>
</ playl i st>

Audio Processing

In this paragraph is described implementation of reading audio from multiple chan-
nels or audio files, processing the signal and outputting the result on audio channel
or file. To be able to process audio from the input channel to the output channel
with minimal latency PortAudio library is used. It was compiled from source code
(available on the official website) targeting ASIO into a dynamic (.dll) library.

In order to use PortAudio functionality in application, it has to be initialized
first. A class called PaHandler was created to serve as a C++ wrapper for initializing
and terminating PortAudio according to the lifetime of the application. It also
contains functions to handle possible errors and getting additional information about
available devices and APIs.

44

Handling audio in the application is divided into following steps that are de-
scribed below.

1. Obtaining audio

2. Processing audio

3. Outputting audio

Obtaining audio

There are two types of possible audio inputs, sound card input channel or an audio
file. To be able to access audio data from the sound card using PortAudio a PortAu-
dio Stream is open and started. This is implemented in the Wire class. First part
defined in Wire::open consists of extracting information about the current song
settings and configuration from the Playlist object. Then the information is used
to set PaStreamParameters structure together with sample format and suggested
latency. If PaStreamParameters passes the compatibility check stream is opened
using defined settings. After the successful opening of a stream, it is started using
the Wire::start method. PortAudio callback method will be trigging from now on
whenever audio is acquired. This gives direct access to the input audio buffers.

Audio File Reading

Since PortAudio callback function cannot contain operations like reading from a hard
drive as discussed in section 5.4.4 a class AudioReader was implemented to solve
this problem. In the phase of opening stream Wire::open list of AudioReader ob-
jects are created, one for every distinct input file in the current song. Afterwards,
AudioReader::openFile function is called that checks the integrity of the file, ini-
tializes the file and extracts the sample rate and channel information of the audio file
and prepares the object for reading audio data. Next AudioReader::startFileRead
function is called that allocates memory for a ring buffer based on a sample rate,
number of channels and type of format that is used to allocate enough space for
given number of seconds of data rounded to the nearest highest power of 2. After the
successful initialization of ring buffer a function AudioReader::fromFileToBuffer
is started in a separate thread and consists of endless loop with logic described on
Figure 5.7. This will keep the ring buffers filled with audio data from the files. In
the PortAudio callback function these ring buffers are available for reading using the
AudioReader::readBuffer method and unlike direct I/O access does not violate
callback restrictions.

Ring buffer or circular buffer is a data structure of a fixed size that behaves as if
memory is contiguous and circular in nature. It is usually used in buffering data
streams. It consists of a buffer of fixed size and two pointers: one head pointer that
advances when data is added and a tail pointer that advances when data is removed.
This is used to transport data between two different execution contexts without
requiring the use of any locks.

45

Figure 5.7: Audio file reading thread workflow diagram.

46

An alternative approach for reading audio files is implemented to support the
GUI feature that shows a graph of a signal in time. An audio file is loaded into
memory using the QAudioDecoder from the Qt Multimedia module that invokes
the callback that fills in buffers whenever data is available. This method enables
to set the desired format for the data samples while resampling or converting when
necessary. When all the raw data are saved QAudioDecoder emits the finished
signal that is connected to a lambda that calculates the root mean square and
passes the data to AudioGraphWidget that displays the graph of the audio file.

Processing Audio

This part describes the methods of processing audio in the proposed application.
Processing is done in the PortAudio callback function and consists of several steps.
First input buffer with a size of framesPerBuffer × number of Lines of the current
Song is filled with audio data from the sound card input channels or audio files
with the defined sample format and sampling rate. Audio data from sound card are
available via const void *input pointer passed to the PortAudio callback as an
argument and audio file data are accessed with the AudioReader::readBuffer func-
tion. In the next step user selected processing units will run for each Line. After the
processing has been done an average value of the buffer is calculated for each Line
and added to the array that contains the values for displaying a graph of a signal
in LineWidget. This is done to lower the number of calls for updating the graph
making the application less demanding on CPU and GPU.

Process Unit Interface

To be able to implement new signal processing features to the application in an
easy way an interface was created that all the DSP units inherit. It is called
IProcessUnit and objects that inherits this interface are referred to as Process
Units. It defines several methods that have to be implemented by the Process Units
most importantly IProcessUnit::init function that is called in the Wire::open
method that should contain memory allocation and initialization of the Process Unit
or other operations that should not be in the PortAudio callback as discussed in pre-
vious chapter. IProcessUnit::process function is called in the PortAudio callback
with the custom ProcessData structure as an argument that contains AudioData
and EventData structures. AudioData represent pointers to the array of the used
sample format and their length while EventData includes a list of non-audio data
called Events as a general mean of communication between Process Unit and the
application. IProcessUnit::process method should be restricted to the mathe-
matical calculations on the ProcessData. To be able to control Process Unit using
a graphical user interface it can inherit QWidget class from Qt to create a custom
GUI.

A user can select a set of Processing Units to apply on the selected Line using the
Fx button in the LineWidget. This action will fill the QTabWidget in LineWidget
with the selected Process Units GUIs with each tab representing one.

47

Process Units

Three Process Units were created in this application – Volume Process Unit, VST
Process Unit, and Tempo Process Unit. Their implementations are discussed in this
chapter.

Volume Process Unit

VolumeProcessUnit was created to control to the volume of a signal on a given
Line. In the constructor basic parameters are set and GUI objects are created.
GUI consists of a label with the name of the Process Unit and QSlider *slider
with the range set to [0:100] to give user ability to control the volume.
QSlider::volumeChanged signal is connected using the lambda function to change
the volume variable as follows

volume = slider->value / 100;

In the VolumeProcessUnit::process method input audio data are multiplied with
the volume variable resulting in the decrease of volume on selected Line. Can be
seen in Figure 6.1.

VST Process Unit

This Process Unit allows a user to load a VST Plugin and apply it on the selected
Line. To be able to load a VST Plugin, a VST Host had to be implemented. VST
3 Plug-ins are distributed as a single .dll file on Microsoft Windows. VST Process
Unit takes a path to the VST Plugin as an input selectable through a graphical user
interface of the Process Unit. First, the .dll file containing VST Plugin is loaded
from which we obtain a pointer to the PluginFactory. This pointer is passed to
the helper class named PlugProvider that inherits FObject and IPlugProvider
classes. PlugProvider::setupPlugin method is called that handles the following
actions.

1. Creates and initializes Processor part of the Plugin.

2. Creates and initializes Edit Controller part of the Plugin.

3. If both parts are successfully initialized, they are connected using
ConnectionProxy helper class that implements IConnectionPoint interface.
This allows communication between the two parts of the Plugin.

In the next step properties such as height, width, resizing policy or window name
are extracted from the Edit Controller and new window with Plugin is created
by calling WinAPI function CreateWindowEx. Afterwards AudioClient::create
method is called with Processor and Edit Controller pointers as parameters.
AudioClient class is implementation of IComponentHandler and few other inter-
faces. AudioClient works in following steps.

48

Figure 5.8: Application running a VST Plug-in called SPAN[8].

1. sets itself as a component handler of the Edit Controller part

2. initializes ProcessData and ProcessContext structures

3. registers input and output audio ports

4. initializes the buffers

5. sets the sampling rate and block size

6. creates ProcessSetup structure with defined settings to setup processing

7. activates and starts processing of the plugin

At this point, VST Plugin is ready to process data. Processing is done in three
steps. Preprocess step – assign bus buffers and transfers parameter changes from the
queue to the ProcessData. Process step – calls the Plugin method to process data
with ProcessData argument. Postprocess – transfer parameter changes from the
processor and passes them to the edit controller and unassign bus buffers. Example
of application running VST Plug-in called SPAN2 can be seen on Figure 5.8.

2SPAN is a free real-time fft audio spectrum analyzer plugin for professional music production
applications. Available at https://www.voxengo.com/product/span/

49

Tempo Process Unit

For detecting tempo of a song in real-time a spectral-based novelty function de-
scribed in 2 is implemented from which tempo information is derived using Fourier
coefficients. First audio is windowed using appropriate Hann window function and
FFT is computed using the FFTW library. Magnitudes of the results are combined
together creating spectrogram. In the next step, spectrogram is normalized and split
into several frequency bands to increase the robustness of the algorithm. Spectral-
based novelty function is computed for each band separately. Obtaining the novelty
curve consists of following steps. Appling logarithmic compression to enhance weak
spectral components. Smooth differentiator filter fd of length len is computed by
using Hann window w of length len satisfying following equation for n = [0 : len].

fd(n) =


−1× w(n) for n < len/2

0 for n = len/2

1× w(n) for n > len/2

(5.1)

len is calculated to be the closest odd number to represent 0.3 seconds given the cur-
rent sampling rate. By convoluting the band data with differentiator filter smoothed
discrete derivative is obtained. Since we are only interested in positive values that
correspond to the note onsets negative values are set to zero. Because of convolution
result is bigger by len− 1, therefore, edge values are removed to fit the original size.
In the next step, band is normalized and summed to obtain band novelty curve.
Average of band novelty curves are computed thus creating spectral-based novelty
curve of an input signal. The result is further enhanced by subtracting the local
average. Local average Lavg is implemented as convolution of the novelty function
∆Spectral and averaging filter fa of length wlen defined as

fa(n) = w(n)/
wlen∑
m=0

w[m] (5.2)

for n = [0 : wlen] where w is a Hann window of length wlen.

Lavg = ∆Spectral ∗ fa (5.3)

The final form of novelty curve ∆̂Spectral is created by subtracting the local average
from the novelty curve and setting negative values to zero for each time frame
n(n ∈ Z).

∆′
Spectral(n) = ∆Spectral(n)− Lavg(n) (5.4)

∆̂Spectral(n) =

{
∆′

Spectral(n) for ∆′
Spectral(n) > 0

0 for ∆′
Spectral(n) ≤ 0

(5.5)

In the next step, the novelty curve ∆̂Spectral is used to determine the tempo of the
song. For the given set of tempi in this case [30:600] corresponding frequencies are

50

Figure 5.9: Application running a Tempo Processing Unit. Tempo estimated as 95
bpm.

obtained using the equation 2.21. For each frequency and time index, sine and
cosine functions are computed and multiplied with windowing function of length
that corresponds to 8 seconds and signal to obtain a coefficient that represents
a level of similarity between the tempo and the novelty function. By finding the
index with the highest magnitude of the coefficient the most dominant tempo in the
given time frame is found. Alternatively, the autocorrelation method could be used
to determine delay with the biggest similarity and from that compute the tempo.

This method can take enough time to break the real-time audio processing of
the application. Because of that, computations are performed in a different thread
approximately once per second. After the tempo information is extracted, GUI
is updated to display the current value. Image of application analyzing the tempo
from a song can be seen in Figure 5.9.

MIDI Process Unit

This module is developed to send MIDI messages to the MIDI device during the
playback in the event of detecting onset. The latency of MIDI messages after an
onset happened should be as low as possible to allow the module to be used to
synchronize MIDI devices by transforming a music signal into MIDI events in a real-

51

time fashion.
Onsets are detected on-the-go during playback using the Energy-based Novelty

described in Chapter 2. Detection of onsets is possible by the analysis of a discrete
derivative of a windowed local energy function. Hann window of length 32 is used.
This approach has the benefit of detecting onset more efficiently regarding the CPU
usage then the spectral-based novelty because no FFT is being calculated. The
second benefit is that this method does not need to evaluate as many samples per
invocation resulting in an ability to respond to onsets faster. In this implementation
Energy-Based novelty is calculated once per PortAudio callback method that has
the buffer size Bs of 512 samples per channel. Using the 44100 Hz sampling rate
this results in the detection of onset with delay Td of approximately 12ms.

Td =
Bs

fs
(5.6)

Td ≈ 0, 0116s (5.7)
The downside of this approach is bad performance when detecting onsets of instru-
ments that have a subtle attack of the note. Best results are expected when used
with percussion instruments or instruments with a steep attack of the note.

Necessary library calls used in this module are available through the Win-
dows API by including <Mmsystem.h>. Functions midiOutGetNumDevs and
midiOutGetDevCaps() are used for listing devices and determine their capabili-
ties, midiOutShortMsg() is used to send the MIDI message. To open the device
midiOutOpen() and midiOutClose() to close the device after playback ends. Tar-
get MIDI device is selected using QComboBox with all the available MIDI devices
listed. The module is enhanced by introducing two variable parameters changeable
by corresponding QSlider in the GUI part of the ProcessUnit. One parameter
is cooldown and controls the time after onset was detected in which another on-
set cannot occur. The other one is threshold to set the limit on the y-axis in
Energy-Based Novelty curve above which it is determined as an onset. After the
onset is detected a pre-defined MIDI message is sent to the selected device. Image
of application running this process unit can be seen on Figure 5.10. Detected onsets
are logged in the LogWindow.

Outputting Audio

In the next step, audio data are outputted either on soundcard output channels
using the pointer to the output buffer in the PortAudio callback method or writ-
ten down to a file using a AudioReader::writeToBuffer function. Hard drive I/O
operations are forbidden in the PortAudio callback method, therefore, the follow-
ing algorithm was implemented to enable writing audio data into a file. During
the Wire::open method AudioReader instance is created for every distinct out-
put file. Afterwards AudioReader::createFile method called with arguments
that specify the name and format of the file, sample type and sample rate. In
the next step AudioReader::startFileWrite function is called that initializes

52

Figure 5.10: Application running a MIDI Processing Unit.

53

Figure 5.11: Audio file writing thread workflow diagram.

the ring buffer and allocates the memory size of a given number seconds of au-
dio based on the configuration. Next, a separate thread is created to run the
AudioReader::fromBufferToFile function that contains an endless loop follow-
ing the logic described in the workflow diagram in Figure 5.11.

Closing of the stream

When the song has finished, the callback function is stopped using the Wire::close
function that calls the Pa_CloseStream method to close the stream. After the
stream finishes Wire::paStreamFinished method will be triggered as was defined
during the opening of the stream. This method will inform output file writers that
the callback has finished. Managing the closing of the output audio files is done
automatically by destroying the AudioReader object.

5.6 Debugging
While encountering misbehavior of the application on a local computer during the
development, debugging takes place in the Qt Creator IDE. When using the (non-

54

default) MSVC compiler appropriate debugger has to be set in the settings. For this
project, a CDB debugger from the Windows SDK is used.

For debugging of the application outside of the Qt Creator IDE, possibly on
the user’s computer, it is useful to generate the Program Debug Database (*.pdb)
file while building the application. File generation is enabled with the \Zi option
of MSVC compiler and contains debugging symbols for the current build of the
application. It is used together with the crash dump to obtain information like the
source code location or current state of data structures often necessary to identify
the cause of the error. WinDbg application from Microsoft was used for a crash
dump examination on Windows OS.

5.7 Deployment
To be able to distribute an application across computers a release build is created.
Unlike debug build it does not contain Program Debug Database (*.pdb) files and
has more strict memory access policies. To resolve the dependencies on Qt libraries
outside the QtCreator IDE a windeployqt tool is used. It is a CLI application
designed by Qt to automate this process. The following command will copy the
Qt-related dependencies as dynamic libraries into the folder with the executable.

windeployqt --release <path-to-app-binary>

When using MSVC compiler it is important to have the proper environment vari-
ables (e.g. $VCINSTALLDIR) set for the windeployqt to resolve the MSVC-related
dependencies.

55

6 Results and Conclusion

6.1 Libraries
It was possible to fulfill the application requirements using described libraries. Qt
framework consists of numerous of both GUI-related and non-related features that
can speed up the process of software development. Qt has a modern interface with
the addition of support for features from the new C++ standard. FFTW library
for fast Fourier transform was working as expected with a reasonable time of FFT
calculation and therefore capable of being used in the real-time application. Audio
file import and export library libsndfile satisfied the requirements on continuous file
writing and format support. It also includes a header only C++ wrapper to isolate
the programmer from the C interface and memory management. For the sound card
I/O PortAudio library was used because it is capable of low latency routing and
supports ASIO. The only downside of using PA is an C-style interface. VST SDK
was used to implement the capability of applying VST Plug-in to a selected input.
This was the most time-consuming part of the development since creating VST
Host for VST version 3 and above is not very well documented and requires good
knowledge of how VST works. Apart from VST Host, all other libraries are very well
documented often with examples included. Described library stack is more error-
prone and has a steeper learning curve than using only features from one framework
like Qt or Juce so in a case where a short time to market is essential it is not
recommended. On the other hand, this approach offers better modularity and good
results.

6.2 Application
A digital audio workstation for operating system Microsoft Windows that specializes
in live performances was developed in C++ and tested on an internal sound card
and external sound card Creative EMU 0404 USB1. Application features real-time
multi-channel playback and recording routing on the selected ASIO device with the
lowest possible latency supported by the sound card. Usage of audio files as input,
displaying a graph of a signal for every input. Ability to create, save and load
playlist and configuration settings in a form of a .xml file. Interface for digital signal
processing units was designed and four Processing Units were implemented that can

1http://www.creative.com/emu/products/product.aspx?pid=15185

56

be used on the user selected input. Volume Processing Unit to control the volume
of the signal. VST Processing Unit that allows the use of the open standard for
application independent DSP blocks called VST Plug-ins, Tempo Processing Unit
that implements a state-of-the-art method for extracting tempo information from
the musical piece using spectral analysis and MIDI Processing Unit that response to
detected onsets with MIDI messages. The application is controlled by a customized
graphical user interface using Qt framework. Example of the application running
settings from Figure 5.6 can be seen in Figure 6.1.

Figure 6.1: Example of application running settings from Figure 5.6.

6.3 Future Work
The application can be enhanced in the future implementing new Processing Units
that could be useful during live performances. For example noise reduction, mi-
crophone feedback loop reduction, frequency filtering or pitch correction which are
all challenging signal processing problems. Concerning tempo analysis, it can be
tested in the future with a public database for comparison with other algorithms or
improved by detecting phase of the beat.

57

List of Figures

2.1 Illustration of attack, transient, onset and decay of a note.[12] 13
2.2 Waveform and amplitude envelope of piano (left) and violin (right)

playing the same note. [12] . 15
2.3 Waveform (top) and spectral-based novelty curve (bottom) of a song. 17
2.4 Tempogram of a metronome with increasing tempo. 19
2.5 Tempogram of a song from Figure 2.3 with roughly constant tempo. . 20
2.6 Autocorrelation tempogram of a song with time-lag (top) and tempo

(bottom) representation of Y-axis. 22
2.7 Comparision of different approaches for detecting onsets [3]. 23

3.1 VST 3 Plug-in [17]. 26
3.2 VST 3 Process Workflow [17]. 27
3.3 VST 3 Standard Communication [17]. 28
3.4 VST 3 Private Communication [17]. 29

5.1 Relation between PortAudio API and Host APIs. [15] 35
5.2 Configure Devices window. 38
5.3 TopBar Layout . 39
5.4 Middle section layout. 41
5.5 Select Line I/O window. 42
5.6 Playlist hierarchy. 43
5.7 Audio file reading thread workflow diagram. 46
5.8 Application running a VST Plug-in called SPAN[8]. 49
5.9 Application running a Tempo Processing Unit. Tempo estimated

as 95 bpm. 51
5.10 Application running a MIDI Processing Unit. 53
5.11 Audio file writing thread workflow diagram. 54

6.1 Example of application running settings from Figure 5.6. 57

58

List of Tables

5.1 Functional requirements . 32
5.2 Graphical requirements . 33

59

Bibliography

[1] Ableton. en. url: https://www.ableton.com/en/shop/live/ (visited on
07/20/2018).

[2] Ableton Reference Manual Version 10. en. url: https://www.ableton.com/
en/manual/welcome-to-live/ (visited on 07/20/2018).

[3] J. P. Bello et al. “A Tutorial on Onset Detection in Music Signals”. In: IEEE
Transactions on Speech and Audio Processing 13.5 (Sept. 2005), pp. 1035–
1047. issn: 1063-6676. doi: 10.1109/TSA.2005.851998.

[4] Nick Collins. “A Comparison of Sound Onset Detection Algorithms with Em-
phasis on Psychoacoustically Motivated Detection Functions”. In: (Jan. 2012).

[5] Eric D. Scheirer. “Tempo and beat analysis of acoustic music”. In: The Journal
of the Acoustical Society of America 103 (Feb. 1998), pp. 588–601. doi: 10.
1121/1.421129.

[6] Simon Dixon. “Evaluation of the Audio Beat Tracking System BeatRoot”. In:
Journal of New Music Research 36 (Mar. 2007), pp. 39–50. doi: 10.1080/
09298210701653310.

[7] FFTW Benchmark. en. url: http://www.fftw.org/%20http://www.fftw.
org/benchfft/ (visited on 03/29/2019).

[8] Free Spectrum Analyzer Plugin, FFT, Real-Time [VST, AU, AAX] - SPAN
| Voxengo. url: https://www.voxengo.com/product/span/ (visited on
07/26/2018).

[9] P. Grosche and M. Muller. “Extracting Predominant Local Pulse Informa-
tion From Music Recordings”. In: IEEE Transactions on Audio, Speech, and
Language Processing 19.6 (Aug. 2011), pp. 1688–1701. issn: 1558-7916. doi:
10.1109/TASL.2010.2096216.

[10] Daniel J. Levitin. This Is Your Brain on Music: The Science of a Human
Obsession. English. Reprint edition. New York, N.Y: Plume/Penguin, Aug.
2007. isbn: 978-0-452-28852-2.

[11] Ali Mottaghi et al. “OBTAIN: Real-Time Beat Tracking in Audio Signals”.
In: International Journal of Signal Processing Systems 5 (Apr. 2017). doi:
10.18178/ijsps.5.4.123-129.

[12] Meinard Müller. Fundamentals of Music Processing. Jan. 2015. isbn: 978-3-
319-21944-8. doi: 10.1007/978-3-319-21945-5.

60

https://www.ableton.com/en/shop/live/
https://www.ableton.com/en/manual/welcome-to-live/
https://www.ableton.com/en/manual/welcome-to-live/
https://doi.org/10.1109/TSA.2005.851998
https://doi.org/10.1121/1.421129
https://doi.org/10.1121/1.421129
https://doi.org/10.1080/09298210701653310
https://doi.org/10.1080/09298210701653310
http://www.fftw.org/%20http://www.fftw.org/benchfft/
http://www.fftw.org/%20http://www.fftw.org/benchfft/
https://www.voxengo.com/product/span/
https://doi.org/10.1109/TASL.2010.2096216
https://doi.org/10.18178/ijsps.5.4.123-129
https://doi.org/10.1007/978-3-319-21945-5

[13] Daniel P. W. Ellis. “Beat Tracking by Dynamic Programming”. In: Jour-
nal of New Music Research 36 (Mar. 2007), pp. 51–60. doi: 10 . 1080 /
09298210701653344.

[14] Geoffroy Peeters. “Template-Based Estimation of Time-Varying Tempo”. In:
EURASIP Journal on Advances in Signal Processing 2007 (Jan. 2007). doi:
10.1155/2007/67215.

[15] PortAudio: PortAudio API Overview. url: http://portaudio.com/docs/
v19-doxydocs/api_overview.html (visited on 07/17/2018).

[16] Qt Documentation. url: http://doc.qt.io/ (visited on 07/17/2018).
[17] Steinberg. VST 3 SDK Documentation. July 2018. url: https : / / www .

steinberg.net/en/company/developers.html.
[18] Steinberg Cubase. en. Page Version ID: 849780932. July 2018. url: https:

//en.wikipedia.org/w/index.php?title=Steinberg_Cubase&oldid=
849780932 (visited on 07/20/2018).

[19] Andrew Swift. “A brief Introduction to MIDI”. In: (May 1997). url: http:
//www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/.

[20] Virtual Studio Technology. en. Page Version ID: 848455033. July 2018. url:
https://en.wikipedia.org/w/index.php?title=Virtual_Studio_
Technology&oldid=848455033 (visited on 07/20/2018).

[21] R. Zhou, M. Mattavelli, and G. Zoia. “Music Onset Detection Based on Res-
onator Time Frequency Image”. In: IEEE Transactions on Audio, Speech, and
Language Processing 16.8 (Nov. 2008), pp. 1685–1695. issn: 1558-7916. doi:
10.1109/TASL.2008.2002042.

61

https://doi.org/10.1080/09298210701653344
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1155/2007/67215
http://portaudio.com/docs/v19-doxydocs/api_overview.html
http://portaudio.com/docs/v19-doxydocs/api_overview.html
http://doc.qt.io/
https://www.steinberg.net/en/company/developers.html
https://www.steinberg.net/en/company/developers.html
https://en.wikipedia.org/w/index.php?title=Steinberg_Cubase&oldid=849780932
https://en.wikipedia.org/w/index.php?title=Steinberg_Cubase&oldid=849780932
https://en.wikipedia.org/w/index.php?title=Steinberg_Cubase&oldid=849780932
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
https://en.wikipedia.org/w/index.php?title=Virtual_Studio_Technology&oldid=848455033
https://en.wikipedia.org/w/index.php?title=Virtual_Studio_Technology&oldid=848455033
https://doi.org/10.1109/TASL.2008.2002042

