
T
BRNO UNIVERSITY OF TECHNOLOGY
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INFORMATION SYSTEMS
Ú S T A V I N F O R M A Č N Í C H S Y S T É M Ů

DEVELOPING MODULAR INFORMATION SYSTEM
WITH DOMAIN-DRIVEN DESIGN
VÝVOJ M O D U L Á R N Í H O I N F O R M A Č N Í H O SYSTÉMU P O M O C Í D O M É N O V Ě ŘÍZENÉHO N Á V R H U

MASTER'S THESIS
D I P L O M O V Á PRÁCE

AUTHOR Be. MICHAEL SKRASEK
A U T O R PRÁCE

SUPERVISOR doc. Ing. RADEK BÜRGET, Ph.D.
V E D O U C Í PRÁCE

B R N O 2 0 2 4

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Master's Thesis Assignment III II llll II II II III
Institut: Depar tment of Informat ion Sys tems (DIFS) 153935

Student : Š k r á š e k M i c h a e l , Be.

Programme: Informat ion Techno logy and Art i f icial Intel l igence
Specia l izat ion: Appl icat ion Deve lopment

Tit le: D e v e l o p i n g M o d u l a r I n f o r m a t i o n S y s t e m w i t h D o m a i n - D r i v e n D e s i g n

Category: Informat ion Sys tems
Academic year: 2023/24

Ass ignment :

1. S tudy monol i th ic informat ion sys tem archi tectures wi th a focus on modular i ty (Modular Monol i th) ,
s tudy D D D (Domain-Dr iven Design) and its connect ion to informat ion sys tem archi tecture.

2. In coord inat ion wi th the superv isor , se lect two archi tectures, less and more modular , and des ign a
solut ion for a chosen demonst ra t ion appl icat ion.

3. Imp lement the server s ide of the appl icat ion in both archi tectures, imp lement the doma in as a rich
doma in accord ing to D D D .

4 . Imp lement the front end of the appl icat ion. Dur ing deve lopment , cons ider c loud dep loyment , unit

and integrat ion test ing, server-s ide or c l ient-s ide cach ing , and other ex tens ions in ag reemen t wi th
the superv isor .

5. Evaluate the results ach ieved .

Li terature:

• Mart in , R. C : C lean Archi tecture: A Craf tsman's Gu ide to Sof tware Structure and Des ign , Pearson,
2017

• Evans, E.: Domain-Dr iven Des ign : Tack l ing Complex i ty in the Hear t of Sof tware, Add ison-Wes ley
Professional , 2003

Requ i rements for the semest ra l de fence :
I tems 1 and 2.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : B ü r g e t Radek , d o c . Ing . , Ph .D .

Head of Depar tment : Kolář Dušan , doc. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 17.5.2024

Approva l date: 30.10.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This thesis deals w i th monoli thic architectures and Domain-Dr iven Design (D D D) and its
combination i n the development of modular information systems. It provides comprehen
sive overview of Domain-Dr iven Design principles and various monoli thic architectures,
including Clean Archi tecture and Modu la r M o n o l i t h architecture. It then demonstrates
the use of these patterns and architectures on a demonstration applicat ion. The thesis
offers insights into the development of information systems using popular approaches such
as C Q R S , Clean Architecture, Domain-Dr iven Design, M o d u l a r M o n o l i t h architecture, and
more.

Abstrakt
Tato d ip lomová p r á c e se zabývá mono l i t i ckými archi tekturami a d o m é n o v ě ř í zeným n á v r h e m
(angl. Domain-Dr iven Design) a jejich kombinac í př i vývoji m o d u l á r n í c h informačních sys
t é m ů . Poskytuje uce lený p řeh led p r inc ipů d o m é n o v ě ř ízeného n á v r h u a různých monoli
t ických architektur, vče tně čis té architektury a m o d u l á r n í monol i t i cké architektury. P o t é
demonstruje použ i t í t ě ch to vzorů a architektur na ukázkové apl ikaci . P r á c e nab íz í pohled
na vývoj in formačních s y s t é m ů s v y u ž i t í m p o p u l á r n í c h p ř í s t u p ů , jako jsou C Q R S , č i s tá
architecktura, d o m é n o v ě ř ízený p ř í s t u p , m o d u l á r n í monolit a další .

Keywords
Domain-Dr iven Design, Modu la r Mono l i t h , Majestic Mono l i t h , Mono l i t h , Microservices,
Clean Architecture, C Q R S , M o d u l a r Information System, Information System, R i c h Do
main Mode l , Strategy Design, Domain , Sub-domain, Bounded Context , Tact ica l Design,
Aggregates, Enti t ies, Value Objects, Doma in Events, Integration Event , Doma in Services,
Transactional Outbox Pat tern, Outbox, Inbox, Information System Architecture, Dis
t r ibuted Mono l i t h , . N E T , dotnet, Blazor , A S P . N E T Core, En t i t y Framework Core, Post-
gres, MassTransi t , TeamUp

Klíčová slova
doménově ř ízený n á v r h , m o d u l á r n í monolit , m a j e s t á t n í monolit , monolit , mikros lužby, č i s tá
architecture, C Q R S , m o d u l á r n í in formační sy s t ém, in fo rmačn í sy s t ém, b o h a t ý d o m é n o v ý
model, s t r a t eg ický n á v r h , d o m é n a , p o d d o m é n a , oh ran i čený kontext, t a k t i c k ý n á v r h , en
tity, agregá ty , h o d n o t o v é objekty, d o m é n o v é udá los t i , i n t eg račn í udá lo s t , d o m é n o v é služby,
t r a n s a k č n í outbox vzor, outbox, inbox, architektura in fo rmačn ího s y s t é m u , d i s t r i buovaný
monolit , . N E T , dotnet, Blazor , A S P . N E T Core, E n t i t y Framework Core, MassTransi t , Post-
gres, TeamUp

Reference
S K R Á S E K , Michae l . Developing Modular Information System with Domain-Driven De
sign. Brno , 2024. Master 's thesis. B r n o Univers i ty of Technology, Facul ty of Information
Technology. Supervisor doc. Ing. Radek Burget, P h . D .

http://ASP.NET
http://ASP.NET

Rozšířený abstrakt
V oblasti architektur in formačních s y s t é m ů je již delší dobu velmi p o p u l á r n í architek
tura mik ros lužeb , a i kvůl i své p o p u l a r i t ě je čas to využ ívána v s i tuac ích , kdy její použ i t í
p ř ináš í více p r o b l é m ů a s loži tos t í než už i t ku . Mnoho a u t o r ů zabývaj íc ích se sof twarovým
inžený r s tv ím zas t ává názor , že nový s y s t é m by se n ikdy nemě l zač ína t s architekturou
mikros lužeb , ale vždy jako monolit (tzv. Monolith First).

V pos ledn í d o b ě n a b ý v á na p o p u l a r i t ě architektura, k t e r á se snaž í kombinovat v ý h o d y obou
p ř í s t u p ů , m o n o l i t ů i mikros lužeb , a p ř e d s t a v u j e tak s t ř e d n í cestu pro vývoj in formačních
s y s t é m ů - m o d u l á r n í monolit (angl. M o d u l a r Monol i th) . D íky s v ý m m o d u l á r n í m vlast
nostem je tato architektura čas to p r e z e n t o v á n a jako sva tý grá l architektur pro rozsáhlé
in formační s y s t é m y s m o ž n o s t í s n a d n é konverze na architekturu mikros lužeb .

Da l š ím p o p u l á r n í m p ř í s t u p e m pro vývoj in formačních s y s t é m ů je d o m é n o v ě ř ízený n á v r h
(angl. Domain-Dr iven Design), zaměřuj íc í se na n á v r h rozsáh lých informačních s y s t é m ů
s k o m p l e x n í m i d o m é n a m i , systematickou dekompozici s y s t é m u na s u b s y s t é m y a apl ikaci
n á v r h o v ý c h vzorů př i n á v r h u jejich d o m é n .

Tato d ip lomová p ráce se zaob í r á studiem monol i t i ckých architektur in formačních s y s t é m ů
s d ů r a z e m na modular i tu a p r o p o j e n í s pr incipy d o m é n o v ě ř í zeného n á v r h u . P r á c e p o r o v n á v á
zvolenou m é n ě m o d u l á r n í architekturu, č i s tou architekturu (angl. C lean Architecture),
a m o d u l á r n í monolit ; implementuje d e m o n s t r a č n í apl ikaci v obou a r c h i t e k t u r á c h s p o u ž i t í m
p r inc ipů d o m é n o v ě ř í zeného n á v r h u a dalš ích použ ívaných n á v r h o v ý c h vzorů .

Cí lem t é t o p r á c e je př ibl íž i t v ý h o d y a n e v ý h o d y v y b r a n ý c h architektur, p rob lémy, k te ré
je t ř e b a řeši t p ř i n á v r h u a implementaci, p r o b l é m y p r a m e n í c í z technologických či j iných
d ů v o d ů a jak tyto architektury obs táva j í či selhávají ve s r o v n á n í s architekturou mikros lužeb .

P r a k t i c k á demonstrace vývoje je p ř e d v e d e n a na apl ikaci pro s p r á v u t ý m u , k t e r á navzdory
své nevelké d o m é n ě obsahuje p o m ě r n ě s loži tou logiku s p o d r o b n ý m i a u t o r i z a č n í m i pravidly
a spec iá ln í funkcí pro pozván í reg i s t rovaných i ne reg i s t rovaných už iva te lů do t ý m u . Veškerá
implementace je provedena v jazyce C # na p l a t fo rmě . N E T .

Č á s t p r á c e popisuj íc í mode lován í d o m é n y t é t o d e m o n s t r a č n í aplikace p o m o c í doménově
ř ízeného n á v r h u poukazuje na p rob l ema t i cké volby př i mode lován í a dekompozici domény ,
n a p ř . mode lován í k o n t e x t ů s y s t é m u (angl. Bounded Context), mode lován í a g r e g á t ů ,
p ř i řazování a v l a s tn i c tv í entit apod.

Z čás t í zabývaj íc ích se n á v r h e m a i m p l e m e n t a c í j edno t l i vých architektur lze vypozorovat
dalš í kompl ikované p r o b l é m y vyskytu j íc í se př i vývoji , z e jména v m o d u l á r n í m monol i tu ,
jako t ř e b a p rosazován í konzistence p o m o c í d o m é n o v ý c h a in teg račn ích udá los t í (angl. Do-
main Events & Integration Events), ud ržován í spolehlivosti s y s t é m u p o m o c í n á v r h o v é h o
vzoru outbox, identifikace m o d u l ů , v y p o ř á d á n í se s even tuá ln í konz is tenc í atd.

P r á c e t a k é uvád í implementaci f rontendové aplikace jako d ů k a z reá lné použ i t e lnos t i obou
nav ržených a i m p l e m e n t o v a n ý c h backendových řešení .

P ř e d p o s l e d n í kapi tola vyhodnocuje architektury na zák l adě s h r o m á ž d ě n ý c h zkušenos t í z up
l a tněn í a implementace obou architektur a d o m é n o v ě ř ízeného n á v r h u .

K r o m ě zmíněných architektur, vzo rů a p o s t u p ů se p r á c e zabývá t a k é b ě ž n ý m i t é m a t y v kon
tex tu vývoje in formačních s y s t é m ů , n a p ř . t e s t ován ím , cachován ím apod.

Developing Modular Information System with
Domain-Driven Design

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of doc. Ing. Radek Burget, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Michae l Skräsek
M a y 15, 2024

Acknowledgements
I want to thank my supervisor, doc. Ing. Radek Burget, P h . D . , for his help i n determining
the thesis assignment and valuable feedback on its content.

Contents

1 Introduction 3

2 Architectures and approaches to information system design 4

2.1 Information system architecture 5

2.1.1 M o n o l i t h 5

2.1.2 Microservices 6

2.1.3 Dis t r ibuted monol i th anti-pattern 8

2.1.4 D o m a i n M o d e l 9

2.2 Domain-Dr iven Design 10

2.2.1 Strategy Design 10

2.2.2 Tact ica l Design 13

2.3 Monol i th ic architectures 17

2.3.1 Layered Archi tecture 17

2.3.2 Clean Architecture 18

2.3.3 Ver t ica l Slice Archi tecture 19

2.3.4 M o d u l a r M o n o l i t h 21

2.4 Design patterns 23

2.4.1 Dependency Injection 23

2.4.2 C Q R S 24

2.4.3 U n i t of Work 26

2.4.4 Transactional Ou tbox Pat tern 26

3 Developing information system 28

3.1 Demonstrat ion applicat ion 28

3.2 Appl i ca t ion analysis 29

3.2.1 General technologies 30

3.3 Mode l ing domain 30

3.3.1 Identifying subdomains and bounded contexts 31

3.3.2 D o m a i n model 32

3.3.3 Mode l ing aggregates 33

3.4 Clean Archi tecture solution 35

3.4.1 System Design 35

3.4.2 Implementing solution 36

1

3.4.3 C o m m o n Layer 36

3.4.4 Contract Layer 36

3.4.5 D o m a i n Layer 38

3.4.6 App l i ca t i on Layer 40

3.4.7 Infrastructure Layer 41

3.4.8 Presentation Layer 44

3.4.9 Invite unregistered user workflow example 45

3.5 Modu la r M o n o l i t h solution 46

3.5.1 Identifying modules 46

3.5.2 System Design 46

3.5.3 Implementing solution 48

3.5.4 Invite unregistered user workflow example 53

3.6 Frontend app 54

3.6.1 Implementation 54

3.7 Interesting parts 58

3.7.1 Encountered problems 58

3.7.2 Result Pa t te rn and Rai lway Oriented Programming 61

3.7.3 Database Concurrency Conflicts 64

3.7.4 Integration Testing 66

3.7.5 Architecture Testing 69

4 Conclusion on selected architectures and their comparison 70

4.1 Clean Archi tecture 70

4.2 Modu la r M o n o l i t h 71

5 Conclusion 72

Bibl iography 73

A Contents of the included storage media 76

B Appl icat ion Screenshots 77

2

Chapter 1

Introduction

"You shouldn't start a new project with micro services, even if you're sure your
application will be big enough to make it worthwhile."

M a r t i n Fowler [10]

This cautionary guidance underlines the importance of deliberate consideration i n choosing
the right architectural approach for a given project.

The goal of this thesis is to emphasize the abi l i ty of a monoli thic architecture for rapid
development and its abilities to be on par w i t h microservices in the context of developer
productivity, applicat ion maintainabi l i ty and scalability, and more.

This thesis presents existing architectures, focusing on the developer product iv i ty and main
ta inabi l i ty aspects, w i th an emphasis on C lean Architecture and M o d u l a r Monol i th ,
wi th the Modu la r M o n o l i t h as an ideal architecture for migrat ing to microservices.

Moreover, this thesis highlights how Domain-Dr iven Design influences and improves
the development of information systems and how essential it is for developing complex
systems wi th a complex domain.

This thesis comprises of four chapters, w i th the 1st chapter being the introduction.

The 2nd chapter explores basic information system architectures, followed by a detailed de
scription of the Domain-Dr iven Design approach for modeling domains of information
systems (section 2.2). Next , the chapter focuses on monoli thic architectures in section 2.3,
including C lean Architecture and M o d u l a r M o n o l i t h architecture. The chapter con
cludes wi th a list of design patterns commonly used i n the information system design.

The 3th chapter introduces the demonstration applicat ion (section 3.1); goes through
the development phases of an information system, that is, applicat ion analysis, model
ing domain using the domain-driven design (section 3.3); developing clean architecture and
modular monol i th backends (sections 3.4 and 3.5); and includes a smal l section about fron-
tend implementat ion (section 3.6), concluding wi th a section 3.7 covering interesting parts
and problems of the development process.

The 4th chapter based of gathered experience summarizes selected monoli thic architectures
and briefly compares them i n terms of modularity, complexity, maintainabil i ty, and so on.

The thesis concludes wi th the 5th chapter, containing final thoughts on the subject, thesis
assessment, and potential further extensions.

3

Chapter 2

Architectures and approaches to
information system design

This chapter provides a comprehensive overview of key concepts and approaches in the in
formation systems design leaning towards designing modular monoliths.

The chapter begins wi th an overview of information system architectures (section 2.1), in
cluding monol i th and microservices as architecture designs (covering their differences, ben
efits and drawbacks), continuing wi th potential danger of designing system as a distr ibuted
monoli th , concluding wi th brief stop at domain model types.

This is followed by a deep dive into Domain-Dr iven Design principles (section 2.2); Strat
egy Design and Tact ica l Design and their patterns, which are widely used i n development
of bo th monoli thic architectures and microservices.

The chapter than i n section 2.3 explores and describes various monoli thic architectures
from less to more modular:

• Layered Architecture

• Clean Architecture

• Ver t ica l Slice Architecture

• ending wi th M o d u l a r M o n o l i t h Architecture

The chapter concludes wi th covering essential design patterns (section 2.4) that are often
used in the information systems design and are heavily ut i l ized i n the development process
covered in the next chapter, that is: Dependency Injection, C Q R S , Uni t O f Work and
the Transactional Outbox Pat tern.

4

2.1 Information system architecture

In the context of information system we can talk about mult iple types of architectures:

• Archi tecture as a way of structuring code and establishing rules that help w i t h devel
oping and maintaining an information system as it grows, (more see 2.3)

• Archi tecture describing the way information system runs as an applicat ion and what
parts comprise it (servers, databases, C D N , dis tr ibuted cache . . .) . There are 3 basic
ways for running the business logic of an information system:

— M o n o l i t h - run entire applicat ion as one unified unit on one or more servers w i th
a load balancer, each server contains the entire app. (see 2.1.1)

— Microservices - break down the applicat ion into ind iv idua l services and run them
separately on many servers. Each server holds only one microservice. (see 2.1.2)

— Serverless - approach where the applicat ion is composed of functions that are
run i n the cloud on demand (allowing scale to zero).

2.1.1 M o n o l i t h

Tradi t ional monoli thic architecture refers to an applicat ion design where the entire informa
t ion system is bu i ld and run as single unit . In practice, an information system is considered
monoli thic when a l l the business logic runs as one large monoli thic unit , even i f the U I
is an applicat ion separated from the server. A l though the applicat ion is made of many
components (services, modules, controllers, . . .) , a l l the code resides in a single repository
and the applicat ion is buil t and deployed as one single piece.

Benefits

• Development - at the beginning of a project, it is easy to develop a monol i th and
over the years several architectures have been introduced to help w i th development
and maintenance as the applicat ion grows (see section 2.3).

• Performance - interactions between applicat ion modules and services take place in
a single unit on the same machine, which means that a l l calls are direct function calls
w i t h low overhead.

• Testing - it is easy to perform integration tests or even end-to-end tests, because the
developer always has access to a l l parts of the application.

• Deployment - monoli thic applications are easy to deploy because the applicat ion is
deployed as a single unit .

Drawbacks

• Scaling flexibili ty - since the applicat ion runs as a single unit , it has to be scaled
as a single unit (more demanding modules cannot be scaled hor izonta l ly /ver t ica l ly) .

5

• Rel iab i l i ty - DoS , high demand or a single bug can potential ly crash the entire appli
cation.

• Maintenance - as the code base grows, the applicat ion becomes harder to mainta in
(slower updates/fixes . . .) and each new developer takes increasingly longer to grasp
how the system works.

• Deployment - even after a smal l code change (i.e. a bug fix), the entire applicat ion
has to be bu i ld (long bu i ld time) and deployed (the entire app might be unavailable
during deployment process) again.

Some of these drawbacks can be addressed to some extent by applying certain architectures
(see 2.3), design patterns (section 2.4) and design approaches (see section 2.2). For example,
introducing a load balancer would allow the appl icat ion to handle higher demands through
horizontal scaling, which would also make the system more resilient.

MOBILE DEVICE

Figure 2 . 1 : Example of monoli thic architecture, taken from [22].

2.1.2 M i c r o s e r vices

Kir s t en Westende [27] described microservices architecture as an approach i n which a large
application is buil t as a suite of smaller services that are deployed independently.

Typical ly , each microservice has its own repository and a team of developers working on i t .
This enables a large company to be split into many smal l teams (single-digit teams) wi th
agile development techniques.

Each microservice runs i n its own process and communicat ion wi th other services using pro
tocols such as classic R E S T (H T T P / H T T P) , g R P C , A M Q P , and so on. These microservices
are not (should not be) accessible direct ly by the client, but through an A P I gateway
(reverse proxy) that routes traffic to the desired services. Services that are not stateless
need to have a custom database and changes to the same object need to be propagated
across the distr ibuted system.

(i

Benefits

• P roduc t iv i ty - developers can understand smal l microservices much quicker and teams
can take advantage of agile development, smaller services and smaller codebase also
mean less stress on the developers' machines (faster I D E , fewer docker container
dependencies, etc.).

• Scaling flexibil i ty - more demanded services can be scaled independently.

• Deployment - new features and bug fixes do not affect deployment (and runtime)
of other services, also faster bu i ld times and independent deployments allow for mul
tiple deployments a day.

• Technology flexibili ty - each service can be developed using a different technology
stack, and use cases can be solved by languages that are better suited to the problem
(i.e. python for A I use cases and so on) . . . large technological disparities could also
be viewed disadvantage.

• Rel iab i l i ty - isolation from other parts of the system makes it more difficult for the en
tire system to crash due to bugs, DoS attacks etc.

Drawbacks

• Debugging and Testing - it is hard to test the integration of a microservice wi th other
microservices and to catch bugs that originate from these scenarios. For integration
testing, the entire test environment w i th a l l microservices needs to be set up.

• Dis t r ibuted systems problems and complexity - w i th microservices arise problems
connected to distr ibuted systems, such as understanding the system, dealing wi th
data spread across several microservices, correctly handling data consistency through
eventual consistency and so on. Complex topology may have the effect of not knowing
which service is dependent on which (dependency hell), and thus be prone to cascading
failures.

• Infrastructure complexity - it could be challenging to manage the infrastructure
of a microservice architecture, which must have a secure internal network and op
erate mult iple databases, servers, containers (or even cluster), resulting in higher
infrastructure costs as opposed to a monoli thic architecture.

• Performance - network calls between microservices br ing high latency, not to mention
the possibil i ty of losing communicat ion packets, leading to even higher latency.

• Rel iab i l i ty - the system might be prone to cascading failures - failure of a single
microservice leading to a chain reaction of failures resulting i n bringing down a large
part or even the entire system.

7

a n a s

Figure 2.2: Example of microservices architecture, taken from [22].

Microservices architecture is necessary for large companies (in the context of the number
of developers) to enable hundreds of people to work on the system, but it is easy to misuse
this architecture and design it poorly (see the next section 2.3).

2.1.3 D i s t r i b u t e d m o n o l i t h an t i -pa t t ern

A distr ibuted monol i th is an architecture which has dis tr ibuted components, but these
components (services) are t ight ly coupled wi th mutual calls a l l over the place (also known
as big ball of mud anti-pattern), and therefore this monol i th has the drawbacks of both
the monoli thic and microservices architecture.

A distr ibuted monol i th usually results from a poorly designed microservices solution. That
is why M a r t i n Fowler [10] recommends start ing the development of the system as a monol i th
first, even if using microservices would be worthwhile due to the scale of the applicat ion
(aka monolith-first strategy).

A distr ibuted monol i th can also be the result of poorly decomposed monoli th , where
the original monol i th was t ight ly coupled, and the dis t r ibut ion made it worse . . . In this
case a special monoli thic architecture could be used that specializes for a system that would
later need to migrate to microservices or gradually peel off services (see section 2.3.4 about
M o d u l a r Monol i th) .

A pragmatic approach should be used when choosing a system architecture, considering a l l
the advantages and disadvantages for a given problem space.

8

Figure 2.3: Diagram placing the types of architectures on the scale of modular i ty (y-axis)
and dis t r ibutabi l i ty (x-axis). Taken from [27].

2.1.4 D o m a i n M o d e l

Domain model describes selected aspects of an area of knowledge (aka the domain). It
outlines key entities and objects, their relationships and rules wi th in this problem area,
providing a shared understanding for developers.

Anemic domain model

The anemic domain model is a model where domain objects contain close to none business
logic, this comes from the idea of separating data and logic. In this scenario, the consumer
service is responsible for using the object in various business use-cases and the service is
responsible for handling the anemic objects correctly (validations, calculations, business
rules, . . .) . Typical ly , an anemic object is a mirror of an entity stored i n the database.

Accord ing to M a r t i n Fowler [7], anemic domain model is an anti-pattern that contradicts
w i th idea of objects-oriented design; which is to combine data and behaviour together.

R i c h domain model

R i c h domain model is a contrary to the anemic domain model, hence the object associated
logic is wi th in the object itself, including validat ion and other business rules. R i c h domain
model brings cohesion and encapsulation and it can be reached by Domain-Dr iven Design
(see 2.2) or s imply by object-oriented modeling.

9

2.2 Domain-Driven Design

Domain-Dr iven Design (hereinafter D D D) is an approach to software development that
emphasizes understanding and modeling the business domain model. It focuses on collab
oration between developers and domain experts to capture and implement a complex
domain wi th complex business logic.

It was first introduced by E r i c Evans in his book from 2003 [5] where he described D D D
through a catalog of patterns (described i n sections 2.2.1 and 2.2.2). E r i c Evans also deemed
as required to develop ubiquitous language for shared understanding of the domain and
its concepts between developers and domain experts.

2.2.1 S tra tegy D e s i g n

The Strategy Design refers to the process of defining and modeling the high-level structure
and organization of the modeled system. It is the first step i n D D D developing process
of large domains and it emphasizes identifying and d iv id ing domain into the core domains,
subdomains and bounded contexts. B y d iv id ing the domain into these smaller pieces,
we can easily bu i ld models for each piece, as opposed to large enterprise-wide domain where,
according to E r i c Evans [5], bui ld ing one uniform model is not feasible or cost-effective.

Subdomains

The entire domain of the business organization is composed of smaller and more manageable
subdomains. There are 3 basic subdomains that need to be identified:

• Core D o m a i n - refers to the central and most cr i t ical part of a business domain
and the most important part for the success of the organization (where the business
gets its money or applicat ion gets its users, i.e. product catalog and order processing
for an e-commerce applicat ion etc.).

There can be more than one core subdomain and the significance of the core subdo-
main should come from the business side (not the user side) . . . For example Facebook
gets a lot of revenue from advertising, making it one of the core subdomains of Face-
book.

• Support ing Subdomain - models some aspect of the business that is essential,
yet not core. The business creates a support ing subdomain because it is somewhat
specialized (i.e. feedback and reviews i n the context of an e-commerce application).

• Generic Subdomain - captures nothing special to the business, but is required
for the overall solution. Generic subdomains are common and standardized across
the industry, solutions that could be applied w i t h l i t t le adjustments already exist (i.e.
payment processing, notifications etc.).

10

Figure 2.4: Example of a domain wi th subdomains and bounded contexts, taken from [25].

Bounded Contexts

Bounded context is a key concept i n D D D and a central pattern i n the strategy design. It
helps wi th assigning explicit meaning to the terms used in the model for a certain scope,
preventing ambiguity and misunderstandings - common objects may have slightly or com
pletely different meanings i n different contexts (see figure 2.5); bounded contexts border
and isolate these contexts.

To help wi th dupl icat ion when it comes to the same objects i n mult iple bounded contexts,
E r i c Evans [5] introduced the concept of shared kernels, where a shared kernel can contain
shared objects from two bounded contexts on which the development teams of both models
agree. Vernon Vaughn [25] cautions and specifies that the shared kernel should be small , and
shared objects have special status and shouldn't be changed without consulting the other
team.

A single bounded context does not necessarily fall w i th in the scope of a single subdomain,
but can span across mult iple subdomains - as was i l lustrated in figure 2.4. F r o m the subdo
mains covered by the bounded context, it can be easier to determine which domain experts
are needed to collaborate w i t h a given development team.

11

Opportunity

I r

Sales Context

Pipeline
Territory

Sales Person

t
Support Context

f 1 1
Customer

1
Customer

Ticket

Product

•
Defec

>

Product
Version

Figure 2.5: Example of bounded contexts - Customer and Product are objects that are both
in Sales Context and Support Context, but could (and probably wil l) have a different
meaning, taken from [9].

Anti -corrupt ion Layer

O n his blog, Nader Medhat [15] defines anti-corruption layer as a pattern for isolating
a bounded context (or a subsystem) from an external system that uses a different or in
compatible language, architecture, or data structure.

A n anti-corruption layer is typical ly implemented as a set of service, interfaces and adapters
that are placed between systems and translate external data/behavior into compatible form
wi th the local system, and vice versa.

Subsystem A

Microservice

L Anti-Corruption
Layer

Subsystem E

Figure 2.6: Example of an anti-corruption layer, taken from [15].

12

2.2.2 T a c t i c a l D e s i g n

The tact ical design is a set of design patterns used in the construction of the domain
of a single bounded context. These patterns are the fundamental bui ld ing blocks of a domain
model and they help to avoid designing the domain as a big ball of m u d 1 (figure 2.7).

Figure 2.7: Complex graph of entities connected to each other, a software anti-pattern also
known as big ba l l of mud. Taken from [14].

Entities & Value Objects

According to E r i c Evans [5], an entity is an object pr imar i ly defined by its identity (Id).
If non-identifying at tr ibute of an entity changes (i.e. a product gets cheaper), it is s t i l l
the same entity, therefore comparing two Enti t ies should be done by comparing their Ids.

Unl ike entities, value objects have no identity, but they describe some characteristic (i.e.
Color) . If any of the attributes of a value object change, the entire value object describes this
characteristic as a new fact (i.e. red at tr ibute of R G B Color changes), therefore the value
object should be immutable and the comparison should be done by comparing a l l at
tributes of the value object.

x

https: //en.wikipedia.org/wiki/Anti-pattern#Big_ball_of _mud

13

Aggregates

To quote E r i c Evans [5], "an aggregate is a cluster of associated objects that we treat as a unit
for the purpose of data changes". E a c h aggregate has a its aggregate root (single entity)
which serves as an interface for modifying objects that are wi th in the aggregate boundary.
The root entity is the only object inside the aggregate that can be referenced by objects
outside the aggregate boundary.

The aggregate root is the only object that can modify objects inside the aggregate boundary
so that the aggregate root can enforce invariants, which Vaughn Vernon [25] describes
as business rules that must always be consistent and cannot be broken, therefore:

• models cannot be created i f any invariant is broken - ensured by creator (factory
method or factory, alternatively constructor):

• models cannot be modified i f any invariant is broken - ensured by modifying data
using public methods of the aggregate root.

W i t h this i n mind , it is necessary to always retrieve the entire aggregate from the database,
otherwise the aggregate root may incorrectly evaluate the business rules. This implies that
the aggregate should be as smal l as possible to minimize large data transfers.

A typ ica l example is an order and its line items. A l t h o u g h line items are separated objects,
together w i th an order they would be treated as a single aggregate, w i th the order serving
as the aggregate root for data changes.

Figure 2.8: Doma in modeled using D D D aggregates. Taken from [14].

14

D o m a i n Events

A domain event is something that happened i n the domain that other parts of the domain
need to be aware of. A n event is a domain object that holds necessary data for event
consumers to properly react - i.e. UserCreatedDomainEvent should hold user identifier
(i d / e m a i l / . . .) and possibly other needed data (date, nationality, etc.).

Us ing domain events provides a loosely coupled and a highly cohesive model, which is
crucial for designing modular systems.

The main use case for domain events is to propagate changes between aggregates, where
publishing, as defined in Microsoft 's book on microservices [4], can be done v ia 2 options:

A) Right before commit t ing data to the database (this makes a single transaction in
cluding side effects from the event, possibly spanning across mult iple aggregates).

B) Right after commit t ing data to the database (this makes mult iple transactions and
a necessity to handle eventual consistency and compensatory actions for failures).

M a n y D D D authors, including E r i c Evans [5] and Vaughn Vernon [24], advocate rule that
one transaction = one aggregate, thus publishing should be done v i a option B .

Microsoft 's book on microservices [4] explains the idea of option B by cla iming that the num
ber of database locks w i l l be substantial i n large-scale applications wi th high scalabili ty
needs and atomic changes are often not needed by the business.

However, J i m m y Bogard [2] argues that it is justifiable to span a single transaction across
mult iple aggregates i f those aggregates are related to the side effects for the same original
command, thus taking advantage of Op t ion A and strong consistency.

Another use case for a domain event is to apply the operation side effects (i.e. sending
email, pushing notifications, etc.). These side effects do not access the database but cal l
other services, so publishing needs to be asynchronous outside of the database transaction
wi th a l i t t le bit of tweaking so that the side effects do not apply i f the transaction fails,
this can be done using an outbox pattern (see 2.4.4).

Doma in events can also be used to propagate commit ted transaction changes to different
bounded contexts - modules/microservices (eventual consistency), i n which case the domain
event is called an integration event (as defined i n Microsoft 's book on microservices [4]).
Publ i sh ing integration events should always be asynchronous, hence it is usually solved
using an outbox pattern and an event bus/message-broker. Th is is often used wi th Event
Sourcing 2 and Event -Dr iven Architecture.

D o m a i n Services

Vernon Vaughn [25] characterized a domain service as a stateless operation that fulfills
a domain-specific task. The domain service provides means to handle operations, that
natural ly does not belong to any of the entities or value objects. The interface of the domain
service is defined i n terms of other elements of the domain model (the contracts are part
of the domain model).

2

https: //martinfowler.com/eaaDev/EventSourcing.html

15

http://infowler.com/eaaDev/EventSourcing.html

A n example of a domain service could be a DiscountCalculator service, i n the context
of an e-commence applicat ion. The order aggregate root would handle aggregate specific
business rules (adding line items, calculat ing to ta l price, etc.), but could not handle dis
count calculations, because it requires addi t ional data that are not available i n the order
aggregate - user aggregate details, such as account type (s tandard/premium), student dis
counts (ISIC), etc. Calcula t ing discount has business logic that requires access to several
aggregates, making it a good candidate for a domain service.

A s described in the section 2.1.4, handling a l l business logic i n domain service would result
in an anemic domain model, which is considered an anti-pattern, and D D D aims for a r ich
domain model (see 2.1.4), therefore it is necessary to consider each use of the domain service.

Repositories

The repository pattern is a widely used design pattern outside of D D D . The repository
provides an interface for acquiring references to already existing domain objects persisted
in the database and storing new domain objects. Repositories decouple the domain from
the persistence technology (one or more database strategies and data sources, etc.). Another
benefit mentioned by E r i c Evans [5], is the possibil i ty to use dummy in-memory collections
for easy testing at the beginning of a project.

Ideally, the domain model should contain only repository interfaces wi th the contracts
specified i n the domain. Reposi tory implementations should reside elsewhere, for example
in the infrastructure or persistence layer.

Factories

The factory pattern, belonging to the G a n g of Four 's Creat ional design patterns, offers
encapsulation for the creation of the domain objects. E r i c Evans [5] recommends using fac
tory when the creation of an object, or an entire aggregate, becomes complicated or reveals
too much of the internal structure. Factory can enforce invartiants and use services (repos
itories, domain services, infrastructure services, . . .) , injected v i a D I (see 2.4.1), to resolve
more complex business rules.

Alternatively, if creating a domain object does not require addi t ional services, it is prefer
able to use the factory method design pattern, which is a static method on the objects
themselves. This provides means for enforcing invariants and returning a nul l reference i f
an invariant is broken.

Constructors of targeted objects should be accessible only from factories and factory meth
ods, so that the object creation cannot be done incorrectly:

• W h e n using factory methods, objects should have private constructors.

• Factories are harder to solve since programming languages do not provide ways to re
strict method access only to one class. M a x i m u m language capabil i ty should be used
to restrict the access (internal to the assembly etc.) and addi t ional means could be
added, such as custom code analyzers or tests for incorrect object creation.

16

2.3 Monolithic architectures

There are many monoli thic architectures, Rober t C . M a r t i n mentions in his blog [20] that a l l
architectures 3 have the same objective, which is the separation of concerns and product ion
of systems that are:

• Independent of frameworks.

• Testable business rules without U I , Database, Server and other external elements.

• Independent of U I - frontend can be replaced w i t h a console applicat ion without
changing the business logic.

• Independent of Database - Database could be swapped for other database providers
or even database types (i.e. S Q L to N o S Q L) .

• Independent of any external agency - business logic does not know anything about
the outside world.

Th is is accomplished by d iv id ing the code into layers/modules, specifying what each layer
should contain and solve, and defining strict dependency rules between them.

2.3.1 L a y e r e d A r c h i t e c t u r e

The layered or N-layered architecture splits the code into 3 layers (or more), where each
layer can only depend on the lower layers. Mos t of monoli thic architectures are based
on layered architecture and are i n some form layered architecture, just w i th more strict
rules/rearranged layers/sl ightly different component placement etc.

Application Layers

User Interface
m
•

V
3usiness Logic

Data Access

Figure 2.9: Archi tecture diagram of the t radi t ion 3-layered architecture, taken from [23].

3He was referring to the 6 architecture examples that he had listed, but it should generally apply to all.

17

T y p i c a l layered architecture decomposes system into layers as follows:

• Presentation Layer - presents the system to the client in form of a U I or an A P I
(Rest, g R P C , G r a p h Q L , . . .) .

• Business Layer (B L) or Business Logic Layer (B L L) - encompasses appl icat ion busi
ness logic (services, facades, potential ly mappers, D T O s and so on).

• D a t a Access Layer (D A L) or D a t a Layer (D L) - contains data specific system parts
such as entities, repositories, migrations . . . and connection to the database.

There could be addi t ional layers to extract some componests for better appl icabi l i ty and
reusability, for example layer w i th A P I contracts (D T O requests and responses) or layer
for common objects and interfaces (i.e. IDateTimeProvider, a result pattern and so on).

In my experience, the layered architecture often results in an anemic domain model (see
2.1.4) as it encourages to have domain objects as anemic data objects i n D A L and business
logic i n services i n B L , and is therefore not a good candidate for D D D .

2.3.2 C l e a n A r c h i t e c t u r e

Clean Architecture, defined by Robert C . M a r t i n [21], is an architecture emerging from
Onion Archi tecture (and some others) as it splits the system into concentric circles (layers).

A s w i th the layered architecture, C lean Archi tecture has a dependency rule point ing inwards
(see figures 2.10 and 2.11), meaning the inner layers cannot depend on the outer layers.

The Clean Architecture

Enterprise Business Rules

Application Business Rules

Interface Adapters

Frameworks & Drivers

Presenter
< i >

use Case
Output Port

V . i \

Flow of control s

Use Case
Inter actor

Controller
•—<i>-

Use Case
Input Port

Controller
•—<i>-

Use Case
Input Port

Figure 2.10: Archi tecture diagram of the Clean Archi tecture by Robert C . M a r t i n [21].

18

Figure 2.11: Another view at the Clean Architecture, taken from [1].

A more popular view at Clean Architecture, i l lustrated in figure 2.11, is as follows:

• Presentation Layer - is an applicat ion entry point, contains components necessary
for presentation to the client, it can be A P I endpoints (R E S T , g R P C etc.), M V C
architecture (Controllers and Views) or components of more advanced frameworks
enabling both S S R (Server-side rendering) and C S R (Client-side rendering).

• App l i ca t ion Layer - includes the handling of appl icat ion use-cases, that is, services
or queries/commands and their handlers i f used wi th C Q R S pattern (see 2.4.2).

• Doma in Layer - is the core of the system, holds a l l the business logic of the domain
and emphasizes r ich domain design (see 2.1.4).

• Infrastructure Layer - is often divided into infrastructure and persistence, consists
of infrastructure-specific code such as integration wi th database, message broker, mai l
sender, 3rd party A P I s and so on.

2.3.3 V e r t i c a l Slice A r c h i t e c t u r e

Layered architectures organize the system around technical layers and the cohesion between
layers is low, leading to changes i n many layers as features are added. The vert ical slice
architecture introduced by J i m m y Bogard [3] addresses this problem by organizing code
around vert ical slices, where each slice represent an applicat ion feature (use case).

The key for vert ical slice approach is to minimize coupling between slices, and maximize
coupling inside a slice. Therefore, new features should only add code without changing

19

the shared code and worrying about side effects. The vert ical slice architecture natural ly
comes wi th C Q R S (see 2.4.2), as it already separates the code into features where the feature
is a C o m m a n d or a Query.

Application

DB

Figure 2.12: Archi tecture diagram of a vert ical slice architecture, taken from [3].

A n example of an applicat ion structure using the vert ical slice architecture wi th C Q R S :

Proj ectManager/
E n t i t i e s /
Features/ directory wi th vert ical slices

P r o j e c t s /
GetProject/

_ GetProj ectEndpoint.cs
GetProj ectQuery.cs
.GetProj ectQueryHandler.cs

CreateProject/
CreateProj ectEndpoint.cs
CreateProj ectCommand.cs

.Middlewares/
Program.cs

Noteworthy from the example is the vertical approach to naming and structuring direc
tories, which allows developers easier/faster understanding of the code as it outlines what
the appl icat ion does and what features it has.

The main downside mentioned by J i m m y Bogard [3] is that this approach does assume that
the team understands code smells and refactoring.

20

2.3.4 M o d u l a r M o n o l i t h

The modular monol i th (sometimes called majestic monolith) is a monol i th designed wi th
an emphasis on interchangeable, independent (and potential ly reusable) modules, whereby
the architecture seeks to gain benefits from both monoli thic and microservices architectures.

B y Ki r s t en Westeinde's definition [27], "A modular monolith is a system where all of the code
powers a single application and there are strictly enforced boundaries between different do
mains." The strict boundaries between the modules are the essence of the modular
monol i th architecture.

The modular monol i th is composed of loosely coupled modules, where modules represent
cohesive sets of functionalities and are independent of each other (similar to microservices).
Modules may mirror sub-domains/bounded contexts of the D D D . Example of module may
be payments module, shipping module, booking module etc.

Th is is very similar to microservices and therefore it is easy to transi t ion from a modular
monol i th to a microservice architecture. M a i n benefit is the abi l i ty to gradually transi t ion
and extract modules one by one, f.e. i f a module faces high demand, it is easy to peel off
this module into standalone microservices and scale it separately.

Separating a system into modules brings more microservice-like way of developing and
maintaining the system while retaining the ease of testing and debugging.

It should be noted that when the system starts to be decomposed into microservice, the sys
tem looses the characteristics of easy debugging and integration testing.

Module A Module B

Module C Module E>

Tt^ktly Coupled Monolith

Module B

Modular Monolith

Figure 2.13: Diagram showing decoupling of a monol i th into modules, taken from [12].

21

Communicat ion between modules

W h e n separating modules, it is necessary to define how the modules should communicate,
M i l a n Jovanovic in his blog post [12] specified 2 types of communicat ion patterns between
modules - M e t h o d Calls (synchronous) and Messaging (asynchronous).

The first and simpler approach is to communicate by cal l ing methods of the public A P I (in
terfaces) exposed by each module. The modules are then dependent on other modules' A P I s
at compile-time and D I w i l l provide their implementat ion at run-time. The advantages of of
this approach are speed (fast in-memory calls) and easy implementation. The disadvantage
is the strong coupling between modules.

The second approach is to introduce an indirect ion layer in the form of a message bro
ker. The modules communicate w i th each other by sending messages i n the fire-and-forget
fashion and subscribing to the relevant messages in their context. Modules know nothing
about other modules and depend only on message contracts. This solves the coupling
problem, but has some drawbacks, such as increased complexity.

D a t a isolation

M i l a n Jovanovic [13] mentioned that the modular monol i th has strict rules for data integrity:

• Each module can only access its own tables.

• N o sharing of tables or objects between modules.

• Joins are only allowed between tables of the same module.

The modules should be self-contained and each module should handle its own data. Other
modules can access this data using the module's public A P I , this data isolation could be
handled on 4 levels of separation:

• Separate Table - basically zero separation, tables for each module live inside one
database. It may be hard to determine which tables belong to which module.

• Separate Schema - each module has its own database schema containing a l l the mod
ules tables.

• Separate Database - each module has its own database in which resides a l l of the mod
ule's data. Th is level of separation forces developers to solve any coupling problems,
resulting i n a microservices-style of separation and providing an easy way to extract
modules.

• Different Database Type - each module may have different database types (relational,
document, graph etc.), this level of separation is the same as i n a microservices ar
chitecture and it might be forced by business needs.

Real world example

Rober ta Arcoverde, Director of Engineering at Stack Overflow, i n the podcast interview
wi th Scott Hanselman [11] reveled aspects of the stack overflow architecture.

22

One of 9 stack overflow servers handles 6000 request per second and whole system handles
roughly 2 b i l l ion page requests per month. The system is designed for low latency and
rendering a page takes about 12 milliseconds.

Surprisingly, despite this high demand and need to scale, stack overflow does not use mi -
croservices (and they neither run in the cloud), but uses a modular monol i th architecture.
Rober ta Arcoverde mentioned in the podcast that the question of migrat ing to microser-
vices has been brought up many times, but they have never come up wi th the pragmatic
benefits because they do not straggle wi th the typ ica l monoli thic disadvantages:

• Rober ta Arcoverde mentioned good t ime to merge metric in the context of main
tainabi l i ty and developer productivity.

• H i g h demand is not a problem wi th the monoli thic approaches to scaling and high
degree of cashing on the database side.

• 9 servers have sufficient rel iabil i ty for the system.

• Qua l i ty DevOps provides easy to deploy system several times per day.

2.4 Design patterns

Design patterns play a crucial role i n architecting information systems as they provide
proven solutions to common design problems increasing developer productivi ty, system
maintainabil i ty, extensibili ty and eventually system performance.

2.4.1 D e p e n d e n c y Inject ion

Dependency Injection (DI) is a technique commonly used i n object-oriented programming
to achieve Inversion of Cont ro l (IoC). D I introduces a container w i th registered classes and
dependencies are resolved from this container. There are 2 types of dependencies injection:

• Proper ty Injection - the class specifies properties and the D I framework injects in
stances of these dependencies from D I container after instance creation.

• Constructor Injection - the class has a l l dependencies passed through the constructor
and the D I framework resolves these dependencies when creating an instance.

The D I container creates dependencies respectfully to their registered lifetime:

• Singleton - the D I container returns the same instance each t ime a dependency is
being resolved. The instance lives for the application's lifetime.

• Transient - the D I container returns a new instance each t ime a dependency is being
resolved. The instance lives for the client instance's lifetime.

• Scoped - for each scope created i n the applicat ion (i.e. session scope, ht tp request
scope, etc.), the D I container returns a new instance. The instance lives for the scope's
lifetime.

23

2.4.2 C Q R S

C Q R S stands for C o m m a n d Query Responsibi l i ty Segregation. The idea of C Q R S is to sep
arate the responsibili ty for handling command input (changing the system's state) from the
responsibility for handling query input (reading the system's state).

M a r t i n Fowler stated [8] that "For many problems, particularly in more complicated do
mains, having the same model for commands and queries leads to a more complex model
that does neither well."

Separating the model introduces better code readabili ty and the abi l i ty to use different
technologies for each model:

The command model can take advantage of the O R M framework to ensure retrieval of a l l
necessary data for correct val idat ion of business rules and tracking changes.

O n the other hand, since query model does not have to check for business rules except
for authorization, it can make do wi th a micro O R M 1 framework or even sending raw
S Q L queries to improve performance.

query services update
presentations from

query model query model
reads from

updates database command model
executes validations, and
consequential logic

Figure 2.14: System split into query and command model following C Q R S , taken from [8].

To take this even further, C Q R S can also separate the system at the database level (see
figure 2.15), where the command model has its own database for wr i t ing data and the query
model has its own database that is opt imized for reading (N o S Q L database). A l l data

4

https: //gunnarpeipman.com/micro-orm/

24

http://ipman.com/micro-orm/

changes (commands) then need to be propagated from the write database to the read
database (i.e. by integration events and message queue).

Typical ly , after an update command, the command model accesses its storage (also called
the single source of truth) to ensure that the business rules are met, and then proceeds
wi th the update. It is popular to use an event sourcing as the storage type, but it can
also be used wi th a t radi t ional relational database. The command model than publishes
these changes to the message broker.

The query model is subscribed to data changing events from the message queue and updates
its own database (i.e. M o n g o D B) as they arrive. To really improve performance and reduce
read latency, it is necessary to make use of data redundancy i n the N o S Q L database to fit
the query specifications, which l ikely implies complex updates to the N o S Q L database.

This system leverages to m a x i m u m the abi l i ty of C Q R S to use different technologies for
each model, but comes wi th different sort of problems. The main downside of this ap
proach is the more complex system wi th eventual consistency. Not every system is ideal for
this approach and it may be beneficial to use simple C Q R S and introduce Cache-Aside
pat tern 0 to reduce latency.

C Q R S D e s i g n P a t t e r n

Tables or
Event

Sourcing

Eventual
Consistency

C l i e n t

M a t e r i a l i z e d
V i e w

Figure 2.15: C Q R S system modeled wi th split database tier and eventual consistency be
tween databases, taken from [18].

https: //learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside

25

http://microsoft.com/en-us/azure/architecture/patterns/

2.4.3 U n i t of W o r k

According to the book Patterns of Enterprise App l i ca t i on Archi tecture [6] the Un i t of Work:

Maintains a list of objects affected by a business transaction and coordinates the writing
out of changes and the resolution of concurrency problems."

Essentially, instead of mult iple S Q L update requests, the unit of work merges a l l changes
made to domain objects into a single transaction, thereby increasing performance, s impl i
fying error handling and reducing the potential scope of unwanted side effects and bugs.

The unit of work is usually implemented into the O R M frameworks, but it might be benefi
cial to abstract the O R M away from the domain and applicat ion layers (Clean Architecture
principles, see 2.3.2). The abstraction can be i n the form of repositories (for registering do
main changes) and a custom unit of work interface/fagade around the O R M for commit t ing
transactions.

2.4.4 T r a n s a c t i o n a l O u t b o x P a t t e r n

The outbox pattern is a way to reliably publ ish asynchronous messages (e.g. send email),
and is commonly used when publishing integration events or domain events i n case of do
main wi th eventual consistency (for example wi th C Q R S , see 2.4.2).

Reliabil ity problem

The rel iabil i ty problem i n the context of publishing asynchronous messages can be demon
strated by a simple example of the requirement to send an email after a bank balance
changed wi th concrete amount.

Sending emails must be asynchronous as the systems abi l i ty to send emails might be l imited
and the server response cannot be stalled, furthermore:

• The email must be send only i f the balance change is successful, that is, the transaction
w i t h saving the new balance completed successfully. Hence sending the email must
be done outside of the applicat ion transaction.

• E m a i l sending must be tracked so that if the server/application crashes right after
a successful transaction and before the email is sent, after recovery the system can
determine whether the email was sent or not and act accordingly.

Outbox

The solution to the rel iabil i ty problem is to introduce an addi t ional table into the database
called outbox, to which the applicat ion stores records (outbox messages) indicat ing a desire
to publ ish a message. The saving of outbox messages takes place wi th in the applicat ion
transaction, meaning that i f other parts of the business logic (or event the outbox message
storing itself) fail , and therefore transaction fails, the outbox message w i l l not get persisted
(and published).

26

The outbox message records contain information necessary for correct publishing, such
as the message body (for example, a serialized integration event), t imestamp, or whether
the message has already been published.

The final part of the solution is a periodic job (e.g. every 10 seconds) responsible for re
tr ieving unpublished messages from outbox and t ry ing to publ ish them. If publishing was
successful, the outbox message is marked as published (or deleted right away). Fa i l ing
to publish results i n a retry in the next job period.

Figure 2.16: A diagram showcasing necessary parts and steps when ut i l iz ing the transac
t ional outbox pattern, taken from [19].

Likewise, to reliably consume messages/events from message-broker/event bus, an inverse
approach wi th inbox can be used.

The inbox and outbox patterns are commonly implemented in the communicat ion libraries
and frameworks (such as MassTrans i t 6 , NServ i ceBus ' , etc.), which then only need to be
properly configured to access the database.

https: //mass-transit.io/
7

https: //particular.net/nservicebus

27

Chapter 3

Developing information system

This chapter delves into the developing process of a modular information system. It opens
w i t h a description of a demonstration applicat ion (section 3.1).

Next , i n section 3.2 the chapter covers the basic applicat ion analysis, including its use cases
and analysis for the usage of C Q R S and selected technologies.

It then continues w i t h section 3.3 about modeling the domain according to the domain-
driven design, including the applicat ion of strategy design (subdomains and bounded con
texts) and tact ical design (modeling aggregates).

Th is is followed by sections 3.4 and 3.5 covering the development of the Clean Architecture
and M o d u l a r M o n o l i t h solutions, respectively, and their implementat ion details.

Section 3.6 deals w i th implementing a frontend applicat ion that effectively uses the backend
solution regardless of the backend architecture variant.

The chapter concludes wi th section 3.7, describing interesting parts of the development
of modular information system solutions, such as enforcing architecture rules, and so on.

3.1 Demonstration application

Team and event management applicat ion, w i th working tit le T e a m U p , p r imar i ly focused
on managing smal l sports teams. 1

In the applicat ion, the user can be part of a team as a regular team member, team coordi
nator or a team owner. In order to invite new users to the team or remove them, a member
must be at least a team coordinator. There can be only one team owner, and a user can
become one by creating a team or by being the target of ownership change. The team
coordinator (as well as the team owner) creates team events, to which a l l team members
respond whether they can attend or not. O n l y the team owner can assign roles.

Details

• Invi t ing is done v i a user's email regardless of the user's existence.

1Similar to application https://tymuj.cz/.

28

https://tymuj.cz/

• Users can have a different nickname for each team they are member of.

• There must be business rules for m a x i m u m owned teams and m a x i m u m team capacity.

• Events can be distinguished by the event type.

• Members have several reply options to the team event - member w i l l not attend,
member might attend, member w i l l attend w i t h delay, member w i l l attend on t ime.

• Members can add a message to the reply to specify the reason behind their response.

3.2 Applicat ion analysis

The appl icat ion use case can be summarized using the use case diagram (see figure 3.1).

T e a m U p

Figure 3 . 1 : Use case diagram of the demonstration application.

29

The use case diagram can serve as a basis for identifying basic commands and queries
i n the context of C Q R S :

Commands: create/update/remove team, accept invi ta t ion, create response, update re
sponse, create/update/remove event type, create/(update)/remove event, invite user/re
move invi ta t ion, remove team member, assign role.

Upda t ing an event may not be a desirable feature because when changing, for example, the
start t ime of an event, members may need to change their responses, leading to a hard-
to-solve business problem of how to react in such si tuat ion (clear a l l responses/leave a l l
responses/sophisticated solution).

Queries: get team (including team members and event types), get events (including num
ber of responses of each type), get event (including a l l responses), get user's invitations,
get team invitat ions, get user's teams.

Based on the way the applicat ion works, it can be assumed that most of the demands w i l l
target the queries get events and get event and the create response command, as these
are the application's dai ly use cases. There may be other frequently called queries, such
as get team, but these change relatively infrequently and may be cached.

3.2.1 G e n e r a l technologies

• P la t form: dotnet platform w i t h the C # language is considered an elite platform
for enterprise-wide information systems. In addi t ion to quali ty documentation, M i
crosoft provides a variety of free eBooks 2 for bui lding systems on the dotnet platform.

• Backend R E S T f u l A P I : A S P . N E T Core is an open source cross-platform framework
maintained by Microsoft for bui lding web applications and services.

• Database: P o s t g r e S Q L 3 (postgres) is a free and open-source relational database
management system, and in my experience it spins up instance i n docker much faster
then the S Q L Server (tradit ional choice for dotnet), resulting in faster integration and
E 2 E testing, and thus making it my choice.

• D a t a access: Ent i ty Framework Core (E F Core) is widely used O R M by Microsoft
w i th support for code-first modeling workflow and database migrations.

• Background service scheduling: Q u a r t z . N E T 1 is a popular open-source job schedul
ing system targeting dotnet.

3.3 Model ing domain

W h e n using D D D , the first step is to apply strategy design, which is mainly identifying
subdomains and bounded contexts. Addi t ional ly , denoting shared kernels for mult i-bounded
context systems, and so on.

2

https://dotnet .microsoft.com/en-us/learn/dotnet/architecture-guides
3

https: //www.postgresql.org/

https: //www.quartz-scheduler.net/

30

http://ASP.NET
http://Quartz.NET1
https://dotnet
http://microsoft.com/en-us/learn/dotnet
http://www.postgresql.org/
http://www.quartz-scheduler.net/

The next step is to apply tact ical design, which consists of modeling the domain for a given
bounded context and identifying aggregates and value objects.

Further modeling is done i n the code using patterns such as domain events, domain services,
etc. (described in section 2.2.2), i n conjunction wi th continuous refactoring.

3.3.1 Ident i fy ing s u b d o m a i n s a n d b o u n d e d contexts

The core business logic of the system is team management, which involves managing team
members and their roles + managing team events and responding to events. Th is could
be viewed as one big team management subdomain, but I am leaning towards spl i t t ing it
into 2 core subdomains - Teams subdomain and Events subdomain (see 2.2.1), which
decouples parts of the system and better visualizes the integration relationships between
ind iv idua l subdomains.

Invi t ing users to the team is not the core of the applicat ion, as no user would start using
the applicat ion because of this functionality, indicat ing it as a support ing subdomain.

The applicat ion has to provide basic user account functions (registration, login, etc.), this is
a common problem and the system does not need some applicat ion specific features, based
on that this area appears as a generic subdomain - in the diagram 3.2 called User Access
subdomain.

Figure 3.2: System domain decomposed to subdomains and bounded contexts.

User access has its own bounded context as it should be managed by an existing so lu t ion 5

and w i l l not need any insight into the core/support ing domains of the applicat ion.

The rest of the subdomains can be modelled as a single bounded context as the domains
have the same view at the system entities (the team is the same from both the invi ta t ion

5This would be true for a real-world application, however, the purpose of this thesis is not the integration
of an identity server, so the solutions will implement a simple JWT authentication only with basic functions
required by the business (register, login, delete and activate account).

TeamUp Domain

Team Management
Context

User Access
Context

31

and the event perspective). There is the overlap w i t h user access subdomain as the team
management context has to have some reference to users (i.e. in form of an id) and occa
sionally access users properties to implement appl icat ion use cases (invit ing v i a email and
so on).

3.3.2 D o m a i n m o d e l

Typica l ly each bounded context would have its own domain model, however, since the user
access context has only one entity from which most of the properties are used i n the team
management context, it would be counterproductive to treat them as separate contexts
(may be different for modular monol i th architecture as it separates system into modules).

User

email

name

password

status

<
TeamMember

nickname

role

V

Invitation

timestamp
> Te am

J name

EventType

name

description

EventResponse

type

message

timestamp

<

Event

from

to

description

status

meet Time

replyClosingTime

Figure 3.3: The in i t i a l domain model of the modeled system, where identifiers are P K
for a l l entities and a l l relationships are 1:N, the model serves as the start ing point and does
not specify data types, v is ib i l i ty or methods implementing the business logic. It is mainly
intended to showcase relationships and properties required by the business.

32

3.3.3 M o d e l i n g aggregates

A common approach to modeling aggregates is to start w i th an in i t i a l domain and mark a l l
entities as the aggregate roots (see figure 3.4), then gradually t ry to merge the aggregates
together or mark them final aggregate.

Before modeling aggregates, it is necessary to identify the value objects, for instance,
the EventResponse containing the response type and message can be extracted into an
EventReply value object to improve object manipulat ion and enforce business rules.

Theoretically, the Event Type could be a value object as the team already contains event ref
erences and it is defined only by name and description, however, this would cause problems
when updat ing the event type name since value objects are immutable (see 2.2.2).

«aggregate root»

User

«aggregate root»

Invitation

«aggregate root»

TeamMember

«aggregate root»

Team

«aggregate root»

EventType

«aggregate root»

EventResponse
w

«aggregate root»

Event

y

«value object»

EventReply

Figure 3.4: Diagram representing in i t i a l point for modeling aggregates wi th each entity
serving as an aggregate root. D iag ram contains unresolved relationships as D D D states
that aggregates cannot reference each other directly.

Merging EventResponse into the event aggregate makes sense as the response is direct ly
associated wi th the event and the user must interact w i t h the event to create/update
the response. The Event serves as an interface for event response manipulat ion and takes
advantage of the EventReply value object to set the response direct ly from its interface.

Similarly, the TeamMember is an ideal candidate for merging into the team aggregate since
the Team has a l l the necessary data for validating actions affecting team members (assigning
roles, removing members, and so on).

The User has no interaction wi th other entities and thus is a good candidate for aggregate
root. To some extent, it might make sense to manipulate invitations through the User,
however, the same applies to the invitat ion-team relationship. Moreover, in the strategy
design (figure 3.2), the invitat ions are modeled as a separate subdomain, therefore it is
logical to leave I n v i t a t i o n as its own aggregate and handle invitations through a domain
service.

33

.*" User Aggregate

«aggregate root»

User
A

«aggregate root»

Invitation

Invitation Aggregate J'

O dirrect in memory reference

<K1— list of in memory references

< id reference
^ unresolved relationship

Event Aggregate

Team Aggregate

«entity»

TeamMember

«aggregate root»

Team

A ,
«aggregate root»

EventType

«entity»

EventResponse

«aggregate root»

Event

«value object»

EventReply

Figure 3.5: Doma in model w i th par t ia l ly modeled aggregates.

The EventType is t ight ly associated wi th the Event, however, a l l the manipula t ion needs
to go trough the team aggregate so that the team aggregate root can authorize changes
based on the ini t iator role. Furthermore, EventType references mult iple events, so merging
it into the event aggregate does not really make sense.

User Aggregate

«aggregate root»

User
A

«aggregate root»

Invitation

\ , Invitation Aggregate

O dirrect in memory reference

O O — list of in memory references

< id reference

Team Aggregate

«entity»

TeamMember

J

«aggregate root»

Team

«entity»

EventType

Event Aggregate

«entity»

EventResponse

«value object»

EventReply

«aggregate root»

Event

Figure 3.6: Diagram of final domain model designed w i t h D D D . The diagram shows 3
apparent references from the event aggregate to the team aggregate. A l though this might
indicate candidates for merging, the resulting aggregate would be far too large. Further
more, the domain services w i l l resolve any logic requiring both aggregates.

34

3.4 Clean Architecture solution

The entire Clean Archi tecture solution is available online as a repository on G i t H u b :

https: //github.com/skrasekmichael/CleanArchitecture

3.4.1 S y s t e m D e s i g n

The system takes advantage of the C Q R S wi th a single database:

• Query Par t - applies simple authorizat ion validations in handlers and communicates
wi th the database through a query context to enable more performant querying.

• C o m m a n d Par t - utilizes Domain-Dr iven Design and its patterns to enforce complex
business rules and validations (factories, aggregates and domain services) and ensures
system consistency (domain events).

Figure 3.7: Diagram showcasing the flow through the C lean Archi tecture solution and
some of its components. The infrastructure layer may look like innermost layer, however,
the applicat ion and domain layers do not depend on the infrastructure layer at compile
time, but rather use interfaces whose implementat ion is provided by the infrastructure layer
v i a dependency injection at runtime. The diagram also illustrates the apparent complexity
difference i n the implementat ion of the query part (2 components) and the command part.

35

3.4.2 I m p l e m e n t i n g so lut ion

Project structure:

TeamUp/
sr c /

Clean Archi tecture repository

TeamUp
TeamUp
TeamUp
TeamUp
TeamUp
TeamUp

Common/
Contracts/
Domain/
Application/...
I n f r a s t r u c t u r e /
Api/

common types, abstractions and extensions
A P I contracts and validators

domain model according to D D D
. . commands and queries and their handlers
. . . . E F Core configurations, migrations etc.

A S P . N E T Core R E S T f u l A P I
t e s t s /
TeamUp.sin

The src directory contains ind iv idua l layers regarding the Clean Archi tecture w i t h 2 addi
t ional layers (Common and Contracts).

The t e s t s directory contains a l l apl icat ion tests, including in tegra t ion /E2E tests (see sec
t ion 3.7.4), architecture tests (section 3.7.5), and so on.

3.4.3 C o m m o n L a y e r

The common layer contains common abstractions such as IDateTimeProvider, common
types (e.g. exceptions/errors) and extension methods.

The purpose of this layer, s imilar ly to so called interface layer, is to provide the necessary
abstractions that can be used in other layers. Implementations of these abstractions reside
in other layers (mainly in the infrastructure layer).

The common layer is not dependent on any other layer, and the only dependency is
on the Rai lwayResul t package (see section 3.7.2 about the result pattern), providing con
tracts and extension methods for the entire system.

3.4.4 C o n t r a c t L a y e r

The contract layer contains a l l the contracts required for cal l ing the A P I , including re
sponses, enums, strongly typed ids, requests and their validators. The layer also contains
constants used for val idat ing and preparing A P I requests.

The contract layer could be reused by other presentation layers (M V C backend, S P A , mobile
app, 3rd party services, etc.) as a shared dependency without the need to redefining types.

The Fluent Va l idat ion 6 package is used to validate requests by creating a val idat ion class
for each request and creating rules for request properties using the fluent A P I . The main
advantage of the Fluent Val ida t ion l ibrary is the ease of val idat ion for more complex rules
as showcased i n figure 3.9.

6

https: //github.com/FluentValidat ion/Fluent Validation

36

http://ASP.NET

p u b l i c sealed record CreateEventRequest : IRequestBody
{

p u b l i c required EventTypeld EventTypeld { get; i n i t ; }

[DataType(DataType.DateTime)]
p u b l i c required DateTime FromUtc { get; i n i t ; }
[DataType(DataType.DateTime)]
p u b l i c required DateTime ToUtc { get; i n i t ; }

[DataType(DataType.Text)]

p u b l i c required s t r i n g D e s c r i p t i o n { get; i n i t ; }

[DataType(DataType.Time)]

p u b l i c required TimeSpan MeetTime { get; i n i t ; }

[DataType(DataType.Time)]
p u b l i c required TimeSpan ReplyClosingTimeBeforeMeetTime { get; i n i t ; }

}
Figure 3.8: Code sample of request (body) for creating an event. Properties are annotated

wi th meta informations that could be used by templat ing engines from other presentation

layers. Note that the EventTypeld property is defined as a strongly typed id , same as a l l

other idefntifiers i n the solution.

p u b l i c sealed c l a s s V a l i d a t o r : AbstractValidator<CreateEventRequest>
{

p u b l i c Validator(IDateTimeProvider dateTimeProvider)
{

RuleFor(x => x.EventTypeld).NotEmptyQ;

RuleFor(x => x.FromUtc)
.NotEmptyQ
.GreaterThan(dateTimeProvider.UtcNow)
.WithMessage("Cannot create event i n p a s t . ") ;

RuleFor(x => x.ToUtc)
.NotEmptyQ
.Must((model, t o) => model.FromUtc < to)
.WithMessage("Event cannot end before i t s t a r t s . ") ;

RuleFor(x => x.D e s c r i p t i o n)
.NotEmptyQ

.MaximumLength(EventConstants.EVENT_DESCRIPTION_MAX_SIZE);

RuleFor(x => x.MeetTime).GreaterThan(TimeSpan.Zero);

RuleFor(x => x.ReplyClosingTimeBeforeMeetTime).GreaterThan(TimeSpan.Zero);
}

}

Figure 3.9: Code sample of a validator for CreateEventRequest (figure 3.8) w i t h more

complex rules, working wi th DateTimeProvider or the rule of the ToUtc property dependent

on the FromUtc property, which would be complicated to implement using the default

annotation-based val idat ion bu i ld i n A S P . N E T Core.

37

http://ASP.NET

3.4.5 D o m a i n L a y e r

The domain layer contains domain-specific logic, that is:

• Aggregates - the aggregate root entity and addi t ional nested entities and value
objects for each aggregate.

• Aggregate specifics (grouped together w i th aggregates) - factories, domain events,
integration events and a repository interface that is used i n other services (facto
ries, event handlers, domain services, and command handlers). A d d i t i o n a l possible
aggregate specifics may include logic (extension methods) over enum types and static
classes w i th defined business rules and errors.

• Event Handlers to synchronize and enforce a consistent state across aggregates
(preferred method) and potential ly to publ ish integration events.

• D o m a i n Services w i th logic involving mult iple aggregates and the necessity of data
from other aggregates for immediate business rules val idat ion.

• Abstract ions for domain objects, i.e. for entities, domain events, event handlers, . . .

Detai led structure:

TeamUp. Domain/ domain layer
Abstractions/ domain objects abstractions (aggregate root, entity . . .)
Aggregates/

I n v i t a t i o n s / domain objects of the invi ta t ion aggregate
Users/ domain objects of the user aggregate
Events/

DomainEvents/
Event.cs
EventResponse.cs
EventReply.cs
EventStatusExtensions.cs
EventErrors. cs

1 IEventRepository.es

. . . . events published by the event aggregate
aggregate root

nested entity
value object

added logic for Event Status enum
errors returned by the event aggregate

repository definition for working wi th events
Teams/

DomainEvents/
Team.cs
TeamMember.cs
EventType.cs
TeamRoleExtensions.cs
TeamErrors.cs
TeamRules.cs

added logic for TeamRole enum
errors returned by the tean aggregate

business rules of the team aggregate
repository definition for working wi th teams

events published by the team aggregate
aggregate root
. . nested entity
. nested entity

1 ITeamRepository.cs
DomainServices/
EventHandlers/
ServiceCollectionExtensions.cs
TeamUp.Domain.csproj

domain event handlers
methods for registering layer to D I

domain services

assembly file

38

http://IEventRepository.es

D o m a i n Events

Domain events are meant to propagate changes to other parts of the domain (mainly ag
gregates) and therefore enforce necessary actions to br ing the domain into consistent state.

Some of the logic performed by the domain event handlers could be solved by database
triggers, however, that would split up the business logic and pile up addi t ional complexity.

Tradit ionally, domain events are not publ ished/handled immediately, but rather gathered
and handled at the end of a transaction (see more in section 3.4.7).

p u b l i c async Task Handle(UserDeletedDomainEvent domainEvent, CancellationToken c t)
{

var teams = await _teamRepository.GetTeamsByUserIdAsync(domainEvent.User.Idj c t) ;

foreach (var team i n teams)
{

team.GetTeamMemberByUserId(domainEvent.User.Id)
.Ensure(TeamRules.MemberCanChangeOwnership)
. T a p (i n i t i a t o r =>
{

i f (team.Members.Count == 1)
{

//remove team i f user t h a t i s being removed i s the only member
_teamRepository.RemoveTeam(team);

}
el s e
{

//change ownership when removing user t h a t i s owner of the team
var newOwner = team.GetHighestNonOwnerTeamMember()!;
initiator.UpdateRole(TeamRole.Admin);
newOwner.UpdateRole(TeamRole.Owner);
team.AddDomainEvent(new OwnerChangedEvent(initiatorj newOwner));

}
});

//db w i l l cascade d e l e t e member, number of members has t o be updated manually
team.DecreaseNumberOfMembers();

}

_userRepository.RemoveUser(domainEvent.User);
}

Figure 3.10: Code sample of an event handler handling the user deleted domain event.

The event handler in figure 3.10 solves consistency problems resulting from the user deletion:

• Delet ing a team if the user is the only member (impl ic i t ly owner).

• Change ownership to another member i f the user is the team owner (and raise an own
ership changed domain event). Th i s consistency problem could also be solved by fail
ing to delete the user i f the user is an owner of a team, and the user would have
to manual ly change ownerships before deletion.

• Decreasing number of members i n a team (required for race conditions, see 3.7.3).

Delet ion of team member records l inked to the user is handled automatical ly by the R D B M S
and db model w i t h the ON DELETE CASCADE configuration.

39

3.4.6 A p p l i c a t i o n L a y e r

The appl icat ion layer contains implementat ion of appl icat ion use cases, that is:

• Implementation of commands and command handlers, which consists pr imar i ly of cal l
ing the domain logic of aggregates, factories and domain services, and subsequently
persisting the changes v i a the unit of work.

• Implementation of queries and query handlers, which consists of cal l ing the query
context faqade around the E F Core context that builds and sends S Q L queries, and
subsequent val idat ing of authorizat ion rules (restricting what can be read by whom).

The sending requests (queries/commands) and processing them (handlers) is implemented
using the M e d i a t R ' package, an in-process messaging mediator by J i m m y Bogard.

Addi t ional ly , the appl icat ion layer contains helper services/interfaces and integration event
handlers for performing asynchronous business actions (sending emails).

p u b l i c async Task<Result<TeamResponse>> Handle(GetTeamQuery query, CancellationToken c t)
{

var team = await appQueryContext.Teams
.Where(team => team.Id == query.Teamld)
.Select(team => new TeamResponse
{

Name = team.Name,
Members = team.Members

.Select(member => new TeamMemberResponse
{

Id = member.Id,
Userld = member.Userld,
Nickname = member.Nickname,
Role = member.Role

})
. T o L i s t Q
.AsReadOnlyQ

})
. F i r s t O r D e f a u l t A s y n c (c t) ;

return team
.EnsureNotNull(TeamErrors.TeamNotFound)
.Ensure(team =>

team.Members.Any(member => member.Userld == q u e r y . I n i t i a t o r l d) ,
TeamErrors.NotMemberOfTeam);

}

Figure 3.11: Code sample of a query handler of GetTeamQuery u t i l iz ing E F Core, where
the E F Core builds S Q L queries from given L I N Q statements (and caches them for later
reuse). After retrieving data from the database, the handler checks whether the team exists
and whether the user is a member of the team. Note that the query statement uses Select
to map database result directly to desired response type (D T O) .

7

https: //github.com/jbogard/MediatR

40

3.4.7 Infras tructure L a y e r

The purpose of the infrastructure layer is to shield the appl icat ion core from dependence
on third-party libraries and external services, specifically by:

• implementing core services (service abstractions from inner layers) including:

— DateTimeProvider - it is considered a best practice to use a service to access
date t ime as it provides an easy way to test logic involving date times.

— UnitOf Work - since repositories and E F Core keep track of a l l changes to domain
data, the unit of work exposes only the save changes method to persist changes
in a single transaction. Note that the method also ensures correct dispatching
of a l l domain events raised wi th in the transaction (see below).

— QueryContext - essential for query handlers because it enables to access database
(no modification) by exposing IQueryable collections of the requested data (used
to bu i ld L I N Q queries that E F Core translates into S Q L) w i t h a no tracking
configuration, meaning E F Core w i l l not track any changes to these objects.

• ensuring data persistence, that is, integrating database:

— Configuration of the domain objects (mapping the domain object definitions
to database tables) using the E F Core.

— Implementation of repositories - integration to concrete database (postgres) us
ing a specific technology (E F Core).

• integrating addi t ional services, i.e. email ing service.

• implementing and configuring cross-cutting concerns, such as A P I security, dispatch
ing integration events, and so on.

Structure:

TeamUp.Infrastructure/
Core/ implementat ion of core services
Extensions/ extension classes used i n the infrastructure layer
Options/ opt ion classes loaded from appsettings. json
Persistence/

Domain/ entity configurations and repository implementations
.Migrations/ E F Core db schema migrations
. ApplicationDbContext. cs E F Core database context
DesignTimeDbContextFactory.es factory for creating migrations

Processing/ processing services - events, messages, etc.
Security/ security concerns - password service, J W T configuration, etc.
Assemblylnfo.cs
ServiceCollectionExtensions.es methods for registering the layer into D I
TeamUp. Infr a s t r u c t u r e . csproj assembly file

41

http://DesignTimeDbContextFactory.es
http://ServiceCollectionExtensions.es

Publishing D o m a i n Events

A s previously mentioned, when a domain event is raised, it is collected from publishing
at the end of the transaction. The collection is done by adding the event to the event list,
and each entity has its own event list, hence, the domain events are bound to the entities that
raised them, and the domain is not pol luted wi th injection of service for raising/gathering
domain events.

The unit of work executes the actual publishing of the domain events as cal l ing the save
changes method marks the end of the applicat ion transaction, another way may be by using
E F Core interceptors to intercept save changes and then proceed to publ ish events.

A s mentioned in the segment about domain events (see section 2.2.2 about D D D tact ical
design), they can be published wi th in a transaction (single transaction for mult iple aggre
gates) or asynchronously after commit t ing one, making the system eventual consistent w i th
mult iple transactions when handling domain events.

I opted for strong consistency w i th in a single transaction. In this application, even
tua l consistency would introduce unnecessary complexity and a single transaction involving
mult iple aggregates does not seem to cause any problems for this low scale applicat ion wi th
few rather l imi ted number of aggregates.

Problems wi th intensive locking when commit t ing large transaction spanning mult iple ag
gregates may be addressed by better domain modell ing or by breaking the bounded con
text into modules and introducing eventual consistency between modules as i n the Modu la r
M o n o l i t h architecture, thereby reducing the transaction size.

p u b l i c async Task DispatchDomainEventsAsync(CancellationToken c t = d e f a u l t)
{

List<IHasDomainEvent> e n t i t i e s ;

while ((e n t i t i e s = GetEntitiesWithUnpublishedDomainEvents()).Count != 0)
{

//get a l l unpublished domain events

var domainEvents = e n t i t i e s . S e l e c t M a n y (e n t i t y => entity.DomainEvents).ToListQ;

/ / c l e a r a l l domain events
e n t i t i e s . F o r E a c h (e n t i t y => entity.ClearDomainEventsQ);
/ / p u b l i s h a l l domain events
foreach (var domainEvent i n domainEvents)
{

await _publisher.Publish(domainEventj c t) ;
}

}
}

Figure 3.12: Code sample for publishing domain events. The method for gathering entities
w i th unpublished domain events uses the E F Core database context and ChangeTracker
to gather a l l changed objects that implement IHasDomainEvent interface and whose event
list is not empty. Note that the loop repeats unt i l a l l domain events are published as event
handling may produce addi t ional events that were not in i t ia l ly gathered. This could lead
to a potential infinite loop, but hopefully it would be detected by the integration tests.

42

Outbox & Publishing Integration Events

To reliably handle asynchronous side effects - integration events - a transactional outbox
pattern has to be used (see section 2.4.4 about outbox pattern).

Th is means that the side effect producer has to raise an integration event from a domain
event handler (or possibly from a domain service) using the IntegrationEventManager,
the idea being that since side effects affecting the database are processed inside domain
event handlers, asynchronous side effects should be raised from them as well.

Since integration events are serialized into outbox messages, they do not contain object
references, but only direct values or references v ia identifiers (uuid/guid) .

p r i v a t e async Task DispatchEventAsync(OutboxMessage msg, CancellationToken c t = d e f a u l t)
{

var integrationEventType = msg.Type.ResolveTypeQ;
i f (integrationEventType i s n u l l)
{

_ l o g g e r . L o g C r i t i c a l (" F a i l e d t o i d e n t i f y outbox message type {msg}.", msg);
msg.Error = "Type not found.";
return;

}

var i n t e g r a t i o n E v e n t = J s o n S e r i a l i z e r . D e s e r i a l i z e (m s g . D a t a j integrationEventType);
i f (i n t e g r a t i o n E v e n t i s n u l l)
{

_ l o g g e r . L o g C r i t i c a l (" F a i l e d t o d e s e r i a l i z e outbox message {msg}.", msg);
msg.Error = " F a i l e d t o d e s e r i a l i z e . " ;
return;

}

t r y
{

await _ p u b l i s h e r . P u b l i s h (i n t e g r a t i o n E v e n t j c t) ;
msg.ProcessedUtc = _dateTimeProvider.UtcNow;

}
catch (Exception ex)
{

logger.LogError (eXj " F a i l e d t o pu b l i s h from outbox {msg}.", msg);
msg.Error = " F a i l e d t o p u b l i s h event.";

}
}

Figure 3.13: Code sample for dispatching a integration event from an outbox message.
B y updat ing the ProcessedUtc property, the outbox message is marked as published. If
an error occurs during the consumption of outbox message or while publishing an event,
the step in which the error occurred is logged and stored i n the db.

Publ i sh ing integration event workflow goes as follows

1. Integration event producer serializes event and persists it into the outbox wi th in
transaction caused by a command.

2. Every M seconds, the outbox processor takes N unconsumed messages, deserializes
them and publishes them; successfully consumed messages are marked as processed
in the outbox, failed ones w i l l be re-consumed i n the next i teration.

43

3.4.8 P r e s e n t a t i o n L a y e r

The presentation layer contains applicat ion entry point w i th bui ld ing and configuring
the server using the A S P . N E T Core framework:

• Configuration of server components (authentication, A P I versioning, etc.) and regis
t rat ion of services into D I container v ia extension methods from ind iv idua l layers.

• App l i ca t ion of required middlewares, for example for routing, authentication, autho
rization, C O R S , and so forth.

• Mappings of R E S T f u l endpoints that ca l l applicat ion logic v i a commands and queries.
Endpoints are decorated for automatic generation of O p e n A P I 8 specification.

• A d d i t i o n of development-specific parts (development-only) such as swagger (for demo
testing A P I) , logging middlewares, automatic database migrat ing, etc.

p u b l i c void MapEndpoints(RouteGroupBuilder group)
{

group.MapDelete("/{teamld:guid}/members/{teamMemberId:guid}", RemoveTeamMemberAsync)
.Produces(StatusCodes.Status200OK)
.ProducesProblem(StatusCodes.Status400BadRequest)
.ProducesProblem(StatusCodes.Status401Unauthorized)
.ProducesProblem(StatusCodes.Status403Forbidden)
.ProducesProblem(StatusCodes.Status404NotFound)
.WithName(nameof(RemoveTeamMemberEndpoint))
.MapToApiVersion(l);

}

p r i v a t e async Task<IResult> RemoveTeamMemberAsync(
[FromRoute] Guid teamld,
[FromRoute] Guid teamMemberldj
[FromServices] ISender sender,
HttpContext httpContext,
CancellationToken c t)

{

}

var command = new RemoveTeamMemberCommand(
httpContext.GetCurrentUserId(),
Teamld.FromGuid(teamld),
TeamMemberld.FromGuid(teamMemberld)

);
var r e s u l t = await sender.Send(commandj c t) ;
return result.ToResponse(TypedResults.Ok);

Figure 3.14: Code example of an endpoint for removing a team member from the team.
The MapEndpoints method utilizes the dotnet functionality (Min imal A P I 9) to map end-
points, and addi t ional methods for automatic generating of the O p e n A P I specification.
The RemoveTeamMemberAsync method is an actual endpoint handler that creates a com
mand/query from the http context (request parameters, headers, etc.), calls the applicat ion
logic v i a the command/query, and maps the result to the correct ht tp response.

8

https: //swagger, io/resources/open-api/
9

https: //learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis

44

http://ASP.NET
http://crosoft.com/en-us/aspnet

3.4.9 Invite unreg is tered user workflow example

teamld: uuid,
email: xxx@zzz

request processing

User Created
Domain Event

Unit of Work

User Created Domain
Event Handler

User Created Invitation Created
Integration Event Integration Event

\ /

Invitation Domain
Service

Integration Event
Manager

User
Repository

IXl
Invitation

Repository

Invitation Created User Created
Integration Event 11 Integration Event

Invitation
Created Event

Handler

User Created
Event

Handler

Invitation
Email

Activation
Email

Outbox ,
Processor I

5
Email Sender

user created invitation created
message message y I

transaction

invitation Noutbox
messages

RDBMS
external services Email Service

Figure 3.15: Diagram showing the workflow of invi t ing a user that is not registered
to a team, assuming a l l data is val id . D iagram outlines key components that the workflow
goes through and the events that are published along the way. Note that the transaction
is commit ted by the unit of work and before commit t ing, the user created domain event is
collected and published. This diagram skips the A P I authorizat ion process.

45

3.5 Modular Monol i th solution

The entire M o d u l a r M o n o l i t h solution is available online as a repository on G i t H u b :

https: //github.com/skrasekmichael/ModularMonolith

3.5.1 Ident i fy ing modules

Appropr ia te decomposition of the system into modules is crucial for system maintainabil
ity and scalability, each module should be independent of others and focus on its own
functionality.

To some extent, module decomposition mirrors the D D D strategy design (bounded context
= module), al though even a bounded context can be divided into mult iple modules i f it is
advantageous (smaller modules = smaller transactions).

The core modules can be supplemented by support ing modules that cover highly distinct or
specific functionality from other modules, such as infrastructure integration (S M S gateway,
etc.), data processing (pdf, image, video, etc.), and so on.

Modules

• User Access M o d u l e - mirrors the functionality for the business needs of the User
Access bounded context.

• Team Management M o d u l e - mirrors functionality and business needs of the Team
Management bounded context. It might be beneficial to split this module into more
sub-modules (for instance, a separate module for invitations), however, it should be
easy to decompose it i n later development iterations.

• Notifications M o d u l e - encapsulates the functionality for notifying users (currently
only by email) v i a special services/technology.

The existence of a separate module allows for easy addi t ion of notification methods
(e.g. sms) and in case of transi t ion to microservices, each microservice does not need
to have its own notification infrastructure, but can use this internal service for pushing
notifications instead.

• Bootstrapper - entry point to the applicat ion bootstrapping a l l modules, necessary
services and configurations to a single executable (A S P . N E T Core app). W h e n mi
grating to microservices, this module would be turned into an A P I gateway/reverse
proxy.

3.5.2 S y s t e m D e s i g n

The system is designed for easy transi t ion to microservices i n the context of data modeling,
isolation and communicat ion patterns incorporat ing eventual consistency.

Each module that provides data manipulat ion functionality integrates the C Q R S pattern,
w i th the queries being lightweight database calls and commands leveraging D D D for com
plex business logic (similarly to the Clean Archi tecture solution design i n section 3.4.1).

46

http://ASP.NET

Communicat ion

Communica t ion between modules is pr imar i ly asynchronous, facilitated over a message
broker (see figure 3.16). Th is approach ensures loose coupling between modules. Each
module exposes contracts, such as integration events, for external communicat ion. Inter
nally, modules communicate synchronously using in-process calls.

To support more complex interactions, the system also registers request-response paths
over the message-broker, enabling synchronous (blocking) command and query invocations
between modules. Th is allows to ca l l commands or queries of other modules when necessary.
Furthermore, the input val idat ion is moved to the command/query handlers to validate
incoming communications not only from external sources but also from other modules,
ensuring robustness and consistency across the system.

To ensure reliable communicat ion and consistency, each module has its own storage for out-
box and inbox (see section 2.4.4 describing transactional outbox pattern), even i f a module
does not have to persist state to execute its logic. Implementing this demand resulted
i n some problems (see more i n segment about mult iple outboxes in section 3.7.1).

D a t a Isolation

D a t a isolation is achieved v i a a separate schema per module i n a single database (see
figure 3.16). Since the system does not contain cross-schema transactions, there is no data
coupling between modules, providing sufficient isolation akin to microservices.

Figure 3.16: Diagram showing data isolation, communicat ion between modules (red) and
integration wi th infrastructure services (purple). Note that each module also has back
ground processing services, which are omit ted from this diagram for simplicity.

47

3.5.3 I m p l e m e n t i n g so lut ion

• Message Broker: R a b b i t M Q as a reliable messaging and streaming broker wi th
out cloud vendor lock-in. Popular non-cloud specific alternatives are Apache Kafka ,
A c t i v e M Q or Redis.

• Communica t ion framework: MassTransit is popular open-source dis tr ibuted appli
cation framework for . N E T , providing a consistent abstraction on top of the supported
message transports (R a b b i t M Q , A m a z o n SQS , Azure Service Bus, etc.). Popular al
ternatives to MassTransi t are NServiceBus or Wolverine.

Project structure:

TeamUp/
src /
(_Common/

Modules/
UserAccess/
TeamManagement/...

1 N o t i f i c a t i o n s /
J TeamUp.Bootstrapper/
t e s t s /
TeamUp.sin

. . . . Modu la r M o n o l i t h repository

shared types and bui ld ing blocks

user access module layers

team management module layers
notifications module layers

entry point assembly

Modules Separation

Each module is organized wi th a clean architecture-like structure, composed of required
layers and optional layers tailored to its functionality:

• Contracts Layer containing a l l types and abstractions necessary for communicat ion
wi th a given module (commands and queries, response types, integration events, etc.).

• Appl icat ion Layer w i th the logic of the module

• Infrastructure Layer containing the module's abstraction and services for config
uring, registering, and using the module.

• Opt iona l Endpoint Layer i f module exposes R E S T A P I endpoints.

• Opt iona l D o m a i n Layer for modules that work wi th domain objects applying the r ich
domain model and D D D principles.

Each layer type wi th in a module utilizes bui ld ing blocks and common types, shared across
assemblies for a consistent and reusable layer implementat ion = a common assembly for
each layer type (see figure 3.17).

The Bootstrapper assembly then links a l l the modules and assemblies together (see fig
ure 3.18), establishing the application's architecture, in i t ia t ing runtime environment, and
providing applicat ion entry point as A S P . N E T Core app.

18

http://ASP.NET

The higher number of assemblies creates a vast amount of interconnecting dependencies,
which can lead to l ink ing incorrect dependencies. To avoid dependency hell, each layer must
follow strict rules on which assemblies it can depend on (shown i n figure 3.17); for enforcing
these rules, see section 3.7.5 on architecture testing.

—

Bootstrapper

Common

Endpoints

Infrastructure

Application

Domain

Contracts

Module With Endpoints

Endpoints

Infrastructure

Application

Domain

Contracts

Module

Infrastructure

Application

JL.
Contracts

Figure 3.17: Diagram indicat ing the separation of modules and assemblies and the depen
dencies between them. Each module can depend on contracts of any module. Note that
each layer i n a module always depends on the corresponding common layer assembly; these
dependencies are excluded from the diagram to make it more readable (dependencies are
implied by the same row position).

var modules = builder.Services.AddModules(modulesBuilder =>
{

modulesBuilder
.AddModule<UserAccessModule>()
.AddModule<TeamManagementModule>()
.AddModule<NotificationsModule>();

var app = b u i l d e r . B u i l d Q ;

app.MapEndpoints(modules);

Figure 3.18: Code from the bootstrapper assembly demonstrating the registration of mod
ules (configurations, service implementations, etc.) and endpoint mapping using an auto
mated process buil t around module abstractions (see below).

49

M o d u l e Abstract ion

Each module (logical boundary) defines a module (class) i n its infrastructure layer, where
a module can inherit one of 2 base class implementations:

• ModuleWithEndpoints<ModuleId, ModuleDbContext, ModuleEndpointGroup>
for a general module exposing R E S T A P I endpoints.

• Module<ModuleId, ModuleDbContext> for internal module.

The module then only needs to implement Conf igureServices method for registration
of module specific services (and some layer information about assemblies) and based on those,
the base class automatical ly registers/configures a l l required services, that is:

• command/query and event handlers

• MassTransi t consumers for commands, queries and integration events

• essential services such as db context, unit of work, background jobs . . .

«interface»
IModule «abstract»

+ ApplicationAssembly: Assembly Module

+ ContractsAssembly: Assembly + ConfigureServicesQ
+ ConfigureServices() <f + RegisterRequestConsumers()
+ RegisterRequestConsumers() + RegisterEventConsumers()
+ RegisterEventConsumers() + ConfigureEssentialServices()
+ ConfigureEssentialServices() + ConfigureJobs()
+ ConfigureJobs() L

A i i

«interface» «abstract»
IModuleWith Endpoints ^\ - - ModuleWith Endpoints IModuleWith Endpoints

Q
+ MapEndpointsQ + MapEndpoints()

i

NotificationsModule

i + ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly 4
+ ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly 4

+ ConfigureServicesQ

UserAccessModule

+ ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly
+ ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly

+ ConfigureServicesO

TeamManagementModule

+ ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly
+ ApplicationAssembly: Assembly
+ ContractsAssembly: Assembly

+ ConfigureServicesQ

Figure 3.19: A class diagram representing the module abstraction, required assembly prop
erties serve to automatical ly register commands, queries, and event handlers. The d i
agram intentionally excludes parameters, data types, and some other properties and
methods on order to better outline the abstraction design. The diagram also does not
contain generics (f.e. notifications module inheri t ing Module<NotificationsModuleld,
Notif icationsDbContext>) that is needed by the Module base class to properly register
essesntial services.

Some services (called shared services for the purpose of this thesis) need a different imple
mentation per module, but w i th exactly the same logic. So the service can, for example,
do the same but w i th a different database context (e.g. unit of work). The challenge is
to provide the correct service implementations to the respective modules.

50

Since the D I provider integrated in frameworks on the . N E T platform does not support
modular dependency in jec t ion 1 0 , it is necessary to work around this so that each module is
injected w i t h the corresponding shared service implementation:

• One solution is to register shared services as a keyed service and retrieve service

implementation from D I container by type and key.

e.g. ctor([FromKeyedServices("userAccessModule")] IUnitOfWork instance)

• The more convenient approach is to take advantage of generics and mark service
implementations w i th class representing module i d (in contracts layer) which is
passed to the module base class and leveraged to automatical ly register shared services
wi th it.

e.g. ctor(IUnitOfWork<UserAccessModuleId> instance)

Inbox and Integration Events

W h i l e publishing and processing domain events works the same as i n the Clean Architecture
solution (see 3.4.7), the modular monol i th design adds to the complexity of integration
events as the integration event, i n addi t ion to the asynchronous side effects (e.g. sending
an email) , also represents state changes that need to be propagated over the message bus
to mult iple modules, therefore introducing necessity for an outbox and an inbox per module.

Furthermore, implementing mult iple outboxes and inboxes w i th MassTransi t poses some
issues (see section 3.7.1 about encountered problems).

Integration event lifetime:

1. Integration event is stored as an outbox message i n database wi th in a single trans
action (covering a l l request changes) using the IntegrationEventPublisher (inside
the domain event handler /domain service).

2. In the background processing i teration, the outbox consumer of a given module takes
X outbox messages, converts them back to integration events, and publishes them
to the R a b b i t M Q bus using the MassTransi t A P I .

If the publishing is successful, the message is removed from the outbox.

3. The MassTransi t consumer registered to a given integration event receives a message
wi th the event and stores this event as an inbox message.

4. In the background processing iteration, the inbox consumer of a given module takes
Y inbox messages, deserializes them into integration events, and invokes concrete
integration event handlers for a given module.

If the handling is successful, the message is removed from the inbox.

One of the difficulties i n event-driven systems is the possibil i ty of receiving the same message
mult iple times, so the handlers should be idempotent i f possible; the module can also
maintain a buffer of recent events to detect duplicates (not used i n the solution).

10Microsoft recommends using 3rd party DI providers, such as Autofac (https://autofac.org/).

51

http://autofac.org/

Another problem originates from the possibil i ty of handling events out of order, especially
when duplicates may occur as well . The basic idea is to keep failing unt i l the data required
for correct handling arrives (some handlers may require more granular error handling).

Request Handler

<

NIntegration Events

Integration Event
Publisher

RabbitMQ

Figure 3.20: Detai led diagram of a pipeline for reliable asynchronous publishing of integra
t ion events to the event bus. Th is entire pipeline is executed wi th in a single module.

r Module 1 =

Integration Event
Consumer

Integration Event B +
Event Handler Type

i _
Inbox Producer

Inbox Message B

Figure 3.21: Detai led diagram of a pipeline for reliable asynchronous consumption of inte
gration events from the event bus. A s il lustrated, a single event can be send to multiple
modules. In case a module has more consumers for a single event, each w i l l produce its
own inbox message w i t h a dedicated event handler.

Note that event handlers must not implement more than 1 atomic functionality (side ef
fect / t ransact ion) . Th is is because the execution of one functionality can be successful and
if the event handling is repeated due to the failure of others, the successful one would be
repeated as well (i.e. sending 1 email mult iple times). The solution does register a separate
inbox message per integration event consumption for flawless mult i -handl ing of a single
event wi th in a module (as i l lustrated i n figure 3.21).

52

3.5.4 Invite unreg is tered user workflow example

User Access Module

Inbox Outbox

Invite User Request
Created Event

Outbox Processor
' — ^

Outbox Processor
' — ^

Invite User Request
Created Event

Generate User Request
Created Event

Event Handler I Event Handler Event Handler

Invite User Request
Created Event

Event Handler Outbox Processor Event Handler Outbox Processor

- f r In Process Communication
=•> RabbitMQ Communication
• • • Background Processing Iteration
- > Successful Handling

Failed Handling

| j Component

Integration Event

| Persisted Data

Request Handling Logic

Figure 3.22: Simplified diagram i l lustrat ing the communicat ion wi th in and between modules
to create a user invi ta t ion. Note that the handling of the invite user request created event
failed several times un t i l the module eventually obtained the necessary data and arrived
to a consistent state for creating the invi ta t ion. In contrast to the workflow from the Clean
Architecture solution (figure 3.15), the system cannot immediately return 201 Created
because the system is eventual consistent, but rather returns 202 Accepted indicat ing that
the A P I request has been successfully processed. The diagram also omits integration events
sent to the notification module caused by the user and invi ta t ion creation.

53

3.6 Front end app

The entire frontend solution is available online as a repository on G i t H u b :

h t t p s : / / g i t h u b.com/ s k r a s e k m i c h a e l / M o d u l a r l n f o rma t ionSys t emFron tend

3.6.1 I m p l e m e n t a t i o n

The frontend applicat ion is implemented using the B l a z o r 1 1 fronted framework wi th a sep
arate hosting server from the backend and wi th Inter active Auto render mode (see below).

Since the Blazor appl icat ion logic can run both on the server and i n the client browser, it is
necessary to keep the authent icat ion/authorizat ion state accessible from both modes, that
is, by storing the J W T token i n a cookie.

App l i ca t ion U I is buil t using the Fluent U I 1 2 components l ibrary for Blazor by Microsoft,
u t i l iz ing the fluent design system and fluent icons.

To notify and propagate data and U I changes between components across the applicat ion,
a mediator pattern w i th a runtime message subscription capabilities is used; the M V V M
Communi ty Toolki t l ibrary implements such a mediator called messenger 1 3 (application
uses only the WeakRef erenceMessenger).

Project structure:

TeamUp/ frontend repository
s r c /

TeamUp/
|_Components/

wwwroot/...

Blazor hosting server assembly
server side components

static files

TeamUp.Client
AnonymousPages/

,_Components/
Layout/
Pages/

Blazor client assembly
pages accessible without login

components
appl icat ion layouts

pages requiring logged-in user

_ TeamUp.DAL..
, _ A p i /

Cache/ ...
Messages/
Services/

TeamUp.Contracts A P I contracts
data access components

A P I client
caching services

mediator messages
. . . . data access services

TeamUp.sin

11 https: //learn.microsoft.com/en-us/aspnet/core/blazor/
;

https: //github.com/microsof t/f luentui-blazor

'https://learn.mi crosof t. com/en-us/dotnet/communitytoolkit/mvvm/messenger

12
13

54

http://crosoft.com/en-us/aspnet/core/blazor/
https://learn.mi

Blazor

A S P . N E T Core Blazor is a . N E T frontend web framework for bui ld ing full-stack interactive
web applications and as such is the . N E T flagship for frontend development.

Blazor provides a single model for both server side and client side interactivi ty wri t ten
in C # wi th component-based architecture and several render modes:

• Static S S R where server renders non-interactive H T M L content. Th is is also used
for fast pre-rendering of content when using interactive modes.

• Interactive S S R (also used in Blazor Server) where client has open SignalR con
nection (Web Socket) to the server and interactive handling (button click, . . .) is
executed on the server side together w i th re-rendering of affected components.

• Interactive C S R (also used i n Blazor WASM) relies on . N E T runtime bu i ld w i t h
Web Assembly (W A S M) that is downloaded w i t h the applicat ion, a l l code is then
executed in the browser. Th is provides full access to functionality of the browser and
interop w i t h Java Script (D O M , local storage, etc.).

The ma in advantage of Blazor is the abi l i ty to combine interactive S S R and C S R together:

Start ing wi th . N E T 8.0, the first t ime web applicat ion is accessed, the interact ivi ty starts
on the server, and once the . N E T W A S M runtime and applicat ion are downloaded, the ap
plicat ion switches to the client-side interactivity, e l iminat ing the main drawback of Blazor
W A S M - the long download time. This render mode is called Inter active Auto, marking
that system automatical ly decides which render mode to use.

The framework also allows to specify the rendering mode per component, but it is not
allowed to have an applicat ion wi th interactive S S R and C S R at the same time.

A P I Client

There are several key aspects to the A P I client integration wi th the backend:

• C O R S - server C O R S settings allow A P I calls from the Blazor application.

• Token Injection - the A P I client automatical ly injects J W T tokens into A P I calls
when user is logged in .

• E r r o r Handl ing - since the backend A P I returns a problem detai l response (or val i
dation problem details) in case of errors, the A P I client can easily parse the responses
and act accordingly. If the A P I returns an unauthorized response code, the A P I client
logs the user out since the unauthorized code indicates token expiration.

• A P I calls vary based on interactive modes:

— SSR: Cal ls originate from the frontend server to the backend server A P I .

— C S R : Cal ls are made directly from the browser to the backend server A P I .

55

http://ASP.NET

Caching

Client-side caching can eliminate many network calls and therefore has the potential to im
prove performance more than the server-side caching, in addi t ion to using user resources.
However, the client-side caching introduces bigger chance for a user to work on inval id data,
since updates from other users cannot invalidate the client-side cache,

The cache-aside pattern is implemented using the browser's key-value local storage (see
figure 3.23), working as follows:

1. U I requests data (A P I contracts) v ia a D A L service.

2. D A L service calls to the Cache Facade w i th the following parameters: cache key,
A P I fallback endpoint, and cache lifetime. D A L services have methods for a l l G E T
endpoints al lowing to specify the cache lifetime per contract/endpoint .

3. The Cache Facade data lookup:

• O n cache hit - validates cache records lifetime expirat ion (cache miss on expired)
and returns cached data.

• O n cache miss - fetches data from the fallback A P I endpoint, caches them and
returns them to the D A L service.

One problem arises when a user logs out (intentionally or by token expiration) and the
data remains in the local storage. Hence, i f another user logs i n , the applicat ion displays
incorrect data and the user has read access to someone else's data unt i l the token expires.
Th is is resolved i n the applicat ion by also caching the cache owner, and clearing the cache
if the logged-in user differs from the cache owner. Th is allows reuse of the cached data
when re-logging in , however, the data is s t i l l accessible before logging i n and the applicat ion
provides a clear cache but ton for multi-user-single-browser situations (presumably unusual).

UI

Client Application
browser WASM

DAL Service

Cache Facac

•
t

API
backend server

communication
cache miss/cache record expired
requested data

Figure 3.23: A diagram showing the implementat ion of the cache-aside pattern wi th
a browner local storage serving as a cache storage and an A P I cal l as a fallback in case
of a cache miss. Note that the data is cached after each G E T request.

56

Client-side caching i n the Blazor applications is challenging due to the possibil i ty of running
the code both on the client-side and server-side, introducing problem to uniformly access
a cache. Tha t is why the diagram i n figure 3.23 has addi t ional Cache Service layer around
the local storage to provide different caching service on server-side and client-side.

Server-side rendering modes have following properties:

• In static S S R mode, the applicat ion does not have access to the browser resources and
the only caching option is to use server-side caching solution or some sort of H T T P
cache (both are undesirable due to incompat ib i l i ty w i th the client-side cache).

• In interactive S S R mode, the applicat ion has access to Java Script interop after a page
rendering, resulting in in i t ia l ly cal l ing the A P I and later in cache h i t /miss .

Possible solutions:

• One solution is to not use cache on the server, and always cal l A P I to retrieve data.

• Another solution mig th be to implement different caching mechanism on the server
(i.e. in-memory cache) and lose a l l cached data when switching to C S R . In such case,
it may be preferable to implement a robust caching mechanism on the backend server
and always ca l l the A P I to retrieve data in the Blazor applicat ion.

• The solution used i n the applicat ion is to not use the cache when the local storage is
unavailable (static SSR, early interactive S S R) , but otherwise to use it even though
cached data is transferred from the client to the server, processed there, and trans
ferred back to the client, because this approach maintains a single consistent cache
storage and the applicat ion can use these cached entries when switching to C S R mode.

Server

Figure 3.24: A diagram showing the implementat ion of the cache-aside pattern when the ap
plicat ion is running in the interactive server mode. Note that the Blazor hosting server can
be positioned either close to the server (e.g. on the same machine) or distr ibuted at the cloud
edge (close to the client), reducing communicat ion penalty either to the client or to the A P I ,
respectively.

57

3.7 Interesting parts

This section covers topics and parts of the solutions and development process that are not
the pr imary focus of this thesis, but may s t i l l be of interest to the reader.

3.7.1 E n c o u n t e r e d p r o b l e m s

W h i l e developing backend solutions, I encountered problems regarding technologies and
design choices that were challenging or interesting to solve.

Inbox Starvation

The inbox (outbox) starvation is a te rm coined by me 1 ' 1 to refer to a problem where the inbox
contains a sufficient number of integration events that continuously fail to be consumed,
and the entire consumption gets stalled because the background service keeps processing
the same failing events to preserve the order of events.

Th is can be addressed by continually increasing the delay between the consumption of failed
events, by delet ing/skipping events that have failed mult iple times, or by a combination
of both; the solution heavily depends on the concrete logic of integration event handlers.

Some integration event handlers may even count on repeated failures due to eventual consis
tency (waiting for data that w i l l be eventually available, see for example workflow diagram
in figure 3.22), this leads to a reduction of effectively consumed events per i teration or even
to temporary inbox starvation un t i l repeatedly failing events are successfully handled.

In the M o d u l a r M o n o l i t h solution, the outbox starvation is not a problem because the in
abil i ty to consume outbox messages indicates that the event bus is down (low probabili ty,
the appl icat ion should not work i n this case) or that there is a bug.

The Clean Archi tecture solution has the same problem wi th outbox starvation, because
the outbox and inbox are merged together. Since the system uses integration events only
for sending emails, failing to send should only delay the processing of other emails, but
there is a possibil i ty of a tailored attack targeting the inbox that could lead to starvation.
Moreover, the inbox starvation problem should be taken into account when adding more
asynchronous side effects to the system.

B o t h solutions implements measures of t racking the number of times a message failed to be
processed and continuously postponing the next processing of a given message. Th is also
potentially changes timings and durat ion of certain workflows that are based on wai t ing
in the inbox for an eventually consistent state (for example workflow diagram i n figure 3.22
might fail fewer times but take longer to complete.).

Note that designing strategies (postponing timings, growth rate, etc.) for handling repeated
message processing failures is a complex task and bad error handling strategy might crash
the entire system. Continuous moni tor ing and possible strategy adjustments are a good
start to address such problem. In addit ion, it would be possible to split the inbox/outbox
messages into groups wi th different error handling strategies or even specify a strategy
per integration event handler as a more granular approach.

1 4The analogy is that the system is starving for new events.

58

Mult ip le outboxes with MassTransit

MassTransi t is an excellent framework for bui ld ing distr ibuted systems (e.g. microservices)
w i th the abi l i ty to configure an outbox pattern, however, it is l imi ted to one database
context and one outbox per application, which leads to l imi ted usabil i ty i n a modular
monol i th applications.

Explored solutions:

• Different communicat ion framework, for example NServiceBus, might solve the prob
lem, but a brief study of the documentation have not confirmed this abi l i ty (it is not
the most requested feature) and migrat ing to/ learning a new framework is expansive.

• A single outbox for the entire modular monol i th i n a separate database schema and
transactions covering the module schema and the outbox schema is a possible solution,
but it moves away from the modular ("microservice-like") approach and may introduce
unintuit ive issues (odd behaviour during tests).

• M i m i c k i n g microservices i n the context of dependency injection (looking like a sin
gle executable) using a modular D I provider (e.g. Autofac) so that each module
registers its own services required by MassTransi t , including the database context
for the outbox, etc. Th is solution does not imply success, as there might s t i l l be
issues w i th registration of background services, plus switching D I providers is bo th
knowledge and resource intensive and the new provider may be incompatible w i th
other libraries.

• Solution used i n this thesis: custom implementat ion of inbox and outbox, and inte
grating them wi th MassTransi t as a transport layer, that includes:

— Definit ion/configuration of outbox and inbox messages, including db migrat ion.

— Implementation of background services for consuming the inbox and outbox (2
background services per module).

— W i r i n g MassTransi t consumers to respective module inbox.

This allows complete control over how the system should work, inducing inbox star
vation, but introduces extra work and complexity. C u s t o m solution might also be full
of bugs, inefficiencies, and bad design choices.

Implementing the outbox pattern for request-response communicat ion (commands/queries)
is unnecessary because the failure is propagated back to the request producer, which is:

A) Inside the integration event handler (the ma in use case), when the integration event
handler fails and the inbox pattern for integration events kicks in .

B) Inside the request processing logic, i n which case the request fails and the error mes
sage is delivered back to the A P I client (the user) who resolves the error accordingly.

Alternatively, MassTransi t offers the option to use In-Memory Outbox, which supposedly
ensures eventual consistency i n the event of a database or a message transfer fa i lure . 1 5

15

see https: //masstransit.io/documentation/patterns/in-memory-outbox

59

Value Objects in Ent i ty Framework Core

The E f Core supports mult iple ways of persisting and dealing w i t h value types:

• The E F Core has the abi l i ty to provide custom value conversions to serialize types
into a single column, which is most probably not a solution for a value object, because
the system loses the abi l i ty to effectively use object properties in queries.

This option might be useful for single-valued objects (i.e. strongly typed id) or
for types where querying over nested properties does not make sense or w i l l not
be used.

For example, the query capabil i ty over the R part of the RGB value seems pointless,
however, the abi l i ty to select only records where money value is in certain currency
(nested property of the money value object) may be desirable.

• Since version 2.0, the E F Core provides the Owned Ent i ty T y p e capability, as de
scribed i n the E F Cores documentation [16]; entities use impl ic i t keys, meaning that
a shadow i d is created so that the E F Core is able to keep track of them, which
contradicts the idea of a value object.

• A s of version 8.0, the E F Core introduces the Complex T y p e option. A n official
blog post about the version [26] highlights 2 main advantages over owned types:

— Complex types are not identified or tracked by key value.

— Complex types can be both . N E T value types (structs) and reference types.

The solutions use value converters for strongly typed ids and for password type (composed
from seed and hash values) without problems.

Unfortunately, the use of a complex type (EventReply composed from reply type and mes
sage) caused a problem when using GROUP BY over the reply type property:

The E F Core was throwing an exception that it was unable to bu i ld an S Q L query and
wanted to fetch a l l data from the database and perform grouping in-memory.

Possible solutions:

• Solution used in this thesis: removing the value object from the entity property and
using it only as contract in methods wi th manual mappings to entities properties.

• Another solution could be to use E F Core's abi l i ty to execute R A W S Q L queries and
bui ld the S Q L query manually, since the database has the actual properties available
in separate columns for available grouping.

• P robab ly the best solution would be to embrace the C Q R S pattern and use a more
lightweight approach for querying the data, like a direct S Q L client or preferably
a micro O R M framework, which would most l ikely lead to better performance.

Al though attempts to reproduce this error have been made, they have not been succesful,
and using GROUP BY in similar situations resulted in the correct and expected behaviour.

60

3.7.2 R e s u l t P a t t e r n a n d R a i l w a y O r i e n t e d P r o g r a m m i n g

The entire applicat ion solution leverages the result pattern for error handling, and most
of the business logic takes advantage of railway-oriented programming to provide cleaner
and easier-to-understand code.

To avoid code dupl ic i ty between the clean architecture solution and the modular monol i th
solution, as well as the possibil i ty of future usage, a decision to publ ish the result pattern
implementation and railway-oriented extension methods as separate nuget packages 1 6 has
been made.

Result Pattern

The result pattern, result object or operation result, is a way to control error handling
in an applicat ion without the use of exceptions, as the exception handling (try-catch blocks)
branches the code, thereby reducing code clar i ty and obscuring the underlying business
logic. Another drawback of using exceptions might be the performance, as throwing an ex
ception is an expensive operation. O n the other hand, the abi l i ty to trace the exact location
of the thrown exceptions in code (stack trace) brings superior debugging experience.

The result object is a discriminated union of success state and failure state, where
the operation (method) returns a success result i f no error occurred, and a failure result i f
some sort of error/exception case occurred (validation error, 10 error and so on). The result
object also carries the returned operation value i n case of a success state, or error details
(error code, message) i n case of a failure state.

In the context of web applications providing R E S T A P I s , the result object can be mapped
to the corresponding ht tp response - O k / C r e a t e d / A c c e p t e d / . . . for a successful result, and
in the case of a failed result, the error can be mapped to the problem details 1' w i th
appropriate details including status code (B a d R e q u e s t / N o t F o u n d / C o n f l i c t / . . .) and other.

Predefined error types for result pattern:

• AuthenticationError - authentication failure (invalid credentials).

• AuthorizationError - forbidden to perform operation/forbidden access.

• V a l i d a t i o n E r r o r - inval id input request parameter.

• NotFoundError - domain object not found.

• Conf l i c t E r r o r - existing conflicting domain object, concurrency conflict, etc.

• DomainError - broken business rule that does not fit into other errors types.

• InternalError - unexpected behaviour (uncaught exception, bug, etc.).

Us ing the impl ic i t operators feature in C-Sharp, the boilerplate for creating the result object
can be removed, and therefore the error types and returning values impl ic i t ly create a new
result object (see example i n figure 3.25).

1 6

https: //github.com/ skrasekmichael/RailwayResult
17

https://datatracker.ietf.org/doc/html/rfc7807

61

https://datatracker.ietf.org/doc/html/rfc7807

p u b l i c Result SetMemberRole(UserId i n i t i a t o r l d , TeamMemberld memberldj TeamRole newRole)
{

i f (newRole.IsOwner())
return Errors.CannotHaveMultipleTeamOwners;

var i n i t i a t o r R e s u l t = GetTeamMemberByllserld(initiatorld);
i f (i n i t i a t o r R e s u l t . I s F a i l u r e)

return i n i t i a t o r R e s u l t . E r r o r ;

i f (!initiatorResult.Value.Role.CanUpdateTeamRoles())
return Errors.UnauthorizedTollpdateTeamRoles;

var memberResult = GetTeamMember(memberld);
i f (memberResult.IsFailure)

return memberResult.Error;

i f (memberResult.Value.Role.IsOwner())
return Errors.CannotChangeTeamOwnersRole;

memberResult.Value.UpdateRole(newRole);
return Result.Success;

}

Figure 3.25: Code example of using the result pattern in the SetMemberRole method of
the team aggregate, where Errors is a static class containing predefined errors.

Railway Oriented Programming

Railway-oriented programming (R O P) is an approach to error handling i n functional pro
gramming. The name comes from an analogy presented by Scott Wlasch in at the N D C
London 2014 conference [28], which presents the flow through a program as a railway wi th
2 tracks, a success track and a failure track, and for each operat ion/method the state can
switch to failure track i f an error occurs (see figure 3.26).

Validate UpdateDb SendEmail
jiiMMifjumMmmumfm

Figure 3.26: A n example of a program flow where each function can throw an error and
switch the state to the failure track, thus not invoke the following functions. This example
it taken from the presentation slides from the [28] blog post.

Th is is a natural extension of the result pattern as the result object representa a state
on the railway (either success or error) and the methods returning result pattern act as
switches on the program railway.

However, in classical programming using the result pattern, the result object is only returned
and not taken as an input i n the methods, and it is undesirable for each function to take

62

the result object as a parameter and have a l l the original parameters as a nested value
of the result object. The solution is to introduce functional extension methods on the result
object that always check the state of the result object and then apply the logic wrapped
in the passed parameter.

M a i n extension methods:

• .Ensure(predicate, error) - validates whether the value meets the condit ion on
the success track, or returns the error (switches to failure track).

• . Then (mappingFunction) - maps the value of the result object on the success track
to a new value (also called .Map) . If the mapping function returns a failure result, it
returns its error (switches to failure track).

• .Tap(function) - invokes a function (side effect) on the success track but does not
change the type of the result object. If the mapping function returns a failure result,
it returns its error (switches to failure track).

• .And(mappingFunction) - generates another value using the mapping function on
the success track and encapsulates it w i th the in i t i a l value inside the result object.

To fully uti l ize R O P i n the . N E T , the asynchronous variants of the methods need to be
implemented to perform non-blocking operations.

p u b l i c Result SetMemberRole(UserId i n i t i a t o r l d , TeamMemberld memberld, TeamRole newRole)
{

return newRole
.Ensure(Rules.RolelsNotOwner, Errors.CannotHaveMultipleTeamOwners)
.Then(_ => GetTeamMemberByUserld(initiatorld))
.Ensure(Rules.MemberCanUpdateTeamRoles)
.Then(_ => GetTeamMember(memberld))
.Ensure(Rules.MemberlsNotTeamOwner, Errors.CannotChangeTeamOwnersRole)
.Tap(teamMember => teamMember.UpdateRole(newRole))
.ToResultQ;

}

Figure 3.27: Code example of the same SetMemberRole method i n the team aggregate
as i n figure 3.25, but u t i l iz ing railway-oriented programming. Rules is a static class w i th
predefined rules, that is, predicates and predicates w i th preassigned appropriate errors.
The .ToResultO method drops the wrapped value and returns pla in result object. Th is
is a copy of the exact code used i n the solution source code.

Even though the R O P results i n shorter and (hopefully) cleaner code, there are a few
drawbacks mentioned by Scott Wlasch in [29].

The main disadvantage of railway-oriented programming is performance, since when us
ing R O P the code loses the abi l i ty to return early from a function (aka fail fast), thus
introducing the necessity to go through the entire railway statement even i f an error occurs
in the first method.

Furthermore each method of railway statement has an overhead of at least 1 track check and
an al location of data (parameters and possible new result), and even more for asynchronous
variants as the methods bootstrap a state machine and allocate more data.

63

3.7.3 D a t a b a s e C o n c u r r e n c y Conf l i c t s

The E F Core does not support mult iple parallel operations running on the same database
context, so i n A S P . N E T Core applications, contexts are scoped per ht tp request, meaning
that there may be 2 (or more) concurrent modifying requests to the same record without
the contexts knowing and addressing this conflict.

If a concurrent request modifies the same record at the t ime of checking the business
rules (after fetching data from the database but before commit t ing changes), the in i t i a l re
quest transaction w i l l conclude wi th possibly incorrectly evaluated business rules or update
the record to a new value calculated from the in i t ia l ly fetched data, resulting i n data loss
and leaving the database i n an inconsistent state. Th is phenomenon is also known as a race
condition.

A n example of data loss when updat ing account points:

req A
req B
req B
req A

get points -> pointsA = 100
get points -> pointsB = 100
set points -> points = pointsB - 50 = 50 -> commit 50
set points -> points = pointsA + 50 = 150 -> commit 150

? ctS cl result, request B loses its effect.

Inconsistent state example when reserving tickets:

req A
req B
req A
req B

get number of a v a i l a b l e spots -> availableA = 3
get number of a v a i l a b l e spots -> availableB = 3
reserve 2 t i c k e t s -> availableA - 2 >= 0 -> commit reservationA
reserve 3 t i c k e t s -> availableB - 3 >= 0 -> commit reservationB

-> resulting in reservation of 2 extra spots over the capacity.

One way to solve this is to lock the database record for the durat ion of a business transaction
(from fetching data t i l l commit t ing the transaction, requires holding an open connection),
this is also known as pessimistic locking. Th is affects performance as locking is not
a cheap operation, and other transactions affecting same record must wait un t i l the exclusive
lock is released, which can lead to a potential deadlock. Another downside of pessimistic
locking is that it is not supported by E F Core out of the box.

Optimist ic Locking

The other solution is to use optimist ic locking, which does not use any locks, and w i l l fail
to update if the data has changed since it was loaded. The idea is to have an addi t ional
property (aka a concurrency token) on the record indicat ing the record's version, based
on which the system detects that the data has been changed since fetching.

This approach is directly supported by E F Core and the concurrency token implementat ion
varies across databases [17]:

• S Q L Server - uses impl ic i t hidden auto-updating column rowversion containing
t imestamp of last modification (data type is byte []).

• Pos tgreSQL - uses impl ic i t hidden auto-updating column xmin containing the I D
of the latest updat ing transaction (data type is uint, see figure 3.28).

64

http://ASP.NET

The E F Core then always fetches the concurrency token when retrieving data of record
wi th the concurrency token. A l though this results in overhead, it is s t i l l more efficient than
pessimistic locking, assuming a low probabi l i ty of concurrency conflict.

protected o v e r r i d e void ConfigureEntity(EntityTypeBuilder<TeamMember> teamMemberBuilder)
{

teamMemberBuilder
.Property(teamMember => teamMember.Nickname)
.IsRequired()
.HasMaxLength(255);

teamMemberBuilder
.Property<uint>("RowVersion")
.IsRowVersionQ;

}

Figure 3.28: Code sample configuring E F Core (ut i l iz ing IEntityTypeConf i g u r a t i o n in
terface) to use a property of the TeamMember entity as a concurrency token. Note that
the code does not expl ic i t ly reference the property, but rather uses a shadow property,
meaning the property exists in database as a column but does not exist i n the domain
object itself, and thus does not pollute the domain wi th properties w i t h no business value.

The concurrency token most probably does not need to be i n every entity because the race
condit ion may not always cause a problem, wi th regards to the TeamUp application:

• User entity needs a concurrency token as the entity has a NumberOfOwnedTeams
column used to solve the enforcing of the business rule (max number of owned teams)
in a race condit ion when concurrently creating teams by the same user. The conflict
w i th concurrent creation of users w i th the same email is solved by a unique constrain.

• Team entity requires a concurrency token since this entity, s imilar ly to the User entity,
has a column (NumberOfMembers) that is used to solve the enforcing of the business
rule (max number of members) i n a race condit ion when concurrently adding new
members to the same team.

• TeamMember entity requires a concurrency token because concurrent requests to change
a team ownership may leave the team wi th mult iple owners.

• Event entity has to have a concurrency token as concurrent changes to the event may
leave the record i n an inval id state - f.e., changes of start and end dates.

• Event Type and EventResponse entities do not require a concurrency token since con
current modification does not leave the system i n an inconsistent state and data loss is
irrelevant. The race condit ion resulting from concurrent creation of EventResponse is
solved by a unique constraint on the composite index (eventld and teamMemberld).

• I n v i t a t i o n entity does not have mutable columns and concurrent creating of invi ta
tions is solved by a unique constraint on the composite index (teamld and userld).

Note that these solutions describe the clean architecture solution, the modular monol i th
solution is mostly the same, some entities are just spl i t /copied into mult iple db schemas.

65

3.7.4 Integrat ion T e s t i n g

In integration and end-to-end (E2E) testing, there is the question of whether to test w i th real
service instances or in-memory mocks/versions, especially for testing database integration.

The advantage of mocking service dependencies v i a in-memory alternatives is performance
as tests run really fast and can be run i n parallel .

The disadvantage is that some services may not have in-memory versions (E F Core does
provide opt ion to use db context around in-memory database), moreover, the in-memory
mocks-ups may differ from the real implementat ion (i.e. database transactions . . .) and
therefore change the way the system works i n testing and production.

For E 2 E testing, the appl icat ion is tested wi th real instances of database and bus (for mod
ular monol i th solution) and the ma i l server is mocked w i t h in memory inbox. The testing
is implemented using x U n i t 1 8 as a testing framework and following libraries:

• TestConta iners 1 9 for running docker containers of real services, such as postgres or
R a b b i t M Q , and using them for E 2 E testing of the applicat ion.

• Fluent Assert ions 2 0 for providing a more natural way of specifying expected outputs.

• R e s p a w n 2 1 by J i m m y Bogard for resetting database between tests.

• B o g u s 2 2 for deterministic generation of fake testing data.

• Microsoft. AspNetCore. Mvc. Testing package providing A S P . N E T Core applicat ion
factory configurable for testing purposes and running it in-memory.

Us ing the x U n i t ' s Collection Fixtures, a l l E 2 E tests are run against the same services:
the backend, the database and the service bus. These services are ini t ia l ized at the start
and x U n i t then runs a l l tests sequentially:

0. Init: reset database into in i t i a l state using the Respawn l ibrary, reset addi t ional
properties used for testing (inbox, counters, datetime provider and so on).

1. Arrange: generate testing data using the Bogus l ibrary and custom extension meth
ods on top of it , persist data into the database or use them as payload, authenticate.

2. Act: send H T T P request against the tested endpoint of the app running i n memory.

3. Assert:

• Test correct H T T P response code and error response.

• Test correct response payload when requesting query using the FluentAsser-
tuions l ibrary and the object graph comparison feature.

• Test correct database state when requesting Command .
1 8

https: //xunit .net/
1 9

https: //testcontainers.com/
2 0

https: 111luentassertions.com/
2 1

https: //github.com/ jbogard/Respawn
2 2

https: //github.com/bchavez/Bogus

66

http://ASP.NET
http://luentassertions.com/

[Theory]
[InlineData(TeamRole.Member)]
[InlineData(TeamRole.Coordinator)]
[InlineData(TeamRole.Owner)]
p u b l i c async Task GetTeam_AsTeamMember_Should_ReturnTeam(TeamRole i n i t i a t o r R o l e)
{

//arrange
var i n i t i a t o r U s e r = UserGenerators.User.GenerateQ;
var members = UserGenerators.User.Generate(19);
var team = TeamGenerators.Team

.WithMembers(initiatorUserj i n i t i a t o r R o l e , members)

.Generate();

await UseDbContextAsync(dbContext =>
{

dbContext.Users.AddRange(members.With(initiatorUser));
dbContext.Teams.Add(team);
return dbContext.SaveChangesAsync();

});

A u t h e n t i c a t e (i n i t i a t o r U s e r) ;

//act

var response = await Client.GetAsync(GetUrl(team.Id));

// a s s e r t
response.Should().Be200Ok();
var teamResponse = await response.ReadFromDsonAsync<TeamResponse>();
team.Should().BeEquivalentTo(teamResponse);

}

Figure 3.29: Code sample from the Clean Archi tecture solution of E 2 E test against a G E T
endpoint. Note that the test is wri t ten using the A A A pattern.

Testing Eventual Consistency

The system consists of components that respond to a backend request w i th a delay and
only after the request is completed, thus introducing eventual consistency (e.g. sending
emails, but mainly propagating data between modules i n the modular monoli th) . Testing
eventual consistency might be challenging since wait ing for a fixed amount of t ime may be
inefficient and lead to nondeterministic test results.

In this case, the solution was to introduce callback invocations to desired components
in testing environment and wait for these callbacks after a request (with timeout to avoid
livelock), where desired components are:

• Outbox processor (background job) in the Clean Archi tecture solution, because after
the outbox processing completes, the integration event raised by the request is handled
or the handling has failed (test failed and caught a bug).

• Inbox consumer (called by background job) i n the Modu la r M o n o l i t h solution w i t h
separate callback for each integration event handler invoked when successfully han
dled. In testing, it is necessary to specify for which (or multiple) integration event
handler the test needs to wait (see figure 3.30).

67

The implementat ion of the callback mechanic uses the C-sharps TaskCompletionSource<T>
feature 2 3 , which enables the abi l i ty to wait for a result of a task (waiting for a callback)
and set a result of that task from different/concurrent thread (invoking the callback).

//clean a r c h i t e c t u r e
await WaitForIntegrationEvents();

//modular monolith
await WaitForIntegrationEventHandler<TeamManagement.UserCreatedEventHandler>();
await WaitForIntegrationEventHandler<Notifications.EmailCreatedEventHandler>();

Figure 3.30: Rough code example of the methods used in the solutions for wait ing for
the completion of integration event handlers. Note that i n the modular monoli th , each
module may have a handler for a given event, so a dist inct ion by module needs to be used.

Testing Race Condit ions

To test that the measures against concurrency conflicts and race conditions (mentioned
in section 3.7.3) work, it is necessary to be able to force a conflicting si tuation.

Us ing the previously mentioned callback mechanic, it is possible to adjust the SaveChanges
method of the unit of work pattern that is used to persist changes and introduce before
commit and can commit callbacks to enforce a conflicting si tuation (see figure 3.31).

Req B

wait for
beforeCommit

Req A - 1 Req A - 1

ver 1

1 wait for 1
canCommit |

1 1

ver 1

waiting for callback

callback

server-side code

fetching data

domain logic

commiting changes

ver 2

Figure 3.31: D iag ram showing the enforcement of a conflicting si tuation between 2 requests
by delaying commit t ing changes of request B t i l l request A is ini t ia ted and fully processed.

3

https: //learn.mi crosoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1

68

http://crosoft.com/en-us/dotnet/api/

3.7.5 A r c h i t e c t u r e T e s t i n g

A s the project grows, it is essential to ensure that a l l developers follow the architecture rules
and D D D principles to take advantage of the architecture design and to avoid introducing
bugs and unwanted coupling that would lead to the big ba l l of mud.

. N E T compiler - Ros lyn - provides a powerful A P I surface for bui ld ing code analysis
tools and as such can be used to develop analyzers that flag violations of architecture rules
and guidelines at compile t ime and subsequently suggest fixes.

However powerful and versatile analyzers can be, their development is not cheap (in terms
of knowledge) as a developer may need to understand static code analysis, compiler theory
and framework for bui ld ing the analyzers - something that a t radi t ional backend developer
does not.

A n alternative approach taken i n the development of Team Up is to create tests using a spe
cialized library, such as Net A r c h T e s t 2 ° , w i th a basic knowledge of reflection (known by
a generic backend developer) to test rules like:

• dependency rules - dependency of types i n assembly/namespace on types from another
assembly/namespace (i.e. clean architecture dependency tests, see figure 3.32).

• type naming conventions - e.g. a domain event must have a DomainEvent suffix.

• type properties - types have to be abstract/stat ic/sealed/read-only etc.

• type existence - for instance, class representing Command contain a nested validator.

• D I rules - service can be injected only into certain classes (assuming injection v i a con
structors, i.e. query context can be injected only into query handlers).

[Theory]
[I n l i n e D a t a (A p p l i c a t i o n)]
[I n l i n e D a t a (I n f r a s t r u c t u r e)]
[I n l i n e D a t a (P r e s e n t a t i o n)]
p u b l i c void Domain_Should_NotHaveDependencyOn(string dependency)
{

var r e s u l t = Types.InAssembly(DomainAssembly)
.ShouldQ
.NotHaveDependencyOn(dependency)
.GetResultQ;

r e s u l t . I s S u c c e s s f u l . S h o u l d () . B e T r u e () ;
}

Figure 3.32: Code sample of a dependency test from the Clean Archi tecture solution testing
whether the D o m a i n layer depends on any types from the Appl i ca t ion , Presentation, or
Infrastructure layers. Noteworthy is that the M o d u l a r M o n o l i t h solution has more complex
and more important dependency tests (see repository i n section 3.5), as it has to follow
more complex dependency rules to avoid the big ba l l of mud.

https: //github.com/dotnet/roslyn

'https://github.com/BenMorris/NetArchTest

69

http://'https://github.com/BenMorris/NetArchTest

Chapter 4

Conclusion on selected
architectures and their comparison

This chapter summarizes my final thoughts on selected architectures - Clean Architecture
(section 4.1) and Modu la r M o n o l i t h (section 4.2) - after developing a demo applicat ion
in both architectures while applying domain-driven design principles.

4.1 Clean Architecture

The clean architecture is more modular than the t radi t ional layered architectures, especially
when integrating wi th external systems (databases, email ing services, etc.), providing easier
exchangeability of such systems. Compare to more modular architectures, it may be difficult
to implement larger systems.

The architecture does not really invite the applicat ion of D D D strategy design since it is
difficult to implement/separate bounded contexts and i n the demo applicat ion it seemed
counterproductive to do so. However, the D D D tact ical design is easily applicable and
introduces positive effects on the system (rich domain, clear boundaries between entities,
etc.).

F rom the way the clean architecture is interconnected, it is not the most suitable architec
ture for migrat ing to microservices.

The main advantage of clean architecture is the benefit of rapid development i n early devel
opment stages while retaining decent maintainabi l i ty as the system grows. A d d i n g features
to the system does change mult iple layers, which l imits development i n larger/mult iple
teams. It is therefore not suitable for larger systems.

In my opinion, the clean architecture together w i t h D D D provides a good solution for mid-
level information systems wi th basic modular i ty or for implementing modules (in a modular
monolith) or services (in a microservice architecture).

Given the scale of the demonstration application, its business complexity and technical
requirements, a clean architecture wi th D D D tact ical design and C Q R S seems fitting.

70

4.2 Modular Monol i th

The modular monol i th architecture excels i n modular i ty (as the name suggests) and can
match microservices in its abi l i ty to implement large-scale information systems.

The separation into modules works well w i th the D D D strategy design, as a module can rep
resent a bounded context and the strict rules between modules mimic the nature of bounded
contexts. A module can then be implemented in whatever manner, but implementing mod
ules using a clean architecture and D D D tact ical design has proven itself.

Because a system is decomposed into modules s imilar ly to microservice, the architecture
can leverage its benefits for developer product iv i ty in large/mult iple teams and large infor
mat ion systems. The similarities w i th microservice architecture imply an easy (relatively
speaking) t ransi t ion to microservices, al though it depends on the level of modular i ty and
isolation chosen to implement a modular monoli th .

M o d u l a r monol i th introduces mult iple complexities (as encountered i n developing of demo
application - communicat ion problems, eventual consistency complexity, etc.) and is s t i l l
vulnerable to poor design choices, resulting in dis tr ibuted monol i th .

I a m of the opinion that the modular monol i th is the ideal start ing architecture for large
enterprise-wide systems, however, it is uncommon to start bui ld ing enterprise system out
of nothing and it is hard to know whether a system becomes large-enough. Introducing this
architecture for a smaller project (similar to microservices) brings unnecessary complexity.

The development of the demo applicat ion had not produced problems that a modular mono
l i th is designed to solve, and the use of the modular monol i th seemed excessive. A l though
some changes appeared cleaner/easier i n the modular monol i th (e.g. adding background
services for cleaning inval id data), such occurrences were min ima l and to properly see the
benefits of modular monol i th , either further experiments on the same applicat ion would
need to be made, or a large-scale appl icat ion in large teams would have to be developed
(which is not coverable i n a thesis).

Due to complexities i n modular monol i th , a more convenient approach might be to start
a project w i th a modular monol i th architecture w i th a lower lever of modular i ty (in-process
communication, etc., or even use a clean architecture) and later migrate to fully modular
monol i th w i th microservices-like aspects.

71

Chapter 5

Conclusion

The a i m of this thesis was to study and explore architectures for bui ld ing modular mono
l i thic information systems wi th domain-driven design and pract ical ly demonstrate two
of the architectures on a chosen application.

The personal goal was to level-up my software engineering skills by s tudying currently pop
ular architectures and accumulating addi t ional knowledge on bui ld ing information systems
along the way, hence the scope of my own assignment.

In the context of meeting assignment objectives, I have:

• extensively studied the domain-driven design principles and explored several archi
tectures for bui ld ing modular information systems (1th objective):

• selected less and more modular architectures for deeper and pract ical exploration:
Clean Archi tecture and M o d u l a r M o n o l i t h (2th objective):

• implemented demonstration applicat ion in both architectures and designed the do
main using the D D D (3th objective), while continuously implementing end-to-end
tests to validate correct functionality (4th objective extension):

• implemented frontend applicat ion to verify pract ical A P I usabil i ty of the backend
solutions (4th objective) and introduced client-side cache (4th objective extension):

• summarized gathered experience on the selected architectures from the development
process and stated my opinions in the context of applicat ion maintainabil i ty, exten
sibility, etc. in the penultimate chapter (5th objective).

In addit ion, the thesis contains a chapter covering parts of the development process that
are outside the ma in scope of the thesis, but s t i l l may be interesting to the potential reader.

To explore and analyse more of the architectures' capabilities, addi t ional extensions/exper
iments can be performed on the implemented solutions, such as:

• Changing the core domain to support new functionalities.

• A d d i n g features and new technologies (e.g. real-time notifications using web sockets)
or changing support ing infrastructure technology (database, event-bus provider, etc.).

• Transi t ioning implemented solutions to microservices architecture.

72

Bibliography

[1] B A B A , D . Using Clean Architecture to ensure Separation of Concerns [online]. 19.
October 2022 [cit. 2024-01-21]. Available at: https://medium.com/Odorinbaba/using-

clean-architecture-to-ensure-separation-of-concerns-c4a9b7d8fOcl.

[2] B O G A R D , J . A better domain events pattern [online]. 13. may 2014 [cit. 2023-01-05].
Available at:
https: //lostechies.com/ j immybogard/2014/05/13/a-better-domain-events-pattern/.

[3] B O G A R D , J . Vertical Slice Architecture [online]. 19. apr i l 2018 [cit. 2023-12-4].
Available at: https: //www.j immybogard.com/vertical-slice-architecture/.

[4] C E S A R D E L A T O R R E , W A G N E R , B . and R o u s o s , M . .NET Microservices.

Architecture for Containerized .NET Applications [ebook]. 7th ed. Microsoft
Developer Div i s ion , 2023. Available at: https://raw.githubusercontent.com/dotnet-

architecture/eBooks/main/archives/microservices/NET-Microservices-
Architecture-for-Containerized-NET-Applications-7.0.pdf.

[5] E V A N S , E . Domain-Driven Design: Tackling Complexity in the Heart of Software. 1st
ed. Addison Wesley, august 2003. I S B N 0-321-12521-5.

[6] F O W L E R , M . Un i t of Work . In: F O W L E R , M . , R I C E , D . , F O E M M E L , M . , H I E A T T , E . ,

M E E , R . et a l . , ed. Patterns of Enterprise Application Architecture. 1st ed. Add i son
Wesley, November 2002, chap. 11. Object-Relat ional Behavioral Patterns, p. 166-174.
I S B N 0-321-12742-0.

[7] F O W L E R , M . AnemicDomainModel [online]. 25. november 2003 [cit. 2023-12-11].
Available at: https: //www.martinf owler.com/bliki/AnemicDomainModel.html.

[8] F O W L E R , M . CQRS [online]. 14. July 2011 [cit. 2024-01-20]. Available at:
https: //mart infowler.com/bliki/CQRS.html.

[9] F O W L E R , M . BoundedContext [online]. 15. January 2015 [cit. 2023-12-10]. Available at:
https: / / mart inf owler. com/bliki/BoundedContext.html.

[10] F O W L E R , M . MonolithFirst [online]. 3. June 2015 [cit. 2023-12-11]. Available at:
https: //mart inf owler.com/bliki/MonolithFirst.html.

[11] H A N S E L M A N , S. and A R C O V E R D E , R . Engineering Stack Overflow with Roberta
Arcoverde [podcast]. Scott Hanselman, 30. June 2022 [cit. 2024-01-24]. Available at:
https:

//hanselminutes. com/847/engineer ing-stack-overf low-with-roberta-arcoverde.

73

https://medium.com/Odorinbaba/using-
http://www.j
http://immybogard.com/vertical-slice-architecture/
https://raw.githubusercontent.com/dotnet-
http://www.martinf
http://owler.com/bliki/AnemicDomainModel.html
http://infowler.com/bliki/CQRS.html
http://owler.com/bliki/MonolithFirst.html

[12] J O V A N O V I C , M . Modular Monolith Communication Patterns [online]. 5. august 2023
[cit. 2024-01-23]. Available at:
https: //www. milan jovanovic. tech/blog/modular-monolith- communication-patterns.

[13] J O V A N O V I C , M . Modular Monolith Data Isolation [online]. 9. december 2023 [cit.
2024-01-23]. Available at:
https: //www.milan jovanovic.tech/blog/modular-monolith-data-isolation.

[14] L L O U S A S , A . Designing DDD aggregates [online]. 26. October 2022 [cit. 2024-01-27].
Available at:
https: //medium.com/@albert.llousas/designing-ddd-aggregates-db633f leaf 88.

[15] M E D H A T , N . Why Strategic Design Matters in Domain-Driven Design [online]. 9.
may 2023 [cit. 2024-01-27]. Available at: https://towardsdev.com/why-strategic-
design-matters- in-domain-driven-design-5ea56b0ee219.

[16] M I C R O S O F T D E V E L O P M E N T T E A M . Entity Framework Core Documentation: Owned
Entity Types [online]. Microsoft Corporat ion, may 2023 [cit. 2024-05-02]. Available
at: https : //www.npgsql.org/ef core/modeling/concurrency.html.

[17] N P G S Q L D E V E L O P M E N T T E A M . Npgsql Entity Framework Core Provider
Documentation: Concurrency Tokens [online]. Npgsql , 2023 [cit. 2024-03-25].
Available at: https: //www.npgsql.org/ef core/modeling/concurrency.html.

[18] O Z K A Y A , M . CQRS Design Pattern in Microservices Architectures [online]. 8.
September 2021 [cit. 2024-01-20]. Available at:
https: //medium, com/design-microservices-architecture-with-patterns/cqrs-

design-pattern-in-microservices-architectures-5d41e359768c.

[19] O Z K A Y A , M . Outbox Pattern for Microservices Architectures [online]. 8. September
2021 [cit. 2024-01-20]. Available at:
https: //medium, com/design-microservices-architecture-with-patterns/outbox-

pattern-for-microservices-architectures-Ib8648dfaa27.

[20] R O B E R T C . M A R T I N . The Clean Architecture [online]. 13. august 2012 [cit.
2023-12-12]. Available at:
https: //blog.cleancoder.com/uncle-bob/2012/08/ 13/the-clean- architecture.html.

[21] R O B E R T C . M A R T I N . Clean Architecture: A Craftsman's Guide to Software Structure
and Design. 1st ed. Pearson, September 2017. I S B N 978-0-13-449416-6.

[22] S I R A J U L H A Q . Introduction to Monolithic Architecture and MicroServices
Architecture [online]. 2. may 2018 [cit. 2023-11-26]. Available at:
https: //medium, com/koderlabs/introduction-to-monolithic-architecture-and-

microservices-architecture-b211a5955c63.

[23] S M I T H , S. "ardalis". Architecting Modern Web Applications with ASP.NET Core and
Microsoft Azure [ebook]. 7th ed. Microsoft Developer Div i s ion , 2023. Available at:
https: //raw.githubusercontent.com/dotnet-architecture/eBooks/main/ar chives/

architecting-modern-web-apps-azure/Architecting-Modern-Web-Applications-with-

ASP.NET-Core-and-Azure-v7-0.pdf.

74

http://www.milan
https://towardsdev.com/why-strategic-
http://www.npgsql.org/ef
http://www.npgsql.org/ef
http://cleancoder.com/uncle-bob/2012/08/
http://ASP.NET
http://githubusercontent.com/dotnet-architecture/eBooks/main/ar
http://ASP.NET-

[24] V E R N O N , V . Effective Aggregate Design Part II: Making Aggregates Work Together
[online]. 1. October 2011 [cit. 2023-01-05]. Available at: https:
//www.dddcommunity.org/wp-content/uploads/f il.es/pdf_art icl.es/Vernon_201 l_2.pdf.

[25] V E R N O N , V . Implementing Domain-Driven Design. 1st ed. Addison Wesley, february
2013. ISBN 978-0-321-83457-7.

[26] V I C K E R S , A . EF Core 8 RC1: Complex types as value objects [online]. 12. September
2023 [cit. 2024-05-02]. Available at:
https: //devblogs.microsoft.com/dotnet/announcing-ef8-rcl/.

[27] W E S T E I N D E , K . Deconstructing the Monolith: Designing Software that Maximizes
Developer Productivity [online]. 21. february 2019 [cit. 2024-01-26]. Available at:
https: //shopif y.engineering/deconstructing-monolith-designing-sof tware-
maximizes-developer-productivity.

[28] W L A S C H I N , S. Railway Oriented Programming [online]. 14. march 2014 [cit.
2024-03-21]. Available at: https://fsharpforfunandprofit.com/rop/.

[29] W L A S C H I N , S. Against Railway-Oriented Programming [online]. 20. december 2019
[cit. 2024-03-21]. Available at:
https: / / f sharpforfunandprofit.com/posts/against-railway-oriented-programming/.

75

http://www.dddcommunity.org/wp-content/uploads/f
http://il.es/pdf_art
http://icl.es/Vernon_201
http://microsoft.com/dotnet/announcing-ef8-rcl/
https://fsharpforfunandprofit.com/rop/
http://sharpforfunandprofit.com/posts/against-railway-oriented-programming/

Appendix A

Contents of the included storage
media

/
_ Figures/ created vector figures and original pictures taken
_ Sources/

CleanArchitecture/ clean architecture solution sources
ModularMonolith/ modular monol i th solution sources

— Frontend/ frontend solution sources
_Thesis/ a l l th ing necessary for bui ld ing thesis pdf
— t h e s i s .pdf this thesis i n online format
. README. md basic information about the repository
.gitmodules

76

Appendix B

Applicat ion Screenshots

Team Up

^ ^ ^ ^

Obi-Wan Kenobi
obiwan@kenobi.com

CÖJ Teams

I gl Rebeis

§,% Jedi Council

gS Jedi Order

- | - New Team

EJÜ) Events

ES M y l nvitations

^ Account

Clear Cache

Rebels o

Nickname: Ben

Rcle: Owner

W Delete Tea

Event Typ*

Name

Invi tat ions

Email

luke@skywalk

han@solo

Invite User

Email *

na me@examp I e.com

Copyright © Michael Skräsek 2024 as part of the Master's thesis at BUT

Figure B . l : Screenshot of the invite user prompt panel.

Cancel

77

mailto:obiwan@kenobi.com

^ ^ ^ ^

Obi-Wan Kenobi
obiwan@kenobi.conn

I

•on
crj] Teams

t?3

Jedi Council

°% Jedi Order

- | - New Team

(OD Events

E§ My Invitations

< ^ Account

Clear Cache

Jedi Order g

Nickname: General Kenobi f

Role: Admin

Leave Team I Create Event I Events

Event Types

Name Description

Force Train... Force Train...

New Event Type

Action

Invi tat ions G

Email Created At Action

No data to show!

M e m b e r s (6)

Nickname

Voda

Plo Koon

Team Role T

Admin

General Kenobi Admin

Coordinator

Ana kin Skywal... Member

Kit Fisto Member

Master Windu Owner

Action

Copyright £> Michael Skiai* 2024 as part of the Master's thesis at BUT FIT.

Figure B .2 : Screenshot of the team management page.

Render mode: WASM

mailto:obiwan@kenobi.conn

Team Up

CO

^ ^ ^ ^

Obi-Wan Kenobi
obiwan@kenobi.com

[Q] Teams f c l

%\ Rebels

£,% Jedi Cojnci l

| %% Jedi Order

- \- New Team

@ Events

E9 My Invitations

(% Account

Clear Cache

Jedi Order Events
Jedi Order > Events

Upcom ing Events G

Event T... Descrip... From f To

Force Trai... Force 101 16,05 05:26 06:41

ForceTraL. 1th force... 17.05 05:24 06:54

Force Trai... Another f... 24.05 05:25 07:25

Force Trai,.. Deep for,., 27,05 05:25 06:40

Force Trai,.. Advance... 29,05 05:25 06:25

Force Trai... Force 123 31.05 05:42 07:12

Force Trai,.. Another f... 01.06 06:40 03:10

Force Trai... Yet anoth... 04.06 06:34 07:34

Your Response

Yes

Maybe

Delay

No

Yes

No

Yes

Responses

3 1 ft 1

3 1 2

Action

• 2 * I
2 * HI

HI
• # HI

Copyright S Michael Skräselt 2024 as part of the Master's thesis at BUT FIT.

Figure B .3 : Screenshot of the team events page.

Render mode: WASM

mailto:obiwan@kenobi.com

