VYSOKE UCENIi TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGI|
USTAV INFORMACNICH SYSTEMU

N
k I

;/ U FACULTY OF INFORMATION TECHNOLOGY
K_

DEPARTMENT OF INFORMATION SYSTEMS

INTEGRACE E-MAILOVE KOMUNIKACE DO IDE ECLIPSE

REMAIL - INTEGRATING E-MAIL COMMUNICATION IN THE ECLIPSE IDE

DIPLOMOVA PRACE
MASTER’S THESIS

AUTOR PRACE VITEZSLAV HUMPA
AUTHOR

VEDOUCI PRACE Prof. Ing. TOMAS HRUSKA, CSc.
SUPERVISOR

BRNO 2011

Abstract

Developers of software systems have to communicate about the project they are building.
Especially when working in a distributed development team, such as open source projects,
developers must use an asynchronous means of communication. Studies tell us that e-mails
are, by far, the means of communication mostly used during the distributed development,
opposed to instant messaging, commit comments, or code comments. Therefore, we can
imagine archives containing development e-mails enclose essential information concerning
various entities of the source code. Unfortunately, such information gets lost with time,
since relevant e-mails are hard to retrieve. We have developed REmail, an Eclipse plug-in,
to integrate e-mail communication in the IDE. It allows developers to seamlessly handle
source code entities and e-mails concerning the source code, without ever exiting from the
IDE. Using lightweight linking techniques, REmail retrieves all the e-mails relevant to the
chosen source code entities and makes them available to the developer.

Abstrakt

Béhem vyvoje softwaru musi vyvojari mezi sebou komunikovat. Zvlasté pokud pracuji v
distribuovaném prosti¥edi. Napfiklad na open source projektech jsou nuceni vyuzit riznych
asynchronnich metod komunikace. Ze studii vyplyva, Ze ve srovnéani s instatnimi zpravami,
komentaii zdrojového kodu, & komentaii verzovacich systémi e-mail predstavuje zdaleka
nejpouzivanéjsi zptisob komunikace p¥i distribuovaném vyvoji softwaru. Lze si proto pied-
stavit, ze archivy vyvojarskych e-mailti obsahuji podstatné informace o nejriznéjsich en-
titach zdrojového kodu. Casem vak se takové informace ztraceji, jelikoz tyto e-maily je t&zkeé
dohledat. Proto jsme vyvinuli REmail, zasuvny modul pro Eclise, integrujici e-mailovou ko-
munikaci do IDE. Umoznuje vyvojaium pracovat soubézné se zdrojovym kdédem a e-maily,
které jej diskutuji, bez nutnosti opusténi IDE. Vyuzitim relativné vypocetné nenirocnych
technik REmail dohledd v8echny e-maily relevantni k vybrané entité zdrojového kédu a
umozni vyvojaii s nimi pracovat.

Keywords

e-mail to source code traceability, inter-developer communication, program comprehension,
REmail, IDE integration, Eclipse, plug-in development

Klicova slova
vazba mezi e-maily a zdrojovym kédem, komunikace mezi vyvojafi, porozumeéni systému,
REmail, integrace do IDE, Eclipse, vyvoj zasuvnych modula

Citace

Vitézslav Humpa: REmail - Integrating e-mail Communication in the Eclipse IDE, diplo-
mova prace, Brno, FIT VUT v Brnég, 2011

REmail - Integrating e-mail Communication in the
Eclipse IDE

Prohlaseni

Prohlasuji, Ze jsem tuto préaci vypracoval samostatné pod vedenim pana prof. Tomése
Hrusky.

Vitézslav Humpa
May 24, 2011

Podékovani

I would like to give thanks to prof. Tomag Hruska, prof. Michele Lanza and Alberto Bacchelli
for the supervison and overall leadership while working on REmail project. Special thanks
to Alberto for the wonderful cooperation while letting me glimpse into the world of research.

© Vitézslav Humpa, 2011.

Tato prdce vznikla jako Skolni dilo na Vysokém uceni technickém v Brné, Fakulté infor-
macnich technologii. Prdce je chranéna autorskym zdkonem a jeji uziti bez udélent oprduvnéni
autorem je nezdkonné, s vijjimkou zdkonem definovanijch pripadii.

Contents

1 Introduction
1.1 Goal of this project L
1.2 Structure of the Documento e

2 Background research

2.1 Communication between developers
2.2 E-mail-to-code linking techniques
3 REmail
3.1 EclipSe . . . o o e e
3.1.1 Structure e
3.1.2 Basics of plug-in development
3.2 The evolution of REmail
3.2.1 Earlystages
3.2.2 Switchingto MBox oo
3.2.3 Threadsof eemails Lo
3.2.4 Making it modular oo
3.2.5 Adding features Lo
3.3 Implementation of REmail o000
3.3.1 The general structure o
3.3.2 Resultindexing o e
3.3.3 Source formats L o e
3.34 VIEWS . . . e e
3.3.5 Editor integrationo
3.3.6 Preferences e
3.4 Using REmail
3.4.1 Installation e
3.4.2 Setting up« ..o
3.4.3 Searching
3.4.4 Browsing e-mails oL oo
3.4.5 Message Filtering Lo
3.4.6 Editor Integration
4 Case studies
4.1 REmail in practiceo
4.1.1 Choosing a linking method
4.1.2 Refining results to obtain relevant information
4.1.3 Responding to feedback oo

w

ot

10
10
10
11
13
14
15
16
16
16
20
20
22
23
24
26
26
27
27
28
30
31
32
32

4.2 Project comprehension with REmail o o o e 38

4.2.1 Entry points for code investigationo 38

422 Finding experts oo 40

4.2.3 Project evolution analysiso e 41

5 Conclusions 42
5.1 SUIMIIATY « « o o v e oo oo o e e e e e e 42
5.2 Future Improvements« .o oo 42

Chapter 1

Introduction

Nowadays, when creating a software system, developers spend a significant amount of time
inside an Integrated Development Environment (IDE). Unless they work on a small project
of their own, developers are often part of a team that works on the same project.

Since developers work on IDEs that are not connected one to another, they must find
alternative ways for communicating ideas and synchronizing work. There are many ways
of communication between them. In addition to face-to-face meetings developers often
communicate through instant messaging, notes inside commits, commenting the source code,
posting bug reports, or they can post e-mails inside mailing lists [1].

Face-to-face meetings are the preferred method of communication when developers work
in a collocated team. However in the development of large open source systems, developers
might be spread all over world, thus making frequent face-to-face meetings difficult, if not
impossible to organize.

Studies report[!1], that in these cases, e-mails are the most widely used means of com-
munication among software developers. For large projects, various mailing list are usually
established to allow information exchange. Nevertheless, as the name suggests, develop-
ment' lists are those that are most important for developers.

Such mailing lists are used to communicate about various programming issues that
raise during development. Therefore, these archives contain e-mails that are an important
source of information about high-level design decisions as well as low level implementation
concerns and developers’ social structure[6].

Programmers use applications that are external to the IDE to handle the content of
mailing lists: No matter how related these e-mails are to software development, these are
completely disconnected from the IDE. Such situation forces developers to interrupt the
programming flow in the IDE whenever they need to operate with them. As there are no
means of linking the contents of e-mails to the source code entities they refer to, important
information gets lost with time.

1.1 Goal of this project

Bacchelli et al. are conducting a research, that aims at devising lightweight methods to
recover the traceability link between source code artifacts and e-mails [2][6]. Finding e-
mails that are actually relevant to code entities is not trivial, mostly due to complicated

!Those often marked with a dev or devel keyword

nature of informal human communication. Bacchelli et al. provided a number of source-to-
e-mail linking methods based on regular expressions (thus lightweight), providing different
levels of precision and recall.

The goal of our project is to create REmail® - a plug-in, which integrates e-mail
communication into the Eclipse IDE. It enables developers, by taking advantage of these
lightweight methods to exploit the information that can be obtained by the process of linking
the e-mails with code entities with the goal of improving comprehension of the system.

1.2 Structure of the Document

In Chapter 2, we discuss in detail the underlying research that led to REmail. We also
analyze related work.

In Chapter 3 we introduce REmail: We describe the evolution of the project as well as
its current implementation, and we provide instructions on how to work with it.

In Chapter 4 we present use case based on the experience of using REmail during it’s
development and furthermore we describe our recent findings[>] on using REmail to improve
project understanding

In Chapter 5 we conclude the thesis, summarize its results and discuss possibilities of
future improvements.

?Means: Recommending e-mails

Chapter 2

Background research

Purpose of this chapter is to introduce the research that led to creation of REmail in contrast
to the chapter 4 that focuses on study conducted later, with the help of REmail.

Topics presented in both sections of this chapter form a base, from which came the
idea of REmail. In the Section 2.1 we discuss inter-developer communication relations and
rationalize benefits of REmail[], while in the Section 2.2 we present techniques that form
logical core of the plug-in[2].

2.1 Communication between developers

Especially when working in a distributed development team, such as open source projects,
developers of software systems have to communicate about the project they are building.
They use various means of communication to do so.

Posting e-mails into mailing lists is by far the most spread way of communicating about
development. In open source environment, nevertheless face-to-face consultations remain
the most popular in collocated teams|11].

Face-to-face meetings are considered the most effective form of communication among
collocated developers [1]. Developers loose no time communicating their ideas or describing
problems thanks to the use of spoken language. There can be misinterpretation or misun-
derstanding as in case of written communication, but they can be resolved immediately [11].
However face-to-face meetings are not without drawbacks.

Presence of other developers is distracting. Questions make developer loose focus on his
task, which he needs to regain later. As opposed to electronic means of communication,
such spoken conversation itself is not stored. Developers tend to create mental models of the
system [11]. If they envision such a model by talking with other developers, they are likely
to loose portion of the model comprehension with passing time, unless they write down well
organized notes.

Finally, face-to-face communication is geographically limited, which, especially in open
source community, makes extremely hard to organize it in necessary frequency.

There are many methods of electronic communication that are used for discussing the
code-related topics. They stand in between face-to-face and e-mail communication when it
comes to their popularity and spread. We introduce them in following list. At the end of
this section, we explain why we favor e-mail communication for IDE integration.

e Design documents provide a high level model of the system and are useful for
understanding of the software system and its decompositions. Usually developers

start creating them before commencing coding tasks. Therefore design documents, in
both graphical and textual form, serve as the point of rationalizing the structure both
for first-hand developers as well as ones that join the project later and need to master
the system architecture structure.

On the other hand, since being produced ahead, design documents often fail to keep
track of the project evolution and get less precise in relation to source code with time.
In addition, design documents mostly describe only a high level view of the system.
For these reasons, it is often difficult to find the traceability link between actual source
code and design documents [13][1].

e Code comments, as an opposite to design documents, are tightly related to the
lowest level model of the system, the source code itself. This means that information
contained in them cannot be used to describe higher-level relations between artifacts.

They are already linked to all of the code artifacts that they annotate, since they are
part of the source code itself. This induces code commits simply for updating them.
They also leave no space for discussion.

e Commit comments are already linked to the source code as well. In relation to code
comments, commit comments have broader focus as they can mark out changes in more
than just single file. In this way they can give insight into higher-level composition of
the system.

In practice however, they are mostly used to inform about fixes, or they are sketchy
reports of new features and are very short. Because they are attached to code updates,
it is not possible to reply on them and therefore start a discussion. (In practice, this is
often overcome as modern version control systems post commit messages into mailing
lists. Actually this has further repercussions in usage of REmail, more in Chapter 4.)

e Issue reports and bug tracking system are nowadays necessary parts of any software
project. They allow for filing textual reports containing useful information related to
the source code.

The spectrum of this information is quite broad, since issue reports are not only filled
by developers, but also by other interested groups - notably beta-testers and users.

In modern bug tracking and project administering systems', these reports can be
commented and replied to in threaded way.

Links between these reports and source code could be established by using heuristic
and pattern matching methods similar to those introduced in the next section [7].
However, the communication in bug reports is focused on the issue itself and it hardly
crosses these borders. It is uncommon to find high level concerns or design rationale
discussed in this media [4].

As a confirmation about the reduced focus of bug reports, new developers are com-
monly employed to work on bug fixing, as it requires less high-level architecture than
implementing new features [11].

e Instant messaging is close to face-to-face meetings. Thanks to the nature of modern
real-time protocols?, developers communicate as in real life, except that they are using
textual means instead of natural languages.

'E.g. Bugrilla, Mantis or Jira
’E.g. Internet Relay Client (IRC), XMPP, ICQ, etc.

It is not used frequently in collocated teams, where developers can meet face-to-face,
but is often employed inside various open source communities, where it provides means
for rapid coordination and for conducting online meetings to discuss various devel-
opment issues [17|[11][9]. Responses on instant messages are expected immediately,
which is usually the case. Also developers can have parallel IM conversations with
many counterparts.

However, similarly to face-to-face, IM has disadvantages. Particularly the synchronous
aspect of instant messages raises the issue of interruption and loss of concentration. As
with all synchronized means of communication, problems of dialogue between people
in different time zones emerges as well.

Internet telephony. With introduction of applications® for conducting online
voice conversation, internet-telephony seems to be taking off as a new way of commu-
nication among developers.

Unlike when using telephones, it is still closely related to instant messaging. We
presume that developers prefer to use IM for code related issues, however needs arise to
communicate about specific and complex issues. In that case, use of internet telephony
and recently also audio-video transfers saves time.

This method of communication is inherently close to face-to-face meeting and brings
its advantages and issues with it. Notably, as conversations are usually not being
recorded, linking them to source code artifacts is not possible.

Developers reported that responses to questions sent by e-mail can take hours or even
days be received. Original questions are often misunderstood by readers who do not provide
correct answer to the matter at hand. And developers generally consider writing e-mails to
be tiresome [4][11].

These problems are also common in other communication means, especially in design
documents, issue reports and partially in IM. However e-mails offer advantages that make
them a preferred method for inter-developer communication.

First of all, e-mails are used to discuss issues about any level of abstraction - from low
level implementation details up to high level design decisions. They can be written by
anybody who has subscribed into a mailing list, not just by developers themselves (which
is a problem especially with code and commit comments), but also by beta-testers, and,
consequentially end users of the system.

Therefore, we can often link e-mails to any source code entity that has been discussed
at some point. In addition, e-mails offer the additional information stored in the headers
(defined by the RFC5322[14| message format) and when used in context of mailing list,
thread information is also available. Such information helps the effort of code-to-mail linking
that can be done using techniques presented in section 2.2.

Finally, the code-to-e-mail linking can be used to study a project evolution. This is
useful when attempting to reverse engineer a system, with the goal of understanding its
parts by (usually new) developers tasked to add new features or fix bugs.

For all these reasons, we consider e-mails as one of the best candidates to improve
the communication between developers. Our goal is to support in a seamless way e-mail
communication within the IDE. We are in process of accomplishing this by creating REmail.

3E.g. Skype and Google Talk

2.2 E-mail-to-code linking techniques

Since 2009, Bacchelli et al. have been carrying out research aiming at devising methods
of linking different entities of source code to e-mails that refer to them [2]|[6]. Bacchelli et
al. have experimented with a variety of different methods to do so. The goal is devising
lightweight approaches, which could be applied on a great number of e-mails in a reasonable
amount of time (that is in seconds). They achieved that criteria using regular expressions.

Bacchelli et al. began with simple intuitive techniques (e.g. simple classname search)
and as results were collected from experimenting on sample mailing lists, more complex ap-
proaches were devised. Finally, a number of lightweight matching methods were devised|2],
each one giving results with various accuracy. Such lightweight methods have been imple-
mented in REmail, giving it its core functionality.

These are the six methods currently implemented by REmail, among which developer
can choose:

1. Class name, case insensitive - Usually, when being referred to in e-mails, classes
are simply mentioned by their names. Thus, the first method simply searches for
the classname inside the text of e-mails. Developers don’t always write with proper
capitalization, so this method is not case sensitive. Also, classnames can appear at

the end of sentences, followed by “.” or they can be put inside quotes, therefore no
restrictions were imposed on the characters surrounding them.

2. Class name, case sensitive - Results of search using previous method have a reason-
ably high recall’ value, however the precision® is low. Since it is a common practice
to name classes in a way known as CamelCasing® the second method utilize case
sensitivity to improve precision.

3. Strict regular expression, case insensitive - Results of case sensitive search are
considerably more precise than in the first approach, however still about one third of
relevant e-mails are recovered in average. A complex strict regular expression (Figure
2.1) was constructed to get close to upper bound of precision.

(.%)

(\s*)

(<beginning of package>)?
CINNT/1\s)

<last part of package>
AN\

<class name>
(.javal.class|\s+)

(.%)
Figure 2.1: Strict regular expression as implemented in REmail
In this approach source code file extensions and package fragments are taken into

account, the last part of package name is required. Since such regular expression is
quite rigorous, case sensitivity is not observed.

“The percentage of relevant e-mails actually retrieved, on all the relevant e-mails existing
’Many irrelevant e-mails were also linked
E.g. ArchiveManager or MailContent View

4. Loose regular expression, case sensitive - Strict regular expression approach
indeed brings precision to a high number’. However the recall is minimal®. Thus the
strictest criterion requiring the presence of last part of package was dropped. Presence
of quotation marks next to the name was allowed as well.

(.%)

(\s*)

(<package>)?

C. NN

<class name>
(.javal.class|\s+l,l,)

(.%)

Figure 2.2: Loose regular expression as implemented in REmail

5. Mixed, using dictionary, case sensitive - If we take into account the strict method
and the method using just a classname for search, they score opposite in precision and
recall. Case sensitive method has a high recall value and low precision, while Strict
reqular expression approach gives opposite results. Idea came to combine the two,
trying to get the best of both methods.

It was presumed that the small precision of the simple name matching method is caused
by worlds that are classnames, but that also exist in standard natural language, e.g.
names like Bookmark or Cookie. Strings like ConfigToadlet are not a part of that,
thus are likely to be classnames when referred to. Therefore in this combined method,
English dictionary is queried for the classname. If the string is present in dictionary,
the Strict reqular expression method is applied, otherwise the case sensitive search is
conducted.

6. Mixed, using CamelCase, case sensitive - Technique using dictionary provided
results with both precision and recall above fifty percent. However, inspecting a dic-
tionary is time consuming, thus the idea to use CamelCasing, instead of dictionary was
devised. When the string in hand is in CamelCase, (e.g. MailView or SelectionPro-
cessor) simple case sensitive search is run, while otherwise, (e.g. Bookmark, Cookie)
Strict regular expression matching is conducted. While having the same recall as the
previous, this method had actually increased precision by few percent, while being
considerably faster and less memory dependent.

Out of all these methods, it would seem that the CameCase search is the best in most
situations, when the search is applied on variety of classes (or if not on the entire project)
in the same time. However, the other methods are also useful when the developer needs to
achieve the highest possible precision, or recall, in cost of the other measure.

794% of all relevant e-mails in ArgoUML test case
80nly 10% of relevant e-mails were present

Chapter 3

REmail

In this chapter, we detail REmail, an Eclipse plug-in we have created to put the ideas
previously presented into practice.

First, we introduce Eclipse itself, we get acquainted with its structure and the basics of
plug-in development. Then, in section 3.2, we tell the story of REmail and we describe how
it has evolved since we have started working on it. Following that, we explain the state of
the current implementation of REmail, detailing the how various parts of the plug-in are
realized (3.3). Finally, the last section is the user manual, with goal of explaining how to
install, setup, and use REmail in practice. (3.4)

3.1 Eclipse

With the goal of putting the idea of e-mail integration into practice, we
had to decide what IDE we would actually use. There are many choices,
especially if we consider the various development environments for different
programming languages.

The idea was certainly to make REmail work in an IDE that can be used
for developing systems in multiple languages. Since the linking techniques
were shown to work with many programming languages [6], therefore many
environments, like those centered on C/C++ were put out of consideration.

Since we wanted to build a plug-in, we were also looking for an environment with a good
modular structure. NetBeans' and Eclipse’ - Java based development platforms that also
allow programming in other languages - thus came into consideration.

Eclipse is currently the most widely used IDE in the open source community, and also
provides a considerable amount of documentation and tools for plug-in development. Having
a reasonable modular structure, we have decided to build REmail as a plug-in of Eclipse.
We are also considering creating a version of REmail for an alternative IDE, especially
NetBeans.

3.1.1 Structure

The main part of Eclipse for both user interaction and plug-in development is workbench:
the main window that always has one of the perspectives active. By perspective we mean

lwww.netbeans.org
2www.eclipse.org

10

http://www.netbeans.org
http://www.eclipse.org

the setting that decides how the important parts of workbench are spread over the window.
Plug-ins can access active editors and views through the workbench, and also open and
manipulate their own [16].

The workbench contains two main types of windows, placed into subcontainers, that
most Ul contributing plug-ins work with: views and editors.

™ ™ ™ Plug-in Development - REmail/src/org/eclipse/remail/MailView.java - Eclipse - fUsersfvita/Documents/workspace

J ik = |) J T D Q- J el J fr M= 2R . £0Team Synchr... %5Debug &Java <=Plug-in Deve...
| elde @E | &5l oo Editors
[% Package 52 . & Plug-ins| = B | I a“’ﬁlﬁ a i -B:urg.cc‘lipse,remail } =g
=] = | - o R =] =
b : - . o B 8
7 de bogella.plugin.htmiconverter Implementation of the view with the results of the email sed -
. X 3 .
Sy ;1‘ lass Mailvi ds Viewpart =
Yi%RE il [Scamp Eyes] [trunk] public class MailView extends ViewPar =
b =, JRE System Library [JavaSE-1.6] { E]
I =3, Pl§g-in Dependencies
b public static final String ID = "org.eclipse.emailrecommenc —
,;ﬂe renced Libraries public MailContentView mailContentView = null; // instance H| &
> G do private static ContainerCheckedTreeViewer viewer; Oz
> Gico private Action selectionChangedAction; @
> G lib private Action doubleClickAction;
v (G META-INF private IResource activeResource;
1% MANIFEST.MF 18 5/17/10 . !
@build roperties 5 4/15/10 9 {“ 4 B
B plugigxml 18 5/17/10 11:55 * The constructor.
T remailsugdp [= =) lile
gtest ‘?Pam 52 N E,Tasks] BJ Problem] 2] Console] ﬁ Monitor]i" Cenflict }@J Progres l =0
vite-thesid
Brispace Log v | EE X =
4 type filter text
Message
. & Failed to get SVNTeamProvider for 'P/vite-thesis’ m
VIEWS & MLS unused message: MenulconsPreferencePage.default in: org.tigris.subversion.subclipse.ui.m
% NLS unused message: MenulconsPreferencePage.iconSet in: org.tigris.subversion.subclipse.ui.m h
& NLS unused message: MenulconsPreferencePage.restart in: org.tigris.subversion.subclipse.ui.me &
NLS unused message: CommitCommentArea_6 in: org.tigris.subversion.subclipse.ui.messages | 7
() RIGIL =) RiG
J o* Writable Smart Insert 227 :51 J
)

Figure 3.1: The Eclipse IDE

Views, such as Package Exzplorer or Mail View and Main Content View in REmail,
allow plug-ins to display or edit important information. The information is commonly
viewed using one of the JFace® controls based on tree, list or table.

Editors edit a certain resource, often a file. There are different types of editors in any
Eclipse distribution: when opening a file for editing, the proper type of editor is chosen
based on file extension. Eclipse editor framework allows plug-in developers to create all
aspects of a typical IDE editor on their own, including auto-completion menus, hovers and
syntax coloring. Some of the most common generic editors (like default Java editor) can
also be extended by plug-ins.

3.1.2 Basics of plug-in development

Any Eclipse distribution is a collection of different plug-ins that together form a desired
environment. Unlike some other IDE’s, Eclipse itself is actually a small core, that loads all

3A set of advanced widgets based on Standard Widget Toolkit offered by Eclipse project
(http://wiki.eclipse.org/index.php/JFace)

11

http://wiki.eclipse.org/index.php/JFace

present plug-ins into place: All we can see when using Eclipse are plug-ins [8]. In a clean
installation most of the plug-ins are part of core org.eclipse package.

Every plug-in extends the functionality of Eclipse by connecting itself into one or more
extension points that are defined by other plug-ins. The same plug-in can also define its
own extension points to provide information to other plug-ins.

=J= Favorites Plug-in |

= Flug-in
=k MANIFEST.MF (i Favorkes.jar i MANIFEST.MF [sdtjar ’l
| |
|
i _,—»”'J
“-H._H .,-""- 5 ./'
My — o -~
.\\ o H“—-.__\ ,-—“’-{-j ik
F - 3
== Plug-in “u i “-E_H_L_a/_/ == Plug-in
& sl ™
) MAMIFEST.ME (b jdtcore.jar Jj” AP MANFFEST.MF (B fFace.jar |
| e |
L . |
% o \
i i @
kY ol hy
[P | R, %
== Plug-n et == Flug-in %
i MANIFEST.MF (W resources.jar I MANIFEST MF (W uijar
| Plug-in Loader | ‘ G},\ Java Class Library |
| Jawa Virtual Machine |
| Operating System L

Figure 3.2: Eclipse as a collection of plug-ins [16]

Hence all the plug-ins that are part of Eclipse define a MANIFEST.MF, and plugin.zml
- files declaring, among other things, what plug-in bundles are used by the plug-in, what
extension points are needed, and what other points are defined.

The following is the MANIFEST.MF of REmail. Especially Require-Bundle is needed
to tell Eclipse the basic plug-ins required by REmail.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: REmail

Bundle-SymbolicName: org.eclipse.remail;singleton:=true
Bundle-Version: 1.0.0.qualifier

Bundle-Activator: org.eclipse.remail.Activator
Require-Bundle: org.eclipse.ui,

org.eclipse.core.runtime,

org.eclipse. jdt.core;bundle-version=‘3.5.1,,,
org.eclipse.core.resources;bundle-version=‘3.5.1,,,
org.eclipse. jface.text;bundle-version=‘3.5.1,,,
org.eclipse.ui.ide;bundle-version=‘3.5.1,,,
org.eclipse.ui.editors;bundle-version=‘3.5.0,,,
org.eclipse.jdt.ui

12

Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: lib/postgresql-8.4-701.jdbc4.jar,
1ib/sqlitejdbc-v056. jar,
lib/commons-lang-2.4. jar,

Notice the line Bundle- ActivationPolicy: lazy. Eclipse by default only preloads the plug-
ins defined by their manifests. The extension is fully loaded and all resources allocated at
the time of actual usage of plug-in, by the time we open some of its views, or execute a
plug-in-added command in the menu.

Plugin.xml

Plugin.xml is an essential file, defined by every plug-in, that allows developers to specify in
XML format any extension point that is needed, or defined, by the plug-in. Every extension
point comes with mandatory and optional arguments, which describe the plug-in integration
precisely.

Points of extension are added as <extension> tags with the arguments added as sub-tags.
An example describing the Mail View of REmail follows:

<extension point=‘‘org.eclipse.ui.views,>
<view
class=‘org.eclipse.remail.MailView,,
icon="‘icons/sample.gif,,
id="‘org.eclipse.emailrecommender.MailView,,
name="‘E-mails,,
restorable=‘‘true, >
</view>
</extension>

The java class implementing the specified functionality is pointed out. For any extension
point in REmail, a class needs to implement particular interface provided by Eclipse, as
depicted in its documentation.

3.2 The evolution of REmail

«£51

Idea of creating REmail came as logical step after the research on Lightweight source code-
to-e-mail linking techniques conducted by Bacchelli et al. in 2009 [2]. The initial idea was
very simple: To have an integration into an IDE, that would let the user select a class in that
environment, conduct a search based on the preferred linking technique, show the results
and let the user read selected e-mails in a convenient way.

13

The project started as a part of Software Design and FEvolution at University of Lugano.
Initially a deliverable as a part of SDE project had to be negotiated. At that point the
looks and inner workings of REmail started to take shape. First of all Eclipse was chosen as
an IDE to put REmail into: Not only because of its structure and available documentation,
as several members of REVEAL research group had positive experience extending Eclipse,
notably in case of the Syde* project.

3.2.1 Early stages

The main goal of the first phase of REmail development, has been to implement the
lightweight linking techniques and if possible present them in extended user interface of
Eclipse. This was done, and a basic version of REmail was implemented (see Figure 3.3).

As a part of their research, Bacchelli et al. created a crawler based on Miler|3] capable of
fetching a mailing list of any project present on markmail.org® into a PostgreSQL database.
Some of the mailing list were already present in that form, therefore we decided to use
PostgreSQL as a means of e-mail storage for the plug-in. As a well established database
system, PSQL also proved as excellent platform for implementing linking methods, since
they are mostly based on regular expressions.

12 Package Explorer 82 - % Plugns| = O

= P
» @ freenet,clients.http.staticfles.{[2
b & freenet clients.http.staticfiles.t

b @ freenet.clients.http.statichles.t
b g freenet.config
~ i freenet.crypt
b [i] BlockCipher java
b [i] CryptFomatException java
b [i] CryptoElement.java
b [i] Cryptokey.java
b (1] DHGroup.java
b (i DiffieHeliman java
b (i DiffieHelimanLightContext javi
b [i] Digest java
b (i DSAjava
b i DSAPrivateKey java
SAPUbIicKey.java
SASignature java
ummyRandomsource java
J] EncryptingloAdapter java
b (1] EntropySource. java
b [i] Global.java
[5) HMAC java
1) JavaSHA1 java
J) KeyAgreementSchemecContex
[5) PCFBMode. java

11 RandemSource.java
b (i) RindaelPCFBMode java

1) DSAGroup.java 12

public class DSAGroup extends CryptoKey {
private static final long serialVersionuId = -1;

protected static final int 0_BIT_LENGTH = 256;

private final BigInteger p, q. g;

public DSAGroup(BigInteger p, BigInteger q, BigInteger g) {

this.q = q; working on a class test for DSA java, as needed formy _J
this.g = g; Google Summer of Code ranking, I have found two
if(p.signum() 1= 1 || g.signum() != 1 || g.signum() != 1) more bugs [another one is already fixed, after nextgens

throw new IllegalArgumentException();

private DSAGrow (DSAGrowp group) {

this.p = new NativeBigInteger(1, growp.p.toByteArray());
this.g = new NativeBigInteger(1, group.q.toByteArray());
this.g = new NativeBigInteger(1, group.g.toByteArray());

e(string grp) {
// BigInte

[E-mails 2

Date Subject

ew StringTokenizer(grp,

2 Outine | E-mail Content £
Subject: [freenet-dev] crypto-DSA bugs Actions

From: sback (sha...@sback.it)

=0

[m
Date: Apr3, 2007 12:20:13 pm
List: org.freenetproject.devl

Hi,

gave me the repos access] in the current DSA
implementation. It is unlikely that they compare during
the normal usage, but since there are no raised
exceptions, 1 believe they must be fixed.

The first bug is generated by this code [part of
DSATest. java, not yet committed]:

public void testSign_border() {

i k = Bi . ONE; q
Global DSAgroupBigA.getQ().add(Biglnteger.ONE);
Biginteger p = q; Biginteger g =
| p-add(BigInteger.ONE);

DSAGroup aDSAgroup = new DSAGroup(p,q.g);

=]
Ll I

0|
=0

B

2007-03-17 10:47:23
2007-04-03 12:20:13

| [freenet-dev] [freenet-cvs] r12183 -
[freenet-dev] crypto-DSA bugs

| [freenet-dev) crypto-DSA bugs

| [freenet-dev] [freenet-cvs] r15096 -

| [freenet-dev] [freenet-cvs] r15096 -

| Ifreenet-dev] [freenet-cvs] r15096 -

2007-04-07 14:04:02
2007-09-21 05:09:18
2007-09-21 05:23:34
2007-09-21 05:30:30

in trunk/freenet/src/freenet: chent config crypt io io/comm io/xfer node node/fcp support

branches/freenet-jfi/src/freenet/node
branches/freenet-jfi/src/freenetinode
branches/freenet-jfk/src/freenet/node

Figure 3.3: Initial implementation of REmail |4

In first version of REmail, the search was fully connected to the actual Ul of the plug-
in and coded together. SQL SELECT statements were used to obtain data using regular
expression support of PSQL and a proper JDBC driver. This version did not have any
preferences implemented yet and every setting was hardcoded.

Developer could select a single class in the package explorer and select REmail search
from the context menu showed at (I). The results of the linking were displayed in the table
(IT) and after selecting a message, its text appeared in a browser shown at (IIT). This layout
proved to be effective, and with many additions to the Ul usability and functionality, is still
a basic preferred layout in the current implementation.

“http://syde.inf.usi.ch/
A free service archiving mailing lists of various open source projects

14

http://markmail.org5
http://http.sta
http://freenet.client5.ritt
mailto:l5ba___@sback.itj
http://syde.inf.usi.ch/

3.2.2 Switching to MBox

Using PostgreSQL proved to be fast and easy to implement, but it is not without drawbacks.
First of all, an instance of PSQL server has to be ran for the plug-in. That might be useful
in some cases, as it enables multiple developers to work simultaneously with a single DB
(For example, we can imagine employees in a company setting up a single server for all
interested members of the team). Another advantage of this centralization is that, when
removing ill-linked e-mails from the database by one developer, these e-mails will no longer
show up for also the others. On the other hand this could be dangerous too, since not
just ill-linked e-mails can be removed: what is uninteresting for one developer might be
important for others working on different parts of the system.

However, we want REmail to be also useful for single developers trying to understand,
or develop, existing system. Therefore we were looking for an integrated solution that would
not require an external software to be ran, other than Eclipse.

Since we are working with e-mails we thought about taking advantage of an established
e-mail client. Thunderbird® is widely spread e-mail client both in industrial and open source
environment, thus we started exploring the possibility of using it as the source of e-mails.
Any developer, subscribed to a mailing list in question, would have e-mails of the list stored
in Thunderbird, for REmail to utilize. We thought about a non-invasive of searching through
the emails: two possibilities came into our attention.

A plug-in for Thunderbird

Idea is to create a separate plug-in for Thunderbird, that would feed data to REmail. In
that way, both Eclipse and Thunderbird would have to be running simultaneously. The
actual search would be done by Thunderbird extension, that would then feed the results to
Eclipse. We wanted to use Unix sockets as channels for the interprocess communication. In
this way, the possibility of Thunderbird running on different machine was open, giving the
green light to centralization like in the PSQL solution.

In contrast to already existing PSQL search implementation, this solution would only
give benefit in better e-mail management for the user. The biggest drawback is, that this
solution would be bound only to Thunderbird client. While this can be non problematic for
many developers, others use different clients, with old mailing list content already loaded
into them. In addition, we had difficulties implementing Thunderbird plug-in according to
our needs, so we decided not to follow this course of action.

Accessing MBox data

The second approach (which we actually implemented) is to get e-mail data directly from
the filesystem. Thunderbird uses a MBoz' format to store e-mail data: All the messages
from single Thunderbird folder, (e.g. inboz or sent) are stored as a plain text in a single
file. They are basically stored in their original format similar to RFC822([x|. Any additions
by the email client are added as a header starting with “X-” (e.g. “X-Mozilla:”).

Shttp:/ /www.mozillamessaging.com /thunderbird

"MBox is a generic term for a family of related file formats used for holding collections of electronic mail
messages. All messages in an MBox mailbox are concatenated and stored as plain text in a single file. The
beginning of each message is indicated by a line whose first five characters consist of “From,, followed by a
space and the return path e-mail address. A blank line is appended to the end of each message. - Wikipedia
05/2010

15

http://www.mozillamessaging.com/thunderbird

If the user imports an entire mailing list into a single folder in Thunderbird (separated
from other emails...), all such e-mails can then be accessed by REmail in the corresponding
file. Notably, this format is used by many other clients like KMail, the Mac OS X Mail
application, Eudora, etc. This gives the developer a broader choice on the e-mail client.
The search module for MBox we have implemented in the REmail works with general MBox
format, without any dependence on a particular client.

3.2.3 Threads of e-mails

In mailing lists, e-mails are usually organized into threads. Some of the e-mails are stan-
dalone (mostly announces), but whenever there is a reply on some topic that starts a discus-
sion, subsequent e-mails are handled in threads by e-mail clients. We needed to implement
such feature into REmail as well, to provide necessary orientation between results of the
search. At same time we wanted to provide an automated tool that would be able fetch
a complete desired mailing list of project for the user. We presume that developer often
does not actually have to be subscribed to the mailing list himself. Additionally, if he is
subscribed, there is no common method of getting e-mails that were posted to the mailing
list before his subscription. We have devised a way to take care of both of these needs in
the same time.

We re-wrote the original Miler based web crawler|3] into Java. This allowed us to modify
it so that any markmasil.org mailing list could be stored into an MBox compatible file. We
create a file that can subsequently be imported and manipulated by user’s e-mail client. For
example in the case of Thunderbird, all that is needed is for the file to be stored inside“Local
Folder” directory in Thunderbird’s directory structure. After the next launch, the new e-
mails will be visible, open for manipulation, and ready to be utilized.

3.2.4 Making it modular

We did not decide to switch completely from PSQL source to MBox. Instead we wanted to
have both implemented together, so that they could be both chosen and have the benefits of
both of them. In the original implementation, the actual search was implemented together
with the UI part of plug-in. For example, a class was invoked as a result of search command,
it called PSQL search specifically and then took care of updating the graphical elements of
the plug-in. Now with adding a new way of searching, we had to make the plug-in modular,
and separate the program logic from the user interface. This was accomplished by creating a
general search interface, that is implemented by different classes providing the same linking
functionality by separate means (About this in the next section).

3.2.5 Adding features

With the MBox search implemented and REmail structure reworked, we could focus on
improving the functionality of REmail, especially the usability.

Preferences

First of all, a preference panel had to be built. We have added a set of properties panes,
into Eclipse’s Preferences, necessary to setup all aspects of the plug-in. Notably log-in
information for PSQL, locations of MBox source files for projects, selection of the e-mail

16

http://markmail.org

source and the choice of a lightweight linking method to use. We have also decided to
implement message filtering that would give developer a way of refining search results.

Initially the only way to conduct a search was by clicking on the classname in Package
Explorer (Figure 3.2.5) and selecting a method of search. This had to be done for every
class individually. In current implementation, method selection has a general setting inside
preferences.

G
b [J) DSA.java Bun As
. — Debug As »
[DSAGroup.java validate B string, where p, q, and g
b [J] DSAPrivateKey.ja Team y [@ commas
b [J] DSAPublickey.java Compare With [
b [J) DSASignature.javq Replace With »[selstring Erp} {
- Pw StringTokenizer(grp, ".,")
b [DummyRandomsq Restore from Local History... -
b . d 2C0 ende Class Name, Case Insensitive
() EncryptingloA a_p Properties Alt+Enter Class Name, Case Sensitive
b [EntropySource.ja T aa e Strict Regular Exp.
b [J] Global java ; Loose Regular Exp.
o ! Date |Sub|ect Jose Neg P
b (1] HMAC. java Dictionary Search
b [JavaSHA1 java 2007-03-17 10:47:23 | [freenet-dey camelCase Search

Figure 3.4: Initial way of conducting search

Result indexing

In the first implementation, a search was conducted at run-time, taking a few seconds® to
produce results. This was hardly an optimal solution, so we devised an indexing process.

Utilizing SQLite JDBC driver?, we have developed a database based indexing of search.
When a search is conducted on any class, the results are stored into the small SQLite
databases. By the next time, just selecting a class in Package explorer shows the outcome
of the last search instantly. A new search would updat the indexed data.

Package Explorer

Together with indexing came ideas of substantially changing the way the search is conducted
and the results presented inside the Package Explorer. Foremost, now it is possible to make a
search on multiple classes, packages or even an entire project. By selecting multiple classes,
user can start the linking process and index the data for all of them. Similarly, a developer
can select a set of packages, in which case the search will be done on all classes included.
By running the process on the root of the project, all the classes are linked with e-mails and
results stored in the SQLite database file.

Besides that, we have devised a decoration of Package Explorer entities to notify the
user if a particular entity has been searched for. We show a number of “hits” each entity has
within the mailing list. In the case of a class, we show the number of e-mails linked with it
using the preferred method. With package, we show the number of e-mails linked to all of
its classes.

» m ArchiveContext.java (7)

¥ [H freenet.client (291) J

8When working with Freenet development mailing list with around 22000 e-mails
“http://www.zentus.com /sqlitejdbc/

17

http://www.zentus.com/sqlitejdbc/

When conducting a search on a bigger number of classes at once, time necessary to
complete the linking process can become long'’. Thus we have made a progress-bar that
shows how many classes out of total have already been linked.

A T e e e e - ArCH
B T fommimnt mlimmbr bnbbom Slbne R
N E

—3
U REmail search... TE—— _J

l
r'y
L4

Figure 3.5: Search process progress bar

Viewing the results of linking

The “E-mails” view has evolved considerably. In its first implementation (Figure 3.3), it
simply contained a table presenting results using a couple columns. By putting threading
of e-mails into practice came the need to show this additional information. Therefore, we
modified the view to show data using a tree viewer component of JFace.

L1.U8. 200/ U550 batosal : [freenet-dey] French transliation ,
¥17.08. 2007 08:52 Florent Daigniv'@re ; [freenet-dev] RFD: frq
17.08. 2007 11:40 Philipp Riegger : [freenet-dev] RFD: free
22.08. 2007 06:09 luke771 : [freenet-dev] ita 110n v22
Z21.09. 2007 08:47 luke771 - [freenet-dewv] ITA 110n update

Figure 3.6: E-mail view using tree viewer

Still, we felt the information was not presented in a sufficiently clean manner. As a
next improvement, we joined the previous table and tree viewers together using a view that
brings columns into a tree structure, thus providing a better visual presentation.

One of the latest additions at the time of writing this thesis is making it possible for the
users to mark emails that are of little or no importance to the class in the question. For
this, we modified the viewer to display a checkbox that allows the user to express lack of
interest in particular e-mail or thread.

E-mail content view

In REmail, using E-mail content view, you can read the text of any linked e-mail. At first,
we used the html component of SWT, and simply inputed the text of the email inside (II]
in Figure 3.3). This only provided a better text rendering. However, we also felt the need
to highlight the name of the linked class: During the usage, the linked class was often only
mentioned as a part of a dump of paths, or changes in commits, thus it was difficult to spot.
With the classname highlighted a user can quickly see whether this email is relevant.
Another issue to readability of the e-mail is the presence of text from previous messages
in the thread. In our test case on Freenet, this was actually the case for the vast majority
of the results. The standard way of highlighting the previous RE: messages is by putting a

%More in chapter 4

18

http://C-j-.j-.rij-
http://ll.ua

number of “>” symbols at the beginning of each line. In the E-mail content view though,
as text is usually getting wrapped, this was not easy to comprehend visually.

Should work but messy. What is maxArchiveSize
in the ArchiveManager diff?

One is per-request and the other one is global to all

others.

IMHO we should get rid of the global setting, and the
config that controls it.

and replace it by a constant? y

Figure 3.7: Marking threaded conversation in the text of e-mail

Inspired by RE: message highlighting in Thunderbird, and a general style of displaying
messages on markmail.org, we changed the look (Figure 3.7) of this view. Now the text
from previous e-mails is preceded by a number of differently colored lines and presented in
a different font color.

Editor improvements

Most of the time that developers spend using Eclipse and other similar IDEs, is focused on
the Editors, where they actually work with the source code. Often enough (while working
with smaller monitors, laptops etc.), they might maximize the editor to completely fill the
screen. By doing so, REmail’s views are invisible. Therefore we wanted to contribute into
the editors of Eclipse itself to provide some support in this situation too.

Text hovers Our original idea was to extend the Eclipse’s Javadoc hover. It appears while
going over some keyword with a mouse pointer. After researching how to implement this
feature, we found that this would require cloning and creating a special editor to do so. Since
we wanted to have this feature present in the default editors of any Eclipse distribution, we
decided to search for a different method of editor integration.

Side bar ruler markers Markers point out general point of interest in any of the re-
source files. Known markers present in Eclipse are problem markers, warning markers,
to-do markers and breakpoint markers, all of which appear when necessary on the left side
of editor.

There is also a bookmark marker that allows developers to point out places of interest
of their own. We have used these markers to provide information about all the classnames
visible in the editor’s source code, to which some e-mails have been linked. Their appearance
can be triggered by a toolbar button, so that user can decide whether to show them. All can
also be browsed in the built-in bookmarks menu, which provides another place for developers
to check whether some e-mails are linked to the entities existing in the files he works on.

In this subsection we have described a number of features that we implemented in the
current version of REmail. We have plans and ideas for future, which will be discussed in
5.2.

19

http://markmail.org

i

if(ARCHIVE_TYPE.ZIP == arl

£ handleZIPArchive{ctx
else 1f(ARCHIVE_TYPE.TAR
handleTARArchive{ctx
else
I throw new ArchiveFail
} catch (I0Exception ioe) {
D throw new ArchiveFailuref
}finally {
Closer.close(is);
}
}
[] — Multiple markers at this line r

- ArchiveExtractCallback: 10 emails found h{
- ArchiveRestartException: 3 emails found .
- ClientContext: 36 emails found [
- ArchiveFailureException: 7 emails found

- ArchiveStoreContext: 23 emails found =9

/4 MINOR: Assumes the fir
TarEntry entry;

@ byte[] buf = new byte[327

HashSet<String> names = 1

D boolean gotMetadata = fal
outerTAR: while(true) {

entry = tarlS.getNexd
iflentry == null) bsj

Figure 3.8: Using markers

3.3 Implementation of REmail

In this section, we detail the current implementation of REmail. As all the software evolves,
and we hope REmail to keep evolving, the content of this chapter will be probably valid
only for the current release.

3.3.1 The general structure

b [org.eclipse.remail

> 5‘3 org.eclipse.remail.decorators
> 5‘3 org.eclipse.remail.editor

> 5‘3 org.eclipse.remail.modules

> 5‘3 org.eclipse.remail.preferences
> 5‘3 org.eclipse.remail.util

> 5‘3 org.eclipse.remail.views

Figure 3.9: Packages of REmail

REmail is implemented in 29 classes, split inside 7 packages. Important parts of REmail
are also metafiles introduced in 3.1.2, in which all the parts of Eclipse that are extended by
the plug-in are declared, and the classes implementing particular extension defined.

The logical base of the plug-in is the implementation of the lightweight linking methods
providing different search strategies. This is the practical core of the plug-in and it has been
implemented in a modular way, so that different sources of data could be used for a search.

As we can see on figure 3.10, we created the interface MailSearch, which defines the

20

methods that need to be implemented by any data-source solution. Inputs of these methods
are given by the particular needs of the linking method. In case of simple case sensitive and
insensitive searches we need to input a classname, while for other methods also complete
package name is required.

<< lava Interface>>
_ _ €3 mailsearch
org.eclipse.remail.modules ong eckpse remed modulos
caseoanstvasaanc fng). Linke: st 1
Sensitive Search(String): LinkedList<Mail>
<<Java Class>> {» caselnsensitveSearch(String): LinkedList<Mail>
G MboxSearch @ strictRegexpSearch(String, String): LinkedList<Mait>
Y. BN A TENTIES TUICH B 7| @ loseRegexpSearch(String,String): LinkedList<Maii>
£ maillist: LinkedListzMait> : .)))) .
{ dictionarySearch(String,String): LinkedList<Mail>
C
)" MbaxSearch() @ camelCaseSearch(String,String): LinkedList<Mail>
) camelCaseSearch(String,String]: LinkedList<Mail> E_‘.

@ dictionarySearch(String, String): LinkedList=Maif>

<<Java Class>>

@ PostgreSearch

org.eclipse.remail modules

{3 looseRegexpSearch(String, String): LinkedList<Maif=

) strictRegexpSearch(String, String): LinkedList=Mai>

) casalnsensitiveSearch({String): LinkedList<Mail> C
(& PostgreSearch{String,String, String)
@ caseSensitiveSearch(String): LinkedList<Mait>

"'SfDIJI'DBj].. 1

<< Java Clazs=>

G MboxCore ﬁ'““y

ong.eclipse.remail. modules
=< Java Class=>

@ PostgreCore

org.eclipse. remail modules

caselnsensitive Search{String): LinkedList<Mail>

caseSensitveSearch(String): LinkedList<Mail>

strictRegexpSearch(String, String): LinkedList«Mail=

loseRegexpSearch(String, String): LinkedList<Mail=

dictionarySearch(String, String): LinkedList=Mail=

S OOOOP

camelCaseSearch(String, String): LinkedList=Mail=

Figure 3.10: Interface based modularity of data-source implementations

The interface MailSearch and its implementations are all part of the modules package.
This is a completely non-UI package. Other packages contain classes manipulating the user
interface. Almost all of these classes need to have access to the indexed results data, so that
they can process it and present it in Eclipse.

Thanks to the way Eclipse invokes classes defined in plugin.xml <exztension> tag, rela-
tions between Ul packages are minimized, with the exception of using some of the code in
org.eclipse.remail.util package, which contains generally useful classes.

The class Search in the root org.eclipse.remail package performs the search by using one
of implementations of the MailView interface, according to the current preferences settings.
The class Search is the only class to directly call the MailSearch interface. It ensures
execution of linking procedures between a single source code element (a class) and a mailing
list of choice. The list of Mail instances is returned to be employed when necessary.

org.eclipse.remail. Mail is a data class that serves as a central representation of a single e-
mail throughout all REmail. In addition to simply containing necessary attributes (subject,
author, text...) it provides utility methods for merging lists of Mail objects etc. Mail also
implements the interface Comparable, which allows collections of Mail objects to be sorted
by the timestamp of an e-mail.

21

3.3.2 Result indexing

In addition to the Mail and Search classes, SelectionProcessor and IndexSearch are also
parts of the root org.eclipse.remail package.

=< Java Class=>

(&) SelectionProcessor org.eclipse.remail

'org.eclipse.remail

4y store: IPreferenceStan
© execule(ExecutionEvent): Obje: “<Java Claze>>
Maill
[E lsunchSearch(IStructuredSelection): vo @
aorg.eclipse.remail
B packageSearch(lPackageFragment,LinkedList<|CompilationUnit=): 7
] projectSearch(lJavaProject): LinkedList<|CompilationUnit
H :
f . i
.;, =< Java Class=>
<<Java Class>> G Search
@ IndexSearch org.ecligse.remail
org.eclipse.remail O search: MailSearch

0‘3- IndexSearch(LinkedList<|CompilationUnit>, IProgresshMonito A store: [PreferenceSton

T T -3
= prepareSQLitel): vok Gc Searnch()

E searchAllf): void
& Execute(String,String,Boolean): LinkedList=Mai

05 getView(String): IViewPar

03 applyMessageFiters(LinkedList<Mail=): Linkedl ist=Mail=

05 updateMailView(LinkedList<Mait>}: void

H zearchCompilationUnit{lCompilationUnit): void

@ saveResults(String,String LinkedList<Mail=): voic

@ run{): void

Figure 3.11: Processing of the indexed search

SelectionProcessor This class is listed inside plugin.zml as a handler for the REmail
search command, which serves as an initiator of search and is shown in the context (right
click) menu of the Package Explorer. Since user can select multiple classes, packages, or the
project itself, the task of SelectionProcessor is to produce a list of the actual classes '' to
be submitted to the search. SelectionProcessor then submits the list to the IndexSearch to
continue the work.

IndexSearch Based on the given list of classes to search, IndezSearch commits the linking
and subsequently indexing process on all of them. It depends on the remail. modules.Search
class. IndexSearch needs to manipulate UI to inform the user about the progress of the
search, which is the reason why it has been included outside the non-UI modules package.
Inside IndexSearch, we use the Eclipse status bar progressMonitor extension to work with
the progress bar that notifies users about proceedings of the search.

As also stated in previous sections, the search results are indexed. Indexing is necessary
for providing vital functionality to the plug-in - the Package Explorer decoration or the
editor integration. Fast displaying of the linking results for previously searched classes is an
example of indexing usage.

"List of CompilationUnit instances, which in Eclipse represent the *.java resources (or other source file
types, depending on the Eclipse distribution)

22

Indexing is implemented using a database approach. SQLite provides a JDBC driver,
which allows us to work with structured data using SQL language - in the same way as
with most of the database management systems. Difference is that SQLite does not run as
a server, and no actual connection is needed. Instead SQLite is basically a library, that lets
us store data in a single file in a transparent way.

Classes Emalls
TS permalink <PK=>
e subject
date
path (package) author
threadlink
text
Hits visible (bool)
Classes.ID
Emails.permalink
v

Figure 3.12: SQLite DB structure for search results indexing

To implement the indexing, we use three tables that employ the typical many to many
(N:M) approach known from the relation databases theory [15]. As shown in the entity
relationship diagram on figure 3.12, this is implemented using two data tables, (classes and
mails), which use a third table (hits) to provide N:M relations.

3.3.3 Source formats

As explained previously, REmail’s modular structure allows for any number of different
searching techniques to be implemented. Currently two data sources and the related tech-
niques are implemented for searching as shown in figure 3.10.

PostgreSQL

For the PostgreSQL search, class PostgreSearch implements the MailSearch interface. This
class channels the results of the search from the Postgre Core class that is actually conducting
the search. As we use JDBC driver to access PSQL database, PostgreCore is where actual
SQL language is used.

ResultSet rs = stmt.executeQuery(

,.SELECT * FROM mail WHERE rawcontent ~* ’>(\\s*)(‘‘ + restOfPackage

+ 07O\ I\N\\\I/1\\8)*“ + packageLastPart + ,,(\\.I\\\\|/)* + classname
+ ,,(0\\.javal\\.class|\\s+)’ order by timestamp‘‘);

Methods of PostgreCore initiate SQL queries, and put results into the list of Mail objects
to use. SQL queries contain regular expressions designed on the theoretical description of the
lightweight linking methods [2]. An example of using SELECT statement to get results by
“Strict regular expression” method is provided above. The parameters needs to be inputed
from java variables and the whole statement must be escaped. We give an actual usage as
in the code as an example, instead of plain SQL statement.

23

As we use SQL and database in the PSQL module, it should not be confused with SQLite
DB usage for preserving results. SQLite serves as REmail’s internal data storage tool, while
PSQL serves as an source of original data. When MBox search is selected in the preferences,
REmail does not maintain any actual database connection. Description of setting up the
PSQL and the necessary structure of the data table are provided in next section.

MBox

Another implementation of the MailSearch interface provides MBox data source. Class
structure of this implementation is the same as in the case of PSQL core (this can be seen
in class diagram 3.10). MboxSearch prepares the input variables for the search, which is
done using MboxCore class.

However, differently from the PostgreCore, MboxCore does not do the complete search.
It merely provides for case insensitive method, which is basically just matching a name
of the class in question. All the results of case insensitive search are always a superset
of the results of any other method. MboxzSearch uses Java’s regular expressions to get a
subset of the raw results using a chosen method. The reason of this is for obtaining better
performances. For example, imagine that we search through mailing list of 25000 e-mails
and the average number of results is around 30, using CamelCase method. Having to apply
regular expression on all the e-mails takes a considerable amount of time, more then just
searching for a single classname. Applying the regular expressions on the resulting 30 e-mails
is orders of magnitude faster.

MbozCore accesses the location of the MBox file of the current mailing list from the plug-
in’s preferences storage. Its methods then pass through the file in search of the classname.
If there is a match in the text of any scaned e-mail, it retrieves the headers and stores a
Mail object in the list.

3.3.4 Views

Realizations of both views of REmail are placed in the org.eclipse.remail.views package.
Both are completely Ul-centric as they must present the search results.

MailView

The E-mails view is the main point of presenting the results of the linking process. The
view is defined in plugin.zml and is implemented in MailView class. MailView extends
Eclipse’s abstract class ViewPart (mandatory for any view). Method CreatePartControl is
also obligatory and serves as a point of initiating the UI parts of the view.

MailView uses a single control: - an instance of JFace ContainerCheckedTree Viewer
that completely fills the view. This allows to create a combined table/tree element, the
best solution for presenting search results of the REmail. In addition, in the beginning of
every row, it also provides a checkbox, which we used to create the irrelevant e-mail removal
feature.

MailView is a the largest class of REmail, as all the presenting of results is implemented
in it. Four subclasses are necessary for that. Input of the ContainerCheckedTree Viewer is
simply a LinkedList of Mail objects. MailTreeContentProvider, which implements interface
ITree ContentProvider contains three methods telling the ContainerCheckedTree Viewer the
structure of the given data. Notably, first the top level elements need to be defined. After
that, if some of them have children, those need to be pointed out.

24

org.eclipse.remail.views =<Java Class>>

<<Java Class>> G MailView <=Java Class>>
(9 MailContentView | ogecioseremalviews 0000 | (&) MailTreeContentProvider
org.eclipse.remall views E\bF 1B: Strin org.eclipse.remall views

S +mailContentView C R R
o @ MailViaw() l——| @ getElements(Object): Object]
& createParControl{Compasite): void 0.1 & createParControl{Composite: voic @ getChidren{Object): Object]

& setMaiMail) void @ processSelection(/WorkbenchPart,|Selection): vo @ getParent{Object): Objec
O setFocus(): void Qs gatviewer() TreeViewer @ hasCh iidren{Object): boolear

& setFocus() void

e N

<<Java Class>>

@ CheckStateProvider <<lava Clasess <<Java Class>>
org.eclipse.remail, views @ CheckStateListener (3 MallTreeLabelProvider
.ech X .
@ isChecked(Object): boalea eclipse.remail.views Cple il e
@ isGrayed(Object): baolear @ cheskStateChanged(CheckStateChangedEvent): y @ getColumnimaga({Objact,int): Imag

© getColumnText{Object,int). String

Figure 3.13: REmail’s implementation of views

Date Author
03.04. 2006 05:51 Matthew
03.04. 2006 11:13 Florent D.

=
[|
@ 03.04, 2006 11:18 Matthew
=
=

-30.08. 2008 02:45 Matthew

Figure 3.14: Looks of the current implementation of the MailView class

MailTreeLabel Provider is much simpler than MailTreeContentProvider. Given a single
Mail object, it decides what text should appear in different columns of the viewer. That is
made possible by implementing ITableLabelProvider interface.

The other two subclasses, CheckStateProvider and CheckStateListener, manage the check-
box feature of the ContainerCheckedTree Viewer. The former class defines which e-mails are
to be checked or otherwise while displaying results. The latter is a listener that is informed
when user checks or unchecks any box. The indexed information is updated in the SQLite
database.

MailView incorporates a listener that waits for changes of selection in the Eclipse work-
bench. If an instance of ICompilationUnit has been selected, a method of MailView will
check whether any data had been indexed. If so MailView shall give this ICompilationUnit
to a new instance of SQLiteMailListConstructor (in the org.eclipse.remail.util package) to
produce a LinkedList<Mail> from the cache. After that, this list is put as an input.

MailContentView

MailContentView implements the E-mail content view. This view simply shows the contents
of the e-mail chosen in the E-mails view. It is plugged into Eclipse the same way as previous
view, by being defined in the plugin.xml. It also uses one widget that fills entire view. That
is a Browser widget, which is a part of SWT. This widget can display any html formatted
content. The e-mail to display in the view is set up using the setMail method, which takes

25

a Mail object as an argument.
The view displays the e-mail in an user friendly way, taking advantage of the stylesheet
support. A class ContentDecorator in the util package has been created for that purpose.

3.3.5 Editor integration

As introduced in the evolution Section 3.2, REmail integrates itself into the general Eclipse
source code editor, by giving possibility to show markers for lines that contain a name of
class that has been searched for before.

The org.eclipse.remail.editor package contains the implementation. Package contains
two classes of which markerInitActionDelegate is the implementation of marker extension.
The other class, MailHover is an attempted implementation of a Javadoc hover extension,
that currently is under construction (explained in 3.2.5).

The markerInitActionDelegate is registered in plugin.xml as an action class for pressing
of the button in the main toolbar. It implements interface IEditorActionDelegate, which
defines a run method to be ran on action activation. From this method we can obtain the
text of the active editor. The document is searched for known (i.e. indexed) classnames.
In case of a hit, a Bookmark marker is added to the Eclipse environment. After the scan of
the document is complete, Eclipse platform shows all the markers at the proper line on the
left-side of the editor automatically.

3.3.6 Preferences

Several preference pages had been included into the Eclipse general preferences. Extension
org.eclipse.ui.preference Pages is used to insert the preference page. All of them are put into
the single ,REmail“ preference category.

org.eclipse.remail.preferences

<<Java Class>>

<<Java Clags>>

@ PreferencePane

ong.eclipae.remail preferences

@ PreferencePaneSources

ong.eclipse.remail preferences

=< Java Class>>
@- PrefersnceConstants

ong.eclipae.remail. preferences

<< lava Class>>
@ PreferencePaneMbox

ong.eclipae remall preferences |,

<< Java Clags>>
@. PreferencePanePostgre

org.eclipae. remall preferences

=<Java Classs>
@ FilePathEditor

ong.eclipse.remail preferences

Sl e <<Java Class>>

() PreferencePancFilters -3} (9 FilterListEditor

ong.eclipse.remail preferences

org.eclipse.remail preferences

v

Figure 3.15: Classes in org.eclipse.remail package

As seen on class diagram 3.15, since all the preference pages and classes implementing
them are defined separately in the plugin.xml, there is no need for any relation or dependency
among the classes realizing different pages. All of them implement interface FieldEditorPref-
erencePage, which allowed us to use many common types of widgets to create preferences.
Eclipse had already contained classes to create simple line editor, combo or radio button
preferences.

26

These basic pre-programmed widgets were useful to create most of the preferences needed
- with two exceptions:

e We had to create our own editor for entering message filters. We have extended
the JFace ListEditor to provide this component. The ListEditor “Add” button was
extended to show an input dialog, in which developer can type in the filter, and also
actions on pressing “OK” and “Apply” buttons were changed to provide immediate
change of the Package Explorer number decoration.

e We needed to have an editor to allow the user to select and store multiple files - for the
management of MBox files storing different mailing lists. Similar editor for managing
directories already exists, however we couldn’t use or extend it. Therefore we have
employed ListEditor and extended it to provide file choosing and storing functionality.

3.4 Using REmail

This section serves as an “User manual”'? with instruction on how to setup REmail, how to
obtain mailing lists and how to use the plug-in itself.

3.4.1 Installation

At this time, there are two ways if puting REmail into action. First is by downloading the
source code using the SVN repository at the project page on Google Code[x]. We suggest
to use the Subclipse'® plug-in. With Subclipse, go to File->Import, select SVN->Checkout
projects from SVN and press nert. On the next page choose to create a new repository
and enter hittp://r-email.googlecode.com/svn/trunk/. When asked for login information, put
r-email-read-only. On the last page, choose whether you’d want to put REmail into the
workspace and after that you can checkout the project.

Check Out As
Select the method of check out and the revision to check out. %ﬂl

Choose how to check out folder trunk
Check out as a project configured using the New Project Wizard
(Only available when the .project file does not exist in the repository)

@ Check out as a project in the workspace

Project Name: | REmail

Figure 3.16: Importing REmail using Subclipse

After these initial steps you can see REmail as a project in a package explorer. Using
this method, you need to press run to open second instance of Eclipse, in which the plug-in
will be active. This way is good when you are interested in the REmail’s implementation

12NOTE: For the purpose of the evaluation of this thesis, you can refer to the attached DVD that contains
all the instructions, binaries and the snapshot of current source code of REmail
3http:/ /subclipse.tigris.org/

27

http://r-email.googlecode.com/svn/trunk/
http://subclipse.tigris.org/

or you wish to contribute in it. If you wish to use REmail for its main purpose, consider
using the other install method described later.

This first method also implies that you have Eclipse distribution for RCP/Plug-in de-
velopers installed.

The other possible installation consists in visiting the download section of REmail web-
site'* or its Google Code page'®. There you can download jar file - a precompiled distribu-
tion of REmail. Copying the jar file into the plugins directory of your Eclipse, will cause
the plug-in to be loaded on the next start of the platform.

In both cases, you need to have the XULRunner 1.9.2 or higher installed in your system
as dependency of the SWT browser component used in the E-mail Content view.

3.4.2 Setting up

After having installed the plug-in, you must decide, which mailing list you desire as data
source. We recommend the MBox file source, as we also made an automated tool available
to download any open source mailing list into MBox file. If you prefer to use PSQL as a
data source, you must create a table and upload data in format that will be described later.

" type filter text . REmail P S
-General -
- Ant General settings
“Help Mailing list source:
'J'”S“'”"“Pdate (%) Thnuderbird (Mbox)
Java
-Model Validation () PostgresQL

ObjectAid Class Diagram

) Prefered classname matching method: | CamelCase ¢]
*Plug-in Development
Message Filters
PostgreSaQlL
Thunderbird (Mbox) ¥ .: Restore Defaults) .: Apply j
<»
@j .: Cancel j (oK)

Figure 3.17: Main preference page

To set up REmail, open Eclipse’s preferences, look for the REmail category and click
on it. In the “REmail” preference page (Figure 3.17), you have to select a data source
and lightweight e-mail-to-code matching method. For the beginner we suggest CamelCase,
which provided best sets of results when the lightweight methods research was conducted|2],
as well as during developing REmail.

After going through the REmail page, either PostgreSQL or MBox pages needs to be
configured based on the choice of the mailing list source.

PSQL setup

Should you have decided to take advantage of PostgreSQL, you will have to set up a table
with the given structure and fill it with the data of your mailing list. No automated tool to
do that is currently available, however we are considering creating it.

Y“http://remail.inf.usi.ch/
5http:/ /r-email.googlecode.com/

28

http://remail.inf.usi.ch/
http://r-email
http://googlecode.com/

In any PostgreSQL database, you can create the table using this the following SQL
statement:

CREATE TABLE mail (
threadpermalink character varying(255),
permalink character varying(255),
author character varying(255),
rawcontent text,
subject character varying(255),
,,bimestamp‘‘ timestamp without time =zone,

)

The names of most the attributes are self-explanatory: Permalink must be unique string
identifying the e-mail, while treadpermalink should only be the same for all e-mails inside a
single thread. If you plan to use dictionary search, you also need to create a table with single
attribute named word and fill it with words you want to consider for the method. However,
we encourage you to use CamelCase method for its simplicity and better performance.

' type filter text) PostgreSQL E T
-General
ANt T Mbox mail saurce specific settings
‘Help ' Server: 192.0.0.1
‘Install/Update I
Java | Port: 1486
*Model Validation | Login: humpav
ObjectAid Class Diagram| |
-Plug-in Development | Password: sessnsns
FEmall) | Database: remail
Message Filters "
PostgreSQL Table: mails
Thunderbird (Mbox) o
- Run/Debug Dictionary table: dict
Syde &
*Tasks
- Y .: Restore Defaults) .: Apply :',.
< v y

Figure 3.18: PostgreSQL preference page

To setup REmail to work with PSQL, fill in the information on “PostgreSQL” preference
page (Figure 3.18). All fields are mandatory except for the “Dictionary table”, which must
be filled only if you plan to use the Dictionary matching linking method.

MBox setup

When using the MBox source of mailing list, first you need to get a MBox file. There is a
number of possibilities for achieving this. For example, you can download it from official
archives of the mailing list, or you can take advantage of the tool we provide.

Mailman Most of mailing lists of open source projects use Mailman as a list management
system. If that is the case, you can often find archives on the webpage of the list. One
drawback of this is, that they are usually split by month into separate files. However as

29

they are already in MBox format, they can simply be joined together to provide a single
MBox file. Currently we are considering making a tool to download and merge the files
automatically.

Miler tool As have been mentioned before, we provide a tool to get the mailing list from
the markmail.org site. This tool is based on Miler[3], and we have modified web crawler to
store the downloaded mailing list in MBox file, which can then be used by the REmail.

To use Miler tool, you must use following syntax:

java -jar miler.jar name_of_mailing_list /path/to/store/mbox/files

As first parameter, input the name of the mailing list as you see it in the browser’s
address bar while viewing the main page of the list on markmail.org (example in Figure
3.19).

c markmail.org,Fbrowseforg.freenetproject.devl)

Figure 3.19: Getting a name of mailing list for Miler tool

The second parameter should ideally lead to a local folder of your e-mail client, so that
you can use it to manipulate the list. REmail contains a feature to remove e-mails from the
results, however for a bigger scale editing of the mail list, using an e-mail client might be
preferable.

[5] Local Folders
=) Outbox |
D ch_gos_callOn-announce |'
(] com_apple_lists_x11-users (215) |'
] com_enthought_m..pd-users (127) |'
™ org_freenetproject_devl (22354) &
] pdigin-devel (73) .

@& 6 566
v

Figure 3.20: Example of manipulating mailing list in Thunderbird

Figure 3.20 shows how a mailing list, that was put inside Thunderbird’s Local Folders,
can be manipulated'® as any other e-mail folder.

When a mailing list’s MBox file has been obtained, path to it needs to be entered into
the MBox preference page.

Such page contains a path editor, in which multiple mailing lists can be stored. A file
on top of the list is the one that is active for the search. It means, that when switch-
ing to another project, you have to move appropriate list to the top. This is caused by
implementational limitation of preferences and is likely to be changed.

3.4.3 Searching

After REmail has been set up, the next step is to proceed with the linking process on classes
that one is interested in.

'81f Thunderbird is used to remove unwanted e-mails, changes to the original MBox file are done after
executing command “Compact” from the folder’s context menu.

30

http://markmail.org
http://markmail.org

Thunderbird (Mbox) = =
Mbox mail source specific settings
Active Mailist MBox file:
JUsers fvita/Library/Thunderbird /Profiles /40tfoad2.default/Mail/Local Folders/org_freenetproject_dewvl
fUsersfvitafLibrary/ Thunderbird /Profiles /40tfoad 2.default/Mail /Local Folders /com_apple_lists_x11-users New...
fUsersfvita/Library/Thunderbird /Profiles/40tfoad 2. .default/Mail/Local Folders/ch_gos_callOn-announce
{UsersfvitafLibrary/ Thunderbird /Profiles /40tfoad2.default/Mail fLocal Folders /pdigin-devel Remove
Up
Down
v

Figure 3.21: MBox location preference page

The package explorer is an entry point for all the search. You can select any combination
of classes and packages or you can select the project itself. When invoking the context menu
on this selection, you’ll see “REmail search” command, that, if clicked, will initiate the search
(see figure 3.22).

While searching, as the results are getting indexed, a progress bar (figure 3.5) at the
bottom of the window will give feedback about the progress of the linking process. When the
search is completed, the number of “hits” given by the selected linking method will appear
next to classnames and packages in the Package Explorer.

3.4.4 Browsing e-mails

¥ [freenet.clients.http.bookmark (17) | [|]|

¥ 1| BookmarkCateg

¥ [J] Bookmarkitem.j Open

¥ 1| BookmarkManai
¥ [freenet.clients.http

» [J] BMPFilter.java Copy

»> CharsetExtractc = .

»> %Cummentixcep Efl Copy Qua“ﬁe

» [J] ContentDataFile L= Paste

» [J] ContentFilter.ja 3 Delete
i Remove from
Build Path

¥ [J] DataFilterExcep Source

¥ 1] Elementinfo.jav Refactor

» [J] FilterCallback.ja

[FilterUtils.java | puy Import...

» [Fuund_umcﬂnha 3 Export...

¥ [J] GenericReadFilt
e)
Assign Working

» [J] knownUnsafeCt b0 ae

b [J] MIMEType java Debug As

» [J] NullFilterCallbai N

> m PNGFilter.java Validate

» [Tl Undetectablech 1€

¥ [f] UnknownCharss Compare With

» [J] unknownConter Replace With

 [J] UnsafeContentl Restore from Lo«

[EOELEELLL I REmail Search

» [J] Yytoken.java J
g L s il

Show In

Figure 3.22: Starting search

To show results for any class, you simply select it in the Package explorer. The “E-mail”

w

1

view will be automatically open the first time after installation of REmail. The standard
location is at the bottom dock, but you can change the position.

You can browse the results in such a view, and if you find any single e-mail or an entire
thread unwanted, you can uncheck it using the checkbox. In this way, you can express lack
of interest any the e-mail or thread.

As you can see in the Figure 3.14, most of the relevant data are shown already in the
E-mail view itself. However, if you stumble across an interesting result, you will most likely
be interested in the message text itself.

That is the purpose of “E-mail content” view (fig. 3.23). Double-clicking any result in
the “E-mail” view will display its full content there. Every message is displayed with header
on top and with the classname of interest highlighted in red. Parts of the text from other
messages in the thread are indented and printed in different colors.

5= Outline | |} E-mail Content £3

Subject: Re: [freenet-dev] UI glitch in XMLLibrarian
From: Matthew Toseland
Date: 08.08. 2009 09:32

On Saturday 08 August 2009 17:27:25 Matthew Toseland wrote:

Searching gives a stack trace on the UL We should handle
this better - it'sjust a DNF/ADNF.

FetchException:Splitfileerror:null:-1:null:false: freenet.client.Fai
freenet.client.async.SplitFileFetcherSegment.onFatalFailure(Sp|
freenet.node.SendableGetRequestSender.send(SendableGetReqy
freenet.client.async.ChosenBlock.send(ChosenBlock.java:63)
freenet.node.RequestStarter$SenderThread.run(RequestStartg
--freenet.support.PooledExecutor$MyThread. run(PooledExecutol

What's worse is doing the samee search again does not retry,
it just repeats theerror, :|

Also, when I search for words such as "database™ which have
failed in the past,it does not retry the fetch for that word, it just
shows the error again. Why isthis? y

Figure 3.23: The “E-mail content’ view’

3.4.5 Message Filtering

REmail is capable of filtering messages based on the content of Author and Subject headers.
You can set up filters, that will apply on all of the results shown in E-mails view, by adding
them on “Message Filters” preference page. Currently REmail looks for a presence of the
string in a header to include or exclude the results from the list.

It is worth noting, that all the messages ale always cached when searching. Message
simply merely determines their presence in the E-mail view and the counted hit numbers in
Package explorer, without removing them from the DB. In this way different filters can be
switched with no impact on the performances.

3.4.6 Editor Integration

REmail contributes a trigger button onto the main toolbar.

0-Q|R|&#G)

By pressing this button, you can toggle the bookmark markers in the active editor. As
you can see in the figure 3.8, a marker will appear on every line, which contains a classname
that has been submitted to the search. By moving mouse over a marker, a hover will show

32

Message Filters L=

v v
E-mail result filtering
Messages with Subject matching following should be:
Vs
trunk
Remove
Up
Down
| Excluded 5‘
Messages with Author matching following should be:
Mathew Toseland
»

Figure 3.24: Filtering out messages

you the number of hits the class has with the current filters active. In case there are more

class entities on the same line, just one marker will be shown, however the hover will include
information about all of the classnames.

33

Chapter 4

Case studies

During the development of REmail, we used Freenet', the software system developed by
the Freenet Project, to test the implementation and validate the functionalities. In months
after, in addition to Freenet we have also utilized Apache Mina® to provide case study
in probing various ways that REmail helps augmenting developer’s system comprehension.
Sections of this chapter present findings of both these phases.

4.1 REmail in practice

In the development, working with Freenet gave us immediate feedback, which allowed us
to elaborate and implement additional features. This section presents our findings in using
REmail and obtaining relevant results.

The Freenet Project aims at creating a free software system that lets you anonymously
share files, chat on forums, and browse and publish “freesites” (web sites accessible only
through Freenet), without fear of censorship. Freenet is decentralized to make it less vul-
nerable to attack, and if used in “darknet” mode (where users only connect to their friends)
is very difficult to detect.

Freenet is in active development since 1999, is written in Java, and has an active com-
munity of developers who also use e-mails for communicating. By the time of writing this
thesis, Freenet consisted of over 850 classes and 32 packages, and the development mailing
list archived more than 20,000 messages.

For the purpose of exploring Freenet with the assistance of REmail, we checked out the
source code of Freenet using its git repository®, and we imported it as a project into an
Eclipse workspace.

4.1.1 Choosing a linking method

The most important part of working with REmail is the process of linking the chosen classes,
or packages, to the e-mail, and then investigating the results. Therefore, before providing
any extra features, we first implemented the different linking methods (as depicted in Section
2.2). We have implemented such methods gradually and we explored the results step by
step.

"http:/ /freenetproject.org/whatis.html
2 U
http://mina.apache.org/
3Instructions at http://freenetproject.org/developer.html

34

http://freenetproject.org/whatis.html
http://mina
http://freenetproject.org/developer.html

First, we have experimented with case insensitive and case sensitive linking techniques.
As we expected (see Section 2.2), the case insensitive method produced results with high
recall and low precision, confirming the results reported by Bacchelli et al. [2]. On the other
hand, the case sensitive method achieved a higher precision with almost no impact on the
recall achieved by the previous method. For this reason, we removed the case insensitive
method from the latest version of REmail, thus increasing the ease of use of the tool.

Classes that have a common dictionary word as their name (e.g., the classes “Metadata”
or “Global”) are the most problematic for the case sensitive method. In Table 4.1, we
summarize the numbers resulting by linking several classes of Freenet with the linking
methods implemented. For the case sensitive match, we see that classes with common
words as names have significantly more links than those whose names are in CamelCasing.
Such additional links are often unrelated to the chosen classes.

’ class H case sensitive ‘ strict r. exp. ‘ loose r. exp. ’ CamelCase ‘
Metadata 335 26 26 26
Global 104 1 1 1
Yarrow 61 11 12 11
ConfigToadlet 54 6 8 54
ArchiveManager 43 35 35 43

Table 4.1: Numbers of results of linking different classes with various techniques

Strict and loose regular expression methods provide less links for single word classes,
practically all of them correct. These methods, on the other hand, can be to be too strict
for classes in CamelCasing: Since such classes are very often just mentioned by their names,
without parts of package or file extension, they were not registered by the Strict and loose
regular expression methods. Thus, important information can be lost. Figure 4.1 presents
an example of an important e-mail not retrieved with such methods.

Umm, Option’s already have an is-expert setting.

On Fri, Mar 10, 2006 at 02:35:29PM +0100, Florent Daigni?re
(NextGen$) wrote:
Hi,

I'm currently implementing the ConfigToadlet... and wondering if
the ui should show every possible options or restrict the set to
"well known". Yy

Figure 4.1: E-mail related to a class, retrievable only by the case sensitive method

The CamelCase technique deals with this issue in a straightforward way: As previously
explained (Section 2.2), such technique offers the best trade-off between precision and recall,
while maintaining reasonably high value. As depicted in Table 4.1, this method runs the
strict regular expression search only on classes named by a single word, while it uses the
case sensitive approach on class whose name is formed by more than one word. In this way,
it combines best of both techniques.

By applying the CamelCase technique on Freenet, we see a great difference in package
results, compared to the other methods. The package client serves as an example of this.

35

The CamelCase technique linked 291 e-mails to the client’s classes. Client contains 37
classes and amongst them only class Metadata is not in CamelCasing. Thus, for this class,
the CamelCase applied the strict regular expression method, returning only 26 results. The
case sensitive search, on the other hand, returns 335 results for this class, raising a number
of unique e-mails linked to all of package classes to 534. All of new e-mails are linked only
to Metadata and are mostly irrelevant.

Using REmail with Freenet confirmed the results established by Bacchelli et al. [2] for
each method. We used the CamelCase technique for most of the development and testing
time, as we found it to be the most useful for our needs.

4.1.2 Refining results to obtain relevant information
Applying filters

Even though the CamelCase method provides results with a reasonable precision and recall,
we also usually obtained a considerable number of e-mails, that indeed referred to a class in
question, but are irrelevant in the context of program comprehension. In the case of Freenet,
the vast majority of such messages were automatically generated and sent by the version
control system for detailing commits. These e-mails include listings of all classes that are
part of each commit. Short in nature, the related commit message is hardly relevant to the
listed classes.

With such e-mails a new phenomenon have appeared: Even the strict reqular expression
method returned such e-mails as relevant links, because classes were listed using their com-
plete path inside project structure, which followed the package structure. Even though the
link is formally correct, these e-mails are in fact irrelevant (an example of this is in Figure
4.2).

Author: nextgens
Date: 2008-08-26 13:14:49 +0000 (Tue, 26 Aug 2008)
New Revision: 22172

Modified:
trunk/freenet/src/freenet/client/ArchiveContext.java
trunk/freenet/src/freenet/client/ArchiveManager.java
trunk/freenet/src/freenet/client/FetchCaontext.java
trunk/freenet/src/freenet/client/async/ClientGetter. java
trunk/freenet/sre/freenet/client/async/USKRetriever.java J

Figure 4.2: Related, however irrelevant, e-mail linked by Strict technique

After observing such behavior, we decided to implement a message filtering (see Section
3.4.5) for allowing the user to reject messages based on subject and author fields. Such
feature immediately proved to be helpful: The e-mails posted to the mailing list of Freenet
by the version control systems have a special subject, thus, by creating a filter, we were
able to remove all the unnecessary e-mails: Messages posted to the Freenet development
list by cws, are marked by the specific string shown in Figure 4.3. Therefore, by setting up
filtering using it, all these e-mails are removed from the results and neither they appear in
the E-mails view nor they are counted in the number of “hits” in the Package Explorer.

36

E 30.05. 2008 10:26 luke771 [freenet-dev] ITA |10n update 05/30

™ 12.08. 2008 06:07 Daniel Cheng [freenet-dev] [freenet-cvs] r2 1704 - in branches/sal
™ 05.09. 2008 09:05 Cooo . [freenet-dev] New swedish translation.

E 06.09. 2008 12:15 Cooo . [freenet-dev] Another update to the swedish translat
™ 09.11. 2008 03:54 Daniel Cheng [freenet-dev] [freenet-cvs] Veri

=] 11.11. 2008 05:47 Matthew Teseland [freenet-dev] [freenet-cvs] r23351 - in trunk/freenet
™ 07.01. 2009 04:44 Daniel Cheng Re: [freenet-dev] [freenet-cvs] r24974 - trunk/freen
E 23.05. 2009 08:21 Luke?71 [freenet-dev] ITA |10n update 090523

™ 06.06. 2009 02:15 sich [freenet-dev] French Translation

Figure 4.3: Example of filtering e-mails posted by version control systems

Selective result removal

Even though the cvs messages were removed by filtering, we could see that other messages
that should be removed are difficult to filter in this way. E.g. the Freenet translation
messages in Figure 4.3. Therefore we decided to implement means of selective result removal.
By toggling the checkbox next to each e-mail, we can express the lack of interest in it. This is
done selectively, e-mail by e-mail, or thread by thread. Because we could often evaluate the
importance of an e-mail simply by its subject, removing irrelevant messages using checkbox
is not a time consuming task. As expected, this feature together with filtering helped to
refine a list of e-mails that are better suited for content examination.

E-mail readability

At first, the text of the e-mail under examination was displayed in the E-mail content view
very simply. It was not always easy to find the section of e-mail referring to the class. For
this reason, all the classnames are now highlighted in the text of e-mail. With this, it is
easier to find and understand the context in which the class was mentioned, and whether
it is of any use. In addition e-mails often contain the text of previous messages belonging
to the same thread. For this reason we have modified the view to display text coming from
different messages in color. This increased the readability of the e-mail.

Message filtering together with selective removal and possibilities of quickly deciding the
relevance of e-mails in the text proved to be effective when we were examining classes of
Freenet to test the REmail and its usefulness. After choosing a class of the interest, we
were able to rid the results of irrelevant e-mails and find potentially useful information in a
reasonable time.

4.1.3 Responding to feedback

Linking the e-mails to the source code and retrieving information to help developer’s pro-
gram comprehension is the core of REmail’s functionality. However as we were developing
REmail, testing it and getting feedback, we found it necessary to add more features and
functionalities, which we have subsequently tested:

e We attempted to obtain source code understanding of several classes when working
solely with the editor. By toggling the bookmark markers we could see the numbers of
all the e-mails related to all the classes mentioned in the code. Classes with a greater
number of linked e-mails were discussed more, thus were a good candidates for further
examination, especially because the original class of interest was dependent on them.

37

e Similarly to the editor improvement, the presentation of number of links per each
class and package in Package Explorer allowed us to quickly pass through packages
and see the most discussed classes - thus the most important or problematic. However
(mostly when not using CamelCase linking technique) we discovered that we needed to
be careful, as certain classes had a greater number of “hits”, but were mostly unrelated
because of their names are dictionary words.

e At the beginning the retrieved e-mails were presented on a single list. While inspecting
the search results, we found that most of the e-mails were containing bodies of other
e-mails in the list. These messages were originally parts of the same thread. Therefore,
we have modified both source modules to obtain thread related information as well.
This allowed us to create a threaded result presentation. When investigating threads,
we were mostly examining only the most recent message as it usually contains parts of
the other e-mails, providing a entire thread’s discussion at one location. This generally
speeded entire process of result inspection.

e Initially, the Mail view was implemented as a simple table that could be sorted by
it’s columns. Because of the combined table-tree viewer (that we had to use when we
introduced threads) and the temporal nature of e-mail succession, all the e-mails are
sorted only by time. This took away a possibility of sorting e-mails by the subject
and author. While sorting by author was sometimes useful, sorting by time brought
related e-mails together because similar development issues are discussed in the same
period of time.

4.2 Project comprehension with REmail

As soon as REmail’s implementation reached a solid state, we have examined means in which
the plugin could become beneficial to the effort of establishing program comprehension. We
argue that REmail provides means helping to retrieve an entry point for project examination
as well as it allows for tracking aspects of the project’s evolution and helps in search for
developers responsible for code artifacts in question.

We have demonstrated findings of our research on REmail at the 2011 CSMR* confer-
ence in Oldenburg. This section presents an excerpt of scenarios illustrating benefits to
the program comprehension as we have previously published them in March 2011[5]. The
following section conforms to Section 3 of the paper and contains some of it’s parts. Thus,
for formal purposes, it may be considered it’s (modified) citation.

4.2.1 Entry points for code investigation

When starting a program comprehension effort, a crucial issue is knowing where to begin
the investigation. Email data provide both qualitative and quantitative information for
this purpose. The augmented Package Explorer view, which shows decorations with the
number of emails related to the chosen packages and classes, gives hints on the “popularity”
of entities in the mailing list, in quantitative terms. We argue that this value might be
high in classes that implement the core function of a system, thus this might be used for
recommending entry points for program comprehension.

*15th European Conference on Software Maintenance and Reengineering, March 1-4, 2011, Oldenburg,
Germany

38

This “secondary” recommendation, based on popularity, can be easily contextualized and
evaluated by the practitioner, thanks to the qualitative aspect of emails. In other words,
this popularity is not a value coming out of the blue, but, on the contrary, it is supported
by the content of the emails: By skimming the messages’ text, one can decide whether a
popular class is worth understanding for the task at hand.

4 freenet.client (93) # freenet.node.fcp.whiteboard (0)
i# freenet.client.async (103) # freenet.node.simulator (12)
freenet.client.events (89) f# freenet.node.stats (0)
i# freenet.client.filter (40) i## freenet.node.updater (9)
i freenet.clients.http (100) i# freenet.node.useralerts (47)
@ freenet.clients.http.ajaxpush (8) i# freenet.pluginmanager (36)
#1 freenet.clients.http.annotation (0) i freenet.store (20)
i# freenet.clients.http.bookmark (10) j# freenet.store.saltedhash (0)
1 freenet.clients.http.complexhtminodes (1) # freenet.support (170)
i# freenet.clients.http.updateableelements (10) #i freenet.support.api (22)
i freenet.config (17) [# freenet.support.compress (1)
i freenet.crypt (69) # freenet.support.CPUInformation (4
freenet.crypt.ciphers (11) # freenet.support.io (110)
freenet.io (7) # freenet.support.math (9)
[# freenet.io.comm (40 [# freenet.support.plugins.helpers1 (1)
freenet.io.xfer (30) # freenet.support.transport.ip (13)
freenet.keys (94) @ freenet.tools (7)
& freenet.|10n (9) # net.i2p.util (16)
.8 freenet.node (459) # org.bitpedia.collider.core (0)
{# freenet.node.fcp (275) i#t org.bitpedia.util (0)
—

Figure 4.4: Popularity of Freenet packages as shown by Package Explorer

Figure 4.3 shows that the most popular package of Freenet is freenet.node, with classes
discussed in more than 450 emails. The second most discussed package is freenet.node.fcp,
with slightly more than 250 emails, while the other packages are significantly less popular.

In the most popular package, developers mainly discuss four entities: classes Node (74
emails), PacketSender (61), PeerNode (67) and interface RequestClient (98). With a brief
analysis of the emails for the interface, we saw that it was popular during the first phases
of Freenet development, but afterwards its importance gradually faded. We focus on the
other classes that are still currently discussed:

e Node: By looking at the distribution of the emails over time, via the Emails View
panel, we saw that the large class Node has been very popular since the inception of
the project. By inspecting the code, we discover not only that it includes the main
method from which the Freenet system boots, but also that it models the node run
by the user in the network. Since Freenet is a peer-to-peer system, the user node has
a crucial role for the whole application and is essential for comprehending how the
software functions as a whole.

e PacketSender: This class implements packet sending through the Freenet network.
It has a general importance in the system, and by reading one recommended email,
we understood that it is critical for a developer who must deal with message handling:
“Are you interested in implementing message priorities? Messageltem and Packet-
Sender are the most relevant classes.” This message also revealed a hidden coupling,
not detectable by static analysis, with Messageltem.

39

http://http.ajaxpush
http://http.annotation
http://http.bookmark
http://http.complexhtmlnodes
http://http.updateableelements
http://freenet.support.transport.jp
http://net.i2p.util

peer suppr;ns "FINP v2'2 If not, can something be added without breaking
old nodes, or is there a better way of doing this?

1]

#import java.io.BufferedReader;[] |

Yes. See "auth.negTypes” in node references, and its corresponding code
inPeerNode and FNPPacketMangler. We auto-negotiate based on the
availablenegotiation types, and we declare them in the noderef. At the moment
this isonly used for link setup, butin principle it could be used for
Represents a peer we are connected to. One of t - post-setupconnection formatting.

1s that we can rekey, or a node can go down and| |o

while we are connecred to it and we want to rel ™| JAlotolthe FINP code is already moved out of PeerNode into two classes:
con) ' } - PackefTracker,
narket numhers when this hannens Hence we Rﬂﬁ

& Error Log |+ Tasks | (£ Problems | & Console | 5 E-mails 2

Mmoo o

amphibian

Date Author Subject
26.04. 2010 03:54 Matthew Toseland [freenet-dev] web-pushing branch merged into master
A 21.05. 2010 06:04 Martin Nyhus [freenet-dev] Implementation of Evans packet format
21.05. 2010 09:24 Juiceman Re: [freenet-dev] Implementation of Evans packet format
22.05. 2010 09:17 Matthew Toseland Re: [freenet-dev] Implementation of Evans packet format

Figure 4.5: Using REmail to understand PeerNode

e PeerNode: Figure 4.5 shows that opening code comment of PeerNode states that it
“represents a peer we are connected to” Therefore, it plays a central role in the Freenet
functioning and is another important entry point for program comprehension. More-
over, by reading among the most recent email threads recommended by REmail, we
discover additional information that could not have been learned by solely investigat-
ing the code. PeerNode is responsible for implementing the Freenet Network Protocol
(FNP) — the communication protocol used in Freenet. A developer who was tasked by
changing the protocol is required to “move all the FNP related code from PeerNode
to a new class, and have PeerNode use the old code through this class. The new code
can then be added without touching FNP, and PeerNode |[can| choose which format to
use for each peer.” As we see in Figure 4.5, by reading the same thread, the developer
interested in modifying FNP would also discover the other two classes responsible for
the implementation of FNP: PacketTracker and SessionKey.

To further evaluate the importance of these three classes in the system, we analyzed
them in terms of Design Flaws [10]. We have then used detection strategies|12]| to diagnose
all the three classes as affected by the Behavioral God Class design flaw, that is they tend to
incorporate a disproportionately large amount of intelligence. This reinforces the hypothesis
that they represent an important entry point for program comprehension. Additionally, all
the classes presents other design flaws such as Brain Methods, Intensive Coupling, and
Shotgun Surgery. Please refer to [10] for details on these Design Flaws.

4.2.2 Finding experts

Program comprehension involves keeping up with who on a distributed team is expert about
specific code entities. Given the complexity and the amount of changes in software, this is
a non-trivial task. Emails recommended by REmail also report the author. We argue that
this information can be used to extract both quantitative and qualitative information about
the expertise on discussed entities. As an example, we see how Remail can be used to find
an expert of class BookmarklItem.

We first selected the entity itself, which has 26 related emails. Then, in the Emails
View, we already see how Toseland wrote several emails on this entity. This quantitative
information suggests us his potential class expertise. To confirm this belief, we selected

40

You should put each Bookmarkltem as a sub-fieldset, not a string. Then you
can
cleanly extend it and record key, name, etc.

Well, in fact| haven't done it that way because | couldn't see any usecase
where
itwould be useful... doyou have any application in mind ?

The ability to easily add fields.

Figure 4.6: Excerpt of e-mail revealing the likely expert

one of the emails he wrote and we read it in Email Content View (Figure 4.6). Thanks
to the different colors used to distinguish previous e-mails in the thread, we clearly read
that Toseland, first, indicated how Bookmarkltem must be aggregated: “you should put
each Bookmarkltem as a sub-fieldset, not a string”; then, gave the rationale behind this
behavior:“[to have| the ability to easily add fields.” Without using version control system
data, but simply with REmail, we could easily find an expert of this entity.

4.2.3 Project evolution analysis

Version control systems offer historical information on the evolution of the source code.
They can be used to track changes in source code artifact in order to detect whether a class
is stable or always morphing.

We argue that, in system in which developers mainly communicate in mailing lists (such
as open source projects, and distributed teams), emails might be used to complement known
information in order to better understand the relevance of changes. The rationale is that
classes that are not discussed in the development mailing lists are likely to be more stable
and less prone to major modifications, since a substantial change would require an agreement
of the development team.

To investigate our hypothesis, we analyzed the package wtil in the Mina project. It
presents 98 distinct commits in fifty months, and discussions in the mailing list. It contains
17 classes, of which we manually inspected the complete history in the version control
system and all the emails recommended. We analyzed the changes that occurred since the
inception of the Mina mailing list and linked the commit history with the related email
threads retrieved by REmail.

We have found a pattern analogous to one present in the Freenet system. For example,
the package crypt contains classes that used to be discussed in the past of the project,
but that have been almost not discussed for two years. By analyzing the related commits,
we verify that they contain no relevant change. From this scenario, we saw how historical
information provided by emails recommended by REmail might help in understanding where
the current, active, and relevant development is focused.

Please refer to [5] for detailed description of the scenarios described in this section as
well as for more research done with the help of Apache Mina system.

41

Chapter 5

Conclusions

5.1 Summary

We have created REmail, an Eclipse plugin that integrates e-mail communication in the
IDE. We have been motivated by the growing need of improving how developers, especially
when geographically spread, communicate. We have focused on e-mail communication: The
most common mean of communication for distributed teams, and we believe is one of the
best suited for integration with the source code.

REmail incorporates several lightweight techniques to link classes to e-mails discussing
them. We have extended the GUI of Eclipse in a number of ways to allow developers to
take advantage of these techniques seamlessly.

The features we have implemented can be a useful tool for developers trying to com-
prehend a new software system: A developer can choose any of the mailing lists present in
the MarkMail service, use the tool we have created to import it, and use it with REmail.
The plug-in is implemented in a modular way, currently allowing programmers to utilize
two possible data sources: mbox e-mail storage file format and PostgreSQL DBMS.

REmail offers a configuration interface to allow programmers to properly set their pref-
erences. The central points of our plugin are: the “Package Explorer”, where developers
select classes they are interested in and submit them for the linking process, the “E-mails
view”, where the results of linking are presented to the developer, and “E-mail content”
view, which presents individual e-mails in a structured and enhanced way. REmail is also
integrated in the source code editor, where programmers have access to the results of linking
without the need to have the additional views open.

During the development, we have used the Freenet software system and its development
mailing list as a case study. This gave us immediate feedback on the usability of REmail and
allowed us to improve it in order to achieve the most out of the linking techniques. Following,
over the later months, we have examined means in which the plugin could become beneficial
to the effort of establishing program comprehension.

We also have many ideas for other improvements that we plan to implement as future
work.

5.2 Future Improvements

REmail is still evolving: Even though its current features and capabilities make it an useful
tool for any Java developer, we plan to improve its usability, internal structure, and more.

42

Mailing lists management

The ability to obtain any desired mailing list and make it available for REmail is essential.
We plan to provide users with other modules to import mailing list from other sources.

Currently, a user can obtain a mailing list from MarkMail.org free service using mod-
ified Miler tool. However, this method of acquiring e-mail data has a limitation: The
web crawler that is part of Miler is dependent on the MarkMail website. During the
development, the structure of MarkMail.org has changed, forcing us to update Miler.
Also, there is no guarantee that MarkMail will continue providing its service in future.

As introduced on page 29, most of the mailing lists are managed by MailMan, the
GNU Mailing List Manager. This system usually offers access to e-mail archives on
the subscription page of a list. A tool that will download archived e-mails, merge
them together into single mbox file, and make them available for REmail is currently
in development.

We also consider adding a new data source module, giving more flexibility to the users
when working with the mailing list. Particularly, a support for obtaining e-mails stored
online via IMAP accounts can be implemented. This would remove the dependency
on an external e-mail client to manipulate the content of the list.

Usability features

We are considering adding a support for direct management of mailing lists in the
Eclipse. We would like to allow user to view an entire mailing list, not just results of
a search, and allow reading, editing and deleting e-mails in it. We want to remove the
need of an external application for doing this, while still having a mbox storage file
that can be adressed by other programs.

Currently, REmail allows a developer to work with e-mails extensively, however pas-
sively. We plan to implement a support for sending e-mails directly from the IDE,
also with automatic keywords generation, after selecting a class or a piece of source
code that programmer is interested about.

We plan to offer mail-to-class traceability. This will give developers an access to source
code of classes that are being mentioned inside e-mails they are viewing in the moment.

We intend to add a not-intrusive notifier that tracks new e-mails about classes in
which a developer is interested.

We tried to extend a standard hover window in the editor to display a preview of
search results related to the hovered class. Initially, we have failed to find how to
implement this feature. However, recently, an answer on a forum question we posted
introduced a method we could employ.

When using mbox search module, developers have to choose the mbox source file in
the preferences. This is implemented using a list, with the active one on the top.
Now we want to let the user to link a number of mailing lists to specific projects in
workspace.

43

http://MarkMail.org
http://MarkMail.org

e The “MarkMail” tool has to be launched separately to download a mailing list. We
want to create a preference page, where the user can launch that tool and any similar
future tools, thus merging all the work related to setting up a mailing list in REmail.

Other

How we previously explained in 3.1, we have chosen Eclipse for implementing REmail. The
idea of the e-mail integration, however, can be put in practice into virtually any other IDE,
thus we considering creating a version of REmail for NetBeans.

Additionally: REmail can currently be used with any programming language that Eclipse
supports. However, since search is always started on classes or packages, the linking methods
that we use are currently Java and OOP centric. Therefore, we would like to extend the
e-mail-to-code capabilities of REmail to deal with larger variety of source code entities.

44

Bibliography

[1]

2]

[5]

[10]
[11]

G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. Recovering
traceability links between code and documentation. IEEE Transactions on Software
Engineering, 28:970-983, 2002.

A. Bacchelli, M. D’Ambros, M.Lanza, and R. Robbes. Benchmarking lightweight
techniques to link e-mails and source code. In Proceedings of WCRE 2009 (16th IEEE
Working Conference on Reverse Engineering), pp. 205 - 214. IEEE CS Press, 2009.,
2009.

A. Bacchelli, M. Lanza, and M. D’Ambros. Miler - a tool infrastructure to analyze
mailing lists. In Proceedings of FAMOOSr 2009 (3rd International Workshop on
FAMIX and Moose in Reengineering)., 2009.

A. Bacchelli, M. Lanza, and V. Humpa. Towards integrating e-mail communication in
the ide. In Proceedings of SUITE 2010 (2nd International Workshop on Search-driven
Development: Users, Infrastructure, Tools and Evaluation), IEEE CS Press, 2010.,
2010.

A. Bacchelli, M. Lanza, and V. Humpa. Rtfm (read the factual mails) - augmenting
program comprehension with remail. In Proceedings of CSMR 2011 (15th European
Conference on Software Maintenance and Reengineering), pp.15-24, ISBN:
978-0-7695-4343-7, 2011.

A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code artifacts. In
Proceedings of ICSE 2010 (32nd International Conference on Software Engineering),
to be published., 2010.

M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. In Proceedings of ICSM 2003 (19th IEEE
International Conference on Software Maintenance), pages 23-32, 2003.

E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley, 2003.

A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated software
development teams. In Proceedings of ICSE 2007 (29th ACM/IEEE International
Conference on Software Engineering), pages 344-353, 2007.

M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer, 2006.

T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a study of
developer work habits. In Proceedings of ICSE 2006 (28th ACM International
Conference on Software Engineering), pages 492-501, 2006.

45

[12] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
Proceedings of ICSM 2004 (20th IEEE International Conference on Software
Maintenance), pages 350-359. IEEE Computer Society Press., 2004.

[13] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software reflexion models: Bridging the
gap between design and implementation. IEEE Transactions on Software
Engineering, 27:364-380, 2001.

[14] Web page: Network Working Group. Internet message format.
http://tools.ietf.org/html/rfc5322, October 2008.

[15] Web page: Tom Jewett. Design pattern: many-to-many.
http://www.tomjewett.com /dbdesign /dbdesign.php?page=manymany.php.

[16] Eclipse: Building Commercial-Quality Plug-Ins. E. Clayberg and D. Rubel.
Addison-Wesley, 2 edition, 2006.

[17] E. Shihab, Z. M. Jiang, and A. E. Hassan. Studying the use of developer irc meetings
in open source projects. In Proceedings of ICSM 2009 (25th IEEE International
Conference on Software Maintenance), pages 147-156, 2009.

46

http://tools.ietf.org/html/rfc5322
http://www.tomjewett.com/dbdesign/dbdesign.php?page=manymany.php

