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Abstract 
The goal of this work is to propose a shape analysis suitable for the context of the 2LS 
analyser. 2LS is a program analysis framework for C programs which is based on automatic 
invariant inference using an S M T solver. The proposed solution includes a way how the 
shape of a program heap can be described using logical formulae over bit-vectors and how 
a first-order S M T solver can be used to infer loop invariants and function summaries for 
each function of the analysed program. O u r approach is based on pointer access paths that 
describe the shape of the heap by expressing the reachability of heap objects from pointer-
typed program variables. The information obtained from the analysis can be used to prove 
various properties of programs manipula t ing dynamic data structures, mainly l inked lists. 
The solution has been implemented i n the 2LS framework and it brought a significant 
improvement i n terms of the capabilities of 2LS in analysing heap-manipulating programs. 
This is demonstrated on benchmarks taken from the well-known International Compet i t ion 
on Software Verification ( S V - C O M P ) as well as other benchmarks. 

Abstrakt 
Cieľom tejto p r á c e je n á v r h ana lýzy tvaru haldy vhodnej pre potreby a n a l y z á t o r a 2LS . 2LS 
je n á s t r o j pre a n a l ý z u C programov založený na automatickom odvodzovan í invariantov 
s p o u ž i t í m S M T solvera. N a v r h o v a n é r iešenie obsahuje s p ô s o b rep rezen tác ie tvaru pro­
gramovej haldy pomocou logických formulí nad t eó r iou b i tových vektorov. T ie sú nás l edne 
využ i t é v S M T solveri pre p r e d i k á t o v ú logiku p rvého r á d u na odvodenie invariantov cyklov 
a s ú h r n o v j edno t l i vých funkcií ana lyzovaného programu. Náš p r í s t u p je založený na ukaza­
te lových p r í s t u p o v ý c h ces tách , k t o r é vy jadru jú dos iahnuteľnosť objektov na halde z ukaza­
te lových p r e m e n n ý c h . Informácie z í skané z ana lýzy m ô ž u byť využ i t é na dokázan i e rôznych 
v l a s t n o s t í programu súvis iacich s p r á c o u s d y n a m i c k ý c m i d á t o v ý m i š t r u k t ú r a m i . Riešenie 
bolo i m p l e m e n t o v a n é v r á m c i n á s t r o j a 2LS . S jeho p o u ž i t í m došlo k v ý r a z n é m u zlepše­
niu schopnosti 2LS analyzovať programy p racu júce s ukaza teľmi a d y n a m i c k ý m i d á t o v ý m i 
š t r u k t ú r a m i . Toto je d e m o n š t r o v a n é na sade experimentov p r e v z a t ý c h zo z n á m e j medz­
iná rodne j súťaže vo verifikácii programov S V - C O M P a iných experimentoch. 
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Chapter 1 

Introduction 

Research in the fields of formal verification and analysis is very wide and getting ahead 
very fast. Currently, there is a large number of tools available, designed to analyse various 
properties of programs. However, most of the tools are typical ly very narrowly focused on 
a single area of analysis. They usually fail to analyse complex properties of real-life programs 
(e.g. verifying terminat ion of programs using numerical and pointer variables at the same 
time) while s t i l l being able to scale for realistic programs. O n such complex properties and 
programs, the tools usually give up or produce imprecise results (false positives or even 
false negatives). 

One of the tools t ry ing to combine mult iple approaches into a single, scalable frame­
work is 2 L S . It integrates different program analysis techniques to work simultaneously and 
exchange information, which allows it to both prove true properties as well as find errors 
in programs. Due to using mult iple techniques, 2LS offers a possibil i ty to analyse different 
classes of program properties. Currently, it is well usable to verify termination, data-flow 
among numerical variables and arrays (using domains of different price and precision), or 
equality between pairs of variables i n the given program. 2LS was developed by Danie l 
Kroen ing and Peter Schrammel at the Univers i ty of Oxford, U K . Currently, it is main­
tained by Peter Schrammel at the Univers i ty of Sussex and the spin-off company DiffBlue 
L t d . Th is thesis was solved i n cooperation wi th this company. 

One of the important features that 2LS currently lacks is an abi l i ty to analyse programs 
that work wi th dynamic data structures, such as l inked lists, trees, etc., which is a task 
usually referred to as shape analysis since it is intended to analyse reachable shapes of 
dynamic data structures. However, many real-world programs use dynamic structures, 
and therefore it is needed to integrate this k ind of analysis into 2LS . Moreover, since 2LS 
already contains good numerical analysis, its combination wi th shape analysis could bring 
new options of analysing interesting program properties that other, single-purpose tools are 
not able to handle well (e.g. properties based on the length of l inked lists). 

Hence, the goal of this thesis is to propose a shape analysis suitable for the specific 
context of 2LS , which very much differs from what is common i n other frameworks. T y p i c a l 
shape analyses are mostly based on some form of abstract interpretation that symbolical ly 
executes a given program, iteratively going through its loops. In order to avoid generation 
of infinitely many reachable program configurations, some form of widening/abstract ion is 
used to summarize reachable sets of configurations into a finite number of abstract symbolic 
configurations. For representing such configurations, r ich classes of logics, automata, or 
other formalisms are used—e.g. separation logic [14], 3-valued predicate logic w i th transitive 

3 



closure [ ], forest automata [ ], or symbolic memory graphs [ ]. 2 L S differs from these 
tools in (at least) 2 important aspects: (1) it is heavily based on the bit-vector logic, 
ul t imately using S A T solving, and (2) it uses a significantly different computat ion loop. This 
loop is based on combining k- induct ion, a notion of invariants based on so-called templates, 
and a rather specific form of abstract interpretation. Incorporating shape analysis into this 
framework hence requires a rather specific solution. 

In this thesis, we propose a solution to the above problem. In particular, we propose 
a novel domain for representing sets of reachable heap shapes that can be well integrated 
into the template-based approach of 2LS . Namely, we represent sets of heap configurations 
using concept of pointer access paths. Th is representation of the heap does not concretely 
describe the shape of the heap, only expresses reachability of heap objects from variables in 
the analysed program v i a chains of pointers. Moreover, we propose a l l algorithms needed 
for integrating the domain into 2LS , both wi th in intraprocedural as well as interprocedural 
analysis. This required us to propose specific algorithms for jo in of abstract values in our 
abstract domain and for reflecting heap modifications performed by a function wi th in the 
context of the caller function. In addit ion, to be able to supply these algorithms wi th 
some auxi l iary information they need, we also had to modify the points-to analysis and 
the generation of the static single assignment form that is used as an internal program 
representation of 2LS. 

We have implemented the proposed ideas i n 2LS and applied the extended tool to a num­
ber of benchmarks. The obtained results indicate that our extension brought a significant 
improvement in terms of the abi l i ty of 2LS i n analysing programs manipula t ing pointers 
and dynamic data structures on the heap. 

The rest of the thesis is organised as follows. F i r s t , the basic concepts of program ver­
ification and the current state of the art of 2LS are described i n Chapter 2. After that, 
principles of the proposed solution are described i n Chapter 3, along w i t h a l l necessary 
changes that must be done to the current concepts of 2LS . Chapter 4 outlines the archi­
tecture of 2LS and gives details of the implementat ion of our extension. Results of our 
experiments are presented in Chapter 5, along wi th a discussion of what these results show. 
Final ly , a conclusion and future work is in Chapter 6. 

This thesis extends the Term project of the same ti t le. Part icular ly, Chapter 2 and 
part of Chapter 3 (up to Section 3.6) were taken from the Term project w i th some minor 
changes. 

4 



Chapter 2 

Program Verification in 2LS 

The goal of this project is an integration of shape analysis into the 2LS tool [17]. This 
chapter w i l l briefly introduce the basic concepts of 2LS and then explain i n detail those 
that are needed to understand the methods proposed i n this project. 

2LS is a program analysis framework buil t upon the C P R O V E R verification frame­
work [1]. It is oriented towards analysis of sequential C programs. The core a lgori thm 
of 2LS , called klkl, efficiently combines bounded model checking ( B M C ) , fc-induction and 
abstract interpretation [ ]. A l though a l l these three verification approaches can be used 
simultaneously, we w i l l only use abstract interpretation for the shape analysis extension of 
2LS proposed wi th in this work. General concepts of this program analysis technique are 
formally described i n Section 2.2. 

The abstract interpretation used i n 2LS is based on computing so-called inductive in­
variants for a l l loops and functions of the source program. These are inferred using an S M T 
solver-based approach and then used to reason about various properties of the analysed pro­
gram. The approach to the inference of the inductive invariants is formally described in 
Section 2.3. 

A l though the below description views source programs for s implic i ty as t ransi t ion sys­
tems (described i n Section 2.1), the implementat ion of 2LS uses the static single assignment 
form (SSA) as the source program representation since it is better usable w i th the solver-
based approach. The concept of S S A and the conversion of the source program into this 
form is described i n detai l i n Section 2.4. 

In order for 2LS to be usable for larger programs, it is essential to use interprocedural 
analysis. Th is includes computing summaries for ind iv idua l functions from the source 
program. Formal definition of summaries and their usage for the analysis is explained in 
Section 2.5. 

The concepts described wi th in this chapter are used in various analysis present in the 
current implementat ion of 2LS . This mainly includes the analysis of the values of numerical 
variables (using the polyhedra abstract domain), the terminat ion analysis, and the analysis 
of equalities among variables. 

2.1 Source Programs as Transition Systems 

The following description views the source program as a transi t ion system. A program 
state x is the current value of a l l program variables ( including the program counter) and 
related memory (i.e. the stack and the heap). Let S be a set of program states, and let 
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the transition relation r C S x S define for each state a set of its possible successors i n the 
program execution. 

Assume a sequence of sets of states SoSi ... S^ such that VO < i < k : (Si, Sj+i) £ r . 
We denote Sk = Tk(So) the set of states reachable from So after k execution steps. If / is 
the set of a l l possible in i t i a l states of a program, then the set of all reachable states Sr is 
the least fixed point of r s tart ing from / defined as: 

Sr=\Jr\I). (2.1) 

Informally, Sr is the set of a l l states that the program can get into during its execution. 

2.2 Abstract Interpretation 

Abstract interpretation is a static analysis technique based on an over-approximation of the 
set of reachable states of the source program. Generally, the set of a l l reachable states is not 
computable. However, since it is usually needed to reason about a certain program property 
only, to prove this property it is sufficient to approximate program states as elements of 
a simpler domain, called the abstract domain. 

Having the concrete domain P of program states, we create the abstract domain Q. A n 
element of the abstract domain, called an abstract value, corresponds to an element from 
the concrete domain, which is typical ly a set of concrete program states. A l o n g w i t h the 
abstract domain, we define two functions [7]: 

• The concretisation function defines a mapping from an abstract value to a value of 
the concrete domain. Formal ly 7 : Q —>• P and 7(g) is a concrete value represented 
by q. 

• The abstraction function defines mapping from a concrete value to an abstract value 
from the abstract domain. Formal ly a : P —>• Q and a(p) is the most precise abstract 
value i n Q whose concretisation contains p. 

A n abstract interpretation 7 of a program is then a tuple [8]: 

/ = ( Q , U , C , T , i _ , r # ) (2.2) 

where 

• Q is the abstract domain (along wi th well-defined abstraction and concretisation 
functions), 

• T G Q is the supremum of Q, 

• J_G Q is the inf imum of Q, 

• U : Q x Q —>• Q is the join operator, (Q, U, T ) is a complete semilattice, 

• (E ) Q Q x Q is an ordering on (Q, U, T ) defined a s x C y 4 4 > x U y = y, 

• r # : Instr x Q —>• Q defines the interpretation of abstract transformers. 
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Abstract interpretation approximates the set of reachable states by computing the fix-
point of i n the abstract domain. The result is one abstract value for each execution point 
of the source program. In case mult iple abstract values are obtained (because of multiple 
execution paths entering the program location), these are accumulated into one using the 
jo in operator. The properties of the analysed program are then checked i n the computed 
abstract values. The soundness of the analysis is ensured using a Galois connection between 
the concrete and abstract domains. We say that (P, <, Q, C ) is a Galois connection i f and 
only if (P, <) and (Q, C ) are par t ia l ly ordered sets, and there is a following relation between 
abstraction and concretisation functions [8]: 

Since the computed abstract value is an over-approximation of the set of a l l reachable 
concrete program states, abstract interpretation may generate a false positive. It is a situ­
ation when a property does not hold for the computed abstract semantics, but it holds for 
the set of a l l reachable program states. Th is incoherence is usually caused by the fact that 
an abstract value represents mult iple concrete program states and may represent also states 
that are not reachable in the real program. The objective is to minimize the number of 
the false positives. Th is may be achieved, for example, by choosing a more precise abstract 
domain or by a combinat ion wi th other static analysis approaches (as 2LS does). 

2.3 Template-based Verification 

This section formally explains the approach to abstract interpretation adopted in the 2LS 
framework. The key phase of the abstract interpretation part of the klkl a lgori thm is an 
inference of inductive invariants. Th is problem, which can be expressed in (existential 
fragment) of second-order logic, is reduced to the problem expressible i n quantifier-free 
first-order logic using so-called templates. This reduction enables 2LS to use an S M T solver 
for automated inference of loop invariants and function summaries. These are then used to 
check various properties of the analysed program. The whole concept is focused on finite 
state systems since 2LS uses bit-vectors to analyse software [ ]. 

2.3.1 Program Verification Using Inductive Invariants 

2LS uses an S M T solver to reason about programs, thus we adapt the formalisation of 
source programs from Section 2.1 to use logical formulae for the below presentation. The 
state of a program is described by a logical interpretation of logical variables corresponding 
to each program variable. A set of states can be described using a formula—the states in 
the set are defined by models of the formula. G iven a vector of variables x, a predicate 
Init{x) is the predicate describing the in i t i a l states. A transi t ion relation is described as 
a formula Trans(x, x'). F r o m these, it is possible to determine the set of reachable states as 
the least fixed-point of the transi t ion relation start ing from the states described by Init{x). 
This is, however, difficult to compute, so instead an inductive invariant is used. Inv is an 
inductive invariant if it has the property: 

A n inductive invariant defined as above is a description of a fixed-point of the transi t ion 
relation. However, it is not guaranteed to be the least one, nor to include Init{x). Moreover, 

Vp G P , q G Q : 

p < 7(9) Oi{p) C q. 
(2.3) 

(2.4) 
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there are predicates which are inductive invariants, but are not sufficient to be used for 
proving any properties of the source program (such as predicate true, which describes the 
complete state space) [ 1]. That is why we w i l l t ry to compute such invariants that approach 
the least fixed-point, so that it is enough to use them to check a given property. 

A verification task does often require showing that the set of a l l reachable states does 
not intersect w i th the set of error states denoted Err(x). Us ing the concept of inductive 
invariants and existential second-order quantification (32), we can formalise it as: 

^Inv. Vaj, x'. (Init(x) =>• Inv{x)) A 

(Inv(x) A Trans(x,x') =>• Inv(x')) A (2.5) 

(Inv(x) -*Err(x)). 

2.3.2 Invariant Inference via Templates 

In order to exploit the power of the klkl a lgori thm, 2LS uses a solver-based approach to 
computing inductive invariants. To direct ly handle Formula 2.5 by a solver, 2 L S would need 
to handle second-order logic quantification. Since a suitably general and efficient second 
order solver is not currently available, the problem is reduced to one that can be solved 
by an iterative applicat ion of a first-order solver. Th is reduction is done by restricting the 
form of the inductive invariant Inv to T(x,8) where T is a fixed expression (a so-called 
template) over program variables x and template parameters 8. Th is restriction corresponds 
to the choice of an abstract domain i n abstract interpretation—a template only captures 
the properties of the program state space that are relevant for the analysis. Th is reduces 
the second-order search for an invariant to a first-order search for the template parameters: 

35. Vx, x'. (Init(x) =̂ > T(x, 5)) A 

(T(x, S) A Trans(x, x') = ^ T(x', 5)). 

Al though the problem is now expressible i n first-order logic, the formula contains quan­
tifier alternation, which poses a problem for current S M T solvers. Th is is solved by itera-
t ively checking the negated formula (to tu rn V into 3) for different choices of constants d 
as candidates for template parameters 8. For a value d, the template formula T(x, d) is an 
invariant if and only i f Formula 2.7 is unsatisfiable. 

3x, x'. -.(/mt(aj) T(x, <5)) V 

-^(T(x, d) A Trans(x, x') => T(x', d)) 

From the abstract interpretation point of view, d is an abstract value, i.e. it represents 
(concretises to) the set of a l l program states x that satisfy the formula T{x, d). The abstract 
values representing the inf imum _L and supremum T of the abstract domain denote the 
empty set and the whole state space, respectively: T(x, _L) = false and T(x, T ) = true [ ]. 

Formally, the concretisation function 7 is same for each abstract domain: 

7(d) = {x I T(x, d) = true}. (2.8) 

A s for the abstraction function, it is essential to find the most precise abstract value 
representing a concrete program state. Thus: 

a(x) = min(d) such that T(x, d) = true. (2.9) 
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Since the abstract domain forms a par t ia l ly ordered set w i th ordering C and T{x, T ) = 

true, existence of such a min ima l value d is guaranteed. 
The algori thm for the invariant inference takes an in i t i a l value of d =_L and itera-

t ively solves the below quantifier-free formula (corresponding to the second disjunct in 
Formula 2.7) using an S M T solver: 

If the formula is unsatisfiable, then an invariant has been found, otherwise the model 
of satisfiability is returned by the solver. The model represents a counterexample to the 
current instance of the template being an invariant. The value of the template parameter 
d is though refined by jo ining wi th the obtained model of satisfiability using the domain-
specific jo in operator U [ ]. 

2.3.3 Incremental Solving 

The solver approach used in 2LS is based on a so-called incremental solving. Th is technique 
aims at checking whether satisfiability of a problem is preserved when the clause set is 
incremented wi th new clauses. Instead of re-solving the whole problem, the information 
from the original problem is used to speed up the solution of the new problem. The original 
problem (before adding the clauses) is though considered satisfiable, and only the impact 
of the new clauses is checked [11]. 

In 2LS , this concept is used as follows. F i rs t , the below formula is passed to the solver: 

Prov id ing that a val id source program is passed, Formula 2.11 is satisfiable (each pro­
gram state has a successor) and is considered to hold i n a l l following iterations. After that, 
only the current instance of the template formula is passed to the incremental solver in 
each iteration. 

Instead of representing source program as a transi t ion system, it is equivalent and more 
efficient to convert it into the static single assignment form (SSA) , which represents the 
logical formula describing the whole program. Since the S S A form expl ic i t ly expresses 
control flow, it corresponds to the whole Formula 2.11 and removes the need to (directly) 
implement the abstract transformers. The S S A form used and the conversion of the source 
program into it is described i n Section 2.4. 

2.4 SSA Encoding of Source Programs 

A s the previous section stated, 2LS translates the program into the single static assignment 
form ( S S A ) . It is a well-known concept of an intermediate program representation. Its 
general principles are introduced in Section 2.4.1. 

For an acyclic code, S S A is a formula that represents exactly the strongest post condit ion 
of running the code. 2LS extends the standard S S A form by an over-approximation of the 
loops so that it allows one to reason about abstractions of the program using a solver [ ]. 
Th is conversion of the loops, along wi th other modifications of the standard S S A used in 
2LS, are explained i n Section 2.4.2. 

The mechanism of the transformation of the source program into the S S A form and an 
example of such conversion are stated in Section 2.4.3. 

T(x,d) A Trans(x,x') A ->(T(x',d)). (2.10) 

Init(x) A Trans(x,x'). (2.11) 
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2.4.1 The General Notion of S S A 

Generally, S S A is an intermediate program representation satisfying the property that each 
variable is assigned at most once. A translat ion into the S S A thus involves separating each 
variable v into several variables v\. W h e n a node i of the original program contains an 
assignment to v, it is replaced by an assignment to Uj. Every usage of v is replaced by the 
appropriate variable Vi where i is the last node where v was assigned before the given use 
of v. 

In order to always have exactly one node of the last assignment of v, addi t ional assign­
ments must be introduced at j o in points of the original program. These are called $ (phi) 
nodes and have a form of an assignment x = Q(y,z). This expression means that x is 
assigned the value of y i f the control reaches this node v i a the first entering edge, and x is 
assigned the value of z i f the control reaches the node v i a the second entering edge [2]. 

The logical formula corresponding to the original program is then a conjunction of S S A 
formulae for a l l program statements. 

2.4.2 S S A Used in 2LS 

The S S A form used in 2LS extends the general concepts introduced in Section 2.4.1. In 
order to be usable in the incremental solver, S S A is made acyclic by cut t ing the loops at 
the end of the loop body. The example of this conversion is given i n Figure 2.1. Th is figure 
explains how S S A variables express the control flow in a simple loop [ ]. 

i : before the loop 
x0 = 0 

(a) A loop in C (b) Encoding of the loop in SSA 

Figure 2.1: Conversion of loops i n the S S A form used i n 2LS 

The loop has been cut at the end of its body: instead of passing the version of x from the 
end of the loop body (x5) back to the $ node in the loop head, a free "loop-back" variable 
X1Q is passed. The choice of the value of x i n the $ node is made non-deterministically using 
the free boolean "loop-select" variable gj?. Th is way, the S S A form is made acyclic, and 
though it always holds when passed to the solver (which is needed by incremental solving 
since it represents Formula 2.11, as explained i n Section 2.3.3). 
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Since XQ and g§ are free variables, this representation is an over-approximation of the 
actual program traces. The precision can be improved by constraining the value of X1Q by 
means of a loop invariant, which w i l l be inferred during the analysis. A loop invariant 
describes a property i n the given abstract domain that holds at the loop entry (x0) and at 
the end of the loop body (x5) and though can be assumed to hold on the feedback variable 
x 6 [']• Us ing the interval numerical domain, the invariant for X1Q from the example in 
Figure 2.1 could be: 

gli ( 4 b > 1 A  x6 <  1 0)- ( 2- 1 2) 

The example showed data-flow variables, which correspond to the original program 
variables. In addi t ion to these, 2LS uses guard variables that capture the branch conditions 
from conditionals and loops. For example, the S S A form from Figure 2.1 would contain 
guard variable gA: 

gA = xf1 < 10. (2.13) 

This variable guards the reachability of the assignment of x5 and is used during the 
inference of invariant from Equat ion 2.12. 

To facilitate interprocedural analysis, the S S A used in 2LS contains placeholders for 
function calls i n the form hi(x?—m, x?—out) which stands for i - th invocation of the function h 
wi th input and output arguments x^~m and x^~ou<, respectively. These placeholders assure 
that the function calls are in i t ia l ly havocked (over-approximated) and can be constrained 
by computing function summaries (see Section 2.5) [5]. 

Pointer-typed variables have special handling i n the S S A used i n 2 L S . Since this is 
closely related to the heap analysis performed wi th in this work, it is described i n detail 
later i n Section 3.3. 

2.4.3 Conversion of the Source Program into S S A 

The 2 L S framework is buil t over the C P R O V E R verification framework. C P R O V E R pro­
vides a compiler for C programs, which parses a C program into its own internal repre­
sentation called a GOTO program [ ]. It represents the source program in the form of a 
control-flow graph containing the locations w i th statements and the edges between them. 
Since 2LS uses the S S A form dur ing the analysis, it performs a transformation from a G O T O 
program into the S S A . This transformation is done i n a standard manner as described in 
Section 2.4.1 w i th 2LS-specific modifications explained i n Section 2.4.2: 

• Each variable is split into mult iple "versions" for each of its assignments. A n as­
signment of a variable x at locat ion i introduces a fresh symbol x\ which is used at 
the left-hand side of the assignment. Variables occurring on the right-hand side are 
renamed to their last assigned versions. 

• For each condit ional statement and for each loop, a $ node is introduced for every 
variable that is altered wi th in the condit ional (loop). The choice between two values 
in a $ node is controlled using the branch condit ion in case of a condit ional , and a free 
boolean variable i n case of a loop (due to loops cut t ing as explained i n Section 2.4.2). 

• A guard variable is introduced for the first location of each basic block from the G O T O 
program. The guard variable captures the condit ion of reachability of the given 
basic block i n the source program. This mainly applies to branches of condit ional 
statements and loop bodies. 
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• Funct ion calls are replaced by the over-approximating placeholders. 

• The operations manipulat ing heap objects are treated specially. The i r transformation 
is newly designed wi th in this project, therefore it is described later, i n Section 3.4. 

1 void main() 
2 { 

unsigned x 

10 
11 
12 

while (x < 10) 

assert(x 10) 

2 g2 = TRUE 

5 95 = 92 

6 xfl = ? x$ : x3) 
7 g7 = (xlht < 10) && g5 

~i . phi 
8 X - - '• 

9 
1 0 Sio : 

phi 

11 xl 
12 

! (xfl < 10) && g5 

10 I I !<?10 

(a) The C program (b) The corresponding SSA 

Figure 2.2: Conversion from a C program to S S A 

To better understand conversion of a C program, we give an example i n Figure 2.2 [4]. 
Line 2 is the entry location of the program. It is always reachable, therefore g2 is set to 
true. The definition of x is done at line 3. The head of the loop contains a $ node (line 
6) and since it is direct ly reachable from the beginning of the m a i n function, its guard g5 

is same as the guard of the entry point (g2)- The guard g7 at line 7 expresses that the 
loop body is only reachable i f the loop head is reachable (g5) and the loop condi t ion is true 
(xQhl < 10). L ine 8 sets the new value of x. The guard g10 at line 10 captures the fact that 
the locat ion after the loop is reachable when the loop condit ion is false. Final ly , line 11 
requires x to be equal to 10 once the assertion is reachable (g10 is true). 

2.5 Interprocedural Analysis 
C programs are typical ly composed of mult iple functions. To correctly analyse such a 
program, provided it is not recursive, it might be inl ined first (by replacing the function 
calls by the corresponding function bodies). A l though this simplifies the analysis (the whole 
program is i n one function), it also brings inefficiency since the inl ined program might be 
much larger than the original one, which can prolong the analysis. 

Even though the 2LS framework offers the possibil i ty of full in l in ing of the program (by 
using the — i n l i n e switch), it is designed to perform interprocedural analysis, where each 
function of the original program is analysed separately. 

In this section, we introduce the basic concepts of the interprocedural analysis in 
2LS. The original implementat ion does not handle passing function arguments by refer­
ence (pointers). Since this is crucial for analysis of heap manipulat ion, we implement this 
mechanism wi th in this work. For that reason, this section describes just the original inter­
procedural analysis, where function arguments can be passed by value only. The design of 
passing the arguments by reference is then introduced i n Section 3.7. 
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2.5.1 Input and Output Variables 

A function / is specified by its input variables x™, output variables x°^ut (usually re­
ferred as formal inputs and outputs), and by its S S A form that has been described in 
Section 2.4. In the S S A form, a function ca l l of / i n a node i is represented by the place­
holder fi(xPjr-m,xPj:—out) where xp—m and xPjT°ut represent the actual input and output 
arguments, respectively. Th is placeholder havocs the function cal l and can be constrained 
by computing a function summary [5]. 

Input variables x™ of a function / include parameters paramj and global variables 

glob™. For global variables, we only consider those that are actually accessed inside the 

function. Output variables only contain global variables glob™1, which include same vari­

ables as glotfj1 (potentially i n different S S A versions). The return value of the function is 

denoted r / and included i n globJat-
A l l of the above variables are in the S S A form. The input variables are used without any 

indices since it is not known where they have been assigned last t ime. The output variables 
that are actually wri t ten by the function are in the version of their last assignment before 
the end of the function, while those that are not wri t ten (only read) remain in the same 
form as the input ones. 

2.5.2 Function Abstractions 

Dur ing the function analysis, we use mult iple abstractions based on the concept of invariants 
introduced i n Section 2.3.1: 

• A n invariant is a predicate Inv such that: 

Vx, x' : (Init(x) =>• Inv(x)) A 
V V ' V , (2.14) 
(Inv(x) A Trans(x, x ) =>• Inv(x )). 

Invariants abstract the set of reachable states i n the program. If we project the 
invariant to a subset of variables xioop C x containing loop-back variables for a loop, 
we obtain a so-called loop invariant Inv(xioop). This can be used to constrain the 
values of loop-back variables (as shown i n Section 2.4.2). 

• A summary abstracts the behaviour of a function. It describes how a function / 
transforms its formal inputs into outputs. G iven an inductive invariant Inv, input 
and output variables x m and a ; o u ' , and a predicate Initf(x) describing the in i t i a l 
states of the function, a summary of the function / is a predicate Sum such that: 

Va:, x' : (xin C x A Init(x) A 
(2 15) 

Inv{x') A x o u t C x') Sum{xin, xout). 

The first line of the impl icat ion antecedent expresses that the in i t i a l states of the 
function depend on the input variables. After computing an invariant for the out­
put variables (second line), we obtain a summary Sum(xin, a i o u i ) of the function. The 
summary can be later used to constrain the function ca l l placeholder fi(xp—m, xp

c—out) 
by replacing formal input and output variables x m and a ; O M i i n Sum(xm, x™1) by 
actual values of inputs and outputs xp

f—n and xp

f—out. Details can be found in Sec-
Ji Ji 

t ion 2.5.3. 
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• A calling context abstracts the behaviour of a caller function towards a called function. 
It specifies the context (actual values of input and output variables) that the function 
is called i n . G iven an invariant Inv and values of actual function cal l inputs and 
outputs xvj~%n and xvj~ou*, a cal l ing context for a cal l of a function / at a ca l l site i is 
a predicate CallCtxfi such that: 

Vxi, Xi+\ : (xp

f—m C Xi A Inv(xi) A 

out in out (2J6) 
Trans(xi, JCj+i) A x ^ - o u C Xj+i) =4> CallCtxf.(xPj-m, x ^ - o u ). 

The function cal l is included in Trans(XJ, Xj+i ) , being the transi t ion relation for the 
location i . A program state at the location i is denoted Xj and contains the actual 
input arguments xvj-%n of the function cal l . A program state after the execution of the 

function cal l is denoted Xj+i and includes xvj~out. After computing an invariant for Xj 

we obtain the cal l ing context CallCtxfi{xPj-m, x ^ - o u ' ) for a cal l of / at the location 
i. The call ing context can be used during the analysis of the function / to constrain 
formal inputs and outputs of the function. More detai l of the usage of cal l ing contexts 
along wi th an example can be found i n Section 2.5.4. 

A l l of these concepts depend on invariants which are computed using the templates from 
a specific domain. Therefore the obtained constraints are abstractions and describe only 
those properties that are relevant for the domain used. 

2.5.3 Function Calls Constraining 

Funct ion summaries abstract the behaviour of functions and are used to constrain the 
function cal l placeholders i n the S S A of the caller function. Th is simulates the effect of the 
called function in the cal l site. 

Before analysing a function, 2 L S first analyses (computes summaries) of a l l called func­
tions. After that, each function cal l placeholder / j is replaced i n the solver by the corre­
sponding summary Sum{xlJl, x^"*) of the callee function / (having the form of a logical 
formula). A problem is that the formal input and output variables of the callee function 
(occurring i n the summary) and the actual inputs and outputs at the cal l site are generally 
different. In order for the callee summary to simulate the effect of the function on caller's 
variables, one need to b ind formal and actual input and output variables in the solver. 

For a better i l lustrat ion we give a simple example. Let / be a function i n C declared 
and then called as shown i n Figure 2.3a. Supposed there are no global variables, the 
inputs and outputs of / and an example of the S S A corresponding to the cal l are shown 
in Figure 2.3b (j and k are the locations of the last assignments of a and b in the caller 
function, respectively). Note that the cal l is replaced by a placeholder where a fresh symbol 
rft is introduced for the return value and it is assigned to c i n the next location. Th is 
is already done by the G O T O program parser in the C P R O V E R framework. After a 
summary Sum((x,y), (rf)) of / is computed, we replace the placeholder by an expression 
in Figure 2.3c. This contains the summary itself and the bindings between formal and 
actual inputs and outputs of the function. 

We propose an algori thm for the binding between formal and actual input and output 
variables of a function cal l . The following presentation assumes that a function / is called 
from a cal l site /«. In order to distinguish between formal and actual variables, Table 2.1 
shows naming of vectors of variables i n the function / and in the cal l site Note that 
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m t f tint x, m t y); xf = (x,y), x°f

ut = (77) Sum((x,y), (77)) A 

x = aj A 

c = f (a ,b) ; f((aj,bk),(rfi)) y = bkA 

Ci+i = r h rf = rfi 

(a) Declaration and call in C (b) Inputs, outputs, and SSA (c) Replacing formula 

Figure 2.3: Example of function cal l constraining 

global variables are also different since they occur i n different S S A versions i n the caller 
and callee functions. 

Table 2.1: The symbols used i n binding algorithms 

Symbol Meaning 

par am f formal parameters of / 

giobf formal input global variables of / 

globf1 formal output global variables of / 

a r 9 h arguments (actual parameters) of the cal l site fi 

glo\ff-m actual global variables at the input of the cal l site fi 
1 rV out 

globf— 
actual global variables at the output of the cal l site fi 

We also introduce a function N A M E , which takes an S S A variable v and returns the 
name of the corresponding original program variable without the S S A suffix. The function 
B I N D ( Ü I , vi) creates a b inding between the variables v\ and V2 (i.e., it adds an assumption 
v\ = = V2 to the solver). 

Using these helper functions, the binding between the ca l l site and the callee variables 
is done using two procedures shown in A l g o r i t h m 1. 

A l g o r i t h m 1 B i n d i n g between the cal l site and the called function 

procedure B I N D G L O B A L S 

for all x G globm,x' G glotij-171 . N A M E ( X ) = N A M E ( I ' ) do 

B I N D ( X , X ' ) 

for all x G globout,x' G glotf^1 . N A M E ( X ) = N A M E ( X ' ) do 

B I N D ( X , X ' ) 

procedure B I N D P A R A M S 

for j <— 0..(\param\ — 1) do 
BiND(param[j],argf.\j]) 

2.5.4 Context-Sensitive Summaries 

For some programs, it is useful (and sometimes necessary for precise analysis) that values of 
the input variables of a function are constrained wi th respect to the actual argument values 
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that the function is called wi th . In this case, when analysing a function / that is called for 
the first t ime i n a ca l l site / j , its calling context CallCtxfi is computed first. The call ing 
context is formally defined i n Formula 2.16 and depends on the invariant in the entry of 
the locat ion i. Th is is computable before the analysis of / since / is called in location i for 
the first t ime. The computed cal l ing context is then used as a precondit ion for the analysis 
of / and the inferred summary is stored in the form CallCtXfi =4> Surrif. 

Using the example from Figure 2.3, i f / was called i n the cal l site fi w i th a call ing 
context: CallCtx ft((aj, = (a,j < 0 A bk > 0), the computed summary would be 
stored in the form: (x < 0 A y > 0) =4> Surrif ((x,y), (r/)) . 

Since / might be called mult iple times w i t h i n different contexts, the computed sum­
maries are reusable only if the current cal l ing context is subsumed by cal l ing contexts 
V i CallCtXfa. In case it is not, the summary is recomputed and joined conjunctively wi th 
previous summaries [5]. 
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Chapter 3 

Design of a Heap Analysis for 2LS 

In the previous chapter, we described the current state of the art of the 2LS framework. It 
is well-usable for various analyses, such as the numeric variables analysis or the terminat ion 
analysis. 

The goal of this project is the integration of a new type of analysis—a heap manipulat ion 
analysis. We w i l l focus on analysing the shape of dynamic data structures (mainly singly 
and doubly l inked lists). In order to achieve this, there are mult iple tasks to be fulfilled. 

The most important one is to design a new abstract domain that can describe desired 
properties of the program heap. In 2LS , this involves a proposal of a suitable form of the 
template for computing invariants, specifying what an abstract value w i l l be, and creating 
the corresponding jo in algori thm. These can be found i n Sections 3.5 (the abstract domain) 
and 3.6 (the abstract value synthesis algori thm). Since shape analysis has already been 
implemented i n various different tools, we can make use of the existing abstract domains. 
Therefore we first explore the existing work on formal heap analysis and verification in 
Section 3.1. 

Apar t from creating the abstract domain, there are more problems to be solved. The first 
one is related to the S S A form, which 2LS uses for representation of the source programs. 
The problem is that the S S A uses symbolic names for program variables. Dynamica l ly 
allocated objects do not have any names (because they are accessed v i a pointers only) , and 
therefore we have to introduce new symbols to represent them. Moreover, a dereference 
of the same pointer might result into different heap objects at different execution points. 
To ensure a correct dereferencing, 2 L S runs a simple static points-to analysis. Since the 
analysis is currently not complete (it cannot handle some commands, or function calls) we 
extend it and formally describe in Section 3.3. Afterwards, the transformation of heap-
manipulat ing operations into the S S A form is based on the results of this analysis. The 
conversion of typica l operations is explained i n Section 3.4. 

The second problem comes wi th the interprocedural analysis. Generally, a function 
can alter objects that are neither global nor passed to the function as parameters but are 
pointed by those. This is called a side effect of a function and must be included i n the 
function summary. Since 2LS currently passes global objects and actual arguments to the 
function only, we w i l l introduce passing of heap objects. The problem becomes even more 
complicated when a function accesses and alters an abstract heap object such as a l inked 
list. The proposed approach to the interprocedural analysis of heap-related properties is 
described i n Section 3.7. 
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3.1 Related Work on Heap Verification Techniques 
Before designing an abstract domain for the description of shape invariants i n 2LS , we 
explore the existing approaches to the heap (shape) verification. 

Most of the current tools use intermediate representations of the analysed programs in 
the form of control-flow graphs ( C F G ) . They compute the abstract state (representing the 
set of reachable concrete program states) at each program location. However, this approach 
is not usable in 2LS since the source program representation is i n the acyclic S S A form (thus 
a part of the control-flow is omit ted because of the loops cutt ing). Moreover, a solver for 
quantifier-free first-order logic is used, and so we have to use an abstract domain that allows 
us to reason about the shape of a heap using quantifier-free formulae only. 

A n approach we found to be currently the most suitable for our purposes is based on the 
so-called storeless semantics. Cont ra ry to tools based on more popular store-based program 
semantics describing the shape of the heap using various logics [14, 13, 16], automata 
(Forester [ ]), or graphs (Predator [ ]), which closely correspond to the real state of the 
heap, storeless approaches represent heap as a set of pointer access paths [15]. 

A n access path does not concretely express the state of the heap, it only describes which 
dynamic objects (i.e. objects allocated by m a l l o c function) are reachable from a pointer. 
Us ing a set of access paths for each pointer i n the program, one can efficiently describe 
the shape of (the reachable part of) the heap. The approach based on access paths is used 
e.g. i n a tool buil t over the C P R O V E R framework [ ] (where the heap is described as a 
conjunction of predicates), or various other tools [6, 15, 12]. 

The ma in difference between these and our proposed approach is that they use C F G s and 
compute the sets of reachable program states i teratively using the abstract interpretation 
approach. O n the other hand, 2LS uses an acyclic S S A form in an incremental S M T solver-
based approach. This allows a simpler creation of domains and could also bring a possibil i ty 
to combine our shape analysis w i th other analyses already present i n 2LS . 

We propose an abstract domain for 2LS to describe the shape properties of the program 
heap. Before that, we have to introduce some changes to the S S A form, so that it is usable 
along wi th the proposed domain i n the S M T solver. 

3.2 Preliminaries and Notation 

In this chapter, we assume that the source programs are defined over the following finite 
sets of objects: 

• Var: a set of a l l stat ically allocated objects (variables). We assume each variable has 
its unique name. 

• Obj: a set of dynamical ly allocated objects (on the heap). In 2LS , one dynamic object 
corresponds to one al location site, i.e. it might represent an abstraction of multiple 
concrete heap objects allocated in a loop (such ctS ct SG gment of a l inked l ist) . 

• Ptr C ( V a r U Obj): a set of a l l pointer-typed objects (both static and dynamic) . 
These either hold an address of an object i n the memory or n u l l . 

• Str C Obj: a set of a l l structure-typed heap objects. 

• Fid: a set of a l l fields of structured types. 
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• Instr: a set of a l l program locations. 

We also use IB to denote the standard Boolean domain. We use the ordering < on B as 
follows: 

Vx, y e B . x < y (x y). (3.1) 

3.3 Points-to Static Analysis 

Using the S S A form i n a quantifier-free first-order S M T solver in the way 2LS uses it brings 
some problems. One of them is the fact that each memory object must be identified by its 
unique name. Th i s would be easy i f each object was accessed directly through an associated 
variable i n the original program. However, when pointers are used (which is quite common 
in low-level code), the si tuation gets more complicated since a single pointer variable can 
be dereferenced to different memory objects. 

For that reason, we perform a static points-to analysis prior to the conversion into 
the S S A . Th i s analysis determines for each pointer a set of memory objects it can be 
dereferenced into in each program locat ion where it is used. In case the pointer can be 
n u l l , or its value can be unknown (e.g. because it has not been init ialised), this information 
is also determined. The analysis does not check for errors (such as n u l l dereferences), it 
s imply collects a l l possibilities of pointer dereferencing. 

The points-to analysis used is based on a classic abstract interpretation. The abstract 
domain VT is defined by a function mapping a pointer to an element of the Cartesian 
product: 

VT = Ptr -»• (2°bjuVar x B x B ) . (3.2) 

The abstract value at the program locat ion i £ Instr defines for each pointer p £ Ptr 
in i a tuple PointsTo(pi) € {2°h^vjVar x B x B) containing the following information: 

• A set ValueSet(pi) C (Obj U Var) holding a set of memory objects that p can be 
dereferenced into at location i. 

• A boolean predicate isnullip^ determining if p can be n u l l at i. 

• A boolean predicate unknown(pi) denoting that the value of p might be unknown 
(non-deterministic) at location i. 

The points-to analysis is run on a G O T O program, which has the form of a control-flow 
graph. The algori thm follows the abstract interpretation approach of finding the least fixed 
point of the abstract domain lattice for every program location. To be able to find a fixed 
point, we have to define a par t ia l ordering C on the abstract domain VT. The ordering is 
defined for two PointsTo values for the same pointer only. 

yPointsTo(x), PointsTo(x)' £ VT. 

PointsTo(x) C PointsTo(x)' 44> ValueSet(x) C ValueSet(x)' A ^ 

unknown{x) < unknown(x)' A 

isnull(x) < isnull(x)' 

The jo in a lgor i thm is done element-wise. For ValueSet sets, the jo in is the set union 
(U), whilst for boolean predicates isnull and unknown, the jo in is defined as the logical 
disjunction (V). 
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Next , we define the abstract transformers. The effect of basic commands manipulat ing 
pointers on the abstract value is defined i n Figure 3.1. We support the statements stated in 
the figure, w i th possibil i ty of chaining them and combining them w i t h access to structure 
fields. We assume that the commands take place at the program locat ion i. 

Command : p = n u l l Command : T *p (declare p) 

ValueSet(pi) = 0 ValueSet(pi) = 0 

isnullipi) = true isnullipi) = false 

unknown(pi) = false unknown(pi) = true 

Command : p = &o Command : p = q 

ValueSet(pi) = w ValueSet(pi) = ValueSet(qi_1) 

isnullipj) = false isnullipj) = isnullfa^i) 

unknown(pi) = false unknown(pi) = unknown(qi_1) 

Command : *p = q 

\/p' £ ValueSet(pi_1) : ValueSet(p'i) := - ValueSet(p'i_1 ) U ValueSet(qi_1) 

isnullip'j) :-- isnullip'^i) V isnull^q^i) 

unknownip'j) :-- unknown(p'i_1) V unknown(qi_1) 

Command : p = * q 

ValueSet(pi) = U / c t / i o*, ValueSetiq'^) 
^^q'G ValueSet(qi_1) 

isnullipj) = \/ isnulliq'i i ) 
V q'eValueSetiq^^ ™ V> 

unknown(pi) = \/ unknowniq'i i ) 
V q'GValueSetiq^) v 1 u 

Figure 3.1: Abst rac t transformers for points-to analysis 

If 2LS is used to perform interprocedural analysis, the points-to analysis is run on each 
function separately. In order for it to be correct, we have to define the in i t i a l abstract 
value (since the function may have pointer-typed inputs) and an abstract transformer for a 
function cal l . We discuss our approach to interprocedural analysis later, hence we w i l l also 
present these concepts there (see Section 3.7.1). 

3.4 Representation of Heap Operations in SSA 

We use the information obtained during the points-to analysis described i n the previous 
section during our transformation of a G O T O program into the S S A form. We now present 
how typica l heap-manipulating operations are represented i n the S S A : 

malloc Each ca l l of the malloc function is replaced by an instantiat ion of a new abstract 
dynamic object and returning its symbolic address as a result of the cal l . Th is ensures 
that a l l heap objects have their unique names. The replacement of the i - th occurrence 
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of malloc i n the source program is as follows: 

malloc(sizeof (£)) —> adynamic _object%i (3-4) 

where the type of dynamic_object$i is t. The created dynamic object is an abstraction 
since it corresponds to one al location site and though can represent mult iple concrete 
objects allocated i n a loop. 

M e m o r y read In C , this operation has a typica l form v = *p. Assuming that it takes 
place at the program location i, we use the tr iple PointsTo(pi) to construct the 
corresponding expression in S S A as follows: 

v = *p —> vi == Ep(ValueSet(pi), isnullipj), unknown(pi)) (3-5) 

where the expression Ep is defined recursively: 

.Ep(0, true, false) = Ep(fb, false, true) = unknown_object (3-6) 

Ep({o}, false, false) = o (3-7) 

EP(V, n, u) = (p == & o ? o : EP(V \{o},n,u)). (3.8) 

The expression Ep generates a case split for each object that p may be dereferenced 
into (3.8). The last case is a placeholder for an unknown heap object i f p might be 
n u l l or non-deterministic (3.6). If neither of the isnull and unknown predicates is 
true for p, we use the last object from the ValueSet(p) as the last case split (3.7). 

M e m o r y write This operation is dual to the memory read, and, i n C , it has a typical 
form *p = v. The transformation at locat ion i uses ValueSet(pi): 

*p = v ^ f\ 0 i == (Pi == &o ? v : 0 i _ ! ) . (3.9) 
oS ValueSet(pi) 

In this case, the memory locat ion referenced by p is assigned a value. Therefore, we 
create the S S A equality for each object from the ValueSet(pi) where it is assigned 
the new value v i n case it was pointed by p, and it keeps its previous value otherwise 
(o i _ 1 ) . The solver assigns a concrete address to pi dur ing solving, though one equality 
pi = = & o w i l l be true only, and a single object o from ValueSet(pi) w i l l be updated. 

Load and store These are typ ica l operations manipula t ing dynamic data structures, such 
as l inked lists. The i r form in C is v = p—?>f and p—?>f = v for load and store, respec­
tively. Since the arrow operator in C might be rewritten using the dereference and 
the dot operator ( p — i s equivalent to (*p).f), these operations are analogous to 
memory read and write. The only difference is that a field of a structure is accessed, 
instead of the whole object. 

In 2 L S , the structures are split into their fields and each field of a structured object 
is considered a separate variable. Th is means that the transformation of load w i l l be 
done s imilar ly to Equa t ion 3.5: 

v = p—»f —> vi == Epj(ValueSet(pi), isnullipj), unknown(pi)). (3.10) 

The expression Epj is defined as Ep where object fields are used instead of objects— 
unknown_object.f i n place of unknown_object in Equa t ion 3.6 and o.f in place of o 
in Equa t ion 3.7 and i n the second operand of the ternary operator in Equa t ion 3.8. 
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Analogously, the store operation is represented s imilar ly to Equa t ion 3.9: 

p ^ f = v ^ J\ o.fi==(p==bo?v : o.f^). (3.11) 
oS ValueSet(pi) 

3.5 Template Heap Domain 

We now present our abstract domain for modell ing the shape of the heap. In 2LS, the 
abstract domain is specified by a template—a fixed quantifier-free first-order logic formula 
describing the desired property of a program. In Section 3.1, we proposed to describe the 
shape of the heap using a set of access paths. This section shows how these are used inside 
a template, and how they are transformed into an appropriate formula usable i n the 2LS 
solver working over the theory of bit-vectors and arrays. 

3.5.1 Template Form 

We use a simple model of the heap, which does not consider the pointer ari thmetic. We 
restrict the template to use only those memory objects that describe the shape of the heap— 
the pointer-typed objects (defined by the set Ptr) and the structure-typed heap objects 
(defined by the set Str). The formula represented by a template is then a conjunction of 
expressions, so-called template rows, where each row corresponds to one of these memory 
objects. Since two types of objects are considered (pointer-typed and structure-typed), we 
split the template into two parts: 

• The pointer part describes the points-to relation between pointers and pointed objects 
(which can be pointer-typed, too). The formula of the pointer part is a conjunction 
of pointer rows: 

T p = A %P(P>di)- (3-12) 

Here, Tp {p, df) is the i - th pointer row that describes the points-to relation of the 
pointer p. It is a parametrized formula wi th df being the abstract row value from 
the domain 5P that is defined as: 

§P = 2ObjUVar_ (3_13) 

The row value specifies a set of (abstract) objects that the row pointer p may point 
to. A pointer row is thus defined formula: 

%P{p,df) = \/ p = ko. (3.14) 

o G d f 

• The object part describes the shape of dynamic data structures on the heap using 
access paths. The formula is a conjunction of object rows, where one row is defined 
for each pair of a heap object and its (pointer-typed) field: 

T ° = A T?{{o,f),d°). (3.15) 
{o,f)£StrxFld 
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Here, Tf{{o, /), df) is the i - th object row, which is a formula that characterizes a set 
of access paths leading from the object o v i a its pointer field / . A n access path for a 
tuple (o, / ) is specified by a destination object and a set of (abstract) objects that it 
passes through, thus the abstract domain 5° of the object row value df is: 

50 = 20bjx20»i ( 3 1 6 ) 

The object row is then a formula: 

r ° ( ( o , / ) , d p ) = / \ p 0 ^ ( o , / , d ) [ 0 ] . (3-17) 

The semantics of the pai/i predicate is defined i n Section 3.5.2. 

The abstract domains 5P and 5 for both pointer and object rows contain two special 
values _L and T , which represent the empty set and the whole domain, respectively (as 
required by 2 L S , see Section 2.3.2). The formulae corresponding to rows w i t h these values 
are defined as: 

T{x,A-)= false 

T(x, T ) = true. 

Final ly , using the formulae for the pointer and the object part, we define the template 
T for our domain as: 

T = T P A T ° . (3.19) 

3.5.2 The path predicate 

It remains to define when the path predicate is true. Intuitively, this can be defined recur­
sively: 

pathio, f, d) o. f = kd V 
i t \ (3-20) 

path{*(o.f),f,d). 

However, the recursive expression is not usable in the solver, which means we have to 
remove the recursion. We do this i n an approximative way by introducing the set O which 
contains a l l heap objects that the path passes through: 

path(o,f, d)[0] <*o.f = kdW 

(3o' eO:o.f = ko' 
n ,, 3.21 

A 3o" G O : o'.f = kd v ' 

A V o i € (O \ {o"}) 3o2eO: 0l.f = & o 2 ) . 

The definition i n Formula 3.21 can be explained as follows. The first equality on the 
right side of the equivalence indicates the si tuation when the destination can be reached 
from the source i n one step by following the field / . In case this is not true, we have to 
express that the destination might be reachable after mult iple steps. This is ensured by the 
consequent conjunction. Its first part describes the first step on the path, the second part 
describes the last step on the path, and the last part over-approximates the inner steps 
of the pa th ( l inking between the heap objects that the path passes through). Here, the 
approximation is done i n the sense that we do not store the ordering of objects i n O and 
thus this representation describes more paths than the recursive expression. However, this 
is not a problem since we also compute access paths for a l l objects i n O dur ing the analysis. 

23 



3.6 Abstract Value Synthesis Algor i thm 
The general core of the template parameter synthesis a lgori thm was indicated in Sec­
t ion 2.3.2. The domain-specific part of the a lgori thm is implementat ion of the jo in procedure 
between an abstract value and a model of satisfiability returned by the solver. In order not 
to over-approximate too much it is useful to design the jo in a lgor i thm such that a min ima l 
value of the template parameter is found. 

For the heap domain, we perform the jo in row-wise. The update of the row parameter 
is different for every type of the row. It depends on the value assigned to the pointer (for 
a pointer row) or to the field of the dynamic object (for an object row) i n the model of 
satisfiability of Formula 2.10. Since the S M T solver used i n 2LS is based on the theory of 
bit-vectors, it always assigns a value to each variable during solving, which i n case of the 
pointer-typed objects is either an address of an object i n the memory or n u l l . 

The update of a pointer row parameter value is simple. The object whose address 
was assigned to the corresponding pointer in the model of satisfiability is added to the set 
representing the row value. Th is way, we collect exactly a l l objects that the pointer can 
reference. The ordering on the pointer row value is defined by the set inclusion. 

The update of an object row parameter value is more complicated. We first define the 
path relation for the field f denoted P' as: 

We use this relation to define a par t ia l ordering on the set of a l l paths i n the heap. Since 
this relat ion is transitive, the jo in a lgori thm creates the transitive closure over the set of 
al l paths according to the following formula: 

A l g o r i t h m 2 presents two functions for updat ing pointer and object rows, respectively. 
B o t h functions take for parameters a template row of the appropriate type and the corre­
sponding model of satisfiability ( S A T ) of Formula 2.10. 

In case the model of satisfiability gives that the value of the row object might be non-
deterministic, we set the value to T , which represents the whole abstract domain. 

The creation of the transitive closure over the set of paths is ensured by the two loops 
in the function U P D A T E H E A P R O W . The loop on lines 18-19 adds a l l paths from the object 
pointed by o.f into the current row value, whereas the loop on lines 21-23 adds a l l paths 
leading from current row object o into a l l row values that already contain paths leading 
to o. 

3.7 Interprocedural Analysis 

Section 2.5 describes the current approach to the interprocedural analysis i n 2LS as follows: 
for each function, the formal input and output variables of the function are determined, then 
a summary of the function is computed using invariants, and, finally, a b inding between the 
formal and actual values of inputs and outputs at each ca l l site of the function is created. 

In the current implementat ion of 2LS , only parameters and global variables are consid­
ered as the inputs or outputs of a function. Therefore, we must introduce a way to pass the 
objects that are not included i n the parameters (nor global variables) but can be reachable 
from these v i a chains of pointers to the called function. 

V x , y G Obj. xPfy 44> path(x,f,y). (3.22) 

path(o', f, d)[0] A (o.f = &o') path(o, f, d)[0 U {o'}]. (3.23) 
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A l g o r i t h m 2 J o in i - th template row value wi th the satisfiability model 

1: function U P D A T E P O I N T E R R O W ( T p ( P , df), model of S A T : p = v) 
2: if v is non-deterministic then 
3: df <- T 
4: else if v = n u l l then 
5: df <- df U { n u l l } 

6: else 
7: assume v = & o 
8: df^dfu{o} 

9: function U P D A T E O B J E C T R O W ( T ° ( ( O , f),df), model of S A T : o.f = v) 
10: if v is non-deterministic then 
11: df <- T 
12: else 
13: if v = n u l l then 
14: dp < -dp U { ( n u l l , 0)} 

15: else 
16: assume v = Szd 
17: d p ^ d p U { ( o ' , 0 ) } 
18: for all path(o', f, d)[0'] do / / Adding paths leading from d 
19: d° ^d°U{(d,0'U{o'})} 

20: / / Updating rows having paths leading to o 
21: for all T ° ( ( o , f),df).(o, O) G d f do 
22: for all (d, O) G d f do 
23: df <-d$ U { ( d , O U O U { o } } ) 

A set of objects that a pointer can be dereferenced into can be determined from the 
points-to analysis (Section 3.3) by querying the ValueSet set. In order for the points-to 
analysis to work wi th interprocedural analysis, we have to introduce some extensions that 
are presented i n Section 3.7.1. 

Next , in Section 3.7.2, we show how binding of objects pointed by parameters and global 
variables between the caller and the callee functions is done. However, we w i l l also show 
that passing objects direct ly pointed by function parameters only is not enough to correctly 
handle functions which alter the existing heap containing recursive data structures. For 
that reason, i n Section 3.7.3, we w i l l extend the approach to be able to handle functions 
manipulat ing l inked lists. 

3.7.1 Interprocedural Points-to Analysis 

In order to provide correct interprocedural analysis, we have to introduce the in i t i a l abstract 
value and the abstract transformer for the function cal l into the points-to analysis. Since 
each function is analysed separately, both of these concepts require an abstraction of pointed 
objects—a pointer-typed parameter of a function may in i t ia l ly point to an unknown object 
and a pointer passed to a function as an argument may point to a different object after 
invocation of the function. Because of this, we introduce a function P O I N T E D shown in 
A l g o r i t h m 3 that takes a pointer symbol p and creates a new symbol pohi that represents an 
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abstraction of the object pointed by p. If 
pObJ Jg 

pointer typed (which happens when passing 
a pointer to a pointer), we add it into the Ptr set holding a l l pointers i n the program. 

A l g o r i t h m 3 Create abstraction of a pointed object 

1: function P O I N T E D ( P G Ptr) 

2: create pobi // typeof {jpohi) is the type pointed by typeof(p) 
3: if typeof ( p 0 ^) is pointer then 
4: Ptr <r- Ptr U {pobj} 
5: return pobi 

Initial Abstract Value 

Using the P O I N T E D function, we define the in i t i a l value of the points-to analysis of a function 
/ by A l g o r i t h m 4. 

A l g o r i t h m 4 In i t ia l abstract value for function / 

1: for all p G (pararrif U glotff1) n Ptr do 
2: iNIT(p) 

3: function I N I T ( P £ Ptr) 

4: pobi <r- P O I N T E D ( p ) 
5: ValueSet(p) <- {pobj} 
6: unknownip) <— true 
7: if pobj G Ptr then 
8: lNIT(p°^') 

The function I N I T is called for every pointer-typed input p of the function (which can 
be parameter or global). It initializes the value set to contain the abstraction of the object 
pointed by p and sets the unknown predicate for p to true. If p o b j is again a pointer, I N I T 
is called recursively. 

Here, p is used without the location index since it is an input to the function. The 
symbol pobi w i l l be later bound to the corresponding object from the caller function (see 
Section 3.7.2). 

Example To better il lustrate how the in i t i a l value is used i n the S S A , we show an example 
of a function c h a i n N o d e which takes a pointer to the head of a l inked list as a parameter, 
allocates a new list node, appends it to the beginning of the list, and sets the head to the 
new node. The function i n C and the corresponding S S A form are shown in Figure 3.2. 

A new list node is allocated at line 2. The cal l to m a l l o c is transformed into an 
instantiation of a new dynamic object. The pointer node is then dereferenced into this 
object at line 3. The parameter ppnode is dereferenced into ppnode0^ at lines 3 and 4. 

Funct ion C a l l Abstract Transformer 

Next , we have to create an abstract transformer for the function ca l l command. A cal l 
of a function might invoke a side effect on an object pointed by the return value, by an 
argument of the cal l , or by a global variable—after the function invocation, a pointer 
passed to the function might point to another object than before. Therefore, for each 
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1 void chainNode(struct node **ppnode) { 1 
2 struct node *node = m a l l o c (sizeof *node) ; 2 node2 = &zdynamic_object$0 
3 node->next = *ppnode; 3 dynamic_object$0.next^ = ppnodeohi 

*ppnode = node; 4 ppnode^ = node2 4 
5 } 

(a) The function in C (b) The corresponding SSA 

Figure 3.2: A function accessing a pointed object 

pointer-typed argument a of the function, we use the function P O I N T E D to get the symbol 
a o b j which abstracts the object pointed by a after invocation of the function, and add it into 
ValueSet(ai), where i denotes the locat ion of the function ca l l . The abstract transformer 
for a function ca l l fi(argj.) is described by A l g o r i t h m 5. 

A l g o r i t h m 5 Abs t rac t transformer for a function cal l fi(argf.) 

1: for all a € (argf. U globPf-°ut) D Ptr do 

2: a o b j <— P O I N T E D ( a ) 

3: A D D ( o , 0 * ' ) 

4: function A D D ( P , 6) 

5: ValueSet(pi) <— ValueSet(pi) U {o} 
6: unknown(pi) <— true 
7: for all p' G ValueSet(pi) n Ptr do 
8: O o b j <(— P O I N T E D ( o ) 

9: A D D ( j / , o 0 ^ ) 

The function A D D takes a pointer p and an object o being the abstraction of a new 
object created by / and pointed by p after the invocation of / i n location i. It adds o to 
ValueSet(pi). In case p is a pointer to a pointer, the function is recursively called for a l l 
potentially pointed objects. 

Example To illustrate the above, we now provide an example. Let p be of type i n t * * , 
x, y be of type i n t * , a, b be of type i n t , and the ValueSet sets at locat ion i — 1 be as 
follows: 

ValueSet(pi_1) = {x,y} 

ValueSet(xi_1) = {a} 

ValueSet(yi_1) = {&}. 

After the cal l of a function having the declaration f ( i n t * *q) w i th argument p at location 
i, the sets w i l l be: 

ValueSet(Pi) = {x,y,pobj} 

ValueSet(Xi) = {a,pobj°bJ} 

ValueSet(yi) = {b,pobj°bJ} 

ValueSet(pf) = { p 0 ^ } . 
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Here, p o b j and p°bi° 3 abstract new objects of type i n t * and i n t , respectively, that 
might have been created i n the function / . The object pobi needs not to be there since the 
value of p itself cannot be changed by the function. However, it is not a problem that we 
included it (in order to keep the a lgori thm simple), since we only over-approximate the set 
of a l l objects that p might point to and the value of p w i l l not change i n the S S A form. 

3.7.2 Binding Pointed Objects between Functions 

Above, we described changes that have to be made i n the points-to analysis in order to 
handle interprocedural analysis. We are able to compute how a single function affects 
the shape of the program heap by computing the function summary using the proposed 
shape domain. The computed summary can be used to constrain function cal l placeholder 
in the S S A form in the way explained in Section 2.5.3. W h a t we need to extend here, 
is the a lgori thm for b inding objects between the caller function and the summary, since 
A l g o r i t h m 1 does not consider objects that are not function parameters, but are pointed 
by those (and thus can be altered by the function summary). 

These objects pose a problem i n terms of binding. The reason is that the names of the 
corresponding heap objects might be different between the caller and the callee. To b ind 
them correctly, we make use of the points-to analysis. We part icular ly query the ValueSet 
sets of corresponding pairs of pointers (each pair composed of an argument and a parameter) 
to b ind objects pointed by these. E .g . , i n the above example, at the function input, we 
would b ind objects x and y (objects pointed by the argument p at the function cal l input) 
to object qohi (an object representing an abstraction of the object in i t ia l ly pointed by the 
parameter q). 

Since we need to b ind mult iple objects together, we first extend the function B I N D that 
was presented i n Section 2.5.3 to be able to create mult iple bindings at once. The new 
function takes sets of variables as arguments (instead of simple variables) and is shown in 
A l g o r i t h m 6. We introduce a binary operator <i that adds clauses at its right hand side to 
the clause set of the S M T solver used by 2LS stated at its left hand side. 

A l g o r i t h m 6 Extended Bind function 

1: function B I N D ( F I , F 2 ) 

2: solver < V ' (« l l V a )GVixV 2 ( u i = = ^ ) 

A l g o r i t h m 7 shows the complete binding of the heap objects of a function / at a cal l 
site fi. It works w i th the sets of objects defined i n Table 2.1. 

We first define the function D E R E F taking a set P of pointer-typed objects and a location 
i as arguments. It symbolical ly dereferences a l l pointers in P and returns the set of a l l 
objects that can be pointed by these at the location i. The dereferencing is done by 
querying the ValueSet sets of the pointers at line 2. In order to return the correct S S A 
symbols of the dereferenced objects at locat ion i, we introduce the function S S A , which for 
a variable v and a location i returns the corresponding S S A symbol—the variable v i n the 
version of its last assignment before i. Th is function is applied to a l l elements of the set D 
of the dereferenced objects and the resulting set is returned (line 3). 

Next , we define the function B I N D P O I N T E D . It takes two sets of objects P i and P2 and 
the corresponding locations i and j . If the sets contain pointers only, the function binds a l l 
objects pointed by elements of P i at the location i to a l l objects pointed by elements of P2 
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A l g o r i t h m 7 B i n d i n g pointed objects 

1: function D E R E F ( P , i) 

2: D <r- UpeP ValueSet(pi) 
3: return { S S A ( d , z ) | d G D} 

4: function B I N D P O I N T E D ( P I , Z , P 2 , j) 

5: if Vp G ( P i U P 2 ) . typeof (p) is a pointer then 
6: Di « - D E R E F ( P I , Z ) 

7: L > 2 < - D E R E F ( P 2 , j ) 

8: B l N D ( D i , D 2 ) 
9: B I N D P O I N T E D ( L > I , i, L > 2 , j ) 

10: function B I N D P O I N T E D O B J E C T S ( / called from a locat ion i) 
11: e entry location of / 
12: o <— exit (output) location of / 
13: for all x G globm,x' G glotfyrm s.t. N A M E ( X ) = N A M E ( I ' ) do 

14: B I N D P O I N T E D ( { : T } , e, {x '} , i — 1) 

15: for all x G globout,x' G globp

jr-out s.t. N A M E ( X ) = N A M E ( X ' ) do 

16: B I N D P O I N T E D ( { : T } , O, {x'},i) 

17: for j —̂ 0..(\paramjr\ — 1) do 
18: BwDPomTED({paramf\j]},e,{argf.\j]},i — 1) 
19: B i N D P o i N T E D ( {paramj [ j ] } , o, {arg^. i) 

at the locat ion j (lines 6-8). Since the dereferenced objects can be of a pointer type again, 
the function is called recursively on the dereferenced sets. 

The function B I N D P O I N T E D is then used from the main function B I N D P O I N T E D O B -
J E C T S that finally computes the binding of pointed objects. It binds the objects pointed 
by formal input global variables of a called function / at the function entry location e to 
the objects pointed by the actual values of the global variables at the cal l site i i n the 
caller function (lines 13-14). The same is done for objects pointed by formal output global 
variables at the exit location o of the function at lines (15-16). Then the binding is done 
for objects pointed by corresponding pairs of formal parameters and actual arguments at 
the entry and the exit of the function at lines (17-19). 

Example We illustrate the a lgori thm on the function c h a i n N o d e from Figure 3.2. Let 
this function be called as shown in Figure 3.3. 

10 struct node * l i s t = NULL; 10 list10 = NULL 
11 chainNode ( S l i s t ) ; 11 chainN~oden((&dist), ()) 

(a) The function call in C (b) The corresponding SSA 

Figure 3.3: A function accessing pointed object 
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Since there are no global variables, only sets o , r g c h a i n N o d e i l and p a r a m c h a i n N o d e are 
non-empty: 

ar9chainNode^ = {Mist} 

p a r a m c h a i n N o d e = {ppnode}. 

The function B I N D H E A P O B J E C T S then executes lines 1 8 and 1 9 only: 

1. The ca l l at line 1 8 looks as follows: 

BiNDPoiNTED({ppno<ie}, 0 , {Mist}, 1 0 ) . 

2 . In the first invocation of the B I N D P O I N T E D function, the sets D\ and D2 are: 

Di = DEREF({ppnode}, 0 ) = {ppnode°bj} 

D2 = DEREF ({Mist}, 1 0 ) = {list10} 

and the created b inding is: 
ppnode0^ = list10. 

3 . In the next (recursive) invocation, the sets are: 

L>i = D E R E F ({ppnodeobj},0) = {ppnodeobj°bj} 

L>2 = DEREF({listIQ}, 1 0 ) = 0 —> since listw is n u l l 

and there is no binding created (since D2 is empty). 

4 . The ca l l at line 1 9 looks as follows: 

B I N D P O I N T E D ({ppnode}, 5 , {Mist}, 1 1 ) . 

5. In the first invocation of the B I N D P O I N T E D function, the sets D\ and D2 are: 

D\ = D E R E F ({ppnode}, 5 ) = {ppnode^} 

D2 = DEREF ({Mist}, 1 1 ) = {listu} —>• since list can be modified by c h a i n N o d e 

and the created b inding is: 
ppnode^ = listu-

6. In the next (recursive) invocation, the sets are: 

D\ = DEREF ({ppnode^}, 5) = {dynamic_object$03} 

D2 = D E R E F ( { Z i s t n } , 1 1 ) = {Ustf^} -> see A l g o r i t h m 5 

and the binding created is: 

dynamic _object$ 0'3 = listob^. 

In total , there are three bindings created: 

ppnode0^ = listw (input binding), 

ppnode^ = listn (output binding), and 

dynamic_object$03 = listob^ (output binding). 
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3.7.3 Functions Manipulating the Existing Dynamic Structures 

Even though the proposed approach of passing objects pointed by inputs into a function is 
able to handle pointers to pointers, it might not be sufficient when analysing functions that 
take a recursive data structure existing on the heap as their input . We propose a way to 
analyse this k ind of functions wi th concentration on l inked lists which are one of the most 
often used data structures. A generalisation to other data structures is left for future work. 

If a function, for example, traverses and manipulates a singly-linked list, it might alter 
objects which are not direct ly pointed by the parameters but are reachable from those 
v i a the list linkage. The information about the reachability of objects v i a pointer chains 
is available during the analysis of the caller function (by computing access paths for the 
actual function cal l arguments) but not dur ing the transformation of the callee function 
into the S S A form, which is done prior to the actual analysis. Because of this, we are not 
able to b ind the corresponding dynamic objects between the caller and the callee functions 
using A l g o r i t h m 7 (since it uses sets of variables determined during the transformation into 
the S S A form). 

To resolve this problem, we make use of the fact that list traversals are done i n a similar 
way i n most programs. Hence, we define so-called list iterators, which are special objects 
representing an abstraction of i terating over a l inked list using some pointer. In this section, 
we formalise the concept of iterators, explain how to create them i n the S S A , and, finally, 
show how iterators can be used to correctly analyse functions manipulat ing l inked lists. 

List Iterators 

A list iterator is an abstraction of a list node (which is a dynamic object) pointed by a 
certain pointer in a single i teration of a loop that iterates over the l inked list. Formally, we 
define a list iterator, denoted it, triple: 

it e {Ptr x Obj x Fid). (3.24) 

The elements of an iterator are interpreted as follows: 

• p £ Ptr: the induction pointer. It is a pointer that is used to traverse the l inked 
l i s t—in each iteration, p points to the current list node. 

• o £ obj: the initial node. It is a node that is pointed by p before the first i teration. 

• / G Fid: the iterator field. It is a field through which a step to the next node is done 
after each iteration. 

Example A typica l iterative traversal of a l inked list is shown i n the function i n Figure 3.4. 

For the given loop, we create a list i terator listlt: 

list1 = {list, listobj, next). (3.25) 

The induct ion pointer is list, the in i t i a l node is list0^ (it abstracts the object in i t ia l ly 
pointed by list), and the iterator field is next (after each iteration, list is moved to the 
node pointed by the next field). 
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void t r a v e r s e ( s t r u c t node * l i s t ) 
{ 

while ( l i s t ) 
{ 

// do something 
l i s t = l i s t - > n e x t ; 

} 

} 

Figure 3.4: Traversal of a singly-linked list 

Creat ing List Iterators in the S S A F o r m 

The presence of an iterative access to a l inked list may be determined by comparing the 
values of the points-to relation of the induct ion pointer on the back edge of a loop and at 
the loop head. To this end, we integrate a list i terator detection into our points-to analysis. 
Specifically, the list i teration detection is integrated into the abstract transformer for a loop 
back edge shown i n A l g o r i t h m 8. 

A l g o r i t h m 8 Abst rac t transformer for loop back edge from locat ion j to locat ion i 

1: for all p G Ptr do 
2: if 3xobj G ValueSet(Pi) A 3xobj.fobj G ValueSet(Pj) then 

3: ValueSet(Pi) <- (ValueSet(Pi) \ {xobj}) U {pu} // pu = (p, x o b j , /) 

The transformer searches for a pattern of iterative access—at lines 1-2 it tries to find 
a pointer p whose points-to value moved by a field / inside the loop body. In case it finds 
such an access, it replaces the found value by a new iterator (line 3). In the future, the 
detection can be improved by a more sophisticated method but so far the proposed simple 
approach seems sufficient on many case studies. 

After finding an iterator on the loop back edge, we need to replace a l l accesses to the 
first list node that were obtained in the first traversal of the loop body in the points-to 
analysis by accesses to the list iterator. We do this by redefining the jo in operator for the 
ValueSet sets as shown i n A l g o r i t h m 9 . We denote ValueSet(pi)i to be the old value set, 
ValueSet{pi)2 to be the new value set, and ValueSet(pi) the set resulting from the jo in . 

We also define two helper operations: 

• x contains y i f and only if the identifier of y is a substring of the identifier of x. 

• x[y/z] is a symbol that is obtained from the symbol x by replacing a l l occurrences of 
y i n the identifier of x by z. 

A l g o r i t h m 9 Jo in of ValueSet(pi) 

1: ValueSet(pi) <— ValueSet(pi)i U ValueSet{pi)2 

2: for all V2 G ValueSet{pi)2 s.t. V2 contains qlt = (q,x,f) do 
3: for all v\ G ValueSet(pi)\ s.t. v\ = V2[qlt/x] do 
4: ValueSet(pi) <— ValueSet(pi) \ {v\} 
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The algori thm applies the standard set union and then filters out those objects that 
were present i n the o ld value set and can be replaced by an iterator from the new value 
set—these can be determined by replacing the iterator substring i n the new object by the 
identifier of the in i t i a l node of the iterator. App l i ca t ion of this a lgori thm can be seen in 
the points-to analysis i n the following example (join on lines 8 and 13). 

Since a loop might access mult iple list nodes i n a single i teration and we want to 
represent these as precisely as possible in the S S A , we extend the ini t ia l isat ion of the 
abstract value by a loop shown i n A l g o r i t h m 10 that initialises value sets of pointer-typed 
fields of data structures. For example, the in i t i a l ValueSet for a pointer listohKnext (which 
represents the next field of the object in i t ia l ly pointed by the parameter list) w i l l contain 
the object listobj .nextobj. 

A l g o r i t h m 1 0 Ini t ial isat ion of the abstract value for pointer-typed fields of data structures 

1: for all p^.f s.t. p G Ptr A typeof ( p o b j ) . / is pointer do 
2: \mi(pohKf) 

This a lgori thm is run along wi th ini t ia l isat ion by A l g o r i t h m 4. In case of recursive data 
structures, the ini t ia l isat ion might not terminate, which we solve in practice by ini t ia l is ing 
only those values that are actually used wi th in the S S A form of the analysed function. We 
also run A l g o r i t h m 10 for iterators that are found during the analysis. 

Example To illustrate the detection of list iterators, we show an example of conversion 
of a program into the S S A form for a function transforming a singly-linked list into a 
doubly-l inked list given in Figure 3.5. 

1 void backLink(struct node *l i s t ) { 
2 
3 
4 while (list) { 
5 
(i 
r 

8 struct node *next = list->next; 
9 
10 
11 next->prev = l i s t ; 
12 
13 l i s t = next; 
14 } 
15 } 

(a) The function in C 

Figure 3.5: S S A using list iterators 

Firs t , the points-to analysis is run on the function source. Since there is one pointer 
input, namely, list, we create an in i t i a l value for i t . We also create in i t i a l values for fields 

2 g2 = TRUE 
3 
4 listf-' = (g[\ ? listf4 : list) 
5 
6 g6 =\{listlhi = NULL) 
r 

8 nexts = (list^hl = k,listlt ? listlt .next 
9 : unknown_object.next) 
10 
11 listlt .nextobi .prev^ = list^hl 

12 
13 list13 = nextg 
14 
15 

(b) The corresponding SSA 
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of the dynamic objects that w i l l be needed during the computat ion: 

ValueSet(list) = {listob^} A unknown(list) = true 

ValueSet(listobj .next) = {listobj .nextobj} 

ValueSet(listobj .nextobj .prev) = {listobj .nextobj .prevobj}. 

The computat ion of the ValueSet sets for the part icular program lines goes as follows: 

8 : ValueSet(next8) = ValueSet(x.next7) 
xd ValueSet(listj) 

= ValueSet (listobj .next-,) 

= ValueSet(listobj .next) 

= {listobj .nextobj} 

11 : ValueSet(listobj.nextobj.prevn) = ValueSet(listobj.nextobj.prev10) U ValueSet(list10) 

= ValueSet(listobj.nextobj.prev) U ValueSet(list) 

= {listobj.nextobj.prevobj, listobj} 

13 : ValueSet(list13) = ValueSet(next12) 

= ValueSet(next8) 

= {listobj .nextobj} 

14 : loop-back edge to 4 

ValueSet(listA) = ValueSet(list) = {listobj} 

ValueSet(list1A) = {listobj .nextobj} 

=> ValueSet(listA) = {list11} where list1* = (list, listobj, next) 

We have found an iterator. 

The in i t i a l values of its components are the following: 

ValueSet(listu.next) = {listu .nextobj} 

ValueSet(listu.nextobj.prev) = {listu .nextobj .prevobj} 

8 : ValueSet(next8)' = ValueSet(x.next7) 
x£ ValueSet(listj) 

= ValueSet(listlt.next7) 

= ValueSetilist1 .next) 

= {listu.nextobj} 

8 : jo in 

ValueSet(next8) = ValueSet(next8) o ValueSet(next8)' 

= {listobj.nextobj} o {list*.next1*"} 

= {listu.nextobj} 
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The iterator replaces the access to the object pointed by the next field of the first 

list node previously detected by the analysis at line 8. 

11 : ValueSet(list* .nextobj.prevn) = ValueSet(list*.nextobj.prev10) U ValueSet(list10) 

= ValueSetilist*.nextob^.prev) U ValueSet(list4) 

= {list*.nextobj.prevobj, list**} 

13 : ValueSet(list13)' = ValueSet(next12) 

= ValueSet(next8) 

= {listu.nextobj} 

13 : jo in 

ValueSet(list13) = ValueSet(list13) o ValueSet(list13)' 

= {listobj.nextobj} o {list*.next*"} 

= {listu.nextobj} 

The iterator replaces the access to the object pointed by the next field of the first 

list node previously detected by the analysis at line 13. 

14 : loop-back edge to 4 

ValueSet(listA) = {list1} 

ValueSet(listu) = {listu .nextobj} 

=> ValueSet(list4) = {list*} 

This iterator has already been found. 

After the points-to analysis, we run the transformation of the C code into the S S A form. 
This is done by the following steps: 

1. L ine 2: The function entry is always reachable, thus the first guard is set to true. 

2. L ine 4: A $ node is created for the loop head. It joins the value of list from before 
the loop (the parameter list) and the value of list from the end of the loop body 
(loop-back variable listlb

4). 

3. L ine 6: The loop body is reachable only i f the loop condi t ion is satisfied—this is 
expressed by the guard g6. 

4. Lines 8-9: We query the points-to analysis to correctly dereference list: 

ValueSet(lists) = ValueSet{list4) = {list*} 

unknown(list8) = true. 

Based on the information obtained from the points-to analysis, we create a case split 
according to Equa t ion 3.10. The expression l i s t - > n e x t can have values list*.next 
(line 8 i n the S S A form) or unknown_object.next (line 9 in the S S A form). 
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5. L ine 11: To correctly dereference next, we query the points-to analysis: 

ValueSet(nextu) = {listu .nextobj} 

and thus we create the equation as shown at line 11. 

6. L ine 13: This is a simple assignment without dereferences, which we translate into 
the S S A form by adding the appropriate variable indices. 

The example contains a list iterator listlt obtained during the points-to analysis. Since 
the S S A form uses mult iple versions of the same variable, we use the appropriate versions 
in the iterator, too: 

listu = (listlhi,listobj,next). 

The loop i n the function traverses a singly-linked list passed to the function at the 
input. In each loop iteration, the pointer list points to the current node of the list. In 
the S S A form, the detected iterator represents an abstraction of a node pointed by list, 
specifically by its version list^ht . The function reads the next field of the iterator (line 8) 
which abstracts an access to the node that is the successor of the current node, and then 
writes to the prev field of this node (line 11). We denote these reads and writes as iterator 
accesses. 

Iterator Accesses 

Formally, an iterator access is associated wi th an iterator and contains a sequence of fields 
and a location. Let X be a domain of a l l list iterators. We define an iterator access a as: 

a e 1 x Fldn x Instr (3.26) 

where Fldn denotes a n-fold Cartesian product of structure fields w i th arbi t rary n. 
A n iterator access is interpreted as an access to a node that can be reached from the 

current node (corresponding to the iterator) by following the given sequence of fields. Since 
each iterator access is interpreted as a standard variable i n the S S A form, the location 
specifies the S S A suffix of such variable. We showed that the example from Figure 3.5b 
contains one iterator list11. We can detect two iterator accesses: 

aj = (listlt, (next), 0) line 8 

a2 = (listlt, {next,prev), 11) line 11. 

The locat ion 0 is interpreted as the input version of the variable. 

Binding List Iterators 

After a l l list iterators and their accesses i n a function are found, we are able to compute the 
summary of a function for a given cal l ing context, i.e. determine how the function alters 
the l inked list given at its input . In order to do this, we b ind the list i terator accesses wi th 
the actual heap objects from the function cal l ing context. 

Let CallCtXh, be the cal l ing context of a function h called at location I. It has the 
form of a heap template w i th computed values of row parameters for variables of the caller 
function at the entry of the ca l l site hi. Next , let be a set of a l l list iterator accesses i n h. 
Using this information, we perform the binding of list iterators of h w i th actual heap objects 
from the cal l ing context using the function B I N D A L L I T E R A T O R S shown in A l g o r i t h m 11. 
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A l g o r i t h m 1 1 B i n d i n g list iterators to input heap objects 

1: function R E A C H A B L E O B J S ( O G Obj,f G Fid) 

2: R <- 0 
3: O <— set of a l l objects from CallCtx^ that correspond to o 
4: 

5: for all path(d, f,d)[0] G CallCtx^ such that o G O do 
6: i ? < - i ? U O U {d} / / add objects on the path and the path destination 

7: return R 
8: function B l N D r T E R A T O R S ( p G Ptr, o, it G Obj, f G Fid, F G Fid11, loc G Instr, i G N) 
9: result <— true 

10: i? <— R E A C H A B L E O B J S ( o , / ) 

11: for all r G i? do 
12: cond <— p = & r 
13: bind <— i t = r A i t .F [ i ] = r .F[ i ] 
14: if i < ( | F | - 1) then 
15: binder- bindA B i N D l T E R A T O R S ( r . F [ z ] , r, it.F[i]obj, F[i], F, loc, i + 1) 

16: expr <— cond bind 
17: result <— result A expr 
18: if t = (\F\ - 1) A loc ^ 0 then 
19: add Tj((r,F[i]),df) to template 

20: return result 
21: function B I N D A L L I T E R A T O R S 

22: for all (p r f , F , /oc) G ̂  where p r f = (p, o, f) do 
23: solver < B I N D I T E R A T O R S ( P , O, p l t , f, F, loc, 0) 

Firs t , we define the function R E A C H A B L E O B J S that takes an (abstract) object o and a 
field / and returns the set of a l l objects reachable from o v i a / i n the cal l ing context. Since 
o might be an abstraction, we first get a l l objects that correspond to o i n the cal l ing context 
(line 3). After that, a l l objects belonging to paths leading from objects corresponding to o 
v ia the field / are collected (lines 5-6) and returned. 

The actual b inding is created by the B I N D I T E R A T O R S function. The function returns 
bindings of a single iterator access wi th corresponding objects and their fields. It is called 
from the function B I N D A L L I T E R A T O R S for each iterator access (plt,F,loc) where plt = 
(p, o, f). It has 7 parameters, 5 of them corresponding to elements of the iterator and the 
iterator access. The parameter it represents the iterator symbol used i n the S S A form and 
the parameter i is the current level of recursion and is used as the index into the field vector 
F from the iterator access. 

In order to explain how the function works, we illustrate used symbols on simple figures. 
Let the call ing context contain a list l inked through a field / , where each node points to a 
data node by the field g, and let this list be pointed by a pointer a that w i l l be passed to the 
called function as an argument. Th is list is i l lustrated by Figure 3.6a and the corresponding 
abstraction of the list at the callee site is shown by Figure 3.6b. Here, the list is pointed 
by the formal parameter p and the first node is abstracted by the object pobi. 

Next , let the analysed function contain a loop that traverses the given list, node by 
node, using p as an induct ion pointer. We detect a list iterator plt = ( p , p o b j , / ) that, for 
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(a) Caller site (calling context). (b) Callee site. 

Figure 3.6: L inked list at the function entry at the caller site and at the callee site. 

example, i n a second loop iteration, is interpreted as shown in Figure 3.7b. A projection of 
this si tuation on the actual list from the call ing context is shown i n Figure 3.7a. 

V V 

f 
02 

f 

n 9  

°2 n 9  

°3 

f 
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pit gObj 

(a) Actual list from the calling context. (b) Abstraction of the list using an iterator. 

Figure 3.7: Second i teration of a loop traversing a l inked list using p as an induct ion pointer. 

W h e n the function B I N D I T E R A T O R S is called for the iterator plt = (p,pobj, / ) and its 
access (plt,g,0), it performs the following steps: 

1. A set of objects reachable from the in i t i a l iterator object pobi (which corresponds 
to o i in the call ing context) v i a the iterator field / is computed using the function 
R E A C H A B L E O B J S (line 10). 

2. Next , a binding for each reachable object r is created. In the si tuation shown in 
Figure 3.7, r corresponds to 02. A binding is composed of a precondit ion and a binding 
expression: 

2.1 A precondition is an equality between the iterator induct ion pointer p and the 
address of 02 (line 12). 

2.2 The binding expression is a conjunction of mult iple equalities: 

• A n equality between the iterator symbol plt and the object 02- (line 13) 

• A n equality between the field of the iterator access plt .g and the correspond­
ing field 02- g (line 13). 
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• In case the iterator access is composed of mult iple fields (the index i of the 
current access field is not the index of the last field), the function B I N D I T -
E R A T O R S is called recursively. In the presented situation, this could happen 
if the object pointed by g would point to another object by some field. In 
this case, the recursive cal l would have the form: 

B i N D l T E R A T O R s ( c > 2 . g , 02, plt-g°bj,g, F, loc, 1) 

and it would create a binding for objects start ing from 02 following the field 
g. The returned binding is added to the current one (line 15). 

3. A new template row is inserted for each field of the actual object 02 that corresponds 
to a write iterator access (this happens in the last recursive ca l l of the function for 
an iterator access whose locat ion is not 0). 

Example We illustrate the a lgor i thm on a concrete example. We use the function 
b a c k L i n k from Figure 3.5. Let this function be called as b a c k L i n k ( l i s t ) w i th the 
following cal l ing context: 

T°{list, {o}) 

path(o, next, o')[o] 

path(o, next, n u l l ) [o, d] 

path(d, next, n u l l ) [ o ' ] 

path(o, prev, n u l l ) [ ] 

path (d, pr ev, n u l l ) []. 

The state of the heap described by this cal l ing context is visualised i n Figure 3.8. Dashed 
arrows denote that o and d are abstractions of list segments (of arbi trary lengths) l inked 
through next field. A l l prev fields are set to n u l l . 

list 0 
next 

0 0 
next „1 next 

0 0 n u l l 

Figure 3.8: Visual isa t ion of the cal l ing context i n the example 

The function b a c k L i n k contains one iterator listlt and two iterator accesses aj and a2-

list1 = (listf1 ,listobj ,next) 

ax = (list1, (next), 0) 

az = (list1, (next,prev), 8). 

The function B I N D I T E R A T O R S is then executed for each iterator access. We show its exe­
cution for a2: 

1. L ine 23: B I N D I T E R A T O R S ( ^ S ^ , listobj ,listlt, next, (next,prev), 8, 0) is called. 

2. L ine 10: R E A C H A B L E O B J S ( ^ i s t o b - ? , next) is called, which returns the set R = {o, d}. 

3. L ine 11: The first i teration w i l l create a binding for o. 
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4. L ine 12: cond = (list^ht = ho). 

5. L ine 13: bind = (list1 = o A list1 .next = o.next). 

6. L ine 14: i = 0 < (\F\ — 1) = 1, hence we recursively call 
R E A C H A B L E O B J S ( o . n e x t , o, list1.nextobi, next, (next,prev), 8,1). 

6.1 L ine 10: R E A C H A B L E O B J S ( O , next) is called, which returns the set i? = {o, o'}. 

6.2 L ine 11: The first i teration w i l l create a binding for o. 

6.3 L ine 12: cond = (o.next = ho). 

6.4 Line 13: bind = {list1 .nextobi = o A list1 .nextobi.prevs = o.prevs). 

6.5 Line 14: i = 1 > (|.F| — 1) = 1, hence line 15 is skipped. 

6.6 L ine 16: expr = (o.next = ho =>• list1 .nextobi = o A listlt .nextob^ .prevs = 
o.prev8). 

6.7 Line 18: Condi t ion is true, hence we add a new template row: 7 u ° ( ( o , P ^ e ' u ) , d$). 

6.8 Lines 14-22: We repeat the loop for the object d. 

6.9 Line 23: The resulting binding is: 

(o.next = ho =4> list1 .nextobi = o A listlt .nextob^ .prevs = o.prevs) A 

(o.next = ho' =4> list1 .nextob^ = d A listlt.next0^.prevs = d.prev8). 

7. L ine 19: The iterator access b inding for the object o is: 

Zis i f f t l = & o =4> (list1 = o A list1.next = o.next A 

(o.next = ho =4> list1 .nextob^ = o A listlt .nextob^ .prevs = o.prevs) A 

(o.next = ho' =4> list1 .nextob^ = d A listlt.next0^.prevs = d.prevs)). 

8. L ine 21: The condit ion is false (correct template rows have been created i n the recur­
sive call) . 

9. Lines 14-22: We repeat the loop for the object o'. 

10. L ine 23: The whole binding for the iterator access az is: 

listlhz = & o =^ (list1 = o A list1.next = o.next A 

(o.next = ho =4> list1 .nextob^ = o A listlt .nextob^ .prevs = o.prevs) A 

(o.next = hd =4> list1 .nextobj = d A list1 .nextobj.prevs = o'.prevs)) 

A 

J z s i ^ = & 0 ' (Z i s f* = d A list1.next = d.next A 

(d.next = hd list1 .nextobj = d A list1 .nextobj.prevs = o'.prevs)). 

Moreover, two new template rows are created: 

7 ^ ( ( o , p r e U ) , d ? ) 

7 ? ( ( o ' , p r e U ) , d ? ) . 
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Similarly, bindings for the iterator access aj are created. In this case, the location of aj is 
0, and so no new template rows are generated. 

Using the given bindings and the new template rows, the summary for the function 
b a c k L i n k w i l l contain access paths for o and d corresponding to the created back l ink v ia 
the prev field i n the l inked list. 

Last , we have to ensure that the computed summary can be used in the caller function 
to constrain the function cal l . This is normal ly done by binding corresponding objects 
between the caller and the callee functions using A l g o r i t h m 1 and A l g o r i t h m 7. These, 
however, cannot be used for functions that contain iterators. The reason is that Algo­
r i thm 7 binds objects pointed by corresponding pointers using the results of the points-to 
analysis. For a function manipulat ing existing l inked lists, a ValueSet of a formal output 
contains an iterator object but the summary contains the actual objects from the call ing 
context. We resolve this by introducing A l g o r i t h m 12 that binds the heap objects that were 
changed wi th in the called function (hence they were added to the shape domain template 
by A l g o r i t h m 11) to new versions of the same objects i n the caller function site. Th is 
algori thm is run along wi th other binding algorithms which handle those objects that are 
not represented by iterators. 

A l g o r i t h m 12 B i n d i n g objects represented by iterators between / and a ca l l site / , 

1: e exit locat ion of / 
2: for all 7j?((o, f),d%) added by A l g o r i t h m 11 do 
3: solvere S S A ( o . / , i ) = S S A ( o . / , e ) 

In the above example, two new template rows for o and d were created. If the func­
t ion b a c k L i n k was called from location 20, then running A l g o r i t h m 12 would create the 
following bindings: 

o.prev2Q = o.prev8 

d' .prev2Q = d.prev8 
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Chapter 4 

Implementation 

We have implemented the solution proposed i n Chapter 3 into the 2LS tool . In Section 4.1, 
we first describe the architecture of 2LS and the sequence of the ma in steps that 2LS 
performs dur ing program analysis. Section 4.1 also contains short description of a l l analyses 
currently available in 2LS . In Section 4.2, we show how we integrated shape analysis into 
this architecture, giving the most important implementat ion details. In the end, we outline 
how our shape analysis can be used simultaneously wi th other analyses by implementing a 
simple combination of abstract domains. 

4.1 The Architecture of 2LS 

2LS is buil t over C P R O V E R infrastructure and uses mult iple components of this framework. 
The overall architecture of 2LS can be divided into three main parts: front-end, middle-end, 
and back-end. For many operations in the front-end and i n the back-end, the mechanisms 
from the C P R O V E R framework or other external tools are used. The main steps performed 
by 2LS are outl ined i n Figure 4.1 [17]. 

We now describe the part icular parts and steps i n more detail . 

4.1.1 Front-End 

The command-line front-end first configures 2LS according to user-supplied parameters. 
There are many options that can be set, the complete list is available v i a the — h e l p 
switch. After that, the source program is parsed and translated into a G O T O program. 
This is ensured by GOTO program parser from the C P R O V E R framework, which uses an 
external C preprocessor. A G O T O program is an internal program representation having 
the form of a control flow graph. In the end, 2LS performs various transformation of the 
G O T O program, such as function in l in ing or constants propagation. F r o m our point of 
view, the most important transformation is spl i t t ing chains of dereferences occurring in 
one command into mult iple commands. Th i s ensures that each statement contains one 
dereference only and hence the points-to analysis and representation of heap operations in 
the S S A form does not have to handle situations when mult iple dereferences occur i n one 
command. 
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Figure 4.1: The architecture of 2LS 

4.1.2 Midd le -End 

The middle-end is the part of 2LS where most of the program analysis is done. For that 
reason, we describe the steps included into this phase i n more detail . 

Static Analyses and Conversion into the S S A F o r m 

Firs t , several static analyses are performed on the G O T O program i n order to obtain 
information that w i l l be needed for the subsequent conversion into the S S A form. These 
include objects analysis that collects a l l objects accessed in a function, and assignments 
analysis that, for each object, determines program locations where the object is assigned. 
This analysis is crucial for the S S A generation since the S S A versions of variables w i l l be 
created based on computed locations. 

Another important analysis performed i n this phase is the points-to analysis that we 
extended and described in Section 3.3. 

After performing a l l needed static analyses, the G O T O program is converted into the 
S S A form. The approach of the conversion was described already i n Section 2.4.3. 

Invariant Generator 

The S S A form is an over-approximation of the G O T O program (due to the way loops are 
cut w i th the values returned over the back-edges made random and function calls havocked). 
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2LS refines this over-approximation by inferring loop invariants and function summaries. 
These can be computed in various abstract domains that are chosen by command line 
options. Currently, 2LS supports the following domains: 

• Polyhedra domains: domains for analysis of numerical variables—signed and unsigned 
bit-vector integers and floats. These include: 

— Interval domain: The value of each numerical variable is constrained by an 
interval. Thus, for each variable x, constraints i n the form ±x < C, where C is 
a constant, are discovered. 

— Zones domain: Uses constraints of the form x — y < C for each pair of program 
variables x and y. 

— Octagon domain: Uses invariants of the form x + y < C for each pair of program 
variables x and y. 

• Equalities domain: A domain for analysis of equalities and disequalities between pairs 
of variables. 

• Lexicographic ranking domain: A domain used for terminat ion analysis. 

Property Checker 

After a l l invariants are computed, the property checker checks val idi ty of a l l user-supplied 
assertions i n the source program. This is done by solving the formula representing the 
source program obtained from the S S A form along wi th the computed invariants i n the 
S M T solver and checking the satisfiability of negations of program assertions. In case the 
negations of a l l assertions are unsatisfiable, the program is val id, on the other hand i f there 
is an assertion whose negation is satisfiable, the program contains an error. If an error is 
found, it may be spurious due to over-approximation (when the inferred invariants are too 
weak) and thus the analysis result might be indecisive. 

4.1.3 Back-End 

B o t h invariant inference and property checking are done using an S M T solver. Since 2LS 
requires an incremental solver and its support is much better in S A T solvers, it uses an 
external S A T solver Glucose 4.0 or M i n i S A T 2.2.0. The needed support for the S M T 
theories of bit-vectors and arrays are provided by the C P R O V E R infrastructure. 

4.2 Shape Analysis Integration 

We have implemented our solution of shape analysis into the above described architecture 
of 2 L S . A l l algorithms from Chapter 3 are implemented i n a straightforward manner. In 
this section, we state the parts of 2LS where the part icular algorithms are implemented 
and present some implementat ion details. 
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4.2.1 Points-to Analysis and Heap Operations in the S S A Form 

The points-to analysis we use is implemented as one of the static analyses that are per­
formed prior to the conversion into the S S A form. It uses the classical abstract interpre­
tat ion approach. In order to implement i t , we make use of the C+-1- template for abstract 
interpretation provided by the C P R O V E R infrastructure. 

The replacement of the calls of the m a l l o c function is done in the phase of processing 
the G O T O program. For each cal l , a new object is created and inserted into the symbol 
table, and the address of this object is used i n place of the cal l . 

The representation of heap operations is included into the transformation of the G O T O 
program into the S S A form. 

4.2.2 Shape Domain 

We created a new abstract domain for shape analysis. It is composed of two main parts: 
the domain itself, and the strategy solver. The domain defines the form of the template 
and the abstract value, while the strategy solver implements the a lgori thm for jo in of the 
current abstract value wi th the model of satisfiability of the formula returned by the solver. 
The inference of invariants is ensured by the invariant generator of 2 L S . The usage of our 
shape domain can be activated using the — h e a p switch. 

The domain also contains an implementat ion of the in i t i a l b inding of list iterators ( A l ­
gori thm 11) that is performed at the beginning of analysis of each function. 

The binding between the caller and the callee functions is ensured by a component called 
SSA inliner, which we extended by our binding algorithms (Algor i thm 7 and A l g o r i t h m 12). 

4.3 Combination of Abstract Domains 

One of the main directions of this work is to provide a possibil i ty to combine multiple 
abstract domains together, which could br ing the possibil i ty to analyse complex properties 
of programs, such as those that depend both on pointer and non-pointer variables. 

A s a proof of concept, we have implemented a simple domain combinat ion that combines 
our shape domain w i t h the interval domain already present in 2 L S . We make use of the 
fact that interval domain uses template rows for numerical variables, s imilar ly to our shape 
domain using template rows for pointer variables. The implementat ion is based on creating 
a new abstract domain, whose template is composed of two parts: one part being for 
numerical variables and the other for pointer variables. For each row, the abstract value is 
computed in the corresponding domain using the corresponding jo in algori thm. 

If we split structure-typed variables of the original program into part icular fields, we 
can determine the shape of dynamic data structures from invariants for pointer-typed fields, 
and the content of nodes of these structures from invariants for numerical fields. This way, 
we may be able to prove properties that could not be proven when each analysis was done 
separately. 
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Chapter 5 

Results and Experiments 

We have proposed and implemented a shape analysis designed part icular ly for the 2LS 
framework. In order to prove that our extension brought an improvement of the capabil i­
ties of 2LS , we performed a series of experiments. These were run on a benchmark from the 
International Compet i t ion on Software Verification 2017 ( S V - C O M P 2017) and on a bench­
mark from the Predator shape analyser. T h e execution and results of these experiments 
are described i n Sections 5.1 and 5.2. 

Since our solution involves major updates to parts of 2LS that are run for each k ind of 
analysis (modifications of the S S A form generation, points-to analysis, etc.), it is essential 
to prove that our changes d id not affect other analyses. To this end, we use the regression 
tests that are present i n 2LS . The obtained results are described in Section 5.3. 

5.1 Benchmark from S V - C O M P 2017 

One of the most relevant collections of benchmarks i n the community of software verification 
and analysis is the collection of benchmarks from the International Compet i t ion on Software 
Verification ( S V - C O M P ) . The goal of this competi t ion is to provide a possibil i ty to compare 
different verification tools i n terms of their precision and performance. This is done by 
establishing a set of benchmarks that are composed of a large number of verification tasks. 
Each task consists of a C program and a property (reachability, memory safety, termination) 
to be verified. 

The tasks are divided into several categories and their subcategories, based on the 
verified properties. Since we a i m to analyse properties related to the shape of the heap, 
the most important category is the Heap Reachabi l i ty category. The tasks of this category 
a im to verify user-supplied assertions that check reachability of objects i n dynamic data 
structures such as lists, trees, etc. 

The result of running a tool on the benchmark of an S V - C O M P category is a score 
expressing the performance of the tool on the tasks included into the given benchmark. 
For the Heap Reachabi l i ty category, the expected result of a verification task is either true, 
which expresses that the program is error-free, or false, which expresses that the program 
contains an error meaning that some broken assertion is reachable. The scoring system is 
the following: 

• +2 points for each program that is correctly proven to be error-free (correct true). 

• +1 point for each program where an existing error is found (correct false). 
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• -16 points for each correct program i n which an error is reported (incorrect false, 
a so-called false positive). 

• -32 points for each program where an error is present, but was not discovered (incorrect 
true, a so-called false negative). 

• 0 points for an inconclusive result, which also includes a tool crash, or out of resources 
error. 

We executed 2LS on the Heap Category benchmark from S V - C O M P 2017 without and 
wi th our extension. The obtained results are shown i n Table 5.1. The experiments were run 
on an Intel X e o n 5000 processor at 3.5 G H z running U b u n t u 16.04. Each run was l imited 
to 15 G B of memory and 60 s of C P U time. 

Table 5.1: A comparison of 2 L S without and wi th our extension on the S V - C O M P T 7 Heap 
Reachabil i ty category 

2LS 

Without W i t h 
extension extension 

Number of tasks 173 173 

Correct results 77 82 

Correct true 54 62 

Correct false 23 20 

Incorrect results 17 4 

Incorrect true 6 3 

Incorrect false 11 1 

Inconclusive 79 87 

Score -237 32 

C P U time per 
finished task (s) 0.31 0.37 

We can see that our analysis increased the number of correctly analysed tasks and 
decreased the number of incorrect results, which led to a significant increase of the score. 
However, the results br ing some interesting observations. 

Even though the tota l number of correct results increased, the number of errors correctly 
found decreased. A likely explanation is that the previous "correct false" results were just 
coincidences, which is justified by a large number of "incorrect false" results. Since 2LS 
had but min ima l support for shape analysis, manipula t ion of the heap often caused errors. 

Generally, we can observe that the most significant improvement was i n proving correct 
programs and avoiding false positives. Th is can be explained by the fact that our shape 
analysis uses the abstract interpretation approach of 2 L S , which over-approximates the 
program and thus is sound in proving program correctness. Moreover, when an error is 
found, it is not guaranteed to be reachable i n the real program (due to over-approximation) 
and thus 2LS often ends wi th an "unknown" result i n case the error might be spurious. 
This possibil i ty is supported by the increase of inconclusive results obtained when using 
our extension of 2LS. 
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The next observation is that there is a significant number of tasks that are successfully 
verified even without our extension. This is mainly caused by the fact that these tasks do 
not contain any loops, thus no invariant is to be computed, and the S S A form w i t h the 
S M T solver is enough to prove the program correctness or to find an error. 

Last, the table also shows the average C P U time spent to verify a task. Th i s calculation 
includes only those tasks whose analysis finished without error (hence we remove tasks that 
ended by the tool crash or out of resources error). We can observe that our shape analysis 
increased the verification t ime by few percent only and hence preserved a high performance 
of 2LS . 

5.2 Experiments from the Predator Tool 

Apar t from S V - C O M P benchmarks, other sets of relevant examples can be found i n the 
distributions of existing tools for shape analysis. Currently, one of the best tools i n this area 
is the Predator tool [ ]. It has won several gold medals in the Heap Manipu la t ion category 
in previous editions of S V - C O M P (this category was replaced by the Heap Reachabil i ty 
category this year). 

We extracted the regression tests from this tool that work wi th singly ( S L L ) and doubly 
linked lists ( D L L ) . We added program assertions into these programs so that they are us­
able for analysis w i t h 2 L S . In the tests, we are not interested in lists destruction, since our 
extension does not support checks for memory leaks, yet. S imi lar ly to the previous exper­
iment, we ran 2 L S on the benchmark without and wi th our shape analysis, and compared 
the numbers of successfully verified examples. The results are shown in Table 5.2. 

Table 5.2: A comparison between the number of successfully verified tasks from the Predator 
benchmark wi th and without our extension of 2LS 

Tasks 
Correct results 

before our after our 
extension extension 

S L L 

D L L 
17 

8 

6 14 

2 7 

We can observe that our analysis notably increased the number of successfully verified 
programs i n both categories. We can see that there is a number of tasks that 2LS handles 
without our extension, which is caused by the fact that these programs either do not contain 
any loops, or check for properties that can be proven without an invariant for the shape of 
the heap. 

5.3 2LS Regression Tests 

2LS contains a large set of regression tests checking various properties of programs. A 
majority of the tests is aimed towards existing analyses—the analysis of numerical variables 
and the terminat ion analysis. We re-ran these tests after the integration of our solution 
and compared the results w i th the previous ones. Th i s way, we show that our changes d id 
not corrupt the current analyses of 2LS. 

The tests are divided into 5 ma in categories, each containing a number of verification 
tasks. Every task contains a C program to be verified and a test specification that defines 
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the expected verification result. A short description of each category can be found in 
Append ix C . Since 2LS is s t i l l i n development, there are tasks that 2 L S is currently not 
able to verify correctly. The numbers of successfully verified tasks before and after the 
integration of our solution are shown i n Table 5.3. 

Table 5.3: A comparison between the number of successfully verified 2LS regression tests 
wi th and without our extension 

Category Tasks 
Correct results 

before our after our 
extension extension 

Terminat ion 125 89 90 

k / k J 36 31 31 
Preconditions 8 8 8 
Interprocedural 46 31 31 
Invariants 86 64 64 

The results show that our changes d id not negatively affect the existing analyses i n 2LS . 
O n the contrary, there is one addi t ional successful test in the Terminat ion category. Even 
though the test does not use the shape domain, our changes to passing pointers between 
functions helped to perform correct verification of the benchmark. 
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Chapter 6 

Conclusion 

In this work, we proposed a way of integrating shape analysis into the 2LS framework. 
This included creating an abstract domain capable of describing the shape of dynamic 
data structures i n the heap. To this end, we use the concept of pointer access paths that 
describe the shape of the heap by expressing a reachability of heap objects from pointer-
typed variables in the analysed program. Moreover, we introduced changes to other parts 
of 2LS needed to successfully perform the shape analysis. Specifically, we improved the 
generation of the S S A form, extended the points-to analysis, and proposed methods needed 
to perform interprocedural analysis of functions working wi th pointers and recursive data 
structures. 

The proposed mechanisms show how pointer operations and the shape of the heap can 
be described using quantifier-free formulae i n the first-order logic. Solving these in an S M T 
solver working wi th the theory of bit-vectors allows one to automatical ly prove properties 
of a C program regarding dynamic data structures, especially l inked lists. 

We have implemented the proposed concepts into the 2LS framework and performed 
a series of experiments to demonstrate usefulness of our extension. The experiments were 
run on benchmarks from the Heap Reachabi l i ty category of S V - C O M P 2017 and from 
the Predator tool . The results show that our shape analysis i n 2LS brought a significant 
improvement of the capabilities of 2LS to analyse programs working wi th pointers and 
dynamic data structures. We also showed that the implementat ion d id not negatively 
affect other analyses that were already present in 2LS . 

Current analyses i n 2LS include a good-quality analysis of values of numerical variables. 
Its combination wi th the proposed shape analysis could br ing the possibil i ty of analysing 
interesting properties of the heap, such as those that depend on lengths of the lists, or 
offsets of the addresses. In our implementation, we showed how a simple combinat ion of 
domains can be done i n 2LS . In the future, extending this concept could allow one to 
efficiently analyse properties that other tools cannot cope w i t h and thus to handle more 
complex programs. 
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Appendix A 

Contents of the C D 

The attached C D contains source codes of the project. The main directory structure of the 
C D is the following: 

/ 
21s/ 2LS directory 

r e g r e s s i o n / 2 L S regression tests 
s r c / 2LS source files 

_ c b m c / C B M C ( C P R O V E R framework) directory 
. d o c / Source files of this text 

_ README R E A D M E file 

Our extension is implemented as a part of the 2LS framework and thus the source files can 
be found in 2 1 s / s r c . This directory is d ivided into mult iple subdirectories, some of which 
contain components of our extension: 

d o m a i n s Contains abstract domains used in 2 L S . Our shape domain is implemented by 
the following components: 

h e a p _ d o m a i n Defines the template form and the abstract value. 

l i s t _ i t e r a t o r The representation of list iterators. 

s t r a t e g y _ s o l v e r _ h e a p Implements the abstract value synthesis algori thm. 

s s a Contains components related to the creation and manipulat ion of the S S A form. Im­
portant components are: 

l o c a l _ s s a The definition of the S S A form. It also contains a lgori thm for transfor­
mation of the G O T O program into the S S A form, which includes representation 
of heap-manipulating operations. 

m a l l o c _ s s a The replacement of m a l l o c calls by dynamic objects. 

s s a _ i n l i n e r Responsible for b inding between the caller and the callee functions 
in interprocedural analysis. 

s s a _ p o i n t e d _ o b j e c t s A l ibrary for working wi th pointed objects abstractions. 

s s a _ v a l u e _ s e t The points-to analysis. 

The directory d o c contains the WT^K. source files and the P D F version of this text. 
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Appendix B 

Compilation and Running 

The project can be compiled and run using the source files that are attached on the C D . 
Compi la t ion can be done by the following steps: 

1. Compi le C B M C — t h i s is a l ibrary for the whole C P R O V E R infrastructure that 2LS 
is bui l t on. C M B C i n correct version can be found on the C D and compiled using 
c b m c / s r c / M a k e f i l e . 

2. Compi le 2LS—requires C B M C to be compiled in the c b m c / folder. Compi la t ion of 
2LS can be done using 21s/s rc/Makef i l e . 

2LS wi th our shape domain can be run by the following command: 

21s / s u m m a r i z e r/21s — h e a p — n o - p r o p a g a t i o n SOURCE_FILE 

It is recommended to use the — n o - p r o p a g a t i o n switch that turns off a propagation 
of constants in the G O T O program, which can sometimes cause problems for our points-
to analysis. The file SOURCE_FILE must be a correct compilable sequential C program. 
Process and results of the analysis are printed to s t d o u t and s t d e r r . 

We also recommend to use the 2LS regression tests that define a simple way of analysing 
programs wi th 2LS . Ex i s t i ng tests can be found i n subdirectories of 21s/regression. 
Each test contains a C program to be verified and a test specification t e s t . d e s c that 
defines the parameters and the expected results of the analysis. 
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Appendix C 

2LS regression tests 

2LS contains a number of regression tests divided into mult iple categories. These can be 
found i n 2 1 s / r e g r e s s i o n directory where each category is contained i n one subdirec­
tory. Each category contains various verification tasks situated in separate folders. A task 
folder contains a C program to be analysed and a task specification. The result of the 
analysis is also stored in the task directory. A l l tests from a category can be run using 
<ca tegory>/Makef i l e . A p a r t from running each category separately, it is also possible 
to run a l l categories together using 21s / r e g r e s s i o n/Makef i l e . 

There are 5 categories that contain the original 2LS regression tests that were used in 
the experiment i n Section 5.3: 

i n t e r p r o c e d u r a l Tasks in this category are aimed at verifying programs using interpro-
cedural analysis. Here, a summary is computed for each function of the analysed 
program. The tests include both context sensitive and context insensitive analyses. 

i n v a r i a n t s Tasks i n this category are aimed at computing invariants using various (mainly 
numeric and equalities) domains. The verified programs typical ly contain the main 
function only or are analysed using the — i n l i n e switch. 

k i k i Contains tasks aimed at checking features of the klkl a lgori thm, mainly k-induction. 

p r e c o n d i t i o n s Tasks i n this category are aimed at computing forward and backward pre­
conditions and postconditions of functions of the analysed program, which is one of 
the features of 2 L S . A l l tests are run wi th the — p r e c o n d i t i o n s switch. 

t e r m i n a t i o n Tasks i n this category are aimed at analysis of terminat ion of functions i n the 
analysed program. A l l tests are run wi th the — t e r m i n a t i o n switch. The analysis 
uses lexicographic domain. 

W i t h i n this work, we added 3 more categories of regression tests into 2LS that a im at 
checking properties related to the shape of the heap: 

h e a p Contains tasks using interprocedural analysis of heap-manipulating programs. Here, 
it is possible to find functions that were used as examples in this thesis. 

p r e d a t o r - d l s Contains tasks from the Predator tool aimed at checking properties of doubly-
linked lists. These tasks were used i n the experiment in Section 5.2. 

p r e d a t o r - s i s Contains tasks from the Predator tool aimed at checking properties of singly-
linked lists. These tasks were used i n the experiment in Section 5.2. 
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