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Abstract

The goal of this work is to propose a shape analysis suitable for the context of the 2LS
analyser. 2LS is a program analysis framework for C programs which is based on automatic
invariant inference using an SMT solver. The proposed solution includes a way how the
shape of a program heap can be described using logical formulae over bit-vectors and how
a first-order SMT solver can be used to infer loop invariants and function summaries for
each function of the analysed program. Our approach is based on pointer access paths that
describe the shape of the heap by expressing the reachability of heap objects from pointer-
typed program variables. The information obtained from the analysis can be used to prove
various properties of programs manipulating dynamic data structures, mainly linked lists.
The solution has been implemented in the 2LS framework and it brought a significant
improvement in terms of the capabilities of 2LS in analysing heap-manipulating programs.
This is demonstrated on benchmarks taken from the well-known International Competition
on Software Verification (SV-COMP) as well as other benchmarks.

Abstrakt

Cielom tejto prace je navrh analyzy tvaru haldy vhodnej pre potreby analyzatora 2LS. 2LS
je nastroj pre analyzu C programov zalozeny na automatickom odvodzovani invariantov
s pouzitim SMT solvera. Navrhované riesenie obsahuje spdsob reprezentacie tvaru pro-
gramovej haldy pomocou logickych formuli nad teériou bitovych vektorov. Tie st nasledne
vyuzité v SMT solveri pre predikatovi logiku prvého radu na odvodenie invariantov cyklov
a sthrnov jednotlivych funkcii analyzovaného programu. N&s pristup je zalozeny na ukaza-
telovych pristupovych cestach, ktoré vyjadruju dosiahnutelnost objektov na halde z ukaza-
telovych premennych. Informacie ziskané z analyzy moézu byt vyuzité na dokazanie réznych
vlastnosti programu suvisiacich s pracou s dynamickycmi datovymi struktirami. RieSenie
bolo implementované v ramci nastroja 2LS. S jeho pouzitim doslo k vyraznému zlepse-
niu schopnosti 2LS analyzovat programy pracujice s ukazatelmi a dynamickymi datovymi
struktirami. Toto je demonstrované na sade experimentov prevzatych zo znamej medz-
indrodnej sifaze vo verifikacii programov SV-COMP a inych experimentoch.
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Chapter 1

Introduction

Research in the fields of formal verification and analysis is very wide and getting ahead
very fast. Currently, there is a large number of tools available, designed to analyse various
properties of programs. However, most of the tools are typically very narrowly focused on
a single area of analysis. They usually fail to analyse complex properties of real-life programs
(e.g. verifying termination of programs using numerical and pointer variables at the same
time) while still being able to scale for realistic programs. On such complex properties and
programs, the tools usually give up or produce imprecise results (false positives or even
false negatives).

One of the tools trying to combine multiple approaches into a single, scalable frame-
work is 2LS. It integrates different program analysis techniques to work simultaneously and
exchange information, which allows it to both prove true properties as well as find errors
in programs. Due to using multiple techniques, 2LS offers a possibility to analyse different
classes of program properties. Currently, it is well usable to verify termination, data-flow
among numerical variables and arrays (using domains of different price and precision), or
equality between pairs of variables in the given program. 2LS was developed by Daniel
Kroening and Peter Schrammel at the University of Oxford, UK. Currently, it is main-
tained by Peter Schrammel at the University of Sussex and the spin-off company DiffBlue
Ltd. This thesis was solved in cooperation with this company.

One of the important features that 2LS currently lacks is an ability to analyse programs
that work with dynamic data structures, such as linked lists, trees, etc., which is a task
usually referred to as shape analysis since it is intended to analyse reachable shapes of
dynamic data structures. However, many real-world programs use dynamic structures,
and therefore it is needed to integrate this kind of analysis into 2LS. Moreover, since 2LS
already contains good numerical analysis, its combination with shape analysis could bring
new options of analysing interesting program properties that other, single-purpose tools are
not able to handle well (e.g. properties based on the length of linked lists).

Hence, the goal of this thesis is to propose a shape analysis suitable for the specific
context of 2LS, which very much differs from what is common in other frameworks. Typical
shape analyses are mostly based on some form of abstract interpretation that symbolically
executes a given program, iteratively going through its loops. In order to avoid generation
of infinitely many reachable program configurations, some form of widening/abstraction is
used to summarize reachable sets of configurations into a finite number of abstract symbolic
configurations. For representing such configurations, rich classes of logics, automata, or
other formalisms are used—e.g. separation logic [14], 3-valued predicate logic with transitive



closure [16], forest automata [10], or symbolic memory graphs [9]. 2LS differs from these
tools in (at least) 2 important aspects: (1) it is heavily based on the bit-vector logic,
ultimately using SAT solving, and (2) it uses a significantly different computation loop. This
loop is based on combining k-induction, a notion of invariants based on so-called templates,
and a rather specific form of abstract interpretation. Incorporating shape analysis into this
framework hence requires a rather specific solution.

In this thesis, we propose a solution to the above problem. In particular, we propose
a novel domain for representing sets of reachable heap shapes that can be well integrated
into the template-based approach of 2LS. Namely, we represent sets of heap configurations
using concept of pointer access paths. This representation of the heap does not concretely
describe the shape of the heap, only expresses reachability of heap objects from variables in
the analysed program via chains of pointers. Moreover, we propose all algorithms needed
for integrating the domain into 2LS, both within intraprocedural as well as interprocedural
analysis. This required us to propose specific algorithms for join of abstract values in our
abstract domain and for reflecting heap modifications performed by a function within the
context of the caller function. In addition, to be able to supply these algorithms with
some auxiliary information they need, we also had to modify the points-to analysis and
the generation of the static single assignment form that is used as an internal program
representation of 2LS.

We have implemented the proposed ideas in 2LS and applied the extended tool to a num-
ber of benchmarks. The obtained results indicate that our extension brought a significant
improvement in terms of the ability of 2LS in analysing programs manipulating pointers
and dynamic data structures on the heap.

The rest of the thesis is organised as follows. First, the basic concepts of program ver-
ification and the current state of the art of 2LS are described in Chapter 2. After that,
principles of the proposed solution are described in Chapter 3, along with all necessary
changes that must be done to the current concepts of 2LS. Chapter 4 outlines the archi-
tecture of 2LS and gives details of the implementation of our extension. Results of our
experiments are presented in Chapter 5, along with a discussion of what these results show.
Finally, a conclusion and future work is in Chapter 6.

This thesis extends the Term project of the same title. Particularly, Chapter 2 and
part of Chapter 3 (up to Section 3.6) were taken from the Term project with some minor
changes.



Chapter 2

Program Verification in 2LS

The goal of this project is an integration of shape analysis into the 2LS tool [17]. This
chapter will briefly introduce the basic concepts of 2LS and then explain in detail those
that are needed to understand the methods proposed in this project.

2LS is a program analysis framework built upon the CPROVER verification frame-

work [I]. It is oriented towards analysis of sequential C programs. The core algorithm
of 2LS, called kIkI, efficiently combines bounded model checking (BMC), k-induction and
abstract interpretation [1]. Although all these three verification approaches can be used

simultaneously, we will only use abstract interpretation for the shape analysis extension of
2LS proposed within this work. General concepts of this program analysis technique are
formally described in Section 2.2.

The abstract interpretation used in 2LS is based on computing so-called inductive in-
variants for all loops and functions of the source program. These are inferred using an SMT
solver-based approach and then used to reason about various properties of the analysed pro-
gram. The approach to the inference of the inductive invariants is formally described in
Section 2.3.

Although the below description views source programs for simplicity as transition sys-
tems (described in Section 2.1), the implementation of 2LS uses the static single assignment
form (SSA) as the source program representation since it is better usable with the solver-
based approach. The concept of SSA and the conversion of the source program into this
form is described in detail in Section 2.4.

In order for 2LS to be usable for larger programs, it is essential to use interprocedural
analysis. This includes computing summaries for individual functions from the source
program. Formal definition of summaries and their usage for the analysis is explained in
Section 2.5.

The concepts described within this chapter are used in various analysis present in the
current implementation of 2LS. This mainly includes the analysis of the values of numerical
variables (using the polyhedra abstract domain), the termination analysis, and the analysis
of equalities among variables.

2.1 Source Programs as Transition Systems

The following description views the source program as a transition system. A program
state x is the current value of all program variables (including the program counter) and
related memory (i.e. the stack and the heap). Let S be a set of program states, and let



the transition relation 7 C S x S define for each state a set of its possible successors in the
program execution.

Assume a sequence of sets of states SpS7 ... S such that V0 < i < k: (S;,S;41) € 7.
We denote Sy = 7%(Sp) the set of states reachable from Sy after k execution steps. If I is
the set of all possible initial states of a program, then the set of all reachable states S, is
the least fixed point of 7 starting from I defined as:

S = ). (2.1)

i€EN

Informally, S, is the set of all states that the program can get into during its execution.

2.2 Abstract Interpretation

Abstract interpretation is a static analysis technique based on an over-approximation of the
set of reachable states of the source program. Generally, the set of all reachable states is not
computable. However, since it is usually needed to reason about a certain program property
only, to prove this property it is sufficient to approximate program states as elements of
a simpler domain, called the abstract domain.

Having the concrete domain P of program states, we create the abstract domain ). An
element of the abstract domain, called an abstract value, corresponds to an element from
the concrete domain, which is typically a set of concrete program states. Along with the
abstract domain, we define two functions [7]:

e The concretisation function defines a mapping from an abstract value to a value of
the concrete domain. Formally v : @ — P and 7(q) is a concrete value represented

by q.

e The abstraction function defines mapping from a concrete value to an abstract value
from the abstract domain. Formally a: P — @ and «(p) is the most precise abstract
value in () whose concretisation contains p.

An abstract interpretation I of a program is then a tuple [3]:
I=(Q,U,C,T, 1,7 (2.2)
where

e () is the abstract domain (along with well-defined abstraction and concretisation

functions),
e T € () is the supremum of @,
e | € (@ is the infimum of Q,
e LI:Q xQ — Q is the join operator, (Q,L, T) is a complete semilattice,
e (C)C Q@ xQ isan ordering on (Q,L, T) defined as x Cy < z Uy =y,
o 7% : Instr x Q — @ defines the interpretation of abstract transformers.



Abstract interpretation approximates the set of reachable states by computing the fix-
point of 77 in the abstract domain. The result is one abstract value for each execution point
of the source program. In case multiple abstract values are obtained (because of multiple
execution paths entering the program location), these are accumulated into one using the
join operator. The properties of the analysed program are then checked in the computed
abstract values. The soundness of the analysis is ensured using a Galois connection between
the concrete and abstract domains. We say that (P, <,Q,C) is a Galois connection if and
only if (P, <) and (@, L) are partially ordered sets, and there is a following relation between
abstraction and concretisation functions [3]:

VpeP,geQ:
p<7(q) & alp) Eq

Since the computed abstract value is an over-approximation of the set of all reachable
concrete program states, abstract interpretation may generate a false positive. It is a situ-
ation when a property does not hold for the computed abstract semantics, but it holds for
the set of all reachable program states. This incoherence is usually caused by the fact that
an abstract value represents multiple concrete program states and may represent also states
that are not reachable in the real program. The objective is to minimize the number of
the false positives. This may be achieved, for example, by choosing a more precise abstract
domain or by a combination with other static analysis approaches (as 2LS does).

(2.3)

2.3 Template-based Verification

This section formally explains the approach to abstract interpretation adopted in the 2LS
framework. The key phase of the abstract interpretation part of the kIkI algorithm is an
inference of inductive invariants. This problem, which can be expressed in (existential
fragment) of second-order logic, is reduced to the problem expressible in quantifier-free
first-order logic using so-called templates. This reduction enables 2LS to use an SMT solver
for automated inference of loop invariants and function summaries. These are then used to
check various properties of the analysed program. The whole concept is focused on finite
state systems since 2LS uses bit-vectors to analyse software [1].

2.3.1 Program Verification Using Inductive Invariants

2LS uses an SMT solver to reason about programs, thus we adapt the formalisation of
source programs from Section 2.1 to use logical formulae for the below presentation. The
state of a program is described by a logical interpretation of logical variables corresponding
to each program variable. A set of states can be described using a formula—the states in
the set are defined by models of the formula. Given a vector of variables «, a predicate
Init(x) is the predicate describing the initial states. A transition relation is described as
a formula Trans(x,x’). From these, it is possible to determine the set of reachable states as
the least fixed-point of the transition relation starting from the states described by Init(x).
This is, however, difficult to compute, so instead an inductive invariant is used. Inv is an
inductive invariant if it has the property:

Ve, ' .(Inv(x) A Trans(z, ') = Inv(z')). (2.4)

An inductive invariant defined as above is a description of a fixed-point of the transition
relation. However, it is not guaranteed to be the least one, nor to include Init(x). Moreover,



there are predicates which are inductive invariants, but are not sufficient to be used for
proving any properties of the source program (such as predicate true, which describes the
complete state space) [1]. That is why we will try to compute such invariants that approach
the least fixed-point, so that it is enough to use them to check a given property.

A verification task does often require showing that the set of all reachable states does
not intersect with the set of error states denoted Err(x). Using the concept of inductive
invariants and existential second-order quantification (32), we can formalise it as:

JoInw. Ve, 2. (Init(x) = Inv(x)) A
(Inv(z) A Trans(x, ') = Inv(z)) A (2.5)
(Inv(x) = —Err(x)).

2.3.2 Invariant Inference via Templates

In order to exploit the power of the kIkI algorithm, 2LS uses a solver-based approach to
computing inductive invariants. To directly handle Formula 2.5 by a solver, 2LS would need
to handle second-order logic quantification. Since a suitably general and efficient second
order solver is not currently available, the problem is reduced to one that can be solved
by an iterative application of a first-order solver. This reduction is done by restricting the
form of the inductive invariant Inv to T (x,d) where T is a fixed expression (a so-called
template) over program variables  and template parameters §. This restriction corresponds
to the choice of an abstract domain in abstract interpretation—a template only captures
the properties of the program state space that are relevant for the analysis. This reduces
the second-order search for an invariant to a first-order search for the template parameters:

36. Vx,x'. (Init(x) = T(x,8)) A

(T (x,8) A Trans(z,x’) = T(z,6)). (2.6)

Although the problem is now expressible in first-order logic, the formula contains quan-
tifier alternation, which poses a problem for current SMT solvers. This is solved by itera-
tively checking the negated formula (to turn V into 3) for different choices of constants d
as candidates for template parameters d. For a value d, the template formula 7 (x, d) is an
invariant if and only if Formula 2.7 is unsatisfiable.

Jz, x’. —(Init(x) = T(x,d)) V

(T (x,d) A Trans(z, ') = T(z',d)) (2.7)

From the abstract interpretation point of view, d is an abstract value, i.e. it represents
(concretises to) the set of all program states @ that satisfy the formula 7 (x, d). The abstract
values representing the infimum 1 and supremum T of the abstract domain denote the
empty set and the whole state space, respectively: T (x, L) = false and T (x, T) = true [1].

Formally, the concretisation function ~ is same for each abstract domain:

v(d) ={z | T(z,d) = true}. (2.8)

As for the abstraction function, it is essential to find the most precise abstract value
representing a concrete program state. Thus:

a(x) = min(d) such that T (x, d) = true. (2.9)



Since the abstract domain forms a partially ordered set with ordering C and 7 (2, T) =
true, existence of such a minimal value d is guaranteed.

The algorithm for the invariant inference takes an initial value of d =1 and itera-
tively solves the below quantifier-free formula (corresponding to the second disjunct in
Formula 2.7) using an SMT solver:

T(z,d) A\ Trans(z,x') A ~(T (', d)). (2.10)

If the formula is unsatisfiable, then an invariant has been found, otherwise the model
of satisfiability is returned by the solver. The model represents a counterexample to the
current instance of the template being an invariant. The value of the template parameter
d is though refined by joining with the obtained model of satisfiability using the domain-
specific join operator LI [1].

2.3.3 Incremental Solving

The solver approach used in 2LS is based on a so-called incremental solving. This technique
aims at checking whether satisfiability of a problem is preserved when the clause set is
incremented with new clauses. Instead of re-solving the whole problem, the information
from the original problem is used to speed up the solution of the new problem. The original
problem (before adding the clauses) is though considered satisfiable, and only the impact
of the new clauses is checked [11].

In 2LS, this concept is used as follows. First, the below formula is passed to the solver:

Init(z) A Trans(z,x'). (2.11)

Providing that a valid source program is passed, Formula 2.11 is satisfiable (each pro-
gram state has a successor) and is considered to hold in all following iterations. After that,
only the current instance of the template formula is passed to the incremental solver in
each iteration.

Instead of representing source program as a transition system, it is equivalent and more
efficient to convert it into the static single assignment form (SSA), which represents the
logical formula describing the whole program. Since the SSA form explicitly expresses
control flow, it corresponds to the whole Formula 2.11 and removes the need to (directly)
implement the abstract transformers. The SSA form used and the conversion of the source
program into it is described in Section 2.4.

2.4 SSA Encoding of Source Programs

As the previous section stated, 2LS translates the program into the single static assignment
form (SSA). It is a well-known concept of an intermediate program representation. Its
general principles are introduced in Section 2.4.1.

For an acyclic code, SSA is a formula that represents exactly the strongest post condition
of running the code. 2LS extends the standard SSA form by an over-approximation of the
loops so that it allows one to reason about abstractions of the program using a solver [1].
This conversion of the loops, along with other modifications of the standard SSA used in
2LS, are explained in Section 2.4.2.

The mechanism of the transformation of the source program into the SSA form and an
example of such conversion are stated in Section 2.4.3.



2.4.1 The General Notion of SSA

Generally, SSA is an intermediate program representation satisfying the property that each
variable is assigned at most once. A translation into the SSA thus involves separating each
variable v into several variables v;. When a node ¢ of the original program contains an
assignment to v, it is replaced by an assignment to v;. Every usage of v is replaced by the
appropriate variable v; where ¢ is the last node where v was assigned before the given use
of v.

In order to always have exactly one node of the last assignment of v, additional assign-
ments must be introduced at join points of the original program. These are called ® (phi)
nodes and have a form of an assignment x = ®(y, z). This expression means that x is
assigned the value of y if the control reaches this node via the first entering edge, and x is
assigned the value of z if the control reaches the node via the second entering edge [2].

The logical formula corresponding to the original program is then a conjunction of SSA
formulae for all program statements.

2.4.2 SSA Used in 2LS

The SSA form used in 2LS extends the general concepts introduced in Section 2.4.1. In
order to be usable in the incremental solver, SSA is made acyclic by cutting the loops at
the end of the loop body. The example of this conversion is given in Figure 2.1. This figure
explains how SSA variables express the control flow in a simple loop [1].

1:  before the loop

|

3: loop head

s o b
T3 =g¢ Txg 1 Xy

b
l Tg

loop body
Ty = :rghZ +1
!
6:end of the loop body

unsigned x = 0;

1

2

3 while (x < 10)
4 {

5 ++X;

6

} after the loop

(a) A loop in C (b) Encoding of the loop in SSA

Figure 2.1: Conversion of loops in the SSA form used in 2LS

The loop has been cut at the end of its body: instead of passing the version of x from the
end of the loop body (x5) back to the ® node in the loop head, a free “loop-back” variable
:rlﬁb is passed. The choice of the value of x in the ® node is made non-deterministically using
the free boolean “loop-select” variable gés . This way, the SSA form is made acyclic, and
though it always holds when passed to the solver (which is needed by incremental solving
since it represents Formula 2.11, as explained in Section 2.3.3).
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Since :rlﬁb and gés are free variables, this representation is an over-approximation of the
actual program traces. The precision can be improved by constraining the value of :rlﬁb by
means of a loop invariant, which will be inferred during the analysis. A loop invariant
describes a property in the given abstract domain that holds at the loop entry (z,) and at
the end of the loop body (z5) and though can be assumed to hold on the feedback variable
:Eéb [1]. Using the interval numerical domain, the invariant for :rlﬁb from the example in
Figure 2.1 could be:

98 = (% > 12l <10). (2.12)

The example showed data-flow variables, which correspond to the original program
variables. In addition to these, 2LS uses guard variables that capture the branch conditions
from conditionals and loops. For example, the SSA form from Figure 2.1 would contain
guard variable g,:

gy = 28" < 10. (2.13)

This variable guards the reachability of the assignment of x5 and is used during the
inference of invariant from Equation 2.12.
To facilitate interprocedural analysis, the SSA used in 2LS contains placeholders for

function calls in the form h;(x? —n, P —°%") which stands for i-th invocation of the function h

with input and output arguments mfbi—m and mﬁi—out, respectively. These placeholders assure
that the function calls are initially havocked (over-approximated) and can be constrained
by computing function summaries (see Section 2.5) [5].

Pointer-typed variables have special handling in the SSA used in 2LS. Since this is
closely related to the heap analysis performed within this work, it is described in detail

later in Section 3.3.

2.4.3 Conversion of the Source Program into SSA

The 2LS framework is built over the CPROVER verification framework. CPROVER pro-
vides a compiler for C programs, which parses a C program into its own internal repre-
sentation called a GOTO program [1]. It represents the source program in the form of a
control-flow graph containing the locations with statements and the edges between them.
Since 2LS uses the SSA form during the analysis, it performs a transformation from a GOTO
program into the SSA. This transformation is done in a standard manner as described in
Section 2.4.1 with 2LS-specific modifications explained in Section 2.4.2:

e Each variable is split into multiple “versions” for each of its assignments. An as-
signment of a variable x at location 4 introduces a fresh symbol x; which is used at
the left-hand side of the assignment. Variables occurring on the right-hand side are
renamed to their last assigned versions.

e For each conditional statement and for each loop, a ® node is introduced for every
variable that is altered within the conditional (loop). The choice between two values
in a ® node is controlled using the branch condition in case of a conditional, and a free
boolean variable in case of a loop (due to loops cutting as explained in Section 2.4.2).

e A guard variable is introduced for the first location of each basic block from the GOTO
program. The guard variable captures the condition of reachability of the given
basic block in the source program. This mainly applies to branches of conditional
statements and loop bodies.
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e Function calls are replaced by the over-approximating placeholders.

e The operations manipulating heap objects are treated specially. Their transformation
is newly designed within this project, therefore it is described later, in Section 3.4.

1 void main () 1
2 { 2 g, = TRUE
3 unsigned x = 0; 3 xy = 0
4 4
5 595 = 92
6 while (x < 10) 6 ab™ = (gh 2 2l ¢ xy)
7 { 7 g; = (@B < 10) ss gg
8 +4x; 8 xg = 1 + mghi
9 } 9
10 10 gp = ! (@ < 10) ss gg
11 assert (x == 10); 11 mghi = 10 || 1919
12} 12
(a) The C program (b) The corresponding SSA

Figure 2.2: Conversion from a C program to SSA

To better understand conversion of a C program, we give an example in Figure 2.2 [1].
Line 2 is the entry location of the program. It is always reachable, therefore g, is set to
true. The definition of = is done at line 3. The head of the loop contains a ® node (line
6) and since it is directly reachable from the beginning of the main function, its guard g5
is same as the guard of the entry point (g5). The guard g, at line 7 expresses that the
loop body is only reachable if the loop head is reachable (g5) and the loop condition is true
(:Eghi < 10). Line 8 sets the new value of z. The guard g;, at line 10 captures the fact that
the location after the loop is reachable when the loop condition is false. Finally, line 11

requires = to be equal to 10 once the assertion is reachable (g, is true).

2.5 Interprocedural Analysis

C programs are typically composed of multiple functions. To correctly analyse such a
program, provided it is not recursive, it might be inlined first (by replacing the function
calls by the corresponding function bodies). Although this simplifies the analysis (the whole
program is in one function), it also brings inefficiency since the inlined program might be
much larger than the original one, which can prolong the analysis.

Even though the 2LS framework offers the possibility of full inlining of the program (by
using the ——inline switch), it is designed to perform interprocedural analysis, where each
function of the original program is analysed separately.

In this section, we introduce the basic concepts of the interprocedural analysis in
2LS. The original implementation does not handle passing function arguments by refer-
ence (pointers). Since this is crucial for analysis of heap manipulation, we implement this
mechanism within this work. For that reason, this section describes just the original inter-
procedural analysis, where function arguments can be passed by value only. The design of
passing the arguments by reference is then introduced in Section 3.7.
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2.5.1 Input and Output Variables

A function f is specified by its input variables acz}", output variables xz¢“* (usually re-

ferred as formal inputs and outputs), and by its SSA form that has been described in
Section 2.4. In the SSA form, a function call of f in a node i is represented by the place-
holder f;(x" —m,mi oty where m?—m and m?—out represent the actual input and output
arguments, respectively. This placeholder havocs the function call and can be constrained
by computing a functlon summary [5].

Input variables x* f of a function f include parameters param; and global variables
glob;". For global variables, we only consider those that are actually accessed inside the
function. Output variables only contain global variables glob‘]’c“t, which include same vari-

ables as glob?" (potentially in different SSA versions). The return value of the function is
denoted ry and included in glob‘]’c“t.

All of the above variables are in the SSA form. The input variables are used without any
indices since it is not known where they have been assigned last time. The output variables
that are actually written by the function are in the version of their last assignment before
the end of the function, while those that are not written (only read) remain in the same

form as the input ones.

2.5.2 Function Abstractions

During the function analysis, we use multiple abstractions based on the concept of invariants
introduced in Section 2.3.1:

e An invariant is a predicate Inv such that:

Ve, z' : (Init(x) = Inv(x)) A (2.14)

(Inv(z) A Trans(z,x") = Inv(z')). '
Invariants abstract the set of reachable states in the program. If we project the
invariant to a subset of variables x;,,, C @ containing loop-back variables for a loop,
we obtain a so-called loop itnvariant Inv(mloop). This can be used to constrain the
values of loop-back variables (as shown in Section 2.4.2).

o A summary abstracts the behaviour of a function. It describes how a function f
transforms its formal inputs into outputs. Given an inductive invariant Inwv, input
and output variables '® and x°“, and a predicate Init #(x) describing the initial
states of the function, a summary of the function f is a predicate Sum such that:

Va,x' : ('™ C x A Init(x) A

. (2.15)

Inv(z') Az C x') = Sum(x™, ).
The first line of the implication antecedent expresses that the initial states of the
function depend on the input variables. After computing an invariant for the out-
put variables (second line), we obtain a summary Sum (x®, x°“!) of the function. The
summary can be later used to constrain the functlon call placeholder fi(xh —m, ac?i outy
by replacing formal input and output variables '® and x° in Sum(mm ) by

actual values of inputs and outputs % T, —" and m?—out Details can be found in Sec-
tion 2.5.3.
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e A calling context abstracts the behaviour of a caller function towards a called function.
It specifies the context (actual values of input and output variables) that the function
is called in. Given an invariant Inv and values of actual function call inputs and
outputs ac?i—m and ac?i—out, a calling context for a call of a function f at a call site 7 is
a predicate CallCtry, such that:

Vi, iyl (m?fin Cax; A Inv(z;) A

Trans(@i, @iy1) m?_out C xi11) = CallClz (2! i, ac?i—o“t)

(2.16)
The function call is included in Trans(x;, €;11), being the transition relation for the
location . A program state at the location ¢ is denoted x; and contains the actual
input arguments ac?i—m of the function call. A program state after the execution of the

function call is denoted ;41 and includes ac?—out. After computing an invariant for x;

we obtain the calling context CallCtzy,(x ?—m, ac? Out) for a call of f at the location

i. The calling context can be used during the analysis of the function f to constrain
formal inputs and outputs of the function. More detail of the usage of calling contexts
along with an example can be found in Section 2.5.4.

All of these concepts depend on invariants which are computed using the templates from
a specific domain. Therefore the obtained constraints are abstractions and describe only
those properties that are relevant for the domain used.

2.5.3 Function Calls Constraining

Function summaries abstract the behaviour of functions and are used to constrain the
function call placeholders in the SSA of the caller function. This simulates the effect of the
called function in the call site.

Before analysing a function, 2LS first analyses (computes summaries) of all called func-
tions. After that, each function call placeholder f; is replaced in the solver by the corre-
sponding summary Sum(x ;" ac‘]’c“t) of the callee function f (having the form of a logical
formula). A problem is that the formal input and output variables of the callee function
(occurring in the summary) and the actual inputs and outputs at the call site are generally
different. In order for the callee summary to simulate the effect of the function on caller’s
variables, one need to bind formal and actual input and output variables in the solver.

For a better illustration we give a simple example. Let f be a function in C declared
and then called as shown in Figure 2.3a. Supposed there are no global variables, the
inputs and outputs of f and an example of the SSA corresponding to the call are shown
in Figure 2.3b (j and k are the locations of the last assignments of a and b in the caller
function, respectively). Note that the call is replaced by a placeholder where a fresh symbol
ry, is introduced for the return value and it is assigned to ¢ in the next location. This
is already done by the GOTO program parser in the CPROVER framework. After a
summary Sum((z,y),(ry)) of f is computed, we replace the placeholder by an expression
in Figure 2.3c. This contains the summary itself and the bindings between formal and
actual inputs and outputs of the function.

We propose an algorithm for the binding between formal and actual input and output
variables of a function call. The following presentation assumes that a function f is called
from a call site f;. In order to distinguish between formal and actual variables, Table 2.1
shows naming of vectors of variables in the function f and in the call site f;. Note that
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out

int. £ (int. %, int ), ol = @), 2 = () Suml(z,), () A

T =a; N\
c = £(a,0); f((aj,bk), (r5,)) y="0br A
Citl =Tf; Ty="Th

(a) Declaration and call in C  (b) Inputs, outputs, and SSA (¢) Replacing formula

Figure 2.3: Example of function call constraining

global variables are also different since they occur in different SSA versions in the caller
and callee functions.

Table 2.1: The symbols used in binding algorithms

Symbol | Meaning

param; | formal parameters of f

globz}" formal input global variables of f

glob‘]’c“t formal output global variables of f

argy, arguments (actual parameters) of the call site f;

glob?i—m actual global variables at the input of the call site f;

glob’)’ci—out actual global variables at the output of the call site f;

We also introduce a function NAME, which takes an SSA variable v and returns the
name of the corresponding original program variable without the SSA suffix. The function
BIND(v1,v2) creates a binding between the variables v; and vs (i.e., it adds an assumption
v] == vy to the solver).

Using these helper functions, the binding between the call site and the callee variables
is done using two procedures shown in Algorithm 1.

Algorithm 1 Binding between the call site and the called function
procedure BINDGLOBALS '
for all z € glob™, 2’ € globli~" . NaME(z) = NAME(z') do
BIND(z, ')
for all z € glob®, 2’ € glob?i—
BIND(z, ')

out - NAME(z) = NAME(z') do

procedure BINDPARAMS
for j < 0..(|param| —1) do
BIND(param/[j], argy,[j])

2.5.4 Context-Sensitive Summaries

For some programs, it is useful (and sometimes necessary for precise analysis) that values of
the input variables of a function are constrained with respect to the actual argument values
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that the function is called with. In this case, when analysing a function f that is called for
the first time in a call site f;, its calling context CallCtxy, is computed first. The calling
context is formally defined in Formula 2.16 and depends on the invariant in the entry of
the location . This is computable before the analysis of f since f is called in location ¢ for
the first time. The computed calling context is then used as a precondition for the analysis
of f and the inferred summary is stored in the form CallCtxy, = Sum;.

Using the example from Figure 2.3, if f was called in the call site f; with a calling
context: CallCtzy,((aj,by),(ry,)) = (aj < 0A by > 0), the computed summary would be
stored in the form: (x <0Ay > 0) = Sums((x,y), (rf)).

Since f might be called multiple times within different contexts, the computed sum-
maries are reusable only if the current calling context is subsumed by calling contexts
V,; CallCtz y,. In case it is not, the summary is recomputed and joined conjunctively with
previous summaries [5].
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Chapter 3

Design of a Heap Analysis for 2LS

In the previous chapter, we described the current state of the art of the 2LS framework. It
is well-usable for various analyses, such as the numeric variables analysis or the termination
analysis.

The goal of this project is the integration of a new type of analysis—a heap manipulation
analysis. We will focus on analysing the shape of dynamic data structures (mainly singly
and doubly linked lists). In order to achieve this, there are multiple tasks to be fulfilled.

The most important one is to design a new abstract domain that can describe desired
properties of the program heap. In 2LS, this involves a proposal of a suitable form of the
template for computing invariants, specifying what an abstract value will be, and creating
the corresponding join algorithm. These can be found in Sections 3.5 (the abstract domain)
and 3.6 (the abstract value synthesis algorithm). Since shape analysis has already been
implemented in various different tools, we can make use of the existing abstract domains.
Therefore we first explore the existing work on formal heap analysis and verification in
Section 3.1.

Apart from creating the abstract domain, there are more problems to be solved. The first
one is related to the SSA form, which 2LS uses for representation of the source programs.
The problem is that the SSA uses symbolic names for program variables. Dynamically
allocated objects do not have any names (because they are accessed via pointers only), and
therefore we have to introduce new symbols to represent them. Moreover, a dereference
of the same pointer might result into different heap objects at different execution points.
To ensure a correct dereferencing, 2LS runs a simple static points-to analysis. Since the
analysis is currently not complete (it cannot handle some commands, or function calls) we
extend it and formally describe in Section 3.3. Afterwards, the transformation of heap-
manipulating operations into the SSA form is based on the results of this analysis. The
conversion of typical operations is explained in Section 3.4.

The second problem comes with the interprocedural analysis. Generally, a function
can alter objects that are neither global nor passed to the function as parameters but are
pointed by those. This is called a side effect of a function and must be included in the
function summary. Since 2LS currently passes global objects and actual arguments to the
function only, we will introduce passing of heap objects. The problem becomes even more
complicated when a function accesses and alters an abstract heap object such as a linked
list. The proposed approach to the interprocedural analysis of heap-related properties is
described in Section 3.7.
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3.1 Related Work on Heap Verification Techniques

Before designing an abstract domain for the description of shape invariants in 2LS, we
explore the existing approaches to the heap (shape) verification.

Most of the current tools use intermediate representations of the analysed programs in
the form of control-flow graphs (CFG). They compute the abstract state (representing the
set of reachable concrete program states) at each program location. However, this approach
is not usable in 2LS since the source program representation is in the acyclic SSA form (thus
a part of the control-flow is omitted because of the loops cutting). Moreover, a solver for
quantifier-free first-order logic is used, and so we have to use an abstract domain that allows
us to reason about the shape of a heap using quantifier-free formulae only.

An approach we found to be currently the most suitable for our purposes is based on the
so-called storeless semantics. Contrary to tools based on more popular store-based program
semantics describing the shape of the heap using various logics [14, 13, 16], automata
(Forester [10]), or graphs (Predator [9]), which closely correspond to the real state of the
heap, storeless approaches represent heap as a set of pointer access paths [15].

An access path does not concretely express the state of the heap, it only describes which
dynamic objects (i.e. objects allocated by malloc function) are reachable from a pointer.
Using a set of access paths for each pointer in the program, one can efficiently describe
the shape of (the reachable part of) the heap. The approach based on access paths is used
e.g. in a tool built over the CPROVER framework [3] (where the heap is described as a
conjunction of predicates), or various other tools [0, 15, 12].

The main difference between these and our proposed approach is that they use CFGs and
compute the sets of reachable program states iteratively using the abstract interpretation
approach. On the other hand, 2LS uses an acyclic SSA form in an incremental SMT solver-
based approach. This allows a simpler creation of domains and could also bring a possibility
to combine our shape analysis with other analyses already present in 2LS.

We propose an abstract domain for 2LS to describe the shape properties of the program
heap. Before that, we have to introduce some changes to the SSA form, so that it is usable
along with the proposed domain in the SMT solver.

3.2 Preliminaries and Notation

In this chapter, we assume that the source programs are defined over the following finite
sets of objects:

e Var: a set of all statically allocated objects (variables). We assume each variable has
its unique name.

e Obj: a set of dynamically allocated objects (on the heap). In 2LS, one dynamic object
corresponds to one allocation site, i.e. it might represent an abstraction of multiple
concrete heap objects allocated in a loop (such as a segment of a linked list).

e Ptr C (Var U Obj): a set of all pointer-typed objects (both static and dynamic).
These either hold an address of an object in the memory or null.

e Str C Obj: a set of all structure-typed heap objects.

e Fld: a set of all fields of structured types.
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e Instr: a set of all program locations.

We also use B to denote the standard Boolean domain. We use the ordering < on B as
follows:
Ve,y eB.x <y < (x =vy). (3.1)

3.3 Points-to Static Analysis

Using the SSA form in a quantifier-free first-order SMT solver in the way 2LS uses it brings
some problems. One of them is the fact that each memory object must be identified by its
unique name. This would be easy if each object was accessed directly through an associated
variable in the original program. However, when pointers are used (which is quite common
in low-level code), the situation gets more complicated since a single pointer variable can
be dereferenced to different memory objects.

For that reason, we perform a static points-to analysis prior to the conversion into
the SSA. This analysis determines for each pointer a set of memory objects it can be
dereferenced into in each program location where it is used. In case the pointer can be
null, or its value can be unknown (e.g. because it has not been initialised), this information
is also determined. The analysis does not check for errors (such as null dereferences), it
simply collects all possibilities of pointer dereferencing.

The points-to analysis used is based on a classic abstract interpretation. The abstract
domain P7T is defined by a function mapping a pointer to an element of the Cartesian
product:

PT = Ptr — (2099Ver « B x B). (3.2)

The abstract value at the program location ¢ € Instr defines for each pointer p € Ptr
in i a tuple PointsTo(p;) € (29%9Ve" x B x B) containing the following information:

o A set ValueSet(p;) C (Obj U Var) holding a set of memory objects that p can be
dereferenced into at location 3.

e A boolean predicate isnull(p;) determining if p can be null at 1.

e A boolean predicate unknown(p;) denoting that the value of p might be unknown
(non-deterministic) at location i.

The points-to analysis is run on a GOTO program, which has the form of a control-flow
graph. The algorithm follows the abstract interpretation approach of finding the least fixed
point of the abstract domain lattice for every program location. To be able to find a fixed
point, we have to define a partial ordering C on the abstract domain P7. The ordering is
defined for two PointsTo values for the same pointer only.

V PointsTo(z), PointsTo(z) € PT.
PointsTo(z) C PointsTo(z)" < ValueSet(x) C ValueSet(x)'
unknown (z) < unknown(x)’

isnull(z) < isnull(x)’

A
. (3.3)

The join algorithm is done element-wise. For ValueSet sets, the join is the set union
(U), whilst for boolean predicates isnull and unknown, the join is defined as the logical
disjunction (V).
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Next, we define the abstract transformers. The effect of basic commands manipulating
pointers on the abstract value is defined in Figure 3.1. We support the statements stated in
the figure, with possibility of chaining them and combining them with access to structure
fields. We assume that the commands take place at the program location 1.

Command: p = null Command: T *p (declare p)
ValueSet(p;) :== 0 ValueSet(p;) := 0
isnull(p;) 1= true isnull(p;) := false
unknown(p;) := false unknown(p;) := true
Command: p = &o Command: p = g
ValueSet(p;) := {o} ValueSet(p;) := ValueSet(q;_1)
isnull(p;) := false isnull(p;) = isnull(q;_;)
unknown(p;) := false unknown(p;) := unknown(q;_;)

Command: »p = g
Vp' € ValueSet(p;_q) : ValueSet(p}) := ValueSet(p}_,) U ValueSet(q;_1)
isnull(p}) = isnull (p_1) V isnull(q;_1)

unknown (p}) := unknown(p}_,) V unknown(q;_,)

Command: p = *q
o 4
ValueSet(p;) := Uq/eValueSet(qi_l) ValueSet(q;_1)
: o ; 4
isnll(p:) = N [ esentq,yPmdE)
- !
unknown(p;) = \/q,eValueset(qi_l)Unknown(%—l)

Figure 3.1: Abstract transformers for points-to analysis

If 2LS is used to perform interprocedural analysis, the points-to analysis is run on each
function separately. In order for it to be correct, we have to define the initial abstract
value (since the function may have pointer-typed inputs) and an abstract transformer for a
function call. We discuss our approach to interprocedural analysis later, hence we will also
present these concepts there (see Section 3.7.1).

3.4 Representation of Heap Operations in SSA

We use the information obtained during the points-to analysis described in the previous
section during our transformation of a GOTO program into the SSA form. We now present
how typical heap-manipulating operations are represented in the SSA:

malloc Each call of the malloc function is replaced by an instantiation of a new abstract
dynamic object and returning its symbolic address as a result of the call. This ensures
that all heap objects have their unique names. The replacement of the i-th occurrence
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of malloc in the source program is as follows:
malloc(sizeof(t)) — &dynamic_ object$i (3.4)

where the type of dynamic_ object$i is t. The created dynamic object is an abstraction
since it corresponds to one allocation site and though can represent multiple concrete
objects allocated in a loop.

Memory read In C, this operation has a typical form v = xp. Assuming that it takes
place at the program location i, we use the triple PointsTo(p;) to construct the
corresponding expression in SSA as follows:

v=1xp — v; == Ey(ValueSet(p;), isnull(p;), unknown(p;)) (3.5)

where the expression E, is defined recursively:

E,(0, true, false) = E,(0, false, true) = unknown__object (3.6)
E,({o}, false, false) = o
E,(V,n,u) =(p==&o070 : E,(V\{o},n,u)). (3.8)

The expression E, generates a case split for each object that p may be dereferenced
into (3.8). The last case is a placeholder for an unknown heap object if p might be
null or non-deterministic (3.6). If neither of the isnull and unknown predicates is
true for p, we use the last object from the ValueSet(p) as the last case split (3.7).

Memory write This operation is dual to the memory read, and, in C, it has a typical
form *p = v. The transformation at location i uses ValueSet(p;):

¥p=vV —> /\ 0,==(p,==&07v : 0,_4). (3.9)
o€ ValueSet(p,)

In this case, the memory location referenced by p is assigned a value. Therefore, we
create the SSA equality for each object from the ValueSet(p;) where it is assigned
the new value v in case it was pointed by p, and it keeps its previous value otherwise
(0;_1)- The solver assigns a concrete address to p, during solving, though one equality
p; == &o will be true only, and a single object o from ValueSet(p;) will be updated.

Load and store These are typical operations manipulating dynamic data structures, such
as linked lists. Their form in C is v=p—f and p—f = v for load and store, respec-
tively. Since the arrow operator in C might be rewritten using the dereference and
the dot operator (p—f is equivalent to (xp).f), these operations are analogous to
memory read and write. The only difference is that a field of a structure is accessed,
instead of the whole object.

In 2LS, the structures are split into their fields and each field of a structured object
is considered a separate variable. This means that the transformation of load will be
done similarly to Equation 3.5:

v=p—f — v; == E, ;(ValueSet(p;), isnull(p;), unknown(p;)). (3.10)

The expression E, r is defined as E, where object fields are used instead of objects—
unknown__object. f in place of unknown__object in Equation 3.6 and o.f in place of o
in Equation 3.7 and in the second operand of the ternary operator in Equation 3.8.
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Analogously, the store operation is represented similarly to Equation 3.9:

pof=v— /\ o.fi==p==&o0?7v : o.f;_y). (3.11)
o€ ValueSet(p,)

3.5 Template Heap Domain

We now present our abstract domain for modelling the shape of the heap. In 2LS, the
abstract domain is specified by a template—a fixed quantifier-free first-order logic formula
describing the desired property of a program. In Section 3.1, we proposed to describe the
shape of the heap using a set of access paths. This section shows how these are used inside
a template, and how they are transformed into an appropriate formula usable in the 2LS
solver working over the theory of bit-vectors and arrays.

3.5.1 Template Form

We use a simple model of the heap, which does not consider the pointer arithmetic. We
restrict the template to use only those memory objects that describe the shape of the heap—
the pointer-typed objects (defined by the set Ptr) and the structure-typed heap objects
(defined by the set Str). The formula represented by a template is then a conjunction of
expressions, so-called template rows, where each row corresponds to one of these memory
objects. Since two types of objects are considered (pointer-typed and structure-typed), we
split the template into two parts:

e The pointer part describes the points-to relation between pointers and pointed objects
(which can be pointer-typed, too). The formula of the pointer part is a conjunction
of pointer rows:

P= A T (p.d (3.12)

pe Ptr

Here, 7;P (p, le ) is the i-th pointer row that describes the points-to relation of the
pointer p. It is a parametrized formula with le being the abstract row value from
the domain 6% that is defined as:

The row value specifies a set of (abstract) objects that the row pointer p may point
to. A pointer row is thus defined as a formula:

T (p.df) = \/ p=&o. (3.14)

oedf

e The object part describes the shape of dynamic data structures on the heap using
access paths. The formula is a conjunction of object rows, where one row is defined
for each pair of a heap object and its (pointer-typed) field:

7%= A TP f).d). (3.15)

(0,f)EStrx Fld

22



Here, T,°((o, f),d?) is the i-th object row, which is a formula that characterizes a set
of access paths leading from the object o via its pointer field f. An access path for a
tuple (o, f) is specified by a destination object and a set of (abstract) objects that it
passes through, thus the abstract domain 6© of the object row value dio is:

50 = 902 (3.16)
The object row is then a formulas:
T, £),d?) = \ path(o, f,d)[O]. (3.17)
(d,0)ed$

The semantics of the path predicate is defined in Section 3.5.2.

The abstract domains 67 and € for both pointer and object rows contain two special
values | and T, which represent the empty set and the whole domain, respectively (as
required by 2LS, see Section 2.3.2). The formulae corresponding to rows with these values
are defined as:

T(z, L) = false
T(x,T) = true. (3.18)

Finally, using the formulae for the pointer and the object part, we define the template
T for our domain as:

T=T"ATC. (3.19)

3.5.2 The path predicate

It remains to define when the path predicate is true. Intuitively, this can be defined recur-
sively:
path(o, f,d) < o.f = &d V
path(x(o.f), f,d).
However, the recursive expression is not usable in the solver, which means we have to

remove the recursion. We do this in an approximative way by introducing the set O which
contains all heap objects that the path passes through:

path(o, f,d)[O] & o.f = &d V
(3 €O :o0.f =&
A F" €00 f=&d
A Yo1 € (O\{0"}) Jos € O :01.f = &09).

(3.20)

(3.21)

The definition in Formula 3.21 can be explained as follows. The first equality on the
right side of the equivalence indicates the situation when the destination can be reached
from the source in one step by following the field f. In case this is not true, we have to
express that the destination might be reachable after multiple steps. This is ensured by the
consequent conjunction. Its first part describes the first step on the path, the second part
describes the last step on the path, and the last part over-approximates the inner steps
of the path (linking between the heap objects that the path passes through). Here, the
approximation is done in the sense that we do not store the ordering of objects in O and
thus this representation describes more paths than the recursive expression. However, this
is not a problem since we also compute access paths for all objects in O during the analysis.
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3.6 Abstract Value Synthesis Algorithm

The general core of the template parameter synthesis algorithm was indicated in Sec-
tion 2.3.2. The domain-specific part of the algorithm is implementation of the join procedure
between an abstract value and a model of satisfiability returned by the solver. In order not
to over-approximate too much it is useful to design the join algorithm such that a minimal
value of the template parameter is found.

For the heap domain, we perform the join row-wise. The update of the row parameter
is different for every type of the row. It depends on the value assigned to the pointer (for
a pointer row) or to the field of the dynamic object (for an object row) in the model of
satisfiability of Formula 2.10. Since the SMT solver used in 2LS is based on the theory of
bit-vectors, it always assigns a value to each variable during solving, which in case of the
pointer-typed objects is either an address of an object in the memory or null.

The update of a pointer row parameter value is simple. The object whose address
was assigned to the corresponding pointer in the model of satisfiability is added to the set
representing the row value. This way, we collect exactly all objects that the pointer can
reference. The ordering on the pointer row value is defined by the set inclusion.

The update of an object row parameter value is more complicated. We first define the
path relation for the field f denoted P! as:

Y,y € Obj. zPTy < path(x, f,y). (3.22)

We use this relation to define a partial ordering on the set of all paths in the heap. Since
this relation is transitive, the join algorithm creates the transitive closure over the set of
all paths according to the following formula:

path(d', f,d)[O] A (o.f = &0') = path(o, f,d)[O U {0'}]. (3.23)

Algorithm 2 presents two functions for updating pointer and object rows, respectively.
Both functions take for parameters a template row of the appropriate type and the corre-
sponding model of satisfiability (SAT) of Formula 2.10.

In case the model of satisfiability gives that the value of the row object might be non-
deterministic, we set the value to T, which represents the whole abstract domain.

The creation of the transitive closure over the set of paths is ensured by the two loops
in the function UPDATEHEAPROW. The loop on lines 18-19 adds all paths from the object
pointed by o.f into the current row value, whereas the loop on lines 21-23 adds all paths
leading from current row object o into all row values that already contain paths leading
to o.

3.7 Interprocedural Analysis

Section 2.5 describes the current approach to the interprocedural analysis in 2LS as follows:
for each function, the formal input and output variables of the function are determined, then
a summary of the function is computed using invariants, and, finally, a binding between the
formal and actual values of inputs and outputs at each call site of the function is created.

In the current implementation of 2LS, only parameters and global variables are consid-
ered as the inputs or outputs of a function. Therefore, we must introduce a way to pass the
objects that are not included in the parameters (nor global variables) but can be reachable
from these via chains of pointers to the called function.
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Algorithm 2 Join i-th template row value with the satisfiability model

1: function UPDATEPOINTERROW(T T (p,d!’), model of SAT: p = v)
2 if v is non-deterministic then

3 df T

4 else if v = null then

5: df’ <+ d? U {null}

6 else

7 assume v = &o

8: d? «+ df U {o}

9: function UPDATEOBJECTROW (T ((o0, f),d?), model of SAT: o.f = v)
10: if v is non-deterministic then

11: d9 «+ T

12: else

13: if v = null then

14: d9 « d9 U {(nu11,0)}

15: else

16: assume v = &o’

17: d9 «+ d9 u{(d,0)}

18: for all path(d', f,d)[0'] do // Adding paths leading from o
19: d9 « dP u{(d,0' U{d})}

20: // Updating rows having paths leading to o

21: for all T9((o, f),dS).(0,0) € d§ do

22: for all (d,0) € d¢ do

23: d « d? U{(d,0U 0 U{o}})

A set of objects that a pointer can be dereferenced into can be determined from the
points-to analysis (Section 3.3) by querying the ValueSet set. In order for the points-to
analysis to work with interprocedural analysis, we have to introduce some extensions that
are presented in Section 3.7.1.

Next, in Section 3.7.2, we show how binding of objects pointed by parameters and global
variables between the caller and the callee functions is done. However, we will also show
that passing objects directly pointed by function parameters only is not enough to correctly
handle functions which alter the existing heap containing recursive data structures. For
that reason, in Section 3.7.3, we will extend the approach to be able to handle functions
manipulating linked lists.

3.7.1 Interprocedural Points-to Analysis

In order to provide correct interprocedural analysis, we have to introduce the initial abstract
value and the abstract transformer for the function call into the points-to analysis. Since
each function is analysed separately, both of these concepts require an abstraction of pointed
objects—a pointer-typed parameter of a function may initially point to an unknown object
and a pointer passed to a function as an argument may point to a different object after
invocation of the function. Because of this, we introduce a function POINTED shown in
Algorithm 3 that takes a pointer symbol p and creates a new symbol p°» that represents an
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abstraction of the object pointed by p. If p° is pointer typed (which happens when passing
a pointer to a pointer), we add it into the Ptr set holding all pointers in the program.

Algorithm 3 Create abstraction of a pointed object

1: function POINTED(p € Ptr)

2 create p° // typeof (p°) is the type pointed by typeof(p)
3: if typeof(p°) is pointer then

4 Ptr « Ptr U {p°¥7}

5

return p°%

Initial Abstract Value

Using the POINTED function, we define the initial value of the points-to analysis of a function
f by Algorithm 4.

Algorithm 4 Initial abstract value for function f

: for all p € (param ;U globz}") N Ptr do
INTT ()

1

2

3: function INIT(p € Ptr)
4 p°% < POINTED(p)
5: ValueSet (p) < {p°*}
6 unknown(p) « true
7 if p° € Ptr then
8 INTT(p©)

The function INIT is called for every pointer-typed input p of the function (which can
be parameter or global). It initializes the value set to contain the abstraction of the object
pointed by p and sets the unknown predicate for p to true. If p°® is again a pointer, INIT
is called recursively.

Here, p is used without the location index since it is an input to the function. The
symbol p°® will be later bound to the corresponding object from the caller function (see
Section 3.7.2).

Example To better illustrate how the initial value is used in the SSA, we show an example
of a function chainNode which takes a pointer to the head of a linked list as a parameter,
allocates a new list node, appends it to the beginning of the list, and sets the head to the
new node. The function in C and the corresponding SSA form are shown in Figure 3.2.

A new list node is allocated at line 2. The call to malloc is transformed into an
instantiation of a new dynamic object. The pointer node is then dereferenced into this
object at line 3. The parameter ppnode is dereferenced into ppnode®® at lines 3 and 4.

Function Call Abstract Transformer

Next, we have to create an abstract transformer for the function call command. A call
of a function might invoke a side effect on an object pointed by the return value, by an
argument of the call, or by a global variable—after the function invocation, a pointer
passed to the function might point to another object than before. Therefore, for each
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1 void chainNode (struct node *xppnode) { 1
2 struct node xnode = malloc (sizeof xnode); 2 node, = &dynamic_object$0
3 node->next = *ppnode; 3 dynamic_object30.next, = ppnode®®I
4 xppnode = node; 4 ppnodezbj = node,
5} 5
(a) The function in C (b) The corresponding SSA

Figure 3.2: A function accessing a pointed object

pointer-typed argument a of the function, we use the function POINTED to get the symbol
a®® which abstracts the object pointed by a after invocation of the function, and add it into
ValueSet(a;), where ¢ denotes the location of the function call. The abstract transformer
for a function call f;(argy,) is described by Algorithm 5.

Algorithm 5 Abstract transformer for a function call f;(argy,)

: for all a € (arg;, U glob?i—out) N Ptr do

1

2 a®® < POINTED(a)

3 ADD(a, a®™)

4: function ADD(p,0)

5: ValueSet(p;) <— ValueSet(p;) U {o}
6 unknown(p;) < true

7 for all p’ € ValueSet(p;) N Ptr do
8 0°% + POINTED(0)

9 ADD(p', 0°%)

The function ADD takes a pointer p and an object o being the abstraction of a new
object created by f and pointed by p after the invocation of f in location 7. It adds o to
ValueSet(p;). In case p is a pointer to a pointer, the function is recursively called for all
potentially pointed objects.

Example To illustrate the above, we now provide an example. Let p be of type int*«,
x, iy be of type int=, a, b be of type int, and the ValueSet sets at location ¢ — 1 be as
follows:

ValueSet(p;_y) = {z,y}
ValueSet(z,_1) = {a}
ValueSet(y,_;) = {b}.

After the call of a function having the declaration £ (int =*%q) with argument p at location
i, the sets will be:

ValueSet(p,) = {z,y,p°}

ValueSet(x;) = {a, ObjObj}

ValueSet(y;) = {b, pObjObj}
ValueSet(p?bj ) = {pObjObj}
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Here, p°% and p"bjObJ abstract new objects of type int+ and int, respectively, that
might have been created in the function f. The object p°* needs not to be there since the
value of p itself cannot be changed by the function. However, it is not a problem that we
included it (in order to keep the algorithm simple), since we only over-approximate the set
of all objects that p might point to and the value of p will not change in the SSA form.

3.7.2 Binding Pointed Objects between Functions

Above, we described changes that have to be made in the points-to analysis in order to
handle interprocedural analysis. We are able to compute how a single function affects
the shape of the program heap by computing the function summary using the proposed
shape domain. The computed summary can be used to constrain function call placeholder
in the SSA form in the way explained in Section 2.5.3. What we need to extend here,
is the algorithm for binding objects between the caller function and the summary, since
Algorithm 1 does not consider objects that are not function parameters, but are pointed
by those (and thus can be altered by the function summary).

These objects pose a problem in terms of binding. The reason is that the names of the
corresponding heap objects might be different between the caller and the callee. To bind
them correctly, we make use of the points-to analysis. We particularly query the ValueSet
sets of corresponding pairs of pointers (each pair composed of an argument and a parameter)
to bind objects pointed by these. E.g., in the above example, at the function input, we
would bind objects z and y (objects pointed by the argument p at the function call input)
to object ¢°% (an object representing an abstraction of the object initially pointed by the
parameter q).

Since we need to bind multiple objects together, we first extend the function BIND that
was presented in Section 2.5.3 to be able to create multiple bindings at once. The new
function takes sets of variables as arguments (instead of simple variables) and is shown in
Algorithm 6. We introduce a binary operator < that adds clauses at its right hand side to
the clause set of the SMT solver used by 2LS stated at its left hand side.

Algorithm 6 Extended Bind function
1: function BinD(V1, V3)
2: solver 4V, 1,)evs xv, (V1 == v2)

Algorithm 7 shows the complete binding of the heap objects of a function f at a call
site f;. It works with the sets of objects defined in Table 2.1.

We first define the function DEREF taking a set P of pointer-typed objects and a location
i as arguments. It symbolically dereferences all pointers in P and returns the set of all
objects that can be pointed by these at the location ¢. The dereferencing is done by
querying the ValueSet sets of the pointers at line 2. In order to return the correct SSA
symbols of the dereferenced objects at location ¢, we introduce the function SSA, which for
a variable v and a location ¢ returns the corresponding SSA symbol—the variable v in the
version of its last assignment before 7. This function is applied to all elements of the set D
of the dereferenced objects and the resulting set is returned (line 3).

Next, we define the function BINDPOINTED. It takes two sets of objects P, and P, and
the corresponding locations ¢ and j. If the sets contain pointers only, the function binds all
objects pointed by elements of P; at the location ¢ to all objects pointed by elements of P
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Algorithm 7 Binding pointed objects

1: function DEREF(P, i)

2 D < U,ep ValueSet(p;)

3 return {SSA(d,i)| d € D}

4: function BINDPOINTED(Py, i, Py, j)

5: if Vp € (P U P») . typeof(p) is a pointer then

6 D, < DEREF(P,1)

7 Dy < DEREF(P,j)

8 BIND(D1q, D5)

9 BINDPOINTED( D1, i, D2, j)

10: function BINDPOINTEDOBJECTS(f called from a location i)

11: e < entry location of f

12: 0 + exit (output) location of f

13: for all x € glob™, ' € glob?i—m s.t. NAME(z) = NAME(z') do
14: BINDPOINTED({z}, e, {z'},7 — 1)

15: for all z € glob®, 1’ € glob”—""" s.t. NAME(z) = NAME(z) do
16: BINDPOINTED({z}, 0, {z'}, )

17: for j < 0..(lparam;| — 1) do

18: BINDPOINTED({param[jl},e, {arg[jl},i — 1)

19: BINDPOINTED({param[jl},o0,{arg,[j]},1)

at the location j (lines 6-8). Since the dereferenced objects can be of a pointer type again,
the function is called recursively on the dereferenced sets.

The function BINDPOINTED is then used from the main function BINDPOINTEDOB-
JECTS that finally computes the binding of pointed objects. It binds the objects pointed
by formal input global variables of a called function f at the function entry location e to
the objects pointed by the actual values of the global variables at the call site ¢ in the
caller function (lines 13-14). The same is done for objects pointed by formal output global
variables at the exit location o of the function at lines (15-16). Then the binding is done
for objects pointed by corresponding pairs of formal parameters and actual arguments at
the entry and the exit of the function at lines (17-19).

Example We illustrate the algorithm on the function chainNode from Figure 3.2. Let
this function be called as shown in Figure 3.3.

10 struct node xlist = NULL; 10 listm = NULL
11 chainNode (&list); 11 chainNodey1 ((&list), ()
(a) The function call in C (b) The corresponding SSA

Figure 3.3: A function accessing pointed object
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Since there are no global variables, only sets arg.pqinnode,;, and PATam p,qin Node are
non-empty:

a’rgchainNoden = {&ZZSt}
parame pq,inNode = {ppnode}.

The function BINDHEAPOBJECTS then executes lines 18 and 19 only:
1. The call at line 18 looks as follows:

BINDPOINTED ({ppnode}, 0, {&list}, 10).

2. In the first invocation of the BINDPOINTED function, the sets Dy and D are:

Dy = DEREF({ppnode},0) = {ppnode®®}
Dy = DEREF({&list}, 10) = {list;y}

and the created binding is: '
ppnode®™ = listy.

3. In the next (recursive) invocation, the sets are:

Dy = DEREF({ppnode®®},0) = {ppnode®®’ J}
Dy = DEREF({listyy},10) = 0 — since list;q is null

and there is no binding created (since Ds is empty).
4. The call at line 19 looks as follows:
BINDPOINTED ({ppnode},5, {&list}, 11).

5. In the first invocation of the BINDPOINTED function, the sets D and D are:

D, = DEREF({ppnode},5) = {ppnodefj}
Dy = DEREF({&list}, 11) = {list;;} — since list can be modified by chainNode

and the created binding is:
obj _ 1.
ppnode, ” = listyy.

6. In the next (recursive) invocation, the sets are:
D, = DEREF({ppnodeij} 5) = {dynamic_ object$04}
Dy = DEREF({list;},11) = {lzstObJ} — see Algorithm 5
and the binding created is:

dynamic__object$04 = lzst()bJ

In total, there are three bindings created:

ppnode®® = list, (input binding),
ppnodezbj = list,; (output binding), and
dynamic__object$04 = list({l{j (output binding).
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3.7.3 Functions Manipulating the Existing Dynamic Structures

Even though the proposed approach of passing objects pointed by inputs into a function is
able to handle pointers to pointers, it might not be sufficient when analysing functions that
take a recursive data structure existing on the heap as their input. We propose a way to
analyse this kind of functions with concentration on linked lists which are one of the most
often used data structures. A generalisation to other data structures is left for future work.

If a function, for example, traverses and manipulates a singly-linked list, it might alter
objects which are not directly pointed by the parameters but are reachable from those
via the list linkage. The information about the reachability of objects via pointer chains
is available during the analysis of the caller function (by computing access paths for the
actual function call arguments) but not during the transformation of the callee function
into the SSA form, which is done prior to the actual analysis. Because of this, we are not
able to bind the corresponding dynamic objects between the caller and the callee functions
using Algorithm 7 (since it uses sets of variables determined during the transformation into
the SSA form).

To resolve this problem, we make use of the fact that list traversals are done in a similar
way in most programs. Hence, we define so-called list iterators, which are special objects
representing an abstraction of iterating over a linked list using some pointer. In this section,
we formalise the concept of iterators, explain how to create them in the SSA, and, finally,
show how iterators can be used to correctly analyse functions manipulating linked lists.

List Iterators

A list iterator is an abstraction of a list node (which is a dynamic object) pointed by a
certain pointer in a single iteration of a loop that iterates over the linked list. Formally, we
define a list iterator, denoted it, as a triple:

it € (Ptr x Obj x Fld). (3.24)

The elements of an iterator are interpreted as follows:

e p € Ptr: the induction pointer. It is a pointer that is used to traverse the linked
list—in each iteration, p points to the current list node.

e 0 € obj: the initial node. It is a node that is pointed by p before the first iteration.

e f € Fld: the iterator field. It is a field through which a step to the next node is done
after each iteration.

Example A typical iterative traversal of a linked list is shown in the function in Figure 3.4.
For the given loop, we create a list iterator list®:

list' = (list,list®  next). (3.25)
The induction pointer is list, the initial node is list® (it abstracts the object initially

pointed by list), and the iterator field is next (after each iteration, list is moved to the
node pointed by the next field).
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void traverse (struct node xlist)
{
while (list)
{
// do something

list = list->next;

Figure 3.4: Traversal of a singly-linked list

Creating List Iterators in the SSA Form

The presence of an iterative access to a linked list may be determined by comparing the
values of the points-to relation of the induction pointer on the back edge of a loop and at
the loop head. To this end, we integrate a list iterator detection into our points-to analysis.
Specifically, the list iteration detection is integrated into the abstract transformer for a loop
back edge shown in Algorithm 8.

Algorithm 8 Abstract transformer for loop back edge from location j to location @

1: for all p € Ptr do
2: if 32°% € ValueSet(p;) A Jx%.fo% ¢ ValueSet(p;) then

5 ValueSet(p)  (ValueSet(p) \ {27} U {p"} ]/ ' = (.5, f)

The transformer searches for a pattern of iterative access—at lines 1-2 it tries to find
a pointer p whose points-to value moved by a field f inside the loop body. In case it finds
such an access, it replaces the found value by a new iterator (line 3). In the future, the
detection can be improved by a more sophisticated method but so far the proposed simple
approach seems sufficient on many case studies.

After finding an iterator on the loop back edge, we need to replace all accesses to the
first list node that were obtained in the first traversal of the loop body in the points-to
analysis by accesses to the list iterator. We do this by redefining the join operator for the
ValueSet sets as shown in Algorithm 9. We denote ValueSet(p;); to be the old value set,
ValueSet(p;)2 to be the new value set, and ValueSet(p,) the set resulting from the join.

We also define two helper operations:

e x contains y if and only if the identifier of y is a substring of the identifier of z.

e z[y/z] is a symbol that is obtained from the symbol x by replacing all occurrences of
y in the identifier of x by z.

Algorithm 9 Join of ValueSet(p;)

ValueSet(p;) <— ValueSet(p;)1 U ValueSet(p;)2

: for all vy € ValueSet(p,)a s.t. vy contains ¢* = (¢, z, f) do

for all v; € ValueSet(p,)1 s.t. v1 = v2[¢"/x] do
ValueSet(p;) < ValueSet(p;) \ {v1}

=W o
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The algorithm applies the standard set union and then filters out those objects that
were present in the old value set and can be replaced by an iterator from the new value
set—these can be determined by replacing the iterator substring in the new object by the
identifier of the initial node of the iterator. Application of this algorithm can be seen in
the points-to analysis in the following example (join on lines 8 and 13).

Since a loop might access multiple list nodes in a single iteration and we want to
represent these as precisely as possible in the SSA, we extend the initialisation of the
abstract value by a loop shown in Algorithm 10 that initialises value sets of pointer-typed
fields of data structures. For example, the initial ValueSet for a pointer list® next (which
represents the next field of the object initially pointed by the parameter list) will contain
the object list°7 next° .

Algorithm 10 Initialisation of the abstract value for pointer-typed fields of data structures

1: for all p°.f s.t. p € Ptr A typeof (p°).f is pointer do
2 INIT(po%. f)

This algorithm is run along with initialisation by Algorithm 4. In case of recursive data
structures, the initialisation might not terminate, which we solve in practice by initialising
only those values that are actually used within the SSA form of the analysed function. We
also run Algorithm 10 for iterators that are found during the analysis.

Example To illustrate the detection of list iterators, we show an example of conversion
of a program into the SSA form for a function transforming a singly-linked list into a
doubly-linked list given in Figure 3.5.

1 void backLink (struct node =*list) { 1
2 2 go=TRUE
3 3
4 while (list) { 4 listh"™ = (gls, 7 listlt, : list)
5 5
6 6 g =!(list!" = NULL)
7 7
8 struct node xnext = list->next; 8 newtg = (listihi = &list™ 7 list' .next
9 9 : unknown_object.next)
10 10
11 next->prev = list; 11 list® .next®® prev,, = listzhi
12 12
13 list = next; 13 listy3 = nextg
14} 14
15 } 15
(a) The function in C (b) The corresponding SSA

Figure 3.5: SSA using list iterators

First, the points-to analysis is run on the function source. Since there is one pointer
input, namely, list, we create an initial value for it. We also create initial values for fields
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of the dynamic objects that will be needed during the computation:

ValueSet(list) = {list®} A unknown(list) = true
ValueSet (list next) = {list® next®™}

ValueSet (list® next® prev) = {list® next®™ prev°®}.
The computation of the ValueSet sets for the particular program lines goes as follows:

8: ValueSet(nextg) = U ValueSet(z.next,)

x€ ValueSet(list,)
= ValueSet (list° mext,)
= ValueSet(list°™ next)

= {list° next®™}

11:  ValueSet(list® next® prev,,) = ValueSet(list® next® prev,y) U ValueSet (list,y)
= ValueSet(list® next prev) U ValueSet(list)

= {list° next® preve® list®™}

13:  ValueSet(list;3) = ValueSet(nexts)
= ValueSet(nexty)

= {list next®™}

14 : loop-back edge to 4
ValueSet(list,) = ValueSet(list) = {list®*}
ValueSet (list,,) = {list°® next®}
= ValueSet(list,) = {list"} where list" = (list,list® next)
We have found an iterator.
The initial values of its components are the following:
ValueSet(list™ next) = {list" next}

ValueSet (list™ .next®™ prev) = {list™ next prev°}

8: ValueSet(newtg) = U ValueSet(x.nexty)
x€ ValueSet(list,)

= ValueSet(list" .next,)
= ValueSet(list" mext)
= {list" next®}
8 : join
ValueSet(nextg) = ValueSet(nextg) o ValueSet(newtg)’
= {list next®Y} o {list" .next®™}

= {list" next®™}
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The iterator replaces the access to the object pointed by the next field of the first
list node previously detected by the analysis at line 8.

11:  ValueSet(list" .next®™ prev,,) = ValueSet(list" next®™ prev,y) U ValueSet listy
11 10 0
= ValueSet (list™ .next®™ prev) U ValueSet(list,)

iy b b
= {list" next® prev®™  list"}

13:  ValueSet(listy3) = ValueSet(next,sy)
= ValueSet(nexty)

= {list" .next°}

13 : join
ValueSet(list,3) = ValueSet(listy3) o ValueSet(list,s)’
= {list next®™} o {list" next®™}
= {list" next®}
The iterator replaces the access to the object pointed by the next field of the first
list node previously detected by the analysis at line 13.

14 : loop-back edge to 4
ValueSet(list,) = {list"}
ValueSet(list,,) = {list" next®}
= ValueSet(list,) = {list"}

This iterator has already been found.

After the points-to analysis, we run the transformation of the C code into the SSA form.
This is done by the following steps:

1. Line 2: The function entry is always reachable, thus the first guard is set to true.

2. Line 4: A ® node is created for the loop head. It joins the value of list from before
the loop (the parameter list) and the value of list from the end of the loop body
(loop-back variable list!,).

3. Line 6: The loop body is reachable only if the loop condition is satisfied—this is
expressed by the guard gg.

4. Lines 8-9: We query the points-to analysis to correctly dereference list:

ValueSet (listg) = ValueSet(list,) = {list"}

unknown(listg) = true.

Based on the information obtained from the points-to analysis, we create a case split
according to Equation 3.10. The expression 1ist->next can have values list’ .next
(line 8 in the SSA form) or unknown__object.next (line 9 in the SSA form).
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5. Line 11: To correctly dereference next, we query the points-to analysis:
ValueSet(next,,) = {list" next®™}
and thus we create the equation as shown at line 11.

6. Line 13: This is a simple assignment without dereferences, which we translate into
the SSA form by adding the appropriate variable indices.

The example contains a list iterator list’ obtained during the points-to analysis. Since
the SSA form uses multiple versions of the same variable, we use the appropriate versions
in the iterator, too: ‘

list = (listihz, list®  next).

The loop in the function traverses a singly-linked list passed to the function at the
input. In each loop iteration, the pointer list points to the current node of the list. In
the SSA form, the detected iterator represents an abstraction of a node pointed by list,
specifically by its version lz’stih2 . The function reads the next field of the iterator (line 8)
which abstracts an access to the node that is the successor of the current node, and then
writes to the prev field of this node (line 11). We denote these reads and writes as iterator
accesses.

Iterator Accesses

Formally, an iterator access is associated with an iterator and contains a sequence of fields
and a location. Let Z be a domain of all list iterators. We define an iterator access a as:

a€Z X Fld"™ x Instr (3.26)

where Fld" denotes a n-fold Cartesian product of structure fields with arbitrary n.

An iterator access is interpreted as an access to a node that can be reached from the
current node (corresponding to the iterator) by following the given sequence of fields. Since
each iterator access is interpreted as a standard variable in the SSA form, the location
specifies the SSA suffix of such variable. We showed that the example from Figure 3.5b
contains one iterator list®. We can detect two iterator accesses:

a; = (list™, (next),0) line 8
a, = (list™, (next,prev),11) line 11.

The location 0 is interpreted as the input version of the variable.

Binding List Iterators

After all list iterators and their accesses in a function are found, we are able to compute the
summary of a function for a given calling context, i.e. determine how the function alters
the linked list given at its input. In order to do this, we bind the list iterator accesses with
the actual heap objects from the function calling context.

Let CallCtxy, be the calling context of a function h called at location [. It has the
form of a heap template with computed values of row parameters for variables of the caller
function at the entry of the call site h;. Next, let 4 be a set of all list iterator accesses in h.
Using this information, we perform the binding of list iterators of h with actual heap objects
from the calling context using the function BINDALLITERATORS shown in Algorithm 11.
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Algorithm 11 Binding list iterators to input heap objects

: function REACHABLEOBJS(0 € Obj, f € Fld)
R« 0
O <« set of all objects from CallCtzy, that correspond to o

1
2
3
4:
5: for all path(o, f,d)[O] € CaliCtzy, such that 6 € O do
6 R <+ RUOU{d} // add objects on the path and the path destination
7 return R

8: function BINDITERATORS(p € Ptr,o,it € Obj, f € Fld,F € Fld",loc € Instr,i € N)
9 result < true

10: R < REACHABLEOBJS(o, f)

11: for all r € R do

12: cond + p = &r

13: bind < it = r AN it.F[i] = r.F]i]

14: if i < (|]F| —1) then

15: bind < bind A BINDITERATORS (1. F[i], r, it. F[i]°%, F[i], F,loc,i + 1)
16: expr < cond = bind

17: result < result \ expr

18: if i = (|F| — 1) Aloc # 0 then

19: add 7}0((7“, Fi)), djo) to template
20: return result

21: function BINDALLITERATORS
22: for all (p®, F,loc) € 4 where p* = (p, o, f) do
23: solver < BINDITERATORS(p, 0, pt, f, F, loc, 0)

First, we define the function REACHABLEOBJS that takes an (abstract) object o and a
field f and returns the set of all objects reachable from o via f in the calling context. Since
o might be an abstraction, we first get all objects that correspond to o in the calling context
(line 3). After that, all objects belonging to paths leading from objects corresponding to o
via the field f are collected (lines 5-6) and returned.

The actual binding is created by the BINDITERATORS function. The function returns
bindings of a single iterator access with corresponding objects and their fields. It is called
from the function BINDALLITERATORS for each iterator access (p',F,loc) where p¥ =
(p,o, f). It has 7 parameters, 5 of them corresponding to elements of the iterator and the
iterator access. The parameter it represents the iterator symbol used in the SSA form and
the parameter i is the current level of recursion and is used as the index into the field vector
F from the iterator access.

In order to explain how the function works, we illustrate used symbols on simple figures.
Let the calling context contain a list linked through a field f, where each node points to a
data node by the field g, and let this list be pointed by a pointer a that will be passed to the
called function as an argument. This list is illustrated by Figure 3.6a and the corresponding
abstraction of the list at the callee site is shown by Figure 3.6b. Here, the list is pointed
by the formal parameter p and the first node is abstracted by the object p®%.

Next, let the analysed function contain a loop that traverses the given list, node by
node, using p as an induction pointer. We detect a list iterator p* = (p,p"bj, f) that, for
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(a) Caller site (calling context). (b) Callee site.

Figure 3.6: Linked list at the function entry at the caller site and at the callee site.

example, in a second loop iteration, is interpreted as shown in Figure 3.7b. A projection of
this situation on the actual list from the calling context is shown in Figure 3.7a.

p p
| |
01 / 02 f 03 !/ ce f pit f f
bbb bbb
of 0 0 p*.g?
(a) Actual list from the calling context. (b) Abstraction of the list using an iterator.

Figure 3.7: Second iteration of a loop traversing a linked list using p as an induction pointer.

When the function BINDITERATORS is called for the iterator p' = (p,p°”, f) and its
access (p", g,0), it performs the following steps:

1. A set of objects reachable from the initial iterator object p°® (which corresponds
to 01 in the calling context) via the iterator field f is computed using the function
REACHABLEOBJS (line 10).

2. Next, a binding for each reachable object r is created. In the situation shown in
Figure 3.7, r corresponds to 02. A binding is composed of a precondition and a binding
expression:

2.1 A precondition is an equality between the iterator induction pointer p and the
address of 02 (line 12).

2.2 The binding expression is a conjunction of multiple equalities:

e An equality between the iterator symbol p* and the object o2. (line 13)

e An equality between the field of the iterator access p*.g and the correspond-
ing field 02.g (line 13).
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e In case the iterator access is composed of multiple fields (the index i of the
current access field is not the index of the last field), the function BINDIT-
ERATORS is called recursively. In the presented situation, this could happen
if the object pointed by g would point to another object by some field. In
this case, the recursive call would have the form:

BINDITERATORS(02.9, 02, pt.g%% | g, F, loc, 1)

and it would create a binding for objects starting from oy following the field
g. The returned binding is added to the current one (line 15).

3. A new template row is inserted for each field of the actual object 0o that corresponds
to a write iterator access (this happens in the last recursive call of the function for
an iterator access whose location is not 0).

Example We illustrate the algorithm on a concrete example. We use the function
backLink from Figure 3.5. Let this function be called as backLink (1ist) with the
following calling context:

TOlist, {o})
path(o, next, o')[o]
path(o, next,null)|o, o]

path

(
path (o', next,null)[o’]
(
path (o, prev,null)]].

[
o, prev,null)]
[

The state of the heap described by this calling context is visualised in Figure 3.8. Dashed
arrows denote that o and o are abstractions of list segments (of arbitrary lengths) linked
through next field. All prev fields are set to null.

. next next , next ,
list —> 0 f---- > 0 o r---- * o [ null

Figure 3.8: Visualisation of the calling context in the example

The function backLink contains one iterator list? and two iterator accesses a; and ay:

list™ = (listihi, list® next)
a; = (list™, (next),0)

a, = (list", (next, prev),8).

The function BINDITERATORS is then executed for each iterator access. We show its exe-
cution for a,:

1. Line 23: BINDITERATORS(liSchi, list°%  list™ next, (newt,prev),8,0) is called.
2. Line 10: REACHABLEOBJS(list®  newt) is called, which returns the set R = {o, 0'}.

3. Line 11: The first iteration will create a binding for o.
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4.

5.

6.

10.

Line 12: cond = (listihi = &o).
Line 13: bind = (list® = o A list® .next = o.next).

Line 14: i =0 < (|F| — 1) = 1, hence we recursively call
REACHABLEOBJS(0.next, o, list .next®® next, (next, prev), 8, 1).

6.1 Line 10: REACHABLEOBJS(0, next) is called, which returns the set R = {0,0'}.
6.2 Line 11: The first iteration will create a binding for o.

6.3 Line 12: cond = (o.next = &o).

6.4 Line 13: bind = (list" .next®® = o Alist't .next®® prevg = o.prevg).

6.5 Line 14: ¢ =1 > (|F| — 1) = 1, hence line 15 is skipped.

6.6 Line 16: expr = (o.next = &o == list'.next®® = o A list't next® prevy =
o0.prevg).

6.7 Line 18: Condition is true, hence we add a new template row: T ((o, prev),ds).
6.8 Lines 14-22: We repeat the loop for the object o.
6.9 Line 23: The resulting binding is:

o.next = &o = list™ next® = o A list® .next® prevy = o.prevg) A
8 8
(0.next = &o' = list" next® = o A list" next® prevg = o prevg).
Line 19: The iterator access binding for the object o is:

listt"" = &o = (list" = o A list™ next = o.mext A
(0.next = &o = list™ .next® = o A list™ next® prevg = o.prevg) A

(o.next = &o' = list next® = o A list' mext®™ prevg = o prevg)).

. Line 21: The condition is false (correct template rows have been created in the recur-

sive call).

. Lines 14-22: We repeat the loop for the object o'.

Line 23: The whole binding for the iterator access a, is:

listh" = &o = (list™ = o A list™ .next = o.next A
o.next = &o = list" .next® = o A list" next® prevs = o.prevg) A
8 8
(o.next = &o' = list™ next® = o A list' next® prevg = o prevy))
A
listt"" = &o' = (list™ = o Alist™ .next = o next A

(o' .mext = &o = list" mext®™ = o Alist™ next®™ .prevg = o .prevg)).

Moreover, two new template rows are created:

s (0, prev), dg)
T (o, prev), 7).
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Similarly, bindings for the iterator access a; are created. In this case, the location of a; is
0, and so no new template rows are generated.

Using the given bindings and the new template rows, the summary for the function
backLink will contain access paths for o and o’ corresponding to the created back link via
the prev field in the linked list.

Last, we have to ensure that the computed summary can be used in the caller function
to constrain the function call. This is normally done by binding corresponding objects
between the caller and the callee functions using Algorithm 1 and Algorithm 7. These,
however, cannot be used for functions that contain iterators. The reason is that Algo-
rithm 7 binds objects pointed by corresponding pointers using the results of the points-to
analysis. For a function manipulating existing linked lists, a ValueSet of a formal output
contains an iterator object but the summary contains the actual objects from the calling
context. We resolve this by introducing Algorithm 12 that binds the heap objects that were
changed within the called function (hence they were added to the shape domain template
by Algorithm 11) to new versions of the same objects in the caller function site. This
algorithm is run along with other binding algorithms which handle those objects that are
not represented by iterators.

Algorithm 12 Binding objects represented by iterators between f and a call site f;

1: e + exit location of f
2: for all T,°((o, f),d?) added by Algorithm 11 do
3: solver 4 SSA(o.f,i) = SSA(o.f,e)

In the above example, two new template rows for o and o’ were created. If the func-
tion backLink was called from location 20, then running Algorithm 12 would create the
following bindings:

0.prevyy = 0.prevg

o .prevyy = o .prevg
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Chapter 4

Implementation

We have implemented the solution proposed in Chapter 3 into the 2LS tool. In Section 4.1,
we first describe the architecture of 2LS and the sequence of the main steps that 2LS
performs during program analysis. Section 4.1 also contains short description of all analyses
currently available in 2LS. In Section 4.2, we show how we integrated shape analysis into
this architecture, giving the most important implementation details. In the end, we outline
how our shape analysis can be used simultaneously with other analyses by implementing a
simple combination of abstract domains.

4.1 The Architecture of 2LS

2LS is built over CPROVER infrastructure and uses multiple components of this framework.
The overall architecture of 2LS can be divided into three main parts: front-end, middle-end,
and back-end. For many operations in the front-end and in the back-end, the mechanisms
from the CPROVER framework or other external tools are used. The main steps performed
by 2LS are outlined in Figure 4.1 [17].

We now describe the particular parts and steps in more detail.

4.1.1 Front-End

The command-line front-end first configures 2LS according to user-supplied parameters.
There are many options that can be set, the complete list is available via the ——help
switch. After that, the source program is parsed and translated into a GOTO program.
This is ensured by GOTO program parser from the CPROVER framework, which uses an
external C preprocessor. A GOTO program is an internal program representation having
the form of a control flow graph. In the end, 2LS performs various transformation of the
GOTO program, such as function inlining or constants propagation. From our point of
view, the most important transformation is splitting chains of dereferences occurring in
one command into multiple commands. This ensures that each statement contains one
dereference only and hence the points-to analysis and representation of heap operations in
the SSA form does not have to handle situations when multiple dereferences occur in one
command.
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Figure 4.1: The architecture of 2LLS

4.1.2 Middle-End

The middle-end is the part of 2LS where most of the program analysis is done. For that
reason, we describe the steps included into this phase in more detail.

Static Analyses and Conversion into the SSA Form

First, several static analyses are performed on the GOTO program in order to obtain
information that will be needed for the subsequent conversion into the SSA form. These
include objects analysis that collects all objects accessed in a function, and assignments
analysis that, for each object, determines program locations where the object is assigned.
This analysis is crucial for the SSA generation since the SSA versions of variables will be
created based on computed locations.

Another important analysis performed in this phase is the points-to analysis that we
extended and described in Section 3.3.

After performing all needed static analyses, the GOTO program is converted into the
SSA form. The approach of the conversion was described already in Section 2.4.3.

Invariant Generator

The SSA form is an over-approximation of the GOTO program (due to the way loops are
cut with the values returned over the back-edges made random and function calls havocked).
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2LS refines this over-approximation by inferring loop invariants and function summaries.
These can be computed in various abstract domains that are chosen by command line
options. Currently, 2LS supports the following domains:

e Polyhedra domains: domains for analysis of numerical variables—signed and unsigned
bit-vector integers and floats. These include:

— Interval domain: The value of each numerical variable is constrained by an
interval. Thus, for each variable x, constraints in the form +x < C, where C is
a constant, are discovered.

— Zones domain: Uses constraints of the form z — y < C for each pair of program
variables x and y.

— Octagon domain: Uses invariants of the form x +y < C for each pair of program
variables x and y.

e Fqualities domain: A domain for analysis of equalities and disequalities between pairs
of variables.

e Lexicographic ranking domain: A domain used for termination analysis.

Property Checker

After all invariants are computed, the property checker checks validity of all user-supplied
assertions in the source program. This is done by solving the formula representing the
source program obtained from the SSA form along with the computed invariants in the
SMT solver and checking the satisfiability of negations of program assertions. In case the
negations of all assertions are unsatisfiable, the program is valid, on the other hand if there
is an assertion whose negation is satisfiable, the program contains an error. If an error is
found, it may be spurious due to over-approximation (when the inferred invariants are too
weak) and thus the analysis result might be indecisive.

4.1.3 Back-End

Both invariant inference and property checking are done using an SMT solver. Since 2LS
requires an incremental solver and its support is much better in SAT solvers, it uses an
external SAT solver Glucose 4.0 or MiniSAT 2.2.0. The needed support for the SMT
theories of bit-vectors and arrays are provided by the CPROVER infrastructure.

4.2 Shape Analysis Integration

We have implemented our solution of shape analysis into the above described architecture
of 2LS. All algorithms from Chapter 3 are implemented in a straightforward manner. In
this section, we state the parts of 2LS where the particular algorithms are implemented
and present some implementation details.
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4.2.1 Points-to Analysis and Heap Operations in the SSA Form

The points-to analysis we use is implemented as one of the static analyses that are per-
formed prior to the conversion into the SSA form. It uses the classical abstract interpre-
tation approach. In order to implement it, we make use of the C++ template for abstract
interpretation provided by the CPROVER infrastructure.

The replacement of the calls of the malloc function is done in the phase of processing
the GOTO program. For each call, a new object is created and inserted into the symbol
table, and the address of this object is used in place of the call.

The representation of heap operations is included into the transformation of the GOTO
program into the SSA form.

4.2.2 Shape Domain

We created a new abstract domain for shape analysis. It is composed of two main parts:
the domain itself, and the strategy solver. The domain defines the form of the template
and the abstract value, while the strategy solver implements the algorithm for join of the
current abstract value with the model of satisfiability of the formula returned by the solver.
The inference of invariants is ensured by the invariant generator of 2LS. The usage of our
shape domain can be activated using the ——heap switch.

The domain also contains an implementation of the initial binding of list iterators (Al-
gorithm 11) that is performed at the beginning of analysis of each function.

The binding between the caller and the callee functions is ensured by a component called
SSA inliner, which we extended by our binding algorithms (Algorithm 7 and Algorithm 12).

4.3 Combination of Abstract Domains

One of the main directions of this work is to provide a possibility to combine multiple
abstract domains together, which could bring the possibility to analyse complex properties
of programs, such as those that depend both on pointer and non-pointer variables.

As a proof of concept, we have implemented a simple domain combination that combines
our shape domain with the interval domain already present in 2LS. We make use of the
fact that interval domain uses template rows for numerical variables, similarly to our shape
domain using template rows for pointer variables. The implementation is based on creating
a new abstract domain, whose template is composed of two parts: one part being for
numerical variables and the other for pointer variables. For each row, the abstract value is
computed in the corresponding domain using the corresponding join algorithm.

If we split structure-typed variables of the original program into particular fields, we
can determine the shape of dynamic data structures from invariants for pointer-typed fields,
and the content of nodes of these structures from invariants for numerical fields. This way,
we may be able to prove properties that could not be proven when each analysis was done
separately.
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Chapter 5

Results and Experiments

We have proposed and implemented a shape analysis designed particularly for the 2LS
framework. In order to prove that our extension brought an improvement of the capabili-
ties of 2LS, we performed a series of experiments. These were run on a benchmark from the
International Competition on Software Verification 2017 (SV-COMP 2017) and on a bench-
mark from the Predator shape analyser. The execution and results of these experiments
are described in Sections 5.1 and 5.2.

Since our solution involves major updates to parts of 2LS that are run for each kind of
analysis (modifications of the SSA form generation, points-to analysis, etc.), it is essential
to prove that our changes did not affect other analyses. To this end, we use the regression
tests that are present in 2LS. The obtained results are described in Section 5.3.

5.1 Benchmark from SV-COMP 2017

One of the most relevant collections of benchmarks in the community of software verification
and analysis is the collection of benchmarks from the International Competition on Software
Verification (SV-COMP). The goal of this competition is to provide a possibility to compare
different verification tools in terms of their precision and performance. This is done by
establishing a set of benchmarks that are composed of a large number of verification tasks.
Each task consists of a C program and a property (reachability, memory safety, termination)
to be verified.

The tasks are divided into several categories and their subcategories, based on the
verified properties. Since we aim to analyse properties related to the shape of the heap,
the most important category is the Heap Reachability category. The tasks of this category
aim to verify user-supplied assertions that check reachability of objects in dynamic data
structures such as lists, trees, etc.

The result of running a tool on the benchmark of an SV-COMP category is a score
expressing the performance of the tool on the tasks included into the given benchmark.
For the Heap Reachability category, the expected result of a verification task is either true,
which expresses that the program is error-free, or false, which expresses that the program
contains an error meaning that some broken assertion is reachable. The scoring system is
the following:

e +2 points for each program that is correctly proven to be error-free (correct true).

e +1 point for each program where an existing error is found (correct false).
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e -16 points for each correct program in which an error is reported (incorrect false,
a so-called false positive).

e -32 points for each program where an error is present, but was not discovered (incorrect
true, a so-called false negative).

e ( points for an inconclusive result, which also includes a tool crash, or out of resources
error.

We executed 2LS on the Heap Category benchmark from SV-COMP 2017 without and
with our extension. The obtained results are shown in Table 5.1. The experiments were run
on an Intel Xeon 5000 processor at 3.5 GHz running Ubuntu 16.04. Each run was limited
to 15 GB of memory and 60 s of CPU time.

Table 5.1: A comparison of 2LS without and with our extension on the SV-COMP’17 Heap
Reachability category

2LS
Without With
extension extension
Number of tasks 173 173
Correct results 7 82
Correct true 54 62
Correct false 23 20
Incorrect results 17
Incorrect true 6
Incorrect false 11 1
Inconclusive 79 87
Score -237 32
ety | os s

We can see that our analysis increased the number of correctly analysed tasks and
decreased the number of incorrect results, which led to a significant increase of the score.
However, the results bring some interesting observations.

Even though the total number of correct results increased, the number of errors correctly
found decreased. A likely explanation is that the previous “correct false” results were just
coincidences, which is justified by a large number of “incorrect false” results. Since 2LS
had but minimal support for shape analysis, manipulation of the heap often caused errors.

Generally, we can observe that the most significant improvement was in proving correct
programs and avoiding false positives. This can be explained by the fact that our shape
analysis uses the abstract interpretation approach of 2LS, which over-approximates the
program and thus is sound in proving program correctness. Moreover, when an error is
found, it is not guaranteed to be reachable in the real program (due to over-approximation)
and thus 2LS often ends with an “unknown” result in case the error might be spurious.
This possibility is supported by the increase of inconclusive results obtained when using
our extension of 2LS.
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The next observation is that there is a significant number of tasks that are successfully
verified even without our extension. This is mainly caused by the fact that these tasks do
not contain any loops, thus no invariant is to be computed, and the SSA form with the
SMT solver is enough to prove the program correctness or to find an error.

Last, the table also shows the average CPU time spent to verify a task. This calculation
includes only those tasks whose analysis finished without error (hence we remove tasks that
ended by the tool crash or out of resources error). We can observe that our shape analysis
increased the verification time by few percent only and hence preserved a high performance
of 2LS.

5.2 Experiments from the Predator Tool

Apart from SV-COMP benchmarks, other sets of relevant examples can be found in the
distributions of existing tools for shape analysis. Currently, one of the best tools in this area
is the Predator tool [9]. It has won several gold medals in the Heap Manipulation category
in previous editions of SV-COMP (this category was replaced by the Heap Reachability
category this year).

We extracted the regression tests from this tool that work with singly (SLL) and doubly
linked lists (DLL). We added program assertions into these programs so that they are us-
able for analysis with 2LS. In the tests, we are not interested in lists destruction, since our
extension does not support checks for memory leaks, yet. Similarly to the previous exper-
iment, we ran 2LS on the benchmark without and with our shape analysis, and compared
the numbers of successfully verified examples. The results are shown in Table 5.2.

Table 5.2: A comparison between the number of successfully verified tasks from the Predator
benchmark with and without our extension of 2L.S

Correct results
Tasks before our after our
extension extension
SLL 17 6 14
DLL 8 2 7

We can observe that our analysis notably increased the number of successfully verified
programs in both categories. We can see that there is a number of tasks that 2LS handles
without our extension, which is caused by the fact that these programs either do not contain
any loops, or check for properties that can be proven without an invariant for the shape of
the heap.

5.3 2LS Regression Tests

2LS contains a large set of regression tests checking various properties of programs. A
majority of the tests is aimed towards existing analyses—the analysis of numerical variables
and the termination analysis. We re-ran these tests after the integration of our solution
and compared the results with the previous ones. This way, we show that our changes did
not corrupt the current analyses of 2LS.

The tests are divided into 5 main categories, each containing a number of verification
tasks. Every task contains a C program to be verified and a test specification that defines
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the expected verification result. A short description of each category can be found in
Appendix C. Since 2LS is still in development, there are tasks that 2LS is currently not
able to verify correctly. The numbers of successfully verified tasks before and after the
integration of our solution are shown in Table 5.3.

Table 5.3: A comparison between the number of successfully verified 2LS regression tests
with and without our extension

Correct results
Category Tasks before our after our
extension extension
Termination 125 89 90
kIkI 36 31 31
Preconditions 8 8 8
Interprocedural 46 31 31
Invariants 86 64 64

The results show that our changes did not negatively affect the existing analyses in 2LS.
On the contrary, there is one additional successful test in the Termination category. Even
though the test does not use the shape domain, our changes to passing pointers between
functions helped to perform correct verification of the benchmark.
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Chapter 6

Conclusion

In this work, we proposed a way of integrating shape analysis into the 2LS framework.
This included creating an abstract domain capable of describing the shape of dynamic
data structures in the heap. To this end, we use the concept of pointer access paths that
describe the shape of the heap by expressing a reachability of heap objects from pointer-
typed variables in the analysed program. Moreover, we introduced changes to other parts
of 2LS needed to successfully perform the shape analysis. Specifically, we improved the
generation of the SSA form, extended the points-to analysis, and proposed methods needed
to perform interprocedural analysis of functions working with pointers and recursive data
structures.

The proposed mechanisms show how pointer operations and the shape of the heap can
be described using quantifier-free formulae in the first-order logic. Solving these in an SMT
solver working with the theory of bit-vectors allows one to automatically prove properties
of a C program regarding dynamic data structures, especially linked lists.

We have implemented the proposed concepts into the 2LS framework and performed
a series of experiments to demonstrate usefulness of our extension. The experiments were
run on benchmarks from the Heap Reachability category of SV-COMP 2017 and from
the Predator tool. The results show that our shape analysis in 2LS brought a significant
improvement of the capabilities of 2LS to analyse programs working with pointers and
dynamic data structures. We also showed that the implementation did not negatively
affect other analyses that were already present in 2LS.

Current analyses in 2LS include a good-quality analysis of values of numerical variables.
Its combination with the proposed shape analysis could bring the possibility of analysing
interesting properties of the heap, such as those that depend on lengths of the lists, or
offsets of the addresses. In our implementation, we showed how a simple combination of
domains can be done in 2LS. In the future, extending this concept could allow one to
efficiently analyse properties that other tools cannot cope with and thus to handle more
complex programs.
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Appendix A

Contents of the CD

The attached CD contains source codes of the project. The main directory structure of the
CD is the following:

/

0 T P 2LS directory
TEOTESSI0ON/ i ettetttineeeeeeeenneeeeeeeanasaaaeeennnnnnns 2LS regression tests
o AP 2LS source files

TCY o) ol A CBMC (CPROVER framework) directory

e £ o AP Source files of this text

22N ) README file

Our extension is implemented as a part of the 2LS framework and thus the source files can
be found in 21s/src. This directory is divided into multiple subdirectories, some of which
contain components of our extension:

domains Contains abstract domains used in 2LS. Our shape domain is implemented by
the following components:

heap_domain Defines the template form and the abstract value.
list_iterator The representation of list iterators.

strategy_solver_heap Implements the abstract value synthesis algorithm.

ssa Contains components related to the creation and manipulation of the SSA form. Im-
portant components are:

local_ssa The definition of the SSA form. It also contains algorithm for transfor-
mation of the GOTO program into the SSA form, which includes representation
of heap-manipulating operations.

malloc_ssa The replacement of malloc calls by dynamic objects.

ssa_inliner Responsible for binding between the caller and the callee functions
in interprocedural analysis.

ssa_pointed_objects A library for working with pointed objects abstractions.

ssa_value_set The points-to analysis.

The directory doc contains the ITEX source files and the PDF version of this text.
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Appendix B

Compilation and Running

The project can be compiled and run using the source files that are attached on the CD.
Compilation can be done by the following steps:

1. Compile CBMC—this is a library for the whole CPROVER infrastructure that 2LS
is built on. CMBC in correct version can be found on the CD and compiled using
cbmc/src/Makefile.

2. Compile 2LS—requires CBMC to be compiled in the cbmc/ folder. Compilation of
2LS can be done using 21s/src/Makefile.

2LS with our shape domain can be run by the following command:
21s/summarizer/21ls —--heap —--no-propagation SOURCE_FILE

It is recommended to use the ——no-propagation switch that turns off a propagation
of constants in the GOTO program, which can sometimes cause problems for our points-
to analysis. The file SOURCE_FILE must be a correct compilable sequential C program.
Process and results of the analysis are printed to stdout and stderr.

We also recommend to use the 2LS regression tests that define a simple way of analysing
programs with 2LS. Existing tests can be found in subdirectories of 21s/regression.
Each test contains a C program to be verified and a test specification test.desc that
defines the parameters and the expected results of the analysis.
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Appendix C

2LS regression tests

2LS contains a number of regression tests divided into multiple categories. These can be
found in 21s/regression directory where each category is contained in one subdirec-
tory. Each category contains various verification tasks situated in separate folders. A task
folder contains a C program to be analysed and a task specification. The result of the
analysis is also stored in the task directory. All tests from a category can be run using
<category>/Makefile. Apart from running each category separately, it is also possible
to run all categories together using 21s/regression/Makefile.

There are 5 categories that contain the original 2LS regression tests that were used in
the experiment in Section 5.3:

interprocedural Tasks in this category are aimed at verifying programs using interpro-
cedural analysis. Here, a summary is computed for each function of the analysed
program. The tests include both context sensitive and context insensitive analyses.

invariants Tasks in this category are aimed at computing invariants using various (mainly
numeric and equalities) domains. The verified programs typically contain the main
function only or are analysed using the ——inline switch.

kiki Contains tasks aimed at checking features of the kIkI algorithm, mainly k-induction.

preconditions Tasks in this category are aimed at computing forward and backward pre-
conditions and postconditions of functions of the analysed program, which is one of
the features of 2LS. All tests are run with the ——preconditions switch.

termination Tasks in this category are aimed at analysis of termination of functions in the
analysed program. All tests are run with the ——termination switch. The analysis
uses lexicographic domain.

Within this work, we added 3 more categories of regression tests into 2LS that aim at
checking properties related to the shape of the heap:

heap Contains tasks using interprocedural analysis of heap-manipulating programs. Here,
it is possible to find functions that were used as examples in this thesis.

predator-dls Contains tasks from the Predator tool aimed at checking properties of doubly-
linked lists. These tasks were used in the experiment in Section 5.2.

predator-sls Contains tasks from the Predator tool aimed at checking properties of singly-
linked lists. These tasks were used in the experiment in Section 5.2.
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