
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TEMPLATE-BASED SYNTHESIS OF HEAP
ABSTRACTIONS
ABSTRAKCIA DYNAMICKÝCH DÁTOVÝCH ŠTRUKTÚR S VYUŽITÍM ŠABLÓN

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR VIKTOR MALÍK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Master's Thesis Specification/19901/2016/xmalik11

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a c u l t y o f I n f o r m a t i o n T e c h n o l o g y

D e p a r t m e n t o f I n te l l i gen t S y s t e m s A c a d e m i c y e a r 2 0 1 6 / 2 0 1 7

Master's Thesis Specification
For: M a l i k V i k t o r , B e .

B r a n c h o f s t u d y : In te l l i gen t S y s t e m s

T i t l e : T e m p l a t e - B a s e d S y n t h e s i s o f H e a p A b s t r a c t i o n s

C a t e g o r y : F o r m a l Ve r i f i c a t i on

I n s t r u c t i o n s f o r p ro j e c t wo r k :
1. G e t a c q u a i n t e d w i t h p r i n c i p l e s o f t e m p l a t e - b a s e d heap a b s t r a c t i o n , t he s o u r c e c ode o f t h e

2 L S too l a n d i ts m e c h a n i s m s f o r s y n t h e s i s i n g a b s t r a c t i o n s f r o m t e m p l a t e s .

2. P r o po s e a s o l u t i o n f o r de s c r i b i ng t h e s h a p e o f i n v a r i a n t s a n d s u m m a r i e s o v e r l ink d a t a
s t r u c t u r e s w i t h t he m e a n s o f t e m p l a t e s a n d an a l g o r i t h m fo r s y n t h e s i z i n g i n v a r i a n t s a n d
s u m m a r i e s f r o m t h e s e t e m p l a t e s .

3. I m p l e m e n t t h e g e n e r a t i o n o f t he t e m p l a t e s a n d t h e s y n t h e s i s a l g o r i t h m w i t h i n t h e 2 L S t o o l .
4 . E v a l u a t e o n t h e b e n c h m a r k s of t he h e a p c a t e g o r y o f t h e S o f t w a r e Ve r i f i c a t i on C o m p e t i t i o n .

5. D i s c u s s t h e a d v a n t a g e s a n d l im i t a t i ons o f the a p p r o a c h .

B a s i c r e f e r en c e s :

• B r a i n , M., J o s h i , S. , K r o e n i n g , S . , S c h r a m m e l , P.: S a f e t y Ve r i f i c a t i on a n d Re f u t a t i o n by
k - I nva r i a n t s a n d k - I nduc t i o n , I n : Proc . o f S A S ' 1 5 , L N C S 9 2 9 1 , S p r i n g e r , 2 0 1 5 .

• C h e n , H.-Y., D a v i d , C , K r o e n i n g , S . , S c h r a m m e l , P., W a c h t e r , B.: S y n t h e s i s i n g
I n t e r p r o c e d u r a l B i t - P r e c i s e T e r m i n a t i o n P roo f s , I n : P roc . o f A S E ' 1 5 , I E E E / A C M , 2 0 1 5 .

• D a v i d , C , K r o e n i n g , D., Lew i s , M.: P ropos i t i ona l R e a s o n i n g a b o u t S a f e t y a n d T e r m i n a t i o n o f
H e a p - M a n i p u l a t i n g P r o g r a m s , I n : P roc . o f E S O P ' 1 5 , L N C S 9 0 3 2 , S p r i n g e r , 2 0 1 5 .

• B r a i n , M., D a v i d , C , K r o e n i n g , D., S c h r a m m e l , P.: Mode l a n d P roo f G e n e r a t i o n f o r
H e a p - M a n i p u l a t i n g P r o g r a m s , I n : Proc . o f E S O P ' 1 4 , L N C S 8 4 1 0 , S p r i n g e r , 2 0 1 4 .

R e q u i r e m e n t s f o r t he s e m e s t r a l d e f en s e :

T h e f i r s t t w o i t e m s o f t h e s ub j e c t s pe c i f i c a t i on .

De t a i l e d f o r m a l s pe c i f i c a t i on s c an be f o und at h t t p : / /www . f i t . v u t b r . c z / i n f o / s z z /

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical
background relevant to the problems solved, and specify what parts have been used from earlier projects or have been
taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats common
at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

P h . D . , D I TS FIT B U T S u p e r v i s o r : V o j n a r T o m á š , p r o f . I n g .

B e g i n n i n g o f w o r k : N o v e m b e r 1, 2 0 1 6

D a t e o f d e l i v e r y : May 24 , 2 0 1 7

VYSOKÉ UČENÍ TECHNICKÉ V RRNl
Fakulta informačnfch.technofoQlf
Ústav inlellgentnídh systémů
612 66 Brno, Boíetflchova f

Pe t r Hanáček
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this work is to propose a shape analysis suitable for the context of the 2LS
analyser. 2LS is a program analysis framework for C programs which is based on automatic
invariant inference using an S M T solver. The proposed solution includes a way how the
shape of a program heap can be described using logical formulae over bit-vectors and how
a first-order S M T solver can be used to infer loop invariants and function summaries for
each function of the analysed program. O u r approach is based on pointer access paths that
describe the shape of the heap by expressing the reachability of heap objects from pointer-
typed program variables. The information obtained from the analysis can be used to prove
various properties of programs manipula t ing dynamic data structures, mainly l inked lists.
The solution has been implemented i n the 2LS framework and it brought a significant
improvement i n terms of the capabilities of 2LS in analysing heap-manipulating programs.
This is demonstrated on benchmarks taken from the well-known International Compet i t ion
on Software Verification (S V - C O M P) as well as other benchmarks.

Abstrakt
Cieľom tejto p r á c e je n á v r h ana lýzy tvaru haldy vhodnej pre potreby a n a l y z á t o r a 2LS . 2LS
je n á s t r o j pre a n a l ý z u C programov založený na automatickom odvodzovan í invariantov
s p o u ž i t í m S M T solvera. N a v r h o v a n é r iešenie obsahuje s p ô s o b rep rezen tác ie tvaru pro­
gramovej haldy pomocou logických formulí nad t eó r iou b i tových vektorov. T ie sú nás l edne
využ i t é v S M T solveri pre p r e d i k á t o v ú logiku p rvého r á d u na odvodenie invariantov cyklov
a s ú h r n o v j edno t l i vých funkcií ana lyzovaného programu. Náš p r í s t u p je založený na ukaza­
te lových p r í s t u p o v ý c h ces tách , k t o r é vy jadru jú dos iahnuteľnosť objektov na halde z ukaza­
te lových p r e m e n n ý c h . Informácie z í skané z ana lýzy m ô ž u byť využ i t é na dokázan i e rôznych
v l a s t n o s t í programu súvis iacich s p r á c o u s d y n a m i c k ý c m i d á t o v ý m i š t r u k t ú r a m i . Riešenie
bolo i m p l e m e n t o v a n é v r á m c i n á s t r o j a 2LS . S jeho p o u ž i t í m došlo k v ý r a z n é m u zlepše­
niu schopnosti 2LS analyzovať programy p racu júce s ukaza teľmi a d y n a m i c k ý m i d á t o v ý m i
š t r u k t ú r a m i . Toto je d e m o n š t r o v a n é na sade experimentov p r e v z a t ý c h zo z n á m e j medz­
iná rodne j súťaže vo verifikácii programov S V - C O M P a iných experimentoch.

Keywords
formal verification, program analysis, 2 L S , template-based analysis, shape analysis, l inked
lists, pointer access paths, abstract interpretation, S S A form, invariant inference, function
summaries, dynamic data structures

Kľúčové slová
fo rmálna verifikácia, a n a l ý z a programov, 2LS , a n a l ý z a za ložená na šab lónach , a n a l ý z a tvaru
haldy, zreťazené zoznamy, p r í s t u p o v é cesty na halde, a b s t r a k t n á in t e rp re t ác i a , S S A forma,
odvodzovanie invariantov, s ú h r n y funkcií, d y n a m i c k é d á t o v é š t r u k t ú r y

Reference
M A L Í K , V i k t o r . Template-Based Synthesis of Heap Abstractions. Brno , 2017. Master 's
thesis. B rno Universi ty of Technology, Facul ty of Information Technology. Supervisor
Vojnar T o m á š .

Template-Based Synthesis of Heap Abstractions

Declaration
Hereby I declare that this master thesis was prepared as an original author's work under
the supervision of prof. Ing. Tomas Vojnar, P h . D . The supplementary information was
provided by D r . Peter Schrammel. A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

V i k t o r M a l i k
M a y 24, 2017

Acknowledgements
I would like to thank my supervisor prof. T o m á š Vojnar for useful revisions of the project
report and remarks and consultations about the theoretical aspect of the work. I would
also like to thank D r . Peter Schrammel of the Universi ty of Sussex for continuous support
in bo th theoretical and implementat ion parts of the project.

Contents

1 Introduction 3

2 P r o g r a m Verification in 2LS 5
2.1 Source Programs as Transi t ion Systems 5
2.2 Abstract Interpretation 6
2.3 Template-based Verification 7

2.3.1 Program Verification Us ing Inductive Invariants 7
2.3.2 Invariant Inference v i a Templates 8
2.3.3 Incremental Solving 9

2.4 S S A Encoding of Source Programs 9
2.4.1 The General No t ion of S S A 10
2.4.2 S S A Used i n 2LS 10
2.4.3 Conversion of the Source P rogram into S S A 11

2.5 Interprocedural Analys is 12
2.5.1 Input and Output Variables 13
2.5.2 Funct ion Abstract ions 13
2.5.3 Funct ion Cal ls Constraining 14
2.5.4 Context-Sensitive Summaries 15

3 Design of a Heap Analysis for 2LS 17
3.1 Related Work on Heap Verification Techniques 18
3.2 Preliminaries and Nota t ion 18
3.3 Points-to Static Analys is 19
3.4 Representation of Heap Operations i n S S A 20
3.5 Template Heap Doma in 22

3.5.1 Template F o r m 22
3.5.2 The path predicate 23

3.6 Abstract Value Synthesis A l g o r i t h m 24
3.7 Interprocedural Analys is 24

3.7.1 Interprocedural Points-to Analys is 25
3.7.2 B i n d i n g Pointed Objects between Functions 28
3.7.3 Functions Man ipu la t ing the Ex i s t i ng D y n a m i c Structures 31

4 Implementation 42
4.1 The Archi tecture of 2LS 42

4.1.1 F ron t -End 42
4.1.2 M i d d l e - E n d 43
4.1.3 B a c k - E n d 44

1

4.2 Shape Analysis Integration 44
4.2.1 Points-to Analys is and Heap Operations in the S S A Form 45
4.2.2 Shape D o m a i n 45

4.3 Combina t ion of Abst rac t Domains 45

5 Results and Experiments 46
5.1 Benchmark from S V - C O M P 2017 46
5.2 Experiments from the Predator Too l 48

5.3 2LS Regression Tests 48

6 Conclusion 50

Bibl iography 51

A Contents of the C D 53

B Compi lat ion and Running 54

C 2LS regression tests 55

2

Chapter 1

Introduction

Research in the fields of formal verification and analysis is very wide and getting ahead
very fast. Currently, there is a large number of tools available, designed to analyse various
properties of programs. However, most of the tools are typical ly very narrowly focused on
a single area of analysis. They usually fail to analyse complex properties of real-life programs
(e.g. verifying terminat ion of programs using numerical and pointer variables at the same
time) while s t i l l being able to scale for realistic programs. O n such complex properties and
programs, the tools usually give up or produce imprecise results (false positives or even
false negatives).

One of the tools t ry ing to combine mult iple approaches into a single, scalable frame­
work is 2 L S . It integrates different program analysis techniques to work simultaneously and
exchange information, which allows it to both prove true properties as well as find errors
in programs. Due to using mult iple techniques, 2LS offers a possibil i ty to analyse different
classes of program properties. Currently, it is well usable to verify termination, data-flow
among numerical variables and arrays (using domains of different price and precision), or
equality between pairs of variables i n the given program. 2LS was developed by Danie l
Kroen ing and Peter Schrammel at the Univers i ty of Oxford, U K . Currently, it is main­
tained by Peter Schrammel at the Univers i ty of Sussex and the spin-off company DiffBlue
L t d . Th is thesis was solved i n cooperation wi th this company.

One of the important features that 2LS currently lacks is an abi l i ty to analyse programs
that work wi th dynamic data structures, such as l inked lists, trees, etc., which is a task
usually referred to as shape analysis since it is intended to analyse reachable shapes of
dynamic data structures. However, many real-world programs use dynamic structures,
and therefore it is needed to integrate this k ind of analysis into 2LS . Moreover, since 2LS
already contains good numerical analysis, its combination wi th shape analysis could bring
new options of analysing interesting program properties that other, single-purpose tools are
not able to handle well (e.g. properties based on the length of l inked lists).

Hence, the goal of this thesis is to propose a shape analysis suitable for the specific
context of 2LS , which very much differs from what is common i n other frameworks. T y p i c a l
shape analyses are mostly based on some form of abstract interpretation that symbolical ly
executes a given program, iteratively going through its loops. In order to avoid generation
of infinitely many reachable program configurations, some form of widening/abstract ion is
used to summarize reachable sets of configurations into a finite number of abstract symbolic
configurations. For representing such configurations, r ich classes of logics, automata, or
other formalisms are used—e.g. separation logic [14], 3-valued predicate logic w i th transitive

3

closure [], forest automata [], or symbolic memory graphs []. 2 L S differs from these
tools in (at least) 2 important aspects: (1) it is heavily based on the bit-vector logic,
ul t imately using S A T solving, and (2) it uses a significantly different computat ion loop. This
loop is based on combining k- induct ion, a notion of invariants based on so-called templates,
and a rather specific form of abstract interpretation. Incorporating shape analysis into this
framework hence requires a rather specific solution.

In this thesis, we propose a solution to the above problem. In particular, we propose
a novel domain for representing sets of reachable heap shapes that can be well integrated
into the template-based approach of 2LS . Namely, we represent sets of heap configurations
using concept of pointer access paths. Th is representation of the heap does not concretely
describe the shape of the heap, only expresses reachability of heap objects from variables in
the analysed program v i a chains of pointers. Moreover, we propose a l l algorithms needed
for integrating the domain into 2LS , both wi th in intraprocedural as well as interprocedural
analysis. This required us to propose specific algorithms for jo in of abstract values in our
abstract domain and for reflecting heap modifications performed by a function wi th in the
context of the caller function. In addit ion, to be able to supply these algorithms wi th
some auxi l iary information they need, we also had to modify the points-to analysis and
the generation of the static single assignment form that is used as an internal program
representation of 2LS.

We have implemented the proposed ideas i n 2LS and applied the extended tool to a num­
ber of benchmarks. The obtained results indicate that our extension brought a significant
improvement in terms of the abi l i ty of 2LS i n analysing programs manipula t ing pointers
and dynamic data structures on the heap.

The rest of the thesis is organised as follows. F i r s t , the basic concepts of program ver­
ification and the current state of the art of 2LS are described i n Chapter 2. After that,
principles of the proposed solution are described i n Chapter 3, along w i t h a l l necessary
changes that must be done to the current concepts of 2LS . Chapter 4 outlines the archi­
tecture of 2LS and gives details of the implementat ion of our extension. Results of our
experiments are presented in Chapter 5, along wi th a discussion of what these results show.
Final ly , a conclusion and future work is in Chapter 6.

This thesis extends the Term project of the same ti t le. Part icular ly, Chapter 2 and
part of Chapter 3 (up to Section 3.6) were taken from the Term project w i th some minor
changes.

4

Chapter 2

Program Verification in 2LS

The goal of this project is an integration of shape analysis into the 2LS tool [17]. This
chapter w i l l briefly introduce the basic concepts of 2LS and then explain i n detail those
that are needed to understand the methods proposed i n this project.

2LS is a program analysis framework buil t upon the C P R O V E R verification frame­
work [1]. It is oriented towards analysis of sequential C programs. The core a lgori thm
of 2LS , called klkl, efficiently combines bounded model checking (B M C) , fc-induction and
abstract interpretation []. A l though a l l these three verification approaches can be used
simultaneously, we w i l l only use abstract interpretation for the shape analysis extension of
2LS proposed wi th in this work. General concepts of this program analysis technique are
formally described i n Section 2.2.

The abstract interpretation used i n 2LS is based on computing so-called inductive in­
variants for a l l loops and functions of the source program. These are inferred using an S M T
solver-based approach and then used to reason about various properties of the analysed pro­
gram. The approach to the inference of the inductive invariants is formally described in
Section 2.3.

A l though the below description views source programs for s implic i ty as t ransi t ion sys­
tems (described i n Section 2.1), the implementat ion of 2LS uses the static single assignment
form (SSA) as the source program representation since it is better usable w i th the solver-
based approach. The concept of S S A and the conversion of the source program into this
form is described i n detai l i n Section 2.4.

In order for 2LS to be usable for larger programs, it is essential to use interprocedural
analysis. Th is includes computing summaries for ind iv idua l functions from the source
program. Formal definition of summaries and their usage for the analysis is explained in
Section 2.5.

The concepts described wi th in this chapter are used in various analysis present in the
current implementat ion of 2LS . This mainly includes the analysis of the values of numerical
variables (using the polyhedra abstract domain), the terminat ion analysis, and the analysis
of equalities among variables.

2.1 Source Programs as Transition Systems

The following description views the source program as a transi t ion system. A program
state x is the current value of a l l program variables (including the program counter) and
related memory (i.e. the stack and the heap). Let S be a set of program states, and let

5

the transition relation r C S x S define for each state a set of its possible successors i n the
program execution.

Assume a sequence of sets of states SoSi ... S^ such that VO < i < k : (Si, Sj+i) £ r .
We denote Sk = Tk(So) the set of states reachable from So after k execution steps. If / is
the set of a l l possible in i t i a l states of a program, then the set of all reachable states Sr is
the least fixed point of r s tart ing from / defined as:

Sr=\Jr\I). (2.1)

Informally, Sr is the set of a l l states that the program can get into during its execution.

2.2 Abstract Interpretation

Abstract interpretation is a static analysis technique based on an over-approximation of the
set of reachable states of the source program. Generally, the set of a l l reachable states is not
computable. However, since it is usually needed to reason about a certain program property
only, to prove this property it is sufficient to approximate program states as elements of
a simpler domain, called the abstract domain.

Having the concrete domain P of program states, we create the abstract domain Q. A n
element of the abstract domain, called an abstract value, corresponds to an element from
the concrete domain, which is typical ly a set of concrete program states. A l o n g w i t h the
abstract domain, we define two functions [7]:

• The concretisation function defines a mapping from an abstract value to a value of
the concrete domain. Formal ly 7 : Q —>• P and 7(g) is a concrete value represented
by q.

• The abstraction function defines mapping from a concrete value to an abstract value
from the abstract domain. Formal ly a : P —>• Q and a(p) is the most precise abstract
value i n Q whose concretisation contains p.

A n abstract interpretation 7 of a program is then a tuple [8]:

/ = (Q , U , C , T , i _ , r #) (2.2)

where

• Q is the abstract domain (along wi th well-defined abstraction and concretisation
functions),

• T G Q is the supremum of Q,

• J_G Q is the inf imum of Q,

• U : Q x Q —>• Q is the join operator, (Q, U, T) is a complete semilattice,

• (E) Q Q x Q is an ordering on (Q, U, T) defined a s x C y 4 4 > x U y = y,

• r # : Instr x Q —>• Q defines the interpretation of abstract transformers.

G

Abstract interpretation approximates the set of reachable states by computing the fix-
point of i n the abstract domain. The result is one abstract value for each execution point
of the source program. In case mult iple abstract values are obtained (because of multiple
execution paths entering the program location), these are accumulated into one using the
jo in operator. The properties of the analysed program are then checked i n the computed
abstract values. The soundness of the analysis is ensured using a Galois connection between
the concrete and abstract domains. We say that (P, <, Q, C) is a Galois connection i f and
only if (P, <) and (Q, C) are par t ia l ly ordered sets, and there is a following relation between
abstraction and concretisation functions [8]:

Since the computed abstract value is an over-approximation of the set of a l l reachable
concrete program states, abstract interpretation may generate a false positive. It is a situ­
ation when a property does not hold for the computed abstract semantics, but it holds for
the set of a l l reachable program states. Th is incoherence is usually caused by the fact that
an abstract value represents mult iple concrete program states and may represent also states
that are not reachable in the real program. The objective is to minimize the number of
the false positives. Th is may be achieved, for example, by choosing a more precise abstract
domain or by a combinat ion wi th other static analysis approaches (as 2LS does).

2.3 Template-based Verification

This section formally explains the approach to abstract interpretation adopted in the 2LS
framework. The key phase of the abstract interpretation part of the klkl a lgori thm is an
inference of inductive invariants. Th is problem, which can be expressed in (existential
fragment) of second-order logic, is reduced to the problem expressible i n quantifier-free
first-order logic using so-called templates. This reduction enables 2LS to use an S M T solver
for automated inference of loop invariants and function summaries. These are then used to
check various properties of the analysed program. The whole concept is focused on finite
state systems since 2LS uses bit-vectors to analyse software [].

2.3.1 Program Verification Using Inductive Invariants

2LS uses an S M T solver to reason about programs, thus we adapt the formalisation of
source programs from Section 2.1 to use logical formulae for the below presentation. The
state of a program is described by a logical interpretation of logical variables corresponding
to each program variable. A set of states can be described using a formula—the states in
the set are defined by models of the formula. G iven a vector of variables x, a predicate
Init{x) is the predicate describing the in i t i a l states. A transi t ion relation is described as
a formula Trans(x, x'). F r o m these, it is possible to determine the set of reachable states as
the least fixed-point of the transi t ion relation start ing from the states described by Init{x).
This is, however, difficult to compute, so instead an inductive invariant is used. Inv is an
inductive invariant if it has the property:

A n inductive invariant defined as above is a description of a fixed-point of the transi t ion
relation. However, it is not guaranteed to be the least one, nor to include Init{x). Moreover,

Vp G P , q G Q :

p < 7(9) Oi{p) C q.
(2.3)

(2.4)

7

there are predicates which are inductive invariants, but are not sufficient to be used for
proving any properties of the source program (such as predicate true, which describes the
complete state space) [1]. That is why we w i l l t ry to compute such invariants that approach
the least fixed-point, so that it is enough to use them to check a given property.

A verification task does often require showing that the set of a l l reachable states does
not intersect w i th the set of error states denoted Err(x). Us ing the concept of inductive
invariants and existential second-order quantification (32), we can formalise it as:

^Inv. Vaj, x'. (Init(x) =>• Inv{x)) A

(Inv(x) A Trans(x,x') =>• Inv(x')) A (2.5)

(Inv(x) -*Err(x)).

2.3.2 Invariant Inference via Templates

In order to exploit the power of the klkl a lgori thm, 2LS uses a solver-based approach to
computing inductive invariants. To direct ly handle Formula 2.5 by a solver, 2 L S would need
to handle second-order logic quantification. Since a suitably general and efficient second
order solver is not currently available, the problem is reduced to one that can be solved
by an iterative applicat ion of a first-order solver. Th is reduction is done by restricting the
form of the inductive invariant Inv to T(x,8) where T is a fixed expression (a so-called
template) over program variables x and template parameters 8. Th is restriction corresponds
to the choice of an abstract domain i n abstract interpretation—a template only captures
the properties of the program state space that are relevant for the analysis. Th is reduces
the second-order search for an invariant to a first-order search for the template parameters:

35. Vx, x'. (Init(x) =̂ > T(x, 5)) A

(T(x, S) A Trans(x, x') = ^ T(x', 5)).

Al though the problem is now expressible i n first-order logic, the formula contains quan­
tifier alternation, which poses a problem for current S M T solvers. Th is is solved by itera-
t ively checking the negated formula (to tu rn V into 3) for different choices of constants d
as candidates for template parameters 8. For a value d, the template formula T(x, d) is an
invariant if and only i f Formula 2.7 is unsatisfiable.

3x, x'. -.(/mt(aj) T(x, <5)) V

-^(T(x, d) A Trans(x, x') => T(x', d))

From the abstract interpretation point of view, d is an abstract value, i.e. it represents
(concretises to) the set of a l l program states x that satisfy the formula T{x, d). The abstract
values representing the inf imum _L and supremum T of the abstract domain denote the
empty set and the whole state space, respectively: T(x, _L) = false and T(x, T) = true [].

Formally, the concretisation function 7 is same for each abstract domain:

7(d) = {x I T(x, d) = true}. (2.8)

A s for the abstraction function, it is essential to find the most precise abstract value
representing a concrete program state. Thus:

a(x) = min(d) such that T(x, d) = true. (2.9)

8

Since the abstract domain forms a par t ia l ly ordered set w i th ordering C and T{x, T) =

true, existence of such a min ima l value d is guaranteed.
The algori thm for the invariant inference takes an in i t i a l value of d =_L and itera-

t ively solves the below quantifier-free formula (corresponding to the second disjunct in
Formula 2.7) using an S M T solver:

If the formula is unsatisfiable, then an invariant has been found, otherwise the model
of satisfiability is returned by the solver. The model represents a counterexample to the
current instance of the template being an invariant. The value of the template parameter
d is though refined by jo ining wi th the obtained model of satisfiability using the domain-
specific jo in operator U [].

2.3.3 Incremental Solving

The solver approach used in 2LS is based on a so-called incremental solving. Th is technique
aims at checking whether satisfiability of a problem is preserved when the clause set is
incremented wi th new clauses. Instead of re-solving the whole problem, the information
from the original problem is used to speed up the solution of the new problem. The original
problem (before adding the clauses) is though considered satisfiable, and only the impact
of the new clauses is checked [11].

In 2LS , this concept is used as follows. F i rs t , the below formula is passed to the solver:

Prov id ing that a val id source program is passed, Formula 2.11 is satisfiable (each pro­
gram state has a successor) and is considered to hold i n a l l following iterations. After that,
only the current instance of the template formula is passed to the incremental solver in
each iteration.

Instead of representing source program as a transi t ion system, it is equivalent and more
efficient to convert it into the static single assignment form (SSA) , which represents the
logical formula describing the whole program. Since the S S A form expl ic i t ly expresses
control flow, it corresponds to the whole Formula 2.11 and removes the need to (directly)
implement the abstract transformers. The S S A form used and the conversion of the source
program into it is described i n Section 2.4.

2.4 SSA Encoding of Source Programs

A s the previous section stated, 2LS translates the program into the single static assignment
form (S S A) . It is a well-known concept of an intermediate program representation. Its
general principles are introduced in Section 2.4.1.

For an acyclic code, S S A is a formula that represents exactly the strongest post condit ion
of running the code. 2LS extends the standard S S A form by an over-approximation of the
loops so that it allows one to reason about abstractions of the program using a solver [].
Th is conversion of the loops, along wi th other modifications of the standard S S A used in
2LS, are explained i n Section 2.4.2.

The mechanism of the transformation of the source program into the S S A form and an
example of such conversion are stated in Section 2.4.3.

T(x,d) A Trans(x,x') A ->(T(x',d)). (2.10)

Init(x) A Trans(x,x'). (2.11)

9

2.4.1 The General Notion of S S A

Generally, S S A is an intermediate program representation satisfying the property that each
variable is assigned at most once. A translat ion into the S S A thus involves separating each
variable v into several variables v\. W h e n a node i of the original program contains an
assignment to v, it is replaced by an assignment to Uj. Every usage of v is replaced by the
appropriate variable Vi where i is the last node where v was assigned before the given use
of v.

In order to always have exactly one node of the last assignment of v, addi t ional assign­
ments must be introduced at j o in points of the original program. These are called $ (phi)
nodes and have a form of an assignment x = Q(y,z). This expression means that x is
assigned the value of y i f the control reaches this node v i a the first entering edge, and x is
assigned the value of z i f the control reaches the node v i a the second entering edge [2].

The logical formula corresponding to the original program is then a conjunction of S S A
formulae for a l l program statements.

2.4.2 S S A Used in 2LS

The S S A form used in 2LS extends the general concepts introduced in Section 2.4.1. In
order to be usable in the incremental solver, S S A is made acyclic by cut t ing the loops at
the end of the loop body. The example of this conversion is given i n Figure 2.1. Th is figure
explains how S S A variables express the control flow in a simple loop [].

i : before the loop
x0 = 0

(a) A loop in C (b) Encoding of the loop in SSA

Figure 2.1: Conversion of loops i n the S S A form used i n 2LS

The loop has been cut at the end of its body: instead of passing the version of x from the
end of the loop body (x5) back to the $ node in the loop head, a free "loop-back" variable
X1Q is passed. The choice of the value of x i n the $ node is made non-deterministically using
the free boolean "loop-select" variable gj?. Th is way, the S S A form is made acyclic, and
though it always holds when passed to the solver (which is needed by incremental solving
since it represents Formula 2.11, as explained i n Section 2.3.3).

10

Since XQ and g§ are free variables, this representation is an over-approximation of the
actual program traces. The precision can be improved by constraining the value of X1Q by
means of a loop invariant, which w i l l be inferred during the analysis. A loop invariant
describes a property i n the given abstract domain that holds at the loop entry (x0) and at
the end of the loop body (x5) and though can be assumed to hold on the feedback variable
x 6 [']• Us ing the interval numerical domain, the invariant for X1Q from the example in
Figure 2.1 could be:

gli (4 b > 1 A x6 < 1 0)- (2- 1 2)

The example showed data-flow variables, which correspond to the original program
variables. In addi t ion to these, 2LS uses guard variables that capture the branch conditions
from conditionals and loops. For example, the S S A form from Figure 2.1 would contain
guard variable gA:

gA = xf1 < 10. (2.13)

This variable guards the reachability of the assignment of x5 and is used during the
inference of invariant from Equat ion 2.12.

To facilitate interprocedural analysis, the S S A used in 2LS contains placeholders for
function calls i n the form hi(x?—m, x?—out) which stands for i - th invocation of the function h
wi th input and output arguments x^~m and x^~ou<, respectively. These placeholders assure
that the function calls are in i t ia l ly havocked (over-approximated) and can be constrained
by computing function summaries (see Section 2.5) [5].

Pointer-typed variables have special handling i n the S S A used i n 2 L S . Since this is
closely related to the heap analysis performed wi th in this work, it is described i n detail
later i n Section 3.3.

2.4.3 Conversion of the Source Program into S S A

The 2 L S framework is buil t over the C P R O V E R verification framework. C P R O V E R pro­
vides a compiler for C programs, which parses a C program into its own internal repre­
sentation called a GOTO program []. It represents the source program in the form of a
control-flow graph containing the locations w i th statements and the edges between them.
Since 2LS uses the S S A form dur ing the analysis, it performs a transformation from a G O T O
program into the S S A . This transformation is done i n a standard manner as described in
Section 2.4.1 w i th 2LS-specific modifications explained i n Section 2.4.2:

• Each variable is split into mult iple "versions" for each of its assignments. A n as­
signment of a variable x at locat ion i introduces a fresh symbol x\ which is used at
the left-hand side of the assignment. Variables occurring on the right-hand side are
renamed to their last assigned versions.

• For each condit ional statement and for each loop, a $ node is introduced for every
variable that is altered wi th in the condit ional (loop). The choice between two values
in a $ node is controlled using the branch condit ion in case of a condit ional , and a free
boolean variable i n case of a loop (due to loops cut t ing as explained i n Section 2.4.2).

• A guard variable is introduced for the first location of each basic block from the G O T O
program. The guard variable captures the condit ion of reachability of the given
basic block i n the source program. This mainly applies to branches of condit ional
statements and loop bodies.

11

• Funct ion calls are replaced by the over-approximating placeholders.

• The operations manipulat ing heap objects are treated specially. The i r transformation
is newly designed wi th in this project, therefore it is described later, i n Section 3.4.

1 void main()
2 {

unsigned x

10
11
12

while (x < 10)

assert(x 10)

2 g2 = TRUE

5 95 = 92

6 xfl = ? x$: x3)
7 g7 = (xlht < 10) && g5

~i . phi
8 X - - '•

9
1 0 Sio :

phi

11 xl
12

! (xfl < 10) && g5

10 I I !<?10

(a) The C program (b) The corresponding SSA

Figure 2.2: Conversion from a C program to S S A

To better understand conversion of a C program, we give an example i n Figure 2.2 [4].
Line 2 is the entry location of the program. It is always reachable, therefore g2 is set to
true. The definition of x is done at line 3. The head of the loop contains a $ node (line
6) and since it is direct ly reachable from the beginning of the m a i n function, its guard g5

is same as the guard of the entry point (g2)- The guard g7 at line 7 expresses that the
loop body is only reachable i f the loop head is reachable (g5) and the loop condi t ion is true
(xQhl < 10). L ine 8 sets the new value of x. The guard g10 at line 10 captures the fact that
the locat ion after the loop is reachable when the loop condit ion is false. Final ly , line 11
requires x to be equal to 10 once the assertion is reachable (g10 is true).

2.5 Interprocedural Analysis
C programs are typical ly composed of mult iple functions. To correctly analyse such a
program, provided it is not recursive, it might be inl ined first (by replacing the function
calls by the corresponding function bodies). A l though this simplifies the analysis (the whole
program is i n one function), it also brings inefficiency since the inl ined program might be
much larger than the original one, which can prolong the analysis.

Even though the 2LS framework offers the possibil i ty of full in l in ing of the program (by
using the — i n l i n e switch), it is designed to perform interprocedural analysis, where each
function of the original program is analysed separately.

In this section, we introduce the basic concepts of the interprocedural analysis in
2LS. The original implementat ion does not handle passing function arguments by refer­
ence (pointers). Since this is crucial for analysis of heap manipulat ion, we implement this
mechanism wi th in this work. For that reason, this section describes just the original inter­
procedural analysis, where function arguments can be passed by value only. The design of
passing the arguments by reference is then introduced i n Section 3.7.

12

2.5.1 Input and Output Variables

A function / is specified by its input variables x™, output variables x°^ut (usually re­
ferred as formal inputs and outputs), and by its S S A form that has been described in
Section 2.4. In the S S A form, a function ca l l of / i n a node i is represented by the place­
holder fi(xPjr-m,xPj:—out) where xp—m and xPjT°ut represent the actual input and output
arguments, respectively. Th is placeholder havocs the function cal l and can be constrained
by computing a function summary [5].

Input variables x™ of a function / include parameters paramj and global variables

glob™. For global variables, we only consider those that are actually accessed inside the

function. Output variables only contain global variables glob™1, which include same vari­

ables as glotfj1 (potentially i n different S S A versions). The return value of the function is

denoted r / and included i n globJat-
A l l of the above variables are in the S S A form. The input variables are used without any

indices since it is not known where they have been assigned last t ime. The output variables
that are actually wri t ten by the function are in the version of their last assignment before
the end of the function, while those that are not wri t ten (only read) remain in the same
form as the input ones.

2.5.2 Function Abstractions

Dur ing the function analysis, we use mult iple abstractions based on the concept of invariants
introduced i n Section 2.3.1:

• A n invariant is a predicate Inv such that:

Vx, x' : (Init(x) =>• Inv(x)) A
V V ' V , (2.14)
(Inv(x) A Trans(x, x) =>• Inv(x)).

Invariants abstract the set of reachable states i n the program. If we project the
invariant to a subset of variables xioop C x containing loop-back variables for a loop,
we obtain a so-called loop invariant Inv(xioop). This can be used to constrain the
values of loop-back variables (as shown i n Section 2.4.2).

• A summary abstracts the behaviour of a function. It describes how a function /
transforms its formal inputs into outputs. G iven an inductive invariant Inv, input
and output variables x m and a ; o u ' , and a predicate Initf(x) describing the in i t i a l
states of the function, a summary of the function / is a predicate Sum such that:

Va:, x' : (xin C x A Init(x) A
(2 15)

Inv{x') A x o u t C x') Sum{xin, xout).

The first line of the impl icat ion antecedent expresses that the in i t i a l states of the
function depend on the input variables. After computing an invariant for the out­
put variables (second line), we obtain a summary Sum(xin, a i o u i) of the function. The
summary can be later used to constrain the function ca l l placeholder fi(xp—m, xp

c—out)
by replacing formal input and output variables x m and a ; O M i i n Sum(xm, x™1) by
actual values of inputs and outputs xp

f—n and xp

f—out. Details can be found in Sec-
Ji Ji

t ion 2.5.3.

13

• A calling context abstracts the behaviour of a caller function towards a called function.
It specifies the context (actual values of input and output variables) that the function
is called i n . G iven an invariant Inv and values of actual function cal l inputs and
outputs xvj~%n and xvj~ou*, a cal l ing context for a cal l of a function / at a ca l l site i is
a predicate CallCtxfi such that:

Vxi, Xi+\ : (xp

f—m C Xi A Inv(xi) A

out in out (2J6)
Trans(xi, JCj+i) A x ^ - o u C Xj+i) =4> CallCtxf.(xPj-m, x ^ - o u).

The function cal l is included in Trans(XJ, Xj+i) , being the transi t ion relation for the
location i . A program state at the location i is denoted Xj and contains the actual
input arguments xvj-%n of the function cal l . A program state after the execution of the

function cal l is denoted Xj+i and includes xvj~out. After computing an invariant for Xj

we obtain the cal l ing context CallCtxfi{xPj-m, x ^ - o u ') for a cal l of / at the location
i. The call ing context can be used during the analysis of the function / to constrain
formal inputs and outputs of the function. More detai l of the usage of cal l ing contexts
along wi th an example can be found i n Section 2.5.4.

A l l of these concepts depend on invariants which are computed using the templates from
a specific domain. Therefore the obtained constraints are abstractions and describe only
those properties that are relevant for the domain used.

2.5.3 Function Calls Constraining

Funct ion summaries abstract the behaviour of functions and are used to constrain the
function cal l placeholders i n the S S A of the caller function. Th is simulates the effect of the
called function in the cal l site.

Before analysing a function, 2 L S first analyses (computes summaries) of a l l called func­
tions. After that, each function cal l placeholder / j is replaced i n the solver by the corre­
sponding summary Sum{xlJl, x^"*) of the callee function / (having the form of a logical
formula). A problem is that the formal input and output variables of the callee function
(occurring i n the summary) and the actual inputs and outputs at the cal l site are generally
different. In order for the callee summary to simulate the effect of the function on caller's
variables, one need to b ind formal and actual input and output variables in the solver.

For a better i l lustrat ion we give a simple example. Let / be a function i n C declared
and then called as shown i n Figure 2.3a. Supposed there are no global variables, the
inputs and outputs of / and an example of the S S A corresponding to the cal l are shown
in Figure 2.3b (j and k are the locations of the last assignments of a and b in the caller
function, respectively). Note that the cal l is replaced by a placeholder where a fresh symbol
rft is introduced for the return value and it is assigned to c i n the next location. Th is
is already done by the G O T O program parser in the C P R O V E R framework. After a
summary Sum((x,y), (rf)) of / is computed, we replace the placeholder by an expression
in Figure 2.3c. This contains the summary itself and the bindings between formal and
actual inputs and outputs of the function.

We propose an algori thm for the binding between formal and actual input and output
variables of a function cal l . The following presentation assumes that a function / is called
from a cal l site /«. In order to distinguish between formal and actual variables, Table 2.1
shows naming of vectors of variables i n the function / and in the cal l site Note that

14

m t f tint x, m t y); xf = (x,y), x°f

ut = (77) Sum((x,y), (77)) A

x = aj A

c = f (a ,b) ; f((aj,bk),(rfi)) y = bkA

Ci+i = r h rf = rfi

(a) Declaration and call in C (b) Inputs, outputs, and SSA (c) Replacing formula

Figure 2.3: Example of function cal l constraining

global variables are also different since they occur i n different S S A versions i n the caller
and callee functions.

Table 2.1: The symbols used i n binding algorithms

Symbol Meaning

par am f formal parameters of /

giobf formal input global variables of /

globf1 formal output global variables of /

a r 9 h arguments (actual parameters) of the cal l site fi

glo\ff-m actual global variables at the input of the cal l site fi
1 rV out

globf—
actual global variables at the output of the cal l site fi

We also introduce a function N A M E , which takes an S S A variable v and returns the
name of the corresponding original program variable without the S S A suffix. The function
B I N D (Ü I , vi) creates a b inding between the variables v\ and V2 (i.e., it adds an assumption
v\ = = V2 to the solver).

Using these helper functions, the binding between the ca l l site and the callee variables
is done using two procedures shown in A l g o r i t h m 1.

A l g o r i t h m 1 B i n d i n g between the cal l site and the called function

procedure B I N D G L O B A L S

for all x G globm,x' G glotij-171 . N A M E (X) = N A M E (I ') do

B I N D (X , X ')

for all x G globout,x' G glotf^1 . N A M E (X) = N A M E (X ') do

B I N D (X , X ')

procedure B I N D P A R A M S

for j <— 0..(\param\ — 1) do
BiND(param[j],argf.\j])

2.5.4 Context-Sensitive Summaries

For some programs, it is useful (and sometimes necessary for precise analysis) that values of
the input variables of a function are constrained wi th respect to the actual argument values

15

that the function is called wi th . In this case, when analysing a function / that is called for
the first t ime i n a ca l l site / j , its calling context CallCtxfi is computed first. The call ing
context is formally defined i n Formula 2.16 and depends on the invariant in the entry of
the locat ion i. Th is is computable before the analysis of / since / is called in location i for
the first t ime. The computed cal l ing context is then used as a precondit ion for the analysis
of / and the inferred summary is stored in the form CallCtXfi =4> Surrif.

Using the example from Figure 2.3, i f / was called i n the cal l site fi w i th a call ing
context: CallCtx ft((aj, = (a,j < 0 A bk > 0), the computed summary would be
stored in the form: (x < 0 A y > 0) =4> Surrif ((x,y), (r/)) .

Since / might be called mult iple times w i t h i n different contexts, the computed sum­
maries are reusable only if the current cal l ing context is subsumed by cal l ing contexts
V i CallCtXfa. In case it is not, the summary is recomputed and joined conjunctively wi th
previous summaries [5].

16

Chapter 3

Design of a Heap Analysis for 2LS

In the previous chapter, we described the current state of the art of the 2LS framework. It
is well-usable for various analyses, such as the numeric variables analysis or the terminat ion
analysis.

The goal of this project is the integration of a new type of analysis—a heap manipulat ion
analysis. We w i l l focus on analysing the shape of dynamic data structures (mainly singly
and doubly l inked lists). In order to achieve this, there are mult iple tasks to be fulfilled.

The most important one is to design a new abstract domain that can describe desired
properties of the program heap. In 2LS , this involves a proposal of a suitable form of the
template for computing invariants, specifying what an abstract value w i l l be, and creating
the corresponding jo in algori thm. These can be found i n Sections 3.5 (the abstract domain)
and 3.6 (the abstract value synthesis algori thm). Since shape analysis has already been
implemented i n various different tools, we can make use of the existing abstract domains.
Therefore we first explore the existing work on formal heap analysis and verification in
Section 3.1.

Apar t from creating the abstract domain, there are more problems to be solved. The first
one is related to the S S A form, which 2LS uses for representation of the source programs.
The problem is that the S S A uses symbolic names for program variables. Dynamica l ly
allocated objects do not have any names (because they are accessed v i a pointers only) , and
therefore we have to introduce new symbols to represent them. Moreover, a dereference
of the same pointer might result into different heap objects at different execution points.
To ensure a correct dereferencing, 2 L S runs a simple static points-to analysis. Since the
analysis is currently not complete (it cannot handle some commands, or function calls) we
extend it and formally describe in Section 3.3. Afterwards, the transformation of heap-
manipulat ing operations into the S S A form is based on the results of this analysis. The
conversion of typica l operations is explained i n Section 3.4.

The second problem comes wi th the interprocedural analysis. Generally, a function
can alter objects that are neither global nor passed to the function as parameters but are
pointed by those. This is called a side effect of a function and must be included i n the
function summary. Since 2LS currently passes global objects and actual arguments to the
function only, we w i l l introduce passing of heap objects. The problem becomes even more
complicated when a function accesses and alters an abstract heap object such as a l inked
list. The proposed approach to the interprocedural analysis of heap-related properties is
described i n Section 3.7.

17

3.1 Related Work on Heap Verification Techniques
Before designing an abstract domain for the description of shape invariants i n 2LS , we
explore the existing approaches to the heap (shape) verification.

Most of the current tools use intermediate representations of the analysed programs in
the form of control-flow graphs (C F G) . They compute the abstract state (representing the
set of reachable concrete program states) at each program location. However, this approach
is not usable in 2LS since the source program representation is i n the acyclic S S A form (thus
a part of the control-flow is omit ted because of the loops cutt ing). Moreover, a solver for
quantifier-free first-order logic is used, and so we have to use an abstract domain that allows
us to reason about the shape of a heap using quantifier-free formulae only.

A n approach we found to be currently the most suitable for our purposes is based on the
so-called storeless semantics. Cont ra ry to tools based on more popular store-based program
semantics describing the shape of the heap using various logics [14, 13, 16], automata
(Forester []), or graphs (Predator []), which closely correspond to the real state of the
heap, storeless approaches represent heap as a set of pointer access paths [15].

A n access path does not concretely express the state of the heap, it only describes which
dynamic objects (i.e. objects allocated by m a l l o c function) are reachable from a pointer.
Us ing a set of access paths for each pointer i n the program, one can efficiently describe
the shape of (the reachable part of) the heap. The approach based on access paths is used
e.g. i n a tool buil t over the C P R O V E R framework [] (where the heap is described as a
conjunction of predicates), or various other tools [6, 15, 12].

The ma in difference between these and our proposed approach is that they use C F G s and
compute the sets of reachable program states i teratively using the abstract interpretation
approach. O n the other hand, 2LS uses an acyclic S S A form in an incremental S M T solver-
based approach. This allows a simpler creation of domains and could also bring a possibil i ty
to combine our shape analysis w i th other analyses already present i n 2LS .

We propose an abstract domain for 2LS to describe the shape properties of the program
heap. Before that, we have to introduce some changes to the S S A form, so that it is usable
along wi th the proposed domain i n the S M T solver.

3.2 Preliminaries and Notation

In this chapter, we assume that the source programs are defined over the following finite
sets of objects:

• Var: a set of a l l stat ically allocated objects (variables). We assume each variable has
its unique name.

• Obj: a set of dynamical ly allocated objects (on the heap). In 2LS , one dynamic object
corresponds to one al location site, i.e. it might represent an abstraction of multiple
concrete heap objects allocated in a loop (such ctS ct SG gment of a l inked l ist) .

• Ptr C (V a r U Obj): a set of a l l pointer-typed objects (both static and dynamic) .
These either hold an address of an object i n the memory or n u l l .

• Str C Obj: a set of a l l structure-typed heap objects.

• Fid: a set of a l l fields of structured types.

18

• Instr: a set of a l l program locations.

We also use IB to denote the standard Boolean domain. We use the ordering < on B as
follows:

Vx, y e B . x < y (x y). (3.1)

3.3 Points-to Static Analysis

Using the S S A form i n a quantifier-free first-order S M T solver in the way 2LS uses it brings
some problems. One of them is the fact that each memory object must be identified by its
unique name. Th i s would be easy i f each object was accessed directly through an associated
variable i n the original program. However, when pointers are used (which is quite common
in low-level code), the si tuation gets more complicated since a single pointer variable can
be dereferenced to different memory objects.

For that reason, we perform a static points-to analysis prior to the conversion into
the S S A . Th i s analysis determines for each pointer a set of memory objects it can be
dereferenced into in each program locat ion where it is used. In case the pointer can be
n u l l , or its value can be unknown (e.g. because it has not been init ialised), this information
is also determined. The analysis does not check for errors (such as n u l l dereferences), it
s imply collects a l l possibilities of pointer dereferencing.

The points-to analysis used is based on a classic abstract interpretation. The abstract
domain VT is defined by a function mapping a pointer to an element of the Cartesian
product:

VT = Ptr -»• (2°bjuVar x B x B) . (3.2)

The abstract value at the program locat ion i £ Instr defines for each pointer p £ Ptr
in i a tuple PointsTo(pi) € {2°h^vjVar x B x B) containing the following information:

• A set ValueSet(pi) C (Obj U Var) holding a set of memory objects that p can be
dereferenced into at location i.

• A boolean predicate isnullip^ determining if p can be n u l l at i.

• A boolean predicate unknown(pi) denoting that the value of p might be unknown
(non-deterministic) at location i.

The points-to analysis is run on a G O T O program, which has the form of a control-flow
graph. The algori thm follows the abstract interpretation approach of finding the least fixed
point of the abstract domain lattice for every program location. To be able to find a fixed
point, we have to define a par t ia l ordering C on the abstract domain VT. The ordering is
defined for two PointsTo values for the same pointer only.

yPointsTo(x), PointsTo(x)' £ VT.

PointsTo(x) C PointsTo(x)' 44> ValueSet(x) C ValueSet(x)' A ^

unknown{x) < unknown(x)' A

isnull(x) < isnull(x)'

The jo in a lgor i thm is done element-wise. For ValueSet sets, the jo in is the set union
(U), whilst for boolean predicates isnull and unknown, the jo in is defined as the logical
disjunction (V).

19

Next , we define the abstract transformers. The effect of basic commands manipulat ing
pointers on the abstract value is defined i n Figure 3.1. We support the statements stated in
the figure, w i th possibil i ty of chaining them and combining them w i t h access to structure
fields. We assume that the commands take place at the program locat ion i.

Command : p = n u l l Command : T *p (declare p)

ValueSet(pi) = 0 ValueSet(pi) = 0

isnullipi) = true isnullipi) = false

unknown(pi) = false unknown(pi) = true

Command : p = &o Command : p = q

ValueSet(pi) = w ValueSet(pi) = ValueSet(qi_1)

isnullipj) = false isnullipj) = isnullfa^i)

unknown(pi) = false unknown(pi) = unknown(qi_1)

Command : *p = q

\/p' £ ValueSet(pi_1) : ValueSet(p'i) := - ValueSet(p'i_1) U ValueSet(qi_1)

isnullip'j) :-- isnullip'^i) V isnull^q^i)

unknownip'j) :-- unknown(p'i_1) V unknown(qi_1)

Command : p = * q

ValueSet(pi) = U / c t / i o*, ValueSetiq'^)
^^q'G ValueSet(qi_1)

isnullipj) = \/ isnulliq'i i)
V q'eValueSetiq^^ ™ V>

unknown(pi) = \/ unknowniq'i i)
V q'GValueSetiq^) v 1 u

Figure 3.1: Abst rac t transformers for points-to analysis

If 2LS is used to perform interprocedural analysis, the points-to analysis is run on each
function separately. In order for it to be correct, we have to define the in i t i a l abstract
value (since the function may have pointer-typed inputs) and an abstract transformer for a
function cal l . We discuss our approach to interprocedural analysis later, hence we w i l l also
present these concepts there (see Section 3.7.1).

3.4 Representation of Heap Operations in SSA

We use the information obtained during the points-to analysis described i n the previous
section during our transformation of a G O T O program into the S S A form. We now present
how typica l heap-manipulating operations are represented i n the S S A :

malloc Each ca l l of the malloc function is replaced by an instantiat ion of a new abstract
dynamic object and returning its symbolic address as a result of the cal l . Th is ensures
that a l l heap objects have their unique names. The replacement of the i - th occurrence

20

of malloc i n the source program is as follows:

malloc(sizeof (£)) —> adynamic _object%i (3-4)

where the type of dynamic_object$i is t. The created dynamic object is an abstraction
since it corresponds to one al location site and though can represent mult iple concrete
objects allocated i n a loop.

M e m o r y read In C , this operation has a typica l form v = *p. Assuming that it takes
place at the program location i, we use the tr iple PointsTo(pi) to construct the
corresponding expression in S S A as follows:

v = *p —> vi == Ep(ValueSet(pi), isnullipj), unknown(pi)) (3-5)

where the expression Ep is defined recursively:

.Ep(0, true, false) = Ep(fb, false, true) = unknown_object (3-6)

Ep({o}, false, false) = o (3-7)

EP(V, n, u) = (p == & o ? o : EP(V \{o},n,u)). (3.8)

The expression Ep generates a case split for each object that p may be dereferenced
into (3.8). The last case is a placeholder for an unknown heap object i f p might be
n u l l or non-deterministic (3.6). If neither of the isnull and unknown predicates is
true for p, we use the last object from the ValueSet(p) as the last case split (3.7).

M e m o r y write This operation is dual to the memory read, and, i n C , it has a typical
form *p = v. The transformation at locat ion i uses ValueSet(pi):

*p = v ^ f\ 0 i == (Pi == &o ? v : 0 i _ !) . (3.9)
oS ValueSet(pi)

In this case, the memory locat ion referenced by p is assigned a value. Therefore, we
create the S S A equality for each object from the ValueSet(pi) where it is assigned
the new value v i n case it was pointed by p, and it keeps its previous value otherwise
(o i _ 1) . The solver assigns a concrete address to pi dur ing solving, though one equality
pi = = & o w i l l be true only, and a single object o from ValueSet(pi) w i l l be updated.

Load and store These are typ ica l operations manipula t ing dynamic data structures, such
as l inked lists. The i r form in C is v = p—?>f and p—?>f = v for load and store, respec­
tively. Since the arrow operator in C might be rewritten using the dereference and
the dot operator (p — i s equivalent to (*p).f), these operations are analogous to
memory read and write. The only difference is that a field of a structure is accessed,
instead of the whole object.

In 2 L S , the structures are split into their fields and each field of a structured object
is considered a separate variable. Th is means that the transformation of load w i l l be
done s imilar ly to Equa t ion 3.5:

v = p—»f —> vi == Epj(ValueSet(pi), isnullipj), unknown(pi)). (3.10)

The expression Epj is defined as Ep where object fields are used instead of objects—
unknown_object.f i n place of unknown_object in Equa t ion 3.6 and o.f in place of o
in Equa t ion 3.7 and i n the second operand of the ternary operator in Equa t ion 3.8.

21

Analogously, the store operation is represented s imilar ly to Equa t ion 3.9:

p ^ f = v ^ J\ o.fi==(p==bo?v : o.f^). (3.11)
oS ValueSet(pi)

3.5 Template Heap Domain

We now present our abstract domain for modell ing the shape of the heap. In 2LS, the
abstract domain is specified by a template—a fixed quantifier-free first-order logic formula
describing the desired property of a program. In Section 3.1, we proposed to describe the
shape of the heap using a set of access paths. This section shows how these are used inside
a template, and how they are transformed into an appropriate formula usable i n the 2LS
solver working over the theory of bit-vectors and arrays.

3.5.1 Template Form

We use a simple model of the heap, which does not consider the pointer ari thmetic. We
restrict the template to use only those memory objects that describe the shape of the heap—
the pointer-typed objects (defined by the set Ptr) and the structure-typed heap objects
(defined by the set Str). The formula represented by a template is then a conjunction of
expressions, so-called template rows, where each row corresponds to one of these memory
objects. Since two types of objects are considered (pointer-typed and structure-typed), we
split the template into two parts:

• The pointer part describes the points-to relation between pointers and pointed objects
(which can be pointer-typed, too). The formula of the pointer part is a conjunction
of pointer rows:

T p = A %P(P>di)- (3-12)

Here, Tp {p, df) is the i - th pointer row that describes the points-to relation of the
pointer p. It is a parametrized formula wi th df being the abstract row value from
the domain 5P that is defined as:

§P = 2ObjUVar_ (3_13)

The row value specifies a set of (abstract) objects that the row pointer p may point
to. A pointer row is thus defined formula:

%P{p,df) = \/ p = ko. (3.14)

o G d f

• The object part describes the shape of dynamic data structures on the heap using
access paths. The formula is a conjunction of object rows, where one row is defined
for each pair of a heap object and its (pointer-typed) field:

T ° = A T?{{o,f),d°). (3.15)
{o,f)£StrxFld

22

Here, Tf{{o, /), df) is the i - th object row, which is a formula that characterizes a set
of access paths leading from the object o v i a its pointer field / . A n access path for a
tuple (o, /) is specified by a destination object and a set of (abstract) objects that it
passes through, thus the abstract domain 5° of the object row value df is:

50 = 20bjx20»i (3 1 6)

The object row is then a formula:

r ° ((o , /) , d p) = / \ p 0 ^ (o , / , d) [0] . (3-17)

The semantics of the pai/i predicate is defined i n Section 3.5.2.

The abstract domains 5P and 5 for both pointer and object rows contain two special
values _L and T , which represent the empty set and the whole domain, respectively (as
required by 2 L S , see Section 2.3.2). The formulae corresponding to rows w i t h these values
are defined as:

T{x,A-)= false

T(x, T) = true.

Final ly , using the formulae for the pointer and the object part, we define the template
T for our domain as:

T = T P A T ° . (3.19)

3.5.2 The path predicate

It remains to define when the path predicate is true. Intuitively, this can be defined recur­
sively:

pathio, f, d) o. f = kd V
i t \ (3-20)

path{*(o.f),f,d).

However, the recursive expression is not usable in the solver, which means we have to
remove the recursion. We do this i n an approximative way by introducing the set O which
contains a l l heap objects that the path passes through:

path(o,f, d)[0] <*o.f = kdW

(3o' eO:o.f = ko'
n ,, 3.21

A 3o" G O : o'.f = kd v '

A V o i € (O \ {o"}) 3o2eO: 0l.f = & o 2) .

The definition i n Formula 3.21 can be explained as follows. The first equality on the
right side of the equivalence indicates the si tuation when the destination can be reached
from the source i n one step by following the field / . In case this is not true, we have to
express that the destination might be reachable after mult iple steps. This is ensured by the
consequent conjunction. Its first part describes the first step on the path, the second part
describes the last step on the path, and the last part over-approximates the inner steps
of the pa th (l inking between the heap objects that the path passes through). Here, the
approximation is done i n the sense that we do not store the ordering of objects i n O and
thus this representation describes more paths than the recursive expression. However, this
is not a problem since we also compute access paths for a l l objects i n O dur ing the analysis.

23

3.6 Abstract Value Synthesis Algor i thm
The general core of the template parameter synthesis a lgori thm was indicated in Sec­
t ion 2.3.2. The domain-specific part of the a lgori thm is implementat ion of the jo in procedure
between an abstract value and a model of satisfiability returned by the solver. In order not
to over-approximate too much it is useful to design the jo in a lgor i thm such that a min ima l
value of the template parameter is found.

For the heap domain, we perform the jo in row-wise. The update of the row parameter
is different for every type of the row. It depends on the value assigned to the pointer (for
a pointer row) or to the field of the dynamic object (for an object row) i n the model of
satisfiability of Formula 2.10. Since the S M T solver used i n 2LS is based on the theory of
bit-vectors, it always assigns a value to each variable during solving, which i n case of the
pointer-typed objects is either an address of an object i n the memory or n u l l .

The update of a pointer row parameter value is simple. The object whose address
was assigned to the corresponding pointer in the model of satisfiability is added to the set
representing the row value. Th is way, we collect exactly a l l objects that the pointer can
reference. The ordering on the pointer row value is defined by the set inclusion.

The update of an object row parameter value is more complicated. We first define the
path relation for the field f denoted P' as:

We use this relation to define a par t ia l ordering on the set of a l l paths i n the heap. Since
this relat ion is transitive, the jo in a lgori thm creates the transitive closure over the set of
al l paths according to the following formula:

A l g o r i t h m 2 presents two functions for updat ing pointer and object rows, respectively.
B o t h functions take for parameters a template row of the appropriate type and the corre­
sponding model of satisfiability (S A T) of Formula 2.10.

In case the model of satisfiability gives that the value of the row object might be non-
deterministic, we set the value to T , which represents the whole abstract domain.

The creation of the transitive closure over the set of paths is ensured by the two loops
in the function U P D A T E H E A P R O W . The loop on lines 18-19 adds a l l paths from the object
pointed by o.f into the current row value, whereas the loop on lines 21-23 adds a l l paths
leading from current row object o into a l l row values that already contain paths leading
to o.

3.7 Interprocedural Analysis

Section 2.5 describes the current approach to the interprocedural analysis i n 2LS as follows:
for each function, the formal input and output variables of the function are determined, then
a summary of the function is computed using invariants, and, finally, a b inding between the
formal and actual values of inputs and outputs at each ca l l site of the function is created.

In the current implementat ion of 2LS , only parameters and global variables are consid­
ered as the inputs or outputs of a function. Therefore, we must introduce a way to pass the
objects that are not included i n the parameters (nor global variables) but can be reachable
from these v i a chains of pointers to the called function.

V x , y G Obj. xPfy 44> path(x,f,y). (3.22)

path(o', f, d)[0] A (o.f = &o') path(o, f, d)[0 U {o'}]. (3.23)

24

A l g o r i t h m 2 J o in i - th template row value wi th the satisfiability model

1: function U P D A T E P O I N T E R R O W (T p (P , df), model of S A T : p = v)
2: if v is non-deterministic then
3: df <- T
4: else if v = n u l l then
5: df <- df U { n u l l }

6: else
7: assume v = & o
8: df^dfu{o}

9: function U P D A T E O B J E C T R O W (T ° ((O , f),df), model of S A T : o.f = v)
10: if v is non-deterministic then
11: df <- T
12: else
13: if v = n u l l then
14: dp < -dp U { (n u l l , 0)}

15: else
16: assume v = Szd
17: d p ^ d p U { (o ' , 0) }
18: for all path(o', f, d)[0'] do / / Adding paths leading from d
19: d° ^d°U{(d,0'U{o'})}

20: / / Updating rows having paths leading to o
21: for all T ° ((o , f),df).(o, O) G d f do
22: for all (d, O) G d f do
23: df <-d$ U { (d , O U O U { o } })

A set of objects that a pointer can be dereferenced into can be determined from the
points-to analysis (Section 3.3) by querying the ValueSet set. In order for the points-to
analysis to work wi th interprocedural analysis, we have to introduce some extensions that
are presented i n Section 3.7.1.

Next , in Section 3.7.2, we show how binding of objects pointed by parameters and global
variables between the caller and the callee functions is done. However, we w i l l also show
that passing objects direct ly pointed by function parameters only is not enough to correctly
handle functions which alter the existing heap containing recursive data structures. For
that reason, i n Section 3.7.3, we w i l l extend the approach to be able to handle functions
manipulat ing l inked lists.

3.7.1 Interprocedural Points-to Analysis

In order to provide correct interprocedural analysis, we have to introduce the in i t i a l abstract
value and the abstract transformer for the function cal l into the points-to analysis. Since
each function is analysed separately, both of these concepts require an abstraction of pointed
objects—a pointer-typed parameter of a function may in i t ia l ly point to an unknown object
and a pointer passed to a function as an argument may point to a different object after
invocation of the function. Because of this, we introduce a function P O I N T E D shown in
A l g o r i t h m 3 that takes a pointer symbol p and creates a new symbol pohi that represents an

25

abstraction of the object pointed by p. If
pObJ Jg

pointer typed (which happens when passing
a pointer to a pointer), we add it into the Ptr set holding a l l pointers i n the program.

A l g o r i t h m 3 Create abstraction of a pointed object

1: function P O I N T E D (P G Ptr)

2: create pobi // typeof {jpohi) is the type pointed by typeof(p)
3: if typeof (p 0 ^) is pointer then
4: Ptr <r- Ptr U {pobj}
5: return pobi

Initial Abstract Value

Using the P O I N T E D function, we define the in i t i a l value of the points-to analysis of a function
/ by A l g o r i t h m 4.

A l g o r i t h m 4 In i t ia l abstract value for function /

1: for all p G (pararrif U glotff1) n Ptr do
2: iNIT(p)

3: function I N I T (P £ Ptr)

4: pobi <r- P O I N T E D (p)
5: ValueSet(p) <- {pobj}
6: unknownip) <— true
7: if pobj G Ptr then
8: lNIT(p°^')

The function I N I T is called for every pointer-typed input p of the function (which can
be parameter or global). It initializes the value set to contain the abstraction of the object
pointed by p and sets the unknown predicate for p to true. If p o b j is again a pointer, I N I T
is called recursively.

Here, p is used without the location index since it is an input to the function. The
symbol pobi w i l l be later bound to the corresponding object from the caller function (see
Section 3.7.2).

Example To better il lustrate how the in i t i a l value is used i n the S S A , we show an example
of a function c h a i n N o d e which takes a pointer to the head of a l inked list as a parameter,
allocates a new list node, appends it to the beginning of the list, and sets the head to the
new node. The function i n C and the corresponding S S A form are shown in Figure 3.2.

A new list node is allocated at line 2. The cal l to m a l l o c is transformed into an
instantiation of a new dynamic object. The pointer node is then dereferenced into this
object at line 3. The parameter ppnode is dereferenced into ppnode0^ at lines 3 and 4.

Funct ion C a l l Abstract Transformer

Next , we have to create an abstract transformer for the function ca l l command. A cal l
of a function might invoke a side effect on an object pointed by the return value, by an
argument of the cal l , or by a global variable—after the function invocation, a pointer
passed to the function might point to another object than before. Therefore, for each

26

1 void chainNode(struct node **ppnode) { 1
2 struct node *node = m a l l o c (sizeof *node) ; 2 node2 = &zdynamic_object$0
3 node->next = *ppnode; 3 dynamic_object$0.next^ = ppnodeohi

*ppnode = node; 4 ppnode^ = node2 4
5 }

(a) The function in C (b) The corresponding SSA

Figure 3.2: A function accessing a pointed object

pointer-typed argument a of the function, we use the function P O I N T E D to get the symbol
a o b j which abstracts the object pointed by a after invocation of the function, and add it into
ValueSet(ai), where i denotes the locat ion of the function ca l l . The abstract transformer
for a function ca l l fi(argj.) is described by A l g o r i t h m 5.

A l g o r i t h m 5 Abs t rac t transformer for a function cal l fi(argf.)

1: for all a € (argf. U globPf-°ut) D Ptr do

2: a o b j <— P O I N T E D (a)

3: A D D (o , 0 * ')

4: function A D D (P , 6)

5: ValueSet(pi) <— ValueSet(pi) U {o}
6: unknown(pi) <— true
7: for all p' G ValueSet(pi) n Ptr do
8: O o b j <(— P O I N T E D (o)

9: A D D (j / , o 0 ^)

The function A D D takes a pointer p and an object o being the abstraction of a new
object created by / and pointed by p after the invocation of / i n location i. It adds o to
ValueSet(pi). In case p is a pointer to a pointer, the function is recursively called for a l l
potentially pointed objects.

Example To illustrate the above, we now provide an example. Let p be of type i n t * * ,
x, y be of type i n t * , a, b be of type i n t , and the ValueSet sets at locat ion i — 1 be as
follows:

ValueSet(pi_1) = {x,y}

ValueSet(xi_1) = {a}

ValueSet(yi_1) = {&}.

After the cal l of a function having the declaration f (i n t * *q) w i th argument p at location
i, the sets w i l l be:

ValueSet(Pi) = {x,y,pobj}

ValueSet(Xi) = {a,pobj°bJ}

ValueSet(yi) = {b,pobj°bJ}

ValueSet(pf) = { p 0 ^ } .

27

Here, p o b j and p°bi° 3 abstract new objects of type i n t * and i n t , respectively, that
might have been created i n the function / . The object pobi needs not to be there since the
value of p itself cannot be changed by the function. However, it is not a problem that we
included it (in order to keep the a lgori thm simple), since we only over-approximate the set
of a l l objects that p might point to and the value of p w i l l not change i n the S S A form.

3.7.2 Binding Pointed Objects between Functions

Above, we described changes that have to be made i n the points-to analysis in order to
handle interprocedural analysis. We are able to compute how a single function affects
the shape of the program heap by computing the function summary using the proposed
shape domain. The computed summary can be used to constrain function cal l placeholder
in the S S A form in the way explained in Section 2.5.3. W h a t we need to extend here,
is the a lgori thm for b inding objects between the caller function and the summary, since
A l g o r i t h m 1 does not consider objects that are not function parameters, but are pointed
by those (and thus can be altered by the function summary).

These objects pose a problem i n terms of binding. The reason is that the names of the
corresponding heap objects might be different between the caller and the callee. To b ind
them correctly, we make use of the points-to analysis. We part icular ly query the ValueSet
sets of corresponding pairs of pointers (each pair composed of an argument and a parameter)
to b ind objects pointed by these. E .g . , i n the above example, at the function input, we
would b ind objects x and y (objects pointed by the argument p at the function cal l input)
to object qohi (an object representing an abstraction of the object in i t ia l ly pointed by the
parameter q).

Since we need to b ind mult iple objects together, we first extend the function B I N D that
was presented i n Section 2.5.3 to be able to create mult iple bindings at once. The new
function takes sets of variables as arguments (instead of simple variables) and is shown in
A l g o r i t h m 6. We introduce a binary operator <i that adds clauses at its right hand side to
the clause set of the S M T solver used by 2LS stated at its left hand side.

A l g o r i t h m 6 Extended Bind function

1: function B I N D (F I , F 2)

2: solver < V ' (« l l V a)GVixV 2 (u i = = ^)

A l g o r i t h m 7 shows the complete binding of the heap objects of a function / at a cal l
site fi. It works w i th the sets of objects defined i n Table 2.1.

We first define the function D E R E F taking a set P of pointer-typed objects and a location
i as arguments. It symbolical ly dereferences a l l pointers in P and returns the set of a l l
objects that can be pointed by these at the location i. The dereferencing is done by
querying the ValueSet sets of the pointers at line 2. In order to return the correct S S A
symbols of the dereferenced objects at locat ion i, we introduce the function S S A , which for
a variable v and a location i returns the corresponding S S A symbol—the variable v i n the
version of its last assignment before i. Th is function is applied to a l l elements of the set D
of the dereferenced objects and the resulting set is returned (line 3).

Next , we define the function B I N D P O I N T E D . It takes two sets of objects P i and P2 and
the corresponding locations i and j . If the sets contain pointers only, the function binds a l l
objects pointed by elements of P i at the location i to a l l objects pointed by elements of P2

28

A l g o r i t h m 7 B i n d i n g pointed objects

1: function D E R E F (P , i)

2: D <r- UpeP ValueSet(pi)
3: return { S S A (d , z) | d G D}

4: function B I N D P O I N T E D (P I , Z , P 2 , j)

5: if Vp G (P i U P 2) . typeof (p) is a pointer then
6: Di « - D E R E F (P I , Z)

7: L > 2 < - D E R E F (P 2 , j)

8: B l N D (D i , D 2)
9: B I N D P O I N T E D (L > I , i, L > 2 , j)

10: function B I N D P O I N T E D O B J E C T S (/ called from a locat ion i)
11: e entry location of /
12: o <— exit (output) location of /
13: for all x G globm,x' G glotfyrm s.t. N A M E (X) = N A M E (I ') do

14: B I N D P O I N T E D ({ : T } , e, {x '} , i — 1)

15: for all x G globout,x' G globp

jr-out s.t. N A M E (X) = N A M E (X ') do

16: B I N D P O I N T E D ({ : T } , O, {x'},i)

17: for j —̂ 0..(\paramjr\ — 1) do
18: BwDPomTED({paramf\j]},e,{argf.\j]},i — 1)
19: B i N D P o i N T E D ({paramj [j] } , o, {arg^. i)

at the locat ion j (lines 6-8). Since the dereferenced objects can be of a pointer type again,
the function is called recursively on the dereferenced sets.

The function B I N D P O I N T E D is then used from the main function B I N D P O I N T E D O B -
J E C T S that finally computes the binding of pointed objects. It binds the objects pointed
by formal input global variables of a called function / at the function entry location e to
the objects pointed by the actual values of the global variables at the cal l site i i n the
caller function (lines 13-14). The same is done for objects pointed by formal output global
variables at the exit location o of the function at lines (15-16). Then the binding is done
for objects pointed by corresponding pairs of formal parameters and actual arguments at
the entry and the exit of the function at lines (17-19).

Example We illustrate the a lgori thm on the function c h a i n N o d e from Figure 3.2. Let
this function be called as shown in Figure 3.3.

10 struct node * l i s t = NULL; 10 list10 = NULL
11 chainNode (S l i s t) ; 11 chainN~oden((&dist), ())

(a) The function call in C (b) The corresponding SSA

Figure 3.3: A function accessing pointed object

29

Since there are no global variables, only sets o , r g c h a i n N o d e i l and p a r a m c h a i n N o d e are
non-empty:

ar9chainNode^ = {Mist}

p a r a m c h a i n N o d e = {ppnode}.

The function B I N D H E A P O B J E C T S then executes lines 1 8 and 1 9 only:

1. The ca l l at line 1 8 looks as follows:

BiNDPoiNTED({ppno<ie}, 0 , {Mist}, 1 0) .

2 . In the first invocation of the B I N D P O I N T E D function, the sets D\ and D2 are:

Di = DEREF({ppnode}, 0) = {ppnode°bj}

D2 = DEREF ({Mist}, 1 0) = {list10}

and the created b inding is:
ppnode0^ = list10.

3 . In the next (recursive) invocation, the sets are:

L>i = D E R E F ({ppnodeobj},0) = {ppnodeobj°bj}

L>2 = DEREF({listIQ}, 1 0) = 0 —> since listw is n u l l

and there is no binding created (since D2 is empty).

4 . The ca l l at line 1 9 looks as follows:

B I N D P O I N T E D ({ppnode}, 5 , {Mist}, 1 1) .

5. In the first invocation of the B I N D P O I N T E D function, the sets D\ and D2 are:

D\ = D E R E F ({ppnode}, 5) = {ppnode^}

D2 = DEREF ({Mist}, 1 1) = {listu} —>• since list can be modified by c h a i n N o d e

and the created b inding is:
ppnode^ = listu-

6. In the next (recursive) invocation, the sets are:

D\ = DEREF ({ppnode^}, 5) = {dynamic_object$03}

D2 = D E R E F ({ Z i s t n } , 1 1) = {Ustf^} -> see A l g o r i t h m 5

and the binding created is:

dynamic _object$ 0'3 = listob^.

In total , there are three bindings created:

ppnode0^ = listw (input binding),

ppnode^ = listn (output binding), and

dynamic_object$03 = listob^ (output binding).

3 0

3.7.3 Functions Manipulating the Existing Dynamic Structures

Even though the proposed approach of passing objects pointed by inputs into a function is
able to handle pointers to pointers, it might not be sufficient when analysing functions that
take a recursive data structure existing on the heap as their input . We propose a way to
analyse this k ind of functions wi th concentration on l inked lists which are one of the most
often used data structures. A generalisation to other data structures is left for future work.

If a function, for example, traverses and manipulates a singly-linked list, it might alter
objects which are not direct ly pointed by the parameters but are reachable from those
v i a the list linkage. The information about the reachability of objects v i a pointer chains
is available during the analysis of the caller function (by computing access paths for the
actual function cal l arguments) but not dur ing the transformation of the callee function
into the S S A form, which is done prior to the actual analysis. Because of this, we are not
able to b ind the corresponding dynamic objects between the caller and the callee functions
using A l g o r i t h m 7 (since it uses sets of variables determined during the transformation into
the S S A form).

To resolve this problem, we make use of the fact that list traversals are done i n a similar
way i n most programs. Hence, we define so-called list iterators, which are special objects
representing an abstraction of i terating over a l inked list using some pointer. In this section,
we formalise the concept of iterators, explain how to create them i n the S S A , and, finally,
show how iterators can be used to correctly analyse functions manipulat ing l inked lists.

List Iterators

A list iterator is an abstraction of a list node (which is a dynamic object) pointed by a
certain pointer in a single i teration of a loop that iterates over the l inked list. Formally, we
define a list iterator, denoted it, triple:

it e {Ptr x Obj x Fid). (3.24)

The elements of an iterator are interpreted as follows:

• p £ Ptr: the induction pointer. It is a pointer that is used to traverse the l inked
l i s t—in each iteration, p points to the current list node.

• o £ obj: the initial node. It is a node that is pointed by p before the first i teration.

• / G Fid: the iterator field. It is a field through which a step to the next node is done
after each iteration.

Example A typica l iterative traversal of a l inked list is shown i n the function i n Figure 3.4.

For the given loop, we create a list i terator listlt:

list1 = {list, listobj, next). (3.25)

The induct ion pointer is list, the in i t i a l node is list0^ (it abstracts the object in i t ia l ly
pointed by list), and the iterator field is next (after each iteration, list is moved to the
node pointed by the next field).

31

void t r a v e r s e (s t r u c t node * l i s t)
{

while (l i s t)
{

// do something
l i s t = l i s t - > n e x t ;

}

}

Figure 3.4: Traversal of a singly-linked list

Creat ing List Iterators in the S S A F o r m

The presence of an iterative access to a l inked list may be determined by comparing the
values of the points-to relation of the induct ion pointer on the back edge of a loop and at
the loop head. To this end, we integrate a list i terator detection into our points-to analysis.
Specifically, the list i teration detection is integrated into the abstract transformer for a loop
back edge shown i n A l g o r i t h m 8.

A l g o r i t h m 8 Abst rac t transformer for loop back edge from locat ion j to locat ion i

1: for all p G Ptr do
2: if 3xobj G ValueSet(Pi) A 3xobj.fobj G ValueSet(Pj) then

3: ValueSet(Pi) <- (ValueSet(Pi) \ {xobj}) U {pu} // pu = (p, x o b j , /)

The transformer searches for a pattern of iterative access—at lines 1-2 it tries to find
a pointer p whose points-to value moved by a field / inside the loop body. In case it finds
such an access, it replaces the found value by a new iterator (line 3). In the future, the
detection can be improved by a more sophisticated method but so far the proposed simple
approach seems sufficient on many case studies.

After finding an iterator on the loop back edge, we need to replace a l l accesses to the
first list node that were obtained in the first traversal of the loop body in the points-to
analysis by accesses to the list iterator. We do this by redefining the jo in operator for the
ValueSet sets as shown i n A l g o r i t h m 9 . We denote ValueSet(pi)i to be the old value set,
ValueSet{pi)2 to be the new value set, and ValueSet(pi) the set resulting from the jo in .

We also define two helper operations:

• x contains y i f and only if the identifier of y is a substring of the identifier of x.

• x[y/z] is a symbol that is obtained from the symbol x by replacing a l l occurrences of
y i n the identifier of x by z.

A l g o r i t h m 9 Jo in of ValueSet(pi)

1: ValueSet(pi) <— ValueSet(pi)i U ValueSet{pi)2

2: for all V2 G ValueSet{pi)2 s.t. V2 contains qlt = (q,x,f) do
3: for all v\ G ValueSet(pi)\ s.t. v\ = V2[qlt/x] do
4: ValueSet(pi) <— ValueSet(pi) \ {v\}

32

The algori thm applies the standard set union and then filters out those objects that
were present i n the o ld value set and can be replaced by an iterator from the new value
set—these can be determined by replacing the iterator substring i n the new object by the
identifier of the in i t i a l node of the iterator. App l i ca t ion of this a lgori thm can be seen in
the points-to analysis i n the following example (join on lines 8 and 13).

Since a loop might access mult iple list nodes i n a single i teration and we want to
represent these as precisely as possible in the S S A , we extend the ini t ia l isat ion of the
abstract value by a loop shown i n A l g o r i t h m 10 that initialises value sets of pointer-typed
fields of data structures. For example, the in i t i a l ValueSet for a pointer listohKnext (which
represents the next field of the object in i t ia l ly pointed by the parameter list) w i l l contain
the object listobj .nextobj.

A l g o r i t h m 1 0 Ini t ial isat ion of the abstract value for pointer-typed fields of data structures

1: for all p^.f s.t. p G Ptr A typeof (p o b j) . / is pointer do
2: \mi(pohKf)

This a lgori thm is run along wi th ini t ia l isat ion by A l g o r i t h m 4. In case of recursive data
structures, the ini t ia l isat ion might not terminate, which we solve in practice by ini t ia l is ing
only those values that are actually used wi th in the S S A form of the analysed function. We
also run A l g o r i t h m 10 for iterators that are found during the analysis.

Example To illustrate the detection of list iterators, we show an example of conversion
of a program into the S S A form for a function transforming a singly-linked list into a
doubly-l inked list given in Figure 3.5.

1 void backLink(struct node *l i s t) {
2
3
4 while (list) {
5
(i
r

8 struct node *next = list->next;
9
10
11 next->prev = l i s t ;
12
13 l i s t = next;
14 }
15 }

(a) The function in C

Figure 3.5: S S A using list iterators

Firs t , the points-to analysis is run on the function source. Since there is one pointer
input, namely, list, we create an in i t i a l value for i t . We also create in i t i a l values for fields

2 g2 = TRUE
3
4 listf-' = (g[\ ? listf4 : list)
5
6 g6 =\{listlhi = NULL)
r

8 nexts = (list^hl = k,listlt ? listlt .next
9 : unknown_object.next)
10
11 listlt .nextobi .prev^ = list^hl

12
13 list13 = nextg
14
15

(b) The corresponding SSA

33

of the dynamic objects that w i l l be needed during the computat ion:

ValueSet(list) = {listob^} A unknown(list) = true

ValueSet(listobj .next) = {listobj .nextobj}

ValueSet(listobj .nextobj .prev) = {listobj .nextobj .prevobj}.

The computat ion of the ValueSet sets for the part icular program lines goes as follows:

8 : ValueSet(next8) = ValueSet(x.next7)
xd ValueSet(listj)

= ValueSet (listobj .next-,)

= ValueSet(listobj .next)

= {listobj .nextobj}

11 : ValueSet(listobj.nextobj.prevn) = ValueSet(listobj.nextobj.prev10) U ValueSet(list10)

= ValueSet(listobj.nextobj.prev) U ValueSet(list)

= {listobj.nextobj.prevobj, listobj}

13 : ValueSet(list13) = ValueSet(next12)

= ValueSet(next8)

= {listobj .nextobj}

14 : loop-back edge to 4

ValueSet(listA) = ValueSet(list) = {listobj}

ValueSet(list1A) = {listobj .nextobj}

=> ValueSet(listA) = {list11} where list1* = (list, listobj, next)

We have found an iterator.

The in i t i a l values of its components are the following:

ValueSet(listu.next) = {listu .nextobj}

ValueSet(listu.nextobj.prev) = {listu .nextobj .prevobj}

8 : ValueSet(next8)' = ValueSet(x.next7)
x£ ValueSet(listj)

= ValueSet(listlt.next7)

= ValueSetilist1 .next)

= {listu.nextobj}

8 : jo in

ValueSet(next8) = ValueSet(next8) o ValueSet(next8)'

= {listobj.nextobj} o {list*.next1*"}

= {listu.nextobj}

34

The iterator replaces the access to the object pointed by the next field of the first

list node previously detected by the analysis at line 8.

11 : ValueSet(list* .nextobj.prevn) = ValueSet(list*.nextobj.prev10) U ValueSet(list10)

= ValueSetilist*.nextob^.prev) U ValueSet(list4)

= {list*.nextobj.prevobj, list**}

13 : ValueSet(list13)' = ValueSet(next12)

= ValueSet(next8)

= {listu.nextobj}

13 : jo in

ValueSet(list13) = ValueSet(list13) o ValueSet(list13)'

= {listobj.nextobj} o {list*.next*"}

= {listu.nextobj}

The iterator replaces the access to the object pointed by the next field of the first

list node previously detected by the analysis at line 13.

14 : loop-back edge to 4

ValueSet(listA) = {list1}

ValueSet(listu) = {listu .nextobj}

=> ValueSet(list4) = {list*}

This iterator has already been found.

After the points-to analysis, we run the transformation of the C code into the S S A form.
This is done by the following steps:

1. L ine 2: The function entry is always reachable, thus the first guard is set to true.

2. L ine 4: A $ node is created for the loop head. It joins the value of list from before
the loop (the parameter list) and the value of list from the end of the loop body
(loop-back variable listlb

4).

3. L ine 6: The loop body is reachable only i f the loop condi t ion is satisfied—this is
expressed by the guard g6.

4. Lines 8-9: We query the points-to analysis to correctly dereference list:

ValueSet(lists) = ValueSet{list4) = {list*}

unknown(list8) = true.

Based on the information obtained from the points-to analysis, we create a case split
according to Equa t ion 3.10. The expression l i s t - > n e x t can have values list*.next
(line 8 i n the S S A form) or unknown_object.next (line 9 in the S S A form).

35

5. L ine 11: To correctly dereference next, we query the points-to analysis:

ValueSet(nextu) = {listu .nextobj}

and thus we create the equation as shown at line 11.

6. L ine 13: This is a simple assignment without dereferences, which we translate into
the S S A form by adding the appropriate variable indices.

The example contains a list iterator listlt obtained during the points-to analysis. Since
the S S A form uses mult iple versions of the same variable, we use the appropriate versions
in the iterator, too:

listu = (listlhi,listobj,next).

The loop i n the function traverses a singly-linked list passed to the function at the
input. In each loop iteration, the pointer list points to the current node of the list. In
the S S A form, the detected iterator represents an abstraction of a node pointed by list,
specifically by its version list^ht . The function reads the next field of the iterator (line 8)
which abstracts an access to the node that is the successor of the current node, and then
writes to the prev field of this node (line 11). We denote these reads and writes as iterator
accesses.

Iterator Accesses

Formally, an iterator access is associated wi th an iterator and contains a sequence of fields
and a location. Let X be a domain of a l l list iterators. We define an iterator access a as:

a e 1 x Fldn x Instr (3.26)

where Fldn denotes a n-fold Cartesian product of structure fields w i th arbi t rary n.
A n iterator access is interpreted as an access to a node that can be reached from the

current node (corresponding to the iterator) by following the given sequence of fields. Since
each iterator access is interpreted as a standard variable i n the S S A form, the location
specifies the S S A suffix of such variable. We showed that the example from Figure 3.5b
contains one iterator list11. We can detect two iterator accesses:

aj = (listlt, (next), 0) line 8

a2 = (listlt, {next,prev), 11) line 11.

The locat ion 0 is interpreted as the input version of the variable.

Binding List Iterators

After a l l list iterators and their accesses i n a function are found, we are able to compute the
summary of a function for a given cal l ing context, i.e. determine how the function alters
the l inked list given at its input . In order to do this, we b ind the list i terator accesses wi th
the actual heap objects from the function cal l ing context.

Let CallCtXh, be the cal l ing context of a function h called at location I. It has the
form of a heap template w i th computed values of row parameters for variables of the caller
function at the entry of the ca l l site hi. Next , let be a set of a l l list iterator accesses i n h.
Using this information, we perform the binding of list iterators of h w i th actual heap objects
from the cal l ing context using the function B I N D A L L I T E R A T O R S shown in A l g o r i t h m 11.

36

A l g o r i t h m 1 1 B i n d i n g list iterators to input heap objects

1: function R E A C H A B L E O B J S (O G Obj,f G Fid)

2: R <- 0
3: O <— set of a l l objects from CallCtx^ that correspond to o
4:

5: for all path(d, f,d)[0] G CallCtx^ such that o G O do
6: i ? < - i ? U O U {d} / / add objects on the path and the path destination

7: return R
8: function B l N D r T E R A T O R S (p G Ptr, o, it G Obj, f G Fid, F G Fid11, loc G Instr, i G N)
9: result <— true

10: i? <— R E A C H A B L E O B J S (o , /)

11: for all r G i? do
12: cond <— p = & r
13: bind <— i t = r A i t .F [i] = r .F[i]
14: if i < (| F | - 1) then
15: binder- bindA B i N D l T E R A T O R S (r . F [z] , r, it.F[i]obj, F[i], F, loc, i + 1)

16: expr <— cond bind
17: result <— result A expr
18: if t = (\F\ - 1) A loc ^ 0 then
19: add Tj((r,F[i]),df) to template

20: return result
21: function B I N D A L L I T E R A T O R S

22: for all (p r f , F , /oc) G ̂ where p r f = (p, o, f) do
23: solver < B I N D I T E R A T O R S (P , O, p l t , f, F, loc, 0)

Firs t , we define the function R E A C H A B L E O B J S that takes an (abstract) object o and a
field / and returns the set of a l l objects reachable from o v i a / i n the cal l ing context. Since
o might be an abstraction, we first get a l l objects that correspond to o i n the cal l ing context
(line 3). After that, a l l objects belonging to paths leading from objects corresponding to o
v ia the field / are collected (lines 5-6) and returned.

The actual b inding is created by the B I N D I T E R A T O R S function. The function returns
bindings of a single iterator access wi th corresponding objects and their fields. It is called
from the function B I N D A L L I T E R A T O R S for each iterator access (plt,F,loc) where plt =
(p, o, f). It has 7 parameters, 5 of them corresponding to elements of the iterator and the
iterator access. The parameter it represents the iterator symbol used i n the S S A form and
the parameter i is the current level of recursion and is used as the index into the field vector
F from the iterator access.

In order to explain how the function works, we illustrate used symbols on simple figures.
Let the call ing context contain a list l inked through a field / , where each node points to a
data node by the field g, and let this list be pointed by a pointer a that w i l l be passed to the
called function as an argument. Th is list is i l lustrated by Figure 3.6a and the corresponding
abstraction of the list at the callee site is shown by Figure 3.6b. Here, the list is pointed
by the formal parameter p and the first node is abstracted by the object pobi.

Next , let the analysed function contain a loop that traverses the given list, node by
node, using p as an induct ion pointer. We detect a list iterator plt = (p , p o b j , /) that, for

37

a V

f
02

f f
pobj f f
pobj

cP °2 cP °3

(a) Caller site (calling context). (b) Callee site.

Figure 3.6: L inked list at the function entry at the caller site and at the callee site.

example, i n a second loop iteration, is interpreted as shown in Figure 3.7b. A projection of
this si tuation on the actual list from the call ing context is shown i n Figure 3.7a.

V V

f
02

f

n 9

°2 n 9

°3

f
V

f

pit gObj

(a) Actual list from the calling context. (b) Abstraction of the list using an iterator.

Figure 3.7: Second i teration of a loop traversing a l inked list using p as an induct ion pointer.

W h e n the function B I N D I T E R A T O R S is called for the iterator plt = (p,pobj, /) and its
access (plt,g,0), it performs the following steps:

1. A set of objects reachable from the in i t i a l iterator object pobi (which corresponds
to o i in the call ing context) v i a the iterator field / is computed using the function
R E A C H A B L E O B J S (line 10).

2. Next , a binding for each reachable object r is created. In the si tuation shown in
Figure 3.7, r corresponds to 02. A binding is composed of a precondit ion and a binding
expression:

2.1 A precondition is an equality between the iterator induct ion pointer p and the
address of 02 (line 12).

2.2 The binding expression is a conjunction of mult iple equalities:

• A n equality between the iterator symbol plt and the object 02- (line 13)

• A n equality between the field of the iterator access plt .g and the correspond­
ing field 02- g (line 13).

38

• In case the iterator access is composed of mult iple fields (the index i of the
current access field is not the index of the last field), the function B I N D I T -
E R A T O R S is called recursively. In the presented situation, this could happen
if the object pointed by g would point to another object by some field. In
this case, the recursive cal l would have the form:

B i N D l T E R A T O R s (c > 2 . g , 02, plt-g°bj,g, F, loc, 1)

and it would create a binding for objects start ing from 02 following the field
g. The returned binding is added to the current one (line 15).

3. A new template row is inserted for each field of the actual object 02 that corresponds
to a write iterator access (this happens in the last recursive ca l l of the function for
an iterator access whose locat ion is not 0).

Example We illustrate the a lgor i thm on a concrete example. We use the function
b a c k L i n k from Figure 3.5. Let this function be called as b a c k L i n k (l i s t) w i th the
following cal l ing context:

T°{list, {o})

path(o, next, o')[o]

path(o, next, n u l l) [o, d]

path(d, next, n u l l) [o ']

path(o, prev, n u l l) []

path (d, pr ev, n u l l) [].

The state of the heap described by this cal l ing context is visualised i n Figure 3.8. Dashed
arrows denote that o and d are abstractions of list segments (of arbi trary lengths) l inked
through next field. A l l prev fields are set to n u l l .

list 0
next

0 0
next „1 next

0 0 n u l l

Figure 3.8: Visual isa t ion of the cal l ing context i n the example

The function b a c k L i n k contains one iterator listlt and two iterator accesses aj and a2-

list1 = (listf1 ,listobj ,next)

ax = (list1, (next), 0)

az = (list1, (next,prev), 8).

The function B I N D I T E R A T O R S is then executed for each iterator access. We show its exe­
cution for a2:

1. L ine 23: B I N D I T E R A T O R S (^ S ^ , listobj ,listlt, next, (next,prev), 8, 0) is called.

2. L ine 10: R E A C H A B L E O B J S (^ i s t o b - ? , next) is called, which returns the set R = {o, d}.

3. L ine 11: The first i teration w i l l create a binding for o.

39

4. L ine 12: cond = (list^ht = ho).

5. L ine 13: bind = (list1 = o A list1 .next = o.next).

6. L ine 14: i = 0 < (\F\ — 1) = 1, hence we recursively call
R E A C H A B L E O B J S (o . n e x t , o, list1.nextobi, next, (next,prev), 8,1).

6.1 L ine 10: R E A C H A B L E O B J S (O , next) is called, which returns the set i? = {o, o'}.

6.2 L ine 11: The first i teration w i l l create a binding for o.

6.3 L ine 12: cond = (o.next = ho).

6.4 Line 13: bind = {list1 .nextobi = o A list1 .nextobi.prevs = o.prevs).

6.5 Line 14: i = 1 > (|.F| — 1) = 1, hence line 15 is skipped.

6.6 L ine 16: expr = (o.next = ho =>• list1 .nextobi = o A listlt .nextob^ .prevs =
o.prev8).

6.7 Line 18: Condi t ion is true, hence we add a new template row: 7 u ° ((o , P ^ e ' u) , d$).

6.8 Lines 14-22: We repeat the loop for the object d.

6.9 Line 23: The resulting binding is:

(o.next = ho =4> list1 .nextobi = o A listlt .nextob^ .prevs = o.prevs) A

(o.next = ho' =4> list1 .nextob^ = d A listlt.next0^.prevs = d.prev8).

7. L ine 19: The iterator access b inding for the object o is:

Zis i f f t l = & o =4> (list1 = o A list1.next = o.next A

(o.next = ho =4> list1 .nextob^ = o A listlt .nextob^ .prevs = o.prevs) A

(o.next = ho' =4> list1 .nextob^ = d A listlt.next0^.prevs = d.prevs)).

8. L ine 21: The condit ion is false (correct template rows have been created i n the recur­
sive call) .

9. Lines 14-22: We repeat the loop for the object o'.

10. L ine 23: The whole binding for the iterator access az is:

listlhz = & o =^ (list1 = o A list1.next = o.next A

(o.next = ho =4> list1 .nextob^ = o A listlt .nextob^ .prevs = o.prevs) A

(o.next = hd =4> list1 .nextobj = d A list1 .nextobj.prevs = o'.prevs))

A

J z s i ^ = & 0 ' (Z i s f* = d A list1.next = d.next A

(d.next = hd list1 .nextobj = d A list1 .nextobj.prevs = o'.prevs)).

Moreover, two new template rows are created:

7 ^ ((o , p r e U) , d ?)

7 ? ((o ' , p r e U) , d ?) .

40

Similarly, bindings for the iterator access aj are created. In this case, the location of aj is
0, and so no new template rows are generated.

Using the given bindings and the new template rows, the summary for the function
b a c k L i n k w i l l contain access paths for o and d corresponding to the created back l ink v ia
the prev field i n the l inked list.

Last , we have to ensure that the computed summary can be used in the caller function
to constrain the function cal l . This is normal ly done by binding corresponding objects
between the caller and the callee functions using A l g o r i t h m 1 and A l g o r i t h m 7. These,
however, cannot be used for functions that contain iterators. The reason is that Algo­
r i thm 7 binds objects pointed by corresponding pointers using the results of the points-to
analysis. For a function manipulat ing existing l inked lists, a ValueSet of a formal output
contains an iterator object but the summary contains the actual objects from the call ing
context. We resolve this by introducing A l g o r i t h m 12 that binds the heap objects that were
changed wi th in the called function (hence they were added to the shape domain template
by A l g o r i t h m 11) to new versions of the same objects i n the caller function site. Th is
algori thm is run along wi th other binding algorithms which handle those objects that are
not represented by iterators.

A l g o r i t h m 12 B i n d i n g objects represented by iterators between / and a ca l l site / ,

1: e exit locat ion of /
2: for all 7j?((o, f),d%) added by A l g o r i t h m 11 do
3: solvere S S A (o . / , i) = S S A (o . / , e)

In the above example, two new template rows for o and d were created. If the func­
t ion b a c k L i n k was called from location 20, then running A l g o r i t h m 12 would create the
following bindings:

o.prev2Q = o.prev8

d' .prev2Q = d.prev8

41

Chapter 4

Implementation

We have implemented the solution proposed i n Chapter 3 into the 2LS tool . In Section 4.1,
we first describe the architecture of 2LS and the sequence of the ma in steps that 2LS
performs dur ing program analysis. Section 4.1 also contains short description of a l l analyses
currently available in 2LS . In Section 4.2, we show how we integrated shape analysis into
this architecture, giving the most important implementat ion details. In the end, we outline
how our shape analysis can be used simultaneously wi th other analyses by implementing a
simple combination of abstract domains.

4.1 The Architecture of 2LS

2LS is buil t over C P R O V E R infrastructure and uses mult iple components of this framework.
The overall architecture of 2LS can be divided into three main parts: front-end, middle-end,
and back-end. For many operations in the front-end and i n the back-end, the mechanisms
from the C P R O V E R framework or other external tools are used. The main steps performed
by 2LS are outl ined i n Figure 4.1 [17].

We now describe the part icular parts and steps i n more detail .

4.1.1 Front-End

The command-line front-end first configures 2LS according to user-supplied parameters.
There are many options that can be set, the complete list is available v i a the — h e l p
switch. After that, the source program is parsed and translated into a G O T O program.
This is ensured by GOTO program parser from the C P R O V E R framework, which uses an
external C preprocessor. A G O T O program is an internal program representation having
the form of a control flow graph. In the end, 2LS performs various transformation of the
G O T O program, such as function in l in ing or constants propagation. F r o m our point of
view, the most important transformation is spl i t t ing chains of dereferences occurring in
one command into mult iple commands. Th i s ensures that each statement contains one
dereference only and hence the points-to analysis and representation of heap operations in
the S S A form does not have to handle situations when mult iple dereferences occur i n one
command.

42

source program

C M D line C parser G O T O G O T O
front-end

C parser
conversion processing

Static
analyses

S S A form
program
is correct

Abstract
domains

Invariant
generator

Proper ty
checker

unknown
result

Incremental
S M T solver

S A T solver
S M T solver program

Figure 4.1: The architecture of 2LS

4.1.2 Midd le -End

The middle-end is the part of 2LS where most of the program analysis is done. For that
reason, we describe the steps included into this phase i n more detail .

Static Analyses and Conversion into the S S A F o r m

Firs t , several static analyses are performed on the G O T O program i n order to obtain
information that w i l l be needed for the subsequent conversion into the S S A form. These
include objects analysis that collects a l l objects accessed in a function, and assignments
analysis that, for each object, determines program locations where the object is assigned.
This analysis is crucial for the S S A generation since the S S A versions of variables w i l l be
created based on computed locations.

Another important analysis performed i n this phase is the points-to analysis that we
extended and described in Section 3.3.

After performing a l l needed static analyses, the G O T O program is converted into the
S S A form. The approach of the conversion was described already i n Section 2.4.3.

Invariant Generator

The S S A form is an over-approximation of the G O T O program (due to the way loops are
cut w i th the values returned over the back-edges made random and function calls havocked).

43

2LS refines this over-approximation by inferring loop invariants and function summaries.
These can be computed in various abstract domains that are chosen by command line
options. Currently, 2LS supports the following domains:

• Polyhedra domains: domains for analysis of numerical variables—signed and unsigned
bit-vector integers and floats. These include:

— Interval domain: The value of each numerical variable is constrained by an
interval. Thus, for each variable x, constraints i n the form ±x < C, where C is
a constant, are discovered.

— Zones domain: Uses constraints of the form x — y < C for each pair of program
variables x and y.

— Octagon domain: Uses invariants of the form x + y < C for each pair of program
variables x and y.

• Equalities domain: A domain for analysis of equalities and disequalities between pairs
of variables.

• Lexicographic ranking domain: A domain used for terminat ion analysis.

Property Checker

After a l l invariants are computed, the property checker checks val idi ty of a l l user-supplied
assertions i n the source program. This is done by solving the formula representing the
source program obtained from the S S A form along wi th the computed invariants i n the
S M T solver and checking the satisfiability of negations of program assertions. In case the
negations of a l l assertions are unsatisfiable, the program is val id, on the other hand i f there
is an assertion whose negation is satisfiable, the program contains an error. If an error is
found, it may be spurious due to over-approximation (when the inferred invariants are too
weak) and thus the analysis result might be indecisive.

4.1.3 Back-End

B o t h invariant inference and property checking are done using an S M T solver. Since 2LS
requires an incremental solver and its support is much better in S A T solvers, it uses an
external S A T solver Glucose 4.0 or M i n i S A T 2.2.0. The needed support for the S M T
theories of bit-vectors and arrays are provided by the C P R O V E R infrastructure.

4.2 Shape Analysis Integration

We have implemented our solution of shape analysis into the above described architecture
of 2 L S . A l l algorithms from Chapter 3 are implemented i n a straightforward manner. In
this section, we state the parts of 2LS where the part icular algorithms are implemented
and present some implementat ion details.

44

4.2.1 Points-to Analysis and Heap Operations in the S S A Form

The points-to analysis we use is implemented as one of the static analyses that are per­
formed prior to the conversion into the S S A form. It uses the classical abstract interpre­
tat ion approach. In order to implement i t , we make use of the C+-1- template for abstract
interpretation provided by the C P R O V E R infrastructure.

The replacement of the calls of the m a l l o c function is done in the phase of processing
the G O T O program. For each cal l , a new object is created and inserted into the symbol
table, and the address of this object is used i n place of the cal l .

The representation of heap operations is included into the transformation of the G O T O
program into the S S A form.

4.2.2 Shape Domain

We created a new abstract domain for shape analysis. It is composed of two main parts:
the domain itself, and the strategy solver. The domain defines the form of the template
and the abstract value, while the strategy solver implements the a lgori thm for jo in of the
current abstract value wi th the model of satisfiability of the formula returned by the solver.
The inference of invariants is ensured by the invariant generator of 2 L S . The usage of our
shape domain can be activated using the — h e a p switch.

The domain also contains an implementat ion of the in i t i a l b inding of list iterators (A l ­
gori thm 11) that is performed at the beginning of analysis of each function.

The binding between the caller and the callee functions is ensured by a component called
SSA inliner, which we extended by our binding algorithms (Algor i thm 7 and A l g o r i t h m 12).

4.3 Combination of Abstract Domains

One of the main directions of this work is to provide a possibil i ty to combine multiple
abstract domains together, which could br ing the possibil i ty to analyse complex properties
of programs, such as those that depend both on pointer and non-pointer variables.

A s a proof of concept, we have implemented a simple domain combinat ion that combines
our shape domain w i t h the interval domain already present in 2 L S . We make use of the
fact that interval domain uses template rows for numerical variables, s imilar ly to our shape
domain using template rows for pointer variables. The implementat ion is based on creating
a new abstract domain, whose template is composed of two parts: one part being for
numerical variables and the other for pointer variables. For each row, the abstract value is
computed in the corresponding domain using the corresponding jo in algori thm.

If we split structure-typed variables of the original program into part icular fields, we
can determine the shape of dynamic data structures from invariants for pointer-typed fields,
and the content of nodes of these structures from invariants for numerical fields. This way,
we may be able to prove properties that could not be proven when each analysis was done
separately.

45

Chapter 5

Results and Experiments

We have proposed and implemented a shape analysis designed part icular ly for the 2LS
framework. In order to prove that our extension brought an improvement of the capabil i­
ties of 2LS , we performed a series of experiments. These were run on a benchmark from the
International Compet i t ion on Software Verification 2017 (S V - C O M P 2017) and on a bench­
mark from the Predator shape analyser. T h e execution and results of these experiments
are described i n Sections 5.1 and 5.2.

Since our solution involves major updates to parts of 2LS that are run for each k ind of
analysis (modifications of the S S A form generation, points-to analysis, etc.), it is essential
to prove that our changes d id not affect other analyses. To this end, we use the regression
tests that are present i n 2LS . The obtained results are described in Section 5.3.

5.1 Benchmark from S V - C O M P 2017

One of the most relevant collections of benchmarks i n the community of software verification
and analysis is the collection of benchmarks from the International Compet i t ion on Software
Verification (S V - C O M P) . The goal of this competi t ion is to provide a possibil i ty to compare
different verification tools i n terms of their precision and performance. This is done by
establishing a set of benchmarks that are composed of a large number of verification tasks.
Each task consists of a C program and a property (reachability, memory safety, termination)
to be verified.

The tasks are divided into several categories and their subcategories, based on the
verified properties. Since we a i m to analyse properties related to the shape of the heap,
the most important category is the Heap Reachabi l i ty category. The tasks of this category
a im to verify user-supplied assertions that check reachability of objects i n dynamic data
structures such as lists, trees, etc.

The result of running a tool on the benchmark of an S V - C O M P category is a score
expressing the performance of the tool on the tasks included into the given benchmark.
For the Heap Reachabi l i ty category, the expected result of a verification task is either true,
which expresses that the program is error-free, or false, which expresses that the program
contains an error meaning that some broken assertion is reachable. The scoring system is
the following:

• +2 points for each program that is correctly proven to be error-free (correct true).

• +1 point for each program where an existing error is found (correct false).

46

• -16 points for each correct program i n which an error is reported (incorrect false,
a so-called false positive).

• -32 points for each program where an error is present, but was not discovered (incorrect
true, a so-called false negative).

• 0 points for an inconclusive result, which also includes a tool crash, or out of resources
error.

We executed 2LS on the Heap Category benchmark from S V - C O M P 2017 without and
wi th our extension. The obtained results are shown i n Table 5.1. The experiments were run
on an Intel X e o n 5000 processor at 3.5 G H z running U b u n t u 16.04. Each run was l imited
to 15 G B of memory and 60 s of C P U time.

Table 5.1: A comparison of 2 L S without and wi th our extension on the S V - C O M P T 7 Heap
Reachabil i ty category

2LS

Without W i t h
extension extension

Number of tasks 173 173

Correct results 77 82

Correct true 54 62

Correct false 23 20

Incorrect results 17 4

Incorrect true 6 3

Incorrect false 11 1

Inconclusive 79 87

Score -237 32

C P U time per
finished task (s) 0.31 0.37

We can see that our analysis increased the number of correctly analysed tasks and
decreased the number of incorrect results, which led to a significant increase of the score.
However, the results br ing some interesting observations.

Even though the tota l number of correct results increased, the number of errors correctly
found decreased. A likely explanation is that the previous "correct false" results were just
coincidences, which is justified by a large number of "incorrect false" results. Since 2LS
had but min ima l support for shape analysis, manipula t ion of the heap often caused errors.

Generally, we can observe that the most significant improvement was i n proving correct
programs and avoiding false positives. Th is can be explained by the fact that our shape
analysis uses the abstract interpretation approach of 2 L S , which over-approximates the
program and thus is sound in proving program correctness. Moreover, when an error is
found, it is not guaranteed to be reachable i n the real program (due to over-approximation)
and thus 2LS often ends wi th an "unknown" result i n case the error might be spurious.
This possibil i ty is supported by the increase of inconclusive results obtained when using
our extension of 2LS.

47

The next observation is that there is a significant number of tasks that are successfully
verified even without our extension. This is mainly caused by the fact that these tasks do
not contain any loops, thus no invariant is to be computed, and the S S A form w i t h the
S M T solver is enough to prove the program correctness or to find an error.

Last, the table also shows the average C P U time spent to verify a task. Th i s calculation
includes only those tasks whose analysis finished without error (hence we remove tasks that
ended by the tool crash or out of resources error). We can observe that our shape analysis
increased the verification t ime by few percent only and hence preserved a high performance
of 2LS .

5.2 Experiments from the Predator Tool

Apar t from S V - C O M P benchmarks, other sets of relevant examples can be found i n the
distributions of existing tools for shape analysis. Currently, one of the best tools i n this area
is the Predator tool []. It has won several gold medals in the Heap Manipu la t ion category
in previous editions of S V - C O M P (this category was replaced by the Heap Reachabil i ty
category this year).

We extracted the regression tests from this tool that work wi th singly (S L L) and doubly
linked lists (D L L) . We added program assertions into these programs so that they are us­
able for analysis w i t h 2 L S . In the tests, we are not interested in lists destruction, since our
extension does not support checks for memory leaks, yet. S imi lar ly to the previous exper­
iment, we ran 2 L S on the benchmark without and wi th our shape analysis, and compared
the numbers of successfully verified examples. The results are shown in Table 5.2.

Table 5.2: A comparison between the number of successfully verified tasks from the Predator
benchmark wi th and without our extension of 2LS

Tasks
Correct results

before our after our
extension extension

S L L

D L L
17

8

6 14

2 7

We can observe that our analysis notably increased the number of successfully verified
programs i n both categories. We can see that there is a number of tasks that 2LS handles
without our extension, which is caused by the fact that these programs either do not contain
any loops, or check for properties that can be proven without an invariant for the shape of
the heap.

5.3 2LS Regression Tests

2LS contains a large set of regression tests checking various properties of programs. A
majority of the tests is aimed towards existing analyses—the analysis of numerical variables
and the terminat ion analysis. We re-ran these tests after the integration of our solution
and compared the results w i th the previous ones. Th i s way, we show that our changes d id
not corrupt the current analyses of 2LS.

The tests are divided into 5 ma in categories, each containing a number of verification
tasks. Every task contains a C program to be verified and a test specification that defines

18

the expected verification result. A short description of each category can be found in
Append ix C . Since 2LS is s t i l l i n development, there are tasks that 2 L S is currently not
able to verify correctly. The numbers of successfully verified tasks before and after the
integration of our solution are shown i n Table 5.3.

Table 5.3: A comparison between the number of successfully verified 2LS regression tests
wi th and without our extension

Category Tasks
Correct results

before our after our
extension extension

Terminat ion 125 89 90

k / k J 36 31 31
Preconditions 8 8 8
Interprocedural 46 31 31
Invariants 86 64 64

The results show that our changes d id not negatively affect the existing analyses i n 2LS .
O n the contrary, there is one addi t ional successful test in the Terminat ion category. Even
though the test does not use the shape domain, our changes to passing pointers between
functions helped to perform correct verification of the benchmark.

49

Chapter 6

Conclusion

In this work, we proposed a way of integrating shape analysis into the 2LS framework.
This included creating an abstract domain capable of describing the shape of dynamic
data structures i n the heap. To this end, we use the concept of pointer access paths that
describe the shape of the heap by expressing a reachability of heap objects from pointer-
typed variables in the analysed program. Moreover, we introduced changes to other parts
of 2LS needed to successfully perform the shape analysis. Specifically, we improved the
generation of the S S A form, extended the points-to analysis, and proposed methods needed
to perform interprocedural analysis of functions working wi th pointers and recursive data
structures.

The proposed mechanisms show how pointer operations and the shape of the heap can
be described using quantifier-free formulae i n the first-order logic. Solving these in an S M T
solver working wi th the theory of bit-vectors allows one to automatical ly prove properties
of a C program regarding dynamic data structures, especially l inked lists.

We have implemented the proposed concepts into the 2LS framework and performed
a series of experiments to demonstrate usefulness of our extension. The experiments were
run on benchmarks from the Heap Reachabi l i ty category of S V - C O M P 2017 and from
the Predator tool . The results show that our shape analysis i n 2LS brought a significant
improvement of the capabilities of 2LS to analyse programs working wi th pointers and
dynamic data structures. We also showed that the implementat ion d id not negatively
affect other analyses that were already present in 2LS .

Current analyses i n 2LS include a good-quality analysis of values of numerical variables.
Its combination wi th the proposed shape analysis could br ing the possibil i ty of analysing
interesting properties of the heap, such as those that depend on lengths of the lists, or
offsets of the addresses. In our implementation, we showed how a simple combinat ion of
domains can be done i n 2LS . In the future, extending this concept could allow one to
efficiently analyse properties that other tools cannot cope w i t h and thus to handle more
complex programs.

50

Bibliography

[1] C P R O V E R . h t tp : / /www.cprover .org / .

[2] A l p e r n , B . ; Wegman, M . N . ; Zadeck, F . K . : Detect ing Equa l i ty of Variables i n
Programs. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles of
Programming Languages. A C M . 1988. pp. 1-11.

[3] B r a i n , M . ; D a v i d , C ; Kroen ing , D . ; et a l . : M o d e l and Proof Generat ion for
Heap-Manipula t ing Programs. In Proceedings of the 23rd European Symposium on
Programming. Springer. 2014. pp. 432-452.

[4] B r a i n , M . ; Joshi, S.; Kroen ing , D . ; et a l . : Safety Verification and Refutation by
fc-Invariants and fc-Induction. In Proceedings of the 22nd International Static
Analysis Symposium, LNCS, vo l . 9291. Springer. 2015. pp. 145-161.

[5] Chen , H . ; D a v i d , C ; Kroen ing , D . ; et a l . : Synthesising Interprocedural Bi t -Precise
Terminat ion Proofs. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering. A C M . 2015. pp. 53-64.

[6] Chong, S.; ; Rugina , R . : Static Analys is of Accessed Regions in Recursive D a t a
Structures. In Proceedings of the 10th International Static Analysis Symposium.
Springer. 2003. pp. 463-482.

[7] Cousot, P. ; Cousot, R . : Static determination of dynamic properties of programs. In
Proceedings of the Second International Symposium on Programming. Dunod , Paris ,
France. 1976. pp. 106-130.

[8] Cousot, P. ; Cousot, R . : Abst rac t interpretation: a unified lattice model for static
analysis of programs by construction or approximat ion of ffxpoints. In Proceedings of
the 4th ACM SIGPLAN Symposium on Principles of Programming Languages. A C M .
1977. pp. 238-252.

[9] D u d k a , K . ; Peringer, P. ; Vojnar, T . : Byte-Precise Verification of Low-Leve l Lis t
Manipu la t ion . In Proceedings of the 20th International Static Analysis Symposium.
Springer. 2013. pp. 215-237.

[10] Habermehl , P. ; Hol ik , L . ; Rogalewicz, A . ; et a l . : Forest A u t o m a t a for Verification of
Heap Manipu la t ion . In Proceedings of the 23rd International Conference on
Computer Aided Verification. Springer. 2011. pp. 424-440.

[11] Hooker, J . N . : Solving the incremental satisfiability problem. JLP. vol . 15, no. 1&2.
1993: pp. 177-186.

51

http://www.cprover.org/

[12] Matosevic, I.; Abde l rahman, T . S.: Efficient Bot tom-up Heap Analys is for Symbolic
Path-based D a t a Access Summaries. In Proceedings of the International Symposium
on Code Generation and Optimisation. A C M . 2012. pp. 252-263.

[13] M0l le r , A . ; Schwartzbach, M . I.: The Pointer Assert ion Logic Engine. In Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language Design and
Implementation. A C M . 2001. pp. 221-231.

[14] Reynolds, J . C : Separation Logic : A Logic for Shared Mutab le D a t a Structures. In
Proceedings of the seventeenth Annual IEEE Symposium on Logic in Computer
Science. I E E E Computer Society. 2002. pp. 55-74.

[15] Rinetzky, N . ; Bauer, J . ; Reps, T . ; et a l . : A semantics for procedure local heaps and
its abstractions. In Proceedings of the 32nd ACM SIGPLAN Symposium on
Principles of Programming Languages. 2005. pp. 296-309.

[16] Sagiv, M . ; Reps, T . ; W i l h e l m , R . : Parametr ic Shape Analys is v i a 3-valued Logic . In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming
Languages. A C M . 1999. pp. 105-118.

[17] Schrammel, P.; Kroen ing , D . : 2LS for P rogram Analys is - (Compet i t ion
Contr ibut ion) . In Proceedings of the 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, vol . 9636. Springer.
2016. pp. 905-907.

52

Appendix A

Contents of the C D

The attached C D contains source codes of the project. The main directory structure of the
C D is the following:

/
21s/ 2LS directory

r e g r e s s i o n / 2 L S regression tests
s r c / 2LS source files

_ c b m c / C B M C (C P R O V E R framework) directory
. d o c / Source files of this text

_ README R E A D M E file

Our extension is implemented as a part of the 2LS framework and thus the source files can
be found in 2 1 s / s r c . This directory is d ivided into mult iple subdirectories, some of which
contain components of our extension:

d o m a i n s Contains abstract domains used in 2 L S . Our shape domain is implemented by
the following components:

h e a p _ d o m a i n Defines the template form and the abstract value.

l i s t _ i t e r a t o r The representation of list iterators.

s t r a t e g y _ s o l v e r _ h e a p Implements the abstract value synthesis algori thm.

s s a Contains components related to the creation and manipulat ion of the S S A form. Im­
portant components are:

l o c a l _ s s a The definition of the S S A form. It also contains a lgori thm for transfor­
mation of the G O T O program into the S S A form, which includes representation
of heap-manipulating operations.

m a l l o c _ s s a The replacement of m a l l o c calls by dynamic objects.

s s a _ i n l i n e r Responsible for b inding between the caller and the callee functions
in interprocedural analysis.

s s a _ p o i n t e d _ o b j e c t s A l ibrary for working wi th pointed objects abstractions.

s s a _ v a l u e _ s e t The points-to analysis.

The directory d o c contains the WT^K. source files and the P D F version of this text.

53

Appendix B

Compilation and Running

The project can be compiled and run using the source files that are attached on the C D .
Compi la t ion can be done by the following steps:

1. Compi le C B M C — t h i s is a l ibrary for the whole C P R O V E R infrastructure that 2LS
is bui l t on. C M B C i n correct version can be found on the C D and compiled using
c b m c / s r c / M a k e f i l e .

2. Compi le 2LS—requires C B M C to be compiled in the c b m c / folder. Compi la t ion of
2LS can be done using 21s/s rc/Makef i l e .

2LS wi th our shape domain can be run by the following command:

21s / s u m m a r i z e r/21s — h e a p — n o - p r o p a g a t i o n SOURCE_FILE

It is recommended to use the — n o - p r o p a g a t i o n switch that turns off a propagation
of constants in the G O T O program, which can sometimes cause problems for our points-
to analysis. The file SOURCE_FILE must be a correct compilable sequential C program.
Process and results of the analysis are printed to s t d o u t and s t d e r r .

We also recommend to use the 2LS regression tests that define a simple way of analysing
programs wi th 2LS . Ex i s t i ng tests can be found i n subdirectories of 21s/regression.
Each test contains a C program to be verified and a test specification t e s t . d e s c that
defines the parameters and the expected results of the analysis.

54

Appendix C

2LS regression tests

2LS contains a number of regression tests divided into mult iple categories. These can be
found i n 2 1 s / r e g r e s s i o n directory where each category is contained i n one subdirec­
tory. Each category contains various verification tasks situated in separate folders. A task
folder contains a C program to be analysed and a task specification. The result of the
analysis is also stored in the task directory. A l l tests from a category can be run using
<ca tegory>/Makef i l e . A p a r t from running each category separately, it is also possible
to run a l l categories together using 21s / r e g r e s s i o n/Makef i l e .

There are 5 categories that contain the original 2LS regression tests that were used in
the experiment i n Section 5.3:

i n t e r p r o c e d u r a l Tasks in this category are aimed at verifying programs using interpro-
cedural analysis. Here, a summary is computed for each function of the analysed
program. The tests include both context sensitive and context insensitive analyses.

i n v a r i a n t s Tasks i n this category are aimed at computing invariants using various (mainly
numeric and equalities) domains. The verified programs typical ly contain the main
function only or are analysed using the — i n l i n e switch.

k i k i Contains tasks aimed at checking features of the klkl a lgori thm, mainly k-induction.

p r e c o n d i t i o n s Tasks i n this category are aimed at computing forward and backward pre­
conditions and postconditions of functions of the analysed program, which is one of
the features of 2 L S . A l l tests are run wi th the — p r e c o n d i t i o n s switch.

t e r m i n a t i o n Tasks i n this category are aimed at analysis of terminat ion of functions i n the
analysed program. A l l tests are run wi th the — t e r m i n a t i o n switch. The analysis
uses lexicographic domain.

W i t h i n this work, we added 3 more categories of regression tests into 2LS that a im at
checking properties related to the shape of the heap:

h e a p Contains tasks using interprocedural analysis of heap-manipulating programs. Here,
it is possible to find functions that were used as examples in this thesis.

p r e d a t o r - d l s Contains tasks from the Predator tool aimed at checking properties of doubly-
linked lists. These tasks were used i n the experiment in Section 5.2.

p r e d a t o r - s i s Contains tasks from the Predator tool aimed at checking properties of singly-
linked lists. These tasks were used i n the experiment in Section 5.2.

55

