
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

DATA STREAM COMPRESSION AND DECOMPRESSION
METHODS.
REAL TIME KOMPRESE A DEKOMPRESE INFORMACÍ V DATOVÝCH TOCÍCH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Oleksandr Makedonenko

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Soběslav Valach

BRNO 2019

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Bakalářská práce
bakalářský studijní obor Automatizační a měřicí technika

Ústav automatizace a měřicí techniky
Student: Oleksandr Makedonenko ID: 175207
Ročník: 3 Akademický rok: 2018/19

NÁZEV TÉMATU:

Real time komprese a dekomprese informací v datových tocích

POKYNY PRO VYPRACOVÁNÍ:

Cílem projektu je snížit alespoň přechodně bezeztrátově datový tok v komunikačním kanále a to tak, aby se
mohly přenášet servisní informace a nekritické datové toky. Příkladem nechť je datová linka o maximální
propustnosti dat 1Gbit/s saturovaná na 98-100% své nominální kapacity.
1) Prostudovat metody bezeztrátové komprese dat a signálů.
2) Vybrat vhodnou metodu, která bude využitelná pro hradlové pole s přiměřenými nároky na spotřebu zdrojů
a definovanými parametry.
3) Implementovat alespoň jednu metodu pro přijímač a vysílač.
4) Zaměřit se na řešení okrajových podmínek (rozpojení přenosové trasy, výpadek, chyba).
5) Demonstrace výsledků na hardwarové platformě.

DOPORUČENÁ LITERATURA:

1. Joe-Ming Cheng: Contributions to binary adaptive-coding, sliding window hardware compression, Huffman
coding redundancy bounds, and hybrid arithmetic coding. Sptember 9, 2011

Termín zadání: 4.2.2019 Termín odevzdání: 20.5.2019

Vedoucí práce: Ing. Soběslav Valach
Konzultant:

 doc. Ing. Václav Jirsík, CSc.
předseda oborové rady

UPOZORNĚNÍ:
Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Abstrakt

Cílem tento práce je prostudovat metody bezztrátové komprese a zmenšit datový

tok ve komunikačním kanále, prováděním bezztrátové algoritmu komprese, který

může být použity pro FPGA desku s teoretickým dosahem rychlosti 1Gbit/s.

Klíčová slova

Bezeztrátová, komprese, algoritmus, LZW, LZ77, LZ78, Huffman, Deflate,

FPGA, MyHDL

Abstract

Goal of this work is to study lossless compression methods and to reduce data

flow in communication channel by implementing lossless compression algorithm

that can be useable on FPGA board with theoretical achievement of speed 1 Gbit/s.

Keywords

Lossless, compression, algorithm, LZW, LZ77, LZ78, Huffman, Deflate, FPGA,

MyHDL

Bibliografická citace:

MAKEDONENKO, Oleksandr. Real time komprese a dekomprese informací v

datových tocích. Brno, 2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-

prace/detail/119332. Bakalářská práce. Vysoké učení technické v Brně, Fakulta

elektrotechniky a komunikačních technologií, Ústav automatizace a měřicí techniky.

Vedoucí práce Soběslav Valach.

https://www.vutbr.cz/studenti/zav-prace/detail/119332
https://www.vutbr.cz/studenti/zav-prace/detail/119332

Prohlášení

„Prohlašuji, že svou diplomovou (bakalářskou) práci na téma “Real time

komprese a dekomprese informací v datových tocích” jsem vypracoval samostatně

pod vedením vedoucí/ho diplomové (bakalářské) práce a s použitím odborné

literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a

uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové (bakalářské) práce dále prohlašuji, že

v souvislosti s vytvořením této diplomové (bakalářské) práce jsem neporušil

autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do

cizích autorských práv osobnostních a jsem si plně vědom následků porušení

ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně

možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy

VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne: 13. května 2019 …………………………

 podpis autora

ACKNOWLEDGMENTS

I would like to thank my supervisor Ing. Soběsalv Valach for help and tips

during my work. And I would like to thank my relatives for moral and material

support.

7

Table of contents

1. INTRODUCTION... 11

2. COPMRESSION METHODS DEFINITION AND CLASSIFICATION 12

2.1 Lossy compression .. 12

2.2 Lossless compression .. 12

3. LOSSLESS COMPRESSION TYPES ... 13

3.1 Entropy coding type .. 13

3.2 Dictionary type .. 14

4. LOSSLESS COMPRESSION METHODS IN DETAILS 15

4.1 Huffman coding .. 15

4.2 Adaptive Huffman coding ... 17

4.3 LZ77 ... 18

4.4 Lempel-Ziv-Weich algorithm .. 19

4.5 Deflate compression algorithm .. 20

5. PRACTICAL IMPLEMENATION ... 22

6. CONCLUSION ... 26

8

List of abbreviations

FPGA … field-programmable gate array

Gbit … gigabit

LZ77 … Lempel-Ziv 77

LZ78 … Lempel-Ziv 78

LZW … Lempel-Ziv- Welch

VHDL … (Very high-speed integrated circuits) Hardware

Description Language

NYT … Not Yet Transmitted

9

List of figures

Figure 4-1: Huffman binary tree example of string “BOOKKEEPER” 16

Figure 4-2: Nodes numeration example.. 17

Figure 4-3: LZ77 example ... 18

Figure 5-1: DEFLATE logic block ... 22

Figure 5-2: DEFLATE work block scheme .. 24

10

List of tables

Table 4-1: Huffman encoding example of string “BOOKKEEPER” 16

Table 4-2: LZW encoding example .. 20

Table 5-1: DEFLATE compression testing results ... 25

11

1. INTRODUCTION

The goal of this work is to reduce data flow in the communication channel in order

to transmit service information and non-critical data flows. To accomplish this goal data

stream compression will be used. For this reason, several lossless data compression

methods will be studied and compared, then one will be chosen and implemented on a

FPGA board.

Data compression is a very important tool in information technologies. As this

work will demonstrate, data compression is very useful for transmitting data. Very often

data in different solutions struggle form limitations in transfer speed. Data compression

can encode data based on predictable patterns and order, to reduce amount of data needed

to transmit the same amount of information. By decreasing total amount of data needed

to be sent, we can decrease amount of time needed for transmitting same amount of

information.

Data compression is a software solution for this problem, that’s why this is a very

cheap and efficient solution for increasing amount of data flow in channel, as well as

effective one.

A chosen compression algorithm would be testes in simulation environment, with

a goal achieving speed of 1 Gbit/s.

12

2. COPMRESSION METHODS DEFINITION

AND CLASSIFICATION

Data compression is a process of data stream processing which generate new data

steam that has a smaller size [1]. By term compression algorithm we usually refer to two

algorithms compression and decompression (reconstruction) [2].

Compression algorithm analyze data stream X and generate smaller data steam Y,

which can be transmitted. Decompression algorithm takes Y as an input and generate

reconstructed data stream X’ [2]. We can divide all compression methods into two groups:

lossy, when X’ is different from X, and lossless, when X’ is identical as X.

2.1 Lossy compression

Lossy compression methods by definition are not capable to fully reconstruct

original data. By using to we accept the loss of some amount of information [3]. This type

of compression is used when data loss is not critical and its very common in multimedia

file compression, like videos, images and audio. The loss of data can be unnoticed due to

human perception.

Also, lossy methods are not universal for every type of data and they are not suitable

for critical data, when we cannot tolerate loss of a single bit. Further this type of

compression will not be considered, because it’s unsuitable for purposes of transmitting

service data.

2.2 Lossless compression

Opposite of lossy compression, lossless compression encode data in a way, that

after decompression output file would be identical to original. This is very useful, because

we gain result as a reduced size of data stream and do not modify information carrying

by this data [2]. Disadvantage of this methods is that possibilities to compress data is

limited, there is some point when further data compression is not possible without a loss

of information. Basically, we cannot compress data stream to a single bit.

13

3. LOSSLESS COMPRESSION TYPES

There are a bunch of methods that are used for data compression. Further will be

described several methods that are commonly used in data compression.

3.1 Entropy coding type

Entropy in information theory determining uncertainty of the system, therefore how

unpredictable the system is. The concept of this principle was described by Claude

Shannon in 1948 in the work “A Mathematical Theory of Communication” [4]. Also,

similar principle was proposed by Robert Fano in the work “The transmission of

information” [5].

The idea of this concept is that the information carried in data is a randomness. Data

that can be easily predicted, has small amount of information. For example, the stream of

bits “0000” carry less information than then “0110”. We can simplify patterns in this data

to reduce its actual size, but not affect information. In the case of stream of “0” we can

just say that this is a repeat of the same bit. In contrast, in case of more complex second

example there is no pattern and we have no choice, but to acknowledge every bit in the

stream. Entropy as a value indicates minimum average number of bits per symbol

required for encoding (compressing) the string.

C. Shannon and R. Fano proposed compression method – Shannon-Fano coding.

This method encodes more frequent symbol with lower number of bits. Before

compression whole data package must be analyzed for calculation frequency of the

symbols in data, depending on this prefix-free code for every symbol will be generated.

David Huffman improved this method to be more optimal and today we know this method

as Huffman coding [6].

Data compressed by this method has non-consistent byte length, but this is not a

problem during decompression, because symbols are encoded in prefix-free code. This

means that we can imagine code for symbols as a binary tree. The flow of this method is

that compression depends on pre-compression data analyze and for reconstruction

decompression algorithm need to have the results of this analysis as well or it need to

have prefix codes generated by compression algorithm. This data must be transmitted

14

with compressed data, we can provide it in form of “header” before actual compressed

data.

For continues data stream that can’t be analyzed before compression, adaptive

Huffman coding can be used. In this method symbol codes are generated during

compression, without pre-compression analysis. After each symbol adapt code according

to Huffman code properties [7][8].

3.2 Dictionary type

Compression method that uses dictionary first was proposed by Jacob Ziv and

Abraham Lempel in 1977 – the LZ77 compression algorithm [9]. The idea is to build

dictionary that can encode data sequence Algorithm tries to find same symbol sequences

in in the data stream and replace repeated sequences in the stream with a “link” that refer

to the same previous data sequence, encoding repeated sequence with its length and offset,

pointing where the same sequence was already occurred. This algorithm analyze data in

the window with finite length, so windows in every step loses data that protentional can

be used for compression. Decompressor repeats steps of compressor, following “links”

and rebuilding data stream.

There is a family of compression algorithms based on LZ77 – LZ family of

compression algorithms. LZ77 was improved by its creatures in LZ78 algorithm. LZ78

can build and remember dictionary without window limitations, like in LZ77. LZ78

remembers sequences found in data and replace same sequences with indexes for its

dictionary [10]. Based on this algorithm was created very popular LZW (Lempel-Ziv-

Welch) algorithm. The main difference between LZ78 and LZW is that LZ78 build every

index in the dictionary from the entry and make new index with a longer sequence only

when reference to one of the previous indexes is occurred. LZW already need to have all

possible symbols in the dictionary. In every step algorithm take one symbol ahead and

tries to find same sequence in the dictionary and makes new entry in the dictionary [11].

Very spread algorithm that is using LZ family compression is the Deflate,

developed by Phil Katz [12]. This algorithm uses combination of LZ77 and Huffman

coding.

15

4. LOSSLESS COMPRESSION METHODS IN

DETAILS

In this section will be described how selected lossless compression algorithms work

in details, with provided examples.

4.1 Huffman coding

As mentioned before in section 3.1, Huffman encoding uses information entropy to

reduce usage of data space by generating prefix-free code, that can be represented by

binary tree.

Steps to encode data in Huffman coding:

1. Count frequency for every symbol in sequence.

2. Create a leaf node for each symbol and add them to the queue.

3. Repeat, while there is more than node in the queue:

a. Take the two nodes with the lowest frequency, make priority on new

created nodes.

b. Create a new node with these two nodes as children, with frequency

equal to the sum of the two nodes’ frequencies.

c. Add this node to the queue.

4. The remaining node is the root node.

For example, to encode string “BOOKKEEPER”, after counting frequency, we can

see that symbols “R”, “P” and “O” has same lowest frequency of 1. With “B” and “R”,

we can create new node, with sum of frequency of 2. Prioritizing created node, we connect

nodes with the lowest frequency, it’s new created node (2) and symbol “P” (1) node, new

node connecting them would have frequency of 3. We can see that the lowest frequency

nodes are “K” and “O”, they create new node of frequency 4. The lowest fervency of 3

now have older created node and symbol “E”, both connected in new node of 6. Now we

need only connect two nodes with root node [6][1].

Without compression string “BOOKKERPPER” requires 80 bits to transmit, after

Huffman encoding only 25 bits.

16

Table 4-1: Huffman encoding example of string “BOOKKEEPER”

Value Frequency Code

E 3 01

K 2 10

O 2 11

P 1 001

R 1 0001

B 1 0000

Figure 4-1: Huffman binary tree example of string “BOOKKEEPER”

17

For decoding process, information about symbols frequencies is required. After

rebuilding binary tree, we can decode compress binary data stream just following nodes

in the tree.

By using same-length byte encoding we trade efficiency of encoding for purpose

of more easily byte representation. This algorithm is a useful tool because it can be sued

for reduction number of used bits, that are just rudiment in the data. And as it was

proven by Huffman himself, this algorithm can generate the most efficient way to

encode symbols.

4.2 Adaptive Huffman coding

Adaptive (dynamic) Huffman coding do not require pre-compression data analysis,

like it was mentioned before in section 4.1. Adaptive Huffman coding can adapt existing

binary tree according to new data from the input. This binary tree can be updated every

step for receiver, that’s why dative Huffman coding can be used for real time streaming

of compressed data.

Eventually at the end of data stream binary tree generated by adaptive Huffman

encoder, would not differ from not-adaptive Huffman encoder. But data output would be

different. In this compression algorithm for building binary tree is used special leaf –

NYT (Not Yet Transmitted). NYT symbol is a symbol that was not encountered yet, when

we transmit NYT symbol, in a first-place algorithm transmit code of NYT leaf in the

binary tree, so decompression algorithm will understand that following bits are

uncompressed byte. When encountered symbol that was already encoded in the binary

tree, algorithm would increase its weight. Nodes with the same weight called blocks.

Also, every node has a number, order of numbers is from top to right to left. Root node

has number 256.

Figure 4-2: Nodes numeration example

18

Every step binary tree must be updated in according to these steps:

1. If the current character is not encountered, add two child nodes to the NYT:

one for the next NYT, the other for the encountered symbol. Increase the

weight of the new leaf and the old NYT and go to step 4. If the current

character is not NYT, go to the symbol leaf.

2. If this node does not have the greatest weight in the block, change it with

the node having the largest number (this means replacing weights and

corresponding symbols, but not numbers)

3. Weight gain for current node

4. If it is not the root node, go to the parent node then go to step 2. If it is root,

end.

4.3 LZ77

In this type of compression algorithm is used slidable window divided by dictionary

and buffer, algorithm compare string in buffer with strings in dictionary, it would generate

a code referring to previous data sequence, with offset of steps in the dictionary for

referring to position of the strings’ start, size of this string and symbol after this string in

the buffer. If there is no coincidence in the dictionary, offset and size would be 0.

Because first codes would be always uncompressed symbols, decompression

algorithm can easily rebuild staring sequence of the compressed data, when it would

encounter encoded compressed string, it would already have in the dictionary [9].

This algorithm is very suitable for long repeated sequences, its performance is

highly depending on window size.

Figure 4-3: LZ77 example

19

4.4 Lempel-Ziv-Weich algorithm

LZW algorithm builds dictionary on its memory to make a reference to data

sequence that previously occurred in the stream, replacing it with one byte instead.

Because all information needed for compression provided by compressed data itself,

decompression algorithm can reconstruct data by rebuilding dictionary same as

compression algorithm.

Steps to compress data by LZW algorithm:

1. Add to table all symbols in the data stream, encoding it like data without

compression.

2. Find the longest string in the dictionary that matches current input

3. Send code referring to this string from the dictionary to the output, remove

this string from the input.

4. Create new entry in the dictionary, with new string = old string + next

symbol

5. Repeat from step 2

As an example, compressing string “ABBBAABBBA” steps are following - adding “A”

and “B” with their uncompressed encoding to the dictionary. Read first input - “A”,

encode it with 41, add new entry “AB” to the dictionary. Read “B” from the input, encode

with 42, add “BB” to the dictionary. Now we can see that string “BB” is identical to

following symbol sequence, we encode it according to the dictionary with 81 and make

new entry to the dictionary with sting adding to used string next symbol, encode this

string “BBA” with 83 [11].

The size of string “ABBBAABBBA” without compression – 10 bytes, after LZW

compression – 6 bytes

20

Table 4-2: LZW encoding example

Decompression can be tricky, decompression algorithm needs to make new entry

in the dictionary to the rules identical to compression, but sometimes can be a situation

when decompression algorithm can encounter a code for a sequence that not in the

dictionary yet. For example: if we would decomposers sequence form previous example,

after reading “B” algorithm would encounter code 82, but at that time there is only code

81 in the dictionary. To resolve this issue, algorithm consider that code 82 can’t be

sequence encoded as 81 and code 82 can only have already known symbols. Code 82 first

symbol must be “B”, because it was made form second step where “B” is the first symbol.

This algorithm has high performance in the data with repeated sequences, unlike

LZ77 algorithm, it’s not limited to the size of window, basically LZW algorithm do not

forget previously repeated strings. Downside of this algorithm is a high sensitivity to

transmission errors.

4.5 Deflate compression algorithm

Deflate algorithm is a combination of LZ77, Huffman encoding and adaptive

Huffman encoding. Compression process completed in two steps. First repeated

sequences elimination with LZ77 algorithm. Then bit reduction by Huffman coding. Data

Value Code

A 41

B 42

AB 81

BB 82

BBA 83

AA 84

ABB 85

Input A B B B A A B B B A

Compressed A B 82 A 81 83

21

encoded by Deflate algorithm with blocks. Each block has a header of 3 bits. First bit

indicates if this block is the last one in the data stream. Other two describe method used

for bit reduction: 00 – no compression (copy-paste), 01 – static Huffman, 10 adaptive

Huffman. Compression type is chosen by algorithm for each block individually,

depending on data complexity [12].

Depending on these two bits following bits encoding would differ. For no

compression mode, next 4 bits represent the length of the block by following

uncompressed data. In static Huffman mode, data is encoded by predetermined Huffman

binary tree, so there is no need to transmit information needed for Huffman binary tree

reconstructing. This block must end with zero byte – end of block symbol. For adaptive

Huffman encoded block, following 14 bits encoded with information for rebuilding

Huffman binary tree [12]:

5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)

5 Bits: HDIST, # of Distance codes - 1 (1 - 32)

4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)

This algorithm is slightly spread and used in many solutions, his main advantage is

good ratio of performance and speed. Also, need to mention its flexibility – this

compression method can be sued for big virality of data inputs.

The downside of this compression method is its complexity, demanding a big

portion of FPGA resources, especially for decompression. But because of its flexibility,

it’s possible to trade performance or/and speed for less resources demand. Also, because

all data encoded by this compression algorithm are separated in blocks, makes it resistant

to transmission error. Even if error is occurred, only corrupted bytes will be vulnerable,

but algorithm would continue decompression process, without effect on the rest data in

the stream.

22

5. PRACTICAL IMPLEMENATION

For practical demonstration was chosen Deflate compression algorithm, due to high

performance and flexibility of this compression algorithm. Demonstration implemented

in FPGA simulation, provided by python library MyHDL v0.10.0. Also, MyHDL library

can generate code in Verilog or VHDL for usage on real FPGA.

Note: MyHDL v0.10.0 library has compatibility issues with Python 3.7, because

Python 3.7 promoted “async” to reserved keyword, and this causes the conflict. There

are two options to resolve this conflict: use Python 3.6 or replace every “async” word in

MyHDL library files with “isasync” (preferred).

Figure 5-1: DEFLATE logic block

23

Inputs of Deflate logic block:

• i_mode [2:0] – determine in which mode DEFLATE block need to work. Has

5 states:

o IDLE [000] - waits, no operation

o WRITE [001] - reads from input i_data, i_raddr and i_waddr

o READ [010] – puts byte in output o_byte

o STARTC [011] – initialize compression state

o STARTD [100] – initialize decompression state

• i_data [7:0] – data to process

• i_raddr [23:0] – output counter

• i_waddr [23:0] – input counter

Outputs of Deflate logic block:

• o_byte [7:0] – output of processed byte

• o_oprogress [23:0] – output progress

• o_iprogress [23:0] – input progress

• o_done – notice process completion

24

Figure 5-2: DEFLATE work block scheme

25

For verification workability and speed of DEFLATE compression was tested in

simulation environment provided by MyHDL library. For testing was used several data

sets: 1 – repeating string, 2- repeating string, with incrementing digits, 3 – repeating string,

with random digits in low range.

Table 5-1: DEFLATE compression testing results

No.

of

string

Type of

process

Input

[Bytes]

Output

[Bytes]

I/O

ratio

[-]

Cycles

 [-]

Speed

at 250

MHz

[Gbit/s]

Speed

at 300

MHz

[Gbit/s]

Speed

at 350

MHz

[Gbit/s]

1 Compression 1599 303 5.277 3605 0.887 1.065 1.242

Decompression 303 1599 0.189 37431 0.023 0.019 0.023

2 Compression 2389 652 3.664 7188 0.665 0.798 0.931

Decompression 652 2389 0.273 34170 0.046 0.039 0.046

3 Compression 1599 377 4.241 4320 0.740 0.888 1.036

Decompression 377 1599 0.236 37489 0.020 0.024 0.028

According to test results 300 MHz would be enough for some case to obtain speed

1 Gbit/s, however 350 MHz would be more preferred. Decompression process is much

slower compering to compression, but this would not cause problems, because even if

decompression algorithm didn’t finish their work, it can be feed with more data, that

would be stored in RAM. Error handling is also implemented, testing it with corrupted

compressed data, would result in loss of corrupted bytes, but process would not stop in

most cases. This algorithm achieved decent compression ratio.

26

6. CONCLUSION

The goal of this work was to reduce data flow in transmission channel of service

data, by implementing lossless data compression method and demonstrating its

capabilities in FPGA simulation environment.

Lossless compression algorithm could be useful tool in transmission data, due to

cheap and easy implementation with a remarkable improving transmission result.

In this work several compression methods and principals were described for better

understanding of issue and solution. Such compression methods principles as entropy

coding and dictionary coding were studied, with more detail studying of Huffman coding,

adaptive Huffman coding, LZ77 algorithm and LZW algorithm.

For main goal of studying was chosen a Deflate compression algorithm, which is a

combination of the LZ77 compression algorithm and static and dynamic Huffman coding.

In simulation environment Deflate compression algorithm achieved decent result

in compression ratio. Also, it was possible to achieve speed of 1 Gbit/s at 300 MHz, but

for 350 MHz is more preferred.

It is possible that an error would occur in communication link, in this situation

Deflate decompression algorithm can continue work, only skipping corrupted bytes.

As a result of this work, deflate algorithm implementation on FPGA board

theoretically would be real, as well as achieving speed of 1 Gbit/s, in addition MyHDL

library could generate Verilog or VHDL code for implementation on a real FPGA board.

27

Literature

[1] SALOMON, David. “Data compression: the complete reference.” 3rd ed. New

York: Springer, 2004. ISBN 0-387-40697-2.

[2] SAYOOD, Khalid. “Introduction to data compression.” 5th ed. Cambridge:

Morgan Kaufmann Publishers, 2018. Morgan Kaufmann series in multimedia

information and systems. ISBN 978-0-12-809474-7.

[3] NELSON, Mark a Jean-Loup GAILLY. “The data compression book.” 2nd ed.

New York: M&T Books, 1996. ISBN 1558514341.

[4] SHANNON, Claude. “A mathematical theory of communication.” Bell System

Technical Journal. 1948, vol. 27 pp. 379–423, 623–656.

[5] FANO, Robert. “The transmission of information,” Massachusetts, 1949.

Technical Report. Research Laboratory of Electronics, Massachusetts Institute of

Technology.

[6] HUFFMAN, David Albert. “A method for construction of minimum-redundancy

codes,” Proceedings IRE. 1952, vol. 40, pp. 1098–1101.

[7] FALLER, N., “An adaptive system for data compression,” in Record of the 7th

Asilomar Conference on Circuits, Systems, and Computers, 1973, pp. 593–597.

[8] GALLAGER, Robert. “Variations on a theme by Huffman. ” IEEE Transactions

on Information Theory. 1978, vol. 24, no. 6, pp. 668-674.

[9] LEMPEL, Abraham a Jacob ZIV, “A universal algorithm for sequential data

compression,” IEEE Transactions on Information Theory. 1977 vol. 23, no. 3, pp.

337–343.

[10] LEMPEL, Abraham a Jacob ZIV, “Compression of individual sequences via

variable-rate coding,” IEEE transactions on Information Theory. 1978 vol. 24, no.

5, pp. 530–536.

[11] WELCH, Terry, “A technique for high-performance data compression,”

Computer, 1984, vol. 17, no. 6, pp. 8–19.

[12] DEUTSCH, Peter, “DEFLATE Compressed Data Format Specification version

1.3,” 1996, RFC 1951. [Online]. Available: https://tools.ietf.org/html/rfc1951

https://tools.ietf.org/html/rfc1951

28

Attachments

Attachment 1: CD with electronic version of this work, python code of HDL

implementation of the Deflate algorithm.

