BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF CONTROL AND INSTRUMENTATION

USTAV AUTOMATIZACE A MERICI TECHNIKY

DATA STREAM COMPRESSION AND DECOMPRESSION
METHODS.

REAL TIME KOMPRESE A DEKOMPRESE INFORMACI V DATOVYCH TOCICH

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Oleksandr Makedonenko
AUTOR PRACE

SUPERVISOR Ing. Sobéslav Valach

VEDOUCI PRACE

BRNO 2019

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Bakalarska prace

bakalarsky studijni obor Automatiza€ni a méfici technika
Ustav automatizace a méfici techniky

Student: Oleksandr Makedonenko ID: 175207
Roénik: 3 Akademicky rok: 2018/19
NAZEV TEMATU:

Real time komprese a dekomprese informaci v datovych tocich

POKYNY PRO VYPRACOVANI:

Cilem projektu je snizit alespon pfechodné bezeztratové datovy tok v komunikaénim kanale a to tak, aby se
mohly pfenaset servisni informace a nekritické datové toky. Pfikladem necht je datova linka o maximalni
propustnosti dat 1Gbit/s saturovana na 98-100% své nominalni kapacity.

1) Prostudovat metody bezeztratové komprese dat a signald.

2) Vybrat vhodnou metodu, ktera bude vyuzitelna pro hradlové pole s pfiméfenymi naroky na spotfebu zdrojl
a definovanymi parametry.

3) Implementovat alespon jednu metodu pro pfijimac a vysilac.

4) Zamérit se na feSeni okrajovych podminek (rozpojeni pfenosové trasy, vypadek, chyba).

5) Demonstrace vysledkl na hardwarové platformé.

DOPORUCENA LITERATURA:

1. Joe-Ming Cheng: Contributions to binary adaptive-coding, sliding window hardware compression, Huffman
coding redundancy bounds, and hybrid arithmetic coding. Sptember 9, 2011

Termin zadani: 4.2.2019 Termin odevzdani: 20.5.2019

Vedouci prace: Ing. Sobéslav Valach
Konzultant:

doc. Ing. Vaclav Jirsik, CSc.
pfedseda oborové rady

UPOZORNENI:

Autor bakalarské prace nesmi pfi vytvareni bakalafské prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zpUsobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledku poru$eni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., véetné moznych trestnépravnich dusledkl vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

Abstrakt

Cilem tento prace je prostudovat metody bezztratové komprese a zmensit datovy
tok ve komunika¢nim kandle, provadénim bezztratové algoritmu komprese, ktery

muze byt pouzity pro FPGA desku s teoretickym dosahem rychlosti 1Gbit/s.

Kli¢ova slova

Bezeztratova, komprese, algoritmus, LZW, LZ77, LZ78, Huffman, Deflate,
FPGA, MyHDL

Abstract

Goal of this work is to study lossless compression methods and to reduce data
flow in communication channel by implementing lossless compression algorithm

that can be useable on FPGA board with theoretical achievement of speed 1 Gbit/s.

Keywords

Lossless, compression, algorithm, LZW, LZ77, LZ78, Huffman, Deflate, FPGA,
MyHDL

Bibliograficka citace:

MAKEDONENKO, Oleksandr. Real time komprese a dekomprese informaci v
datovych tocich. Brno, 2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-
prace/detail/119332. Bakalarska prace. Vysoké uceni technické v Brné, Fakulta

elektrotechniky a komunikaénich technologii, Ustav automatizace a méfici techniky.

Vedouci prace Sobéslav Valach.

https://www.vutbr.cz/studenti/zav-prace/detail/119332
https://www.vutbr.cz/studenti/zav-prace/detail/119332

Prohlaseni

,Prohlasuji, ze svou diplomovou (bakalafskou) praci na téma ‘Real time
komprese a dekomprese informaci v datovych tocich” jsem vypracoval samostatné
pod vedenim vedouci/ho diplomoveé (bakalaiské) prace a s pouzitim odborné
literatury a dalSich informacnich zdroja, které jsou vSechny citovany v praci a

uvedeny v seznamu literatury na konci préace.

Jako autor uvedené diplomové (bakalafské) prace dale prohlaSuji, ze
v souvislosti s vytvofenim této diplomové (bakalafské) prace jsem neporusil
autorskd prava tretich osob, zejména jsem nezasahl nedovolenym zpiisobem do
cizich autorskych prav osobnostnich a jsem si plné védom nasledkii poruseni
ustanoveni § 11 a nasledujicich autorského zakona ¢. 121/2000 Sb., vcetné
moznych trestnépravnich dasledki vyplyvajicich z ustanoveni ¢asti druhé, hlavy

VI. dil 4 Trestniho zakoniku ¢. 40/2009 Sb.

V Brn¢ dne: 13. kvétna 2019 .
podpis autora

ACKNOWLEDGMENTS

I would like to thank my supervisor Ing. Sobé¢salv Valach for help and tips
during my work. And I would like to thank my relatives for moral and material

support.

Table of contents

1.
2.
2.1
2.2
3.
3.1
3.2
4.
4.1
4.2
4.3
4.4
4.5
5.
6.

INTRODUCGTION.oiiiiiitiiie ettt 11
COPMRESSION METHODS DEFINITION AND CLASSIFICATION........ 12
LOSSY COMPIESSION ...ttt ettt ettt ettt 12
LOSSIESS COMPIESSION ...ttt 12
LOSSLESS COMPRESSION TYPES.......oiiiiiiie e 13
ENtropy COAING TYPE ..ot 13
DICTIONAIY TYPR. .. ittt 14
LOSSLESS COMPRESSION METHODS IN DETAILS ..., 15
HUTFMAN COAING ... 15
Adaptive HUFFMaN COTINGooiviiiiiiiie e 17
LT T s 18
Lempel-Ziv-Weich algorithm ... 19
Deflate compression algorithmcoovveeiii e 20
PRACTICAL IMPLEMENATIONooiiiiiiiiiieiicee e 22
CONCLUSION ...ttt 26

List of abbreviations

FPGA

Gbit

LZ77

LZ78

LZW

VHDL

Description Language

NYT

field-programmable gate array

gigabit

Lempel-Ziv 77

Lempel-Ziv 78

Lempel-Ziv- Welch

(Very high-speed integrated circuits) Hardware

Not Yet Transmitted

List of figures

Figure 4-1: Huffman binary tree example of string “BOOKKEEPER”................... 16
Figure 4-2: Nodes numeration eXample...........ccooveiiiiiiiiie e 17
Figure 4-3: LZ77 eXaMPIEoooiiiiiie e 18
Figure 5-1: DEFLATE 10gIiC BIOCK..........coiiiiiiiiiiie e 22
Figure 5-2: DEFLATE work block SCheme ..o 24

List of tables

Table 4-1: Huffman encoding example of string “BOOKKEEPER”

Table 4-2: LZW encoding eXamplecoooiiiiiiiiiiiiiieeee e
Table 5-1: DEFLATE compression testing resultscccocevvieneeniennieiieennns

10

1.INTRODUCTION

The goal of this work is to reduce data flow in the communication channel in order
to transmit service information and non-critical data flows. To accomplish this goal data
stream compression will be used. For this reason, several lossless data compression
methods will be studied and compared, then one will be chosen and implemented on a
FPGA board.

Data compression is a very important tool in information technologies. As this
work will demonstrate, data compression is very useful for transmitting data. Very often
data in different solutions struggle form limitations in transfer speed. Data compression
can encode data based on predictable patterns and order, to reduce amount of data needed
to transmit the same amount of information. By decreasing total amount of data needed
to be sent, we can decrease amount of time needed for transmitting same amount of
information.

Data compression is a software solution for this problem, that’s why this is a very
cheap and efficient solution for increasing amount of data flow in channel, as well as
effective one.

A chosen compression algorithm would be testes in simulation environment, with

a goal achieving speed of 1 Gbit/s.

11

2. COPMRESSION METHODS DEFINITION
AND CLASSIFICATION

Data compression is a process of data stream processing which generate new data
steam that has a smaller size [1]. By term compression algorithm we usually refer to two
algorithms compression and decompression (reconstruction) [2].

Compression algorithm analyze data stream X and generate smaller data steam Y,
which can be transmitted. Decompression algorithm takes Y as an input and generate
reconstructed data stream X’ [2]. We can divide all compression methods into two groups:
lossy, when X’ is different from X, and lossless, when X’ is identical as X.

2.1 Lossy compression

Lossy compression methods by definition are not capable to fully reconstruct
original data. By using to we accept the loss of some amount of information [3]. This type
of compression is used when data loss is not critical and its very common in multimedia
file compression, like videos, images and audio. The loss of data can be unnoticed due to
human perception.

Also, lossy methods are not universal for every type of data and they are not suitable
for critical data, when we cannot tolerate loss of a single bit. Further this type of
compression will not be considered, because it’s unsuitable for purposes of transmitting

service data.

2.2 Lossless compression

Opposite of lossy compression, lossless compression encode data in a way, that
after decompression output file would be identical to original. This is very useful, because
we gain result as a reduced size of data stream and do not modify information carrying
by this data [2]. Disadvantage of this methods is that possibilities to compress data is
limited, there is some point when further data compression is not possible without a loss

of information. Basically, we cannot compress data stream to a single bit.

12

3. LOSSLESS COMPRESSION TYPES

There are a bunch of methods that are used for data compression. Further will be
described several methods that are commonly used in data compression.

3.1 Entropy coding type

Entropy in information theory determining uncertainty of the system, therefore how
unpredictable the system is. The concept of this principle was described by Claude
Shannon in 1948 in the work “A Mathematical Theory of Communication” [4]. Also,
similar principle was proposed by Robert Fano in the work “The transmission of
information” [5].

The idea of this concept is that the information carried in data is a randomness. Data
that can be easily predicted, has small amount of information. For example, the stream of
bits “0000” carry less information than then “0110”. We can simplify patterns in this data
to reduce its actual size, but not affect information. In the case of stream of “0” we can
just say that this is a repeat of the same bit. In contrast, in case of more complex second
example there is no pattern and we have no choice, but to acknowledge every bit in the
stream. Entropy as a value indicates minimum average number of bits per symbol
required for encoding (compressing) the string.

C. Shannon and R. Fano proposed compression method — Shannon-Fano coding.
This method encodes more frequent symbol with lower number of bits. Before
compression whole data package must be analyzed for calculation frequency of the
symbols in data, depending on this prefix-free code for every symbol will be generated.
David Huffman improved this method to be more optimal and today we know this method
as Huffman coding [6].

Data compressed by this method has non-consistent byte length, but this is not a
problem during decompression, because symbols are encoded in prefix-free code. This
means that we can imagine code for symbols as a binary tree. The flow of this method is
that compression depends on pre-compression data analyze and for reconstruction
decompression algorithm need to have the results of this analysis as well or it need to

have prefix codes generated by compression algorithm. This data must be transmitted

13

with compressed data, we can provide it in form of “header” before actual compressed
data.

For continues data stream that can’t be analyzed before compression, adaptive
Huffman coding can be used. In this method symbol codes are generated during
compression, without pre-compression analysis. After each symbol adapt code according

to Huffman code properties [7][8].

3.2 Dictionary type

Compression method that uses dictionary first was proposed by Jacob Ziv and
Abraham Lempel in 1977 — the LZ77 compression algorithm [9]. The idea is to build
dictionary that can encode data sequence Algorithm tries to find same symbol sequences
in in the data stream and replace repeated sequences in the stream with a “link” that refer
to the same previous data sequence, encoding repeated sequence with its length and offset,
pointing where the same sequence was already occurred. This algorithm analyze data in
the window with finite length, so windows in every step loses data that protentional can
be used for compression. Decompressor repeats steps of compressor, following “links”
and rebuilding data stream.

There is a family of compression algorithms based on LZ77 — LZ family of
compression algorithms. LZ77 was improved by its creatures in LZ78 algorithm. LZ78
can build and remember dictionary without window limitations, like in LZ77. LZ78
remembers sequences found in data and replace same sequences with indexes for its
dictionary [10]. Based on this algorithm was created very popular LZW (Lempel-Ziv-
Welch) algorithm. The main difference between LZ78 and LZW is that LZ78 build every
index in the dictionary from the entry and make new index with a longer sequence only
when reference to one of the previous indexes is occurred. LZW already need to have all
possible symbols in the dictionary. In every step algorithm take one symbol ahead and
tries to find same sequence in the dictionary and makes new entry in the dictionary [11].

Very spread algorithm that is using LZ family compression is the Deflate,
developed by Phil Katz [12]. This algorithm uses combination of LZ77 and Huffman

coding.

14

4. LOSSLESS COMPRESSION METHODS IN
DETAILS

In this section will be described how selected lossless compression algorithms work
in details, with provided examples.

4.1 Huffman coding

As mentioned before in section 3.1, Huffman encoding uses information entropy to
reduce usage of data space by generating prefix-free code, that can be represented by

binary tree.
Steps to encode data in Huffman coding:

1. Count frequency for every symbol in sequence.
2. Create a leaf node for each symbol and add them to the queue.
3. Repeat, while there is more than node in the queue:
a. Take the two nodes with the lowest frequency, make priority on new
created nodes.
b. Create a new node with these two nodes as children, with frequency
equal to the sum of the two nodes’ frequencies.
c. Add this node to the queue.

4. The remaining node is the root node.

For example, to encode string “BOOKKEEPER?”, after counting frequency, we can
see that symbols “R”, “P” and “O” has same lowest frequency of 1. With “B” and “R”,
we can create new node, with sum of frequency of 2. Prioritizing created node, we connect
nodes with the lowest frequency, it’s new created node (2) and symbol “P” (1) node, new
node connecting them would have frequency of 3. We can see that the lowest frequency
nodes are “K” and “O”, they create new node of frequency 4. The lowest fervency of 3
now have older created node and symbol “E”, both connected in new node of 6. Now we
need only connect two nodes with root node [6][1].

Without compression string “BOOKKERPPER” requires 80 bits to transmit, after
Huffman encoding only 25 bits.

15

Table 4-1: Huffman encoding example of string “BOOKKEEPER”

E 3 01

K 2 10

O 2 11

P 1 001
R 1 0001
B 1 0000

Pt

Figure 4-1: Huffman binary tree example of string “BOOKKEEPER”

16

For decoding process, information about symbols frequencies is required. After
rebuilding binary tree, we can decode compress binary data stream just following nodes
in the tree.

By using same-length byte encoding we trade efficiency of encoding for purpose
of more easily byte representation. This algorithm is a useful tool because it can be sued
for reduction number of used bits, that are just rudiment in the data. And as it was
proven by Huffman himself, this algorithm can generate the most efficient way to

encode symbols.

4.2 Adaptive Huffman coding

Adaptive (dynamic) Huffman coding do not require pre-compression data analysis,
like it was mentioned before in section 4.1. Adaptive Huffman coding can adapt existing
binary tree according to new data from the input. This binary tree can be updated every
step for receiver, that’s why dative Huffman coding can be used for real time streaming
of compressed data.

Eventually at the end of data stream binary tree generated by adaptive Huffman
encoder, would not differ from not-adaptive Huffman encoder. But data output would be
different. In this compression algorithm for building binary tree is used special leaf —
NYT (Not Yet Transmitted). NYT symbol is a symbol that was not encountered yet, when
we transmit NYT symbol, in a first-place algorithm transmit code of NYT leaf in the
binary tree, so decompression algorithm will understand that following bits are
uncompressed byte. When encountered symbol that was already encoded in the binary
tree, algorithm would increase its weight. Nodes with the same weight called blocks.

Also, every node has a number, order of numbers is from top to right to left. Root node

Figure 4-2: Nodes numeration example

has number 256.

17

Every step binary tree must be updated in according to these steps:

1. Ifthe current character is not encountered, add two child nodes to the NYT:
one for the next NYT, the other for the encountered symbol. Increase the
weight of the new leaf and the old NYT and go to step 4. If the current
character is not NYT, go to the symbol leaf.

2. If this node does not have the greatest weight in the block, change it with
the node having the largest number (this means replacing weights and
corresponding symbols, but not numbers)

3. Weight gain for current node

4. Ifit is not the root node, go to the parent node then go to step 2. If it is root,

end.

4.3 LZ77

In this type of compression algorithm is used slidable window divided by dictionary
and buffer, algorithm compare string in buffer with strings in dictionary, it would generate
a code referring to previous data sequence, with offset of steps in the dictionary for
referring to position of the strings’ start, size of this string and symbol after this string in
the buffer. If there is no coincidence in the dictionary, offset and size would be 0.

Because first codes would be always uncompressed symbols, decompression
algorithm can easily rebuild staring sequence of the compressed data, when it would
encounter encoded compressed string, it would already have in the dictionary [9].

This algorithm is very suitable for long repeated sequences, its performance is

highly depending on window size.

abcbaadbc[baadacdc

S

<6, 4, a>

Figure 4-3: LZ77 example

18

4.4 Lempel-Ziv-Weich algorithm

LZW algorithm builds dictionary on its memory to make a reference to data
sequence that previously occurred in the stream, replacing it with one byte instead.
Because all information needed for compression provided by compressed data itself,
decompression algorithm can reconstruct data by rebuilding dictionary same as

compression algorithm.

Steps to compress data by LZW algorithm:

1. Add to table all symbols in the data stream, encoding it like data without
compression.

2. Find the longest string in the dictionary that matches current input

3. Send code referring to this string from the dictionary to the output, remove
this string from the input.

4. Create new entry in the dictionary, with new string = old string + next
symbol

5. Repeat from step 2

As an example, compressing string “ABBBAABBBA” steps are following - adding “A”
and “B” with their uncompressed encoding to the dictionary. Read first input - “A”,
encode it with 41, add new entry “AB” to the dictionary. Read “B” from the input, encode
with 42, add “BB” to the dictionary. Now we can see that string “BB” is identical to
following symbol sequence, we encode it according to the dictionary with 81 and make
new entry to the dictionary with sting adding to used string next symbol, encode this
string “BBA” with 83 [11].

The size of string “ABBBAABBBA” without compression — 10 bytes, after LZW

compression — 6 bytes

19

Table 4-2: LZW encoding example

A |4
B 42
B B |[A|A B B |B
AB |8t 82 |[A [81]83
BB |82
BBA |83
AA |84
ABB |85

Decompression can be tricky, decompression algorithm needs to make new entry
in the dictionary to the rules identical to compression, but sometimes can be a situation
when decompression algorithm can encounter a code for a sequence that not in the
dictionary yet. For example: if we would decomposers sequence form previous example,
after reading “B” algorithm would encounter code 82, but at that time there is only code
81 in the dictionary. To resolve this issue, algorithm consider that code 82 can’t be
sequence encoded as 81 and code 82 can only have already known symbols. Code 82 first
symbol must be “B”, because it was made form second step where “B” is the first symbol.

This algorithm has high performance in the data with repeated sequences, unlike
LZ77 algorithm, it’s not limited to the size of window, basically LZW algorithm do not
forget previously repeated strings. Downside of this algorithm is a high sensitivity to

transmission errors.

4.5 Deflate compression algorithm

Deflate algorithm is a combination of LZ77, Huffman encoding and adaptive
Huffman encoding. Compression process completed in two steps. First repeated

sequences elimination with LZ77 algorithm. Then bit reduction by Huffman coding. Data

20

encoded by Deflate algorithm with blocks. Each block has a header of 3 bits. First bit
indicates if this block is the last one in the data stream. Other two describe method used
for bit reduction: 00 — no compression (copy-paste), 01 — static Huffman, 10 adaptive
Huffman. Compression type is chosen by algorithm for each block individually,
depending on data complexity [12].

Depending on these two bits following bits encoding would differ. For no
compression mode, next 4 bits represent the length of the block by following
uncompressed data. In static Huffman mode, data is encoded by predetermined Huffman
binary tree, so there is no need to transmit information needed for Huffman binary tree
reconstructing. This block must end with zero byte — end of block symbol. For adaptive
Huffman encoded block, following 14 bits encoded with information for rebuilding
Huffman binary tree [12]:

5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)

4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)

This algorithm is slightly spread and used in many solutions, his main advantage is
good ratio of performance and speed. Also, need to mention its flexibility — this
compression method can be sued for big virality of data inputs.

The downside of this compression method is its complexity, demanding a big
portion of FPGA resources, especially for decompression. But because of its flexibility,
it’s possible to trade performance or/and speed for less resources demand. Also, because
all data encoded by this compression algorithm are separated in blocks, makes it resistant
to transmission error. Even if error is occurred, only corrupted bytes will be vulnerable,
but algorithm would continue decompression process, without effect on the rest data in

the stream.

21

5. PRACTICAL IMPLEMENATION

For practical demonstration was chosen Deflate compression algorithm, due to high

performance and flexibility of this compression algorithm. Demonstration implemented
in FPGA simulation, provided by python library MyHDL v0.10.0. Also, MyHDL library
can generate code in Verilog or VHDL for usage on real FPGA.

Note: MyHDL v0.10.0 library has compatibility issues with Python 3.7, because

Python 3.7 promoted “async” to reserved keyword, and this causes the conflict. There

are two options to resolve this conflict: use Python 3.6 or replace every “async” word in

MyHDL library files with “isasync” (preferred).

i_mode [2:0]

i_data [7:0]

i_raddr [23:0]

i_waddr [23:0]

reset

clk

DEFLATE

o_byte [7:0]

0_oprogress [23:0]

o_iprogress [23:0]

0 _done

Figure 5-1: DEFLATE logic block

22

Inputs of Deflate logic block:
e i_mode [2:0] — determine in which mode DEFLATE block need to work. Has

5 states:

o

o

o

o

o

IDLE [000] - waits, no operation

WRITE [001] - reads from input i_data, i_raddr and i_waddr
READ [010] — puts byte in output 0_byte

STARTC [011] — initialize compression state

STARTD [100] — initialize decompression state

e i_data [7:0] — data to process

e i_raddr [23:0] —output counter

e i_waddr [23:0] — input counter

Outputs of Deflate logic block:

e 0 _byte [7:0] — output of processed byte

e 0_oprogress [23:0] — output progress

e 0_iprogress [23:0] — input progress

e 0_done — notice process completion

23

START

MODE =
STARTC/STARTD

)

TRUE

i_raddr <
0_oprogress

4

FALSE

FALSE

__iprogress > i_waddr=
[window size]

TRUE

CLOCK

o_done = true AND

0_oprogress = i_raddr

Figure 5-2: DEFLATE work block scheme

24

For verification workability and speed of DEFLATE compression was tested in

simulation environment provided by MyHDL library. For testing was used several data

sets: 1 —repeating string, 2- repeating string, with incrementing digits, 3 — repeating string,

with random digits in low range.

Table 5-1: DEFLATE compression testing results

No. | Type of Input | Output | I/O Cycles | Speed | Speed | Speed
of process [Bytes] | [Bytes] | ratio | [-] at 250 |at 300 |at 350
string [-] MHz MHz MHz
[Gbit/s] | [Gbit/s] | [Gbit/s]

1 Compression 1599 303 5.277 | 3605 0.887 1.065 1.242
Decompression | 303 1599 0.189 | 37431 | 0.023 | 0.019 | 0.023

2 Compression 2389 652 3.664 | 7188 0.665 [0.798 |0.931
Decompression | 652 2389 0.273 | 34170 |0.046 |0.039 |0.046

3 Compression 1599 | 377 4.241 | 4320 0.740 10.888 |1.036
Decompression | 377 1599 0.236 | 37489 |0.020 |0.024 |0.028

According to test results 300 MHz would be enough for some case to obtain speed

1 Gbit/s, however 350 MHz would be more preferred. Decompression process is much

slower compering to compression, but this would not cause problems, because even if

decompression algorithm didn’t finish their work, it can be feed with more data, that

would be stored in RAM. Error handling is also implemented, testing it with corrupted

compressed data, would result in loss of corrupted bytes, but process would not stop in

most cases. This algorithm achieved decent compression ratio.

25

6. CONCLUSION

The goal of this work was to reduce data flow in transmission channel of service
data, by implementing lossless data compression method and demonstrating its
capabilities in FPGA simulation environment.

Lossless compression algorithm could be useful tool in transmission data, due to
cheap and easy implementation with a remarkable improving transmission result.

In this work several compression methods and principals were described for better
understanding of issue and solution. Such compression methods principles as entropy
coding and dictionary coding were studied, with more detail studying of Huffman coding,
adaptive Huffman coding, LZ77 algorithm and LZW algorithm.

For main goal of studying was chosen a Deflate compression algorithm, which is a
combination of the LZ77 compression algorithm and static and dynamic Huffman coding.

In simulation environment Deflate compression algorithm achieved decent result
in compression ratio. Also, it was possible to achieve speed of 1 Gbit/s at 300 MHz, but
for 350 MHz is more preferred.

It is possible that an error would occur in communication link, in this situation
Deflate decompression algorithm can continue work, only skipping corrupted bytes.

As a result of this work, deflate algorithm implementation on FPGA board
theoretically would be real, as well as achieving speed of 1 Gbit/s, in addition MyHDL

library could generate Verilog or VHDL code for implementation on a real FPGA board.

26

Literature

[1] SALOMON, David. “Data compression: the complete reference.” 3rd ed. New
York: Springer, 2004. ISBN 0-387-40697-2.

[2] SAYOOD, Khalid. “Introduction to data compression.” 5th ed. Cambridge:
Morgan Kaufmann Publishers, 2018. Morgan Kaufmann series in multimedia
information and systems. ISBN 978-0-12-809474-7.

[3] NELSON, Mark a Jean-Loup GAILLY. “The data compression book.” 2nd ed.
New York: M&T Books, 1996. ISBN 1558514341.

[4] SHANNON, Claude. “A mathematical theory of communication.” Bell System
Technical Journal. 1948, vol. 27 pp. 379-423, 623-656.

[5] FANO, Robert. “The transmission of information,” Massachusetts, 1949.
Technical Report. Research Laboratory of Electronics, Massachusetts Institute of
Technology.

[6] HUFFMAN, David Albert. “A method for construction of minimum-redundancy
codes,” Proceedings IRE. 1952, vol. 40, pp. 1098-1101.

[7] FALLER, N., “An adaptive system for data compression,” in Record of the 7th
Asilomar Conference on Circuits, Systems, and Computers, 1973, pp. 593-597.

[8] GALLAGER, Robert. “Variations on a theme by Huffman. ” IEEE Transactions
on Information Theory. 1978, vol. 24, no. 6, pp. 668-674.

[9] LEMPEL, Abraham a Jacob ZIV, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory. 1977 vol. 23, no. 3, pp.
337-343.

[10] LEMPEL, Abraham a Jacob ZIV, “Compression of individual sequences via
variable-rate coding,” IEEE transactions on Information Theory. 1978 vol. 24, no.
5, pp. 530-536.

[11] WELCH, Terry, “A technique for high-performance data compression,”
Computer, 1984, vol. 17, no. 6, pp. 8-19.

[12] DEUTSCH, Peter, “DEFLATE Compressed Data Format Specification version
1.3, 1996, RFC 1951. [Online]. Available: https://tools.ietf.org/html/rfc1951

27

https://tools.ietf.org/html/rfc1951

Attachments

Attachment 1: CD with electronic version of this work, python code of HDL
implementation of the Deflate algorithm.

28

