
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

.NET MAUI MULTIPLATFORM USER INTERFACE
FOR KIMAI
MULTIPLATFORMNÍ UŽIVATELSKÉ ROZHRANÍ PRO SYSTÉM KIMAI V .NET MAUI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DÁVID ŠPAVOR
AUTOR PRÁCE

SUPERVISOR Ing. DANIEL DOLEJŠKA
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Information Systems (UIFS)

Student: Špavor Dávid, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Software Engineering

Category: User Interfaces

Academic year: 2022/23

Assignment:

1. Study technologies for multiplatform development of user interfaces in general and applications in
.NET MAUI as required by the supervisor.

2. Study the Kimai system, its capabilities, and existing UI solutions. Analyze existing user interfaces.
3. Create an interactive application design according to the supervisor's requirements, focusing on

the identified application shortcomings from the UI/UX perspective from point 2.
4. Implement a multiplatform application solution according to your design from point 3, respecting

the supervisor's requirements. Deploy the applications on at least two platforms supported by the
MAUI framework.

5. Properly test the developed application in a broader audience of users according to the
supervisor's requirements. Evaluate the benefits and shortcomings of the developed solution.
Discuss further possible development and extension of the implemented application.

Literature:
KRUG, Steve, 2014. Don’t make me think, revisited: a common sense approach to Web usability.
Third edition. Berkeley, Calif.: New Riders. ISBN 978-0-321-96551-6. TK5105.888 .K78 2014
RUBIN, Jeffrey and CHISNELL, Dana, 2008. Handbook of usability testing: how to plan, design,
and conduct effective tests. 2nd ed. Indianapolis, IN: Wiley Pub. ISBN 978-0-470-18548-3.
QA76.9.U83 R82 2008
STONE, Debbie, JARRETT, Caroline, WOODROFFE, Mark and MINOCHA, Shailey, 2005.
User Interface Design and Evaluation. . Burlington: Elsevier Science. ISBN 978-0-08-052032-2.
according to the supervisor's instructions

Requirements for the semestral defence:
Points 1, 2 and 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Dolejška Daniel, Ing.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 17.5.2023

Approval date: 26.10.2022

Master's Thesis Assignment
146870

.NET MAUI Multiplatform User Interface for KimaiTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The main goal of this thesis is to create a multiplatform time-tracking application in .NET
MAUI, which will use the open-source tool Kimai. The purpose of this application is to
make the use of the Kimai tool easier and more efficient. The other goal is to provide a
set of development approaches within .NET MAUI that can be applied to other applica-
tions developed on this framework. In the beginning, the problematics of multiplatform
development, user interface design, and the Kimai system were discussed. Subsequently, an
interactive design of the application was created, which was tested and iteratively improved.
Architectural approaches within .NET MAUI were compared and then the application was
implemented. In the end, the application was published and tested on a real audience.
The result is a multiplatform open-source application called MAUI for Kimai, which is
fully supported on Android and Windows platforms and experimentally functional on Mac
and iOS platforms. The implementation approaches of this application can be applied to
other applications developed in .NET MAUI. This application has been well received by
the Kimai community, who appreciated that this application will make it easier and more
efficient to use Kimai on desktop and mobile platforms.

Abstrakt
Hlavný cieľ tejto diplomovej práce je vytvoriť multiplatformnú aplikáciu na sledovanie času
v .NET MAUI, ktorá bude využívať open-source nástroj Kimai. Táto aplikácia ma za účel
zjednodušiť a zefektívniť používanie nástroja Kimai. Ďalším cieľom je poskytnúť súbor
vývojových prístupov v rámci .NET MAUI, ktoré môžu byť aplikované na iné aplikácie
vyvíjané na tomto frameworku.

Na začiatku bola diskutovaná problematika multiplatformného vývoja, dizajnu uží-
vateľských rozhraní a systému Kimai. Následne bol vytvorený interaktívny návrh apliká-
cie, ktorý bol testovaný a iteratívne vylepšovaný. Boli porovnané architektonické prístupy
v rámci .NET MAUI a následne bola aplikácia implementovaná. Na konci bola aplikácia
zverejnená a testovaná na reálnom publiku.

Výsledkom je multiplatformná open-source aplikácia s názvom MAUI for Kimai, ktorá
je plne podporovaná na Android a Windows platformách a experimentálne funkčná na Mac
a iOS platformách. Implementačné prístupy tejto aplikácie môžu byť aplikované na iné ap-
likácie vyvijané v .NET MAUI. Táto aplikácia získala ohlas Kimai komunity, ktorá ocenila,
že vďaka tejto aplikácii bude možné využívať nástroj Kimai jednoduchšie a efektívnejšie na
desktopovej a mobilnej platforme.

Keywords
.NET, MAUI, Kimai, user interface, multi-platform, Android, iOS, Mac, Windows

Kľúčové slová
.NET, MAUI, Kimai, užívateľské rozhranie, multi-platforné, Android, iOS, Mac, Windows

Reference
ŠPAVOR, Dávid. .NET MAUI Multiplatform User Interface for Kimai. Brno, 2023. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Daniel Dolejška

Rozšírený abstrakt
Multiplatformný vývoj je v dnešnej dobe veľmi žiadaný. Často, keď firma vytvára soft-
vérový produkt, musí sa zamýšľať, na ktoré platformy svoj produkt nasadí. Toto rozhod-
nutie môže celkovo ovplyvniť úspech a použiteľnosť daného softvérového produktu. Zväčša
sa jedná o mobilné (iOS, Android) a desktopové (Windows, Mac) platformy. Existujú
dva hlavné spôsoby, ako je možné vytvárať multiplatformné aplikácie. Prvý spôsob je,
že daný softvérový tím firmy môže využiť natívne technológie dostupných platforiem. To
znamená, že pre každú platformu sa vytvorí samostatná aplikácia, ktorej vývoj sa musí syn-
chronizovať naprieč všetkými platformami. Síce vyvinuté aplikácie postavené na natívnych
technológiách sú rýchle a bohaté na funkcionalitu, avšak udržovateľnosť naprieč všetkými
platformami môže byť veľmi náročná a drahá. Druhý spôsob, ktorý môže softvérový tím
firmy využiť, je použitie frameworku na multiplatformný vývoj. To znamená, že sa vyvinie
jedna aplikácia, ktorej dostupnosť na rôzne platformy bude zabezpečená daným multi-
platformným frameworkom. Tento prístup rieši problém udržovatelnosti produktu naprieč
platformami, kde vývoj je rýchlejší a stačí udržovať iba jeden kód. Na druhú stranu, schop-
nosti týchto aplikácií sú limitované daným multiplatformným frameworkom, čiže niektoré
funkcionality aplikácie môžu byť obmedzené. Preto je dôležité sa pred vývojom dôkladne
zamyslieť, ktorú spôsob vývoju daného produktu si vybrať.

V rámci mojej diplomovej práce riešim práve problematiku multiplatformného vývoja
aplikácií pomocou multiplatformných frameworkov. Špecificky, v čase písania tohto textu
pomocou nového frameworku .NET MAUI. Mám dva hlavné ciele, ktoré chcem dosiahnuť
v rámci tejto diplomovej práce. Prvý cieľ je dôkladne naštudovať framework .NET MAUI a
poskytnúť súbor prístupov na vývoj aplikácií na tomto frameworku. Špecificky sa zamerať
na architektúru aplikácie, rozdelenie pohľadov aplikácie medzi platformami, použité tech-
nológie, návrhové vzory či na komunikáciu medzi komponentami aplikácie. Druhý hlavný
cieľ je vytvoriť multiplatformnú aplikáciu na sledovanie času, ktorá bude komunikovať so
systémom Kimai. Systém Kimai je open-source online aplikácia, ktorá slúži na zaznamená-
vanie odpracovaných hodín, sledovanie práce v tíme či na vytváranie faktúr. Následne
vytvorená aplikácia by mala byť dostupná Kimai komunite a výskumnej skupine UIFS na
VUT FIT na zjednodušenie a zefektívnejšie práce so systémom Kimai.

Na začiatku som naštudoval teóriu ohľadom multiplatformného vývoja, dizajnu apliká-
cií a systému Kimai. Porovnal som natívny, multiplatformný a webový vývoj a poskytol
som prehľad populárnych multiplatformných frameworkov. Následne som podrobne naštu-
doval framework .NET MAUI a systém Kimai. Na základe naštudovaných informácií som
vytvoril prvý interaktívny návrh aplikácie v nástroji Figma. Tento návrh bol testovaný po-
mocou metódy usability testing. Bol vytvorený testovací plán, pomocou ktorého som
testoval interaktívny návrh aplikácie na reálnych užívateľoch. Testovanie bolo zamerané na
použiteľnosť aplikácie, identifikovanie hlavných vlastností aplikácie a jej celkového dizajnu.
Testovanie prebehlo v 2 fázach, na základe ktorých vznikol finálny návrh aplikácie. V rámci
implementačnej časti som podrobne porovnal architektonické prístupy v rámci .NET MAUI
a vybral najviac vhodnú architektúru pre moju aplikáciu. Poskytol som prehľad použitých
technológií a knižníc, ktoré uľahčujú vývoj na .NET MAUI. Následne je v tejto časti riešená
problematika pripojenia .NET MAUI aplikácie na API systému Kimai, navigácia v rámci
aplikácie a ďalšie implementačné detaily. Táto kapitola obsahuje vývoje prístupy (architek-
túra, navigácia, komunikácia, technológie a návrhové vzory), ktoré môžu byť aplikované
na ďalšie aplikácie vyvíjane vo frameworku .NET MAUI. V poslednej časti bola aplikácia
vyhodnotená a testovaná na reálnom publiku, kde bola získaná spätná väzba, ktorá bola
zakomponovaná do ďalších verzií aplikácie.

Výsledkom diplomovej práce je vytvorená multiplatformná aplikácia s názvom MAUI
for Kimai, ktorá je dostupná a podporovaná na Android a Windows platformách. Ap-
likácia je funkčná tiež na iOS a Mac platformách, avšak len experimentálne, pretože počas
vývoja som mal obmedzený prístup k Mac vývojovým nástrojom. Aplikácia je open-source
v rámci GitHub repozitára, kde je dostupný zdrojový kód, dokumentácia, články ohľadom
implementácie a tiež optimalizované inštalačné balíčky. Aplikácia získala ohlas od Kimai
komunity a bola zdieľaná na sociálnych sieťach Twitter a Mastodon ako nová, zaujímavá,
multiplatformná aplikácia dostupná pre systém Kimai.

.NET MAUI Multiplatform User Interface for Ki-
mai

Declaration
I hereby declare that this Diploma’s thesis was prepared as an original work by the author
Bc. Dávid Špavor under the supervision of Ing. Daniel Dolejška. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Dávid Špavor
May 15, 2023

Acknowledgements
I would like to express my gratitude to my supervisor, Mr. Ing. Daniel Dolejška for his
guidance and quick and helpful responses to my questions.

Contents

1 Introduction 4

2 Multiplatform development and system Kimai 5
2.1 Native and cross-platform development . 5
2.2 Cross-platform development frameworks . 8
2.3 .NET MAUI framework . 10
2.4 Design of user interfaces . 16
2.5 Time-tracking system Kimai . 19

3 Design and usability testing 30
3.1 Initial design . 30
3.2 Process of usability testing . 34
3.3 Report after the first iteration of usability testing 35
3.4 Design after the first iteration . 36
3.5 Report after the second iteration of usability testing 38
3.6 Final design . 40

4 Implementation 43
4.1 Architecture . 43
4.2 Essential technology and used libraries . 49
4.3 Integration and authorization of Kimai API 52
4.4 Navigation using Shell . 54
4.5 Viewmodels . 58

5 Deployment and evaluation 59
5.1 Deployment . 59
5.2 Features overview and usage . 60
5.3 Evaluation of the application and user feedback 64
5.4 Feedback from the community and future development 65

6 Conclusion 66

Bibliography 67

A Content of attached data medium 69

1

List of Figures

2.1 .NET MAUI architecture diagram . 10
2.2 .NET MAUI lifecycle states and events . 12
2.3 Example usage of .NET MAUI styles . 13
2.4 Example XAML code with data binding . 14
2.5 XAML namespaces . 14
2.6 Example usage of markup extension . 15
2.7 Visual hierarchy of headlines . 17
2.8 Kimai table of recorded timesheets . 21
2.9 Detail view of Kimai project . 22
2.10 Kimai permissions configuration view . 23
2.11 Kimai reports . 25
2.12 Kemai desktop application . 27
2.13 Toggl time-tracking . 28
2.14 Toggl calendar and time picker . 28
2.15 Toggl reports . 29

3.1 The initial design of server management . 31
3.2 The initial design of menu, home page and catalog of timesheets 32
3.3 The initial design of time-tracking use-case 32
3.4 The initial design of project, customer and team management 33
3.5 The second design of menu, server management and home page 37
3.6 The second design of customer, project and user views 38
3.7 The final design of menu and server management 40
3.8 The final design of time-tracking use-case 41
3.9 The final design of reports . 42
3.10 The final design of team and user management 42

4.1 Code of XAML markup, which is tied to code-behind 44
4.2 Code of C# code-behind . 44
4.3 MVVM architecture diagram . 45
4.4 Clean architecture diagram . 46
4.5 Architecture of implemented application . 48
4.6 Fundamental concept of implemented application 49
4.7 Scrutor assembly scanning . 50
4.8 Kimai API authorization . 53
4.9 Sequence diagram of login use-case . 53
4.10 Code snippet of routing method . 55
4.11 Code snippet of performing a navigation . 55
4.12 Mobile main menu . 57

2

4.13 Desktop main menu . 57

5.1 Server management of implemented application 61
5.2 Time-tracking use-case of implemented application 62
5.3 Views dedicated to timesheets of implemented application 62
5.4 Reports of implemented application . 63

3

Chapter 1

Introduction

Time-tracking is a very important concept within the software development process, mostly
for an effective division of company resources. There are many applications out there for
time-tracking purposes, but often they are paid and some of them are complicated.

Kimai time-tracking software was developed in 2006. It is open-source, free software
created as a web application. It brings to developers’ teams the ability to manage their
workflow and accurately bill the working times. Kimai has been updated over the years
and various mobile applications have been developed. However, a lot of them are out of
date and some of them are also paid.

The Microsoft company released Visual Studio 2022 17.3 along with the .NET Multi-
platform App UI (.NET MAUI) on 9 August 2022. .NET MAUI is a framework for the
development of multiplatform applications from a single shared codebase. This means that
code that is working on the mobile platform can also work on the desktop platform. In my
opinion, this presents wonderful opportunities for developers when they need to create the
same application for both different platforms.

My main goal of this thesis is to create a multi-platform time-tracking application, which
should improve a time-tracking use case within Kimai software. In addition, I would like
to provide a set of approaches for multi-platform development in .NET MAUI. Specifically,
these approaches should describe how code between platforms should be divided, which
design patterns should be used, and how programmers should proceed during development.

The thesis is logically divided into multiple chapters. The first chapter describes the
problematics of multiplatform development and existing frameworks. The approaches for
the design of the user interfaces are also discussed, and in the end, the Kimai time-tracking
software is introduced. The second chapter deals with the design of the user interface of the
application, which was improved in multiple iterations due to a method of usability testing.
The third chapter discusses implementation, especially my reasoning behind a chosen ap-
plication architecture, an overview of the technologies used, and the implementation details
of my solution. The deployment, usage, and evaluation of the application are described in
the last chapter with possible extensions in the future.

4

Chapter 2

Multiplatform development and
system Kimai

This chapter describes multiple ways to develop software applications and their user inter-
faces. The main focus is on multi-platform and native software development with a target
on cross-platform frameworks. Multiple frameworks are discussed, but the main focus is on
.NET MAUI and the technology behind it. Moreover, the theory behind the design of user
interfaces is introduced with the theory of usability testing. In the end, the Kimai system
is introduced with an analysis of existing Kimai applications.

2.1 Native and cross-platform development
Nowadays, developing a software application requires many important decisions to be made.
One of them is, on which platform application should be created. This is crucial because it
determines how large the audience for the application is and, in the end, its overall success.
This leads to different ways of developing software products. In other words, there are three
main approaches to developing software applications:

• Native development

• Cross-platform development

• Web development

Native application development

The term native application development refers to the building of an application exclusively
for a single platform. The application is built with programming languages and tools specific
to that platform [1].

Let us take as an example the Android platform. Java or Kotlin programming languages
can be used to develop Android applications. Furthermore, for iOS applications, Swift
and Objective-C programming languages are available. Thus, building native applications
requires a high level of specialized knowledge for each platform. This leads to development
using the OS guidelines, which brings the user experience of developed software as close to
the particular platform experience.

5

Advantages

• Performance – native software is singularly familiar with the OS it runs on, then
these applications will naturally have more flexibility on their native platforms. There-
fore, the result is fast response times and processing speed.

• Security – native applications have security protocols that work through all layers
of an OS.

• Broad functionality – programmers have access to the original API (Application
Programming Interface) provided by the platform. Moreover, there is greater com-
patibility when it comes to certain natural UI and UX elements of the platform on
which the software is built [5].

Disadvantages

• Time-consuming – when a developer decides to create software using a platform-
specific language, it can be an exhaustive task if an application is planned to launch
on every available platform.

• Cost – since native development is time-consuming, the more time it takes to develop
software, the less time it takes to promote the application and collect profits. If
multiple platforms are chosen, there is a need for multiple teams for different platform.

• Accessibility – many software development companies do not have the resources
to build an application for multiple platforms, or at least they cannot release it on
all platforms at the same time. Thus, potential users are left disappointed, and the
company misses out on business opportunities [5].

Cross-platform development

Cross-platform development is a process of creating applications that work on multiple
platforms. Cross-platform development frameworks (CPDF) wrap the system APIs for
different platforms into their own APIs, which are consistent and can be accessed through
a single programming language. Using CPDF, developers can implement cross-platform
applications by writing code only once. This is particularly useful for mobile development
since there are two distinct popular platforms, namely iOS and Android. For example, both
the iOS and Android APIs define their own button view. CPDFs define their own button
implementations, which are then converted to actual native IOS or Android buttons [20].

Advantages

• One source code – single code base for all platforms where the code is reusable.

• Faster development – development is less time consuming because of one source
code for each platform.

• Faster time to market – publishing built applications for multiple platform app
stores simultaneously.

• Easier maintenance – only a single code base needs to be maintained and tested.

• Less costly – there is no need for so many resources [16][2].

6

Disadvantages

• Limited functionality – there can be difficulties in accessing some native features.

• Worse performance – there is a need for an additional abstraction layer, and the
rendering process makes the cross-platform application slower than its native coun-
terpart.

• Limited user experience – applications cannot take advantage of native UX com-
ponents [1].

Web-based application development

A web application is an interactive software built using web development technologies that
users can access from their browsers. Typically, web applications have typical front-end
and back-end web development technologies [6]. The front-end is the presentation layer
of the application. It describes how the application looks and how the user interacts with
the application. On the other hand, the back-end development is focused on functionality
and data storage. Back-end technology is often deployed on the web server, which serves
requests of connected front-end clients.

One of the different types of web software is the Progressive Web App (PWA). Until re-
cently, the web platform lagged behind in mobile-centered innovation in terms of being able
to compete with native or cross-platform apps. PWA is a new set of standards advocated by
the Google Web Fundamentals group that seeks to bridge that gap by introducing features
such as offline support, background synchronization, push notifications, and home-screen
installation to the web [3]. In other words, PWA offers more native-like functionality than
the basic web application.

Advantages

• High portability – web applications are entirely multiplatform. They can be ac-
cessed through any device with an internet connection and a web browser.

• Easier development and maintenance – there is only one codebase with which
to work and a limited set of technologies.

• More convenience – applications do not need to be installed or downloaded (unlike
PWA, but are really small compared to the native approach) [6].

Disadvantages

• Limited functionality – web applications do not have the same capacity to effec-
tively collaborate with the hardware and operating system of a specific device.

• Availability – web applications generally require an Internet connection to be ac-
cessed [6].

7

2.2 Cross-platform development frameworks
This section contains an overview of some of the most popular multiplatform frameworks.
For each platform advantages and disadvantages are presented for easier comparison.

React Native

React Native is an application development framework where standard web technologies
are used, or, in some cases, something similar to standard web technologies, to build ap-
plication. This means HTML, JavaScript, and CSS. React Native is based on Facebook’s
React framework, a popular web development framework. The critical difference between
the two is that plain old React targets web browsers, whereas React Native typically does
not. Android and iOS platforms are currently supported. The created mobile applications
perform more like native applications than typical web applications, because the core tech-
nology behind them is native [11]. However, when a developer wants to implement some
platform-specific functionality, there is a need for platform-specific code.

Some of a popular mobile applications developed with React Native technology are
Discord, Facebook, Skype, Instagram, and Airbnb.

Advantages

• Simultaneous development for multiple platforms.

• Excellent set of developer tools (hot reload, integrated development environments
(IDEs).

• Load JavaScript-only changes in applications in stores without going through the
approval process (both for Apple and Google).

• Possibility to write native code and call it from JavaScript.

Disadvantages

• Difficulties with debugging due to multiple layers of abstractions.

• There can be a length of time during which React Native does not support a new
version of Android or IOS (the underlying APIs need to be adjusted to changes).

• In some cases, native code is still needed.

• Possibility to write native code and call it from JavaScript [11].

Xamarin

Xamarin is an open-source platform from Microsoft, which extends .NET ecosystem with
tools and libraries specifically for building applications for Android, IOS, watchOS, macOS,
and Windows. At its basic, it is a way to use the same language and technology across iOS
and Android, allowing to reuse of large amounts of code and third-party libraries across
two very different mobile platforms. Best practices around Xamarin are focused on keeping
this amount of code sharing as large as possible. That is why the popular Model-View-
ViewModel (MVVM) design pattern is used [15].

There are multiple applications created with Xamarin, for example: CA Mobile, The
World Bank, Alaska Airlines, Microsoft Azure and UPS Mobile.

8

Advantages

• Compatibility with MVC and MVVM design patterns.

• .NET development ecosystem (C#, Visual Studio, Nugets).

• Open-source and free.

• Full hardware support.

Disadvantages

• In some cases, the need for the use of platform-specific code.

• Problems may occur when a complex UI is required.

• Large application size.

Flutter

Flutter is Google’s portable UI framework for building modern, native and reactive appli-
cations for iOS and Android. Google is also working on Flutter desktop embedding and
Flutter for the Web (Hummingbird) and embedded devices (Raspberry Pi, home, auto-
motive, and more). Flutter uses Dart, a modern object-oriented language that compiles
to native ARM code and production-ready JavaScript code. Dart is used to create user
interfaces, removing the need to use separate languages like Markup or visual designers.
Flutter is a declarative language, which means it builds the UI to reflect the state of the
application. When the state (data) changes, the UI is redrawn, and Flutter constructs a
new instance of the widget. Applications made in Flutter are built from a single codebase,
use the graphics processing unit (GPU), and can access specific iOS and Android APIs (like
GPS location, image library) by communicating through platform channels [18].

Advantages

• Fast and dynamic code writing with the support of hot reload.

• Support for ready-made widgets, which helps to quickly build a user interface.

• Access to native features of the platform, which developers can access with Objective-
C, Swift, or Java.

Disadvantages

• Scarcity of third-party libraries, which means that if there is no needed functionality,
developers must develop it by themselves.

• The size of the application is quite substantial.

• Low adaptation of the Dart programming language [25].

9

2.3 .NET MAUI framework
Since .NET MAUI is a relatively new technology (the first Release Candidate of .NET
MAUI was released on April 12, 2022), at the time of writing this thesis, there are limited
resources of .NET MAUI literature. For these reasons, a substantial part of this section is
derived from the MAUI documentation 1 created by Microsoft.

Multiplatform app UI (MAUI) is a new open-source cross-platform framework for creat-
ing mobile and desktop applications with C# and XAML. Using .NET MAUI, applications
can be developed, which run on Android, iOS, macOS, and Windows from a single shared
codebase. The main aim is to reuse as much code as possible between the different plat-
forms. .NET MAUI unifies different platform APIs into a single API that allows using
approach ”write-once, use-anywhere“ while providing access to native code of each plat-
form. It contains platform-specific libraries for Android, iOS, Mac and WinUI 3.

All these libraries have access to the .NET base class library (BCL). The BCL is the
base for all general .NET class libraries and provides code execution environments. BCL
abstracts the underlying platform environment away from the written code. For Android,
iOS, and MacOS, the environment is implemented by Mono 2. On Windows, .NET Core-
CLR 3 is used to provide the execution environment. The architecture of .NET MAUI is
represented in Figure 2.1.

Figure 2.1: Representation of architecture of .NET MAUI, where BCL abstracts underlying
platform-specific libraries depending on platform environment. Taken from official .NET
MAUI documentation5.

1MAUI documentation: https://learn.microsoft.com/en-us/dotnet/maui/
2Mono - cross-platform .NET framework : https://www.mono-project.com/
3CLR (Common Language Runtime): https://learn.microsoft.com/en-us/dotnet/standard/clr
5Taken from: https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0

10

https://learn.microsoft.com/en-us/dotnet/maui/
https://www.mono-project.com/
https://learn.microsoft.com/en-us/dotnet/standard/clr
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0

The code that developers write interacts primarily with the .NET MAUI API (1). .NET
MAUI API then directly consumes the APIs of the native platforms (3). Moreover, the
developer can directly access .NET abstractions of platform APIs (2), if required [10].

.NET MAUI is considered an evolution of Xamarin.Forms. Accordingly, there are many
similarities with Xamarin:

• XAML and C# is used to develop applications.

• MVVM design pattern is applied with data binding.

• Usage of improved Xamarin controls, layouts, Shell, gestures, templates, and cross-
platform APIs device features.

However, there are also many important differences. One of the main differences is
the support for Windows. Xamarin supports UWP 6, while MAUI supports WinUI 7 [21].
Other important differences are concluded in Table 2.1.

Xamarin MAUI
Architecture .NET Framework .NET 6, 7

Project structure Separate projects for each
platform. Single project structure

Targeted platforms
versions

Android 4.4 (API 19) or
higher, iOS 9 or higher,
UWP

Android 5.0 (API 21) or
higher, IOS 10 or higher,
WinUI

Hot Reload No Yes

Resources maintenance
Resource files maintained
separately for each
platform

Resources can be
maintained in a single
location

Table 2.1: Comparison of main properties of Xamarin and MAUI frameworks [21].

.NET MAUI also brings possibilities to develop hybrid applications. That means the
application is running on mobile, desktop and web using a Blazor Hybrid pattern. Blazor
Hybrid combines web technologies (HTML, CSS, and sometimes JavaScript) with native in
.NET MAUI Blazor. Sometimes, web applications need access to the native capabilities of
the device and this approach enables it. However, for mobile devices, to develop applications
with MAUI Blazor, the support for WebView is needed and therefore, the native-like feeling
of the applications is lost.

6UWP (Universal Windows Platform): https://learn.microsoft.com/en-us/windows/uwp/get-
started/universal-application-platform-guide

7WinUI (Windows UI Library): https://learn.microsoft.com/en-us/windows/apps/winui/

11

https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://learn.microsoft.com/en-us/windows/apps/winui/

Application life-cycle

.NET MAUI applications generally have four execution states:

• not running,

• running,

• deactivated,

• and stopped.

These cross-platform lifecycle events are raised in the Window class based on application
transitions. Transitions are shown in Figure 2.2 with the lifecycle described below.

Figure 2.2: MAUI application lifecycle states and events, because of which transitions
between states occur.

The execution state of the MAUI application depends on usage history and on events
raised by .NET MAUI, which provides notifications. The gray oval of the state not running
indicates that the application is not loaded into memory. Blue ovals indicate that the
application is already loaded into the device’s memory.

At the beginning, the application has not yet been started, therefore, it is considered as
not running. When an application is started, Created and Activated events are raised
and the application is considered as Running. When different applications gain focus, the
Deactivated event is raised and the state changes to Deactivated. If the user switches to
a different application or returns to the device home screen, the Deactivated and Stopped
events are raised and the application is considered Stopped. When the user returns to the
application, the Resumed event is raised, and the application is again Running. Additionally,
an application can be terminated by a user or by device software due to resource restriction.
Thus, a Destroying event occurs and the application is Not running again [9].

12

Behaviors and styles

The functionality of the user interface controls can be added with .NET MAUI behaviors.
Due to the behaviors, there is no need to subclass controls for the purpose of adding
functionality. In other words, there is no need for inheritance of control properties, all
functionality is implemented in a behavior class and attached to the control as if it were
part of the control itself. Behaviors enable us to write code-behind code in classes, which
can be later reused across multiple controls of different applications.

Two different types of behavior are supported:

• Static behaviors, which are implemented in the static class with one or more attached
properties.

• Classes deriving from Behavior or Behavior<T> class, where T is the type of control
to which the behavior should be applied [7].

The MAUI application can be styled using the Style class to group a collection of
property values into one object that can then be applied to multiple visual elements. This
helps to reduce repetitive markup and allows the appearance of the application to be more
easily changed. Styles can inherit from other styles to reduce duplication and enable reuse.
This is achieved by setting Style.BasedOn on an existing Style [8]. Styles can be applied
to the UI components by referencing specified x:Key value. Example style usage with
inheritance is shown in Figure 2.3.

1 <Style x:Key="BaseLabel" TargetType="Label">
2 <Setter Property="FontFamily" Value="OpenSansRegular" />
3 <Setter Property="TextColor"
4 Value="{AppThemeBinding
5 Light={StaticResource AccentDark},
6 Dark={StaticResource AccentLight}}" />
7 </Style>
8
9 <Style

10 x:Key="SmallLabel"
11 BasedOn="{StaticResource BaseLabel}"
12 TargetType="Label">
13 <Setter Property="FontSize" Value="12" />
14 </Style>

Figure 2.3: Example of .NET MAUI Style with inheritance, when BaseLabel is defined,
from which SmallLabel inherits properties specified by BasedOn setting.

Styles can also be dynamic, which means that they can be changed on application
runtime. The DynamicResource markup extension is used instead of StaticResource
markup extension.

13

XAML

XAML (eXtensible Application Markup Language) is and XML-based declarative language
for creating trees of .NET objects developed by Microsoft. XAML provides a convenient
view of constructing user interfaces for .NET applications. It uses data bindings to present
and interact with data. UI elements can be bound to different kinds of data sources in the
form of a .NET object.

XAML is used in multiple Microsoft frameworks: UWP, WPF 8 or MAUI [4]. The basic
examination of the XAML syntax is shown in Figure 2.4. This example is used to examine
the relationship between XAML and .NET.

1 <Window
2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4 x:Class="XamlProj.Window1"
5 Title="Main Window">
6
7 <Grid>
8 <Ellipse Fill="LightBlue" />
9 <TextBlock>

10 Name: <TextBlock Text="{Binding Name}" />
11 </TextBlock>
12 </Grid>
13 </Window>

Figure 2.4: Concrete example of XAML code, which shows a basic structure of XAML with
namespaces, classes, properties, and children.

Namespaces

XAML relies on XML namespaces to determine the meaning of elements. Many class names
are ambiguous, therefore, the corresponding framework needs to know to what .NET type
each control corresponds to. The namespace system is used for disambiguation.

To define a relationship between an XML namespace and one or more .NET namespaces,
XmlnsDefinitionAttribute is applied to the assembly that contains the types that should
be accessible in XAML. The attribute can be applied several times to add multiple.NET
namespaces to a single XML namespace.

When a project is built (MAUI, WPF), the namespace definition attributes are looked
up by the XAML compiler on all libraries that the project uses [4]. Two namespaces that
are used in the example 2.4 are shown in Figure 2.5.

1 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
2 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Figure 2.5: Two namespaces are contained in the XAML example in Figure 2.4.

8WPF - Windows Presentation Foundation: https://learn.microsoft.com/en-us/visualstudio/get-
started/csharp/tutorial-wpf?view=vs-2022

14

https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-wpf?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-wpf?view=vs-2022

Generating classes

Figure 2.4 has an x:Class=”XamlProj.Window1” attribute on the root element Window.
The x: prefix is the standard XML shorthand to indicate that this particular attribute is
in the namespace specified by the xmlns:x attribute. The attribute x:Class is a signal to
the XAML compiler that it should generate a class definition based on this XAML file. It
also determines the name of the generated class and will derive from the type of the root
element. In this case, it is the Window1 class [4].

Properties

Attributes, which do not have a namespace qualifier usually correspond to the properties
of the .NET object to which the XAML element refers. In this case, the Title attribute in
the Window element indicates that when an instance of the generated XamlProj.Window1
class is constructed, the Title property of MainWindow is set [4].

The markup extensions

Type converters and property elements are used to initialize most properties to constant
values or fixed structures. But sometimes there is a need to set a property to the value of
some particular static property, the value of which is unknown at compile time. Thus, the
markup extension class is used. Markup extension decides at run-time how to set a value
of property [4]. An example of the usage of the markup extension is shown in Figure 2.6.

1 <ImageButton
2 Command="{Binding StartCommand}"
3 IsVisible="{Binding IsTimetrackingActive,
4 Converter={StaticResource InvertedBoolConverter}}"
5 Source="play_button.png">

Figure 2.6: Example of the usage of the StaticResource markup extension, which use
InvertedBoolConverter converter for changing visibility of the UI element.

Children

The Window element contains more nested elements. The default XML namespace specified
by the xmlns attribute is in scope for all XML files, so these nested elements are also in the
XML namespace. Therefore, the children’s elements correspond to the classes, which are
contained within defined namespaces. The interpretation of nested elements is defined by
the parent element. The parent element decides how the child elements are rendered [4].

15

2.4 Design of user interfaces
Designing a good user interface is hard, especially for developers with little or no experience.
In addition, designing the user interface is a really important part of software development
because it can influence potential users of the application. If the UI is poorly designed, it
can discourage users to use the implemented application and, in consequence, they move to
the competition. This section describes things that should be considered when designing
an application. Moreover, the importance of UI and UX is discussed, and important UI
patterns are described.

There are several things that need to be considered when a developer wants to design
an application:

• Consistency – implemented application should work and look like other applications
on the same platform. When the user is used to some functions on a specific platform,
this function in the implemented application should work as the user expects.

• User experience – the application should be easy to use and intuitive. The user
should be able to gain knowledge of the use of the app without any prior training.
This closely relates to the consistency principle. If the application has a consistent
user interface across platforms, it should be easier for the user to learn how to use
the application.

• Flow – when designing functions of applications, the developer must consider what
steps must be taken to achieve a specific goal. The flow of actions to achieve specific
functions should be easy, and important UI controls should be placed within reach.
For example, if a camera application is developed, the options for editing or sharpening
a photo should be on the same screen where view of the taken photo is, not buried in
a menu that involves multiple steps to navigate.

• Good looks – the application should be modern, where images are well drawn and
fit the device size, the text is readable and the colors are consistent.

• Accessibility – the developer should consider the possibilities of increasing the font
size and implementing some visual alerts. A well-designed application should take
into account all possible users [15].

Usability and design of user interfaces

Usability plays a very important role in the software development product. Usability means
absence of frustration, when users use software product. In other words, a product or a
service is truly usable when the user can do what he wants to do and what he expects to be
able to do it, without hindrance, hesitation, or questions. To be usable, a product or service
should be useful, efficient, effective, satisfying, learnable, and accessible. The substantial
part of this section about usability is taken from the book Handbook of Usability Testing
by Jeffrey Rubin and Dana Chisnell [14].

The usefulness of a product enables a user to achieve his goals. If achieving a goal is
an easy task, the user should have a motivation to use the product again. On the other
hand, if a system is easy to use, easy to learn or even satisfying to use but does not achieve
the specific goals of an user, it will not be used. Therefore, the flow of actions to achieve a
specific goal must be designed in detail during product design. The speed with which the

16

user achieves his goal accurately and completely is called efficiency. Often it is a measure
of time. In addition, effectiveness refers to the extent to which the product behaves in
the way that users expect it to. It defines how easily users can achieve what they want.
Effectiveness is usually measured quantitatively with the error rate. In addition, part of
effectiveness is learnability, which defines ability of user to operate the system at some level.

When users are reading sites or using some user interface, they don’t want to think.
Based on the author Steve Krug, who has written the book: Don’t Make Me Think! A com-
mon sense approach to web usability, this is the first law of usability. The user interface
should be self-evident, obvious, and self-explanatory. For example, buttons. It should be
obvious that the button is clickable. However, if the developer chooses the wrong UI con-
trol, it can confuse the user who has to think about it. It should be evident that this is
a clickable control. All these small things can add to the poor usability of the designed
user interface. However, not everything can be made self-evident. At least, it should be
self-explanatory. The developer can create an explanatory page for the problem, but it
should not be long or overwhelming. As a result, the overall experience of using designed
user interface should be much better.

People do not read pages. They scan them. They are looking if the page contains
something important, and if they find it, then only after that they read it. And this
can be applied to any kind of user interface. It is important to create a clear visual
hierarchy. The more important something is, the more prominent it is. For instance, the
most important headings are either larger, bolder, in a distinctive color, set off by more
white space. Similarly, things that are related logically should also be related visually.
Similar things should be grouped together and visualized in a similar style. In addition,
it is important to show what is part of what. Visual elements that are connected to each
other should be nested and should create visual hierarchy. An example of a nested visual
hierarchy of headlines is shown in Figure 2.7. For that, we can use some conventions of UI.

Figure 2.7: Example of visual hierarchy of headlines, which then can be used to dived pages
to logically divided sections. Taken from Nomensa article10about web accessibility.

Another important thing in a good user experience is the presence of persistent naviga-
tion. Good persistent navigation contains:

• site or product identification,

• a way to access the home page,

• a way to search,
10Taken from: https://www.nomensa.com/blog/2017/how-structure-headings-web-accessibility

17

https://www.nomensa.com/blog/2017/how-structure-headings-web-accessibility

• sections,

• and utilities.

Almost every page of applications should have navigation available. However, there are
some exceptions. For example, a home page, which can have a different purpose and can
be a starting point of navigation, or forms, where persistent navigation can be a distraction
to user. For these pages, it is useful to have a minimal version of navigation, with a site
ID, a link to home page, and fundamental utilities.

The sections are the top-level hierarchy. They are links to the lower level of the page.
It is important to show which section or subsection is currently selected. Good practice
is to use I’m here indicator, which is a way to show the exact location of the user within
the page. Furthermore, the utilities are links to the important elements of the site or
application, which are not really part of the content hierarchy. For example, utilities are
links to the Help page, the Log-in page, or the About Us page. The possibility of searching
things across the page is really important because searching using keywords can often be
faster than navigating through an application.

Usability testing

The term usability testing is a technique used to evaluate a product or a system. It is a
process in which testing participants who are representative of the target audience evaluate
the product to the degree to which a product meets specific usability criteria. The goal of
usability testing is to improve the profitability of products, where design decisions are made
from data collected from representative users, and design issues are minimized. The design
of the product is influenced by the collected data, which can eliminate design problems and
user frustration. The usability testing process contains the following parts:

• develop the test plan,

• set up a testing environment,

• find and select participants,

• prepare test materials,

• conduct the test sessions,

• debrief the participant and observers,

• analyze data and observations,

• report findings and recommendations [14].

18

2.5 Time-tracking system Kimai
Kimai is an open-source time tracking software. It is an online tool which tracks work
time and prints out a summary of activities on demand: yearly, monthly, by customer, by
project, etc. Kimai is a browser-based application with a responsive user interface [17].

The main goal of Kimai is to track working hours. There is a possibility to add a
billing and thus creating invoices. Using a time-tracking software brings multiple benefits
to freelancers, teams or even companies. Some of benefits are:

• Increase profitability – accurately tracking time and monitoring project budget
and resources.

• Bill and pay accurately – exact working hours available.

• Set clear objectives – each member is focused on a specific task, which is time-
tracked.

• Increase productivity – within the time tracking period developers stay on task.

• Better project management – because of time tracking and utilized resources, the
project manager can better prioritize future projects and team assets.

• Transparency – giving transparency into developers work to keep them accountable.

• Better communication of progress [12].

Brief history and current status of development

The first version of Kimai was released in 2006. It was developed by a team around Torsten
Höltge. It had a responsive design, which was not widely spread at this time. Due to
personal time limitation of the main developer, the project should be shut down, however
Kevin Papst11 stepped in as the new maintainer and with the help of the open source
community, he was able to keep it alive.

Kimai 1 had fundamental features such as the following:

• administration of users, projects, and customers,

• time-tracking of tasks with time-sheets,

• generating invoices,

• calculating rates and fees,

• exporting possibilities,

• and plugins extensions.

Kimai 1 required at least MySQL 4.3 or higher and a PHP version between 5.5 and 7.3.
In the meantime, the PHP community made great strides forward, while Kimai was still
based on old versions. There were also major drawbacks to the developed architecture, such
as the limited extension capabilities of the project and the problematic database design.
Also, driven by a community request, the idea of rewriting Kimai was born.

11Kevin Papst Github: https://github.com/kevinpapst

19

https://github.com/kevinpapst

The new version of the PHP framework Symfony 4.0 with a new front-end stack was
released in 2017 and subsequently, the development of Kimai 2 has begun, which was
released later in 2018 [17].

The current stable version of Kimai 2 is 1.3 which is available on the Github repository12

with more than 2200 stars. Developers are working on the next major release of version
2.0, where a new user interface is in development, security is improved with new features
(such as two-factor authentication), and much more.

Features

This subsection presents some of the key features of the Kimai 2 time tracking system with
examples. Other useful features can be added to Kimai by purchasing plugins from Kimai
Market Place 13. Some of the available plugins are: Audit trail logs, Expense management,
KioskMode with Barcode and RFID support, Task planning and Translations. Substantial
parts of the text are taken from the official Kimai documentation 14 and from my own
analysis of the Kimai system.

Timesheets

A timesheet is recorded time-tracked activity with additional information about duration,
customer, project, rate, etc. A table with an overview of all timesheets is available with
filtering possibilities. The user can start a new time-tracking activity. When the activity
is stopped, it is saved in the time sheet table. There is the possibility to restart activity
that has already ended. An example of a timesheet table is shown in Figure 2.8. Multiple
formats of duration of activities are supported:

• Timespan (2:27 = 2 hours and 27 minutes),

• Time interval (ISO 8601) (3h14m = 3 hours and 14 minutes) ,

• Decimal duration (1,5 = 1 hour and 30 minutes).

When the record is set to exported, modification is blocked to prevent manipulation of
exported data. In addition, timesheet records can be set as billable or non-billable. Non-
billable records are excluded from invoices and budget calculations. Timesheet records can
also be tagged. Tags are used to create arbitrary logical structures that can be later used
to filter records in exports, invoices, or reports.

Management of customers, projects, and activities

Customers in Kimai are used to manage projects and activities, which are then used for
timesheets. The best practice is to have a customer to track administrative and other
internal work. The customer view contains a table with all customers added in the system
with the possibility to view details about each customer. The user can set the following
attributes to the customer: name, description, address, country, email, timezone, currency,
account, VAT-ID.

12Github repository of Kimai2: https://github.com/kevinpapst/kimai2
13Kimai Market Place: https://www.kimai.org/store/
14Official Kimai documentation: https://www.kimai.org/documentation/

20

https://github.com/kevinpapst/kimai2
https://www.kimai.org/store/
https://www.kimai.org/documentation/

Figure 2.8: Table of recorded timesheets, which contains information about date, duration,
rate and user. Timesheet can be edited and restarted with options located within grey
drop-down button on right.

Projects are assigned to customers and linked to activities. Projects can also be assigned
to teams. An overview of all projects is available. The detailed view of each project contains
the following information: name, description, assigned customer, order number, date of
start and end of project, and more.

Activities serve to explain the kind of work done on a specific timesheet. Activities have
two different types:

• Global – activities are not linked to the project and can be used in combination with
every project.

• Project specific – activities are assigned to projects and are available only if the
linked project is active.

Project-specific activities cannot be reassigned to another project. There is only option
to change project-specific activity to global activity, however this change is irreversible. An
example of the detail view of project with assigned activities is shown in Figure 2.9.

For each customer, project, or activity, additional properties are available to set:

• Colors – setting custom color for easier identification,

• Currency – setting different currencies for calculating rates and budgets,

• Billable – possibility to set billable configuration, which determines whether time
records will be billable,

• Budgets – to watch the progress of work and stay within contract boundaries,

• Rates – for cost calculation.

21

Figure 2.9: Detail view of project with assigned customer, order number and activities.

Kimai contains two different types of budgets. Lifetime budget is the default type,
where all records of all times are used to calculate progress of budget usage. On the other
hand, monthly budget use records of specific month to calculate progress. Moreover, the
configuration of different levels of rates is possible. It starts from the user hourly rate
and goes from customers to projects and activities. The rate configuration contains the
following settings:

• User – the user, the rate which is applied,

• Rate – hourly rate to be charged,

• Internal rate – internal costs, if the internal rate is not specified, the normal rate is
used,

• Fixed rate – each time record gets the configured rate value applied, regardless of
the duration of the record.

Management of users, teams and roles

A user must be created for using a Kimai system. The self-registration of the user is disabled
by default, however, it can be enabled in settings. The user can be part of the team, which
can limit or extend the visibility of data. In addition, access to certain features within Kimai
is handled by permissions and roles. Users have avatars, which can be either auto-generated
or custom created with the image URL. Furthermore, the user can be set as deactivated,
which will hide the user from the listings and reports, and disable the possibility to log in
to Kimai.

22

Teams allow users to organize into groups and limit access to customers and projects.
The team consists of team leaders and team members. Team leaders have access to all the
content and team timesheets. Once a team is assigned to a customer or project, access to
this object and its children is limited. Teams are created by a system administrator.

Kimai contains the following user roles in the default permission configuration, the
permissions of which differ depending on the role in the team:

• System-Admin – management of all content and administration functions,

• Administrator – management of all content, but access to system-specific settings
is limited,

• Teamlead – management of unprivileged contents and all contents assigned to his
teams,

• User – can see all unprivileged contents and all contents assigned to his teams.

Moreover, Kimai provides a flexible permission system, which is based on user roles and
permissions. Figure 2.10 shows an example of permissions for the activity management of
an administrator user. These permissions can be turned on and off for these roles. An
overview of all existing permissions is available in the Kimai documentation 15.

Figure 2.10: Default permission configuration of administrator user for activity with possi-
bility to turn on and off each permission.

Invoices, exports, and reports

The Kimai system provides the creation of invoices from timesheet data in several formats.
The user can mix arbitrary characters to create his own invoice format. Some examples of
arbitrary characters are:

15Overview of existing permissions: https://www.kimai.org/documentation/permissions.html.

23

https://www.kimai.org/documentation/permissions.html

• date – shortcut of date in format ymd (year, month, date),

• cname – the customer name,

• c – counter for all invoices within the system,

• cc – per customer invoice counter,

• uid – the internal user ID.

Kimai contains more arbitrary characters, the list of which is available in the Kimai docu-
mentation for invoices 16. Invoices can have multiple states:

• New – the invoice that was just created,

• Waiting for payment – the invoice that was sent to the customer,

• Invoice Paid – the invoice was paid by the customer,

• Canceled – the invoice was accidentally created and will not be used.

Invoices should be canceled rather than deleted. The removal of invoices is disabled
by default, however, it can be enabled by activating delete_invoice permission. Invoices
should not be deleted, because it can cause problems with the calculation of the invoice
counter. Kimai calculates the invoice numbers from the number of entries in the database.
By deleting invoices, the amount of invoices in the database is lowered and the next invoice
number might be the same as that already used. Moreover, invoices can be exported to
multiple types of documents such as PDF, HTML, DOCX, ODS, XLSX and CSV,

Kimai also contains a separate module for export, which allows one to export filtered
timesheet data into several formats. However, there are a couple of differences between the
invoice module and the export module. Firstly, invoices can only be created for a dedicated
customer, whereas export can be created without selecting a customer. Moreover, invoices
do more calculations (for example, calculation of taxes) and they support templates in more
formats. Exports can be created only by the user with permission create_export. Exports
and invoices share the export state, which is used to mark associated timesheet records as
processed. The consequence is that these records cannot be edited and are excluded from
future invoices and exports.

Kimai provides screens for reporting various information about users activity and projects.
For users, working times are reported and can be displayed on a weekly, monthly, or daily
basis. Example of yearly reporting is shown in Figure 2.11. Furthermore, reports for
projects contain information about resources, summed up times, budget, and time-budget
progress bars with links to invoice and export screens.

16Kimai documentation for invoices: https://www.kimai.org/documentation/invoices.html

24

https://www.kimai.org/documentation/invoices.html

Figure 2.11: Report of total time-tracked working hours of users during the year.

REST API

Kimai provides a detailed implementation of the API with multiple ways to interact with
the Kimai server. To access the API, the API password must be configured in the Kimai
user profile for each user. Therefore, the API password should be different from the normal
user password. Depending on the security level of the user, certain API endpoints are
available. When API is called from an external application, two additional headers must
be submitted to every API call:

• X-AUTH-USER – holds the username or email address,

• X-AUTH-TOKEN – holds the configures API password set in the user profile.

Kimai contains API endpoints for:

• Activity – management of activities,

• Default – for information about Kimai software,

• Customer – management of customers,

• Project – management of projects,

• Tag – management of tags,

• Team – management of teams,

• Timesheet – management of timesheets,

• User – management of users.

The following table 2.2 contains an overview of the API endpoints for activities for
the Kimai version 1.28.1. An overview of all API endpoints is available within the Kimai
installation at the /api/doc URL endpoint in the form of Swagger17 documentation.

17Swagger: https://swagger.io/

25

https://swagger.io/

Request method Endpoint Description

PATCH /api/activities/{id}/
meta

Sets the value of a
meta-field for an existing
activity.

GET /api/activities
Returns a collection of
activities.

POST /api/activities Creates a new activity.
GET /api/activities/{id} Returns one activity.

PATCH /api/activities/{id}
Update an existing
activity.

GET /api/activities/{id}/
rates

Returns a collection of all
rates for one activity.

POST /api/activities/{id}/
rates

Adds a new rate to an
activity.

DELETE /api/activities/{id}/
rates/rateId

Deletes one rate for an
activity.

Table 2.2: An overview of API endpoints, which are used to management of activities within
Kimai software.

Analysis of existing time-tracking applications

Analysis of UI and UX of existing time-tracking applications is described in this subsection.
The main focus of the analysis is on usability theory, described in Section 2.4. More
specifically, the focus will be on the present of persistent navigation with all important
items, like logo, way to home page, I am here indicator, etc. In addition, a visual hierarchy
of applications will be analyzed, all based on the usability theory mentioned above.

Kemai

Kemai18 is a Kimai desktop client available on Windows. It uses Kimai API 2.5 for connec-
tion to the Kimai server. The application is implemented in C++ programming language.

Kemai is providing only fundamental features, such as time-tracking use case, creation
of customers and projects with limited data. The application does not implement team
management. It has a relatively simple user interface, as shown in Figure 2.12. The UI
has only one page with a simple static menu on top. The server management in Profile
section is available in the top menu. It uses dialog windows with forms to create instances
of customers, projects, and activities. The time-tracking use case is available after all fields
are filled and is controlled by the tracking icon at the bottom.

The application lacks any visual hierarchy mentioned in Section 2.4. All headlines,
including the main one, have the same size. The application can be too tedious to use when
Kimai contains a lot of instances of projects and activities. Since the application is using
a drop-down component choosing of instance, when there will be a lot of instances, it will
not be effective.

18Kemai: https://github.com/AlexandrePTJ/kemai

26

https://github.com/AlexandrePTJ/kemai

Figure 2.12: Example of Kemai desktop application, which contains basic fields, which
need to be filled for time-tracking use case. On the left is application before start of time-
tracking, on the right is the application after starting a time-tracking activity.

Toogl Track

Toogl Track 19 is time-tracking software for productivity and profitability needs. It contains
a web and mobile application. It has 4 pricing methods, each containing different features
[24].

The view of time-tracking use case is shown in Figure 2.13. Toggl uses a tabbed interface
for navigation located at the bottom. The first tab is Timer, which contains a list of tracked
activities and the possibility to start a new activity. When activity is started with the ”Play
button“, time tracking is instantly started, as can be seen in the image on the right. The
activity can be edited after it has been stopped. In addition, new timesheet can be created
with the Plus button located at the top. After that, a page for activity creation is shown,
with input time component and rounding abilities. An example of this view is shown in
Figure 2.14 on the right.

The visual hierarchy from Section 2.4 is present on all pages. Each page contains the
largest headline and is divided into smaller sections with corresponding smaller headlines.
This can be seen in Figure 2.13. The headline also represents an I am here indicator for
each page. However, the product logo is missing from the application interface.

19Toggl Track: https://toggl.com/track/

27

https://toggl.com/track/

Figure 2.13: Active and inactive time-tracking views of Toggl. On the left is view before
time tracking is started, on the right is view after time tracking is started.

Figure 2.14: Implementation of calendar in Toggl, is shown on the left. View, for adding
new activity with time input component is shown on the right.

28

The second tab represents a calendar. Tracked activities are incorporated into the cal-
endar to create timesheet history, which can be accessed later. The calendar is represented
in Figure 2.14 on the right.

The third tab represents reports. Reports can be displayed for a week, day or by custom
preferences. Reports contains total tracked hours, billable hours, income, and charts. There
is a bar chart for billable and non-billable hours and pie charts for time spent on projects
and clients. These reports are represented in Figure 2.15.

Figure 2.15: Implemented reports within Toggl Track. Image on the left contains informa-
tion about total tracked time and bar chart for billable hours. Image on the right contains
charts for tracked time on different projects or clients.

Toggl track is widely used and is one of the most popular time-tracking application. It
provides a lot of features, which varies based on chosen price plan.

29

Chapter 3

Design and usability testing

This chapter presents my design of the MAUI application created in the Figma online
interface design tool 1. For simplicity, only the mobile version of the application is shown.
Additionally, the design was tested with the usability testing method in two iterations
with the developed test plan. After each iteration of usability testing, the results were
concluded in the corresponding sections. Later, this feedback from users was considered
and consequently incorporated into the next iterations of the design. The final user interface
design is described in the last section of this chapter.

3.1 Initial design
Based on the analysis of the user experience and the features of other time-tracking appli-
cations I created my own user interface design for the MAUI mobile application for Kimai.
The user interface was inspired by one of the Figma UI resources, specifically the Google
Drive UI resource 2. Furthermore, the user interface and user experience tips from Section
2.4 were incorporated into the design.

Login page and servers management

First and foremost, I created the server management view, where multiple Kimai servers
can be added. After creating a Kimai server with the correct user name and password, the
connection can be established. The connection can be established by clicking on the server
button within the Recent servers panel or by clicking on the connection button within
the list of all servers. The information of each server can be modified by clicking on the
individual server in the list of servers. User interfaces, which represent these use-cases, are
available in Figure 3.1.

1Online interface design tool Figma: https://www.figma.com/
2Google Drive UI resource: https://uikitfree.com/g-drive-ui-exploration-figma-freebie/

30

https://www.figma.com/
https://uikitfree.com/g-drive-ui-exploration-figma-freebie/

Figure 3.1: Server management views, where users can create new servers, edit them and log
in. The left figure represents the login page with recent servers, the middle figure represents
view for creating a new server and the right figure describes lists of available servers.

Menu, home page, and time-tracking

After successful log-in, the user is redirected to the home page. The home page is repre-
sented in Figure 3.2 by an image in the middle. The home page contains a widget with
information about time-tracking and also a way to start a use-case of time-tracking. Based
on user experience tips from Section 2.4, the page contains persistent navigation in the
upper part of the image. This navigation is available across all pages of the application.
It contains product identificator, which is also a link to home page, page description, way
to a search, and access to a menu. Each tracked timesheet is then stored in the catalog of
all timesheets, which is represented in Figure 3.2 on the right. In addition, each timesheet
in catalog contains a tag, which corresponds to assigned project. The menu is shown in
Figure 3.2 on the left and contains a simple way to navigate between different views with
the possibility to log out of a server.

Time-tracking can be started by clicking on the button Start tracking. After that, a
dialog will be shown, where the user can choose whether to create a new time sheet or to
select a template. This dialog is shown in Figure 3.3 on the left. If user decides to create a
new timesheet, Create new view will be shown with all required fields to fill up. By clicking
the Start button, time tracking will start. This case is represented in Figure 3.3 in the
middle. On the other hand, if the user clicks the Choose template button, a corresponding
view will be shown, where the existing template of the timesheet can be chosen. After
clicking on the template, the time-tracking will automatically start. The choice of template
is represented in Figure 3.3 on the right.

31

Figure 3.2: On the left of this figure is designed menu, which represents easy navigation
between each page, in the middle is described home page with information widgets and
possibility to track time and on the right is showcased catalog of all timesheets.

Figure 3.3: Use-case of time-tracking, where the user can choose between creating a new
timesheet or using a template.

32

Customers, projects and teams

I decided to implement views for managing customers, projects, and teams within the
mobile application. This will be useful for teamleads and administrators within Kimai. In
my opinion, management of these entities would not be as effective in mobile application
as on a desktop. Therefore, better implementation of these use cases will be on the desktop
application. Management of customers, projects, and teams is similar. All three contain a
catalog of available entities. An example of this catalog is shown in Figure 3.4 on the left,
specifically the catalog for projects. In the middle, detail of entity is shown, in this case,
specifically of the customer, where more information can be found and edited. The right
view can be found for adding projects and users to the team.

Figure 3.4: Examples of catalog, details view for projects, customers and teams for man-
agement purposes.

33

3.2 Process of usability testing
After the initial user interface design is created, usability testing can be performed to test
the user experience of the designed application and collect user feedback. Based on the
usability testing theory described in Section 2.4, I developed a test plan with tasks and
questions for the participants.

Test plan

The main objectives of the usability testing of the MAUI for Kimai application are:

• Test user experience of designed UI,

• identify missing features,

• observe users behavior and identify problems of UI design,

• gather feedback of participants to improve design in next iteration.

Usability testing will be conducted in the area of Brno University of Technology, particu-
larly in the Faculty of Information Technology. Participants will be students and employees
of the Faculty of Informatics. The test session is divided into 3 parts: introduction, tasks
and questions, and conclusion.

Introduction

In introduction, I will introduce myself and explain the problematics of my diploma thesis.
I will explain Kimai time tracking software and my aim for usability testing. Moreover,
I will ask for the name and occupation of participants and also for consent, whether the
results of test session can be used within my diploma thesis.

Tasks and questions

After the introduction, the usability session tasks will be proposed. The one test session
contains five tasks for each participant with additional questions. The test contains the
following tasks with questions:

1. The goal is to connect to the existing Kimai server. The welcome page is displayed
and the participant is asked questions. Participants are asked how they feel about
the user interface. How do you feel about the Recent servers UI element? Are you
missing something in the log in use case?

2. The goal is to perform a time-tracking use-case. After successful login, the home page
is displayed and questions are asked. How do you feel about elements on the home
page? Is the corresponding information on the widgets sufficient? Are you missing
something in the Timesheet catalog? What do you say about the menu for choosing
between templates and new timesheets?

3. The goal is to create a new project. The project page is displayed, and the participant
is asked questions. What do you say about the implemented use case of project
creation? Do you think it is sufficient for mobile devices? Do you miss something in
the project catalog?

34

4. The goal is to add users and projects to existing Team 01. The team page is displayed
and the participant is asked questions. What do you think about the detail view of
Team 01? Are existing UI elements sufficient to add users or projects to the team?

5. The goal is to display the user profile and edit existing information. The profile view
is presented and the participant is asked questions. Do you like the described reports
of users? Are you missing something in those reports?

Conclusion

In conclusion, participants will be asked about the overall feel of the application. Moreover,
participants can explore an interactive design prototype and add more views on their own.
More questions will be asked. For example: Are you missing something in the application?
What did you like and disliked? Can you imagine that you can use this application in the
future?

3.3 Report after the first iteration of usability testing
I tested 10 users in the first iteration of usability testing. The participants were students
of Brno University of Technology. The test sessions were held in the library of the Faculty
of Informatics. Reports are concluded for each task.

1. Task: Connecting to Kimai server

• There will not be many servers, therefore, it would be good to consider managing
recent servers.

• When users accessed the list of all servers, they were confused about the toggle button,
which should connect to each server. It would be better to connect to the server by
clicking on an item in the list and accessing the server details with the other button.

• In general, there were not many complaints about the server management use case.

2. Task: Time-tracking use-case

• When accessing the time-tracking page through the menu, some participants had
problems in correctly navigating through the menu items. One of them proposed
that it would be better to visually divide menu items by logical meaning.

• For some participants, the information within the widgets was not sufficient. In
addition, server-specific information is not relevant to all users.

• Some participants would like to have customization of information widgets with the
possibility of accessing reports of time-tracking.

• The time-tracking use case with a dialog menu has too many steps. The dialog menu
can be deleted, and the corresponding buttons can be moved to the home page.

• Some participants requested the possibility of stopping tracking. Therefore, it would
be nice to consider the icon of start and stop.

35

• If the user wants to restart an existing timesheet, the user has to access the timesheet
catalog. It would be easier to access some of the recent timesheets directly from the
home page.

• On the Choose Template page, there is a missing button to create a new template.

3. Task: Create a project

• Most of the participants missed the visual connection between the projects and the
customers. Visual connection should be present within catalog items in both projects
and customers.

• It was proposed to differentiate between active and inactive projects.

• Each project has an assigned customer. However, each customer should also have an
assigned list of projects.

4. Task: Adding a member and project to the existing team

• The team lead button within the catalog item is not intuitive.

• Overall, the participants were okay with this use case.

5. Task: Edit of user profile

• The profile icon within the menu is not necessary.

• The list of available projects is missing.

Conclusion of the test session

The participants were mostly satisfied with the interface of the application UI. There were
a few gimmicks with some design decisions (mentioned in reports above), however, this
will be fixed in the next iteration of design. One of the participants proposed biometric
authentication to the Kimai servers. I am not sure that this is a necessary feature since
most of the users will use only one server.

3.4 Design after the first iteration
After the first iteration of usability testing, some changes were incorporated into the second
version of the design based on feedback from the participants.

First, the menu was reorganized by logical meaning. Related items were grouped to-
gether and rearranged by importance. The modified menu can be seen in Figure 3.5 on the
image on the left. Most of the participants were confused about the switch button in the
server catalog. Therefore, this button was replaced by the setting button, which can be seen
in Figure 3.5 in the middle image. Now, the connection to the server will be established
by clicking on the catalog item, and the server description will be accessed by the settings
button.

Most of the changes were made on the home page. These changes can be seen in Figure
3.5 in the image on the right. Now, there is only one customizable widget. By clicking on
the widget, the time-tracking reports will be accessed for each user. Additionally, a list of

36

recently tracked timesheets is added. Users can now restart recent timesheets directly from
the home page. Furthermore, if the user forgets to track the time, the timesheet can be
added retrospectively using the Add button. Last but not least, the time-tracking dialog
was removed and a tracking button was introduced. This change should remove redundant
steps within the time-tracking use case.

Figure 3.5: Examples of pages, where changes were introduced after the first iteration of
usability testing. On the the left is a reorganized menu, in the middle is a list of existing
servers with settings button and on the right is restructured home page with customizable
widget, new time-tracking button and with catalog of recent timesheets.

In addition, customers now have a list of assigned projects. The possible design can be
seen in Figure 3.6 on the left. After clicking on a project within the list, the user will be
redirected to the details of the project. Additionally, items in the catalog of all projects
now contain tags that assign the project to each customer. Because of these tags, each
project is visually differentiated from others, which should lead to better navigation. The
redesigned project catalog with tags is shown in Figure 3.6 in the middle.

Other changes were made to the user profile. These changes can be seen in Figure
3.6 on the right. Now, the profile contains detailed information about the user. Through
the profile section, the user can see the assigned projects and teams. If the user has a
management role, it is possible to access server information through the UI element tab at
the bottom of the page.

37

Figure 3.6: Examples of pages, where changes were introduced after first iteration of us-
ability testing. On the left is customer detail with list of assigned projects, in the middle
is catalog of all projects with tags and indicator of activation of project and on the right is
redesigned profile section.

3.5 Report after the second iteration of usability testing
In the second iteration of usability testing, I tested 6 users. The participants were employees
of Brno University of Technology. These employees are possible users of the MAUI appli-
cation. The test sessions were held in the network vestibule of the Faculty of Informatics.
Feedback is concluded for each task below:

1. Task: Connecting to Kimai server

• In most cases, there will be only one server, so the automatic log-in feature should be
considered.

• Also, if there are a small number of servers, the list of servers can be moved to the
main page to minimize the number of steps within the UI interaction.

• Some participants were confused about log-in use case, it would be nice to integrate
some feedback with information about log-in into server.

2. Task: Time-tracking use-case

• For some participants, the icon of restarting the timesheet within the Recent timesheet
catalog was misleading. It should be considered to use other icons.

38

• When tracking is running, information about the currently running timesheet should
be shown. Also, there should be the possibility of editing that timesheet or adding it
to Templates.

• Participants often track time at work related to a specific task within Gitlab or Github
issues. Therefore, this feature should be built into the application.

• Some of the participants proposed using gestures to track time.

• Some participants were confused with usage of tags. Kimai contains Acitivity type
settings that can be used as an identificator.

3. Task: Create a project

• Not all participants will access this section. It was proposed to hide this section.

• However, there were not many complaints about the project creation use case.

4. Task: Adding a member and project to the existing team

• The same as for the third task, not all participants will be accessing this section.

• Assigning teamlead from an item of the team catalog was not intuitive, it would be
better to move it to the team detail.

5. Task: Edit of user profile

• The administrator should have access to a view that contains server information.

• Users should have access to reports from profile. Reports should be defined by the
user role. For example, administrator should see server reports, teamlead should see
reports about yourself and team members.

• There should be a history of time-tracking within the team. Consider some imple-
mentation of a calendar or other component.

• Assigning teamlead role from an item of the team catalog was not intuitive, it would
be better to move it to the team detail.

Conclusion of the test session

Participants did not have many problems with the application design. They quickly mas-
tered the design of the application and were able to navigate the application effectively. The
availability of reports was a feature that was widely requested. The user would like to have
detailed information about the history of time-tracking, whether about yourself or within
the team. The application should also contain an implementation of the export mechanism
with support for different formats. In addition, some of the participants proposed to in-
troduce automatization of some tasks. For example, create an implementation of the CLI
(Command Line Interface) within the desktop application, where some basic tasks can be
planned and automatized. This planning approach would be interesting to incorporate into
mobile application as well.

39

3.6 Final design
This section represents the final design of the user interface after two iterations of usability
testing. Again, I was focusing on changes from the second iteration of usability testing.

On the basis of user feedback, new changes were introduced in the main menu. Now,
the menu items are divided into sections by logical meaning, and the Reports menu item
is introduced. In addition, when the user toggles the Management role button within the
details of server login, Management section can be seen in the menu. Otherwise, it is
hidden. The redesigned menu is shown on the left and the new server detail is shown in the
middle in Figure In addition, Welcome page is redesigned. Based on participants’ feedback,
there will often be a few Kimai servers. Therefore, the server catalog is moved to the
Welcome page, and the Recent servers UI component from the first iteration is replaced by
a default server. When the default server is set, the user is automatically logged into the
corresponding Kimai server. The redesigned Welcome page is shown in Figure 3.7 on the
right.

The home page now features a new swipe-up detail page located at the bottom. With
this menu, the user can easily start and change the activity. In addition, a reference to the
GitHub or Gitlab issue is added, and the start icon of Recent timesheet is replaced. All
of these changes can be seen in Figure 3.8. The swiped-up detail menu is shown in the
middle. Details of the project with the possibility to activate it are shown in Figure 3.8 on
the right.

Figure 3.7: Example of design, where newly redesigned menu by logical section is shown
on the left. The detail of server now contains buttons for setting a default server and for
a management role, shown in the middle. Catalog of all servers is moved to the Welcome
page and new default server feature is introduced, as can be seen on the right.

40

Figure 3.8: Example of design of home page, where new swipe-up detail view is introduced.
This can be seen in the images on the left and in the middle. Moreover, the detail view of
individual project with possibility to set it on active is shown on the right.

Tabbed interface is introduced with three individual tabs within the user profile. The
first tab contains access to user teams and projects, the possibility to edit users’ information,
and some basic stats. The second tab contains user-based reports, which show tracking
information within the team, and time spent on different projects and customers. The
third tab is shown only for the admin user, where server-wide statistics can be found. The
design of these tabs is shown in Figure 3.9. Within the management of team, new way
of assigning teamlead was introduced. Now, teamlead is assigned within the detail of the
individual team. Examples of team management can be seen in Figure 3.10.

The final design of the application contains all identified features which are needed by
potential users. The design was iteratively improved and may be a little bit different in
implementation, based on limitations of the .NET MAUI framework.

41

Figure 3.9: Example of design of tabs within the user profile. The first tab contains user
information located on the left, the second tab contains reports, located in the middle and
the third tab contains server-wide information, located on the right.

Figure 3.10: Example of design of management of teams and assigning users to the team.

42

Chapter 4

Implementation

This chapter describes my reasoning for choosing the most suitable architecture for this
kind of application. It also describes used libraries, technologies, and implementation with
my approaches to various problems which occur during development. This chapter should
serve as a basic approach for the development of multiplatform applications in .NET MAUI.

4.1 Architecture
Choosing right architecture is important for any type of application. In general, it defines
the overall structure and organization of an application and how the application components
interact with each other. It also influences the maintainability, extensibility, and testing of
the application.

I found three main approaches for architecture on .NET MAUI:

• Code-behind approach,

• Model-View-ViewModel (MVVM) approach,

• MVVM + Clean architecture.

Code-behind approach

This is a basic approach, where the application logic is written in a separate file, which
is linked to the UI (in this case, the markup XAML file). When creating XAML-based
UIs, the default setup is for a XAML file with an associated code-behind file typically
written in C#. In other words, the two different files are partial classes written in two
different languages that create a single class which can then be used like any other class
[19]. For instance, the following code snippets 4.1 and 4.2 represent an XAML file and its
corresponding code-behind class.

One of the advantages of this approach is the relatively simple handling of user inter-
actions in the UI. As is shown in code snippets 4.1 and 4.2, button click is handled by
Button_Clicked event declared in code-behind class. However, there are some potential
drawbacks to using this approach. First and foremost, UI and application logic are tightly
coupled in code-behind class. That means, when developer wants to change the UI, often
the logic must be changed as well. This also applies the other way around. What is more,
there is poor separation of concerns. When a developer wants to separate presentation

43

1 <ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
2 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
3 x:Class="MauiForKimai.Views.NewPage1">
4
5 <VerticalStackLayout>
6 <Label Text="Welcome to .NET MAUI!" />
7 <Button Clicked="Button_Clicked" Text="Click me" />
8 </VerticalStackLayout>
9 </ContentPage>

Figure 4.1: Example XAML markup file, which is tied to code-behind class named NewPage1
by x:Class setting on line 3.

1 public partial class NewPage1 : ContentPage
2 {
3 public NewPage1()
4 {
5 InitializeComponent();
6 }
7
8 private void Button_Clicked(object sender, EventArgs e)
9 {

10 //handle button click
11 }
12 }

Figure 4.2: Example C# code behind file, which is tied to XAML markup file by partial
keyword and contains methods for handling a click button action.

logic, business logic, and data access it can be really challenging. This also makes it harder
to reuse code, test the application, or modify it in the future.

Model-View-ViewModel approach

The Model-View-ViewModel (MVVM) solves problems arising from the code-behind ap-
proach. As in the code-behind approach, the UI and application logic is tightly coupled,
MVVM clearly separates the application’s business and presentation logic from its user
interface. Maintaining a clean separation between application logic a and UI makes the
application easier to test, maintain, and evolve. Furthermore, it can significantly improve
the reusability of code and allows developers and UI designers to collaborate in an easier
way [23].

There are three fundamental components of MVVM:

• View – user interface, which is typically implemented in XAML,

• ViewModel – separated application logic, which is connected to UI by bindings,

• Model – encapsulated application data models.

44

Figure 4.3 shows how each component interacts with each other. At a high level, the
view knows about the viewmodel, and the viewmodel knows about the model. However, the
model is unaware of the viewmodel, and the viewmodel is unaware of the view. Therefore,
the viewmodel isolates the view from the model and allows the model to evolve indepen-
dently of the view.

Notifications between components are handled by the notification mechanism, which is
implemented by the INotifyPropertyChanged interface. UI interactions are handled by
Commands and data from viewmodel to view is provided by Data Bindings. Moreover,
communication between different viewmodels is often needed. This can be handled by im-
plementing Messenger. These approaches are discussed in more detail in the Community-
Toolkit section 4.2, from which implementations of notifying, commanding, and messaging
are taken over.

View ModelViewModel

Data Binding
and Commands Updates to Model

Notify Notify

View ViewModel

Figure 4.3: Diagram of MVVM architecture, which shows interactions between core com-
ponents of MVVM.

Typically, .NET application architecture developed with MVVM contains separated files
as views (often XAML files), which binding context is set to the corresponding view-model.
In other words, by setting the binding context of view, it is possible to bind the user interface
elements (such as entries) to the corresponding viewmodel variables. Furthermore, such
applications contain multiple different services. For instance, services for persistence, API
communication, routing, etc. These services are often provided by dependency injection
into viewmodels. Dependency injection is discussed more in Section 4.2.

MVVM and Clean architecture

The MVVM approach can also be extended by Clean architecture. This can be really ben-
eficial for developers who develop .NET MAUI application and want to connect application
to their own APIs and databases implemented in ASP.NET 1. This basically enables full-
stack development within .NET ecosystem from one solution, where code can be maximally
reused. Clean architecture divides application into four main structures:

• Domain – contains core entities and core logic,

• Application – defines application main services,

• Infrastructure – defines external systems (persistence, wrappers),

• Presentation – GUI, with which users interact.
1ASP.NET is framework for building web applications and web services in .NET: https://

dotnet.microsoft.com/en-us/apps/aspnet

45

https://dotnet.microsoft.com/en-us/apps/aspnet
https://dotnet.microsoft.com/en-us/apps/aspnet

What is really important in clean architecture is a flow of dependencies. Dependencies
flow inward as shown in Figure 4.4. The domain layer should have no dependency as it
should be the most stable part of the system. The application layer depends on the domain
layer but not on anything outside of itself. It depends only on abstractions defined in the
interfaces, and these interfaces are implemented in outer layers. This is possible by the
Dependency Inversion principle 2. The infrastructure layer contains external systems (such
as persistence, authorization) and depends on application layer. Last but not least, the
presentation layer depends on Application and Infrastructure [13].

DomainDomain

Application

Infrastructure

Presentation

Persistence

Authorization

Logging

Wrappers

Blazor

XAML
API

Entities

Models
Services

Abstractions

Figure 4.4: Overview of Clean architecture, where dependencies between components flows
inwards.

Clean architecture brings a lot of advantages for code reusability and maintainability
with MVVM pattern. However, for small and simple applications, it can be overwhelming
and can introduce a lot of boilerplate code.

2Dependency Inversion principle: https://deviq.com/principles/dependency-inversion-principle.

46

https://deviq.com/principles/dependency-inversion-principle

Overview of application architecture

Based on the architecture approaches available for .NET MAUI and its advantages and
disadvantages, I have decided to use MVVM approach with the use of services without
a clean architecture for my application. Services are abstracted by correspondent interfaces
on which the application is dependent. Since the Kimai API has already been implemented,
using a clean architecture is not necessary, as it only brings more complexity. On the other
hand, using the code-behind approach for this kind of complex application would lead to
problems with code reusability between multiple platforms.

The implemented application is divided into four main structures (libraries):

• MauiForKimai.Core,

• MauiForKimai.ApiClient,

• MauiForKimai.App,

• MauiForKimai.Tests.

MauiForKimai.Core is a core library of the application. It is the most stable and it
contains as little as possible external dependencies. It only has dependencies in form of
NuGet packages for CommunityToolkit, Sqlite database and FluentValidation. All other
application libraries depend on this core library. In addition, this library contains entities
for database tables, main data models classes and mappers, which map entities to models.
It also incorporates essential interfaces and enums used across application and validators
models.

MauiForKimai.ApiClient is a library, which contains an auto-generated Kimai API
client and its data transfer objects (DTOs). This API client is abstracted into interfaces in
form of services, which implementation is then use in application to access data from API.
Moreover, mock implementation of these services is also used for unit test purposes. Api-
Client library also contains implementation of authorization to Kimai and essential mappers
between API’s DTOs and application models. The implementation specifics of Kimai API
integration into .NET MAUI are discussed in Section 4.3. ApiClient has dependency only
on Core library.

MauiForKimai.App is a concrete implementation of .NET MAUI application and its
resources. It contains exact implementation of multiplatform views in XAML, application
business logic in form of viewmodels, important application services such as access to persis-
tent storage and routing. It also contains wrappers classes, which are used for abstraction of
coupled code and application static resources. It depends on ApiClient and Core libraries.

MauiForKimai.Test is a testing library, which servers for the unit testing of application.
It contains fundamental unit tests with mock implementation of services, which are needed
for testing purposes. It has dependency to .NET MAUI application.

The package diagram of the application architecture described above is shown in Figure
4.5.

47

MauiForKimai.ApiClient

API Client Authorization Mappers API Models API Services

MauiForKimai.Core

Entities Models Interfaces Validators MappersMappersValidatorsInterfaces MappersValidatorsInterfaces

MauiForKimai.Tests

Unit tets Mocks

MauiForKimai.App

Views ViewModels App services Routing Wrappers

Resources Helpers Persistence

Views ViewModels App services Routing

depends

Messages

depends

depends

Figure 4.5: Package diagram of application architecture, which shows four main libraries
and their elements with dependencies between them.

The two main fundamentals of this architecture are the use of the MVVM approach
and the use of services. On the first hand, the MVVM approach brings a correct separation
of concerns within the application. Therefore, I can create reusable code across multiple
views, which is relatively easy to test. On the other hand, the services abstract all essential
features of application (data access, API access, authorization, routing, etc.). The one thing
that glue everything together is a principle of dependency injection. Due to dependency
injection, services are injected into the corresponding viewmodels and can be used to access
data from abstracted entities. As a result of this, the obtained data can be shown in the
UI using data bindings. This fundamental concept of application is shown in Figure 4.6

48

Database API client Authorization Routing Secure storage

Interfaces

ServicesUI Models

ViewModels

Access data Do calculations

Routing Send requests

Recieve data Message

have

are implemented into

are injected into
data binds

use

use

Mocks

Testing

Figure 4.6: Fundamental concept of application, where services (which are abstractions of
different entities) and viewmodels are glued together by dependency injection.

4.2 Essential technology and used libraries
Before I move on to the details of the implementation of my multiplatform application,
firstly, I would like to mention the most important technology and libraries that I used
during the implementation part of my diploma thesis. Thanks to these libraries, a lot
of things were simplified and streamlined. Most of these libraries and technologies are
open-source and well-maintained.

The application has been developed on Windows 11 with Visual Studio 2022 on .NET 7.

Dependency injection with Scrutor

As mentioned in section 4.1, the dependency injection (DI) is a very important concept
used in MAUI applications. On the startup of the application, the DI container is initial-
ized. DI container is an object that knows how to instantiate and configure other objects
(for instance, their life-time) and all their dependent objects. After initialization, these
objects can be accessed from different parts of the application. Often, they are accessed by
constructor injection into an object. The injected objects can have three different life-times:

• Singleton – only one instance of object exists within application,

49

• Transient – for every request for object DI container returns new instance of objects,

• Scoped – based on application scope, new instances of objects are returned.

The number of dependencies can increase rapidly in the .NET MAUI application. Of-
ten, the developer must manually add/remove these dependencies. The open-source library
Scrutor3 simplifies this, because it offers the possibility of scanning application assemblies.
Therefore, it is possible to decorate common dependencies (for example, with a common
interface), find them in assemblies, and then add them to the DI container as a group.
The advantage of this approach is that when a new common dependency is added or re-
moved, there is no need to manually edit the DI container. Also, Scrutor provides possi-
bilities to add objects into DI container with different life-times. The example extension
method, which used Scrutor to acquire the dependencies needed, is shown in Figure 4.7.
In this example, I decorate the viewmodels that I want to instantiate as singletons with
the IViewModelSingleton interface. After that, on the application startup, assemblies
are scanned for these interfaces, and acquired objects (viewmodels) are added to the DI
container with an extension method AddSingletonVMs.

1 public static void AddSingletonVMs(this IServiceCollection services)
2 {
3 services.Scan(selector => selector
4 .FromAssemblyOf<App>()
5 .AddClasses(filter =>
6 filter.AssignableTo<IViewModelSingleton>())
7 .AsSelfWithInterfaces()
8 .WithSingletonLifetime());
9 }

Figure 4.7: Extension method for DI container, which uses scanning abilities of Scrutor to
acquire objects decorated with a common interface from application assemblies.

Community toolkit

.NET Community Toolkit is a collection of helpers and APIs that work for all .NET devel-
opers and are agnostic of any specific UI platform. The toolkit is maintained and published
by Microsoft and is part of the .NET Foundation [22].

The community toolkit provides tools which are missing in .NET MAUI framework
and can help and simplify the application development process. There are two important
community toolkits available as NuGet packages that can be used in .NET MAUI:

• CommunityToolkit.Mvvm,

• CommunityToolkit.Maui.

ComunnityToolkit.Mvvm4 is an MVVM modular library, which contains useful tools
to build modern apps using the MVVM pattern. One of the most important features are

3Scrutor: https://github.com/khellang/Scrutor
4CommunityToolkit.Mvvm : https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/

50

https://github.com/khellang/Scrutor
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/

Roslyn source generators. Source generators can automatically generate code, reducing the
boilerplate when writing code using the MVVM architecture. CommunityToolkit Mvvm
contains implementations for:

• Notifying – implementation of the INotifyPropertyChanged interface, which serves
to notify view, when data are changed in view model, and the other way around.

• Commanding – implementation of the RelayCommand, which encapsulates the request
as an object. For example, RelayCommands can be used to handle button clicks on
view in an MVVM way.

• Messaging – implementation of the WeakReferenceMessenger, which can be used to
send messages between different viewmodels.

CommunityToolkit.Maui5 is a collection of reusable elements for application develop-
ment with .NET MAUI, including animations, behaviors, converters, effects, and helpers. It
simplifies and demonstrates common developer tasks when building iOS, Android, macOS
and WinUI applications.

TinyMvvm

TinyMvvm6 is another library of tools for the MVVM applications. However, in contrast
to the community toolkit, it contains useful tools for:

• navigation,

• passing objects as parameters in Shell navigation,

• and lifecycle events in viewmodels.

I found it really useful, as it streamlined my experience with Shell navigation and passing
objects between viewmodels. What is more, I was able to override lifecycle events of .NET
MAUI in viewmodels and, therefore, set the initialization code of different viewmodels based
on the application lifecycle.

Other used libraries

Here is a list of other libraries and technologies used in my solution, which can be helpful
in developing .NET MAUI applications:

• SQLite-net – open-source minimal library, which allows .NET applications to store
data in SQLite databases,

• FluentValidation – library for building strongly-typed validation rules,

• LiveCharts2 – cross-platform charting library,

• Plugin.LocalNotification – plugin for showing notifications on mobile devices,

• Material Design Icons – icon pack.
5CommunityToolkit.Maui: https://learn.microsoft.com/en-us/dotnet/communitytoolkit/maui/
6TinyMvvm for MAUI: https://github.com/dhindrik/TinyMvvm

51

https://learn.microsoft.com/en-us/dotnet/communitytoolkit/maui/
https://github.com/dhindrik/TinyMvvm

4.3 Integration and authorization of Kimai API
As mentioned in section 2.5 Kimai contains implemented REST API. This API contains
the OpenAPI specification7, which defines a standard for HTTP APIs which allows both
humans and computers to discover and understand the capabilities of the service. This
standardized specification can be used for auto-generation of the API client for different
applications.

I used NSwag 8 toolchain, specifically the NSwagStudio application, for the generation
of the API client for the stable version of Kimai 1.30.11. The API client uses .NET HTTP
client for sending and receiving requests and NewtfonSoft.Json library for serializing
and deserializing requests.

However, here the first problems occurred. After manually testing the generated code for
different API endpoints, I found some inconsistencies. I found following problems between
API generated DTO’s and open specification models:

• using API endpoint /api/timesheets/recent, Project model has a customer field
as integer, however, the API returns Customer type,

• inconsistency in TeamMembership model, where the user can be added to multiple
teams in Kimai, but the API specification allows only one user to be in team.

As a result, I created issue 9 on the official Kimai GitHub repository with my findings.
These problems were verified and fixed in the Kimai version v2.0.9. However, this fix
influences only the version Kimai 2.0, therefore, I had to fix these problems on my own.
I manually edited the affected models and fixed inconsistencies.

Authorization and login context

For testing purposes, authorization tokens were added to each request globally as Default
Request Headers. These headers can be set only once during the initialization of the
HTTP client. However, this approach is not feasible for the case where a new user or server
is added to the application and new credentials are needed. As a result of this, custom
HTTP Message handler is introduced.

The HTTP client factory (object, which handles initialization and deinitialization of
HTTP clients) is initialized on application startup and added to the DI container. This
HTTP client factory is provided with my custom HTTP request handler named AuthHandler.
AuthHandler contains override of SendAsync method from HTTP client. This is main
method, which is invoked every time when new HTTP request is sent. In this overridden
method, authorization headers are added to each request. An example of the overridden
SendAsync method is shown in the code snippet 4.8.

7OpenAPI specification: https://swagger.io/specification/
8NSwag toolchain: https://github.com/RicoSuter/NSwag
9GitHub issue with API inconsistencies: https://github.com/kimai/kimai/issues/3923

52

https://swagger.io/specification/
https://github.com/RicoSuter/NSwag
https://github.com/kimai/kimai/issues/3923

1 protected override async Task<HttpResponseMessage> SendAsync(request,
2 cancellationToken)
3 {
4 request.Headers.Add("X-AUTH-USER", _loginContext.UserName);
5 request.Headers.Add("X-AUTH-TOKEN", _loginContext.ApiPassword);
6 return await base.SendAsync(request, cancellationToken);
7 }

Figure 4.8: Simplified example of overridden SendAsync method in custom HTTP handler
AuthHandler, where authorization headers are added to the request.

The credentials needed for authorization are provided by a special class called LoginContext.
The LoginContext is a singleton object, which contains essential information about the user
currently logged on a specific Kimai server. It is derived from Observable object (from
the Community Toolkit), which means it implements the INotifyPropertyChanged inter-
face. That means, when an authorization context is changed (for example, a user will log
in or log out into application), the UI and viewmodels are notified about the change and
are reinitialized accordingly.

The whole log-in use-case is glued together with the implementation of Login service.
The simplified sequence diagram of login use-case with example of request is shown in Figure
4.9.

:LoginService :LoginContext ApiServices:
List x : ApiClient

SetLoginContext()

Login(credentials)

InitializeHttpClients()

InitializeClient()

ok

ok

ok

GetUser(id)

userService.GetUser(id)

User

User

Figure 4.9: Simplified sequence diagram of login use-case, which shows how login context
is created and how API services and specific instance x of API client is initialized. It also
shows example how example request is handled.

The Login service provides methods for logging in and logging out users to the Kimai
server. These methods initialize and deinitialize accordingly LoginContext with credentials

53

and also reinitialize HTTP clients that are used in API services (specific abstractions of the
generated API client).

4.4 Navigation using Shell
.NET MAUI introduces the concept of Shell. The purpose of Shell is to reduce the com-
plexity of the application development. It provides fundamental features like:

• a single place to describe the visual hierarchy of an app,

• a common navigation user experience,

• a URI-based navigation scheme,

• an integrated search handler.

There are multiple types of visual hierarchies available in Shell applications:
• Flyout menu – represents the expandable menu that contains flyouts,

• Tab bar – represents bottom tabs,

• Menu bar – presents a set of menus in a horizontal row, at the top of desktop appli-
cation.

My first idea was to use Flyout menu as the main navigation pattern as shown in
Section 3.6 about the final design. However, the first idea of a dynamic change of items
in the menu based on the authorization state was wrong. First of all, when offline time
tracking is introduced in the future, the user would not have access to the needed views.
Also, when the user is offline, it would be convenient to still have some time-tracking
information available. In addition, I ran into the .NET MAUI bug, when flyouts which are
dynamically disabled are displayed incorrectly on Windows 10.

Based on all these factors mentioned, I have decided to use the Tab bar as a main
navigation pattern in the mobile application and the Flyout menu for the desktop. I also
decided that views are available when the application is offline and nothing is dynamically
hidden. For now, when data cannot be accessed, the corresponding labels and alerts are
shown. However, when time-tracking offline functionality will be added in the future, these
views can be easily replaced to show cached offline data.

Routing based on viewmodels

The implemented application uses the URI navigation scheme provided by Shell to navigate
between pages. This means that each page has its own unique URI identification. These
identifications must be registered within the Shell application for the navigation to work
correctly. The registration can be done anywhere in the application, however, it should be
registered before the use of actual route. These URI identificators can be associated with
views and viewmodels. Thanks to this association, specific URIs can be obtained based on
a specific type of view or viewmodel. This is one of the approaches which can be used for
navigation in .NET MAUI. Another approach is to navigate directly using URIs, but this
approach is worse for code readability and maintainability. I created the RouteModel class,
which contains:

10Github issue, which describes bug with flyouts on Windows: https://github.com/dotnet/maui/
issues/12159

54

https://github.com/dotnet/maui/issues/12159
https://github.com/dotnet/maui/issues/12159

• Route (e.g. ”//favourites/detail“),

• View (e.g. typeof(FavouritesDetailView)),

• ViewModel (e.g. typeof(FavouritesDetailView)).

Afterward, I implemented a Routing service, which stores registered route models in the
List data structure called Routes. The route can be accessed using the publicly available
generic method GetRouteByViewModel<T>(). When the viewmodel type is passed as a
generic argument to this method, the corresponding route URI is returned, and navigation
can be performed. The implementation of the GetRouteByViewModel method is shown in
the code snippet 4.10.

1 public string GetRouteByViewModel<TViewModel>()
2 where TViewModel : IViewModel
3 => Routes.First(route =>
4 route.ViewModelType == typeof(TViewModel)).Route;

Figure 4.10: Implementation of generic method, which returns specific URI based on pro-
vided type of viewmodel for navigation purposes.

The Routing service is initialized and added to the DI container at the beginning
of the application, where the routes are registered. Consequently, Routing service is
injected in the viewmodels, where can be used for navigation purposes.

Navigation is performed by the Navigation helper from the TinyMvvm library (4.2).
This is a wrapper around the Shell.Current.GoToAsync() method available in .NET
MAUI. The Navigation helper provides the ability to pass objects as Navigation parameter.
This simplifies the usage of navigation parameters compared to the default implementation.
The example method for performing a navigation with a parameter is shown in the code
snippet 4.11.

1 [RelayCommand]
2 async Task ShowDetail(TimesheetModel timesheet)
3 {
4 var route = rs.GetRouteByViewModel<TimesheetDetailViewModel>();
5 var wrapper = new TimesheetDetailWrapper(timesheet);
6 await Navigation.NavigateTo(route, wrapper);
7 }

Figure 4.11: Example of performing Shell navigation with Navigation helper from
TinyMvvm library and passed object as a navigation parameter.

55

Multiplatform views

When developing a multiplatform application from a single-shared codebase, there is a
question of whether to divide views for each platform. In some cases, it makes sense to
divide the views. However, some specific views can be shared across platforms. .NET MAUI
provides two main strategies for implementing multiplatform views:

• different views for each platform implemented in separate files,

• different views for each platform, where implementation specifics are mixed in one
file.

The different views in separated files strategy

Views should be implemented in separate files when it makes sense to visualize certain UI
elements differently on each platform for a specific use case. Let us take as example imple-
mentation of the main menu in my solution. It makes sense to show the menu differently
on mobile and desktop platforms for a better user experience.

On the first hand, the real estate of the application is considerably smaller on the mobile
platform than on the desktop platform. In addition, the user interacts with the application
by touching. Therefore, it is a good choice to implement a main menu using a tab bar,
which provides simple navigation across the application. This example is shown on figure
4.12.

On the other hand, when the user uses the desktop version of the application, often
the mouse is used to interact with the GUI of the application. In this case, the static
flyout menu is a better choice, because it shows all available options, with which a user can
interact anytime with mouse. Moreover, desktops provide considerably larger real-estate,
and user experience will be much better. This example is shown in Figure 4.13.

In this case, there are a lot of different multiplatform code, thus, separating views in
two different files is a much better option than mixing everything together in one file.

The different views in one file strategy

This approach is beneficial when there are minor differences between desktop and mobile
views. If there are many differences, the disadvantage of this strategy is that the unrelated
code is coupled in one file and the complexity of the code increases. For example, when an
application contains forms, the layout is often the same on both platforms. Sometimes, it
is necessary to add or hide some elements for better UX. For instance, when user interacts
with picker elements, it makes sense to introduce button on desktop view, which helps to
visualize the picking use case, whereas in mobile picker element visualization is sufficient,
and button is not needed.

To differ between platform-specific UI elements, .NET MAUI contains XAML markup
extensions OnIdiom and OnPlatform. OnIdiom markup extension customizes the appear-
ance of the user interface based on the idiom of the device the application is running on.
It can be on Desktop, Mobile, Tablet, TV or Watch. Whereas the OnPlatform markup
extension customizes the UI appearance per specific platform basis. It can be whether
Android, iOS, MacCatalyst, Windows, or Tyzen. For example, the visibility of a specific
element on different platforms can be customized using the markup extension {OnIdiom
Phone=False, Desktop=True} to set the IsVisible property. This means that button
will be hidden on mobile platform but will be visible on desktop platform.

56

Figure 4.12: Implementation of main menu as a tab bar, which is better for UX on mobile
platforms.

Figure 4.13: Implementation of main menu as a static flyout menu, which is better for UX
on desktop platforms.

57

4.5 Viewmodels
Views and viewmodels are the core of the implemented solution. They are interconnected
through data bindings and the INotifyPropertyChanged mechanism. Viewmodels contain
implemented logic of the application, which is based of the user interaction on the views.
The interactions from the views are handled using Commands 4.2, which are publicly available
methods called from the UI. The overview of implemented viewmodels and their purpose
is described below:

• ViewModelBase – base viewmodel, from which all other viewmodels inherit. It
contains LoginContext 4.3 and fundamental services (like Routing service), which
are available for all viewmodels.

• HomeViewModel – main viewmodel for the application, which is set as a binding
context for HomeView. It incorporates main logic for time-tracking, notifications, and
acquiring a recent timesheets.

• TimesheetListViewModel – logic for acquiring timesheets incrementally from server.

• TimesheetDetailViewModel – logic for editing, starting, and deleting a timesheet.

• FavouritesListViewModel – logic for acquiring favorite timesheets, which are saved
in the local database.

• FavouritesDetailViewModel – logic for editing, starting, and deleting a favorite
timesheet.

• ServerListViewModel – logic for acquiring servers added to application.

• ServerDetailViewModel – logic for editing, deleting, and connecting to a specific
Kimai server.

• ReportsViewModel – serves for calculations needed for showing a graph reports.

• ChooseItemViewModel – it contains logic for choosing customer, project, and
activity needed when creating a new timesheet.

• SettingsViewModel – handles the logic specific to the application’s settings, such
as dark or light mode.

There are two ways in which viewmodels can communicate with each other. The first
way is using messages, which are provided by WeakReferenceMessenger available from the
CommunityToolkit. For example, when an event of connection to Kimai server occurs, the
RefreshMessage is sent to specific viewmodels to initialize new data from a Kimai server.
The second way is usage of Navigation parameter from TinyMvvm library. This approach
is used, when navigation between list views and detail views is performed, specifically when
selected item from a list is passed to a detail viewmodel.

58

Chapter 5

Deployment and evaluation

This chapter contains an evaluation of the functionality of the implemented solution. It
deals with the deployment, features, and usage of the implemented application. In addition,
user feedback is discussed, and possible future extensions of the application are presented.

5.1 Deployment
The implemented solution is available as an open-source project called MAUI for Kimai
(MfK) available in the Github repository 1. This repository contains the source code of
the application, a reference to the documentation page, and the released assets. The docu-
mentation page 2 contains API documentation of code and articles about architecture and
multi-platform development.

Publishing and installing the application

Currently, MAUI for Kimai officially supports the following platforms:

• Windows 11 and Windows 10 version 1809 or higher,

• Android 5.0 (API 21) or higher.

Support for iOS and MacCatalyst is experimental. Since I do not own a Mac, I was
unable to do extensive testing on these platforms. However, with the Mac provided from
university, I was able to run the application on those platforms and test the fundamental
features (like time-tracking). The iOS and Mac platforms need more testing and to publish
experimental packages, an enrollment in Apple development program is needed. Therefore,
experimental binaries for these platforms are not available. If someone wants to try MAUI
for Kimai on the iOS/Mac platform, there is a need to build the application from source.

The application is released using a Semantic Versioning3 versioning scheme. This
means that the application is released in standardized versions, using the basic implemen-
tation of CI/CD. CI/CD is implemented using Github actions in the form of different
workflows for building, testing, and publishing purposes. When a new version of the appli-
cation is ready, the source code is tagged with its actual version by the git tag command.
Afterward, tag is pushed to repository and publish workflow is triggered. Publish workflow

1MAUI for Kimai repository: https://github.com/Specter-13/maui-for-kimai
2MAUI for Kimai documentation page: https://specter-13.github.io/maui-for-kimai/
3Semantic Versioning: https://semver.org/

59

https://github.com/Specter-13/maui-for-kimai
https://specter-13.github.io/maui-for-kimai/
https://semver.org/

will build source code, test the code using unit tests, and create Github release 4 with ac-
tual version. Subsequently, the Powershell script publish.ps1 is started, which will create
optimized application binaries. Afterward, these binaries are uploaded to a corresponding
Github release.

Currently, MAUI for Kimai can be installed on two platforms:

• Android – by downloading and manually installing signed .apk file from Github re-
lease,

• Windows – by downloading and manually installing .msix file from Github release.

5.2 Features overview and usage
In time of writing this text, MAUI for Kimai application has following features:

• Multiplatform support,

• Time-tracking possibilities and management of timesheets (start, stop, delete, recent,
all),

• Quick start of timesheet,

• Possibility to set a timesheet as favorite (stored in local database),

• Multiple Kimai server and user support,

• Role-based time-tracking (possibility to customize time-tracking features based on
user role),

• Integration with GitLab Kimai plugin GitLabBundle5,

• Support for dark and light theme,

• Notifications for an active timesheet (in mobile platform),

• Forms validation.

There are also following limitations and known issues:

• Kimai v2.0 is not supported yet (as API specifications are not compatible),

• Limited support for iOS/Mac platforms (as I do not own Mac, I am not able to test
all features properly),

• There can be some UI inconsistencies between dark and light mode,

• Missing detailed reports for teams.

4MAUI for Kimai Github releases: https://github.com/Specter-13/maui-for-kimai/releases
5GitLabBundle is Kimai plugin, which enables to assign timesheet to a specific GitLab issue, available

at: https://github.com/LibreCodeCoop/GitLabBundle

60

https://github.com/Specter-13/maui-for-kimai/releases
https://github.com/LibreCodeCoop/GitLabBundle

After the first installation, the user is prompted to add a new instance of the Kimai
server. This can be done in the Management tab, which contains the list of Kimai servers
and the possibility of adding a new server. To add a new server, the user must set an API
password in the Kimai web application. The API password is then used to log into the
server. The log-in form also contains the possibility to set a server as default (on application
startup automatic log-in will be initiated), the ability to use a GitLab plugin, and also the
ability to override time-tracking permissions. The list of Kimai servers and an edit form of
the server are shown in Figure 5.1.

Figure 5.1: The server management views, where on the left is a list of currently added
Kimai servers and on the right is a edit form of a specific server.

The home view is the most important part of the application. It contains a widget
with information about today time-trackings, the list of unique recent timesheets with a
quick-start functionality, and an ability to start a new timesheet. When the internet is not
available or the user is not connected to the Kimai server, the empty view is shown. Also,
when a time-tracking is active, the widget is used to show the most important information
about currently tracked timesheet. The empty view and the difference between the home
view with inactive and active timesheet are shown in Figure 5.2.

By clicking on the specific timesheet, the edit view is presented. Properties that can
be edited depend on the user role. In addition, there is an ability to edit the timesheet
duration, which is interconnected with the start and end times. Moreover, the user can
select the customer, project, or activity from a dedicated view, with search possibilities.
Edit view also contains buttons for starting the timesheet and setting it as a favorite.
Favorite and all timesheets are located in the My times tab. The implementation of the
views mentioned is presented in Figure 5.3.

61

Figure 5.2: The home view of the application. On the left is presented an empty view. The
middle and the right images show the difference, between an active and inactive mode.

Figure 5.3: Views dedicated to timesheets, where on the left is an edit view, in the middle
is a selecting view, and on the right is a list of all tracked times.

62

Figure 5.4: Implementation of reports, which can be shown for actual day, week and month.

MAUI for Kimai also contains a dedicated view for reports. Reports are shown as bar
charts for the actual day, week, and month. The charts are fully responsive and supported
on all platforms. Currently, reports are provided for projects, customers and activities.
Figure 5.4 shows implemented reports for each entity.

63

5.3 Evaluation of the application and user feedback
The implemented application was tested publicly. Feedback was collected from the Kimai
community and also from public testing of potential users. The application testing was
conducted similarly to the usability testing of the interactive design of Section 3.2. Although
the application is still in the alpha version, it is usable on a daily basis.

User testing

The testing was again conducted in the Faculty of Informatics of the Brno University of
Technology. Desktop (Windows) and mobile (Android) versions were available for testing.
The users were briefly instructed about the purpose of the application and shown the
fundamentals of the application usage and features. The application was connected to a
locally installed Kimai instance on my own laptop, which was available online through the
Ngrok tunnel service 6. The task of the users was to use the application and its main
use-cases, like time tracking, accessing reports, or using favorite timesheets. The following
shortcomings were identified due to user testing:

• Insufficient visualization of active timesheet – as time tracking is the main use
case of the application, there were complaints about visualizing the currently active
timesheet. Information about the current active timesheet should be prominent in
the application UI. Also, it should be clearly visible that the activity is running. In
addition, it was suggested to implement notifications that can show information on
active timesheets anywhere in the mobile app.

• Missing pause functionality – since Kimai does not support pausing feature of
timesheets, it was suggested to implement UI use-case, when timesheet will be paused
inside Maui for Kimai application, and UI will provide quick restarting of paused
timesheet.

• Excessive error handling using toasts – toasts are used as a main information
element when an error occurs. However, it was pointed out that it is sometimes
overused. For example, when the application is offline and the user is trying to refresh
view, the toast is shown with a notification sound that data cannot be accessed. It
would be better to show only the label with some basic information on the user
interface than toast with a notification sound.

• Small tap targets – when an application was used, sometimes users tapped the
wrong button or missed the button. For example, the timesheet list item contains a
quick start feature in the form of a play icon. It was suggested that the size of this
icon (or tapping context of button) should be increased.

• Misleading naming – tab named Timesheets was misleading, the suggestion was
to rename the tab to My Times.

• Missing team statistics – team statistics was the most requested feature of the
tested users. They would like to have an overview of statistics of the team, colleagues,
and more.

6Cross-platform tunneling service Ngrok: https://ngrok.com/

64

https://ngrok.com/

• Missing offline time-tracking – application is unusable when internet connection
is lost. It was suggested to implement an offline time-tracking feature in the future.

• Omission of color indicators – when a completely new timesheet was created, the
color indicators were not present.

Thanks to user testing, multiple bugs were explored and subsequently fixed. One of
the revealed bugs was the application behavior when a connection to the Kimai server was
lost, while the login context was still set. The application was not able to handle thrown
exception and it shutdown unexpectedly.

In general, users were satisfied with the usability of the application. They appreciated
the quick-start functionality of the timesheet and also the ability to set the timesheet as
favorite. They welcomed the interactive graphs and multiplatform support of the applica-
tion.

At the time of writing this text, most of the problems found by a user testing were
fixed. Insufficient visualization of an active timesheet was improved by using the home
widget to provide essential information to the user about the active timesheet. Moreover,
the notification service is implemented on a mobile platform, from which information about
active timesheet is not used actively. The example of active timesheet information visualized
in the home widget is shown in Figures 4.13 and 4.12. The naming of a specific elements
was appropriately improved, and the tapping areas of a specific buttons were increased.

5.4 Feedback from the community and future development
The Maui for Kimai application has been available as a public open-source project since
April 17th, 2023. Since then, development has continued and multiple releases have been
published. I created posts on different .NET oriented Discord servers about my project and
promoted my application to users of Kimai. I also created video 7 in which I present the
features of the application.

As a result, the application was shared on the official Kimai social networks, specifically
on Twitter 8 and Mastodon 9 presented as an interesting multi-platform project for the
Kimai time tracker. I also received a response from the official Kimai maintainer, who
praised the idea of an application and offered to help with testing on the iOS and MacOS
platforms.

The application is constantly being improved. After the initial release, the main aim is
now to fix some multiplatform inconsistencies, specifically for iOS/Mac platforms. After-
wards, I need to figure out a correct way to deploy these Apple-specific binaries to users
for testing purposes. Another important task is to add support for a Kimai v2.0. This will
require generating a new Kimai API client and implementing the needed services, which
are used across the application. Also, the way of user authorization must be changed, as
the API specification of the newer version is a little bit different from the older version.
Moreover, there is a plan to add more features, like team-specific views, offline support for
time-tracking, possibilities for management of activities, projects, customers, and so on.

On the basis of the user’s feedback, I believe that this application has the potential to
grow and be used within a Kimai community.

7MAUI for Kimai features overview video: https://youtu.be/XoMrFvPtgJw
8Twitter post: https://twitter.com/kimai_org/status/1650599223597973504
9Mastodon post: https://phpc.social/@kimai/110255704127585195

65

https://youtu.be/XoMrFvPtgJw
https://twitter.com/kimai_org/status/1650599223597973504
https://phpc.social/@kimai/110255704127585195

Chapter 6

Conclusion

The main goal of the diploma thesis was to create a multiplatform application in .NET
MAUI, which should serve as a companion to open-source time-tracking software Kimai.
Also, another goal was to investigate multiplatform development on .NET MAUI and specif-
ically to provide a set of approaches for development on this framework.

The set goals were achieved, as the result is a multiplatform application called MAUI
for Kimai, which is available and fully supported for Android and Windows platforms. The
application is also functioning on iOS/Mac platforms, however, only for experimental pur-
poses, as I have had limited access to Mac development tools. The application is available
as an open-source project on GitHub1, where it is available to the Kimai community. In
addition, the .NET MAUI framework was thoroughly examined, and as a result, a set of
approaches for multiplatform development was provided within the implementation chapter
of the diploma thesis.

In the beginning, the problematics of multiplatform frameworks, user interface design,
and the Kimai system were discussed. Afterward, the requirements for the application
were gathered and the first design was created. The design was iteratively improved with
the usability testing method. Multiple architectural approaches were discussed and the
best architecture was chosen. Then the MAUI for Kimai application was implemented
and published according to the requirements. In the end, feedback was collected from the
community and from the public testing.

The application was shared with the Kimai community to gather feedback. I was con-
tacted by an official Kimai maintainer, who praised the idea of a multiplatform application
and offered help with testing. In addition, the application was shared on the official Kimai
social pages on Twitter and Mastodon as an interesting new multiplatform project.

The development of the MAUI for Kimai application continues. Multiple versions have
been released, which contain fixes and improvements based on user feedback. Now, I would
like to focus on stabilizing the application for iOS/Mac and add more useful features, such
as more detailed reports for teams, management possibilities for administrators, or ability
for offline time-tracking.

I learned a lot during the development of the MAUI for Kimai application. However,
at the time of writing this text, .NET MAUI is still a new technology and I think is not
ready yet for more complex applications, as there are still a lot of issues, which limit specific
development approaches and bring inconsistencies between platforms.

1MAUI for Kimai GitHub repository: https://github.com/Specter-13/maui-for-kimai

66

https://github.com/Specter-13/maui-for-kimai

Bibliography

[1] Anastasiya Marchuk. Native Vs Cross-Platform Development: Pros & Cons
Revealed [online]. 2022 [cit. 2022-10-19]. Available at:
https://www.uptech.team/blog/native-vs-cross-platform-app-development.

[2] Andrade, P. R. M. d., Frota, O., Silva, F., Albuquerque, A. and Silveira, R.
Cross Platform App: A Comparative Study. Journal of Computer Science and
Technology. february 2015. DOI: 10.5121/ijcsit.2015.7104.

[3] Biørn Hansen, A., Majchrzak, T. A. and Grønli, T.-M. Progressive Web Apps:
The Possible Web-native Unifier for Mobile Development. january 2017, p. 344–351.
DOI: 10.5220/0006353703440351.

[4] Chris Sells, Ian Griffiths. Programming WPF. 2nd ed. O’Reilly Media, 2007.
ISBN 9780596510374.

[5] Cordenne Brewster. Native App Development Guide for 2022 [online]. 2021 [cit.
2022-10-29]. Available at: https://www.trio.dev/blog/native-app-development.

[6] Cordenne Brewster. Web App Development in 2022: Everything You Need to
Know [online]. 2021 [cit. 2022-10-30]. Available at:
https://www.trio.dev/blog/web-app-development.

[7] David Britch. Behaviors [online]. 2022 [cit. 2022-7-11]. Available at:
https://learn.microsoft.com/en-us/dotnet/maui/fundamentals/behaviors.

[8] David Britch. Style apps using XAML [online]. 2023 [cit. 2023-05-09]. Available at:
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/styles/xaml.

[9] David Britch, Genevieve Warren, Minh Vuong. App lifecycle [online]. 2022
[cit. 2022-7-11]. Available at:
https://learn.microsoft.com/en-us/dotnet/maui/fundamentals/app-lifecycle.

[10] David Britch, Ivan Gechev. What is .NET MAUI? [online]. 2022 [cit. 2022-7-11].
Available at: https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui.

[11] Frank Zammetti. Practical React Native: Build Two Full Projects and One Full
Game using React Native. 1st ed. Apress, 2018. ISBN 9781484239384.

[12] Hubstaff. The Benefits of Tracking Your Employees’ Time [online]. 2022 [cit.
2022-9-11]. Available at: https://hubstaff.com/time-tracking/benefits-time-
tracking-employees#contents-category-2.

67

https://www.uptech.team/blog/native-vs-cross-platform-app-development
https://www.trio.dev/blog/native-app-development
https://www.trio.dev/blog/web-app-development
https://learn.microsoft.com/en-us/dotnet/maui/fundamentals/behaviors
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/styles/xaml
https://learn.microsoft.com/en-us/dotnet/maui/fundamentals/app-lifecycle
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui
https://hubstaff.com/time-tracking/benefits-time-tracking-employees#contents-category-2
https://hubstaff.com/time-tracking/benefits-time-tracking-employees#contents-category-2

[13] Jason Taylor, Luke Parker. Rules to Better Clean Architecture [online]. 2023
[cit. 2023-4-24]. Available at:
https://ssw.com.au/rules/the-main-principles-of-clean-architecture/.

[14] Jeffrey Rubin, Dana Chisnell. Handbook of Usability Testing: How to Plan,
Design, and Conduct Effective Tests. 2nd ed. Wiley, 2008. ISBN 978-0470185483.

[15] Jim Bennet. Xamarin in Action. 1st ed. Manning Publications Co., 2018. ISBN
9781617294389.

[16] Kanchan Yewale. Cross Platform Application Development: Benefits and
Technology [online]. 2021 [cit. 2022-10-29]. Available at: https://www.clariontech.com/
blog/cross-platform-application-development-benefits-and-technology.

[17] Kevin Papst. Kimai - Free Time-Tracking App (open-source) [online]. 2022 [cit.
2022-9-11]. Available at: https://www.kimai.org/.

[18] Marco L. Napoli. Beginning Flutter. 1st ed. John Wiley & Sons, Inc., 2020. ISBN
978-1-119-55082-2.

[19] Markus Egger. XAML Anti-Patterns: Code-Behind [online]. 2021 [cit. 2023-4-20].
Available at: https://codemag.com/article/1505101.

[20] Mascetti, S., Ducci, M., Cantù, N., Pecis, P. and Ahmetovic, D. Developing
Accessible Mobile Applications with Cross-Platform Development Frameworks
[online]. May 2020 [cit. 2022-10-29]. Available at: https://www.researchgate.net/
publication/341396146_Developing_Accessible_Mobile_Applications_with_Cross-
Platform_Development_Frameworks.

[21] Selva Ganapathy Kathiresan. Xamarin Versus .NET MAUI [online]. 2022 [cit.
2022-6-11]. Available at:
https://www.syncfusion.com/blogs/post/xamarin-versus-net-maui.aspx.

[22] Sergio Pedri, Michael Hawker. .NET Community Toolkit Introduction [online].
2022 [cit. 2023-4-24]. Available at:
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/introduction.

[23] Stonis, M. Enterprise Application Patterns using .NET MAUI [online]. 2022 [cit.
2022-04-21]. Available at:
https://dotnet.microsoft.com/en-us/download/e-book/maui/pdf.

[24] Toggl. Toggl track [online]. 2023 [cit. 2023-1-16]. Available at:
https://toggl.com/track/.

[25] Yuliia Fedyk. 7 Benefits of Flutter: Why Use Flutter for Your Next App [online].
2022 [cit. 2023-09-05]. Available at: https://inveritasoft.com/blog/7-flutter-
advantages-a-perfect-platform-for-your-next-app.

68

https://ssw.com.au/rules/the-main-principles-of-clean-architecture/
https://www.clariontech.com/blog/cross-platform-application-development-benefits-and-technology
https://www.clariontech.com/blog/cross-platform-application-development-benefits-and-technology
https://www.kimai.org/
https://codemag.com/article/1505101
https://www.researchgate.net/publication/341396146_Developing_Accessible_Mobile_Applications_with_Cross-Platform_Development_Frameworks
https://www.researchgate.net/publication/341396146_Developing_Accessible_Mobile_Applications_with_Cross-Platform_Development_Frameworks
https://www.researchgate.net/publication/341396146_Developing_Accessible_Mobile_Applications_with_Cross-Platform_Development_Frameworks
https://www.syncfusion.com/blogs/post/xamarin-versus-net-maui.aspx
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/introduction
https://dotnet.microsoft.com/en-us/download/e-book/maui/pdf
https://toggl.com/track/
https://inveritasoft.com/blog/7-flutter-advantages-a-perfect-platform-for-your-next-app
https://inveritasoft.com/blog/7-flutter-advantages-a-perfect-platform-for-your-next-app

Appendix A

Content of attached data medium

• mauiforkimai/

– src/ — source code of the application
– docs/ — source code of the documentation
– assets/ — figures used in README.md
– binaries/ — Android and Windows installation binaries
– README.md — the essential information about project in english

• latex/

– source code of text in latex

• text/

– text of diploma thesis in pdf

• README.txt

– fundamental information about needed tooling and building the application in
slovak language

69

	Introduction
	Multiplatform development and system Kimai
	Native and cross-platform development
	Cross-platform development frameworks
	.NET MAUI framework
	Design of user interfaces
	Time-tracking system Kimai

	Design and usability testing
	Initial design
	Process of usability testing
	Report after the first iteration of usability testing
	Design after the first iteration
	Report after the second iteration of usability testing
	Final design

	Implementation
	Architecture
	Essential technology and used libraries
	Integration and authorization of Kimai API
	Navigation using Shell
	Viewmodels

	Deployment and evaluation
	Deployment
	Features overview and usage
	Evaluation of the application and user feedback
	Feedback from the community and future development

	Conclusion
	Bibliography
	Content of attached data medium

