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Time series analysis with Python 

Abstract 

This thesis is focused on analysis of time ordered data using Python. The theoretical 

part uncovers a bit about how people achieved the understanding of time that we have 

nowadays, starting from the ancient invention of sundials and ending on the conventions 

for standardizing international time zones. After this part, there is a big block dedicated to 

explaining the statistical and mathematical foundations on which the time series analysis is 

based, including the description of basic principles of two statistical models: A R I M A 

and V A R . After that there is an introduction to Python programming language and deep 

learning together with a presentation of L S T M model and how it works. 

The practical part presents possible use case for each time series forecasting model 

presented above using Python and its packages commonly used for data analysis and 

visualisation. These demonstrations work primarily with close price of publicly traded 

stocks. The resulting code is executed on a cloud server provided by Google, and the 

notebook with all the code is linked in the appendix. 

Keywords: Time series, Python, Statistics, Machine learning 
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Analýza časových řad pomocí jazyka Python 

Abstrakt 

Tato diplomová práce je zaměřena na analýzu časově uspořádaných dat pomocí Pythonu. 

Teoretická část je věnovaná tomu, jak lidé dosáhli vnímaní času které máme dnes - od 

starověkého vynálezu slunečních hodin až po dohody o standardizaci mezinárodních 

časových pásem. Po této části následuje vysvětlení statistických a matematických základů, 

na kterých je analýza časových řad založena, včetně popisu základních principů dvou 

statistických modelů: A R I M A a V A R . Poté následuje úvod do programovacího jazyka 

Python a hlubokého učení, spolu s prezentací modelu L S T M a jeho fungování. 

Praktická část ukazuje možný případy užití každého z výše zmíněných modelů pro predikci 

časových řad pomocí Pythonu a jeho balíčků, které jsou běžně používané pro analýzu a 

vizualizaci dat. Tyto ukázky pracují primárně s uzavírací cenou veřejně obchodovaných 

akcií. Výsledný kód se spouští na cloudovém serveru poskytovaném společností Google a 

notebook se všemi kódy je k dispozici pomocí odkazu v příloze. 

Klíčová slova: Časové řady, Python, Statistika, Strojové učení 
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2 Introduction 

We, humans, always had a desire to know what is going to happen. The natural way to predict 

that is to use the experience and learn from the past successes (or failures). Of course, it 

would be important for us to maximize the quality of that prediction. Throughout thousands 

of years various mathematical models have been developed in order to support the 

forecasting and decision-making. On top of that is the recent rise of electronic and digital 

technologies that has shown completely new horizons to measurement and analysis of the 

world around us. We can create autonomous devices to measure most of the physical, social 

or economic processes and use advanced information systems to analyse the aggregated data 

as a whole and create simulations of various possible future outcomes without missing a 

single detail from the past. 

This thesis tells a bit about the history of how the time was measured, highlights the 

fundamental mathematical and statistical models, and shows how these models can be 

leveraged using modern tools. 

The backbone for the coding part is Python programming language. It has a large set of 

packages available for implementation of time series analysis programs, which allows the 

developers to create software of a much higher functional complexity. 
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3 Objectives and Methodology 

3.1 Objectives 

The main objective is to provide an overview of various time-series analysis techniques, 

where they can be applied and how to implement them using Python programming language. 

Based on a bit of history, mathematics and statistics, different sorts of time related data and 

its common properties and differences shall be explained. This will be supported by an 

overview of various community-made tools and suitable use cases for them. At the end, the 

gathered knowledge will be demonstrated on a data-driven model based on open data. 

3.2 Methodology 

The methodology of the thesis is based on analysis and study of the relevant technical and 

scientific sources focusing on fundamental statistical and mathematical models that the time 

series analysis and forecasting are based on. 

Specific attention will be paid towards Python programming language and explaining why 

it is such a popular tool for the area of study, and how does it allow people to develop 

advanced analytical applications based on the fundamental techniques of statistics and 

mathematics. Based on synthesis of gained knowledge a working prototype will be 

implemented using standard methods of software engineering, including step-by-step 

implementation guide. This program would be powered by different Python packages, such 

as NumPy, Pandas, Scikit-learn, TensorFlow, and Keras. 
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4 Literature Review 

4.1 History of time measures 

It is most probable that living creatures had some concept of time on an instinct level long 

before humans started to wander earth. The prehistoric animals should have observed the 

sun go up and down, but their intelligence was a big limitation to how these observations 

can be used. This has changed millions of years later with the rise of humans, who want to 

find the deeper relationship between the time and the universe around us. 

4.1.1 Ancient inventions 

"Imagine a spinning bicycle wheel. If you observe the wheel alone and choose any particular 

point, for example the bottommost point, you will notice that it will return to the bottom as 

it spins as though nothing has changed. When you now, however, observe the wheel as part 

of the moving bicycle, you will realize that your bottommost point has not in fact returned 

to the same place as it spins, but rather it has moved forward along the ground. This exercise 

may seem very elementary, but when considering the way humans measure the passage of 

time, it becomes quite puzzling. Take any calendar date or lunar phase and it will inevitably 

repeat, so far as human timekeeping is concerned, but the originally chosen moment will 

never return as we say it has. Our fundamental timekeeping system is based on cycles— 

cycles of seconds in minutes, minutes in hours, hours in days and days in years—but we 

know time to be linear. The answer to why we have chosen to measure time cyclically lies 

in the origins of timekeeping itself. " (Going Back in Time: The History of Timekeeping., 

2013) 

The origins of systematic analysis of time date back to thousands of years ago and are based 

on findings of some sticks and bones with markings on them, which supposedly symbolised 

the passage of days. The next achievement of humanity was the calendar. There were many 

variations of the ancient calendars, one of which was invented by ancient Egyptians around 

4500 BC. They are thought to be the first to divide the year into 12 month and 365 days 
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based on seasons and time. The beginning of the new year was indicated by appearance of 

the Sirius star on the night sky (it is not visible for the period when it is too close to the sun). 

To find out what time of a day it was the first thing that comes to mind is to look at where 

the sun is on the sky, this led to an invention of a sundial. 

Figure 1 - Ancient Egyptian Sundial housed at University of Basel 
(Reconstruction of anctient Egyptian sundials, 2014) 

It should be obvious why sundial was not sufficient - the distance (and angle) between the 

planet earth and the sun changes throughout the year, which makes the amount of daylight 

and sun's position on the sky different throughout the year. 

This led to a desire to make a device that would allow us to measure the flow of time without 

being dependent on the light of a star. The device is a water clock. 

A water clock is a device that could be of two types: inflow and outflow. The difference is 

quite simple - the first one is a vessel that has markings on the inner side and a hole in it. 

The vessel gets filled with water and the hole gets opened to allow the water flow out and 

reveal the markings. The second type, outflow has the same idea, but contains two vessels 

with water going from one to the other, which has the marking on the inside walls that get 

hidden by the water and hide the markings as the time passes. 
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But both the hourglass and the water clock had two major issues - the accuracy and the 
length of time they could measure. 

Figure 2 — Ancient water clock in Oriental Institute Museum, University of Chicago 
(Daderot, 2014) 

"For most of history, ordinary people did not have regular and easy access to any kind of 

time measuring device whatsoever, other than to glance at the sky on a sunny day and see 

where the sun was. For them, time as we understand it today did not really exist. The one 

group in medieval times whose day was ruled by time in a way not unlike people today were 

the Benedictine monks, with their ecclesiastically regulated prayer times, the eight Canonical 

Hours: lauds (just before daybreak), prime (just after daybreak), terce (third hour), sext (sixth 

hour), nones (ninth hour), vespers (eleventh hour), compline (after sunset), and matins 

(during the night). The signal that announced each canonical hour and regulated the monks' 

day was a ringing bell. This gives us our word "clock," which comes from the medieval Latin 

word for bell, clocca." (About time, 1999) 

4.1.2 Modern inventions 

So, to increase the accuracy of measurement, people had to stop relying on the sun or flow 

of matter and find some new physical phenomenon that has some fixed duration features. 

The phenomenon is oscillation. Quite a scary word that means movement back and forth in 

a regular rhythm. 
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"Early oscillating mechanisms were called escapements. The first escapement, the verge-

and-foliot, comprised a freely swinging horizontal bar (the foliot) attached to a centrally 

located vertical shaft (the verge). The mechanism was driven by gravity. A heavy weight 

hung from a cord wrapped round a horizontal spindle. As the weight slowly descended, the 

cord turned the spindle. A toothed crown-wheel on the spindle made the escapement 

oscillate, the escapement regulated the rate at which the spindle turned, and the rotation of 

the spindle measured the passage of time by moving a hand around a marked clock face. The 

rate of oscillation, and hence the speed of the clock, was adjusted by moving symmetrically 

placed small weights along the foliot bar. 

In the fifteenth century, clockmakers started to use tightly coiled blades of metal — springs 

— to power their timepieces, instead of gravity. Following Galileo's famous 1583 observation 

that the period of oscillation of a swinging pendulum seemed to depend only on the 

dimensions of the pendulum, not on the size of the arc, the verge-and-foliot escapement was 

modified — and improved — so that the swing of a pendulum arm regulated the motion. The 

pendulum clock was itself improved when the verge-and-foliot mechanism for controlling 

the rate of rotation of the crown wheel was replaced by the anchor escapement, where a 

calliper-like "anchor" performed the task previously carried out by the verge-and-foliot." 

(About time, 1999)Even though it was a major improvement compared to the ancient 

devices, people still couldn't fully rely on these clocks and had to continuously readjust them 

according to the good old sun. 

The first appearance of a somewhat accurate clocks is closely connected to the humanity's, 

or sailor's to be exact, need to determine their location. This problem was not as big for first 

naval traders, because they simply didn't go away too far from the shore. But after the 

discovery of great oceans and expansion of European civilization to the Americas the sailors 

became more and more interested in measuring the length of their trip. 

"From the sixteenth century onwards, the need for an accurate clock to determine longitude 

became so important to growing world trade, that a number of monetary rewards were 

offered for the first person to produce such a device. In 1714, England's Queen Anne offered 

20,000 (several million pounds in today's currency) for the first person to find a way to 
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determine longitude to within half a degree. Many attempts were made to solve the problem 

and win the various prizes. In 1759, a Yorkshireman called John Harrison tested a 5.2 inch 

diameter clock on a trip from Britain to Jamaica and back. The clock lost only five seconds 

on the outward journey, corresponding to a longitude error of only one and a quarter nautical 

mile. Harrison won Queen Anne's prize, and the world finally had a way to determine 

longitude: by the accurate measurement of time." 

So, the problem of measuring time accurately was solved, but there were still some 

challenges to overcome. The biggest one was that even though people in different cities 

could measure time precisely, they were totally disconnected from each other which resulted 

in issues with cross-regional transportation and delivery. Many cities were measuring the 

time from some different moment, and people had to compensate for that and readjust their 

measurement while travelling from one city to another. But due to not having a better 

alternative - all the people who for some reason had to do scheduled movement from one 

town to another had to just deal with it. 

"The problem became much worse with the arrival of the railway network in the nineteenth 

century. The greater speeds, together with the need to change from one line to another — 

possibly from one railway company to another — in the course of a single journey made the 

plethora of different local times a confusing annoyance. In England, the railroads decided 

that they would run their operations according to London time, as determined by the Royal 

Observatory at Greenwich, and by 1848 practically all British railroad companies operated 

according to what would eventually become known as Greenwich Mean Time (GMT). For 

a while, many local towns continued to keep their own time, determined by local 

observations of the sun, but gradually the benefits of having a single time began to outweigh 

tradition and local pride. By 1855, almost all public clocks throughout Great Britain showed 

GMT." (About time, 1999) 

So, the British people were pioneers for the synchronization of clocks in their country, 

but the humanity was still in the need to form some unified system. The next big 

challenge was faced by the United States. A territory about 25 times larger than the 
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U K at that time. There, a much bigger travel between the cities has led to an existence 

of approximately 80 timetables for different parts of the country. It was in the year 

1869 when Charles Dowd proposed to split the country into four time zones. He 

suggested for every time zone to be 15 degrees of latitude, which makes the time 

difference between the middle of each zone to be exactly one hour. 

That is because we have already decided that an hour is one 24 t h of time it takes the 

earth to make a turn. The whole globe has 360 degrees of latitude, and if we divide 

360 by 24 - you guessed it - we get 15 degrees of latitude. 

The system proposed by Charles Dowd was very close to the one in which we live 

nowadays. A l l that needed to be done was to explain the benefits of synchronization 

to the humanity and decide on some "zero point" time zone from which the count 

should start. 

Figure 3- UTC time zones (Heitordp, 23) 

Yet, it was a very gradual process which took a lot of effort, cooperation, and most 

importantly listening to what other people had to say. The baseline was set to Greenwich, 

first by Sweden, US and Canada in 1883. Later, in 1884 there was an International Meridian 

Conference held in Washington, D.C. to come to an agreement upon using Greenwich as the 

baseline for the whole planet. The global adoption of which took almost 100 years with the 

last country to make the change being Liberia in 1972. (About time, 1999) 
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It's fascinating how our time measurement system has evolved throughout the years, and 

how it was striving to finally reach the elegant mathematical form in which it currently is. 

4.2 Scientific foundation 

Even though it might seem like it from the first chapter of this thesis - scheduling of 

transportation was not the only use of time measurement systems. Another tremendous thing 

it allowed us to start doing is logging of some observations on a time plane. 

Time 

Figure 4 - Example of a time based plot 

This is something that a specialist (or a beginner) of any area would find relevant, from stock 

exchange trader to the farm's worker, as it is a basic instrument of displaying and logging 

any continuous information. 

The following part will give some insight about the basic techniques of how such data is 

processed and analysed. 

4.2.1 Types of time series data 

Any sorts of data can be recorded through the passage of time as long as it is available, which 

means that time series data can be of any type that data in general could be. 
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Figure 5- Types of data 

There are two main types of data that are also split into four subtypes. The first one is 

qualitative data, which as the name suggests describes some quality of the subject we try to 

model. This may be the genre column in a list of movies or a grade mark in some teacher's 

journal. The difference between those two examples is also a hint to which of the data 

subtypes they relate - the movie genre would of nominal data subtype because there is no 

quantitative information in words like "Comedy" or "Horror", and on the other hand the 

student's grade would be of an ordinal type, because it has quantitative information about 

how good is the order of such results. Keep in mind that the students grade example would 

be of qualitative type as long as it is some category of possible grades like "Excellent", "Very 

Good" etc., but if it would be the amount of the answers he got correct on the test - it would 

be of the second type that is explained below. 

Quantitative data are the numerical results of some measurable activity, phenomenon or 

matter that must be represented by a number. For example, a number of students in a class 

or a height of a flower. Just like before, those two examples represent both subtypes of 

quantitative data - discrete and continuous. Discrete data is the data that can only be 

counted as full integers, like how many students there are in a class. While the continuous is 

the information that can be split and looked at a finer scale. Like the growth of a flower can 

be tracked down to a particle of a meter, while there can't 23.5 students in a class. 
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4.2.2 Characteristics of time series data 

In order to be able to work with time series some of its fundamental characteristics must be 

understood. Those are the so-called behaviors that any time series might exercise, and it is 

crucial to know what they are: 

• Seasonality - the data follows some pattern based on some specific period, like 

Christmas toys sales which rise and then drop once per year. 

Jan 14, 20... Sep 1,2019 Apr 18, 2021 

Figure 6 - Seasonality example, Google search trend for Christmas tree (2022) 

• Trend - the direction which the data is trying to reach, like a growth or decline that 

is present throughout the observations. 

Jl 1. 01 Nov 1, 11 

Figure 7 - Trend example, ETF index price (2022) 

• Cyclicity - the repetition of data going up and down. The difference from seasonality 

is that the periods between cycles may not be fixed and are caused by some economic 

(or different) events. 
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Figure 8- Cyclicity example, Google search trends for umbrella (2022) 

• Randomness - the final characteristic of time series data, which is supposed to 

represent the effect of unknown variables. 

Figure 9 - Randomness example (Elser, 2007) 

Please keep in mind that those are not categories of time series, but rather different 

components of its behavior that are present in any data to some extent. 

4.2.3 Some basic statistical definitions 

Time series analysis is a part of statistics, and in order to perform it, some basic statistical 

definitions must be explained. 
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Distribution - one of the fundamental terms in statistics. It demonstrates how different are 

the observations in the dataset by putting them on an ordered plane. 

(i-3-o | i - 2 a n~a \i (i+a n+2a (i+3-o 
Figure 10- Distribution plot (Kowarschick, 2012) 

Mean - the easiest statistical term that represents an average value of all observations. If we 

have a dataset where we track height of students in a group with such results: 183 cm, 164 

cm, 160 cm, 175 cm, 190 cm, 158 cm. The mean is equal to sum of all the results divided by 

number of observations, so for our example it is: 

(183 + 164 + 160 + 175 + 190 + 158) / 6 = 171.66 cm 

sum of the terms 
number of terms 

Figure 11 - Mean formula 

Median - the center observation of sorted dataset. If we have 5 (odd) total observations in 

our dataset - after we sort it the third value would be the median. If the total number of 

observations would be 6 (even) - after we sort our data, the median would be the mean 

(average) between the third and the fourth values. 

So, for our height example: 

158 160 164 175 183 190; (164 + 175) / 2 = 169.5 cm 

Mode - the most popular value in a dataset. If our dataset has 5 ladybugs, in which we 

document the three of them are red and two are yellow, then red is the mode of colour 
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variable for our dataset. In our height example all observations are unique, so there is no 

mode. 

Variance - the degree of how far a variable is spread from its mean value. To calculate it, 

we subtract the mean from every observation, sum the squares of resulting numbers and 

divide it by (number of observations - 1). For our height example the variance is equal to 

171.46 

- \ 2 

s2 = Ete - x) 

s = 
£ 0 ; - x ) 2 

n — 1 
Figure 13- Standard deviation formula 

Standard Deviation - actual distance of how far a variable is spread from the mean. 

It is calculated as the square root of variance. 

Correlation - the measure of how one variables movement can explain the 

movement of a different variable. Like the relationship of the distance from earth to 

sun and the air temperature. 

r = 
E fa - s) {Vi - y) 

\/E ( xi -  x ? E fa - vf 
Figure 14- Correlation coefficient formula 

The terms that were presented in this chapter are just a little grain of all the different 

definitions that one may stumble upon in the world of statistics but understanding them is 

crucial to comprehend even the most basic texts about statistical analysis. 
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4.2.4 Regression 

One of the primary goals of time series analysis is to be able to predict the future based on 

the values of the variables that will be known to us. Regression is one of the most used 

techniques for that matter. 

"Linear regression is a mathematical technique that attempts to describe the relationship 

between two or more variables with a linear or straight-line function. Based on an analysis 

of the available data or sample, the technique also can be used to draw inferences about a 

larger population or data set, or to make predictions about future data. Simple linear 

regression is a subtype of linear regression in which there is a single outcome or dependent 

variable and a single predictor or independent variable." (Advanced Statistics: Linear 

Regression, Part I:, 2004) 

First, the simple linear regression: 

"Simple linear regression uses the equation for a line to model the relationship between two 

variables. If z is the outcome variable and x is the predictor variable, then: z = kx + c where 

k is a coefficient that represents the slope of the linear relationship between the variables x 

and z, and c is a constant. The constant c is termed the ' 'z intercept'' because this is the value 

of z where x = 0 and the regression line crosses the z axis." (Advanced Statistics: Linear 

Regression, Part I:, 2004) 

The same equation can be extended to include more variables: 

"Multiple linear regression extends simple linear regression to include more than one 

explanatory variable. In both cases, we still use the term 'linear' because we assume that 

the response variable is directly related to a linear combination of the explanatory variables." 

(Multiple Linear Regression (2nd Edition), 2020) 

One interpretation of a linear regression formula was already presented, it can be written in 

another form as below: 

yt = a + x t'p + ut 
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y stands for target variable, alpha is the value of y while x is equal to zero, meanwhile x is 

the explanatory variable and beta is the coefficient that x should be multiplied by in order 

to get y, the final component - u is the residual, or in other words, error which cannot be 

estimated but can be seen upon testing. Those coefficients are estimated by using the 

Ordinary Least Squares method. 

The OLS method was invented around 200 years ago by Adrien-Marie Legendre and Carl 

Friedrich Gauss. It works by estimating the optimal alpha and beta coefficients for the model. 

The optimal coefficients would be the ones that produce the smallest difference between the 

prediction and the observation it is tested on, for all observation in the dataset. The word 

"Squares" means the squared distance between the prediction and actual value of our target 

value. We have to square it because our model may miss the target both by a positive and a 

negative distance, so in order to sum those positive and negative errors we have to square 

them first. 

Below is a formulated OLS model for beta coefficient and residual sum of squares formula 

from the book "Time series analysis" by James Hamilton. 

T 

40 

S X 
Figure 15 - Residuals visualised (Halswanter, 2013) 

- 1 
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(Hamilton, 1994) 

The theory presented above can be very easily applied to the data that has a linear 

relationship between target and explanatory variables, but in case their relationship would 

not be linear, but more like some sorts of a curve - we would need to use non-linear 

regression. 

Figure 16 - Linear vs nonlinear relationship 

"In nonlinear regression analysis the dependent variables are modelled as a nonlinear 

functional model with unknown coefficients and one or more free variables. In literature, 

there are a large number of nonlinear regression models. There are some important nonlinear 

growth models which are very useful to know the growth behavior in a particular period 
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namely Maltus model, Monomolecular model, Logistic model, Gompertz model and 

Richards model." (Estimation Methods of nonlinear regression models, 2019) 

A non l inear regress ion mode l can be put as 

where Z is dependent var iable, 

y,, Y2, Yj arc independent var iables, 

C£\. ti- £Xr arc parameters, 

£ is error r andom variable, 

m= numbe r o f rows, 

g (.)= funct ional w h i c h is not l inear. 

Figure 17 - Nonlinear regression model (Sorce: Estimation of nonlinear 
regression models) 

As mentioned before, regression is one of the fundamental techniques in data analysis and 

will receive more spotlight later in this thesis. The models above would need a separate book 

to explain them in detail they really deserve, but hopefully this information extract is 

sufficient to grasp the information in the following chapters. 

4.2.5 Differencing 

The trend and seasonality characteristics of time series make the values behavior over time 

unstable. Our goal is to learn how to measure those changes and remove (or reduce) their 

effect on our data. This is also called making the data stationary. Stationary data is the one 

that doesn't change its properties based on when it is looked at. For example, flipping a coin. 

The chances of getting heads or tails are the same, no matter when it is thrown. 

The technique that is used to achieve it is called differencing. There are two kinds of it: usual 

and seasonal. The first one removes only the trend characteristic, while the second one tries 

to address both seasonality and trend together. But how is it actually done? 

The technique is easy and is very well explained by its name, let's start with the usual 

differencing: 

Y \ = Y - Y * . 
Figure 18 - First-order differencing formula (Vishwas, et ah, 
2020) 
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First order differencing means finding the difference between observations and making it a 

separate column in our dataset. It can not only be of one order, but of any nth order, which 

would mean that we perform the same operation n number of times on resulting columns. If 

the order was 3 - we would do the first order difference and put the change between the 

values into a separate column, after that we would do the second order differencing and 

calculate the difference between the values in the column that we got as the result of the first 

order. 

With the seasonal component present in the data, the idea is nothing more complicated - the 

only thing is that we need to know about the seasonality in our data. 

Like in our Christmas toys example - it would be weird to compare their sales between 

January and December, but what we could do is to find the difference between this year's 

December sales and the ones from the previous year December (and creating a separate 

column with such year to year change). 

4.2.6 Autoregression Model 

It is very common to have a limited number of variables in data analysis. Sometimes we 

need to make some assumptions by observations of just one value over time. This is what 

autoregressive models are used for. It works by setting a lagged value of our target variable 

(shifting all data one period forward) as the explanatory variable. 

"An autoregression model (AR) predicts future behavior based on its past data. It is when 

data is correlated with a consecutive sequence of a time series and the values before and after 

the sequence. The autoregressive model uses only past behavior data to forecast the value. 

A R models use past values to forecast as shown here: 

Yt = \i + (|)1YM + <|>2Yt-2 ... + (|)pYt-p + £t 

where et is white noise. This model is known as the AR(p) model, where p is the order for 

the autoregressive model. The A R model is easy to use to handle a wide range of time-series 

models. 
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A R is part of a time series Yt, which contains a value that depends on some linear grouping 

of the previous value, which defined maximum lags (signified p). It also contains an arbitrary 

error term et, given as follows: 

First-order AR: 

Yt = a + blYt-1 

Second-order AR: 

Yt = a + blYt-1 + b2Yt-2 

Third-order AR: 

Yt = a + blYt-1 + b2Yt-2 + b3Yt-3 yt = (plyt-1 + (p2yt-2 + + (ppyt-p + st 

where the parameters cpt are constants. 

" (Vishwas, et a l , 2020) 

4.2.7 Moving Average Model 

The autoregression model uses previous values of our target variable in order to create a 

prediction. It is also possible to use the errors of the previous forecast to create a regression 

model. That is what moving average model is. 

" A moving average (MA) is a method to get all the trends in a time series. It is the average 

of any subcategory of numbers. It is utilized for long-term forecasting trends. Basically, a 

moving average forecasts future points by using an average of several past data points. The 

moving average model practices past forecast errors: 

Yt = 0̂+ st - col st-2 - col st-2 . . . coq st-q 

where et is white noise. This model is known as the MA(q) model, where q is ordered for 

the moving average model. The M A model is easy to use to handle a wide range of time-

series models. 
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Here are some definitions to understand: 

ACF: The correlation of a variable with its lagged values. 

PACF: The correlation of a variable with its lagged values, but after removing the effects 

of in-between time lags. 

Correlograms: The plots of A C F and PACF against the lag length. This can give you an 

idea about the relation of autocorrelation between variables" (Vishwas, et al., 2020) 

0 ö 
<! 

T J " i " l i " i " i 
LUUUPJLILI. 

Figure 19 - Correlogram example (Manning, 2009) 

"The M A part of a time-series Yt, which is an observed value in terms of a random 

error and some linear grouping of previous arbitrary error terms, up to a described maximum 

lag (signified q). 

First order MA(1): 

Yt = y+ dOut + dlut-1 

Second order MA(2): 

Yt = y+ dOut + dlut-1 + d2ut-2 

Third order MA(2): 

Yt = y+ dOut + dlut-1 + d2ut-2+ d3ut-3 yt = Zt + 91ZM + 62Zt-2 + + 6qZt-q 

where the parameters 9t are constants. 

let's combine A R and M A 

ARMA (1,1): Yt = \i + <))lYt-l+ d0ut+ dlut-1 

" (Vishwas, et a l , 2020) 
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4.2.8 ARMA to ARIMA 

The chapters above have already covered all the components that power the A R I M A model 

- autoregression, differencing and moving average. 

"Autoregressive integrated moving average—also called ARIMA(p,d,q)—is a forecasting 

equation that can make time series stationary with the help of differencing and log techniques 

when required. A time series that should be differentiated to be stationary is an integrated 

(d) (I) series. Lags of the stationary series are classified as autoregressive (p), which is 

designated in (AR) terms. Lags of the forecast errors are classified as moving averages (q), 

which are identified in (MA) terms. 

Figure 20 - ARIMA breakdown (Vishwas, et al., 2020) 

A nonseasonal A R I M A model is called an ARIMA(p,d,q) model, where: 

• p is the number of autoregressive terms. 

• d is the number of nonseasonal differences needed for stationarity. 

• q is the number of lagged forecast errors in the 
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prediction equation. 

p d q Differencing Method 

ARIMA (0, 0, 0) 0 0 0 y,=Y t White noise 

ARIMA (0,1, 0) 0 1 0 y t=Y,-Y t. 1 Random walk 

ARIMA (0, 2, 0) 0 2 0 yt = Yt - 2Yt-1 + Yt-2 Constant 

ARIMA (1, 0, 0) 1 0 0 Yt = u + <4>i Yt-! + e AR(1): First-order 

regression model 

ARIMA (2, 0, 0) 2 0 0 Yt = (j)0 + u>iYn + (j>2Yt-2 + e AR(2): Second-order 

regression model 

ARIMA (1,1,0) 1 1 0 Yt = m + Yt-1 + (])1 (Yt-1 - Yt-2) Differenced first-order 

autoregressive model 

ARIMA (0,1,1) 0 1 1 Yt = Yt-1 -o>1et-1 Simple exponential 

smoothing 

ARIMA (0,0,1) 0 0 1 Yt = p0+ et - (Oi et.i MA(1): First-order 

regression model 

ARIMA (0, 0, 2) 0 0 2 Yt = p0+ et - (O, £ t-1 - « 2 Et-2 MA(1): Second-order 

regression model 

Figure 21 - p, d, q representation and methods, part 1 (Vishwas, et al., 2020) 

A R I M A is a method among several used for forecasting univariate variables, which uses 

information obtained from the variable itself to predict its trend. The variables are regressed 

on its own past values. AR(p) is where p equals the order of autocorrelation (designates 

weighted moving average over past observations) z I (d), where d is the order of integration 

(differencing), which indicates linear trend or polynomial trend z. MA(q) is where q equals 

the order of moving averages (designates weighted moving average over past errors). 

A R I M A is made up of two models: A R and M A . 
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AR IMA (1 ,0 ,1 ) 1 0 1 Yt = ^o + tttiYM+et-Q)! Em A R M A model 

AR IMA ( 1 , 1 , 1 ) 1 1 1 AY, = (biYt-i + et - Cm AR IMA model 

AR IMA (1 ,1 ,2 ) 1 1 2 % = Ym + (|>i (Yt.i - Y,.2) Damped-trend linear 

- Qie^ - 9i6t_i Exponential 

smoothing 

AR IMA (0,2,1) 0 2 1 Y,= 2 Yt-i - Yt_2 - 9i6 t-i - 026^2 Linear exponential 

OR (0,2,2) smoothing 

Figure 22 - p, d, q representation and methods, part 2 (Vishwas, et al., 2020) 

" (Vishwas, et a l , 2020) 

4.2.9 VAR model 

The chapters above were focused on using the previous values of some single variable to be 

able to create forecasting models based on it. This chapter is about how we can use similar 

concepts with more than one variable available - by creating the combinational vectors out 

of them. 

The next model that will be explained is called vector autoregressive model. So, using more 

variables in one model and analysing their behavior to determine the future: 

"In the real world, we are often lucky enough to have several time series in parallel that are 

presumably related to one another. We already examined how to clean and align such data, 

and now we can learn how to make maximal use of it. We can do so by generating an AR(p) 

model to the case of multiple variables. The beauty of such a model is that it provides for 

the fact that variables both influence one another and are in turn influenced—that is, there is 

no privileged y while everything else is designated as x. Instead, the fitting is symmetric 

with respect to all variables. Note that differenc- ing can be applied as is in other models 

previously if the series are not stationary." (Nielsen, 2020) 

"Vector autoregression (VAR) is a stochastic process model utilized to seize the linear 

relation among the multiple variables of time-series data. In other words, it is a multivariate 

forecasting method utilized when two or more time-series variables have a strong internal 
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relationship with each other. V A R is a bidirectional model, while others are unidirectional 

models. In a unidirectional model, a predictor influences the target, but not vice versa. In a 

bidirectional model, variables influence each other. 

The normal AR(p) model equation looks like this: 

Yt = + <|)lYt-l + <|>2Yt-2 ... + <|>pYt-p + £t 

where p. is intercepting, and §1, §2.... §n are the coefficient of the lags of Y . In the V A R 

model, every single variable is modeled as a linear grouping of its past values and the past 

values of other variables in the time series. If you have multiple time series, which is 

determined to each other. So, one variable per equation will be designed. For instance, 

imagine that we have two variables of a time series, Y l , Y2. We want to forecast the value 

of these at time (t). 

Here is the V A R (1) model with two time series ( Y l and Y2): 

Yl,t = ul + <|>HYl,t-l + <|>12Yl,t-2 + el,t 

Y2,t = u2 + <|)21Y2,t-l + <|>22Y2,t-2 + £2,t 

where y l , t - l , y2,t-l are the first lag of the time series Y l and Y 2 " (Vishwas, et al., 2020) 

The citation above implies that the V A R model doesn't attempt to predict a single target 

variable, but rather a vector of them together using the relationship among them. 

The chapter above should have provided the necessary overview of statistical models that 

are widely used for statistical analysis of time series data. There are several important 

concepts from statistics that did not receive a separate section in this chapter, like different 

measures and testing concepts, due to the focus point of this thesis being time series analysis 

in Python rather than statistics fundamentals. Of course, those concepts still will be leveraged 

in the practical part for analysis and will receive some explanation about their use in the 

example. 
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4.3 Python, Machine Learning and Deep Learning 

The models that were presented in the previous chapters have great potential for prediction 

of the future. But, finding the optimal parameters could require many repetitive calculations, 

especially if we are trying to optimize them for a big number of past observations. This is 

when automation comes out onto the scene. The humankind has created computational 

machines that can do all the mathematical labor instead of us, as long as we explain it and 

provide clear instructions, of course. 

In the year 2022 the most popular tool for automated time series analysis is Python. There 

are multiple reasons for this: 

• Language simplicity - this factor shouldn't make the reader think of Python as of a 

"not serious" programming language, but rather one that is created and continuously 

developed with a focus on readability and conciseness. "Simple is better than 

complex" is one of the fundamental ideas expressed in zen of Python. 

• Big community support - a large number of developers uses python in their 

research and projects. Many of them are playing an educational role and create great 

tutorials about how to put the newest ideas to use. 

• Suite of tools - the reason for Python being leveraged in so many different areas is 

the number of packages that are available for free to anyone interested in working 

with them. The use cases are ranging from mathematical calculations to both ends of 

website development or even art and music. 

As per the negative side of Python I would like to mention the thing that makes it strong -

its interpreter. In simple terms, Python interpreter is the engine that runs the commands that 

are given to it. Its strength is the ability to use different functions from inside or outside 

packages, that saves time from writing them, but adds another level to the execution. For 

most tasks its performance is satisfactory and good sides very much outweigh the bad ones, 

but if the informational process requires some high intensity of performance, the lower-level 

languages might be a better alternative. Python developers also try to leverage the 

performance speed of lower-level languages, for example inner parts of the NumPy library 
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are developed in C programming language and allow achieving better performance while 

keeping the simple concepts of Python programming. 

Some terms like package or function will be better explained in the practical example, but 

first there is one last topic that needs to be spotlighted, which is - deep learning. 

4.3.1 Deep Learning 

Nowadays the terms of machine learning and deep learning can be heard all over the internet 

and IT area, which might already tire some people. But there is an explanation to that - the 

technology is quite fascinating. Engineers around the worlds are creating systems that 

perform calculations which would take thousands of lifetimes of manual work. This allows 

them to find the best models for forecasting by quickly optimizing them and greatly 

increasing their complexity. The concept of using a computer for optimization of a statistical 

model is called machine learning and combining such models into much bigger ones is what 

makes them deep learning models. 

Neural networks are implemented in layers of units; each layer has a specific type of units 

and serves some specific function. The first layer is the input layer, and it is used to store the 

data that we would like to present for analysis of a deep learning into the explanatory 

variables. The next units are so-called hidden layers, they have some sorts of an activation 

function inside of it and weights outside of it. Those functions and weights get optimized by 

Input Hidden layer Output 

Figure 23 - A simple feed forward network (Nielsen, 2020) 

trying to find the combinations of parameters that produce the lowest error. There can be 

39 



multiple hidden layers, of different types. Their type is decided by the developer and 

represents the inner computation that happens inside. And the last layer of any deep neural 

network is the output layer - it is where the actual answers our network provides are going 

to be. If our network's goal would be to detect whether there is a cat or a dog on the image 

- it would have two units in an output layer, one for cat and one for dog. After the photo 

would go through the network - these two output units would have a value between 0 and 1 

which would represent the probability that it is indeed a cat or a dog. 

"We can see that the input consists of three channels, or a vector of length 3. There are four 

hidden units. We multiply each of the three inputs by a different weight for each of the four 

hidden units for which it is destined, meaning that we need 3 x 4 = 12 weights to fully 

describe the problem. Also, since we will then sum the results of these various 

multiplications, matrix multiplication is not just analogous to what we are doing but exactly 

what we are doing. If we wanted to write out the steps for what we are doing, they would go 

something like this: 

1. Input vector X has three elements. Layer 1 weights are designated by W l , a 4 x 3 

matrix, such that we compute the hidden layer values as W l x X I . This results in a 

4 x 1 matrix, but this is not actually the output of the hidden layer: W l x X I 

2. We need to apply a nonlinearity, which we can do with various "activation 

functions," such as hyperbolic tan (tanh) or the sigmoid function (o). We will usually 

also apply a bias, B1, inside the activation function, such that the output of the hidden 

layer is really: H = a(Wl x X I + B l ) 

3. In the neural network depicted in Figure above , we have two outputs to predict. For 

this reason, we need to convert the four-dimensional hidden state output to two 

outputs. Traditionally, the last layer does not include a nonlinear activation function, 

unless we count applying a softmax in the case of a categorization problem. Let's 

assume we are just trying to predict two numbers, not two probabilities or categories, 

so we simply apply a last "dense layer" to combine the four outputs of the hidden 

layer per ultimate output. This dense layer will combine four inputs into two outputs, 

so we need a 2 x 4 matrix, W2 : Y = W2 x H " (Nielsen, 2020) 
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In the practical example the development, training and predictions of L S T M network will 

be demonstrated. L S T M stands for Long-Short Term Memory, and it is a type of recurrent 

neural network. The recurrent means that the layers are not only able to pass the information 

forward to the next layers, but also send it back and repeat the process. 

"Here is a step-by-step explanation of L S T M . 

Step 1: Let's say we must predict an upcoming sequence based on all the forthcoming 

timestamps. In such a problem, the cell state can store all the information for the present 

input so that the correct prediction can be made. When we get new input data, we link it to 

the previous pattern in the sequence time-series data. 

Here is the forget gate equation: 

Figure 24 - Forget gate equation (Vishwas, et ah, 2020) 

Step 2: The next step is to make a decision on which information is important to us so we 

can store it. This has been classified into two parts. The first input gate layer, which contains 

the sigmoid layer, makes a decision on which values to update. Next, a tanH layer produces 

a vector for the new candidate values; this vector is called Ct. That could be further to the 

state. We can associate these two gates with each other to create an updated state. 

Here are the input and candidate gate equations: 

Č, = taiih(^^_ | T r,] + ů c ) 

Figure 25 - Input and candidate gate equations (Vishwas, et al, 2020) 

Step 3: It is time to update the old cell state, Ct-1, into the new cell state, Ct. We multiply 

the old state by ft, forgetting the unnecessary parts. Then we multiply the input gate (it) by 

the candidate gate () , and this becomes the new candidate value, scaled by how much we 

decided to update each state value. 

Here is the cell state equation: 

Figure 26 - Cell state equation (Vishwas, et al, 2020) 
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Step 4: We have to make a decision about the output state. This is based on a cell state, but 

it can be a filtered version. The first sigmoid layer makes the decision about which part of 

the output of the cell state we will produce; then we put a cell state to tanH and multiply it 

by the output of the sigmoid gate. So, we can only generate the output we make a decision 

on. Here are the equations for the output state and hidden state: 

hs =0, *tanh(C,) 

Figure 27 - Output state and hidden state equations (Vishwas, et al, 2020) 

" (Vishwas, et a l , 2020) 

4.3.2 Development environment 

As mentioned in the previous section - there are lots of different community made tools for 

Python programming, this chapter will provide an overview to the most commonly used 

ones. 

IDE - stands for Integrated Development Environment. In simple terms this is a program in 

which the code is written. The two main approaches in Python are to use a traditional one, 

like Visual Studio Code or PyCharm; The second approach is to use an IPython notebook, 

like Jupyter notebook. The difference is that in the first approach the file represents a single 

piece of code that is executed all-together once the file is executed. In the IPython approach 

the file contains multiple blocks of code that can be executed in any desired order. PyCharm 

can be considered a suitable choice for beginners due to the ease of working with virtual 

Python environments and everything being functional out-of-the-box. 

main.py 

1 p r i n t ( " H e l l o w o r l d ! ' ) # F i r s t l i n e t h a t w i l l be e x e c u t e d 

2 p r i n t C H e l l o second w o r l d ! ' ) #Second l i n e t h a t w i l l be e x e c u t e d 

Figure 28 - Code in PyCharm 

^ } printj{] 1 Hello] world! '[)] #Line that w i l l be executed once we press play 

Q p r i n t ( 1 Hel lo second w o r l d ! ' ) #Line that w i l l be executed once we press play 

Figure 29 - Code in IPython notebook 
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There is another great development tool that is created using the IPython notebook 

technology, which is Google Colaboratory. It is essentially a free Google server that has 

Python and most of the tools the developer is going to need are installed by default (while 

leaving an option to install new/replace existing ones). So, if the computer is very slow or 

lacks storage space for the Packages - Google Colab notebook can be used, even with an 

enabled GPU. Though the time for using GPU is restricted to some hours daily based on the 

service load. 

Packages and PIP - as mentioned before, one of the biggest strengths of Python is the 

ability to use community-made packages. A package is a bunch of code written in Python 

that can be used. For example, if the developer wanted to implement a Telegram chatbot 

using Python - they could use the official Telegram Web API documentation and write every 

line of their chatbot from scratch. Another option would be to use some community-made 

package, like python-telegram-bot, that already has everything needed to setup a working 

chatbot, so they could concentrate on unique aspects of its functionality. To install and 

manage the packages we use PIP, a very simple tool accessible through the command line. 

!pip i n s ta l l --upgrade pandas_datareader 

Requirement already sat is f ied: pandasdatareader in /usr/local/lib/python3.7/dist-packages (B.Q.S) 
Collecting pandas_datareader 

Downloading pandas_datareader-B.lB.9-py3-none-any.whl (169 kB) 
| | | 169 kB 15.7 MB/5 

Requirement already sat is f ied: pandas>=6.23 in /usr/local/lib/python3.7/dist-packages (from pandas 
Requirement already sat is f ied: requests>=2.19.B in /usr/local/lib/python3.7/dist-packages (from pai 
Requirement already sat is f ied: lxml in /usr/local/llb/python3.7/dist-packages (from pandasdatareai 
Requirement already sat is f ied: pytz>=2617.3 in /usr/local/lib/python3.7/dist-packages (from pandas 
Requirement already sat is f ied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from panda 
Requirement already sat is f ied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (f 
Requirement already sat is f ied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dati 
Requirement already sat is f ied: certifi>=2B17.4.17 in /usr/local/lib/python3.7/dist-packages (from 
Requirement already sat is f ied: urllib3!=l.25.!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7 
Requirement already sat is f ied: chardet<4,>=3.6.2 in /usr/local/lib/python3.7/dist-packages (from n 
Requirement already sat is f ied: Idna<3j>=2.5 in /usr/local/lib/python3.7/dist-packages (from reques 
Instal l ing collected packages: pandas-datareader 

Attempting unlnstal l: pandas-datareader 
Found existing insta l lat ion: pandas-datareader B.9.B 
Uninstalling pandas-datareader-G.9.6: 

Successfully uninstalled pandas-datareader-B.9.6 
Successfully instal led pandas-datareader-B.18.B 

ikages (B.9.0) 

Figure 30 - Updating a package to the latest version using PIP 

In the practical part, a few different packages will be used. Their functionality will be 

explained right next to the screenshots of their use. To use some package in a program the 

import statement is used. 
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Figure 31 - Importing a package 

Virtual Environment - Python is a language with several decades of history. It has seen 

dozens of versions of itself and its packages. A Python interpreter and the packages are 

installed together in one place that is called a virtual environment. This allows us to create 

multiple virtual environments to experiment or work with different versions of Python or its 

packages. Virtual environments can be created from command line or in PyCharm project 

settings. In terms of Google Colab, the whole notebook can be treated as a virtual 

environment. 

Figure 32 - Editing the virtual environment in PyCharm 

The goal of the previous chapters was to explain what time-series analysis is and what 

models/tools are available in Python. Now it is time to put all of that to use, create some 

models and try to predict the future. 
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5 Practical Part 

In this chapter the concepts from the literature are going to be demonstrated. The primary 

goal will be a prediction of next day's close price for some stock. In this example it will be 

A A P L , but the code presented could be used to experiment with prediction of some other 

stock by changing a single variable. 

For the development environment Google Colaboratory will be used. 

5.1 Setting up the colab notebook 

First, the colab.research.google.com notebook needs to be created. In case the developer 

would want to train some deep learning models -1 would recommend (like we want for this 

example) to enable the GPU hardware option. To do that - unhide the navigation ribbon by 

clicking or an arrow (circled in red), then go to runtime > change runtime type, and select 

GPU hardware accelerator. 

^- C S colab.research.google.com/drive/1 krda9wxp30BEdMArnwFXvDWIsEkx1TVhZ If? * * • : 
+ Code + Text DIM 1 1 

Disk — 1 ' > Q 

en 1 1 O Q i i 

Figure 33 - Unhiding navigation ribbon on Colab 

File Ed ft View Insert Runtime Tools Help All charges saved 

Code + Text Run 

Run 

Run 

Run 

E h — 

Run all 

Run before 

Run 1he focused cell 

Run selection 

Run after 

Interrupt execution 

Restart runtime 

Restart and run all 

Factory reset runtime 

Change runtime type 

Ctrl+F9 

Ctri+F8 

Ctrl+Enter 

Ctrl+Shift+£nter 

Ctd+F10 

Ctrl+M I 

Ctrl+M. 

Figure 34 - Change runtime type in colab 
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Notebook settings 

Hardware accelerator 

GPU v 

)lab, avoid jsing a GPU unless you need 

] Background execution 

Want your notebook to keep running even after 

close your browser? U pgra de to Co I a b Pro* 

ter you 

] Omit code cell output when saving this notebook 

Figure 35 - Selecting GPU 

Click save. That is it - our colab notebook is ready. 

5.2 Getting the data 

First step to predict tomorrow's values of some stock is to analyse their values from the past 

to understand their behavior. There is an amazing tool that allows us to create a dataset of 

stock prices using just one command. That tool is called "pandasdatareader". 

Since Google Colab is used in this example, we don't need to install it, but the version that 

is available is 0.9.0 which needs to be updated to a newer one. This is very easy - just adding 

"-upgrade" parameter to the usual command that would be used to install it. The 

exclamation mark is needed only in colab to identify that it is a bash command. 

! p l p i n s t a l l - - upg rade p a n d a s d a t a r e a d e r 

Figure 36 - Updating a package in Google Colab 

After the package has been installed, it can be imported into the project. We also need to 

import the datetime package that is used to create or transform timestamps. What we have 

to do now is to set the company stock ticker that we are interested in, and also set the first 
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and last day for our dataset. Once that is done too, the last thing is to use the datareader for 

creating our dataset. 

impor t p a n d a s d a t a r e a d e r as d a t a 

I impor t d a t e t i m e as d t 

company = ' AAPL ' # change t i c k e r here t o s e l e c t d i f f e r e n t s t o c k 

I f i r s t _ d a y |= d t . d a t e t ime (2612 , 1, 1) 

I l a s t d a y = d t . d a t e t i m e ( 2 Q 2 1 J 1 J 1) 

s t o c k = da ta .Da taReade r ( company., " yahoo " , f i r s t d a y . , l a s t d a y ) 

Figure 37 - Dataset creation 

We have just created a Pandas dataframe without even importing Pandas. That is a package 

that is used to efficiently work with multidimensional tables. To see its contents run its name. 

Q stock 

G» 

•ate 

G» 

•ate 

2012-01-02 14.732143 14.607143 14.621429 14.686786 302220800 0 12.575912 

2012-01-04 14.810000 14.617143 14.642857 14.765714 260022000 0 12.643499 

2012-01-05 14.940214 14.738214 14.819643 14.929543 271269600 0 12 733868 

2012-01-06 15.098214 14.972143 14.991786 15.085714 318292800 0 12.917507 

2012-01-09 15.276786 15.048214 15.196429 15.061786 394024400 0 12 897016 

2020-12-24 133.460007 131.100006 131.320007 131.970001 54930100 0 130 994522 

2020-12-26 137.339996 133.509995 133.990005 136.690002 124486200 0 135 679642 

2020-12-29 138.789993 134.339996 138.050003 134.869995 121047300 0 133.873077 

2020-12-30 135.990005 133.399994 135.580002 133.720001 96452100 0 132.731613 

2020-12-31 134.740005 131.720001 134.080002 132.690002 99116600 0 131.7D9198 

Figure 38 - Looking at the data 

As mentioned before - we want to predict the close price, which is only one column in our 

dataset. We can call a column from a data frame by typing its name and the column name in 

square brackets like this: 
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Q s t o c k y ' C l o s ^ ' I 

Date 
2612-61-93 
2812-ei-94 
2612-91-95 
2012-91-96 
2012-91-99 

14.6S67S6 
14.765714 
14.929643 
15.985714 
15.9617S6 

2020- 12- 24 131. 970001 
2020- 12- 2B 136. 690092 
2020- 12- 29 134. 869995 
2020- 12- 39 133. 720081 
2020- 12- 31 132. 690082 
Nane: Close,, Leng th : 2265, d t y p e : f l o a t 6 4 

Figure 39 - Calling a dataframe column 

5.3 Exploring the data 

Now that we have our data ready, we want to find more about its statistical properties. We 

can find out about the measures of central tendency or variation by using the describe 

function of our dataframe. 

o s t o c k [ " C l o s e ' ] . d e s c r i b e ( ) 

count 2265.009000 
mean 38.S14736 
s t d 24.448116 
min 13.947500 
255S 22.678000 
505S 29.817499 
755S 46.529999 
max 136.690002 
Name: C l o s e j d t ype : f l o a t 6 4 

Figure 40 - Exploring the DataFrame 

From the information above we can see the lowest and the highest price of A A P L since 2012, 

its mean, standard deviation, and 5-number summary. 

Now we would like to concern ourselves with the matter of stationarity, or in other words -

remove the trend from our data if there is one. 
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For the stocks data it is obvious that the data should not be stationary (the price is going up 

or down), but this thesis focuses on use of Python for time series analysis, not on how to 

predict stock prices, and thus it might be used for any different data, which may or may not 

be stationary. To test if the data needs to be differenced -a stationarity test can be used. For 

example, Augmented Dickey-Fuller test. It is a unit root test, which identifies whether a 

trend is present in time series. A package called "pmdarima" has a built-in function to 

perform it. Since it is not installed on Google Colab - it needs to be installed using pip. 

!p ip i n s t a l l pmdarima 

Figure 41 - Installing a package in Google Colab 

Now we need to import the test from the package, create an instance of it, and use its function 

should_diff on our close prices. 

f rom pmdar ima.ar ima impo r t ADFTest 

s t a t i o n a r i t y t e s t = ADFTes t {a lpha = ft.BS) 

s t a t i o n a r v r t y t e s t . s h o u l d d i f f ( s t o c k [ " C l o s e " ] ) 

The answer confirms the hypothesis of trend being present in our data. As it was explained 

in the theoretical part - to make the data stationary, differencing is used. Since our data is 

not seasonal (time of the year/month doesn't have a stable effect on stock price) we can do 

usual (nonseasonal) differencing. Luckily pandas dataframes have a built-in function to do 

it (the dropna function is used to remove the first row, it would have an empty value because 

there is no previous one in the dataframe to differentiate it): 
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[7] s t o c k [ " C l o s e ' ] . d i f f ( ) . d r o p n a ( ) 

2012- e i -85 8 .163929 
2012- e i -86 8 .156872 
2012- e i -89 -8 .823929 
2812- e i -18 8 .853928 

2020- 12 -24 1 .889995 
2020- 12 -2B 4 .728801 
2020- 12 -29 -1 .828607 
2020- 12 -38 -1 .149994 
2020- 12 -31 -1 . 829999 
H a w : Close,, Leng th : 2264, d t y p e : f l o = t o 4 

Figure 42 - First difference of the dataset 

Now the next step would be to check once again if the data needs to undergo second 

differencing. 

^ s t a t i o n a r i t y _ t e s t . s h o u l d d i f f ( s t o c k [ ' C l o s e ' ] . d i f f ( ) . d r o p n a ( ) } 

L> { 8 . 01 , F a l s e ) 

Figure 43 - Stationarity check after differencing 

The output demonstrates that stationarity was achieved and using first order of difference is 

satisfactory for our data (and thus the models). Let's explore our differenced set a bit deeper. 

Q f i r s t d i f f e r e n c e = s t o c k [ ' C l o s e ' ] . d i f f { ) . d r o p n a ( ) 

f i r s t _ d i f f e re n ce .des c r i b e ( ) 

mean 8. 052122 
s t d 1. 084468 
min -18. 519997 
255S -8 . 288125 
505S 8. 024187 
755S 8. 315081 
max 18. 078088 
Name: C l o s e j c t y p e : f l o a t 6 4 

Figure 44 - Exploring differenced set 

One of the things this data shows us is that the daily change in A A P L stock close price was 

not bigger than 10.6$ in the years from 2012 till 2021. It is time to create some plots. 
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Matplotlib package is used for that. This is how to create a very simple histogram plot, that 

will demonstrate the distribution of our data. First, we import matplotlib, then we use a 

command that is exclusive for Google Colab to be able to see the plots there. After that we 

create a histogram plot of our data with 20 columns and show it. 

[14] import m a t p l o t l i b . p y p l o t p i t 
% m a t p l o t l i b i n l i n e 
p i t . h i s t ( f i r s t _ d i f f e r e n c e J blns=20) 
p it .show{) 

-10 10 

Figure 45 - Creating a distribution plot 

Data is normally distributed if its fluctuation from the mean is symmetrical. In this example 

Jarque-Bera normality test can be used, but keep in mind that it requires a large dataset (> 

2000 entries) to work. This test is available from the Scipy package, we will now use the p-

value of this test to determine the test result. This value is used in any statistics test to 

determine the probability of the null hypothesis being true. So, when we would test if our 

data is normally distributed - we would get the probability of it not being normally 

distributed as the p-value. Here we print the second value of a list that is the output of the 

test, since that is where the p-value is. 

° 
f rom s c i p y . s t a t s impor t j a r o j u e b e r a 

p r i n t { ' p - v a l u e : ' , j a r q u e _ b e r a ( f i r s t d i f f e r e n c e ) [ 1 ] ) 

p - v a l u e : B.8 

Figure 46 - Normality testing 
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Based on this test, we can see that the probability of our data being not normal is 0, so we 

can consider our data normally distributed. 

5.4 ARIMA model 

The first model that will be demonstrated is the A R I M A model. First, we will use the 

automatic A R I M A function from Pmdarima package to find the best suitable configuration 

of the model for our data. After that we will simulate the retraining and prediction on data 

for every day since 2021 until 2022. The parameters that are passed to the function are 

responsible for: data to train on, stationarity test, whether or not the data is seasonal, whether 

or not to show the training process in the output, whether or not to use stepwise search. 
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from pmdariina. ar ima impor t au to_a r ima 

b e s t m o d e l = a u t o _ a r i m a ( s t o c k [ ' C l o s e ' ] , 

t e s t = " a d f " , 

sea son a 1=F a l s e , 

t r a c e = T r u e , 

stepwise===lse} 

ARIMA1 ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6448 137, Time; =0. 15 sec 

ARIMA4 (0,0,©) [0] i n t e r c e p t : AIC= =6415, ,559, Time^ =0. 58 sec 
ARIMA I [0 , 1 ,2) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6414, ,277, Time: =0. 81 sec 
ARIMA I [0 , 1 ,3) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6414, , 848, Time: =1. 12 sec 
ARIMA1 [0 , 1 ,4) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6416, 722, Time: =1. 49 sec 
ARIMA1 [ 0 , 1 , 5 ) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6415, 769, Time: =1. 86 sec 
ARIMA I [1 , 1 ,9) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6413, 278, Time: =0. 36 sec 
ARIMA1 [1 , 1 ,1) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6413, 529, Time: =1. 36 sec 
ARIMAi [1 , 1 ,2) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6415, ,475, Time: =3. 41 sec 
ARIMA I [1 , 1 ,3) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6416, ,819, Time: =1. 86 sec 
ARIMA1 [1 , 1 ,4) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6415, 418, Time: =S. 33 sec 
ARIMA( [2 , 1 ,9) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6413, 689, Time: =0. 69 sec 
ARIMA I [2 , 1 ,1) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6415, 489, Time: =2. 16 sec 
ARIMA I [2 , 1 ,2) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6417, 527, Time: =1. 76 sec 
ARIMA1 [2 , 1 ,3) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6333 983, Time: =10.34 sec 

ARIMA I [3 , 1 ,9) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6415, ,267, Time: =0. 80 sec 
ARIMA I [3 , 1 ,1) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6417 209, Time: =2. 77 sec 
ARIMA1 [3 , 1 ,2) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =inf j Time= =9.63 sec 
ARIMA1 [4 , 1 ,9) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6416, 697, Time: =1. 29 sec 
ARIMA1 [4 , 1 ,1) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6386, 169, Time: =5. 53 sec 
ARIMA I [5 ,1 ,9) ( 0 , 0 , 0 ) [0] i n t e r c e p t : AIC= =6412, 243, Time: =1. 21 sec 

Bes t mode l : AR IMA{2,1 ,3 ) (9 ,0 ,0 ) [Q] i n t e r c e p t 
T o t a l f i t t i m e : 57.533 seconds 

Figure 47 - ARIMA parameter optimization 

As the result we can see that the optimal model configuration for our data is (2, 1, 3). 

Last step is simulating its use (and retraining) throughout last year. First, we have to create 

a new dataset which actually has that data. And a separate set with only the test data for our 

cycle (will also be used for training next models). 
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[25] f i r s t _ f u l l _ d a y = dt.datetime(2012 ;, 1, 1) 
l a s t _ f u l l _ d a y = dt.datet ine{2w22, 1, 1} 
f u l l s tock = data.DataReader("AAPL ', ' yahoo ' , f i r s t f u l l day, l a s t f u l l day) 

t e s t f i r s t = dt.datet ime(2821, 1, 1) 
t e s t l a s t = dt.datetime(2©22, 1, 1) 

t e s t s t o c k = data.DataReader(company, ' yahoo ' , t e s t f i r s t , t e s t l a s t ) 
t e s t s t o c k p r i c e s = t e s t _ s t o c k [ ' C l o s e ' ] . v a l u e s 

Figure 48 - Creating a dataset with full data and with data for testing 

Now we will use Statsmodels package to create A R I M A model and predict our data from 

the last year using it. As it was shown in data exploration - our training dataset has 2265 

entries, this number is incremented in a cycle to show on which day the training data stops. 

o from s ta t smode l s . t sa .ap i import ARIMA 

x = 2265 
a r i m a p r e d i c t i o n s = [] 
f o r observat ion i n t e s t s t o c k p r i c e s : 

nod = ARIMA(ful l_5tock[ Close ] [ 9 : x ] , order = (2, 1, 3)) 
res = mod. f i t ( ) 
output = r e s . f o reca s t ( ) 
ar ina_predict ions.append(output) 
x += 1 

Figure 49 - simulating ARIMA model's use 

The first thing to do now would be to plot our predictions. Here is how to create a usual line 

plot with two observed variables using matplotlib. 
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Figure 50 - Plotting the resulting predictions 

On this plot we can see that the model is doing very well with predicting what price would 

it be tomorrow. Let's find the error in our predictions and plot it: 
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a r l m a r e s i d u a l = [] 

i = 0 

for- v a l u e i n t e s t _ s t o c k _ p r i c e s : 

a r i m a r - e s i d u a l . append ( v a l u e -

i += 1 

p i t . p l o t { a r i m a _ r e s i d u a l f c o l o r = 

p i t . t i t l e ( f { c o m p a n y } P r i c e ' ) 

p i t . x l a b e l ( " T i m e " ) 

p i t . y l a b e l ( " S h a r e P r i c e " ) 

p i t . l e g e n d ( ) 

p i t . showQ 

a r i m a _ p r e d i c t i o n s [ i ] ) 

l a b e l = " E r r o r " ) 

AAPL Price 

Error 

100 150 
Time 

200 

Figure 51 - Finding and plotting the residuals 

Now Pandas package is actually imported to convert the list of residuals into a dataframe in 

order to explore them. Before doing that the list of lists with prediction results is joined into 

one list. 
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[65] impo r t pandas as pd 

a r i m a _ n e s i d u a l _ j o i n e d = [x f o r 1 i n a r l m a r e s i d u a l f o r x i n 1] 
p d . D a t a F r a m e { a r i m a _ r e s i d u a l _ j o i n e d J c o l u i F n 5 = [ " R e s i d u a l " ] ) . d e s c r i b e ( ) 

Figure 52 - Exploring the residuals 

This info shows us that the average error is 0.18 dollars. We can use r 2 (coefficient of 

determination) testing to see how much of our real data's variation was explained by the 

predictions. One of the packages that includes it is Scikit-learn. 

from s k l e a r n . m e t r i c s impor t r 2 _ s c o r e 

r 2_s co r e ^ t e s t s t o c k j r i ces , a r i m a p r e d i c t i o n sj)] 

8.9764B51778S13e&l 

Figure 53 - R-square testing 

The results show that a very high value of r 2 coefficient was achieved suggesting that our 

model shows great results being correct for 97%. 

After final evaluation of the models the reader will find out why the statement above should 

be taken very-very skeptically. 
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5.5 LSTM model 

The next model will try to use the same data in a more complex manner. It is a sequential 

L S T M model. The idea is to give it an opportunity to look back at three months of past data 

so that it would try to predict the price tomorrow. To do that we need to create two sets where 

90 previous days in set x will be corresponding to one actual day in set y. Beforehand the 

dataset will be scaled to limits from 0 to 1 according to its minimum and maximum values, 

an important step of preprocessing that optimizes the calculations. 

import nunpy as np 

from s k l e a r n . p r e p r o c e s s i n g import MinMaxScaler 
s c a l e r = H inMaxSca le r { f ea tu re_ range= (8 J l ) ) 
s c a l e d s t o c k = s c a l e r . f i t t r a n s f o r n ( s t o c k [ " C l o s e ' ] . v a l u e s . r e s h a p e ( - l j l ) ) 
p r e d i c t i o n d a y s = 9B 
x t r a i n = [] 
y t r a i n = [] 

f o r x i n r a n g e i p r e d i c t i o n d a y S j l e n ( s c a l e d s t o c k ) ) : 
x t r a i n . a p p e n d ( s c a l e d _ s t o c k [ x - p r e d i c t i o n _ d a y s : x , B]) 
y t r a i n . a p p e n d ( s c a l e d _ s t o c k [ X j 6]} 

x t r a i n , y t r a i n = n p . a r r a y i x t r a i n ) , n p . a r r a y ( y t r a i n ) 
x t r a i n = np. r e s h a p e j f j x t r a i n , ( x t r a i n . s h a p e [ B ] , x _ t r a i n . s h a p e [ l ] , !)[)] 

Figure 54 - Scaling the data and splitting it into exploratory and target sets 

Now we need to define the layers of the neural network and and train it on our data. This is 

done using the Google's package TensorFlow and its higher-level interface Keras. 

from tens^jr^owJte^^ import Sequent i a l 
from t e n s o r f low.keras . layer 's import Dense, Dropout, LSTM 
model = Sequent ia l { ) 
model .add(L3TH(units=64 J r e t u r n s e q j e n c e s ^ T r u s , i n p u t _ s h a p e = ( x t r a i n . s h a p e 1 ) ) ) 
model .add(Dropout(6.2) ) 
model .add(LSTH(units=64 J return_sequences=Tr je ) ) 
model .add(Dropout (e.2)) 
model.add(LSTH(units=64)) 
model .add(Dropout(6.2) ) 
model .add(Dense(uni ts=l ) ) 
model, compile (opt imizer^ "adan" j loss=•^ean_squa^ed_er^or••) 

• m o d e l . f i t ( x _ t r a i n J y t r a i n , epochs=32j batch_size=32) 

Epoch 1/32 
68/68 [ ] - 4s 64ms/step - l o s s : B.8ei2 

Figure 55 - Definition and training of a TensorFlow model 
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After the training process is done the model needs to be tested on the data that it has not yet 

seen before. Note that it will be trained only once unlike the ARUVIA model and thus won't 

tweak its parameters to compensate for the new data. To do that we are assembling a testing 

set of x with the same logic as in the training one (we have already created the y set as the 

testing one for A R I M A , and it is also present in the full stock). 

£ m o d e l i n p u t s = f u l l _ s t o c k [ l e n ( f u l l s t o c k ) - l e n ( t e s t s t o c k ) - p r e d i c t i o n d a y s : ] . v a l u e s 
model_inpLits - nodel_ in puts , re shape (-1,1) 
model_inputs = sca ler . t ransform(model_ inputs ) 

x t e s t = [] 

f o r x i n range( pred i c t i o n d a y s l e n ( m o d e l _ i n p u t s } ) : 
x t es t . append (nod e l _ i n pu t s [ x - p r e d l c t l o n d a y s : x , 9]) 

x t e s t = n p . a r r a y ( x t e s t ) 
x t e s t = np. reshape(x_ tes t , ( x t e s t . s h a p e [ B ] , x t e s t . s h a p e [ l ] , 1)} 

pred lc ted_pr i ces = node l . p r ed i c t ( x _ t e s t ) 
p red i c ted_p r i c es = s ca l e r . inverse_tr , ansfor , m(predic ted_pr ices ) 

Figure 56 - Testing of a TensorFlow model 

The last step on the image above uses the parameters that were saved in the scaler upon 

initial transformation of our data to reverse-scale the prediction from a form of 0 to 1 to a 

usual one. 

After the testing is done, we can plot the predictions. 
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p i t . p l o t ( t e s t s t o c k p r i c e s , c o l o r = " g r e e n " , l a b e l = " R e a l d a t a " ) 

p i t . p l o t { p r e d i c t e d _ p r i c e s J c o l o r = 'r-ed' J l abe l = ' L STM P r e d i c t i o n " ) 

p i t . t i t l e ( f { c o m p a n y } P r i c e ' ) 

p l t . x l a b e l ( " T i m e " ) 

p i t . y l a b e l ( " S h a r e P r i c e " ) 

p i t . l e g e n d ( ) 

p i t . showQ 

From looking at the plot we can see that the model performs worse compared to the A R I M A 

model due to not being retrained every time. 

The residuals can be found and plotted in the same manner: 
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^ } l s t m r e s i d u a l = [ ] 

I i = 0 
I for* v a l u e i n t e s t s t o c k p r i c e s : 

l s t n _ r e s i d u a l . a p p e n d ( v a l u e - p r e d i c t e d _ p r i c e s [ i ] ) 

i += 1 
I p i t . p l o t ( l s t m _ r e s i d u a l J c o l o r * = " r ed " , l abe l= "LSTM R e s i d u a l " ) 

p i t . t i t l e ( f { c o n p a n y } P r i c e ' ) 

p i t . x l a b e l ( " T i m e " ) 

p i t . y l a b e l ( ' S h a r e P r i c e " ) 

p i t . l e g e n d ( ) 

p l t . s h o w ^ 

Figure 57 - Finding and plotting LSTM error 

Now let's explore the residuals and find the coefficient of determination. 

The info shows that the average error is of 6$, with the biggest one being 20$. 

And based on the coefficient of determination we can conclude that the model explained 

only 72% of the target variable variation, which is 3.5 times worse than in case of the 

previous approach. 
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[72] 1 s t m _ r e s i d u a l _ j o i n e d = [x f o r 1 i n l s t m r e s i d u a l for- x i n 1] 

p d . D a t a F r a m e { l s t m _ r e s i d u a l j o i n e d , c o l u m n s = [ " R e s i d u a l " ]} . d e s c r i b e Q 

Figure 58 - Exploring LSTM residual 

[73] r 2 _ s c o r e { t e s t _ s t o c k _ p r i c e s j p r e d i c t e d p r i c e s ) 

Figure 59 - R-squared coefficient of LSTM predictions 

5.6 VAR model 

The last approach to be demonstrated is creation of a system of multiple variables using 

V A R model. For this example the past data for two competitor companies will be used as 

additional variables in an attempt to check i f predicting tomorrow's value for three 

companies together and then extracting the value for a companies of our interest would work 

better than using a single one. 

To begin, we need to construct a dataset with the new stocks. For the example of A A P L , 

MSFT and GOOGL stocks were selected. 
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Q company2 = "MSFT" 

I company3 = 'GOOGL" 

v a r s t o c k = da ta .Da taReader f [ company , c o m p a r e , company3]j "yahoo 

f i r s t _ f u l l _ d a y , l a s t f u l l d a y ) 

Figure 60 - Constructing a dataset of three stocks 

Explanatory variables are also called independent, this name implies that we don't want them 

to have a relation between each other. We can check it for our new dataset using the bult in 

corr function of pandas dataframe. 

Q v a r _ s t o c k [ " C l o s e ' ] . c o r r ( ) 

H I 
Symbols 

AAPL 1.000000 0.982164 0 956946 

MSFT 0.9B2164 1.000000 0 974940 

GOOGL 0.956946 0.974940 1.000000 

1 1 
Figure 61 - Correlation matrix using pandas 

As we can see the variables are indeed very dependent on each-other, it is better to have 

correlation of less than 80%. Apart from that, it most probably is not stationary. Luckily, the 

first differencing will deal with both issues. 

^ v a r d i f f e r e n c e d = v a r _ s t o c k [ ' C l o s e " ] . d i f f ( ) . d r o p n a Q 

v a r _ d I f f e r e n c e d . c o r r ( ) 

C* Symbols AAPL MSFT GOOGL < 

Symbols 

AAPL 1.000000 0.696S96 0 569406 

MSFT 0.696896 1.000000 0 734329 

GOOGL 0.569406 0.734329 1 000000 

Figure 62 - Effect of first differencing 
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As we can see the correlation issue was resolved, so we can continue with creating the V A R 

model. This is done by using the Statsmodels package. After the model would be created, 

we have to identify the optimal order for our data, it is limited to 90 as that's the order used 

in L S T M example. 

^ f rom s t a t s m o d e l s . t s a . a p i impo r t VAR 

v a r m o d e l = V A R ( v a r d i f f e r e n c e d ) 

v a r o r d e r = v a r m o d e l . s e l e c t _ o r d e r ( m a x l a g s = 9 0 } 

v a r o r d e r . s u m m a r y ( ) 

/ u s r / l o c a l / l i b / p y t h o n 3 . 7 / d i s t - p a c k a g e s / s t a t s m o d e l s / 
s e l f . _ I n i t _ d a t e s { d a t e s . , f r e q ) 

VAR Order Selection (* 
highlights the minimums) 

AIC BIC FPE HQIC 

0 6.322 6.330 556.9 6.325 

1 6.282 6.31 T 534.8 6.292 

Figure 63 - Selecting the optimal order for VAR model 

In the summary the best resulting value of several measures is achieved. One of them is AIC 

which stands for Akaike information criterion. It is used to determine how well the model 

represents the data. It was already used in the auto A R I M A model to select the optimal 

parameters. The minimal value for AIC was achieved by using an order of 84, so that is the 

selected one for this model. Now the usage of such model needs to be simulated by retraining 

it every day on the new data for the past year. 

o l ag^order = 84 
x = 2265 

v a r p r e d l c t i o n s = [[]j[]j[]] 
f o r obs In t e s t _ s t o c k _ p r i c e s : 

v a r m o d e l = VAR(var_d i fFerenced[0:x ] ) 
r e s u l t s = v a r m o d e l . f i t ( l a g ^ o r d e r ) 
x += 1 
v a r p r e d i c t i o n = r e s u l t s . f o r e c a s t { v a r _ d ! f f e r enced . va l ue s [ - l a g^o rde r : ] , 1) 
var_pred ict ions [©] .append(var_pred ict ion[0 [0]) 
v a r _ p r e d i c t i o n s [ l ] . a p p e n d ( v a r _ p r e d i c t i o n [ a [1]> 
va r_p red i c t i on s [ 2 ] . append ( va r_p red i c t i on [ 3 [2]) 

Figure 64 - Simulating the usage of VAR model 

Now it is needed to convert the list of lists of predictions into a dataframe and do the reverse 

differencing. 
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Q v a r _ p r e d i c t i o n s = pd.DataFrame({company:varjD r e d i c t i o n s [ 6 ] , 

compa ny2 : va r_p red i c t i o n s [ l ] J 

company3:var_predictions[2],}} 

v a r _ p r e d i e t i o n s . i n d e x = v a r _ s t o c k [ ' C l o s e " ] [ 2 2 6 4 : - 1 ] . i n d e x 

r e v e r s e _ p = v a r _ s t o c k [ " C l o s e ' ] [ 2 2 6 4 : - 1 ] + v a r _ p r e d i c t i o n s 

r e v e r s e _ p = r e v e r s e _ p . i l o c j ] l : , :[]] 

Figure 65 - Converting list into DataFrame and reversing the difference 

Now the predictions need to be plotted. 

p i t . p l o t { t e s t _ s t o c k _ p r i c e s , co lor= "green" 
p i t . p l o t { r e v e r s e p [ " A A P L " ] . v a l u e s , c o l o r 
p i t . t i t l e ( f { c o m p a n y } P r i c e ' } 
p i t . x l a b e l ( ' T i n ie ' ) 
p i t . y l a b e l ( " S h a r e P r i c e " ) 
p i t . l e g e n d ( ) 
p i t .show{) 

AAPL Price 

l abe l= "Rea l da ta " ) 
•range"j label= 'VAR P r e d i c t i o n " ) 

Figure 66 - Plotting VAR predictions 

On this plot we can see that the model is overestimating the price. Let's find the residuals 

and explore them once again. 
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c v a r _ r e s i d u a l = [] 

i = 0 

f o r v a l u e i n t e s t s t o c k p r i c e s f : - 1 ] : 
v a r _ r e s i d u a l . a p p e n d ( v a l u e - r e v e r s e _ p [ " A A P L ' ] . v a l u e s [ l ] ) 

i += 1 
p i t . p l o t { v a r _ r e s i d u a l j c o l o r = " r e d " , l abe l= "VAR R e s i d u a l ) 

p i t . t i t l e ( f ' { c o m p a n y } P r i c e ' ) 

p i t . x l a b e l ( " T i m e " ) 

p i t . y l a b e l ( " S h a r e P r i c e " ) 

p i t . l e g e n d ( ) 

p i t . s h o w { ) 

AAPL Price 

-1.25 -

-1.50 

-1.75 
u 

-2.00 -

IC 
<z 

-2.25 

-2.50 

-2.75 

-3.00 -

VAR Residual 

Figure 67 - Calcualting and plotting VAR residuals 

The negative error confirms our observation of model's overestimation. 

The exploratory info below shows that the average error is negative 2$, and the maximum 

one being of negative 3$. The R-square coefficient states that the model explains 95% of the 

target variable variation. 
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count 251 000000 

mean -2.185242 

std 0 316267 

min -3016717 

25% -2 3393B2 

50% -2.1B5800 

75% -2 034439 

max -1 142536 

Figure 68 - Exploring VAR residuals 

Q r 2 _ s c o r i e { t e s t _ s t o c l i _ p r i c e s [ l : ]j reverse_p[ 'AAPL" ]) 

6.9575124243B991 

Figure 69 - R-squared calculation for VAR predictions 
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6 Results and Discussion 

Two of the three models have shown quite a significant accuracy of evaluation. Though, 

they are not suitable for prediction of future stock price. Here is why: 

6.1 Strategic evaluation of the models 

The primary issue is common sense. The price of a stock is not determined by its previous 

price, nor by the previous price of its competitors. Even excluding their trend characteristic 

there are no specific cycles that would determine its behavior. The price of a stock is only 

dependent on the market situation, which is affected by various factors that are much more 

significant than the previous price behavior. Those factors include things like business 

decisions of the company, and political situation. The words above can be easily 

demonstrated by taking a closer look at the predictions of the models. 

^} p i t . p l o t ( t e s t s t o c k p r i c e s [ l e n ( t e s t _ s t o c k _ p r i c e s ) - 2 B : l e n ( t e s t _ s t o c k _ p r i c e s ) + l ] . 

c o l o r = ' g r e e n ' , l a b e l s " R e a l data" ) 

p I t . p i o t ( p ř e d 1 c t ed_prIce s [ l en ( te s t_ s toc k_pr1ces)-2fl:1e n(tes t_s to ck_p r i ces)+1 ]., 
co lo r = ' r e d ' J label="LSTH P r e d i c t i o n ' ) 

p I t . p i o t ( a r ima_pred i c t i o n s [ len ( tes t_s toc k_pr i ce s ) -2 B : len( test_stoc k_pric e s )+ l ] , 

co lo r = 'b lack"j label='ARIMA P r e d i c t i o n ) 

p i t . p l o t ( reve r se_p [ 'AAPL ' ] . va l ue s [ l en { te s t_ s tock_pr i ce s ) - 2 1 : l en ( te s t_ s tock_pr i ce 

co lo r ='orange", label='VAR P r e d i c t i o n ' ) 

p i t . t i t l e ( f {company} P r i c e ' ) 

p i t . x l a b e l ( ' T i m e " ) 

p i t . y l a b e l ( ' S h a r e P r i c e " ) 

p i t . l e gend ( ) 

p i t . showQ 

Figure 70 - Creating a plot with all predictions 

On the plot below we will be able to find the predictions for last twenty days of using the 

models. If we observe the behavior of V A R and A R I M A predictions, we will conclude that 

it looks almost like a lagged variable. Every time the stock price goes down it takes them a 

day to understand them and simply readjust for it. 

The reason for it was already stated - it is the irrelevance of past price to the current one. 
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AAPL Price 

— i 1 1 1 1 1 1 1 — 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 
Time 

Figure 71 - Plot of all predictions 

The A R I M A and V A R models can be of a great help when working with data that has more 

cyclic characteristics and less random behavior. Be aware that each of those models, 

especially the L S T M one, would greatly benefit from inclusion of some additional variables 

that have more relevance to the company's performance, like its quarterly earnings results 

(or the difference in them). This is the information that actually influences the stock price 

and could be very beneficial to determine it in the future. 

7 Conclusions 

Although the results outlined in previous chapter might disappoint ambitious investors, the 

goal of this thesis was to introduce several techniques for time series analysis and to 

demonstrate how to use statistical forecasting models in Python, but not how to build an 

investment strategy. This goal was achieved in its fullness. 

The initial chapters of this thesis have described the context and history of time measurement 

and explained the statistical and mathematical foundations for their analysis. The theoretical 

examples used in the thesis demonstrated the differences among various algorithms for time 

series forecasting. The ease of reading and writing Python code was demonstrated by a 

practical study. In that example, all of the important stages of analytical software 

development were covered: 

1. Selecting appropriate tools 
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2. Setting up the programming environment 

3. Getting the data 

4. Exploring the data 

5. Model implementation 

6. Model evaluation 

As the author I hope that this work would be valuable to a future reader and could serve them 

as a beginners guide on: What is time series analysis? Where did it come from? And how to 

approach it? 
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9 Appendix 

Link to colab notebook: 

https://colab.research.google.com/drive/lf0pl2H3RBL6yzHxiT97rXpPSEudnZP4 ?usp=s  

haring 
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