
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

CO
Master's Thesis

Time series analysis with Python

Illia Prazdnyk

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Be. Illia Prazdnyk

Systems Engineering and Informatics

Informatics

Thesis title

Time series analysis with Python

Objectives of thesis

The main objective is to provide an overview of various time-series analysis techniques, where they can

be applied and how to implement them using Python programming language.

Based on a bit of history, mathematics and statistics, different sorts of time related data and its common
properties and differences shall be explained. This will be supported by an overview of various
community-made tools and suitable use cases for them. At the end, the gathered knowledge will be
demonstrated on a data-driven model based on open data.

Methodology

The methodology of the thesis is based on analysis and study of the relevant technical and scientific sources
focusing on fundamental statistical and mathematical models that the time series analysis and forecasting
are based on.

Specific attention will be paid towards Python programming language and explaining why it is such a pop
ular tool for the area of study, and how does it allow people to develop advanced analytical applications
based on the fundamental techniques of statistics and mathematics. Based on synthesis of gained knowl
edge a working prototype will be implemented using standard methods of software engineering, including
step-by-step implementation guide. This program would be powered by different Python packages, such
as NumPy, Pandas, Scikit-learn, TensorFlow, and Keras.

Official document * Czech University of Life Sciences Prague * Kamycka 129,165 00 Praha - Suchdol

The proposed extent of the thesis

60-80 pages

Keywords

Time series, Python, Statistics, Machine learning

Recommended information sources

HAMILTON, James D., 1994. Time Series Analysis. Princeton, NJ. Princeton University Press: Levant Books.
ISBN 978-0691042893.

NIELSEN, Aileen, 2019. Practical time series analysis: prediction with statistics and machine learning.
Beijing: O'Reilly. ISBN 978-1-4920-4165-8.

VISHWAS, B V a Ashish PATEL, 2020. Hands-on Time Series Analysis with Python: From Basics to Bleeding
Edge Techniques. Apress Media. ISBN 978-1484259917.

Expected date of thesis defence

2021/22 S S - FEM

The Diploma Thesis Supervisor

Ing. Petr Hanzlfk, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 1. 3. 2022

Ing. Martin Pelikan, Ph.D.

Head of department

Electronic approval: 7. 3. 2022

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Prague on 17. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129,165 00 Praha - Suchdol

Declaration

I declare that I have worked on my master's thesis titled "Time series analysis with

Python" by myself and I have used only the sources mentioned at the end of the thesis. As the

author of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on 30.03.2022

Acknowledgement

I would like to thank Ing. Petr Hanzlik, Ph.D. for all the advice and support he

provided while I was writing the thesis. He helped me a lot with reducing the stress and

keeping the deadlines on track.

Time series analysis with Python

Abstract

This thesis is focused on analysis of time ordered data using Python. The theoretical

part uncovers a bit about how people achieved the understanding of time that we have

nowadays, starting from the ancient invention of sundials and ending on the conventions

for standardizing international time zones. After this part, there is a big block dedicated to

explaining the statistical and mathematical foundations on which the time series analysis is

based, including the description of basic principles of two statistical models: A R I M A

and V A R . After that there is an introduction to Python programming language and deep

learning together with a presentation of L S T M model and how it works.

The practical part presents possible use case for each time series forecasting model

presented above using Python and its packages commonly used for data analysis and

visualisation. These demonstrations work primarily with close price of publicly traded

stocks. The resulting code is executed on a cloud server provided by Google, and the

notebook with all the code is linked in the appendix.

Keywords: Time series, Python, Statistics, Machine learning

7

Analýza časových řad pomocí jazyka Python

Abstrakt

Tato diplomová práce je zaměřena na analýzu časově uspořádaných dat pomocí Pythonu.

Teoretická část je věnovaná tomu, jak lidé dosáhli vnímaní času které máme dnes - od

starověkého vynálezu slunečních hodin až po dohody o standardizaci mezinárodních

časových pásem. Po této části následuje vysvětlení statistických a matematických základů,

na kterých je analýza časových řad založena, včetně popisu základních principů dvou

statistických modelů: A R I M A a V A R . Poté následuje úvod do programovacího jazyka

Python a hlubokého učení, spolu s prezentací modelu L S T M a jeho fungování.

Praktická část ukazuje možný případy užití každého z výše zmíněných modelů pro predikci

časových řad pomocí Pythonu a jeho balíčků, které jsou běžně používané pro analýzu a

vizualizaci dat. Tyto ukázky pracují primárně s uzavírací cenou veřejně obchodovaných

akcií. Výsledný kód se spouští na cloudovém serveru poskytovaném společností Google a

notebook se všemi kódy je k dispozici pomocí odkazu v příloze.

Klíčová slova: Časové řady, Python, Statistika, Strojové učení

8

Table of content

1 Introduction 13

2 Objectives and Methodology 14
2.1 Objectives 14
2.2 Methodology 14

3 Literature Review 15
3.1 History of time measures 15

3.1.1 Ancient inventions 15
3.1.2 Modern inventions 17

3.2 Scientific foundation 21
3.2.1 Types of time series data 21
3.2.2 Characteristics of time series data 23
3.2.3 Some basic statistical definitions 24
3.2.4 Regression 27
3.2.5 Differencing 30
3.2.6 Autoregression Model 31
3.2.7 Moving Average Model 32
3.2.8 A R M A to A R I M A 34
3.2.9 V A R model 36

3.3 Python, Machine Learning and Deep Learning 38
3.3.1 Deep Learning 39
3.3.2 Development environment 42

4 Practical Part 45
4.1 Setting up the colab notebook 45
4.2 Getting the data 46
4.3 Exploring the data 48
4.4 A R I M A model 52
4.5 L S T M model 58
4.6 V A R model 62

5 Results and Discussion 68

5.1 Strategic evaluation of the models 68

6 Conclusion 69

7 References 70

9

8 Appendix 71

List of pictures
Figure 1 - Ancient Egyptian Sundial housed at University of Basel (Reconstruction of

anctient Egyptian sundials, 2014) 16

Figure 2 - Ancient water clock in Oriental Institute Museum, University of Chicago

(Daderot, 2014) 17

Figure 3- UTC time zones (Heitordp, 23) 20

Figure 4 - Example of a time based plot 21

Figure 5- Types of data 22

Figure 6 - Seasonality example, Google search trend for Christmas tree (2022) 23

Figure 7 - Trend example, ETF index price (2022) 23

Figure 8- Cyclicity example, Google search trends for umbrella (2022) 24

Figure 9 - Randomness example (Vincent, 2016) 24

Figure 10- Distribution plot (Kowarschick, 2012) 25

Figure 11 - Mean formula 25

Figure 12 - Variance formula 26

Figure 13- Standard deviation formula 26

Figure 14- Correlation coefficient formula 26

Figure 15 - Residuals visualised (Halswanter, 2013) 28

Figure 16 - Linear vs nonlinear relationship 29

Figure 17 - Nonlinear regression model (Sorce: Estimation of nonlinear regression models)

30

Figure 18 - First-order differencing formula (Vishwas, et al., 2020) 30

Figure 19 - Correlogram example (Manning, 2009) 33

Figure 20 - A R I M A breakdown (Vishwas, et al., 2020) 34

Figure 21 - p, d, q representation and methods, part 1 (Vishwas, et al., 2020) 35

Figure 22 - p, d, q representation and methods, part 2 (Vishwas, et al., 2020) 36

Figure 23 - A simple feed forward network (Nielsen, 2020) 39

Figure 24 - Forget gate equation (Vishwas, et al., 2020) 41

Figure 25 - Input and candidate gate equations (Vishwas, et al., 2020) 41

10

Figure 26 - Cell state equation (Vishwas, et al., 2020) 41

Figure 27 - Output state and hidden state equations (Vishwas, et al., 2020) 42

Figure 28 - Code in PyCharm 42

Figure 29 - Code in IPython notebook 42

Figure 30 - Updating a package to the latest version using PIP 43

Figure 31 - Importing a package 44

Figure 32 - Editing the virtual environment in PyCharm 44

Figure 33 - Unhiding navigation ribbon on Colab 45

Figure 34 - Change runtime type in colab 45

Figure 35 - Selecting GPU 46

Figure 36 - Updating a package in Google Colab 46

Figure 37 - Dataset creation 47

Figure 38 - Looking at the data 47

Figure 39 - Calling a dataframe column 48

Figure 40 - Exploring the DataFrame 48

Figure 41 - Installing a package in Google Colab 49

Figure 42 - First difference of the dataset 50

Figure 43 - Stationarity check after differencing 50

Figure 44 - Exploring differenced set 50

Figure 45 - Creating a distribution plot 51

Figure 46 - Normality testing 51

Figure 47 - A R I M A parameter optimization 53

Figure 48 - Creating a dataset with full data and with data for testing 54

Figure 49 - simulating A R I M A model's use 54

Figure 50 - Plotting the resulting predictions 55

Figure 51 - Finding and plotting the residuals 56

Figure 52 - Exploring the residuals 57

Figure 53 - R-square testing 57

Figure 54 - Scaling the data and splitting it into exploratory and target sets 58

Figure 55 - Definition and training of a TensorFlow model 58

Figure 56 - Testing of a TensorFlow model 59

11

Figure 57 - Finding and plotting L S T M error 61

Figure 58 - Exploring L S T M residual 62

Figure 59 - R-squared coefficient of L S T M predictions 62

Figure 60 - Constructing a dataset of three stocks 63

Figure 61 - Correlation matrix using pandas 63

Figure 62 - Effect of first differencing 63

Figure 63 - Selecting the optimal order for V A R model 64

Figure 64 - Simulating the usage of V A R model 64

Figure 65 - Converting list into DataFrame and reversing the difference 65

Figure 66 - Plotting V A R predictions 65

Figure 67 - Calcualting and plotting V A R residuals 66

Figure 68 - Exploring V A R residuals 67

Figure 69 - R-squared calculation for V A R predictions 67

Figure 70 - Creating a plot with all predictions 68

Figure 71 - Plot of all predictions 69

List of abbreviations
A C F - Auto Correlation Function
A R I M A - Auto Regressive Integrated Moving Average
GPU - Graphical Processing Unit
IDE - Integrated Development Environment
L S T M - Long short-term memory network
OLS - Ordinary Least Squares
PACF - Partial Auto Correlation Function
PIP - Pip Installs Packages
RSS - Residual Sum of Squares
V A R - Vector Auto Regression

1

12

2 Introduction

We, humans, always had a desire to know what is going to happen. The natural way to predict

that is to use the experience and learn from the past successes (or failures). Of course, it

would be important for us to maximize the quality of that prediction. Throughout thousands

of years various mathematical models have been developed in order to support the

forecasting and decision-making. On top of that is the recent rise of electronic and digital

technologies that has shown completely new horizons to measurement and analysis of the

world around us. We can create autonomous devices to measure most of the physical, social

or economic processes and use advanced information systems to analyse the aggregated data

as a whole and create simulations of various possible future outcomes without missing a

single detail from the past.

This thesis tells a bit about the history of how the time was measured, highlights the

fundamental mathematical and statistical models, and shows how these models can be

leveraged using modern tools.

The backbone for the coding part is Python programming language. It has a large set of

packages available for implementation of time series analysis programs, which allows the

developers to create software of a much higher functional complexity.

13

3 Objectives and Methodology

3.1 Objectives

The main objective is to provide an overview of various time-series analysis techniques,

where they can be applied and how to implement them using Python programming language.

Based on a bit of history, mathematics and statistics, different sorts of time related data and

its common properties and differences shall be explained. This will be supported by an

overview of various community-made tools and suitable use cases for them. At the end, the

gathered knowledge will be demonstrated on a data-driven model based on open data.

3.2 Methodology

The methodology of the thesis is based on analysis and study of the relevant technical and

scientific sources focusing on fundamental statistical and mathematical models that the time

series analysis and forecasting are based on.

Specific attention will be paid towards Python programming language and explaining why

it is such a popular tool for the area of study, and how does it allow people to develop

advanced analytical applications based on the fundamental techniques of statistics and

mathematics. Based on synthesis of gained knowledge a working prototype will be

implemented using standard methods of software engineering, including step-by-step

implementation guide. This program would be powered by different Python packages, such

as NumPy, Pandas, Scikit-learn, TensorFlow, and Keras.

14

4 Literature Review

4.1 History of time measures

It is most probable that living creatures had some concept of time on an instinct level long

before humans started to wander earth. The prehistoric animals should have observed the

sun go up and down, but their intelligence was a big limitation to how these observations

can be used. This has changed millions of years later with the rise of humans, who want to

find the deeper relationship between the time and the universe around us.

4.1.1 Ancient inventions

"Imagine a spinning bicycle wheel. If you observe the wheel alone and choose any particular

point, for example the bottommost point, you will notice that it will return to the bottom as

it spins as though nothing has changed. When you now, however, observe the wheel as part

of the moving bicycle, you will realize that your bottommost point has not in fact returned

to the same place as it spins, but rather it has moved forward along the ground. This exercise

may seem very elementary, but when considering the way humans measure the passage of

time, it becomes quite puzzling. Take any calendar date or lunar phase and it will inevitably

repeat, so far as human timekeeping is concerned, but the originally chosen moment will

never return as we say it has. Our fundamental timekeeping system is based on cycles—

cycles of seconds in minutes, minutes in hours, hours in days and days in years—but we

know time to be linear. The answer to why we have chosen to measure time cyclically lies

in the origins of timekeeping itself. " (Going Back in Time: The History of Timekeeping.,

2013)

The origins of systematic analysis of time date back to thousands of years ago and are based

on findings of some sticks and bones with markings on them, which supposedly symbolised

the passage of days. The next achievement of humanity was the calendar. There were many

variations of the ancient calendars, one of which was invented by ancient Egyptians around

4500 BC. They are thought to be the first to divide the year into 12 month and 365 days

15

based on seasons and time. The beginning of the new year was indicated by appearance of

the Sirius star on the night sky (it is not visible for the period when it is too close to the sun).

To find out what time of a day it was the first thing that comes to mind is to look at where

the sun is on the sky, this led to an invention of a sundial.

Figure 1 - Ancient Egyptian Sundial housed at University of Basel
(Reconstruction of anctient Egyptian sundials, 2014)

It should be obvious why sundial was not sufficient - the distance (and angle) between the

planet earth and the sun changes throughout the year, which makes the amount of daylight

and sun's position on the sky different throughout the year.

This led to a desire to make a device that would allow us to measure the flow of time without

being dependent on the light of a star. The device is a water clock.

A water clock is a device that could be of two types: inflow and outflow. The difference is

quite simple - the first one is a vessel that has markings on the inner side and a hole in it.

The vessel gets filled with water and the hole gets opened to allow the water flow out and

reveal the markings. The second type, outflow has the same idea, but contains two vessels

with water going from one to the other, which has the marking on the inside walls that get

hidden by the water and hide the markings as the time passes.

16

But both the hourglass and the water clock had two major issues - the accuracy and the
length of time they could measure.

Figure 2 — Ancient water clock in Oriental Institute Museum, University of Chicago
(Daderot, 2014)

"For most of history, ordinary people did not have regular and easy access to any kind of

time measuring device whatsoever, other than to glance at the sky on a sunny day and see

where the sun was. For them, time as we understand it today did not really exist. The one

group in medieval times whose day was ruled by time in a way not unlike people today were

the Benedictine monks, with their ecclesiastically regulated prayer times, the eight Canonical

Hours: lauds (just before daybreak), prime (just after daybreak), terce (third hour), sext (sixth

hour), nones (ninth hour), vespers (eleventh hour), compline (after sunset), and matins

(during the night). The signal that announced each canonical hour and regulated the monks'

day was a ringing bell. This gives us our word "clock," which comes from the medieval Latin

word for bell, clocca." (About time, 1999)

4.1.2 Modern inventions

So, to increase the accuracy of measurement, people had to stop relying on the sun or flow

of matter and find some new physical phenomenon that has some fixed duration features.

The phenomenon is oscillation. Quite a scary word that means movement back and forth in

a regular rhythm.

17

"Early oscillating mechanisms were called escapements. The first escapement, the verge-

and-foliot, comprised a freely swinging horizontal bar (the foliot) attached to a centrally

located vertical shaft (the verge). The mechanism was driven by gravity. A heavy weight

hung from a cord wrapped round a horizontal spindle. As the weight slowly descended, the

cord turned the spindle. A toothed crown-wheel on the spindle made the escapement

oscillate, the escapement regulated the rate at which the spindle turned, and the rotation of

the spindle measured the passage of time by moving a hand around a marked clock face. The

rate of oscillation, and hence the speed of the clock, was adjusted by moving symmetrically

placed small weights along the foliot bar.

In the fifteenth century, clockmakers started to use tightly coiled blades of metal — springs

— to power their timepieces, instead of gravity. Following Galileo's famous 1583 observation

that the period of oscillation of a swinging pendulum seemed to depend only on the

dimensions of the pendulum, not on the size of the arc, the verge-and-foliot escapement was

modified — and improved — so that the swing of a pendulum arm regulated the motion. The

pendulum clock was itself improved when the verge-and-foliot mechanism for controlling

the rate of rotation of the crown wheel was replaced by the anchor escapement, where a

calliper-like "anchor" performed the task previously carried out by the verge-and-foliot."

(About time, 1999)Even though it was a major improvement compared to the ancient

devices, people still couldn't fully rely on these clocks and had to continuously readjust them

according to the good old sun.

The first appearance of a somewhat accurate clocks is closely connected to the humanity's,

or sailor's to be exact, need to determine their location. This problem was not as big for first

naval traders, because they simply didn't go away too far from the shore. But after the

discovery of great oceans and expansion of European civilization to the Americas the sailors

became more and more interested in measuring the length of their trip.

"From the sixteenth century onwards, the need for an accurate clock to determine longitude

became so important to growing world trade, that a number of monetary rewards were

offered for the first person to produce such a device. In 1714, England's Queen Anne offered

20,000 (several million pounds in today's currency) for the first person to find a way to

18

determine longitude to within half a degree. Many attempts were made to solve the problem

and win the various prizes. In 1759, a Yorkshireman called John Harrison tested a 5.2 inch

diameter clock on a trip from Britain to Jamaica and back. The clock lost only five seconds

on the outward journey, corresponding to a longitude error of only one and a quarter nautical

mile. Harrison won Queen Anne's prize, and the world finally had a way to determine

longitude: by the accurate measurement of time."

So, the problem of measuring time accurately was solved, but there were still some

challenges to overcome. The biggest one was that even though people in different cities

could measure time precisely, they were totally disconnected from each other which resulted

in issues with cross-regional transportation and delivery. Many cities were measuring the

time from some different moment, and people had to compensate for that and readjust their

measurement while travelling from one city to another. But due to not having a better

alternative - all the people who for some reason had to do scheduled movement from one

town to another had to just deal with it.

"The problem became much worse with the arrival of the railway network in the nineteenth

century. The greater speeds, together with the need to change from one line to another —

possibly from one railway company to another — in the course of a single journey made the

plethora of different local times a confusing annoyance. In England, the railroads decided

that they would run their operations according to London time, as determined by the Royal

Observatory at Greenwich, and by 1848 practically all British railroad companies operated

according to what would eventually become known as Greenwich Mean Time (GMT). For

a while, many local towns continued to keep their own time, determined by local

observations of the sun, but gradually the benefits of having a single time began to outweigh

tradition and local pride. By 1855, almost all public clocks throughout Great Britain showed

GMT." (About time, 1999)

So, the British people were pioneers for the synchronization of clocks in their country,

but the humanity was still in the need to form some unified system. The next big

challenge was faced by the United States. A territory about 25 times larger than the

19

U K at that time. There, a much bigger travel between the cities has led to an existence

of approximately 80 timetables for different parts of the country. It was in the year

1869 when Charles Dowd proposed to split the country into four time zones. He

suggested for every time zone to be 15 degrees of latitude, which makes the time

difference between the middle of each zone to be exactly one hour.

That is because we have already decided that an hour is one 24 t h of time it takes the

earth to make a turn. The whole globe has 360 degrees of latitude, and if we divide

360 by 24 - you guessed it - we get 15 degrees of latitude.

The system proposed by Charles Dowd was very close to the one in which we live

nowadays. A l l that needed to be done was to explain the benefits of synchronization

to the humanity and decide on some "zero point" time zone from which the count

should start.

Figure 3- UTC time zones (Heitordp, 23)

Yet, it was a very gradual process which took a lot of effort, cooperation, and most

importantly listening to what other people had to say. The baseline was set to Greenwich,

first by Sweden, US and Canada in 1883. Later, in 1884 there was an International Meridian

Conference held in Washington, D.C. to come to an agreement upon using Greenwich as the

baseline for the whole planet. The global adoption of which took almost 100 years with the

last country to make the change being Liberia in 1972. (About time, 1999)

20

It's fascinating how our time measurement system has evolved throughout the years, and

how it was striving to finally reach the elegant mathematical form in which it currently is.

4.2 Scientific foundation

Even though it might seem like it from the first chapter of this thesis - scheduling of

transportation was not the only use of time measurement systems. Another tremendous thing

it allowed us to start doing is logging of some observations on a time plane.

Time

Figure 4 - Example of a time based plot

This is something that a specialist (or a beginner) of any area would find relevant, from stock

exchange trader to the farm's worker, as it is a basic instrument of displaying and logging

any continuous information.

The following part will give some insight about the basic techniques of how such data is

processed and analysed.

4.2.1 Types of time series data

Any sorts of data can be recorded through the passage of time as long as it is available, which

means that time series data can be of any type that data in general could be.

21

Figure 5- Types of data

There are two main types of data that are also split into four subtypes. The first one is

qualitative data, which as the name suggests describes some quality of the subject we try to

model. This may be the genre column in a list of movies or a grade mark in some teacher's

journal. The difference between those two examples is also a hint to which of the data

subtypes they relate - the movie genre would of nominal data subtype because there is no

quantitative information in words like "Comedy" or "Horror", and on the other hand the

student's grade would be of an ordinal type, because it has quantitative information about

how good is the order of such results. Keep in mind that the students grade example would

be of qualitative type as long as it is some category of possible grades like "Excellent", "Very

Good" etc., but if it would be the amount of the answers he got correct on the test - it would

be of the second type that is explained below.

Quantitative data are the numerical results of some measurable activity, phenomenon or

matter that must be represented by a number. For example, a number of students in a class

or a height of a flower. Just like before, those two examples represent both subtypes of

quantitative data - discrete and continuous. Discrete data is the data that can only be

counted as full integers, like how many students there are in a class. While the continuous is

the information that can be split and looked at a finer scale. Like the growth of a flower can

be tracked down to a particle of a meter, while there can't 23.5 students in a class.

22

4.2.2 Characteristics of time series data

In order to be able to work with time series some of its fundamental characteristics must be

understood. Those are the so-called behaviors that any time series might exercise, and it is

crucial to know what they are:

• Seasonality - the data follows some pattern based on some specific period, like

Christmas toys sales which rise and then drop once per year.

Jan 14, 20... Sep 1,2019 Apr 18, 2021

Figure 6 - Seasonality example, Google search trend for Christmas tree (2022)

• Trend - the direction which the data is trying to reach, like a growth or decline that

is present throughout the observations.

Jl 1. 01 Nov 1, 11

Figure 7 - Trend example, ETF index price (2022)

• Cyclicity - the repetition of data going up and down. The difference from seasonality

is that the periods between cycles may not be fixed and are caused by some economic

(or different) events.

23

Figure 8- Cyclicity example, Google search trends for umbrella (2022)

• Randomness - the final characteristic of time series data, which is supposed to

represent the effect of unknown variables.

Figure 9 - Randomness example (Elser, 2007)

Please keep in mind that those are not categories of time series, but rather different

components of its behavior that are present in any data to some extent.

4.2.3 Some basic statistical definitions

Time series analysis is a part of statistics, and in order to perform it, some basic statistical

definitions must be explained.

24

Distribution - one of the fundamental terms in statistics. It demonstrates how different are

the observations in the dataset by putting them on an ordered plane.

(i-3-o | i - 2 a n~a \i (i+a n+2a (i+3-o
Figure 10- Distribution plot (Kowarschick, 2012)

Mean - the easiest statistical term that represents an average value of all observations. If we

have a dataset where we track height of students in a group with such results: 183 cm, 164

cm, 160 cm, 175 cm, 190 cm, 158 cm. The mean is equal to sum of all the results divided by

number of observations, so for our example it is:

(183 + 164 + 160 + 175 + 190 + 158) / 6 = 171.66 cm

sum of the terms
number of terms

Figure 11 - Mean formula

Median - the center observation of sorted dataset. If we have 5 (odd) total observations in

our dataset - after we sort it the third value would be the median. If the total number of

observations would be 6 (even) - after we sort our data, the median would be the mean

(average) between the third and the fourth values.

So, for our height example:

158 160 164 175 183 190; (164 + 175) / 2 = 169.5 cm

Mode - the most popular value in a dataset. If our dataset has 5 ladybugs, in which we

document the three of them are red and two are yellow, then red is the mode of colour

25

variable for our dataset. In our height example all observations are unique, so there is no

mode.

Variance - the degree of how far a variable is spread from its mean value. To calculate it,

we subtract the mean from every observation, sum the squares of resulting numbers and

divide it by (number of observations - 1). For our height example the variance is equal to

171.46

- \ 2

s2 = Ete - x)

s =
£ 0 ; - x) 2

n — 1
Figure 13- Standard deviation formula

Standard Deviation - actual distance of how far a variable is spread from the mean.

It is calculated as the square root of variance.

Correlation - the measure of how one variables movement can explain the

movement of a different variable. Like the relationship of the distance from earth to

sun and the air temperature.

r =
E fa - s) {Vi - y)

\/E (xi - x ? E fa - vf
Figure 14- Correlation coefficient formula

The terms that were presented in this chapter are just a little grain of all the different

definitions that one may stumble upon in the world of statistics but understanding them is

crucial to comprehend even the most basic texts about statistical analysis.

26

4.2.4 Regression

One of the primary goals of time series analysis is to be able to predict the future based on

the values of the variables that will be known to us. Regression is one of the most used

techniques for that matter.

"Linear regression is a mathematical technique that attempts to describe the relationship

between two or more variables with a linear or straight-line function. Based on an analysis

of the available data or sample, the technique also can be used to draw inferences about a

larger population or data set, or to make predictions about future data. Simple linear

regression is a subtype of linear regression in which there is a single outcome or dependent

variable and a single predictor or independent variable." (Advanced Statistics: Linear

Regression, Part I:, 2004)

First, the simple linear regression:

"Simple linear regression uses the equation for a line to model the relationship between two

variables. If z is the outcome variable and x is the predictor variable, then: z = kx + c where

k is a coefficient that represents the slope of the linear relationship between the variables x

and z, and c is a constant. The constant c is termed the ' 'z intercept'' because this is the value

of z where x = 0 and the regression line crosses the z axis." (Advanced Statistics: Linear

Regression, Part I:, 2004)

The same equation can be extended to include more variables:

"Multiple linear regression extends simple linear regression to include more than one

explanatory variable. In both cases, we still use the term 'linear' because we assume that

the response variable is directly related to a linear combination of the explanatory variables."

(Multiple Linear Regression (2nd Edition), 2020)

One interpretation of a linear regression formula was already presented, it can be written in

another form as below:

yt = a + x t'p + ut

27

y stands for target variable, alpha is the value of y while x is equal to zero, meanwhile x is

the explanatory variable and beta is the coefficient that x should be multiplied by in order

to get y, the final component - u is the residual, or in other words, error which cannot be

estimated but can be seen upon testing. Those coefficients are estimated by using the

Ordinary Least Squares method.

The OLS method was invented around 200 years ago by Adrien-Marie Legendre and Carl

Friedrich Gauss. It works by estimating the optimal alpha and beta coefficients for the model.

The optimal coefficients would be the ones that produce the smallest difference between the

prediction and the observation it is tested on, for all observation in the dataset. The word

"Squares" means the squared distance between the prediction and actual value of our target

value. We have to square it because our model may miss the target both by a positive and a

negative distance, so in order to sum those positive and negative errors we have to square

them first.

Below is a formulated OLS model for beta coefficient and residual sum of squares formula

from the book "Time series analysis" by James Hamilton.

T

40

S X
Figure 15 - Residuals visualised (Halswanter, 2013)

- 1

28

(Hamilton, 1994)

The theory presented above can be very easily applied to the data that has a linear

relationship between target and explanatory variables, but in case their relationship would

not be linear, but more like some sorts of a curve - we would need to use non-linear

regression.

Figure 16 - Linear vs nonlinear relationship

"In nonlinear regression analysis the dependent variables are modelled as a nonlinear

functional model with unknown coefficients and one or more free variables. In literature,

there are a large number of nonlinear regression models. There are some important nonlinear

growth models which are very useful to know the growth behavior in a particular period

29

namely Maltus model, Monomolecular model, Logistic model, Gompertz model and

Richards model." (Estimation Methods of nonlinear regression models, 2019)

A non l inear regress ion mode l can be put as

where Z is dependent var iable,

y,, Y2, Yj arc independent var iables,

C£\. ti- £Xr arc parameters,

£ is error r andom variable,

m= numbe r o f rows,

g (.)= funct ional w h i c h is not l inear.

Figure 17 - Nonlinear regression model (Sorce: Estimation of nonlinear
regression models)

As mentioned before, regression is one of the fundamental techniques in data analysis and

will receive more spotlight later in this thesis. The models above would need a separate book

to explain them in detail they really deserve, but hopefully this information extract is

sufficient to grasp the information in the following chapters.

4.2.5 Differencing

The trend and seasonality characteristics of time series make the values behavior over time

unstable. Our goal is to learn how to measure those changes and remove (or reduce) their

effect on our data. This is also called making the data stationary. Stationary data is the one

that doesn't change its properties based on when it is looked at. For example, flipping a coin.

The chances of getting heads or tails are the same, no matter when it is thrown.

The technique that is used to achieve it is called differencing. There are two kinds of it: usual

and seasonal. The first one removes only the trend characteristic, while the second one tries

to address both seasonality and trend together. But how is it actually done?

The technique is easy and is very well explained by its name, let's start with the usual

differencing:

Y \ = Y - Y * .
Figure 18 - First-order differencing formula (Vishwas, et ah,
2020)

30

First order differencing means finding the difference between observations and making it a

separate column in our dataset. It can not only be of one order, but of any nth order, which

would mean that we perform the same operation n number of times on resulting columns. If

the order was 3 - we would do the first order difference and put the change between the

values into a separate column, after that we would do the second order differencing and

calculate the difference between the values in the column that we got as the result of the first

order.

With the seasonal component present in the data, the idea is nothing more complicated - the

only thing is that we need to know about the seasonality in our data.

Like in our Christmas toys example - it would be weird to compare their sales between

January and December, but what we could do is to find the difference between this year's

December sales and the ones from the previous year December (and creating a separate

column with such year to year change).

4.2.6 Autoregression Model

It is very common to have a limited number of variables in data analysis. Sometimes we

need to make some assumptions by observations of just one value over time. This is what

autoregressive models are used for. It works by setting a lagged value of our target variable

(shifting all data one period forward) as the explanatory variable.

"An autoregression model (AR) predicts future behavior based on its past data. It is when

data is correlated with a consecutive sequence of a time series and the values before and after

the sequence. The autoregressive model uses only past behavior data to forecast the value.

A R models use past values to forecast as shown here:

Yt = \i + (|)1YM + <|>2Yt-2 ... + (|)pYt-p + £t

where et is white noise. This model is known as the AR(p) model, where p is the order for

the autoregressive model. The A R model is easy to use to handle a wide range of time-series

models.

31

A R is part of a time series Yt, which contains a value that depends on some linear grouping

of the previous value, which defined maximum lags (signified p). It also contains an arbitrary

error term et, given as follows:

First-order AR:

Yt = a + blYt-1

Second-order AR:

Yt = a + blYt-1 + b2Yt-2

Third-order AR:

Yt = a + blYt-1 + b2Yt-2 + b3Yt-3 yt = (plyt-1 + (p2yt-2 + + (ppyt-p + st

where the parameters cpt are constants.

" (Vishwas, et a l , 2020)

4.2.7 Moving Average Model

The autoregression model uses previous values of our target variable in order to create a

prediction. It is also possible to use the errors of the previous forecast to create a regression

model. That is what moving average model is.

" A moving average (MA) is a method to get all the trends in a time series. It is the average

of any subcategory of numbers. It is utilized for long-term forecasting trends. Basically, a

moving average forecasts future points by using an average of several past data points. The

moving average model practices past forecast errors:

Yt = 0̂+ st - col st-2 - col st-2 . . . coq st-q

where et is white noise. This model is known as the MA(q) model, where q is ordered for

the moving average model. The M A model is easy to use to handle a wide range of time-

series models.

32

Here are some definitions to understand:

ACF: The correlation of a variable with its lagged values.

PACF: The correlation of a variable with its lagged values, but after removing the effects

of in-between time lags.

Correlograms: The plots of A C F and PACF against the lag length. This can give you an

idea about the relation of autocorrelation between variables" (Vishwas, et al., 2020)

0 ö
<!

T J " i " l i " i " i
LUUUPJLILI.

Figure 19 - Correlogram example (Manning, 2009)

"The M A part of a time-series Yt, which is an observed value in terms of a random

error and some linear grouping of previous arbitrary error terms, up to a described maximum

lag (signified q).

First order MA(1):

Yt = y+ dOut + dlut-1

Second order MA(2):

Yt = y+ dOut + dlut-1 + d2ut-2

Third order MA(2):

Yt = y+ dOut + dlut-1 + d2ut-2+ d3ut-3 yt = Zt + 91ZM + 62Zt-2 + + 6qZt-q

where the parameters 9t are constants.

let's combine A R and M A

ARMA (1,1): Yt = \i + <))lYt-l+ d0ut+ dlut-1

" (Vishwas, et a l , 2020)

33

4.2.8 ARMA to ARIMA

The chapters above have already covered all the components that power the A R I M A model

- autoregression, differencing and moving average.

"Autoregressive integrated moving average—also called ARIMA(p,d,q)—is a forecasting

equation that can make time series stationary with the help of differencing and log techniques

when required. A time series that should be differentiated to be stationary is an integrated

(d) (I) series. Lags of the stationary series are classified as autoregressive (p), which is

designated in (AR) terms. Lags of the forecast errors are classified as moving averages (q),

which are identified in (MA) terms.

Figure 20 - ARIMA breakdown (Vishwas, et al., 2020)

A nonseasonal A R I M A model is called an ARIMA(p,d,q) model, where:

• p is the number of autoregressive terms.

• d is the number of nonseasonal differences needed for stationarity.

• q is the number of lagged forecast errors in the

34

prediction equation.

p d q Differencing Method

ARIMA (0, 0, 0) 0 0 0 y,=Y t White noise

ARIMA (0,1, 0) 0 1 0 y t=Y,-Y t. 1 Random walk

ARIMA (0, 2, 0) 0 2 0 yt = Yt - 2Yt-1 + Yt-2 Constant

ARIMA (1, 0, 0) 1 0 0 Yt = u + <4>i Yt-! + e AR(1): First-order

regression model

ARIMA (2, 0, 0) 2 0 0 Yt = (j)0 + u>iYn + (j>2Yt-2 + e AR(2): Second-order

regression model

ARIMA (1,1,0) 1 1 0 Yt = m + Yt-1 + (])1 (Yt-1 - Yt-2) Differenced first-order

autoregressive model

ARIMA (0,1,1) 0 1 1 Yt = Yt-1 -o>1et-1 Simple exponential

smoothing

ARIMA (0,0,1) 0 0 1 Yt = p0+ et - (Oi et.i MA(1): First-order

regression model

ARIMA (0, 0, 2) 0 0 2 Yt = p0+ et - (O, £ t-1 - « 2 Et-2 MA(1): Second-order

regression model

Figure 21 - p, d, q representation and methods, part 1 (Vishwas, et al., 2020)

A R I M A is a method among several used for forecasting univariate variables, which uses

information obtained from the variable itself to predict its trend. The variables are regressed

on its own past values. AR(p) is where p equals the order of autocorrelation (designates

weighted moving average over past observations) z I (d), where d is the order of integration

(differencing), which indicates linear trend or polynomial trend z. MA(q) is where q equals

the order of moving averages (designates weighted moving average over past errors).

A R I M A is made up of two models: A R and M A .

35

AR IMA (1 ,0 ,1) 1 0 1 Yt = ^o + tttiYM+et-Q)! Em A R M A model

AR IMA (1 , 1 , 1) 1 1 1 AY, = (biYt-i + et - Cm AR IMA model

AR IMA (1 ,1 ,2) 1 1 2 % = Ym + (|>i (Yt.i - Y,.2) Damped-trend linear

- Qie^ - 9i6t_i Exponential

smoothing

AR IMA (0,2,1) 0 2 1 Y,= 2 Yt-i - Yt_2 - 9i6 t-i - 026^2 Linear exponential

OR (0,2,2) smoothing

Figure 22 - p, d, q representation and methods, part 2 (Vishwas, et al., 2020)

" (Vishwas, et a l , 2020)

4.2.9 VAR model

The chapters above were focused on using the previous values of some single variable to be

able to create forecasting models based on it. This chapter is about how we can use similar

concepts with more than one variable available - by creating the combinational vectors out

of them.

The next model that will be explained is called vector autoregressive model. So, using more

variables in one model and analysing their behavior to determine the future:

"In the real world, we are often lucky enough to have several time series in parallel that are

presumably related to one another. We already examined how to clean and align such data,

and now we can learn how to make maximal use of it. We can do so by generating an AR(p)

model to the case of multiple variables. The beauty of such a model is that it provides for

the fact that variables both influence one another and are in turn influenced—that is, there is

no privileged y while everything else is designated as x. Instead, the fitting is symmetric

with respect to all variables. Note that differenc- ing can be applied as is in other models

previously if the series are not stationary." (Nielsen, 2020)

"Vector autoregression (VAR) is a stochastic process model utilized to seize the linear

relation among the multiple variables of time-series data. In other words, it is a multivariate

forecasting method utilized when two or more time-series variables have a strong internal

36

relationship with each other. V A R is a bidirectional model, while others are unidirectional

models. In a unidirectional model, a predictor influences the target, but not vice versa. In a

bidirectional model, variables influence each other.

The normal AR(p) model equation looks like this:

Yt = + <|)lYt-l + <|>2Yt-2 ... + <|>pYt-p + £t

where p. is intercepting, and §1, §2.... §n are the coefficient of the lags of Y . In the V A R

model, every single variable is modeled as a linear grouping of its past values and the past

values of other variables in the time series. If you have multiple time series, which is

determined to each other. So, one variable per equation will be designed. For instance,

imagine that we have two variables of a time series, Y l , Y2. We want to forecast the value

of these at time (t).

Here is the V A R (1) model with two time series (Y l and Y2):

Yl,t = ul + <|>HYl,t-l + <|>12Yl,t-2 + el,t

Y2,t = u2 + <|)21Y2,t-l + <|>22Y2,t-2 + £2,t

where y l , t - l , y2,t-l are the first lag of the time series Y l and Y 2 " (Vishwas, et al., 2020)

The citation above implies that the V A R model doesn't attempt to predict a single target

variable, but rather a vector of them together using the relationship among them.

The chapter above should have provided the necessary overview of statistical models that

are widely used for statistical analysis of time series data. There are several important

concepts from statistics that did not receive a separate section in this chapter, like different

measures and testing concepts, due to the focus point of this thesis being time series analysis

in Python rather than statistics fundamentals. Of course, those concepts still will be leveraged

in the practical part for analysis and will receive some explanation about their use in the

example.

37

4.3 Python, Machine Learning and Deep Learning

The models that were presented in the previous chapters have great potential for prediction

of the future. But, finding the optimal parameters could require many repetitive calculations,

especially if we are trying to optimize them for a big number of past observations. This is

when automation comes out onto the scene. The humankind has created computational

machines that can do all the mathematical labor instead of us, as long as we explain it and

provide clear instructions, of course.

In the year 2022 the most popular tool for automated time series analysis is Python. There

are multiple reasons for this:

• Language simplicity - this factor shouldn't make the reader think of Python as of a

"not serious" programming language, but rather one that is created and continuously

developed with a focus on readability and conciseness. "Simple is better than

complex" is one of the fundamental ideas expressed in zen of Python.

• Big community support - a large number of developers uses python in their

research and projects. Many of them are playing an educational role and create great

tutorials about how to put the newest ideas to use.

• Suite of tools - the reason for Python being leveraged in so many different areas is

the number of packages that are available for free to anyone interested in working

with them. The use cases are ranging from mathematical calculations to both ends of

website development or even art and music.

As per the negative side of Python I would like to mention the thing that makes it strong -

its interpreter. In simple terms, Python interpreter is the engine that runs the commands that

are given to it. Its strength is the ability to use different functions from inside or outside

packages, that saves time from writing them, but adds another level to the execution. For

most tasks its performance is satisfactory and good sides very much outweigh the bad ones,

but if the informational process requires some high intensity of performance, the lower-level

languages might be a better alternative. Python developers also try to leverage the

performance speed of lower-level languages, for example inner parts of the NumPy library

38

are developed in C programming language and allow achieving better performance while

keeping the simple concepts of Python programming.

Some terms like package or function will be better explained in the practical example, but

first there is one last topic that needs to be spotlighted, which is - deep learning.

4.3.1 Deep Learning

Nowadays the terms of machine learning and deep learning can be heard all over the internet

and IT area, which might already tire some people. But there is an explanation to that - the

technology is quite fascinating. Engineers around the worlds are creating systems that

perform calculations which would take thousands of lifetimes of manual work. This allows

them to find the best models for forecasting by quickly optimizing them and greatly

increasing their complexity. The concept of using a computer for optimization of a statistical

model is called machine learning and combining such models into much bigger ones is what

makes them deep learning models.

Neural networks are implemented in layers of units; each layer has a specific type of units

and serves some specific function. The first layer is the input layer, and it is used to store the

data that we would like to present for analysis of a deep learning into the explanatory

variables. The next units are so-called hidden layers, they have some sorts of an activation

function inside of it and weights outside of it. Those functions and weights get optimized by

Input Hidden layer Output

Figure 23 - A simple feed forward network (Nielsen, 2020)

trying to find the combinations of parameters that produce the lowest error. There can be

39

multiple hidden layers, of different types. Their type is decided by the developer and

represents the inner computation that happens inside. And the last layer of any deep neural

network is the output layer - it is where the actual answers our network provides are going

to be. If our network's goal would be to detect whether there is a cat or a dog on the image

- it would have two units in an output layer, one for cat and one for dog. After the photo

would go through the network - these two output units would have a value between 0 and 1

which would represent the probability that it is indeed a cat or a dog.

"We can see that the input consists of three channels, or a vector of length 3. There are four

hidden units. We multiply each of the three inputs by a different weight for each of the four

hidden units for which it is destined, meaning that we need 3 x 4 = 12 weights to fully

describe the problem. Also, since we will then sum the results of these various

multiplications, matrix multiplication is not just analogous to what we are doing but exactly

what we are doing. If we wanted to write out the steps for what we are doing, they would go

something like this:

1. Input vector X has three elements. Layer 1 weights are designated by W l , a 4 x 3

matrix, such that we compute the hidden layer values as W l x X I . This results in a

4 x 1 matrix, but this is not actually the output of the hidden layer: W l x X I

2. We need to apply a nonlinearity, which we can do with various "activation

functions," such as hyperbolic tan (tanh) or the sigmoid function (o). We will usually

also apply a bias, B1, inside the activation function, such that the output of the hidden

layer is really: H = a(Wl x X I + B l)

3. In the neural network depicted in Figure above , we have two outputs to predict. For

this reason, we need to convert the four-dimensional hidden state output to two

outputs. Traditionally, the last layer does not include a nonlinear activation function,

unless we count applying a softmax in the case of a categorization problem. Let's

assume we are just trying to predict two numbers, not two probabilities or categories,

so we simply apply a last "dense layer" to combine the four outputs of the hidden

layer per ultimate output. This dense layer will combine four inputs into two outputs,

so we need a 2 x 4 matrix, W2 : Y = W2 x H " (Nielsen, 2020)

40

In the practical example the development, training and predictions of L S T M network will

be demonstrated. L S T M stands for Long-Short Term Memory, and it is a type of recurrent

neural network. The recurrent means that the layers are not only able to pass the information

forward to the next layers, but also send it back and repeat the process.

"Here is a step-by-step explanation of L S T M .

Step 1: Let's say we must predict an upcoming sequence based on all the forthcoming

timestamps. In such a problem, the cell state can store all the information for the present

input so that the correct prediction can be made. When we get new input data, we link it to

the previous pattern in the sequence time-series data.

Here is the forget gate equation:

Figure 24 - Forget gate equation (Vishwas, et ah, 2020)

Step 2: The next step is to make a decision on which information is important to us so we

can store it. This has been classified into two parts. The first input gate layer, which contains

the sigmoid layer, makes a decision on which values to update. Next, a tanH layer produces

a vector for the new candidate values; this vector is called Ct. That could be further to the

state. We can associate these two gates with each other to create an updated state.

Here are the input and candidate gate equations:

Č, = taiih(^^_ | T r,] + ů c)

Figure 25 - Input and candidate gate equations (Vishwas, et al, 2020)

Step 3: It is time to update the old cell state, Ct-1, into the new cell state, Ct. We multiply

the old state by ft, forgetting the unnecessary parts. Then we multiply the input gate (it) by

the candidate gate () , and this becomes the new candidate value, scaled by how much we

decided to update each state value.

Here is the cell state equation:

Figure 26 - Cell state equation (Vishwas, et al, 2020)

41

Step 4: We have to make a decision about the output state. This is based on a cell state, but

it can be a filtered version. The first sigmoid layer makes the decision about which part of

the output of the cell state we will produce; then we put a cell state to tanH and multiply it

by the output of the sigmoid gate. So, we can only generate the output we make a decision

on. Here are the equations for the output state and hidden state:

hs =0, *tanh(C,)

Figure 27 - Output state and hidden state equations (Vishwas, et al, 2020)

" (Vishwas, et a l , 2020)

4.3.2 Development environment

As mentioned in the previous section - there are lots of different community made tools for

Python programming, this chapter will provide an overview to the most commonly used

ones.

IDE - stands for Integrated Development Environment. In simple terms this is a program in

which the code is written. The two main approaches in Python are to use a traditional one,

like Visual Studio Code or PyCharm; The second approach is to use an IPython notebook,

like Jupyter notebook. The difference is that in the first approach the file represents a single

piece of code that is executed all-together once the file is executed. In the IPython approach

the file contains multiple blocks of code that can be executed in any desired order. PyCharm

can be considered a suitable choice for beginners due to the ease of working with virtual

Python environments and everything being functional out-of-the-box.

main.py

1 p r i n t (" H e l l o w o r l d ! ') # F i r s t l i n e t h a t w i l l be e x e c u t e d

2 p r i n t C H e l l o second w o r l d ! ') #Second l i n e t h a t w i l l be e x e c u t e d

Figure 28 - Code in PyCharm

^ } printj{] 1 Hello] world! '[)] #Line that w i l l be executed once we press play

Q p r i n t (1 Hel lo second w o r l d ! ') #Line that w i l l be executed once we press play

Figure 29 - Code in IPython notebook

42

There is another great development tool that is created using the IPython notebook

technology, which is Google Colaboratory. It is essentially a free Google server that has

Python and most of the tools the developer is going to need are installed by default (while

leaving an option to install new/replace existing ones). So, if the computer is very slow or

lacks storage space for the Packages - Google Colab notebook can be used, even with an

enabled GPU. Though the time for using GPU is restricted to some hours daily based on the

service load.

Packages and PIP - as mentioned before, one of the biggest strengths of Python is the

ability to use community-made packages. A package is a bunch of code written in Python

that can be used. For example, if the developer wanted to implement a Telegram chatbot

using Python - they could use the official Telegram Web API documentation and write every

line of their chatbot from scratch. Another option would be to use some community-made

package, like python-telegram-bot, that already has everything needed to setup a working

chatbot, so they could concentrate on unique aspects of its functionality. To install and

manage the packages we use PIP, a very simple tool accessible through the command line.

!pip i n s ta l l --upgrade pandas_datareader

Requirement already sat is f ied: pandasdatareader in /usr/local/lib/python3.7/dist-packages (B.Q.S)
Collecting pandas_datareader

Downloading pandas_datareader-B.lB.9-py3-none-any.whl (169 kB)
| | | 169 kB 15.7 MB/5

Requirement already sat is f ied: pandas>=6.23 in /usr/local/lib/python3.7/dist-packages (from pandas
Requirement already sat is f ied: requests>=2.19.B in /usr/local/lib/python3.7/dist-packages (from pai
Requirement already sat is f ied: lxml in /usr/local/llb/python3.7/dist-packages (from pandasdatareai
Requirement already sat is f ied: pytz>=2617.3 in /usr/local/lib/python3.7/dist-packages (from pandas
Requirement already sat is f ied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from panda
Requirement already sat is f ied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (f
Requirement already sat is f ied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dati
Requirement already sat is f ied: certifi>=2B17.4.17 in /usr/local/lib/python3.7/dist-packages (from
Requirement already sat is f ied: urllib3!=l.25.!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7
Requirement already sat is f ied: chardet<4,>=3.6.2 in /usr/local/lib/python3.7/dist-packages (from n
Requirement already sat is f ied: Idna<3j>=2.5 in /usr/local/lib/python3.7/dist-packages (from reques
Instal l ing collected packages: pandas-datareader

Attempting unlnstal l: pandas-datareader
Found existing insta l lat ion: pandas-datareader B.9.B
Uninstalling pandas-datareader-G.9.6:

Successfully uninstalled pandas-datareader-B.9.6
Successfully instal led pandas-datareader-B.18.B

ikages (B.9.0)

Figure 30 - Updating a package to the latest version using PIP

In the practical part, a few different packages will be used. Their functionality will be

explained right next to the screenshots of their use. To use some package in a program the

import statement is used.

43

Figure 31 - Importing a package

Virtual Environment - Python is a language with several decades of history. It has seen

dozens of versions of itself and its packages. A Python interpreter and the packages are

installed together in one place that is called a virtual environment. This allows us to create

multiple virtual environments to experiment or work with different versions of Python or its

packages. Virtual environments can be created from command line or in PyCharm project

settings. In terms of Google Colab, the whole notebook can be treated as a virtual

environment.

Figure 32 - Editing the virtual environment in PyCharm

The goal of the previous chapters was to explain what time-series analysis is and what

models/tools are available in Python. Now it is time to put all of that to use, create some

models and try to predict the future.

44

5 Practical Part

In this chapter the concepts from the literature are going to be demonstrated. The primary

goal will be a prediction of next day's close price for some stock. In this example it will be

A A P L , but the code presented could be used to experiment with prediction of some other

stock by changing a single variable.

For the development environment Google Colaboratory will be used.

5.1 Setting up the colab notebook

First, the colab.research.google.com notebook needs to be created. In case the developer

would want to train some deep learning models -1 would recommend (like we want for this

example) to enable the GPU hardware option. To do that - unhide the navigation ribbon by

clicking or an arrow (circled in red), then go to runtime > change runtime type, and select

GPU hardware accelerator.

^- C S colab.research.google.com/drive/1 krda9wxp30BEdMArnwFXvDWIsEkx1TVhZ If? * * • :
+ Code + Text DIM 1 1

Disk — 1 ' > Q

en 1 1 O Q i i

Figure 33 - Unhiding navigation ribbon on Colab

File Ed ft View Insert Runtime Tools Help All charges saved

Code + Text Run

Run

Run

Run

E h —

Run all

Run before

Run 1he focused cell

Run selection

Run after

Interrupt execution

Restart runtime

Restart and run all

Factory reset runtime

Change runtime type

Ctrl+F9

Ctri+F8

Ctrl+Enter

Ctrl+Shift+£nter

Ctd+F10

Ctrl+M I

Ctrl+M.

Figure 34 - Change runtime type in colab

45

http://colab.research.google.com

Notebook settings

Hardware accelerator

GPU v

)lab, avoid jsing a GPU unless you need

] Background execution

Want your notebook to keep running even after

close your browser? U pgra de to Co I a b Pro*

ter you

] Omit code cell output when saving this notebook

Figure 35 - Selecting GPU

Click save. That is it - our colab notebook is ready.

5.2 Getting the data

First step to predict tomorrow's values of some stock is to analyse their values from the past

to understand their behavior. There is an amazing tool that allows us to create a dataset of

stock prices using just one command. That tool is called "pandasdatareader".

Since Google Colab is used in this example, we don't need to install it, but the version that

is available is 0.9.0 which needs to be updated to a newer one. This is very easy - just adding

"-upgrade" parameter to the usual command that would be used to install it. The

exclamation mark is needed only in colab to identify that it is a bash command.

! p l p i n s t a l l - - upg rade p a n d a s d a t a r e a d e r

Figure 36 - Updating a package in Google Colab

After the package has been installed, it can be imported into the project. We also need to

import the datetime package that is used to create or transform timestamps. What we have

to do now is to set the company stock ticker that we are interested in, and also set the first

46

and last day for our dataset. Once that is done too, the last thing is to use the datareader for

creating our dataset.

impor t p a n d a s d a t a r e a d e r as d a t a

I impor t d a t e t i m e as d t

company = ' AAPL ' # change t i c k e r here t o s e l e c t d i f f e r e n t s t o c k

I f i r s t _ d a y |= d t . d a t e t ime (2612 , 1, 1)

I l a s t d a y = d t . d a t e t i m e (2 Q 2 1 J 1 J 1)

s t o c k = da ta .Da taReade r (company., " yahoo " , f i r s t d a y . , l a s t d a y)

Figure 37 - Dataset creation

We have just created a Pandas dataframe without even importing Pandas. That is a package

that is used to efficiently work with multidimensional tables. To see its contents run its name.

Q stock

G»

•ate

G»

•ate

2012-01-02 14.732143 14.607143 14.621429 14.686786 302220800 0 12.575912

2012-01-04 14.810000 14.617143 14.642857 14.765714 260022000 0 12.643499

2012-01-05 14.940214 14.738214 14.819643 14.929543 271269600 0 12 733868

2012-01-06 15.098214 14.972143 14.991786 15.085714 318292800 0 12.917507

2012-01-09 15.276786 15.048214 15.196429 15.061786 394024400 0 12 897016

2020-12-24 133.460007 131.100006 131.320007 131.970001 54930100 0 130 994522

2020-12-26 137.339996 133.509995 133.990005 136.690002 124486200 0 135 679642

2020-12-29 138.789993 134.339996 138.050003 134.869995 121047300 0 133.873077

2020-12-30 135.990005 133.399994 135.580002 133.720001 96452100 0 132.731613

2020-12-31 134.740005 131.720001 134.080002 132.690002 99116600 0 131.7D9198

Figure 38 - Looking at the data

As mentioned before - we want to predict the close price, which is only one column in our

dataset. We can call a column from a data frame by typing its name and the column name in

square brackets like this:

47

Q s t o c k y ' C l o s ^ ' I

Date
2612-61-93
2812-ei-94
2612-91-95
2012-91-96
2012-91-99

14.6S67S6
14.765714
14.929643
15.985714
15.9617S6

2020- 12- 24 131. 970001
2020- 12- 2B 136. 690092
2020- 12- 29 134. 869995
2020- 12- 39 133. 720081
2020- 12- 31 132. 690082
Nane: Close,, Leng th : 2265, d t y p e : f l o a t 6 4

Figure 39 - Calling a dataframe column

5.3 Exploring the data

Now that we have our data ready, we want to find more about its statistical properties. We

can find out about the measures of central tendency or variation by using the describe

function of our dataframe.

o s t o c k [" C l o s e '] . d e s c r i b e ()

count 2265.009000
mean 38.S14736
s t d 24.448116
min 13.947500
255S 22.678000
505S 29.817499
755S 46.529999
max 136.690002
Name: C l o s e j d t ype : f l o a t 6 4

Figure 40 - Exploring the DataFrame

From the information above we can see the lowest and the highest price of A A P L since 2012,

its mean, standard deviation, and 5-number summary.

Now we would like to concern ourselves with the matter of stationarity, or in other words -

remove the trend from our data if there is one.

48

For the stocks data it is obvious that the data should not be stationary (the price is going up

or down), but this thesis focuses on use of Python for time series analysis, not on how to

predict stock prices, and thus it might be used for any different data, which may or may not

be stationary. To test if the data needs to be differenced -a stationarity test can be used. For

example, Augmented Dickey-Fuller test. It is a unit root test, which identifies whether a

trend is present in time series. A package called "pmdarima" has a built-in function to

perform it. Since it is not installed on Google Colab - it needs to be installed using pip.

!p ip i n s t a l l pmdarima

Figure 41 - Installing a package in Google Colab

Now we need to import the test from the package, create an instance of it, and use its function

should_diff on our close prices.

f rom pmdar ima.ar ima impo r t ADFTest

s t a t i o n a r i t y t e s t = ADFTes t {a lpha = ft.BS)

s t a t i o n a r v r t y t e s t . s h o u l d d i f f (s t o c k [" C l o s e "])

The answer confirms the hypothesis of trend being present in our data. As it was explained

in the theoretical part - to make the data stationary, differencing is used. Since our data is

not seasonal (time of the year/month doesn't have a stable effect on stock price) we can do

usual (nonseasonal) differencing. Luckily pandas dataframes have a built-in function to do

it (the dropna function is used to remove the first row, it would have an empty value because

there is no previous one in the dataframe to differentiate it):

49

[7] s t o c k [" C l o s e '] . d i f f () . d r o p n a ()

2012- e i -85 8 .163929
2012- e i -86 8 .156872
2012- e i -89 -8 .823929
2812- e i -18 8 .853928

2020- 12 -24 1 .889995
2020- 12 -2B 4 .728801
2020- 12 -29 -1 .828607
2020- 12 -38 -1 .149994
2020- 12 -31 -1 . 829999
H a w : Close,, Leng th : 2264, d t y p e : f l o = t o 4

Figure 42 - First difference of the dataset

Now the next step would be to check once again if the data needs to undergo second

differencing.

^ s t a t i o n a r i t y _ t e s t . s h o u l d d i f f (s t o c k [' C l o s e '] . d i f f () . d r o p n a () }

L> { 8 . 01 , F a l s e)

Figure 43 - Stationarity check after differencing

The output demonstrates that stationarity was achieved and using first order of difference is

satisfactory for our data (and thus the models). Let's explore our differenced set a bit deeper.

Q f i r s t d i f f e r e n c e = s t o c k [' C l o s e '] . d i f f {) . d r o p n a ()

f i r s t _ d i f f e re n ce .des c r i b e ()

mean 8. 052122
s t d 1. 084468
min -18. 519997
255S -8 . 288125
505S 8. 024187
755S 8. 315081
max 18. 078088
Name: C l o s e j c t y p e : f l o a t 6 4

Figure 44 - Exploring differenced set

One of the things this data shows us is that the daily change in A A P L stock close price was

not bigger than 10.6$ in the years from 2012 till 2021. It is time to create some plots.

50

Matplotlib package is used for that. This is how to create a very simple histogram plot, that

will demonstrate the distribution of our data. First, we import matplotlib, then we use a

command that is exclusive for Google Colab to be able to see the plots there. After that we

create a histogram plot of our data with 20 columns and show it.

[14] import m a t p l o t l i b . p y p l o t p i t
% m a t p l o t l i b i n l i n e
p i t . h i s t (f i r s t _ d i f f e r e n c e J blns=20)
p it .show{)

-10 10

Figure 45 - Creating a distribution plot

Data is normally distributed if its fluctuation from the mean is symmetrical. In this example

Jarque-Bera normality test can be used, but keep in mind that it requires a large dataset (>

2000 entries) to work. This test is available from the Scipy package, we will now use the p-

value of this test to determine the test result. This value is used in any statistics test to

determine the probability of the null hypothesis being true. So, when we would test if our

data is normally distributed - we would get the probability of it not being normally

distributed as the p-value. Here we print the second value of a list that is the output of the

test, since that is where the p-value is.

°
f rom s c i p y . s t a t s impor t j a r o j u e b e r a

p r i n t { ' p - v a l u e : ' , j a r q u e _ b e r a (f i r s t d i f f e r e n c e) [1])

p - v a l u e : B.8

Figure 46 - Normality testing

51

Based on this test, we can see that the probability of our data being not normal is 0, so we

can consider our data normally distributed.

5.4 ARIMA model

The first model that will be demonstrated is the A R I M A model. First, we will use the

automatic A R I M A function from Pmdarima package to find the best suitable configuration

of the model for our data. After that we will simulate the retraining and prediction on data

for every day since 2021 until 2022. The parameters that are passed to the function are

responsible for: data to train on, stationarity test, whether or not the data is seasonal, whether

or not to show the training process in the output, whether or not to use stepwise search.

52

from pmdariina. ar ima impor t au to_a r ima

b e s t m o d e l = a u t o _ a r i m a (s t o c k [' C l o s e '] ,

t e s t = " a d f " ,

sea son a 1=F a l s e ,

t r a c e = T r u e ,

stepwise===lse}

ARIMA1 (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6448 137, Time; =0. 15 sec

ARIMA4 (0,0,©) [0] i n t e r c e p t : AIC= =6415, ,559, Time^ =0. 58 sec
ARIMA I [0 , 1 ,2) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6414, ,277, Time: =0. 81 sec
ARIMA I [0 , 1 ,3) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6414, , 848, Time: =1. 12 sec
ARIMA1 [0 , 1 ,4) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6416, 722, Time: =1. 49 sec
ARIMA1 [0 , 1 , 5) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6415, 769, Time: =1. 86 sec
ARIMA I [1 , 1 ,9) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6413, 278, Time: =0. 36 sec
ARIMA1 [1 , 1 ,1) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6413, 529, Time: =1. 36 sec
ARIMAi [1 , 1 ,2) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6415, ,475, Time: =3. 41 sec
ARIMA I [1 , 1 ,3) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6416, ,819, Time: =1. 86 sec
ARIMA1 [1 , 1 ,4) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6415, 418, Time: =S. 33 sec
ARIMA([2 , 1 ,9) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6413, 689, Time: =0. 69 sec
ARIMA I [2 , 1 ,1) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6415, 489, Time: =2. 16 sec
ARIMA I [2 , 1 ,2) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6417, 527, Time: =1. 76 sec
ARIMA1 [2 , 1 ,3) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6333 983, Time: =10.34 sec

ARIMA I [3 , 1 ,9) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6415, ,267, Time: =0. 80 sec
ARIMA I [3 , 1 ,1) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6417 209, Time: =2. 77 sec
ARIMA1 [3 , 1 ,2) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =inf j Time= =9.63 sec
ARIMA1 [4 , 1 ,9) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6416, 697, Time: =1. 29 sec
ARIMA1 [4 , 1 ,1) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6386, 169, Time: =5. 53 sec
ARIMA I [5 ,1 ,9) (0 , 0 , 0) [0] i n t e r c e p t : AIC= =6412, 243, Time: =1. 21 sec

Bes t mode l : AR IMA{2,1 ,3) (9 ,0 ,0) [Q] i n t e r c e p t
T o t a l f i t t i m e : 57.533 seconds

Figure 47 - ARIMA parameter optimization

As the result we can see that the optimal model configuration for our data is (2, 1, 3).

Last step is simulating its use (and retraining) throughout last year. First, we have to create

a new dataset which actually has that data. And a separate set with only the test data for our

cycle (will also be used for training next models).

53

[25] f i r s t _ f u l l _ d a y = dt.datetime(2012 ;, 1, 1)
l a s t _ f u l l _ d a y = dt.datet ine{2w22, 1, 1}
f u l l s tock = data.DataReader("AAPL ', ' yahoo ' , f i r s t f u l l day, l a s t f u l l day)

t e s t f i r s t = dt.datet ime(2821, 1, 1)
t e s t l a s t = dt.datetime(2©22, 1, 1)

t e s t s t o c k = data.DataReader(company, ' yahoo ' , t e s t f i r s t , t e s t l a s t)
t e s t s t o c k p r i c e s = t e s t _ s t o c k [' C l o s e '] . v a l u e s

Figure 48 - Creating a dataset with full data and with data for testing

Now we will use Statsmodels package to create A R I M A model and predict our data from

the last year using it. As it was shown in data exploration - our training dataset has 2265

entries, this number is incremented in a cycle to show on which day the training data stops.

o from s ta t smode l s . t sa .ap i import ARIMA

x = 2265
a r i m a p r e d i c t i o n s = []
f o r observat ion i n t e s t s t o c k p r i c e s :

nod = ARIMA(ful l_5tock[Close] [9 : x] , order = (2, 1, 3))
res = mod. f i t ()
output = r e s . f o reca s t ()
ar ina_predict ions.append(output)
x += 1

Figure 49 - simulating ARIMA model's use

The first thing to do now would be to plot our predictions. Here is how to create a usual line

plot with two observed variables using matplotlib.

54

Figure 50 - Plotting the resulting predictions

On this plot we can see that the model is doing very well with predicting what price would

it be tomorrow. Let's find the error in our predictions and plot it:

55

a r l m a r e s i d u a l = []

i = 0

for- v a l u e i n t e s t _ s t o c k _ p r i c e s :

a r i m a r - e s i d u a l . append (v a l u e -

i += 1

p i t . p l o t { a r i m a _ r e s i d u a l f c o l o r =

p i t . t i t l e (f { c o m p a n y } P r i c e ')

p i t . x l a b e l (" T i m e ")

p i t . y l a b e l (" S h a r e P r i c e ")

p i t . l e g e n d ()

p i t . showQ

a r i m a _ p r e d i c t i o n s [i])

l a b e l = " E r r o r ")

AAPL Price

Error

100 150
Time

200

Figure 51 - Finding and plotting the residuals

Now Pandas package is actually imported to convert the list of residuals into a dataframe in

order to explore them. Before doing that the list of lists with prediction results is joined into

one list.

56

[65] impo r t pandas as pd

a r i m a _ n e s i d u a l _ j o i n e d = [x f o r 1 i n a r l m a r e s i d u a l f o r x i n 1]
p d . D a t a F r a m e { a r i m a _ r e s i d u a l _ j o i n e d J c o l u i F n 5 = [" R e s i d u a l "]) . d e s c r i b e ()

Figure 52 - Exploring the residuals

This info shows us that the average error is 0.18 dollars. We can use r 2 (coefficient of

determination) testing to see how much of our real data's variation was explained by the

predictions. One of the packages that includes it is Scikit-learn.

from s k l e a r n . m e t r i c s impor t r 2 _ s c o r e

r 2_s co r e ^ t e s t s t o c k j r i ces , a r i m a p r e d i c t i o n sj)]

8.9764B51778S13e&l

Figure 53 - R-square testing

The results show that a very high value of r 2 coefficient was achieved suggesting that our

model shows great results being correct for 97%.

After final evaluation of the models the reader will find out why the statement above should

be taken very-very skeptically.

57

5.5 LSTM model

The next model will try to use the same data in a more complex manner. It is a sequential

L S T M model. The idea is to give it an opportunity to look back at three months of past data

so that it would try to predict the price tomorrow. To do that we need to create two sets where

90 previous days in set x will be corresponding to one actual day in set y. Beforehand the

dataset will be scaled to limits from 0 to 1 according to its minimum and maximum values,

an important step of preprocessing that optimizes the calculations.

import nunpy as np

from s k l e a r n . p r e p r o c e s s i n g import MinMaxScaler
s c a l e r = H inMaxSca le r { f ea tu re_ range= (8 J l))
s c a l e d s t o c k = s c a l e r . f i t t r a n s f o r n (s t o c k [" C l o s e '] . v a l u e s . r e s h a p e (- l j l))
p r e d i c t i o n d a y s = 9B
x t r a i n = []
y t r a i n = []

f o r x i n r a n g e i p r e d i c t i o n d a y S j l e n (s c a l e d s t o c k)) :
x t r a i n . a p p e n d (s c a l e d _ s t o c k [x - p r e d i c t i o n _ d a y s : x , B])
y t r a i n . a p p e n d (s c a l e d _ s t o c k [X j 6]}

x t r a i n , y t r a i n = n p . a r r a y i x t r a i n) , n p . a r r a y (y t r a i n)
x t r a i n = np. r e s h a p e j f j x t r a i n , (x t r a i n . s h a p e [B] , x _ t r a i n . s h a p e [l] , !)[)]

Figure 54 - Scaling the data and splitting it into exploratory and target sets

Now we need to define the layers of the neural network and and train it on our data. This is

done using the Google's package TensorFlow and its higher-level interface Keras.

from tens^jr^owJte^^ import Sequent i a l
from t e n s o r f low.keras . layer 's import Dense, Dropout, LSTM
model = Sequent ia l {)
model .add(L3TH(units=64 J r e t u r n s e q j e n c e s ^ T r u s , i n p u t _ s h a p e = (x t r a i n . s h a p e 1)))
model .add(Dropout(6.2))
model .add(LSTH(units=64 J return_sequences=Tr je))
model .add(Dropout (e.2))
model.add(LSTH(units=64))
model .add(Dropout(6.2))
model .add(Dense(uni ts=l))
model, compile (opt imizer^ "adan" j loss=•^ean_squa^ed_er^or••)

• m o d e l . f i t (x _ t r a i n J y t r a i n , epochs=32j batch_size=32)

Epoch 1/32
68/68 [] - 4s 64ms/step - l o s s : B.8ei2

Figure 55 - Definition and training of a TensorFlow model

58

After the training process is done the model needs to be tested on the data that it has not yet

seen before. Note that it will be trained only once unlike the ARUVIA model and thus won't

tweak its parameters to compensate for the new data. To do that we are assembling a testing

set of x with the same logic as in the training one (we have already created the y set as the

testing one for A R I M A , and it is also present in the full stock).

£ m o d e l i n p u t s = f u l l _ s t o c k [l e n (f u l l s t o c k) - l e n (t e s t s t o c k) - p r e d i c t i o n d a y s :] . v a l u e s
model_inpLits - nodel_ in puts , re shape (-1,1)
model_inputs = sca ler . t ransform(model_ inputs)

x t e s t = []

f o r x i n range(pred i c t i o n d a y s l e n (m o d e l _ i n p u t s }) :
x t es t . append (nod e l _ i n pu t s [x - p r e d l c t l o n d a y s : x , 9])

x t e s t = n p . a r r a y (x t e s t)
x t e s t = np. reshape(x_ tes t , (x t e s t . s h a p e [B] , x t e s t . s h a p e [l] , 1)}

pred lc ted_pr i ces = node l . p r ed i c t (x _ t e s t)
p red i c ted_p r i c es = s ca l e r . inverse_tr , ansfor , m(predic ted_pr ices)

Figure 56 - Testing of a TensorFlow model

The last step on the image above uses the parameters that were saved in the scaler upon

initial transformation of our data to reverse-scale the prediction from a form of 0 to 1 to a

usual one.

After the testing is done, we can plot the predictions.

59

p i t . p l o t (t e s t s t o c k p r i c e s , c o l o r = " g r e e n " , l a b e l = " R e a l d a t a ")

p i t . p l o t { p r e d i c t e d _ p r i c e s J c o l o r = 'r-ed' J l abe l = ' L STM P r e d i c t i o n ")

p i t . t i t l e (f { c o m p a n y } P r i c e ')

p l t . x l a b e l (" T i m e ")

p i t . y l a b e l (" S h a r e P r i c e ")

p i t . l e g e n d ()

p i t . showQ

From looking at the plot we can see that the model performs worse compared to the A R I M A

model due to not being retrained every time.

The residuals can be found and plotted in the same manner:

60

^ } l s t m r e s i d u a l = []

I i = 0
I for* v a l u e i n t e s t s t o c k p r i c e s :

l s t n _ r e s i d u a l . a p p e n d (v a l u e - p r e d i c t e d _ p r i c e s [i])

i += 1
I p i t . p l o t (l s t m _ r e s i d u a l J c o l o r * = " r ed " , l abe l= "LSTM R e s i d u a l ")

p i t . t i t l e (f { c o n p a n y } P r i c e ')

p i t . x l a b e l (" T i m e ")

p i t . y l a b e l (' S h a r e P r i c e ")

p i t . l e g e n d ()

p l t . s h o w ^

Figure 57 - Finding and plotting LSTM error

Now let's explore the residuals and find the coefficient of determination.

The info shows that the average error is of 6$, with the biggest one being 20$.

And based on the coefficient of determination we can conclude that the model explained

only 72% of the target variable variation, which is 3.5 times worse than in case of the

previous approach.

61

[72] 1 s t m _ r e s i d u a l _ j o i n e d = [x f o r 1 i n l s t m r e s i d u a l for- x i n 1]

p d . D a t a F r a m e { l s t m _ r e s i d u a l j o i n e d , c o l u m n s = [" R e s i d u a l "]} . d e s c r i b e Q

Figure 58 - Exploring LSTM residual

[73] r 2 _ s c o r e { t e s t _ s t o c k _ p r i c e s j p r e d i c t e d p r i c e s)

Figure 59 - R-squared coefficient of LSTM predictions

5.6 VAR model

The last approach to be demonstrated is creation of a system of multiple variables using

V A R model. For this example the past data for two competitor companies will be used as

additional variables in an attempt to check i f predicting tomorrow's value for three

companies together and then extracting the value for a companies of our interest would work

better than using a single one.

To begin, we need to construct a dataset with the new stocks. For the example of A A P L ,

MSFT and GOOGL stocks were selected.

62

Q company2 = "MSFT"

I company3 = 'GOOGL"

v a r s t o c k = da ta .Da taReader f [company , c o m p a r e , company3]j "yahoo

f i r s t _ f u l l _ d a y , l a s t f u l l d a y)

Figure 60 - Constructing a dataset of three stocks

Explanatory variables are also called independent, this name implies that we don't want them

to have a relation between each other. We can check it for our new dataset using the bult in

corr function of pandas dataframe.

Q v a r _ s t o c k [" C l o s e '] . c o r r ()

H I
Symbols

AAPL 1.000000 0.982164 0 956946

MSFT 0.9B2164 1.000000 0 974940

GOOGL 0.956946 0.974940 1.000000

1 1
Figure 61 - Correlation matrix using pandas

As we can see the variables are indeed very dependent on each-other, it is better to have

correlation of less than 80%. Apart from that, it most probably is not stationary. Luckily, the

first differencing will deal with both issues.

^ v a r d i f f e r e n c e d = v a r _ s t o c k [' C l o s e "] . d i f f () . d r o p n a Q

v a r _ d I f f e r e n c e d . c o r r ()

C* Symbols AAPL MSFT GOOGL <

Symbols

AAPL 1.000000 0.696S96 0 569406

MSFT 0.696896 1.000000 0 734329

GOOGL 0.569406 0.734329 1 000000

Figure 62 - Effect of first differencing

63

As we can see the correlation issue was resolved, so we can continue with creating the V A R

model. This is done by using the Statsmodels package. After the model would be created,

we have to identify the optimal order for our data, it is limited to 90 as that's the order used

in L S T M example.

^ f rom s t a t s m o d e l s . t s a . a p i impo r t VAR

v a r m o d e l = V A R (v a r d i f f e r e n c e d)

v a r o r d e r = v a r m o d e l . s e l e c t _ o r d e r (m a x l a g s = 9 0 }

v a r o r d e r . s u m m a r y ()

/ u s r / l o c a l / l i b / p y t h o n 3 . 7 / d i s t - p a c k a g e s / s t a t s m o d e l s /
s e l f . _ I n i t _ d a t e s { d a t e s . , f r e q)

VAR Order Selection (*
highlights the minimums)

AIC BIC FPE HQIC

0 6.322 6.330 556.9 6.325

1 6.282 6.31 T 534.8 6.292

Figure 63 - Selecting the optimal order for VAR model

In the summary the best resulting value of several measures is achieved. One of them is AIC

which stands for Akaike information criterion. It is used to determine how well the model

represents the data. It was already used in the auto A R I M A model to select the optimal

parameters. The minimal value for AIC was achieved by using an order of 84, so that is the

selected one for this model. Now the usage of such model needs to be simulated by retraining

it every day on the new data for the past year.

o l ag^order = 84
x = 2265

v a r p r e d l c t i o n s = [[]j[]j[]]
f o r obs In t e s t _ s t o c k _ p r i c e s :

v a r m o d e l = VAR(var_d i fFerenced[0:x])
r e s u l t s = v a r m o d e l . f i t (l a g ^ o r d e r)
x += 1
v a r p r e d i c t i o n = r e s u l t s . f o r e c a s t { v a r _ d ! f f e r enced . va l ue s [- l a g^o rde r :] , 1)
var_pred ict ions [©] .append(var_pred ict ion[0 [0])
v a r _ p r e d i c t i o n s [l] . a p p e n d (v a r _ p r e d i c t i o n [a [1]>
va r_p red i c t i on s [2] . append (va r_p red i c t i on [3 [2])

Figure 64 - Simulating the usage of VAR model

Now it is needed to convert the list of lists of predictions into a dataframe and do the reverse

differencing.

64

Q v a r _ p r e d i c t i o n s = pd.DataFrame({company:varjD r e d i c t i o n s [6] ,

compa ny2 : va r_p red i c t i o n s [l] J

company3:var_predictions[2],}}

v a r _ p r e d i e t i o n s . i n d e x = v a r _ s t o c k [' C l o s e "] [2 2 6 4 : - 1] . i n d e x

r e v e r s e _ p = v a r _ s t o c k [" C l o s e '] [2 2 6 4 : - 1] + v a r _ p r e d i c t i o n s

r e v e r s e _ p = r e v e r s e _ p . i l o c j] l : , :[]]

Figure 65 - Converting list into DataFrame and reversing the difference

Now the predictions need to be plotted.

p i t . p l o t { t e s t _ s t o c k _ p r i c e s , co lor= "green"
p i t . p l o t { r e v e r s e p [" A A P L "] . v a l u e s , c o l o r
p i t . t i t l e (f { c o m p a n y } P r i c e ' }
p i t . x l a b e l (' T i n ie ')
p i t . y l a b e l (" S h a r e P r i c e ")
p i t . l e g e n d ()
p i t .show{)

AAPL Price

l abe l= "Rea l da ta ")
•range"j label= 'VAR P r e d i c t i o n ")

Figure 66 - Plotting VAR predictions

On this plot we can see that the model is overestimating the price. Let's find the residuals

and explore them once again.

65

c v a r _ r e s i d u a l = []

i = 0

f o r v a l u e i n t e s t s t o c k p r i c e s f : - 1] :
v a r _ r e s i d u a l . a p p e n d (v a l u e - r e v e r s e _ p [" A A P L '] . v a l u e s [l])

i += 1
p i t . p l o t { v a r _ r e s i d u a l j c o l o r = " r e d " , l abe l= "VAR R e s i d u a l)

p i t . t i t l e (f ' { c o m p a n y } P r i c e ')

p i t . x l a b e l (" T i m e ")

p i t . y l a b e l (" S h a r e P r i c e ")

p i t . l e g e n d ()

p i t . s h o w {)

AAPL Price

-1.25 -

-1.50

-1.75
u

-2.00 -

IC
<z

-2.25

-2.50

-2.75

-3.00 -

VAR Residual

Figure 67 - Calcualting and plotting VAR residuals

The negative error confirms our observation of model's overestimation.

The exploratory info below shows that the average error is negative 2$, and the maximum

one being of negative 3$. The R-square coefficient states that the model explains 95% of the

target variable variation.

66

count 251 000000

mean -2.185242

std 0 316267

min -3016717

25% -2 3393B2

50% -2.1B5800

75% -2 034439

max -1 142536

Figure 68 - Exploring VAR residuals

Q r 2 _ s c o r i e { t e s t _ s t o c l i _ p r i c e s [l :]j reverse_p['AAPL"])

6.9575124243B991

Figure 69 - R-squared calculation for VAR predictions

67

6 Results and Discussion

Two of the three models have shown quite a significant accuracy of evaluation. Though,

they are not suitable for prediction of future stock price. Here is why:

6.1 Strategic evaluation of the models

The primary issue is common sense. The price of a stock is not determined by its previous

price, nor by the previous price of its competitors. Even excluding their trend characteristic

there are no specific cycles that would determine its behavior. The price of a stock is only

dependent on the market situation, which is affected by various factors that are much more

significant than the previous price behavior. Those factors include things like business

decisions of the company, and political situation. The words above can be easily

demonstrated by taking a closer look at the predictions of the models.

^} p i t . p l o t (t e s t s t o c k p r i c e s [l e n (t e s t _ s t o c k _ p r i c e s) - 2 B : l e n (t e s t _ s t o c k _ p r i c e s) + l] .

c o l o r = ' g r e e n ' , l a b e l s " R e a l data")

p I t . p i o t (p ř e d 1 c t ed_prIce s [l en (te s t_ s toc k_pr1ces)-2fl:1e n(tes t_s to ck_p r i ces)+1].,
co lo r = ' r e d ' J label="LSTH P r e d i c t i o n ')

p I t . p i o t (a r ima_pred i c t i o n s [len (tes t_s toc k_pr i ce s) -2 B : len(test_stoc k_pric e s)+ l] ,

co lo r = 'b lack"j label='ARIMA P r e d i c t i o n)

p i t . p l o t (reve r se_p ['AAPL '] . va l ue s [l en { te s t_ s tock_pr i ce s) - 2 1 : l en (te s t_ s tock_pr i ce

co lo r ='orange", label='VAR P r e d i c t i o n ')

p i t . t i t l e (f {company} P r i c e ')

p i t . x l a b e l (' T i m e ")

p i t . y l a b e l (' S h a r e P r i c e ")

p i t . l e gend ()

p i t . showQ

Figure 70 - Creating a plot with all predictions

On the plot below we will be able to find the predictions for last twenty days of using the

models. If we observe the behavior of V A R and A R I M A predictions, we will conclude that

it looks almost like a lagged variable. Every time the stock price goes down it takes them a

day to understand them and simply readjust for it.

The reason for it was already stated - it is the irrelevance of past price to the current one.

68

AAPL Price

— i 1 1 1 1 1 1 1 —

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time

Figure 71 - Plot of all predictions

The A R I M A and V A R models can be of a great help when working with data that has more

cyclic characteristics and less random behavior. Be aware that each of those models,

especially the L S T M one, would greatly benefit from inclusion of some additional variables

that have more relevance to the company's performance, like its quarterly earnings results

(or the difference in them). This is the information that actually influences the stock price

and could be very beneficial to determine it in the future.

7 Conclusions

Although the results outlined in previous chapter might disappoint ambitious investors, the

goal of this thesis was to introduce several techniques for time series analysis and to

demonstrate how to use statistical forecasting models in Python, but not how to build an

investment strategy. This goal was achieved in its fullness.

The initial chapters of this thesis have described the context and history of time measurement

and explained the statistical and mathematical foundations for their analysis. The theoretical

examples used in the thesis demonstrated the differences among various algorithms for time

series forecasting. The ease of reading and writing Python code was demonstrated by a

practical study. In that example, all of the important stages of analytical software

development were covered:

1. Selecting appropriate tools

69

2. Setting up the programming environment

3. Getting the data

4. Exploring the data

5. Model implementation

6. Model evaluation

As the author I hope that this work would be valuable to a future reader and could serve them

as a beginners guide on: What is time series analysis? Where did it come from? And how to

approach it?

8 References

Google Trends. [Online] 2022. https://trends.google.com/.

Devlin, Keith. About time. 1999, Devlin's Angle.

Marill, Keith A . Advanced Statistics: Linear Regression, Part I:. 2004, A C A D E M E R G

M E D , pp. 87-93.

Daderot. File:Water clockm Egypt, Ptolematic Period.. Wikimedia Commons. [Online]

August 22, 2014.

Elser, Veit. File:Time series of norm of difference-map increment A, during solving random

3-SAT instance.png. commons.wikimedia.org. [Online] 2007.

https://commons.wikimedia.Org/wiki/File:Time_series_of_norm_o f_difference-

map_increment_%CE%94,_during_solving_random_3-SAT_instance.png.

Donthi, Ranadheer, et al. Estimation Methods of nonlinear regression models. 2019, AIP

Conference Proceedings.

Frazel, Thomas. Going Back in Time: The History of Timekeeping. 2013, English

Composition Program Director, pp. 15-21.

Halswanter, Thomas. File:Residuals for Linear Regression Fit.png. Wikimedia Commons.

[Online] January 30, 2013.

https://commons.wikimedia.Org/wiki/File:Residuals_for_Linear_Regression_Fit.png.

Hamilton, James D. 1994. Time Series Analysis. Princeton : Princeton University Press,

1994. ISBN: 0-691-04289-6.

70

https://trends.google.com/
http://commons.wikimedia.org
https://commons.wikimedia.Org/wiki/File:Time_series_of_norm_o
https://commons.wikimedia.Org/wiki/File:Residuals_for_Linear_Regression_Fit.png

Heitordp. File:World time zones.svg. wikimedia commons. [Online] March 2021, 23.

https://commons.wikimedia.Org/wiki/File:World_time_zones.svg.

Kowarschick, Wolfgang. File: Normal Distribution Sigma.svg. Wikimedia Commons.

[Online] October 4, 2012.

https://commons.wikimedia.Org/wiki/File:Normal_Distribution_Sigma.svg.

Manning, Jeremy. File:Acf new.svg. Wikimedia Commons. [Online] June 30, 2009.

https ://commons. wikimedia.org/wiki/File: Acf_new. s vg.

Tranmer, M, et al. Multiple Linear Regression (2nd Edition). 2020, Cathie Marsh Institute

Working Paper.

Nielsen, Aileen. Practiacal Time Series Analysis Prdeiction with Statistics & Machine

Learning. Sebastopol: O^Reilly Media, Inc., 2020. ISBN: 978-1-492-04165-8.

Vodolazhskaya, Larisa. Reconstruction of anctient Egyptian sundials. 2014, Journal

Archaeostronomy and Ancient Technologies.

Vincent, Adrien F. File:Mpl exaple scatter plot.svg. Wikimedia Commons. [Online]

September 26, 2016.

https://commons.wikimedia.Org/wiki/File:Mpl_example_scatter_plot.svg.

Vishwas, B V and Patel, Ashish. Hands-on Time Series Analysis with Python, s.l. : Apress,

2020. ISBN: 978-1-4842-5992-4.

9 Appendix

Link to colab notebook:

https://colab.research.google.com/drive/lf0pl2H3RBL6yzHxiT97rXpPSEudnZP4 ?usp=s

haring

71

https://commons.wikimedia.Org/wiki/File:World_time_zones.svg
https://commons.wikimedia.Org/wiki/File:Normal_Distribution_Sigma.svg
http://wikimedia.org/wiki/File
https://commons.wikimedia.Org/wiki/File:Mpl_example_scatter_plot.svg
https://colab.research.google.com/drive/lf0pl2H3RBL6yzHxiT97rXpPSEudnZP4

