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+ Annotation

Nitrogen availability and transformation in acidified and N saturated soils of
Czech (The Bohemian Forest, Ore Mountains) and Ukraine (Pop lvan massif)
mountain forest ecosystems were investigated. The study was primarily focused
on the role of microbial immobilization in soil N retention. The study was based
on field measurements (ion exchange resins), analyses of selected soil
biochemical and microbial characteristics, and on laboratory experinieits (
labelling).
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ABBREVIATIONS

Al — aluminium

ATP — adenosine triphosphate

BC - base cations

C — carbon

Ca — calcium

CaCQ — calcium carbonate

(Ca, Mg, Ca)Si@- silicate minerals
CO, — carbon dioxide

DNRA — dissimilatory nitrate reduction to ammonium
DOC — dissolved organic carbon
DON - dissolved organic nitrogen
EMEP — European Monitoring and Evaluation Programme
H — hydrogen

HNO; — nitric acid

H,SO, — sulphuric acid

K — potassium

Mg — magnesium

Na — sodium

N — nitrogen

NH3; — ammonia

NH, — ammonium

N20 — nitrous oxide

NO; — nitrate

NO, — mono-nitrogen oxides

P — phosphorus

S — sulphur

SO, — sulphur dioxide

SOM - soil organic matter






1. General Introduction

1.1 Background

Atmospheric pollution related to anthropogenic \agtihas become one of the
main factors affecting nutrient cycling of ecosysseover the last two centuries
(e.g. Norton and Vesely, 2003; Kagk and Posch, 2011). Like the whole of
Central Europe, the mountain area of the Czech IBliephas been strongly
acidified through emissions coming predominanttyrirthe most industrialized
European region located at the German-Polish-Chedtter, - the so called area
of “Black Triangle” (Berge, 1997). Emissions in tkkzech Republic reached
their maxima in 1980s (Fig 1., Kok and Vesely, 2005; Kopak and Hruska,
2010) and since then have significantly decrea86&h(in SQ, 53% in NQ and
35% in NH; emissions, Kop#ek et al., 2011; Kopg&k and Hruska, 2010) due to
the restructuring of industry and agriculture afpeitical changes in 1990s
(desulphurization of power stations, decrease @ignand cattle production and
the application of synthetic fertilizers).
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Figure 1: Trends in S§ NQ,, and NH emissions in the Czech Republic and
Slovakia (CS). Empty points are for middle Europasfria, CzechRepublic,
Germany,Poland, andSlovakia). Black points are presumed central Eurapea
emissions for 2010 and 2020 (EMEP (2009) moded®e(t from Kopéek and
Hruska, 2010).

In the Bohemian Forest, the area where most ofabearch presented in
this thesis was conducted, the acid depositiorsulhur (S) and nitrogen (N)
compounds corresponded closely to the emissionggra the Czech Republic
(e.g. Kopéek et al., 1997; Oulehle et al., 2006). Sulphur ahdepositions
peaked in 1980s (Fig 2.), then both decreased lyapild2000s when total N



depositions stabilized while the S deposition corgd to slow down. The
atmospheric N deposition was dominated by nitr&t®s() from 1960 to 2000,
while ammonium (NH) prevailed from 1850 to 1960 and again after 2010
(Kop&ek and Hruska, 2010).
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Figure 2: Trends in S (A), NQ (C) and NH' (D) deposition in the
Bohemian Forest (taken from Kafek and Hruska, 2010)

Despite the reductions of S and N emissions in gjrglobal rates of
NOxand NH emissions have been increasing or stable, mostycamsequence
of the industrial development in Asia (Kaek and Posch, 2011; Smith et al.,
2011). The recovery of waters and soils in a respdo decreased S depositions
which is currently observed (e.g. Evans et al.,1209edbalovéa et al., 2006;
Santickova et al., 2007; Oulehle et al., 2008) may evahtislow down, as the
role of N depositions is expected to increase m fiture and the effects of
climate change are also suspected to become momeyniced (e.g. Murdoch et
al., 1998; Keetle et al., 2003; Norton and Ves2(03; Vesely et al., 2003). In
addition, many of the original central Europeareftrstands have been almost
completely altered into even-aged coniferous mohlo which has
contributed to widespread expansion of pest indastiand forest dieback. From
these points of view the ongoing recovery of saild consequently waters from
acidification may be delayed and the extent of reitacidification is rather
difficult to predict. Hence, acidification still mains an important topic of
current ecological research worldwide.



1.2 Acidification of forest soils

Soil acidification is defined as a process of pHuation and/or lowering of soil
acid-neutralizing capacity. In mountain areas Withher rainfall (~1000 mm)
and coniferous or mixed forests, it can occur radiyiin the long-term through
decomposition of organic matter. During decompositiCQ and organic acids
are released and base cations’{Qdg®", K*, N&) are leached from the soil by
forming soluble salts of the bicarbonate ions. Kidtion is also driven by the
oxidation/reduction processes of N and S compoumdke soil. For example,
H" and NQ' are released by the oxidation of NHnitrification) and a strong
acid (HNQ) is formed. In the overall reaction of nitrificati 2H" are generated
for every N (Sprent, 1987).

Acidity can partly be neutralized by weathering qgasses and related
cation exchange reactions in soil (soil bufferirapacity). Soils on bedrocks
containing carbonate (CaGor silicate minerals ((Ca,Mg,Ca)SjOare less
susceptible to acidification, because their bedsoekease base cations (and
remove H) at relatively high rates (Sverdrup, 1990). In theech mountain
region, with shallow soils laying mostly on aciddbecks (e.g. schist, gneiss),
the increased atmospheric acidity overwhelmed tkathering reactions and
caused an exhaustion of soil neutralizing capdeitghropogenic acidification).
For example, the current exchangeablejok values in the Bohemian Forest
soils are 2.5 — 3.3 in the organic horizons (Kabéet al., 2002a,b) and base
saturation is only 12 — 15 % on average, whilentioelelled pre-industrial values
of base saturation were 12 — 27 % (in 1860, Majat.e2003).

Another important factor that can support soil dwdtion is the
transformation of original forests to fast-growisgruce monoculturesPcea
abies in Czech Republic). Acid precipitation under cordfies species
(throughfall deposition) is generally higher thamdar deciduous trees due to
their higher leaf area index and longer leaf redpenperiod (e.g. Augusto and
Ranger, 2001; Oulehle et al., 2007). The leafrltieality and litter degradability
also determine the rate of soil acidification (eRgich et al., 2005). Spruce
needle litter is rich in lignin and other phenammpounds, and poor in nutrients
(high lignin-to-N ratio, high phenolics-to-availabl phosphorus ratio).
Consequently it is more resistant to biological rdeégtion and decomposes
slowly, producing more organic acids during decosmpan (Binkley, 1995;
Hobbie et al., 2006; Saiitkova et al., 2006; Barta et al., 2010). In additite
uptake of base cations by spruces biomass is ligh reaches the maximum



after 40 - 50 years (HruSka and Cienciala, 2009)elVspruce is harvested in
managed forests, organic matter is removed andentdr cannot return via
decomposition back to the soil.

It is generally accepted, based mostlyimwvitro experiments that most
microorganisms prefer near neutral or slightly lfie soil conditions for
optimal growth (e.g. Killham, 1994). However, sl rich in heterogeneous
micro-environments and can host plentiful differgnbups of microorganisms
with large metabolic diversity (Schimel and Benn2@04;Alewell at al., 2006;
Manzoni and Porporato, 2007). It is highly probatiiat microbial processes
that are restricted in acidic conditions vitro would exhibit functional
redundancy and would run under acidic conditionsfigdd. For example,
nitrification was for a long time considered to tegligible in acidic soils, but
results from the last decades clearly demonstdas¢ this is not the case
(reviewed in de Boer and Kowalchuk, 2001). Recentlyvas discovered that
Archaea rather than bacteria are capable of amnmxidation under acidic soll
conditions. A possible explanation is that the \disti of bacterial ammonia
oxidizers is restricted by the reduced availabitityNH; under low pH, because
of its ionization to NH' (Frijlink et al., 1992). Under these conditions ks
diffusion decreases, energy requirements for,'Ntansport increase, and
Archaea are probably better adapted for such emviemts (Nicol et al., 2008;
Zhang et al., 2012).

Soil pH was found to influence the composition aénobial community
and the activity of some functional groups e.ggillvacteria (e.g. Penneanen et
al., 1998; Rousk et al., 2009). Generally, fungrehdeen showed to be more
tolerant to acidic soil conditions than bacterigvihg a wide pH-growth
optimum (reviewed in Strickland and Rousk, 2010u&oand Baath, 2011).
However, Sinsabaugh (2010) showed that the actigitycertain enzymes
produced mainly by fungi (phenol oxidases and pdises) is inhibited by low
soil pH across different ecosystems, which may Hee teason for reduced
degradability of soil organic matter in acidifieails.

Anthropogenic acidification is connected with iresed mobilization of
ionic form of aluminium in soils (Af, e.g. Dise et al., 2001; Drabek et al., 2005)
that is known to have toxic effect on plants androvrganisms (llimer et al.,
1995; Joner et al.,, 2005; Kochian 2005). Aluminiisnpresent naturally in
alumina-silicates (micas, feldspars and their weratly products) and also in
non-silicate minerals (e.g. gibbsite, varisciteinite) (Pitter, 2009). Aluminium
is mobilised in soil through chemical weatheringhdfminerals by the effect of



CQO,, weak organic acids (export of organic Al compkxand strong acids such
as HNQ and HSO, (export of ionic Al) (Vance et al., 1996). In soivith pH
higher than 6, Al mobility is low, but when the IspH decreases below 4.7,
mobile AF* dominates the soil solution pool (e.g. Mulder awsser, 1994;
Sposito, 1996; Pierzynksi et al., 2000). In thedifieid Bohemian Forest soils,
exchangeable Al represents on average 60% of the total soil exydwie
capacity (Kopé&ek et al., 2002a,b). Low ratio of base cations (B&)AI in
acidified soils (molar ratio BC/Al < 1) affects ratyely the physiology of
spruce trees leading to declined root growth arahdiring, water deprivation,
elevated defoliation and higher sensitivity to pesections (e.g. Foy, 1983;
Heim et al., 2000; Puhe and Ulrich, 2001). Consitler amount of Al is also
leached from acidified soils affecting the nutristatus of waters. Kopék et al.
(2000) showed that Al, incoming through terresti@dses in acidified forest
soils, immobilized phosphorus (P) in glacial lak€ansequently, Vrba et al.
(2006) showed that under #lexcess in lake, P metabolism and food web
structures are altered. Elevated concentrationsAldf can also affect the
metabolism of microorganisms in the soil. Aluminiwan induce rigidity of
their membranes and causes the inhibition of ceeazymes (Rosswall et al.,
1986; llimer et al., 1995; 2003). Besides, Al aidditwas shown to suppress the
decomposition of soil organic matter (SOM) by thegipitation of dissolved
organic carbon (DOC), thus reducing its bioavaligbi(Scheel et al., 2007;
2008) and this can have an effect on the compasitd soil microbial
community (Joner et al., 2005). Although, the teedfect of AP* is indisputable,
it is often difficult to separate the direct effexftAl** on microbial metabolism
from the effect of low pH, because both are closelgted.

1.3 Introduction to microbial N transformation in soil

Nitrogen is essential nutrient for living organismé is present in the
environment in various chemical forms, from divefsens of organic N (amino
acids, nucleotides, amines etc.) to mineral N (anioro, nitrate) and gases
(dinitrogen gas, nitrous oxide, nitric oxide androgen oxide). The most
important part of its cycle occurs in the soil.

Generally, the key process of the N cycle in ssilthe turnover of
organic matter through decomposition. Decompositionludes both the
physical breakdown and biochemical transformatidn complex organic
compounds into simpler organic and inorganic mdeszuOrganic N-containing



polymers are not directly bioavailable, becaus¢hefr complexity. They must
be cleaved by extracellular enzymes secreted by rogiganisms
(depolymerization) to release monomers (amino aeiasno sugars, and nucleic
acids, Fig 3., Schimel and Bennet, 2004). Theseomens constitute the soil
available DON pool and are immobilized by both manganisms and plants
that compete with each other in the N limited est@ys. Organic monomers
are then converted by microorganisms into minerébhs in the processes of
N mineralization.

— ==

soil
organic [——> | organic | __5 | general | —> -
matter monomers microbe | €— - m

Figure 3: Depolymerisation as a regulatory mechamief N cycle (simplified
from Schimel and Bennett, 2004).

The first step of N mineralization is the microbagradation of simple
organic compounds to ammonium (ammonification).sTimocess is driven by
the need of heterotrophic microorganisms for enargy C. Thus, ammonium as
a result of ammonification can be considered a fogpct of microbial
catabolism. Released ammonium can then be conveoteditrate through
nitrification. Nitrification is the production of & from the oxidation of
reduced N compounds. Most often we speak aboutraptoc nitrification, the
two-step process of oxidizing NHto NO; (conversion of ammonia to nitrite
and nitrite to nitrate) serving as the energy setioc nitrifying microorganisms.
However, several heterotrophic microorganisms frobacteria (e.g.
Arthrobacter) to fungi (e.g. Aspergillus) can alsxidize either ammonium or
organic N to N@ and NQ@/, but gain no energy from this process (e.g. Sydtia
al., 2005) It is still not clear how they benefit from thistpavay.

Both inorganic forms of N derived from N mineralism may once
again be incorporated into soil organic matter bycrabial and plant
immobilization. Microorganisms immobilize NHby two primary pathways
depending on the N concentration (dehydrogenase and glutamine syagbet
glutamate synthase pathway) and incorporate it ghitamate. Once glutamate
is formed, it can be transferred to other carbop qk&letons by transaminase



reactions to form other amino acids (Sylvia et 2005). Nitrate can be reduced
by microorganisms in three processes: nitrate imimabon, denitrification and
dissimilatory nitrate reduction to ammonium (DNRAJI the processes require
energy. Denitrification and DNRA differ from NOmmobilization by the fact
that reduced N is not used by the cell. Nitratawvesen these processes as
electron acceptors for the cell’s energy metabolisntonditions of oxygen
deficiency. Both processes are coupled to electransport phosphorylation
(generating ATP). Final products of denitrificatiame NO and N, while
DNRA releases NK to the soil. Denitrification gains slightly lesaezgy per
mol of NO;” than DNRA (560 and 600 kJ moNOjy, for denitrification and
DNRA, respectively, Tiedje et al., 1989). Via deifiitation N is ultimately
returned to the atmosphere as a gas. Small pdineajas may also come from
nitrification.

1.4 N saturation - definitions

Nitrogen is usually a limiting nutrient in tempez&gbrest ecosystems with low
anthropogenic pollution and its main input occufwotigh atmospheric
deposition, with the exception of forests with Mirig plant species (Keeney,
1980, Moldan anderny, 1994). Most of the N is accumulated (immaieidi) in
soil and plant biomass and N loses are minimal,idated mostly by dissolved
organic N (DON) (Kortelainen et al., 1997) originat from the transformation
of plant biomass and SOM.

When the anthropogenic loading of N is elevatadafdong period of
time, however, the ecosystem is no longer ablemimabilize all deposited N
and the state of N saturation is achieved (Agred Bosatta, 1988). The
definition of N saturation is not uniform in litdtee, but ecosystems are
generally considered to be N saturated whens; Nfppears in soil leachate
(Stoddard 1994, Venterea et al., 2004). In its stigeeaning, N saturation can
be viewed as a permanent alteration of the soilyblecfrom closed internal
cycling to an open cycle where the excess N flowsobthe ecosystem (Kamari
et al., 1992).

In the traditional N saturation model, the respookan ecosystem to
elevated N load is divided into several biogeoclvaihstages (Fig 4., Aber et al.,
1989, 1998). Basically, enhanced N deposition emes N availability to plants
and decreases C-to-N ratio of their litter. Durtt@composition the organic soil
horizons are enriched by N, which accelerates Neralization (stage 1) and



nitrification, while gross N immobilization contially decreases (stage 2). This
results in elevated NOleaching from the ecosystem (stage 3). The ecasyhlt
retention capacity in this traditionaiew relies primarily on plant uptake as
microbial immobilization can be limited by C. Thi®ncept has led to partial
marginalization of the importance of microbial Nmmbilization processes in
the N saturated soils.

NOg
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Figure 4: Stages of N saturation according to Emr(2207) and based on Aber
et al. (1989, 1998).

Novel conceptual model of N saturation (Lovett &wbdale, 2011) is
based on an assumption that added N can flow amedusly to all N sinks,
which do not reach their N saturation capacity, dmgumulate N at rates lower
than the rate of N input. In both models, howeudr,mineralization and
nitrification are assumed as driving force processieN transformation, while
the direct incorporation of mineral N into microbomass is expected to be
less important. Lovett and Goodale (2011) furth@inted out that rather than a
series of stages, N saturation is the result ofirnteraction of several dynamic
factors that control N sinks. This was confirmedergly by modelling soil N
retention of the ecosystem in relation to carbanr@over (Oulehle et al., 2012).

1.5 N transformation in N saturated soil

Nitrate concentrations in unpolluted forest soind to be low and net
nitrification rates (i.e. change of NOconcentrations per unit of time) are
usually negligible. These observations led to aagigm, that as ecosystem
mature, losses of N are reduced and N cycling besotightly closed with
nitrification turned off (Sylvia et al., 2005). But may be possible that
nitrification is running and N@produced is immobilized by microbial biomass.
The importance of microbial NOimmobilization in N retention ability of these
ecosystems has been already shown (Davidson e1982; Stark and Hart,



1997; Perakis and Hedin, 2001).

Data describing how N saturation changes soil Msfimation in
forest ecosystems are relatively heterogeneousitdespre than 20 years of
intensive research. It is still not entirely cledrere the leached NQoriginates.
Some studies showed that atmospherically depobitedn be directlfeached
out without encountering biological sink (physidalpass, e.g. Curtis et al.,
2005; Schleppi et al., 1998). Others, however, @dathat leached N undergoes
microbial transformatior(e.g. Nadelhoffer et al., 1999; Hagedorn et.al,9199
Pardo et al., 2004) (Fig 5.). Studies based on @oabpic measurementSN
together with'’O or **0 in NQy) revealed that leaching of deposited NO
through physical bypassing accounts for only 10%3f leached N in forested
watersheds and occurs usually during sudden rantsyduring snow-melting,
or in soil-poor rocky watersheds (reviewed in Gust al., 2011). Curtis et al.
(2011) further emphasized that direct leaching epasbited N might be
significant also in experimental studies with highadditions where the excess
of NH4" can reduce biological NQuptake.

Figure 5. Pathways of N leaching
(modified from Curtis et al., 2011).

Nitrogen from deposition may be leached
out without encountering biological sink
(1 — physical bypassing), as a result of
reduced N demand of plants and
microorganisms (2 — N saturation), or
may originate from both N sources —
nitrate  and ammonium involving
enhancement of nitrification (3).

Long term acid input was reported to reduce milolC pool and
sometimes also microbial N immobilization (e.g. Midty et al., 1996; Aber et
al. 1998; Corre et al. 2003; Compton et al., 2004llenstein et al., 2006;
Treseder, 2008). However, considerable uncertaigtgains concerning the
mechanism. Microorganisms may suffer by lack okbeeions or by Al toxicity
and may be limited by available organic C subst(ktey, 1988; Mulder et al.
2001; Waldrop et al., 2004; Scheel et al. 2007)gdRtless the possible
limitation of microbial growth and N uptake, theeusf stable isotopes in N
addition experiments showed that much of deposiedbecame rapidly
immobilized in soil (e.g. Melin et al., 1983; Abetral., 1998; Nadelhoffer et al.,



2004; Zak et al., 2004). Although it has been paatitributed to an abiotic
process (e.g. Davidson et al., 1991; Potthast.,e1886; Johnson et al, 2000;
Perakis and Hedin, 2001; Compton and Boone, 20Q@#reCet al., 2007;
Huygens et al, 2008; Morier et al., 2008), theralso strong evidence that
leaching of N@ from forest soils is largely dependent on the Mhwbilization
activity of the microbial community (e.g. Hart dt,a994; Aber et al., 1998;
Bengtsson and Bergwall, 2000; Zogg et al., 2000gBeson et al., 2003).

Microorganisms can immobilize both, organic andrgamic N sources
into their biomass (e.g. Merrick and Edwards, 1996¢din et al. 2001). Many
studies support the idea that organic N is the nsaurce for heterotrophic
microorganisms (e.g. Dunn et al., 2006; Gonod e2806). Regarding mineral
N, it is still generally accepted that, as a consege of energy constraints,
NH," is favoured over N@as a source for microorganisms (Rice and Tiedje,
1989; Schimel and Firestone, 1989; Gundersen ,e1%98; Booth et al., 2005;
Perelo et al., 2006). The assimilatory N@duction (NOs; immobilization)
requires additional energy for the conversion of;Nt©® NH,” and for the
subsequent incorporation into amino acids. The aedumicrobial NG@
immobilization by high levels of available NHwas recognized as a cause of N
leaching rather than the enhancement of nitrificattself in some N saturated
forest ecosystems (Emmett, 2007; Geisseler e2@10). Nevertheless, Curtis et
al., (2011) emphasized that the production of;Nfust be considered as one of
the sources of N leaching, because in some stwdese only ammonium
sulphate was used as a fertilizer Ni@aching occurred.

Assimilatory NQ' reduction is regulated by the N availability arsd i
expected when energy is in excess relative to avitity of NH," or organic-N
compounds. Stark and Hart (19%tiggested thahere are at least three reasons
why immobilization of N@ can occur(1) high rates of C addition may result in
N limitation to microbial biomass and NOuptake increases, (2) spatial
variability of C inputs may result in N mineraligat and nitrification micro-
sites poor in C (organic matter is decomposed to@end excess of N is
released as NF) and adjacent NQimmobilization C rich micro-sites and (3)
fungal populations can transport BOfrom micro-sites with high N
mineralization and nitrification to C rich microtess. This idea was expanded by
Schimel and Bennett (2004) in the assessment dfl theurce spatial variability.
Basically, when N availability in the soil increasenicroorganisms become less
N limited and begin to mineralize N (i.e. releaseMxcess as Nf). Produced
NH," is nitrified in N rich micro-sites. Mineral N difsed from N rich micro-
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sites to N poor micro-sites is immobilized by mimrganisms and plants.
Depolymerisation in such conditions is still redgudg the mechanisms of the N
cycle, however, micro-sites variability of diffeteN substrates and redox
conditions increases as well as the heterogenéityiarobial processes. As the
mineral N availability further increases, the comipn between plants and
microorganisms is less substantial, a lot of mihétaremains in the soil
solution, nitrifiers prosper, N becomes the dominant N form and can be
leached out.

An increased load of NO through atmospheric depositicghould
probably shift the microbial N immobilization tovelr NG, because
microorganisms are also capable of synthesizingeprdransporters for the
uptake of N@ (Gonzalez et al., 2006), the synthesis of whicimdsiced by the
availability of NG itself (Stark and Hart1997; Moir and Wood, 2001).
Bengtson and Bengtsson (2005) showed that atdeast bacteria in liquid soil
cultures (excluding micro-sites variability) immbbed NO;” even when N
was available. Booth et al. (2005) reported in daramalysis that microbial
immobilization of NQ' is common in forest ecosystems.

Nitrate leaching as an ecosystem response to etkvaineral N input
deposition is characteristic by its large variapiliMany manipulative N
addition experiments were done in various types egbsystems, with
inconsistent results. Ecosystem response diffettscpkarly in the early rates of
NO; leaching and in the seasonal course. Relatively Nigdoad can sometimes
lead to ambiguous reactions when neither N mingatitin nor nitrification are
enhanced (reviewed in Lovett and Goodale, 2011ti€et al., 2011). It could
be partly caused by different designs of the expenis (e.g. duration and dose
of N addition, type of acid addition - N with or twout S, type of mineral N
form added etc.) and also in the initial conditiamsler which the experiments
proceeded. Among all factors that can influenceekéntion capacity of the
ecosystem (e.g. history of land-use; bedrock, aod vegetation composition;
landscape characteristics; hydrology) the hight#sh&ion was paid to the soil C
pool size (Evans et al., 2006a; Rothwell et alQ80soil C-to-N ratio (Dise et
al.,, 1998; 2009; Gundersen et al.,, 1998) and thalitquof organic C
(Paavolainen et al., 1998; Strauss and Lambert02®002). Carbon-to-
nitrogen ratio of upper soil organic horizons wasrfd to be negatively related
to N leaching mainly in ecosystems with lower Nuhpup to 30 kg N ha
year® (Dise et al., 1998). Above this level the varidpibf the data increased,
suggesting other important factors causing therbgémeity. Other evidence
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that ecosystem N retention capacity is related rgamc C is the negative
correlation between concentrations of DOC ands;N@ streams and soils
(Kop&ek and Hejzlar, 1998; Goodale et al., 2005). Tagtut Townsend (2011)
showed that this nonlinear relation based proballyresource stoichiometry
and C limitation of heterotrophic metabolism existsross soils, freshwater
ecosystems, and oceans worldwide. This is not isimgr as soail

microorganisms are predominantly heterotrophs (8grton and Northup,
2011). Hence, soil N immobilization capacity shoukldy primarily on the

availability of soil organic C. Therefore, soil Gote should not be neglected
when considering factors affecting N retention c#yaof the ecosystems,
especially in N saturated conditions.

Over the last two decades, increases of DOC coratemts in streams
and lakes have been observed across Europe an Alodrica (Driscoll et al.,
2003; Monteheit et al., 2007). The rising trendsD@C concentrations were
ascribed, among others, to decreased S depostiank(et al., 2006; Evans et
al.,, 2006b; Monteheit et al., 2007), but can al® daused by increasing
decomposition of complex organic compounds aftdo&ting went down. In
fact, there are several indications that decomiposif older, humified, lignin
rich organic matter is suppressed and C is accuaulia soil under chronic S
and N deposition (Fog, 1988; Green et al., 1995gBend Matzner, 1997,
Magill and Aber, 1998; Hagedorn et al., 2003). Ad&bosition is accompanied
by a decrease diie fungi-to-bacteria ratio arld mineralization was found to be
negatively related to it9chmidt et al., 200446gberg et al., 2007 Moreover,
Hogberg et al. (2010) showed that conifers redhe& C allocation to the roots
(up to 60 %), which affects primarily the mycorrizungi. Fungi are generally
responsible for the decomposition of complex liiacluding lignin and humic
substances) and can translocate nutrients thrdwegjh iyphae network, which
gives them the opportunity to overcome nutrient ititions during
decomposition (Boberg et al., 2010). Therefore rtheivered activity could
contribute to suppressed organic matter decompaosiburing the recovery
phase, decomposition could be restored and acctedu@ could be released.
Goodale et al. (2005) came with the hypothesis thatincreases of DOC
concentrations is linked to decreasing trends of N@Gncentration observed at
the same time. They explain low M@oncentrations by increased microbial N
immobilization or denitrification in soils. Howevegreater understanding of alll
the mechanisms and experimental evidences arengiing.

12



2. Aim and hypotheses

The overall aim of the thesis was to describe Nlab#ity and transformation in
acidified and N saturated mountain forest soilsac8ithere are few data
concerning microbial N immobilization, the principhypothesis was, that
microbial N immobilization plays a crucial role in soil N transformation
and retention.

Specific hypotheses

(h1)  most of the N transformation processes odecuittse upper soil horizons
(h2)  microbial biomass N pool is substantiallylteégthan both mineral N

pools

(h3) enhanced terrestrial N export is accompabyeichicreasedh situ N
availability

(h4)  highin situN availability is caused by increased net N mihzaéion
processes

(h5)  microbial N immobilization occurs immediateijthout delay

(h6) N sources (organic and mineral) are immoédimto microbial biomass
simultaneously

(h7)  organic N is immobilized preferentially ovameral N

(h8) NG is immobilized even in N saturated soils

(h9) N immobilization is related to C availability

(h10) the composition of microbial community (fufigicteria) affects N
immobilization pattern

Objectives

In order to address the principal hypothesis it nesessary to evaluate the size
of microbial biomass N pool and determine its reé&atmportance as related to
other soil N pools. We further used the methodirfiositu measurement of N
availability and evaluated long-term data obtaifiedn field in a relation to
results acquired in laboratory incubations of stwl$ind out to what degree we
are able to extrapolate the data on the ecosystesh In the follow up work we
determined N fluxes through main soil N pools anesalibed microbial
immobilization of different N forms. The last, bubt the least important part of
the work was focused on the possible links amoregNhtransformations, soil
chemistry, C content, and the composition of mi@blwommunity in N
saturated forest soils.
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3. Experimental sites

The studies were carried out in four forested maianareas. Two of them were
Czech sites in The Bohemian Forest with sprucetgifiams, but unmanaged for
more than a century (Vesely, 1994) and undergoimgowery from
anthropogenic acidification1). Another mature spruce experimental stand
(planted in 1930s) was also located in the CzechuRlé, but in the Ore
Mountains currently undergoing recovery from extegyrhigh S deposition).
The third site is represented by pristine spruceesis of the Carpathian
biosphere reserve. This site hasn’t been impagteliréct human activity3d).

\ A
A\ sampling location
boundaries

N
0 100 200 300 400 Km A
— —

Source data: Natural Earth. Free vector and raster map data @ naturalearthdata.com

Figure 6: Location of experimental sites.
(1) The Bohemian Forest sites

Majority of the investigation were conducted in thatersheds of PleSné and
Certovo Lakes undergoing recovery from anthropogemidlification (Fig 2.,
decreasing levels of S and N depositions since "$386ut still releasing NQ
The watersheds of glacial lakes are situated inntadni area of the Bohemian
Forest, in the south-western part of the Czech RepuThese model
ecosystems with near-natural and mostly unmanagessts have been under
regular investigation of major elements fluxes ba watershed-lake ecosystem
level since 1998 (Kog&k et al., 1998). It was a great opportunity todgtu
microbial N transformation in soil at these sitescause data be directly related
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to the history of the sites, as well as to theuxdk in the ecosystem as a whole.

The watersheds of Pledné (48°77'N, 13°86 E) Gedovo (49°16°, 13°20°E) lakes are
situated at elevations from 1030 to 1378 m a.sth worth-east and east exposition,
respectively. The bedrock of PleSné Lake waterseddrmed by granite, while in the
Certovo Lake watershed it is mica-schist. Soils athbwatersheds are leptosols, podsols
and dystric cambisols. The forest is dominated loywsy spruceRicea abies90-160
years old), with a minor contribution of Europeagebh Fagus sylvaticy silver fir
(Abies alba and mountain astBérbus aucuparia Understory vegetation is composed
mainly of blueberry Yaccinium myrtilluy and bushgrasCélamagrostis villosp The
snow cover lasts usually from November to Aprik tiverage annual temperature is 4 -
6 °C and the average annual precipitation is 1460 m

(2) The Naetin site

The next Czech experimental site called®tn is located on the ridge of the
Ore Mountains, in the north-western part of theadbzeepublic. This region was
exposed to extremely high sulphur depositions (~+&&l ni®yr* in 1980s;
Berge, 1997), five times higher than in the Bohemkorest sites, and is
currently also undergoing recovery after the desgeaf deposition. We have
started to be interested in this site, becauseopmtrast to the Bohemian Forest
sites, there was a sharp decrease in leachafe W@ soil water concentrations
close to zero, indicating growing importance of midal immobilization and/or
decreases in NOproduction.

The Na&etin site (50°35'N, 13°15'E) is situated at eleatf 784 m a.s.l. on a gentle
slope oriented to the northwest. The bedrock isgragiss and soils are mostly dystric
cambisols. The forest at the site is completely idated by Norway spruce (~63 years
old) with the understory vegetation dominated byvyvaair-grass Deschampsia
flexuosg, bushgrass, and blueberry. The snow cover lastslly from November to
April, the average annual temperature is 6.3 °Camtlial mean precipitation is ~1000
mm.

(3) The Pop Ivan site

The intention to compare N saturated soils with istudbed soils, both

developed on acid bedrock and under comparablatdined us to the mountain
site located in the Pop Ivan massif in the Carpathiiosphere reserve (on the
border between Ukraine and Romania). Forests smafea were, until recently,
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considered as unimpacted by human activity, hereiagbone of the most

pristine forests in Europe. However, soon afterdite was chosen, our results
and as well as other recent studies showed thatatteia is strongly acidified,

most probably due to trans-boundary deposition.il8ilm to our Czech sites,

the area also seemed N saturated. Despite othieid)krainian soils gave us the
opportunity to study N transformation functioninghder possible energy

constrains of microbial metabolism, as this siteljke those in the Bohemian

Forest, was marked by a lower C availability.

The Ukrainian natural forest site (the Pop Ivae,st7°57°'N, 24°31°E) is situated at
1480 m a.s.l. on a steep slope exposed to the West. bedrock is composed of
crystalline schist and gneiss. Most soils are dystambisols and entic podsols. The
forest at the site is almost completely dominatgdpbimeval Norway spruce with a
minority of European beech and mountain ash. Undersregetation is composed of
alpine lady fern Athyrium distentifoliuy bushgrass, and blueberry. The snow cover
lasts from October till April, the annual averagenperature is 2°C, and the average
annual precipitation is 1800 mm.
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4. Present investigation

This thesis is based upon five publications or pagdeaper | evaluates the
relative importance of microbial N biomass in riglatto other soil N poolsh(,
2). Papers Il and Il present long-term monitoring of N availability, N
mineralization potential of soils and investigatesssible links between soll
chemistry and N transformation$3, 4, 9. Paper IV is interested in the
significance of microbial N immobilization in preving N losses from N
saturated soils and presents it as a function afallability (h 5 — 10. PaperV
shows that the restoration of the N retention ciéypatay be the consequence of
reduced S depositions through C availability retsledue to decomposition of
accumulated organic mattdrl(, 9.

Paper |
Nitrogen transformations and pools in N-saturatesumtain spruce forest soils.
Site: Bohemian Forest

The aim of this study was to assess the size andelative importance of the
main soil N pools (microbial biomass N, ammoniuntrate, dissolved organic
N) in N saturated mountain forest soils. In additithe influence of temperature
on the net processes of microbial N transformati®h mineralization,
nitrification, N immobilization) was determined. &ats showed that microbial
N pool was much larger than mineral N pools, arad the net N flux through
microbial N pool greatly exceeded total mineral Ibkés. It was an important
indication that the examined mountain soils propabhintain high N retention
capacity, despite their N saturation. All process®es under zero temperatures
indicating that mineral N can accumulate duringtetirunder the snow cover,
and is leached out after snow melt. The possilflecebf the shift in fungi to
bacteria ratio in N saturated soils (microbial @Nw@atio decrease) on microbial
respiration is discussed.

Paper I

Nitrogen availability in Norway spruce forest floothe effect of forest
defoliation induced by bark beetle infestation.
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Site: Bohemian Forest

This paper contains results of the long-term maeimigpof N availability within
the stand of mountain spruce forest. Its main aims wo elucidate the
relationship between available hHand NQ measuredn situand the potential
(net rates) of N mineralization and nitrificatioetdrmined during laboratory
incubations. We found that enhanced N mineralizathontributed to high
mineral N leaching after forest decline, althouglluced immobilization by
trees was identified as the primary cause of NHeac The excess of mineral N
release was most probably caused by the elevaped af spruce litter with low
C-to-N ratio into the soil and its subsequent degoosition without parallel
increases of microbial N immobilization. This was iemportant indication that
soil N retention capacity is related to soil (sudgt) C-to-N ratio.

Paper Ill
Changes in soil chemistry after bark beetle infisteand forest dieback.
Site: Bohemian Forest

This chapter aims to fill the gap in understandiogv the chemistry of forest
floor changes following natural forest dieback, wheelevated litter
decomposition occurs in acidified and N saturatts slt integrates the results
of a three-year monitoring in six-week samplingeimtls. The forest dieback
significantly increased water extractable Nbrganic N, and P. However, a 2-
year delay was observed in available N&ter main litter input through spruce
defoliation. We hypothesize that doubled conceiainat of water soluble C
could support microbial immobilization of excess Bésides, the study shows
that soil conditions can be partly improved by e@ssed base saturation
following the decomposition of the litter.

Paper IV

Microbial N immobilization is of great importanae acidified mountain spruce
forest soils.

Site: Bohemian Forest, Pop Ivan
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Main goal of presented study was to determine véretmicrobial N
immobilization can be a primary process affectingeiching from N saturated
mountain forest soils. It assesses with the imnmsdiibn of different™N
sources (ammonium, nitrate, glycine) by microbiedntess and describes the
transformation of added N sources during 48 hotiereoobic soil incubation in
relation to C availability and microbial communagmposition.

Very fast and simultaneous immobilization of alldad N forms into
microbial biomass was found with clear prefererareotganic over inorganic N
sources. Total N flux to the microbial pool excekd¢ flux into mineral N
pools. Nitrogen transformation pattern was difféeresnder reduced C
availability (Pop Ivan site). Microbial N pool amdsociated N flux were smaller
than the mineral N pools and fluxes under unsuwgtabl conditions. In most
cases, N@ was not immobilized into microbial biomass, whilgross
nitrification was pronounced.

The composition of bacterial community was relateddOC content
and C and N in microbial biomass. When fungi weemabundant in soils,
more glycine was taken into microbial biomass (rdigss soil C availability),
but with higher subsequent release of,Nte the soil.

Abiotic immobilization into dissolved organic matie also discussed.

Paper V

Major changes in forest carbon and nitrogen cyclinogused by declining
sulphur deposition.

Site: Na‘etin

The main goal of the study was to evaluate chamgeS and N pools and
cycling in a mountain spruce forest over the 16r ys=riod of declining acid
input. A significant decrease of total C and N spibols, potential N
mineralization, and N leaching was observed, cpording to the decline in S
deposition. Moreover, an increase in literfall dodest floor C-to-N ratio and
DOC leaching were found. We assumed that the resluat S loadings have
stimulated the decomposition of organic matter, cwhiin turn, supported
microbial N immobilization. This led to the reversffect on the N saturation of
the soil, demonstrated by the disappearance af M&ching from the soil.
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5. Conclusions and future prospects

Microbial N transformations in mountain forest eggsiems were examined in
this thesis, with emphasis on the immobilizatioogesss. Various aspects and
approaches were used to describe N cycle in amiddnd N saturated soils. We
combined the relatively standard techniques of oméag soil N transformations
(soil extractions to know soil N pools, fumigatiemtraction method for
measuring microbial biomass, soil incubation foraswing net rates of
processes) with more specific methods involvinddfieneasurements of N
availability (ion resin bags), stable isotope lébgl experiments and also
molecular biology methods. Despite the differenprapches used, all studies
produced results that can be generalized and sumedawithin a broader
ecological context, which is the aim of this lasapter of the thesis.

We revealed based on a major part of the reduéts Hiogeochemical
cycles of C and N are closely coupled in foresiss®Ve showed that upper soil
horizons comprised a majority of total N (~70%)tlhe soil profile. Similarly,
the activity of microorganisms was the highesthe titter horizon k), which
confirms the generally observed trend of decreasmigrobial activity with
decreasing C content down to the soil profile (Santiickova et al., 2010). In
agreement with our expectations, soil C-to-N ratr@l organic C availability
were linked to the ability of microorganisms to imioilize mineral N [[-V). It
is closely linked to the hypothesis by Goodale let(2005), which says that
observed decrease in stream NEdncentrations may be linked to recent DOC
increases in ecosystems undergoing recovery frodifiaation. In other words,
the supply of DOC to microorganisms can promoterofi@l N immobilization
and lead to the reduction of NQeaching from soils. Our papers highlight the
importance of microbial biomass as the biggest Nl po the microbial-soil
system. Microbial N pool was up to five times highiean both mineral pools
and the N flux into it exceeded the N fluxes intttHbmineral pools (N and
NOs, I, IV). It is highly probable that any small disturbanoke the large
microbial N pool would cause a decrease of N imiigdiion of organic and
mineral N and, consequently, lead to an increaisdof N leaching. We found
a strong negative correlation between DOC and MGxaminedsoils (V) and
a lack of microbial immobilization of mineral N low C Ukrainian soil during
manipulative experiments with stable isotop®&g)( This indicates that the
heterotrophic part of the microbial community inidifted soils may be
restricted by the lack of available organic C sidist If it occurs, nitrification is
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enhanced by the NH concentration increases through organic matter
mineralization, and microbial capacity to immokelizt is insufficient. As a
result, the concentration of NOn soils increases.

According to Lovett and Goodale (2011) N immobiliaa into
microbial biomass is not expected to contributeNtsinks evaluated over an
annual time scale or in a longer perspective. Mi@dbiomass is indeed a small
pool compared to the total soil organic matter ¥d-5Jenkinson and Ladd,
1981). However, it is also very labile pool thaspends very quickly to
changing soil conditions(oisture disturbances, substrate input etc.). €sults
showed that microorganisms immobilize various Nrees without any delay
and processes of N transformations occur simuliasigoin soil (V). We
further showed that although microorganisms preteaorganic N, both forms of
mineral N were also used\(). The turnover time of microbial biomass was
estimated to be from days to a year (dRgubuch and Joergensen, 2002;
Schmidt et al., 2007; Kreutzer et al. 2009; Roustt Baath, 201)land released
organic N can be quickly recycled by living micrganisms (cryptic growth,
Lynch and Whipps, 1990) without releasing it inte tsoil. This explains the
long life-time of N containing compounds in the soil, which camadong as 50
years (proteins, amino-acids, chitin, Gleixnerlet2002). Simpson et al. (2007)
found that almost 80% of the microbial biomass Mstituents can input soil
organic matter (SOM)We suggest, based on our own results and literature
findings that microbial immobilization plays a key role in soil N
transformation. Significant amount of N is turned over by micrddigdomass
even in N saturated soils and N@psses depend on actual C availability for
microorganisms and their ability to grow. Microbl@ibmass could also be an
important N sink from the long-term perspective.c®&nmmmobilized, N enters
the organic N pool (is built into organic compoumdsells) and can be recycled
after the death of microbial cells when the majodf microbial N may enter
SOM.

Leaching of N@ is usually observed not only after increased Milog,
but also after forest disturbances such as cletinglor dieback caused by pest
infections (e.g. Stevens and Hornung 1990, Grenaid. 2004, Huber, 2005).
The ecosystems in the Bohemian Forest have beadaadvby bark beetle during
our long term monitoring and some trees died offhdugh the presented thesis
was primarily focused on the effect of acidificati@and N saturation on
microbial N transformations, we made the best efdituation and evaluated the
effect of forest dieback and recovery on soil Nisfarmations and chemistry as
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a side goal.

There is a lack of data about changes in soil entticycling after natural
forest dieback. The existing studies examined dimg lterm effects of dieback
with individual year to year samplings (e.g. Morase et al., 2008; Clow et al.,
2011; Griffin et al., 2011). In our studies we exaad continual changes of soll
chemistry after major litter input to soil from a@e&rees killed by bark beetle
infection, and compared it with non-invaded forgts (I, Il ). We found that
excess N@ leaching didn"t immediately appear after forestdick, but with a
considerable time delay, long after the soil NBvailability was increased (1- 2
years|ll, Il ). In our first forest dieback studil { we attributed the delay to the
effect of tree physiology of N uptake and, consedye the increased N
availability to enhanced decomposition of low CMNolitter with no parallel
increase of microbial N immobilization. However,sbd on the following
studies (Il, IV ) it seems that changes in microbial N transforomegiplay a
crucial role. When organic matter N mineralizatisnin progress and surplus
NH," is released, microorganisms can most probably k&@p concentrations
low, as long as they have enough DOC. This suppiodsigs of Stark and Hart
(1997) who claim that microbial NOimmobilization is suppressed in the
conditions of high N& and low C availabilityOn the ecosystem level, mineral
N export from the impacted PleSné Lake watershdbghwaters was increased
from 83 mmol riyr™ (years 20002004, before forest dieback) to 150 Inmmo
yr! (years 2005-2006, after forest dieback) (K@péet al., 2007). However,
this increase did not correspond fully with a ckdted decline of total inorganic
N uptake by forest vegetation that was much prooedrfKopéek et al., 2007).
This means that a part of the remaining N and @it N produced through
elevated litter mineralization had to be accumudate soil. We are currently
continuing in our six-week sampling and analysesde the effect of future
exhaustion of available DOC on N transformationd are expect that NO
concentrations in soil solution will probably inase.

Decomposition of litter in the infested study stevated concentrations
of soil BC (Il ). The base saturation increased from 40 to 70%framd 30 to
45% in O and A horizons, respectively. Howeverjddl in soil decreased as it
was replaced from soil sorption complex, and siamdbusly complexed with
DOC. Such DOC-AI complexes are not toxic for bietad do not negatively
affect roots and organisms in soil but, being ngbtln influence the recipient
freshwaters. In lakes, the liberation of ionic Abrh DOC-Al complexes may
occur by photochemical reactions (Koépk et al., 2005a). Its subsequent
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hydrolysis under higher pH produces Al hydroxidethvarge specific surfaces
and with astrong affinity for P. Increased concentrationsAbhydroxides in
sediments may thus cause reduction of P release $exliments even under
hypolimnetic anoxia when metal hydroxides would mally dissolve and P
would be released into the water column. This neadlto oligotrophication
affecting further the primary production and cygliof organic C in lakes
(Kop&ek et al., 2000; Kog#k et al. 2005b). This is another confirmation that
element cycles in the soil-watershed-lake systermasnat isolated, but closely
associated.

The mean half decay time of Norway spruce needbes determined to
be approximately three years (Satkova et al., 2006). Thus we expect that the
gradual liberation of elements to soil will continprobably for several more
years and may further influence nutrient transfaioms in the watershed-lake
ecosystems. However, the future progress will dispend on the restoration of
vegetation cover and climatic factors.

For further understanding of the N retention medras in N saturated
ecosystems many questions still need to be addiedéeay is there a difference
in total soil C-to-N ratio and C availability beter®@ Bohemian Forest and
Ukrainian soils? Could it be a consequence of diffe S deposition history? In
the last paper\{) we showed that declined S deposition corresporidethe
increase of DOC concentrations and to the decreéagetal C and N soil pools,
potential N mineralization, and N leaching. Soilsthe Ukrainian forest site
were exposed to higher S deposition than Bohem@ssk sites, which could
possibly have induced the stabilization of soilagtig matter and changes in soil
C quality.

In the future work we would like to focus on linkeggbetween microbial
N and C transformations and cycling in more det&ié would also like to look
at the effect of P availability, which definitivelglays an important role in
microbial N transformations, but its role has so li@en neglected. We are
continuing with the studies of microbial C, N and tfansformations and
biochemical processes during post-disturbance geiio the PleSné Lake
watershed, including wood decay, soil microclimated vegetation cover
changes, and forest regeneration. In addition, vee pdanning to compare
obtained results with the pre-disturbation periadnQing project GACR
P504/12/1218). We are preparing a long-term maaimd S and N addition
experiment in the Ore Mountains tiaderstand the combined effects of S and N
deposition on C and N cycling in forest soils (pitj application in 2012).
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Abstract

Nitrogen leaching persists in mountain forests wfdpe even in the presence of
decreasing N depositions. We have hypothesizedttigateaching is linked to
soil N transformations occurring over the wholeryeaen at 0°C temperatures.
The aims were to estimate (1) the effect of tentpeeaon N transformations and
(2) N pools and fluxes. The study sites are sithatethe Bohemian Forest
(Czech Republic). Litter, humus, and 0-10-cm mihkxgers were sampled in
early spring, and the effect of temperature on métification, net
ammonification, and microbial N immobilization wereasured in a short-term
incubation experiment without substrate additionitrdden pools were
calculated from the concentrations of N forms ie #oil and soil pool weights,
while daily N fluxes were calculated from daily rretes of processes and soil
pool weights. Relationships between temperature aed nitrification, net
ammonification, and microbial N immobilization diwbt follow the Arrhenius
type equation; all processes were active closé@ indicating that microbial N
transformations occur over the whole year. MicrbBiammobilization rate was
generally greater than N mineralization rate. Th&robial N pool was
significantly larger than mineral N pools. Organ&yers containing tens of
grams of available N per square meter contributedenthan 70% to the
available N in the soil profile. Daily N fluxes werelated to N pools. On
average, N fluxes represented daily mineral andahial N pool changes of
1.14 and 1.95%, respectively. The effect of micabloiomposition on the C/N
ratio of microbial biomass and respiration is d&sad.

Following 10 pages of the thesis include copyrightdl version original of the thesis is
archived only in the Academic Library of University South Bohemia irCeské
Budgjovice.
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Abstract [in Czech]

Vyplavovani dusiku fetrvava v horskych lesich Evropy igs pokles depozic
dusiku. Pedpokladali jsme, Ze toto vyplavovani souvisiresngnami N v mdeé
probihajicimi Bhem roku dokonce ifpteplotach 0°C. Cilem bylo (1) stanovit
vliv teploty na gemény dusiku a (2) stanovit zasobniky N a jeho tokwydgni
plochy se nachazely v Narodnim Parku Sumaieska republika)Casr z jara
byly odebrany vzorky opadu, humusu a 0-10 cm z rainé vrstvy a byl
stanoven vliv teploty naistou nitrifikaci, ¢istou amonifikaci a mikrobialni
imobilizaci N Bhem inkub&niho pokusu bezifdavku substratu. Zasobniky
dusiku byly speéitany z koncentraci forem N vagé a objemové hmotnosti
pady, zatimco denni toky N byly spitany z dennich rychlostistych proces a
objemové hmotnosti fq@ly. Vztah mezi teplotou &istou nitrifikaci, ¢istou
amonifikaci a mikrobialni imobilizaci N nebyl Arrheva typu; vSechny
procesy byly aktivni i P 0°C, coz zn&, Ze mikrobialni pemény mohou
probihat po cely rok. Rychlost mikrobialni imobéize N byla celkayvy3si nez
rychlost mineralizace N. Mikrobiélni zasobnik dusibyl vyznamg vétSi nez
pooly mineralniho dusiku. Organické vrstvy, obs#diujdesitky grarn
dostupného dusiku na maettvereini, odpovidaly vice nez 70% dostupného
dusiku v @mdnim profilu. Denni toky N souvisely s velikostmésobnik.
V praméru representovaly toky N denni 2nu 1.14 a 1.95 % v mineralnim a
mikrobidlnim z&sobniku, vtomto fadi. Je diskutovan vliv sloZeni
mikrobiélniho spol&enstva na C/N po#n mikrobialni biomasy a respiraci.

Nasledujici pasaz o rozsahu 10 stran obsahuje &hos#i chra@né autorskymi pravy a
je obsazena pouze v archivovaném originale digaftaprace uloZzeném na
Prirodowdecké fakult Jihoceské univerzity ¢eskych Bugovicich.
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Abstract

The objective was to evaluate whether lower nitno@d) immobilization by
spruce treesHicea abiey or higher microbial N mineralization in the sislthe
main mechanism changing the soil N balance afterstadefoliation caused by
bark beetle. We measuréa situ mineral N availability using ion exchangers,
net N mineralization (Nne, @ammonification and nitrification) and N content i
microbial biomass (Nerop) in the forest floor of infested and control platsan
unmanaged area of The Bohemian Forest National. Raitu N availability
already increased before the defoliation culminatguich affirms the primary
effect of reduced N immobilization by vegetation. mMNineralization was
enhanced after maximum forest defoliation (2 vs. |B® N g'd’). The
contribution of Nyiner to in situ N availability was supported by the correlations
found betweenn situ mineral N availability and Nne/Nmicrob @Nd Nhined Criner
ratios. The influence of litter input with low C/Nitio on N mineralization is
discussed.
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Abstract [in Czech]

Cilem bylo stanovit, zda sniZzena imobilizace dugid) smrky (Picea abies)
nebo zvySena mikrobialni mineralizace N adach jsou hlavnimi mechanismy
menicimi rovnovahu N v fdé po defoliaci lesa vlivem lykoZrouta. dlli jsme
in situ dostupnost mineralniho N za pouZiti iontomdu, cistou mineralizaci N
(Nminer @amonifikace a nitrifikace) a N v biomase mikroangsmi (Npyicron) Ve
svrchni vrsté¢ lesni @idy na napadené a kontrolni lokaliv bezzasahovém
tzemi Narodniho Parku Sumava. situ dostupny N vzrostl jiZ i®d tim, nez
vrcholila defoliace, coZ potvrzuje hlavni viiv sei#ho odéru N vegetaci. N
mineralizace se zvySila aZ po maximu defoliace 230 ug N gd?). To, ze
Nminer Prispéla k in situ dostupnému N bylo podpeno i zjisénou korelaci mezi
in situ dostupnym minerdlnim N a p&ny Nmine/Nmicrob @ Nnine Crninerr J€
diskutovan vliv vstupu opadu s nizkym C/N piwam na mineralizaci N.

Nasledujici pasaz o rozsahu 12 stran obsahuje &kosti chrarné autorskymi pravy a
je obsazena pouze v archivovaném originale digeftaprace uloZzeném na
Prirodowdecké fakult Jihoceské univerzity ¢eskych Bugjovicich.
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Abstract

We evaluated changes in the chemistry of the upp&rsoil horizons in an
unmanaged spruce forest (National Park BohemiaasEo€zech Republic) for
three years after dieback caused by a bark beddstation, and compared these
changes with a similar undisturbed forest area. Jtits below the disturbed
forest received 2—-6 times more elements via lifigi compared to the
unaffected plot. The subsequent decomposition ttdr liand reduced nutrient
uptake by trees resulted in a steep increase ircgncentrations of soluble N
(NH4-N, organic-bound N) and P forms in the disturbddt.pThe average
concentrations of NFHN and soluble reactive P increased from 0.8 to #hol
kg* and from 0.04 to 0.9 mmol Rgrespectively, in the uppermost soil horizon.
Decomposition of litter at the disturbed plot eleehsoil concentrations of €a
Mg** and K, which replaced Al and H ions from the soil sorption complex.
Consequently, soil concentrations of exchangeahe lzations increased from
120 to 200 meq kY while exchangeable Aland H decreased 66% and 50%,
respectively, and soil base saturation increaseth f40% to 70%. The Al
liberation did not elevate concentrations of iofildn the soil solution, because
most of the liberated Al was rapidly complexed by dissolved organic carbon
(DOC) and transformed to DOC-Al complexes. The dleamparameters
investigated at the unaffected plot remained stdbigng the study.
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Abstract [in Czech]

Vyhodnotili jsme zminy v chemismu ve svrchnichiaginich horizontech v
bezzasahovém Gzemi smrkového lesa (Narodni Parkuyteska republika)
béhem ti let od oduneni lesa zfisobeného lykozZroutem a porovnali jsme tyto
zmeny s Uzemim, kteréigtalo nepostizeno. Daig v naruSeném lese vstoupilo
s opadem 2-6 krat vice Zivin v porovnani s nepesb# plochou. Nasledny
rozklad opadu a snizeny agb Zivin stromy vedl k prudkému nistu
koncentraci rozpustnéhoagniho N (NH-N, organicky vazany N) a P na
narusené ploSe. #nérné koncentrace N-NHa rozpustného reaktivniho P
vzrostly z 0.8 na 4.4 mmol Kga z 0.04 na 0.9 mmol Kgv tomto pdadi ve
svrchnim @idnim horizontu. Rozklad opadu na narusené ploSkkeedvyseni
koncentraci pdnich bazickych katioft(Ce*, Mg* a K"), které nahradily Al a

H* ionty nafdnim sorgnim komplexu. Nasledkem toho koncentrace
vyménnych bazickych katiofit vzrostla ze 120 na 200 meq “kgzatimco
vyménny AP a H klesly o 66% a 50%, v tomto famli a saturace bazemi
vzrostla z 40% na 70%. Uvaini AI** nezvysilo koncentrace iontového hliniku
v padnim roztoku, protoZe &Sina uvolgného AF* byla rychle vazana
rozpusénym organickym uhlikem (DOC) argménéna na DOC-AI komplexy.
Chemické parametry se na nenaruSené plédenb studie nezémily.
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Abstract

Prevailing N saturation paradigm still considersnobial N immobilization as
less important process of ecosystem N retentionohtrast, we hypothesize that
it can even be a primary process affecting N leagfiom N saturated soils. We
studied N transformations in soils of acidified neatural and primeval forests
in the Bohemian Forest (watersheds of PleSné Gedovo Lakes, Czech
Republic) and Pop Ivan Massif (Ukraine). We ranolalbory experiments in
which mixtures of different N sources (N-BNHN-NG; and glycine) were added
to the soil with only one source labelled B)X. We followed™N partitioning
within soil N pools and analysed the compositionnaitrobial community
(16SrDNA-DGGE fingerprint of bacteria, ergosterolalyses, gPCR of fungal
18S rDNA gene). The microbial N pool was alwayséhto five times higher
than the total soluble N pool. We found fast (15mand simultaneous
immobilization of all added N forms into microbidiomass with clear
preferences for organic N over inorganic sourcesalN flux to the microbial
pool always exceeded N flux into mineral N poolsheTpattern of N
transformation in the C limited Ukraine soil wadfelient from the two Czech
soils. The microbial pool and N flux into it haselmesmaller compared to the
mineral N pools and fluxes. The contribution of NN to microbial
immobilization was negligible, while nitrificatiorwas almost equal to N
mineralization. Total N flux through soluble N psolas greater than total N
flux to insoluble pools (residual and microbial Nhjs was accompanied by
lower microbial N uptake efficiency and shorteridesce time of N in microbial
pool than in soils with higher C availability. Thremposition of bacterial
community was related to DOC content and C and Wiicrobial biomass. In
soils with higher fungi abundance, more glycine wasen up regardless soil C
availability, but with higher deamination (~50 0 %) and subsequent release
of N-NH,; back to the soil. Our study emphasized the rolemafrobial N
immobilization in preventing N-N©loss from N saturated ecosystems as a
function of C availability. Nitrification was faveed when enough N-NHwvas
available in C limited soil. The produced N-Bl®as not immobilized by the
microbes and could be, if not taken up by plamached out. C limitation plays
an important role in the susceptibility of ecosysteto N leaching and could
partly explain the observed differences in someNrated ecosystems.

Following 37 pages of the thesis include copyrightdl version original of the thesis is
archived only in the Academic Library of University South Bohemia irCeské
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Abstract [in Czech]

Prevazujici paradigma N saturace stéle povaZzuje mi&ha imobilizaci N za
mere vyznamny proces zadrzovani N v ekosystému. Myaspak domnivame,
Ze je to zakladni proces owuivjici vyplavovani N z fd saturovanych N.
Studovali jsme femeny N v acidifikovanych fidach pirodé blizkého lesa v NP
Sumava (povodi Ple3ného Gertova jezera,Ceska republika) a viglach
ptvodniho lesa v poltoPop Ivan (Ukrajina). Provedli jsme laboratornkpsy,
pii kterych byla do pdy piidana smis niznych zdroji dusiku (N-NH, N-NG; a
glycin) kdy pouze jeden ze zdtopyl znaten'™N. Sledovali jsme distribucPN
mezi midnimi zasobniky a analyzovali jsme sloZeni mikriviiiéo spoléenstva
(16SrDNA-DGGE otisk bakterii, analyza ergosterafpCR houbového 18S
rDNA genu). Mikrobialni N byl vzdy 3 az 5-krat vyid$ez celkovy rozpustny N.
Imobilizace N byla rychla (15min) a vSechny formy hiyly imobilizovany
souwasreé. Organicky N byl imobilizovan igdnostd vzhledem k mineralnim
zdrojam N. Celkovy tok N do mikrobialniho zasobniku byby vys3i nez tok N
do minerélnich zasobnikCharakter procéspiemen N v ukrajinské pdge, ktera
byla limitovana C, byl odliSny odipmen N v éeskych idach. Mikrobialni N a
tok N do tohoto zasobniku byli mensi v porovnamhigeralnim N a tokem
mineralniho N do tohoto zésobniku. Mikrobialni inidace N-NG byla
zanedbatelnd, zatimco nitrifikace byla t&movna mineralizaci N. Celkovy tok
N rozpustnymi zasobniky byl v C limitovéags, vétSi neZz celkovy tok
nerozpustnymi zasobniky (rezidualni a mikrobialni bbZz bylo doprovazeno
niz8i &innosti @jmu N mikroorganismy a kratSi dobou zdrzeni N v
mikrobialnim z&sobniku. SloZeni bakterialniho spetestva souviselo s DOC, C
a N v mikrobialni biomase. Vuglach s ¥tSim vyskytem hub mikroorganismy
prijimali vice glycinu nehletl na dostupnost C, ale dochazelo k jeho vyssi
deaminaci (~50 vs. 20 %) a naslednému uwsm@lnN-NH, do pidy. Studie
vyzdvihla roli mikrobialni imobilizace N jako funkcdostupnosti C. Pokud byl
v pudé, ktera byla limitovana C, dostatek N-NHoyla nitrifikace podpiena.
Dusinan nebyl imobilizovan mikroorganismy a mohl by ,bgbkud by nebyl
prijat rostlinami, vyplaven ziay. Limitace C hraje @leZitou roli v nachylnosti
ekosystému k vplavovani N aiife ¢ast&né vyswtlit rozdily ve vyplavovani N,
které byly pozorovany mezekterymi ekosystémy saturovanymi N.

Nasledujici pasaz o rozsahu 37 stran obsahuje &kosti chrarné autorskymi pravy a
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Abstract

Sulphur (S) and nitrogen (N) deposition are impari@rivers of the terrestrial
carbon (C) and N cycling. We analyzed changes en@ N pools in soil and
tree biomass at a highly acidified spruce sitehiin €zech Republic during a 15
year period. Total S deposition decreased from B1og nf yr' between 1995
and 2009, whereas bulk N deposition did not cha@yer the same period, C
and N pools in the Oa horizon declined by 116 gn@ 42 g N rif yr', a total
decrease of 47% and 42%, respectively. This lossCoand N probably
originated from organic matter (OM) that had acclatad during the period of
high acid deposition when litter decomposition wappressed. The loss of OM
from the Oa horizon coincided with a substantiathéng (1.3 g N myr* at 90
cm) in the 1990s to almost no leaching (<0.02 g Nym') since 2006. Forest
floor net N mineralization also decreased. This badsequences for spruce
needle N concentration (from 17.1 to 11.4 mg" kg current needles), an
increase in litterfall C/N ratio (from 51 to 63)dha significant increase in the
Oi + Oe horizon C/N ratio (from 23.4 to 27.3) beénel994 and 2009/2010.
Higher forest growth and lower canopy defoliatioasaobserved in the 2000s
compared to the 1990s. Our results demonstraterédating S deposition has
had a profound impact on forest organic matteriogclleading to a reversal of
historic ecosystem N enrichment, cessation of teitteaching, and a major loss
of accumulated organic soil C and N stocks. Thessults have major
implications for our understanding of the controts both N saturation and C
sequestration in forests, and other ecosystemgctatl to current or historic S
deposition.
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Abstract [in Czech]

Suchozemské cykly uhliku a dusiku jgzeny depozici siry a dusiku. Studovali
jsme zmdny v zasobnicich C a N wigé a biomase stroin na vysoce
acidifikovanych smrkovych plochach Geské republice za poslednich 15 let.
Mezi lety 1995 a 2009 klesla celkova depozice €ir§ na 1.1 g rf rok?,
zatimco depozice dusiku na atewé ploSe se nezmila. Za stejné obdobi, se
snizila zasoba C a N v Oa horizontu 0 116 g C ayAPm? rok*, coz odpovida
celkovému poklesu 0 47% a 42%, v tomtdigub. Ztraty C a N pravgbodobr
pochazi z organické hmoty, kter4d se naakumulovatibdobi vysoké kyselé
depozice, kdy byl rozklad opadu paétam. Ztrata organické hmoty z Oa
horizontu probhla sogasr s vymizenim odtoku N (z 1.3 g Nfmok* v 90cm

v letech 1990 na mémez 0.02 g N myr" od roku 2006). Mineralizace N ve
svrchni vrst¢ lesni mdy také poklesla. To #gobilo pokles koncentrace N
vjehli¢i (z 17.1 na 11.4 mg Kg, vzestup C/N pogtu v opadu (z 51 na 63) a
vyznamny nakst C/N pordru v Oi a Oe horizontu (z 23.4 na 27.3) mezi lety
1994 a 2009/2010. V prvni dekadl. stoleti v porovnani s devadeséatymi léty
20. stoleti byl pozorovan vysgist lesa spokaé s nizsi defoliaci. NaSe vysledky
ukazuiji, Ze pokles depozice sirglmryznamny vliv na cyklus organické hmoty
v lese, coz vedlo ke zvratu v historickém obohaakmisystému N, vymizeni
vyplavovani dusinani a ztréa¢ naakumulovaného organického C a N. Tyto
vysledky jsou velmi dlezité z hlediska pochopeni toho, tidi saturaci N a
ukladani C v lesnich a jinych ekosystémech vystase!$ depozici.

Nasledujici pasaz o rozsahu 15 stran obsahuje &kosti chrarné autorskymi pravy a
je obsazena pouze v archivovaném originale digeftaprace uloZzeném na
Prirodowdecké fakult Jihoceské univerzity ¢eskych Bugjovicich.
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