
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2022 Martin Sečkár

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

WEB APPLICATION DEMONSTRATING LATTICE-BASED
CRYPTOGRAPHY
WEBOVÁ APLIKACE DEMONSTRUJÍCÍ KRYPTOGRAFII ZALOŽENOU NA MŘÍŽKÁCH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Martin Sečkár

SUPERVISOR
VEDOUCÍ PRÁCE

M.Sc. Sara Ricci, Ph.D.

BRNO 2022

Date of project
specification:

7.2.2022
Deadline for
submission:

 31.5.2022

Supervisor: M.Sc. Sara Ricci, Ph.D.

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Bachelor's Thesis
Bachelor's study program Information Security

Department of Telecommunications
Student: Martin Sečkár ID: 203640
Year of
study:

 3 Academic year: 2021/22

TITLE OF THESIS:

Web application demonstrating lattice-based cryptography

INSTRUCTION:

The assignment is focused on the development of a web application on lattice-based cryptography. At first, the
student will study lattice-based cryptography (e.g. learning with error problem, shortest vector problem, Babai
algorithm). A Part of the work will be the implemention of a web application that allows visualizing lattice,
performing lattice computations, and basic lattice-based cryptographic protocols (e.g. Fiat-Shamir with abort
signature). The writing of a manual is also required to the student.

RECOMMENDED LITERATURE:

[1] Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer (2008)

[2] Hoffstein, J., Pipher, J. C., Silverman, J. H., Silverman, J. H.: An introduction to mathematical cryptography.
New York: springer (2008).

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
The aim of this thesis is to develop and implement a web application demonstrating
lattice-based cryptography. The application was developed using mainly the Python
programming language and Docker container platform. More specifically, the modules
utilize the Bokeh library and custom JavaScript functionality expanding the Bokeh li-
brary. The modules are hosted on a Flask server where the background calculations are
being computed using numPy library. The application contains three modules describing
the closest vector problem, learning with errors problem and the Boyen cryptographic
protocol based on the latter problem. Users are able to visualize two dimensional lattices
and perform selected computations. The codebase is easily expandable and can serve as
a learning platform. The thesis also includes installation and user manual.

KEYWORDS
Babai’s algorithm, Bokeh, data visualization, encryption, JavaScript, Lattice based cryp-
tography, Learning with errors, protocol, Python

ABSTRAKT
Zámer tejto práce je vyvinúť a implementovať webovú aplikáciu demonštrujúcu krypto-
grafiu založenú na mriežkach. Aplikácia bola vyvinutá použitím programovacieho jazyku
Python a kontajnerizačnej platformy Docker. Špecifickejšie, implementované moduly po-
užívajú knižnicu Bokeh a vlastnú JavaScript funkcionalitu, ktorá rozširuje danú knižnicu
Bokeh. Tieto moduly sú poskytované serverom Flask, kde taktiež prebiehajú všetky vý-
počty pomocou knižnice numPy. Aplikácia obsahuje tri moduly popisujúce problém najb-
ližšieho vektora, problém učenia s chybami a Boyenov kryptografický protokol založený
na predchádzajúcom probléme. Užívatelia majú možnosť vizualizovať dvojdimenzionálne
mriežky a prevádzať vybrané výpočty. Zdrojový kód je jednoducho rozšíriteľný a môže
slúžiť ako náučná platforma. Práca taktiež obsahuje inštalačný a používateľský manuál.

KĽÚČOVÉ SLOVÁ
Babaiov algoritmus, Bokeh, dátová vizualizácia, šifrovanie, JavaScript, kryptografia za-
ložená na mriežkach, učenie s chybami, protokol, Python

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍRENÝ ABSTRAKT
Zadaním bakalárskej práce bolo vyvinúť webovú aplikáciu demonštrujúcu kryp-
tografiu založenú na mriežkach. Na základe štúdia danej problematiky bola vyv-
inutá aplikácia v programovacom jazyku Python s použitím kontajnerovej plat-
formy Docker. Táto aplikácia umožnuje užívateľom vizualizovať dvojdimenzionálne
mriežky a prevádzať vizuálne operácie ako kalkuláciu Babai algoritmu. Ďalej ap-
likácia vizualizuje podobnosť medzi tažkými problémami na mriežkach, ako problé-
mom najbližšieho vektora (CVP) a problémom učenia s chybami (LWE). Na koniec,
aplikácia predstaví Boyenov kryptografický protokol založený na probléme učenia
s chybami. Táto aplikácia slúži ako didaktický a vizualizačný nástroj použiteľný
na vysvetlenie abstraktnej problematiky okolo kryptografie založenej na mriežkach.
Jej vývoj a architektúra sú prispôsobené na efektívne rozšírenie o ďalšie moduly
popisujúce ďalšie problematiky v post-kvantovej kryptografií. Architektúra aplikácie
umožnuje rapídne spustenie buď lokálne na vlastnom zariadení napríklad pomocou
aplikácie Docker Desktop, alebo na verejnom cloud hostingu.

Teoretická časť sa zaoberá vysvetlením implementovaných modulov. Predstavuje
základné koncepty mriežkových štruktúr a ich báz. Je predstavený faktor ortog-
onality, tiež nazývaný Hadamardov pomer, ktorý vyjadruje ako su báze na seba
kolmé. Ďalej sú predstavené výpočtovo ťažké problémy na mriežkach. Hlavný prob-
lém, ktorý je prezentovaný je problém najlbližšieho vektora. Na to je prezenotvaný
Babaiov algoritmus, ktorý je schopný riešiť problém najbližšieho vektora ak sú báze
mriežky dostatočne ortogonálne. Kapitola pokračuje základmi teórie pravdepodob-
nosti, ako definovaním náhodnej premennej a distribučnej funkcie, ktoré sú použité v
nasledujúcej teórií. Distribučné funkcie su demonštrované na tisíc vzorkách výberu
z danej distribúcie. Ďalej je zmienený problém učenia s chybami, ktorý je prirov-
naný ku bežnému riešeniu sústav rovníc pomocou Gaussovej eliminačnej metódy.
Na rozdiel od klasických sústav rovníc, učenie s chybami, ako názov napovedá, ob-
sahuje chybový vektor, vďaka ktorému sa riešenie stáva výpočtovo tažké. Tento fakt
je využiteľný ako kryptografická primitíva. Na dôkaz dostatočnej zložitosti je tento
problém následne porovnaný s problémom najbližšieho vektora, kde je viditeľné,
že je do tohto problému redukovateľný. Na koniec je predstavený Boyenov kryp-
tografický protokol pre jeden bit, ktorý využíva problém učenia s chybami ako jeho
kryptografickú primitívu. Je podrobne popísaný odporúčaný výber parametrov,
šifrovanie a dešifrovanie.

Kapitola implementačné pozadie sa zaoberá okrem iného predstavením zák-
ladov programovacieho jazyku Python. Ďalej prezentuje niekoľko dôležitých knižníc
použitých pri vyvoji danej aplikácie, špecificky numPy, Bokeh a Flask. Je kladený
dôraz na separáciu klientovej a serverovej strany programu, kde sa nachádzajú dva

servery obsiahnuté v kontajneri. Táto kapitola taktiež priblíži jazyk JavaScript,
ktorý bol použitý na rozšírenie funkcionality knižnice Bokeh. Taktiež je predstavený
formát JSON, ktorý je využitý ako výstupný dátový formát pre modul Boyenov
kryptografický protokol. Na koniec je prezentovaná kontajnerizácia ako koncept pri
vývoji cloud softvéru.

Praktická časť sa zaoberá implemetáciou aplikácie. Začína popisom zvolenej ar-
chitektúry a technologického balíka. Potom popisuje vývojový proces cloudových
aplikácií, ako sú CI/CD technológie a verzovací systém Git. Ďalej vysvetluje ako
bola využitá knižnica numPy pre maticové výpočty. Následne je predstavená Bokeh
knižnica a jej dátový model, view dekorátor a Jinja šablóny. Bokeh knižnica je
primárne zameraná na vývoj interaktívnych grafov použitím serverovej technológie
a callback funkcií, ktoré su ďalej demonštrované. Takisto sú predstavené JavaScript
callback funkcie, ktoré slúžia ako rozšírenie základnej funkcionality knižnice Bokeh.
Predstavené sú vykreslovacie schopnosti LaTeX objektov tejto knižnice a krátky
návod ako rozšíriť aplikáciu o nové moduly. Ďalej je demonštrované vytvorenie
Docker kontajneru pomocou Dockerfile súboru. Taktiež je spomenuté ako táto ap-
likácia využíva paralelné vlákna na spustenie Flask a Bokeh serveru. Predložená
je aj jednoduchá bezpečnostná analýza, kde sú spomenuté potencionálne útoky na
aplikáciu a ich možná mitigácia. Ďalej je samostatne popísané užívateľské rozhranie
každého modulu spolu s užívateľským postupom. Na koniec je spomenutá inštalá-
cia kontajnera a umiestnenie kontajnera na verejne prístupný cloud. Taktiež je
vysvetlený postup možnej lokálnej inštalácie.

SEČKÁR, Martin. Web application demonstrating lattice-based cryptography. Brno:
Brno University of Technology, Faculty of Electrical Engineering and Communication, De-
partment of Telecommunications, 2022, 70 p. Bachelor’s Thesis. Advised by M.Sc. Sara
Ricci, Ph.D.

Author’s Declaration

Author: Martin Sečkár

Author’s ID: 203640

Paper type: Bachelor’s Thesis

Academic year: 2021/22

Topic: Web application demonstrating lattice-
based cryptography

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the advisor of my thesis, M.Sc. Sara Ricci, Ph.D. for her valuable
comments, methodology advice, research insights and willingness to continue to work
with me. I would also like to thank my family and friends for their perseverance through
the easy and difficult times.

Contents

Introduction 23

1 Background 25
1.1 Post-Quantum Cryptography . 25
1.2 Linear Independence . 25
1.3 Basis . 25
1.4 Lattices . 26

1.4.1 Example . 26
1.5 Hadamard Ratio . 27

1.5.1 Example . 27
1.6 Unimodular Martix . 27

1.6.1 Generating unimodular matrix 28
1.7 q-ary Lattice . 28
1.8 Closest Vector Problem . 28
1.9 Babai’s Closest Vertex Algorithm . 29

1.9.1 Example . 29
1.10 Random variable . 30

1.10.1 Example . 30
1.11 Probability distribution . 31

1.11.1 Example . 32
1.12 Solving linear equations . 33

1.12.1 Example . 33
1.13 Learning with errors . 34

1.13.1 Example . 34
1.13.2 Connection to lattice problems 35
1.13.3 Applications . 35

1.14 LWE encryption protocol . 36
1.14.1 Chosing the parameters . 36
1.14.2 Encryption . 36
1.14.3 Decryption . 36
1.14.4 Example . 37

2 Implementation Background 39
2.1 Python . 39
2.2 numPy . 39
2.3 Flask . 39

2.3.1 Basic Flask Application . 39

2.4 Bokeh . 40
2.4.1 bokeh.models . 40
2.4.2 bokeh.plotting . 40
2.4.3 Bokeh Server . 40
2.4.4 Basic Bokeh Application . 41

2.5 JavaScript . 41
2.5.1 JSON . 41

2.6 Containerization . 42

3 Implementation 43
3.1 Selection of technological stack . 43
3.2 Preparation of the development environment 43

3.2.1 Git . 44
3.3 Architecture . 44

3.3.1 File Structure . 45
3.3.2 Views . 46
3.3.3 Jinja and rendering templates 46

3.4 Vector algebra using numPy . 46
3.4.1 Generating lattices . 46
3.4.2 Generating unimodular matrix 47
3.4.3 Calculating Babai’s closest vertex algorithm 47
3.4.4 Generating LWE protocol . 48

3.5 Transforming point coordinates . 49
3.6 Plotting the graphs . 49

3.6.1 Data model . 49
3.6.2 Plotting and callbacks . 50

3.7 Custom JavaScript callbacks . 50
3.8 Rendering HTML . 52
3.9 Extending the application . 53
3.10 Docker . 53
3.11 Parallelism . 54
3.12 Security . 54
3.13 User interface . 55

3.13.1 Babai module . 55
3.13.2 Lattice/LWE module . 56
3.13.3 LWE protocol module . 56

3.14 Installation . 57
3.15 Deployment to DigitalOcean . 58

Conclusion 59

Bibliography 61

A Installation Manual 65
A.1 Deployment with Docker . 65
A.2 Deployment with virtualenv . 65

B User Manual 67

List of Figures
1.1 Example of lattice with highlighted basis. 27
1.2 Example of Babai’s closest vertex algorithm. 30
1.3 Uniform distribution. 31
1.4 Normal distribution. 32
1.5 Discrete distribution function of a two round coin toss. 33
1.6 Plotted LWE parameters seen as equivalent problem to CVP. 35
1.7 Decryption of the equation 𝑒′. 38
3.1 Architecture of the application. 45
3.2 Directory tree of crypto_lattice repository. 45
3.3 User Interface of the Babai module. 55
3.4 User Interface of the Lattice/LWE module. 56
3.5 User Interface of the LWE protocol module. 57
B.1 User instructions of the Babai module. 68
B.2 User instructions of the CVP/LWE module. 69
B.3 User instructions of the LWE protocol module. 70

Listings
2.1 Hello world implemented in Flask . 39
2.2 Simple plot implemented in Bokeh 41
2.3 Example of JSON format . 41
3.1 creation of virtual environmnet. 43
3.2 Exporting dependencies. 44
3.3 Flask view function. 46
3.4 Lattice generator function. 47
3.5 Random unimodular matrix function. 47
3.6 Babai’s algorithm function. 48
3.7 Generating random LWE problem. 48
3.8 Transformation of coordinates. 49
3.9 Data model example. 50
3.10 Plotting points and arrows. 50
3.11 Trigger based on change of an input. 50
3.12 Generating random LWE problem. 51
3.13 JavaScript download callback. 51
3.14 LaTex parser. 52
3.15 Bokeh module template. 53
3.16 Dockerfile. 53
3.17 Worker function. 54
3.18 Building the image. 58
A.1 Cloning the Git repository. 65
A.2 Building the image. 65
A.3 Stopping the server from running. 65
A.4 Starting the server. 65
A.5 Setting the environmental variable . 66
A.6 Installation of virtualenv environment. 66
A.7 Running the application. 66

Introduction
Cryptography is an essential and almost invisible part of everyday life. It is one of
those underlying technologies which general population presumes to be just work-
ing. With several historical breaches, whether by design or by continuous research,
the notion of secure communication is slowly fading away. The former is regarding
the BSAFE toolkit [1] proposed by RSA Security, a highly respected body in cyber-
security, which contained deliberately engineered backdoor in the pseudo-random
number generator by National Security Agency (NSA) and the latter is regarding
the finding of collisions in the MD5 algorithm [2]. These events can be seen as a
motivation to develop mathematically safe cryptosystems.

The methods in cryptography came a long way from substitution ciphers used
from around 500 BC to today’s elliptic curve cryptography. This thesis is concerned
with the future of cryptography methods, called post-quantum cryptography [3]
(also quantum-resistant cryptography). Ever since the announcement of the Shor’s
algorithm, mathematicians predicted that some cryptographic primitives could be
broken using quantum computers, hence the name post-quantum. Notably, cryp-
tosystems based on integer factorization problem could be broken by calculating
private keys using Shor’s algorithm implemented on a large scale quantum com-
puter. Although there are several questions whether such computer will be ever
built, in 2017 the US National Institute of Standards and Technology (NIST) [4]
has initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms. With recent announcements of IBM
breaking the 100 qubit barrier [5], the threat of implementing sufficiently large scale
Shor’s algorithm is still low. Moreover, a significant number of experts and prac-
titioners believe that a sufficiently powerful quantum computer can be built in the
next decade. [6]

Lattice-based cryptosystems are being implemented as encryption schemes such
as NTRUEncrypt [7], signatures (Dilithium [8]) or key exchange such as Saber [9].
Pradhan et al. [10] postulates that the Internet-of-Things (IOT) devices are a pos-
sible area of implementation since the need for storing large amount of keys is not
satisfied by classic, e.g., not lightweight implementations of current cryptosystems.
They further claim several other areas of interests, such as end-to-end encryption,
electronic money and disk encryption. There have been several studies dealing
with the use of lattice-based cryptography as a replacement for elliptic curves in
blockchain technology [11], but the current status of these algorithms are still not
able to outweigh the negatives in doing so. This ongoing research prompts us to
create an accessible tool to spread the base knowledge of lattice-based algorithms to
excite potential future research endeavors. We believe that if there is an easy and

23

approachable way to learn this potentially obscure topic it could contribute to the
greater academic interest.

The main goal of this thesis is to create a comprehensive learning platform where
users can easily and visually learn about the underlying mathematics of lattices and
problems on the lattices with emphasis on user-friendly interface and easy deploy-
ment. For these reasons we believe the best platform to be a web application. We
will also show the reasoning behind selecting Python programming language along
its extensive library collection as our main platform.

We describe selected lattice notions necessary for the reader to comprehend the
basics of the hard problems associated with lattices. We show how bases generates
lattice, the need for bases to be linearly independent, how lattices can be generated
from many bases and how to distinguish between them. We have decided to show the
Closest Vector Problem (CVP), since the Learning with errors problem is reducible
to CVP. Furthermore we show the Babai’s Closest Vertex algorithm to describe how
can CVP be solved when using insecure bases.

We propose a solution based on chosen architecture which encompasses all the
necessary prerequisites and show basic security hardening of the application. Fur-
thermore we describe how we have deployed the application on a public cloud using
Docker. Moreover, we show the local deployment options with Docker. At the end,
we describe the user interface and the workflow the user will apply to do basic visual
calculations.

24

1 Background
In this chapter, we lay out the need for post-quantum cryptography, the theory of
lattices as mathematical structures. Some linear algebra knowledge is presumed to
fully comprehend the mathematical background, such as vector and matrix notation
and multiplication. We continue with describing elementary knowledge of probabil-
ity theory, the notation and distribution functions. Moreover we describe the basics
of learning with errors problem, the connection to lattice problems and a show a
protocol using the aforementioned problem as a cryptographic primitive.

1.1 Post-Quantum Cryptography

With the emergent research of quantum computing, the risk of breaking crypto-
graphic primitives based on discrete logarithm and/or integer factorization problem
are imminent [12]. For this reason, mathematicians are trying to find other hard
problems, i.e., Nondeterministic Polynomial time (NP)-hard problems that can be
used as a basis for new post-quantum era cryptosystems. One of the biggest and
well-supported approaches is the use of hard problems on lattices.

1.2 Linear Independence

To understand the definition of a lattice, we need to define a vector set property
called linear independence. The vectors are linearly independent if they are not a
linear combination of each other i.e. if there is only one solution to the equation

𝑎1b1 + ...+ 𝑎𝑛b𝑛 = 0 (1.1)

and that is 𝑎𝑗 = 0, where 𝑗 ∈ Z.

1.3 Basis

In general, a vector set B in a vector space V is a basis, if B is linearly indepen-
dent and span V, which means all elements in V can be represented as a linear
combination of B.

25

1.4 Lattices

Lattice [3] is a closed set of all integer multiples of basis vectors. Generally it is
defined as

ℒ{b1, ...,b𝑛} =
{︃

𝑛∑︁
𝑖=1

𝑥𝑖b𝑖 : 𝑥 ∈ Z
}︃
, (1.2)

where b1, ...,b𝑛 ∈ R𝑛 are linearly independent vectors called the basis and 𝑛 is the
number of dimensions.
For the purpose of this thesis, we will use the matrix form of the basis, which is
constructed as

B =

⎛⎜⎜⎝
| ... |

b1 ... b𝑛
| ... |

⎞⎟⎟⎠ . (1.3)

Matrix B is in some literature called the generator of the lattice ℒ. Using the matrix
form, Equation 1.2 becomes

ℒ(B) = {Bx : x ∈ Z𝑛} . (1.4)

Note that the same lattice has infinitely many generators, which is a useful property
we will show later.

1.4.1 Example

Let lattice ℒ be defined as linear combination of generator matrix

B =
⎛⎝2 1

0 3

⎞⎠ . (1.5)

Based on Equation 1.4, lattice ℒ can be written as an infinite set of integer points,
such as

ℒ = {(1, 28), (2, 31), (3, 34), (4, 37), (1, 23), (2, 26), (3, 29), (4, 32), (5, 35), ...} (1.6)

The lattice ℒ can be partially seen in Figure 1.1 with red arrows showing the basis
vectors.

26

Fig. 1.1: Example of lattice with highlighted basis.

1.5 Hadamard Ratio
To distinguish between these bases (generators), we use the Hadamard ratio [13],
which can be seen as the orthogonality factor. It is defined as

ℋ(ℒ) =
(︃

|detℒ|
‖b1‖2 · ... · ‖b𝑛‖2

)︃1/𝑛

. (1.7)

This coefficient determines if the bases are "good" or "bad", depending on the value.
We consider a "good" basis to have ℋ(ℒ) > 0.75 and a "bad" basis as ℋ(ℒ) < 0.25.

1.5.1 Example

Using the lattice ℒ from previous example, we get

ℋ(ℒ) =
(︃

6
2 ·
√

10

)︃1/2

≃ 0.974. (1.8)

We will consider this as a "good" basis.

1.6 Unimodular Martix
Unimodular matrix A is a matrix which satisfies the equation

det A = ±1, (1.9)

27

The inverse of matrix A is another unimodular matrix. We will use a random
unimodular matrix to create a "bad" basis out of a "good" one i.e. a basis with lower
Hadamard ratio. Note that based on the properties of unimodular matrices, the
basis created by applying unimodular matrix will be generating the same lattice as
the original one.

1.6.1 Generating unimodular matrix

The generation of a random unimodular matrix is conditioned by Equation 1.9. This
is achieved by generating two matrices with ±1 on the diagonals and a random tri-
angular matrix under or over the diagonal. The result of multiplying these matrices
is always a matrix with det = ±1. Mathematically, this calculation can be shown
on example as

det U = det
⎡⎣⎛⎝1 −3

0 1

⎞⎠⎛⎝−1 0
2 −1

⎞⎠⎤⎦ = det
⎛⎝−7 3

2 −1

⎞⎠ = 1. (1.10)

1.7 q-ary Lattice

In cryptography, q-ary lattices are the most interesting, as they are in one-to-one
correspondence with linear codes Z𝑛𝑞 . Lattice ℒ embedded in Z𝑛 is a q-ary lattice
for an integer 𝑞, if 𝑞Z ⊆ ℒ. That means the vector b is a member of ℒ if and only
if b mod 𝑞 is also a member of ℒ. With this knowledge, we can rewrite Equation
1.4 as

ℒ(B) = {Bx mod 𝑞 : x ∈ Z𝑛} . (1.11)

1.8 Closest Vector Problem

There are several NP-hard problems defined on lattice ℒ, namely Shortest Vector
problem (SVP), Shortest Independent Vectors Problem (SIVP) and Closest Vector
problem (CVP). There are polynomial time reduction algorithms which allow trans-
form of one problem into another. Moreover, CVP was shown by van Emde Boas to
be NP-hard [14]. Since the SVP can be generalized into CVP, we will focus on the
latter. Closes vector problem (CVP) states that given a lattice generating matrix
B and a target vector t, it is hard to find the closest vector v ∈ ℒ. Formally

𝑑𝑖𝑠𝑡(ℒ, t) = min
x∈ℒ
‖x− v‖, (1.12)

where 𝑑𝑖𝑠𝑡 is a distance function.

28

1.9 Babai’s Closest Vertex Algorithm

Let ℒ ∈ R𝑛 be a lattice with basis B and let t ∈ R𝑛 be an arbitrary vector. If the
vectors in the basis are sufficiently orthogonal to one another, then the following
algorithm solves CVP.

Algorithm 1 Babai’s Closest Vertex Algorithm
t← 𝑡1𝑏1 + ...+ 𝑡𝑛𝑏𝑛, where 𝑡1, ..., 𝑡𝑛 ∈ R
a𝑖 ← ⌈t𝑖⌋, for 𝑖 = 1, 2, ..., 𝑛

return v = 𝑎1𝑏1 + 𝑎2𝑏2 + ...+ 𝑎𝑛𝑏𝑛

1.9.1 Example

Using lattice defined in previous examples, let’s say we are looking for the closest
member vector to vector t = (2.5,−3.2). Using Algorithm 1, we start by defining a
vector t as

t =
⎛⎝ 2.5
−3.2

⎞⎠ = 𝑡1

⎛⎝2
0

⎞⎠+ 𝑡2

⎛⎝1
3

⎞⎠ . (1.13)

Now we need to solve for the unknown variables 𝑡𝑛

𝑡2 = −3.2
3 = −1.067; 𝑡1 = 2.5− t2

2 = 1.7835, (1.14)

and round the results to the nearest integer

𝑎2 = −1; 𝑎1 = 2. (1.15)

This gives us the closest vector

v = 2b1 − b2 =
⎛⎝ 3
−3

⎞⎠ . (1.16)

Visually, this calculation is shown in Figure 1.2, where the yellow arrow represents
vector t and orange arrow represents the closest vector v in lattice ℒ.

29

Fig. 1.2: Example of Babai’s closest vertex algorithm.

1.10 Random variable
For the purposes of describing the probability distribution, one has to define the
fundamental measure of probability. Probability [15] is measured using a random
variable, which is a function in the form of

𝑋 : Ω→ 𝐸, (1.17)

where 𝑋 is a random variable, Ω is a sample space and 𝐸 is a measurable space.
A distribution of random variable is defined as

𝐹𝑋(𝑥) = 𝑃 (𝑋 ≤ 𝑥) =
∑︁
𝑥𝑖<𝑥

𝑃 (𝑋 = 𝑥𝑖). (1.18)

1.10.1 Example

In a fair game of coin toss, the coin has only two states: heads or tails. This can be
represented as

𝑋 : {ℎ, 𝑡} → {0, 1}. (1.19)

In the case of two rounds, the possible states increase to

𝑋 : {ℎℎ, ℎ𝑡, 𝑡ℎ, 𝑡𝑡} → {00, 01, 10, 11}. (1.20)

Then the probabilities of tossing each pair are equal

𝑃 (𝑋 = ℎℎ) = 𝑃 (𝑋 = ℎ𝑡) = 𝑃 (𝑋 = 𝑡ℎ) = 𝑃 (𝑋 = 𝑡𝑡) = 1
4 . (1.21)

30

1.11 Probability distribution

For the purposes of this thesis, we are concerned with two types of probability
distribution, namely uniform and normal distribution. The former distribution has
a form of a function

𝑓(𝑥) =

⎧⎪⎨⎪⎩
1
𝑏−𝑎 , for 𝑥 ∈ [𝑎, 𝑏]
0 otherwise.

(1.22)

The latter has a form of a function 𝒩 (𝜇, 𝜎2) with distribution

𝑑𝑛(𝑥) = 1√
2𝜋𝜎2

𝑒
(𝑥−𝜇)2

2𝜎2 , (1.23)

where 𝜇 is the mean and 𝜎 is standard deviation.

Fig. 1.3: Uniform distribution.

31

Fig. 1.4: Normal distribution.

Figure 1.3 shows the uniform distribution sampled 1000 times with parameters
set to 𝑎 = 1, 𝑏 = 2. Figure 1.4 shows the normal distribution sampled 1000 times
with parameters set to 𝜇 = 0, 𝜎 = 0.5.

1.11.1 Example

Continuing the example shown in Equation 1.20, there are three possible outcomes
of the two rounds of coin toss: either both coins are heads, both coins are tails or
one is heads and one tails. This scenarion is depicted in the measurable space as
𝐸 = {0, 1, 2}, and the distribution function has values

𝐹𝑋(0) = 𝑃 (𝑋 = ℎℎ) = 1
4 ,

𝐹𝑋(1) = 𝐹𝑋(0) + 𝑃 (𝑋 = ℎ𝑡) + 𝑃 (𝑋 = 𝑡ℎ) = 31
4 = 3

4 ,

𝐹𝑋(2) = 𝐹𝑋(1) + 𝑃 (𝑋 = 𝑡𝑡) = 41
4 = 1.

(1.24)

Figure 1.5 depicts the distribution function of the game described above.

32

Fig. 1.5: Discrete distribution function of a two round coin toss.

1.12 Solving linear equations

Considering a set of equations in form of

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 = 𝑏1 mod 𝑝,

𝑎5𝑥1 + 𝑎6𝑥2 + 𝑎7𝑥3 + 𝑎8𝑥4 = 𝑏2 mod 𝑝,

𝑎9𝑥1 + 𝑎10𝑥2 + 𝑎11𝑥3 + 𝑎12𝑥4 = 𝑏3 mod 𝑝,

𝑎13𝑥1 + 𝑎14𝑥2 + 𝑎15𝑥3 + 𝑎16𝑥4 = 𝑏4 mod 𝑝,

(1.25)

where we try to find (𝑥1...𝑥𝑛) ∈ Z𝑛𝑝 . Using a matrix form, we obtain

A𝑥 = B(mod 𝑝), (1.26)

where A and B are known matrices and 𝑝 is a known prime. Retrieval of the vector
𝑠 is trivial using Gaussian elimination method in polynomial time.

1.12.1 Example

We take random samples from a prime group of order 𝑝 = 5 and populate the
matrices

A =
⎛⎝2 3

1 2

⎞⎠ , and B =
⎛⎝1

3

⎞⎠ . (1.27)

33

Solving for 𝑥, using Gaussian elimination, we obtain

𝑥 =
⎛⎝−7

5

⎞⎠ mod 5 =
⎛⎝3

0

⎞⎠ . (1.28)

1.13 Learning with errors
By slightly changing the Equation 1.25, we obtain

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 ∼ 𝑏1 mod 𝑝,

𝑎5𝑥1 + 𝑎6𝑥2 + 𝑎7𝑥3 + 𝑎8𝑥4 ∼ 𝑏2 mod 𝑝,

𝑎9𝑥1 + 𝑎10𝑥2 + 𝑎11𝑥3 + 𝑎12𝑥4 ∼ 𝑏3 mod 𝑝,

𝑎13𝑥1 + 𝑎14𝑥2 + 𝑎15𝑥3 + 𝑎16𝑥4 ∼ 𝑏4 mod 𝑝,

(1.29)

where we try to find (𝑥1...𝑥𝑛) ∈ Z𝑛𝑝 and the equations are true up to a certain small
error. Now the Gaussian elimination does not work anymore and the problem is
considered to be hard to solve.

Again, using the matrix notation, an error vector 𝑒 with given distribution is
added. By adding an error vector, the equation is in the form

A𝑥+ 𝑒 = B(mod 𝑝), (1.30)

Solving this equation without the knowledge of the error vector is provably NP-
hard. This problem was formulated by Regev [16] and is known as the Learning
With Errors (LWE) problem.

Definition 1 (LWE Problem) Given 𝑛.𝑚, 𝑞 ∈ Z and 𝒳 , a distribution in Z𝑞,
with arbitrary many sample pairs (𝐴,𝐴𝑠 + 𝑒), where 𝐴 ∈𝑈𝑅 Z𝑚×𝑛

𝑞 and 𝑒 ∈𝒳 𝑚 Z𝑛𝑞 ,
compute a vector 𝑠 ∈𝑈𝑅 Z𝑛𝑞 .

Notation ∈𝑈𝑅 describes a uniform sampling from a given group and ∈𝒳 𝑚 describes
a sampling using the chosen distribution 𝒳 .

1.13.1 Example

Using parameters from Equation 1.27, and adding a random sampled error vector

𝑒 =
⎛⎝−1

1

⎞⎠ , (1.31)

we obtain equation
⎛⎝2 3

1 2

⎞⎠⎛⎝𝑠1

𝑠2

⎞⎠+
⎛⎝−1

1

⎞⎠ mod 5 ∼
⎛⎝1

3

⎞⎠ , (1.32)

which would be hard to solve without the knowledge of vector 𝑒.

34

1.13.2 Connection to lattice problems

Equation 1.30 can be thought of as a lattice based operation on a basis 𝐵 and
having the secret 𝑠 as the closest vector shown in Figure 1.2. Moreover, what has
been shown as a selected input vector to the Babai algorithm can be seen as the
result B of the Equation 1.30. By transforming the LWE problem to the lattice,
the hardness of LWE is similar to solving CVP. Figure 1.6 depicts the LWE solution
and the public key on the lattice with highlighted basis. We can see the similarities
to Figure 1.2.

Fig. 1.6: Plotted LWE parameters seen as equivalent problem to CVP.

1.13.3 Applications

Current state of the art applications are utilizing the ring learning with errors vari-
ant, which proves to be less computationally demanding. The main difference is
that the matrices are not populated by random group elements but with random
polynomials on a defined ring. The main contenders for the post-quantum cryptog-
raphy standards include NTRUSign [7], RLWE-SIG and Dilithium [8] for signature
schemes and NTRUEncrypt and Saber [9] for encryption schemes, where Saber uses
the Learning with rounding variant.

35

1.14 LWE encryption protocol

The protocol described by Boyen [17] is used to encrypt a single bit of information
and serves as an example for a full encryption system based on LWE.

1.14.1 Chosing the parameters

To generate the keys, Alice selects a prime modulus 𝑞, a random matrix A ∈𝑈𝑅 Z𝑛×𝑚
𝑞

as shown in Equation, as well as a random vector 𝑠 ∈𝑈𝑅 Z𝑚𝑞 and a random error
sample vector 𝑒 ∈𝜓𝛼 Z𝑚𝑞 , where 𝜓𝛼 is a chosen probability distribution function.
Note that Chen et al. [18] recommend the dimension 𝑚 to be at least 2𝑛 log(𝑞) and
the prime 𝑞 to be in the range 𝑛2 < 𝑞 < 2𝑛2. Furthermore the error distribution
parameter 𝛼 is set to be 𝛼 = 1√

𝑛 log2(𝑛) , which we have rounded to 1. That gives us
a set of integer errors {−1, 0, 1}.

Using these parameters, the LWE problem is constructed as 𝑝 = A𝑠+ 𝑒 mod 𝑞.
The matrices A and 𝑝 are then used as a public key parameters that are sent to
Bob and the error vector 𝑒 is considered a private key.

1.14.2 Encryption

Bob selects a message 𝑏 ∈ {0, 1} and computes the Equations

𝐸𝑛𝑐𝐴,𝑝(𝑏) = (𝑎′, 𝑝′) = (
∑︁
𝐼

𝑎𝑖,∑︁
𝐼

𝑝𝑖 + 𝑏⌊𝑞2⌋),
(1.33)

where the first parameter is a row sum of the matrix A and the second parameter
is a row sum of the vector 𝑝 with the added bit message 𝑏 multiplied by a floor
function of the half of the prime modulus 𝑞. These vectors are then sent to Alice
for decryption.

1.14.3 Decryption

Alice calculates Equation

𝑒′ = 𝑝′ − 𝑎′ × 𝑠𝑇 mod 𝑞, (1.34)

and decrypts the message according to

𝐷𝑒𝑐𝑠(𝑎′.𝑝′) =

⎧⎪⎨⎪⎩0, if 𝑒′ ∼ 0
1, if 𝑒′ ∼ ⌊ 𝑞2⌋.

(1.35)

36

The decryption can be shown on a unit circle, where the modular group can be
thought of as a clock. The uppermost point on the circle is equivalent to the "0"
case in the Equation 1.35, and the lowermost point is equivalent to the "1" case,
respectively. Then the decryption is visualized as a point in the neighborhood of
these points.

1.14.4 Example

Suppose we have selected the parameters such that we have obtained the LWE
problem as

⎛⎜⎜⎝
−13 9 1 1
12 3 −8 9
−12 −3 0 8

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

16
−16

1
−8

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎝
0
−1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
15
12
13

⎞⎟⎟⎠ mod 17, (1.36)

where the public parameters are shown in blue and private parameters are shown in
red. Then the encryption of a bit 𝑏 = 1 will give us

𝐸𝑛𝑐𝐴,𝑝(1) = (𝑎′, 𝑝′) = (
∑︁
𝐼

⎛⎜⎜⎝
−13 9 1 1
12 3 −8 9
−12 −3 0 8

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
4
9
10
1

⎞⎟⎟⎟⎟⎟⎠ ,

∑︁
𝐼

⎛⎜⎜⎝
15
12
13

⎞⎟⎟⎠+ 1⌊17
2 ⌋ = 14).

(1.37)

Following the scheme, decryption starts with calculating the parameter

𝑒′ = 14−

⎛⎜⎜⎜⎜⎜⎝
4
9
10
1

⎞⎟⎟⎟⎟⎟⎠×
(︁
16 −16 1 −8

)︁
mod 17 = 7, (1.38)

and finding the nearest point

𝐷𝑒𝑐𝑠(𝑎′.𝑝′) =

⎧⎪⎨⎪⎩0, if 7 ∼ 0
1, if 7 ∼ 8

= 1. (1.39)

Figure 1.35 depicts the calculated value interpolated to a point on a unit circle and
shows that the value is close to case "1".

37

Fig. 1.7: Decryption of the equation 𝑒′.

Note that we have omitted the recommendation set by Chen et al. in order to
save space, as the matrix with parameter 𝑛 = 4 would have at least 10 dimensions.

38

2 Implementation Background
In this chapter, we introduce the Python programming language as a tool for data
visualization. We take a look at some of the Python libraries used that allow easy
linear algebra opertions on matrices, such as numPy, and we show how Flask routing
functions work. Furthermore we describe the elementary knowledge of JavaScript
and how it was utilized in this work. We will conclude with the high-level overview
of the containerization as our deployment platform.

2.1 Python

Python [19] is an interpreted, multi-paradigm programming language which is highly
popular amongst data science community. In this thesis, we will concern ourselves
with Python version 3.9. We will look closer at numPy, Flask and Bokeh.

2.2 numPy

NumPy is the primary array programming library for the Python language. It has an
essential role in research analysis pipelines in fields as diverse as physics, chemistry,
astronomy, geoscience, biology, psychology, materials science, engineering, finance
and economics [20]. At it’s core lays the array() function, which creates the matrix
model using nested arrays. For example, vector B in Equation 1.5 can be described
by numpy.array([[2,1],[0,3]]).

2.3 Flask

Flask is a web microframework. Based on the Foreword [21], the "micro" in mi-
croframework means the core of the framework is simple but extensible. That means
developers have the freedom to choose their own technology stack. It also supports
Jinja template engine.

The most important functionality in Flask for us is the route decorator. This
decorator put in front of a view function will execute the function if there will be a
request made on the endpoint of the decorator.

2.3.1 Basic Flask Application

1 from flask import Flask
2

39

3 app = Flask(__name__)
4
5 @app.route("/")
6 def hello_world ():
7 return "<p>Hello ,␣World!</p>"

Listing 2.1: Hello world implemented in Flask

Listing 2.1 shows the use of the route decorator and view function returning a simple
HTML page.

2.4 Bokeh
Bokeh is a Python library for creating interactive visualizations. [22] The introduc-
tion claims the developer is able to create JavaScript-powered visualizations with
no need to write JavaScript, which is true for some cases such as this, but further
modifications ie. more customized tools would require JavaScript code. The main
reason this library was chosen is the ability to modify data sets and update the
plots in real time. We believe the real time aspect in a learning tool is crucial for
maximizing success of understanding the underlying mathematical concepts. We
will focus on the server-side modules, namely bokeh.models and bokeh.plotting.

2.4.1 bokeh.models

Everything that comprises a Bokeh plot or application tools, controls, glyphs, data
sources is a Bokeh Model. Bokeh models are configured by setting values their
various properties [22]. These models are encompassed into a Document which can
be serialized and displayed in browser using BokehJS library.

2.4.2 bokeh.plotting

The bokeh.plotting API is the primary interface and is centered around the figure()
command and the associated glyph functions. [22]

2.4.3 Bokeh Server

The primary purpose of the Bokeh server is to synchronize data between the under-
lying Python environment and the BokehJS library running in the browser. Bokeh
server is used to stream large data sets, or to enable complex user interactions based
on widgets and selections. [22]

40

2.4.4 Basic Bokeh Application

Listing 2.2 shows the basic example of a static plot saved into a HTML file.

1 from bokeh.plotting import figure , output_file , show
2
3 # output to static HTML file
4 output_file("line.html")
5
6 p = figure(width =400, height =400)
7
8 # add a circle renderer with a size , color , and alpha
9 p.circle ([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color

="navy", alpha =0.5)
10
11 # show the results
12 show(p)

Listing 2.2: Simple plot implemented in Bokeh

2.5 JavaScript
JavaScript is a lightweight, interpreted, or just-in-time compiled programming lan-
guage with first-class functions. In this thesis we will concern ourselves minimally
with JavaScript, as most of the client-side computations are conducted through
Python API that already serializes objects into JavaScript. Our only requirement
for this language is to write custom modules that are not at this time available in
the Bokeh library.

2.5.1 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
Bokeh library natively uses JSON to send and update data from server to client and
vice versa. We will use this format as output from our custom download widget.
The notation support nested parameters. Listing 2.3 depicts an example of JSON
format.

1 {"menu": {
2 "id": "file",
3 "value": "File",

41

4 "popup": {
5 "menuitem": [
6 {"value": "New", "onclick": "CreateNewDoc ()"},
7 {"value": "Open", "onclick": "OpenDoc ()"},
8 {"value": "Close", "onclick": "CloseDoc ()"}
9]

10 }
11 }}

Listing 2.3: Example of JSON format

2.6 Containerization
This technology allows developers to package software with minimized environment
it was created for. This approach proves to be very helpful as it mitigates most of
the issues associated with deployment. It can be seen as a lightweight alternative
to virtualization. Containerization is the packaging of software code with just the
Operating System (OS) libraries and dependencies required to run the code to create
a single lightweight executable—called a container—that runs consistently on any
infrastructure [23]. Docker is the most popular containerization platform today.

42

3 Implementation
In this section, we introduce the choices made that lead to finishing the application.
The main goal of the application is to build a teaching tool explaining the math-
ematical concepts behind state of the art lattice-based cryptosystems. This was
achieved by creating a vector set visualization using Bokeh and selected algorithms
using numPy. We show what technologies were used to create the application, the
reasoning behind selecting the technological stack, the overall architecture of the
appliction and describe the utilization of numPy library for vector algebra opera-
tions and utilization of Bokeh Server as the real-time plotting tool. We also describe
the process of developing custom JavaScript modules. Furthermore, we will lay out
the interface of the application and the overall user interface. As one of the re-
quirements was for the application to be deployable either locally or on a server,
containerization with Docker was chosen as the best candidate.

3.1 Selection of technological stack

From the start, Python was the first the first choice, as it is the most popular
programming language in the field of data science, mainly due to it’s multi-paradigm
philosophy and the vast variety of libraries, which are contributing to the ease of use.
For these reasons, we have chosen Flask, Bokeh and numPy as our main platform for
the service hosting, visualizations and calculations respectively. We have also chose
Docker as the main distribution platform for its ease of use and out-of-the-box
deployability. In the process of development, Continuous Integration/Continuous
Development (CI/CD) tools, such as GitHub were utilized to ease the deployment
and verification process.

3.2 Preparation of the development environment

When developing an application in Python, it is generally a good practice to create
and work in a virtual environment. This allows the developer a closer control of the
package dependencies. Listing 3.1 shows the basic steps to install and create virtual
environment presuming the developer has pip already installed and is using a Unix
shell.

1 pip install virtualenv # Installation of the virtualenv
package

43

2 virtualenv venv # Creation of virtual environment named
venv

3 source venv/bin/activate #This script will activate the
environment

Listing 3.1: creation of virtual environmnet.

One of the use cases of using virtual environments is the ease to recreate the envi-
ronment on any machine. This can be done by simply exporting the already existing
dependencies into a text file, as shown in Listing 3.2.

1 pip freeze > requirements.txt

Listing 3.2: Exporting dependencies.

3.2.1 Git

As mentioned before, the project was developed with CI/CD techniques in mind,
such as proper versioning and instant deployment. For this reason, GitHub platform
was utilized, as it provides developers with the best solutions out of the box. Since
the project was developed inside the virtual environment, it was very easy to upload
the whole environment into the Git versioning system and continue the development
from any device.

3.3 Architecture

At the core of the application, Flask is hosting the Web application on port 80 and
Bokeh server has its endpoints on port 50007, where the webhooks are hosted. Flask
is providing browsers with rendered Jinja template which contains the reference to
Bokeh document. Bokeh server is on change updating the documents created in each
session using the created webhooks by updating the serialized YAML data. Figure
3.1 depicts this use of the ports, and the creation of several user sessions.

44

Fig. 3.1: Architecture of the application.

3.3.1 File Structure

crypto_lattice...Root folder
app..Application package

__init__.py..............Definition of the application package
babai.py............................Custom Bokeh document
protocol.py.........................Custom Bokeh document
lwe_basis.py........................Custom Bokeh document
views.py...............................Flask’s view functions
download.js...............................JavaScript module
templates Jinja templates

index.html
lwe.html
alg.html

static
style.css

run.py..Starting script
requirements.txt.....................Environment dependencies
Dockerfile...............................Docker image template

Fig. 3.2: Directory tree of crypto_lattice repository.

45

Figure 3.2 shows the structure of the project. The file structure was chosen on
purpose, as it provides clear space for future expansion. We will describe the func-
tionality of each files in further sections.

3.3.2 Views

The application has several view functions, one for each module. These views route
the Jinja template combined with the Bokeh server document onto one endpoint.
The view depicted in Listing 3.3 is listening on root directory / where it is serving
the index.html template with injected script referring to the :50007/babai endpoint
using Bokeh’s server_document function.

1 @app.route(’/’, methods =[’GET’])
2 def bkapp_page ():
3 script = server_document(’http :// localhost :50007/

babai’)
4 return render_template("index.html", script=script ,

template="Flask")

Listing 3.3: Flask view function.

3.3.3 Jinja and rendering templates

Jinja is a web template engine for the Python programming language [25]. It utilizes
special tags to render inputted objects. In our case we use the templates to add
HTML objects from the Bootstrap framework and render the associated modules.

3.4 Vector algebra using numPy
One of the main reasons for choosing numPy as the computational library is the
existence of numpy.linalg functions, which enables developers to easily and effi-
ciently do calculations on matrices. For the purpose of this application, we will be
referring to the generating basis in the code as a matrix in form of Equation 1.3.

3.4.1 Generating lattices

The function depicted in Listing 3.4 is a direct implementation of Equation 1.2,
although not infinite for obvious computational limitations. We have omitted the
use of modulus on the lattice, since the function does not generate sufficient number
of points to affect the computations using an arbitrary prime modulus. This function

46

was partially inspired by the script found at asecuritysite.com1 and generally
repurposed for the use with numPy.

1 def generate_lattice(basis):
2 ... # initialization of variables omitted
3 for a in range(-50, 50):
4 for b in range(-50, 50):
5 xnew = a * basis [0][0] + b * basis [0][1]
6 xval.append(xnew)
7 ynew = a * basis [1][0] + b * basis [1][1]
8 yval.append(ynew)

Listing 3.4: Lattice generator function.

3.4.2 Generating unimodular matrix

Listing 3.5 shows the calculation performed by example Equation 1.10.

1 def rand_unimod(n):
2 upperTri = np.triu ([[np.random.randint (-3,3) for _ in

range(n)] for _ in range(n)],1)
3 lowerTri = np.tril ([[np.random.randint (-3,3) for _ in

range(n)] for _ in range(n)],-1)
4
5 for r in range(len(upperTri)):
6 for c in range(len(upperTri)):
7 if(r==c): #Put either 1 or -1 on diagonal
8 if bool(random.getrandbits (1)):
9 upperTri[r][c] = lowerTri[r][c] = 1

10 else:
11 upperTri[r][c] = lowerTri[r][c] = -1
12
13 return np.matmul(upperTri ,lowerTri)

Listing 3.5: Random unimodular matrix function.

3.4.3 Calculating Babai’s closest vertex algorithm

This function utilizes the possibilities of numPy as a linear algebra library. Here
the set of linear Equations 1.13, as shown in the example are being solved using

1https://asecuritysite.com/encryption/lattice_plot

47

linalg.solve() function, which takes two input parameters. First is a set of coef-
ficients of the unknowns (b matrix shown in Equation 3.1), and the second one is a
vector of solutions to these equations, in the form of⎛⎝𝑏11𝑡1 𝑏12𝑡2

𝑏21𝑡1 𝑏22𝑡2

⎞⎠ =
⎛⎝t0

t1

⎞⎠ , (3.1)

Next step, as shown in the example Equation 1.15 is to round the solutions, which
is done using the round() function. Finally, the algorithm needs to multiply the
generating matrix with the coefficients found in the previous step. This can be
achieved by calculating the dot product of the two matrices, which is done using
dot() function.

1 def solve_babai(basis , t):
2 res = np.array([t[0],t[1]])
3 a = np.round(np.linalg.solve(basis , res))
4 return np.dot(a, basis)

Listing 3.6: Babai’s algorithm function.

3.4.4 Generating LWE protocol

The function first generates the necessary parmeters according to the proposed
boundaries. Then, the function utilizes the uniform random distribution np.random.
randint() to populate the matrices and vectors. These are stored in variables
m, A, s, e. Following the protocol, the LWE result is calculated. Next, the en-
cryption parameters pair is calculated in variables ap, pp. The decryption happens
in variable ep, and the whole function returns decrypted parameter based on the
location of the nearest case. This step was produced by utilizing the ternary oper-
ator, which combines the condition and return value code in one line. Listing 3.7
depicts the aforementioned algorithm.

1 m = int(np.ceil (1.1 * np.log(q) * n))
2 A = np.random.randint(low=-q,high=q,size=(m,n))
3 s = np.random.randint(low=-q,high=q,size=n)
4 e = np.random.randint(-1,1,size=m)
5
6 s = np.transpose(s)
7 e = np.transpose(e)
8
9 B = np.mod(np.add(np.dot(A,s), e), q)

10 ap = np.mod(A.sum(axis =0),q)

48

11 pp = (B.sum() + message * q//2) % q
12
13 ep = (pp - np.dot(ap, s)) % q
14
15 decrypted = 1 if (q//2-(q//4)) < ep < (q//2+(q//4)) else

0

Listing 3.7: Generating random LWE problem.

3.5 Transforming point coordinates
To plot an element of a multiplicative group on a unit circle, we need to solve a
transformation problem from line coordinates to coordinates on a unit circle. This
is done by a known transformation

𝑥 = sin(2𝜋𝑒
𝑝

), 𝑦 = cos(2𝜋𝑒
𝑝

), (3.2)

where 𝑝 is the group modulus and 𝑒 is the element. Equations 3.2 is implemented
using numpy as depicted in Listing 3.8. These coordinates are later plotted as point
with coresponding x and y coordinates.

1 epx=np.sin ((2*np.pi/17)*ep)
2 epy=np.cos ((2*np.pi/17)*ep)

Listing 3.8: Transformation of coordinates.

3.6 Plotting the graphs
As stated in Section 2.4.2, Bokeh uses figure objects to visualize data from data
source.

For the purpose of storing data, the ColumnDataSource class was utilized, as it
allows the plots to be subscribed to the values and be dynamically changed in real
time. To change the values when an action is performed, callbacks were utilized,
which are being executed by the on_change() function.

3.6.1 Data model

ColumnDataSource class is at the core of the model. Module babai.py contains
three objects of this type. Note that the only limiting factor is the condition the
columns have to have the same length, which was the reason behind creating three

49

objects. Object source contains vectors in the lattice, bsource contains the basis,
the unimodular matrix and hadamard ratios and csource contains coordinates of
the selected vector, calculated vector and the linear independence boolean of the
basis.

1 source = ColumnDataSource(data=dict(x=x, y=y))

Listing 3.9: Data model example.

3.6.2 Plotting and callbacks

The creation of a simple plot can be seen in Listing 2.2. One important property
we have utilized is the ability of glyphs to subscribe to a source. When the source
has been changed, the glyph will be automatically updated. Listing 3.10 shows how
another glyph is being created and subscribed to the bsource object.

1 p2.add_layout(Arrow(end=OpenHead(line_color="firebrick",
line_width =4), x_start=0, y_start=0, x_end=’xu’, y_end
=’yu’, source=bsource))

Listing 3.10: Plotting points and arrows.

We have shown how to update plots with the data objects. Now we need to figure
out how to update the data objects. That is done using callbacks, which are update
functions executed on a condition stated by the on_change() function. Listing 3.11
shows a TextInput object being initialized, which will be triggering the x1_callback
function every time the value changes. This callbck will now create a new dictionary
with the changed values and put it into the proper data object.

1 x1_input = TextInput(value="2", title="X1:")
2 x1_input.on_change(’value ’, x1_callback)

Listing 3.11: Trigger based on change of an input.

3.7 Custom JavaScript callbacks
Even though one of the main advantages of Bokeh library is the fact that the de-
veloper does not have to write native JavaScript code due to the vast amounts
of models available in the API, some advanced functionalities can be written and
subsequently added to the working Python project. In this case, we have decided
that visualizing larger matrices and their subsequent operations on them are too
inefficient to properly visualize. Instead of limiting users to a low matrix dimen-
sions, where the protocol is not intended to be used, we have decided that users

50

should have the ability to download the data and use them for further inspection.
For this reason, we have implemented the download functionality, which parses the
ColumnDataSource objects into a JSON file and downloads it on a click of a button.
Listing 3.12 depicts the parser function outputting JSON objects.

1 download_button.js_on_event("button_click", CustomJS(args
=dict(source=lwe_to_json(bsource.data[’A’], csource.
data[’s’], dsource.data[’e’], bsource.data[’B’],
csource.data[’ap’], source.data[’pp’][0] ,source.data[
’ciph’][0] ,source.data[’dec’][0])), code=open(join(
dirname(__file__), "download.js")).read()))

2
3 def lwe_to_json(A, s, e, B, ap, pp ,ep ,dec):
4 ret = {"A": A,
5 "s": s,
6 "e": e,
7 "B": B,
8 "ap": ap ,
9 "pp": int(pp),

10 "ep": int(ep),
11 "dec": int(dec)}
12
13 enc = json.dumps(ret , cls=NumpyArrayEncoder)
14 return enc

Listing 3.12: Generating random LWE problem.

This functionality is not natively supported by Bokeh, although the documentation
provides steps on achieving this use case. The parser has to be implemented in
JavaScript, as it’s functioning on the client-side, where the web browser is not able
to utilize Python. Listing 3.13 depicts the download function inspired by examples
found in Bokeh repository. This function is triggered by the download_button.
js_on_event callback, that parses the data from ColumnDataSource objects into
JSON.

1 const filename = ’lwe_params.csv’
2 const filetext = source
3
4 const blob = new Blob([filetext], { type: ’text/json;

charset=utf -8;’ })
5
6 ...

51

7 const link = document.createElement(’a’)
8 link.href = URL.createObjectURL(blob)
9 link.download = filename

10 link.target = ’_blank ’
11 link.style.visibility = ’hidden ’
12 link.dispatchEvent(new MouseEvent(’click’))
13 }

Listing 3.13: JavaScript download callback.

3.8 Rendering HTML
Bokeh natively supports creating Div objects that render HTML text. This object
can also render LaTex code snippets using MathJax JavaScript library. For this use
case we utilize the Python raw strings shown with r key before the start of the string
as opposed to the formatted strings starting with f key. Raw strings render the text
input as is, which means this string ignores all special characters, such as parentheses
and slashes. For this reason, a parser function formatting numPy arrays into LaTex
pmatrix matrices was developed. This parser is heavily inspired by code found on
StackOverflow 2. Listing 3.14 depicts a simple Div object that contains HTML tags,
parser function and the object containing both raw and formatted Python strings.

1 key = Div(text="Key␣Generator", width =300, height =30)
2
3 def pmatrix(a):
4 lines = str(a).replace(’[’, ’’).replace(’]’, ’’).

splitlines ()
5 rv = [r’\begin{pmatrix}’]
6 rv += [’␣␣’ + ’␣&␣’.join(l.split()) + r’\\’ for l in

lines]
7 rv += [r’\end{pmatrix}’]
8 return ’\n’.join(rv)
9

10 enc_pair = Div(text=r"$$a’␣=␣\sum_I␣" + f"{pmatrix(
bsource.data[’A ’])}␣=␣{pmatrix(csource.data[’ap ’])}$$"
, width =300, height =150)

Listing 3.14: LaTex parser.

2https://stackoverflow.com/questions/17129290/numpy-2d-and-1d-array-to-latex-bmatrix

52

3.9 Extending the application
The application was concieved with future expansion in mind. For this reason,
developing new pages and modules is trivial. Listing 3.15 depicts the core structure
of the Bokeh module located in the app folder. The module requires a router with
render function added into views.py file as depicted in Listing 3.3. Furthermore the
module needs to have an endpoint reference in the Server object in run.py file as
depicted in Listing 3.17.

The module widgets and plots can be arranged by utilizing the row() and col-
umn() functions into a grid. Then the structure has to be added into the root of
the document.

1 def <module name >(doc):
2 ## Module source code
3 module = row(widget , plot)
4 doc.add_root(module)
5 doc.title = "New␣module␣name"

Listing 3.15: Bokeh module template.

3.10 Docker
To allow the application to be easily deployed on any hardware, the application
is wrapped in a Docker container, which is described in the Dockerfile. As shown
below, this image is based on the official Python image developed by Docker. Af-
ter downloading and setting up the image, it creates the app directory to which
the whole repository is copied into. It is followed by installing the requirements
as described in Section 3.2. Now the application ports are being exposed, but not
published. This is achieved by using the EXPOSE keyword. The publishing will hap-
pen when creating the container by using the -p flag, which will map these ports to
assigned external ports. At last, the application is being started with the command
python run.py. Listing 3.16 depicts the Dockerfile used in the final application.

1 FROM python :3.9.7
2
3 WORKDIR /app
4 COPY . .
5 ENV IP =159.223.216.239
6 RUN pip install -r requirements.txt
7 EXPOSE 80:80

53

8 EXPOSE 50007:50007
9 ENTRYPOINT ["python"]

10 CMD ["run.py"]

Listing 3.16: Dockerfile.

3.11 Parallelism
Bokeh server is serving each client in a separate session. Furthermore, Bokeh server
and Flask server are running in separate threads. This is achieved by using the
tornado and threading libraries. These libraries provide the application with sep-
aratate IO loop and the thread respectively. Listing 3.17 depicts the bk_worker
function containing the initialization of the server as well as the start of the IO loop.

1 def bk_worker ():
2 server = Server ({’/babai’ : babai_app}, io_loop=

IOLoop (), allow_websocket_origin =["*"], port
=50007)

3 server.start()
4 server.io_loop.start ()
5
6 Thread(target=bk_worker).start ()

Listing 3.17: Worker function.

3.12 Security
The possible attack vectors include a Denial of Service (DoS) attack targeted on the
Bokeh server, where the attacker would create more sessions than the server could
handle. There are several risks of arbitrary code execution, since the Bokeh library
is not hardened by default. Possible mitigations include limiting sessions from which
could be the Bokeh server sessions created.

Utilizing reverse proxy that handles DoS attacks protection, such as CloudFlare
would mitigate the risk of DoS attacks. Since all of the input parameters are being
sanitized, the risk of arbitrary code execution is also minimal. The Python modules
accept requests made only from the sites the modules are located, which means
that the modules cannot be accessed externally. This was achieved by utilizing the
allow_websocket_origin parameter, which can be considered a security hardening
measure.

54

3.13 User interface
Web interface is a single page application, where users can access the Bokeh module
and find out about the use of the application.

3.13.1 Babai module

Figure 3.3 shows the interface of the Babai module separated into functional blocks:
1. This section allows users to select the basis vectors. Users can use the sliders

for real-time plotting of the lattice, or can type them directly into the boxes
below.

2. Here the users will generate random unimodular matrix, which will be applied
to the basis vectors selected above.

3. Indicator of linear independence.
4. In this plot users see the selected bases and generated portion of the lattice.
5. In this plot users see the same lattice, but with unimodular matrix applied to

the bases.
6. Indicators of Hadamard ratio for each basis.
7. Bokeh plot toolbar (from top to bottom);

• Pan (Used to move around the plots)
• Zoom (Used to zoom to a current section of the plots)
• Tap (Babai’s closest vertex algorithm)
• Reset (Resets the plots to the default view)
• Save (Generates an image of the current view of the plot)

Note the toolbar is different on the second plot due to the controls being tied to
both plots simultaneously, which leaves the second plot only with the save tool.

Fig. 3.3: User Interface of the Babai module.

55

3.13.2 Lattice/LWE module

Figure 3.4 shows the interface of the Lattice/LWE module separated into functional
blocks:

1. This section allows users to randomize the lattice bases as well as outputs the
generated keys.

2. In this plot users see the highlighted lattice bases as well as the .
3. This section allows users to select the message bit they want to encrypt. After

the selection users click on Encrypt the message button.

Fig. 3.4: User Interface of the Lattice/LWE module.

Workflow

This module contains only one point of user interaction, the Recalculate keys button.
Each click generates new basis, as well as new LWE problem. Users can see the
generated parameters on the plot and that it corresponds to the Closest Vector
Problem from the previous module. Users can also see the rendered LWE equation
from which the parameters are taken.

3.13.3 LWE protocol module

Figure 3.5 shows the interface of the LWE protocol module separated into functional
blocks:

1. This section allows users to input the matrix dimension and the prime modu-
lus. After the selection is done, user clicks on Generate keys button.

2. Here the users see the generated public and private keys.
3. This section allows users to select the message bit they want to encrypt. After

the selection users click on Encrypt the message button.
4. Here the users see the encrypted message parameters.

56

5. This section allows users to decrypt the message and download the parameters
as JSON object.

6. Here the users see the decryption calcultions.
7. This plot depicts the decryption on a unit circle.

Fig. 3.5: User Interface of the LWE protocol module.

Workflow

This module has comparably simple user interface as the previous modules. First,
users select the input parameters, after which they are able to generate keys. After
the keys have been generated, users are able to select the bit message and encrypt
the message using the pre-calculated keys. Then the users can decrypt the message
by clicking the decryption button. Throughout the whole computations users see
the rendered equations next to the buttons allocated for the given portion of the
protocol. After decrypting the message, users can see that the decrypted parameter
has been close either to the uppermost or lowermost point on the unit circle. After
the protocol has been completed, the users can download the parameters in a JSON
format using the Download button.

3.14 Installation
The installation consists of building the docker image and consequently running a
container based on that image. This section presumes that user has docker already

57

installed. Listing 3.18 shows the commands necessary for building and running
the application. Note that in command docker build, the dot refers to a current
directory. This means if the user is not in the application root directory, the user has
to specify this path. To run the server in the background, user can specify the -d
flag in the docker run command. While running in background, the container can
be stopped using docker stop lattice-server command. Now the application is
available on the local IP address on port 80.

1 docker build -t lattice .
2 docker run -p 80:80 -p 50007:50007 --name=lattice -server

-t -i lattice

Listing 3.18: Building the image.

3.15 Deployment to DigitalOcean
DigitalOcean [24] is paid cloud hosting service designed to among others, easily host,
deploy and monitor cloud applications. Since the application was developed as a
Docker container, the deployment was possible in minutes. After selecting the node
parameters, such as number of processors, RAM and storage, the user obtains ssh
access to a Ubuntu instance with pre installed Docker. Then, the deployment is a
matter of cloning the repository, building the image and running the container as
described in Section 3.14.

58

Conclusion
This thesis was concerned with creating a user friendly application demonstrating
key concepts in lattice-based cryptography. We studied the theoretical aspects of the
thesis and presented the mathematical theory of lattices as well as some important
properties of these structures. Moreover, we graphically demonstrated the Learning
with errors problem and shown the Boyen encryption protocol.

Following the theory we have laid out the reasoning behind selection of the
technology stack as well as technology used in the development process. Python
programming language was chosen as the most suitable platform for it’s extensive
list of libraries that have aided us in the development. Among those are the libraries
which allow developers extensive work with linear algebra, web server and real time
plotting. We have laid out a case for using versioning system in the development
process. We have shown how we have implemented the theoretical structures and
the operations on them using numPy. Furthermore, we have shown what are the
underlying server-side aspects of the application, such as the router function and
Bokeh server, which is handling the session data in separate threads running on the
server. We have also shown the development of custom JavaScript callbacks and
security hardening. At last, we have described the process of deploying the server
on public cloud.

The development concluded with a structure purposefully created as a foundation
for easy development of new modules, which means the whole project can be used
as a library for local computations or to improve on the original project as is the
custom in the open-source community.

59

Bibliography
[1] NSA paid $10 million to put its backdoor in RSA encryption, accord-

ing to Reuters report [online]. The Verge, 2013 [cit. 2021-12-09]. Avail-
able at: https://www.theverge.com/2013/12/20/5231006/nsa-paid-10-million-
for-a-back-door-into-rsa-encryption-according-to

[2] WANG, Xiaoyun and Hongbo YU. How to Break MD5 and Other Hash Func-
tions. In: Advances in Cryptology — EUROCRYPT 2005 [online]. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, s. 19-35 [cit. 2021-12-09]. ISBN
9783540259107. ISSN 0302-9743. Available at: doi:10.1007/11426639_2

[3] BERNSTEIN, Daniel J., Johannes BUCHMANN and Erik DAHMEN.
Post-Quantum Cryptography. Berlin, Heidelberg: Springer, 2009. ISBN
9783540887010. Available at: doi:10.1007/978-3-540-88702-7

[4] Post-Quantum Cryptography. COMPUTER SECURITY RESOURCE CEN-
TER [online]. Gaithersburg, MD: National Institute of Standards and Technol-
ogy, 2017 [cit. 2021-12-08]. Available at: https://csrc.nist.gov/projects/post-
quantum-cryptography

[5] CHOW, Jerry, Oliver DIAL and Jay GAMBETTA. IBM Quantum breaks the
100-qubit processor barrier [online]. IBM, 2021 [cit. 2022-05-30]. Available at:
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle

[6] Tanja Lange leads multi-million Euro project to protect data against quantum
computers [online]. Netherlands: Eindhoven University of Technology, 2015 [cit.
2022-05-30]. Available at: https://www.tue.nl/en/news/news-overview/23-
04-2015-tanja-lange-leads-multi-million-euro-project-to-protect-data-against-
quantum-computers/

[7] HOFFSTEIN, Jeff, Nick HOWGRAVE-GRAHAM, Jill PIPHER and
William WHYTE. Practical Lattice-Based Cryptography: NTRUEncrypt and
NTRUSign. The LLL Algorithm. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, s. 349-390. ISBN 9783642022944. ISSN 1619-7100. Available at:
doi:10.1007/978-3-642-02295-1_11

[8] DUCAS, L, T LEPOINT, V LYUBASHEVSKY, P SCHWABE, G SEILER
and D STEHLE. CRYSTALS — Dilithium: Digital Signatures from Module
Lattices. IACR Transactions on Symmetric Cryptology [online]. 2018, 2018,
238-268 [cit. 2022-05-30]. ISSN 2519-173X.

61

[9] D-ANVERS, Jan-pieter, Angshuman KARMAKAR, Sujoy SINHA ROY and
Frederik VERCAUTEREN. Saber: Module-LWR Based Key Exchange, CPA-
Secure Encryption and CCA-Secure KEM. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 10831. Cham: Springer International Publishing, 2018, s. 282-
305. ISBN 3319893386. ISSN 0302-9743. Available at: doi:10.1007/978-3-319-
89339-6_16

[10] PRADHAN, Pawan Kumar, Sayan RAKSHIT and Sujoy DATTA. Lattice
Based Cryptography: Its Applications, Areas of Interest & Future Scope. In:
2019 3rd International Conference on Computing Methodologies and Communi-
cation (ICCMC) [online]. IEEE, 2019, 2019, s. 988-993 [cit. 2021-12-08]. ISBN
978-1-5386-7808-4. Available at: doi:10.1109/ICCMC.2019.8819706

[11] AGGARWAL, Divesh, Gavin BRENNEN, Troy LEE, Miklos SANTHA and
Marco TOMAMICHEL. Quantum Attacks on Bitcoin, and How to Protect
Against Them. Ledger [online]. 2018, 3 [cit. 2021-12-09]. ISSN 2379-5980. Avail-
able at: doi:10.5195/ledger.2018.127

[12] CHEN, Lily, Stephen JORDAN, Yi-Kai LIU, Dustin MOODY, Rene PER-
ALTA, Ray PERLNER and Daniel SMITH-TONE. Report on Post-Quantum
Cryptography. National Institute of Standards and Technology: Internal Report
8105 [online]. US Department of Commerce, 2016, (12), 15 [cit. 2021-11-07].
Available at: https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf

[13] HOFFSTEIN, Jeffrey, Jill PIPHER and J. H SILVERMAN. An Introduction to
Mathematical Cryptography. New York, NY: Springer New York, 2008. ISBN
9780387779935.

[14] VAN EMDE BOAS, Peter. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Report. Department of Math-
ematics. University of Amsterdam. Department, Univ., 1981, 1981(84), 10.
Available at: https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/abstract.html

[15] ROSS, Sheldon M. A first course in probability. 7th ed. Upper Saddle River:
Pearson Prentice Hall, 2006, x, 565 s. : il. ISBN 0-13-185662-6.

[16] REGEV, Oded. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM [online]. NEW YORK: ACM, 2009, 56(6), 1-
40 [cit. 2022-05-27]. ISSN 0004-5411. Available at: doi:10.1145/1568318.1568324

[17] BOYEN, Xavier. Expressive encryption systems from lattices (abstract from the
invited lecture). In: Lecture Notes in Computer Science (including subseries

62

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
[online]. 2011, s. 1-12 [cit. 2022-05-27]. ISBN 9783642255120. ISSN 0302-9743.
Available at: doi:10.1007/978-3-642-25513-7_1

[18] CHEN, Zhigang, Jian WANG, Liqun CHEN and Xinxia SONG. A Regev-
Type Fully Homomorphic Encryption Scheme Using Modulus Switching.
TheScientificWorld [online]. LONDON: Hindawi Publishing Corporation,
2014, 2014, 983862-12 [cit. 2022-05-27]. ISSN 2356-6140. Available at:
doi:10.1155/2014/983862

[19] VAN ROSSUM, Guido. Python Tutorial. Python Documenta-
tion [online]. PythonLabs, 2001 [cit. 2021-12-08]. Available at:
https://docs.python.org/2.0/tut/tut.html

[20] HARRIS, Charles R, K Jarrod MILLMAN, Stéfan J VAN DER WALT, et al.
Array programming with NumPy. Nature (London) [online]. England: Nature
Publishing Group, 2020, 585(7825), 357-362 [cit. 2021-12-06]. ISSN 0028-0836.
Available at: doi:10.1038/s41586-020-2649-2

[21] Flask documentation [online]. [cit. 2021-11-29]. Available at:
https://flask.palletsprojects.com/en/2.0.x/

[22] Bokeh documentation [online]. 2021 [cit. 2021-11-29]. Available at:
https://docs.bokeh.org/en/latest/index.html

[23] Containerization. IBM Cloud Learn Hub [online]. IBM, 2021 [cit. 2021-12-08].
Available at: https://www.ibm.com/cloud/learn/containerization

[24] DigitalOcean documentation [online]. [cit. 2022-05-27]. Available at:
https://docs.digitalocean.com/

[25] Jinja Documentation [online]. Pallets, 2007 [cit. 2022-05-27]. Available at:
https://jinja.palletsprojects.com/en/3.1.x/

63

A Installation Manual
After logging into the desired server or desktop, the first step is to clone the repos-
itory.

1 git clone https :// github.com/xsecka04/crypto_lattice
2 cd crypto_lattice

Listing A.1: Cloning the Git repository.

A.1 Deployment with Docker
If the user has selected the deployment using Docker, user continues with building
the Docker image and creating a container. Before building the container, the user
needs to specify the domain from which the application will be hosted. In case of
deployment on a server, user has to specify the environmental variable IP to be the
external IP address of the server. In the case of local deployment, user can set the IP
variable to localhost. The variable is located in the Dockerfile. When the variable
is specified, user can proceed with building the image and running the container.

1 docker build -t lattice .
2 docker run -p 80:80 -p 50007:50007 --name=lattice -server

-t -i lattice

Listing A.2: Building the image.

To stop the server from running, user can use the command

1 docker stop lattice -server

Listing A.3: Stopping the server from running.

If the container already exists and it is not running, user can start the container
by using command

1 docker start lattice -server

Listing A.4: Starting the server.

A.2 Deployment with virtualenv
Although not recommended, users can locally deploy the application using Python
virtual environment. This case is recommended only for development purposes. The
user needs to have installed latest versions of Python and pip. Note that user needs

65

to specify the environmental variable IP per the operating system the computer is
running. The commands are as depicted in Listing A.5.

1 export IP=localhost #Linux
2 set IP=localhost # Windows

Listing A.5: Setting the environmental variable

If the user satisfies the aforementioned prerequisites, they can proceed to installing
the virtulenv package and creating and activating the virtual environment.

1 pip install virtualenv
2 virtualenv venv
3 source venv/bin/activate

Listing A.6: Installation of virtualenv environment.

Then the user needs to install all of the required libraries and run the application.

1 pip install -r requirements.txt
2 python run.py

Listing A.7: Running the application.

66

B User Manual
The application contains three modules with accompanying user instructions on the
top of the module. These instructions are depicted on Figures B.1, B.2 and B.3.

The user is encouraged to start with the Babai module to understand the basics
of lattices, bases and CVP. Then the user can see the similarities with the LWE
problem in the CVP/LWE module. At last, the user can try to use the LWE
protocol module where the user can experiment with the initial parameters.

67

Fig. B.1: User instructions of the Babai module.

68

Fig. B.2: User instructions of the CVP/LWE module.

69

Fig. B.3: User instructions of the LWE protocol module.

70

	Introduction
	Background
	Post-Quantum Cryptography
	Linear Independence
	Basis
	Lattices
	Example

	Hadamard Ratio
	Example

	Unimodular Martix
	Generating unimodular matrix

	q-ary Lattice
	Closest Vector Problem
	Babai's Closest Vertex Algorithm
	Example

	Random variable
	Example

	Probability distribution
	Example

	Solving linear equations
	Example

	Learning with errors
	Example
	Connection to lattice problems
	Applications

	LWE encryption protocol
	Chosing the parameters
	Encryption
	Decryption
	Example

	Implementation Background
	Python
	numPy
	Flask
	Basic Flask Application

	Bokeh
	bokeh.models
	bokeh.plotting
	Bokeh Server
	Basic Bokeh Application

	JavaScript
	JSON

	Containerization

	Implementation
	Selection of technological stack
	Preparation of the development environment
	Git

	Architecture
	File Structure
	Views
	Jinja and rendering templates

	Vector algebra using numPy
	Generating lattices
	Generating unimodular matrix
	Calculating Babai's closest vertex algorithm
	Generating LWE protocol

	Transforming point coordinates
	Plotting the graphs
	Data model
	Plotting and callbacks

	Custom JavaScript callbacks
	Rendering HTML
	Extending the application
	Docker
	Parallelism
	Security
	User interface
	Babai module
	Lattice/LWE module
	LWE protocol module

	Installation
	Deployment to DigitalOcean

	Conclusion
	Bibliography
	Installation Manual
	Deployment with Docker
	Deployment with virtualenv

	User Manual

