BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2022 Martin Seckar

BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

WEB APPLICATION DEMONSTRATING LATTICE-BASED
CRYPTOGRAPHY

WEBOVA APLIKACE DEMONSTRUJICI KRYPTOGRAFII ZALOZENOU NA MRIZKACH

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Martin Seckar

AUTOR PRACE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.

VEDOUCI PRACE

BRNO 2022

BRNO FACULTY OF ELECTRICAL
UNIVERSITY ENGINEERING

OF TECHNOLOGY AND COMMUNICATION

Bachelor's Thesis

Bachelor's study program Information Security

Department of Telecommunications

Student: Martin SecCkar ID: 203640
Year of
Academic year: 2021/22
study:
TITLE OF THESIS:
Web application demonstrating lattice-based cryptography
INSTRUCTION:

The assignment is focused on the development of a web application on lattice-based cryptography. At first, the
student will study lattice-based cryptography (e.g. learning with error problem, shortest vector problem, Babai
algorithm). A Part of the work will be the implemention of a web application that allows visualizing lattice,
performing lattice computations, and basic lattice-based cryptographic protocols (e.g. Fiat-Shamir with abort
signature). The writing of a manual is also required to the student.

RECOMMENDED LITERATURE:

[1] Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer (2008)

[2] Hoffstein, J., Pipher, J. C., Silverman, J. H., Silverman, J. H.: An introduction to mathematical cryptography.
New York: springer (2008).

Date of project Deadline for

7.2.2022 31.5.2022
specification: submission:

Supervisor: M.Sc. Sara Ricci, Ph.D.

doc. Ing. Jan Hajny, Ph.D.
Chair of study program board

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

The aim of this thesis is to develop and implement a web application demonstrating
lattice-based cryptography. The application was developed using mainly the Python
programming language and Docker container platform. More specifically, the modules
utilize the Bokeh library and custom JavaScript functionality expanding the Bokeh li-
brary. The modules are hosted on a Flask server where the background calculations are
being computed using numPy library. The application contains three modules describing
the closest vector problem, learning with errors problem and the Boyen cryptographic
protocol based on the latter problem. Users are able to visualize two dimensional lattices
and perform selected computations. The codebase is easily expandable and can serve as
a learning platform. The thesis also includes installation and user manual.

KEYWORDS

Babai's algorithm, Bokeh, data visualization, encryption, JavaScript, Lattice based cryp-
tography, Learning with errors, protocol, Python

ABSTRAKT

Zamer tejto prace je vyvinat a implementovat webovi aplikaciu demonstrujdcu krypto-
grafiu zalozen(na mriezkach. Aplikacia bola vyvinutd pouzitim programovacieho jazyku
Python a kontajnerizaénej platformy Docker. Specifickejsie, implementované moduly po-
uzivaju kniznicu Bokeh a vlastnii JavaScript funkcionalitu, ktora rozsiruje dani kniznicu
Bokeh. Tieto moduly st poskytované serverom Flask, kde taktiez prebiehaji vsetky vy-
pocty pomocou kniznice numPy. Aplikacia obsahuje tri moduly popisujtice problém najb-
lizSieho vektora, problém ucenia s chybami a Boyenov kryptograficky protokol zalozZeny
na predchadzajicom probléme. Uzivatelia maji moznost vizualizovat dvojdimenzionalne
mriezky a prevadzat vybrané vypocty. Zdrojovy kéd je jednoducho rozsiritelny a méze
slazit ako nduéna platforma. Praca taktiez obsahuje inStalaény a pouzivatelsky manudl.

KLUCOVE SLOVA
Babaiov algoritmus, Bokeh, datova vizualizacia, Sifrovanie, JavaScript, kryptografia za-
lozena na mriezkach, ucenie s chybami, protokol, Python

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT

Zadanim bakalarskej prace bolo vyvinit webova aplikdciu demonstrujicu kryp-
tografiu zalozent na mriezkach. Na zaklade studia danej problematiky bola vyv-
inutd aplikdcia v programovacom jazyku Python s pouzitim kontajnerovej plat-
formy Docker. Tato aplikdcia umoznuje uzivatelom vizualizovat dvojdimenzionalne
mriezky a prevadzat vizudlne operéacie ako kalkuldciu Babai algoritmu. Dalej ap-
likacia vizualizuje podobnost medzi tazkymi problémami na mriezkach, ako problé-
mom najblizsieho vektora (CVP) a problémom ucenia s chybami (LWE). Na koniec,
aplikacia predstavi Boyenov kryptograficky protokol zalozeny na probléme ucenia
s chybami. Tato aplikacia sluzi ako didakticky a vizualiza¢ny nastroj pouzitelny
na vysvetlenie abstraktnej problematiky okolo kryptografie zalozenej na mriezkach.
Jej vyvoj a architekttura si prisposobené na efektivne rozsirenie o dalsie moduly
popisujtice dalsie problematiky v post-kvantovej kryptografii. Architektira aplikacie
umoznuje rapidne spustenie bud lokdlne na vlastnom zariadeni napriklad pomocou
aplikacie Docker Desktop, alebo na verejnom cloud hostingu.

Teoreticka cast sa zaobera vysvetlenim implementovanych modulov. Predstavuje
zakladné koncepty mriezkovych struktiar a ich baz. Je predstaveny faktor ortog-
onality, tiez nazyvany Hadamardov pomer, ktory vyjadruje ako su baze na seba
kolmé. Dalej st predstavené vipoctovo tazké problémy na mriezkach. Hlavny prob-
lém, ktory je prezentovany je problém najlblizsieho vektora. Na to je prezenotvany
Babaiov algoritmus, ktory je schopny riesit problém najblizSicho vektora ak st baze
mriezky dostatocne ortogonalne. Kapitola pokracuje zakladmi tedrie pravdepodob-
nosti, ako definovanim nahodnej premennej a distribucnej funkcie, ktoré su pouzité v
nasledujucej teérii. Distribuc¢né funkcie su demonstrované na tisic vzorkach vyberu
z danej distribticie. Dalej je zmieneny problém ucenia s chybami, ktory je prirov-
nany ku beznému rieseniu sustav rovnic pomocou Gaussovej eliminac¢nej metody.
Na rozdiel od klasickych ststav rovnic, uc¢enie s chybami, ako nazov napoveda, ob-
sahuje chybovy vektor, vdaka ktorému sa riesenie stava vypoctovo tazké. Tento fakt
je vyuzitelny ako kryptograficka primitiva. Na dokaz dostatocnej zlozitosti je tento
problém nasledne porovnany s problémom najblizSieho vektora, kde je viditelné,
ze je do tohto problému redukovatelny. Na koniec je predstaveny Boyenov kryp-
tograficky protokol pre jeden bit, ktory vyuziva problém ucenia s chybami ako jeho
kryptograficki primitivu. Je podrobne popisany odporuc¢any vyber parametrov,
sifrovanie a desifrovanie.

Kapitola implementacné pozadie sa zaobera okrem iného predstavenim zak-
ladov programovacieho jazyku Python. Dalej prezentuje niekolko dolezitych kniznic
pouzitych pri vyvoji danej aplikacie, Specificky numPy, Bokeh a Flask. Je kladeny

doraz na separaciu klientovej a serverovej strany programu, kde sa nachadzaja dva

servery obsiahnuté v kontajneri. Tato kapitola taktiez priblizi jazyk JavaScript,
ktory bol pouzity na rozsirenie funkcionality kniznice Bokeh. Taktiez je predstaveny
format JSON, ktory je vyuzity ako vystupny datovy format pre modul Boyenov
kryptograficky protokol. Na koniec je prezentovana kontajnerizacia ako koncept pri
vyvoji cloud softvéru.

Prakticka cast sa zaoberd implemetaciou aplikacie. Zacina popisom zvolenej ar-
chitektiry a technologického balika. Potom popisuje vyvojovy proces cloudovych
aplikécii, ako st CI/CD technoldgie a verzovaci systém Git. Dalej vysvetluje ako
bola vyuzita kniznica numPy pre maticové vypocty. Nasledne je predstavena Bokeh
kniznica a jej datovy model, view dekorator a Jinja Sabléony. Bokeh kniZnica je
primarne zamerana na vyvoj interaktivnych grafov pouzitim serverovej technologie
a callback funkcii, ktoré su dalej demonstrované. Takisto si predstavené JavaScript
callback funkcie, ktoré sluzia ako rozsirenie zakladnej funkcionality kniznice Bokeh.
Predstavené st vykreslovacie schopnosti LaTeX objektov tejto kniznice a kratky
navod ako rozsirit aplikdciu o nové moduly. Dalej je demonstrované vytvorenie
Docker kontajneru pomocou Dockerfile siboru. Taktiez je spomenuté ako tato ap-
likdcia vyuziva paralelné vlakna na spustenie Flask a Bokeh serveru. Predlozena
je aj jednoduchda bezpecnostna analyza, kde st spomenuté potencionalne ttoky na
aplikdciu a ich moZna mitigacia. Dalej je samostatne popisané uzivatelské rozhranie
kazdého modulu spolu s uzivatelskym postupom. Na koniec je spomenuta instala-
cia kontajnera a umiestnenie kontajnera na verejne pristupny cloud. Taktiez je

vysvetleny postup moznej lokalnej instalacie.

SECKAR, Martin. Web application demonstrating lattice-based cryptography. Brno:
Brno University of Technology, Faculty of Electrical Engineering and Communication, De-

partment of Telecommunications, 2022, 70 p. Bachelor's Thesis. Advised by M.Sc. Sara
Ricci, Ph.D.

Author’s Declaration

Author: Martin Seckar

Author’s ID: 203640

Paper type: Bachelor’'s Thesis

Academic year: 2021/22

Topic: Web application demonstrating lattice-

based cryptography

| declare that | have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, | furthermore declare that, with respect to the creation of this paper,
| have not infringed any copyright or violated anyone’s personal and /or ownership rights.
In this context, | am fully aware of the consequences of breaking Regulation § 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No.40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

author’s signature*

*The author signs only in the printed version.

ACKNOWLEDGEMENT

| would like to thank the advisor of my thesis, M.Sc. Sara Ricci, Ph.D. for her valuable
comments, methodology advice, research insights and willingness to continue to work
with me. | would also like to thank my family and friends for their perseverance through

the easy and difficult times.

Contents

(Introductionl

1 Background|

(1.5.1 Example/.

(1.6 Unimodular Martix|

M6.1

Generating unimodular matrix|. L.

(1.7 g-ary Lattice]

(1.9 Babai’s Closest Vertex Algorithm|

Mo.1

Examplel

MTI0.1

Examplel

(1.11 Probability distribution|. . . .

MTITT

Examplel

[1.12 Solving linear equations| . . .

121

Examplel

[1.13 Learning with errors|

IRER!

Examplel

[1.13.2 Connection to lattice problems|

M13.3

Applications|.

(1.14 LWE encryption protocol|. . .

141

Chosing the parameters|

M142

Encryption|

143

Decryption|

M.144

Examplel

[2° Tmplementation Background|

23

25
25
25
25
26
26
27
27
27
28
28
28
29
29
30
30
31
32
33
33
34
34
35
35
36
36
36
36
37

2.4.1 bokeh.modeldo 40
[2.4.2 bokeh.plotting.o 40
2.4.3 Bokeh Server] o o 40
[2.4.4 Basic Bokeh Application| 41

[2.5 JavaScript| 41
2.0.1 JSON| 41

2.6 Containerizationl 42
[3 Implementation| 43
[3.1 Selection of technological stackl 43
[3.2 Preparation of the development environment| 43
B2T GIll oo 44

3.3 Architecturel 44
(B.3.1 File Structurelo Lo 45
B32 Views 46
[3.3.3 Jinja and rendering templates L. 46

[3.4 Vector algebra using numPy| 0. 46
[3.4.1 Generating lattices| 46
[3.4.2 Generating unimodular matrix|. 47
[3.4.3 Calculating Babai’s closest vertex algorithm| 47
[3.4.4 Generating LWE protocoll 48

[3.5 Transforming point coordinates| 49
[3.6 Plotting the graphs| o 49
[3.6.1 Datamodell oo 49
[3.6.2 Plotting and callbacks 50

[3.7 Custom JavaScript callbacks| 50
[3.8 Rendering HI'ML| 52
[3.9 Extending the application| 53
BI0 Dockerl o 53
(3.11 Parallelisml|.o 54
.................................. 54
(3.13 User interfacelo 55
(3.13.1 Babaimodulel oo 55
[3.13.2 Lattice/LWE module| 56
[3.13.3 LWE protocol module| 56
(3.14 Installationlo 57

Conclusion|

Bibliography|

[A_Installation Manual |
[A.1 Deployment with Docker | .
[A.2 Deployment with virtualenv |

[B User Manual |

59

61

65
65
65

67

List of Figures

(1.1 Example of lattice with highlighted basis.|. 27
(1.2 Example of Babai's closest vertex algorithm.| 30
(.3 Uniform distributionJ oo 31
(L4 Normal distribution) 000 32
(1.5 Discrete distribution function of a two round coin toss) 33
(1.6 Plotted LWE parameters seen as equivalent problem to CVP.|. 35
(1.7 Decryption of the equation e’| 38
[3.1 Architecture of the application.| 45
[3.2 Directory tree of crypto lattice repository| 45
(3.3 User Interface of the Babai modulel 55
(3.4 User Interface of the Lattice/LWE module,| 56
[3.5 User Intertace ot the LWE protocol module.| 57
[B.1 User instructions of the Babai module) 68
[B.2 User instructions of the CVP/LWE module.| 69

[B.3 User instructions of the LWE protocol module.|. 70

Listings

(2.1 Hello world implemented in Flask|{ 39
[2.2 Simple plot implemented in Bokeh| 000 . 41
2.3 Example of JSON format|. 41
[3.1 creation of virtual environmnetl) o000 43
[3.2 Exporting dependencies.|o 44
(3.3 Flask view function oo 46
[3.4 Lattice generator function.| 47
3.5 Random unimodular matrix functionlJ 47
[3.6 Babai’s algorithm tunction.|. 48
[3.7 Generating random LWE problem.| 48
3.8 Transformation of coordinates]. 49
[3.9 Data model example.| L0 50
[3.10 Plotting points and arrows.| 50
[3.11 "Trigger based on change of an input.| 50
[3.12 Generating random LWE problem.| o1
[3.13 JavaScript download callback.| 51
[3.14 LaTex parser.| 52
[3.15 Bokeh module template|o 53
(3.16 Dockerfile o oo 53
[3.17 Worker function)o 54
[3.18 Building the image.| oo 58
[A.1 Cloning the Git repository.|. 65
[A.2 Building the image.| L 65
[A.3 Stopping the server from running| 65
[A.4 Starting theserver| Lo 65
[A.5 Setting the environmental variablel.00 66
[A.6 Installation of virtualenv environment. 66

[A.7 Running the application.| 66

Introduction

Cryptography is an essential and almost invisible part of everyday life. It is one of
those underlying technologies which general population presumes to be just work-
ing. With several historical breaches, whether by design or by continuous research,
the notion of secure communication is slowly fading away. The former is regarding
the BSAFE toolkit [I] proposed by RSA Security, a highly respected body in cyber-
security, which contained deliberately engineered backdoor in the pseudo-random
number generator by National Security Agency (NSA) and the latter is regarding
the finding of collisions in the MD5 algorithm [2]. These events can be seen as a

motivation to develop mathematically safe cryptosystems.

The methods in cryptography came a long way from substitution ciphers used
from around 500 BC to today’s elliptic curve cryptography. This thesis is concerned
with the future of cryptography methods, called post-quantum cryptography [3]
(also quantum-resistant cryptography). Ever since the announcement of the Shor’s
algorithm, mathematicians predicted that some cryptographic primitives could be
broken using quantum computers, hence the name post-quantum. Notably, cryp-
tosystems based on integer factorization problem could be broken by calculating
private keys using Shor’s algorithm implemented on a large scale quantum com-
puter. Although there are several questions whether such computer will be ever
built, in 2017 the US National Institute of Standards and Technology (NIST) [4]
has initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms. With recent announcements of IBM
breaking the 100 qubit barrier [5], the threat of implementing sufficiently large scale
Shor’s algorithm is still low. Moreover, a significant number of experts and prac-
titioners believe that a sufficiently powerful quantum computer can be built in the
next decade. [6]

Lattice-based cryptosystems are being implemented as encryption schemes such
as NTRUEncrypt [7], signatures (Dilithium [8]) or key exchange such as Saber [9].
Pradhan et al. [I0] postulates that the Internet-of-Things (IOT) devices are a pos-
sible area of implementation since the need for storing large amount of keys is not
satisfied by classic, e.g., not lightweight implementations of current cryptosystems.
They further claim several other areas of interests, such as end-to-end encryption,
electronic money and disk encryption. There have been several studies dealing
with the use of lattice-based cryptography as a replacement for elliptic curves in
blockchain technology [I1], but the current status of these algorithms are still not
able to outweigh the negatives in doing so. This ongoing research prompts us to
create an accessible tool to spread the base knowledge of lattice-based algorithms to

excite potential future research endeavors. We believe that if there is an easy and

23

approachable way to learn this potentially obscure topic it could contribute to the
greater academic interest.

The main goal of this thesis is to create a comprehensive learning platform where
users can easily and visually learn about the underlying mathematics of lattices and
problems on the lattices with emphasis on user-friendly interface and easy deploy-
ment. For these reasons we believe the best platform to be a web application. We
will also show the reasoning behind selecting Python programming language along
its extensive library collection as our main platform.

We describe selected lattice notions necessary for the reader to comprehend the
basics of the hard problems associated with lattices. We show how bases generates
lattice, the need for bases to be linearly independent, how lattices can be generated
from many bases and how to distinguish between them. We have decided to show the
Closest Vector Problem (CVP), since the Learning with errors problem is reducible
to CVP. Furthermore we show the Babai’s Closest Vertex algorithm to describe how
can CVP be solved when using insecure bases.

We propose a solution based on chosen architecture which encompasses all the
necessary prerequisites and show basic security hardening of the application. Fur-
thermore we describe how we have deployed the application on a public cloud using
Docker. Moreover, we show the local deployment options with Docker. At the end,
we describe the user interface and the workflow the user will apply to do basic visual

calculations.

24

1 Background

In this chapter, we lay out the need for post-quantum cryptography, the theory of
lattices as mathematical structures. Some linear algebra knowledge is presumed to
fully comprehend the mathematical background, such as vector and matrix notation
and multiplication. We continue with describing elementary knowledge of probabil-
ity theory, the notation and distribution functions. Moreover we describe the basics
of learning with errors problem, the connection to lattice problems and a show a

protocol using the aforementioned problem as a cryptographic primitive.

1.1 Post-Quantum Cryptography

With the emergent research of quantum computing, the risk of breaking crypto-
graphic primitives based on discrete logarithm and /or integer factorization problem
are imminent [I2]. For this reason, mathematicians are trying to find other hard
problems, i.e., Nondeterministic Polynomial time (NP)-hard problems that can be
used as a basis for new post-quantum era cryptosystems. One of the biggest and

well-supported approaches is the use of hard problems on lattices.

1.2 Linear Independence

To understand the definition of a lattice, we need to define a vector set property
called linear independence. The vectors are linearly independent if they are not a

linear combination of each other i.e. if there is only one solution to the equation
aib; + ...+ a,b, =0 (1.1)

and that is a; = 0, where j € Z.

1.3 Basis

In general, a vector set B in a vector space V is a basis, if B is linearly indepen-
dent and span V, which means all elements in V can be represented as a linear

combination of B.

25

1.4 Lattices

Lattice [3] is a closed set of all integer multiples of basis vectors. Generally it is
defined as

Liby,...b,} = {leb Lz € z} , (1.2)

where by, ..., b, € R" are linearly independent vectors called the basis and n is the
number of dimensions.
For the purpose of this thesis, we will use the matrix form of the basis, which is

constructed as

I

Matrix B is in some literature called the generator of the lattice £. Using the matrix
form, Equation [1.2] becomes

L(B)={Bx:x€Z"}. (1.4)

Note that the same lattice has infinitely many generators, which is a useful property

we will show later.

1.4.1 Example

Let lattice £ be defined as linear combination of generator matrix

2 1
o (). »

Based on Equation [I.4] lattice £ can be written as an infinite set of integer points,

such as
L£={(1,28),(2,31),(3,34), (4,37), (1, 23),(2,26), (3,29), (4,32), (5,35), ...} (1.6)

The lattice £ can be partially seen in Figure [1.1] with red arrows showing the basis

vectors.

26

Fig. 1.1: Example of lattice with highlighted basis.

1.5 Hadamard Ratio

To distinguish between these bases (generators), we use the Hadamard ratio [13],

which can be seen as the orthogonality factor. It is defined as

|det L]| >1/n
H(L) =
(£) <||b1|12-...-||bn||2

This coefficient determines if the bases are "good" or "bad", depending on the value.
We consider a "good" basis to have H(L) > 0.75 and a "bad" basis as H(L) < 0.25.

(1.7)

1.5.1 Example

Using the lattice £ from previous example, we get

1/2
H(L) = (2 : \6/1_0> ~ 0.974. (1.8)

We will consider this as a "good" basis.

1.6 Unimodular Martix

Unimodular matrix A is a matrix which satisfies the equation

det A = +1, (1.9)

27

The inverse of matrix A is another unimodular matrix. We will use a random
unimodular matrix to create a "bad" basis out of a "good" one i.e. a basis with lower
Hadamard ratio. Note that based on the properties of unimodular matrices, the
basis created by applying unimodular matrix will be generating the same lattice as

the original one.

1.6.1 Generating unimodular matrix

The generation of a random unimodular matrix is conditioned by Equation[I.9, This
is achieved by generating two matrices with £1 on the diagonals and a random tri-
angular matrix under or over the diagonal. The result of multiplying these matrices

is always a matrix with det = +1. Mathematically, this calculation can be shown

GG)T 2)-r e

1.7 q-ary Lattice

on example as

det U = det

In cryptography, g-ary lattices are the most interesting, as they are in one-to-one
correspondence with linear codes Zj. Lattice £ embedded in Z" is a g-ary lattice
for an integer ¢, if ¢Z C L. That means the vector b is a member of L if and only
if b mod ¢ is also a member of £. With this knowledge, we can rewrite Equation
L4 as

L(B)={Bx modgq:x€Z"}. (1.11)

1.8 Closest Vector Problem

There are several NP-hard problems defined on lattice £, namely Shortest Vector
problem (SVP), Shortest Independent Vectors Problem (SIVP) and Closest Vector
problem (CVP). There are polynomial time reduction algorithms which allow trans-
form of one problem into another. Moreover, CVP was shown by van Emde Boas to
be NP-hard [I4]. Since the SVP can be generalized into CVP, we will focus on the
latter. Closes vector problem (CVP) states that given a lattice generating matrix

B and a target vector t, it is hard to find the closest vector v € £. Formally
dist(L,t) = melgﬂx —v|, (1.12)

where dist is a distance function.

28

1.9 Babai’s Closest Vertex Algorithm

Let £ € R™ be a lattice with basis B and let t € R™ be an arbitrary vector. If the
vectors in the basis are sufficiently orthogonal to one another, then the following
algorithm solves CVP.

Algorithm 1 Babai’s Closest Vertex Algorithm
t < t1by + ... + t,b,, where tq,....t, € R
a; < [t;], fori=1,2,...n

return v = a1b; + asby + ... + a,b,

1.9.1 Example

Using lattice defined in previous examples, let’s say we are looking for the closest
member vector to vector t = (2.5, —3.2). Using Algorithm 1, we start by defining a

- (20) - (2) h (1) | 1y
—3.2 0 3

Now we need to solve for the unknown variables ¢,

vector t as

3.2 2.5 — t9

to = —3 = —1.067;t, = = 1.7835, (1.14)
and round the results to the nearest integer
a9 = —1;0/1 = 2. (115)

This gives us the closest vector

v=2b; —by = (_33) . (1.16)

Visually, this calculation is shown in Figure [1.2] where the yellow arrow represents

vector t and orange arrow represents the closest vector v in lattice L.

29

-2 <

Fig. 1.2: Example of Babai’s closest vertex algorithm.

1.10 Random variable

For the purposes of describing the probability distribution, one has to define the
fundamental measure of probability. Probability [I5] is measured using a random

variable, which is a function in the form of
X: Q- F, (1.17)

where X is a random variable, () is a sample space and F is a measurable space.

A distribution of random variable is defined as

Fx(z)=P(X <2)= Y P(X =ux,). (1.18)

<z

1.10.1 Example

In a fair game of coin toss, the coin has only two states: heads or tails. This can be

represented as

X {ht} — {0,1}. (1.19)

In the case of two rounds, the possible states increase to
X : {hh,ht,th,tt} — {00,01,10,11}. (1.20)
Then the probabilities of tossing each pair are equal

P(X = hh) = P(X = ht) = P(X = th) = P(X = tt) = i (1.21)

30

1.11 Probability distribution

For the purposes of this thesis, we are concerned with two types of probability
distribution, namely uniform and normal distribution. The former distribution has

a form of a function

L forz €la,b
fla) =P) (1.22)
0 otherwise.

The latter has a form of a function N (i, 0%) with distribution

d,(x) = e 22 | (1.23)

where p is the mean and o is standard deviation.

T T T T T T
1 12 14 16 18 2
X

Fig. 1.3: Uniform distribution.

0.

P(x)

0.

>

0.

=

0.

o

o

31

08+

06

P(x)

0.4

024

Fig. 1.4: Normal distribution.

Figure [I.3] shows the uniform distribution sampled 1000 times with parameters

set to a = 1,b = 2. Figure [1.4] shows the normal distribution sampled 1000 times

with parameters set to u = 0,0 = 0.5.

1.11.1 Example

Continuing the example shown in Equation there are three possible outcomes

of the two rounds of coin toss: either both coins are heads, both coins are tails or

one is heads and one tails. This scenarion is depicted in the measurable space as

E =1{0,1,2}, and the distribution function has values

Fy(0) = P(X = hh) = i
Fy(1) = Fx(0) + P(X = ht) + P(X = th) = 3}1 _ 2
Fy(2) = Fy(1) + P(X = tt) = 4}1 _1

Figure depicts the distribution function of the game described above.

32

(1.24)

0.8 -

06 -

04 4

02

Fig. 1.5: Discrete distribution function of a two round coin toss.

1.12 Solving linear equations
Considering a set of equations in form of

a1T1 + asxy + asxs + agxry = by mod p,

asxr1 + agxs + azrs + agry = by mod p,

(1.25)
agxr1 + Q1022 + A1123 + Q1274 = b3 mod p,
1321 + A14T2 + Q1573 + A16XTa = b4 mod P,
where we try to find (z;...7,,) € Z;. Using a matrix form, we obtain
Az =B(mod p), (1.26)

where A and B are known matrices and p is a known prime. Retrieval of the vector

s is trivial using Gaussian elimination method in polynomial time.

1.12.1 Example

We take random samples from a prime group of order p = 5 and populate the

A= (2 3) ,and B = (1> . (1.27)
1 2 3

33

matrices

Solving for z, using Gaussian elimination, we obtain

-7 3
x:(S) mod5:(0). (1.28)

1.13 Learning with errors

By slightly changing the Equation [1.25] we obtain
a171 + Aoy + azrs + agxy ~ by mod p,
asx1 + agxTy + a7x3 + agxy ~ by mod p,
(1.29)
A9 + a10x2 + a11xs + A192T4 ™~ bg IIlOd D,
1371 + A14%2 + a15T3 + a16T4 ~ by Mmod p,
where we try to find (z;...7,,) € Z;; and the equations are true up to a certain small
error. Now the Gaussian elimination does not work anymore and the problem is
considered to be hard to solve.
Again, using the matrix notation, an error vector e with given distribution is

added. By adding an error vector, the equation is in the form
Az +e=B(mod p), (1.30)

Solving this equation without the knowledge of the error vector is provably NP-
hard. This problem was formulated by Regev [16] and is known as the Learning
With Errors (LWE) problem.

Definition 1 (LWE Problem) Given n.m,q € Z and X, a distribution in Z,,
with arbitrary many sample pairs (A, As + e), where A €yg Z7™" and e €xm 77,

compute a vector s Eyr Ly -

Notation €z describes a uniform sampling from a given group and €ym describes

a sampling using the chosen distribution X.

1.13.1 Example

Using parameters from Equation [I.27] and adding a random sampled error vector

e= (_11) : (1.31)
(2 3) (51> + (_1> mod 5 ~ <1> , (1.32)
1 2) \sy 1 3

which would be hard to solve without the knowledge of vector e.

we obtain equation

34

1.13.2 Connection to lattice problems

Equation [1.30| can be thought of as a lattice based operation on a basis B and
having the secret s as the closest vector shown in Figure [[.2] Moreover, what has
been shown as a selected input vector to the Babai algorithm can be seen as the
result B of the Equation By transforming the LWE problem to the lattice,
the hardness of LWE is similar to solving CVP. Figure depicts the LWE solution
and the public key on the lattice with highlighted basis. We can see the similarities
to Figure (1.2

Fig. 1.6: Plotted LWE parameters seen as equivalent problem to CVP.

1.13.3 Applications

Current state of the art applications are utilizing the ring learning with errors vari-
ant, which proves to be less computationally demanding. The main difference is
that the matrices are not populated by random group elements but with random
polynomials on a defined ring. The main contenders for the post-quantum cryptog-
raphy standards include NTRUSign [7], RLWE-SIG and Dilithium [§] for signature
schemes and NTRUEncrypt and Saber [9] for encryption schemes, where Saber uses

the Learning with rounding variant.

35

1.14 LWE encryption protocol

The protocol described by Boyen [17] is used to encrypt a single bit of information

and serves as an example for a full encryption system based on LWE.

1.14.1 Chosing the parameters

To generate the keys, Alice selects a prime modulus ¢, a random matrix A €yg Z;*™
as shown in Equation, as well as a random vector s €yp Z;" and a random error

sample vector e €y, Z", where v, is a chosen probability distribution function.

q Y
Note that Chen et al. [I8] recommend the dimension m to be at least 2nlog(q) and
the prime ¢ to be in the range n? < ¢ < 2n%. Furthermore the error distribution

parameter « is set to be @ = , which we have rounded to 1. That gives us

1
V/nlog®(n)
a set of integer errors {—1,0, 1}.

Using these parameters, the LWE problem is constructed as p = As+e¢ mod gq.
The matrices A and p are then used as a public key parameters that are sent to

Bob and the error vector e is considered a private key.

1.14.2 Encryption
Bob selects a message b € {0,1} and computes the Equations
Encay(b) = (d,p) = (D a;
1

(1.33)
L)

where the first parameter is a row sum of the matrix A and the second parameter
is a row sum of the vector p with the added bit message b multiplied by a floor
function of the half of the prime modulus ¢q. These vectors are then sent to Alice

for decryption.

1.14.3 Decryption

Alice calculates Equation
¢ =p —d xs' mod g, (1.34)
and decrypts the message according to

0, ife’~0
Dec,(d'.p') = (1.35)
L, ife ~ 1]

36

The decryption can be shown on a unit circle, where the modular group can be
thought of as a clock. The uppermost point on the circle is equivalent to the "0"
case in the Equation [I.35] and the lowermost point is equivalent to the "1" case,
respectively. Then the decryption is visualized as a point in the neighborhood of

these points.

1.14.4 Example

Suppose we have selected the parameters such that we have obtained the LWE

problem as

16
-1309 1 1\, 0 15
123 =8 9| |+ |-1|=|12] mod1l7, (1.36)
~12 -3 0 8 . 0 13

where the public parameters are shown in blue and private parameters are shown in

red. Then the encryption of a bit b = 1 will give us

4
13 9 1 1 .
EnCA,p(l) = (@Iap/) - (Z 12 3 —8 9 = 10 ,
'\-12 -3 0 8
1 (1.37)
5 17
Sl12] +1l=] =14).
- 2
13

Following the scheme, decryption starts with calculating the parameter

4
, 9
¢ =14 — x (16 16 1 —8) mod 17 =7, (1.38)
10
1

and finding the nearest point

0, if7~0
1, if7~8

Decy(d'.p') = (1.39)

Figure depicts the calculated value interpolated to a point on a unit circle and

shows that the value is close to case "1".

37

“t/ \

Fig. 1.7: Decryption of the equation €.

Note that we have omitted the recommendation set by Chen et al. in order to

save space, as the matrix with parameter n = 4 would have at least 10 dimensions.

38

2 Implementation Background

In this chapter, we introduce the Python programming language as a tool for data
visualization. We take a look at some of the Python libraries used that allow easy
linear algebra opertions on matrices, such as numPy, and we show how Flask routing
functions work. Furthermore we describe the elementary knowledge of JavaScript
and how it was utilized in this work. We will conclude with the high-level overview

of the containerization as our deployment platform.

2.1 Python

Python [19] is an interpreted, multi-paradigm programming language which is highly
popular amongst data science community. In this thesis, we will concern ourselves

with Python version 3.9. We will look closer at numPy, Flask and Bokeh.

2.2 numPy

NumPy is the primary array programming library for the Python language. It has an
essential role in research analysis pipelines in fields as diverse as physics, chemistry,
astronomy, geoscience, biology, psychology, materials science, engineering, finance
and economics [20]. At it’s core lays the array () function, which creates the matrix
model using nested arrays. For example, vector B in Equation can be described
by numpy.array([[2,1],[0,3]]).

2.3 Flask

Flask is a web microframework. Based on the Foreword [21], the "micro’ in mi-
croframework means the core of the framework is simple but extensible. That means
developers have the freedom to choose their own technology stack. It also supports
Jinja template engine.

The most important functionality in Flask for us is the route decorator. This
decorator put in front of a view function will execute the function if there will be a

request made on the endpoint of the decorator.

2.3.1 Basic Flask Application

1 |from flask import Flask

2

39

N O Ot = W

app = Flask(__name__)

Q@app.route("/")
def hello _world():
return "<p>Hello, World!</p>"

Listing 2.1: Hello world implemented in Flask

Listing [2.1|shows the use of the route decorator and view function returning a simple
HTML page.

2.4 Bokeh

Bokeh is a Python library for creating interactive visualizations. [22] The introduc-
tion claims the developer is able to create JavaScript-powered visualizations with
no need to write JavaScript, which is true for some cases such as this, but further
modifications ie. more customized tools would require JavaScript code. The main
reason this library was chosen is the ability to modify data sets and update the
plots in real time. We believe the real time aspect in a learning tool is crucial for
maximizing success of understanding the underlying mathematical concepts. We

will focus on the server-side modules, namely bokeh.models and bokeh.plotting.

2.4.1 bokeh.models

Everything that comprises a Bokeh plot or application tools, controls, glyphs, data
sources is a Bokeh Model. Bokeh models are configured by setting values their
various properties [22]. These models are encompassed into a Document which can

be serialized and displayed in browser using BokehJS library.

2.4.2 bokeh.plotting

The bokeh.plotting APT is the primary interface and is centered around the figure()

command and the associated glyph functions. [22]

2.4.3 Bokeh Server

The primary purpose of the Bokeh server is to synchronize data between the under-
lying Python environment and the BokehJS library running in the browser. Bokeh
server is used to stream large data sets, or to enable complex user interactions based

on widgets and selections. [22]

40

© 00 J O T = W N =

10
11
12

2.4.4 Basic Bokeh Application

Listing shows the basic example of a static plot saved into a HTML file.

from bokeh.plotting import figure, output_file, show

output to static HTML file
output_file("line.html")

p = figure(width=400, height=400)
add a circle renderer with a size, color, and alpha
p.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color

="navy", alpha=0.5)

show the results

show (p)

Listing 2.2: Simple plot implemented in Bokeh

2.5 JavaScript

JavaScript is a lightweight, interpreted, or just-in-time compiled programming lan-
guage with first-class functions. In this thesis we will concern ourselves minimally
with JavaScript, as most of the client-side computations are conducted through
Python API that already serializes objects into JavaScript. Our only requirement
for this language is to write custom modules that are not at this time available in
the Bokeh library.

2.5.1 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
Bokeh library natively uses JSON to send and update data from server to client and
vice versa. We will use this format as output from our custom download widget.
The notation support nested parameters. Listing depicts an example of JSON

format.

1 |[{"menu": {

2
3

llidll: I|file|l

"value": "File",

41

© 0 N O Ot =

10
11

npopup " . {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc ()"},
{"value": "Open", "onclick": "OpenDoc ()"},
{"value": "Close", "onclick": "CloseDoc ()"}

1}

Listing 2.3: Example of JSON format

2.6 Containerization

This technology allows developers to package software with minimized environment
it was created for. This approach proves to be very helpful as it mitigates most of
the issues associated with deployment. It can be seen as a lightweight alternative
to virtualization. Containerization is the packaging of software code with just the
Operating System (OS) libraries and dependencies required to run the code to create
a single lightweight executable—called a container—that runs consistently on any

infrastructure [23]. Docker is the most popular containerization platform today.

42

1

3 Implementation

In this section, we introduce the choices made that lead to finishing the application.
The main goal of the application is to build a teaching tool explaining the math-
ematical concepts behind state of the art lattice-based cryptosystems. This was
achieved by creating a vector set visualization using Bokeh and selected algorithms
using numPy. We show what technologies were used to create the application, the
reasoning behind selecting the technological stack, the overall architecture of the
appliction and describe the utilization of numPy library for vector algebra opera-
tions and utilization of Bokeh Server as the real-time plotting tool. We also describe
the process of developing custom JavaScript modules. Furthermore, we will lay out
the interface of the application and the overall user interface. As one of the re-
quirements was for the application to be deployable either locally or on a server,

containerization with Docker was chosen as the best candidate.

3.1 Selection of technological stack

From the start, Python was the first the first choice, as it is the most popular
programming language in the field of data science, mainly due to it’s multi-paradigm
philosophy and the vast variety of libraries, which are contributing to the ease of use.
For these reasons, we have chosen Flask, Bokeh and numPy as our main platform for
the service hosting, visualizations and calculations respectively. We have also chose
Docker as the main distribution platform for its ease of use and out-of-the-box
deployability. In the process of development, Continuous Integration/Continuous
Development (CI/CD) tools, such as GitHub were utilized to ease the deployment

and verification process.

3.2 Preparation of the development environment

When developing an application in Python, it is generally a good practice to create
and work in a virtual environment. This allows the developer a closer control of the
package dependencies. Listing shows the basic steps to install and create virtual
environment presuming the developer has pip already installed and is using a Unix
shell.

pip install virtualenv #Installation of the virtualenv

package

43

virtualenv venv #Creation of wvirtual environment named
venv
source venv/bin/activate #This script will activate the

environment

Listing 3.1: creation of virtual environmnet.

One of the use cases of using virtual environments is the ease to recreate the envi-
ronment on any machine. This can be done by simply exporting the already existing
dependencies into a text file, as shown in Listing [3.2]

pip freeze > requirements.txt

Listing 3.2: Exporting dependencies.

3.2.1 Git

As mentioned before, the project was developed with CI/CD techniques in mind,
such as proper versioning and instant deployment. For this reason, GitHub platform
was utilized, as it provides developers with the best solutions out of the box. Since
the project was developed inside the virtual environment, it was very easy to upload
the whole environment into the Git versioning system and continue the development

from any device.

3.3 Architecture

At the core of the application, Flask is hosting the Web application on port 80 and
Bokeh server has its endpoints on port 50007, where the webhooks are hosted. Flask
is providing browsers with rendered Jinja template which contains the reference to
Bokeh document. Bokeh server is on change updating the documents created in each
session using the created webhooks by updating the serialized YAML data. Figure

depicts this use of the ports, and the creation of several user sessions.

44

{ Browser voof Browser vof Browser)

Web application Web application Web application

BokehJS BokehJ3 BokehJs

Document Document Document

A A A

/ Docker image \

Bokeh ESeNer !
¥ ¥

[Document Document Document

i 1 i

Application code

-

Fig. 3.1: Architecture of the application.

3.3.1 File Structure

crypto_lattice.......oiiiiiiiiii Root folder
Y o3 o 2P Application package
__init Pyt Definition of the application package
babai.py....cooiiiiiiiiii Custom Bokeh document
ProtoCol . py.vveriiiii i Custom Bokeh document
lwe_basis.py.......cooiiiiiiiiiiin, Custom Bokeh document
ViOWS . PY v vvveee e Flask’s view functions
download.js........ooiiiiiiiiiiiiii JavaScript module
templateso Jinja templates
index.html
lwe.html
alg.html
static
| style.css
I o T o2 Starting script
| requirements.txt..................... Environment dependencies
. Dockerfile.......ccoiiiiiiiiiiinnnnnnn... Docker image template

Fig. 3.2: Directory tree of crypto_ lattice repository.

45

Figure [3.2| shows the structure of the project. The file structure was chosen on
purpose, as it provides clear space for future expansion. We will describe the func-

tionality of each files in further sections.

3.3.2 Views

The application has several view functions, one for each module. These views route
the Jinja template combined with the Bokeh server document onto one endpoint.
The view depicted in Listing is listening on root directory / where it is serving
the index.html template with injected script referring to the : 50007 /babai endpoint

using Bokeh’s server_document function.

Qapp.route(’/’, methods=[’GET’])
def bkapp_page():
script = server_document (’http://localhost :50007/
babai’)
return render_template("index.html", script=script,
template="Flask")

Listing 3.3: Flask view function.

3.3.3 Jinja and rendering templates

Jinja is a web template engine for the Python programming language [25]. It utilizes
special tags to render inputted objects. In our case we use the templates to add

HTML objects from the Bootstrap framework and render the associated modules.

3.4 \Vector algebra using numPy

One of the main reasons for choosing numPy as the computational library is the
existence of numpy.linalg functions, which enables developers to easily and effi-
ciently do calculations on matrices. For the purpose of this application, we will be

referring to the generating basis in the code as a matrix in form of Equation [I.3]

3.4.1 Generating lattices

The function depicted in Listing is a direct implementation of Equation [I.2]
although not infinite for obvious computational limitations. We have omitted the
use of modulus on the lattice, since the function does not generate sufficient number

of points to affect the computations using an arbitrary prime modulus. This function

46

O J O T b= W N

© 00 N O Ot W=

10
11
12
13

was partially inspired by the script found at asecuritysite.codﬂ and generally
repurposed for the use with numPy.

def generate_lattice(basis):
inittalization of wvartables omitted
for a in range(-50, 50):
for b in range(-50, 50):
xnew = a * basis [0][0] + b * basis [0][1]
xval.append (xnew)
ynew = a * basis[1][0] + b * basis[1][1]
yval.append (ynew)

Listing 3.4: Lattice generator function.

3.4.2 Generating unimodular matrix

Listing [3.5] shows the calculation performed by example Equation [I.10]

def rand unimod(n):

upperTri = np.triu([[np.random.randint(-3,3) for _ in
range(n)] for _ in range(n)],1)

lowerTri = np.tril([[np.random.randint(-3,3) for _ in
range(n)] for _ in range(n)],-1)

for r in range(len(upperTri)):
for ¢ in range(len(upperTri)):
if (r==c): #Put either 1 or -1 on diagonal
if bool(random.getrandbits (1)):

I
'_\

upperTri[r][c] = lowerTril[r][c]
else:

Il
|
[

upperTri[r][c] = lowerTril[r][c]

return np.matmul (upperTri,lowerTri)

Listing 3.5: Random unimodular matrix function.

3.4.3 Calculating Babai’s closest vertex algorithm

This function utilizes the possibilities of numPy as a linear algebra library. Here

the set of linear Equations [1.13] as shown in the example are being solved using

Thttps://asecuritysite.com/encryption/lattice_ plot

47

N R

© 00 I O U = W N =

—_
=}

linalg.solve() function, which takes two input parameters. First is a set of coef-
ficients of the unknowns (b matrix shown in Equation [3.1]), and the second one is a

vector of solutions to these equations, in the form of

biit1 biato _ to (3.1)
bait1 Daoto t,)’

Next step, as shown in the example Equation is to round the solutions, which
is done using the round() function. Finally, the algorithm needs to multiply the
generating matrix with the coefficients found in the previous step. This can be
achieved by calculating the dot product of the two matrices, which is done using
dot () function.

def solve_babai(basis, t):
res = np.array ([t [0],t[1]1])
a = np.round(np.linalg.solve(basis, res))

return np.dot(a, basis)

Listing 3.6: Babai’s algorithm function.

3.4.4 Generating LWE protocol

The function first generates the necessary parmeters according to the proposed
boundaries. Then, the function utilizes the uniform random distribution np.random.
randint () to populate the matrices and vectors. These are stored in variables
m, A, s, e. Following the protocol, the LWE result is calculated. Next, the en-
cryption parameters pair is calculated in variables ap, pp. The decryption happens
in variable ep, and the whole function returns decrypted parameter based on the
location of the nearest case. This step was produced by utilizing the ternary oper-
ator, which combines the condition and return value code in one line. Listing

depicts the aforementioned algorithm.

m = int(np.ceil (1.1 * np.log(q) * n))

A = np.random.randint(low=-q,high=q,size=(m,n))
s = np.random.randint (low=-q,high=q,size=n)

e = np.random.randint(-1,1,size=m)

S = np.transpose(s)

e = np.transpose (e)

B = np.mod(np.add(np.dot(A,s), e), q)
ap = np.mod(A.sum(axis=0),q)

48

11
12
13
14
15

PP (B.sum() + message *x q//2) % q

ep (pp - np.dot(ap, s)) % q

decrypted = 1 if (q//2-(q//4)) < ep < (q//2+(q//4)) else
0

Listing 3.7: Generating random LWE problem.

3.5 Transforming point coordinates

To plot an element of a multiplicative group on a unit circle, we need to solve a
transformation problem from line coordinates to coordinates on a unit circle. This

is done by a known transformation

2me 2me
xr = sin(—),y = cos(—), (3.2)
p p
where p is the group modulus and e is the element. Equations is implemented
using numpy as depicted in Listing These coordinates are later plotted as point

with coresponding x and y coordinates.

epx=np.sin((2%np.pi/17) *xep)
epy=np.cos ((2xnp.pi/17) *ep)

Listing 3.8: Transformation of coordinates.

3.6 Plotting the graphs

As stated in Section [2.4.2] Bokeh uses figure objects to visualize data from data
source.

For the purpose of storing data, the ColumnDataSource class was utilized, as it
allows the plots to be subscribed to the values and be dynamically changed in real
time. To change the values when an action is performed, callbacks were utilized,

which are being executed by the on_change () function.

3.6.1 Data model

ColumnDataSource class is at the core of the model. Module babai.py contains
three objects of this type. Note that the only limiting factor is the condition the

columns have to have the same length, which was the reason behind creating three

49

objects. Object source contains vectors in the lattice, bsource contains the basis,
the unimodular matrix and hadamard ratios and csource contains coordinates of
the selected vector, calculated vector and the linear independence boolean of the

basis.

source = ColumnDataSource(data=dict (x=x, y=y))

Listing 3.9: Data model example.

3.6.2 Plotting and callbacks

The creation of a simple plot can be seen in Listing One important property
we have utilized is the ability of glyphs to subscribe to a source. When the source
has been changed, the glyph will be automatically updated. Listing shows how
another glyph is being created and subscribed to the bsource object.

p2.add_layout (Arrow (end=0OpenHead (line_color="firebrick",
line_width=4), x_start=0, y_start=0, x_end=’xu’, y_end

=’yu’, source=bsource))

Listing 3.10: Plotting points and arrows.

We have shown how to update plots with the data objects. Now we need to figure
out how to update the data objects. That is done using callbacks, which are update
functions executed on a condition stated by the on_change () function. Listing
shows a TextInput object being initialized, which will be triggering the x1_callback
function every time the value changes. This callbck will now create a new dictionary

with the changed values and put it into the proper data object.

x1_input = TextInput(value="2", title="X1:")

x1_input.on_change(’value’, x1_callback)

Listing 3.11: Trigger based on change of an input.

3.7 Custom JavaScript callbacks

Even though one of the main advantages of Bokeh library is the fact that the de-
veloper does not have to write native JavaScript code due to the vast amounts
of models available in the API, some advanced functionalities can be written and
subsequently added to the working Python project. In this case, we have decided
that visualizing larger matrices and their subsequent operations on them are too
inefficient to properly visualize. Instead of limiting users to a low matrix dimen-

sions, where the protocol is not intended to be used, we have decided that users

50

© 00 J O Ot = W N

— = = = =
B W N = O

N N

S O

should have the ability to download the data and use them for further inspection.
For this reason, we have implemented the download functionality, which parses the
ColumnDataSource objects into a JSON file and downloads it on a click of a button.
Listing depicts the parser function outputting JSON objects.

download_button. js_on_event ("button_click", CustomJS(args
=dict (source=1lwe_to_json(bsource.datal[’A’], csource.
datal[’s’], dsource.datal[’e’], bsource.datal[’B’],
csource.datal[’ap’], source.datal’pp’][0] ,source.datal
’ciph?’] [0] ,source.datal[’dec’][0])), code=open(join(
dirname (__file__), "download.js")).read()))
def lwe_to_json(A, s, e, B, ap, pp ,ep ,dec):
ret = {"A": A,
"S": S,
llell: e,
IlBll: B’
"ap": ap’
"pp": int(pp),

"ep": int (ep),
"dec": int (dec)}

enc = json.dumps (ret, cls=NumpyArrayEncoder)

return enc

Listing 3.12: Generating random LWE problem.

This functionality is not natively supported by Bokeh, although the documentation
provides steps on achieving this use case. The parser has to be implemented in
JavaScript, as it’s functioning on the client-side, where the web browser is not able
to utilize Python. Listing depicts the download function inspired by examples
found in Bokeh repository. This function is triggered by the download button.
js_on_event callback, that parses the data from ColumnDataSource objects into
JSON.

const filename = ’lwe_params.csv’

const filetext = source

const blob = new Blob([filetext], { type: ’text/json;
charset=utf-8;’ })

51

10
11
12
13

N O

S Ot

10

const link = document.createElement(’a’)
link.href = URL.createObjectURL(blob)

link.download = filename
link.target = ’_blank’
link.style.visibility = ’hidden’

link.dispatchEvent (new MouseEvent (’click’))

Listing 3.13: JavaScript download callback.

3.8 Rendering HTML

Bokeh natively supports creating Div objects that render HTML text. This object
can also render LaTex code snippets using MathJax JavaScript library. For this use
case we utilize the Python raw strings shown with r key before the start of the string
as opposed to the formatted strings starting with f key. Raw strings render the text
input as is, which means this string ignores all special characters, such as parentheses
and slashes. For this reason, a parser function formatting numPy arrays into LaTex
pmatrix matrices was developed. This parser is heavily inspired by code found on
StackOverflow | Listing depicts a simple Div object that contains HTML tags,

parser function and the object containing both raw and formatted Python strings.

key = Div(text="Key_,Generator", width=300, height=30)

def pmatrix(a):
lines = str(a).replace(’[’, ’’).replace(’]’, ’’).
splitlines ()
rv = [r’\begin{pmatrix}’]
rv += [’yu’ + 2u&y’ . join(l.split()) + r’\\’ for 1 in
lines]
rv += [r’\end{pmatrix}’]

return ’\n’.join(rv)

enc_pair = Div(text=r"$$a’,=,\sum_I," + f"{pmatrix(
bsource.datal[’A’])} = {pmatrix(csource.datal[’ap’])}$$"
, width=300, height=150)

Listing 3.14: LaTex parser.

https://stackoverflow.com/questions/17129290 /numpy-2d-and-1d-array-to-latex-bmatrix

52

Tt = W NN =

N O O = W N

3.9 Extending the application

The application was concieved with future expansion in mind. For this reason,
developing new pages and modules is trivial. Listing depicts the core structure
of the Bokeh module located in the app folder. The module requires a router with
render function added into views.py file as depicted in Listing Furthermore the
module needs to have an endpoint reference in the Server object in run.py file as
depicted in Listing [3.17]

The module widgets and plots can be arranged by utilizing the row() and col-
umn() functions into a grid. Then the structure has to be added into the root of

the document.

def <module name>(doc):
##Module source code
module = row(widget, plot)
doc.add _root (module)

doc.title = "New_ module_ name"

Listing 3.15: Bokeh module template.

3.10 Docker

To allow the application to be easily deployed on any hardware, the application
is wrapped in a Docker container, which is described in the Dockerfile. As shown
below, this image is based on the official Python image developed by Docker. Af-
ter downloading and setting up the image, it creates the app directory to which
the whole repository is copied into. It is followed by installing the requirements
as described in Section Now the application ports are being exposed, but not
published. This is achieved by using the EXPOSE keyword. The publishing will hap-
pen when creating the container by using the -p flag, which will map these ports to
assigned external ports. At last, the application is being started with the command
python run.py. Listing depicts the Dockerfile used in the final application.

FROM python:3.9.7

WORKDIR /app

COPY

ENV IP=159.223.216.239

RUN pip install -r requirements.txt
EXPOSE 80:80

23

8 |[EXPOSE 50007:50007
9 | ENTRYPOINT ["python"]
10 |[CMD ["run.py"]

S Ot = W

Listing 3.16: Dockerfile.

3.11 Parallelism

Bokeh server is serving each client in a separate session. Furthermore, Bokeh server
and Flask server are running in separate threads. This is achieved by using the
tornado and threading libraries. These libraries provide the application with sep-
aratate IO loop and the thread respectively. Listing depicts the bk_worker

function containing the initialization of the server as well as the start of the 10 loop.

def bk worker ():
server = Server ({’/babai’ : babai_app}, io_loop=
I0Loop(), allow_websocket_origin=["x"], port
=50007)
server.start ()

server.io_loop.start ()

Thread (target=bk_worker) .start ()

Listing 3.17: Worker function.

3.12 Security

The possible attack vectors include a Denial of Service (DoS) attack targeted on the
Bokeh server, where the attacker would create more sessions than the server could
handle. There are several risks of arbitrary code execution, since the Bokeh library
is not hardened by default. Possible mitigations include limiting sessions from which
could be the Bokeh server sessions created.

Utilizing reverse proxy that handles DoS attacks protection, such as CloudFlare
would mitigate the risk of DoS attacks. Since all of the input parameters are being
sanitized, the risk of arbitrary code execution is also minimal. The Python modules
accept requests made only from the sites the modules are located, which means
that the modules cannot be accessed externally. This was achieved by utilizing the
allow_websocket_origin parameter, which can be considered a security hardening

measure.

o4

3.13 User interface

Web interface is a single page application, where users can access the Bokeh module

and find out about the use of the application.

3.13.1 Babai module

Figure|3.3|shows the interface of the Babai module separated into functional blocks:

1.

This section allows users to select the basis vectors. Users can use the sliders
for real-time plotting of the lattice, or can type them directly into the boxes

below.

. Here the users will generate random unimodular matrix, which will be applied

to the basis vectors selected above.

. Indicator of linear independence.
. In this plot users see the selected bases and generated portion of the lattice.

. In this plot users see the same lattice, but with unimodular matrix applied to

the bases.

. Indicators of Hadamard ratio for each basis.

Bokeh plot toolbar (from top to bottom);
« Pan (Used to move around the plots)
» Zoom (Used to zoom to a current section of the plots)
« Tap (Babai’s closest vertex algorithm)
« Reset (Resets the plots to the default view)

« Save (Generates an image of the current view of the plot)

Note the toolbar is different on the second plot due to the controls being tied to

both plots simultaneously, which leaves the second plot only with the save tool.

X1:2 Lattice with defined basis Basis with applied uminodular matrix
0 - - - o 0 - - - o
X1 ° (] (] b (] (] [
2
® ® 8 1 L] L] L] q 7
Y1:1
L L] o (] °
Y1 ° ° ® 5 ® ® ®
! 1 o4 ° ° e 5 ° q
Xz 1) ° 7 | ° ° ®
X2: L] [] (] b (] [] L]
1 ® ® 2 ® ® ® q
v2:2 ° ° ° ° °
7 - + = o At + =
Y2: 0 2 4 6 8 P 0 2 4 6 8 1
2 Hadamard Ratio: Hadamard Ratio: 0 6
7745966692414832
Apply Unimodular matrix 2
Basis vectors are independent. 3

Fig. 3.3: User Interface of the Babai module.

95

3.13.2 Lattice/LWE module

Figure 3.4 shows the interface of the Lattice/LWE module separated into functional
blocks:
1. This section allows users to randomize the lattice bases as well as outputs the
generated keys.
2. In this plot users see the highlighted lattice bases as well as the .
3. This section allows users to select the message bit they want to encrypt. After

the selection users click on Encrypt the message button.

TWE on lattice

100 4 ® _)
Private key: s = (11 —12), |
e=(-1 0)

Recalculate keys

15
Public key: A () 5 - -
141 ° (11 a)(11 ~12) 4 (=1 0)"=(9 3) (mod17)

B=(9 3) 1104 14 14
1 3

(4

1203 t t + + 2
-5 -50 45 40

Fig. 3.4: User Interface of the Lattice/LWE module.

Workflow

This module contains only one point of user interaction, the Recalculate keys button.
Each click generates new basis, as well as new LWE problem. Users can see the
generated parameters on the plot and that it corresponds to the Closest Vector
Problem from the previous module. Users can also see the rendered LWE equation

from which the parameters are taken.

3.13.3 LWE protocol module

Figure 3.5 shows the interface of the LWE protocol module separated into functional
blocks:
1. This section allows users to input the matrix dimension and the prime modu-
lus. After the selection is done, user clicks on Generate keys button.
2. Here the users see the generated public and private keys.
3. This section allows users to select the message bit they want to encrypt. After
the selection users click on Encrypt the message button.

4. Here the users see the encrypted message parameters.

o6

ot

. This section allows users to decrypt the message and download the parameters
as JSON object.
6. Here the users see the decryption calcultions.

7. This plot depicts the decryption on a unit circle.

Key Generator Public key:
62 —185 —68 ... 183 81 121
Dimension n: 83 178 122 ... —54 53 78
10 27 —47 —123 ... 146 122 120
A= ...
Prime number: 36 —199 176 ... 31 1 84
199 101 -114 60 ... 124 77 —176
141 30 177 ... 51 —60 184

Private key: 2

s=(-68 117 -195 —43 -9 —81 -—175 -110. 133§ —108)

(1 _1 _1 00 _1)

Encryption 62 —185 —68 ... 183 81 121
-83 178 122 ... 54 53 78
27 —47 —123 ... 146 122 120

o=y —(67 133 150 4 141 13 67 143 13 178)

0 1

—-101 -114 60 L. 12477 176
141 30 177 ... 51 —60 184

1
Y3072 62 138 . 12 165 145) 4 1e | To0| =174 4
Decryption 174 (67 133 150 4 141 13 67 143 13 178)
x(—68 117 —195 —43 -9 81 —175 —110 —133 —108)" =69
o fo ifz~0
Dec(69) = {1, it ~199/2
Download
. 2 E il

Fig. 3.5: User Interface of the LWE protocol module.

Workflow

This module has comparably simple user interface as the previous modules. First,
users select the input parameters, after which they are able to generate keys. After
the keys have been generated, users are able to select the bit message and encrypt
the message using the pre-calculated keys. Then the users can decrypt the message
by clicking the decryption button. Throughout the whole computations users see
the rendered equations next to the buttons allocated for the given portion of the
protocol. After decrypting the message, users can see that the decrypted parameter
has been close either to the uppermost or lowermost point on the unit circle. After
the protocol has been completed, the users can download the parameters in a JSON
format using the Download button.

3.14 Installation

The installation consists of building the docker image and consequently running a

container based on that image. This section presumes that user has docker already

o7

installed. Listing shows the commands necessary for building and running
the application. Note that in command docker build, the dot refers to a current
directory. This means if the user is not in the application root directory, the user has
to specify this path. To run the server in the background, user can specify the -d
flag in the docker run command. While running in background, the container can
be stopped using docker stop lattice-server command. Now the application is

available on the local IP address on port 80.

docker build -t lattice
docker run -p 80:80 -p 50007:50007 --name=lattice-server
-t -i lattice

Listing 3.18: Building the image.

3.15 Deployment to DigitalOcean

DigitalOcean [24] is paid cloud hosting service designed to among others, easily host,
deploy and monitor cloud applications. Since the application was developed as a
Docker container, the deployment was possible in minutes. After selecting the node
parameters, such as number of processors, RAM and storage, the user obtains ssh
access to a Ubuntu instance with pre installed Docker. Then, the deployment is a
matter of cloning the repository, building the image and running the container as
described in Section [3.14]

o8

Conclusion

This thesis was concerned with creating a user friendly application demonstrating
key concepts in lattice-based cryptography. We studied the theoretical aspects of the
thesis and presented the mathematical theory of lattices as well as some important
properties of these structures. Moreover, we graphically demonstrated the Learning
with errors problem and shown the Boyen encryption protocol.

Following the theory we have laid out the reasoning behind selection of the
technology stack as well as technology used in the development process. Python
programming language was chosen as the most suitable platform for it’s extensive
list of libraries that have aided us in the development. Among those are the libraries
which allow developers extensive work with linear algebra, web server and real time
plotting. We have laid out a case for using versioning system in the development
process. We have shown how we have implemented the theoretical structures and
the operations on them using numPy. Furthermore, we have shown what are the
underlying server-side aspects of the application, such as the router function and
Bokeh server, which is handling the session data in separate threads running on the
server. We have also shown the development of custom JavaScript callbacks and
security hardening. At last, we have described the process of deploying the server
on public cloud.

The development concluded with a structure purposefully created as a foundation
for easy development of new modules, which means the whole project can be used
as a library for local computations or to improve on the original project as is the

custom in the open-source community.

29

Bibliography

1]

NSA paid $10 million to put its backdoor in RSA encryption, accord-
ing to Reuters report [online]. The Verge, 2013 [cit. 2021-12-09]. Avail-
able at: https://www.theverge.com/2013/12/20/5231006 /nsa-paid-10-million-

for-a-back-door-into-rsa-encryption-according-to

WANG, Xiaoyun and Hongbo YU. How to Break MD5 and Other Hash Func-
tions. In: Advances in Cryptology — EUROCRYPT 2005 [online]. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, s. 19-35 [cit. 2021-12-09]. ISBN
9783540259107. ISSN 0302-9743. Available at: doi:10.1007/11426639_ 2

BERNSTEIN, Daniel J., Johannes BUCHMANN and Erik DAHMEN.
Post-Quantum Cryptography. Berlin, Heidelberg: Springer, 2009. ISBN
9783540887010. Available at: doi:10.1007/978-3-540-88702-7

Post-Quantum Cryptography. COMPUTER SECURITY RESOURCE CEN-
TER [online]. Gaithersburg, MD: National Institute of Standards and Technol-
ogy, 2017 [cit. 2021-12-08]. Available at: https://csrc.nist.gov/projects/post-
quantum-cryptography

CHOW, Jerry, Oliver DIAL and Jay GAMBETTA. IBM Quantum breaks the
100-qubit processor barrier [online]. IBM, 2021 [cit. 2022-05-30]. Available at:
https:/ /research.ibm.com/blog/127-qubit-quantum-processor-eagle

Tanja Lange leads multi-million Euro project to protect data against quantum
computers [online]. Netherlands: Eindhoven University of Technology, 2015 [cit.
2022-05-30]. Available at: https://www.tue.nl/en/news/news-overview,/23-
04-2015-tanja-lange-leads-multi-million-euro-project-to-protect-data-against-

quantum-computers/

HOFFSTEIN, Jeff, Nick HOWGRAVE-GRAHAM, Jill PIPHER and
William WHYTE. Practical Lattice-Based Cryptography: NTRUEncrypt and
NTRUSign. The LLL Algorithm. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, s. 349-390. ISBN 9783642022944. ISSN 1619-7100. Available at:
do0i:10.1007/978-3-642-02295-1_ 11

DUCAS, L, T LEPOINT, V LYUBASHEVSKY, P SCHWABE, G SEILER
and D STEHLE. CRYSTALS — Dilithium: Digital Signatures from Module

Lattices. IACR Transactions on Symmetric Cryptology [online]. 2018, 2018,
238-268 [cit. 2022-05-30]. ISSN 2519-173X.

61

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

D-ANVERS, Jan-pieter, Angshuman KARMAKAR, Sujoy SINHA ROY and
Frederik VERCAUTEREN. Saber: Module-LWR, Based Key Exchange, CPA-
Secure Encryption and CCA-Secure KEM. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 10831. Cham: Springer International Publishing, 2018, s. 282-
305. ISBN 3319893386. ISSN 0302-9743. Available at: doi:10.1007/978-3-319-
89339-6_16

PRADHAN, Pawan Kumar, Sayan RAKSHIT and Sujoy DATTA. Lattice
Based Cryptography: Its Applications, Areas of Interest & Future Scope. In:
2019 3rd International Conference on Computing Methodologies and Communi-
cation (ICCMC) [online]. IEEE, 2019, 2019, s. 988-993 [cit. 2021-12-08]. ISBN
978-1-5386-7808-4. Available at: doi:10.1109/ICCMC.2019.8819706

AGGARWAL, Divesh, Gavin BRENNEN, Troy LEE, Miklos SANTHA and
Marco TOMAMICHEL. Quantum Attacks on Bitcoin, and How to Protect
Against Them. Ledger [online]. 2018, 3 [cit. 2021-12-09]. ISSN 2379-5980. Avail-
able at: doi:10.5195/ledger.2018.127

CHEN, Lily, Stephen JORDAN, Yi-Kai LIU, Dustin MOODY, Rene PER-
ALTA, Ray PERLNER and Daniel SMITH-TONE. Report on Post-Quantum
Cryptography. National Institute of Standards and Technology: Internal Report
8105 Jonline]. US Department of Commerce, 2016, (12), 15 [cit. 2021-11-07].
Available at: https://nvlpubs.nist.gov/nistpubs/ir/2016 /nist.ir.8105.pdf

HOFFSTEIN, Jeffrey, Jill PIPHER and J. H SILVERMAN. An Introduction to
Mathematical Cryptography. New York, NY: Springer New York, 2008. ISBN
9780387779935.

VAN EMDE BOAS, Peter. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Report. Department of Math-
ematics. University of Amsterdam. Department, Univ., 1981, 1981(84), 10.
Available at: https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/abstract.html

ROSS, Sheldon M. A first course in probability. Tth ed. Upper Saddle River:
Pearson Prentice Hall, 2006, x, 565 s. : il. ISBN 0-13-185662-6.

REGEV, Oded. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM [online]. NEW YORK: ACM, 2009, 56(6), 1-
40 [cit. 2022-05-27]. ISSN 0004-5411. Available at: doi:10.1145/1568318.1568324

BOYEN, Xavier. Expressive encryption systems from lattices (abstract from the

invited lecture). In: Lecture Notes in Computer Science (including subseries

62

[18]

[19]

[20]

[21]

[22]

[24]

[25]

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
[online]. 2011, s. 1-12 [cit. 2022-05-27]. ISBN 9783642255120. ISSN 0302-9743.
Available at: doi:10.1007/978-3-642-25513-7_1

CHEN, Zhigang, Jian WANG, Liqun CHEN and Xinxia SONG. A Regev-
Type Fully Homomorphic Encryption Scheme Using Modulus Switching.
TheScientificWorld [online]. LONDON: Hindawi Publishing Corporation,
2014, 2014, 983862-12 [cit. 2022-05-27]. ISSN 2356-6140. Available at:
doi:10.1155/2014,/983862

VAN ROSSUM, Guido. Python Tutorial. Python Documenta-
tion [online]. PythonLabs, 2001 [cit. 2021-12-08]. Available at:
https://docs.python.org/2.0/tut /tut.html

HARRIS, Charles R, K Jarrod MILLMAN;, Stéfan J VAN DER WALT, et al.
Array programming with NumPy. Nature (London) [online]. England: Nature
Publishing Group, 2020, 585(7825), 357-362 [cit. 2021-12-06]. ISSN 0028-0836.
Available at: doi:10.1038/s41586-020-2649-2

Flask documentation [online]. [cit. 2021-11-29]. Available at:
https://flask.palletsprojects.com/en/2.0.x/

Bokeh documentation [online]. 2021 [cit. 2021-11-29]. Available at:
https://docs.bokeh.org/en/latest /index.html

Containerization. IBM Cloud Learn Hub [online]. IBM, 2021 [cit. 2021-12-08].

Available at: https://www.ibm.com/cloud/learn/containerization

DigitalOcean — documentation [online]. [cit. 2022-05-27]. Available at:
https://docs.digitalocean.com/

Jinja Documentation [online]. Pallets, 2007 [cit. 2022-05-27|. Available at:
https://jinja.palletsprojects.com/en/3.1.x/

63

A Installation Manual

After logging into the desired server or desktop, the first step is to clone the repos-
itory.

git clone https://github.com/xseckal04/crypto_lattice
cd crypto_lattice

Listing A.1: Cloning the Git repository.

A.1 Deployment with Docker

If the user has selected the deployment using Docker, user continues with building
the Docker image and creating a container. Before building the container, the user
needs to specify the domain from which the application will be hosted. In case of
deployment on a server, user has to specify the environmental variable IP to be the
external IP address of the server. In the case of local deployment, user can set the IP
variable to localhost. The variable is located in the Dockerfile. When the variable

is specified, user can proceed with building the image and running the container.

docker build -t lattice
docker run -p 80:80 -p 50007:50007 --name=lattice-server
-t -i lattice

Listing A.2: Building the image.

To stop the server from running, user can use the command

docker stop lattice-server

Listing A.3: Stopping the server from running.

If the container already exists and it is not running, user can start the container

by using command

docker start lattice-server

Listing A.4: Starting the server.

A.2 Deployment with virtualenv

Although not recommended, users can locally deploy the application using Python
virtual environment. This case is recommended only for development purposes. The

user needs to have installed latest versions of Python and pip. Note that user needs

65

to specify the environmental variable IP per the operating system the computer is
running. The commands are as depicted in Listing [A.5]

export IP=localhost #Linuz
set IP=localhost #Windows

Listing A.5: Setting the environmental variable

If the user satisfies the aforementioned prerequisites, they can proceed to installing

the virtulenv package and creating and activating the virtual environment.

pip imnstall virtualenv
virtualenv venv

source venv/bin/activate

Listing A.6: Installation of virtualenv environment.

Then the user needs to install all of the required libraries and run the application.

pip install -r requirements.txt
python run.py

Listing A.7: Running the application.

66

B User Manual

The application contains three modules with accompanying user instructions on the
top of the module. These instructions are depicted on Figures [B.1], [B.2 and [B.3]
The user is encouraged to start with the Babai module to understand the basics
of lattices, bases and CVP. Then the user can see the similarities with the LWE
problem in the CVP/LWE module. At last, the user can try to use the LWE

protocol module where the user can experiment with the initial parameters.

67

2202 'sisay} s dojaydeq uexdas uipepn
‘Juspuadapul a1e SI0aA Siseg

Xujew Jejnpowiun Alddy

90062608¥£520986)0 19625Z¥9YLE00VLE0
:oljley plewepeH :oney plewepeH 4
oL 8 9 ¥ 4 0 (113 8 9 14 I 0 .
I - 1 F 1 - I 0 L - 1 ﬁ 1 - Il 0 Th
[zizA
> ® ® fz ®) Lz .
L X
¢ ® ® e ® o ® Hr bizx
E F L
i [LA
e ' g) $9 o ® ' g ® ¢o
_ r pilA
») <] ® & dOp ¢ ° e o .
=l + _ r X
© i - - [, © - - - Lo
Xljew Jejnpouiwn —uw__ﬂnm Ulim siseg Siseq pauyap yum adige X

iingamod os si Buiiquiesds Jeinpowiun ay3 Aym 33s ues No, ‘saseq Yloq uo wiyiioble s leqeg Jo suone|na|es ayy aas 03 ydedb 1sai ay3 ul asaymhue 3o pue 57 uod| |00y dej 199j9s MON
Ao 2119nd e ojui s1039A 3ndur InoA sjquiesds o3 xijew Jejnpowiun Ajddy, uo xa1p uayy
wiayy BuidAy Apoaap Jo Japijs aya Buijjosss Ag Jayaie s1013A siseq Inok asooy)

snpow wyiiobe s leqeg sy} asn 03 MOH

wiashsoydAin sy puiyaq yiew ayy azijensia 03 nok djay [|im (003 siy|

i11251N0A 10J 100 11 A1) "eigable Jeau)| ajdwis e 1sn(sl 2103 531 1Y

¢AydeaboydAid paseq-ad13e| si ey

tructions of the Babai module.

User ins

Fig. B.1

68

(Lrpow) (9)= (0 0)+ (b1 aﬁ

¥
1=

€
S

)

0i- G- 0z-

Logi-

Lo

sa13e] U0 M

2202 'slsay) sJ0jaypeg Jex2as Uilepy

(9 =g
voe
¢ = Koy olland
(s o7
(0 =2

(¥1 9) = 5 Aoy ajeAld

skay aleindjedsy

‘suoisuawIp Auew ui pawdopad ase swiyiloble ayy Aym duay ‘ois ay3 29s 03 abie| Apuaniyns Jou ale sialaweled ay) saWINAWIOS

‘9|qepeaiun 00} 8q 3,UOM S10393A Y3 Jey} 0s ‘swild ||ews e 3¢ 0} SNNPOW 8y} Pajiwi| SABY am jey) 810N

‘uonenba JpAT SY3 885 ued nok Ys| ayy uQ

“10413 ypm sisjsweled syj a3s [|m nok aisaym joid sy 1e 00| pue shsy aje|ndjeday uo Rd1D

a|npow 3IM1/dAD dY3 8sn 0} MOH

dAD PuB M7 UaamIaq SanLejIwIS 3yl 335 Ued NoA auaH

S10449 Y}Im Buiuiea

tructions of the CVP/LWE module.

User ins

Fig. B.2

69

2202 's1534} sJojaueg 1exas utie

peojumog

a?n.,
HHN\ aw - swm .MW = ()22
abessaw ay) 1dA1aq

1= (61— 961 £S1— 98 LLI— L9 9ST LEL 661— 08)x

(g1 ¥8 12T 1€ 0T 9€T ¥CT ¥ 69 26) — STl uopdAreg
I
mﬂuﬁmmt.:g ver er v 9er 6) K =d
6 SPT- 91— " 98T LT 06—
L~ @ Te- 0p seT— Gl
€ 1TI- sp- 6L 6E1- 8ST e)
(gg1 ¥8 T2l 1& O 9€1 DTl VC 69 T6)= K=
6 e - 081 89T 7 _ 0
61— ¥ £1I- 98
91 gl oLt eLT- uondAroug
(=0 1= 1= 0 0)=2
(6T~ 96T €9T— 98 LLT— 19 9ST LT G661— 08)=
Koy s1eAud
o v v o oo -« (I
16 8PT- 91— " 98T LT 06—
PR S S T S 1 661
€ TeI- 8y~ ' 611 66— 88T 5oquINu Wi
=y
6 g LeT- T6T 0T 89T o
£61- 7 101 TE- €T 98 u osuawig
1 @ 8 98 OLL €T
k¥ oand 101e10U90 Aa3i

1ud 13B.e| 10/pue uoisuawip sabie| Buisajes A3 g Bucim e 3dAiap ok usym

j1euLioy NOSI u! sia3owesed 3y UIRIGO O} PEOJUMOP UO I 'S9113eW 3[0yM 33 935 O3 JueM NOK 4|

12412 3un 3y3 uo julod Jsowsamo| Y3 Ul 0, pue Juiod ysownaddn ayy ut , |, st yd1ym ‘uiod uondAidap ayi o3 si abessaw 3y 350[> MOY SAISSCO OS[e Ued NoA

‘pardAidap abessaw ayy

uo

UOD JeyMm Japun a3s ued NoA
‘uonnq abessaw ayy 1dA1aq ays Buisn 31 3dA1ap 03 A1y ue> nok ‘aBessaw auy pardAious aney nok sayy
*S|0A3UO> 3y} JO 12| 33 UO paje|noes Buiaq s uoRdAIUS Uy MOY 385 UEd Nog

“abessaw ay 3dAinu3 uo ip> uay) pue 1dA1dus 03 Juem Nok 3iq YdIYM 193]as ued Nok MoN

‘uondAiua ayy ui pasn Jied A% ays

1q0 0} Sidjewieled 31eJaUSD UO YIP Uy]
Juawiadxa Isnf 1o ‘g, Uz pue Z, U usamiaq s| uopepuawiLIodal ‘sninpow awiid Jadoid e asoy)

3jnJ PapUaWLIO81 & A USSOYD 3q [[IM MO JO JaqUInU ‘U

ISUBLUIP XLjeW Y} 19325

3|npow |od0304d uondAious 31q IMNT 8Y) 3sh 0} MOH

510113 yym Buiuiea uo paseq [0030id ajdwis sy A

|]02030.d uondAidus g IM1

f the LWE protocol module.

User instructions o

Fig. B.3

70

	Introduction
	Background
	Post-Quantum Cryptography
	Linear Independence
	Basis
	Lattices
	Example

	Hadamard Ratio
	Example

	Unimodular Martix
	Generating unimodular matrix

	q-ary Lattice
	Closest Vector Problem
	Babai's Closest Vertex Algorithm
	Example

	Random variable
	Example

	Probability distribution
	Example

	Solving linear equations
	Example

	Learning with errors
	Example
	Connection to lattice problems
	Applications

	LWE encryption protocol
	Chosing the parameters
	Encryption
	Decryption
	Example

	Implementation Background
	Python
	numPy
	Flask
	Basic Flask Application

	Bokeh
	bokeh.models
	bokeh.plotting
	Bokeh Server
	Basic Bokeh Application

	JavaScript
	JSON

	Containerization

	Implementation
	Selection of technological stack
	Preparation of the development environment
	Git

	Architecture
	File Structure
	Views
	Jinja and rendering templates

	Vector algebra using numPy
	Generating lattices
	Generating unimodular matrix
	Calculating Babai's closest vertex algorithm
	Generating LWE protocol

	Transforming point coordinates
	Plotting the graphs
	Data model
	Plotting and callbacks

	Custom JavaScript callbacks
	Rendering HTML
	Extending the application
	Docker
	Parallelism
	Security
	User interface
	Babai module
	Lattice/LWE module
	LWE protocol module

	Installation
	Deployment to DigitalOcean

	Conclusion
	Bibliography
	Installation Manual
	Deployment with Docker
	Deployment with virtualenv

	User Manual

