
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

HEURISTICS IN STRING SOLVING
HEURISTIKY VE STRING SOLVINGU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MICHAL ŘEZÁČ
AUTOR PRÁCE

SUPERVISOR Mgr. JURAJ SÍČ
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Řezáč Michal, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Mathematical Methods

Category: Software analysis and testing

Academic year: 2023/24

Assignment:

String constraint solving is useful in verification of string manipulating programs such as web-applications
and in analysis of their security vulnerabilities such as cross-site scripting, SQL-injection. Modern string
solvers achieve their efficiency by extending their core solving algorithms by multitude of heuristics which
have either no or minimal documentation. The task is to identify and provide overview of these heuristics,
analyse their impact on the efficiency of string solving, and determine those that could be used in the
string solver developed in the group VefiFIT. This information will be critical for the development of this
solver.

1. Study methods of string solving, especially those used in string solvers cvc5 and Z3.
2. Identify the heuristics used in string solvers (at least cvc5, Z3) and provide their overview.
3. Evaluate their impact on standard sets of benchmarks (benchmarks with basic string constraints,

with length constraints, and also benchmarks with more complex string constraints such as indexof).
The result should be statistical comparison of identified heuristics (and their combinations),
comparing the number of solved instances and the space/time efficiency.

4. Determine and justify which heuristics could potentially be used in the string solver developed in the
group VefiFIT.

Literature:
1. Roberto Amadini. 2021. A Survey on String Constraint Solving. ACM Comput. Surv. 55, 1, Article 16

(January 2023), 38 pages. https://doi.org/10.1145/3484198
2. Berzish, M. et al. (2021). An SMT Solver for Regular Expressions and Linear Arithmetic over String

Length. In: Silva, A., Leino, K.R.M. (eds) Computer Aided Verification. CAV 2021. Lecture Notes in
Computer Science(), vol 12760. Springer, Cham. https://doi.org/10.1007/978-3-030-81688-9_14

3. M. Berzish, V. Ganesh and Y. Zheng, "Z3str3: A String Solver with Theory-aware Heuristics," 2017
Formal Methods in Computer Aided Design (FMCAD), 2017, pp. 55-59, doi:
10.23919/FMCAD.2017.8102241.

4. Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, Cesare Tinelli. Scaling
Up DPLL(T) String Solvers Using Context-Dependent Simplification. CAV 2017.

Requirements for the semestral defence:
1, a part of 2 and 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Síč Juraj, Mgr.

Consultant: Holík Lukáš, doc. Mgr., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 6.11.2023

Master's Thesis Assignment
153659

Heuristics in String SolvingTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This work aims on identifying heuristics and strategies used in modern string solvers and
evaluating their impact on the effectiveness of the solving. In particular, two solvers – cvc5
and Z3 – are examined. The thesis describes the techniques used by SMT solvers and the
strategies implemented by string solvers. The evaluation of the effectiveness of the heuristics
was performed by disabling them directly in the code of the tools mentioned and then
evaluating the impact on solving the sets of standard benchmarks. The result of this work
is summary of a set of specific heuristics and a description of the structure of the tools
cvc5 and Z3. The measurements failed to demonstrate the actual impact of the heuristics
identified and described.

Abstrakt
Tato práce se zaměřuje na identifikaci heuristik a strategií použitých v moderních string
solverech a na vyhodnocení jejich dopadu na efektivitu řešení. Zkoumány jsou především
dva solvery -– cvc5 a Z3. Práce popisuje techniky používané SMT solverech a strategie,
které implementují string solvery. Vyhodnocení efektivity heuristik bylo prováděno jejich
vypínáním přímo v kódu uvedených nástrojů a následným vyhodnocením dopadu na řešení
standardních sad benchmarků. Výsledkem této práce je soupis sady konkrétních heuristik a
popis struktury nástrojů cvc5 a Z3. Měřením se nepodařilo prokázat, jak velký skutečný
dopad identifikované a popsané heuristiky mají.

Keywords
string constraints, SMT, heuristics, cvc4, cvc5, z3, string solving

Klíčová slova
řetězcová omezení, SMT, heuristiky, cvc4, cvc5, z3, string solving

Reference
ŘEZÁČ, Michal. Heuristics in String Solving. Brno, 2024. Master’s thesis. Brno University
of Technology, Faculty of Information Technology. Supervisor Mgr. Juraj Síč

Rozšířený abstrakt
V současnosti je řetězec znaků (string) používaný významným množstvím aplikací ke

komunikaci. Ať už se jedná o uložení a posílání dat ve formátech XML, JSON a jiných,
protokol HTTP verze 1.1 používaný pro přenos hypertextových dokumentů nebo ovládání
rozhraní mezi člověkem a počítačem pomocí příkazů či zadávání vstupu do formulářů.
Operace nad řetězci a jejich zpracování může být zdrojem potenciálně velkého množství
chyb nebo možných útoků jako je SQL injection. Z tohoto důvodu vznikly nástroje pro
dokazování nad řetězcovými omezeními nebo také string solving.

Dokazování nad řetězcovými omezeními může pomoci s odhalováním možných nebezpe-
čných nebo nechtěných vzorů a může sloužit k formální verifikaci. Nicméně řešení těchto
omezení je z pohledu časové složitosti velmi náročné a pro obecnou teorii sekvencí je
rozhodnutelnost tohoto problému stále otevřená otázka. I přes tyto vlastnosti jsou dnes
nástroje (solvery) schopné vyřešit velké množství problémů a jsou využitelné ve spoustě
praktických aplikací. Efektivita těchto nástrojů je dána tím, že implementují velké množství
strategií, které dokážou na základě znalosti problému značně rychleji vyřešit některé jeho
části. Těmto strategiím se říká také heuristiky.

Tato práce se zaměřuje na identifikaci heuristik a strategií použitých v moderních
string solverech a vyhodnocení jejich dopadu na efektivitu řešení. Na základě vyhodnocené
efektivity pak navrhnout heuristiky, které lze využít v nástroji vyvíjeném skupinou VeriFIT.
Zkoumány jsou především dva solvery – cvc5 a Z3. Motivací pro tuto práci je, že existující
nástroje pro string solving často poskytují pouze stručný či žádný popis použitých heuristik
a neexistují zdroje, které by tyto heuristiky shrnovali a poskytovali nezávislé ověření jejich
efektivity.

První část práce se věnuje obecným principům SAT a SMT solvingu, shrnuje standardní
teorie, definuje DPLL algoritmus a jeho rozšíření o teorie, DPLL(T), včetně různých přístupů,
které k implementaci DPLL(T) solveru existují. Dále shrnuje obecnou strukturu nástrojů
cvc5 a Z3 a popisuje SMT-LIB a standard vytvořený touto iniciativou.

V další části práce je popis teorie sekvencí, řetězců a regulárních výrazů spolu se
zadefinováním základních pojmů a funkcí této teorie. Jsou popsány string solvery zkoumaných
nástrojů. Pro nástroj cvc5 je uvedeno shrnutí několika heuristických přístupů, které řeší
zjednodušování vstupní formule pomocí převodu na ekvivalentní zjednodušenou podobu
formule, a to s například pomocí převodu složitějších funkcí na jednodušší, dokazováním
nad délkou řetězce či kontextově závislým odvozováním. Pro nástroj Z3 je uvedena strategie
pro dokazování nad regulárními výrazy s pomocí symbolických derivátů. Pro oba nástroje
je v práci popsaná konkrétní struktura string solveru v kódu nástroje s obecným popisem
tříd a přístupy, které dané třídy implementují.

Měření efektivity jednotlivých heuristik je založeno na měření času a počtu vyřešených
instancí standardních sad benchmarků, které poskytuje iniciativa SMT-LIB. Měření probíhalo
nad dvěma druhy heuristik. První typ jsou heuristiky použité k syntaktickému přepisování
formule do ekvivalentní podoby používající jednodušší funkce teorie řetězců. Druhým typem
měřených heuristiky jsou heuristiky, které používají složitější dokazování nad vlastnostmi
formule a výsledná transformace je závislá na odvozených faktech.

Výsledek měření pro první typ heuristik ukázal, že jen jednotky použitých heuristik mají
vliv na větší část testovaných benchmarků. Ostatní heuristiky mají buď jen velmi malý
vliv na všechny sady benchmarků a nebo významněji ovlivňují pouze nižší jednotky z nich.
U druhého typu heuristik se u nástroje cvc5 jejich vliv na zvolenou část sad benchmarků
neprojevil vůbec nebo byl čas řešení nižší než u nezměněné verze nástroje. To může být

způsobeno chybou měření. U nástroje Z3 modifikované nástroje nedávali validní výsledky,
protože některé z nesplnitelných formulí nástroj označil jako splnitelné.

V práci se nepodařilo ukázat, které z heuristik poskytují významné zrychlení výpočtu a
z toho důvodu nebylo možné navrhnout, které z heuristik by mohli být použité v nástroji
vyvíjeném skupinou VeriFIT. Výsledkem práce je proto pouze shrnutí heuristik a popis
struktury solverů cvc5 a Z3.

Heuristics in String Solving

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Síč. The supplementary information was provided by Mr.
Holík. I have listed all the literary sources, publications and other sources, which were used
during the preparation of this thesis.

. .
Michal Řezáč
May 16, 2024

Contents

1 Introduction 4

2 SMT Solving 6
2.1 DPLL procedure . 6

2.1.1 Basic terms . 6
2.1.2 States and transitions . 7
2.1.3 The Classical DPLL procedure . 7
2.1.4 Modern DPLL procedure . 9

2.2 Basic principles of SMT solving . 12
2.2.1 Basic terms . 12
2.2.2 Theory overview . 13
2.2.3 Eager SMT techniques . 15
2.2.4 Lazy SMT techniques . 15
2.2.5 Abstract DPLL(T) . 17
2.2.6 SMT solvers . 18
2.2.7 SMT-LIB Standard . 21

3 String Solving 23
3.1 Theory of strings and regular expressions 23
3.2 cvc5 methods . 24

3.2.1 Basic calculus . 24
3.2.2 Extended function simplification . 26
3.2.3 Arithmetic-Based Simplification . 28
3.2.4 Other heuristics . 31
3.2.5 Implementation details . 32

3.3 Z3 methods . 33
3.3.1 Symbolic regular expression derivatives 33
3.3.2 Implementation details . 34

4 Measurements 37
4.1 Benchmarks and benchmarking tool . 37
4.2 Evaluation criteria . 38
4.3 Rewriter heuristics measurements . 39

4.3.1 Results . 40
4.4 Advanced heuristics measurements . 42

4.4.1 Results . 43
4.5 Evaluation . 44

1

5 Conclusion 46

Bibliography 48

2

List of Figures

2.1 A simplified schema of cvc5 solver taken from [2]. 19
2.2 A simplified schema of Z3 solver taken from [11]. 20
2.3 An example of theory, which defines one sort and four functions. 22

3.1 A set of normalization rules. 24
3.2 Example of derivation rules from [13], to demonstrate the building of the

context and flow of the computation. 25
3.3 Simplifying rules for the extended functions. 27
3.4 Elimination of bounded quantifier. 27
3.5 An example of simplification rules for contains. 28
3.6 Under and over-approximation rules for arithmetic inference. 29
3.7 An efficient strategy to achieve arithmetic entailment in 𝑇𝑆 30
3.8 Example of simplification rules that using arithmetic entailment system. . . 31
3.9 Example of transformation of conditional regex. 𝑟1 · 𝑟2 is RE concatenation

and 𝑟 is negation. 34

3

Chapter 1

Introduction

Most modern software these days usually uses strings as a form of communication – XML,
JSON, and other formats are used to store and send data, the HTTP protocol is string-based,
and every app with forms takes the strings from the user or commands that control the
application. Especially applications that take input from user may be vulnerable to some
type of attack like SQL injection, where an attacker tries to manipulate the app database,
or it may generate unwanted result by inappropriate string manipulation.

String constraint solving serves not only as a tool for detecting these vulnerabilities but
also as a tool for formal verification. Unfortunately, reasoning about strings constraints
containing word equations, length constraint, and extended string functions is hard to solve,
and the decidability of combination of all these constraints is still an open question.

Although string solving is a challenging problem, modern solvers provide good results in
practical applications, due to usage of set of strategies, that simplifies the constraints to
a potentially decidable set. These strategies are called heuristics, and implementing them
helps to achieve much better efficiency. Nevertheless, heuristics does not provide a general
solution of the problem, and are able to simplify or solve just some subset or instance
of the given problem. Thus, the overall complexity of the problem remains unchanged.
Additionally, these heuristics are generally not well documented, if at all.

Currently, active research is done in this field, where an effort is made to discover new
strategies that can be used. This effort is reflected in many solvers, where the most active
ones are probably the cvc5, which is made in cooperation of the University of Iowa and
Stanford University, and the Z3 solver, which is a product of Microsoft Research. These
solvers are the SMT solvers, which provides reasoning in many theories, not only theory of
strings.

The goal of this work is to identify currently used heuristics in these solvers, provide a
summary of them, and evaluate their efficiency. Based on the evaluation, justify which of
them has the highest impact on the successful solving and suggest which of them can be
used in the solver developed under VeriFIT.

In Chapter 2 the underlying theory of SAT and SMT solving is described. It provides a
summary of the SMT-LIB standard, theories of interest in SMT, and the SAT and DPLL(𝑇)
procedures along with a possible structure of the SMT solver. At the end of the chapter,
the structure of cvc5 and Z3 is provided.

A detailed description of the theory of strings is provided in Chapter 3, where is also a
description of a few heuristics used in the cvc5 solver and one of the heuristics used in the
Z3 solver.

4

Finally, in Chapter 4 the measurement is described along with the sets of benchmarks
used, the benchmarking tool, and the evaluation of the results.

5

Chapter 2

SMT Solving

This chapter introduces the basics of solving propositional formulas known as satisfiability
solving (or SAT solving) and its extension known as Satisfiability Modulo Theories, which
combines SAT solving with a Theory solver. Modern SMT solving is based on the DPLL(T)
algorithm, which is also introduced. And finally, the cvc5 solver is introduced.

The definitions in this chapter are taken from [16].

2.1 DPLL procedure
The Davis-Putnam-Logemann-Loveland (DPLL) procedure is an algorithm used to solve
quantifier-free propositional formulas. This section provides a basic description of the
procedure and its components.

2.1.1 Basic terms

Let 𝑃 be a finite fixed set of propositional symbols. A 𝑝 ∈ 𝑃 is called atom, 𝑝 and ¬𝑝 are
literals. Literals can take value true or false. The propositional formula 𝐹 is a string of
literals connected with the following operators: unary operator negation ¬, binary operator
conjunction ∧ and binary operator disjunction ∨. A clause C is a disjunction of literals
𝑙1∨ 𝑙2∨ . . .∨ 𝑙𝑛 for some 𝑛 ≥ 2. A formula in disjunctive normal form (DNF) is a disjunction
of one or more conjunctions, in conjunctive normal form (CNF) is a conjunction of one
or more clauses. A CNF formula can also be written as a comma-separated list of clauses
𝐶1, 𝐶2

An assignment 𝑀 is set of literals such that {𝑝,¬𝑝} ⊈𝑀 (any 𝑝 cannot be a member
of M in positive and negative form simultaneously). Literal 𝑙 is true in 𝑀 when 𝑙 ∈ 𝑀 ,
false in 𝑀 when ¬𝑙 ∈𝑀 , and undefined in 𝑀 otherwise. A literal 𝑙 is defined in 𝑀 if it is
either true or false. We call any assignment 𝑀 partial truth assignment if there is some
literal 𝑙 from formula 𝐹 such that 𝑙 is undefined in 𝑀 . If 𝑀 is total over 𝑃 when there is
no literal of 𝑃 is undefined in 𝑀 . When assignment is 𝑀 = {𝑙1, . . . , 𝑙𝑛}, then the negation
of assignment is an ¬𝑀 = {¬𝑙1, . . . ,¬𝑙𝑛}. Clause 𝐶 is true in 𝑀 if there exists one of its
literals in 𝑀 . If all literals of 𝐶 are false in 𝑀 , then 𝐶 is false in 𝑀 . 𝐶 is undefined in 𝑀
otherwise. A CNF formula 𝐹 is true or satisfied in 𝑀 if all its clauses are true in 𝑀 . In
that case, 𝑀 is a model of 𝐹 , written 𝑀 ⊨ 𝐹 , and is called 𝑀 model of 𝐹 . 𝐹 is false in 𝑀
if any of its clauses is false in 𝑀 and is undefined otherwise. A formula 𝐹 ′ is the logical
consequence of 𝐹 when all models of 𝐹 are also true for 𝐹 ′, written 𝐹 ⊨ 𝐹 ′, 𝐹 is entailed by
𝐹 ′. Two formulas are logically equivalent when 𝐹 ⊨ 𝐹 ′ and 𝐹 ′ ⊨ 𝐹 .

6

In the following text, the lowercase letter 𝑙 denotes literal, the uppercase letters 𝐹,𝐺
denotes formulas, the uppercase letters 𝐶,𝐷 denote clauses, and uppercase letters 𝑀,𝑁
denote assignments. The literal in negative form ¬𝑙 can also be denoted as 𝑙

2.1.2 States and transitions

A state of the DPLL procedure is either FailState or pair 𝑀 ‖ 𝐹 , where 𝐹 is the CNF
formula and 𝑀 is a (partial) assignment. The assignment 𝑀 in DPPL is a sequence of
literals, where each literal cannot be contained in positive and negative form simultaneously,
and each literal has an annotation which indicates if it is a decision or not. 𝑀 can also be
considered as a set of literals, where annotation and order are ignored.

When the literal is marked as a decision literal, it is written as 𝑙𝑑. The empty assignment
or sequence of literals is denoted as ∅. A clause 𝐶 is conflicting in a state 𝑀 ‖ 𝐹,𝐶 if
𝑀 ⊨ ¬𝐶.

Each DPLL procedure is modeled by a set of states along with a binary relation ⇒ over
these states, called transition relation. Let 𝑆, 𝑆′ be states of the DPLL procedure, then
𝑆 ⇒ 𝑆′ is called a transition from 𝑆 to 𝑆′. The reflexive-transitive closure of ⇒ is denoted
by ⇒*. Any sequence of transitions 𝑆1 ⇒ 𝑆2, 𝑆2 ⇒ 𝑆3 . . . is called derivation and is denoted
as 𝑆1 ⇒ 𝑆2 ⇒ 𝑆3 Any subsequence of derivation steps is called the subderivation.

A transition system is a set of transition rules defined over some given set of states.
For a given transition system 𝑅, the transition relation is denoted as ⇒𝑅. If there is no
transition from the state 𝑆 by ⇒𝑅, then 𝑆 is called final with respect to 𝑅.

2.1.3 The Classical DPLL procedure

The Classical DPLL procedure consists of five transition rules. These rules are just basic
rules for this system and provide a basic understanding of the procedure.

Definition 2.1 The Classical DPLL system is the transition system 𝐶𝑙 consisting of the
following five transition rules. In this system, all literals added to 𝑀 by all rules except
Decide are marked as non-decision literals.

UnitPropagate

𝑀 ‖ 𝐹,𝐶 ∨ 𝑙 ⇒𝑀𝑙 ‖ 𝐹,𝐶 ∨ 𝑙 if
{︃
𝑀 ⊨ ¬𝐶
𝑙 is undefined in 𝑀

PureLiteral

𝑀 ‖ 𝐹 ⇒𝑀𝑙 ‖ 𝐹 if

⎧⎪⎨⎪⎩
𝑙 occurs in some clause of 𝐹
¬𝑙 occurs in no clause of 𝐹
𝑙 is undefined in 𝑀

7

Decide

𝑀 ‖ 𝐹 ⇒𝑀𝑙𝑑 ‖ 𝐹 if
{︃
𝑙 or ¬𝑙 occurs in 𝐹

𝑙 is undefined in 𝑀

Fail

𝑀 ‖ 𝐹,𝐶 ⇒FailState if
{︃
𝑀 ⊨ ¬𝐶
there is no decision literal in 𝑀

Backtrack

𝑀𝑙𝑑𝑁 ‖ 𝐹,𝐶 ⇒𝑀¬𝑙 ‖ 𝐹,𝐶 if
{︃
𝑀𝑙𝑑𝑁 ⊨ ¬𝐶
there is no decision literal in 𝑁

The input formula 𝐹 can be decided in the transition system 𝐶𝑙 by applying these rules
and generating a derivation 𝑆0 ⇒ 𝑆1 ⇒ . . .⇒ 𝑆𝑛, where 𝑆𝑛 is the final state with respect
to 𝐶𝑙. For 𝑆𝑛 is a formula unsatisfiable if, and only if, 𝑆𝑛 is FailState, or 𝑆𝑛 is of the form
𝑀 ‖ 𝐹 and then 𝑀 is the model of 𝐹 . The second part of a state remains unchanged in the
classical DPLL procedure.

Here is a brief explanation of the rules. The input formula 𝐹 is considered in CNF form.
To satisfy such a formula, all its clauses have to be true.

• UnitPropagate – if there is literal 𝑙 that is undefined in M and all other literals of a
clause are already false, then 𝑙 has to be true.

• PureLiteral – when a literal 𝑙 appears in a formula only in positive or negative form,
then 𝑙 is called pure, and 𝑙 (¬𝑙 respectively) is added to M.

• Decide – if an 𝑙 appears in the formula in both positive and negative form, then the
literal is added to 𝑀 and marked as a decision literal. This denotes that, if 𝑀𝑙 cannot
be extended to be a model of 𝐹 then the alternative extension 𝑀¬𝑙 has to be still
considered.

• Fail – if there is some conflicting clause and M does not contain any decision literal,
then FailState is produced.

• Backtrack – if there is a conflicting clause detected and Fail does not apply, then
this rule backtracks to the last decision literal 𝑀𝑙𝑑𝑁 and replaces it with its negation
and removes any subsequent literals 𝑁 , where 𝑁 does not contain any decision literal.
Then the assignment has a form of 𝑀¬𝑙, where ¬𝑙 is no longer marked as decision
literal.

These rules are applied in exactly the same order as was introduced above (UnitPropagate
have the highest priority). When the DPLL procedure cannot apply the rule, then it tries
to apply its successor. When all clauses are true, then a model of a formula is returned,
or some clause is false, and there is no decision literal. In that case, FailState is returned.
Based on that observation, it can be shown, that the DPLL procedure stops for all formulas.

8

2.1.4 Modern DPLL procedure

Today, modern SAT solvers do not implement the classical DPLL procedure. To gain higher
efficiency, there are some modifications to the algorithm.

Usually in modern solvers is the PureLiteral rule applied as part of formula prepro-
cessing. Therefore, this rule is no longer part of the DPLL procedure itself. Another rule,
which is modified, is Backtrack. Typically, the backtrack rule chooses the last decision
literal to replace. But in some cases it is more effective, to select another decision literal.
This approach is called backjumping. The modified algorithm with backjumping is called
Basic DPLL System

Definition 2.2 The Basic DPLL system is, is a four-rule transition system 𝐵 consisting of
the rules UnitPropagate, Decide, Fail from Classical DPLL, and the following Backjump
rule:

Backjump

𝑀𝑙𝑑𝑁 ‖ 𝐹,𝐶 ⇒𝑀𝑙′ ‖ 𝐹,𝐶 if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑀𝑙𝑑𝑁 ⊨ ¬𝐶 and there is some clause
𝐶 ′ ∨ 𝑙′ such that:
𝐹,𝐶 ⊨ 𝐶 ′ ∨ 𝑙′ and 𝑀 ⊨ ¬𝐶 ′,

𝑙′ is undefined in 𝑀 , and
𝑙′ or ¬𝑙′ occurs in 𝐹 or in 𝑀𝑙𝑑𝑁

The 𝐶 clause in Backjump is called conflicting clause, and clause 𝐶 ′ ∨ 𝑙′ is the backjump
clause. The choice of backjump clause is illustrated by the following example [16].

Example 2.1. This sequence of states is generated by the Classical DPLL procedure without
the PureLiteral rule.

∅ ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (Decide)

1𝑑 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (UnitPropagate)

1𝑑 2 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (Decide)

1𝑑 2 3𝑑 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (UnitPropagate)

1𝑑 2 3𝑑 4 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (Decide)

1𝑑 2 3𝑑 4 5𝑑 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (UnitPropagate)

1𝑑 2 3𝑑 4 5𝑑 6 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6) ⇒𝐶𝑙 (Backtrack)

1𝑑 2 3𝑑 4 5 ‖ (1 ∨ 2), (3 ∨ 4), (5 ∨ 6), (1 ∨ 3 ∨ 5), (2 ∨ 5 ∨ 6)

The clause 2 ∨ 5 ∨ 6 is false in model 1𝑑 2 3𝑑 4 5𝑑 6 before the Backtrack step, thus it is a
conflicting clause. It is a consequence of the unit propagation 2 of the decision 1𝑑, together
with the decision 5𝑑 and its unit propagation 6. Here, instead of Backtrack, a Backjump
can be used.

As can be observed, the decision 1𝑑 is incompatible with the decision 5𝑑, therefore the
set of clauses entails 1 ∨ 5. This clause can be obtained by an analysis starting with the
conflicting clause. 2 ∨ 5 ∨ 6. This clause is in contradiction with the 5 ∨ 6 clause, leading to
the inference of clause 2 ∨ 5, which can be used as a backjump clause. Moreover, additional

9

analysis shows that the latter clause is in contradiction with 1∨ 2. From these two coflicting
clauses, the clause 1 ∨ 5 can be inferred, which can also be used to guide the backjump.

With that entailed backjump clauses Backjump goes back to its decision level and adds
unit propagated literal. In this case, clause 2∨5 could be used along with Backjump replacing
Backtrack, to get partial assignment in form 1𝑑 2 5.

Moreover, Backtrack rule can be considered a special case of Backjump rule.

Backjump rule based on conflicting clause is called conflict driven. Compared to Back-
track rule, it can backtrack further in the assignment by analyzing the reason that produced
the conflicting clause. Due to that, it undoes several decisions, skipping decisions which are
irrelevant to the conflict. In the previous example, the conflicting clause is 6 ∨ 5 ∨ 2, so it
skips literals 3𝑑4, which does not affect the evaluation of this clause.

As an extension of the Backjump rule, the backjump clause can be added to the evaluated
formula. This approach is called conflict-driven learning and is implemented by two new
rules: Learn and Forget.

Definition 2.3 The DPLL system with learning, denoted by 𝐿, consists of the four transition
rules of the Basic DPLL system and the two additional rules:

Learn

𝑀 ‖ 𝐹 ⇒𝑀 ‖ 𝐹,𝐶 if
{︃

each atom of 𝐶 occurs in 𝐹 or in 𝑀

𝐹 ⊨ 𝐶

Forget

𝑀 ‖ 𝐹,𝐶 ⇒𝑀 ‖ 𝐹 if
{︁
𝐹 ⊨ 𝐶

In any application step of Learn, clause C is said to be learned if it did not already belong
to 𝐹 . Similarly, it is said to be forgotten by Forget.

The Learn rule allows learning of the clause 𝐶 which is entailed by 𝐹 as long as all
atoms of 𝐶 occur in 𝐹 or 𝑀 . Similarly, the Forget rule allows removal of any clause from
𝐹 , whenever 𝐹 entails 𝐶. This means that not only the learned clauses can be forgotten.

As can be observed in Example 1, the learning clause 2 ∨ 5 will allow application of
the UnitPropagate rule, whenever 2 or 5 appears in the assignment. In addition, learning
such clauses will prevent the repetition of computing the same or similar backjump clauses,
which leads to improving the performance of the solver.

Because learning clauses are aimed at preventing future conflicts when the conflicts are
not likely to be found, the clause can be removed. This can be tracked by the relevance or
activity of the clause. Activity can be measured by the number of times it is used as a unit
or conflicting clause and removed when the number drops below a given threshold.

The following theorems show the correctness of DPLL systems with learning. All proofs
can be found in [16].

First, consider ∅ ‖ 𝐹 ⇒𝐿 . . .⇒𝐿 𝑆𝑛, where 𝑆𝑛 is the final state. The final state does not
always exist, due to the possible infinite application of the rules Learn and Forget. Thus,
the infinite application of these rules is avoided.

Lemma 2.1 If ∅ ‖ 𝐹 ⇒*
𝐿 𝑀 ‖ 𝐺, then all the following hold.

(1) All the atoms in 𝑀 and all the atoms in 𝐺 are atom of 𝐹

10

(2) 𝑀 contains no literal more than once and is indeed an assignment, i.e., it contains no
pair of literals of the form 𝑝 and ¬𝑝.

(3) 𝐺 is logically equivalent to 𝐹 .

(4) If 𝑀 is of the form 𝑀0𝑙1𝑀1 . . . 𝑙𝑛𝑀𝑛, where 𝑙1, . . . , 𝑙𝑛 are all the decision literals of
𝑀 , then 𝐹, 𝑙1, . . . , 𝑙𝑖 ⊨𝑀𝑖 for all 𝑖 in 0 . . . 𝑛

Lemma 2.2 Assume that ∅ ‖ 𝐹 ⇒*
𝐿 𝑀 ‖ 𝐹 ′ and that 𝑀 ⊨ ¬𝐶 for some clause 𝐶 in 𝐹 ′.

Then either Fail or Backjump applies to 𝑀 ‖ 𝐹 ′.

Lemma 2.3 If ∅ ‖ 𝐹 ⇒*
𝐿 𝑆, and 𝑆 is final with respect to Basic DPLL, then 𝑆 is either

FailState, or it is in the form 𝑀 ‖ 𝐹 ′, where

(1) all literals of 𝐹 are defined in 𝑀 ,

(2) there is no clause 𝐶 in 𝐹 ′ such that 𝑀 ⊨ ¬𝐶, and

(3) 𝑀 is a model of 𝐹

Theorem 2.1 There are no infinite derivations of the form ∅ ‖ 𝐹 ⇒𝐵 𝑆1 ⇒𝐵 . . .

Theorem 2.2 Every derivation ∅ ‖ 𝐹 ⇒𝐿 𝑆1 ⇒𝐿 . . . by the DPLL system with learning is
finite if it contains no infinite subderivations consisting of only Learn and Forget steps.

Theorem 2.3 If ∅ ‖ 𝐹 ⇒*
𝐿 𝑆 where 𝑆 is final with respect to Basic DPLL, then

(1) 𝑆 is FailState if, and only if, 𝐹 is unsatisfiable.

(2) If 𝑆 has the form 𝑀 ‖ 𝐹 ′, then 𝑀 is the model of 𝐹

The last theorem also holds for the relation ⇒𝐵.
The last rule used by Modern DPLL is the Restart rule. In some cases, the solver

does not make any significant progress in solving the given formula. Then Restart is
applied. The main idea of restarting is that the solver has additional information on the
solved formula, which was obtained by applying the Learn rule. In the next run, more
suitable heuristics for Decision can be used. The Decision heuristics try to find which
form of literal, positive, or negative, is more suitable to successfully solve the given formula.
The combination of rules Restart and Learn was shown to increase the efficiency of the
algorithm in both theoretical and practical ways.

The Restart rule is defined as follows:

Definition 2.4 The Restart rule is:

𝑀 ‖ 𝐹 ⇒ ∅ ‖ 𝐹

As can be seen, it simply discards any partial assignment obtained before.
As mentioned above, Restart is applied whenever the solver does not make any significant

progress. This metric can be modeled simply by setting an expected number of steps to
solve the given formula. To ensure that the DPLL procedure with restart always ends and
will not apply the Restart infinitely, the expected number of steps is increased whenever
Restart is applied. This can be formalized as follows:

11

Definition 2.5 Consider a derivation of the DPLL system with learning extended with the
Restart rule. We say that Restart has increasing periodicity in the derivation if, for each
subderivation 𝑆𝑖 ⇒ . . .⇒ 𝑆𝑗 ⇒ . . .⇒ 𝑆𝑘, where the steps producing 𝑆𝑖, 𝑆𝑗 , 𝑆𝑘 are the only
Restart steps, the number of Basic DPLL steps in 𝑆𝑖 ⇒ . . .⇒ 𝑆𝑗 is strictly smaller than
in 𝑆𝑗 ⇒ . . .⇒ 𝑆𝑘.

Theorem 2.4 Any derivation ∅ ‖ 𝐹 ⇒ 𝑆1 ⇒ . . . by the transition system 𝐿 extended with
the Restart rule is finite if it contains no infinite subderivation consisting of only Learn,
Restart steps, and Restart has increasing periodicity in it.

The proof of Theorem 2.4 can be found in [16].
In this section, definitions of all DPLLs are provided. For clarity, the DPLL system

with learning is also called CDCL – Conflict-Driven Clause Learning (sometimes also
Constraint-Driven) [15].

2.2 Basic principles of SMT solving
In practical problem solving, simply taking a problem and converting it into a propositional
formula is not sufficient to obtain a compliant result. Coding problems into propositional
formulas can be a fairly difficult process if possible. For example, consider the classical
Sudoku problem. To encode it into a propositional formula, it is necessary to create nine
variables for each cell, to express each of the possible values, and to create clauses that
specify given constraints. To create an extended version of Sudoku, the proper number of
variables and clauses is needed to express all constraints properly. This approach is even
more complicated for more complex problems and leads to a variable explosion.

Instead of converting a problem into a propositional formula, it is more suitable to
specify constraints on a given problem. In that case, variables do not express only Boolean
values, but can be considered as a set of values in a given theory. For the Sudoku problem,
each variable stands for a number from 1 to 9, and constraints for each column, row, and
square are specified just above them, leading to a more compact description of the given
problem. To solve such problems, the SMT solver is used.

The Satisfiability Modulo Theories solver is basically an SAT solver extended by a theory
checker. Its input formula can be specified using first-order logic and theory-specific elements.
This family of solvers works basically as follows: The input formula is evaluated by the SAT
solver simply by considering each theory expression as literal, and then the theory checker
checks if a given assignment is also valid in its theory.

Some SMT solvers today use the architecture called DPLL(𝑇). This notation says that
a DPLL-based solver is combined with a given theory 𝑇 . That also provides an interface
for the SAT solver, which can be combined with any available theory 𝑇 . In this section
an overview of most used theories, to demonstrate a decision complexity over them. A
comprehensive description of the principles of SMT solvers is provided. This work aims at
examining the string heuristics used in two solvers, cvc5 and Z3. At the end of the section,
these two solvers are briefly introduced followed by description of SMT-LIB standard.

The Sections 2.2.3, 2.2.4 and 2.2.5 are based on [5, 6, 16]

2.2.1 Basic terms

The following section uses the definition from section 2.1.1 with the difference in the definition
of set 𝑃 . 𝑃 is fixed set of ground first-order atoms. Such atoms are variable-free. The

12

difference between formulas, formula 𝜙 is the first-order formula that contains function
symbols, propositional symbols, and equivalencies between ground terms. The formula 𝐹
contains only literals 𝑝,¬𝑝, where 𝑝 ∈ 𝑃 .

In addition to propositional logic, some notion of first-order logic is also used. A theory
𝑇 is a set of ground (variable-free) first-order formulas, where all symbols in the formula
are symbols of the theory signature. These formulas A formula 𝐹 is T-consistent or T-
satisfiable if 𝐹 ∧ 𝑇 is satisfiable in the first-order sense. When it is not satisfiable, then 𝐹 is
T-unsatisfiable or T-inconsistent.

The partial assignment 𝑀 can be considered as a conjunction of literals and thus as a
formula. If 𝐹 is the formula, 𝑀 is the 𝑇 -consistent partial assignment and 𝑀 ⊨ 𝐹 , then 𝑀
is called the 𝑇 -model of 𝐹 . If 𝐹 and 𝐺 are formulas, then 𝐹 entails 𝐺 in 𝑇 , written 𝐹 ⊨𝑇 𝐺,
when 𝐹 ∧ ¬𝐺 is 𝑇 -inconsistent. If 𝐹 ⊨𝑇 𝐺 and 𝐺 ⊨𝑇 𝐹 , then 𝐹 and 𝐺 are 𝑇 -equivalent. A
theory lemma is clause 𝐶, where ∅ ⊨𝑇 𝐶.

The SMT problem for a given formula 𝐹 and the theory 𝑇 is to determine if 𝐹 is
𝑇 -satisfiable. Equivalently, it can be asked if 𝐹 has a 𝑇 -model.

The ground CNF formula 𝐹 is the variable-free and quantifier-free formula. The SMT
problem will be considered only for the ground formulas. Such formulas may contain free
constants (constant symbols that are not in the signature of a theory 𝑇). Such constants
can be seen as existential variables for the purpose of satisfiability. The function and the
predicate symbols in the formulas, in addition to the free constants, all come from the
signature of a theory 𝑇 . In the following sections, a formula is meant as a formula with all
previous restrictions considered.

Also, by theory 𝑇 is meant only theories that are decidable in the case of 𝑇 -satisfiability
of conjunctions of the ground literals. The decision procedure for this problem is called
T-solver.

2.2.2 Theory overview

The SMT solvers can be used to solve problems in a variety of theories. Certain solvers are
specialized only for a few of them, while others provide a robust set of theories. Below is a
brief overview of the most commonly used theories.

Equality and Uninterpreted Functions (EUF) is the most general case of the theory.
This theory has no axioms due to what is also called an empty theory. The only possible
operator is an equality operator =. The uninterpreted functions are just abstraction without
any functionality. This helps in modeling a system without an unnecessary level of detail.
An example of a formula in a given theory may be 𝑓(𝑎) = 𝑏, 𝑔(𝑏) = 𝑎, 𝑓(𝑔(𝑏)) = 𝑏, where
𝑎, 𝑏 are constant symbols, and 𝑓, 𝑔 are uninterpreted functions. This theory is decidable in
polynomial time using the algorithm called Congruence closure [5].

Real and Integer Arithmetic theories, uses the signature {+,−, *,≤}, where {+,−, *}
are function symbols, and ≤ is a predicate symbol. For integers, arithmetic with this
signature is in general undecidable [6]. For practical purposes, often a decidable fragment of
integer arithmetic is used. It is called Pressburger arithmetic, where the use of multiplication
* is excluded or restricted to the case where one of the multiplication operands must be a
constant number. Against it, for real numbers, this theory is decidable in polynomial time
without the need to limit the signature [5]. Using SMT solvers in practical scenarios leads
to finding many solutions in integers and enhances the effectiveness for reals.

13

One fragment of arithmetic, called a Difference Logic theory, uses the atomic formulas
in the form 𝑎− 𝑏 ◁▷ 𝑐, where 𝑎, 𝑏 are (uninterpreted) constants or variables, 𝑐 is a constant,
and ◁▷∈ {=,≤}. Based on an instance of difference logic, a 𝑐 can be both an integral or a
real constant, giving an integer difference logic or a real difference logic, respectively. This
fragment can be solved in polynomial time [6].

Bit Vectors theory using reasoning on fixed-size bit vectors. This can be used to verify
hardware components or for a compact transcript of some of the propositional formulas.
The signature may contain operations concatenation, extraction of one bit from the vector,
bitwise logic operation, and arithmetic operations. By a reduction to a SAT problem, it may
be shown that this problem is NP-complete [5]. But in the case where only concatenation
and extraction over equations are used, a formula can be solved in polynomial time. However,
by adding more extensions (e.g., disequalities), this problem can explode up to NEXPTIME-
complete complexity [6].

Arrays is theory of arrays, indices, and elements that have signature {read, write}, where
the result of read is the element and the result of write is an array. The basic axioms of
this theory are:

∀𝑎∀𝑖∀𝑒(read(write(𝑎, 𝑖, 𝑒), 𝑖) = 𝑒)

∀𝑎∀𝑖, 𝑗∀𝑒(𝑖 ̸= 𝑗 → read(write(𝑎, 𝑖, 𝑒), 𝑗) = read(𝑎, 𝑗))

In SMT-LIB standard is a theory of arrays with extensionality, which needs one more axiom
defined as following:

∀𝑎∀𝑏(∀𝑖(read(𝑎, 𝑖) = read(𝑏, 𝑖))) → 𝑎 = 𝑏

This theory can be used to model an array in program or for modeling a memory, which
may significantly decrease complexity due to that the size of memory is defined by number
of accesses and not by actual size of modeled memory. In general, this theory is undecidable
[6].

Strings and Regular expression theory serves for reasoning about words and languages.
It is usually combined with a linear arithmetic fragment, which enables reasoning about
word length constraints. The theory of strings with comprehensive signature is undecidable,
but some restricted fragments are decidable [13]. More parts of this theory are described in
Chapter 3.

The SMT-LIB standard also contains a few other theories. Theory of floating point
numbers based on IEEE standard 754-2008, theory of Combined Integer and Real arithmetic
and so called Core theory, which defines basic boolean operators.

In the following sections, two approaches on how to implement an SMT solver based on
the combination of a theory solver and an SAT solver and internal communication between
them, is introduced – lazy and eager techniques. For both of these techniques, an SAT solver
creates the core of the solver; however, some degree of variability is possible, due to easy
combination of the SAT and a Theory solver. There also exist a bit different technique of
SMT solving typically used for (non)linear arithmetic called MCSAT. A further description
of the latter can be found in the literature [15].

14

2.2.3 Eager SMT techniques

The main idea of eager techniques is to take an input formula and translate it into a
propositional CNF formula by a satisfiability-preserving transformation, which satisfiability
can then be checked by the SAT solver. Due to that, the SMT solvers using this technique
are often referred to as SAT based.

The main advantage of this technique is that the best available SAT solver can be used
directly. Therefore, the efficiency of this approach increases whenever a new faster SAT
solver appears. But this also leads to the biggest disadvantage of eager techniques, which is
that there is a need to have an efficient and complex translation for each theory. In addition,
for each theory, there can be a unique approach to translating it into CNF formula.

The eager technique correctness depends on the correctness of both a translator of the
theory solver and the SAT solver. Also, there is a problem with running out of memory or
time, which is based on the full translation of the input formula into the complete CNF
formula.

Some of the eager techniques are listed below. Generally speaking, each technique is
unique for theory and is challenging to classify them into broader categories.

For theories using lambda functions, elimination of the lambda expression can be used
which is based on beta reductions. Such a reduction is a simple subsitution of argument
variables with given term, which can cause the exponential blow-up in size of input formula.
However, in practical cases, the increase in formula size is typically only linear [5].

The theory of equality with uninterpreted functions uses elimination of function appli-
cation. One of the methods used is the Ackermann’s method, where the function symbols
𝑓𝑖(𝑥𝑖) for 𝑖 = 1 . . . 𝑛 are substituted in the input formula 𝜙 with new constant symbols 𝑓𝑖,

producing formula 𝐹 . Then the formula 𝐹 ∧
𝑛−1⋀︀
𝑖=0

𝑛⋀︀
𝑗=𝑖

(𝑥𝑖 = 𝑥𝑗 =⇒ 𝑓𝑖 = 𝑓𝑗) is satisfiable

iff formula 𝜙 is satisfiable in the EUF theory [6]. This method can be extended for any
non-nulary function application and also applies for non-nulary predicate symbols.

Few methods can be grouped by the principle of bounding of problem size. For simplicity,
these methods bound possible values to some subset of values, where a solution can be
found. For example, in Integer Arithmetic Theory, the method of Small Domain Encoding
[5] can be used. This method bounds the state space of the formula based on the maximal
coefficient and constant, the number of constraints, and the number of all constraints
variables. Another example can be shown in the Character String Theory, where the size of
each string variable can be bounded, and also an alphabet can be reduced to some subset of
symbols, which are sufficient for finding a solution [14]. In addition, this method uses the
refinement of the bounds during solving.

The given techniques serve only as an example of part of the eager approach, and
typically all such techniques are used as some part of the eager translation and cannot be
used as standalone solvers.

In the following section, the opposing lazy approach will be described.

2.2.4 Lazy SMT techniques

An alternative to the eager technique can be used the lazy technique. This approach uses a
greater integration of the SAT solver and the theory solver. Each atom in the input formula
is seen as a propositional symbol. Then such a formula 𝐹 is given to the SAT solver, which
determines its theory-independent propositional satisfiability. If the formula is unsatisfiable,
then it is also 𝑇 -unsatisfiable. Otherwise, the SAT solver returns model 𝑀 of the formula.

15

Then, the theory solver checks the consistency of a given model. If model 𝑀 is 𝑇 -consistent,
then it is the model of the input formula. Otherwise, the solver generates a ground clause,
which is a logical consequence of 𝑇 and contradicts that inconsistent model. Then this
lemma is added to 𝐹 and again given to the SAT solver. This procedure is repeated until a
𝑇 -consistent model or an unsatisfiable formula is obtained.

To successfully implement a lazy solver, the theory solver has to implement some features,
which lead to effective cooperation of T -solver and SAT solver [5]. A model generation,
mentioned above, leads to producing T-model, which witness the consistency of the input
formula. Today, it is also an important property of modern solvers that the model of a given
formula is returned. Generating a theory conflict set is used to obtain the conflict set, which
can be learned by the SAT solver and/or used as a backjumping clause. Also important for
the T -solver is to keep an actual state of computation. This property ensures that for newly
obtained literals T -solver does not have to check the already verified parts of the obtained
model and is called Incrementality. Keeping the actual state also allows T -solver to add
undo steps, making Bactrackability possible. And also a Deduction of unassigned literals
allows T -solver to deduce new literals from a given partial assignment obtained during
computation.

The theory solver with described features can be relatively easily combined with any
SAT solver using the lazy approach. Also, when the SAT solver is DPLL-based, many
refinements exist, which increases the effectivity of the solver. Some of them are described
below.

Incremental T-solver is based on checking the 𝑇 -consistency during the execution of the
DPLL procedure, not only after the formula proposition model is generated. The incremental
checking causes the inconsistent literal to be found much earlier in the process, which increases
the efficiency of the solver. Detecting 𝑇 -inconsistencies can be done whenever a new literal
is generated, or, if it is too expensive, at regular intervals. After the 𝑇 -inconsistency is
detected, the conflicting clause is learned, and the solver restarts. To gain greater effectivity,
the implementation of an incremental 𝑇 -solver must be specific. The 𝑇 -solver has to process
the new coming literal 𝑙 generally faster than reprocess the complete previous input with
the new literal 𝑙.

Online SAT-solver can be used in cooperation with an incremental 𝑇 -solver. When the
𝑇 -solver detects 𝑇 -inconsistency, the DPLL procedure can be asked to backtrack to a point
where the assignment was 𝑇 -consistent, instead of restarting and building the complete
assignment again. From the 𝑇 -inconsistent assignment a theory lemma can be generated,
which can be added to the input formula and used for Backjump rule. There is a formal proof
that the theory lemma can be forgotten after using the Backjump rule, while 𝑇 -consistent
formula will still be found if it exists [16]. However, keeping such a lemma can increase the
effectiveness of the solver, due to the preceding possible future conflicts. The most useful
lemmas, in terms of the solver effectivity, were shown to be the small ones.

Theory propagation also implements a way in which the 𝑇 -solver communicates with
an SAT solver. Instead of only checking if a given assignment is 𝑇 -consistent, this approach
additionally allows us to guide the next state of the DPLL-based SAT solver. If, for a given
state 𝑀 ‖ 𝐹 , the 𝑇 -solver detects that for some literal 𝑙 the 𝑀 ⊨𝑇 𝑙 holds, then guides the
SAT-solver to move to state 𝑀𝑙 ‖ 𝐹 .

16

It has been shown that the theory propagation can be effectively implemented in SMT
solvers and makes a major improvement in SMT solving performance [16].

Another improvement can be obtained by applying Theory propagation exhaustively. All
possible Theory propagations are applied before the Decide rule or even before calling the
SAT solver, because a new state 𝑀𝑙 ‖ 𝐹 may possibly entail a new literal 𝑙′. This approach
can remove most of the unwanted redundancy of theory information, which can be generated
in a system without Theory propagation by learning new theory lemmas or conflict clauses.

The ideas provided are used to create an abstract framework, which is described in the
following section.

2.2.5 Abstract DPLL(T)

This section provides one application of the lazy approach. The following definition provides
a system that solves the formula in a propositional way while checking the consistency with
a given theory. The first-order theory entailment ⊨𝑇 is used by all rules.

Definition 2.6 An Abstract DPLL(T) is system consisting of rules UnitPropagate,
Decide, Fail and Restart of the Basic DPLL system and defines four new theory rules:

T-Propagate

𝑀 ‖ 𝐹 ⇒𝑀, 𝑙 ‖ 𝐹 if

⎧⎪⎨⎪⎩
𝑀 ⊨𝑇 𝑙

𝑙 or ¬𝑙 occurs in 𝐹

𝑙 is undefined in 𝑀

T-Learn

𝑀 ‖ 𝐹 ⇒𝑀 ‖ 𝐹,𝐶 if
{︃

each atom of 𝐶 occurs in 𝐹 or in 𝑀

𝐹 ⊨𝑇 𝐶

T-Forget

𝑀 ‖ 𝐹,𝐶 ⇒𝑀 ‖ 𝐹 if
{︁
𝐹 ⊨𝑇 𝐶

T-Backjump

𝑀𝑙𝑑𝑁 ‖ 𝐹,𝐶 ⇒𝑀𝑙′ ‖ 𝐹,𝐶 if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑀𝑙𝑑𝑁 ⊨𝑇 ¬𝐶 and there is some clause
𝐶 ′ ∨ 𝑙′ such that:
𝐹,𝐶 ⊨𝑇 𝐶

′ ∨ 𝑙′ and 𝑀 ⊨ ¬𝐶 ′,

𝑙′ is undefined in 𝑀 , and
𝑙′ or ¬𝑙′ occurs in 𝐹 or in 𝑀𝑙𝑑𝑁

This scheme is the most common application of the DPLL(𝑇) schema, which were shown
to be one of the most effective rules set in a given framework [5]. An Abstract DPLL(𝑇)
procedure returns either a model of the given formula or ends in FailState, which marks
input formula as Theory inconsistent (or Theory unsatisfiable).

• T -Propagate is an practical application of Theory propagation. This rule defines a
new literal 𝑙, which is yet undefined in the partial model 𝑀 , when 𝑀 entails 𝑙 in a
given theory. This leads to performance improvement caused by pruning the search
space.

17

• T -Learn and T -Forget adds a clause to a formula 𝐹 or removes it, respectively. Each
clause does not provide new literals, so it does not expand a search space. Or in case
of forgetting, the resulting model 𝑀 of the formula remains untouched. The T -Learn
rule also provides a pruning of the search space by adding a new clause entailed by
theory. Even if the model is empty, before the procedure starts, clauses can be learned
to provide some type of early pruning of search space. In addition, this learning can
be used to learn backjump clauses.

• T -Backjump makes a backjump step based on the theory conflict. That leads to more
precise backjumping. The clause 𝐶 is a conflicting clause and the clause 𝐶 ′ ∨ 𝑙′ is a
backjumping clause. The literal 𝑙′ in the backjumping clause is the consequence of
the decision literal 𝑙𝑑, which causes the conflict and which will be propagated in the
model after the backjump. As can be seen, this rule uses both the theory entailment
⊨𝑇 along with the propositional satisfiability ⊨.

There are also more approaches, which are complete from the view of termination of
a given algorithm. All of them differs mainly on the set of theory rules that are used.

A systems with only T -learn rule are sufficient. The basic implementation waits for
the total assignment from the DPPL procedure, which is then checked for T -consistency.
If T -inconsistency is detected, a conflicting clause is learned, and the system is restarted.
An improvement may be made here with the incrementality of the solver, which may detect
T -inconsistency much earlier in the process.

By adding T -backjump rule to the system with learning, an Online SAT-solver will
be created. When T -inconsistency is detected, only backjump is performed, which avoids
solving the untouched part of the formula again.

One of the approaches uses only T -propagate with the DPLL system. This sys-
tem also terminates and increases effectivity, because T -propagate rule substitutes the
UnitPropagate rule potentially in a more effective manner [16].

Abstract DPLL(𝑇) framework is combination of all mentioned approaches.
The practical implementation of a DPLL(𝑇) framework can be realized by a combination

of the SAT engine DPLL(𝑥), and theory solver (𝑇 -solver), which provides an interface for the
DPLL engine. The DPLL(𝑥) engine is theory independent and any theory can be provided
as a parameter 𝑥. In this particular implementation, a DPLL(𝑥) engine calls 𝑇 -solver,
to validate an actual assignment, and to get information about a T -consistency.

An interface of the 𝑇 -solver shall provide a mechanism to notify that a literal was set to
true and a way to undo the last notifications. Method that checks if given assignment M is 𝑇 -
consistent. A method to identify input literals that are a T-consequence of actual assignment
and are not defined yet in the assignment and a method which returns an explanation of a
theory-propagated literal. A detailed description of these methods and their implementation
can be found in the literature [16].

2.2.6 SMT solvers

There are many tools available1 that provide SMT solving of some kind. This work aims at
two of them, cvc5 and Z3. These solvers have a similar architecture, both provide a number
of theories, and also both support an STM-lib format. This section provides a description
of these solvers. SMT-lib format is described in Section 2.2.7.

1More solvers, either under active development or not maintained futher, can be found on https:
//smt-lib.org/solvers.shtml

18

https://smt-lib.org/solvers.shtml
https://smt-lib.org/solvers.shtml

Preprocessor
Propositional

Engine

MiniSAT

Rewriter

Theory
Engine

Theory solvers

Quantifier moduleDecision Engine

SMT Solver

N
ode m

anager
Proof m

odule
API

Figure 2.1: A simplified schema of cvc5 solver taken from [2].

CVC5 [2] is a solver from the family of cooperating validity checkers, supports reasoning
over quantifier-free and quantified formulas, which is built on a CVC4 codebase. It is based
on a CDCL(𝑇) framework, which using a MiniSAT solver, customized for the purpose of
cvc5. This solver supports input in SMT-libv2, SyGuS2 and TPTP textual format, and
a C++ API with bindings for Python and Java. The main components of the solver are
Preprocessor, Rewriter, Theory Engine and Propositional Engine.

Preprocessor provides set of rewrites for the input formula to obtain normalized and
simplified formula for the solver. Some preprocessing steps are mandatory for the solver; some
of them are optional and may be disabled. All transformations are satisfiability-preserving.

Propositional Engine is internally divided into subcomponents, which provides the
management and solving of Boolean abstraction of the input formula. The input Boolean
abstraction is internally transformed into CNF form. The main component of this engine is
the MiniSAT solver, which serves as core of DPLL(𝑇) framework. The engine notifies the
Theory solver about each new assigned literal, which may perform T -consistency checking on
actual partial assignment. In complete assignment, the T -consistency is verified immediately,
producing SAT and a model or theory conflict clause.

Rewriter module provides the transformation of actual terms during solving into equiva-
lent normalized terms with a given set of rules. As in the Preprocessor, some of the rules are
required, while some can be disabled by the user. A cache is kept in the module to prevent
repeated processing of terms.

Theory engine is responsible for proper checking T -consistency via distributing literals
retrieved from the Propositional module to the appropriate theory solver. The engine is
also responsible for communication with the Quantifier module when an abstraction over
quantifiers was changed. When a combination of theories is used, the engine also provides
the Combination Engine, which is responsible for coordination of the required theory solvers.

Theory solvers are a set of modules, each responsible for a given theory. Each solver
needs an Equality engine which is able to detect equality conflict with congruence closure
algorithm. Also, each information produced by solver (e.g. propagated literals, conflict
clauses) is provided to system through Theory inference manager, which is responsible for
caching, proof production, rewriting lemmas and statistic collection. There are provided
theory solvers for (Non-)Linear Arithmetic and Floating-Point Arithmetic theories, theory

19

Simplifier

SAT Solver

Congruence
Closure Core

Theory
Solvers

Theory of sequences

E-matching engine

API

Equalities
assignments

Atoms

Equalities

Clauses

Literals
assignments

Figure 2.2: A simplified schema of Z3 solver taken from [11].

of Arrays, Bit-vectors, Datatypes, Uniterpreted Functions, Sets and Relations, Separation
Logic, Quantifiers and Strings and Sequences.

String and Sequences module is implemented as multiple layered components. It is a
compound of the solver of length constraints and the word equation solver, effective handling
of conversion between strings and integers, extended function simplification, generating
derivatives of regular expressions. The important part is the aggressive simplification of
strings and the eager detection of conflicts via computing congruence closure and constant
suffixes and prefixes of string terms.

For practical solving, an effective way to manage the input is necessary. The input
formula is translated into the form of a directed acyclic graph, where each node represents
one formula or term. The nodes are managed with the Node manager. Each node is saved
in the structure just once. Every new node with exactly the same structure in the input
formula is just referenced, which saves memory and improves performance in case of equality
checks.

cvc5 solver also provides a Proof module, which is able to produce proofs in various
formats, which can be verified by automated proof checkers and assistants.

Z3 [11, 7, 8] is CDCL(𝑇) based SMT solver that aims at software verification and software
analysis. The used SAT solver is DPLL-based. Also, Z3 provides other engines, which are
used for particular theories. For non-linear arithmetic a NLSAT engine is used, for solving
Constrained Horn Clauses a SPACER is used and for solving satisfiability of quantified
formulas a QSAT algorithm is used. Default input format is textual SMT-LIBv2 format,
also API is provided for C/C++ (and bindings to other languages via C API – e.g. Python,
Julia, Java), .NET and OCaml. The description of the main components is provided below.

Simplifier perform an incomplete simplification of input formulas, using standard alge-
braic reduction rules. The simplified formula is equisatisfiable with the former formula. It
may use a set of different simplifying tactics based on a solved theory.

Congruence Closure Core serves as the core of the Z3 solver. It receives assignments from
the SAT solver and propagates information to the Theory solvers. Internally, it works with

20

an E-graph structure. An assignment from SAT solver is processed by a congruence closure
core, which is used to refine an E-graph. When nodes in the E-graph are merged, a new
equality is propagated into the Theory solver. And also, a Theory solver may produce an
equality, which is propagated into the congruence closure core. In some cases, this module
may generate fresh atoms.

Theory solvers are implemented as a set of modules, each responsible for reasoning for
a given theory. The solvers are divided into several categories: Basic theories, which are
Boolean theories, Equality and Uninterpreted Functions and Arithmetic, which serves as
basis for other theory solvers and Reducible theories, Hybrid theories and External theories.
Boolean theories serve as the core for solving a theory of Bit-vectors using the technique of
Bit-blasting. Equality and Uninterpreted functions theory is solved mainly in Congruence
Closure Core. Reducible theories, such as Array and Datatypes theories, are reducible
to base theories. Hybrid theories are theories that combine more solving in one theory.
An example is the theory of strings, regular expression, and sequences, which combines
equational solving with integer arithmetic.

During solving, a new clause may be added to the formula, which may contain fresh
variables. The Z3 solver uses a garbage collector which removes unnecessary clauses whenever
a searched branch is closed (e.g. by detecting conflict and bactracking). Along with clauses,
terms and atoms which were introduced are no longer used are deleted too. Some of the
Boolean atoms have no impact on the result. Such atoms are then marked as don’t care and
for some theories, these are ignored by Z3.

An E-graph used by the Congruence Closure Core is also used to remove quantifiers,
where a quantified variable is instantiated in the E-graph and efficiently matched, using the
E-matching engine.

In addition, a model is generated during the solving, which is used as part of the output.
A value is assigned to constants, and for predicate and function symbols partial graphs are
generated.

2.2.7 SMT-LIB Standard

SMT-LIB standard defines a language for the description of SMT problems, standard
theories of SMT, and collects a set of benchmarks created over these theories. It was
founded and maintained by the Satisfiability Modulo Theories Library (SMT-LIB), which is
an ”international initiative aimed at facilitating research and development in Satisfiability
Modulo Theories (SMT)“ [3]. A full description of the standard can be found in literature
[4], here a short summary is provided.

The language of the SMT-LIB standard is a first-order sorted language. A sorted means
typed, where for each term a unique sort is assigned. An example of sort is Int, Bool
etc. Each function has a rank, which is a sequence of nonempty sorts, where the input
parameters are the first 𝑛 sorts in a sequence for 𝑛 ≥ 0, and the last sort in the rank is
the return type of the function. A term may contain a constant, variable, function symbol,
quantifier (foreach, exists) and one of two keywords let (renaming symbols in term) and
match (pattern matching).

The language is in strict prefix notation, where each term or given part of the term
is enclosed in brackets, i.e. (forall (𝑥 Int) (and (= (div 𝑥 2) 0) 𝑦) refers to a formula,
where 𝑥 has a sort Int, 𝑦 is free in formula, forall is a quantifier, and is Boolean operator,
= is identity operator and div is integer division operator.

21

(theory Example
:sorts ((Num 0))
:funs ((NUMERAL Num)

(Eq Num Num Bool)
(+ Num Num Num)
(f Num Num Num) ; some function
(f Num Num Num Num) ; also overriding is allowed

)
:definition
"An Example theory with equivalency and addition."
:values
"Each value can be a positive integer."

Figure 2.3: An example of theory, which defines one sort and four functions.

The SMT-LIB standard provides a way to define a theory. This definition is a descriptive
file that provides the sorts of given theory and its values, definition of functions, and
description of the theory. Each part of the definition starts with an attribute. An example of
a small theory can be seen in Figure 2.3. The definition of theory defines only an interface of
functions, not a definition of body of a function. The behavior of each function is defined in
the theory solver. Standard theories are described in Section 2.2.2, where theory of equality
is not part of the standard. These theories are used as building blocks for standard logics.

The main part of the SMT-LIB standard is the script that describes the input formula,
which is then processed by the solver. The script is composed of a header, where information
about script, used logic, and some other description can be found, and a body, where
definitions, formulas, and commands are written. The body of the script can have the
following structure: function and constant declaration and definition, formula part and exit.

The function and constant declarations are based on first-order logic. A constant is
a nulary function symbol. So, the declaration of constant (declare-const x Int) is
equivalent to the declaration of a function of rank with single sort (declare-fun x ()
Int). In the formula part of the script, each term starts with assert command. There can
be a sequence of assertions. To invoke the solver, a check-sat command is used, and the
model can be requested with the command get-model. In a script, an assertion stack can
be used with commands push and pop, where checking satisfiability of given formula part
can be found and then these assertions are removed from formula after pop. The script ends
with the command exit.

The information provided in this section should help with the orientation in STM-LIB
files. The language defined by standard is used in a variety of different solvers. All the
benchmarks collected by STM-LIB are provided in the SMT-LIB format.

22

Chapter 3

String Solving

This chapter provides a description of the theory of strings and regular expressions. In
solvers, the theory of string is implemented as a part of the theory of sequences. The theory
of sequences, in general, is not constrained only to sequences of chars but, in general, to
sequences of any available sorts. In comparison, the theory of strings works only with
sequences of characters, precisely sequences of unicode symbols. First, a definition of the
theory and its signature is provided. Then, this chapter aims to describe the approaches
used in solvers cvc5 and Z3.

3.1 Theory of strings and regular expressions
Theory of strings 𝑇𝑆 contains three sorts: Str is a set of sequences over a finite alphabet,
Int is an integer, and Lan is a regular language. The alphabet defined by the STM-LIB
standard contains all UTF-8 characters, and the standard also defines a set of core and
additional functions, which are often referred to as extended functions [3, 20]. The notation
used in this work is modified in comparison to the standard. The functions are defined in
the SMT-LIB standard notation (last sort of rank is the return type of the function).

In the following sections, 𝑠, 𝑡, with a possible subscript, denotes a string, 𝑙 denotes a
constant string literal, 𝑖, 𝑗,𝑚, 𝑛 denotes integers, 𝑥, 𝑦 denotes variables, and 𝜀 denotes an
empty string. The core functions are con Str Str Str is the concatenation of strings,
for simplicity, may be used as (con 𝑠1 . . . 𝑠𝑛), for 𝑛 ≥ 2 as the concatenation of 𝑛 strings.
The function symbol len Str Int is the number of characters in the string, in this work
it can also be written as |𝑠| with the same meaning. A function symbol < is used for the
lexicographical ordering of words as < Str Str Bool. A function symbol toRe Str Lan is
the mapping of word 𝑠 to the regular language {𝑠}, a function symbol inRe Str Lan Bool
returns if given string is member of regular languge, function symbols reCon Lan Lan Lan,
union Lan Lan Lan, inter Lan Lan Lan and star Lan Lan is in order concatenation,
union, intersection and Kleene star operator over regular language. In regular language, in
SMT-LIB syntax, the following constants are also defined: re.none Lan represents empty
regular language, re.allchar Lan is a representation of alphabet, a symbol Σ will denote
this constant and re.all Lan represents the regular language of all words including 𝜀, which
will be denoted by symbol Σ*.

Only a subset of extended functions is defined. A function symbol substr Str Int Int
Str returns a substring (that is, substr(𝑠, 𝑖, 𝑗) in string 𝑠 at index 𝑖 takes a substring of
length at most 𝑗); the result may be an empty string if 𝑖 ≥ |𝑠| or 𝑗 < 0. A function symbol

23

contains Str Str Bool is a containment of a string in a string (that is, contains(𝑠, 𝑡)
returns true iff 𝑡 is a substring of 𝑠). A function symbol indexOf Str Str Int Int is the
index of the first occurrence of the first characer of the string beginning search at a given
index in string (that is, 𝑡𝑒𝑥𝑡𝑡𝑡𝑖𝑛𝑑𝑒𝑥𝑂𝑓(𝑠, 𝑡, 𝑖) returns the index of the beginning of string 𝑡
if it appears in string 𝑠 at index 𝑖 or later), returns -1 if 𝑖 ≥ |𝑠|, 𝑡 is not in 𝑠, or returns 𝑖 if 𝑡
is an empty string and 0 ≤ 𝑖 ≤ |𝑠|. A function symbol replace Str Str Str Str denotes
a replacement for a substring in string (that is, replace(𝑠 𝑡 𝑡′) in string 𝑠 replace the first
occurrence of 𝑡 with 𝑡′), the result may be unchanged string, when 𝑡 is not a substring of
𝑠. Also, when 𝑡 is an empty string, the resultant string will have the form (con 𝑡′ 𝑠). A
function symbol strToInt Str Int converts a character string in decimal notation to an
integer or returns −1 when the string contains a non-digit character (including −, i.e. −575
returns −1 meaning error, not a negative integer). A function symbol intToStr Int Str
converts non-negative integer into its string representation or returns 𝜀 otherwise.

3.2 cvc5 methods
The cvc5 solver approaches are incomplete and are not guaranteed to terminate, but in
practical usage produce good results. The solver itself is a combination of linear arithmetic
solver and modified congruence-closure-based solver for solving EUF, extended with string-
solving specific and regular languages specific derivative rules. [13]

This section provides a summary of the methods used for string solving in cvc5. In the
end of this section, some implementations details about cvc5 string solver are provided.

3.2.1 Basic calculus

The core calculus of the solver works with only the core functions of string theory and is
described in the literature [13]. The following is a summary of it, and the description is not
complete; examples are provided. The solver is built on the congruence closure algorithm,
which generates a set defined as follows.

Definition 3.1 Let S be a set of string constraints, and let 𝒯 (𝑆) be the set of all terms. A
congruence closure 𝒞(𝑆) is the set

𝒞(𝑆) = {𝑠 = 𝑡 | 𝑠, 𝑡 ∈ 𝒯 (𝑆), 𝑆 ⊨ 𝑠 = 𝑡} ∪ {𝑙1 ̸= 𝑙2 | 𝑙1, 𝑙1 distinct string constants} ∪
{𝑠 ̸= 𝑡 | 𝑠, 𝑡 ∈ 𝒯 (𝑆), 𝑠′ ̸= 𝑡′ ∈ 𝑆, 𝑆 ⊨ 𝑠 = 𝑠′ ∧ 𝑡 = 𝑡′, for some 𝑠′, 𝑡′}

An equivalence relation 𝐸𝑆 induced by 𝒞(𝑆) is the relation over 𝒯 (𝑆), where the terms
𝑡, 𝑠 ∈ 𝒯 (𝑆) are equivalent iff 𝑡 = 𝑠 ∈ 𝒞(𝑆) and such terms create an equivalency class
denoted [𝑡]𝑆 .

con(𝑠, 𝑐0 . . . 𝑐𝑖, 𝑐𝑖+1 . . . 𝑐𝑛, 𝑢) → con(𝑠, 𝑐0 . . . 𝑐𝑛, 𝑢) len(𝑐0 . . . 𝑐𝑛) → 𝑛+ 1

con(𝑠, con(𝑡0, . . . 𝑡𝑛), 𝑢) → con(𝑠, 𝑡0, . . . 𝑡𝑛, 𝑢) con(𝑠, 𝜀, 𝑢) → con(𝑠, 𝑢)
len(con(𝑠0, . . . , 𝑠𝑛)) → len(𝑠0) + . . .+ len(𝑠𝑛) con(𝑠) → 𝑠

con() → 𝜀

Figure 3.1: A set of normalization rules.

24

S-Split 𝑥, 𝑦 ∈ 𝒱(𝑆) 𝑥 = 𝑦, 𝑥 ̸= 𝑦 /∈ 𝒞(𝑆)
𝑆 := 𝑆 ∪ {𝑥 = 𝑦} ‖ 𝑆 := 𝑆 ∪ {𝑥 ̸= 𝑦}

N-Form2 [𝑥] /∈ 𝒟(𝑁) [𝑥] ⊆ 𝐶 ∪ 𝒱(𝑆)
𝑁 := 𝑁 ∪ {[𝑥] ↦→ (𝑥)}

A-Conflict𝐴 ⊨𝐿𝐼𝐴 ⊥
unsat

S-Conflict𝑠 = 𝑡 ∈ 𝒞(𝑆) 𝑠 ̸= 𝑡 ∈ 𝒞(𝑆)
unsat

Reset
𝐹 := ∅ 𝑁 := ∅ 𝐵 := ∅

Figure 3.2: Example of derivation rules from [13], to demonstrate the building of the context
and flow of the computation.

Definition 3.2 A calculus configuration is a special configuration unsat or a septuple ⟨𝑆,𝐴,
𝑅, 𝐹,𝑁,𝐶,𝐵⟩ where

𝑆,𝐴,𝑅 are sets of string, arithmetic and regular language constraints,

𝐹 is a set of pairs 𝑠 ↦→ (𝑎0, . . . 𝑎𝑛) where 𝑠 ∈ 𝒯 (𝑆) and (𝑎0, . . . 𝑎𝑛) is a tuple of atomic
string terms,

𝑁 is a set of pairs 𝑒 ↦→ (𝑎0, . . . 𝑎𝑚) where 𝑒 is an equivalence class of 𝐸𝑆 and (𝑎0, . . . 𝑎𝑚)
is a tuple of atomic string terms,

𝐶 is a set of terms of sort Str,

𝐵 is a set of buckets where each bucket is a set of equivalency classes of 𝐸𝑆.

The sets 𝑆,𝐴,𝑅 are at first the input problem and grow as new terms are introduced
during solving. The set 𝐹 stores the term in intermediate form (also called flat form),
from which the term is computed in normal form. The normal form terms are stored in 𝑁
and 𝐶 contains terms, which should not be transformed into intermediate form to prevent
computation cycle. The normal form calculation is illustrated in Figure 3.1. Note that
the len function over constant sequence 𝑐𝑖 is just a number of characters (indexing from 0
causes +1).

Definition 3.3 The derivation tree for the calculus is a tree, where each node is a config-
uration and each non-root node is obtained by applying one of the derivation rules on its
parent. The rood node is called the initial configuration. A branch of the derivation tree is
called closed if it ends with unsat. A tree is called closed when every branch is closed.

For summary purposes, it is necessary to provide a simplified definition of two new
symbols. A set 𝑁 is the partial map from 𝐸𝑆 to normalized tuples of atomic terms. The do-
main 𝒟(𝑁) of the partial map 𝑁 is the set {𝑒 | 𝑒 ↦→ (𝑎0, . . . , 𝑎𝑛) ∈ 𝑁 for some (𝑎0, . . . , 𝑎𝑛)}.
A set 𝒱(𝑆) is the set of free variables in 𝑆.

The calculus is based on the set of derivative rules in guarded assignment form. A rule
is applied in a configuration 𝐾, if all the rule premises are valid for 𝐾. The symbol ‖
separates two conclusions of a given rule, which simulates a nondeterministic decision of the
procedure.

In Figure 3.2, five rules can be seen. First, each rule produces a new context by updating
one or more of its sets or producing a special context unsat. Rule S-Split is simple rule,
which demonstrates nondeterministic decision, where two branches are created. Rule N-Form

25

shows one of the forms of creating a normal form, which is computed from the equivalency
class, and a mapping is assigned created for each normal form formula. Two rules, A-Conflict
and S-Conflict are the only two rules that produce an unsat. The S-Conflict produces
unsat when there are conflicting equivalences in set 𝑆. The A-Conflict rule generates unsat
when the linear arithmetic solver entails ⊥, in other words, the arithmetic solver found
some conflict. The Reset rule here is a bit different from DPLL(T) Reset, because is meant
to be applied each time, when a set 𝑆 is updated. It is the only rule which erases some
parts of the context, which leads to the fact that the sets 𝑆,𝐴,𝑅,𝐶 only grow during the
computation in a given branch (the set 𝐶 prevents the algorithm from looping). Also, Reset
is applied because after updating the set 𝑆, flat form and normal form sets may need to be
updated.

Earlier, a definition of closed tree was provided; such a tree induces an unsatisfiability of
the formula. In addition, the configuration may enter a saturated configuration.

Definition 3.4 A saturated configuration is configuration ⟨𝑆,𝐴,𝑅,𝑁, 𝐹,𝐶,𝐵⟩ where

i) 𝑁 is total map over 𝐸𝑆,

ii) 𝐵 is a partition of 𝐸𝑆,

iii) any derivation rule that applies to it except for Reset leaves the configuration unchanged
modulo renaming of Skolem variables.

The authors declare the correctness of this approach to string solving. If all derivation
trees with the root ⟨𝑆0, 𝐴0,∅,∅,∅,∅,∅⟩ are closed, then if 𝑆0 ∪𝐴0 is unsatisfiable in the
theory of strings, then a solver is a refutation sound. Also, solution soundness proposes that,
when there exists a branch with saturated configuration from root ⟨𝑆0, 𝐴0,∅,∅,∅,∅,∅⟩,
then 𝑆0 ∪𝐴0 is satisfiable in the theory of strings.

3.2.2 Extended function simplification

The cvc5 solver handles extended function by simplifying it into the basic string solving
function. The procedure of simplification extends the basic calculus with processing of
extended string functions. The complete description can be found in the literature [20].
Here, a short summary is provided.

Several changes were made to the calculus configuration. It was extended with the set
𝐺, which is a set of formulas on extended string theory. 𝑆 is now the internal state of the
solver in the form 𝑆 = (𝐸,𝑋,𝐹,𝑁), where 𝐹,𝑁 has the same meaning as in basic calculus,
a set 𝐸 is a set of basic string equalities and 𝑋 is a set of equalities in the form 𝑥 = 𝑡, where
𝑥 is a string variable and 𝑡 is a flat extended function term. The flat term is the term of
the form 𝑓(𝑥0, . . . , 𝑥𝑛), where 𝑥0, . . . , 𝑥𝑛 are variables. The ⌊𝜙⌋ denotes an equisatifiable
(purified) form of formula 𝜙 and 𝜙{𝑥 ↦→ 𝑦} denotes a substitution of 𝑥 by 𝑦 in 𝜙.

The basic calculus is extended with rules for handling extended functions. The decidabil-
ity of an extended string function is an open question, so the algorithm is not guaranteed to
terminate. However, as in basic calculus, the properties of refutation and solution soundness
hold.

The first approach to simplification of extended function is to simplify formula over
extended string theory to possibly quantified formula over basic string theory (theory
without extended functions). The rule for this reduction Ext-Expand can be seen in Figure
3.3. A formula 𝑥 = 𝑡 is simplified into an equisatisfiable formula J𝑥 = 𝑡K, therefore, when

26

Ext-Expand 𝑥 = 𝑡 ∈ 𝑋

𝐺 := 𝐺 ∪ {⌊J𝑥 = 𝑡K⌋} 𝑋 := 𝑋 ∖ {𝑥 = 𝑡}
where

J𝑥 = substr(𝑦, 𝑛,𝑚)K = ite(0 ≤ 𝑛 < 𝑙𝑒𝑛 𝑦 ∧ 0 < 𝑚,

𝑦 = con(𝑧1, 𝑥, 𝑧2) ∧ len 𝑧1 = 𝑛 ∧ len 𝑧2 = len 𝑦 −𝑚,

𝑥 = 𝜀)

J𝑥 = contains(𝑦, 𝑧)K = (𝑥 ̸= ⊤) ⇔ ∀𝑘.0 ≤ 𝑘 ≤ len 𝑦 − len 𝑧 ⇒ substr(𝑦, 𝑘, len 𝑧) ̸= 𝑧

J𝑥 = indexOf(𝑦, 𝑧, 𝑛)K = ite(0 ≤ 𝑛 ∧ 𝑧 ̸= 𝜀 ∧ contains(𝑦′, 𝑧),

substr(𝑦′, 𝑥′, len 𝑧) = 𝑧∧
¬contains(substr(𝑦′, 0, 𝑥′ + len 𝑧 − 1), 𝑧),

𝑥 = −1)

with 𝑦′ = substr(𝑦, 𝑛, len 𝑦 − 𝑛) and 𝑥′ = 𝑥− 𝑛

J𝑥 = replace(𝑦, 𝑧, 𝑤)K = ite(contains(𝑥, 𝑧) ∧ 𝑧 ̸= 𝜀,

𝑥 = con(𝑧1, 𝑤, 𝑧2) ∧ 𝑦 = con(𝑧1, 𝑧, 𝑧2)∧
indexOf(𝑦, 𝑧, 0) = len 𝑧1,

𝑥 = 𝑦)

Figure 3.3: Simplifying rules for the extended functions.

B-Val 𝑡 : Int 𝑛 is a numeral
𝐴 := 𝐴 ∪ {𝑡 ≤ 𝑛} ‖ 𝐴 := 𝐴 ∪ {𝑡 > 𝑛}

B-Inst

𝐺 = 𝐺′ ∪ {𝜙[∀𝑘.0 ≤ 𝑘 ≤ 𝑡⇒ 𝜓]}
𝐴 ⊨LIA 𝑡 ≤ 𝑛 for some numeral 𝑛
𝐺 := 𝐺′ ∪ {⌊𝜙[∧𝑛

𝑖=0𝜓{𝑘 ↦→ 𝑖}]⌋}

Figure 3.4: Elimination of bounded quantifier.

J𝑥 = 𝑡K is satisfiable, 𝑥 = 𝑡 is also satisfiable. Also, the set 𝑋 is possibly empty in saturated
configuration, and hence all the extended functions were simplified.

Looping over the Ext-Expand rule is not possible, because the expansion of each function
contains only preceding functions in order substr, contains, indexOf, replace (i.e,
indexOf expands to contains and substr, substr is expanded to basic functions); therefore,
no recursion occurs.

The unwanted result of this simplification is the possible introduction of a new quantified
formula. This formula is of the form ∀𝑘.0 ≤ 𝑘 ≤ 𝑡⇒ 𝜙 is called integer bounded. The integer
bounded formula allows the quantifier to be eliminated by introducing two other rules from
Figure 3.4: B-Val and B-Inst. The B-Val rule splits the search for guessing the upper bound,
whereas V-Inst rule takes the formula 𝜙 which contains a subformula ∀𝑘.0 ≤ 𝑘 ≤ 𝑡 ⇒ 𝜓
and, if 𝐴 entails a concrete upper bound, replaces it with a conjunction. Due to bounds,
the conjunction is finite and these two rules are sufficient for eliminating a quantifier.

The described approach may generate unwanted complexity of the formula and may be
ineffective in space. An improvement for this method is a context-dependent simplification of
the formulas. Such simplification may avoid some of the rewriting of extended functions when
an algorithm can infer a result of the function. For example, result replace(𝑥, 𝑦, 𝑧) = 𝑥,
when 𝑦 is not in 𝑥. In the original article are described three rules of the calculus that

27

contains(𝑙1, 𝑙2) → ⊤ if 𝑙1 contains 𝑙2
contains(𝑙1, 𝑙2) → ⊥ if 𝑙1 does not contains 𝑙2

contains(𝑙1, con(𝑙2, 𝑡0, . . . , 𝑡𝑛)) → ⊥ 𝑙1 does not contains 𝑙2
contains(con(𝑙1, 𝑡0, . . . , 𝑡𝑛), 𝑙2) → ⊤ 𝑙1 contains 𝑙2
contains(con(𝑥, 𝑡0, . . . , 𝑡𝑛), 𝑠) → ⊤ if contains(con(𝑡0, . . . , 𝑡𝑛), 𝑠) →* ⊤

Figure 3.5: An example of simplification rules for contains.

handle such cases. Explanations of these rules are out of the scope of this work. In short,
these rules, based on the equivalencies of elements of the sets 𝑋 and 𝐸, add a simplified
formula 𝑡 to the set 𝐺 based on its properties. In addition, a substitution is made for the
variables of 𝑡. The simplified formula is obtained by applying the set of rules over extended
functions. An example of these rules for function contains are provided in Figure 3.5.

The ability to perform such simplification depends on choosing the right substitution over
the variables of the term 𝑡. Two possible heuristics for choosing the appropriate substitution
are used. The first is to choose a substitution {𝑦 ↦→ 𝑠} for each variable 𝑦 in the term 𝑡, to
some representative of the equivalency class [𝑦]. This substitution is called representative
substitution, which is computationally easy and provides satisfactory results in practice.

The second heuristic is called normal form substitution where each free variable 𝑦 in term
𝑡 is substituted with a simplified con(𝑎0, . . . , 𝑎𝑛) (in terms where con(𝑎0, . . . , 𝑎𝑛) cannot
be simplified further), where 𝑦 ∈ [𝑦′], 𝑦′ is representative of a given equivalency class, and
𝑦′ ↦→ (𝑎0, . . . , 𝑎𝑛) ∈ 𝑁 . The advantage of this heuristic is that it provides all inferred
information about 𝑡, giving the most accurate context to apply the simplification rules.

3.2.3 Arithmetic-Based Simplification

Another system used for simplification of input formulas is arithmetic-based inference of
length of variables in the theory of strings. For example, substr(𝑠,𝑚, 𝑛) can be simplified to
an empty string when it can be shown that 𝑚 > |𝑠| holds. This section provides a definition
of term in polynomial form, a schema, which infers over these terms and an example of
simplification consequent to the inference schema. This section provides a summary of
inference system used in cvc5 [18].

The scope of the arithmetic-based inference system aims to prove that formulas of the
form 𝑢 ≥ 0 are valid in the theory of strings, where 𝑢 is a term of Int sort. The system
contains rules that derive judgements in the form ⊢ 𝑢 ≥ 0 and a strategy to guide the
application of these rules. This system is incomplete, due to complexity of reasoning over
the theory of integer arithmetic (see Section 2.2.2), however, it is sound in the sense that
⊨𝑇𝑆

𝑢 ≥ 𝑣 whenever ⊢ 𝑢 ≥ 0 is derivable in the system.

Definition 3.5 An arithmetic term 𝑢 is in polynomial form if 𝑢 = 𝑚1 ·𝑢1+. . .+𝑚𝑛 ·𝑢𝑛+𝑚,
where 𝑚1, . . . ,𝑚𝑛 are nonzero integer constants, 𝑚 is an integer constant and each 𝑢1, . . . , 𝑢𝑛
is a unique term and one of the following:

1. an integer variable,

2. an application of length to a string variable, e.g. |𝑥|,

28

𝑢→*
𝑈 𝑛 𝑛 ≥ 0

𝑢 ≥ 0
where

|𝑡| →𝑈 0

|substr(𝑡,𝑚, 𝑛)| →𝑈

{︃
𝑛 if ⊢ 𝑚 ≥ 0 and ⊢ |𝑡| ≥ 𝑚+ 𝑛

|𝑡| −𝑚 if ⊢ 𝑚 ≥ 0 and ⊢ 𝑚+ 𝑛 ≥ |𝑡|

|replace(𝑠, 𝑡, 𝑡′)| →𝑈

{︃
|𝑠| if ⊢ |𝑡′| ≥ |𝑠| or ⊢ |𝑟| ≥ |𝑡|
|𝑡| − |𝑠|

|intToStr(𝑚)| →𝑈 1 if ⊢ 𝑣 ≥ 0

indexOf(𝑠, 𝑡, 𝑣) →𝑈 − 1

strToInt(𝑠) →𝑈 − 1

𝑐 ·𝑚+ 𝑖′ →𝑈 𝑐 · 𝑛+ 𝑖′ if 𝑚→𝑈 𝑛 and 𝑐 > 0 or 𝑚→𝑂 𝑛 and 𝑚 < 0

|substr(𝑠,𝑚, 𝑛)| →𝑂 𝑛 if ⊢ 𝑛 ≥ 0

|substr(𝑠,𝑚, 𝑛)| →𝑂

{︃
|𝑠| −𝑚 if ⊢ |𝑡| ≥ 𝑚

|𝑠|

|replace(𝑠, 𝑡, 𝑡′)| →𝑂

{︃
|𝑡| if ⊢ |𝑠| ≥ |𝑟|
|𝑡|+ |𝑟|

|intToStr(𝑚)| →𝑂

{︃
𝑚 if ⊢ 𝑚 > 0

𝑚+ 1 if ⊢ 𝑚 ≥ 0

indexof(𝑠, 𝑡,𝑚) →𝑂

{︃
|𝑠| − |𝑡| if |𝑠| ≥ |𝑡|
|𝑠|

𝑐 ·𝑚+ 𝑖′ →𝑂 𝑐 · 𝑛+ 𝑖′ if 𝑚→𝑂 𝑛 and 𝑐 > 0 or 𝑚→𝑈 𝑛 and 𝑚 < 0

Figure 3.6: Under and over-approximation rules for arithmetic inference.

3. an application of length to an extended function, e.g. |substr(𝑠,𝑚, 𝑛)|, or

4. an application of an extended function of integer type, e.g. indexOf(𝑠, 𝑡,𝑚).

In addition, the term 𝑢 is considered in a simplified form, where all constant string
literals |𝑙| of length 𝑛 are substituted with 𝑛, the terms of |con(𝑡0, . . . , 𝑡𝑛| are rewritten to
form |𝑡0|+ . . . |𝑡𝑛|, and arithmetic simplification is used whenever possible (e.g. 7 · |𝑥|−2 · |𝑥|
is rewritten to 5 · |𝑥|, etc.).

The inference system uses rules for the under-approximation denoted →𝑈 and the over-
approximation denoted →𝑂. The 𝑚→*

{𝑈,𝑂} 𝑛 denotes that 𝑚 is rewritten to 𝑛 in zero or
more steps in a given system. If 𝑚 →*

𝑈 𝑛, then ⊨𝑇 𝑛 ≥ 𝑚 holds. Also, if 𝑚 →*
𝑂 𝑛, then

⊨𝑇 𝑚 ≥ 𝑛 holds. For the given term 𝑢 in polynomial form, it can be shown that 𝑢 ≥ 0 in
all models of 𝑇𝑆 , with the inference rule shown in Figure 3.6.

Some of the terms may be rewritten in several ways. Due to that, an approximation
strategy needs to be provided. The goal of the strategy is to find non-negative integer 𝑛, such

29

Str-Arith-Approx(𝑢), where 𝑢 = 𝑢𝑥 + 𝑢𝑙 + 𝑢𝑠 + 𝑐 and:

𝑢𝑥 = 𝑐𝑦1 · 𝑦1 + . . .+ 𝑐𝑦𝑝 · 𝑦𝑝
𝑢𝑙 = 𝑐𝑙1 · |𝑥1|+ . . .+ 𝑐𝑙𝑞 · |𝑥𝑞|
𝑢𝑠 = 𝑐𝑚1 ·𝑚1 + . . .+ 𝑐𝑚𝑟 ·𝑚𝑟

for variables 𝑥1, . . . , 𝑥𝑞, 𝑦1, . . . , 𝑦𝑝 and extended terms 𝑚1, . . . ,𝑚𝑟:

1. If 𝑟 > 0, choose a 𝑚𝑖 and 𝑚′
𝑖 that maximize the following criteria (in descending

order), where 𝑢′ = (𝑢{𝑐𝑚𝑖 ·𝑚𝑖 ↦→ 𝑐𝑚𝑖 ·𝑚′
𝑖}) and 𝑢′ is simplified:

(a) (Soundness) 𝑚𝑖 →𝑈 𝑚′
𝑖 if 𝑐𝑚𝑖 > 0 and 𝑚𝑖 →𝑂 𝑚′

𝑖 if 𝑐𝑚𝑖 > 0,
(b) (Avoid new terms) minimizes the size of negcoeff(𝑢′) ∖ negcoeff(𝑢),
(c) (Cancel existing terms) maximizes the size of negcoeff(𝑢) ∖ negcoeff(𝑢′).

Return 𝑢→𝑈 𝑢′.
2. If 𝑞 > 0 and 𝑐𝑙𝑗 > 0 for some 𝑗, return 𝑢→𝑈 (𝑢{𝑐𝑙𝑗 · |𝑥𝑗 | ↦→ 0}).

Figure 3.7: An efficient strategy to achieve arithmetic entailment in 𝑇𝑆 .

that 𝑢→*
𝑈 𝑛, which provides sufficient proof that ⊨𝑇 𝑢 ≥ 0 holds. The provided strategy

splits 𝑢 into three parts 𝑢 = 𝑢𝑥 + 𝑢𝑙 + 𝑢𝑠 + 𝑐, where 𝑢𝑥 is a sum of integer variables, 𝑢𝑙 is a
sum of length of string variables, 𝑢𝑠 is a sum of extended term variables (e.g. |intToStr(𝑚)|,
indexOf(𝑠, 𝑡, 𝑣), etc.) and 𝑐 is integer constant. The approximation rules are applied in a
way that eliminates as many members of the polynomial as possible. Thus, the strategy
works especially with the 𝑢𝑠 part of 𝑢.

In Figure 3.7 the abstract algorithm for a given strategy is demonstrated. The symbol
negcoeff(𝑢) returns a set of integer terms of 𝑢 that has the integer part 𝑐 < 0 (e.g.
negcoeff(|𝑥1|+−5 · |intToStr(𝑠)|) = {|intToStr(𝑠)|}).

If the part 𝑢𝑠 has non-zero terms, the algorithm tries to apply substitution on each term,
such that for soundness it chooses an over-approximation for negative coefficients and an
under-approximation for positive ones. In general, the strategy tends to avoid introducing
new terms with negative coefficients, to prove that ⊢ 𝑢 ≥ 0 holds. A new term is introduced
when it is with positive coefficient or when it leads to eliminating already existing negative
term. The second part of the algorithm removes all length terms with positive coefficients,
only when the 𝑢𝑠 part is empty because these terms can help eliminate other negative terms.
After each substitution, the term 𝑢 is simplified with standard arithmetic rules.

This inference system is used to investigate possible strings’ sizes and the values of
integer terms. These entailed values can be used to guide a set of simplification rules. In
Figure 3.8 an example of possible simplification rules is provided.

Provided simplifications are based on the given side condition. For example, the first
rule shows that two terms cannot be equivalent when it can be inferred that the size of one
string is strictly larger than the size of the other one. Also note that there are two rules for
extended functions (indexOf, contains), where the extended functions are eliminated.

30

𝑠 = 𝑡→ ⊥ if ⊢ |𝑠| ≥ |𝑡|+ 1

𝑠 = con(𝑡, 𝑢, 𝑣) → 𝑠 = con(𝑡, 𝑣) ∧ 𝑢 = 𝜀 if ⊢ |𝑡|+ |𝑣| ≥ |𝑠|
substr(𝑠,𝑚, 𝑛) → 𝜀 if ⊢ 0 > 𝑚 ∨𝑚 > |𝑠| ∨ 0 ≥ 𝑛

substr(con(𝑠, 𝑡),𝑚, 𝑛) → substr(𝑠,𝑚, 𝑛) if ⊢ |𝑠| < 𝑚+ 𝑛

indexOf(𝑠, 𝑡,𝑚) → ite(substr(𝑠,𝑚, |𝑠|) = 𝑡,𝑚,−1) if ⊢ 𝑚+ |𝑡| ≥ |𝑠|
contains(𝑠, 𝑡) → 𝑠 = 𝑡 if ⊢ |𝑡| ≥ |𝑠|

Figure 3.8: Example of simplification rules that using arithmetic entailment system.

3.2.4 Other heuristics

In previous sections some of the approaches used in cvc5 were provided. Note that the
approaches are mainly focused on simplifying the input formula. Extended functions
are eliminated whenever possible in the system. In addition, a short summary of other
approaches is provided in this section.

A containment-based simplification applies simplification rules according to, if a string
contains other string. A set of inference rules about containment is provided along with a
set of simplifying rule. The inference schema is based on syntactical inference, so it can be
done statically. The inference rules show that if a string term 𝑠, 𝑡 or literals 𝑙1, 𝑙2 and its
combination contain each other, a conclusion about the terms can be drawn. For example,
when 𝑙1 contains 𝑙2, or 𝑙2- is a prefix of 𝑙1, then con(𝑙1, 𝑠) also contains 𝑙2. Some of the
judgements can be used along with the arithmetic system. [18]

A multiset reasoning uses the abstraction over strings, where a string is seen as a
multiset (that is, each element can be contained more than once in the set). Reasoning
over such abstraction is not based on comparison of strings, symbol by symbol, but on
equality of number of characters in the string. Let M, N be two multiset abstractions such
that 𝑀 = {e,w,w,w, 𝑥} and 𝑁 = {w,w,w, 𝑥}, then it can be shown that 𝑀 ∖𝑁 = {e} and
𝑁 ∖𝑀 = {}, so that one of the abstractions contains at least one e more, than the other.
Also, these abstractions are an over-approximation of a given term, so showing of these set
differences is sufficient to reason about strings. [18]

A witness sharing is a technique used for effective elimination of quantifiers. In cvc5
exists a set of rules that splits cases for equivalency, eliminates the extended function, and
eliminates some RE functions, and as a side effect of this elimination, an existential quantifier
is introduced into the formula. The classical approach to eliminate existential quantifiers is
by Skolemization, which introduce a fresh variable into formula. Introducing a new variable
for each quantifier in the formula can lead to unnecessary increase in complexity. Thus, a
witness term is introduced instead of instantiating a quantifier with a fresh variable. This
term can lead to further simplification, as it can appear in more parts of the formula. As
an example, the term 𝑥 · 𝑥′ = 𝑐 · 𝑦′ can be used, where 𝑐 is a single constant character,
and if |𝑥| > 1 it can be derived in the form ∃𝑘1.𝑥 = 𝑐 · 𝑘1 ∧ 𝑘1 · 𝑥′ = 𝑦′, so 𝑥 has a form
of character and some suffix 𝑘1. Here, a 𝑘1 can be instantiated with a witness term in
form substr(𝑥, 1, |𝑥|) denoting a substring of 𝑥 without the first character, leading to the
term 𝑥 = 𝑐 · substr(𝑥, 1, |𝑥|) ∧ substr(𝑥, 1, |𝑥|) · 𝑥′ = 𝑦′. But this also leads to an increase
in complexity as it introduces a new extended function into the formula. Instead, an
instantiation with the witness variable is used, and each of these variables has an associated

31

witness term. Whenever a quantifier is eliminated, before introduction of a new variable, it
is first checked if the variable with the same witness term does not already exist, and if it
does, the existing variable is used. [19]

For regular expressions, there are more approaches. One of them is to derive regular
expressions using derivative rules. The second method is to reduce them to the extended
string functions. The advantage of this approach is that the constraints can be processed only
by a string solver since regular expressions can have its own solver. Thus, it leads to earlier
inconsistency detection. As an example of the reduction of regular expressions into string con-
straints, only one rule will be provided, which reduces the term 𝑥 ∈ reCon(𝑅1, toRe(𝑦), 𝑅2),
where 𝑥, 𝑦 are string variables and 𝑅1, 𝑅2 are regular languages. The rule has a following
form:

𝑥 ∈ reCon(𝑅1, toRe(𝑦), 𝑅2) → ∃𝑖.0 ≥ 𝑖 < |𝑥| − |𝑦| ∧ substr(𝑥, 0, 𝑖) ∈ 𝑅1∧
substr(𝑥, 𝑖, |𝑦|) = 𝑦 ∧ substr(𝑥, 𝑖+ |𝑦|, |𝑠|) ∈ 𝑅2

In short, this rule says that 𝑥 is composed of a prefix of length of 𝑖, which is in 𝑅1, a variable 𝑦,
and a suffix that is in 𝑅2. [19]

3.2.5 Implementation details

Based on previous sections, it is clear that the major part of the effective solver is based on
the right simplification techniques. Although these descriptions of the techniques and the
literature provide some level of implementation detail, the real implementation has to be
further investigated. Here, a brief structure of the cvc5 string solver is provided. The code
can be distributed under modified BSD license and the source code is available on GitHub
[1]. This section aims only at the description of the string solver and its parts, not at a full
description of the cvc5 solver. Also, information about implementation was obtained by
exploring, thus it can be misinterpreted or incomplete.

The terms in the solver are stored in the class Node (an instance of NodeTemplate), each
node has a value and it is possible to get the children of the node, hence the arrangements
of the nodes form a tree structure. The Node can contain a variable, constant, or function,
where the operands of the function are children of the node. NodeManager is responsible for
creating nodes and providing some operations on them.

The string solver and its components can be found in the source structure in the directory
src/theory/strings. The core part of the solver is the class TheoryStrings, that can be
found in theory_strings.{cpp,h} files. This class holds an instance of all components of
string solving. It implements a subclass NotifyClass, which is responsible for notifying the
equality solver about new events in the solver, like a new literal assignment with boolean
value.

The TheoryStrings class uses the class ExtfSolver, which implements the Extended
Function Simplification from Section 3.2.2 and can be found in files extf_solver.{cpp,h}.

As proposed earlier, one of the most important parts of the solving is simplification
of the input formula. Based on observations, the simplification is implemented in files
sequences_rewriter.{cpp,h}, where most of the simplification rules provided can be
found. The class SequencesRewriter is implemented in these files. A method postRewrite
serves as an entry point from which rewrites are called for all functions. For example, in the
method rewriteContains all the simplifying rules provided in Figure 3.5 can be found.

The Arithmetic-Based Simplification from Section 3.2.3 is implemented in class Arith-
Entail in files arith_entail.{cpp,h}. The basic inference schema, which is described

32

in Figure 3.6 is implemented in the method checkApprox. In the method there is a map
mApprox, which, for each term (Node), holds a vector of all possible approximations of the
term. From these vectors of approximations the most suitable one is chosen and applied to
computation. In this step, the described strategy is applied.

In the files strings_entail.{cpp,h} is implemented the containment-based simplifica-
tion and its rules for inference of containment. Also, a method which implements multiset
reasoning is implemented here.

3.3 Z3 methods
There are many sources to study Z3 and the methods that this solver uses. The Z3 GitHub
repository provides a page with publications about Z3 [9], and a description of the internals
of Z3 is also provided [7, 8]. Although these sources and complex descriptions are available,
the information about approaches used in the default Z3 string solver is short or completely
missing. In addition, the Z3 code does not contain any summary of the provided string
solving functionality [10]. However, a part of the solver, which provides handling of regular
expressions, is described. This section provides a brief summary of regular expressions
solving, which is taken from [22], and a description of the implementation, based on code
exploration.

3.3.1 Symbolic regular expression derivatives

The common approach for solving a regular membership constraint in other solvers is based
on converting regular expressions (RE) into finite automata and performing an operations
corresponding to the input formula over them, or, an approach where the operation is
propagated over RE and then reason over it with derivative rules. The construction of a
finite automaton is typically expensive, as operations such as intersection and union causes
an explosion in the number of states, or even a simple automaton corresponding to regex
.{𝑛}(𝑛 occurrences of any symbol) will have 𝑛 states. In contrast, the second approach
does not provide a blow-up in possible state space but does not provide an intersection and
complement of RE and uses an over- and under-approximation of the regular language.

The Symbolic derivatives is based on theory of Brzozowski and Antimirov derivatives,
which insist on knowing the first symbol of the regular expression. The symbolic evaluation
in comparison, is able to provide derivatives without knowing that first symbol. That is
possible by introducing a transition regex, that is, a (extended) regular expression extended
by the conditional regex IF(𝜙, 𝑟1, 𝑟2), where 𝜙 is a term and 𝑟1, 𝑟2 are transition regexes.
The transition regex is a function that maps symbols to RE. As an example, only rules for
the conditional regex are provided.

The first rule, which is the function application, is further used for computing derivatives.
An example of application can be IF(𝑥 = a, 𝑟1, 𝑟2)(b), where a, b are symbols and the
result of the application of the parameter will be 𝑟2(b), which may be further applied, or
if 𝑟2 is a regular language, the parameter will be discarded. Note that the application of
concatenation and negation does not affect the condition 𝜙 and only applies to expressions
𝑟1, 𝑟2.

33

IF(𝜙, 𝑟1, 𝑟2)(𝑥) =

{︃
𝑟1(𝑥) if 𝑥 is true in 𝜙

𝑟2(𝑥) otherwise
IF(𝜙, 𝑟1, 𝑟2) ·𝑅 = IF(𝜙, 𝑟1 ·𝑅, 𝑟2 ·𝑅) 𝑅 is RE

IF(𝜙, 𝑟1, 𝑟2) = IF(𝜙, 𝑟1, 𝑟2)

Figure 3.9: Example of transformation of conditional regex. 𝑟1 · 𝑟2 is RE concatenation and
𝑟 is negation.

The symbolic derivative 𝛿(𝑅), where 𝑅 is RE, is the transition regex with a set of defined
rules. Some of the rules are

𝛿(𝜀) = 𝛿(⊥) = ⊥
𝛿(𝜙) = IF(𝜙, 𝜖,⊥)

...

Also, for the computation, the rule lift is used to propagate the conjunctions to the
bottom level of the transition regex, and the conditionals are lifted.

An implementation of a regular expression solver maintains a graph 𝐺, that is, a directed
graph, which contains information about the regexes. Each vertex represents an RE and each
egde represents a derivation, which implies that the graph is acyclic. The graph abstraction
is then used to compute the satisfiability of 𝑠 ∈ 𝑟, where 𝑠 is a string and 𝑟 is a regular
expression, iteratively removing a prefix symbol from 𝑠 until |𝑠| = 0 so it is satisfiable, or it
can be shown that 𝑠 ∈ 𝑟, where 𝑟 cannot be further derived, leading to unsatisfiability.

3.3.2 Implementation details

The structure of the Z3 string solver is not documented. The general structure is based
on the core equality solver, which sees the theory solver as modules. The description in
this section is based on the exploration of code [10] and inferring the functionality of each
component, so it can be misinterpreted and will be incomplete.

In the source tree, the string solver components appear in different directories, so it
is unclear which of the modules are used together. The theory plugins can be found in
src/smt directory.

The class theory_seq, implemented in files with the same name, is the native Z3 theory
plugin for strings and sequences. This class inherits from class Theory, which contains the
solver’s context. The member of the theory class is the context class, implemented in the
files smt_context.{cpp,h}, which contains a set of member variables and classes, which
holds a required modules (e.g., rewriter of type th_rewriter, model generator, statistics,
etc.). The theory_seq class implements a set of subclasses that are used in the solver for
regular expressions. The subclasses serve either as containers for some data or have an
overriden operator(), thus can be used as methods.

The class theory_str is implemented in the source and header of the same name and it
is the main theory plugin for the Z3Str3 solver, therefore, it is not within the scope of this
work.

34

Another part, which is implemented in the smt directory, is the class seq_axioms, which
implements a set of operations on the input expression that simplifies it. This implementation
is only a thin wrapper over the second implementation, which will be described later.

In the folder seq/ast are files seq_decl_plugin.{cpp,h}, where a set of helper classes
is implemented, which manipulates sequences with an enum class, which defines sorts and
kinds of nodes. Sorts are the sorts of SMT-LIB standard, kinds are types of nodes (e.g.
concatenation, contains, length, etc.). The helper classes provide a set of methods used
to get kinds and types of string terms (e.g., is_char, are_equal and creational methods
mk_sort, mk_concat, etc.).

Finally, the rest can be find in directory src/ast/rewriter. In seq_axioms.{cpp,h}
can be found the implementation of class axioms, which implements the set od theory
strings axioms. This class is used by the class seq_axioms mentioned before. Many of the
functions in the source file have a comment with description of the used axioms. Most of
the comments are in the form of first-order logic formulas. The source code of axioms class
is one of the most documented part of the string solver.

The class eq_solver from from files eq_solver.{cpp,h} implements the inference rule
about equalities. Some of the methods have a comment on the rule used. The rules are
written in guarded assignment form.

In the files seq_skolem.{cpp,h} a helper class is implemented, which helps to axiomatize
operations on sequences.

And the last class, which implements the string solver, is seq_rewriter, which can be
found in the files seq_rewriter.{cpp,h}. The importance of this class can be inferred
from the size of the file, which has a bit more than 6000 lines, from which about 5100 are
lines of code and 550 are comments (the only bigger file is file polynomial.cpp, which
contains more than 6000 lines of code2). The class contains a set of methods with rules for
simplifying the solved formula which returns a br_status – that is, a level of used rewrite
(built-in rewrite), which may have status done, failed or rewrite with level 1-3 or rewrite
full, which is unbounded. The failed rewrite means that there is no suitable rewrite for a
given input. The rewriter methods typically first checks, if some part of input expression is
constant and if it is constant, it computes a result of given expression (e.g. returns length
of the string, for contains it returns bool, or the result concatenation, etc.). Some of these
results can be done partially (e.g., simplification rules for concatenation in Figure 3.1). The
entry point of simplification is method mk_app, which call mk_app_core, which calls other
methods of this class.

In the seq_rewriter is also implemented a set of checker methods (comparison of
characters, check of prefix, suffix, etc.) and also a few methods for arithmetic inference over
lengths.

And one of the major parts of the rewriter is implementation of regular expression
derivatives, which in coordination with seq_regex class is an implementation of the symbolic
derivatives from Section 3.3.1. An entry point to the computation of derivatives serves the
method mk_re_derivative. From this method a recursive algorithm starts, whose result is
a derivative of a regular expression.

The inputs of the rewriter methods are of type expr, which inherits from class ast. This
class is the implementation of the directed acyclic graph (DAG); thus, the AST is probably
short for abstract syntax tree. Such an expression is considered only as the leaf of the tree,

2Counted with Visual Studio Code plugin VS Code Counter https://github.com/uctakeoff/vscode-
counter.

35

https://github.com/uctakeoff/vscode-counter
https://github.com/uctakeoff/vscode-counter

but when the kind of node is a function, it is internally casted to the app class, from which
parameters can be obtained.

36

Chapter 4

Measurements

The approach of comparing the efficiency of the solver is to run the solver on some set of
benchmarks. Then, based on a given criterion, is the solver compared to other existing
solvers. In the provided sources on used heuristics, typically is the new enhanced iteration
of the solver compared to others according to the successfully solved benchmarks – more of
the benchmarks were marked as sat or unsat, than timeouted. In addition, some of the
comparisons are made according to the time of solving. The goal of this work is to analyze
and compare the impact of the existing heuristic mainly on the latter criterion.

For clarity, the original or full solver is a solver obtained from official repositories without
further modification. The modified has some of the heuristics disabled. The full version
has the suffix _full, modified versions uses the suffix -<name>, where name is some short
name for disabled heuristic.

In this chapter, the experiments performed and the results reached are described. First,
a brief description of the benchmarks used and a description of the benchmarking tool used
will be provided. Then a criteria will be explored, which may show the effectivity of a given
heuristic. And finally, the measurements that were made will be discussed and evaluated
according to the given criteria.

4.1 Benchmarks and benchmarking tool
One of possible sources of benchmarks is SMT-LIB [3], which collects a diverse set of
benchmarks from different sources, size of input formula and number of benchmarks in each
collection. The benchmarks used are available at [17]. But, used benchmarks are part of
the artifact attached to this work.

The second drawback of the SMT-LIB benchmark sets is that no description of each
set is provided and where the benchmarks were obtained. Some of the benchmarks have
a source in the description of the file, but not all of them. So, the description of each set
contains as much information as possible.

The important property of all benchmarks is that they are written in the SMT-LIBv2
language. There are two categories of benchmarks based on the theory used. The QF_S
benchmarks incorporate only theory of string, whereas QF_SLIA are benchmarks that use
both theory of strings with theory of linear arithmetic combined. The prefix QF stands
for quantifier-free. All information about the benchmarks is obtained from the source files.
When a source with a further description is available, it is also provided.

• sygus (QF_S) is set of benchmarks generated by CVC4 for testing a string solvers.

37

• slog (QF_S) is set generated by the Stranger generator and provides examples of
string manipulation in a web application and was generated from real applications. It
uses operations union, concatenation, and replacement [24].

• Norn (QF_SLIA) is set generated by Eldarica. In benchmark files it is described as

”CEGAR based model checking for string programs“.

• PyEx (QF_SLIA) is sets of benchmark generated by PyEx, converted to the SMT-LIB
format by CVC4 and provides a symbolic execution of Python programs.

• Kaluza (QF_SLIA) is generated by Kudzu and it provides benchmarks that are based
on real JavaScript examples [21]. It is internally divided into small and big subsets,
where the size in the name refers to the size of the formula. Also, it is divided into
subsets sat and unsat, but the unsat subset contains both sat and unsat formulas.

• Kepler (QF_SLIA), generated by Quang Loc Le and contains examples of word
equations based on a handcrafted examples [12].

• full-str-int (QF_SLIA) is generated by Pyconbyte and is based on Python examples.
The used subset is the one for Z3-Trau.

• slent (QF_SLIA) is set of modified slog benchmarks that aims to analyze security of
string manipulations.

• Leetcode (QF_SLIA) is generated with PyExZ3 and aims at a concolic execution of
Python programs.

The tool used to run these benchmarks is smt-bench [23] which is based on the python
script pycobench. It uses an input file, where the paths to all files of the given benchmark
are provided, simple shell script, which wraps the solver, and a yaml file, that can be used
to run more solvers in one run. In addition, a timeout can be set and a number of processes
can be set to enable it to run in parallel.

The output of this script is the log file, which contains information about the start and
end of the actual benchmark. A second script, pyco-proc, for evaluation is provided, which
creates a summary of the run in the comma separated value (csv) format.

The drawback of the smt-bench tool is that it provides the time in only two decimal
places. Due to that, some of the benchmarks were done in 0.00 seconds. Also, when the
benchmark ends with timeout, it does not provide the time, but returns TO instead. These
values have to be converted into numbers during post-processing.

4.2 Evaluation criteria
Based on the information provided in the articles about CVC4 and cvc5 assume the
soundness of the solvers [13, 19] – refutation soundness (when solver returns unsat, formula
is indeed unsatisfiable) and model soundness (returned model is actual 𝑇𝑆-consistent model of
the formula). Thus, when the measurement is done, these statements are valid. The possible
return values of the solvers are sat, unsat, to (to stands for timeout) and unknown (i.e.,
when the computation cannot infer new fact about the formula, but there is not enough
information to decide satisfiability). To preserve these statistics, it shall be enough to avoid
the transition of the result between sat and unsat. Therefore, the output of the modified
solver is checked against the full solver to ensure that the provided results are valid. The

38

sat unsat to unknown
sat ✓ ✗ ✓ ✓

unsat ✗ ✓ ✓ ✓
to ✓ ✓ ✓ ✓

unknown ✓ ✓ ✓ ✓

Table 4.1: Comparative table for possible change in results of the solvers.

check is done by Python script that is driven by the Table 4.1. If there is a transition
from column value to row value (or vice versa) the result is then marked as ✓, when it is
permitted change, or marked as ✗, when it is a prohibited change.

Note that the table allows for the transition from to or unknown to (un)sat. Assume
that the heuristics and rules are applied in a given order. Thus, it is possible that some
of the computation of the heuristic takes too much time to successfully solve a problem
in a given time. When this heuristic is disabled, the right rule is applied earlier, and thus
problem that initaly end with timeout may become solvable.

This work aims to primarily measure the time complexity of the solver and how it is
affected by given heuristics. So, the main criteria will be the overall time needed to compute
the given set of benchmarks. Due to that, the benchmarks may aim for different parts of
the solver, and there is a need to address that because the heuristic may affect just one set
of benchmarks dramatically and does not affect another.

The modification performed on the solvers disables one or more of the heuristics or
optimizations of the solver. Therefore, it is expected that most of the measurements will
provide worse results than the full solver.

Based on the provided observation, a set of criteria is defined.

1. There is no prohibited result change.

2. The time consumption of the full solver is at least one of the below:

(a) 2 % better in more than half of the sets of the benchmarks (general heuristic).
(b) 5 % better in one of the sets of benchmarks (specific heuristic).

These criteria serve to find an effective heuristic. Thus, if there is a heuristic that satisfies at
least one of the given time consumption criterion, it can be marked as an effective heuristic.
The measurement aims at finding a set of effective heuristics.

Also, the solver runs in parallel, when it is possible, and given timeout to solve one
benchmark is 20 seconds. The resulting time used in the tables provided is obtained by the
sum of the run-times of all benchmarks. The disadvantage of summing all the times is that
for some benchmarks the resulting run time is 0 due to the processing reasons mentioned
earlier. This does create a cumulative error in the resulting run-time.

4.3 Rewriter heuristics measurements
The first measurements were performed using the blind approach. Each of the solvers has a
complex rewriter, which simplifies the input formula. During these measurement process,
it was monitored if any part of these rewriting rules have a high impact on the resulting
time. The heuristics were disabled by commenting given part of the code and building a new
binary. Typically, when the part of the code operated on constants, all these processing of

39

cvc5
full range_re2 concat2 eq_ext3 replace1 replace2

full_str_int 2476.21 2499.32 2509.91 2456.19 2454.91 2462.09
kaluza_big_sat 113.65 120.12 121.10 119.43 113.62 119.02

kaluza_big_unsat 811.22 849.43 840.66 821.90 832.04 822.95
kaluza_small_sat 3.32 3.41 3.26 3.37 3.35 3.31

kaluza_small_unsat 7.72 7.05 6.66 6.82 7.03 6.64
leetcode 128.66 131.27 134.88 129.52 131.85 131.84

norn 2044.74 2043.10 2034.55 2039.83 2036.65 2042.37
pyex_httplib2 1102.19 1131.59 1148.23 1131.48 1136.03 1129.34
pyex_httplib3 2558.64 2590.08 2644.25 2594.64 2592.38 2586.30
pyex_mongo3 874.05 885.27 908.30 880.71 883.12 881.38

pyex_pip 1.67 1.83 1.81 1.66 1.70 1.88
pyex_pymongo 83.57 84.23 84.33 83.61 86.22 83.29
pyex_pymongo2 247.02 254.43 255.69 251.35 252.63 252.78
pyex_requests3 11.24 11.93 12.31 11.05 11.70 11.99

pyex_url_request 13.38 13.71 13.38 13.20 13.81 13.73
slent 1295.17 1316.90 1308.79 1298.11 1303.05 1297.25
slog 9.84 10.05 9.96 9.56 9.69 9.59

sygus 132.45 148.31 141.43 143.45 140.78 142.62

Table 4.2: Time consumption cvc5 rewriter heuristics in seconds, that meet one of the
conditions of effective heuristics. At least 2 % better is light green, at least 5 % better is
darker green.

constants were disabled together. Unfortunately, the disablement was done in situ, without
documenting which binary belongs to which heuristics. An attempt was made to reconstruct
these parts in the cvc5 solver, but in the course of reconstruction more heuristics were
found than in the original set. The rewriter file with the comments is provided in the
attached digital artifact. Each part of the code that can be disabled is marked with comment
*turnoff <name> , where the name is the name used in the results and in this work.

During these measurements, 86 binaries were measured for cvc5 and 163 binaries for Z3.
The tests run on hardware with an Intel i7 4770 3.40GHz processor and 32GB of memory.
The binaries were run on all provided benchmarks and the measurement took about 3 weeks.
Because of the enormity of the measurement, only part of the results is provided here.

4.3.1 Results

In the first column of provided tables is always the full configuration of the given solver
to be referenced. The heuristics that satisfy the general heuristic criterion (2a) in full
configuration are emphasized in italics, and the heuristics that satisfy the specific heuristic
criterion (2b) are highlighted in bold.

For the cvc5 solver, the first two heuristics (range_re2, concat2) in the Table 4.2
satisfied the general heuristic criterion. Thus, it has an impact on most of the computed
benchmarks. The heuristics concat2, eq_ext3 and both replace satisfy the specific heuristic
criterion.

40

Z3
full cont10 cont2 eqCore3 regexp3 substr8

full_str_int 2265.35 2345.59 2337.76 2214.43 2319.02 2316.09
kaluza_big_sat 29.66 32.27 33.72 41.19 90.69 32.96

kaluza_big_unsat 4374.07 4384.05 4386.00 4825.70 7042.46 4372.51
kaluza_small_sat 167.94 174.65 175.74 174.19 175.82 176.02
kaluza_small_uns 56.79 58.66 59.43 59.43 60.08 58.84

leetcode 85.08 90.44 89.90 83.37 87.87 87.85
norn 2591.88 2593.09 2592.50 2595.28 2591.55 2657.26

pyex_httplib2 3891.66 5409.37 4095.14 4040.63 4038.64 3974.41
pyex_httplib3 11 037.87 17 590.68 11 467.18 11 402.17 11 239.43 11 230.42

pyex_pip 0.96 1.04 1.00 1.06 1.02 1.00
pyex_pymongo2 1539.69 1573.93 1545.22 1495.50 1541.89 1540.86

pyex_url_request 241.97 280.97 256.32 247.10 249.20 247.22
slent 1749.61 1741.64 1755.28 1827.02 1982.39 1752.20
slog 925.10 929.21 929.57 968.58 937.94 922.96

sygus 16.57 17.44 17.55 17.43 17.27 17.40

Table 4.3: Time consumption of Z3 rewriter heuristics in seconds, that meet one of the
condition of effective heuristics. At least 2 % better is light green, at least 5 % better is
darker green.

In the attached digital artifacts is provided a list with all heuristics that satisfy the
5 % limit. It happened 126 times, and 44 times for the benchmark sygus. In addition, the
heuristics range_re2 and concat2 are the only two that satisfied the (2a) criterion.

Note that for some of the disabled heuristics, the overall solving time is better than
with them. But it is usually only in not many cases and not for the majority of tested
benchmarks. Even the first two heuristics, that are effective in a significant number of
benchmarks, have some negative impact on solving the kaluza_small_unsat.

The Table 4.3 provides an overview of the measurement of the heuristics of Z3. All
provided heuristics are also all heuristics that satisfied the (2a) criterion. The (2b) criterion
was satisfied 331 times, of which 112 were reached solving the kaluza_big_sat benchmark.

Based on the values provided in the table, it can be seen that some of the rewriter
heuristics had a really high impact on the solving time. For example, the cont10 heuristic
in the benchmark pyex_httplib3 has a high impact on effective solving. Also, for the same
benchmark, the cont2 heuristic provides a better result at least 2 % . However, it may be
caused by the frequent occurrence of the contains function in the benchmark.

Table 4.4 provides a comparison of the full configurations of both solvers. In general,
cvc5is faster on most benchmarks. Note that for a number of benchmarks, cvc5 has a
dramatically better solving time. However, there are 3 benchmarks where the Z3 performs
significantly better. In the number of solved benchmarks, the solvers are not much different
and in most cases provide a comparable number of successfully solved inputs. Note that
for the pyex_httplib3 the runtime of Z3 is 4 times larger, but only 174 fewer sats were
obtained.

The worst result Z3 provided was on benchmark pyex_mongo3, where the time is more
than 27 times worse than in cvc5 and also it resolves only about a third of the satisfiable
formulas.

41

cvc5_full Z3_full
time[s] sat unsat to time[s] sat unsat to

full_str_int 2476.21 558 461 30 2265.35 540 464 45
kaluza_big_sat 113.65 506 0 1 29.66 507 0 0

kaluza_big_unsat 811.22 1415 2319 11 4374.07 1244 2313 188
kaluza_small_sat 3.32 11382 0 0 167.94 11382 0 0
kaluza_small_u 7.72 2988 810 0 56.79 2988 810 0

leetcode 128.66 867 1785 0 85.08 866 1785 1
norn 2044.74 706 228 93 2591.88 712 188 127

pyex_httplib2 1102.19 3488 793 0 3891.66 3454 773 54
pyex_httplib3 2558.64 5079 631 18 11 037.87 4905 610 213
pyex_mongo3 874.05 1537 564 5 23 625.68 585 532 989

pyex_pip 1.67 31 3 0 0.96 31 3 0
pyex_pymongo 83.57 259 44 2 1007.5 217 44 44
pyex_pymongo2 247.02 259 256 8 1539.69 204 255 64
pyex_requests3 11.24 61 58 0 297.28 59 48 12

pyex_url_request 13.38 42 40 0 241.97 40 35 7
slent 1295.17 601 482 45 1749.61 565 481 82
slog 9.84 808 1168 0 925.1 771 1168 37

sygus 132.45 343 0 0 16.57 343 0 0

Table 4.4: Comparison of runtime and solving results between cvc5 and Z3. The faster
solver is highlighted in bold.

4.4 Advanced heuristics measurements
The structure of the second further measurement is based on the results of the first. First
of all, the rewriter heuristics does not have a significant impact on overall performance of
the solver in isolation; only a few of them had a greater impact on the result, and for some
cases the speedup provided by the specific heuristic is more significant.

Based on a comparison of the solvers, for each solver, only four sets of heuristics were
chosen, in which the best result was given in comparison with the second solver. The
criterion used was the speedup in time (e.g. cvc5 solved the slog more than 94 times faster
than Z3).

The idea behind the second measurement was to find which of the heuristics provides
the effectiveness of the solving the given set of benchmarks. Unfortunately, this approach
was shown to be difficult to accomplish due to the structure of the tools.

The cvc5 provides a set of heuristics and approaches in the articles [19, 18, 20], where
they compare the effectivity of a given heuristic with a previous iteration of the solver
that does not have implemented that heuristic. Unfortunately, there is no possibility of
disabling many of the heuristics in the newer iterations of the tools. The heuristics are
usually embedded into the solver in a way, when other functions are dependent on the result.
Many of the heuristics are described in the comments, but, for example, the witness sharing
in cvc5 is not mentioned in the code. So it is possible to find implementation of a given
heuristic but is is hard to disable it.

The Z3 is barely documented, so the purpose of the code has to be inferred from the
comment, if it is available, name of the method, or from the code itself. The described
approach of RE derivatives can be found in the rewriter of Z3, but the entry point returns

42

cvc5
full arith extf

time[s] sat u t time[s] sat u t time[s] sat u t
1 6.08 11382 0 0 5.17 11382 0 0 5.54 11382 0 0
2 725.49 1536 564 6 727.84 1536 564 6 727.89 1536 564 6
3 8.92 61 58 0 8.85 61 58 0 8.73 61 58 0
4 8.44 808 1168 0 8.12 808 1168 0 8.11 808 1168 0
5 2500.43 558 460 31 2513.20 558 460 31 2518.39 558 460 31
6 2415.66 5078 631 19 2424.00 5078 631 19 2428.57 5078 631 19

fmf rewriter
time[s] sat u t time[s] sat u t

1 5.29 11382 0 0 4.98 11382 0 0
2 727.40 1536 564 6 727.83 1536 564 6
3 8.76 61 58 0 8.39 61 58 0
4 7.63 808 1168 0 7.56 808 1168 0
5 2512.76 558 460 31 2509.62 558 460 31
6 2426.52 5078 631 19 2432.55 5078 631 19

Table 4.5: Second measurement for cvc5. u means unsat, t means timeout. The benchmarks
used are 1) kaluza_small_sat, 2) pyex_mongo3, 3) pyex_request3, 4) slog, 5) full_str_int,
6) pyex_httplib3.

only success on rewriting. Thus, disabling this part of the solver will probably lead to
unsoudness of the solver. Also, many of the functions return either success and continue in
the computation or fail, leading to the immediate end of solving and returning unsat.

For this measurement in cvc5 the inference arithmetic schema from Section 3.2.3, the
reduction of the extended function and the finding of the upper bound of the quantifier
from Section 3.2.2, and a complete rewriter was disabled.

In Z3 a pair of functions was found that is used to compute bounds on the string. Both
of these functions were disabled. In addition, a complete rewriter was disabled. Other parts
seem to be too interconnected to be disabled.

As in the previous section, all disabled heuristics are marked with the comment *turnoff
<name> in the source files. The names are provided in tables.

For measurement was used a different machine with only 16GB of memory and with
AMD Ryzen 5 5625U 2.30GHz, timeout was set to 20s.

4.4.1 Results

Because the measurement was performed on different hardware, the full configuration was
also measured with the rest of the binaries. The time in the tables is provided in seconds,
and a number of satisfiable inputs are provided to be able to compare everything together.

The results of cvc5 show that any of the disabled heuristics does not have an impact
on the benchmarks 1-4. Because of that, the measurements were repeated with the same
results. Therefore, the full_str_int and pyex_httplib3 benchmarks were added, as they
both needed the most time to be solved. Both added benchmarks provide a result similar to
the first four. Although the computation time of full cvc5 is about two and a half thousand
seconds, the modified solvers were less than 20 seconds slower, so the resulting slowdown is
less than 1 %.

43

For benchmarks 1, 3, and 4, the cvc5 runs slightly faster. Note that for benchmark 2,
all modified binaries run for almost the same time. In addition, the number of satisfiable
inputs remains unchanged for benchmarks 1-4.

Z3
full arithBounds rewriter

time[s] sat u t time[s] sat u t time[s] sat u t
a 2808.37 524 464 61 10 004.59 117 449 390 11 642.65 295 328 426
b 35.90 507 0 0 376.68 444 0 4 363.34 497 0 10
c 118.70 866 1785 1 2671.09 722 1770 125 444.48 868 1774 10
d 23.46 343 0 0 22.50 60 0 0 18.09 343 0 0

Table 4.6: Second measurements for Z3. The solver is unsound for arithBounds and rewriter
disabled. The benchmarks are a) full_str_int, b) kaluza_big_sat, c) leetcode, d) sygus

The complete Z3 solver performed slightly worse on the second hardware, as can be
seen in Table 4.6. Both disabled heuristics were shown to be important for the overall
computation. But by disabling the rewriter and the arithBounds, the solver becomes unsoud.
Some of the unsat inputs becomes sat. In addition, the time increased dramatically for
both modified binaries. Along with a lower time efficiency, the number of satisfiable inputs
decreased significantly.

4.5 Evaluation
The string solvers, both cvc5 and Z3, provide good results in the number of solved formulas.
However, the time consumption of cvc5 is better in most cases.

The cvc5 seems to be a more stable solver. For some of the benchmarks, it is probably
possible to solve the input formula efficiently and independently on the other parts of the
solver. For the second measurement, it is somewhat contraintuitive that disabling such
a large part of the solver leads to an increase in time efficiency. Some suitable heuristic,
which decides which parts are needed to be used for solving a given input, may dramatically
increase the efficiency of the solver. It is also possible that preprocessing of the input
simplifies the formula enough to result in a successful solution.

The second measurement probably contains an error, because of the low impact of
modifying the solver. But the time improvement in case of benchmarks with small input
formula may show that the solver is also highly dependent on the other parts. Thus, a good
integration and effectiveness of the other parts of the solver may play a crucial role in overall
effectiveness, not only the heuristics implemented in the solver itself.

In addition, it seems that the cvc5 string solver is able to cooperate better as a whole.
Even if some part of the procedure is missing, the solver is still able to successfully solve the
input formula.

In comparison, the Z3 solver seems to be more monolithic, where each part of the whole
is important for the process. The simplifying performed by rewriter seems to be essential for
successful solving. Implements a bunch of heuristics that contribute to overall effectivity.

Unfortunately, the solver has a large undocumented codebase, where it is challenging to
infer a purpose of each part.

In both of the solvers, it is unclear which part is essential for the computation. Although
both of the solvers are DPLL(T) based, thus a lazy solver, they use many of the techniques

44

used in eager solving. It is clear that many of the implemented techniques are implemented
by both of the solvers.

Unfortunately, based on research and measurement, it is almost impossible to draw
a conclusion about the heuristics provided. The first measurements show that there is
no significant part that provides a dramatic increase in speedup of solving. It is possible
that choosing a set of simplifying rules is highly dependent on the algorithm that solves
the constraints, thus not all rewriting rules have to be implemented in a particular solver.
In addition, many of the rewrites depend on another inference schema, which guides the
simplification.

In general, this work provides many approaches that can be used to implement the
effective string solver. As a good combination for basic and extended string functions, the
combination of simplifying the extended functions with reasoning about length bounds
seems effective. One of the approaches that may provide good results with the lazy solver
is to bound the possible alphabet to some smaller subset, which is described in [14]. The
approximation of the string length used in cvc5 (Section 3.2.3) seems to provide good
results along with the fact that integer arithmetic theory is also a complex problem. The
approach introduced in [22] for the regular membership constraints appears to be one of
the most effective approaches currently available. Also, a right selection of the base solver
may also lead to significantly better results without having to optimize the string solving
algorithm.

In conclusion, the measurements performed did not provide much information. One of
the sources of uncertainty is the used benchmarking tool that provides time with only two
decimal precision. This may lead to misinterpretation of the measured data as many of the
benchmarks were solved literally in no time – the tool returned 0.0 as the consumed time in
many cases. Increasing the accuracy of the time will make the measurements more precise,
leading to a more accurate evaluation of the impact each heuristic has. And it is unclear
when the tool rounds to 0, if it is when the value is smaller than 0.005, or if it rounds to
0 even when the number is 0.009. Also, this error leads to the given criteria should be
specified better.

A possible enhancement is to make the criteria more precise, for example, set the limit for
the general heuristic to at least 5 % better in more than half of the tested benchmarks. Then
the result of the measurement is that there is no general heuristic in any of the rewriters.
Therefore, to obtain some more specific information, the heuristics in rewriter should be
divided into sets that are disabled at once. This can be the goal of future work.

45

Chapter 5

Conclusion

This work describes the basic principles of STM solving, providing background information
on the theories and algorithms used. Introduces two SMT solvers – cvc5and Z3, which
provide reasonably effective string solvers. Then, this work provides the principles of string
solving and a set of of heuristics that are used in the described solvers. In the end, this
thesis describes a set of measurements that were performed and discusses the results. In
addition, some thoughts on the heuristics and approaches that can be used to create an
effective solver are discussed at the end of the measurement chapter.

One of the goals of this thesis was to measure and evaluate the impact of heuristics and
its combinations on sets of benchmarks. This goal was only partially met. The first of the
measurements aimed to measure the impact of simplifying rules used in the rewriters of
given solvers. The result of this measurement is that each of the heuristics in isolation does
not have a great impact on the set of benchmarks used.

The second of the measurements aimed to find some different heuristics that may have
a greater impact on the set. Due to the complexity of the tools, 4 heuristics in cvc5and
only two heuristics in Z3 were identified. The measurement then shows that in cvc5 the
heuristics does not have an impact on the initial chosen set. So, more benchmarks were
added to the set and measurement was repeated, which did not change the result at all.
The Z3 without the 2 heuristics became unsound as it marks some of the benchmarks as
satisfiable although the complete tool marked them unsatisfiable. The unfulfilled part of
the goal is to measure a combination of heuristics. In case of Z3, there was not identified a
suitable set of heuristics. The combination of heuristics in cvc5 was not measured due to
time constraints.

In case of the rewriter, it was concluded that better results may be obtained by dividing
the heuristic into a set or classes and then disabling the whole set at once and repeating the
measurements. This was not done because of the aim of the work was moved to identify a
more complex heuristics. So, measuring the effectiveness of this part of the solvers can be a
goal for future work.

The second goal was to determine which of these heuristics could be potentially used in
the VeriFIT string solver. This goal depends on the success of the measurement that did
not provide satisfactory results. However, potentially usable heuristics were discussed in the
evaluation part of the measurements. The effectiveness of the heuristics cannot be justified
due to the lack of data which reliably confirm its benefits.

In the following work, measurement of the combination of cvc5 heuristics from the
second part of experiments can be done on all heuristic sets, as this part is time-consuming

46

only due to the runtime of all the benchmarks. Further future work can be done in the field
of code analysis of the solvers to find more used heuristics.

47

Bibliography

[1] Aniva, L.; Barbosa, H.; Barrett, C.; Brain, M.; Camillo, V. et al. Cvc5, version
1.0.5, commit 7d0db1a. Software. 2023. Available at: https://github.com/cvc5/cvc5.
[cit. 2024-05-09].

[2] Barbosa, H.; Barrett, C.; Brain, M.; Kremer, G.; Lachnitt, H. et al. Cvc5: A
Versatile and Industrial-Strength SMT Solver. In: Fisman, D. and Rosu, G., ed. Tools
and Algorithms for the Construction and Analysis of Systems. Cham: Springer
International Publishing, 2022, p. 415–442. ISBN 978-3-030-99524-9.

[3] Barret, C.; Fontaine, P. and Tinelli, C. The Satisfiability Modulo Theories
Library (SMT-LIB). Online. 2016. Available at: https://smt-lib.org/. [cit. 2024-5-3].

[4] Barret, C.; Fontaine, P. and Tinelli, C. The SMT-LIB Standard, Version 2.6.
Online. 2021. Available at:
https://smt-lib.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf. [cit.
2024-05-03].

[5] Barret, C.; Sebastiani, R.; Seshia, S. A. and Tinelli, C. Satisfiability Modulo
Theories. In: Bierre, A. et al., ed. Handbook of satisfiability. Amsterdam: IOS Press,
2009. Frontiers in artificial intelligence and applications; vol. 185. ISBN
978-1-58603-929-5.

[6] Barrett, C. and Tinelli, C. Satisfiability Modulo Theories. In: Clarke, E. M.;
Henzinger, T. A.; Veith, H. and Bloem, R., ed. Handbook of Model Checking.
Cham: Springer International Publishing, 2018, p. 305–343. ISBN 978-3-319-10575-8.
Available at: https://doi.org/10.1007/978-3-319-10575-8_11.

[7] Bjørner, N.; Eishenhofer, C.; Gurfinkel, A.; Lopes, N. P.; de Moura, L. et al.
Z3 Internals (Draft). Online. 2023. Available at:
https://z3prover.github.io/papers/z3internals.html. [cit. 2024-04-29].

[8] Bjørner, N. and Nachmanson, L. Navigating the Universe of Z3 Theory Solvers. In:
Carvalho, G. and Stolz, V., ed. Formal Methods: Foundations and Applications.
Cham: Springer International Publishing, 2020, p. 8–24. ISBN 978-3-030-63882-5.

[9] Bjorner, N.; Wintersteiger, C. M. and Grigorenko, P. Publications (Z3
GitHub). Online. 2019. Available at:
https://github.com/Z3Prover/z3/wiki/Publications. [cit. 2024-05-11].

[10] Bjorner, N.; Wintersteiger, C. M.; Nachmanson, L.; de Moura, L.; Berzish,
M. et al. Z3, version 4.12.2.0, commit 8a3a3dc. Online. 2023. Available at:
https://github.com/z3prover/z3. [cit. 2024-05-11].

48

https://github.com/cvc5/cvc5
https://smt-lib.org/
https://smt-lib.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://doi.org/10.1007/978-3-319-10575-8_11
https://z3prover.github.io/papers/z3internals.html
https://github.com/Z3Prover/z3/wiki/Publications
https://github.com/z3prover/z3

[11] de Moura, L. and Bjørner, N. Z3: An Efficient SMT Solver. In: Ramakrishnan,
C. R. and Rehof, J., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, p. 337–340. ISBN
978-3-540-78800-3.

[12] Le, Q. L. and He, M. A Decision Procedure for String Logic with Quadratic
Equations, Regular Expressions and Length Constraints. In: Ryu, S.,
ed. Programming Languages and Systems. Cham: Springer International Publishing,
2018, p. 350–372. ISBN 978-3-030-02768-1.

[13] Liang, T.; Reynolds, A.; Tinelli, C.; Barrett, C. and Deters, M. A DPLL(T)
Theory Solver for a Theory of Strings and Regular Expressions. In: Biere, A.
and Bloem, R., ed. Computer Aided Verification. Cham: Springer International
Publishing, 2014, p. 646–662. ISBN 978-3-319-08867-9.

[14] Lotz, K.; Goel, A.; Dutertre, B.; Kiesl Reiter, B.; Kong, S. et al. Solving String
Constraints Using SAT. In: Enea, C. and Lal, A., ed. Computer Aided Verification.
Cham: Springer Nature Switzerland, 2023, p. 187–208. ISBN 78-3-031-37703-7.

[15] Monniaux, D. A Survey of Satisfiability Modulo Theory. In: Gerdt, V. P.; Koepf,
W.; Seiler, W. M. and Vorozhtsov, E. V., ed. Computer Algebra in Scientific
Computing. Cham: Springer International Publishing, 2016, p. 401–425. ISBN
978-3-319-45641-6.

[16] Nieuwenhuis, R.; Oliveras, A. and Tinelli, C. Solving SAT and SAT Modulo
Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to
DPLL(T). J. ACM. 1st ed. New York, NY, USA: Association for Computing
Machinery, nov 2006, vol. 53, no. 6, p. 937–977. ISSN 0004-5411. Available at:
https://doi.org/10.1145/1217856.1217859.

[17] Preiner, M.; Schurr, H.-J.; Barrett, C.; Fontaine, P.; Niemetz, A. et al.
SMT-LIB release 2023 (non-incremental benchmarks). Zenodo, february 2024.
Available at: https://doi.org/10.5281/zenodo.10607722.

[18] Reynolds, A.; Nötzli, A.; Barrett, C. and Tinelli, C. High-Level Abstractions
for Simplifying Extended String Constraints in SMT. In: Dillig, I. and Tasiran, S.,
ed. Computer Aided Verification. Cham: Springer International Publishing, 2019,
p. 23–42. ISBN 978-3-030-25543-5.

[19] Reynolds, A.; Notzlit, A.; Barrett, C. and Tinelli, C. Reductions for Strings
and Regular Expressions Revisited. In: Ivrii, A. and Strichman, O., ed. 2020
Formal Methods in Computer Aided Design (FMCAD). TU Wien Academic Press,
2020, p. 225–235. ISBN 978-3-85448-042-6.

[20] Reynolds, A.; Woo, M.; Barrett, C.; Brumley, D.; Liang, T. et al. Scaling Up
DPLL(T) String Solvers Using Context-Dependent Simplification. In: Majumdar, R.
and Kunčak, V., ed. Computer Aided Verification. Cham: Springer International
Publishing, 2017, p. 453–474. ISBN 978-3-319-63390-9.

[21] Saxena, P.; Akhawe, D.; Hanna, S.; Mao, F.; McCamant, S. et al. A Symbolic
Execution Framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy. 2010, p. 513–528. ISBN 978-1-4244-6895-9.

49

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.5281/zenodo.10607722

[22] Stanford, C.; Veanes, M. and Bjørner, N. Symbolic Boolean derivatives for
efficiently solving extended regular expression constraints. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for Computing Machinery, 2021,
p. 620–635. PLDI 2021. ISBN 9781450383912. Available at:
https://doi.org/10.1145/3453483.3454066.

[23] Síč, J.; Lengál, O.; Havlena, V. and Blahoudek, F. smt-bench, commit 2b427355.
Online. 2023. Available at: https://github.com/VeriFIT/smt-bench.

[24] Wang, H.-E.; Tsai, T.-L.; Lin, C.-H.; Yu, F. and Jiang, J.-H. R. String Analysis via
Automata Manipulation with Logic Circuit Representation. In: Chaudhuri, S.
and Farzan, A., ed. Computer Aided Verification. Cham: Springer International
Publishing, 2016, p. 241–260. ISBN 978-3-319-41528-4.

50

https://doi.org/10.1145/3453483.3454066
https://github.com/VeriFIT/smt-bench

	Introduction
	SMT Solving
	DPLL procedure
	Basic terms
	States and transitions
	The Classical DPLL procedure
	Modern DPLL procedure

	Basic principles of SMT solving
	Basic terms
	Theory overview
	Eager SMT techniques
	Lazy SMT techniques
	Abstract DPLL(T)
	SMT solvers
	SMT-LIB Standard

	String Solving
	Theory of strings and regular expressions
	cvc5 methods
	Basic calculus
	Extended function simplification
	Arithmetic-Based Simplification
	Other heuristics
	Implementation details

	Z3 methods
	Symbolic regular expression derivatives
	Implementation details

	Measurements
	Benchmarks and benchmarking tool
	Evaluation criteria
	Rewriter heuristics measurements
	Results

	Advanced heuristics measurements
	Results

	Evaluation

	Conclusion
	Bibliography

