
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

MOBILE CRYPTOCURRENCY WALLET BAS E D ON 
ZK-SNARKS AND SMART CONTRACTS 
MOBILNÁ PEŇAŽENKA NA KRYPTOMENY ZALOŽENÁ NA ZK-SNARK TECHNOLÓGIÁCH 

A SMART KONTRAKTOCH. 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Be. SAMUEL SLÁVKA 
AUTOR PRÁCE 

SUPERVISOR Ing. IVAN HOMOLIAK, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2022 



Brno University of Technology 
Faculty of Information Technology 

Department of Intelligent Systems (DITS) Academic year 2021/2022 

Master's Thesis Specification ||||||||||||||||||||||||| 
23223 

Student: Slávka Samuel, Be. 
Programme: Information Technology and Artificial Intelligence 
Specialization: Application Development 
Title: Mobile Cryptocurrency Wallet Based on zk-SNARKs and Smart Contracts 
Category: Security 
Assignment: 

1. Study principles of thin mobile clients and their examples. Acquaint yourself with blockchains 
and smart contracts. 

2. Study principles of zk-SNARKs and their variants. 
3. Propose a client-server framework for mobile wallet that will utilize zk-SNARKs as a storage 

optimization technique. 
4. Implement proposed framework using Android/IOS for client and arbitrary programming 

language for server. The framework should support at least 3 cryptocurrencies. 
5. Evaluate the cost and performance of the framework. 
6. Propose extensions and discuss limitations of the framework. 

Recommended literature: 
• Westerkamp, Martin, and Jacob Eberhardt. "zkRelay: Facilitating Sidechains using 

zkSNARK-based Chain-Relays." Contract 1.2 (2020): 3. 
• Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum 

project yellow paper 151.2014 (2014): 1 -32. 
• Homoliak, Ivan, et al. "The Security Reference Architecture for Blockchains: Toward 

a Standardized Model for Studying Vulnerabilities, Threats, and Defenses." IEEE 
Communications Surveys & Tutorials 23.1 (2020): 341-390. 

Requirements for the semestral defence: 
• Items 1 to 3. 

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 
Supervisor: Homoliak Ivan, Ing., Ph.D. 
Head of Department: Hanáček Petr, doc. Dr. Ing. 
Beginning of work: November 1, 2021 
Submission deadline: May 18, 2022 
Approval date: November 3, 2021 

Master's Thesis Specification/23223/2021/xslavk02 Page 1/1 

https://www.fit.vut.cz/study/theses/


Abstract 
The goal of this thesis is to propose and implement a framework for cryptocurrency wallets. 
The framework optimizes light client storage and bandwidth requirements in mobile devices. 
We propose a side-chain mechanism that validates blockchain header chains and creates 
zero-knowledge proofs. Furthermore, the framework stores the results of proof verification 
inside an Ethereum Smart contract. The Smart contract supports fork handl ing and storing 
header chains for mult iple different blockchains. L ight mobile clients using this framework 
can update their local header chain from checkpoints created by the proof verifications 
results stored i n the Smart Contract . Th is thesis includes an implementat ion of a mobile 
wallet using this framework for synchronization w i th mult iple blockchains. 

Abstrakt 
Cieľom tejto diplomovej práce je navrhnúť a implementovat prostredie pre kryptomenové 
peňaženky, ktoré je optimalizované pre požiadavky na úložisko a prenosovú rýchlosť v 
mobilných zariadeniach. S využitím zero-knowledge dôkazov navrhujeme mechanizmy side-
chain výpočtu, ktoré overujú reťazce hlavičiek blokov a uchovávajú dôkazy o ich overeniach v 
blockchaine. Ľahkí mobilní kl ient i , využívajúci toto prostredie, už nebudú nútení sťahovať 
a neustále aktualizovať svoj reťazec hlavičiek, ale môžu používať záchytné body uložené 
v Smart kontrakte. Táto práca taktiež zahŕňa implementácie mobilnej peňaženky, ktorá 
používa implementované prostredie pre synchronizáciu s viacerými blockchainami. 
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Rozšířený abstrakt 
V tejto práci sme navrhl i a implementovali prostredie pre mobilné peňaženky založené na 
z k - S N A R K a smart kontraktoch. Prostredie poskytuje rýchlejšiu a menej náročnú synchro
nizáciu, ako súbežné používanie viacerých lokálnych ľahkých klientov. Celková optimalizá
cia úložiska rastie priamo úmerne s počtom použitých Blockchainov, pretože na správne 
fungovanie je potrebný iba jeden ľahký klient. K l i ent aj server používajú Ethereum, ako 
svoj primárny Blockchain, a ako ich jediný dôveryhodný zdroj pravdy. Okrem toho smart 
kontrakt nasadený na Ethereu slúži, ako dôveryhodné úložisko a na overovanie fragmento-
vaných reťazcov hlavičiek. 

Prostredie taktiež podporuje dva sekundárne Blockchainy, B i t co in a B i t co in Cash. 
Server vytvára lokálne reťazce hlavičiek týchto sekundárnych Blockchainov a generuje dôkazy 
o ich úspešnom overení. Dôkazy server následne pošle v transakciách do smart kontraktu, 
kde sa overia a ak sú validné, ich výsledky validácie sa pridajú do kontraktového úložiska. 
Okrem počiatočného nasadenia je odoslanie dôkazov jediná akcia, ktorá si vyžaduje p la tbu 
v našom prostredí. Komunikácia pre klientov je bez akýchkoľvek poplatkov. V tomto 
prostredí je klient mobilná aplikácia, ktorá spúšťa inštanciu ľahkého uzla v Ethereu. Tento 
ľahký uzol sa používa na prístup k smart kontraktom so záchytnými bodmi sekundárneho 
reťazca. Po prijatí záchytného bodu reťazca hlavičiek, klient môže začať budovať nový 
lokálny reťazec. Tento reťazec začína priamo v t om záchytnom bode a končí v hlav
ičke, ktorú klient chce overiť. Keďže mobilných klientov zaujímajú len transakcie, ktoré 
sa ich priamo týkajú, na fungovanie potrebujú len malé časti celého reťazca hlavičiek. Toto 
prostredie i m umožňuje dôveryhodne overovať bloky pr i zachovaní bezpečnosti pochádza
júcej z ľahkých klientov. 

Okrem nákladov na údržbu a počiatočného dobiehania sekundárnych Blockchainov, 
výsledné prostredie ponúka dôveryhodnú alternatívu k súčasným mobilným Blockchain-
ovým peňaženkám. Prostredie poskytuje rozhranie na ovládanie smart kontraktu a Zokrat-
ess prostredia zo skr iptu napísanom v jazyku Py thon . Naše prostredie sme navrhl i tak, aby 
bolo rozšířitelné pre rôzne veľkosti postupnosti hlavičiek a pridávanie podpory viacerých 
Blockchainov, pokiaľ sú založené na dôkazu o prevedenej práci. 

Implementovali sme mobilnú aplikáciu v React native, ktorá predvádza funkčnosť tohto 
prostredia a vykazuje zlepšenia v požiadavkách na úložisko v porovnaní s inými dôvery
hodnými alternatívami. Vyžadovaný úložný priestor a množstvo prenesených dat potreb
ných na mobilnú synchronizáciu pre sekundárne Blockchainy rastie s počtom blokov, ktoré 
chceme overiť. V najhoršom prípade, ak má klient transakciu v každom jednom bloku v 
Blockchaine, dosiahne nanajvýš potreby ľahkých klientov. 
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Chapter 1 

Introduct ion 

Blockchain is an ever-growing decentralized database w i th a single shared state [3]. Its state 
consists of a chain of blocks, which are used as a basic storage units containing lists of state 
changes expressed through transactions. Every block must contain a l ink to its predecessor 
to be included in the state. These l inks create the chain that starts at the in i t i a l block and 
ends at the most recent accepted block. The only way to verify information correctness in 
a blockchain is by recreating its state locally. 

1.1 M o t i v a t i o n 

Blockchain clients want to work w i th this decentralized state. Therefore, they must store 
the entire chain local ly and constantly update it w i th newly created blocks. However, 
w i th constantly growing blockchain sizes, local ly storing their chains is becoming infeasible 
for smaller devices. For this reason, light clients [28] were introduced. L ight clients also 
bui ld the blockchain locally. However, they only use metadata of its blocks called headers. 
Therefore their storage and networking requirements are significantly smaller than regular 
(full) clients. 

However, the header chains are also constantly growing, and even this much lighter 
approach has become too demanding [25] for mobile devices in recent years. For the growing 
needs of light clients, mobile clients switched mainly to ultral ight clients [25] or fully hosted 
wallets. Ultral ight clients uti l ize various techniques to l ighten the load on devices while 
preserving the security of light clients. They act as light clients underneath while st i l l 
providing secure access to blockchains. A s oposed to another popular apporach in mobile 
devices called fully hosted wallets. The fully hosted wallets provide an endpoint for a l l the 
revelant data, and the client must trust it to be secure. W h i c h trades trustlessness for the 
gain of usabi l i ty and speed. 

1.2 C o n t r i b u t i o n s 

This thesis proposes an opt imizat ion of mobile light client storage and networking demands 
by designing and implementing an ultral ight client framework. Th is framework consists 
of an off-chain mechanism where a server creates z k - S N A R K proofs of the header chain 
val idat ion. These proofs are then submitted and verified in an Ethereum smart contract, 
where they create a fragmented header chain. The header chain is split into checkpoints 
made from spaced-out header identifiers. A batch of proofs can create a new checkpoint 
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only if its headers start w i th previously-stored checkpoints and the proofs are val id and 
they continue from some previously stored checkpoint. The smart contract that stores the 
header chain is fork-resistant and automatical ly selects the correct strongest chain. 

The implemented ultral ight client direct ly accesses the smart contract checkpoints and 
uses them as temporary start ing points for its local header chains. The client verifies the 
inclusion of the block by querying the smart contract for the closest checkpoint. The client 
then builds a fragment of the header chain, start ing at the received checkpoint and ending 
at the disputed block. Th is act ion is significantly faster than synchronizing the whole 
chain from its beginning, especially after a prolonged t ime without synchronization. The 
resulting framework supports Ethereum as its pr imary blockchain, and B i t co in and B i t co in 
Cash as its secondary blockchains. However, it is designed to be extensible for other proof 
of resource based blockchains. 

1.3 O r g a n i z a t i o n 

In Chapter 2 we describe blockchains, their principles, purposes, and use cases. In Chapter 3 
we describe zero-knowledge proofs and their variants. In Chapter 4 we propose the design 
of the ultral ight client and its framework. In Chapter 5 describe our implementat ion of the 
proposed client and framework. In Chapter 6 we evaluate both implementations and their 
usability. In Chapter 7 we discuss the advantages and disadvantages of this framework. In 
Chapter 8 we summarize the achieved goal and propose future developments. 
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Chapter 2 

Principles of blockchains 

The blockchain is an open system for the execution and processing of transactions under 
transparent rules [28]. The system is an immutable, constantly growing list of records. 
Each record is represented by a block that changes internal state of this system. The new 
state can only be appended to the history of previous states and must reference them to 
mainta in a single chain of events. Blockchains work as decentralized peer-to-peer networks, 
where nodes synchronize and propagate their local state versions. The system is trust-less, 
100% available, and has immutable data storage [19]. 

Each blockchain node can alter and validate the state of this network. However, the 
changes must comply w i th the rules of the blockchain source code. The transaction is a 
message containing directives for nodes to change state inside of the network [19]. The 
transactions are validated by blockchain nodes before grouping them into blocks and then 
broadcasting these blocks to other nodes in the blockchain. Blocks are a fundamental data 
storage unit that aggregates sets of transactions created roughly at the same time [19]. 
W h e n a node adds a compromised or incorrect block, other nodes w i l l act based on the 
consensus mechanism, whose types we describe in Section 2.2. 

Each block is l inked to its predecessors by inc luding the cryptographic hash of the 
previous block. Th is l ink ing creates immutabi l i ty since the previous state is always part of 
any new changes. The blocks form a hash chain that contains a cryptographic hash of each 
leaf node's data labels. 

The entire network eventually settles to a single version of its state, br inging trust-
lessness to its communicat ion. Since every blockchain user can also participate i n the 
functionality of the network, every user can verify every transaction that occurs there. 
Furthermore, the users do not have to trust anything outside their supervision because a l l 
blockchain functionality executes in every blockchain node. 

100% availabil i ty comes as a result of its decentralization. Because every node can 
perform a l l of the the blockchains functionality, there needs to be at least one node for the 
blockchain to function. 

2.1 U s e r a u t h e n t i c a t i o n 

A decentralized and open system is prone to attacks and fraud. Blockchain participants 
are charged for every transaction to discourage most i l l ic i t activities. However, the charge 
must remain completely enclosed in the system to determine the possibi l i ty of making such 
transactions before they occur. For this purpose, user authentication is required to dis-
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Leaf node Leaf node Leaf node Leaf node 

Figure 2.1: State storage structure based on Merkle trees. 

t inguish and grant them access to the state. A m o n g blockchains, public-key cryptography 
serves as a user identif ication. 

In public-key cryptography, each user has a pair of keys [22], private and publ ic . Accord
ing to the blockchain rules, the user generates a private key dur ing account setup. Through 
a blockchain-specific algori thm, users generate a private key, which generates a publ ic key. 
Afterwards, the users can use the publ ic key as their unique address. The address serves 
for locating part of the ledger that the user can access and uti l ize. Furthermore, the private 
key serves as a password, without which transactions on the given address w i l l not work. 
However, the password cannot grant access to the address directly. Since the blockchain 
is a distr ibuted system, every other user would find out about the key and gain access to 
the contents of the address. For this reason, only transactions contain a signature obtained 
from the key. A signature is the output of a trapdoor function that inputs the sender's 
private key and the unsigned transaction itself. The final transaction also contains the re
sult ing signature, so anyone w i th access to the sender's publ ic key can easily verify message 
authenticity. 

Trapdoor functions are also used for public-key generation [18]. The trapdoor function 
is a function that can be easily computed i n one direction and is difficult i n the oppo
site direction [18]. Therefore, comput ing the publ ic key from the private one is relatively 
easy. However, the computat ion of private keys from the publ ic keys is computat ional ly 
part ia l ly impossible. 1 B lockchain security heavily relies on the assumption that the reverse 
computat ion w i l l not be feasible [24]. 

To unequally identify any val id Merk le tree, we must calculate its root nodes' crypto
graphic hash, and any change i n its data contents w i l l propagate directly into the root hash. 
Merkle trees provide an easy way to verify the data, called the Merkle proof. Merkle proof 
is a result of recomputed Merkle tree w i th unverified data [17]. W h e n verifying, we do not 
need to recompute the whole tree, only the parts that could have been changed [2]. Th is 
process speeds up the verification and does not allow other data to be used to bu i ld the 
proof. After re-computing, we only need to check if the newly created root hash equals the 
expected one. 

1 W i t h current resources and knowledge [23]. 
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Figure 2.2: Points A and B create point C , which is reflected into point D [23]. 

C o m m o n l y used s i g n a t u r e a l g o r i t h m s i n b l o c k c h a i n s 

Blockchains have different l imitat ions and requirements, so their creators need to choose 
suitable algorithms for singing. Due to its decentralized nature, on-chain resources are 
scarce. Furthermore, signing, one of the most used algorithms, needs to be secure and effi
cient. The following are algorithms currently used on the most prominent blockchains [24]. 

E l l i p t i c C u r v e D i g i t a l S i g n a t u r e A l g o r i t h m ( E C D S A ) 

A n el l iptic curve is a set of points satisfying an equation w i th two variables, having one in 
a degree of two and the second in a degree of three [23]. 

y2 = x 3 + ax + b 

The el l iptic curve has a unique property. G iven any two non-vertical points, the line 
between them w i l l intersect the curve precisely one more time. Furthermore, on the reflec
t ion of the intersection point on the x-axis, a new point w i l l be created, which can be seen 
in Figure 2.2. 

Keeping the first point and redrawing the line w i th a new point once again, at the x-axis 
reflection of intersection, creates a new different point, as can be seen in Figure 2.3. 

We can repeat this act ion any amount of times and what w i l l remain are the first point, 
the final point, and the number of actions to reach the end. Th is act ion creates a trapdoor 
function because finding the number of actions when only the first and last points are 
available. 

Because computers are more efficient w i th natura l and relatively smal l numbers. The 
curves in E C D S A are i n blockchains represented as a finite set of natura l numbers on the 
curve. Furthermore, it wraps them into a given range [23]. 

To apply this a lgor i thm to blockchains. The first point is the user's publ ic address, the 
last point is the signature, and the number of points is the private key. The current versions 
of B i t co in and Ethereum both use this algor i thm. However, it also has its disadvantages. 
They are prone to bad or compromised random number generators. Furthermore, there is 
no efficient way of compressing and verifying mult iple signatures together [24]. 
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Figure 2.3: Points A and D create a new point E , which is reflected into point F [23]. 

S c h n o r r s i g n a t u r e s 

Schnorr signatures are one of the solutions to scaling problems and security concerns pro
posed in the B i t co in blockchain. It is a variat ion of E C D S A , and often blockchains using 
Schnorr signatures uti l ize the same curves as in E C D S A chains [4]. 

Schnorr signatures enable aggregating mult iple signatures into a single verifiable signa
ture natively. Aggregation is also possible i n E C D S A . However, the addresses of participants 
needed to be known, which is inefficient and disallows any form of privacy. In the Schnorr 
algorithm, the aggregated messages are indistinguishable from the regular ones and do not 
lose any security [20]. 

W h e n a Schnorr signature a lgor i thm uses a sufficiently random hash function and under 
the assumption that the el l iptic curve discrete logar i thm problem is hard, it was formally 
proven that breaking Schnorr signatures is as hard as solving the discrete logar i thm prob
lem [21]. In contrast to E C D S A , which has not been proven to have any specified hardness. 

P i x e l s i g n a t u r e s 

P i x e l signatures allow grouping mult iple signatures into a single trust-able, efficiently verifi
able signature. A posterior corrupt ion problem occurs when mult iple nodes have corrupted 
signing keys. W h e n the number of corrupted nodes w i th in network specification, it should 
be able to cope w i th them. Since the network is dynamic, i f those nodes have been in the 
network long enough, a fork can be created such that they have the longest chain [9]. 

P i xe l signatures are forward-secure signatures, which means they solve the posterior 
problem. They force the nodes in the network to periodical ly change their private keys. 
After a secure key corrupt ion, the key cannot create a false chain history. 

B o n e h - L y n n - S h a c h a m ( B L S ) s i g n a t u r e s 

B L S signatures uti l ize bil inear pair ing for verification of signatures described in Section 3.1. 
B L S scheme consists of key generation, signing, and verification. The key generation algo-
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r i thm selects a random unsigned integer x as the private key, creating the publ ic key gx. 

Signature is the output of the hash function of some message h = H(m), where we put it 
at the power of the private key hx. Verif ication is confirming whether the results of the 
bil inear pair ing are equal [5]. 

e(hx,g) = e(H(m),gx) 

Ethereum 2.0 uses B L S because of its abi l i ty to aggregate mult iple signatures and pro
vides smaller and easier-to-calculate signatures. B L S signatures are also bui l t on top of 
the E C D S A principles and offer better scaling through aggregation of signatures [5]. How
ever, they are not quantum safe and should be replaced by zk -STARK-based aggregation, 
described i n Section 3.3. However, they s t i l l suffer from the posterior problem [9]. 

2.2 C o n s e n s u s m e c h a n i s m s 

Consensus mechanisms allow us to determine and guarantee the current state of the net
work. They ensure the processing and universal acceptance of val id transactions between 
honest nodes. Furthermore, they try to eventually gather a l l block proposals i n the network 
into a single sequence of blocks [13]. Since coordinating the whole network of nodes to se
lect one block is impract ica l , there are mult iple ways to reduce selection without affecting 
security. 

One of the more popular approaches is the use of lottery-based protocols [3]. The lottery-
based protocols randomly select nodes from those proposed blocks and create consensus only 
between this subset of proposals. The problem w i th selecting mult iple nodes is that they 
often have different blocks proposed, which creates a temporary split i n the blockchain 
called fork [13]. A more thoughtful description of forks is i n Section 2.3. 

Another approach is to use voting-based protocols. Where votes decide the state of the 
participants, they offer much higher resistance to forking. However, they introduce many 
problems w i th network scaling [13]. These two approaches are often combined to ensure 
scalabil ity and security [13]. 

Byzant ine fault 

Byzant ine fault is a condit ion in a system, where important components can fail and infor
mat ion on their failure is unreliable. It is based on the hypothet ical problem that Byzan t ium 
has many armies and many generals. Generals must consent to a single joint act ion while 
communicat ing only w i th messages. Since some generals can be impostors, they can create 
false messages for different generals. Miscommunicat ion from those messages could lead 
to part of the generals attacking and others retreating, especially i f the impostors ' vote 
decides the majority. Byzant ine fault tolerance happens if loyal generals have a majority 
agreement [8]. 

Blockchains solve the problems of impostor part icipants in mult iple ways. The most 
common is requiring some investment behind the directions from participants. If the general 
has something to lose from his command, the more significant the loss, the less l ikely they 
w i l l betray other generals. Furthermore, if the importance and positions of the generals 
are selected based on the height of their investment, the generals themselves would always 
have to lose the most from bad decisions [8]. In blockchains, this investment is some real-
world act ion that is unambiguously verifiable on-chain or staking their blockchain resources 
behind their decision. 
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P r o o f of resource 

Proof of resource is a widely adapted and tested consensus mechanism in blockchains. 
In proof of resource, the main component is an expenditure of some resources without 
profit outside the validated blockchain. The resource is external to the blockchain system. 
However, there must be a way to create verifiable proof to prove its expenditure. A l l nodes 
decide the resulting sequence of blocks in the blockchain. 

This expense dur ing val idat ion can guarantee that nefarious actors w i l l lose resources 
during an attack on the network. In this mechanism, the attacker would need more than 
50% of the blockchain resources to succeed in an attack. Miners are the participants in block 
val idation act ion [26]. The chain incentives miners to extend work in two ways. F i rs t , the 
miners receive fees added by transaction creators. Miners can choose which transactions to 
process based on the transaction fee size. This choice enables users to speed up transaction 
processing by raising the fee value. Then, as a second incentive, some blockchains mint new 
tokens and distr ibute them to the f inal block miner dur ing block creation. The mint ing 
process makes mining more attractive for earlier stages of the blockchain [19]. However, 
the final block creator is only a single entity, and the chance of becoming this creator 
is m in ima l for regular miners. Therefore, miners pool their resources and distr ibute the 
resulting rewards through the pool proport ional to the expended resource. 

M i n i n g is a different process for each blockchain. Most of the differences are in the 
type of problem that the miners solve and how its difficulty changes over time. It consists 
of miners collecting transactions, val idat ing them, and bundl ing them into blocks. Then 
miner starts to produce proof. Miners need to expend sufficient resources for a block to be 
accepted. On ly the block w i th the most resources accumulated is correct in the final state 
of the blockchain. 

The main disadvantage of proof of resource consensus mechanisms is that the work 
produced dur ing val idation grows w i th the network and has an ecological impact. The 
resource expenditure does not produce anything of value outside of blockchain security. 
Furthermore, i f a single entity were to amass over 50% of the blockchain val idation power, 
the entity would receive ful l power to modify the whole state of the blockchain. 

M i n i n g i n B i t c o i n b lockchain 

Proof of work in B i t co in is a 256-bit number that results from double-SHA256 of data in 
the blockchain. Th is number must be smaller than the current difficulty set for the whole 
blockchain to prove that work investment is sufficient. 

Since SHA256 is pseudo-random from its design, changing the nonce property in the 
block unpredictably changes the function output. Miners need to guess the nonce so that the 
hash fits the required difficulty [19]. This function allows mining using application-specific 
integrated circuits (ASICs) . Since the SHA256 algor i thm is not resource-intensive, devices 
specialized for paral lel execution are much more efficient than general-purpose devices. 

M i n i n g i n E t h e r e u m blockchain 

M i n i n g in Ethereum was created to be accessible to a l l participants. The network rewards 
miners and should be easily verified even by light clients [28]. The chosen proof of work 
function is difficult to optimize i n specialized hardware, to achieve accessibility for a l l users. 
The mining function requires high memory bandwidth, thus disabl ing the paral lel ization 
of proof-of-work computat ion since the bottleneck is available memory, not the processing 
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power. Proof of work in Ethereum starts w i th an extensive semi-permanent data set. The 
data set is then randomly sampled to create a proof. Regenerating parts of the data set 
servers as proof verification. The data-set size requires a large amount of memory in active 
use. Therefore, paral lel ization or A S I C s are mostly ineffective. 

P r o o f of stake 

Staking is a process of locking funds for the exchange of blockchain authority. Slashing is 
used as a security measure. It permanently removes some of the staked founds after false 
block propagation [28]. Th is mechanism omits outside of blockchain expenses and purely 
focuses on blockchain inact ivat ion. Th is mechanism is based on game theory and expects 
that most participants w i l l work in their favor. 

P r o o f of author i t y 

It is a widely used mechanism, differentiated from others by ut i l i z ing delegation of votes. 
The owners of the authority are responsible for the blockchain and have access to its inner 
workings. Th is mechanism allows for the creation of new data for the current authority. 
Th is mechanism can easily be swapped instead of proof-of-work, while the rest of the chain 
remains identical. Author i t y manipulat ion is helpful for testing purposes. 

2.3 T r a n s a c t i o n v a l i d a t i o n i n p r o o f o f w o r k b l o c k c h a i n s 

M i n i n g is a process dedicating effort to promoting transactions assembled into batches 
called blocks. Those blocks form the Merle tree, which connects them to the previous state 
of the blockchain. Miners are nodes connected to the network that receive broadcasted 
transactions based on the miner fees included in transactions. They choose ones to include. 
The fee w i l l be for miners after the transaction's block has been included. Each block 
contains its identif ication, located in the context of the whole state, both parents' hashes, 
and the state hash after a l l transactions have finished their execution. Furthermore, a hash 
has been generated based on current difficulty, and the blockchain algor i thm is proof of 
work-based blockchains. This hash serves as an investment by the miner in the block and 
w i l l be lost or unrewarded if the block is rejected [19]. 

Forking is an event when there are mult iple different blocks created concurrently. The 
choice of the main one falls onto the consensus mechanism described in Section 2.2. In proof 
of work, consensus is the block that has accumulated the most work behind itself. Every 
other block is later called an orphan block and is no longer val id. In each blockchain, there 
are mult iple temporal ly val id states that w i l l eventually resolve to a single final state [28]. 
The amount of work invested decides the chains' eventual state, and by measuring the 
length of trees that make blocks, it is easy to determine the longest and also the most 
propagated state [26]. 

N e t w o r k i n c e n t i v i z a t i o n 

Miners are motivated to participate by rewarding them w i th native tokens proport ional to 
their work. Those currencies are unique and separate for each blockchain. There are many 
variations in the way currencies are stored and distr ibuted throughout the network. 

There are mult iple ways to differentiate users w i th in blockchains. Below we w i l l describe 
users identified in the most prominent blockchains by their market capital izat ion. 
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Account balance based state 

Account-based state representation creates accounts that contain a balance of currency. 
Addresses serve to identify accounts, which can transfer any amounts between themselves, 
as long as it is available. The account-based state is common in many blockchains, including 
Ethereum. The global blockchain state uses the Merk le tree as its data structure. Each 
block has a hash stored inside of it as a state root [6], identifying the state dur ing the block 
creation. The state contains account balances, contract storage, contract code, and account 
nonces under each account. The account structure is stored in blocks. The accounts are 
leaf nodes of Merkle tree containing state which bu i ld into root node calleblockchaind State 
root. Th i s root node can be used to verify the given state through Merk le proofs. 

Unspent t ransact ion outputs ( U T X O ) based state 

U T X O represents any amount of d ig i ta l currency that is the output of a b i tco in trans
action [12]. They cannot be split into smaller amounts by themselves. However, after 
performing a transaction w i th a larger U T X O than required, new U T X O s are minted from 
the remaining U T X O s [19]. U T X O is also common in many blockchains, inc luding B i tco in . 

2.4 S m a r t c on t r a c t s p r o g r a m m i n g languages 

Various blockchains are using different programming languages for smart contracts as can 
be seen in Section 2.4. A n y peer-2-peer network able to process transactions and store a 
part icular state can be considered a blockchain. Nevertheless, this has m in ima l function
ality, as users can communicate only i n the most direct way without any complications or 
improvements. 

Therefore, adding functionality to clients direct ly affects the data stored inside. Creat ing 
a blockchain-specific language adds client functionality and access to the blockchain state, 
al lowing program wr i t ing to be executed by transactions outside the blockchain. 

The languages vary heavily according to their language capabilit ies. Each part ic ipant 's 
program execution needs to run w i t h the same result, and it is costly to process more 
complex programs. Furthermore, it is not always beneficial or usable to have a powerful 
language. Some blockchains like B i t co in offer just basic script ing functionality directed 
at transaction manipulat ion. However, some blockchains, such as Ethereum, provide a 
general comput ing network. Th is network can provide an interface for processing cr i t ica l 
or transparent functions [28]. 

F rom this point on, we w i l l pr imar i ly focus on blockchains, whose languages are touring 
complete i n terms of their processing power. Tour ing completeness is a necessity for more 
generalized computing. 

2.5 B l o c k c h a i n c l i en t t ypes 

In terms of blockchains, the client is a part ic ipant i n information exchange. Clients do not 
need to part icipate i n security, not even receiving data from the chain, except when they 
decide to init iate communicat ion. They are only concerned about their own transactions 
and those w i th whom they interact. There is no real benefit for them to keep other data, 
except for security. Cont inuing from here, we w i l l describe the types of client inside the 
Ethereum network. Other blockchains use different terminology, but the under ly ing func-
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t ional i ty remains very similar. Cl ients are implemented based on chain specifications, and 
the development teams often differ from core blockchain teams. 

F u l l c l i e n t s 

The ful l client validates the entire block of transactions. The client builds Merkle trees from 
blocks and, when val idating, recalculates the tree w i th the suspicious block. F u l l clients 
always store the entire state and participate i n network actions. F u l l nodes verify that 
blocks and states may or may not provide access to headers for light clients. However, they 
need to provide other data on request to part icipate [28]. 

C o n s e n s u s c l i e n t s 

Apar t from th in clients, full clients can actively part icipate i n blockchain growth. Because 
they must possess copies of the whole network, they can act by a consensus mechanism and 
t ry to append new blocks [13]. 

T h i n c l i e n t s 

The th in client, also known as the light client [28] or simple payment verification (SPV ) [19], 
is a client that uses only headers of blocks to validate the state of the blockchain. They store 
the chain of these headers but also need to request data from other blockchain participants 
when creating transactions. The verification of data provided is against state roots i n their 
headers. Th is verification requires significantly smaller performance and storage capacity. 
The headers bu i ld the Merkle tree [17] and, s imi lar ly to ful l clients, verification is done by 
creating Markov proofs w i th the inserted changed disputed state root [28]. 

The pr imary purpose of the creation of th in clients was to allow mobile or less resourceful 
divides to participate in the network. However, even header chains have become impract ica l 
in less powered or network-constrained devices in more popular blockchains. 

A r c h i v i n g c l i e n t s 

Arch iv ing clients store everything that the ful l node stores and its histor ical changes. 
Arch iv ing nodes require much more storage than ful l nodes. However, bringing more secu
rity and reference points when forking is required. They act as full nodes from an outside 
perspective [28]. 

U l t r a l i g h t c l i e n t s 

W i t h the growing size of the blockchain, th in clients ceased to be viable solutions for mobile 
devices as solution ultral ight clients were created. There are many approaches to opt imiz ing 
synchronization t ime and resource requirements [25]. 

E x a m p l e s o f c l i e n t s i n E t h e r e u m 

Most client implementations offer mult iple types of clients since the difference is technically 
slight. In Ethereum, one of the most prominent clients is Ge th . It is wr i t ten in Go- lang and 
provides an A P I interface to communicate w i th the blockchain. Ge th offers a ful l node that 
acts as an archiving and pruning, which stores less data. G e t h 2 also offers th in clients and 

2https://geth.ethereum.org 
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connections to most testing Ethereum networks. Ge th also offers to mine. However, it is 
only CPU-based , which is significantly slower than other implementations w i th GPU-based 
mining, and Therefore, it is the most useful for test-net applications. 

OpenEthereum, wr i t ten in Rust , is designed for reliable deployments. It also provides 
an A P I interface to the blockchain, but uses Warp Sync, which significantly shortened the 
synchronization t ime 3 . 

M iner clients collect raw transactions into blocks and execute work to prove their in 
vestment i n their block. If the block is accepted, they receive compensation. M i n i n g clients 
usually have separate implementations, as their pr imary goals are vastly different from 
other clients. The most prominent min ing client currently is E the rM ine which allows 
faster GPU-based mining. 

2.6 B l o c k c h a i n wa l l e t s w i t h e xamp l e s 

A wallet is a means of storage of private keys. The wallet can be just a piece of paper, 
but that would be quite unsecured and difficult. Therefore, mult iple types of wallets were 
created w i th varying amounts of security and use cases. Wallets can be differentiated by 
the locat ion of private keys, into Self-Sovereign wallets and Hosted Wallets [13]. 

• Self-Sovereign wallets store the keys local ly and should never expose them to the inter
net. They uti l ize these keys to communicate w i th the blockchain directly. Depending 
on the wallet, the keys are stored using software inside the user's computer (e.g., Exo
dus 5 ) , or they are separated w i th hardware(e.g., Ledger 6 ) [13]. A hardware-separated 
wallet is a specialized device that securely stores private keys without connecting to 
the Internet. They are one of the most secure wallets, frequently i n the form of a 
U S B w i th an encrypted private key and appl icat ion to communicate w i th the key. 

• Hosted wallets uti l ize a th i rd party that provides access to a wallet. The wallet is 
located inside the user's browser (e.g., Metamask ' ) or inside providers server(e.g., B i -
nance 8 ) . They are possibly less secure since they provide more incentive for attackers 
because they require t rust ing a single centralized entity and creating a single point of 
failure w i th key storage. 

W a l l e t d a t a v a l i d a t i o n 

Wallets depending on the type, use different types of state val idation. Hardware wallets are 
validated inside specialized programs made for decryption of stored keys. They can be using 
any node for state val idation. However, ful l nodes, even th in nodes, are too resource intensive 
to use on personal devices. The resource l imi ta t ion increases i n mobile wallets. Therefore, 
currently, most commonly used mobile and hardware wallets use centralized providers. O n 
the other hand, online wallets are entirely run on servers and can easily afford to run full 
nodes. Furthermore, as such, it brings the most reliable data. 

3https://openethereum.github.io/ 
4 https: / / github.com / ethereum-mining/ethminer 
5https://www.exodus.com 
6https://www.ledger.com 
7https://www.metamask.io 
8https://www. binance.com 
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Chapter 3 

Zero-knowledge proofs 

Zero-knowledge (ZK) proof is a method of providing information without trust. It allows for 
the transfer of knowledge of information without providing the information itself. A l though 
the provided statement should be a verifiable proof, the verifier should rel iably dist inguish 
between false and true statements [15]. Z K proofs are not only l imi ted to information. 
They can also provide proofs of the computat ion without knowing the computat ion or its 
results [29]. 

3.1 Z e r o -know l edge proo fs for p o l y n o m i a l express ions 

Po lynomia l expressions are the foundation of zero-knowledge proofs. They are a l l expres
sions in the following form: 

n i n 
CNX + ... + C\X + XQX 

Where c
n
,CQ are coefficients having constant values, X • • • • ̂  X 9JI*6 unknowns, and n is the 

po lynomial degree. The po lynomia l expression has the attr ibute that any two polynomials 
of the n th degree can have at most n intersections, which implies that a po lynomia l value 
in the n th degree can indisputably identify the polynomial . Under the assumption that the 
prover w i l l not use any other means of getting the resulting values, we can create a simple 
zero-knowledge proof for knowledge of polynomials [15]. 

If a verifier and a prover have a knowledge of a polynomial , the verifier can ask for a 
value at some point. If the returned values are equal to those verifiers calculated in their 
polynomial , they can be confident that the prover knows the po lynomia l without providing 
it to the verifier [15]. 

However, this protocol does not entirely check the knowledge of po lynomia l but rather 
the knowledge of vales at a given point. Furthermore, participants exchange knowledge of 
the polynomial , which is actual ly the exchange of knowledge of coefficients i n the polyno
mial . 

In format ion obfuscation 

To improve these problems, we need to obfuscate the data. Information obfuscation has 
mult iple approaches. We are using homomorphic encryption, which utilizes expressing val
ues as chosen base values to the power of value we want to encrypt. However, the base value 
is publ ic, and it is pretty easy to reverse this operation. Therefore, modular ar i thmetic is 
also applied. It utilizes wrapping values into some l imi ted scope w i th modulo operation. 
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The wrapped values, i f sufficiently large, are infeasible to reverse, and the wrapped val
ues, except for mult ip l icat ion, preserve the ar i thmetic properties of the unwrapped ones. 
Th is preservation is the reason for choosing homomorphic encryption for po lynomia l wrap-
ping [29]. 

To express an encrypted polynomial , we need to express each of its coefficients t ied to 
the unknown in place of the powers of a base. Therefore, the resulting value w i l l be i n the 
following form: 

j)asecnx n+...+cix 1+xox° 

Furthermore, this expresses the value of the encrypted polynomial . Prover, in this exchange, 
w i l l provide the encrypted po lynomia l and provide two other polynomials. The first divides 
the orig inal po lynomial , and the second represents the result of the given divis ion. The 
verifier checks whether the first po lynomia l of the prover is a cofactor of the secret one. 
Since the secret used to evaluate these polynomials is different for the prover and verifier, 
it provides security for the entire exchange. 

However, the prover can st i l l use other methods to get proof. W h e n the exponent is 
too tiny, brute force guessing of the po lynomia l is currently feasible. To force provers to 
create their proofs using exponentiation. Th is method is called the knowledge-of-exponent 
assumption. It utilizes sending another value together w i th the verifier's encrypted poly
nomial . Furthermore, a random amount shifts the other value. Exponent ia t ion performs 
this shift and consequent modulo operation on the result. Provers must exponentiate both 
the shifted and the encrypted values w i th the same powers. The verifier can then quickly 
check whether the values are correct and trust that the prover d id not use other means of 
getting the result. 

Secure proof va l idat ion 

We can uti l ize bi l inear pairings to allow grouping of mult iple separate proofs into one veri
fiable proof. It is a function that bi l inearly pairs two encrypted inputs to single encrypted 
output represented as their mult ip l icat ion. 

e(baseabaseb) = e(base, base)ab 

However, these functions can only take two proofs as input and not pairings, as they are 
in different domains. Th is problem can be solved by differentiating the domains of the 
functions and performing the pair ing function on the specific domains. Therefore, given four 
encrypted inputs, we can pair them to two pairs of proofs and once again pair those pairs to 
achieve a single pair of pairings. This method can allow secure verification proofs because 
a mult ip l icat ion operation is needed to check whether the same value indeed exponentiates 
the proofs provided by the prover as the encrypted polynomial . The resulting pair ing is 
usable even w i th different base domains due to the properties of the el l iptic curve described 
in Section 2.1. The reason for the mult ip l icat ion requirements is the in i t ia l shift applied to 
the secret value [29]. 

e(basef(s\baseshift) = e(base,base)shift*f<-^ 

e(baseshift*f{s),base) = e(base,base)shift*f{s) 

Verifiers w i l l be provided wi th ing proof baseshi^, and if they have the po lynomia l f(s), 

they can compare their pair ing to the proof containing shifted encrypted pair ing. 
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Rank 1 Constraint System (a,b,c) 

Figure 3.1: Transit ion of a computat ion to z k - S N A R K . 

Zero-knowledge 

The result is a zero knowledge proof, however, only from the point of view of the prover. 
The verifier can st i l l extract knowledge from the two polynomials sent by the prover. To 
combat this, shifting the values is also used on the prover's side. 

Non-interact iveness 

The obvious problem is that we require a single trusted entity to create a setup completely 
randomly and not to store the secrets. One way to solve this problem is to create a composite 
trusted setup involving mult iple parties. Here, each participant w i l l create their setup, and 
the resulting used one is a combination of a l l those involved. The cryptographic pair ing 
described above creates this combination. Moreover, we use the resulting pair ing of a l l the 
ind iv idua l setups as the final setup, which enables the creation of a setup that only requires 
a single party from the creators to be honest and delete their secrets. 

3.2 Ze ro -know l edge proo fs o f c o m p u t a t i o n 

To prove the execution of a computat ion, we first need to express the computat ion function 
in polynomials. However, first, we must restrict the problems to only the problems that 
polynomial ly expressed functions can calculate. 

NP-complete problem is a problem wi th in an N P class to which every other problem 
in the N P class is reducible [14]. A s an NP-complete problem, S A T is reducible to the 
problem of evaluating polynomials [29] therefore, the po lynomia l evaluation also belongs 
to the N P class and by itself is NP-complete. Furthermore, polynomials can express any 
problem wi th in the N P class. 

The process of expressing operations through polynomials is shown in Figure 3.1. B y 
adding variables as constants to polynomials, we can create simple logic components that 
bu i ld equations describing the function. Moreover, to tu rn it into a proof of computat ion, 
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we need to include the result i n the proof. However, s imply inc luding the result does 
not prove that it came from the computat ion or that it is correct. Instead, we need to 
include the po lynomia l of the operation. The prover w i l l create three polynomials for each 
operation, left side l(x), right side r(x), and result o(x), where l(x) operation r(x) = o(x). 

The prover w i l l use l(x) operation r(x) — o(x) as the po lynomia l for calculat ing the proof. 
In this way, while verifying the knowledge of a polynomial , we are also verifying its 

correct execution and the knowledge of the operation. If the result, the polynomials, or the 
operation were wrong, it would be easy to discern using the a lgor i thm above. 

3.3 z k - S N A R K s i n b l o c k c h a i n s 

Zero-knowledge succinct noninteractive arguments of knowledge are a specific variat ion 
of zero-knowledge proofs. In the previous sections, we describe the functionality of their 
properties. However, not their eventual results on communicat ion. 

• Zero-knowledge allows participants to communicate without revealing any knowledge 
about the information, just that of their possession. In blockchains, providing only 
the result of computations or transactions reduces the required space and computing 
power. 

• Succinctness means communicat ion in relatively smal l amounts of data per informa
t ion. Polynomials do not have to be entirely verified, only their encrypted values at 
specified points. A s the most expensive part of blockchains is storage [3], reducing 
the size of the message is always beneficial. 

• Non-interactiveness means the abi l i ty to transfer knowledge in a single message wi th
out interaction between participants. Messaging every part ic ipant is expensive on 
distr ibuted systems. Therefore, z k - S N A R K s provide a l l the required information 
w i th a message. 

• Trustless communicat ion allows for omission of introductions and exchange and ver
ification of credentials. Because participants do not need to trust other sides, they 
need to check messages. 

• Arguments of knowledge are transferred rather than the knowledge itself. The ar
gument states knowledge of knowledge without requiring the transfer of knowledge 
itself. W h i c h once again brings more minor storage requirements. 

A s mentioned in Chapter 2, decentralization also has many disadvantages, and one of the 
most prominent is the cost of computat ion. Z k - S N A R K s allows offloading the computat ion 
outside of blockchains while keeping trust i n the results. 

z k - S T A R K s 

Zero-knowledge scalable transparent arguments of knowledge are a post-quantum secure 
variant of zero-knowledge proofs that do not require a trusted setup [11]. A trusted setup 
is the cornerstone of S N A R K s security. If it were compromised, anyone w i th the secret 
and shift would be able to create fake and val id proofs [1]. Z K - S T A R K s try to solve this 
problem by introducing publ ic randomness. 
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Another significant advantage is their resistance to quantum computing. S N A R K s 
security is bui lt on the assumption of the hardness of discrete logar i thm in el l iptic curve 
groups, which are potential ly vulnerable to quantum computers [1]. However, z k - S T A R K s 
are bui l t on assumptions of the existence of collision-resistant hash-functions and shared 
access to a random function [11]. So far, these assumptions have been considered post-
quantum secure [11]. 

B u l l e t p r o o f s 

Bulletproofs is a slower version of zk-snarks that does not need a trusted setup and is post-
quantum secure [11]. The i r proof size w i th more complex proofs is significantly larger than 
that of S N A R K s and S T A R K s [11]. Bulletproofs is an extension of the B i t co in blockchain 
that allows private transactions. Instead of relying on el l iptic curves as in S N A R K s , they 
only rely on the discrete logar i thm assumption [7]. Pr ivate transaction hides the amount 
and participants but is s t i l l fully verifiable by their proof. Bulletproofs also support proof 
aggregation [7]. 

3.4 Use-cases o f z k - S N A R K s 

Considering the advantages of z k - S T A R K s and bulletproofs, the reason most real-life use 
cases in the zk proof blockchain choose S N A R K s comes from another disadvantage of 
blockchains, which is storage [10]. The proof size of S N A R K s and Bulletproofs is in terms 
of bytes, whereas in z k - S T A R K s it is i n tens of kilobytes. The verification t ime is i n terms 
of milliseconds w i th S N A R K s and S T A R K s , but this t ime among Bulletproofs it is in terms 
of seconds. Therefore, even w i th a l l the disadvantages of S N A R K s , it remains the most 
helpful too l for the current l imitat ions of blockchains [10]. 

Zero-knowledge proofs have many use cases where their inherent properties provide 
many advantages. The most common are authorizat ion, val idation of private data, out
sourcing computat ion, and anonymizing transactions [15]. 

O f f - c h a i n c o m p u t a t i o n s 

Off-chain computations are offloading the execution from the blockchain and creating proofs 
of its correctness. The proof of the computat ion must be universally trusted, and its ver
ification must be much easier than the computat ion. They are a solution to the scaling 
problems of blockchains [27]. Zero-knowledge proofs are a secure and efficient way of im
plementing them. 

A n example of an off-chain computat ion is a chain relay. The chain relay l inks blockchains 
that can securely transfer data between them. Program zkRelay implements header verifica
t ion in an off-chain mechanism and only stores proofs of this verification to blockchain [27]. 
U t i l i z ing on-chain computat ion would be 187 times more expensive [27]. In the zk ap
proach, zkRelay acts as an intermediary light client that validates headers from the source 
blockchain and creates a proof of this val idation. The target blockchain stores the proof in 
a smart contract. The target blockchain can securely verify the transactions of the source 
blockchain. 
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B l o c k c h a i n p r i v a c y 

B y design, blockchains are publ ic ledgers where private transactions can not be trusted and 
are traceable. Pr ivate transactions need to be easily verifiable and st i l l private. Z K proofs 
allow doing precisely that. 

A n example of private blockchains is Zcash. Zcash is a private cryptocurrency based 
on the bi tco in codebase. A l l transactions are transparent but can shield w i th z k - S N A R K s , 
anonymizing them. 

B l o c k c h a i n m u l t i - l a y e r i n g 

Zero-knowledge proof enables offloading of computations outside of the network. Th is 
technology can also create a second layer of blockchains built on top of the original 's security. 
Wh i l e it provides some extended but cheaper functionality. The price and required storage 
space drop drastical ly by storing the higher levels of blockchain in a compounded form 
inside the original. A n exmaple of implemented mult i- layering is zkSync 1 . Where zero 
knowleadge proofs are used for batching, val idat ing and executing transactions in a layer 
separatle from the main chain. 

I m p l e m e n t i n g z k - S N A R K S s 

Zero-knowledge proofs variants are complex algorithms. However, securely implementing 
them to accept general computations would be complex. Some frameworks provide high-
level interfaces to uti l ize z k - S N A R K s to decrease their dif f iculty 

Zokrates 

Zokrates 2 is a toolbox for using z k - S N A R K s on blockchains. It facilitates trusted setup in 
both single-party and mult i -party computations dur ing setup phase. It provides its domain-
specific language(DSL) that , after execution, leaves a trace. This tracing of Zokrates trans
forms into po lynomia l expressions that serve as parts of the proofs [27]. It also facilitates 
blockchain integration by generating verification contracts. 

Zokrates provides exportat ion of proof verifier directly into a solidity smart contract, 
which is supported in Ethereum blockchain. For this reason, we chose Zokrates as a tool 
for creating proofs in this framework. 

L ibsnark 

L ibsnark 3 is a c+-1- l ibrary that provides a programming framework for z k - S N A R K S . It also 
contains implementations of several N P problems. It provides a high-level approach to zk-
S N A R K s implementation. However, it also contains access to their low-level functionality. 
The framework does not directly provide access to blockchains. Its gadget libraries help 
w i th circuit specification [16]. 

1https://zksync.io/ 
2https://zokrates.github.io 
3 https: / / github.com / scipr-lab/libsnark 
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Chapter 4 

Framework design 

The resulting framework comprises of four functional components: client, server, zokrates 
verifier, and blockchain smart contract. These components interact w i th two types of 
blockchain, P r imary and Secondary. The pr imary blockchain stores and executes the smart 
contract, and the secondary blockchains serve as data sources for both the client and the 
server. We decided to use Ethereum for its smart contract capabilit ies for the primary. We 
chose B i t co in and B i t co in Cash for the secondary blockchains because both are proof of 
work-based and quite similar i n terms of structures and functions. 

In Figure 4.1, we can see the flow of framework functionality. In the first step, the server 
downloads batches of headers and validates them. The server then creates Z K - S N A R K 
proofs of the header chain val idity in the second step. The th i rd step is publ ishing, which 
the server executes through a smart contract publ ic method cal l . This cal l requires the 
server to provide funds to validate and store new data. The smart contract is deployed in 
The pr imary blockchain and is responsible for val idating Z K - S N A R K proofs. If they are 
val id and the header batch starts w i th an already saved and validated header, a new batch 
is created and appended to the header chain stored in the Smart Contract . The contract 
can accept an arbi trar i ly long set of proofs of header chain validations. These proofs are 
the output of the Zokrates toolbox that receives parsed input from the server. The smart 
contract header chain does not contain every header; only hash, posit ion, and difficulty for 
selected headers. The space between the stored headers depends on the size of the incoming 
batches and the number of those batches. 

B o t h the client and the server connect to the blockchain for their data source. In the 
fourth step, the client queries secondary blockchains for clients' transactions. For validat
ing those transactions, the client needs to bu i ld a local header chain to the blocks that 
contain them. The local header chain starts after the fifth step by first receiving the closest 
checkpoint to the queried block. F rom the nature of smart contracts and z k - S N A R K s , the 
client can be confident that every header stored there is in the main chain of the blockchain. 
Furthermore, the client can assume a l l the information received from the smart contract 
is t ruthful . The client builds a local header chain start ing from the received checkpoint 
header in the s ix th step. If the chain builds successfully, the client queries the secondary 
blockchain for proof of transaction inclusion into the block in the seventh step. The client 
w i l l validate the inclusion proof locally, and if successful, the client can be confident that 
the transaction is included in the secondary blockchain. 

Zokrates exports the verifier into a callable smart contract from the main smart contract. 
Verifies the val idity of 32 consecutive headers and that they follow the correct predecessor. 
It validates the hash, target, and constructiveness of headers. 
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Figure 4.1: Framework act ion flow. 
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Figure 4.2: Transaction creation and val idat ion by the client. 

Each secondary blockchain needs separate storage on the server and a smart contract. 
Val idators can st i l l work for blockchains that are similar or are forks of each other. They 
need to use the same data structures, hashing functions, and consensus mechanisms. A n 
example of such blockchains is B i t co in and B i t co in cash. B o t h are simi lar on the S P V 
client level, only w i th different block values and transactions. However, blockchains, such 
as L i teco in, w i l l require a new custom validator because of different hashing functions. We 
chose this framework as the pr imary Ethereum blockchain, where the smart contract w i l l 
be deployed, and for secondary blockchains, we chose B i t co in and B i t co in Cash. 

4.1 C l i e n t 

The client can validate the inclusion of the transaction i n the blockchain described in 
Figure 4.2. W h e n val idat ing a transaction, the client first builds the local part of the 
header chain. The local header chain always starts w i th a checkpoint received from a smart 
contract or some previously validated header. Th is local chain bui ld-up consists of light 
val idation by recalculating hashes, difficulties, and pointers to previous headers. After the 
local header chain reaches the block, which supposedly contains chosen transactions, the 
client can be confident that the block is i n the main chain. The client then asks a full node 
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Figure 4.3: Creat ion and storage of proofs by the server for one blockchain. 
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Figure 4.4: D a t a representation w i th in the Smart contract. 

for a Merkle proof of inclusion of a transaction i n a block. B y val idat ing the proof, the 
client can be confident that the transaction is i n the block and in the blockchain. 

4.2 Se rve r 

The server also connects to the pr imary and secondary blockchains. The pr imary blockchain 
is used for proof submit t ing and the secondary blockchains for header gathering. The server 
builds local header chains of the secondary blockchains and validates them in batches of fixed 
length. The server is also responsible for contract and zokrates management. It deploys, 
updates, and submits data to the contract. G iven the high l imitat ions of the Zokrates 
toolbox, the server needs to specifically parse data to be easier to parse i n contract and 
later i n the Zokrates program. 

4.3 S m a r t c on t r a c t 

The smart contract is used as a transparent and trust-less data source. The client connects 
to the master blockchain that contains the smart contract for storage and val idation. Smart 
contracts on the Ethereum blockchain store mult iple representations of other secondary 
blockchains. Each chain is composed of forks and sets of batches. 

The Smart Contract at the top level contains a single mapping of blockchains to their 
predefined IDs. The smart contract can only verify and bui ld header chains in proof of work-
based blockchains. Verifying proof of stake or other consensus mechanism-based blockchains 
is possible, but much more complex to implement. The smart contract can automatical ly 
select the ma in chain and handle forks and attacks. Provides two functions. The first needs 
some gas to execute and is for submit t ing an arbi t rar i ly long array of batch val idation 
proofs, and the second is for gathering the closest val idated header to a given block height. 
The second function is a simple cal l that executes i n E V M (Ethereum v i r tua l machine) 
without the need for any payment. Returns the closest val id header for the given height. 
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Smart contract security 

A n y user can submit batches to the smart contract and bu i ld their blockchain. However, 
every batch has calculated cumulative difficulty, and the strongest chain is selected based 
on its t rough batch accumulat ion. The attacker would need more difficulty than in the 
main chain to successfully attack the smart contract. That user would be able to attack a l l 
of the networks, and this scenario is considered infeasible. 

4.4 Z o k r a t e s heade r c h a i n ver i f i e r 

Zokrates verifier receives 32 headers where the first and last header is publ ic, and the 
rest are private. It also receives the block's hash that we want to append to this batch. 
Validates that each header's previous block hash points to the previous block and that 
the target difficulty included in the header is higher than its hash. The l imi ta t ion of this 
framework and z k - S N A R K s , i n general, is the computat ional requirements for compi lat ion 
and proof creation. The Zokrates program is easily extendable to bigger batches, which 
would significantly improve costs associated w i th smart contract storage. However, it w i l l 
require high R A M and processing resources. Zokrates functionality has mult iple phases, 
and each phase can be controlled by the P y t h o n script by its input parameters. 

1. In the first place, the code is compiled into the ar i thmetic circuit . Th is process is 
quite resources hungry and l imits the testing of larger batches. 

2. The second phase is setup. Dur ing this step, Zokrates executes z k - S N A R K s , which 
also generates toxic waste. If published, this toxic waste is usable for false proof 
creation, and therefore, we must ensure disposal of these data. We ut i l ized single-party 
computat ion since this framework serves as proof of the work of created algorithm. 
However, i n serious deployments, mult i -party computations are necessary dur ing the 
setup phase. Fortunately, by default, Zokrates supports this type of setup. 

3. The th i rd phase is verifier exportat ion. This phase generates a Sol idity smart contract 
that is deployable to the Ethereum blockchain. Verifier complexity heavily depends 
on the number of parameters that the ma in function accepts. Pr ivate inputs do not 
increase their size but cannot be stored or even viewed inside the smart contract 
function. For this reason, we pass the first and last headers as publ ic parameters, 
and the rest in between them are private. The smart contract only needs to store the 
checkpoints and does not need to verify or view what is between them. 

4. The fourth phase is witness generation. Dur ing this phase, we finally inputted the 
formatted headers. The headers are split into 5 256 bit values because it is the largest 
single value type supported in Zokrates. These headers are in form to be ready 
for the double sha256 function. The function receives a transformed header w i th 
padding. The padding is a static value of 640 since headers also have a fixed length 
of 80 bytes. After the witness phase, a witness of execution is generated, but only if 
the execution finishes successfully. If some assert failed midway through, non-valid 
witness is generated. 

5. The fifth and last phase is the proof generation. Dur ing this phase, Zokrates trans
forms the witness into zero-knowledge proof of computat ion. This proof is acceptable 
by the Verifier smart contract. Th is act ion is also rather resource-heavy. However, it 
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is a single-core processor and should be without significant problems parallelizable. 
After submit t ing the proof to the verifier smart contract, this verifier w i l l re turn a 
Boolean value indicat ing its output. 
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Chapter 5 

Implementation 

The implementat ion is div ided into four main components. We describe their functionality 
in the previous chapter. In the following sections, we w i l l describe their internal design and 
usability. 

In this implementation, we use providers for the gathering of data from blockchains, 
except for the direct mobile connection to Ethereum. We chose to use providers because 
of the high requirements of running full nodes local ly for a l l the needed blockchains. A l l 
the endpoints and data sources used have existing alternatives i n a l l nodes and are easily 
replaceable. Th is provider usage does not damage the trustlessness of this framework since 
the client connection to the pr imary blockchain is direct in the peer-to-peer (p2p) network. 

5.1 Se rve r 

The server serves data handing, smart contract actions, and Zokrates-related tasks. We 
decided not to implement automated chain bui ld ing since the proof creation is very resource 
heavy, and we would not be able to catch up to the current state for mult iple blockchains in a 
reasonable time. However, we created an interface for creating smart contracts, dynamical ly 
creating proofs and submit t ing them to the smart contract, which we use for automating 
this task. 

A simple C L I interface controls the server. It should not be used i n product ion deploy
ment but as a base or a template for automating available actions. It is an interface to 
perform the whole workflow of this framework. It can set up Zokrates and smart contracts. 
A n d then perform actions around batches such as their proof creation, submitt ing, and 
contract interactions. 

The server provides five main functions: 

• Compi le - Compi le the Zokrates verifier and update the existing smart contract 

• Deploy - Take the latest version of the smart contract and deploy it to the configured 
blockchain. The deployment executes through transactions that need to be signed 
and paid. 

• Proo f - Creates a witness and proof for a given header range. The range splits into 32 
header-sized parts, and, for each, we generate separate witness and proof. Th is act ion 
also takes as a parameter blockchainld to identify the source of the data for proof. 
F rom the source header, batches are gathered, parsed, and in the end, validated. We 
store the result ing proof i n a file identified after input parameters. 
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• Interact - Takes the same parameters as the proof, selects created files based on 
those parameters, and creates a transaction containing a l l the proofs concatenated 
into a single array. Then we send this transaction to the currently deployed smart 
contract. Interaction is a complete transaction, requiring signing and enough balance 
in the singer's account. The contract w i l l parse and validate the whole array and, i f 
successful, w i l l record the last element as a checkpoint. 

• C a l l - This function is for verifying contract functionality. It calls for the contract 
method to return the closest hash to the given height. 

D a t a g a t h e r i n g a n d p a r s i n g 

For data sources, we once again uti l ize API providers because of the high costs of local 
full nodes on required blockchains. However, a l l of the endpoints used have existing re
placements i n standard full-node implementations. The server validates a l l headers before 
creating proofs by recalculating their hashes. We represent the headers received from the 
AP I s as a Py thon object serialized to forms required by different parts of the appl icat ion. 
Our chosen secondary blockchains are B i t co in and B i t co in Cash . We chose those because 
of their high similarity. Therefore, the differences i n server between those two are only in 
the extent of changing endpoints. We also transform the received data into binary repre
sentations of hex numbers dur ing serialization, which is the expected format i n the B i t co in 
sh256 function. There are two possible serializations, the first is a basic header, where the 
raw data are concatenated and padded if needed. The second is Zokrates input. The server 
must split the Zokrates input into 256-bit parts due to the Zokrates type sizes. It takes 
the header created i n the previous serialization and creates a space-separated list of header 
parts. Then it passes this list into the Zokrates toolbox dur ing witness creation. 

Z o k r a t e s c o n t r o l 

For control l ing Zokrates, we use the CLI interface on the Zokrates toolbox that runs directly 
from Py thon . Frameworks such as zokrates-js exist to handle this task from w i th in the 
code. However, we decided on more straightforward contract handl ing to fully implement 
the server part i n Py thon . Each phase creates its output files and names them based on the 
chain and header range. The operations are a l l single-threaded and blocking. Before each 
phase, python checks i f the zokrates toolbox is available i n the system and, if not, installs 
it inside the project folder. Created proofs persist after submit t ing the smart contract to 
allow batching or re-sending them. Dur ing implementation, we grouped phases described 
in Section 4.4 into broader actions. The compi lat ion also sets up the environment and 
updates the verifier contract. Witness and proof creation are grouped into single actions 
because there is not much point in doing one without the other. 

S m a r t c o n t r a c t c o n t r o l 

Smart contract control divides into two parts. The first is its deployment. For this part, we 
create a raw transaction w i th contract ABI and, through a web3 connection to Ethereum, 
we publ ish this transaction. The web3 once again connects to the provider of the Ethereum 
node. The transaction sender is defined by a private key in constants and must have suf
ficient funds for this action. We chose to deploy w i th bui l t web3 transactions as opposed 
to frameworks like T r u f f l e or Hardhat because this way provides much more flexibil ity in 
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terms of dynamic price and blockchain management. Contract transactions cannot migrate 
contracts to newer versions instead of smart contract management frameworks. However, 
our framework also contains a functional Truffle project that can act as an alternative. The 
server provides a simple API interface for the appl icat ion to update smart contract infor
mat ion. However, the smart contract data can be easily hard-coded into the appl icat ion, 
and they can become fully separate entities. The interface is a simple endpoint REST using 
the P y t h o n framework Flask. 

5.2 C l i e n t 

The client is a react native appl icat ion compatible w i th And ro i d devices. Its purpose is to 
showcase the usabil i ty of this framework on mobile devices. For the pr imary blockchain 
Ethereum, the appl icat ion shows the user account stored inside Geth keystore. Ge th 
instance generates the account and, for this blockchain, we only show the current state, 
since the Geth instance inherently validates transactions. So there is no point i n showing 
them to the user. B y default, the Ge th instance connects as a light client to the Ropsten 
testnet. However, since in testnets, there is pract ical ly no motivat ion for ful l nodes to 
provide light clients connection and functionality, finding cooperating peers can take some 
time. Th is ful l node behavior is not a problem in the mainnet of Ethereum, but the in i t ia l 
setup required for contract interaction can take a relatively long time, even if the amount 
of data needed to download for header chain catch up is relatively smal l . Therefore, the 
appl icat ion offers the option to connect to a provider while the Ge th node is synchronized. 
Th is connection should only be used in development mode since it allows for breaking 
clients' trust. 

E t h e r e u m c o n n e c t i o n s 

Ethereum connection is achieved by running Ge th instance i n Nat ive module called 
CommunicationNative. The instance runs directly Go-lang i n Java using the wrapper 
already created. There is no available documentation for this wrapper, and it is l imited 
to basic functionality. Therefore, the available Ethereum actions are min ima l w i th in the 
application. 

Native modules, by default, do not provide an interface for communicat ion w i th react-
native. A callback function is passed to each cal l from a native function to solve this. Th is 
callback can only be used once and w i l l contain an error message or the function result. 
Ethereum instance is stored in the instance of class NodeHolder and is init ia l ized at the start 
of the appl icat ion wi th in MainActivity. The class NodeHolder also serves as data storage 
for the module and contains and provides an interface to access the user's address and the 
location of the KeyStore . The module CommunicationNative interacts w i th Ethereum by 
ut i l i z ing functions in Ge th C L I that has a wrapper to support Java. The most significant 
function i n this module getClosestHash creates a cal l to the Ethereum network. Since 
calls do not require payment, the user is not l imited or penalized for re-freshing data. The 
function returns the closest hash to height in the blockchain identified by its id . The client 
verifies the returned value as a block hash and its height. The client can assume that these 
data represent a verified header at that height and store them in the persistent local storage 
of verified headers. 
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Figure 5 .1 : E m p t y smart contract. F igure 5 .2: Smart contract w i th 10 batches. 

R e a c t n a t i v e a p p l i c a t i o n 

As the main appl icat ion, we chose react native because we prefer Typescript over Java. 
The appl icat ion uses Redux for a l l its interactions w i th outside data. It is used for both 
Native module calls and A P I interactions. 

The appl icat ion offers two main functions. Bu t t on labeled Get closest hash sends a 
request to the native module to query the smart contract for the closest hash to the given 
block. We display the closest hash for each transaction for a given account. After receiving 
this checkpoint, the appl icat ion can catch up w i th the blockchain head start ing there. In 
Figure 5.1 the smart contract only contains the B i t co in genesis block, as can be seen in 
Closest hash marked by (T). After sending a transaction w i th ten batches of 32 headers, 
called Get closest hash, the user can execute the catch-up action marked by (2). Th is 
action queries the smart contract for the closest checkpoint to the given block number. The 
Figure 5.2 shows that Closest hash after the user presses the Get closest hash button 
marked w i th ( 3 ) , the closest hash value marked w i th (4) has changed, and also that the 
catch-up length marked w i th ( 5 ) is smaller by 320 blocks, which is the number of blocks 
we submitted in ten batches. 

D a t a storage hand l ing 

For a l l asynchronous actions, the appl icat ion utilizes Redux state management l ibrary. For 
permanent data such as contact information, validated header chain, and more, the appl i 
cation uses an extension of Redux called redux-persist. The extension uses permanent 
storage w i th crucia l value inside the phone. In this way, validated transactions remain 
validated even after the appl icat ion is shut down without external state management. 
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Figure 5.3: E m p t y smart contract. Figure 5.4: Smart contract w i th 10 batches. 

The appl icat ion stores validated headers i n a similar data structure as a smart contract. 
They are mapping their block height to their hash. This way, f inding closest val id hash is a 
matter of looping downward through the local header chain. We chose to use this structure 
due to its inherent sorted nature without any manipulat ion. We add a new header only i f 
it originated from the blockchain or forms a header chain originating from the blockchain. 
W h e n forming local header chains, we recalculate a hash of the headers and check the 
target and previous header l ink. L ike servers' implementations, the headers are represented 
as objects that provide the functionality to their data. 

Blockcha in synchronizat ion 

The client synchronizes w i th secondary blockchains by cal l ing the smart contract w i th the 
required block height and checking the local header chain as to which header is closer. The 
client builds a local chain from the received checkpoint, after which we can query the block 
for the inclusion of transactions. 

Transaction inclusion is determined by asking a ful l node for Merkle proof for the selected 
transaction and validated block. This proof is then local ly validated, and i f the resulting 
Merkle root matches the root stored inside a val id block, the client can be confident that 
the transaction is included there. The endpoint for receiving proof is compatible w i th the 
standard implementat ion of bitcoin-based nodes. 

In the appl icat ion, Figure 5.3 shows a transaction that is i n a block of 33 headers above 
the currently loaded header. Note the hash value i n the closest hash field marked w i th (T). 

W h e n the user presses the catch-up button marked w i th (jf), the appl icat ion downloads 33 
headers from the secondary blockchain B i t co in cash. The headers start at the closest hash 
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Figure 5 . 5 : Smart contract w i th 10 batches. 

value and continue unt i l the header w i th the selected transaction. Afterward, the user can 
press the Get closest hash but ton marked by ( 3 ) . The result of this act ion is visible in 
Figure 5 . 4 . Note that the closest hash field, now marked w i th ( 4 ) has been updated. A n d 
furthermore note the current value of the field va l id marked w i th ( 5 ) . Th is transaction can 
now be validated. The but ton Validate marked w i th (IT) queries a ful l node for Merkle 
proof of transaction inclusion and recalculated this proof if the result ing Merkle root is the 
same as the validated local block, the flag v a l i d inside the local transaction object changes 
to true. 

In Figure 5 . 5 , we can see the result of the val idation. The val id field marked w i th ( 7 ) 

in the transaction has turned out to be true. This field shows that the transaction is valid 
and is included on the blockchain. 

5.3 S m a r t c on t r a c t 

The smart contract is pr imar i ly used for the storage and retrieval of validated headers. 
It builds its own headers chain composed of checkpoints and keeps track of accumulated 
difficulty to support forking. Dur ing its ini t ia l izat ion, we set up mult iple blockchains. 
The blockchain ID, its genesis block, and the height of the genesis block are stored in 
smart contract storage dur ing the setup phase. In addit ion to adding genesis, blockchain 
in i t ia l izat ion also adds an in i t i a l fork w i th a pointer to itself at the place of the previous 
fork. Since the default Id of this first fork is zero, the search w i l l stop after reaching this 
pointer without t ry ing to search further down. After this in i t ia l izat ion, the contract can 
bui ld chains of val id batches on top of this fork. 
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We do not need to verify hash calculat ion from submitted headers, since zokrates verifies 
that. We only need to calculate the difficulty target to store the cumulative difficulty in 
the local chain version. The difficulty is calculated from the max imum difficulty div ided 
by the target. We can uti l ize bit-wise operations on 256-bit numbers i n solidity, which 
Zokrates does not support. Therefore, we can use masks for a faster and much cheaper 
target calculat ion. 

F o r k h a n d l i n g 

Forks are handled by constantly storing the cumulative difficulty of the whole blockchain 
in each batch. Forks always start w i th the previous fork l inked to its last height at the 
last fork and its current height. The main chain w i l l most l ikely be composed of mult iple 
forks w i th this structure. After each addit ion of forks, we automatical ly choose a new main 
fork depending on the tota l cumulative difficulty inside the highest batch at available forks. 
Since the previous ma in fork has already been decided to its state by this action, we only 
need to compare the difficulties of the new and main forks. 

The cumulative difficulty of the batches automatical ly updates after each batch to the 
same current and previous batch difficulties. If the batch is first i n a new fork, we acquire 
difficulty from the batch at the height of the previous fork stored i n the current fork. 

W h e n determining the fork for the newly val idated batch, we scan a l l forks in the current 
chain. W h e n a fork contains a previous hash at a height lower than the verified hash, we 
can be confident that the fork can accept that hash. Unwanted collisions dur ing this act ion 
are improbable since two different forks would need to have the same hash at a given height 
and different contents. 

C l i e n t i n t e r a c t i o n 

Client interacts w i th a single function ClosestHash. Th is function returns the closest 
validated hash and its height at the selected blockchain and height. The function triggers 
a private recursive function getClosest. 
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function getClosest( 

uint chainld, 

uint height, 

uint forkNumber 

) private returns (uint256[] memory) { 

Chain storage headerChain = chains[chainld]; 

// using undefined array length for geth warpper compatibility 

uint256[] memory ReturnVal = new uint256[](2); 

Fork storage mainFork = headerChain.forks[forkNumber]; 

i f (height > mainFork.forkHeight) { 

height = mainFork.forkHeight + 1; 

} 

for (uint i = height; i >= 0; i — ) { 

// if reached some hash return it 

i f (mainFork.batches[i].lastHeaderHash != 0) { 

emit ClosestHash(mainFork.batches[i].lastHeaderHash); 

ReturnVal [0] = mainFork.batches[i].lastHeaderHash; 

ReturnVal[1] = mainFork.batches[i] .height; 

return ReturnVal; 

} else i f ( i == mainFork.previousHeight) { 

// if reached previous fork continue searching in it 

return 

getClosest( chainld, 

mainFork.previousHeight, 

mainFork.previousFork 

) ; 
} 

} 

emit ClosestHash(0); 

return ReturnVal; 

} 

Lis t ing 1: C h a i n traverse i n smart contract 

The function i n L is t ing 1 traverses a l l batches i n forks that precede the main fork. The 
traversal is downward because, for the client, bui ld ing header chains from the bottom-up is 
easier and once smart contract reaches top of blockchain it is easier to enforce consistency 
downwards. The traversal ends when we reach height zero or when the current fork has a 
verified block hash at the current height. W h e n the function reaches fork height zero and 
the fork has the previous fork defined, the function recursively runs i n the previous fork at 
the start ing height that is stored in the current fork. The function returns bo th hash and 
its height i n the header-chain in a single array of unspecified length, because of expected 
type l imitat ions of the go wrapper i n clients native module. 
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5.4 Z o k r a t e s heade r c h a i n ver i f i e r 

Zokrates program verifies that a sequence of headers is val id and continues from some start
ing point. The program accepts an array of 32 headers and creates proof of its val idation. 
We designed the Zokrates program for 32 headers, however, it is extendable and reducible 
for different sizes. Its pr imary function accepts a list of headers and their hashes. The 
first and the last values from both lists are publ ic parameters, and the rest are private 
parameters. This choice of v is ib i l i ty is to optimize the smart contract val idator because 
its size grows rapidly w i th addi t ional publ ic parameters. Secret parameters are not passed 
to the final verifier; only publ ic ones are passed. Because the largest single value type in 
Zokrates has 256 bits, the input must be split into 256-bit hexadecimal values. 

B a t c h v a l i d a t i o n 

The zokrates program for each header calculates hashes and targets and then checks its 
continuation of the previous header. The sha256 function of the Zokrates standard l ibrary 
calculates the header hash. We need to pad this function since we are apply ing a hash 
function on headers w i th 80 bytes. We add a constant value at the end of the sha256 
input and the number of bits needed to reach the end of the input to create padding. The 
implementation of header hashing is shown in L is t ing 2. 

def hash_block_header(u32[5][4] preimage) -> f i e l d : 

u32 [8] preimagel = [ ...preimage [0], ...preimage[1] ] 

u32 [8] preimage2 = [ ...preimage [2], ...preimage[3] ] 

# hex representation of number at the end of input values 

u32[8] preimage3 = [ ...preimage [ 4 ] , 0x80000000, 
0x00000000, 0x00000000, 0x00000000 ] 

# last part of sha256 input with number of padded bits in hex 

u32[8] dummy = [ 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 
0x00000000, 0x00000000, 
0x00000000, 0x00000280 ] 

# first hash of the input 

u32 [8] intermediary = sha256forl024(preimagel, preimage2, 
preimage3, dummy) 

# second hash with the results from first 

u32 [8] res = sha256for256(intermediary) 
# changing endianness 

res = change_array_endainnes(res) 

# transforming into single 256 bit value 

return u32Pack256(res) 

L is t ing 2: Header hashing in zokrates 

From the l imitat ions of Zokrates types and standard functions, we must transform 
headers to arrays of 32-bit numbers from input form input forms of 128-bit values. These 
arrays are passed to function in L i s t ing 2 and then padded into a single 1024-bit value. This 
value is passed to the first sha256 function, and its result can now be passed without padding 
into the second sh256 function. These hash functions return an array of 32-bit numbers 
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that together form a single 256-bit hash. To allow final verification of hash output, we 
needed to swap the endianness of the resulting hash. To swap endianness, we need first to 
reverse the array and second reverse bits i n each array element. The array reverses in a 
simple for loop, and elements need to first be turned into bitwise array representation and 
then spread into a new array i n reverse order. 

Zokrates guarantees the correctness by asserts, which stop witness creation execution 
quicker than keeping state, and the resulting witness is not val id. B i t co in stores the targets 
in the headers in values called bits. It is a 32bit number, where the first six bits represent 
the amount left shifts of the rest of the bits to calculate the target of the hash of the header. 
In the following equation, we can see the entire equation of target calculation, where the 
head is the first six bits, and the ta i l is the last 26 bits. 

Target = tail * 2^head~^ 

Since Zokrates does not support dynamic shift sizes or exponent calculations, we calcu
late the amount of shifts from the head value and loop over the ta i l w i th 64 times shifting 
to the left by one. W h e n we reach the number of shifts defined i n the head, we cannot 
escape the loop, so we need to set the shift to zero. 
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Chapter 6 

Framework evaluation 

Testing performance is concentrated mainly around Zokrates and the smart contract part of 
this framework since that part provides functionality and is the most expensive to perform. 
As the client does not require performing any significant or costly tasks, we only tested 
data requirements for catching up based on different checkpoint margins. 

6.1 B a t c h s u b m i s s i o n cost 

The cost of submit t ing batches comes from three places. The first is the contract storage 
ut i l i zat ion, the second is the computat ional resources required for proof creations, and the 
final is the client network requirements on synchronization. Storage after account creation 
is the second most costly act ion w i th in the Ethereum network [3]. Therefore, opt imiz ing 
this part is crucia l for the performance of this framework. We created proofs of 32 header 
batches for the first 1000 headers for testing. Since the smart contract can accept arrays 
of proofs, we tested the ideal array length per the price of its submission, the cost of in i t ia l 
catch up and the max imum client synchronization cost. 

C o n t r a c t s t o r a g e u t i l i s a t i o n 

Dur ing storage ut i l isat ion testing we used function provided by web3 framework called 
estimateGas. This function receives a raw transaction, executes it locally, and outputs the 
gas required for its successful execution on the Ethereum network. 

In Figure 6.1, we can see that the price of submit t ing mult iple batches increases l inearly 
w i th their amount. Dur ing testing, we found a hard l imi ta t ion of the Ethereum network 
in the form of max imum gas per block, which is a constant [3]. Dur ing testing, we already 
breached this l imi t i n 22 batches i n a single transaction. 

The Figure 6.2 shows the cost of catching up to the main net of B i t co in i n Ethereum 
based on the average, m in imum and max imum gas prices in Mar ch 2022 1 . This chart is only 
for general orientation, and Figure 6.2 shows the exact price of batched batches submission 
in gas. Since the blockchain always grows, we chose to show the cost of upkeep of this 
network in current state of Ethereum development. It shows tota l price in Ether for the 
continuous publ ishing of new block proof batches. Since in B i t co in every 10 minutes a new 
block is created, assuming 30 day month, 4320 new blocks w i l l be created by its end. The 
results show that costs drop drastical ly i n smaller batches but begin to stabilize i n more 

1 https: / / etherscan.io/chart / gasprice 
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Figure 6.1: Pr ice of submission for batch count. 

significant amounts. The cost could be improved further i f we switch to a less-constrained 
blockchain. 

P r o o f c r e a t i o n 

Proof creation is a resource-intensive operation. To measure resource usage, we use ut i l 
i ty psrecord. It consists of two consecutive actions. The witness computat ion, shown in 
Figure 6.4, requires less R A M and is a quick action. The proof computat ion shown in F i g 
ure 6.5 requires more R A M and takes significantly more t ime than the witness computat ion. 
These actions are single-core processes and can be parallelizable if there is enough memory 
to support them. Dur ing our testing, both were constrained by single-core C P U speeds. 

We tested mult iple configurations of the zokrates verifier. We needed to change the 
verifier to accommodate the amount of headers in batches. These changes are relatively 
simple and mainly comprise changing the ma in size of the loop and input array. A n example 
of such changes can be seen in the file btcl6HeadersValidation.zok, which accepts a batch 
of sixteen headers. The result of testing these configurations can be seen i n Figure 6.6. The 
tests have shown that the R A M requirements increase l inearly w i th batch sizes. Epochs in 
Bitcoin-based blockchains have Epochs of size 2016 [19]. Therefore, we elected the batch 
sizes to be powers of two. Each epoch has a constant difficulty target that changes between 
them. Furthermore, selecting batch sizes from powers of two allows us to check these targets 
outside of zokrates. 

6.2 S to rage o p t i m i z a t i o n 

W h e n sending mult iple batches in the transaction, the cost is smaller because the blockchain 
Smart contract only stores the last header of a l l the batches in permanent storage. However, 
these overlapping batches create larger spaces between checkpoints and force the client to 
download more headers for synchronization as a result. 
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Figure 6.3: Pr ice to catch up to Btc . 

Figure 6.7 shows the growth rate for the number of blocks that synchronize according to 
batch size. Apar t from in i t ia l synchronization, even batches of 20 or 30 headers are viable 
for devices w i th l imited data. 

T o t a l s t o r a g e o p t i m i z a t i o n 

This framework works as a replacement for running separate Light clients inside mobile 
devices. In B i t co in light client, one would need to download, store, and process around 
6 0 M B [19] for in i t ia l synchronization per client. W i t h current wallets support ing several 
different blockchains, this amount would quickly grow to become unmaintainable. Th is 
framework provides a single blockchain light node as a source of t ru th , and the rest are 
dynamical ly synchronized. The tota l storage opt imizat ion w i l l be different per user account, 
since the user only needs the parts of blockchains up to blocks containing their transactions. 
However, it grows proport ional ly to the number of supported blockchains. 
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Figure 6.4: Witness computat ion. 
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Figure 6.7: M a x i m u m client synchronization size. 
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Chapter 7 

Discussion 

7.1 A p p l i c a t i o n des i gn 

The appl icat ion was designed as a proof of the work of this framework. The interface is 
not user-friendly for wallet functionality; however, it shows how this framework works w i th 
data from mult iple sources. In a user facing implementation, the appl icat ion would not 
display any of the manual functionality, it would automatical ly catch-up to blocks w i th 
user transactions and validate them without any user input or notice. The appl icat ion 
would only have a list of transactions and the usual wallet capabilities. 

7.2 P e r f o r m a n c e o f p r o o f g e n e r a t i o n 

Proof generation is an act ion w i th high hardware demands and does take a significant 
amount of t ime. In blockchains, the speed of block generation varies. However, this frame
work must perform significantly faster proof creation than the interim-between-blocks to be 
viable i n real-world use cases. In Chapter 6 we tested t ime and hardware difficulties, which 
have shown that the higher the header count and batch count, the cheaper its submission. 
The testing was constrained by hardware performance and the single-threaded nature of the 
Zokrates toolbox. For batches of 32 headers on Intel i 7 -10510U, we recorded an average 
witness creation t ime requirement of 255 seconds and a proof creation w i th an average time 
requirement of 681 seconds. Therefore, on our setup catching up to bi tco in would require 
about 936 seconds per block. The current speed of the B i t co in blockchain is a new block 
every 600 seconds. Th is means that proof creation is about 20 times faster on our setup. 
However, this act ion is l imi ted by our single-core speeds and nonparallel ized computat ion 
of proofs. Therefore, we would be able, without further optimizations synchronize 20 sec
ondary blockchains at the same t ime. However, the in i t ia l synchronization requires more 
powerful hardware. Because the current top block is at the height of 73320 1 and the proof 
generation of a l l proofs in B i t co in would take about 27 days. Therefore, the framework is 
usable on consumer hardware if the blockchain has already caught up. 

7.3 F r a m e w o r k l i m i t a t i o n s 

The first l imi ta t ion is the Zokratess toolbox. Zokrates, by default, supports a range of hash 
functions naively, and this range sets a hard l imi t on the choice of blockchains that can be 

x https: / / www.blockchain.com/explorer 
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supported. Blockchains are further l imi ted by the data size required for header val idation. 
Zokrates has a l imi ted number of publ ic inputs. The l imi ta t ion comes from generated smart 
contract size, which cannot be published into the main-net blockchain after some amount. 
Th is size can be reached because for each blockchain. We need to have at least two publ ic 
header inputs. A s mentioned in Chapter 5, the l imi ta t ion of the max imum type size to 256 
bits means that headers must be split into 256 bit parts. If the two required headers have 
large sizes, the contract deployment can be severely more expensive or impossible. 

Another l imi ta t ion is hardware and blockchain founds requirements for catching up to 
the current state of blockchain. The payments decrease direct ly w i th the number and size of 
batches. However, the larger the batches, the higher the requirements for proof calculat ion 
and the larger the m in imum synchronization distance becomes for clients. It would be 
expensive to catch up to the top of the selected blockchains at the current configuration. 
However, even w i th bigger batch sizes, the Ethereum block size is s t i l l l imited in its gas 
consumption, which we reached at 22 batches of 32 header-sized batches. 
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Chapter 8 

Conclusion 

We designed and implemented a framework for mobile wallets based on z k - S N A R K s and 
smart contracts. The framework provides faster and less data-intensive synchronization 
than running mult iple local light clients. The tota l storage opt imizat ion gain grows in 
proport ion to the number of used blockchains since only a single light client is required 
to function correctly. The framework supports Ethereum as its pr imary blockchain, which 
serves as the source of t ru th for both client and server. Furthermore, the smart contract 
deployed on Ethereum serves as trusted storage and verifier of fragmented header chains. 

The framework also supports two secondary blockchains, B i t co in and B i t co in Cash. 
The server creates local header chains of these secondary blockchains and generates proofs 
of their successful verification. The proofs are then submitted to the smart contract and 
verified in the on-chain computat ion. Except for in i t i a l deployment, this submission is the 
only action that requires on-chain payment. The client interactions are without any charges. 
The client is a mobile appl icat ion that runs an instance of the Ethereum light node. This 
light node is used for accessing smart contracts w i th secondary chain checkpoints. After 
receiving a secondary chain checkpoint, the client can start bui ld ing a local chain from it 
as a new temporary genesis block. Since mobile clients are only interested in transactions 
affecting them, they only require smal l parts of the whole blockchain to function. This 
framework allows them to securely verify blocks while preserving the security coming from 
light clients. 

Apar t from the in i t i a l costs of framework setup, our solution is a viable trust-less al
ternative to the current mobile blockchain wallets. Provides an interface to control Smart 
contract and Zokratess from a P y t h o n script. We designed it to be extendable for different 
batch sizes or proof of work-based blockchains w i th included and tested examples of such 
extensions. The implemented react native appl icat ion showcasing the functionality of this 
framework demonstrates improvements i n storage ut i l i zat ion as compared to other trust
less alternatives. The storage and bandwidth required for mobile synchronization for the 
secondary chains increases w i th the number of blocks we want to validate. However, i n the 
worst-case scenario, i f the client has a transaction in every single block in the blockchain, 
it w i l l at most reach the requirements of light clients. 

F r a m e w o r k ex t ens i ons 

The framework can be extended to support other consensus mechanisms and other Block-
chains. The extension w i l l add a smart contract chain selection configuration, and in the 
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Zokrates program, we w i l l need to add support for chain-specific batch handl ing. Another 
helpful extension is the support for paral lel ization and automat ing dur ing proof creation 
and submission,which we d id not implement, as it is applicable only dur ing deployment to 
product ion. Furthermore, it needs to be expl ic i t ly configured for the different framework 
configurations. 
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Append i x A 

Contents of the included medium 

medium 

zkWallet - Source code of implemented framework 

thesis - Source code of t h i s thesis 

thesis.pdf - PDF of this thesis 

Figure A . l : Contents of the included medium. 

Language TypeScr ipt Java Py thon Sol idity Zokrates JavaScript Shel l 
Lines of code 1327 458 445 351 218 201 166 

Table A . l : L ines of not generated code per language without comments. 
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