
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

MOBILE CRYPTOCURRENCY WALLET BAS E D ON
ZK-SNARKS AND SMART CONTRACTS
MOBILNÁ PEŇAŽENKA NA KRYPTOMENY ZALOŽENÁ NA ZK-SNARK TECHNOLÓGIÁCH

A SMART KONTRAKTOCH.

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. SAMUEL SLÁVKA
AUTOR PRÁCE

SUPERVISOR Ing. IVAN HOMOLIAK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Master's Thesis Specification |||||||||||||||||||||||||
23223

Student: Slávka Samuel, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Application Development
Title: Mobile Cryptocurrency Wallet Based on zk-SNARKs and Smart Contracts
Category: Security
Assignment:

1. Study principles of thin mobile clients and their examples. Acquaint yourself with blockchains
and smart contracts.

2. Study principles of zk-SNARKs and their variants.
3. Propose a client-server framework for mobile wallet that will utilize zk-SNARKs as a storage

optimization technique.
4. Implement proposed framework using Android/IOS for client and arbitrary programming

language for server. The framework should support at least 3 cryptocurrencies.
5. Evaluate the cost and performance of the framework.
6. Propose extensions and discuss limitations of the framework.

Recommended literature:
• Westerkamp, Martin, and Jacob Eberhardt. "zkRelay: Facilitating Sidechains using

zkSNARK-based Chain-Relays." Contract 1.2 (2020): 3.
• Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum

project yellow paper 151.2014 (2014): 1 -32.
• Homoliak, Ivan, et al. "The Security Reference Architecture for Blockchains: Toward

a Standardized Model for Studying Vulnerabilities, Threats, and Defenses." IEEE
Communications Surveys & Tutorials 23.1 (2020): 341-390.

Requirements for the semestral defence:
• Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Homoliak Ivan, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 3, 2021

Master's Thesis Specification/23223/2021/xslavk02 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to propose and implement a framework for cryptocurrency wallets.
The framework optimizes light client storage and bandwidth requirements in mobile devices.
We propose a side-chain mechanism that validates blockchain header chains and creates
zero-knowledge proofs. Furthermore, the framework stores the results of proof verification
inside an Ethereum Smart contract. The Smart contract supports fork handl ing and storing
header chains for mult iple different blockchains. L ight mobile clients using this framework
can update their local header chain from checkpoints created by the proof verifications
results stored i n the Smart Contract . Th is thesis includes an implementat ion of a mobile
wallet using this framework for synchronization w i th mult iple blockchains.

Abstrakt
Cieľom tejto diplomovej práce je navrhnúť a implementovat prostredie pre kryptomenové
peňaženky, ktoré je optimalizované pre požiadavky na úložisko a prenosovú rýchlosť v
mobilných zariadeniach. S využitím zero-knowledge dôkazov navrhujeme mechanizmy side-
chain výpočtu, ktoré overujú reťazce hlavičiek blokov a uchovávajú dôkazy o ich overeniach v
blockchaine. Ľahkí mobilní kl ient i , využívajúci toto prostredie, už nebudú nútení sťahovať
a neustále aktualizovať svoj reťazec hlavičiek, ale môžu používať záchytné body uložené
v Smart kontrakte. Táto práca taktiež zahŕňa implementácie mobilnej peňaženky, ktorá
používa implementované prostredie pre synchronizáciu s viacerými blockchainami.

Keywords
Side-chain, Zero-knowledge, Proof, Blockchain, Wallet, Opt imisat ion

Klíčová slova
Side-chain, Zero-knowledge, Dôkaz, Blockchain, Peňaženka, Optimalizácia

Reference
SLÁVKA, Samuel. Mobile Cryptocurrency Wallet Based on

zk-SNARKs and Smart Contracts. Brno , 2022. Master 's thesis. Brno Universi ty of Tech
nology, Faculty of Information Technology. Supervisor Ing. Ivan Homol iak, P h . D .

Rozšířený abstrakt
V tejto práci sme navrhl i a implementovali prostredie pre mobilné peňaženky založené na
z k - S N A R K a smart kontraktoch. Prostredie poskytuje rýchlejšiu a menej náročnú synchro
nizáciu, ako súbežné používanie viacerých lokálnych ľahkých klientov. Celková optimalizá
cia úložiska rastie priamo úmerne s počtom použitých Blockchainov, pretože na správne
fungovanie je potrebný iba jeden ľahký klient. K l i ent aj server používajú Ethereum, ako
svoj primárny Blockchain, a ako ich jediný dôveryhodný zdroj pravdy. Okrem toho smart
kontrakt nasadený na Ethereu slúži, ako dôveryhodné úložisko a na overovanie fragmento-
vaných reťazcov hlavičiek.

Prostredie taktiež podporuje dva sekundárne Blockchainy, B i t co in a B i t co in Cash.
Server vytvára lokálne reťazce hlavičiek týchto sekundárnych Blockchainov a generuje dôkazy
o ich úspešnom overení. Dôkazy server následne pošle v transakciách do smart kontraktu,
kde sa overia a ak sú validné, ich výsledky validácie sa pridajú do kontraktového úložiska.
Okrem počiatočného nasadenia je odoslanie dôkazov jediná akcia, ktorá si vyžaduje p la tbu
v našom prostredí. Komunikácia pre klientov je bez akýchkoľvek poplatkov. V tomto
prostredí je klient mobilná aplikácia, ktorá spúšťa inštanciu ľahkého uzla v Ethereu. Tento
ľahký uzol sa používa na prístup k smart kontraktom so záchytnými bodmi sekundárneho
reťazca. Po prijatí záchytného bodu reťazca hlavičiek, klient môže začať budovať nový
lokálny reťazec. Tento reťazec začína priamo v t om záchytnom bode a končí v hlav
ičke, ktorú klient chce overiť. Keďže mobilných klientov zaujímajú len transakcie, ktoré
sa ich priamo týkajú, na fungovanie potrebujú len malé časti celého reťazca hlavičiek. Toto
prostredie i m umožňuje dôveryhodne overovať bloky pr i zachovaní bezpečnosti pochádza
júcej z ľahkých klientov.

Okrem nákladov na údržbu a počiatočného dobiehania sekundárnych Blockchainov,
výsledné prostredie ponúka dôveryhodnú alternatívu k súčasným mobilným Blockchain-
ovým peňaženkám. Prostredie poskytuje rozhranie na ovládanie smart kontraktu a Zokrat-
ess prostredia zo skr iptu napísanom v jazyku Py thon . Naše prostredie sme navrhl i tak, aby
bolo rozšířitelné pre rôzne veľkosti postupnosti hlavičiek a pridávanie podpory viacerých
Blockchainov, pokiaľ sú založené na dôkazu o prevedenej práci.

Implementovali sme mobilnú aplikáciu v React native, ktorá predvádza funkčnosť tohto
prostredia a vykazuje zlepšenia v požiadavkách na úložisko v porovnaní s inými dôvery
hodnými alternatívami. Vyžadovaný úložný priestor a množstvo prenesených dat potreb
ných na mobilnú synchronizáciu pre sekundárne Blockchainy rastie s počtom blokov, ktoré
chceme overiť. V najhoršom prípade, ak má klient transakciu v každom jednom bloku v
Blockchaine, dosiahne nanajvýš potreby ľahkých klientov.

Mobi le Cryptocurrency Wallet Based on
z k - S N A R K s and Smart Contracts

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of M r . Ing. Ivana Homol iaka, P h . D . I have l isted a l l the l iterary
sources, publications and other sources, which were used dur ing the preparation of this
thesis.

Samuel Slávka
M a y 16, 2022

Acknowledgements
I am grateful towards my supervisor Ing. Ivan Homol iak, P h . D . for his professional approach
and his helpful insights dur ing this work.

Contents

1 In t roduc t i on 3
1.1 Mot iva t ion 3
1.2 Contr ibut ions 3
1.3 Organizat ion 4

2 P r inc ip l es of blockchains 5
2.1 User authentication 5
2.2 Consensus mechanisms 9
2.3 Transact ion val idat ion in proof of work blockchains 11
2.4 Smart contracts programming languages 12
2.5 Blockchain client types 12
2.6 Blockchain wallets w i th examples 14

3 Zero-knowledge proofs 15
3.1 Zero-knowledge proofs for po lynomial expressions 15
3.2 Zero-knowledge proofs of computat ion 17
3.3 z k - S N A R K s in blockchains 18
3.4 Use-cases of z k - S N A R K s 19

4 Framework design 21
4.1 Cl ient 22
4.2 Server 23
4.3 Smart contract 23
4.4 Zokrates header chain verifier 24

5 Implementat ion 26
5.1 Server 26
5.2 Cl ient 28
5.3 Smart contract 31
5.4 Zokrates header chain verifier 34

6 Framework evaluat ion 36
6.1 Ba tch submission cost 36
6.2 Storage opt imizat ion 37

7 D iscuss ion 40
7.1 App l i ca t ion design 40
7.2 Performance of proof generation 40

1

7.3 Framework l imitat ions

8 Conc lus ion

B ib l i og raphy

A Contents of the inc luded m e d i u m

Chapter 1

Introduct ion

Blockchain is an ever-growing decentralized database w i th a single shared state [3]. Its state
consists of a chain of blocks, which are used as a basic storage units containing lists of state
changes expressed through transactions. Every block must contain a l ink to its predecessor
to be included in the state. These l inks create the chain that starts at the in i t i a l block and
ends at the most recent accepted block. The only way to verify information correctness in
a blockchain is by recreating its state locally.

1.1 M o t i v a t i o n

Blockchain clients want to work w i th this decentralized state. Therefore, they must store
the entire chain local ly and constantly update it w i th newly created blocks. However,
w i th constantly growing blockchain sizes, local ly storing their chains is becoming infeasible
for smaller devices. For this reason, light clients [28] were introduced. L ight clients also
bui ld the blockchain locally. However, they only use metadata of its blocks called headers.
Therefore their storage and networking requirements are significantly smaller than regular
(full) clients.

However, the header chains are also constantly growing, and even this much lighter
approach has become too demanding [25] for mobile devices in recent years. For the growing
needs of light clients, mobile clients switched mainly to ultral ight clients [25] or fully hosted
wallets. Ultral ight clients uti l ize various techniques to l ighten the load on devices while
preserving the security of light clients. They act as light clients underneath while st i l l
providing secure access to blockchains. A s oposed to another popular apporach in mobile
devices called fully hosted wallets. The fully hosted wallets provide an endpoint for a l l the
revelant data, and the client must trust it to be secure. W h i c h trades trustlessness for the
gain of usabi l i ty and speed.

1.2 C o n t r i b u t i o n s

This thesis proposes an opt imizat ion of mobile light client storage and networking demands
by designing and implementing an ultral ight client framework. Th is framework consists
of an off-chain mechanism where a server creates z k - S N A R K proofs of the header chain
val idat ion. These proofs are then submitted and verified in an Ethereum smart contract,
where they create a fragmented header chain. The header chain is split into checkpoints
made from spaced-out header identifiers. A batch of proofs can create a new checkpoint

3

only if its headers start w i th previously-stored checkpoints and the proofs are val id and
they continue from some previously stored checkpoint. The smart contract that stores the
header chain is fork-resistant and automatical ly selects the correct strongest chain.

The implemented ultral ight client direct ly accesses the smart contract checkpoints and
uses them as temporary start ing points for its local header chains. The client verifies the
inclusion of the block by querying the smart contract for the closest checkpoint. The client
then builds a fragment of the header chain, start ing at the received checkpoint and ending
at the disputed block. Th is act ion is significantly faster than synchronizing the whole
chain from its beginning, especially after a prolonged t ime without synchronization. The
resulting framework supports Ethereum as its pr imary blockchain, and B i t co in and B i t co in
Cash as its secondary blockchains. However, it is designed to be extensible for other proof
of resource based blockchains.

1.3 O r g a n i z a t i o n

In Chapter 2 we describe blockchains, their principles, purposes, and use cases. In Chapter 3
we describe zero-knowledge proofs and their variants. In Chapter 4 we propose the design
of the ultral ight client and its framework. In Chapter 5 describe our implementat ion of the
proposed client and framework. In Chapter 6 we evaluate both implementations and their
usability. In Chapter 7 we discuss the advantages and disadvantages of this framework. In
Chapter 8 we summarize the achieved goal and propose future developments.

4

Chapter 2

Principles of blockchains

The blockchain is an open system for the execution and processing of transactions under
transparent rules [28]. The system is an immutable, constantly growing list of records.
Each record is represented by a block that changes internal state of this system. The new
state can only be appended to the history of previous states and must reference them to
mainta in a single chain of events. Blockchains work as decentralized peer-to-peer networks,
where nodes synchronize and propagate their local state versions. The system is trust-less,
100% available, and has immutable data storage [19].

Each blockchain node can alter and validate the state of this network. However, the
changes must comply w i th the rules of the blockchain source code. The transaction is a
message containing directives for nodes to change state inside of the network [19]. The
transactions are validated by blockchain nodes before grouping them into blocks and then
broadcasting these blocks to other nodes in the blockchain. Blocks are a fundamental data
storage unit that aggregates sets of transactions created roughly at the same time [19].
W h e n a node adds a compromised or incorrect block, other nodes w i l l act based on the
consensus mechanism, whose types we describe in Section 2.2.

Each block is l inked to its predecessors by inc luding the cryptographic hash of the
previous block. Th is l ink ing creates immutabi l i ty since the previous state is always part of
any new changes. The blocks form a hash chain that contains a cryptographic hash of each
leaf node's data labels.

The entire network eventually settles to a single version of its state, br inging trust-
lessness to its communicat ion. Since every blockchain user can also participate i n the
functionality of the network, every user can verify every transaction that occurs there.
Furthermore, the users do not have to trust anything outside their supervision because a l l
blockchain functionality executes in every blockchain node.

100% availabil i ty comes as a result of its decentralization. Because every node can
perform a l l of the the blockchains functionality, there needs to be at least one node for the
blockchain to function.

2.1 U s e r a u t h e n t i c a t i o n

A decentralized and open system is prone to attacks and fraud. Blockchain participants
are charged for every transaction to discourage most i l l ic i t activities. However, the charge
must remain completely enclosed in the system to determine the possibi l i ty of making such
transactions before they occur. For this purpose, user authentication is required to dis-

5

Leaf node Leaf node Leaf node Leaf node

Figure 2.1: State storage structure based on Merkle trees.

t inguish and grant them access to the state. A m o n g blockchains, public-key cryptography
serves as a user identif ication.

In public-key cryptography, each user has a pair of keys [22], private and publ ic . Accord
ing to the blockchain rules, the user generates a private key dur ing account setup. Through
a blockchain-specific algori thm, users generate a private key, which generates a publ ic key.
Afterwards, the users can use the publ ic key as their unique address. The address serves
for locating part of the ledger that the user can access and uti l ize. Furthermore, the private
key serves as a password, without which transactions on the given address w i l l not work.
However, the password cannot grant access to the address directly. Since the blockchain
is a distr ibuted system, every other user would find out about the key and gain access to
the contents of the address. For this reason, only transactions contain a signature obtained
from the key. A signature is the output of a trapdoor function that inputs the sender's
private key and the unsigned transaction itself. The final transaction also contains the re
sult ing signature, so anyone w i th access to the sender's publ ic key can easily verify message
authenticity.

Trapdoor functions are also used for public-key generation [18]. The trapdoor function
is a function that can be easily computed i n one direction and is difficult i n the oppo
site direction [18]. Therefore, comput ing the publ ic key from the private one is relatively
easy. However, the computat ion of private keys from the publ ic keys is computat ional ly
part ia l ly impossible. 1 B lockchain security heavily relies on the assumption that the reverse
computat ion w i l l not be feasible [24].

To unequally identify any val id Merk le tree, we must calculate its root nodes' crypto
graphic hash, and any change i n its data contents w i l l propagate directly into the root hash.
Merkle trees provide an easy way to verify the data, called the Merkle proof. Merkle proof
is a result of recomputed Merkle tree w i th unverified data [17]. W h e n verifying, we do not
need to recompute the whole tree, only the parts that could have been changed [2]. Th is
process speeds up the verification and does not allow other data to be used to bu i ld the
proof. After re-computing, we only need to check if the newly created root hash equals the
expected one.

1 W i t h current resources and knowledge [23].

(i

Figure 2.2: Points A and B create point C , which is reflected into point D [23].

C o m m o n l y used s i g n a t u r e a l g o r i t h m s i n b l o c k c h a i n s

Blockchains have different l imitat ions and requirements, so their creators need to choose
suitable algorithms for singing. Due to its decentralized nature, on-chain resources are
scarce. Furthermore, signing, one of the most used algorithms, needs to be secure and effi
cient. The following are algorithms currently used on the most prominent blockchains [24].

E l l i p t i c C u r v e D i g i t a l S i g n a t u r e A l g o r i t h m (E C D S A)

A n el l iptic curve is a set of points satisfying an equation w i th two variables, having one in
a degree of two and the second in a degree of three [23].

y2 = x 3 + ax + b

The el l iptic curve has a unique property. G iven any two non-vertical points, the line
between them w i l l intersect the curve precisely one more time. Furthermore, on the reflec
t ion of the intersection point on the x-axis, a new point w i l l be created, which can be seen
in Figure 2.2.

Keeping the first point and redrawing the line w i th a new point once again, at the x-axis
reflection of intersection, creates a new different point, as can be seen in Figure 2.3.

We can repeat this act ion any amount of times and what w i l l remain are the first point,
the final point, and the number of actions to reach the end. Th is act ion creates a trapdoor
function because finding the number of actions when only the first and last points are
available.

Because computers are more efficient w i th natura l and relatively smal l numbers. The
curves in E C D S A are i n blockchains represented as a finite set of natura l numbers on the
curve. Furthermore, it wraps them into a given range [23].

To apply this a lgor i thm to blockchains. The first point is the user's publ ic address, the
last point is the signature, and the number of points is the private key. The current versions
of B i t co in and Ethereum both use this algor i thm. However, it also has its disadvantages.
They are prone to bad or compromised random number generators. Furthermore, there is
no efficient way of compressing and verifying mult iple signatures together [24].

7

Figure 2.3: Points A and D create a new point E , which is reflected into point F [23].

S c h n o r r s i g n a t u r e s

Schnorr signatures are one of the solutions to scaling problems and security concerns pro
posed in the B i t co in blockchain. It is a variat ion of E C D S A , and often blockchains using
Schnorr signatures uti l ize the same curves as in E C D S A chains [4].

Schnorr signatures enable aggregating mult iple signatures into a single verifiable signa
ture natively. Aggregation is also possible i n E C D S A . However, the addresses of participants
needed to be known, which is inefficient and disallows any form of privacy. In the Schnorr
algorithm, the aggregated messages are indistinguishable from the regular ones and do not
lose any security [20].

W h e n a Schnorr signature a lgor i thm uses a sufficiently random hash function and under
the assumption that the el l iptic curve discrete logar i thm problem is hard, it was formally
proven that breaking Schnorr signatures is as hard as solving the discrete logar i thm prob
lem [21]. In contrast to E C D S A , which has not been proven to have any specified hardness.

P i x e l s i g n a t u r e s

P i x e l signatures allow grouping mult iple signatures into a single trust-able, efficiently verifi
able signature. A posterior corrupt ion problem occurs when mult iple nodes have corrupted
signing keys. W h e n the number of corrupted nodes w i th in network specification, it should
be able to cope w i th them. Since the network is dynamic, i f those nodes have been in the
network long enough, a fork can be created such that they have the longest chain [9].

P i xe l signatures are forward-secure signatures, which means they solve the posterior
problem. They force the nodes in the network to periodical ly change their private keys.
After a secure key corrupt ion, the key cannot create a false chain history.

B o n e h - L y n n - S h a c h a m (B L S) s i g n a t u r e s

B L S signatures uti l ize bil inear pair ing for verification of signatures described in Section 3.1.
B L S scheme consists of key generation, signing, and verification. The key generation algo-

8

r i thm selects a random unsigned integer x as the private key, creating the publ ic key gx.

Signature is the output of the hash function of some message h = H(m), where we put it
at the power of the private key hx. Verif ication is confirming whether the results of the
bil inear pair ing are equal [5].

e(hx,g) = e(H(m),gx)

Ethereum 2.0 uses B L S because of its abi l i ty to aggregate mult iple signatures and pro
vides smaller and easier-to-calculate signatures. B L S signatures are also bui l t on top of
the E C D S A principles and offer better scaling through aggregation of signatures [5]. How
ever, they are not quantum safe and should be replaced by zk -STARK-based aggregation,
described i n Section 3.3. However, they s t i l l suffer from the posterior problem [9].

2.2 C o n s e n s u s m e c h a n i s m s

Consensus mechanisms allow us to determine and guarantee the current state of the net
work. They ensure the processing and universal acceptance of val id transactions between
honest nodes. Furthermore, they try to eventually gather a l l block proposals i n the network
into a single sequence of blocks [13]. Since coordinating the whole network of nodes to se
lect one block is impract ica l , there are mult iple ways to reduce selection without affecting
security.

One of the more popular approaches is the use of lottery-based protocols [3]. The lottery-
based protocols randomly select nodes from those proposed blocks and create consensus only
between this subset of proposals. The problem w i th selecting mult iple nodes is that they
often have different blocks proposed, which creates a temporary split i n the blockchain
called fork [13]. A more thoughtful description of forks is i n Section 2.3.

Another approach is to use voting-based protocols. Where votes decide the state of the
participants, they offer much higher resistance to forking. However, they introduce many
problems w i th network scaling [13]. These two approaches are often combined to ensure
scalabil ity and security [13].

Byzant ine fault

Byzant ine fault is a condit ion in a system, where important components can fail and infor
mat ion on their failure is unreliable. It is based on the hypothet ical problem that Byzan t ium
has many armies and many generals. Generals must consent to a single joint act ion while
communicat ing only w i th messages. Since some generals can be impostors, they can create
false messages for different generals. Miscommunicat ion from those messages could lead
to part of the generals attacking and others retreating, especially i f the impostors ' vote
decides the majority. Byzant ine fault tolerance happens if loyal generals have a majority
agreement [8].

Blockchains solve the problems of impostor part icipants in mult iple ways. The most
common is requiring some investment behind the directions from participants. If the general
has something to lose from his command, the more significant the loss, the less l ikely they
w i l l betray other generals. Furthermore, if the importance and positions of the generals
are selected based on the height of their investment, the generals themselves would always
have to lose the most from bad decisions [8]. In blockchains, this investment is some real-
world act ion that is unambiguously verifiable on-chain or staking their blockchain resources
behind their decision.

9

P r o o f of resource

Proof of resource is a widely adapted and tested consensus mechanism in blockchains.
In proof of resource, the main component is an expenditure of some resources without
profit outside the validated blockchain. The resource is external to the blockchain system.
However, there must be a way to create verifiable proof to prove its expenditure. A l l nodes
decide the resulting sequence of blocks in the blockchain.

This expense dur ing val idat ion can guarantee that nefarious actors w i l l lose resources
during an attack on the network. In this mechanism, the attacker would need more than
50% of the blockchain resources to succeed in an attack. Miners are the participants in block
val idation act ion [26]. The chain incentives miners to extend work in two ways. F i rs t , the
miners receive fees added by transaction creators. Miners can choose which transactions to
process based on the transaction fee size. This choice enables users to speed up transaction
processing by raising the fee value. Then, as a second incentive, some blockchains mint new
tokens and distr ibute them to the f inal block miner dur ing block creation. The mint ing
process makes mining more attractive for earlier stages of the blockchain [19]. However,
the final block creator is only a single entity, and the chance of becoming this creator
is m in ima l for regular miners. Therefore, miners pool their resources and distr ibute the
resulting rewards through the pool proport ional to the expended resource.

M i n i n g is a different process for each blockchain. Most of the differences are in the
type of problem that the miners solve and how its difficulty changes over time. It consists
of miners collecting transactions, val idat ing them, and bundl ing them into blocks. Then
miner starts to produce proof. Miners need to expend sufficient resources for a block to be
accepted. On ly the block w i th the most resources accumulated is correct in the final state
of the blockchain.

The main disadvantage of proof of resource consensus mechanisms is that the work
produced dur ing val idation grows w i th the network and has an ecological impact. The
resource expenditure does not produce anything of value outside of blockchain security.
Furthermore, i f a single entity were to amass over 50% of the blockchain val idation power,
the entity would receive ful l power to modify the whole state of the blockchain.

M i n i n g i n B i t c o i n b lockchain

Proof of work in B i t co in is a 256-bit number that results from double-SHA256 of data in
the blockchain. Th is number must be smaller than the current difficulty set for the whole
blockchain to prove that work investment is sufficient.

Since SHA256 is pseudo-random from its design, changing the nonce property in the
block unpredictably changes the function output. Miners need to guess the nonce so that the
hash fits the required difficulty [19]. This function allows mining using application-specific
integrated circuits (ASICs) . Since the SHA256 algor i thm is not resource-intensive, devices
specialized for paral lel execution are much more efficient than general-purpose devices.

M i n i n g i n E t h e r e u m blockchain

M i n i n g in Ethereum was created to be accessible to a l l participants. The network rewards
miners and should be easily verified even by light clients [28]. The chosen proof of work
function is difficult to optimize i n specialized hardware, to achieve accessibility for a l l users.
The mining function requires high memory bandwidth, thus disabl ing the paral lel ization
of proof-of-work computat ion since the bottleneck is available memory, not the processing

10

power. Proof of work in Ethereum starts w i th an extensive semi-permanent data set. The
data set is then randomly sampled to create a proof. Regenerating parts of the data set
servers as proof verification. The data-set size requires a large amount of memory in active
use. Therefore, paral lel ization or A S I C s are mostly ineffective.

P r o o f of stake

Staking is a process of locking funds for the exchange of blockchain authority. Slashing is
used as a security measure. It permanently removes some of the staked founds after false
block propagation [28]. Th is mechanism omits outside of blockchain expenses and purely
focuses on blockchain inact ivat ion. Th is mechanism is based on game theory and expects
that most participants w i l l work in their favor.

P r o o f of author i t y

It is a widely used mechanism, differentiated from others by ut i l i z ing delegation of votes.
The owners of the authority are responsible for the blockchain and have access to its inner
workings. Th is mechanism allows for the creation of new data for the current authority.
Th is mechanism can easily be swapped instead of proof-of-work, while the rest of the chain
remains identical. Author i t y manipulat ion is helpful for testing purposes.

2.3 T r a n s a c t i o n v a l i d a t i o n i n p r o o f o f w o r k b l o c k c h a i n s

M i n i n g is a process dedicating effort to promoting transactions assembled into batches
called blocks. Those blocks form the Merle tree, which connects them to the previous state
of the blockchain. Miners are nodes connected to the network that receive broadcasted
transactions based on the miner fees included in transactions. They choose ones to include.
The fee w i l l be for miners after the transaction's block has been included. Each block
contains its identif ication, located in the context of the whole state, both parents' hashes,
and the state hash after a l l transactions have finished their execution. Furthermore, a hash
has been generated based on current difficulty, and the blockchain algor i thm is proof of
work-based blockchains. This hash serves as an investment by the miner in the block and
w i l l be lost or unrewarded if the block is rejected [19].

Forking is an event when there are mult iple different blocks created concurrently. The
choice of the main one falls onto the consensus mechanism described in Section 2.2. In proof
of work, consensus is the block that has accumulated the most work behind itself. Every
other block is later called an orphan block and is no longer val id. In each blockchain, there
are mult iple temporal ly val id states that w i l l eventually resolve to a single final state [28].
The amount of work invested decides the chains' eventual state, and by measuring the
length of trees that make blocks, it is easy to determine the longest and also the most
propagated state [26].

N e t w o r k i n c e n t i v i z a t i o n

Miners are motivated to participate by rewarding them w i th native tokens proport ional to
their work. Those currencies are unique and separate for each blockchain. There are many
variations in the way currencies are stored and distr ibuted throughout the network.

There are mult iple ways to differentiate users w i th in blockchains. Below we w i l l describe
users identified in the most prominent blockchains by their market capital izat ion.

11

Account balance based state

Account-based state representation creates accounts that contain a balance of currency.
Addresses serve to identify accounts, which can transfer any amounts between themselves,
as long as it is available. The account-based state is common in many blockchains, including
Ethereum. The global blockchain state uses the Merk le tree as its data structure. Each
block has a hash stored inside of it as a state root [6], identifying the state dur ing the block
creation. The state contains account balances, contract storage, contract code, and account
nonces under each account. The account structure is stored in blocks. The accounts are
leaf nodes of Merkle tree containing state which bu i ld into root node calleblockchaind State
root. Th i s root node can be used to verify the given state through Merk le proofs.

Unspent t ransact ion outputs (U T X O) based state

U T X O represents any amount of d ig i ta l currency that is the output of a b i tco in trans
action [12]. They cannot be split into smaller amounts by themselves. However, after
performing a transaction w i th a larger U T X O than required, new U T X O s are minted from
the remaining U T X O s [19]. U T X O is also common in many blockchains, inc luding B i tco in .

2.4 S m a r t c on t r a c t s p r o g r a m m i n g languages

Various blockchains are using different programming languages for smart contracts as can
be seen in Section 2.4. A n y peer-2-peer network able to process transactions and store a
part icular state can be considered a blockchain. Nevertheless, this has m in ima l function
ality, as users can communicate only i n the most direct way without any complications or
improvements.

Therefore, adding functionality to clients direct ly affects the data stored inside. Creat ing
a blockchain-specific language adds client functionality and access to the blockchain state,
al lowing program wr i t ing to be executed by transactions outside the blockchain.

The languages vary heavily according to their language capabilit ies. Each part ic ipant 's
program execution needs to run w i t h the same result, and it is costly to process more
complex programs. Furthermore, it is not always beneficial or usable to have a powerful
language. Some blockchains like B i t co in offer just basic script ing functionality directed
at transaction manipulat ion. However, some blockchains, such as Ethereum, provide a
general comput ing network. Th is network can provide an interface for processing cr i t ica l
or transparent functions [28].

F rom this point on, we w i l l pr imar i ly focus on blockchains, whose languages are touring
complete i n terms of their processing power. Tour ing completeness is a necessity for more
generalized computing.

2.5 B l o c k c h a i n c l i en t t ypes

In terms of blockchains, the client is a part ic ipant i n information exchange. Clients do not
need to part icipate i n security, not even receiving data from the chain, except when they
decide to init iate communicat ion. They are only concerned about their own transactions
and those w i th whom they interact. There is no real benefit for them to keep other data,
except for security. Cont inuing from here, we w i l l describe the types of client inside the
Ethereum network. Other blockchains use different terminology, but the under ly ing func-

12

t ional i ty remains very similar. Cl ients are implemented based on chain specifications, and
the development teams often differ from core blockchain teams.

F u l l c l i e n t s

The ful l client validates the entire block of transactions. The client builds Merkle trees from
blocks and, when val idating, recalculates the tree w i th the suspicious block. F u l l clients
always store the entire state and participate i n network actions. F u l l nodes verify that
blocks and states may or may not provide access to headers for light clients. However, they
need to provide other data on request to part icipate [28].

C o n s e n s u s c l i e n t s

Apar t from th in clients, full clients can actively part icipate i n blockchain growth. Because
they must possess copies of the whole network, they can act by a consensus mechanism and
t ry to append new blocks [13].

T h i n c l i e n t s

The th in client, also known as the light client [28] or simple payment verification (SPV) [19],
is a client that uses only headers of blocks to validate the state of the blockchain. They store
the chain of these headers but also need to request data from other blockchain participants
when creating transactions. The verification of data provided is against state roots i n their
headers. Th is verification requires significantly smaller performance and storage capacity.
The headers bu i ld the Merkle tree [17] and, s imi lar ly to ful l clients, verification is done by
creating Markov proofs w i th the inserted changed disputed state root [28].

The pr imary purpose of the creation of th in clients was to allow mobile or less resourceful
divides to participate in the network. However, even header chains have become impract ica l
in less powered or network-constrained devices in more popular blockchains.

A r c h i v i n g c l i e n t s

Arch iv ing clients store everything that the ful l node stores and its histor ical changes.
Arch iv ing nodes require much more storage than ful l nodes. However, bringing more secu
rity and reference points when forking is required. They act as full nodes from an outside
perspective [28].

U l t r a l i g h t c l i e n t s

W i t h the growing size of the blockchain, th in clients ceased to be viable solutions for mobile
devices as solution ultral ight clients were created. There are many approaches to opt imiz ing
synchronization t ime and resource requirements [25].

E x a m p l e s o f c l i e n t s i n E t h e r e u m

Most client implementations offer mult iple types of clients since the difference is technically
slight. In Ethereum, one of the most prominent clients is Ge th . It is wr i t ten in Go- lang and
provides an A P I interface to communicate w i th the blockchain. Ge th offers a ful l node that
acts as an archiving and pruning, which stores less data. G e t h 2 also offers th in clients and

2https://geth.ethereum.org

13

https://geth.ethereum.org

connections to most testing Ethereum networks. Ge th also offers to mine. However, it is
only CPU-based , which is significantly slower than other implementations w i th GPU-based
mining, and Therefore, it is the most useful for test-net applications.

OpenEthereum, wr i t ten in Rust , is designed for reliable deployments. It also provides
an A P I interface to the blockchain, but uses Warp Sync, which significantly shortened the
synchronization t ime 3 .

M iner clients collect raw transactions into blocks and execute work to prove their in
vestment i n their block. If the block is accepted, they receive compensation. M i n i n g clients
usually have separate implementations, as their pr imary goals are vastly different from
other clients. The most prominent min ing client currently is E the rM ine which allows
faster GPU-based mining.

2.6 B l o c k c h a i n wa l l e t s w i t h e xamp l e s

A wallet is a means of storage of private keys. The wallet can be just a piece of paper,
but that would be quite unsecured and difficult. Therefore, mult iple types of wallets were
created w i th varying amounts of security and use cases. Wallets can be differentiated by
the locat ion of private keys, into Self-Sovereign wallets and Hosted Wallets [13].

• Self-Sovereign wallets store the keys local ly and should never expose them to the inter
net. They uti l ize these keys to communicate w i th the blockchain directly. Depending
on the wallet, the keys are stored using software inside the user's computer (e.g., Exo
dus 5) , or they are separated w i th hardware(e.g., Ledger 6) [13]. A hardware-separated
wallet is a specialized device that securely stores private keys without connecting to
the Internet. They are one of the most secure wallets, frequently i n the form of a
U S B w i th an encrypted private key and appl icat ion to communicate w i th the key.

• Hosted wallets uti l ize a th i rd party that provides access to a wallet. The wallet is
located inside the user's browser (e.g., Metamask ') or inside providers server(e.g., B i -
nance 8) . They are possibly less secure since they provide more incentive for attackers
because they require t rust ing a single centralized entity and creating a single point of
failure w i th key storage.

W a l l e t d a t a v a l i d a t i o n

Wallets depending on the type, use different types of state val idation. Hardware wallets are
validated inside specialized programs made for decryption of stored keys. They can be using
any node for state val idation. However, ful l nodes, even th in nodes, are too resource intensive
to use on personal devices. The resource l imi ta t ion increases i n mobile wallets. Therefore,
currently, most commonly used mobile and hardware wallets use centralized providers. O n
the other hand, online wallets are entirely run on servers and can easily afford to run full
nodes. Furthermore, as such, it brings the most reliable data.

3https://openethereum.github.io/
4 https: / / github.com / ethereum-mining/ethminer
5https://www.exodus.com
6https://www.ledger.com
7https://www.metamask.io
8https://www. binance.com

14

https://openethereum.github.io/
http://github.com
https://www.exodus.com
https://www.ledger.com
https://www.metamask.io
https://www
http://binance.com

Chapter 3

Zero-knowledge proofs

Zero-knowledge (ZK) proof is a method of providing information without trust. It allows for
the transfer of knowledge of information without providing the information itself. A l though
the provided statement should be a verifiable proof, the verifier should rel iably dist inguish
between false and true statements [15]. Z K proofs are not only l imi ted to information.
They can also provide proofs of the computat ion without knowing the computat ion or its
results [29].

3.1 Z e r o -know l edge proo fs for p o l y n o m i a l express ions

Po lynomia l expressions are the foundation of zero-knowledge proofs. They are a l l expres
sions in the following form:

n i n
CNX + ... + C\X + XQX

Where c
n
,CQ are coefficients having constant values, X • • • • ̂ X 9JI*6 unknowns, and n is the

po lynomial degree. The po lynomia l expression has the attr ibute that any two polynomials
of the n th degree can have at most n intersections, which implies that a po lynomia l value
in the n th degree can indisputably identify the polynomial . Under the assumption that the
prover w i l l not use any other means of getting the resulting values, we can create a simple
zero-knowledge proof for knowledge of polynomials [15].

If a verifier and a prover have a knowledge of a polynomial , the verifier can ask for a
value at some point. If the returned values are equal to those verifiers calculated in their
polynomial , they can be confident that the prover knows the po lynomia l without providing
it to the verifier [15].

However, this protocol does not entirely check the knowledge of po lynomia l but rather
the knowledge of vales at a given point. Furthermore, participants exchange knowledge of
the polynomial , which is actual ly the exchange of knowledge of coefficients i n the polyno
mial .

In format ion obfuscation

To improve these problems, we need to obfuscate the data. Information obfuscation has
mult iple approaches. We are using homomorphic encryption, which utilizes expressing val
ues as chosen base values to the power of value we want to encrypt. However, the base value
is publ ic, and it is pretty easy to reverse this operation. Therefore, modular ar i thmetic is
also applied. It utilizes wrapping values into some l imi ted scope w i th modulo operation.

15

The wrapped values, i f sufficiently large, are infeasible to reverse, and the wrapped val
ues, except for mult ip l icat ion, preserve the ar i thmetic properties of the unwrapped ones.
Th is preservation is the reason for choosing homomorphic encryption for po lynomia l wrap-
ping [29].

To express an encrypted polynomial , we need to express each of its coefficients t ied to
the unknown in place of the powers of a base. Therefore, the resulting value w i l l be i n the
following form:

j)asecnx n+...+cix 1+xox°

Furthermore, this expresses the value of the encrypted polynomial . Prover, in this exchange,
w i l l provide the encrypted po lynomia l and provide two other polynomials. The first divides
the orig inal po lynomial , and the second represents the result of the given divis ion. The
verifier checks whether the first po lynomia l of the prover is a cofactor of the secret one.
Since the secret used to evaluate these polynomials is different for the prover and verifier,
it provides security for the entire exchange.

However, the prover can st i l l use other methods to get proof. W h e n the exponent is
too tiny, brute force guessing of the po lynomia l is currently feasible. To force provers to
create their proofs using exponentiation. Th is method is called the knowledge-of-exponent
assumption. It utilizes sending another value together w i th the verifier's encrypted poly
nomial . Furthermore, a random amount shifts the other value. Exponent ia t ion performs
this shift and consequent modulo operation on the result. Provers must exponentiate both
the shifted and the encrypted values w i th the same powers. The verifier can then quickly
check whether the values are correct and trust that the prover d id not use other means of
getting the result.

Secure proof va l idat ion

We can uti l ize bi l inear pairings to allow grouping of mult iple separate proofs into one veri
fiable proof. It is a function that bi l inearly pairs two encrypted inputs to single encrypted
output represented as their mult ip l icat ion.

e(baseabaseb) = e(base, base)ab

However, these functions can only take two proofs as input and not pairings, as they are
in different domains. Th is problem can be solved by differentiating the domains of the
functions and performing the pair ing function on the specific domains. Therefore, given four
encrypted inputs, we can pair them to two pairs of proofs and once again pair those pairs to
achieve a single pair of pairings. This method can allow secure verification proofs because
a mult ip l icat ion operation is needed to check whether the same value indeed exponentiates
the proofs provided by the prover as the encrypted polynomial . The resulting pair ing is
usable even w i th different base domains due to the properties of the el l iptic curve described
in Section 2.1. The reason for the mult ip l icat ion requirements is the in i t ia l shift applied to
the secret value [29].

e(basef(s\baseshift) = e(base,base)shift*f<-^

e(baseshift*f{s),base) = e(base,base)shift*f{s)

Verifiers w i l l be provided wi th ing proof baseshi^, and if they have the po lynomia l f(s),

they can compare their pair ing to the proof containing shifted encrypted pair ing.

16

Rank 1 Constraint System (a,b,c)

Figure 3.1: Transit ion of a computat ion to z k - S N A R K .

Zero-knowledge

The result is a zero knowledge proof, however, only from the point of view of the prover.
The verifier can st i l l extract knowledge from the two polynomials sent by the prover. To
combat this, shifting the values is also used on the prover's side.

Non-interact iveness

The obvious problem is that we require a single trusted entity to create a setup completely
randomly and not to store the secrets. One way to solve this problem is to create a composite
trusted setup involving mult iple parties. Here, each participant w i l l create their setup, and
the resulting used one is a combination of a l l those involved. The cryptographic pair ing
described above creates this combination. Moreover, we use the resulting pair ing of a l l the
ind iv idua l setups as the final setup, which enables the creation of a setup that only requires
a single party from the creators to be honest and delete their secrets.

3.2 Ze ro -know l edge proo fs o f c o m p u t a t i o n

To prove the execution of a computat ion, we first need to express the computat ion function
in polynomials. However, first, we must restrict the problems to only the problems that
polynomial ly expressed functions can calculate.

NP-complete problem is a problem wi th in an N P class to which every other problem
in the N P class is reducible [14]. A s an NP-complete problem, S A T is reducible to the
problem of evaluating polynomials [29] therefore, the po lynomia l evaluation also belongs
to the N P class and by itself is NP-complete. Furthermore, polynomials can express any
problem wi th in the N P class.

The process of expressing operations through polynomials is shown in Figure 3.1. B y
adding variables as constants to polynomials, we can create simple logic components that
bu i ld equations describing the function. Moreover, to tu rn it into a proof of computat ion,

17

we need to include the result i n the proof. However, s imply inc luding the result does
not prove that it came from the computat ion or that it is correct. Instead, we need to
include the po lynomia l of the operation. The prover w i l l create three polynomials for each
operation, left side l(x), right side r(x), and result o(x), where l(x) operation r(x) = o(x).

The prover w i l l use l(x) operation r(x) — o(x) as the po lynomia l for calculat ing the proof.
In this way, while verifying the knowledge of a polynomial , we are also verifying its

correct execution and the knowledge of the operation. If the result, the polynomials, or the
operation were wrong, it would be easy to discern using the a lgor i thm above.

3.3 z k - S N A R K s i n b l o c k c h a i n s

Zero-knowledge succinct noninteractive arguments of knowledge are a specific variat ion
of zero-knowledge proofs. In the previous sections, we describe the functionality of their
properties. However, not their eventual results on communicat ion.

• Zero-knowledge allows participants to communicate without revealing any knowledge
about the information, just that of their possession. In blockchains, providing only
the result of computations or transactions reduces the required space and computing
power.

• Succinctness means communicat ion in relatively smal l amounts of data per informa
t ion. Polynomials do not have to be entirely verified, only their encrypted values at
specified points. A s the most expensive part of blockchains is storage [3], reducing
the size of the message is always beneficial.

• Non-interactiveness means the abi l i ty to transfer knowledge in a single message wi th
out interaction between participants. Messaging every part ic ipant is expensive on
distr ibuted systems. Therefore, z k - S N A R K s provide a l l the required information
w i th a message.

• Trustless communicat ion allows for omission of introductions and exchange and ver
ification of credentials. Because participants do not need to trust other sides, they
need to check messages.

• Arguments of knowledge are transferred rather than the knowledge itself. The ar
gument states knowledge of knowledge without requiring the transfer of knowledge
itself. W h i c h once again brings more minor storage requirements.

A s mentioned in Chapter 2, decentralization also has many disadvantages, and one of the
most prominent is the cost of computat ion. Z k - S N A R K s allows offloading the computat ion
outside of blockchains while keeping trust i n the results.

z k - S T A R K s

Zero-knowledge scalable transparent arguments of knowledge are a post-quantum secure
variant of zero-knowledge proofs that do not require a trusted setup [11]. A trusted setup
is the cornerstone of S N A R K s security. If it were compromised, anyone w i th the secret
and shift would be able to create fake and val id proofs [1]. Z K - S T A R K s try to solve this
problem by introducing publ ic randomness.

18

Another significant advantage is their resistance to quantum computing. S N A R K s
security is bui lt on the assumption of the hardness of discrete logar i thm in el l iptic curve
groups, which are potential ly vulnerable to quantum computers [1]. However, z k - S T A R K s
are bui l t on assumptions of the existence of collision-resistant hash-functions and shared
access to a random function [11]. So far, these assumptions have been considered post-
quantum secure [11].

B u l l e t p r o o f s

Bulletproofs is a slower version of zk-snarks that does not need a trusted setup and is post-
quantum secure [11]. The i r proof size w i th more complex proofs is significantly larger than
that of S N A R K s and S T A R K s [11]. Bulletproofs is an extension of the B i t co in blockchain
that allows private transactions. Instead of relying on el l iptic curves as in S N A R K s , they
only rely on the discrete logar i thm assumption [7]. Pr ivate transaction hides the amount
and participants but is s t i l l fully verifiable by their proof. Bulletproofs also support proof
aggregation [7].

3.4 Use-cases o f z k - S N A R K s

Considering the advantages of z k - S T A R K s and bulletproofs, the reason most real-life use
cases in the zk proof blockchain choose S N A R K s comes from another disadvantage of
blockchains, which is storage [10]. The proof size of S N A R K s and Bulletproofs is in terms
of bytes, whereas in z k - S T A R K s it is i n tens of kilobytes. The verification t ime is i n terms
of milliseconds w i th S N A R K s and S T A R K s , but this t ime among Bulletproofs it is in terms
of seconds. Therefore, even w i th a l l the disadvantages of S N A R K s , it remains the most
helpful too l for the current l imitat ions of blockchains [10].

Zero-knowledge proofs have many use cases where their inherent properties provide
many advantages. The most common are authorizat ion, val idation of private data, out
sourcing computat ion, and anonymizing transactions [15].

O f f - c h a i n c o m p u t a t i o n s

Off-chain computations are offloading the execution from the blockchain and creating proofs
of its correctness. The proof of the computat ion must be universally trusted, and its ver
ification must be much easier than the computat ion. They are a solution to the scaling
problems of blockchains [27]. Zero-knowledge proofs are a secure and efficient way of im
plementing them.

A n example of an off-chain computat ion is a chain relay. The chain relay l inks blockchains
that can securely transfer data between them. Program zkRelay implements header verifica
t ion in an off-chain mechanism and only stores proofs of this verification to blockchain [27].
U t i l i z ing on-chain computat ion would be 187 times more expensive [27]. In the zk ap
proach, zkRelay acts as an intermediary light client that validates headers from the source
blockchain and creates a proof of this val idation. The target blockchain stores the proof in
a smart contract. The target blockchain can securely verify the transactions of the source
blockchain.

19

B l o c k c h a i n p r i v a c y

B y design, blockchains are publ ic ledgers where private transactions can not be trusted and
are traceable. Pr ivate transactions need to be easily verifiable and st i l l private. Z K proofs
allow doing precisely that.

A n example of private blockchains is Zcash. Zcash is a private cryptocurrency based
on the bi tco in codebase. A l l transactions are transparent but can shield w i th z k - S N A R K s ,
anonymizing them.

B l o c k c h a i n m u l t i - l a y e r i n g

Zero-knowledge proof enables offloading of computations outside of the network. Th is
technology can also create a second layer of blockchains built on top of the original 's security.
Wh i l e it provides some extended but cheaper functionality. The price and required storage
space drop drastical ly by storing the higher levels of blockchain in a compounded form
inside the original. A n exmaple of implemented mult i- layering is zkSync 1 . Where zero
knowleadge proofs are used for batching, val idat ing and executing transactions in a layer
separatle from the main chain.

I m p l e m e n t i n g z k - S N A R K S s

Zero-knowledge proofs variants are complex algorithms. However, securely implementing
them to accept general computations would be complex. Some frameworks provide high-
level interfaces to uti l ize z k - S N A R K s to decrease their dif f iculty

Zokrates

Zokrates 2 is a toolbox for using z k - S N A R K s on blockchains. It facilitates trusted setup in
both single-party and mult i -party computations dur ing setup phase. It provides its domain-
specific language(DSL) that , after execution, leaves a trace. This tracing of Zokrates trans
forms into po lynomia l expressions that serve as parts of the proofs [27]. It also facilitates
blockchain integration by generating verification contracts.

Zokrates provides exportat ion of proof verifier directly into a solidity smart contract,
which is supported in Ethereum blockchain. For this reason, we chose Zokrates as a tool
for creating proofs in this framework.

L ibsnark

L ibsnark 3 is a c+-1- l ibrary that provides a programming framework for z k - S N A R K S . It also
contains implementations of several N P problems. It provides a high-level approach to zk-
S N A R K s implementation. However, it also contains access to their low-level functionality.
The framework does not directly provide access to blockchains. Its gadget libraries help
w i th circuit specification [16].

1https://zksync.io/
2https://zokrates.github.io
3 https: / / github.com / scipr-lab/libsnark

20

https://zksync.io/
https://zokrates.github.io
http://github.com

Chapter 4

Framework design

The resulting framework comprises of four functional components: client, server, zokrates
verifier, and blockchain smart contract. These components interact w i th two types of
blockchain, P r imary and Secondary. The pr imary blockchain stores and executes the smart
contract, and the secondary blockchains serve as data sources for both the client and the
server. We decided to use Ethereum for its smart contract capabilit ies for the primary. We
chose B i t co in and B i t co in Cash for the secondary blockchains because both are proof of
work-based and quite similar i n terms of structures and functions.

In Figure 4.1, we can see the flow of framework functionality. In the first step, the server
downloads batches of headers and validates them. The server then creates Z K - S N A R K
proofs of the header chain val idity in the second step. The th i rd step is publ ishing, which
the server executes through a smart contract publ ic method cal l . This cal l requires the
server to provide funds to validate and store new data. The smart contract is deployed in
The pr imary blockchain and is responsible for val idating Z K - S N A R K proofs. If they are
val id and the header batch starts w i th an already saved and validated header, a new batch
is created and appended to the header chain stored in the Smart Contract . The contract
can accept an arbi trar i ly long set of proofs of header chain validations. These proofs are
the output of the Zokrates toolbox that receives parsed input from the server. The smart
contract header chain does not contain every header; only hash, posit ion, and difficulty for
selected headers. The space between the stored headers depends on the size of the incoming
batches and the number of those batches.

B o t h the client and the server connect to the blockchain for their data source. In the
fourth step, the client queries secondary blockchains for clients' transactions. For validat
ing those transactions, the client needs to bu i ld a local header chain to the blocks that
contain them. The local header chain starts after the fifth step by first receiving the closest
checkpoint to the queried block. F rom the nature of smart contracts and z k - S N A R K s , the
client can be confident that every header stored there is in the main chain of the blockchain.
Furthermore, the client can assume a l l the information received from the smart contract
is t ruthful . The client builds a local header chain start ing from the received checkpoint
header in the s ix th step. If the chain builds successfully, the client queries the secondary
blockchain for proof of transaction inclusion into the block in the seventh step. The client
w i l l validate the inclusion proof locally, and if successful, the client can be confident that
the transaction is included in the secondary blockchain.

Zokrates exports the verifier into a callable smart contract from the main smart contract.
Verifies the val idity of 32 consecutive headers and that they follow the correct predecessor.
It validates the hash, target, and constructiveness of headers.

21

SmartContract PrimaryBlockchain
-GetClosestCheckpointQ

(7) SubmitProofsO

GenerateProofsO-

(7) GetTransactionDataO

(6) GetHeadersFromCheckpointO

I I
(j^ GetTransactionlnclusionProofO

0
GetHeadersO-

Figure 4.1: Framework act ion flow.

:SecondaryBlockchain

listtransactions(addres)

transactions

gettxoutproof(transaction)

merkleProof

:Client :PrimaryBlockchain

->

>

<-

getClosestHash(hash, height, target)

{hash,height}

Figure 4.2: Transaction creation and val idat ion by the client.

Each secondary blockchain needs separate storage on the server and a smart contract.
Val idators can st i l l work for blockchains that are similar or are forks of each other. They
need to use the same data structures, hashing functions, and consensus mechanisms. A n
example of such blockchains is B i t co in and B i t co in cash. B o t h are simi lar on the S P V
client level, only w i th different block values and transactions. However, blockchains, such
as L i teco in, w i l l require a new custom validator because of different hashing functions. We
chose this framework as the pr imary Ethereum blockchain, where the smart contract w i l l
be deployed, and for secondary blockchains, we chose B i t co in and B i t co in Cash.

4.1 C l i e n t

The client can validate the inclusion of the transaction i n the blockchain described in
Figure 4.2. W h e n val idat ing a transaction, the client first builds the local part of the
header chain. The local header chain always starts w i th a checkpoint received from a smart
contract or some previously validated header. Th is local chain bui ld-up consists of light
val idation by recalculating hashes, difficulties, and pointers to previous headers. After the
local header chain reaches the block, which supposedly contains chosen transactions, the
client can be confident that the block is i n the main chain. The client then asks a full node

22

Prima ryBlockchain :Server :SecondaryBlockchain

•n getblockheaders(blockNumbers[]) r-

submitBatches(proofs[])

result
>

<-
headers

Figure 4.3: Creat ion and storage of proofs by the server for one blockchain.

Batch

headerHash

prevHash

cumDiff

height

Fork

prevFork

prevHeight

batchesQ

forkHeight

Chain

genesis

forksD

mainFork

initFork

Figure 4.4: D a t a representation w i th in the Smart contract.

for a Merkle proof of inclusion of a transaction i n a block. B y val idat ing the proof, the
client can be confident that the transaction is i n the block and in the blockchain.

4.2 Se rve r

The server also connects to the pr imary and secondary blockchains. The pr imary blockchain
is used for proof submit t ing and the secondary blockchains for header gathering. The server
builds local header chains of the secondary blockchains and validates them in batches of fixed
length. The server is also responsible for contract and zokrates management. It deploys,
updates, and submits data to the contract. G iven the high l imitat ions of the Zokrates
toolbox, the server needs to specifically parse data to be easier to parse i n contract and
later i n the Zokrates program.

4.3 S m a r t c on t r a c t

The smart contract is used as a transparent and trust-less data source. The client connects
to the master blockchain that contains the smart contract for storage and val idation. Smart
contracts on the Ethereum blockchain store mult iple representations of other secondary
blockchains. Each chain is composed of forks and sets of batches.

The Smart Contract at the top level contains a single mapping of blockchains to their
predefined IDs. The smart contract can only verify and bui ld header chains in proof of work-
based blockchains. Verifying proof of stake or other consensus mechanism-based blockchains
is possible, but much more complex to implement. The smart contract can automatical ly
select the ma in chain and handle forks and attacks. Provides two functions. The first needs
some gas to execute and is for submit t ing an arbi t rar i ly long array of batch val idation
proofs, and the second is for gathering the closest val idated header to a given block height.
The second function is a simple cal l that executes i n E V M (Ethereum v i r tua l machine)
without the need for any payment. Returns the closest val id header for the given height.

23

Smart contract security

A n y user can submit batches to the smart contract and bu i ld their blockchain. However,
every batch has calculated cumulative difficulty, and the strongest chain is selected based
on its t rough batch accumulat ion. The attacker would need more difficulty than in the
main chain to successfully attack the smart contract. That user would be able to attack a l l
of the networks, and this scenario is considered infeasible.

4.4 Z o k r a t e s heade r c h a i n ver i f i e r

Zokrates verifier receives 32 headers where the first and last header is publ ic, and the
rest are private. It also receives the block's hash that we want to append to this batch.
Validates that each header's previous block hash points to the previous block and that
the target difficulty included in the header is higher than its hash. The l imi ta t ion of this
framework and z k - S N A R K s , i n general, is the computat ional requirements for compi lat ion
and proof creation. The Zokrates program is easily extendable to bigger batches, which
would significantly improve costs associated w i th smart contract storage. However, it w i l l
require high R A M and processing resources. Zokrates functionality has mult iple phases,
and each phase can be controlled by the P y t h o n script by its input parameters.

1. In the first place, the code is compiled into the ar i thmetic circuit . Th is process is
quite resources hungry and l imits the testing of larger batches.

2. The second phase is setup. Dur ing this step, Zokrates executes z k - S N A R K s , which
also generates toxic waste. If published, this toxic waste is usable for false proof
creation, and therefore, we must ensure disposal of these data. We ut i l ized single-party
computat ion since this framework serves as proof of the work of created algorithm.
However, i n serious deployments, mult i -party computations are necessary dur ing the
setup phase. Fortunately, by default, Zokrates supports this type of setup.

3. The th i rd phase is verifier exportat ion. This phase generates a Sol idity smart contract
that is deployable to the Ethereum blockchain. Verifier complexity heavily depends
on the number of parameters that the ma in function accepts. Pr ivate inputs do not
increase their size but cannot be stored or even viewed inside the smart contract
function. For this reason, we pass the first and last headers as publ ic parameters,
and the rest in between them are private. The smart contract only needs to store the
checkpoints and does not need to verify or view what is between them.

4. The fourth phase is witness generation. Dur ing this phase, we finally inputted the
formatted headers. The headers are split into 5 256 bit values because it is the largest
single value type supported in Zokrates. These headers are in form to be ready
for the double sha256 function. The function receives a transformed header w i th
padding. The padding is a static value of 640 since headers also have a fixed length
of 80 bytes. After the witness phase, a witness of execution is generated, but only if
the execution finishes successfully. If some assert failed midway through, non-valid
witness is generated.

5. The fifth and last phase is the proof generation. Dur ing this phase, Zokrates trans
forms the witness into zero-knowledge proof of computat ion. This proof is acceptable
by the Verifier smart contract. Th is act ion is also rather resource-heavy. However, it

24

is a single-core processor and should be without significant problems parallelizable.
After submit t ing the proof to the verifier smart contract, this verifier w i l l re turn a
Boolean value indicat ing its output.

25

Chapter 5

Implementation

The implementat ion is div ided into four main components. We describe their functionality
in the previous chapter. In the following sections, we w i l l describe their internal design and
usability.

In this implementation, we use providers for the gathering of data from blockchains,
except for the direct mobile connection to Ethereum. We chose to use providers because
of the high requirements of running full nodes local ly for a l l the needed blockchains. A l l
the endpoints and data sources used have existing alternatives i n a l l nodes and are easily
replaceable. Th is provider usage does not damage the trustlessness of this framework since
the client connection to the pr imary blockchain is direct in the peer-to-peer (p2p) network.

5.1 Se rve r

The server serves data handing, smart contract actions, and Zokrates-related tasks. We
decided not to implement automated chain bui ld ing since the proof creation is very resource
heavy, and we would not be able to catch up to the current state for mult iple blockchains in a
reasonable time. However, we created an interface for creating smart contracts, dynamical ly
creating proofs and submit t ing them to the smart contract, which we use for automating
this task.

A simple C L I interface controls the server. It should not be used i n product ion deploy
ment but as a base or a template for automating available actions. It is an interface to
perform the whole workflow of this framework. It can set up Zokrates and smart contracts.
A n d then perform actions around batches such as their proof creation, submitt ing, and
contract interactions.

The server provides five main functions:

• Compi le - Compi le the Zokrates verifier and update the existing smart contract

• Deploy - Take the latest version of the smart contract and deploy it to the configured
blockchain. The deployment executes through transactions that need to be signed
and paid.

• Proo f - Creates a witness and proof for a given header range. The range splits into 32
header-sized parts, and, for each, we generate separate witness and proof. Th is act ion
also takes as a parameter blockchainld to identify the source of the data for proof.
F rom the source header, batches are gathered, parsed, and in the end, validated. We
store the result ing proof i n a file identified after input parameters.

26

• Interact - Takes the same parameters as the proof, selects created files based on
those parameters, and creates a transaction containing a l l the proofs concatenated
into a single array. Then we send this transaction to the currently deployed smart
contract. Interaction is a complete transaction, requiring signing and enough balance
in the singer's account. The contract w i l l parse and validate the whole array and, i f
successful, w i l l record the last element as a checkpoint.

• C a l l - This function is for verifying contract functionality. It calls for the contract
method to return the closest hash to the given height.

D a t a g a t h e r i n g a n d p a r s i n g

For data sources, we once again uti l ize API providers because of the high costs of local
full nodes on required blockchains. However, a l l of the endpoints used have existing re
placements i n standard full-node implementations. The server validates a l l headers before
creating proofs by recalculating their hashes. We represent the headers received from the
AP I s as a Py thon object serialized to forms required by different parts of the appl icat ion.
Our chosen secondary blockchains are B i t co in and B i t co in Cash . We chose those because
of their high similarity. Therefore, the differences i n server between those two are only in
the extent of changing endpoints. We also transform the received data into binary repre
sentations of hex numbers dur ing serialization, which is the expected format i n the B i t co in
sh256 function. There are two possible serializations, the first is a basic header, where the
raw data are concatenated and padded if needed. The second is Zokrates input. The server
must split the Zokrates input into 256-bit parts due to the Zokrates type sizes. It takes
the header created i n the previous serialization and creates a space-separated list of header
parts. Then it passes this list into the Zokrates toolbox dur ing witness creation.

Z o k r a t e s c o n t r o l

For control l ing Zokrates, we use the CLI interface on the Zokrates toolbox that runs directly
from Py thon . Frameworks such as zokrates-js exist to handle this task from w i th in the
code. However, we decided on more straightforward contract handl ing to fully implement
the server part i n Py thon . Each phase creates its output files and names them based on the
chain and header range. The operations are a l l single-threaded and blocking. Before each
phase, python checks i f the zokrates toolbox is available i n the system and, if not, installs
it inside the project folder. Created proofs persist after submit t ing the smart contract to
allow batching or re-sending them. Dur ing implementation, we grouped phases described
in Section 4.4 into broader actions. The compi lat ion also sets up the environment and
updates the verifier contract. Witness and proof creation are grouped into single actions
because there is not much point in doing one without the other.

S m a r t c o n t r a c t c o n t r o l

Smart contract control divides into two parts. The first is its deployment. For this part, we
create a raw transaction w i th contract ABI and, through a web3 connection to Ethereum,
we publ ish this transaction. The web3 once again connects to the provider of the Ethereum
node. The transaction sender is defined by a private key in constants and must have suf
ficient funds for this action. We chose to deploy w i th bui l t web3 transactions as opposed
to frameworks like T r u f f l e or Hardhat because this way provides much more flexibil ity in

27

terms of dynamic price and blockchain management. Contract transactions cannot migrate
contracts to newer versions instead of smart contract management frameworks. However,
our framework also contains a functional Truffle project that can act as an alternative. The
server provides a simple API interface for the appl icat ion to update smart contract infor
mat ion. However, the smart contract data can be easily hard-coded into the appl icat ion,
and they can become fully separate entities. The interface is a simple endpoint REST using
the P y t h o n framework Flask.

5.2 C l i e n t

The client is a react native appl icat ion compatible w i th And ro i d devices. Its purpose is to
showcase the usabil i ty of this framework on mobile devices. For the pr imary blockchain
Ethereum, the appl icat ion shows the user account stored inside Geth keystore. Ge th
instance generates the account and, for this blockchain, we only show the current state,
since the Geth instance inherently validates transactions. So there is no point i n showing
them to the user. B y default, the Ge th instance connects as a light client to the Ropsten
testnet. However, since in testnets, there is pract ical ly no motivat ion for ful l nodes to
provide light clients connection and functionality, finding cooperating peers can take some
time. Th is ful l node behavior is not a problem in the mainnet of Ethereum, but the in i t ia l
setup required for contract interaction can take a relatively long time, even if the amount
of data needed to download for header chain catch up is relatively smal l . Therefore, the
appl icat ion offers the option to connect to a provider while the Ge th node is synchronized.
Th is connection should only be used in development mode since it allows for breaking
clients' trust.

E t h e r e u m c o n n e c t i o n s

Ethereum connection is achieved by running Ge th instance i n Nat ive module called
CommunicationNative. The instance runs directly Go-lang i n Java using the wrapper
already created. There is no available documentation for this wrapper, and it is l imited
to basic functionality. Therefore, the available Ethereum actions are min ima l w i th in the
application.

Native modules, by default, do not provide an interface for communicat ion w i th react-
native. A callback function is passed to each cal l from a native function to solve this. Th is
callback can only be used once and w i l l contain an error message or the function result.
Ethereum instance is stored in the instance of class NodeHolder and is init ia l ized at the start
of the appl icat ion wi th in MainActivity. The class NodeHolder also serves as data storage
for the module and contains and provides an interface to access the user's address and the
location of the KeyStore . The module CommunicationNative interacts w i th Ethereum by
ut i l i z ing functions in Ge th C L I that has a wrapper to support Java. The most significant
function i n this module getClosestHash creates a cal l to the Ethereum network. Since
calls do not require payment, the user is not l imited or penalized for re-freshing data. The
function returns the closest hash to height in the blockchain identified by its id . The client
verifies the returned value as a block hash and its height. The client can assume that these
data represent a verified header at that height and store them in the persistent local storage
of verified headers.

28

Btc Btc
Last stored header:
0000000000000000000442ab4e23a0426795c475f72a174004a0
6f26175b3576

Closest hash: IJJ
19d6689c085ae l 65831 e934f f763ae46a2a6c l 72b3f1 b60a8ce26
f

Your address:
37Q13UiqZz4mkyuumyzKi fSdApa5Bk3TV5

Your balance:
0
Your txses:

t ransact ion: 6b2053068c3070ecd063e05dc18741 f0df f244da
baa4d537504d50aef38864fd
in block: 729327
valid: fa lse spent: true

Get closest hash

Q Catch up
729326 blocks

Last stored header:
0000000000000000000442ab4e23a0426795c475f72a174004a0
6f26175b3576

Closest hash: (4 !
3f10ubcb279ufbf45f69b6825094d75adf5ae9dbf8f4072fe2f f2ea
7

Your address:
37Q13UiqZz4mkyuumyzKi fSdApa5Bk3TV5

Your balance:
0
Your txses:

t ransact ion: 6b2053068c3070ecd063e05dc18741 f0df f244da
baa4d537504d50aef38864fd
in block: 729327
valid: false spent: true

Q Get closest hash

Q Catch up
729006 blocks

Eth Btc Bch Eth Btc Bch

Figure 5 .1 : E m p t y smart contract. F igure 5 .2: Smart contract w i th 10 batches.

R e a c t n a t i v e a p p l i c a t i o n

As the main appl icat ion, we chose react native because we prefer Typescript over Java.
The appl icat ion uses Redux for a l l its interactions w i th outside data. It is used for both
Native module calls and A P I interactions.

The appl icat ion offers two main functions. Bu t t on labeled Get closest hash sends a
request to the native module to query the smart contract for the closest hash to the given
block. We display the closest hash for each transaction for a given account. After receiving
this checkpoint, the appl icat ion can catch up w i th the blockchain head start ing there. In
Figure 5.1 the smart contract only contains the B i t co in genesis block, as can be seen in
Closest hash marked by (T). After sending a transaction w i th ten batches of 32 headers,
called Get closest hash, the user can execute the catch-up action marked by (2). Th is
action queries the smart contract for the closest checkpoint to the given block number. The
Figure 5.2 shows that Closest hash after the user presses the Get closest hash button
marked w i th (3) , the closest hash value marked w i th (4) has changed, and also that the
catch-up length marked w i th (5) is smaller by 320 blocks, which is the number of blocks
we submitted in ten batches.

D a t a storage hand l ing

For a l l asynchronous actions, the appl icat ion utilizes Redux state management l ibrary. For
permanent data such as contact information, validated header chain, and more, the appl i
cation uses an extension of Redux called redux-persist. The extension uses permanent
storage w i th crucia l value inside the phone. In this way, validated transactions remain
validated even after the appl icat ion is shut down without external state management.

29

Bch

Last stored header:
0000000000000000033a81706e4b96f f142289a9ca9024878e40
56d949e95e68

Closest hash: IJJ
2a31 d4ad805018 f78dc3c l b0e91 5 f l 1 a76fc38019562708

Your address:
qrn29uc480r8ra8yvfyuzr35dhrs776hgye0fqpnem

Your balance:
0
Your txses:

t ransact ion: 1 ee4a230c647c32209a25957ab8edfca982f3717
5ea62b46c3204aa50a430b38
in block: 735633
valid: fa lse spent: true

Q Get closest hash

A Catch up
" 33 blocks

transact ion: 8 c 9 c a e l 2473c054b732a99c fc842b7c6593c952
65298148361315a0ebec2074d
in block: 736671
valid: fa lse spent: true

Get closest hash

Bch

Last stored header:
0000000000000000025bed638bab4a920b8184d53f6c335e7705
569cbf38c2b6
Closest hash: 4)
0000000000000000025bed638bab4a920b8184d53f6c335e7705
569cbf38c2b6
Your address:
qrn29uc480r8ra8yvfyuzr35dhrs776hgye0fqpnem
Your balance:
0
Your txses:

transaction: 1 ee4a230c647c32209a25957ab8edfca982f3717
5ea62b46c3204aa50a430b38
in block: 735633
valid: false spent: true

Get closest hash

Q Validate

transaction: 8c9cae12473c054b732a99cfc842b7c6593c952
65298148361315a0ebec2074d
in block: 736671
valid: false spent: true

Get closest hash

Eth Btc Bch
Eth Btc Bch

Figure 5.3: E m p t y smart contract. Figure 5.4: Smart contract w i th 10 batches.

The appl icat ion stores validated headers i n a similar data structure as a smart contract.
They are mapping their block height to their hash. This way, f inding closest val id hash is a
matter of looping downward through the local header chain. We chose to use this structure
due to its inherent sorted nature without any manipulat ion. We add a new header only i f
it originated from the blockchain or forms a header chain originating from the blockchain.
W h e n forming local header chains, we recalculate a hash of the headers and check the
target and previous header l ink. L ike servers' implementations, the headers are represented
as objects that provide the functionality to their data.

Blockcha in synchronizat ion

The client synchronizes w i th secondary blockchains by cal l ing the smart contract w i th the
required block height and checking the local header chain as to which header is closer. The
client builds a local chain from the received checkpoint, after which we can query the block
for the inclusion of transactions.

Transaction inclusion is determined by asking a ful l node for Merkle proof for the selected
transaction and validated block. This proof is then local ly validated, and i f the resulting
Merkle root matches the root stored inside a val id block, the client can be confident that
the transaction is included there. The endpoint for receiving proof is compatible w i th the
standard implementat ion of bitcoin-based nodes.

In the appl icat ion, Figure 5.3 shows a transaction that is i n a block of 33 headers above
the currently loaded header. Note the hash value i n the closest hash field marked w i th (T).

W h e n the user presses the catch-up button marked w i th (jf), the appl icat ion downloads 33
headers from the secondary blockchain B i t co in cash. The headers start at the closest hash

30

Bch

Last stored header:
0000000000000000025bed638bab4a920b8184d53f6c335e7705
569cbf38c2b6

Closest hash:
0u00u00uu0u00000025bed638bab4a920b8184d53f6c335e7705
569cbf38c2b6
Your address:
qrn29uc480r8ra8yvfyuzr35dhrs776hgye0fqpnem
Your balance:
0
Your txses:

transaction: 1 ee4a230c647c32209a25957ab8edfca982f3717
5ea62b46c3204aa50a430b38
in block: 735633

7' valid: true spent: true

Get closest hash

Validate

transaction: 8c9cae12473c054b732a99cfc842b7c6593c952
65298148361315a0ebec2074d
in block: 736671
valid: false spent: true

Get closest hash

Catch up

Eth Btc Bch

Figure 5 . 5 : Smart contract w i th 10 batches.

value and continue unt i l the header w i th the selected transaction. Afterward, the user can
press the Get closest hash but ton marked by (3) . The result of this act ion is visible in
Figure 5 . 4 . Note that the closest hash field, now marked w i th (4) has been updated. A n d
furthermore note the current value of the field va l id marked w i th (5) . Th is transaction can
now be validated. The but ton Validate marked w i th (IT) queries a ful l node for Merkle
proof of transaction inclusion and recalculated this proof if the result ing Merkle root is the
same as the validated local block, the flag v a l i d inside the local transaction object changes
to true.

In Figure 5 . 5 , we can see the result of the val idation. The val id field marked w i th (7)

in the transaction has turned out to be true. This field shows that the transaction is valid
and is included on the blockchain.

5.3 S m a r t c on t r a c t

The smart contract is pr imar i ly used for the storage and retrieval of validated headers.
It builds its own headers chain composed of checkpoints and keeps track of accumulated
difficulty to support forking. Dur ing its ini t ia l izat ion, we set up mult iple blockchains.
The blockchain ID, its genesis block, and the height of the genesis block are stored in
smart contract storage dur ing the setup phase. In addit ion to adding genesis, blockchain
in i t ia l izat ion also adds an in i t i a l fork w i th a pointer to itself at the place of the previous
fork. Since the default Id of this first fork is zero, the search w i l l stop after reaching this
pointer without t ry ing to search further down. After this in i t ia l izat ion, the contract can
bui ld chains of val id batches on top of this fork.

31

We do not need to verify hash calculat ion from submitted headers, since zokrates verifies
that. We only need to calculate the difficulty target to store the cumulative difficulty in
the local chain version. The difficulty is calculated from the max imum difficulty div ided
by the target. We can uti l ize bit-wise operations on 256-bit numbers i n solidity, which
Zokrates does not support. Therefore, we can use masks for a faster and much cheaper
target calculat ion.

F o r k h a n d l i n g

Forks are handled by constantly storing the cumulative difficulty of the whole blockchain
in each batch. Forks always start w i th the previous fork l inked to its last height at the
last fork and its current height. The main chain w i l l most l ikely be composed of mult iple
forks w i th this structure. After each addit ion of forks, we automatical ly choose a new main
fork depending on the tota l cumulative difficulty inside the highest batch at available forks.
Since the previous ma in fork has already been decided to its state by this action, we only
need to compare the difficulties of the new and main forks.

The cumulative difficulty of the batches automatical ly updates after each batch to the
same current and previous batch difficulties. If the batch is first i n a new fork, we acquire
difficulty from the batch at the height of the previous fork stored i n the current fork.

W h e n determining the fork for the newly val idated batch, we scan a l l forks in the current
chain. W h e n a fork contains a previous hash at a height lower than the verified hash, we
can be confident that the fork can accept that hash. Unwanted collisions dur ing this act ion
are improbable since two different forks would need to have the same hash at a given height
and different contents.

C l i e n t i n t e r a c t i o n

Client interacts w i th a single function ClosestHash. Th is function returns the closest
validated hash and its height at the selected blockchain and height. The function triggers
a private recursive function getClosest.

32

function getClosest(

uint chainld,

uint height,

uint forkNumber

) private returns (uint256[] memory) {

Chain storage headerChain = chains[chainld];

// using undefined array length for geth warpper compatibility

uint256[] memory ReturnVal = new uint256[](2);

Fork storage mainFork = headerChain.forks[forkNumber];

i f (height > mainFork.forkHeight) {

height = mainFork.forkHeight + 1;

}

for (uint i = height; i >= 0; i —) {

// if reached some hash return it

i f (mainFork.batches[i].lastHeaderHash != 0) {

emit ClosestHash(mainFork.batches[i].lastHeaderHash);

ReturnVal [0] = mainFork.batches[i].lastHeaderHash;

ReturnVal[1] = mainFork.batches[i] .height;

return ReturnVal;

} else i f (i == mainFork.previousHeight) {

// if reached previous fork continue searching in it

return

getClosest(chainld,

mainFork.previousHeight,

mainFork.previousFork

) ;
}

}

emit ClosestHash(0);

return ReturnVal;

}

Lis t ing 1: C h a i n traverse i n smart contract

The function i n L is t ing 1 traverses a l l batches i n forks that precede the main fork. The
traversal is downward because, for the client, bui ld ing header chains from the bottom-up is
easier and once smart contract reaches top of blockchain it is easier to enforce consistency
downwards. The traversal ends when we reach height zero or when the current fork has a
verified block hash at the current height. W h e n the function reaches fork height zero and
the fork has the previous fork defined, the function recursively runs i n the previous fork at
the start ing height that is stored in the current fork. The function returns bo th hash and
its height i n the header-chain in a single array of unspecified length, because of expected
type l imitat ions of the go wrapper i n clients native module.

33

5.4 Z o k r a t e s heade r c h a i n ver i f i e r

Zokrates program verifies that a sequence of headers is val id and continues from some start
ing point. The program accepts an array of 32 headers and creates proof of its val idation.
We designed the Zokrates program for 32 headers, however, it is extendable and reducible
for different sizes. Its pr imary function accepts a list of headers and their hashes. The
first and the last values from both lists are publ ic parameters, and the rest are private
parameters. This choice of v is ib i l i ty is to optimize the smart contract val idator because
its size grows rapidly w i th addi t ional publ ic parameters. Secret parameters are not passed
to the final verifier; only publ ic ones are passed. Because the largest single value type in
Zokrates has 256 bits, the input must be split into 256-bit hexadecimal values.

B a t c h v a l i d a t i o n

The zokrates program for each header calculates hashes and targets and then checks its
continuation of the previous header. The sha256 function of the Zokrates standard l ibrary
calculates the header hash. We need to pad this function since we are apply ing a hash
function on headers w i th 80 bytes. We add a constant value at the end of the sha256
input and the number of bits needed to reach the end of the input to create padding. The
implementation of header hashing is shown in L is t ing 2.

def hash_block_header(u32[5][4] preimage) -> f i e l d :

u32 [8] preimagel = [...preimage [0], ...preimage[1]]

u32 [8] preimage2 = [...preimage [2], ...preimage[3]]

hex representation of number at the end of input values

u32[8] preimage3 = [...preimage [4] , 0x80000000,
0x00000000, 0x00000000, 0x00000000]

last part of sha256 input with number of padded bits in hex

u32[8] dummy = [0x00000000, 0x00000000,
0x00000000, 0x00000000,
0x00000000, 0x00000000,
0x00000000, 0x00000280]

first hash of the input

u32 [8] intermediary = sha256forl024(preimagel, preimage2,
preimage3, dummy)

second hash with the results from first

u32 [8] res = sha256for256(intermediary)
changing endianness

res = change_array_endainnes(res)

transforming into single 256 bit value

return u32Pack256(res)

L is t ing 2: Header hashing in zokrates

From the l imitat ions of Zokrates types and standard functions, we must transform
headers to arrays of 32-bit numbers from input form input forms of 128-bit values. These
arrays are passed to function in L i s t ing 2 and then padded into a single 1024-bit value. This
value is passed to the first sha256 function, and its result can now be passed without padding
into the second sh256 function. These hash functions return an array of 32-bit numbers

34

that together form a single 256-bit hash. To allow final verification of hash output, we
needed to swap the endianness of the resulting hash. To swap endianness, we need first to
reverse the array and second reverse bits i n each array element. The array reverses in a
simple for loop, and elements need to first be turned into bitwise array representation and
then spread into a new array i n reverse order.

Zokrates guarantees the correctness by asserts, which stop witness creation execution
quicker than keeping state, and the resulting witness is not val id. B i t co in stores the targets
in the headers in values called bits. It is a 32bit number, where the first six bits represent
the amount left shifts of the rest of the bits to calculate the target of the hash of the header.
In the following equation, we can see the entire equation of target calculation, where the
head is the first six bits, and the ta i l is the last 26 bits.

Target = tail * 2^head~^

Since Zokrates does not support dynamic shift sizes or exponent calculations, we calcu
late the amount of shifts from the head value and loop over the ta i l w i th 64 times shifting
to the left by one. W h e n we reach the number of shifts defined i n the head, we cannot
escape the loop, so we need to set the shift to zero.

35

Chapter 6

Framework evaluation

Testing performance is concentrated mainly around Zokrates and the smart contract part of
this framework since that part provides functionality and is the most expensive to perform.
As the client does not require performing any significant or costly tasks, we only tested
data requirements for catching up based on different checkpoint margins.

6.1 B a t c h s u b m i s s i o n cost

The cost of submit t ing batches comes from three places. The first is the contract storage
ut i l i zat ion, the second is the computat ional resources required for proof creations, and the
final is the client network requirements on synchronization. Storage after account creation
is the second most costly act ion w i th in the Ethereum network [3]. Therefore, opt imiz ing
this part is crucia l for the performance of this framework. We created proofs of 32 header
batches for the first 1000 headers for testing. Since the smart contract can accept arrays
of proofs, we tested the ideal array length per the price of its submission, the cost of in i t ia l
catch up and the max imum client synchronization cost.

C o n t r a c t s t o r a g e u t i l i s a t i o n

Dur ing storage ut i l isat ion testing we used function provided by web3 framework called
estimateGas. This function receives a raw transaction, executes it locally, and outputs the
gas required for its successful execution on the Ethereum network.

In Figure 6.1, we can see that the price of submit t ing mult iple batches increases l inearly
w i th their amount. Dur ing testing, we found a hard l imi ta t ion of the Ethereum network
in the form of max imum gas per block, which is a constant [3]. Dur ing testing, we already
breached this l imi t i n 22 batches i n a single transaction.

The Figure 6.2 shows the cost of catching up to the main net of B i t co in i n Ethereum
based on the average, m in imum and max imum gas prices in Mar ch 2022 1 . This chart is only
for general orientation, and Figure 6.2 shows the exact price of batched batches submission
in gas. Since the blockchain always grows, we chose to show the cost of upkeep of this
network in current state of Ethereum development. It shows tota l price in Ether for the
continuous publ ishing of new block proof batches. Since in B i t co in every 10 minutes a new
block is created, assuming 30 day month, 4320 new blocks w i l l be created by its end. The
results show that costs drop drastical ly i n smaller batches but begin to stabilize i n more

1 https: / / etherscan.io/chart / gasprice

36

_ 8 • 10 6

0 7 - 1 0 6

1 6 - 1 0 6

O

J 5 • 10 6

0 4 . 1 0 6
rJ=!

1 3 - 1 0 6

.o 2 • 10 6

.a 1 • 10 6

EH
PH

°0 2 4 6 8 10 12 14 16 18 20

Number of batches

Figure 6.1: Pr ice of submission for batch count.

significant amounts. The cost could be improved further i f we switch to a less-constrained
blockchain.

P r o o f c r e a t i o n

Proof creation is a resource-intensive operation. To measure resource usage, we use ut i l
i ty psrecord. It consists of two consecutive actions. The witness computat ion, shown in
Figure 6.4, requires less R A M and is a quick action. The proof computat ion shown in F i g
ure 6.5 requires more R A M and takes significantly more t ime than the witness computat ion.
These actions are single-core processes and can be parallelizable if there is enough memory
to support them. Dur ing our testing, both were constrained by single-core C P U speeds.

We tested mult iple configurations of the zokrates verifier. We needed to change the
verifier to accommodate the amount of headers in batches. These changes are relatively
simple and mainly comprise changing the ma in size of the loop and input array. A n example
of such changes can be seen in the file btcl6HeadersValidation.zok, which accepts a batch
of sixteen headers. The result of testing these configurations can be seen i n Figure 6.6. The
tests have shown that the R A M requirements increase l inearly w i th batch sizes. Epochs in
Bitcoin-based blockchains have Epochs of size 2016 [19]. Therefore, we elected the batch
sizes to be powers of two. Each epoch has a constant difficulty target that changes between
them. Furthermore, selecting batch sizes from powers of two allows us to check these targets
outside of zokrates.

6.2 S to rage o p t i m i z a t i o n

W h e n sending mult iple batches in the transaction, the cost is smaller because the blockchain
Smart contract only stores the last header of a l l the batches in permanent storage. However,
these overlapping batches create larger spaces between checkpoints and force the client to
download more headers for synchronization as a result.

37

Figure 6.3: Pr ice to catch up to Btc .

Figure 6.7 shows the growth rate for the number of blocks that synchronize according to
batch size. Apar t from in i t ia l synchronization, even batches of 20 or 30 headers are viable
for devices w i th l imited data.

T o t a l s t o r a g e o p t i m i z a t i o n

This framework works as a replacement for running separate Light clients inside mobile
devices. In B i t co in light client, one would need to download, store, and process around
6 0 M B [19] for in i t ia l synchronization per client. W i t h current wallets support ing several
different blockchains, this amount would quickly grow to become unmaintainable. Th is
framework provides a single blockchain light node as a source of t ru th , and the rest are
dynamical ly synchronized. The tota l storage opt imizat ion w i l l be different per user account,
since the user only needs the parts of blockchains up to blocks containing their transactions.
However, it grows proport ional ly to the number of supported blockchains.

38

Figure 6.4: Witness computat ion.

20

Figure 6.5: Proo f computat ion.

16 -

ffl 12
Ü

< 8

0

•Witness generation
Proof generation

0 4 8 12 16 20 24 28 32

Batch size in headers

Figure 6.7: M a x i m u m client synchronization size.

39

Chapter 7

Discussion

7.1 A p p l i c a t i o n des i gn

The appl icat ion was designed as a proof of the work of this framework. The interface is
not user-friendly for wallet functionality; however, it shows how this framework works w i th
data from mult iple sources. In a user facing implementation, the appl icat ion would not
display any of the manual functionality, it would automatical ly catch-up to blocks w i th
user transactions and validate them without any user input or notice. The appl icat ion
would only have a list of transactions and the usual wallet capabilities.

7.2 P e r f o r m a n c e o f p r o o f g e n e r a t i o n

Proof generation is an act ion w i th high hardware demands and does take a significant
amount of t ime. In blockchains, the speed of block generation varies. However, this frame
work must perform significantly faster proof creation than the interim-between-blocks to be
viable i n real-world use cases. In Chapter 6 we tested t ime and hardware difficulties, which
have shown that the higher the header count and batch count, the cheaper its submission.
The testing was constrained by hardware performance and the single-threaded nature of the
Zokrates toolbox. For batches of 32 headers on Intel i 7 -10510U, we recorded an average
witness creation t ime requirement of 255 seconds and a proof creation w i th an average time
requirement of 681 seconds. Therefore, on our setup catching up to bi tco in would require
about 936 seconds per block. The current speed of the B i t co in blockchain is a new block
every 600 seconds. Th is means that proof creation is about 20 times faster on our setup.
However, this act ion is l imi ted by our single-core speeds and nonparallel ized computat ion
of proofs. Therefore, we would be able, without further optimizations synchronize 20 sec
ondary blockchains at the same t ime. However, the in i t ia l synchronization requires more
powerful hardware. Because the current top block is at the height of 73320 1 and the proof
generation of a l l proofs in B i t co in would take about 27 days. Therefore, the framework is
usable on consumer hardware if the blockchain has already caught up.

7.3 F r a m e w o r k l i m i t a t i o n s

The first l imi ta t ion is the Zokratess toolbox. Zokrates, by default, supports a range of hash
functions naively, and this range sets a hard l imi t on the choice of blockchains that can be

x https: / / www.blockchain.com/explorer

40

http://www.blockchain.com/explorer

supported. Blockchains are further l imi ted by the data size required for header val idation.
Zokrates has a l imi ted number of publ ic inputs. The l imi ta t ion comes from generated smart
contract size, which cannot be published into the main-net blockchain after some amount.
Th is size can be reached because for each blockchain. We need to have at least two publ ic
header inputs. A s mentioned in Chapter 5, the l imi ta t ion of the max imum type size to 256
bits means that headers must be split into 256 bit parts. If the two required headers have
large sizes, the contract deployment can be severely more expensive or impossible.

Another l imi ta t ion is hardware and blockchain founds requirements for catching up to
the current state of blockchain. The payments decrease direct ly w i th the number and size of
batches. However, the larger the batches, the higher the requirements for proof calculat ion
and the larger the m in imum synchronization distance becomes for clients. It would be
expensive to catch up to the top of the selected blockchains at the current configuration.
However, even w i th bigger batch sizes, the Ethereum block size is s t i l l l imited in its gas
consumption, which we reached at 22 batches of 32 header-sized batches.

41

Chapter 8

Conclusion

We designed and implemented a framework for mobile wallets based on z k - S N A R K s and
smart contracts. The framework provides faster and less data-intensive synchronization
than running mult iple local light clients. The tota l storage opt imizat ion gain grows in
proport ion to the number of used blockchains since only a single light client is required
to function correctly. The framework supports Ethereum as its pr imary blockchain, which
serves as the source of t ru th for both client and server. Furthermore, the smart contract
deployed on Ethereum serves as trusted storage and verifier of fragmented header chains.

The framework also supports two secondary blockchains, B i t co in and B i t co in Cash.
The server creates local header chains of these secondary blockchains and generates proofs
of their successful verification. The proofs are then submitted to the smart contract and
verified in the on-chain computat ion. Except for in i t i a l deployment, this submission is the
only action that requires on-chain payment. The client interactions are without any charges.
The client is a mobile appl icat ion that runs an instance of the Ethereum light node. This
light node is used for accessing smart contracts w i th secondary chain checkpoints. After
receiving a secondary chain checkpoint, the client can start bui ld ing a local chain from it
as a new temporary genesis block. Since mobile clients are only interested in transactions
affecting them, they only require smal l parts of the whole blockchain to function. This
framework allows them to securely verify blocks while preserving the security coming from
light clients.

Apar t from the in i t i a l costs of framework setup, our solution is a viable trust-less al
ternative to the current mobile blockchain wallets. Provides an interface to control Smart
contract and Zokratess from a P y t h o n script. We designed it to be extendable for different
batch sizes or proof of work-based blockchains w i th included and tested examples of such
extensions. The implemented react native appl icat ion showcasing the functionality of this
framework demonstrates improvements i n storage ut i l i zat ion as compared to other trust
less alternatives. The storage and bandwidth required for mobile synchronization for the
secondary chains increases w i th the number of blocks we want to validate. However, i n the
worst-case scenario, i f the client has a transaction in every single block in the blockchain,
it w i l l at most reach the requirements of light clients.

F r a m e w o r k ex t ens i ons

The framework can be extended to support other consensus mechanisms and other Block-
chains. The extension w i l l add a smart contract chain selection configuration, and in the

42

Zokrates program, we w i l l need to add support for chain-specific batch handl ing. Another
helpful extension is the support for paral lel ization and automat ing dur ing proof creation
and submission,which we d id not implement, as it is applicable only dur ing deployment to
product ion. Furthermore, it needs to be expl ic i t ly configured for the different framework
configurations.

43

Bibl iography

[1] A D A M , L . Z K - S T A R K S — Create Verifiable Trust, even against Quantum
Computers. 2018. Available at: https://medium.com/coinmonks/zk-starks-create-

verifiable-trust-even-against-quantum-computers-dd9c6a2bbl3d.

[2] A L I N , T . What is a Merkle Tree? 2020. Available at:
https: //decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/.

[3] A N T O N O P O U L O S , A . and D , G . Mastering Ethereum: Building Smart Contracts and
DApps. 1st ed. O 'Re i l l y Media , 2018. I S B N 9781491971895. Available at:
https: //books.google.cz/books?id=oJJ5DwAAQBAJ.

[4] D A S H J R , L . Bitcoin improvement proposal 62. 2017. Available at:
https: //github.com/bitcoin/bips/blob/master/bip-0062.mediawiki.

[5] B O N E H , D . , D P J J V E R S , M . and N E V E N , G . Compact Mult i -s ignatures for Smaller

Blockchains. In: P E Y P J N , T . and G A L B R A I T H , S., ed. Advances in Cryptology -
ASIACRYPT 2018. C h a m : Springer International Publ ish ing , 2018, p. 435-464.
I S B N 978-3-030-03329-3.

[6] B U T E R I N , V . State Tree Pruning. 2015. Available at:
https: //blog.ethereum.org/2015/06/26/state-tree-pruning/.

[7] B Ü N Z , B . , B O O T L E , J . , B O N E H , D. , P O E L S T R A , A . , W U I L L E , P. et a l . Bulletproofs:

Short Proofs for Confidential Transactions and More. In: Stanford University,
Universi ty College London, Blockstream. 2018 IEEE Symposium on Security and
Privacy (SP). 2018. D O I : 10.1109/SP.2018.00020. I S B N 978-1-5386-4353-2.

[8] C A S T R O , M . , L I S K O V , B . et a l . Prac t i ca l byzantine fault tolerance. In: Massachusetts
Institute of Technology. OSDI. 1999, vol. 99, no. 1999. I S B N 10.1145/571637.

[9] D R I J V E R S , M . , G O R B U N O V , S., N E V E N , G . and W E E , H . P i xe l : Mult i -s ignatures for

Consensus. In: A lgorand and Universi ty of Waterloo. 29th USENIX Security
Symposium (USENIX Security 20). U S E N I X Associat ion, August 2020,
p. 2093-2110. I S B N 978-1-939133-17-5. Available at:

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers.

[10] E L E N A , N . Demystifying Zero Knowledge Proofs. 2018.

[11] E L I B E N , S., I D D O , B . , Y I N O N , H . and M I C H A E L , R. Scalable, transparent, and

post-quantum secure computat ional integrity. IACR Cryptol. ePrint Arch. 1st ed.
2018, no. 1, p. 46. Available at: http://eprint.iacr.org/2018/046.

44

https://medium.com/coinmonks/zk-starks-create-
https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers
http://eprint.iacr.org/2018/046

[12] F O U N D A T I O N , E . Ethereum Whitepaper. 2021. Available at:
h t t p s : //ethereum. org/en/whitepaper/#bit c o i n - as-a- s t a t e - t r a n s i t i o n - system.

[13] H O M O L I A K , L , V E N U G O P A L A N , S., R E I J S B E R G E N , D. , H U M , Q . , S C H U M I , R. et al .

The Security Reference Architecture for Blockchains: Toward a Standardized Mode l
for Studying Vulnerabi l i t ies, Threats, and Defenses. IEEE Communications Surveys
Tutorials. 1st ed. 2021, vol. 23, no. 1. D O I : 10.1109/COMST.2020.3033665.

[14] J . , L . Handbook of Theoretical Computer Science. 1st ed. Elsevier, 1998. I S B N
978-0-262-72014-4.

[15] M A K S Y M , P. Why and How zk-SNARK Works. 2019.

[16] M E N O N , S. J . Implementing lattice-based cryptography in libsnark. 2017. Available
at: https : //crypto.stanford.edu/cs359c/ 17sp/proj ects/SamirMenon.pdf.

[17] M E R K L E , R. C. Protocols for Pub l i c K e y Cryptosystems. In: E L X S i International
Sunnyvale, C a . 1980 IEEE Symposium on Security and Privacy. 1980. D O I :
10.1109/SP.1980.10006. I S B N 0-8186-0335-6.

[18] M I H I R B E L L A R E , A . S. and V A D H A N , S. Many-to-one Trapdoor Functions and their
Relation to Public-key Cryptosystems [Cryptology ePrint Archive, Report 1998/019].
1998. Available at: https://ia.cr/1998/019.

[19] N A K A M O T O , S. Bitcoin: A peer-to-peer electronic cash system. 2009. Available at:
h t t p : / / www.bitcoin.org/bitcoin.pdf.

[20] N u z z i , L . Schnorr Signatures & The Inevitability of Privacy in Bitcoin. 2019.
Available at: h t tps : //medium.com/digi ta lassetresearch/schnorr-s ignatures-the-
inev i tab i l i t y -o f -p r i vacy - in -b i t co in-b2f45alf7287.

[21] S E U R I N , Y . O n the Exac t Security of Schnorr-Type Signatures in the Random Oracle
Mode l . In: P O I N T C H E V A L , D . and J O H A N S S O N , T. , ed. Advances in Cryptology -
EUROCRYPT 2012. Ber l in , Heidelberg: Springer Ber l in Heidelberg, 2012. I S B N
978-3-642-29011-4.

[22] S T A L L I N G S , W . Cryptography and Network Security: Principles and Practice. 7th ed.
Prentice Ha l l , 1999. I S B N 9780138690175. Available at:
h t t p s : //books.google.sk/books?id=Dam9zrVi J j EC.

[23] S U L L I V A N , N . A (relatively easy to understand) primer on elliptic curve cryptography.
2013. Available at: https://arstechnica.com/information-technology/2013/10/a-
r e l a t i v e l y - e a sy - t o -unde r s t and -p r ime r - on - e l l i p t i c - cu r v e - c r yp t o g raphy/ .

[24] T A M , A . Digital Signatures in Blockchains: The Present and Future. 2021. Available
at: h t t p s : / / b i s o n t r a i l s . c o / d i g i t a l - s i g n a t u r e s / .

[25] V E S E L Y , P., G U R K A N , K . , S T R A K A , M . , G A B I Z O N , A . , J O V A N O V I C , P. et a l . P lumo :

A n Ultra l ight Blockchain Cl ient . I A CR Cryptol. ePrint Arch. 1st ed. 2021, vol. 2021,
no. 1, p. 1361.

45

http://stanford.edu/
https://ia.cr/1998/019
http://www.bitcoin.org/bitcoin.pdf
https://arstechnica.com/information-technology/2013/10/a-

[26] W A N G , W. , H O A N G , D . T., H U , P., X I O N G , Z., N I Y A T O , D . et a l . A Survey on

Consensus Mechanisms and M i n i n g Strategy Management in Blockchain Networks.
IEEE Access. 1st ed. 2019, vol. 7, no. 1, p. 22328-22370. D O I :
10.1109/ACCESS.2019.2896108.

[27] W E S T E R K A M P , M . and E B E R H A R D T , J . ZkRelay: Fac i l i ta t ing Sidechains using
z k S N A R K - b a s e d Chain-Relays. In: Technische Universität Ber l in . 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS PW). 2020. D O I :
10.1109/EuroSPW51379.2020.00058. I S B N 978-1-7281-8597-2.

[28] W O O D , G . Ethereum: A secure decentralised generalised transaction ledger.
I S T A N B U L V E R S I O N 80085f7th ed. 2022. Available at:
h t t p s : //ethereum.github.io/yellowpaper/paper.pdf.

[29] C H R I S T I A N , R. ZkSNARKs in a nutshell. 2016. Available at:
h t t p s : //blog.ethereum.org/2016/ 12/05/zksnarks- in-a-nutshel l/.

46

Append i x A

Contents of the included medium

medium

zkWallet - Source code of implemented framework

thesis - Source code of t h i s thesis

thesis.pdf - PDF of this thesis

Figure A . l : Contents of the included medium.

Language TypeScr ipt Java Py thon Sol idity Zokrates JavaScript Shel l
Lines of code 1327 458 445 351 218 201 166

Table A . l : L ines of not generated code per language without comments.

47

