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Objectives of thesis

e Study and understand the viability of Industrial Edge, a SIEMENS solution intended for IoT, to deploy Al
methods in automation.

* |dentify the requirements and critical parameters to deploy Al methods into automation with Predictive
maintenance.

« Define potential architecture(s) to deploy Al methods in Siemens Industrial Edge.
 Build the architecture(s) to evaluate the critical parameters identified.

* Evaluate and discuss the viability and conditions where Industrial Edge is suitable for Al, if any.

Methodology

The project can be framed into applied research as it studies the viability to deploy a new technology of an
existing technological solution of SIEMENS for IoT in Industry 4.0.

The methodology to achieve such evaluation can be divided in four major blocks:

* Build knowledge in Al for Automation and SIEMENS Industrial Edge:

This phase covers the study of the state-of-the-art, Al architectures and the features of the product where
this new technology is to be deployed: Industrial Edge.

* |dentify the critical points and requirements:
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In this stage, the requirements for Predictive maintenance in an industrial environment are to be set. The
real time data will be collected directly from viking masek (A Siemens packaging machine) and analysis will
be done on the data.

Internal information of Al-based solutions within the company can be used. The main goal is to identify
which are the requirements and critical factors of the process (i.e.: operation cycle, process frequency,
type of synchronization...) that determine whether Edge is suitable to deploy Al

» Experiments and results:

Define, construct, and carry various tests to find out the critical parameters defined. Test's like (Correlation
distribution, PCA, ICA etc) will be performed on the collected data and based on that a neural network will
be proposed. Such definition should only focus on the components that are essential to evaluate predictive
maintenance and the deployment of Al

* Fvaluation and discussion of the results:

Evaluate the pipelines proposed and discuss their viability. This discussion must also characterize which
critical parameters comes out best for predictive maintenance.It also includes deploying the architecture
proposed on Industrial Edge and carry some experiments to be able to evaluate and discuss about it.
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VIABILITY OF SIEMENS INDUSTRIAL EDGE TO DEPLOY AI INTO
AUTOMATION PROCESSES

Abstracts

The study explores the potential of Siemens Industrial Edge to integrate artificial intelligence
(Al) methods into automation processes for Vertical Form Fill Seal (VFFS) machines. The
focus is on the deployment of a Convolutional Neural Networks (CNN) for production
predictive purposes. The research analyses the benefits of utilizing Siemens Industrial Edge
in terms of predicting the quality of packaging belonging to different class. The study also
discusses the challenges of implementing Al into automation processes and the importance
of data accuracy in predictive maintenance. The findings suggest that deploying Siemens
Industrial Edge with Al for predictive maintenance can significantly improve the
performance and efficiency of VFFS machines. Overall, the research provides insights into
the viability of Siemens Industrial Edge in deploying Al for automation processes and
highlights the potential benefits of using Machine learning for predictive maintenance in

industrial settings.
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Siemens, Industrial Edge, Artificial Intelligence, Automation, Predictive maintenance,
Industry 4.0, Viability, Industry 4.0, Edge computing, Edge devices, Real-time analytics,
Data processing, Machine learning, Industrial 10T, Smart manufacturing, Operational

efficiency.



ZIVOTNOST SPOLECNOSTI SIEMENS INDUSTRIAL EDGE PRI
NAVADENI AI DO PROCESU AUTOMATIZACE

Abstrakt

Studie zkouma potencidl Siemens Industrial Edge integrovat metody umélé inteligence (Al)
do automatizacnich procesu pro stroje Vertical Form Fill Seal (VFFS). Diraz je kladen na
nasazeni konvolu¢nich neuronovych siti (CNN) pro ucely predikce vyroby. Vyzkum
analyzuje vyhody vyuziti Siemens Industrial Edge z hlediska predikce kvality obala
patficich do jiné tfidy. Studie také pojednavd o problémech implementace Al do
automatizacnich procesu a dulezitosti presnosti dat v prediktivni 0drzbé. Zjisténi naznaduji,
Ze nasazeni Siemens Industrial Edge s Al pro prediktivni udrzbu miiZze vyrazné zlepsit vykon
a efektivitu stroji VFFS. Celkové vyzkum poskytuje vhled do Zivotaschopnosti Siemens
Industrial Edge pifi nasazovani Al pro automatizani procesy a zduraziiuje potencialni

vyhody pouzivani strojového uceni pro prediktivni udrzbu v primyslovych prostiedich.
Kli¢ova slova:
Siemens, Industrial Edge, Uméla inteligence, Automatizace, Prediktivni drzba, Primysl

4.0, Zivotaschopnost, Primysl 4.0, Edge computing, Edge zaiizeni, Analytika v redlném

Case, Zpracovani dat, Strojové uceni, Primyslovy IoT, Chytra vyroba, Provozni efektivita.
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Introduction

Manufacturing companies are challenged to succeed in dynamic international markets
requesting high-quality products, flexibility, on-time delivery, and a reasonable cost
structure [1]. A typical example of this is a Vertical Form Seal machine (VFFS) automated
packaging machine used in various industries for packaging wide range of products
including food, pharmaceutical, beverage etc [2].

In Packaging machines, the quality of the packaging is a big challenge to deal with the
current pace of on-time delivery and standard quality. Standard quality is the need of the
hour in the current market. Viking Masek is one of the latest VFFS machines which come
in different size and configurations [3]. Viking Masek utilization of cutting-edge
technologies in their packaging equipment to boost effectiveness, productivity, and quality
is referred to as having an "industrial edge" in this context.

HMI is utilized in Viking Masek packaging machines to offer a graphical user interface
that enables operators to communicate with the machine and manage its operations.
Typically, the HMI system comprises of a touch screen display that shows operator the
details about the machine's state, the settings that are in effect, and any alerts or warnings.

SIEMENS

SIEMENS

Figure 1 : Human Machine Interface (HMI)

Above Figure 1 shows HMI interface with inputs. However, current HMI doesn’t show the
packaging quality and doesn’t test limitations of Industrial edge to deploy Artificial



Intelligence. With the increasing development of machine learning (ML), prediction
models are becoming more and more established in the field. Looking from the business
perspective, an Al model to predict the packaging quality and show the visualization on
HMI will make the operator aware of the packaging standards and will reduce the loss and
time. It will enhance the packaging procedures by enabling real-time data processing.

Thus, our manuscript aims to set up an ML-based model for the prediction of quality of
packaging classified into multi classes. With the achieved results, the paper provides three
main contributions:

e Collecting the data from the machine directly and analysing using matrix and
graphs in python to extract the dependent features.

e Proposing the model and discussing various Hyperparameters techniques to train
the machine learning model.

e Finally, Test the viability of industrial edge to deploy automation process by
deploying on the industrial edge to predict the packaging class with a user interface
for the operator.

Our paper is structured as follows in brief. Section 2 is divided into various sub sections
Section. Section 2.2 talks about data processing. Section 2.3 first discuss about the current
neural networks with different algorithms. Section 2.4 discusses about choosing CNN for
the problem. Section 2.5 talks little bit about Siemens Automation Portfolio. Section 2.6
defines the problem statement and Section 2.6.1 talks in detail about its implementation.
Finally, Section 3 shows the result and discussion and Section 4 talks about the final
concluded result.
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Objectives and Methodology

1.1 Objectives

The overall objectives of the project include:

The initial goal is to research and comprehends Industrial Edge, a Siemens 10T solution, and
its potential. The usage of this approach to implement Al techniques in automation is the
focus. The goal is to assess the solution’s capacity to assist Al in automated activities.

The second goal is to determine the prerequisites and crucial variables needed to implement
Al techniques in automation for predictive maintenance. This entails gathering information
from machines and examining crucial elements. The objective is to identify the crucial
variables that are essential for the effective implementation of Al techniques for predictive
maintenance.

The third goal is to identify various architectures that Siemens Industrial Edge may utilize
to implement Al techniques. To determine the class of the packing, this analysis also looks
at various potential multiclass classification-capable architectures. The goal is to identify the
best architecture for using Al techniques in the Siemens Industrial Edge environment.

Building the architecture(s) mentioned in the third aim to assess the critical parameters is the
fourth goal. To determine the suggested parameters, this entails finding and training the
neural network using hyperparameter optimization. The goal is to make sure that the created
architecture can enable Al in automation operations successfully.

The goal is to assess and discuss the viability and circumstances in which Industrial Edge is
appropriate for Al. This entails deploying Al on the edge using the right architecture, testing
the outcomes, and drawing conclusions. The goal is to ascertain whether Industrial Edge is
a workable solution for implementing Al techniques in automation and whether there are
any requirements that must be satisfied for its implementation.

1.2 Methodology

The project focuses on investigating the potential use of an existing technological solution
from siemens to support the adoption of a new 10T technology in Industry 4.0. The study
falls under the category of applied research, which tries to address current issues and develop
workable answers.

Building expertise in siemens Industrial Edge and Al for Automation is the initial part of the
project. This stage seeks to research Industrial Edge's most recent Al architectures and
features, which is the product where the new technology will be showcased.

Understanding the needs for predictive maintenance in an industrial setting and creating a
successful Al-based solution require this knowledge.
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Critical points and requirements for predictive maintenance in an industrial setting will be
determined in the second step. This entails gathering real-time data from a Siemens
packaging machine demo dubbed Viking Masek. The internal data of the company's Al-
based solutions can be used to determine the needs and important aspects of the process,
such as the cycle of operations, the frequency of the process, and the type of synchronization.
This phase's goal is to identify the conditions and process elements that are crucial in
determining whether Edge is a good candidate for Al deployment.

The critical parameters that were identified in stage two are discovered in the third stage of
the project through the definition, construction, and execution of numerous tests. With the
collected data, for instance, tests like Correlation distribution, PCA, and ICA will be run.
Based on the findings, a neural network will be suggested. Only those elements of this neural
network that are crucial for assessing predictive maintenance and the application of Al
should be the focus of its definition.

The planned pipelines will be assessed, and their viability will be reviewed in the project's
fourth and last stage. The best critical parameters for predictive maintenance will also be
described in this discussion. The proposed architecture will also be put into use on Industrial
Edge, and tests will be run to determine and discuss its practicality. These tests' findings will
be used to the planned architecture to improve efficiency.

To investigate the potential of a new technology for 10T in Industry 4.0, the research will
ultimately employ an existing technological solution from siemens. The project's four main
steps include developing expertise in siemens Industrial Edge and Al for Automation,
identifying critical areas and demands, carrying out experiments, and evaluating suggested
pipelines and architecture.

2 Literature Review

2.1.1 Literature survey

The history of using machine learning (ML) and artificial intelligence (Al) in predictive
maintenance of vertical form-fill-seal (VFFS) machines dates to the early 2000s. In recent
years, the use of convolutional neural networks (CNNs) has emerged as a popular choice for
predictive maintenance of VFFS machines. CNNs have been used to analyse data from
various sensors installed on the machines to detect anomalies and predict the remaining
useful life (RUL) of the machine components.

One of the earliest studies that used Al for predictive maintenance of VFFS machines was
done in 2001 by Rutenbar et al [4]. They used an ML technique called support vector
machine (SVM) to classify the machine health status as normal or faulty. Later, in 2012, Li
et al. used a combination of principal component analysis (PCA) and decision tree analysis
(DTA) to predict the RUL of a VFFS machine [5].
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In recent years, there has been a surge of research on using CNNs for predictive maintenance
of VFFS machines. For instance, in 2018, Kou et al. used a CNN to classify the health status
of the machines based on vibration signals. They achieved a classification accuracy of 96%
[6]. Similarly, in 2020 Jia et al. used a deep learning model that combined a CNN and long
short-term memory (LSTM) networks to predict the RUL of VFFS machines based on
acoustic signals [7].

The deployment of Al and CNN models for predictive maintenance in VFFS machines has
been a subject of interest in recent years. By deploying the models on the edge, the
computational load is reduced, and the response time is improved. In 2021, Chen et al.
proposed an edge-based predictive maintenance framework that uses a CNN to analyse
vibration signals and predict the RUL of VFFS machines. The framework was tested on a
real-world dataset and achieved a prediction accuracy of 90% [8].

Also in 2021, Zhang et al. proposed a method for the deployment of an Al model on the
industrial edge for predictive maintenance of VFFS machines [9]. The authors used a CNN
model to predict the remaining useful life of the machine and demonstrated the effectiveness
of their proposed approach in reducing maintenance costs.

For example, in a study by Jin et al. in 2021, a CNN-based method was proposed for
detecting defects in vertical form fill seal (VFFS) packages. The authors demonstrated the
effectiveness of their proposed method on a real-world dataset, achieving an accuracy of
98.86% in defect detection [10].

In a study by Xie et al. in 2021, a CNN-based method was proposed for predictive
maintenance in the VFFS packaging process [11]. The authors deployed the model on an
industrial edge device and achieved an accuracy of 96.8% in predicting packaging defects.
The deployment of the model on the industrial edge device reduced the communication
latency and improved the response time, making it suitable for real-time predictive
maintenance.

The use of Al, specifically CNNs, for predictive maintenance of VFFS machines has a long
history, with recent advances focusing on deploying the models on the industrial edge. With
the ever-increasing demand for efficient and cost-effective maintenance practices, it is
expected that the use of Al in VFFS predictive maintenance will continue to grow.
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2.2 Data processing

Data Processing refers to manipulation and transformation of data to provide useful
information. It involves data cleaning, integration, transformation, analysis, and
visualization [12].

Data Processing is an essential component of both data science and data analysis.
Data Science uses statistical and computational methods to extract insights from
data. It works with large and complex datasets and provides variety of tools and
techniques to extract meaningful patterns and relationships. It involves use of
machine learning, artificial intelligence, and other advanced techniques to build
effective models with can identify patterns and trends in data.

Data Analyses focus on working with data using statistical method to analyse and
extract insights. It often works smaller datasets like databases, spreadsheet, and
statistical software.

These are very important steps in analysing data because both provides essential
tools to process. Some commonly used tools include:

1. Programming languages: Programming languages like Python and R are the two
of the most popular languages which offers range of libraries and tools for data
processing and analysis.

2. Statistical Software: Software includes SAS, SPPS are commonly used for
statistical analyses.

3. Machine Learning Framework: Tools like scikit-learn, TensorFlow are used to
build predictive models which performs advanced machine leaning task.

4. Data Visualization: Tools like matplotlib, seaborn are used to visualize data to

extract useful information’s.

In general, all these tools are the building blocks combined and work together to
build a predictive machine learning model which can perform high level task
efficiently. Later, data will be analysed using all these tools and a predictive model
will be proposed.

2.3 Neural Network

Neural networks are set of algorithms, inspired, and modelled after a human brain, that are
designed to learn and recognize patters [13].
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Figure 2: Artificial Neuron

Above is the visualization of the basic structure of a neuron or a node. It is a basic
computational unit that receives one or more inputs and perform calculation to produce an
output. In short, it is a place where mathematical computation take place closely related to
a human brain. It consists of mainly their main components: inputs, weights, and an
activation function as shown. They are the building blocks of a fully connected neural
network.

Neural Network compromises of layers made of neurons or nodes. The number of layers
may vary based on the data complexity and data dimensions. Each layer output is
simultaneously and subsequently layer input.

input layer hidden layer 1 hidden layer 2 output layer

Figure 3:Nodes and layers of Neural Network

As seen from above visualization every circle represents a node in their respective layers.
It is constructed from three types of layers.

1. Input Layer: The three yellow circles shown, acts as an input for the neural
network in the form of Z = Wo + WiX1 + WaXz + ...+ WnXa
Here Wois also called Bias or intercept represented as b in the figure above. The

weights(w) are multiplied to the inputs(x), mathematical calculations are
performed, and output of this layer is acting as an input for the hidden layers.
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2. Hidden Layers: Its acts and intermediate layers between input and output layers
represented in blue and green circles where all the permutation takes place. No of
hidden layers may vary based on the hyper-parameter tuning that provides best
accuracy avoiding underfitting and overfitting.

3. Output Layer: It produces the output for the network. The number of nodes in this
layer may vary based on regression (predicts continuous quantity) or classification
(predicts discreate class labels) problems which will be discussed later.

Neural network is also having activation function as shown above represented by f(z). This
decide whether if the neuron will be activated or not. In short, it decides whether the
neuron output is important in the process of prediction or not.

More specifically, in and activation function f(z) there is a threshold parameter that
determine if a neuron should produce an output or not, or the neuron output should switch
from being inactive (0) to active (1) or not. Let’s understand with an example.

Let’s take a simple neuron two input and threshold of 0.5 having following specifications.

inputl1=0.6, weight1=0.3, input1=0.4, weight2= 0.5
weighted sum= (inputl * weightl) + (input2 *weight2) = 0.47

The output of the neuron is determined by passing weighted sum through activation
function. Let’s take sigmoid as an example:
Sigmoid is represented by.
Sigmoid(x)=1/(1+exp(-x)), produces an output between 0 and 1.
Output = sigmoid (0.47) =0.615
Since, the output is greater than threshold of 0.5, the neuron will fire and produce and
output of 1.
The choice of threshold and activation function plays a significant impact on its
performance and ability to learn complex in input data.
Typically, activation functions are of two types [14]:
1. Linear Activation Function: As the name suggests, the function is a line or linear.

This makes the output of the function not to be confined between any range
between (-infinity to infinity).
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Figure 4: Linear Activation Function

Non-linear Activation Function: These functions are the most used activation
functions which can adapt with the variety of data and differentiate between the
outputs.
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Figure 5: Non-Linear Activation Function

There are many non-linear functions like sigmoid, tanh, relu etc which are divided
on the bases of the range. Below is the visualization representing those functions in
brief.
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Figure 6: Other Activation Functions
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These functions are selected based on different types of neural network needs to be trained.
There are many types of neural network. Let’s have a look.

2.3.1 Types of Neural Networks

The history of neural network dates to 1940s when first neural network model was
proposed. However, the network was relatively simple with only few layers of neurons and
no ability to learn from data. It was in 1980s when development of backpropagation
algorithm came into existence which allow neural network to learn from data and adjust
weights and biases to improve the performance. However, backpropagation networks were
limited in their ability to process images and other form of spatial data. To address this
problem, the first Convolutional neural network (CNN) was developed in 1990s.

There are many types of neural network available. They are classified depending on their
structure, no of neurons, layers, activation function etc [15]. Let’s look at some of them.

1. Recurrent Neural Network: Recurrent Neural Network (RNN) solves short-term
memory problem due to vanishing gradient when working with long data sequence.

RNNSs create a cycle or a loop where the output of a particular layer is fed back as
an input again to predict output of the layer.

® ? @T) @
- \Al—-IAI—-IAI—-

& &

Figure 7:Recurrent Architecture

Consider the figure above, at X1 time the inputs are X0 which is the previous state as well
as input of X1 which is the current state. This creates a cycle or a loop inside the network.

The main advantage of this network is it also stores previous input state in the short-term
memory not only the current state. This make RNN to consider previous state as well as
current state.

The major drawback of RNN is it requires more training data to learn effectively which
makes it slower. It is also not suited for classification task where input data is not in
sequence. It doesn’t process sequential data using RELU as an activation function.

2. Feed Forward Neural Network: It is one of the simpler types of Feed-Forward
neural network (FFNNSs). It conveys information only in one direction through its
node until it reaches the output node. It doesn’t have short term memory, so it
doesn’t create loop like RNNs. It only follows one- way propagation.
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Output

Figure 8:Feed-Forward Neural Network

Hidden layers may be present or not, but input and output layers are present. Based on this,
it is classified as a single layered or multi layered feed forward neural network.

The main advantage of FFNNs is it is fast, speedy, easy to design and maintain.
The main disadvantage of FFNNs is it cannot be used for deep learning due to lack of
dense layer and back propagation.

3. Multilayer perceptron: Multilayer perceptron’s has input and output layers with
many hidden layers inside it. They are also called Feedforward algorithms because
inputs are multiplied with weighted sum and subjected to activation function, like a
perceptron. In sort, each layer is feeding the result of their computation to the next
layer. Hence, all goes through the hidden layer to the output layer at last.

If the algorithm computes only the weighted sum of the input(x) and weights(w) in each
neuron and propagates through the output layer and stopped, it will not be able to learn the
weights that minimize the cost function. In short, if it computes only one iteration then it
will not learn which will result in zero learning. Therefore, backpropagation come in handy
and plays a big role in training the neural network.

Backpropagation is a leaning mechanism that allows multilayer perceptron’s to adjust the
weights which helps in reducing the cost function. It is used in supervised learning.

Supervised learning is a well ‘labelled” which means some data in dataset is already
targeted with correct answers which helps the neural network to predict the outcomes for
unforeseen data Semi- supervised and self- supervised leaning where it relies on partially
or “unlabelled” data to learn patterns and relationship in data.

In semi-supervised learning a small amount of labelled data is used along with unlabelled
data to train the model. Model can use information in unlabelled data to learn more
generalizable features to improve the performance on labelled data. It is used in case when
labelling data is expensive and time consuming.

In case of self-supervised learning a model is trained to predict certain features of data
without explicit labels. For example, in image processing, a model may be trained to
predict location of the cropped-out portion of the image.

They are particularly useful in cases where labelled data is insufficient and expensive to
obtain.
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Below is the visualization of backpropagation within neural network.
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Figure 9: Backpropagation

When the weighted sum is forwarded through all the layers, gradient of MSE as shown
above is calculated across all inputs and output pairs. Then to propagate it back, the
weights of the first hidden layer are updated with gradient value and the weights are
propagated it back to the starting point of the network. This process is repeated based on
no of epochs which increases the model accuracy. This is how backpropagation works
inside the neural network.

The main disadvantage of neural network is it is comparatively slow because it depends on
number of hidden layers.

2.3.2 Regression and Classification Algorithm

Regression and Classification are the most popular machine leaning algorithms which
follow supervised learning algorithm (Labelled datasets) [16]. Regression and
Classification can be better understood by a figure shown below.
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Figure 10: Regression and Classification

Regression is used for continuous value such as speed, weight, temperature etc. As shown
in the diagram if you want to predict what will be the temperature for tomorrow using
temperature datasets, regression algorithms are used. The model using regression will learn
from the existing temperature dataset to predict the temperature for future dates. It predicts
a single output value using training dataset.

There are many types of regression models like linear Regression, Polynomial Regression,
Logistics Regression, lasso Regression etc. The most popular ones are linear Regression
and Logistics Regression.

1. Linear Regression: It is used to predict the value of a variable based on another

variable. The variable to be predicted is called dependent variable and variable used
to predict the value is called independent variables.

X 3

Data Points

Dependent
Variable

N

Line of Regression

Independent
Variable Y

Figure 11: Linear Regression

2. Logistic Regression: This algorithm is used to find the probability of an event to
occur based on the dataset. It uses independent variables from the dataset to predict
the probability of the dependent variable which is between 0 and 1.
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Figure 12: Logistic Regression

While classification algorithms are used to predict discrete values or classify if it is going

to be hot or cold, or will it rain or not. If the output is between two distinct classes, then it
called Binary classification. If the output is between more than two classes, then it is called

multiclass classification. Below is the visualization of binary and multiclass classification.
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Figure 13: Binary and Multiclass Classification

The different colour shapes represent different classes. Binary classification has two
classes, so the output predicted will be between these two classes. While multiclass

classification has three different colour shapes representing three different classes, so the
output will be between three different classes.
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2.4 Convolutional neural networks

Convolutional neural network (CNN) is a Deep learning algorithm and a Feed- forward
neural network that takes inputs as image, multivariate /univariate time series [17].

Fully Fully
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multivariate Data
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Figure 14:CNN Model Architecture

Univariate timeseries means only one variable over time. For example, torque collected
from a machine every millisecond. Every millisecond it will have one-dimension value.
Multivariate timeseries means multiple variables over time. For example, torque,
temperature, speed etc every millisecond. It has more than one dimensional value.

CNN is mainly composed of three different layers:

1. Convolutional layer
2. Pooling Layer
3. Fully Connected Layer

Convolutional and Pooling layer can be altered before the output reaches to Fully
connected layer.

1. Convolutional Layer: It is a building block of this type of network. It performs
convolution of an input series of feature maps with a filter matrix to get a different
series of feature of maps. The main purpose of this layer is to extract the high-level
features. This layer has set of filters that are fixed size matrices applied to
submatrix of the input with it same size.
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Figure 15: CNN Filter Logic
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As seen from above fig, sum of the product of every element of the filter is placed in the
same position of sub matrix. The result is shown below.

Input Result Input Result Input Result
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Figure 16:CNN Filter Result

Two other important parameters that must be chosen are Stride and Padding.

Stride: It controls how many units the filter will shift around one input feature map. Below
is the figure representing an example of stride.
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Figure 17:CNN Stride
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Figure 18:CNN Padding
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Padding tells how many extra rows and columns to be added outside an input feature map.
It is done before applying convolutional filter. It is usually filled with dummy values
usually with 0 as shown in the figure.

Padding is applied because after applying convolutional filter to just an input feature map,
the size decreases. So, if, many filters are applied to all input feature map the size become
too small. Applying padding add extra rows and columns we preserve the original size.
There are two types of Padding:

a. Valid Padding: When the size of the feature map is smaller after applying
convolution filter then the size of input feature map.

b. Same Padding: When the size of the feature map is equal or greater after applying

convolution filter then the size of input feature map.

2. Pooling Layer: The main purpose of the layer is reducing the dimension of feature map
as much as possible. It is useful for extracting important and dominant features where the
input feature map is different from output series of feature maps.

Input Result
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Figure 19:CNN Pooling Layer

There are two types pooling:

a. Max Pooling
b. Average Pooling

Max Pooling: It takes the maximum value within each region from a feature map to form a
smaller output feature map. For example, a 2*2 max pooling applied to 4*4 input feature
map. For each region, the maximum value is computed, and the result is 2*2 output feature
map, where each element is the maximum value within 2*2 output feature map.

Average Pooling: It takes the average value within each region from a feature map to form
a smaller output feature map. For example, a 2*2 max pooling applied to 4*4 input feature
map. For each region, the average value is computed, and the result is 2*2 output feature
map, where each element is the average value within 2*2 output feature map.
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Figure 20:Max pooling and Average Pooling

The main objective is to reduce the size of the feature maps for faster computation because
it reduces the number of parameters maintaining the maximum features.

3. Fully Connected Layer: Its main goal is to learn non-linear combinations represented by
output of convolutional layer and pooling layer as show in the figure above. It is usually
implemented using a multi-layer perceptron.

All the feature maps are flattened as shown in the above fig before representing as a final
input to multi-layer perceptron. Multi-layer perceptron final output is equal to the number
of classes specified.

The main advantages are backpropagation which is applied during the training based on no
of epochs mentioned. Hence after backpropagation, the model will be able to extract
dominant features and will be able to classify them.

Here is the working code of 1-D Convolutional Neural Network.

def make_model(input_shape):
input_layer = Keras.layers.Input(input_shape)
convl = keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(input_layer)
convl = keras.layers.BatchNormalization()(convl)
convl = keras.layers.RelU()(convl)

conv2
conv2
conv2

keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(convl)
Keras.layers.BatchNormalization() (conv2)
keras.layers.ReLU() (conv2)

convd = keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(conv2)
conv3 = keras.layers.BatchNormalization()(conv3)
conv3 = keras.layers.RelU()(conv3)

gap = keras.layers.GlobalAveragePoolinglD()(conv3)
output_layer = Keras.layers.Dense(num_classes, activation="softmax")(gap)

return keras.models.Model(inputs=input_layer, outputs=output_layer)

Figure 21:CNN Implementation
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The above code shows three 1-D CNN layer with its own activation function RELU and
batch normalization. Batch Normalization in every layer helps to train neural network
much faster through normalization of the layers by re-centring and re-scaling the data in
every output node making mean as 0 and standard deviation as 1.

N

7\ without Batch Normalization

Figure 22:Node output with and without Batch Normalization

The output layer has Dense layer with num_classes which is 3 in our case with SoftMax
has an activation function. This layer is responsible for the prediction of output in terms of
probability between each class. The class with highest probability is generally consider the
final output of the neural network.

Over the years Neural networks have improved. CNN have seen recent improvements over
the years like more computationally efficient and accurate [18]. Neural networks like
Generative Adversarial Network (GAN) are getting popular because is it used to generate
new data that is like the training data [19].

2.4.1 Signal processing

The essential functions of signal processing include signal analysis, interpretation, and
manipulation. To achieve the required shaping of the signal at the output, the fundamental
nature of the signal is modified. The representation, transformation, and manipulation of
signals and the information they carry are at the centre of its focus. Analog signal
processing and digital signal processing are the two categories into which signal processing
can be divided. [20].

Analog Signal processing: Signals are processed by analog circuits in Analog Signal
processing, which change the signal in a variety of ways. Signal mixing, filtering, and
other functions can be carried out by analog circuits. Applications including audio
amplifiers, radio receivers, and power supply frequently make use of Analog Signal

processing [21].

Digital signal processing: Signals are digitally transformed in DSP before being processed
with algorithms that can carry out a variety of tasks, including filtering, modulation, and
demodulation. Typically, DSP application-specific hardware and software are used for this.
Several industries, including telecommunications, audio processing, image processing, and
control systems, heavily rely on DSP [22].
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Signal processing in VFFS Machines: A programmable logic controller (PLC) is used in
the procedure to manage the different phases of the machine's functioning [23]. Signal
processing, which entails converting electrical impulses into useful data that may be
utilized to control the machine, is a crucial component of VFFS machines.

On VFFS machines, signal processing happens in stages. Initially, analog-to-digital
converters are used to transform the analog signals from sensors, such as photoelectric
sensors, load cells, and temperature sensors, into digital signals (ADCs). The PLC then
applies algorithms like filtering, amplification, and modulation to the digital signals to
process them. Following signal processing, the filling, sealing, and cutting operations of
the VFFS machine are controlled using the processed signals. [24].

Wavelet analysis, Fourier transformations, and digital signal processing are just a few of
the methods employed in VFFS machines for signal processing. These methods assist in
locating patterns and trends in the signals, which can then be used to enhance the
functionality of the machine [25].

2.5 Siemens Automation Portfolio

Siemens AG is a multinational Conglomerate company based in Germany and is one of the
largest electrical engineering companies in the world. Its automation portfolio includes
wide range of products, systems and solutions designed to optimize processes which
increases efficiency in the industry [26]. Some of the key offerings in siemens automation
portfolio include:

1. Siemens Simatic’s: A family of (programmable logic controller) PLC’s acts as a
main brain to control and automate industrial processes [23].

2. Siemens totally integrated automation (TIA): It is an integrated hardware and
software platform that includes PLS’s, drives and software for program
development. It can also provide simulations.

3. Siemens Sinamics Drives: It has range of AC and DC drives which is used to
control and regulate speed of electric motors.

4. Siemens Networking Solutions: It is a family of networking component including
switches, routers, and other wireless access points for automation applications.

5. Siemens Build Technologies: This portfolio includes automation of buildings
which includes security, heating, ventilation, air conditioning, fire safety and other
building energy managements.

6. Siemens Industries Software: A portfolio of software tools for product lifecycle
management simulation, design, and engineering.
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These are the just a few examples of many offerings in siemens automation portfolio.
Siemens also provides automation solutions for industry. Let’s have a look them.

2.5.1 Demo Packaging Machine: Vertical Form Fill Seal

Siemens provides automation solutions for Industry. Preventive and predictive
maintenance can leverage machine producers and users. Thus, to illustrate that, a vertical
packaging machine has been used as demo case, labelled as Viking Masek. It is a VFFS
(Vertical Form Fill Seal) packaging machine.

VFFS is a type of packaging machine used in the food and beverages, pharmaceutical and
other industries. It is a machine that forms a bag from a roll of flat material, fills it with a

product, and seals the open end to create a finished package [27].
from top

3. Packets for
packaging

6. Packaging
Output

4. Sealband1
and

SealBand2

5. Cross Seal
Arm

Figure 23: Viking Masek machine

VFFS packaging machine and one of the most complex machines and can run much faster
up to 300 bpm and provide global packaging technologies which helps to hit the packaging
number much faster with minimum risk, hence increase in revenue.

Above is the visualization of Viking Masek. Let’s have a look at them briefly in order.
1. Food Fillers from Top: This is the essential step in packing process where wide
range of products like food, beverage, cosmetic and other consumer goods are filled

in the machine typically controlled by programmable logic controller (PLC) and
HMI interface.
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2. HMI and Edge: This section is the most important component of the machine
comprising of a hardware human touch screen interface called HMI (Human
machine Interface) and an 'INDUSTRIAL EDGE’ run-time software environment.
The operator can enter or set all parameters and packaging configuration using
HMI. The machine has different state but mainly two of them are 'start' and 'stop’
state. The start state let the machine in starting state by reading all the configuration
set by the operator using HMI and the stop state let the machine to terminate the
start state.

This industrial edge is an open software platform that allow user with secure,
scalable deployment and the execution of apps. It uses protocols like S7, SLMP,
OPC-UA etc to communicate with industrial assets. HMI an Edge will be discussed
in more details later.

3. Packets for Packaging: This section of machine provides the packets for packaging
for the different products. Packets for Packaging depends on specific machines and
types of material used. Some common types of packets produced are stand-up
pouches (popular for food items to protect from moisture and lights), Three -side
sealed bags (packaging products like tea, coffee spices) etc.

4. Packaging output: As seen, this section of machine act as a gateway for the finished
product. The packaged product glides through and is collected from the end.

5. Sealbandl and sealband2: It refers to the band or strip of material (usually plastic)
used to seal the bags which is formed. The seal band is created by heating the film
and compressing between two rollers, which creates a strong and reliable seal. This
is helpful in sealing the bags and keep the product inside.

6. Cross Seal Arm: This part of the machine is responsible for creating a cross seal.
Cross seal consists of a heated jaw which melts the plastic and applies pressure to
create a seal. This helps to cuts the packed product to be processed to the next
stage.

Off course, it has many other components to look upon, but only few and important
components have been outlined here.

2.5.2 Siemens Industrial Edge

Siemens industrial Edge is one of a portfolio of product, services and solutions that
provides industrial automation and enhance digital capabilities for the company. It is
designed to help a company move towards digitalization by providing them with tools and
technologies needed to collect, analyse, and act on data generated by industrial
equipment’s and processes. This also includes edge computing devices, software platforms
and cloud-based services which is used to implement industry 4.0 strategies and take
advantage of the internet of things (10T). This drive efficiency, improve productivity and
enhance overall performance of industrial operations.
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Siemens Industrial edge is designed to be highly scalable and flexible which allow
companies to start small and expand their capabilities overtime based on their need and
requirements change. This portfolio also provides robust security features which helps to
protect sensitive industrial edge, making it more reliable and secure over time.

Industrial Edge offers three components which create
a simple workflow to manage distributed IT infrastructure

Global App Repository
RED

Industrial Edge Hub
(Siemens operated)

Industrial Edge Management
(Customer-operated)

Local App Repository

o = O

Industrial Edge Runtime
on Industrial Devices Local App Execution
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Industrial FCz Human Machine Commuvcaten Any cantifed
Intartaces (HMY) Harcwara
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Figure 24: Siemens industrial edge workflow

Above is the image which represents the workflow of industrial edge [28]. Let’s look at
the components briefly.

A. Industrial-Edge hub: It is a component of siemens industrial edge portfolio which
provide global app repository. It is equipped with powerful hardware and software
capabilities like high performance data, such as sensors, motors, and other software
platforms for data processing. It is used to collect and perform real-time data
processing and make decision based on the results generated by real time Industrial
equipment’s.

B. Industrial-Edge Management: It is responsible for managing and monitoring edge
computing devices that are deployed. These includes devices like industrial edge
hub which are used to collect, analyse, and act on the data generated by the
industrial machine processes. Siemens edge management also provides cloud-based
management platforms which involves in deployment, configuration and
monitoring the device performance and status.

C. Industrial-Edge Runtime: The siemens Industrial edge runtime provides a platform
for running applications and environment for industrial edge hub where the apps
are run, and process data generated by industrial equipment in real-time. This
component also offers a human touch interface which is referred as HMI (Human
Machine Interface) which control’s industrial equipment. Industrial edge runtime
from Siemens supports OPC UA protocol which is widely used in industrial
environments to exchange data.

These three main components work together to manage distributed IT infrastructure.
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Practical Part

2.6 Problem Statement

Predictive maintenance technique helps to determine when the maintenance should be
performed. This approach promises cost and time saving.

Predictive maintenance is a technique used to detect anomalies and possible defects in
equipment or in operation which can be fixed before any failure [29].

Thus, to illustrate that, a Packaging machine has been used as demo case, see Section
2.5.1. The operator can enter or set all parameters and packaging configuration using HMI
(Human Machine Interface). The machine has different state but mainly two of them are
‘start’ and ‘stop’ state. The start state let the machine in starting state by reading all the
configuration set by the operator using HMI and the stop state let the machine to terminate
the start state. Basically, it controls machine.

HMI has all the required functionalities needed by the operator, like set the number of
packets per min, for example 30bags/min,40bags/min,50bags/min etc but still it cannot let
the operators know if the packing of the product is of required industrial standards! The
operator is not aware of the faulty packet size, package sealing etc, hence result in loss of
time and revenue.

To solve these problems, Siemens team came up with a visualization which let the
operators know all the re-quired details, if the packaging is of set standards, or if the
packaging can be approved and to test the flexibility of Industrial Edge Environment. A
designing of Al (Artificial Intelligence) neural network was proposed which can be
deployed on Siemens Industrial Edge environment and can be altered and monitor.

The neural network will specifically focus on predictive maintenance allowing the operator
to check on packet’s quality. The quality will be categorised into different classes given
below:

Classes Packaging
0 Valid
1 Improvable/Acceptable
2 Invalid/Rejected

Table 1: Packaging Classes
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Based on the classes in which the packet belongs, the packaging quality will be
determined, and the operator will be aware of the packaging quality and standards.

Of course, the initial proposed solution put out cannot be fixed at first and may be
somewhat altered in response to new difficulties encountered during implementation.

2.6.1 Implementation

Based on the problem statement, siemens team came up with an implementation which is
divided into following steps. Let’s look at them.

2.6.2 Collecting data

The first and foremost step was to collect data from the machine. The machine works on
OPC (Open Platform Communication) UA (Unified Architecture) protocol [30]. Python
code was written using opcua library which helps to connect to the machine and collect the
data.

The first part was to traverse through the node where each signal is located using the
python code.
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Pankaj
det getMNode(i):

switcher = {
8: firstMode,
1: secondMNode,
2: thirdMode,
3: fourthNode,
4: FifthNode

r

returnNode = switcher.get(i)

return returnMNode()

Pankaj
def firstNodedl():
return "0Objects”

Pankaj
def secondNode():
return "PLC_1°"

Panlkaj
def thirdNoded():
return "DataBlocksGlLobal "

Panlkaj
def fourthNoded():
return "DataToAL"

Panlkaj
def fifthNode():
return "dataValue"®

Figure 25:Node Path Traverse

The second part was to connect and to the machine and read the signals. The following
code was used to connect to machine and log the signals.
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from opcua import ua

from ai.constant import nodepath

Pankaj
def getParentNodes(node, client, variables, count):
allvVariables = variables
for childId in node.get_children():
ch = client.get_node(childId)
if ch.get_node_class() == va.NodeClass.Object:
if ch.get_browse_name().to_string().split(':')[1].__eq__(nodepath.getNode(count)):
if len(ch.get_children()) > 8:
getParentNodes(ch, client, allVariables, count=count + 1)
break
elif ch.get_node_class() == ua.NodeClass.Variable:
if ch.get_browse_name().to_string().split(':")[1].__eq__(nodepath.getNode(count)):
getChildrenNedes(ch, client, variables)
break
else:
getParentNodes(ch, client, allVariables, count)

2 return allvariableg
Pankaj

def getChildrenNodes(node, client, variables):
for childId in node.get_children():

try:
ch = client.get_node(childId)
variables[ch] = ch.get_browse_name().to_string()
except va.uaerrors._auto.BadWaitingForInitialData:
pass

return variables

Figure 26: OPC UA code to connect to Packaging Machine

Above code was used to gather the signals when machine was running. Data was collected
for 30 bags/ min, 40 bags/ min and 50 bags/ min.

~ 1
Sample 15584
¥Cms) [25.11.20822 14:31:23 869 UTC] 1669386690124 . 686777
AxCrossSeal.ActualPosition(®) -0.999
AxFoilFeedl.ActualPosition{mm) 22815.199
AxFoilFeed2.ActualPosition{mm) 22815.19%9
AxSealBandl.ActualPosition{mm) 162.792
AxSealBand2.ActualPosition{mm) 162792
AxLinearAxis.ActualPosition(®) -14.88%9
AxCrossSeal.StatusTorquelData.ActualTorgue (Nml -14.7080100205494
AxFoilFeedl.StatusTorquelData. ActualTorgue(Nm) [a]
AxFoilFeed2.StatusTorqueData.ActualTorgue (Nml B.0008587645 71603388
AxSealBandl.StatusTorqueblData. ActualTorgue (Nm) 0.0800224509364522621
AxSealBand2.StatusTorquelData.ActualTorgue (Nml -0 .000B9EL43T4L4SBAPRLHES
AxLinearfAxis.StatusTorqueData.fActualTorque (Nm) 5]
instLFFS_VFFSMachineMasterPos.actMachineSpeed 30

o 2
Sample 15685
¥{ms) [25.11.20822 14:31:23 869 UTC] 1556938466901 29 . 538285
AxCrossSeal.ActualPosition(®) -0.999
AxFoilFeedl.ActualPosition{mm) 22815.599
AxFoilFeed2.ActualPosition{mm) 22815.599
AxSealBandl.ActualPosition{mm) 163.192
AxSealBand2.ActualPosition{mm) 163.192
AxLinearfxis.ActualPosition(®) -14.68%9
AxCrossSeal.StatusTorquebData.ActualTorgue (Nm) -14.70801002054%94
AxFolilFeedl.StatusTorquelData.ActualTorgue (Nml a
AxFoilFeed?.StatusTorquelData. ActualTorgue (Nm) 0.000858764571603388
AxSealBandl.StatusTorqueData.ActualTorgue (Nml 0.00022456093464522621
AxSealBand2.StatusTorqueblData. ActualTorgue (Nm) -0.000898437458090484
AxLinearAxis.StatusTorqueData. ActualTorque (Nm) (3]
instLFFS_VFFSMachineMasterPos.actMachineSpeed 30

Figure 27:Real-Time Collected Data
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Above is the original data collected from the machine. Off course, this is some of data
shown here not the full version. The main idea here is to show the list of signals recorded.
These signals will be analysed further to find the dependent signals which will best fit the
problem statements.

2.6.3 Data analysis

After data collection, Pearson Correlation was performed on collected data. Pearson
Correlation indicates a number which measures strength and direction between two
variables. It ranges between -1 to +1, with +1 indicates perfectly highly positively related
and -1 indicates perfectly highly negatively related [31].

Correlation between different features

Sample

X(ms) [25.11.2022 14.47-09 290 UTC)

AxCrossSeal ActualPosition(®) e

AxFoilFeed 1 ActualPosibon{mm)

AxFoilFeed2 ActualPosition(mm)

-] o o

-] =
r 5] :
2

AxSealBand1 ActualPosition{mm) &

AxSealBand2 ActualPosition(mm)

AxLinearAxis ActualPosition(®)

AxCrossSeal StatusTorqueData ActualTorgue(Nm) I8

AxFoilFeed 1 StatusTorqueData ActuaiTorque(Nm)

AxFoilFeed2 Status TorqueData ActualTorque(Nm)

AxSealBand 1 StatusTorqueData ActualTorque(Nm)

AxSealBand2 StatusTorqueData ActualTorque(Nm)

AxLinearAxis StatusTorqueData ActualTorque(Nm)

nstLFFS_VFFSMachineMasterPos actMachineSpeed

Speed

AxCrossSeal ActualPosition(*)
AxFoilFeed1 ActualPosition{mm)
AxFoilFeed2 ActualPosition{mm)

AxSealBand1 ActualPosition(mm)
AxSealBand2 ActualPosition(mm)
AxLinearAxis ActualPosition(*)

X(ms) [25.11.2022 14:47-09 200 UTC)

AxFoilFeed1 StatusTorqueData ActualTorque(Nm)

AxCrossSeal StatusTorqueData. ActualTorque(Nm)
AxFoilFeed2 StatusTorqueData ActualTorque(Nm)
AxSealBand1 StatusTorqueData ActualTorque(Nm)
AxSealBand2 StatusTorqueData ActualTorque(Nm)
AxLinearAxis StatusTorqueData_ActualTorque(Nm)

nstLFFS_VFFSMachineMasterPos.actMachine

Figure 28: Correlation Matrix

Above is the correlation matrix which shows more than 50% positive correlation between
CrossSeal.ActualPosition, LinearAxis. ActualPosition and CrossSeal.ActualPosition and
CrossSeal.Status. TorqueDataActualTorque (NM) signals.
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It was accepted that these signals will be highly positively correlated because these signals
play an important role in packaging and can be realized visually.

CrossSeal ActualPos / Linear-Axis
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Figure 29: Cross Seal vs LinearAxis Actual Position

From the graph, it is clearly seen that as the cross seal actual position increases and reaches
to the maximum value, the linear axis actual position also reaches too maximum and vice
versa. Linear axis is more of a machinal system combined with cross seal as a set with
operates together and both are directly proportional to each other. So, this was not the
focused area which can determine the packaging quality.
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Figure 30:Cross Seal vs Torque Actual Position

From the above visualization, it can be clearly seen that as the cross-seal arm comes closer
to cut the packet marked in circle as shown above, there is a torque generation which is
negative in nature. As the cross-seal arm reaches to maximum distance the torque
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generated is almost zero marked in circles. So, the idea was suggested to give more
emphasis on the torque signal which can determine if the packaging is of set standards. In
short, while cutting the packet, if the torque signal is measured and monitored, it can
predict the packaging quality.

Off course, the correlation matrix will not convey all the required details between two
linear dependent variables so other signals were analysed in detail too.

SealBand-ActualPos/ActualTorque
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Figure 31: Seal Band vs Torque Actual Position

For example, the above visualization shows seal bands has no effect on actual torque, so
this will have no impact in creating a model. Likewise, different analysis was performed,
and results were analysed.

So, more emphasis was given on cross seal and torque actual position. Cross seal position
was divided in t0 to t3 as one cycle. The idea was to get the torque between t0 to t3 and
analyse it more. It can be seen from the visualization presented below.

CrossSeal-ActualPos/ActualTorque
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Figure 32: Cross Seal vs Torque Time Interval
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The code to generate t0 to t3 cycles.

#step et first tB- t3 points

def get_Initial_to@_points():
actual_arm_position=readData()[1]

for firstMaxPes, elem in enumerate(actval_arm_position):
if elem == np.max(actual_arm_position):
flag = True
break
if flag:
for x, elem in enumerate(actual_arm_position[firstMaxPos:]):
if elem < np.max(actval_arm_position):
FirstInitCut = x + firstMaxPos
break

for idx, elem in enumerate(actual_arm_position[FirstInitCut:]):
if elem == np.max(actuval_arm_position):
break

for y, elem in enumerate(actual_arm_position[idx + FirstInitCut:]):
if elem < np.max(actval_arm_position):
FirstEndCut = y + idx + FirstInitCut
break
else:
print("ERROR:: No Fist max pesition Found!")
return [FirstInitCut + 1, FirstEndCut]

Figure 33: Initial t0 to t3 cycles

# finding oll the remaining t1,t2,t3,t4 (X,¥)=(Time,Position) By Pankaj
def get_A11_te_t3_points(initCut, initEnd, lastRowNum, cycle, cycle_t6_t3_points, cyclelLength):
if LlastRowNum == initEnd:

[
print("CYCLE::", cycle + 1)
[
[
[

time_extracted = Time[initCut:initEnd]
actual_arm_position_extracted = actual_arm_position[initCut - 1:initEnd]
torgue_data_extracted = torque_data[initCut:initEnd]
Kk = np.max(actual,arm,positinn,extractedﬂ
te=t3 =8
for idx, elem in enumerate(actual_arm_position_extracted):

if elem < k:

t0 = initCut + idx

break
for idx, elem in enumerate(actual_arm_position_extracted[::-11):
if elem == k:
t3 = initEnd - idx
break

initCut = t3 + 1
time_extracted = Time[t@:t3]
actual_arm_position_extracted = actual_arm_position[te:t3]
torque_data_extracted = torque_datalto:t3]
t1 =12 =8 #for |
for idx, elem in enumerate(actual_arm_position_extracted):
if elem < B:
‘ tl = t6 + idx + 1
break
count = 0;
element = ©
for idx, elem in enumerate(actual_arm_position_extracted):
if elem < 6:
‘ count = count + 1
element = elem
t2 = t1 + count - 1
cycle_to_t3_points.append(str(t@) + ":" + str(tl) + ":" + str(t2) + ":" + str(t3))
get_All_t0_t3_points(initCut, initCut + cyclelLength + 1, lastRowNum, cycle + 1, cycle_t@_t3_points, cycleLength)

Figure 34:All 10 to t3 cycles
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Below is the table explaining the different intervals from tO to t3.

No | Interval Description

1 t0 Both the arm is at maximum distance with each other.

2 tl Both the arms are coming closer in contact and cutting the packets.
3 t2 After cutting, both the arm is going away from each other

4 t3 Both the arm is at maximum distance with each other again.

Table 2 : Time Interval Description
2.6.4 Generating signals

After data analysis was done on the collected data it was observed that the cross-seal bands
and torque are highly positively correlated with each other. The general idea proposed was
to measure the torque generated while packaging to identify the fault. If there is a slight
variance in the torque value while cutting the packet, the model can predict the
acceptability of the packet.

But the main challenge was the collected torque which was almost accurate all the time
which cannot be used to train the neural network because of the inability of the neural
network to differentiate between the incorrect and correct torque generated. Hence, some
of the torque was needed to modify between the interval tO to t3 cycle with some fake
torque data for the neural network to differentiate.

def rand_modification_dataset(dataset_arrange_in_samples, cycle_to_t3_points):
total_modified_signal = np.array([], dtype=float)
perturbation_sample = np.array([], dtype=float)
label_sample = np.array([], dtype=int)
classes_type = np.array([], dtype=int)

for index, sample_of_one_cycle in enumerate(dataset_arrange_in_samples): # ge

percentage_modified_samples = 8.1 # 1

if random.randrange(8,11) / 18 >= 1 - percentage_modified_samples: # 1-8.1

perturbation =np.random.choice(range(8, 5)) # Get mognitude ify 5 L
sample_of_one_cycle = np.round(sample_of_one_cycle * (1 + perturbation / 100), decimals=5
perturbation_sample = np.append(perturbation_sample,np.full((sample_of_one_cycle.size, 1),perturbation / 160))
label_sample = np.append(label_sample,np.full((sample_of_one_cycle.size, 1), perturbation))
classes_type = np.append(classes_type, np.full((sample_of_one_cycle.size, 1), classes_types(perturbation)))
else:
perturbation_sample = np.append(perturbation_sample, np.full((sample_of_one_cycle.size, 1), 8))
label_sample = np.append(label_sample, np.full((sample_of_one_cycle.size, 1), 0))
classes_type = np.append(classes_type, np.full((sample_of_one_cycle.size, 1), 8))
total_modified_signal = np.append(total_modified_signal, sample_of_one_cycle)
neural_network_dataset = pd.DataFrame(
{'Modified_signal': total_modified_signal, ' Perturbation_sample': perturbation_sample,
'Label_sample': label_sample, 'Classes': classes_typel)

return neural_network_dataset

Figure 35: Random Modification of Torque
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Above is the code which applies 10% modification of the torque between t0 to t3 cycle

randomly. The main logic is show below:

Torque | Modified Torque | Perturbation Sample | Label sample | Classes
Sample 1 1.01 1.01 1 0
2 2.02 1.01 1
3 3.03 1.01 1
4 4.04 1.01 1
1.01
8 8.08 1.01 1
Sample 2 9 9.18 1.02 2 1
10 10.2 1.02 2
11 11.22 1.02 2
14 14.28 1.02 2
15 15.53 1.02 2
Sample 3 16 16.64 1.04 4 2
17 17.68 1.04 4
18 18.72 1.04 4
21 21.84 1.04 4
22 22.88 1.04 4
Table 3 :Modified Torque and Class Definitions
Calculations:
Label sample= random (0,5)
Perturbation sample= 1+random (0,5)/100
Modified Torque = Torque * Perturbation sample
Cases:
Table 4 :Cases Calculation's
Case | Percentage | Perturbation sample Classes Packaging
1 0->1.5% 0 <=Perturbation <=1 0 Valid
2 15-3.5% 2 <=Perturbation <=3 1 Improvable/Acceptable
3 >3.5% Perturbation >= 4 2 Invalid/Rejected
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#class generation ( code by Pankaj )
def classes_types(perturbation_valuve):
if 0 <= perturbation_value <= 1:

return O;
if 2 <= perturbation_value <= 3:
return 1;
® ;i perturbation_value >= 4:
return 2;

Figure 36: Python Class Definition

The above tables show the perturbation and cases calculations. Based on these calculations
a graph was generated to show the original and modified torque.
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Figure 37:Modified vs Original Torque

The black section highlighted here shows the modified torque of a cycle. The modification

applied here is completely random 10% of the total torque. These data will be used to train
the neural network.
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2.6.5 Suggesting a model

After creating the dataset, the next idea was to create a basic CNN univariate time series
multi class classification architecture [32].

N Class 0-- 27000
B | Class 1-- 26875
m Class 2--14625

Class 0 27000

Class 1-- 25873

Figure 38: Dataset Classification

A total of 66.67% was used for training the neural network and 33.33% for testing.
As seen from above, dataset is divided into different class percentage. This percentage was
proposed based on trying different combinations.

= Modified_signal # ¥ Perturbation_sample * ¥ Label_sample * 7 Classes *
0.52807 0.04 4 2
0.52934 0.04 4 2
0.52807 0.04 4 2
0.52301 0.04 4 2
0.51541 0.04 4 2
0.58274 0.04 4 2
0.48501 0.04 4 2
0.46222 0.04 4 2
0.43056 0.04 4 2
0.38877 0.04 4 2
0.33052 0.04 4 2
0.25454 0.04 4 2
0.1545 0.04 4 2
0.02913 0.04 4 2
-0.12537 0.04 4 2
-0.30646 0.04 4 2
-0.51541 0.04 4 2
-0.74968 0.04 4 2
-1.00422 0.04 4 2
-1.27016 0.04 4 2
-1.53736 0.04 4 2
-1.79316 0.04 4 2
-2.0325 0.04 4 2
-2.25032 0.04 4 2
-2.4466 0.84 4 2
-2.62263 0.84 4 2
-2.77839 0.84 4 2

Figure 39: Real Dataset Overview

Real dataset generated is shown above. Off course, It not the full dataset but an overview.
Modified _signal is the modified torque highlighted here. Modified torque will only be
used to train the neural network.
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Both CNN and LSTM are popular neural networks architecture for time series data.
However, CNN came out to be better in many cases.

The first task was to build the basic CNN Model for univariate time series.

def make_model(input_shape):
input_layer = keras.layers.Input(input_shape)

convl = keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(input_layer)
convl = keras.layers.BatchNormalization() (convl)
convl = keras.layers.RelLU()(convl)

conv? = keras.layers.ConviD(filters=64, kernel_size=3, padding="same")(convl)
conv2 = keras.layers.BatchNormalization() (conv2)
conv2 = keras.layers.ReLU() (conv2)

convd = keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(conv2)
conv3 = keras.layers.BatchNormalization()(conv3)
convd = keras.layers.RelLU() (conv3)

gap = keras.layers.GlobalAveragePoolinglD()(conv3)
output_layer = keras.layers.Dense(num_classes, activation="softmax")(gap)

return keras.models.Model(inputs=input_layer, outputs=output_layer)

model = make_model(input_shape=x_train.shapel1:])
keras.utils.plot_model(model, show_shapes=True)

Figure 40: Build the Model

epochs = 588
batch_size = 32

callbacks = [
keras.callbacks.ModelCheckpoint(
"best_model.h5", save_best_only=True, monitor="val_loss"
)J'
keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=8.5, patience=28, min_1lr=0.80081
),
keras.callbacks.EarlyStopping(monitor="val_loss", patience=58, verbose=1),
]
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
history = model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
callbacks=callbacks,
validation_split=0.2,
verbose=1,

Figure 41:Train the Model
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This were the default Hyperparameters to tune a 1D-CNN network. Later the model was
tuned using Hyperparameter Tuning with the Keras Tuner and TensorFlow.

2.6.6 Optimizing the model

Optimizing the model means finding the best combination of Hyperparameters to train the
neural network to get maximum accuracy. Hyperparameters Tuning can be challenging
because the best combination of Hyperparameters may differ on every tuning.
Hyperparameters Tuning was done using TensorFlow and Keras Tuner [33].

First approach was to tune it using TensorFlow as shown.

TABLE VIEW PARALLEL COORDINATES VIEW SCATTER PLOT MATRIX VIEW
Trial ID Shov\_/ epochs batch filter " Accuracy Loss
Metrics
05c241d6bb663... O 600.00 5.0000 128.00 1.0000 0.28273
3267139b24426... D 400.00 5.0000 128.00 1.0000 0.30617
70a32d71d1782... \:\ 400.00 5.0000 32.000 1.0000 0.37454
8c6b9d0074c77.. O 500.00 5.0000 32.000 1.0000 0.35878
baf37dbaafa49... O 400.00 5.0000 16.000 1.0000 0.37422

Figure 42: Hyperparameters Tuning Tensor Board

The Tensor Board gave a general idea about epochs, batch, filters etc. Based on this
information Keras Tuner was configured to find the best fit.

Trial 725 Complete [00h 02m 49s] Trial 725 Complete [00h O7m 44s]

val_accuracy: 0.89999997561581421 val_accuracy: 1.0

Best val_accuracy So Far: 1.0 Best val_accuracy So Far: 1.8

Total elapsed time: B6h 25m 46s Total elapsed time: 05h 25m 31s
INFO:tensorflow:0racle triggered exit INFO:tensorflow:0Oracle triggered exit
Number of conv blocks: 3 Number of conv blocks: 3

filters_0: 956 filters_8: 128

filters_1: 176 filters_1: 112

filters_2: 256 filters_2: 80

learning_rate: 0.80013156408327740765 learning_rate: 0.00012180019936545399

Figure 43: Keras Tuner Hyperparameters 2

Figure 44: Keras Tuner Hyperparameters 1

As seen from above, on running Keras Tuner multiple time, it gave different
Hyperparameters. Keras Tuner Hyperparameters 2 got an accuracy of 100% with other
parameters.

These parameters were used to construct the neural network as shown below.
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def make_model(input_shape):

convl
convl
convl

conv2
conv2
conv2

conv3d
conv3d
conv3

keras.
keras.
keras.

keras.
keras.
keras.

keras.
keras.
keras.

input_layer = keras.layers.Input(input_shape)

layers.ConvlD(filters=128, kernel_size=3, padding="same")(input_layer)
layers.BatchNormalization() (convl)
layers.ReLU() (convl)

layers.ConvlD(filters=112, kernel_size=3, padding="same")(conv1)
layers.BatchNormalization() (conv2)
layers.ReLU() (conv2)

layers.ConvlD(filters=868, kernel_size=3, padding="same")(conv2)
layers.BatchNormalization() (conv3)
layers.ReLU() (conv3)

gap = Keras.layers.GlobalAveragePoolinglD() (conv3)
output_layer = Kkeras.layers.Dense(num_classes, activation="softmax")(gap)

return keras.models.Model(inputs=input_layer, outputs=output_layer)

Figure 45: 1D- CNN Model

#compiling the model|

model = make_model(input_shape=(None, 1))

model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.000812180019936545399),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],

Figure 46: Compiling 1D- CNN Model

#training the model
epochs=[550]
batch_size =[5]
for batch in batch_size:
for epoch in epochs:
history = model.fit(
X_train,
y_train,
batch_size=batch,
epochs=epoch,
callbacks=callbacks_list,
validation_split=0.5,
verbose=1,

Figure 47: Training 1D- CNN Model

As seen, recommended parameters were used and the model was allowed to train on
training data. It took some time to get trained and later testing was performed.
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model = keras.models.load_model("model.h5")
test_loss, test_acc = model.evaluate(x_test, y_test)
print("Test accuracy", test_acc)

print("Test loss", test_loss)

Figure 48: Testing 1D-CNN

The model was saved with a name ‘model.h5’ and it was tested on 33.33% of testing data.
The result of this operation is shown below.

2/2 [ ] - ©s 2ims/step - loss: 0.4935 - accuracy: 1.0000
Test accuracy 1.0

Test loss 0.49349263310432434

END

Figure 49: Testing Result

As seen, the accuracy of 100% was achieved with minimum loss as possible. Off course,
this is not the limit, a better set of Hyperparameters can be defined which will have less
computational architecture. There is always a room for improvement.

2.6.7 Deployment

After testing was done, the model was deployed on Edge. To deploy anything on edge, an
architecture must be followed.

Seript 1

Gather and merge 1 min

W St (http:localhost:5632 / Read/)

(AP mounted on a -
POSTGRES container) Script 2

Extract 1st cycle

—

script Quality Classifier
Random sealing cycle
generator Docker

(http:localhost:5632 / Write/) Draft of components in Edge

Figure 50: Deployment Process
Deployment Process includes three sections.

1. Random Sealing cycle: This part includes generating data with modification as
discussed, every 200ms from the machine.

2. Data Service: This service is the part of Edge environment. It takes data from the

machine every 200ms from the machine and saves it in Database. It provides Rest
Api’s to consume the services [34].
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"variableId": "4d97c334269e4e51a2fa53ed8d4eb376",
"values": [

"timestamp": "2022-11-25T15:31:30.686800Z",
"value": -8.999

"timestamp": "2022-11-25T15:31:30.538600Z",
"value": -0.999

"variableId": "88dac46eaba34aSds89a33d426af572d5",
"values": [

"timestamp": "2822-11-25T15:31:30.686800Z",
"value": -14.70801002085494

"timestamp": "2822-11-25T15:31:30.538000Z",
"value": -14.70801002085494

Figure 51: JSON Structure

Data service accepts data from the machine in JSON format shown above. The first
variableld represents the cross Seal Actual Position and the second represents modified
Torque.

3. Docker: Docker is an open platform for developing, shipping, and running
applications. Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly [35]. This service includes three
sub services.

a. Gather Data: It includes reading from Data service as soon as
data is available to data service. A python code was written to
gather data.

b. Extract Cycle: This part includes constructing the cycle (t0-t3) of
modified torque coming from Data Service. Json received shown
above from Data Service is used to extract and create cycle
which is to be fed to neural network to predict classification.

c. Quality Classifier: Next, the cycle is passed to the neural network

to predict the class it belongs or if the packaging is of set
standards.
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4 225 50.46 0 30
5 226 93.20 0 30
3 226 7496 2 30
7 225 7569 1 30
8 226 50.96 0 30

B 226 98.94 0 30

Figure 52: Final Output on Edge

The final output is shown above. The output shows no of good (Class 0), medium (Class
1), and bad (Class 2) quality packaging in total cycle. The table shows the predicted classes
with predicted probability by the trained neural network. The total cycle represents no of
bags per min.
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3 Results and Discussion

3.1 Result

The result can be better Interpreted using Confusion matrix. The confusion Matrix gives a
comparison between actual and predicted values. It is used for the optimization of machine
learning models. The confusion matrix is a N x N matrix, where N is the number of classes

or outputs [36]

from sklearn.metrics import confusion_matrix
import seaborn as sb

import matplotlib.pyplet as plt

#Testing the model vsing X_test and storing the output in y_pred
y_pred = model.predict(x_test)
y_pred=np.argmax(y_pred, axis=1)|

# Creating a confusion matrix,which compares the y_test and y_pred
plt.figure(figsize=(18,6))
fx=sb.heatmap(confusion_matrix(y_test,y_pred), annot=True,cmap="GnBu")
fx.set_title('Confusion Matrix \n');

fx.set_xlabel('\n Predicted Values\n')

fx.set_ylabel('Actual Values\n');
fx.xaxis.set_ticklabels(["valid", "Improvable", "Rejected"])
fx.yaxis.set_ticklabels(["valid", "Improvable", "Rejected"])

plt.show()

Figure 53: Confusion Matrix Code

Above is the code to generate confusion matrix using python in build matplotlib and seaborn

library.

Actual Values

Confusion Matrix

B - |

25
0 0 - 20
.FP -15
TN -10

0 0 10
-5

0

valid

Improvable

Rejected

valid Improvable Rejected

Predicted Values

Figure 54: Confusion Matrix

Above figure is representation based on class ‘valid’. Let’s calculate TP, FN, FP, TN
values for class ‘valid’.

TP: True Positive means both the actual and Predicted value are Positive. So, the TP value

is 29 (cell 0).
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FN: False Negative means predicted value is negative, but actual value is negative. FN will
be (0+0) =0 (cell 2+cell 3).

FP: False Positive means predicted value is positive, but the actual value is negative. FP
will be (0+0) =0 (cell 4+cell 7).

TN: True Negative means both the actual and predicted values are negative. TN will be
(41+0+0+10) =51 (cell 5+cell 6 + cell 8+cell 9).

Similarly, TP, FN, FP, TN values for class ‘Improvable’ will be:
TP: 41 (cell 0)

FN: 0+0=0 (cell 4+cell 6)

FP: 0+0=0 (cell 2+cell 8)

TN: 29+0+0+10=39 (cell 1+cell 3+ cell 7+cell 9)

Below is the classification Report generated using sklearn metrics.

Classification Report

precision recall fl-score support

valid 1.80 1.00 1.00 29
Improvable 1.00 1.00 1.00 41
Rejected 1.808 1.80 1.80 10
accuracy 1.08 80
macro avg 1.80 1.00 1.00 80
weighted avg 1.00 1.00 1.00 80

Figure 55: Classification Report

Precision: It measures out of all predicted positives how many are positive.
Recall: It measures how many positive records are predicted correctly.
F1-score: It is mean of precision and recall.

Accuracy: It measures how accurate is the model prediction.

Hence, Confusion metrics and Classification report gives a valuable information about the
model accuracy and other valuable info which can be used to improve the model.

3.2 Discussion

The outcome of this assignment has provided a neural network model and tested viability
of siemens industrial edge. Neural network was created by gathering the real time data
from the machine. The data was analysed using various techniques to extract the important
and dependent features. The dataset was prepared, and CNN Model was chosen to perform
multiclass classification. The model was trained and tested to classify the validity of
packaging. In the end, a suitable deployment architecture was created to deploy, and the
trained model was then deployed and tested on siemens Industrial edge.
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Nearly 33.33% equivalent to nearly 150-180 cycles was tested with an accuracy of 100%.
Of course, more testing of different or more cycles in future will decrease the accuracy
with unexpected new scenarios. Machine learning played a big part in the outcome because
initially, the operator had no way to detect the quality of the packaging because of the lack
of visual configuration on HMI.

A Dbetter strategy played a very vital role in achieving the goals which was set. Off course,
there are another various element which can be improved to achieve results in least
possible ways in future.

. Alternate and a better neural network selection can be helpful to train the model in less
time. Neural networks like Long Short-Term Memory (LSTM) which is the popular
variant of RNN shown in Figure 7 and General Adversarial Networks (GAN) can be
tried.

. Better selection of dataset can play an important role. Other positive correlation like
LinearAxis. ActualPosition can also be analysed further to check its dependencies on
CrossSeal.Status. TorqueDataActualTorque (NM) as shown in

Figure 28.

. A running and working simulation can be set up to collect data instead from the real time
data as it will save time.

. Deployment on siemens industrial edge can be streamlined in future making it much
easier to deploy Al.

These measurements can be taken to improve the process which can lead to design a neural
networks and deployments in more convenient ways in future. The world is moving to Al
and implementing Al on machines can bring various benefits such as increased efficiency,
improved safety, and enhanced productivity. Implementing Al on machine such as
Packaging machine could reduce a lot of manual work which results in less labour and cost
reduction.

Predicting the next values based on historical data to prevent a defected product can be
next big step which can be thought about a will be quite interesting to accomplish because
future of Al in such machines are immense because it can bring various benefits such as
increased efficiency, improved safety, and enhanced productivity. It can solve complex
problems and generate insights that were previously impossible with traditional computing
methods. However, there are also potential risk and challenges associated with Al in
machines which includes job displacement and possibilities of unintended consequences.
Therefore, it is important to address these issues while implementing Al in machines.

4 Conclusion

We analysed and discussed the problem and proposed a visualization for the operator to
check the quality of packaging and test its viability on industrial edge. We started with
collecting the data from the demo machine using python OPC UA library and analysed the
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data by creating correlation matrix and graphs using python Matplotlib with Jupiter
notebook.

After analysing the data, we identified the dependent signals and applied 10% modification
in the signal. We also categorized the signals into its respective packaging classes of valid,
improvable, and rejected quality. A total of 66.67% was used for training the neural
network and 33.33% for testing.

We opted for one dimensional Convolutional Neural Network (CNN) for univariate time
series multi-class classification and used various hyper parameter tuning techniques using
TensorFlow and Keras Tuner to optimize the neural network for better performance. After
repeating the process several times, we found the best fit hyper tuning parameters for the
1D-CNN with an accuracy of 100%.

Finally, we followed the deployment architecture shown in Figure 50, which included
creating a docker image and successfully deployed our trained neural network on industrial
edge and interpreted the result. We were able to test our neural network on the industrial
edge. The deployed model on industrial edge was able to predict the signals belonging to
different classes of good, medium, and bad quality packaging as shown in Figure 52.

We should end this article with a note of advice, though. However, compelling it may
sound, there is usually no-one-size-fits all solution to select and train a neural network. It
may vary. So, we must use intelligence when choosing the simplest answers for the
problems we aim to tackle.
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Appendix

An appendix exists for this thesis; however, it contains confidential information that cannot
be disclosed. As a result, it has been omitted from this version of the thesis.
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