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• Identify the requirements and critical parameters to deploy Al methods into automation with Predictive 
maintenance. 

• Define potential architecture(s) to deploy Al methods in Siemens Industrial Edge. 

• Build the architecture(s) to evaluate the critical parameters identified. 

• Evaluate and discuss the viability and conditions where Industrial Edge is suitable for Al, if any. 

Methodology 

The project can be framed into applied research as it studies the viability to deploy a new technology of an 
existing technological solution of SIEMENS for loT in Industry 4.0. 

The methodology to achieve such evaluation can be divided in four major blocks: 

• Build knowledge in Al for Automation and SIEMENS Industrial Edge: 

This phase covers the study of the state-of-the-art, Al architectures and the features of the product where 
this new technology is to be deployed: Industrial Edge. 

• Identify the critical points and requirements: 
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In this stage, the requirements for Predictive maintenance in an industrial environment are to be set. The 
real time data will be collected directly from viking masek (A Siemens packaging machine) and analysis will 
be done Dn the data. 

Internal irformcTcn cf Al-based solutions within the cornpary can be used. The mair Eoal is to identify 
which are the requirements and critical factors of the process (i.e.: operation evele, process frequency, 
type of syichronizati •!_..) that determine whether Edge is suitable to deploy AL 

* Experiments and results: 

Defile, construct, aid carry various tests to find out the critical parameters defiled. Test's like (Correlation 
distribution, PCAr ICAetc) will he performed on the collected data and based on that a neural network will 
be proposed. Such definition should only focus Dn the components that are essential to evaluate predictive 
maintenance and the deployment of Al. 

• Evaluation aid discussion of the results: 

Evaluate the pipelines proposed aid discuss their viability. This discussion must also characterize which 
critical parameters comes out best for predictive maintenance.lt also includes deploying the architecture 
proposed on Industrial Edge and carry some experiments to be able to evaluate and discuss about it. 
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VIABILITY OF SIEMENS INDUSTRIAL EDGE TO DEPLOY AI INTO 
AUTOMATION PROCESSES 

Abstracts 

The study explores the potential of Siemens Industrial Edge to integrate artificial intelligence 

(AI) methods into automation processes for Vertical Form Fi l l Seal (VFFS) machines. The 

focus is on the deployment of a Convolutional Neural Networks (CNN) for production 

predictive purposes. The research analyses the benefits of utilizing Siemens Industrial Edge 

in terms of predicting the quality of packaging belonging to different class. The study also 

discusses the challenges of implementing AI into automation processes and the importance 

of data accuracy in predictive maintenance. The findings suggest that deploying Siemens 

Industrial Edge with AI for predictive maintenance can significantly improve the 

performance and efficiency of VFFS machines. Overall, the research provides insights into 

the viability of Siemens Industrial Edge in deploying AI for automation processes and 

highlights the potential benefits of using Machine learning for predictive maintenance in 

industrial settings. 

Keywords: 

Siemens, Industrial Edge, Artificial Intelligence, Automation, Predictive maintenance, 

Industry 4.0, Viability, Industry 4.0, Edge computing, Edge devices, Real-time analytics, 

Data processing, Machine learning, Industrial IoT, Smart manufacturing, Operational 

efficiency. 
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ŽIVOTNOST SPOLEČNOSTI SIEMENS INDUSTRIAL EDGE PRI 
NAVÁDĚNÍ AI DO PROCESŮ AUTOMATIZACE 

Abstrakt 

Studie zkoumá potenciál Siemens Industrial Edge integrovat metody umělé inteligence (AI) 

do automatizačních procesů pro stroje Vertical Form Fill Seal (VFFS). Důraz je kladen na 

nasazení konvolučních neuronových sítí (CNN) pro účely predikce výroby. Výzkum 

analyzuje výhody využití Siemens Industrial Edge z hlediska predikce kvality obalů 

patřících do jiné třídy. Studie také pojednává o problémech implementace AI do 

automatizačních procesů a důležitosti přesnosti dat v prediktivní údržbě. Zjištění naznačují, 

že nasazení Siemens Industrial Edge s AI pro prediktivní údržbu může výrazně zlepšit výkon 

a efektivitu strojů VFFS. Celkově výzkum poskytuje vhled do životaschopnosti Siemens 

Industrial Edge při nasazování AI pro automatizační procesy a zdůrazňuje potenciální 

výhody používání strojového učení pro prediktivní údržbu v průmyslových prostředích. 

Klíčová slova: 

Siemens, Industrial Edge, Umělá inteligence, Automatizace, Prediktivní údržba, Průmysl 

4.0, Životaschopnost, Průmysl 4.0, Edge computing, Edge zařízení, Analytika v reálném 

čase, Zpracování dat, Strojové učení, Průmyslový IoT, Chytrá výroba, Provozní efektivita. 

7 



1 Content 

Introduction 9 

Objectives and Methodology 11 
1.1 Objectives 11 
1.2 Methodology 11 

2 Literature Review 12 
2.1.1 Literature survey 12 

2.2 Data processing 14 
2.3 Neural Network 14 

2.3.1 Types of Neural Networks 18 
2.3.2 Regression and Classification Algorithm 20 

2.4 Convolutional neural networks 23 
2.4.1 Signal processing 27 

2.5 Siemens Automation Portfolio 28 
2.5.1 Demo Packaging Machine: Vertical Form Fi l l Seal 29 
2.5.2 Siemens Industrial Edge 30 

Practical Part 32 
2.6 Problem Statement 32 

2.6.1 Implementation 33 
2.6.2 Collecting data 33 
2.6.3 Data analysis 36 
2.6.4 Generating signals 40 
2.6.5 Suggesting a model 43 
2.6.6 Optimizing the model 45 
2.6.7 Deployment 47 

3 Results and Discussion 50 
3.1 Result 50 
3.2 Discussion 51 

4 Conclusion 52 

5 References 54 

6 List of pictures and tables 57 
6.1 L i st of pictures 57 
6.2 List of tables 58 

Appendix 59 

8 



Introduction 

Manufacturing companies are challenged to succeed in dynamic international markets 
requesting high-quality products, flexibility, on-time delivery, and a reasonable cost 
structure £1]. A typical example of this is a Vertical Form Seal machine (VFFS) automated 
packaging machine used in various industries for packaging wide range of products 
including food, pharmaceutical, beverage etc [2]. 

In Packaging machines, the quality of the packaging is a big challenge to deal with the 
current pace of on-time delivery and standard quality. Standard quality is the need of the 
hour in the current market. Viking Masek is one of the latest VFFS machines which come 
in different size and configurations [3]. Viking Masek utilization of cutting-edge 
technologies in their packaging equipment to boost effectiveness, productivity, and quality 
is referred to as having an "industrial edge" in this context. 

HMI is utilized in Viking Masek packaging machines to offer a graphical user interface 
that enables operators to communicate with the machine and manage its operations. 
Typically, the HMI system comprises of a touch screen display that shows operator the 
details about the machine's state, the settings that are in effect, and any alerts or warnings. 

Figure I : Human Machine Interface (HMI) 

Above Figure 1 shows HMI interface with inputs. However, current HMI doesn't show the 
packaging quality and doesn't test limitations of Industrial edge to deploy Artificial 
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Intelligence. With the increasing development of machine learning (ML), prediction 
models are becoming more and more established in the field. Looking from the business 
perspective, an AI model to predict the packaging quality and show the visualization on 
HMI will make the operator aware of the packaging standards and will reduce the loss and 
time. It will enhance the packaging procedures by enabling real-time data processing. 

Thus, our manuscript aims to set up an ML-based model for the prediction of quality of 
packaging classified into multi classes. With the achieved results, the paper provides three 
main contributions: 

• Collecting the data from the machine directly and analysing using matrix and 
graphs in python to extract the dependent features. 

• Proposing the model and discussing various Hyperparameters techniques to train 
the machine learning model. 

• Finally, Test the viability of industrial edge to deploy automation process by 
deploying on the industrial edge to predict the packaging class with a user interface 
for the operator. 

Our paper is structured as follows in brief. Section 2 is divided into various sub sections 
Section. Section 2.2 talks about data processing. Section 2.3 first discuss about the current 
neural networks with different algorithms. Section 2.4 discusses about choosing C N N for 
the problem. Section 2.5 talks little bit about Siemens Automation Portfolio. Section 2.6 
defines the problem statement and Section 2.6.1 talks in detail about its implementation. 
Finally, Section 3 shows the result and discussion and Section 4 talks about the final 
concluded result. 
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Objectives and Methodology 

1.1 Objectives 

The overall objectives of the project include: 

The initial goal is to research and comprehends Industrial Edge, a Siemens IoT solution, and 
its potential. The usage of this approach to implement AI techniques in automation is the 
focus. The goal is to assess the solution's capacity to assist AI in automated activities. 

The second goal is to determine the prerequisites and crucial variables needed to implement 
AI techniques in automation for predictive maintenance. This entails gathering information 
from machines and examining crucial elements. The objective is to identify the crucial 
variables that are essential for the effective implementation of AI techniques for predictive 
maintenance. 

The third goal is to identify various architectures that Siemens Industrial Edge may utilize 
to implement AI techniques. To determine the class of the packing, this analysis also looks 
at various potential multiclass classification-capable architectures. The goal is to identify the 
best architecture for using AI techniques in the Siemens Industrial Edge environment. 

Building the architecture(s) mentioned in the third aim to assess the critical parameters is the 
fourth goal. To determine the suggested parameters, this entails finding and training the 
neural network using hyperparameter optimization. The goal is to make sure that the created 
architecture can enable AI in automation operations successfully. 

The goal is to assess and discuss the viability and circumstances in which Industrial Edge is 
appropriate for AI. This entails deploying AI on the edge using the right architecture, testing 
the outcomes, and drawing conclusions. The goal is to ascertain whether Industrial Edge is 
a workable solution for implementing AI techniques in automation and whether there are 
any requirements that must be satisfied for its implementation. 

1.2 Methodology 

The project focuses on investigating the potential use of an existing technological solution 
from Siemens to support the adoption of a new IoT technology in Industry 4.0. The study 
falls under the category of applied research, which tries to address current issues and develop 
workable answers. 

Building expertise in Siemens Industrial Edge and AI for Automation is the initial part of the 
project. This stage seeks to research Industrial Edge's most recent AI architectures and 
features, which is the product where the new technology will be showcased. 
Understanding the needs for predictive maintenance in an industrial setting and creating a 
successful Al-based solution require this knowledge. 
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Critical points and requirements for predictive maintenance in an industrial setting will be 
determined in the second step. This entails gathering real-time data from a Siemens 
packaging machine demo dubbed Viking Masek. The internal data of the company's AI-
based solutions can be used to determine the needs and important aspects of the process, 
such as the cycle of operations, the frequency of the process, and the type of synchronization. 
This phase's goal is to identify the conditions and process elements that are crucial in 
determining whether Edge is a good candidate for AI deployment. 

The critical parameters that were identified in stage two are discovered in the third stage of 
the project through the definition, construction, and execution of numerous tests. With the 
collected data, for instance, tests like Correlation distribution, PCA, and ICA will be run. 
Based on the findings, a neural network will be suggested. Only those elements of this neural 
network that are crucial for assessing predictive maintenance and the application of AI 
should be the focus of its definition. 

The planned pipelines will be assessed, and their viability will be reviewed in the project's 
fourth and last stage. The best critical parameters for predictive maintenance will also be 
described in this discussion. The proposed architecture will also be put into use on Industrial 
Edge, and tests will be run to determine and discuss its practicality. These tests' findings will 
be used to the planned architecture to improve efficiency. 

To investigate the potential of a new technology for IoT in Industry 4.0, the research will 
ultimately employ an existing technological solution from Siemens. The project's four main 
steps include developing expertise in Siemens Industrial Edge and AI for Automation, 
identifying critical areas and demands, carrying out experiments, and evaluating suggested 
pipelines and architecture. 

2 Literature Review 

2.1.1 Literature survey 

The history of using machine learning (ML) and artificial intelligence (AI) in predictive 
maintenance of vertical form-fill-seal (VFFS) machines dates to the early 2000s. In recent 
years, the use of convolutional neural networks (CNNs) has emerged as a popular choice for 
predictive maintenance of VFFS machines. CNNs have been used to analyse data from 
various sensors installed on the machines to detect anomalies and predict the remaining 
useful life (RUL) of the machine components. 

One of the earliest studies that used AI for predictive maintenance of VFFS machines was 
done in 2001 by Rutenbar et al [4]. They used an M L technique called support vector 
machine (SVM) to classify the machine health status as normal or faulty. Later, in 2012, L i 
et al. used a combination of principal component analysis (PCA) and decision tree analysis 
(DTA) to predict the R U L of a VFFS machine [5]. 
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In recent years, there has been a surge of research on using CNNs for predictive maintenance 
of VFFS machines. For instance, in 2018, Kou et al. used a C N N to classify the health status 
of the machines based on vibration signals. They achieved a classification accuracy of 96% 
[6J. Similarly, in 2020 Jia et al. used a deep learning model that combined a C N N and long 
short-term memory (LSTM) networks to predict the R U L of VFFS machines based on 
acoustic signals [7]. 

The deployment of A l and C N N models for predictive maintenance in VFFS machines has 
been a subject of interest in recent years. By deploying the models on the edge, the 
computational load is reduced, and the response time is improved. In 2021, Chen et al. 
proposed an edge-based predictive maintenance framework that uses a C N N to analyse 
vibration signals and predict the R U L of VFFS machines. The framework was tested on a 
real-world dataset and achieved a prediction accuracy of 90% [8]. 

Also in 2021, Zhang et al. proposed a method for the deployment of an A l model on the 
industrial edge for predictive maintenance of VFFS machines [9J. The authors used a C N N 
model to predict the remaining useful life of the machine and demonstrated the effectiveness 
of their proposed approach in reducing maintenance costs. 

For example, in a study by Jin et al. in 2021, a CNN-based method was proposed for 
detecting defects in vertical form fill seal (VFFS) packages. The authors demonstrated the 
effectiveness of their proposed method on a real-world dataset, achieving an accuracy of 
98.86% in defect detection [10]. 

In a study by Xie et al. in 2021, a CNN-based method was proposed for predictive 
maintenance in the VFFS packaging process [11]. The authors deployed the model on an 
industrial edge device and achieved an accuracy of 96.8% in predicting packaging defects. 
The deployment of the model on the industrial edge device reduced the communication 
latency and improved the response time, making it suitable for real-time predictive 
maintenance. 

The use of A l , specifically CNNs, for predictive maintenance of VFFS machines has a long 
history, with recent advances focusing on deploying the models on the industrial edge. With 
the ever-increasing demand for efficient and cost-effective maintenance practices, it is 
expected that the use of A l in VFFS predictive maintenance will continue to grow. 
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2.2 Data processing 

Data Processing refers to manipulation and transformation of data to provide useful 
information. It involves data cleaning, integration, transformation, analysis, and 
visualization [12]. 

Data Processing is an essential component of both data science and data analysis. 
Data Science uses statistical and computational methods to extract insights from 
data. It works with large and complex datasets and provides variety of tools and 
techniques to extract meaningful patterns and relationships. It involves use of 
machine learning, artificial intelligence, and other advanced techniques to build 
effective models with can identify patterns and trends in data. 

Data Analyses focus on working with data using statistical method to analyse and 
extract insights. It often works smaller datasets like databases, spreadsheet, and 
statistical software. 
These are very important steps in analysing data because both provides essential 
tools to process. Some commonly used tools include: 

1. Programming languages: Programming languages like Python and R are the two 
of the most popular languages which offers range of libraries and tools for data 
processing and analysis. 

2. Statistical Software: Software includes SAS, SPPS are commonly used for 
statistical analyses. 

3. Machine Learning Framework: Tools like scikit-learn, TensorFlow are used to 
build predictive models which performs advanced machine leaning task. 

4. Data Visualization: Tools like matplotlib, seaborn are used to visualize data to 
extract useful information's. 

In general, all these tools are the building blocks combined and work together to 
build a predictive machine learning model which can perform high level task 
efficiently. Later, data will be analysed using all these tools and a predictive model 
will be proposed. 

2.3 Neural Network 

Neural networks are set of algorithms, inspired, and modelled after a human brain, that are 
designed to learn and recognize patters [L3J. 
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Figure 2: Artificial Neuron 

Above is the visualization of the basic structure of a neuron or a node. It is a basic 
computational unit that receives one or more inputs and perform calculation to produce an 
output. In short, it is a place where mathematical computation take place closely related to 
a human brain. It consists of mainly their main components: inputs, weights, and an 
activation function as shown. They are the building blocks of a fully connected neural 
network. 
Neural Network compromises of layers made of neurons or nodes. The number of layers 
may vary based on the data complexity and data dimensions. Each layer output is 
simultaneously and subsequently layer input. 

input layer hidden layer 1 hidden layer 2 output layer 

Figure 3:Nodes and layers of Neural Network 

As seen from above visualization every circle represents a node in their respective layers. 
It is constructed from three types of layers. 

1. Input Layer: The three yellow circles shown, acts as an input for the neural 
network in the form of Z = Wo + W1X1 + W2X2 + ...+ W n X n 

Here Wo is also called Bias or intercept represented as b in the figure above. The 
weights(w) are multiplied to the inputs(x), mathematical calculations are 
performed, and output of this layer is acting as an input for the hidden layers. 
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2. Hidden Layers: Its acts and intermediate layers between input and output layers 
represented in blue and green circles where all the permutation takes place. No of 
hidden layers may vary based on the hyper-parameter tuning that provides best 
accuracy avoiding underfitting and overfitting. 

3. Output Layer: It produces the output for the network. The number of nodes in this 
layer may vary based on regression (predicts continuous quantity) or classification 
(predicts discreate class labels) problems which will be discussed later. 

Neural network is also having activation function as shown above represented by f(z). This 
decide whether if the neuron will be activated or not. In short, it decides whether the 
neuron output is important in the process of prediction or not. 

More specifically, in and activation function f(z) there is a threshold parameter that 
determine if a neuron should produce an output or not, or the neuron output should switch 
from being inactive (0) to active (1) or not. Let's understand with an example. 

Let's take a simple neuron two input and threshold of 0.5 having following specifications. 

inputl=0.6, weightl=0.3, inputl=0.4, weight2= 0.5 
weighted sum= (inputl * weightl) + (input2 *weight2) = 0.47 

The output of the neuron is determined by passing weighted sum through activation 
function. Let's take sigmoid as an example: 
Sigmoid is represented by. 

Sigmoid(x)=l/(l+exp(-x)), produces an output between 0 and 1. 

Output = sigmoid (0.47) =0.615 

Since, the output is greater than threshold of 0.5, the neuron will fire and produce and 
output of 1. 
The choice of threshold and activation function plays a significant impact on its 
performance and ability to learn complex in input data. 

Typically, activation functions are of two types [14]: 

1. Linear Activation Function: As the name suggests, the function is a line or linear. 
This makes the output of the function not to be confined between any range 
between (-infinity to infinity). 
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Figure 4: Linear Activation Function 

2. Non-linear Activation Function: These functions are the most used activation 
functions which can adapt with the variety of data and differentiate between the 
outputs. 

Nonlinear Data 

• * V« 

3 15 30 45 60 

Figure 5: Non-Linear Activation Function 

There are many non-linear functions like sigmoid, tanh, relu etc which are divided 
on the bases of the range. Below is the visualization representing those functions in 
brief. 

Sigmoid 
l+e-

tanh 
tanh(x) 

Leaky ReLU 
max(0.1a;, x) 

Maxout 

ReLU 
max(0, x) 

ELU 
X 

a(ex - 1) x < 0 

Figure 6: Other Activation Functions 
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These functions are selected based on different types of neural network needs to be trained. 
There are many types of neural network. Leť s have a look. 

2.3.1 Types of Neural Networks 

The history of neural network dates to 1940s when first neural network model was 
proposed. However, the network was relatively simple with only few layers of neurons and 
no ability to learn from data. It was in 1980s when development of backpropagation 
algorithm came into existence which allow neural network to learn from data and adjust 
weights and biases to improve the performance. However, backpropagation networks were 
limited in their ability to process images and other form of spatial data. To address this 
problem, the first Convolutional neural network (CNN) was developed in 1990s. 

There are many types of neural network available. They are classified depending on their 
structure, no of neurons, layers, activation function etc [15]. Let's look at some of them. 

1. Recurrent Neural Network: Recurrent Neural Network (RNN) solves short-term 
memory problem due to vanishing gradient when working with long data sequence. 
RNNs create a cycle or a loop where the output of a particular layer is fed back as 
an input again to predict output of the layer. 

Figure 7:Recurrent Architecture 

Consider the figure above, at X I time the inputs are XO which is the previous state as well 
as input of X I which is the current state. This creates a cycle or a loop inside the network. 

The main advantage of this network is it also stores previous input state in the short-term 
memory not only the current state. This make R N N to consider previous state as well as 
current state. 

The major drawback of R N N is it requires more training data to learn effectively which 
makes it slower. It is also not suited for classification task where input data is not in 
sequence. It doesn't process sequential data using R E L U as an activation function. 

2. Feed Forward Neural Network: It is one of the simpler types of Feed-Forward 
neural network (FFNNs). It conveys information only in one direction through its 
node until it reaches the output node. It doesn't have short term memory, so it 
doesn't create loop like RNNs. It only follows one- way propagation. 
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Figure 8:Feed-Forward Neural Network 

Hidden layers may be present or not, but input and output layers are present. Based on this, 
it is classified as a single layered or multi layered feed forward neural network. 

The main advantage of FFNNs is it is fast, speedy, easy to design and maintain. 
The main disadvantage of FFNNs is it cannot be used for deep learning due to lack of 
dense layer and back propagation. 

3. Multilayer perceptron: Multilayer perceptron's has input and output layers with 
many hidden layers inside it. They are also called Feedforward algorithms because 
inputs are multiplied with weighted sum and subjected to activation function, like a 
perceptron. In sort, each layer is feeding the result of their computation to the next 
layer. Hence, all goes through the hidden layer to the output layer at last. 

If the algorithm computes only the weighted sum of the input(x) and weights(w) in each 
neuron and propagates through the output layer and stopped, it will not be able to learn the 
weights that minimize the cost function. In short, if it computes only one iteration then it 
will not learn which will result in zero learning. Therefore, backpropagation come in handy 
and plays a big role in training the neural network. 

Backpropagation is a leaning mechanism that allows multilayer perceptron's to adjust the 
weights which helps in reducing the cost function. It is used in supervised learning. 

Supervised learning is a well 'labelled' which means some data in dataset is already 
targeted with correct answers which helps the neural network to predict the outcomes for 
unforeseen data Semi- supervised and self- supervised leaning where it relies on partially 
or "unlabelled" data to learn patterns and relationship in data. 

In semi-supervised learning a small amount of labelled data is used along with unlabelled 
data to train the model. Model can use information in unlabelled data to learn more 
generalizable features to improve the performance on labelled data. It is used in case when 
labelling data is expensive and time consuming. 

In case of self-supervised learning a model is trained to predict certain features of data 
without explicit labels. For example, in image processing, a model may be trained to 
predict location of the cropped-out portion of the image. 
They are particularly useful in cases where labelled data is insufficient and expensive to 
obtain. 
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Below is the visualization of backpropagation within neural network. 

When the weighted sum is forwarded through all the layers, gradient of M S E as shown 
above is calculated across all inputs and output pairs. Then to propagate it back, the 
weights of the first hidden layer are updated with gradient value and the weights are 
propagated it back to the starting point of the network. This process is repeated based on 
no of epochs which increases the model accuracy. This is how backpropagation works 
inside the neural network. 

The main disadvantage of neural network is it is comparatively slow because it depends on 
number of hidden layers. 

2.3.2 Regression and Classification Algorithm 

Regression and Classification are the most popular machine leaning algorithms which 
follow supervised learning algorithm (Labelled datasets) [16]. Regression and 
Classification can be better understood by a figure shown below. 
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Figure 10: Regression and Classification 

Regression is used for continuous value such as speed, weight, temperature etc. As shown 
in the diagram if you want to predict what will be the temperature for tomorrow using 
temperature datasets, regression algorithms are used. The model using regression will learn 
from the existing temperature dataset to predict the temperature for future dates. It predicts 
a single output value using training dataset. 

There are many types of regression models like linear Regression, Polynomial Regression, 
Logistics Regression, lasso Regression etc. The most popular ones are linear Regression 
and Logistics Regression. 

1. Linear Regression: It is used to predict the value of a variable based on another 
variable. The variable to be predicted is called dependent variable and variable used 
to predict the value is called independent variables. 

X 

Dependent 
Variable 

Independent 
Variable 

Figure 11: Linear Regression 

2. Logistic Regression: This algorithm is used to find the probability of an event to 
occur based on the dataset. It uses independent variables from the dataset to predict 
the probability of the dependent variable which is between 0 and 1. 
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Figure 12: Logistic Regression 

While classification algorithms are used to predict discrete values or classify if it is going 
to be hot or cold, or will it rain or not. If the output is between two distinct classes, then it 
called Binary classification. If the output is between more than two classes, then it is called 
multiclass classification. Below is the visualization of binary and multiclass classification. 

Binary classification Multi-class classification 

Figure 13: Binary and Multiclass Classification 

The different colour shapes represent different classes. Binary classification has two 
classes, so the output predicted will be between these two classes. While multiclass 
classification has three different colour shapes representing three different classes, so the 
output will be between three different classes. 

22 



2.4 Convolutional neural networks 

Convolutional neural network (CNN) is a Deep learning algorithm and a Feed- forward 
neural network that takes inputs as image, multivariate /univariate time series [17]. 

Fully Fully 
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Input Convolution Max Pooling 
multivariate 
time series 

Convolution Max Pooling 

^ ^ ^ ^ 

Flattened ("*V Output 
Data w 

• D 

I o - . o 

a 

Figure 14:CNNModel Architecture 

Univariate timeseries means only one variable over time. For example, torque collected 
from a machine every millisecond. Every millisecond it will have one-dimension value. 
Multivariate timeseries means multiple variables over time. For example, torque, 
temperature, speed etc every millisecond. It has more than one dimensional value. 

C N N is mainly composed of three different layers: 

1. Convolutional layer 
2. Pooling Layer 
3. Fully Connected Layer 

Convolutional and Pooling layer can be altered before the output reaches to Fully 
connected layer. 

1. Convolutional Layer: It is a building block of this type of network. It performs 
convolution of an input series of feature maps with a filter matrix to get a different 
series of feature of maps. The main purpose of this layer is to extract the high-level 
features. This layer has set of filters that are fixed size matrices applied to 
submatrix of the input with it same size. 

Input Filter 

1 -1 0 

0 1 -1 

- 1 0 1 

Result • 
4*1+9*(-1)+2*0+ 
5*0+6*1+2*(-1)+ 
2*(-1)+4*0+5*1 

Figure 15: CNN Filter Logic 
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As seen from above fig, sum of the product of every element of the filter is placed in the 
same position of sub matrix. The result is shown below. 
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Figure 16: CNN Filter Result 

Two other important parameters that must be chosen are Stride and Padding. 

Stride: It controls how many units the filter will shift around one input feature map. Below 
is the figure representing an example of stride. 

Stride = 1 
Filter Filter 

Input Input 

Padding: 
Input Padding = 0 

1 2 2 3 1 1 1 2 2 3 1 1 

1 4 2 2 7 4 1 4 2 2 7 4 
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0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 2 2 3 1 1 0 0 0 1 2 2 3 1 1 0 0 

0 1 4 2 2 7 4 0 0 0 • 4 2 2 7 4 0 0 

0 5 5 6 9 4 1 0 0 0 5 5 6 9 4 1 0 0 

0 4 8 0 4 3 3 0 0 0 4 8 0 1 3 3 0 0 

0 9 0 7 0 4 3 0 0 0 9 0 7 0 4 3 0 0 

0 4 1 0 8 2 1 0 0 0 4 1 0 8 2 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Figure 18.-CNN Padding 
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Padding tells how many extra rows and columns to be added outside an input feature map. 
It is done before applying convolutional filter. It is usually filled with dummy values 
usually with 0 as shown in the figure. 

Padding is applied because after applying convolutional filter to just an input feature map, 
the size decreases. So, if, many filters are applied to all input feature map the size become 
too small. Applying padding add extra rows and columns we preserve the original size. 
There are two types of Padding: 

a. Valid Padding: When the size of the feature map is smaller after applying 
convolution filter then the size of input feature map. 

b. Same Padding: When the size of the feature map is equal or greater after applying 
convolution filter then the size of input feature map. 

2. Pooling Layer: The main purpose of the layer is reducing the dimension of feature map 
as much as possible. It is useful for extracting important and dominant features where the 
input feature map is different from output series of feature maps. 

Input 

5 

4 0 

4 ^ 

5 2 2 5 6 

3 3 0 1 4 

Result 

• Maxumum = 

Figure 19: CNN Pooling Layer 

There are two types pooling: 

a. Max Pooling 
b. Average Pooling 

Max Pooling: It takes the maximum value within each region from a feature map to form a 
smaller output feature map. For example, a 2*2 max pooling applied to 4*4 input feature 
map. For each region, the maximum value is computed, and the result is 2*2 output feature 
map, where each element is the maximum value within 2*2 output feature map. 

Average Pooling: It takes the average value within each region from a feature map to form 
a smaller output feature map. For example, a 2*2 max pooling applied to 4*4 input feature 
map. For each region, the average value is computed, and the result is 2*2 output feature 
map, where each element is the average value within 2*2 output feature map. 
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Figure 20:Max pooling and Average Pooling 

The main objective is to reduce the size of the feature maps for faster computation because 
it reduces the number of parameters maintaining the maximum features. 

3. Fully Connected Layer: Its main goal is to learn non-linear combinations represented by 
output of convolutional layer and pooling layer as show in the figure above. It is usually 
implemented using a multi-layer perceptron. 

A l l the feature maps are flattened as shown in the above fig before representing as a final 
input to multi-layer perceptron. Multi-layer perceptron final output is equal to the number 
of classes specified. 

The main advantages are backpropagation which is applied during the training based on no 
of epochs mentioned. Hence after backpropagation, the model will be able to extract 
dominant features and will be able to classify them. 

Here is the working code of 1-D Convolutional Neural Network. 

# ID-cm //cotletS b\j Pankaj 

def make_model(input_shape): 

i n p u t _ l a y e r - keras.layers.Input(input_shape) 

convl = keras.layers.ConvlDff i l t e r s = M , kernel_size=3, padding="same"')(input_layer) 

convl = keras. l a y e r s . BatcriNormalizationO (convl) 

convl = keras.layers.ReLUO(convl) 

conv2 = keras.layers.ConvlDCf i l t e r s = M , kernel_size=3, padding="same")(convl) 

conv2 = keras.layers.BatcnNormalization()(conv2) 

conv2 = keras. l a y e r s . ReLU()(conv2) 

conv3 - k e r a s . l a y e r s . C o n v l D C f i l t e r s - 6 4 , k e r n e l _ s i z e - 3 , padding="same")(conv2) 

conv3 = keras. l a y e r s . BatcriNormalizationO (conv3) 

conv3 = keras. l a y e r s . ReLUO(conv3) 

gap = keras.layers.Glo0alAveragePoolinglD()(oonv3) 

output_layer = keras.layers.Dense(num_classes, activation="softmax")(gap) 

return keras.models.ModelCinputs=input_layer, outputs=output_layer) 

Figure 21: CNN Implementation 
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The above code shows three 1 -D C N N layer with its own activation function R E L U and 
batch normalization. Batch Normalization in every layer helps to train neural network 
much faster through normalization of the layers by re-centring and re-scaling the data in 
every output node making mean as 0 and standard deviation as 1. 

Figure 22:Node output with and without Batch Normalization 

The output layer has Dense layer with num_classes which is 3 in our case with SoftMax 
has an activation function. This layer is responsible for the prediction of output in terms of 
probability between each class. The class with highest probability is generally consider the 
final output of the neural network. 

Over the years Neural networks have improved. C N N have seen recent improvements over 
the years like more computationally efficient and accurate [18]. Neural networks like 
Generative Adversarial Network (GAN) are getting popular because is it used to generate 
new data that is like the training data [191. 

2.4.1 Signal processing 

The essential functions of signal processing include signal analysis, interpretation, and 
manipulation. To achieve the required shaping of the signal at the output, the fundamental 
nature of the signal is modified. The representation, transformation, and manipulation of 
signals and the information they carry are at the centre of its focus. Analog signal 
processing and digital signal processing are the two categories into which signal processing 
can be divided. [201. 

Analog Signal processing: Signals are processed by analog circuits in Analog Signal 
processing, which change the signal in a variety of ways. Signal mixing, filtering, and 
other functions can be carried out by analog circuits. Applications including audio 
amplifiers, radio receivers, and power supply frequently make use of Analog Signal 
processing [211. 

Digital signal processing: Signals are digitally transformed in DSP before being processed 
with algorithms that can carry out a variety of tasks, including filtering, modulation, and 
demodulation. Typically, DSP application-specific hardware and software are used for this. 
Several industries, including telecommunications, audio processing, image processing, and 
control systems, heavily rely on DSP [22]. 
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Signal processing in VFFS Machines: A programmable logic controller (PLC) is used in 
the procedure to manage the different phases of the machine's functioning [23]. Signal 
processing, which entails converting electrical impulses into useful data that may be 
utilized to control the machine, is a crucial component of VFFS machines. 

On VFFS machines, signal processing happens in stages. Initially, analog-to-digital 
converters are used to transform the analog signals from sensors, such as photoelectric 
sensors, load cells, and temperature sensors, into digital signals (ADCs). The PLC then 
applies algorithms like filtering, amplification, and modulation to the digital signals to 
process them. Following signal processing, the filling, sealing, and cutting operations of 
the VFFS machine are controlled using the processed signals. [24]. 

Wavelet analysis, Fourier transformations, and digital signal processing are just a few of 
the methods employed in VFFS machines for signal processing. These methods assist in 
locating patterns and trends in the signals, which can then be used to enhance the 
functionality of the machine [251. 

2.5 Siemens Automation Portfolio 

Siemens A G is a multinational Conglomerate company based in Germany and is one of the 
largest electrical engineering companies in the world. Its automation portfolio includes 
wide range of products, systems and solutions designed to optimize processes which 
increases efficiency in the industry [26]. Some of the key offerings in Siemens automation 
portfolio include: 

1. Siemens Simatic's: A family of (programmable logic controller) PLC's acts as a 
main brain to control and automate industrial processes [231. 

2. Siemens totally integrated automation (TIA): It is an integrated hardware and 
software platform that includes PLS's, drives and software for program 
development. It can also provide simulations. 

3. Siemens Sinamics Drives: It has range of A C and DC drives which is used to 
control and regulate speed of electric motors. 

4. Siemens Networking Solutions: It is a family of networking component including 
switches, routers, and other wireless access points for automation applications. 

5. Siemens Build Technologies: This portfolio includes automation of buildings 
which includes security, heating, ventilation, air conditioning, fire safety and other 
building energy managements. 

6. Siemens Industries Software: A portfolio of software tools for product lifecycle 
management simulation, design, and engineering. 
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These are the just a few examples of many offerings in Siemens automation portfolio. 
Siemens also provides automation solutions for industry. Let's have a look them. 

2.5.1 Demo Packaging Machine: Vertical Form Fill Seal 

Siemens provides automation solutions for Industry. Preventive and predictive 
maintenance can leverage machine producers and users. Thus, to illustrate that, a vertical 
packaging machine has been used as demo case, labelled as Viking Masek. It is a VFFS 
(Vertical Form Fi l l Seal) packaging machine. 

VFFS is a type of packaging machine used in the food and beverages, pharmaceutical and 
other industries. It is a machine that forms a bag from a roll of flat material, fills it with a 
product, and seals the open end to create a finished package [27]. 

Figure 23: Viking Masek machine 

VFFS packaging machine and one of the most complex machines and can run much faster 
up to 300 bpm and provide global packaging technologies which helps to hit the packaging 
number much faster with minimum risk, hence increase in revenue. 

Above is the visualization of Viking Masek. Let's have a look at them briefly in order. 

1. Food Fillers from Top: This is the essential step in packing process where wide 
range of products like food, beverage, cosmetic and other consumer goods are filled 
in the machine typically controlled by programmable logic controller (PLC) and 
HMI interface. 
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2. HMI and Edge: This section is the most important component of the machine 
comprising of a hardware human touch screen interface called HMI (Human 
machine Interface) and an 'INDUSTRIAL E D G E ' run-time software environment. 
The operator can enter or set all parameters and packaging configuration using 
HMI. The machine has different state but mainly two of them are 'start' and 'stop' 
state. The start state let the machine in starting state by reading all the configuration 
set by the operator using HMI and the stop state let the machine to terminate the 
start state. 
This industrial edge is an open software platform that allow user with secure, 
scalable deployment and the execution of apps. It uses protocols like S7, SLMP, 
OPC-UA etc to communicate with industrial assets. HMI an Edge will be discussed 
in more details later. 

3. Packets for Packaging: This section of machine provides the packets for packaging 
for the different products. Packets for Packaging depends on specific machines and 
types of material used. Some common types of packets produced are stand-up 
pouches (popular for food items to protect from moisture and lights), Three -side 
sealed bags (packaging products like tea, coffee spices) etc. 

4. Packaging output: As seen, this section of machine act as a gateway for the finished 
product. The packaged product glides through and is collected from the end. 

5. Sealbandl and sealband2: It refers to the band or strip of material (usually plastic) 
used to seal the bags which is formed. The seal band is created by heating the film 
and compressing between two rollers, which creates a strong and reliable seal. This 
is helpful in sealing the bags and keep the product inside. 

6. Cross Seal Arm: This part of the machine is responsible for creating a cross seal. 
Cross seal consists of a heated jaw which melts the plastic and applies pressure to 
create a seal. This helps to cuts the packed product to be processed to the next 
stage. 

Off course, it has many other components to look upon, but only few and important 
components have been outlined here. 

2.5.2 Siemens Industrial Edge 

Siemens industrial Edge is one of a portfolio of product, services and solutions that 
provides industrial automation and enhance digital capabilities for the company. It is 
designed to help a company move towards digitalization by providing them with tools and 
technologies needed to collect, analyse, and act on data generated by industrial 
equipment's and processes. This also includes edge computing devices, software platforms 
and cloud-based services which is used to implement industry 4.0 strategies and take 
advantage of the internet of things (IOT). This drive efficiency, improve productivity and 
enhance overall performance of industrial operations. 
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Siemens Industrial edge is designed to be highly scalable and flexible which allow 
companies to start small and expand their capabilities overtime based on their need and 
requirements change. This portfolio also provides robust security features which helps to 
protect sensitive industrial edge, making it more reliable and secure over time. 

Industrial Edge offers three components which create 
a simple workflow to manage distributed IT infrastructure 

Industrial Edge Hub 
(Siemens operated) 

Global App Repository 

Industrial Edge Management 
(Customer-operated) 

4 U a 

Local App Repository 

D 1 9 D 

Industrial Edge Runtime 
on Industrial Devices 
(In-Factory) 

Local App Execution 

Industrie P C : I tj-nan Mjchnc C a f f f t j , c a c r Anyca-lifec 
IrawrflS ;MM) ' U f r , ' . - » 

Figure 24: Siemens industrial edge workflow 

SIEMENS 

Above is the image which represents the workflow of industrial edge [28]. Let's look at 
the components briefly. 

A. Industrial-Edge hub: It is a component of siemens industrial edge portfolio which 
provide global app repository. It is equipped with powerful hardware and software 
capabilities like high performance data, such as sensors, motors, and other software 
platforms for data processing. It is used to collect and perform real-time data 
processing and make decision based on the results generated by real time Industrial 
equipment's. 

B. Industrial-Edge Management: It is responsible for managing and monitoring edge 
computing devices that are deployed. These includes devices like industrial edge 
hub which are used to collect, analyse, and act on the data generated by the 
industrial machine processes. Siemens edge management also provides cloud-based 
management platforms which involves in deployment, configuration and 
monitoring the device performance and status. 

C. Industrial-Edge Runtime: The siemens Industrial edge runtime provides a platform 
for running applications and environment for industrial edge hub where the apps 
are run, and process data generated by industrial equipment in real-time. This 
component also offers a human touch interface which is referred as HMI (Human 
Machine Interface) which control's industrial equipment. Industrial edge runtime 
from Siemens supports OPC U A protocol which is widely used in industrial 
environments to exchange data. 

These three main components work together to manage distributed IT infrastructure. 
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Practical Part 

2.6 Problem Statement 

Predictive maintenance technique helps to determine when the maintenance should be 
performed. This approach promises cost and time saving. 
Predictive maintenance is a technique used to detect anomalies and possible defects in 
equipment or in operation which can be fixed before any failure [29]. 

Thus, to illustrate that, a Packaging machine has been used as demo case, see Section 
2.5.1. The operator can enter or set all parameters and packaging configuration using HMI 
(Human Machine Interface). The machine has different state but mainly two of them are 
'start' and 'stop' state. The start state let the machine in starting state by reading all the 
configuration set by the operator using HMI and the stop state let the machine to terminate 
the start state. Basically, it controls machine. 

HMI has all the required functionalities needed by the operator, like set the number of 
packets per min, for example 30bags/min,40bags/min,50bags/min etc but still it cannot let 
the operators know if the packing of the product is of required industrial standards! The 
operator is not aware of the faulty packet size, package sealing etc, hence result in loss of 
time and revenue. 

To solve these problems, Siemens team came up with a visualization which let the 
operators know all the re-quired details, if the packaging is of set standards, or if the 
packaging can be approved and to test the flexibility of Industrial Edge Environment. A 
designing of AI (Artificial Intelligence) neural network was proposed which can be 
deployed on Siemens Industrial Edge environment and can be altered and monitor. 

The neural network will specifically focus on predictive maintenance allowing the operator 
to check on packet's quality. The quality will be categorised into different classes given 
below: 

Classes Packaging 

0 Valid 
1 Improvable/Acceptable 
2 Invalid/Rejected 

Table 1: Packaging Classes 
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Based on the classes in which the packet belongs, the packaging quality will be 
determined, and the operator will be aware of the packaging quality and standards. 

Of course, the initial proposed solution put out cannot be fixed at first and may be 
somewhat altered in response to new difficulties encountered during implementation. 

2.6.1 Implementation 

Based on the problem statement, Siemens team came up with an implementation which is 
divided into following steps. Let's look at them. 

2.6.2 Collecting data 

The first and foremost step was to collect data from the machine. The machine works on 
OPC (Open Platform Communication) U A (Unified Architecture) protocol [30]. Python 
code was written using opcua library which helps to connect to the machine and collect the 
data. 

The first part was to traverse through the node where each signal is located using the 
python code. 
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Figure 25:Node Path Traverse 

The second part was to connect and to the machine and read the signals. The following 
code was used to connect to machine and log the signals. 
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from opcua import ua 

from ai.constant import nodepath 

•=• Pankaj 

def getParentHodes(node i c l i e n t , v a r i a b l e s , count): 

a l l V a r i a b l e s = v a r i a b l e s 

f o r c h i l d l d i n node. g e t _ c h i l d r e n ( ) : 

ch = c l i e n t . g e t _ n o d e ( c h i l d I d ) 

i f ch. get_node_classO == ua.NodeClass.Object: 

i f ch. get_browse_nameO - t o _ s t r i n g O . s p l i t ( ' : ') [1] . eq (nodepath. get Mode (count) ) : 

i f l e n ( c h . g e t _ c h i l d r e n O ) > 0: 

getParentHodes(ch, c l i e n t , a l l V a r i a b l e s , ccunt=count + 1) 

orea< 

e l i f ch.get_node_class(> == ua.NodeClass.Variable: 

i f ch. get_browse_nameO . t o _ s t r i n g O . s p l i t ( ' : ' M l ] . eq (nodepath.getNode(count)): 

getChildrenNodes(ch, c l i e n t , v a r i a b l e s ) 

srea< 

e l s e : 

getParentNodes(ch f c l i e n t , a l l V a r i a b l e s , count) 

* return a l l V a r i a b l e s j 

— Pankaj 

def uet" " i l c •e" '•. t •- [node, c l i e n t , \ze -ie. o\es) : 

f o r c h i l d l d i n node. g e t _ c h i l d r e n O : 

t r y : 

ch = c l i e n t . g e t _ n o d e ( c h i l d I d ) 

v a r i a b l e s [ c h ] = ch.get_browse_nameO.to_string() 

except ua.uaerrors._auto.BadWaitingForlnitialData: 

pass 

return v a r i a b l e s 

Figure 26: OPC UA code to connect to Packaging Machine 

Above code was used to gather the signals when machine was running. Data was collected 
for 30 bags/ min, 40 bags/ min and 50 bags/ min. 
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A x S e a l E a n d 1 . S t a t u s T o r q u e D a t a . A c t u a l T o r q u eCNnO G .000224 60 93 64 522 6 2 1 

A x S e a l B a n d 2 . S t a t u s T o r q u e D a t a . A c t u a l T o r q u e CNnO -G.G008 9S43 74 5S0 90 4S4 

A x L i n e a r A x i s . S t a t u s T o r q u e D a t a . A c t u a l T o r q u e CNnO G 

i n s t L F F S _ V F F S H a c h i n e M a s t e r P o s . a c t M a c h i n e S p e e d 30 

Figure 27.'Real-Time Collected Data 
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Above is the original data collected from the machine. Off course, this is some of data 
shown here not the full version. The main idea here is to show the list of signals recorded. 
These signals will be analysed further to find the dependent signals which will best fit the 
problem statements. 

2.6.3 Data analysis 

After data collection, Pearson Correlation was performed on collected data. Pearson 
Correlation indicates a number which measures strength and direction between two 
variables. It ranges between -1 to +1, with +1 indicates perfectly highly positively related 
and -1 indicates perfectly highly negatively related [3JJ. 

Correlation between different features 

Figure 28: Correlation Matrix 

Above is the correlation matrix which shows more than 50% positive correlation between 
CrossSeal.ActualPosition, LinearAxis. ActualPosition and CrossSeal.ActualPosition and 
CrossSeal.Status. TorqueDataActualTorque (NM) signals. 
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It was accepted that these signals will be highly positively correlated because these signals 
play an important role in packaging and can be realized visually. 

CrossSfifii ActualPos.' llnear-Axs 

O M l tf«Xl 3>J0 4000 

Figure 29: Cross Seal vs LinearAxis Actual Position 

From the graph, it is clearly seen that as the cross seal actual position increases and reaches 
to the maximum value, the linear axis actual position also reaches too maximum and vice 
versa. Linear axis is more of a machinal system combined with cross seal as a set with 
operates together and both are directly proportional to each other. So, this was not the 
focused area which can determine the packaging quality. 

Figure 30:Cross Seal vs Torque Actual Position 

From the above visualization, it can be clearly seen that as the cross-seal arm comes closer 
to cut the packet marked in circle as shown above, there is a torque generation which is 
negative in nature. As the cross-seal arm reaches to maximum distance the torque 
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generated is almost zero marked in circles. So, the idea was suggested to give more 
emphasis on the torque signal which can determine if the packaging is of set standards. In 
short, while cutting the packet, if the torque signal is measured and monitored, it can 
predict the packaging quality. 

Off course, the correlation matrix will not convey all the required details between two 
linear dependent variables so other signals were analysed in detail too. 

Sea IBand-ActualPos/AclualTorqiie 
iO baoG GOQlbanc 1 Ac:ua I Position 
^0-L>ays- sealbdnc l-Ac.ualTurquH 

Figure 31: Seal Band vs Torque Actual Position 

For example, the above visualization shows seal bands has no effect on actual torque, so 
this will have no impact in creating a model. Likewise, different analysis was performed, 
and results were analysed. 

So, more emphasis was given on cross seal and torque actual position. Cross seal position 
was divided in tO to t3 as one cycle. The idea was to get the torque between tO to t3 and 
analyse it more. It can be seen from the visualization presented below. 

CrossSeal-ActualPos/ActualTorque 

Ad \ ^ ^ | Position 
* Torque 

\ w V 

V \ 
400 450 

Tme(ms} 

Figure 32: Cross Seal vs Torque Time Interval 
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The code to generate tO to t3 cycles. 

tfSTep 2: Get first to- t3 points 

def get_Initial_t0_pointsO: 

actuat_arm_po5ition=read[)ataO [1] 

for firstMaxPos, elem in enumerate(actual_arm_positiQn): S first it should get max octool_arm_position 

i f elem == np.inax(actual_arin_positiQn}: 

flag = True 

break 

i f flag: 

for x, elem in enumerate(actual_arm_position[firstMaxPos:]): 

i f elem < np.inax(actual_arin_position): 

FirstlnitCut = x + firstHaxPos 

break 

for idx, elem in enumerate(actual_arm_position[FirstInitCut:]): 

i f elem == np.max(actual_arm_position): 

break 

for elem in enumerate(actual_arm_position[idx + F i r s t l n i t C u t : ] ) : 

i f elem < np.max(actual_arm_position): 

FirstEndCut = y + idx + FirstlnitCut 

break 

else: 

printC'ERROR:: No Fist max position Found!") 

return [FirstlnitCut + 1, FirstEndCut] 

Figure 33: Initial tO to t3 cycles 

it finding all the remaining tl,12,13,14 (X1Y) = (Time,Position) fly Ponkaj 

def get_All_tQ_t3_points(initCut, initEnd, lastRowNum, cycle, cycle_t9_t3_points, cycleLength): 

i f lastRowNum >= initEnd: 

printC'CYCLE::", cycle + 1) 

time_extracted = Time[initCut:initEnd] 

actual_arm_pDsition_extracted - actual_arm_position[initCut - 1:initEnd] 

torque_data_extracted = torque_data[initCut:initEnd] 

k = np.max(actual_arm_position_extracted)| 

tQ = t3 = Q 

for idx, elem in enumerate(actjal_arm_position_extracted): 

i f elem < k: 

te - initCut + idx 

break 

for idx, elem in enumerate(actjal_arm_position_extracted[::-1]): 

i f elem == k: 

t3 = initEnd - idx 

break 

initCut = t3 + 1 

time_extracted = Time[tQ:t3] 

actual_arm_position_extracted - actual_arm_position[tQ:t3] 

torque_data_extracted = tarque_data[tQ:t3] 

t l = t2 = Q ftfor finding 11 and 12 

for idx, elem in enumerate(actjal_arm_position_extracted): 

i f elem < B: 

t l - tQ + idx + 1 

break 

count - Q; 

element = Q 

for idx, elem in enumerate(actjal_arm_position_extracted): 

i f elem < Q: 

count = count + 1 

element = elem 

t2 = t l + count - 1 

cycle_tQ_t3_points.append(str(tG) + ":" + s t r ( t l ) + ":" + str(t2) + ":" + str(t3)> 

get_All_t9_t3_points(initCut, initCut + cycleLenqtb + 1, lastRowNum, cycle + 1, cycle_t9_t3_points, cycleLenqtb) 

Figure 34:All tO to t3 cycles 
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Below is the table explaining the different intervals from tO to t3. 

No Interval Description 

1 to Both the arm is at maximum distance with each other. 
2 t l Both the arms are coming closer in contact and cutting the packets. 
3 t2 After cutting, both the arm is going away from each other 
4 t3 Both the arm is at maximum distance with each other again. 

Table 2 : Time Interval Description 

2.6.4 Generating signals 

After data analysis was done on the collected data it was observed that the cross-seal bands 
and torque are highly positively correlated with each other. The general idea proposed was 
to measure the torque generated while packaging to identify the fault. If there is a slight 
variance in the torque value while cutting the packet, the model can predict the 
acceptability of the packet. 

But the main challenge was the collected torque which was almost accurate all the time 
which cannot be used to train the neural network because of the inability of the neural 
network to differentiate between the incorrect and correct torque generated. Hence, some 
of the torque was needed to modify between the interval tO to t3 cycle with some fake 
torque data for the neural network to differentiate. 

| ffRandom Modification ( code by Ponkoj ) 

def rand_niodification_dataset(dataset_arrange_in_sa[«plesJ cycle_tB_t3_points): 

tQtal_modified_signal = np.array([], dtype=f~Loat) 

perturbation_sample = np.array([], dtype=float) 

label.sample = np.array([], dtype=int) 

classes.type = np.array([], dtype=int) 

for index, samp"Le_of_one_cyc"Le In enumerate(dataset_arrange_in_samples): # get 1 cycle from dotoset 

percentage_niodified_samples = 0.1 # 16% modification 

ffOecide if this cycle is to be modified 

i f random.randrangeO, 11) / 18 >= 1 - percentage_modified_samples: ff X > (1-8.1), X is a number between 6 and 1 

perturbation =np.random.cboice(range(QJ 5)) # Get magnitude to modify a sample 

sample_of_one_cycle = np.round(sample_of_one_cycle * (1 + perturbation / 100), decimals=5) 

perturbation_sample = np.append(perturbation_sample,np.fJll((sample_of_one_cycle.size, 1),perturbation / 1QQ)) 

label_sample = np.append(label_sample,np.full((sample_of_one_cycle.size, 1), perturbation)) 

classes.type = np.append(classes.type, np.fulKCsample.of.one.cycle.size, l) Jclasses_types(perturbation))) 

else: 

perturbation.sample = np.appendtperturbation.sample, np.full((sample_of_one_cycle.5ize, 1), 3)) 

label_sample = np.append(label_sample; np.fulKCsample.of.one.cycle.size, 1), 0)) 

classes_type = np.append(classes_type, np.fuYL((sample_Qf_one_cycle.size, 1), 0)) 

total_modified_signal = np.appendftotal.modified.signal, sample_of_one_cycle) 

neural_network_dataset = pd.DataFrameC 

{'Modified_signal': total_modified_signal, ' Perturbation.sample': pertjrbation.sample, 

'Label_sample': label_sample, 'Classes': classes_type}> 

return neural_network_dataset 

Figure 35: Random Modification of Torque 
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Above is the code which applies 10% modification of the torque between tO to t3 cycle 
randomly. The main logic is show below: 

Torque Modified Torque Perturbation Sample Label sample Classes 

Sample 1 1.01 1.01 1 0 
2 2.02 1.01 1 
3 3.03 1.01 1 
4 4.04 1.01 1 

— . . . — . . . 

— — — — 
— 1.01 — 
8 8.08 1.01 1 

Sample 2 9 9.18 1.02 2 1 
10 10.2 1.02 2 
11 11.22 1.02 2 
-— . . . . . . . . . 

— — — — 
. . . . . . . . . . . . 

14 14.28 1.02 2 
15 15.53 1.02 2 

Sample 3 16 16.64 1.04 4 2 
17 17.68 1.04 4 
18 18.72 1.04 4 
— . . . . . . . . . 

— — — — 
. . . . . . . . . . . . 

21 21.84 1.04 4 
22 22.88 1.04 4 

Table 3 .-Modified Torque and Class Definitions 

Calculations: 

Label sample= random (0,5) 
Perturbation sample= 1+random (0,5)/100 
Modified Torque = Torque * Perturbation sample 

Cases: 
Table 4 :Cases Calculation's 

Case Percentage Perturbation sample Classes Packaging 

1 0->1.5% 0 <=Perturbation <= 1 0 Valid 
2 1.5 - 3.5% 2 <=Perturbation <= 3 1 Improvable/Acceptable 
3 >3.5% Perturbation >= 4 2 Invalid/Rejected 
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ttciass generation ( code by Pankaj ) 

def classes_types(perturbation_value): 

i f Q <= perturbation_value <= 1: 

return Q; 

i f 2 <= perturbation_value <= 3: 

return l l 

¥ i f perturbation_value >= 4:| 

j) | return 2; 

Figure 36: Python Class Definition 

The above tables show the perturbation and cases calculations. Based on these calculations 
a graph was generated to show the original and modified torque. 

Torque originaL'modified 

- 5 modifcd ] 
uiiyinal 

i 1 L 

1 I \ + 1 I 

U MO 10UU 1t.UU 20UU Z>UU 3DUU rfoULI 40UU 
Tims 

Figure 37-Modified vs Original Torque 

The black section highlighted here shows the modified torque of a cycle. The modification 
applied here is completely random 10% of the total torque. These data will be used to train 
the neural network. 
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2.6.5 Suggesting a model 

Figure 38: Dataset Classification 

A total of 66.67% was used for training the neural network and 33.33% for testing. 
As seen from above, dataset is divided into different class percentage. This percentage was 
proposed based on trying different combinations. 

Modified_signal : JertLrbation_sanple 11 Label_sample = Classes : 

3.52807 0.04 4 2 

/ 3.52934 0.04 4 2 

/ 3.52807 0.04 4 2 

/ 3.52301 0.04 4 2 

3. 5 1 5 « 0.04 4 2 

\ 3.50274 0.04 4 2 

\ 3.48501 0.04 4 2 

3.46222 0.04 4 2 

0.04 4 2 

O.oSfT? 0.04 4 2 

3.33352 0.04 4 2 

(I.IZ-L'Z-L 0.04 4 2 

0.1545 0.04 4 2 

3.32913 0.04 4 2 

/ -3.12537 0.04 4 2 

0.04 4 2 

/ -B.51541 0.04 4 2 

-3.74968 0.04 4 2 

-1.30422 0.04 4 2 

\ -1.27316 0.04 4 2 

-1.53736 0.04 4 2 

\ -1.79316 0.04 4 2 

\ 2.8325 0.04 4 2 

— - -2.25032 0.04 4 2 

-2.4466 0.04 4 2 

-2.62263 0.04 4 2 

-2.77839 0.04 4 2 

Figure 39: Real Dataset Overview 

Real dataset generated is shown above. Off course, It not the full dataset but an overview. 
Modified _signal is the modified torque highlighted here. Modified torque will only be 
used to train the neural network. 
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Both C N N and L S T M are popular neural networks architecture for time series data. 
However, C N N came out to be better in many cases. 

The first task was to build the basic C N N Model for univariate time series. 

def make_model(input_shape): 

i n p u t _ l a y e r - keras.layers.Input(input_shape) 

canvl = keras.layers.ConvlD(filters=64, kernel_size=3, padding="same")(input_layer} 

convl = keras. l a y e r s . BatcriNorinalizationO(convl) 

canvl = keras. l a y e r s . ReLUO(corivl) 

conv2 = k e r a s . l a y e r s . C o n v l D ( f i l t e r s = M , kernel_size=3, padding="same"')(convl) 

conv2 - keras.layers.BatchNormalizationO(conv2) 

conv2 = keras. l a y e r s . ReLUO(conv2) 

conv3 = keras.layers.ConvlD(filters=64, kemel_size=3, padding="same")(conv2) 

conv3 = keras. l a y e r s . BatcriNormalization()(conv3) 

conv3 = keras.layers.ReLUO(conv3) 

gap - keras.layers.GlobalAveragePoolinglDO(conv3) 

output_layer = keras.layers.Dense(num_classes, activation="softmax"Hgap) 

return keras. models. Model (inputs=input_layer, outputs=output.layer) 

model - make_model(input_sriape-x_train.shape[1: ]) 

keras.utils.plot_model(model, show_shapes=True) 

Figure 40: Build the Model 

epochs = 5BQ 

b a t c h _ s i z e = 32 

c a l l b a c k s = [ 

k e r a s . c a l l b a c k s . modelCrieckpointC 

"best_model.h5", s a v e _ b e s t _ o n l y = T r u e , m o n i t o r = " v a l _ l o s s " 

), 
k e r a s . c a l l b a c k s . R e d u c e L R O n P l a t e a u C 

n i o n i t o r = " v a l _ l o s s " , factor=Q.5, patience=2Q, min_lr=Q.QQQl 

), 
k e r a s . c a l l b a c k s . E a r l y S t o p p i n g ( m o r i i t o r = " v a l _ l o s s " , patience=5B, u e r b o s e = l ) , 

] 

model, c o m p i l e ( 

optimizer="adam", 

l o s s = " s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y " , 

m e t r i c s = [ " s p a r s e _ c a t e g o r i c a l _ a c c u r a c y " ] , 

) 
h i s t o r y = m o d e l . f i t ( 

x _ t r a i n , 

y _ t r a i n , 

b a t c h _ s i z e = b a t c h _ s i z e , 

epochs=epochs, 

c a l l b a c k s = c a l l b a c k s , 

v a l i d a t i o n _ s p l i t = Q . 2 , 

v e r b o s e = l , 

Figure 41:Train the Model 
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This were the default Hyperparameters to tune a ID-CNN network. Later the model was 
tuned using Hyperparameter Tuning with the Keras Tuner and TensorFlow. 

2.6.6 Optimizing the model 

Optimizing the model means finding the best combination of Hyperparameters to train the 
neural network to get maximum accuracy. Hyperparameters Tuning can be challenging 
because the best combination of Hyperparameters may differ on every tuning. 
Hyperparameters Tuning was done using TensorFlow and Keras Tuner [33]. 

First approach was to tune it using TensorFlow as shown. 

MATRIX VIEW 

Trial ID 
Show 
Metrics 

epochs batch filter Accuracy Loss 

05c241d6bb663 . • 600.00 5.0000 128.00 1.0000 0.28273 

3267139b24426 . • 400.00 50000 128.00 1.0000 0.30617 

70a32d71d1782 . • 400.00 50000 32.000 1.0000 0.37454 

8c6b9d0074c77 • 500.00 50000 32.000 1.0000 0.35878 

b4f37dbaafa49.. • 400.00 50000 16.000 1.0000 0.37422 

Figure 42: Hyperparameters Tuning Tensor Board 

The Tensor Board gave a general idea about epochs, batch, filters etc. Based on this 
information Keras Tuner was configured to find the best fit. 

T r i a l 725 Complete [BBh B2m 49s] 

val_accuracy: B. 8999999761581421 

Best val_accuracy So Far: l.B 

Total elapsed time: Boh 25m 46s 

INF0:tensorflow:0raole triggered e x i t 

Number of conv blocks: 3 

f i l t e r s _ B 

f i l t e r s _ l 

f i l t e r s _ 2 

96 

176 

250 

learning.rate: B.BBB131564B832774B7Ů5 

Figure 44: Keras Tuner Hyperparameters 1 

T r i a l 725 Complete [GGh 07m Us] 

val_accunacy: 1.0 

Best val_accunacy So Fan: 1.0 

T o t a l elapsed time: 05h 25m 31s 

INFO:tensorflow:Oracle triggered! e x i t 

Number of conv b l o c k s : 3 

f i l t e r s _ 0 

f i l t e r s _ l 

f i l t e r s _ 2 

128 

112 

83 

l e a n n i n g _ n a t e : 0 .000121800199365'!5399 

Figure 43: Keras Tuner Hyperparameters 2 

As seen from above, on running Keras Tuner multiple time, it gave different 
Hyperparameters. Keras Tuner Hyperparameters 2 got an accuracy of 100% with other 
parameters. 
These parameters were used to construct the neural network as shown below. 
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SID-CNN- //coned by PonKoj 

def make_model(input_shape): 

input_layer = Keras.layers.Input(input_shape) 

convl = Keras.layers ConvlD(filters=128, kernel_size=3 paddings "same")CinpLJt_layer} 

convl - keras.layers BatchNormalizationO (convl) 

convl - keras.layers ReLUO(convl) 

conv2 - keras.layers C o n v l D ( f i l t e r s - 1 1 2 ; kernel_size-3 padding- "same")(convl) 

conv2 - keras.layers BatchNormalizationO (conv2) 

conv2 - keras.layers ReLU()(conv2) 

conv3 - keras.layers C o n v l D ( f i l t e r s - 8 3 , kernel_size=3, paddings same")(conv2) 

conv3 - keras.layers BatchNormalizationO (conv3) 

conv3 - keras.layers ReLU()(conv3) 

gap = keras.layers. GlobalAveragePoolinglDO(conv3) 

output.layer - keras.layers.Dense(num_classes, activation="softmax")(gap) 

return keras. models. Model (inputs-input . l a y e r , outputs-output_layer) 

Figure 45: ID- CNN Model 

tfcumpiling trie model] 

model = make_model(input_shape=(None,l)) 

model, compile( 

optimizer=tf.keras.optimizers.Adam(learning_rate=Q.QQQ1218QQ19936545399), 

loss="sparse_categorical_crossentropy", 

metrics=["accuracy"], 

Figure 46: Compiling ID- CNN Model 

iftroining the model] 
epochs=[55B] 

batch_size =[5] 

I for batch in batch_size: 

for epoch in epochs: 

history = model.fit( 

x_ t r a i n , 

y _ t r a i n , 

batch_size=batch, 

epochs=epoch, 

call b a c k s = c a l l b a c k s _ l i s t , 

validation_split=S.5, 

verbose=l, 

) 

Figure 47: Training ID- CNN Model 

As seen, recommended parameters were used and the model was allowed to train on 
training data. It took some time to get trained and later testing was performed. 
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ffTest the model on 33.33% Data 

model = keras.models.load_model("model.h5") 

test_ loss , test_acc = model.evaluate(x_test, y_test) 

pr intf "Test accuracy", test_acc) 

pr intf "Test loss" , test_loss) 

Figure 48: Testing ID-CNN 

The model was saved with a name 'model.h5' and it was tested on 33.33% of testing data. 
The result of this operation is shown below. 

2/2 [==============================] - Bs 21ms/step - l o s s : B.4935 - accuracy: l.BBBB 
Test accuracy l.B 
Test loss B.4934926331B«2«4 
EM 

Figure 49: Testing Result 

As seen, the accuracy of 100% was achieved with minimum loss as possible. Off course, 
this is not the limit, a better set of Hyperparameters can be defined which will have less 
computational architecture. There is always a room for improvement. 

2.6.7 Deployment 

After testing was done, the model was deployed on Edge. To deploy anything on edge, an 
architecture must be followed. 

Data Service 
(API mountpd on a 
POSTGFLES container) 

c 
Script 1 

Gather and merge 1 min 
{http:localhost:5632 / Read/) 

Data Service 
(API mountpd on a 
POSTGFLES container) 

c 

Script 2 

Extract 1st cycle 

Script 

Random sealing cycle 
generator 

|http:lDcalhDst:5632 / Write/) 
Draft of components in ftfoe 

Quality Classifier 

Docker 

J 

Figure 50: Deployment Process 

Deployment Process includes three sections. 

1. Random Sealing cycle: This part includes generating data with modification as 
discussed, every 200ms from the machine. 

2. Data Service: This service is the part of Edge environment. It takes data from the 
machine every 200ms from the machine and saves it in Database. It provides Rest 
Api's to consume the services [34]. 
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ID 
{ 

" v a r i a b l e l d " : "4d97c334269e4e51a2fa53ed8d4eb376"J 

"values": [ 
{ 

"tirrestarrp": "2822-11-25T1S: 31: 38.686888Z", 
"value": -9.999 

}. 
{ 

"tirrestarrp": "2622-11-25-15:31:38.538688Z", 
"value": -8.999 

} 
] 

}, 

" v a r i a b l e l d " : "88dac46ea6a34a5d89a33d426af 572d5"., 
"values": [ 
{ 

"tirrestarrs": "2822-11-25-15: 31: 38.686888Z", 
"value": -14.788B18B285494 

h 
{ 

" t i r r e s t a r r p : "2822-11-25-15: 31: 38. 538B8ez", 
"value": -14.7888168285494 

} 
] 

Figure 51: JSON Structure 

Data service accepts data from the machine in JSON format shown above. The first 
variableld represents the cross Seal Actual Position and the second represents modified 
Torque. 

3. Docker: Docker is an open platform for developing, shipping, and running 
applications. Docker enables you to separate your applications from your 
infrastructure so you can deliver software quickly [35]. This service includes three 
sub services. 

a. Gather Data: It includes reading from Data service as soon as 
data is available to data service. A python code was written to 
gather data. 

b. Extract Cycle: This part includes constructing the cycle (t0-t3) of 
modified torque coming from Data Service. Json received shown 
above from Data Service is used to extract and create cycle 
which is to be fed to neural network to predict classification. 

c. Quality Classifier: Next, the cycle is passed to the neural network 
to predict the class it belongs or if the packaging is of set 
standards. 
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• O 127.0.0.1:5000 
% • r# = 

Figure 52: Final Output on Edge 

The final output is shown above. The output shows no of good (Class 0), medium (Class 
1), and bad (Class 2) quality packaging in total cycle. The table shows the predicted classes 
with predicted probability by the trained neural network. The total cycle represents no of 
bags per min. 
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3 Results and Discussion 

3.1 Result 

The result can be better Interpreted using Confusion matrix. The confusion Matrix gives a 
comparison between actual and predicted values. It is used for the optimization of machine 
learning models. The confusion matrix is a N x N matrix, where N is the number of classes 
or outputs \36] 

from sklearn.metrics import canfusion.matrix 

import seaborn as sb 

import matplatlib.pyplot as p i t 

^Testing tfte model using X_test and storing toe output i n y_pred 

y_pred = model.predict(x_test) 

y_pred=np.argmax(y_pred, axis=l)| 

# Creating a confusion matrix,which cojnpores the y_test and g_pred 

p i t . f i g j r e ( f i g s i z e = ( l Q J 6)) 

fx-sb.heatmap(confusion_matrix(y_test Jy_pred"), annot-TrueJcmap-"GnBu") 

fx.set_title('Confusion Matrix \n'); 

fx.set_xlabel('\n Predicted values\n') 

f x . s e t _ y l a b e l ( 1 Actual Values\n 1); 

fx.xaxis.set_ticklabels(["valid","Improvable","Rejected"]) 

fx.yaxis.set_ticklabels(["valid","Improvable","Rejected"]) 

p i t . showO 

Figure 53: Confusion Matrix Code 

Above is the code to generate confusion matrix using python in build matplotlib and seaborn 
library. 

Confusion Matrix 

-0 
valid Imp rova bl e Rej ected 

Figure 54: Confusion Matrix 

Above figure is representation based on class 'valid'. Let's calculate TP, FN, FP, TN 
values for class 'valid'. 

TP: True Positive means both the actual and Predicted value are Positive. So, the TP value 
is 29 (cell 0). 
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FN: False Negative means predicted value is negative, but actual value is negative. F N will 
be (0+0) =0 (cell 2+cell 3). 

FP: False Positive means predicted value is positive, but the actual value is negative. FP 
will be (0+0) =0 (cell 4+cell 7). 

TN: True Negative means both the actual and predicted values are negative. T N will be 
(41+0+0+10) =51 (cell 5+cell 6 + cell 8+cell 9). 

Similarly, TP, FN , FP, TN values for class 'Improvable' will be: 

TP: 41 (cell 0) 
FN: 0+0=0 (cell 4+cell 6) 
FP: 0+0=0 (cell 2+cell 8) 
TN: 29+0+0+10=39 (cell 1+cell 3+ cell 7+cell 9) 

Below is the classification Report generated using sklearn metrics. 

C l a s s i f i c a t i o n Report 

p r e c i s i o n r e c a l l f1-score support 

v a l i d 1.00 1.00 1.00 29 

Improvable 1.00 1.00 1.00 
rejectee 1.00 1.00 1.00 10 

accuracy 1.00 SO 

macro avg 1.00 1.00 1.00 SO 
weighted avg 1.00 1.00 1.00 30 

Figure 55: Classification Report 

Precision: It measures out of all predicted positives how many are positive. 
Recall: It measures how many positive records are predicted correctly. 
Fl-score: It is mean of precision and recall. 
Accuracy: It measures how accurate is the model prediction. 

Hence, Confusion metrics and Classification report gives a valuable information about the 
model accuracy and other valuable info which can be used to improve the model. 

3.2 Discussion 

The outcome of this assignment has provided a neural network model and tested viability 
of Siemens industrial edge. Neural network was created by gathering the real time data 
from the machine. The data was analysed using various techniques to extract the important 
and dependent features. The dataset was prepared, and C N N Model was chosen to perform 
multiclass classification. The model was trained and tested to classify the validity of 
packaging. In the end, a suitable deployment architecture was created to deploy, and the 
trained model was then deployed and tested on Siemens Industrial edge. 
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Nearly 33.33% equivalent to nearly 150-180 cycles was tested with an accuracy of 100%. 
Of course, more testing of different or more cycles in future will decrease the accuracy 
with unexpected new scenarios. Machine learning played a big part in the outcome because 
initially, the operator had no way to detect the quality of the packaging because of the lack 
of visual configuration on HMI. 

A better strategy played a very vital role in achieving the goals which was set. Off course, 
there are another various element which can be improved to achieve results in least 
possible ways in future. 

• Alternate and a better neural network selection can be helpful to train the model in less 
time. Neural networks like Long Short-Term Memory (LSTM) which is the popular 
variant of R N N shown in Figure 7 and General Adversarial Networks (GAN) can be 
tried. 

• Better selection of dataset can play an important role. Other positive correlation like 
LinearAxis. ActualPosition can also be analysed further to check its dependencies on 
CrossSeal.Status. TorqueDataActualTorque (NM) as shown in 
Figure 28. 

• A running and working simulation can be set up to collect data instead from the real time 
data as it will save time. 

• Deployment on Siemens industrial edge can be streamlined in future making it much 
easier to deploy AI. 

These measurements can be taken to improve the process which can lead to design a neural 
networks and deployments in more convenient ways in future. The world is moving to AI 
and implementing AI on machines can bring various benefits such as increased efficiency, 
improved safety, and enhanced productivity. Implementing AI on machine such as 
Packaging machine could reduce a lot of manual work which results in less labour and cost 
reduction. 

Predicting the next values based on historical data to prevent a defected product can be 
next big step which can be thought about a will be quite interesting to accomplish because 
future of AI in such machines are immense because it can bring various benefits such as 
increased efficiency, improved safety, and enhanced productivity. It can solve complex 
problems and generate insights that were previously impossible with traditional computing 
methods. However, there are also potential risk and challenges associated with AI in 
machines which includes job displacement and possibilities of unintended consequences. 
Therefore, it is important to address these issues while implementing AI in machines. 

4 Conclusion 

We analysed and discussed the problem and proposed a visualization for the operator to 
check the quality of packaging and test its viability on industrial edge. We started with 
collecting the data from the demo machine using python OPC U A library and analysed the 
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data by creating correlation matrix and graphs using python Matplotlib with Jupiter 
notebook. 

After analysing the data, we identified the dependent signals and applied 10% modification 
in the signal. We also categorized the signals into its respective packaging classes of valid, 
improvable, and rejected quality. A total of 66.67% was used for training the neural 
network and 33.33% for testing. 

We opted for one dimensional Convolutional Neural Network (CNN) for univariate time 
series multi-class classification and used various hyper parameter tuning techniques using 
TensorFlow and Keras Tuner to optimize the neural network for better performance. After 
repeating the process several times, we found the best fit hyper tuning parameters for the 
ID-CNN with an accuracy of 100%. 

Finally, we followed the deployment architecture shown in Figure 50, which included 
creating a docker image and successfully deployed our trained neural network on industrial 
edge and interpreted the result. We were able to test our neural network on the industrial 
edge. The deployed model on industrial edge was able to predict the signals belonging to 
different classes of good, medium, and bad quality packaging as shown in Figure 52. 

We should end this article with a note of advice, though. However, compelling it may 
sound, there is usually no-one-size-fits all solution to select and train a neural network. It 
may vary. So, we must use intelligence when choosing the simplest answers for the 
problems we aim to tackle. 
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Appendix 

An appendix exists for this thesis; however, it contains confidential information that cannot 
be disclosed. As a result, it has been omitted from this version of the thesis. 
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