
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ

FACULTY OF ELECTRICAL ENGINEERING
AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RÁDIOELEKTRONIKY

PARALLELISM IN DIGITAL SIGNAL PROCESSING
PARALELISMUS V ČÍSLICOVÉM ZPRACOVÁNÍ SIGNÁLŮ

DOCTORAL THESIS
DIZERTAČNÍ PRÁCE

AUTHOR Ing. Roman Mego
AUTOR PRÁCE

SUPERVISOR doc. Ing. Tomáš Frýza, Ph.D.
ŠKOLITEL

BRNO 2020

Abstract
The doctoral thesis is focused on the systems for digital signal processing, its architecture
and possibilities of software development. The text discussed the basic classification of
computer systems from the view of parallel processing. It also demonstrates the behavior
of the low-level and high-level programming languages on the multicore digital signal
processors based on V L I W architecture. The aim of the dissertation thesis is to develop
a tool that can be used to implement any DSP algorithm on the any V L I W processor with
efficiency of the low-level programming languages, but with the advantages of the high-
level programming languages. Result is the software that uses a signal-flow graph
approach to describe an algorithm, and generates the low-level assembly code.

Keywords
digital signal processing, V L I W architecture, software development, signal-flow graph

Abstrakt
Dizertační práce je zaměřena na systémy pro číslicové zpracování signálů, jejich
architekturu a možnosti vývoje softwaru. Text pojednává o základním rozdělení
počítačových systémů z hlediska paralelního zpracování dat. Rovněž demonstruje chování
nízkoúrovňových a vysokoúrovňových programovacích jazyků na vícejadrovém
signálovém procesoru založeném na architektuře VLIW. Cílem dizertační práce je vytvořit
nástroj, který může být použitý při implementaci DSP algoritmů na V L I W procesory
s efektivností nízkoúrovňových programovacích jazyků, ale s výhodami
vysokoúrovňových programovacích jazyků. Výsledkem je software, který využívá pro
popis algoritmů graf signálových toků a generuje kód v jazyce symbolických adres.

Klíčová slova
digitální zpracování signálů, V L I W architektura, vývoj softwaru, graf signálových toků

Mego, Roman. Parallelism in digital signal processing: doctoral thesis. Brno: Brno
University of Technology, Faculty of Electrical Engineering and Communication,
Department of Radio Electronics. 2020. Supervised by doc. Ing. Tomas Fryza, Ph.D.

II

Declaration
I declare that I have written my doctoral thesis on the theme of Parallelism in digital signal
processing independently, under the guidance of the doctoral thesis supervisor and using
the technical literature and other sources of information which are all quoted in the thesis
and detailed in the list of literature at the end of the thesis.

As the author of the doctoral thesis I furthermore declare that, as regards the creation of
this doctoral thesis, I have not infringed any copyright. In particular, I have not unlawfully
encroached on anyone's personal and/or ownership rights and I am fully aware of the
consequences in the case of breaking Regulation § 11 and the following of the Copyright
Act No. 121/2000 Sb., and of the rights related to intellectual properly right and changes in
some Acts (Intellectual Properly Act) and formulated in later regulations, inclusive of the
possible consequences resulting from the provisions of Criminal Act No. 40/2009 Sb.,
Section 2, Head VI, Part 4.

Brno, 19. August 2020
Author's signature

III

Contents
Introduction 1

1 State of the art 2

1.1 System classification 2
1.1.1 Single instruction, single data (SISD) 2
1.1.2 Single instruction, multiple data (SIMD) 3
1.1.3 Multiple instructions, single data (MISD) 3
1.1.4 Multiple instructions, multiple data (MIMD) 4
1.2 Individual cases of processor architectures 4
1.2.1 Scalar central processing units (CPU) and digital signal processors (DSP) 4
1.2.2 Graphics processing units (GPU) 6
1.2.3 Very long instruction word (VLIW) 6
1.2.4 Multicore systems with shared memory 7
1.2.5 Multicore systems with distributed memory 8
1.2.6 Multicore systems with hybrid distributed-shared memory 8
1.3 Programming methods 9
1.3.1 Low-level languages 9
1.3.2 High-level languages 10
1.3.2.1 Difference between compiled and interpreted languages 11
1.4 Standard optimization methods 11
1.4.1 Redundancy elimination 12
1.4.2 Constant propagation optimization 12
1.4.3 Useless code elimination 13
1.4.4 Inline expansion 13

2 The objectives of the dissertation thesis 15

3 Effectiveness of software development tools 16

3.1 Multicore DSP TMS320C6678 16
3.1.1 TMDSEVM6678LE Development Board 17
3.2 Test cases 18
3.2.1 Data and thread parallelism using OpenMP 18
3.2.1.1 Section work-sharing 18
3.2.1.2 Loop work-sharing 19
3.2.2 Algorithm parallelization in OpenMP 19
3.2.2.1 FIR filter 20
3.2.2.2 Discrete Fourier transform 20
3.2.2.3 Fast Fourier transform 20
3.2.3 Measured performance of OpenMP 21

IV

3.2.4 Low-level optimizations of the algorithms on the V L I W architecture 24
3.2.5 High-level and low-level comparison 25
3.2.5.1 Low-level assembly 25
3.2.5.2 Linear assembly 26
3.2.5.3 High-level language 27
3.2.6 Comparison of the libraries with different structure 28
3.3 Chapter summary 29

4 Impact of the software efficiency to the power consumption 30

4.1 Theoretical power consumption increase on multi-unit systems 30
4.2 Practical test cases 31
4.2.1 Case 1: Empty loop 31
4.2.2 Case 2: Load/Store operations 32
4.2.3 Case 3: Fixed-point operations 32
4.2.4 Case 4: Floating-point operations 33
4.2.5 Case 5: FFT routines 33
4.3 Experimental Results 34
4.4 Chapter summary 37

5 Instruction mapping tool for DSPs 38

5.1 The idea of signal-flow graph approach 38
5.2 Input files 39
5.2.1 Architecture definition 39
5.2.1.1 Hardware resources 40
5.2.1.2 Instruction set 44
5.2.2 Algorithm description 47
5.3 Algorithm mapping 48
5.3.1 Input files parsing 49
5.3.1.1 Parsing signals 49
5.3.1.2 Parsing nodes 50
5.3.1.3 Multi-operation nodes 52
5.3.2 Finding relations and validation 53
5.3.2.1 Extending nodes and signals information 53
5.3.2.2 Determining execution order 53
5.3.3 Node sorting 55
5.3.3.1 Sorting according to execution level 56
5.3.3.2 Sorting according to the total CPU cycles of the operation 56
5.3.3.3 Sorting according to number of supported functional units 56
5.3.3.4 Handling constant loading 57
5.3.4 Functional unit allocation 57
5.3.4.1 Finding start cycle of the execution 57
5.3.4.2 Allocation 58

V

5.3.5 Signal allocation 59
5.4 Implementation 60
5.4.1 Build environment 62
5.5 Chapter summary 62

6 Experimental results 64

6.1 Basic behavior of algorithm mapping 64
6.1.1 Values prepared in registers 64
6.1.1.1 Fast Fourier Transform 64
6.1.1.2 Matrix multiplication 71
6.1.2 Values stored in memory 74
6.1.2.1 Fast Fourier Transform 74
6.1.2.2 Matrix multiplication 77
6.2 Optimization impact 79
6.2.1 Node priority 79
6.2.2 Functional unit priority 80
6.3 Comparison to other methods 82
6.4 Chapter summary 82

7 Conclusion 84

VI

List of figures
Figure 1.1: SISD arrangement 2
Figure 1.2: SIMD arrangement 3
Figure 1.3: MISD arrangement 3
Figure 1.4: MIMD arrangement 4
Figure 1.5: CPU (left) and GPU (right) difference 6
Figure 1.6: Superscalar (top) and V L I W (bottom) difference 7
Figure 1.7: Shared memory system 8
Figure 1.8: Distributed memory system 8
Figure 1.9: Hybrid distributed-shared memory system 9
Figure 1.10: Levels of the programming languages 9
Figure 1.11: Example of common subexpression elimination 12
Figure 1.12: Example of copy propagation transform 12
Figure 1.13: Example of constant folding 13
Figure 1.14: Example of useless code elimination 13
Figure 1.15: Example of dead code elimination 13
Figure 1.16: Example of inline expansion 14
Figure 1.17: Example of loop unrolling 14
Figure 3.1: Example of section work sharing 19
Figure 3.2: For-loop parallel execution 19
Figure 3.3: FFT radix-2 with highlighted loop iterations 21
Figure 3.4: Relative speedup of FIR filter 22
Figure 3.5: Relative speedup of DFT 22
Figure 3.6: Relative speedup of FFT 23
Figure 3.7: Hand-written assembly code 26
Figure 3.8: Example of linear assembly code 26
Figure 3.9: Disassembly of the algorithm written in linear assembly 27
Figure 3.10: Disassembly of the FFT algorithm written in C 27
Figure 4.1: Functional unit utilization for the case 1 31
Figure 4.2: Functional unit utilization for the case 2 32
Figure 4.3: Functional unit utilization for the case 3 32
Figure 4.4: Functional unit utilization for the case 4 without data loading/storing 33
Figure 4.5: Functional unit utilization for the case 4 with data loading/storing 33
Figure 4.6: Functional unit utilization for the case 5 34
Figure 4.7: Workplace for the measuring the power consumption 35
Figure 4.8: Power consumption of theoretical test cases at data path A 35
Figure 4.9: Power consumption of theoretical test cases at data paths A and B 36
Figure 4.10: Power consumption of FFT routines at data paths A and B 36
Figure 5.1: Structure of the TMS320C6678 39

VII

Figure 5.2: Basic structure of the JSON architecture file 40
Figure 5.3: Structure of data path in JSON file 41
Figure 5.4: Structure of cross-path in JSON file 42
Figure 5.5: Example of the cross-path connection to the functional units 43
Figure 5.6: Creating register groups from the physical registers 44
Figure 5.7: Structure of instruction in JSON file 45
Figure 5.8: Execution progress of ADDDP instruction 45
Figure 5.9: Signal-flow diagram from example algorithm 48
Figure 5.10: Mapping process 49
Figure 5.11: Signal definition format 49
Figure 5.12: Arithmetic operation format 51
Figure 5.13: Function definition format 51
Figure 5.14: Constant definition format 52
Figure 5.15: Signal alias definition format 52
Figure 5.16: Memory operation format 52
Figure 5.17: Determining execution level using input signals 54
Figure 5.18: Determining execution level using previous nodes 55
Figure 5.19: Determining execution level of constant loading 55
Figure 5.20: Instruction execution order based on CPU cycles 56
Figure 5.21: Instruction execution order based on number of supported functional units...57
Figure 5.22: Determining first possible CPU cycle for execution 58
Figure 5.23: Determining signal lifetime 59
Figure 5.24: Mapping tool structure 60
Figure 5.25: Architecture editor running under Linux and Windows system 62
Figure 6.1: 4-point FFT algorithm 65
Figure 6.2: Part of signal definition in the 4-point FFT implementation 65
Figure 6.3: Source code of the 4-point FFT (without signal definition) 65
Figure 6.4: Graphical representation of the 4-point FFT 66
Figure 6.5: Generated source code for the 4-point FFT with fixed-point representation 66
Figure 6.6: Functional unit usage in FFT4 (32-bit integer) 67
Figure 6.7: Assignment of signals in FFT4 (32-bit integer) 67
Figure 6.8: Functional unit usage in FFT4 (single precision floating-point) 68
Figure 6.9: Assignment of signals in FFT4 (single precision floating-point) 68
Figure 6.10: Resource utilization of the 4-point FFT 69
Figure 6.11: Graphical representation of 8-pointFFT 70
Figure 6.12: Usage of functional units in FFT8 (32-bit integer) 70
Figure 6.13: Assignment of signals in FFT8 (32-bit integer) 71
Figure 6.14: Resource utilization of the 8-point FFT 71
Figure 6.15: Graphical representation of matrix multiplication 2x2 72
Figure 6.16: Resource utilization for the matrix 2x2 multiplication 72

VIII

Figure 6.17: Graphical representation of matrix multiplication 3x3 73
Figure 6.18: Resource utilization for the matrix 3x3 multiplication 73
Figure 6.19: Difference of the input/output definition 75
Figure 6.20: Graphical representation of the 4-point FFT with memory operations 75
Figure 6.21: Functional unit usage in FFT4 (32-bit integer, data in memory) 76
Figure 6.22: Resource utilization of the 4-point FFT with memory operations 77
Figure 6.23: Graphical representation of the 2x2 matrix multiplication (data in memory). 77
Figure 6.24: Resource utilization for the matrix 2x2 multiplication (data in memory) 79

IX

List of tables
Table 3.1: Basic parameters of the TMS320C6678 17
Table 3.2: Measured reference time 21
Table 3.3: Time needed to create parallel region 23
Table 3.4: C implementation FFT performance 24
Table 3.5: Low-level implementation FFT performance 24
Table 3.6: Relative speedup of the low-level FFT implementation 25
Table 3.7: Performance comparison of the different approach of the C libraries for FFT...28
Table 5.1: Arithmetic instruction supported operations 46
Table 5.2: Arithmetic instruction supported data types 46
Table 5.3: Memory instruction supported operations 47
Table 5.4: Signal definition roles 50
Table 5.5: Signal definition data types 50
Table 5.6: Operators for arithmetic operations 51
Table 6.1: Average hardware resources usage on selected algorithms 74
Table 6.2: Average hardware resources usage on selected algorithms (data in memory)....78
Table 6.3: Node priority mapping improvements (data in memory) 80
Table 6.4: Functional unit priority mapping improvements (data in memory) 81
Table 6.5: Comparison of tool results with the standard methods 82

X

Introduction
The signal processing is the field of electrical engineering which is used for acquiring,
modifying and evaluating signals using mathematics operations. In these days, it is used
practically in every type of applications around us, such as multimedia, communication,
medicine or industrial control. In the beginnings of the electronics, the signal processing
was performed only with analogue circuits such as active or passive filters, additive
mixers, integrators, derivators, voltage-controlled oscillators, phase-locked loops and so
on. These circuits were able to provide enough resources to implement such complex
systems like radars and television broadcasting.

Later in 1960s, the digital signal processing became the next field of electrical
engineering and computer science. It was caused by availability of required hardware
components. But this did not lead to the massive deployment of the applications,
because the price of computers was quite limiting. The digital signal processing was
used mainly in military, medical and research applications. In the 2000s, the hardware
became inexpensive, so the digital signal processing replaced analogue circuits in the
applications of everyday life.

Digital signal processing is the application of mathematics operations on discrete
quantized signal. The algorithms can be implemented in general computer, digital signal
processors or on specialized hardware based on field-programmable gate arrays (FPGA)
and application-specific integrated circuits (ASIC). The system parameters are highly
dependent on application purpose. The main advantages of the digital signal processing
on programmable circuits over its analog equivalent are high accuracy, cheaper
implementation of complex algorithms, wide offer of interfaces for data recording and
its easy modification without touching the electrical connection. The last advantage
leads to the software which is one of the key aspects of the final performance.

This dissertation thesis is focused on software part of the digital signal processing
applications, especially on parallel architectures. The result will be a tool, that help to
optimize the software with generated parts in the assembly language. The first part of
thesis shows the overview of the architectures that can be used on data processing and
methods of the programming. The second part demonstrates the behavior of various
methods of creating software, especially on multicore very long instruction word
(VLIW) processor, and its impact on the application performance. The last part
introduces the tool for instruction mapping suitable for creating cores of digital signal
processing algorithm cores.

1

1 State of the art
There are many options how to realize digital processing in these days. Every
realization is made of the hardware part and the software part. This chapter is dealing
with the hardware resources for digital processing and the possibilities of creating the
software.

1.1 System classification
One of the most known classifications of the computer architectures is the Flynn's
taxonomy [1]. This classification is based on the number of concurrent instructions and
data streams. The processors can be divided according to Flynn's taxonomy into the
following groups:

• Single instruction, single data (SISD)

• Single instruction, multiple data (SIMD)

• Multiple instructions, single data (MISD)

• Multiple instructions, multiple data (MIMD)

1.1.1 Single instruction, single data (SISD)
The first group of the Flynn's taxonomy is SISD. Systems belonging to this group are
the simplest. They can process only one instruction in one instruction cycle. They also
are not able to process multiple data at once, so there is no parallelism (Figure 1.1) [2].
This group might include classic scalar architectures such as complex instruction set
computers (CISC) [3] or reduced instruction set computers (RISC) [4]. The advantage is
the simplicity of implementation, which requires only one functional unit (FU), and low
requirements in software design.

[] Instructions

CO re Q
FU

Figure 1.1: SISD arrangement

2

1.1.2 Single instruction, multiple data (SIMD)
The next group of the Flynn's taxonomy is SIMD. These systems are able to handle
larger amount of data with a single instruction (Figure 1.2) [2]. Vector and matrix
operations are typical for this group, so the processors are sometimes called the vector
processors. The example could be a processor based on the x86 architecture, which is
SISD, but extended with the M M X instruction set [5]. The special subset if formed by
graphics processing units (GPU). They are used in the homogeneous processing of large
amount of data. The disadvantage is that the classic high-level programming languages,
such as ANSI C, are not able to utilize the full potential. For this reason, the optimized
libraries, special macros or the unusual programming languages are used.

[Instructions

FU

FU

]

Figure 1.2: SIMD arrangement

1.1.3 Multiple instructions, single data (MISD)
The systems from the MISD group are quite unusual. They are commonly used in
special fault-tolerant applications. Data are processed on independent functional units
and the results are compared. Data and instruction streams are shown in Figure 1.3 [2].
It reduces the chance of the errors. Except this feature, it provides no benefit like the
increase of the computing power. Specific example from MISD group is IBM
System/88 [6].

[Instructions

1 r i r

FU FU

Figure 1.3: MISD arrangement

3

1.1.4 Multiple instructions, multiple data (MIMD)
MIMD systems use several mutually independent functional units, which can handle
different data (Figure 1.4) [2]. In practice, the majority of systems are made of multi-
core processors with shared or distributed memory. In this case, every processing unit
has its own thread, which is not dependent on the others. It offers flexibility in the
parallel processing of the data. This category also includes processors based on very
long instruction word (VLIW). Core of the V L I W architecture consist of the multiple
functional units, so it can execute multiple instructions in one instruction cycle.

Figure 1.4: MIMD arrangement

1.2 Individual cases of processor architectures
Some specific processor and computer architectures were mentioned in the description
of Flynn's taxonomy, which can be used for the digital processing. The next text deals
with these architectures.

1.2.1 Scalar central processing units (CPU) and digital signal
processors (DSP)

Scalar processors have been used since the birth of the first computers until now. The
program is executed sequentially in the order of instructions in the memory. The only
options how to change its execution order are the branch instructions or the instructions
for calling the subroutines. Over the time, there were made various requirements during
its development. This has to led to expanding of the instruction set and thus to the
increasing of the arithmetic logic unit (ALU). After some time, it was found that most of
the applications can be created with use of only a small number of instructions with
comparable performance relative to the original solution. This gave the opportunity to
create the RISC. Thanks to the reduced instruction set, the A L U could be smaller, the
execution of instructions was faster, and the compilers could be better optimized [7].

RISC [4] is characterized by the following properties:

• a large register file,

4

• emphasis on operations that use registers,

• instructions are executed in one instruction cycle,

• simple instructions for memory access,

• simplified addressing modes,

• uniform length of the instruction word

• and others.

For comparison CISC [3] characterized with:

• a small register file,

• a large number of instructions,

• instructions oriented for memory access,

• a non-uniform length of instruction word,

• a different time of instruction execution.

Classic processors CISC and RISC are adjusted mainly for control applications.
Average application of this type performs branch operation on every 7 t h instruction [8].
In addition, branches are often unpredictable. Digital signal processing algorithms are
different. They are characterized mainly by regular running in loops and periodic
memory access. Digital signal processing applications also includes many algebraic
operations. Typical operation is a multiply and accumulate (MAC), fused multiply-add
(FMA), vector operations or saturated arithmetic [9][10][11]. For this reason, digital
signal processors (DSP) were created. Their architecture is similar to the RISC
processors in some ways. The first step was to implement the previously mentioned
M A C function. Then the idea of separate buses was taken from Harvard architecture. In
this case, the memory has not been divided into program and data parts, but the buses
are used to read instruction and all operands in one instruction cycle, what increases
throughput [12].

Nowadays the typical representative of the CISC architectures are IA-32 (known as
Intel x86) and AMD64 (IA-64, x86-64) [13][14][15], which are currently used on most
of the personal computers. There are also processors derived from the 8-bit Intel MCS-
51 core, which are used in embedded devices. The example of the deriváte is 8051 [16].
The RISC processors are more common in embedded devices. They are contained in
wide spectrum of the variants from the 8-bit microcontrollers such as PIC [17] or A V R
[18], through the 16-bit mixed signal microcontrollers like MSP430 [19] or PIC24, to
the 32 and 64-bit processors with the A R M core [20]. The DSPs are also available from
the lower performance variants like dsPIC [21] or C2000 [22] to the high-performance
processor cores like C6000 [23] or StarCore [24].

5

1.2.2 Graphics processing units (GPU)
Classic CPUs are oriented to the complex controlling of application and data processing
in one thread, sometimes with use of cache memory. GPUs are oriented to parallel data
processing with high throughput. It is achieved with the high number of computing
cores [25]. One GPU can contain hundreds of them. This number is achieved at the cost
of their simplicity, so they are not suitable for control applications. GPUs are therefore
used in combination with CPUs as the coprocessor [26]. The difference between CPU
and GPU is shown in Figure 1.5 [27].

Control

ALU ALU

ALU ALU

Cache

A L U | A L U | A L U |

A L U | A L U | A L U

A L U | A L U | A L U

A L U | A L U | A L U

A L U | A L U | A L U

A L U | A L U | A L U

A L U | A L U | A L U

3

Figure 1.5: CPU (left) and GPU (right) difference

From the graphical comparison of the CPU and GPU can be seen, that the big part of
the classic CPU is made of the memory, which can be used for data and instructions.
Also due to its complexity, the control logic and ALUs needs more logic elements. On
the other side is the GPU with the minimal cache memory or control logic. The biggest
part is created by the ALUs, so it makes GPUs suitable for data processing with high
throughput as it was mentioned, not for control application.

First video cards stared with the IBM Monochrome Display Adapter in 1981 with
only text support. Later, the video cards supported 2D and 3D graphic acceleration [28].
In 1999 Nvidia introduced the first GPU for the personal computer (PC) industry with
the definition that a GPU is "a single chip processor with integrated transform, lighting,
triangle setup/clipping, and rendering engines that is capable of processing a minimum
of 10 million polygons per second" [29]. ATi introduced Radeon R100 as Nvidias rival
and later with R300, ATi used term Visual Processing Unit (VPU) [30]. Nowadays, the
GPUs are not used only for graphic processing, but there are also models dedicated for
high performance computing (HPS), such as Nvidia Tesla [31]. These cards are also
known as general-purpose graphics processing units (GPGPU).

1.2.3 Very long instruction word (VLIW)
Core of the processor based on V L I W [32] [33] architecture contains multiple functional
units with ability to execute multiple instructions at once. It is the instruction-level

6

parallelism like in the superscalar processors, but with one difference. Superscalar
processor maps the instruction dynamically from the stream of the single instructions
(Figure 1.6) [34]. Software for V L I W is made of instruction packets, which are created
statically during the software compilation. Thanks to this, the V L I W core structure can
be simplified. This makes the space for the additional functional units, its functionality
or the increase of the clock frequency. The V L I W processors usually find its place in
signal processing or multimedia applications. The instruction-level parallelism is used
mainly in the implementation of DSP algorithm cores.

Fetch Dispatch
buffer

FU

FU

FU

FU

Fetch

-H FU

FU

Figure 1.6: Superscalar (top) and VLIW (bottom) difference

1.2.4 Multicore systems with shared memory
Multicore systems with shared memory contain several independent CPUs with direct
access to the local memory, which is usually R A M (Figure 1.7). This model could be
applied to various architectures such as CISC, RISC, DSP or their combination, so the
system could be homogeneous or heterogeneous. The most known systems from this
group are multicore PCs, but they are also used in embedded systems for medical
systems, radar systems etc. The parallelism is created through threads. During the
processing, the input signal is divided into several parts, which are processed separately.
The iterations must be independent on each other, so not all algorithms can be
parallelized in this way.

7

C P U C P U C P U C P U

L T T j
Memory

Figure 1.7: Shared memory system

The advantage of these systems is the fast data sharing between the tasks. Also, the
single address space provides simple perspective on memory during the software
developing. The main disadvantage is the scalability of the systems. With the increase of
the number of processors also increases the traffic on the memory to CPUs bus. The
next disadvantage is connected with the previous one. The software developer should be
aware about the correct access to the memory [35].

1.2.5 Multicore systems with distributed memory
Multicore systems with distributed memory are similar to the systems with shared
memory from the parallelism principle point of view. The difference is that every
processor has its own address space. When access to the different memory space is
needed, data are transmitted in the message through the communication network (Figure
1.8). These systems are used in the HPC typically for simulation of the physical effects
such as fluid flow or electromagnetic fields with very detailed models.

C P U Memory C P U Memory

I
C P U Memory

Figure 1.8: Distributed memory system

The advantage of this systems is the scalability. With the increasing the number of
processors the memory also expands. In addition, each processor can access to its own
memory without interference of the other CPUs. The disadvantage is the non-uniform
data access, because the data can be placed in different node. This also makes difficult
to work with the global data, because the software needs to process the data exchange
between the nodes [35].

1.2.6 Multicore systems with hybrid distributed-shared memory
These systems combine previously mentioned systems. The shared memory systems
with multiple CPUs or GPUs with its own memory space are interconnected with

8

network like system with distributed memory (Figure 1.9). These systems can be scaled
to the desired application respecting the advantages and disadvantages of the combined
systems.

C P U C P U C P U

Memory Memory Memory

C P U C P U C P U

I
Figure 1.9: Hybrid distributed-shared memory system

1.3 Programming methods
The performance of the final application is not only dependent on the device, but also
on the software. It is really important part of the application, because the well optimized
code could make better performance on the low-cost hardware than the bad written code
running on the high-priced device. There are several methods of creating the final code
which has its pros and cons (Figure 1.10). This subsection will introduce some methods
of creating software.

CL
E o O

High-level
languages

Object oriented

Procedural

Assembly language

Machine code

Figure 1.10: Levels of the programming languages

1.3.1 Low-level languages
The low-level programming languages provide only little abstraction from processor
instruction set. Low-level code could be converted direcdy to the machine code without
using a compiler. The software written in low-level language could be really fast and the
result binary code could be small. This kind of programming was common in the past
because of lack of high-level language compilers, but nowadays is used only for:

• embedded systems with small resources

9

• optimizing of the critical part of the software

• creating hardware drivers and system code

The next reason, why it is not used, is the economical aspect. The software
development takes a long time and the code is highly dependent on the processor
architecture and instruction set, so it is not easy portable between different devices [36]
[37].

There are several ways how to write a low-level code:

• machine code

• low-level assembly

• linear assembly

Writing an application in machine code is unusual and in common practice is not
used at all, because it is requires lot of concentration, the code is not human readable, so
there could be easy to make mistake that is really hard to find. Instead of this, the
assembly language is used. It is the text interpretation of the processor instructions. The
difference between low-level assembly and linear assembly is that the code in linear
assembly does not include the information about the used registers and functional units.
The compiler maps the required resources itself automatically [38].

1.3.2 High-level languages
The high-level languages provide strong abstraction from the hardware. Instead of
dealing with the instructions, registers and memory addressing, the high-level languages
deal with the variables and arithmetic expressions. The code is better readable than the
assembly code. Thanks to the strong abstraction, it is also easy portable. High-level
languages include for example the FORTRAN [39], BASIC [40][41], C [42], C++ [43],
C# [44] or Java [45]. After the compilation, some of them could be executed directly on
the machine, but some of them needs interpreter. The price for possibility to easy write
complex code, which is also portable, is a smaller efficiency and the larger size of the
final binary program. This is caused by the inability of the direct translation of the
elements into the machine code. Even if the compilers are still being developed to
generate more optimized code [46], they are not able to handle some special cases. The
following examples refer to the standard C/C++ expressions:

• inability to express special DSP operation such as addition, subtraction and
multiplication with saturation

• inability to express vector operations

• inability to mark the independent part of programs which can be run in parallel
due to sequential character of notation

10

• inability to process data on parallel functional units/cores (split iterations of
loops)

These deficiencies are removed using the special optimized libraries provided by
processor manufacturers [47][48][49] or by the third party [50], compiler extensions,
such OpenMP [51] for program execution on shared memory system or MPI [52] for
distributed memory system or with special programming languages like C U D A [53] for
general-purpose processing on GPU. There are also some projects such as [54] that are
able to handle the instruction level parallelism more effective.

1.3.2.1 Difference between compiled and interpreted languages
The typical approach of the translating source code of the program written in high-level
languages such C/C++ is compiling it to the machine code. This result can be decoded
direcdy by the compatible hardware and the CPU can execute the instructions. In some
cases, it is not necessary to translate source code direcdy to the machine code [55].
These languages can be divided into:

• pure interpretation,

• hybrid implementation systems.

The pure interpreted languages are also called scripting languages. These languages
need the interpreter, i.e. a software for fetching the high-level language statements and
parsing it into the operations at runtime. The main disadvantage of this system is the
slowness of the execution.

This disadvantage is reduced with the hybrid implementation system, where the
source code is compiled into the intermediate code, sometimes called byte code. This
code contains only instruction for the virtual machine, which only translate the byte
code into the machine code [56].

1.4 Standard optimization methods
Optimizations are set of analyze and transform operations performed on source code
achieving to run it faster or consume less hardware resources. These operations finds
and replaces parts of code with more efficient alternatives. The compilers use two main
techniques to determine the code parts to optimize [57]:

• control flow analysis

• data flow analysis

Control flow analysis is based on the examination of the control statements which
can cause branch in the program such as loops, conditions and function calls. In this
case, the optimizations are applied on the possible paths of program execution.

11

Data flow analysis is another type of optimization, which analyzes the usage of data
in the program. This can be used for reducing number of variables, optimize loading of
constants and data transfer.

Several optimization techniques are described in [46] and [57]. Following text will
shortly introduce some of these common methods.

1.4.1 Redundancy elimination
The code can be marked as redundant when the same expression has been previously
evaluated without modification of its variables [46]. The redundancy elimination
includes common subexpression elimination and copy propagation transformation [57].

The common subexpression elimination reduces number of executed instructions by
removing expressions which were already computed. The result value is used instead of
the evaluate expression again (Figure 1.11).

x = a * b * c
y = a * b + d

Figure 1.11: Example of common subexpression elimination

The copy propagation transform reduces cases when variables are copied from one
to another. Instead of copying variables and accessing to target and source location, the
source variable is used in next expressions (Figure 1.12).

X = a
Y = b + x y = b + a

Figure 1.12: Example of copy propagation transform

1.4.2 Constant propagation optimization
Constant propagation optimization [46] also known as constant folding [57] tracks the
known variable values propagation in the call graph. In cases where the value of the
expression can be determined at compile time, this expression is substituted with the
evaluated constant (Figure 1.13).

t
x
y

b
c

t + d

12

t = 41
X = t -

x *
32
5 / 9 • y = 5

Y =
t -
x *

32
5 / 9

Figure 1.13: Example of constant folding

1.4.3 Useless code elimination
Some parts of code can have no effect to the program results. These parts of code can be
formed by assignment operations to unused variables (Figure 1.14) and unrealizable
conditions (Figure 1.15). These operations and parts of code can be removed without
program functionality affection. Special case of this optimization type is also known as
dead code elimination [46] [57].

a = 5
b = a * 6
b = a + 4

a = 5
b = a + 4

Figure 1.14: Example of useless code elimination

dbg = 0
a = 5
i f dbg

b = 2 * a
e l s e

b
end

5

Figure 1.15: Example of dead code elimination

1.4.4 Inline expansion
Inline expansion, or inlining, is used to increase the code performance [46] [57]. It
replaces complex parts of code with its inline representation. Typical optimization is the
function inlining where function call is replaced directly by function content
(Figurel.16). Inlining also includes loop unrolling, where the loop content is replaced
by the series of operations from loop (Figure 1.17).

13

f u n c t i o n abs(x)
i f x < 0

r e t u r n -x
e l s e

r e t u r n x
end

end
a
b a < 0 ?

Figure 1.16: Example of inline expansion

f o r n = 1 : 5
x [n] = n

end

x [l] = 1
x[2] = 2
x[3] = 3
x[4] = 4
x[5] = 5

Figure 1.17: Example of loop unrolling

14

2 The objectives of the dissertation thesis
The previous chapter described possible realization options of digital signal processing
applications. It does not matter if the signal processing is performed on the scalar
processor or the multicore system, the software is still the most critical part that
specifies the final efficiency. The modern compilers could produce quite effective code,
usually on scalar architectures, because these compilers were developed for a long time
and they are frequendy used. But there are other architectures which are not commonly
used in applications and they are using some enhanced type of parallelism, not only
pipelining, so the compilers could be less effective. The V L I W architecture meets this
condition, because its instruction parallelism must be specified at compile time.

For this reason, the dissertation thesis will be focused on the software part of the
signal processing systems, mainly the parallelism. The objectives are as follows:

• Prove that the software development tools for instruction-level parallelism are
less effective than the tool for data parallelism or task parallelism.

• Create the effective tool for the software developing of digital signal processing
application suitable for architectures using instruction-level parallelism,
especially V L I W processors.

The second objective consists of the followed points:

• Create the general model of V L I W processor or any general-purpose processor
which will be used by the tool to final assembly code.

• Create an algorithm for DSP algorithm assignment to the available hardware
resources.

• Implement an optimization method to effective mapping of the functional units
and registers.

15

3 Effectiveness of software development
tools

The software plays the key role in the whole signal processing system based on DSP.
This chapter will show the effectiveness of the widely used programming approaches
focused on parallelism. The dissertation thesis is aimed on the instruction parallelism
when the software execution is determined at compilation time. Also, the instruction
level parallelism should be compared with the data parallelism. For that reason, the
multicore V L I W based DSP will be used in the next benchmarks.

This chapter will demonstrate the programming methods of signal processing
applications from higher-level to low-level. The high-level approach will include data
processing in multiple threads to show the suitability on computations in different areas.
The next high-level approach will be pure single threaded execution of the algorithms to
be compared with the low-level approach when V L I W architecture is used. This high-
level case will be compared with the low-level assembly language and linear assembly
language, which is not available for all architectures.

There are not so many silicon manufacturers producing V L I W DSPs which meets
the requirements and are also easily available. Texas Instruments (TI) offers DSPs from
C6000 family, which are based on V L I W architecture and they are also made in
multicore variants. There ale also multiple development kits based on these DSPs. The
most of them are with the C64x [58] cores, which is older series supporting only fixed-
point arithmetic, and with the C66x [59] cores with floating-point support. The choose
will be decided from the newer C66x, because it will show also the handling of the
floating-point arithmetic. From the availability of the evaluation boards, the
TMS320C6678 [60] was chosen. This DSP fits perfectiy, because it is multicore fixed-
point V L I W based DSP allowing wide demonstration cases in fields of instruction-level
and threading parallelism. The processor and the development board will be described
in detail later in this chapter.

The first part of chapter describes the structure of used processor, its features and
properties, and the used development board as well. The second part is evaluating the
DSP algorithms created with the high-level and low-level languages in instruction-level
parallelism point of view. The high-level language also demonstrates the thread level
parallelism using OpenMP.

3.1 Multicore DSP TMS320C6678
The TMS320C6678 is a multicore fixed/floating-point digital signal processor and it is
containing of eight C66x DSP cores [59]. Each core consists of two data paths (tided A
and B), two sets of thirty-two 32-bit registers (AO, A31 in data path A and BO,

16

B31 in data path B, respectively), and two sets of four functional units
(.LI, .SI, . M l , . D l in data path A and .L2, .S2, .M2, .D2 in data path B). Each
functional unit is primary used for a different type of operations. The .Dx units are used
for loading/storing data between a general-purpose register file and a memory space.
The .Lx and .Sx functional units perform general fixed and floating-point arithmetic
operations, next the logic operations, and finally the branch functions. The .Mx units
perform all multiply operations with the single/double precision floating-point numbers
as well as with the fixed-point values. In addition, the DSP is capable to execute SIMD
instructions for fixed-point and floating-point instructions, where 8 and 16-bit operands
are packed into the single 32-bit word, or single precision floating-point values are
packed into the register pairs. These SIMD instructions are especially for additions and
multiplications (DADD2, MPY2, DADDSP, DMPYSP, QMPYSP, etc.) [23]. This is useful
for the signal processing algorithms such as Fast Fourier Transform, Discrete Cosine
Transform, etc. The DSP can also perform complex multiplication or multiplication of
complex vectors by the complex matrices. Detailed description of the DSP functionality
can be found in [60]. The basic parameters of TMS320C6678 DSP are shown in Table
3.1.

Table 3.1: Basic parameters of the TMS320C6678

Parameter Value

Clock speed 1.4 GHz

LIP memory 32 kB/Core

L I D memory 32 kB/Core

L2 memory 512 kB/Core

Shared L2 memory 4 M B

External memory interface 64-bit DDR3

GFLOPS 128

Thermal design power 17 W

3.1.1 TMDSEVM6678LE Development Board
The 8-core DSP is assembled on a development board TMDSEVM6678LE [61]. It is a
stand-alone development board with 512 M B of DDR3 memory, 64 M B of N A N D
Flash, 16 M B SPI NOR Flash, Gigabit Ethernet, PCIe, and other typical peripherals.
Some of them are routed to the A M C B+ edge connector. It makes the board ideal for
developing of media gateways, and/or video servers of video recognition applications.
The board also contains an embedded JTAG emulator, so it can be connected with TI's
software development tool: Code Composer Studio without need of any external
emulator. Nevertheless, it is possible to connect a different emulator through a 60-pin TI

17

JTAG connector. In this case, the XDS560v2 is providing the real-time debugging. The
disadvantage of the board is the lack of accessible testing points, so the power
consumption can be measured for the whole board and not for the components
separately.

3.2 Test cases
Testing of the software behavior is divided into 2 groups. The first group explores the
performance of the code from the data and thread parallelism, the second examines the
performance from the instruction level parallelism. A l l of the evaluations were
performed on the real hardware which was previously described.

3.2.1 Data and thread parallelism using OpenMP
The data parallelism is achieved when the multiple functional units (or the cores)
perform the same operation on different data. It could be realized on the SIMD or
multiprocessor system. For comparison, the thread parallelism can be achieved only on
the multiprocessor system. One of the solutions how to make code to run on multicore
processor is to use OpenMP [51].

OpenMP is an application program interface (API), which provides a portable,
scalable model for shared-memory programming. First specification of OpenMP was
defined in 1997 for FORTRAN by major hardware and software vendors. One year later
OpenMP was defined for C/C++.

OpenMP uses thread based parallelism with fork-join model. This means, that
application start in one thread and if it come to parallel section, it creates another thread.
When this team of threads completes their work, they synchronize and terminate except
master thread. These threads can be section work-sharing and loop work-sharing [62].

3.2.1.1 Section work-sharing
This type of work-sharing can be used for independent pieces of code which can run in
parallel. Parallelism of this type is similar to creating threads through standard libraries
provided by operating system. It can be used to pipeline the processing.

Figure 3.1 shows the example of section work-sharing. The original algorithm
consists of 4 steps and is performed sequentially. Steps 2 and 3 are independent and can
be performed in different order or in parallel.

18

2

3
4 •

Figure 3.1: Example of section work sharing

3.2.1.2 Loop work-sharing
The loop work-sharing is the common way how to increase the performance of the
application. For-loops are primary targets in parallelization. They can be used if
iterations have no dependencies between each other.

Figure 3.2 shows a for-loop parallel execution, which is processing an array with
length of 16. It is divided into 4 threads, where each of them processes 4 values. Parts of
array which are processed are marked in gray color.

VT

Figure 3.2: For-loop parallel execution

In this case the processed data are shared among all cores. If the algorithm uses
some auxiliary variables and they are used by all threads, the code will possibly return
wrong result. These variables must be defined as private, which means that there is
created local copy in memory for every core.

3.2.2 Algorithm parallelization in OpenMP
This part is dealing with a parallelization of selected signal processing algorithms. It is
especially finite impulse response (FIR) filter, discrete Fourier transform (DFT) and
Fast Fourier transform (FFT). These algorithms allow easy parallelization on the loop.
Each of them has different character comparing the others. The FIR filter process
relatively small part of input signal to generate one output sample. The DFT needs the
whole input signal for each output sample. These two algorithms process the output
signal direcdy sample by sample, but the FFT needs to compute intermediate data from
all input samples and then the final signal. Parallelization of code is realized with
OpenMP directives. During this process, it is important to take care of which variable is
shared between threads and which must be created as private for each thread.

19

3.2.2.1 FIR filter
FIR filter is implemented according to

JV-l
(3.1)

k= 0

from [63], where x is input signal, y is the output signal and h is impulse response if the
filter with the length of N.

This type of filter was selected, because it does not require feedback, which could
not be simply parallelized. Final code contains 2 nested f or-loops, but only outer loop is
parallel. However, OpenMP support nested parallelism, inner loop is performed
sequentially. It is because the number of physical cores is less than number of signal
samples and there is no space where to execute other threads.

3.2.2.2 Discrete Fourier transform
Structure of the DFT implementation (3.2) is similar to the FIR filtration (3.1). The
output sample is given by the sum of products of input signal and another variable. It
consists of 2 nested for-loops. The difference is that there are complex calculations and
the inner loop goes through full length of the signal. This means, that the amount of
processed data is much higher in compared to the FIR filter. According to [63], DFT is
given by

n= 0

where x is input signal with length of JV in time domain. The X is output signal in
frequency domain also with the length of JV.

3.2.2.3 Fast Fourier transform
For the demonstration of FFT, the Cooley-Tukey algorithm [64] was chosen. This
algorithm is one of the most used in the practical implementations of the signal
processing algorithms. The structure is different from the previous implementations.
Figure 3.3 schematically shows progress of used loops in algorithm. The outer loop
iterations, which represent the stage in FFT, obviously depend on each other, so it
cannot be executed in parallel. The middle, representing group of butterflies, and the
inner loop, representing butterfly processing, are independent in each of its iteration.
For simplicity, only middle loop was chosen for parallelism even if last stages will not
benefit from this. The final implemented FFT algorithm is the radix-2 decimated in time

N - l i 2 Tikn
N (3.2)

(DIT).

20

x[0]

x[4]

x[2]

x[6]

x[l]

x[5]

x[3]

x[7]

0

:><:
0 0

1

1 / \ 1 A X X / !
2 i ffl[|

[M l
3 f'Xx I i/A\i lAl-

X[0]

X[l]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Figure 3.3: FFT radix-2 with highlighted loop iterations

Final parallel code cannot run without operating system, which controls threads. TI
provides real-time kernel called SYS/BIOS [65] or DSP/BIOS [66]. It is designed to use
in embedded applications which requires real-time scheduling.

3.2.3 Measured performance of OpenMP
The execution time of whole function call represents the performance of implemented
algorithms. Dependence of execution time on number of created threads and length of
input signal was measured. For determining how the performance of algorithms was
influenced with changing of these parameters and by the OpenMP runtime, the
execution time of sequential versions (without OpenMP pragmas) of algorithms was
chosen as reference (Table 3.2).

Table 3.2: Measured reference time

Length of
the signal FIR DFT FFT

16 2 us 157 us 16 us

32 4 us 605 us 39 us

64 8 us 2457 us 93 us

128 16 us 9911 us 215 us

256 32 us 39832 us 491 us

512 63 us 159782 us 1105 us

1024 126 us 640102 us 2456 us

2048 252 us - 5405 us

4096 507 us - 11810 us

8192 1025 us - 25791 us

21

Figures 3.4 to 3.6 show the relative increase of performance. The X axis represents
number of cores processing the signal, the Y axis carries the length of the processed
signal and the Z axis shows the speedup relative to the reference time from Table 3.2.
From graphs can be seen, that performance of all algorithms with OpenMP directives
are slower when there is only master thread. It is because the process of thread creating
is still active, even if the maximum number of threads is set to 1. It is the same reason
why the relative speedup is not the same as the number of created threads. In addition,
threads are communicating with each other and accessing to the same memory, because
inputs and outputs are defined as shared variables.

5s

Figure 3.4: Relative speedup of FIR filter

Figure 3.5: Relative speedup ofDFT

22

Length of signal 16 i
Number of threads

Figure 3.6: Relative speedup ofFFT

Table 3.3 shows the measured times that are needed to create the new threads. On
FIR filter and DFT algorithm, it is created only once. When program compute FFT, the
parallel region is created regularly depended on length of input array.

Table 3.3: Time needed to create parallel region

Number of threads Time

1 17 us

2 34 us

3 36 us

4 39 us

5 42 us

6 45 us

7 48 us

8 52 us

If the processing is made of the small number of instructions or the length of
processed data is short, it does not worth it to parallelize the loops. It is because the time
required for creating threads and time while these threads communicate with each other
can be approximately the same or bigger than the execution time of the actual time of
calculation. In addition, the behavior of the hyper-thread enabled processor could be
found in [67]. This makes threading parallelism suitable to apply on processed data with
the same algorithm core, not for its creation. The algorithm core creation should be
performed by optimization on the low-level, which will be shown in next part of this
chapter.

23

3.2.4 Low-level optimizations of the algorithms on the VLIW
architecture

The low-level programming approach allows the programmer to utilize the functional
units of the V L I W processor as much as possible. For the next examination, the FFT
was chosen again. Now, the algorithm is not written to work in loops with variable-
length input signal, but it is written to process fixed vectors with 4, 8 and 16 samples.
The function's computing performance was measured in CPU cycles. A l l measurements
were evaluated for a single-core DSP version only.

Table 3.4: C implementation FFT performance

Function Input Data path CPU cycles

FFT4R 4-point real A+B 46

FFT4C 4-point complex A+B 80

FFT8R 8-point real A+B 123

FFT8C 8-point complex A+B 205

FFT16R 16-point real A+B 425

FFT16C 16-point complex A+B 642

Table 3.4 summarizes the computing demands of functions written in C language,
where notation FFT4R represents a function for real FFT with JV = 4, FFT16C is the
function for complex FFT with JV = 16, etc. The code was compiled by commercially
available compiler for C6000 Optimizing Compiler v7.3.1 from TI. By exploring the
disassembly code, the usage of both DSP data path A and B was affirmed. It can be
seen, for a single FFT calculation between 46 CPU cycles (for JV = 4 real values) and
642 CPU cycles (for JV = 16 complex values) is needed. The computing performance of
functions written in low-level source code is shown in Table 3.5.

Table 3.5: Low-level implementation FFT performance

Function Input Data path CPU cycles

FFT4R 4-point real A 19

FFT4C 4-point complex A 24

FFT8R 8-point real A 34

FFT8C 8-point complex A 42

FFT16R 16-point real A 88

FFT16C 16-point complex A 100

24

Low-level implementation of the previous functions takes from 19 (for JV = 4 real
values) to 100 CPU cycles (for JV = 16 complex values). The relative speedup (Table
3.6) is from 2.4 (for JV = 4 real values) up to 6.4 (for JV = 16 complex values). The next
improvement is the utilization of only one data path. It means that if there is need to
compute multiple transforms in row, the speedup can be twice as it is now achieved only
with copying the code into the data path B.

Table 3.6: Relative speedup of the low-level FFT implementation

Function Input Relative speedup

FFT4R 4-point real 2.42

FFT4C 4-point complex 3.33

FFT8R 8-point real 3.62

FFT8C 8-point complex 4.88

FFT16R 16-point real 4.83

FFT16C 16-point complex 6.42

3.2.5 High-level and low-level comparison
Previous parts are exploring the speed of execution of low-level and high-level
implementation. Now, the text will show the difference in the structure of the compiled
code. It will be shown on the 4-point FFT with complex inputs. The code is based on the
FFT4C function from previous demonstration. The low-level code was rewritten into
the linear assembly and C language respecting the same order of the operations. The
optimizations were disabled for better recognition of the disassembled parts.

3.2.5.1 Low-level assembly
The low-level language offers the most accurate way to optimize the code. The software
developer has full control over the processor functionality and timing. It makes this
method suitable for creating time critical parts of software, such as the DSP cores.
Developing software in the low-level assembly requires more time and the final code
can be used only on the specific architecture. For these reasons, the low-level assembly
is not used for creating the complex software or the libraries. For example, the FFTW
library [50] is fully implemented in C, but some parts have multiple implementations,
which include assembly routines as well.

25

LDDW .Dl *A4++[2] , A17 :A16
LDDW • Dl * A 4 — [1] , A19 :A18
ADDSP .LI A6, A8, A6

I| SUBSP .SI A6, A8, A8
|| LDDW .Dl *A4++[2] , A21 :A2 0

ADDSP .LI A7, A9, A7
I| SUBSP .SI A7, A9, A9
|| LDDW .Dl *A4 + +[1] , A2 3 :A22

Figure 3.7: Hand-written assembly code

The part of low-level implementation of the FFT is shown in Figure 3.7. The first
ADDSP (single precision floating-point addition, see [23]) operation is the equivalent of
the first addition operation of the C code from Figure 3.10. This part of the code is
preceded by the other 4 LDDW (load double word from memory) instructions for loading
data into the registers and the loading process continues during the processing of
previously loaded data. In this case, the whole computation of the 4-point FFT with
complex input takes only 24 instruction cycles for TMS320C6678. The code uses only
data path A, but the level of parallelism is much higher than the result of the C compiler.

3.2.5.2 Linear assembly
Linear assembly language is very similar as the classic assembly language, where the
developer uses specific instructions, but does not care about timing and usage of
functional units and registers. This method is alternative for the TMS320C6000
architecture family DSPs [68]. This feature should help to reduce developing time [69].

The FFT algorithm from the previous case in the linear assembly language contains
instructions in the same order as in the low-level assembly code, but the register names
were replaced by the symbolic tides. The functional units were removed as well. The
part of the linear assembly code is shown in Figure 3.8.

ldw * p X [6] , i n 6
ldw * p X [7] , i n 7
addsp inO, i n 4 , mO
addsp i n l , i n 5 , ml
subsp inO, i n 4 , m2

Figure 3.8: Example of linear assembly code

In the disassembly form of the example code (Figure 3.9) can be seen one data path
A is used, similar tot the low-level assembly, but the instructions are executed
sequential, even if there is a possibility to combine them into one instruction packets.
The example is the instructions ADDSP and SUBSP, which use already loaded
independent data, but SUBSP waits for the completion of the ADDSP instruction. The

26

addition and subtraction of two floating-point numbers can be performed by the
functional units .L and .S [23]. The arguments of the operations are also different. In
addition, the compiler waits for the result with NOP (no operation) instruction before
executing the following operation.

LDW.D1T1 *+A4 [6] , A19
LDW.D1T1 *+A4[7],A18
ADDSP.L1 A7, A9,A17
.fphead p, 1, W, BU, nobr, n o s a t , 0000011b
NOP 3
ADDSP.L1 A6, A8, A16
NOP 3
SUBSP.L1 A7, A9, A9
NOP 3

Figure 3.9: Disassembly of the algorithm written in linear assembly

3.2.5.3 High-level language
The high-level programming languages are useful for creating complex software,
because it reduces developing time. They are also suitable for creating the libraries for
the multiple platforms, because the source code is portable to different architectures.

Tested algorithm is made as separate function in the C language, with one input
pointer to signal samples vector. The temporary results are stored into the local
variables. The code contains only 16 arithmetic operations and the part of final
disassembled code from TIs C6000 compiler v7.3.1 with the default optimization level
is shown in Figure 3.10. The disassembled code shows the first operation of the
algorithm.

f f t 4 d i t c:
0000^ 3~34 0~ 07FFEC52 ADDK.S2 -40,B15
0000£ 3344 AC4 5 STW.D2T1 A4,*B15[1]
18 A6 = pX[0] + pX [4] ;
0000£ 3346 6246 MV.L1 A4, A3
0000£ 3348 9247 | | MV.L2X A4, B4
0000£ 334a 904D LDW.D2T2 *B4[4],B4
0000£ 334c 018C0264 || LDW.D1T1 *+A3[0] ,A3
0000£ 3350 020C979A FADDSP.L2X B4,A3,B4
0000£ 3354 2C6E NOP 2
0000£ 3356 DC45 STW.D2T2 B4,*B15 [2]

Figure 3.10: Disassembly of the FFT algorithm written in C

The execution of the function takes 195 instruction cycles, including function call
and return. There can be seen, that the compiler is using both data paths A and B. It
could be a good idea to use all possible resources, but in this cases with similar range it

27

is not effective because the data transfer between data paths must be realized through
the cross-path, which is limited on single value per cycle. The next think to notice is the
instruction parallelism. The | | sign means, that the instruction is executed at the same
time with the instruction above. Here, the code is executed mostiy sequentially, one
instruction after the other.

The other issue is the frequent access to the memory. The function also does not use
access to values through the pointer, but it uses separate variables where the values were
copied. In this example the result was similar, because the variables were allocated on
the stack.

The function was also rewritten to not using access to values through the pointer, but
it uses separate variables where the values were copied. The result was similar, because
the variables were allocated on the stack. Other information about usage of the
functional units can be found in [70].

3.2.6 Comparison of the libraries with different structure
The method for implementing DSP algorithm should be considered for the application.
It is typically compromise between the effort and code portability on one side and the
code performance on the other.

Table 3.7: Performance comparison of the different approach of the C libraries for FFT

Size
Cycles

Size
Non-optimized FFTW TI-DspLib

8 5 909 893 145

16 10 520 2 080 171

32 35 628 4 862 244

64 60 804 15 400 373

128 193 058 33 990 818

256 321 088 77 314 1483

Table 3.7 shows the performance, given in CPU cycles, of three FFT libraries on the
TMS320C6678. The first non-optimized library was implemented only for the testing
purposes. Everything is computed during the runtime, including the twiddle factors. The
second is the FFTW [50], which was configured for the general C compiler, because it
does not have any support of the special instructions for the target DSP processor. The
twiddle factors and other parameters are precomputed before the FFT execution. The
last one is the TI's DSP library for C6000 [47]. The FFT parameters are also
precomputed, but it is optimize using the low-level assembly parts. The disadvantage is

28

that this code cannot be used on different architectures. The difference of the libraries
performance is significant. The optimized FFTW library is about 6.5 times faster than
unoptimized library for small vectors and about 4 times faster for larger vectors. The
low-level library (TI-DspLib) is about 6.5 times faster than optimized C library for
small vector and about 53 times faster for larger vector.

3.3 Chapter summary
This chapter showed the difference between low-level and high-level programming
languages. The demonstration was performed on the multicore DSP TMS320C6678.
The results are described below.

The high-level programming languages is the fast and easy way how to write DSP
algorithms offering the possibility of compile the code on the other platform. But on the
VLIW architectures, it is not very effective. The compiled code contains no or little
parallelism on instruction level. This could be caused by the processes of optimization
where compiler tries to find similar parts of the code end reuse them. This works on
scalar processors, but on V L I W architectures, where the detected code could contain
different parallel operations which cannot be changed at run-time, it makes the target
processor behaves as it has only one functional unit.

The thread parallelism can be helpful for processing a large amount of data. On
smaller inputs, the cost of creating parallel regions by the operating system could be
much bigger than the data process itself. This makes thread parallelism inappropriate for
creating the cores of the DSP algorithms. For this purpose, the low-level programming
languages can produce highly optimized code, especially on V L I W architectures. The
disadvantages of the low-level languages are the longer development time and the fact,
that the produced code could be used only on the specific platform. The results were
published in [67], [70] and [71].

29

4 Impact of the software efficiency to the
power consumption

The previous chapter showed how the different approaches of software creation affect
the final performance of the application. This has an influence on the final time of data
processing. But there is also another aspect which is affected. It is the amount of energy
which is consumed while the application is running. This chapter will show the behavior
of the real systems from the view of the power consumption when the program is
executed on different number functional units and cores.

4.1 Theoretical power consumption increase on multi-
unit systems

As it was mentioned, the software performance could have also impact on the power
consumption of the system. In case of the scalar systems, the relation between the total
energy and time is clear. The energy is given by

E=Pt (4.1)

but only under assumption that the power requirements are the same for every
operation. The input power P contains the static power of the processor Ps, dynamic
power of the A L U PD and the background power PB, which includes the other circuits in
the system.

The situation in parallel systems is slighdy different. In case that the total input
power P changes only with the dynamic power PD of the functional units. The total
energy in this case is given by

E={N-PD + Ps + PB)-t. (4.2)

In simply case when the N units will compute the result in time t and the same
algorithm will be computed in time N-t with single unit the system with single unit will
be more efficient when

{N-PD + Ps + PB)t>{PD + Ps + PB)-t. (4.3)

The equation (4.3) has the solution only when

JV<1 (4.4)

what means that it cannot happen, because the real systems have at least one functional
unit. So, even when the multicore system is fully loaded and its power consumption is at

30

its maximum value, its final consumed energy is less than the same result is achieved on
the system with single A L U .

4.2 Practical test cases
The previous theoretical power consumption assumes the linear increase of the input
power with the number of working functional units and some background power input
for additional circuits. At this point, the ratio between static and dynamic power is
unknown. This part will identify the real impact of the software optimization.

Several functions were proposed for measuring the difference of the DSP power
consumption. The functions combine usage of all functional units for fixed or floating
point operations and data loading or storage as well. The power consumption was
measured when one (A) or both data paths (A+B) were used for processing. The
dependence on number of running DSPs cores was observed, as well. A l l functions were
programmed in low-level assembly language to reach the requested operations and the
codes were executed from the L2 cache memory of each core. A l l proposed test cases
are described below.

4.2.1 Case 1: Empty loop
The first function is the empty loop. The function contains only one branch function to
itself, executed by the .SI unit (Figure 4.1). This instruction takes exactly 6 clock
cycles, so the processor could execute other 5 instructions before the actual branch. For
this reason, 5 no-operation instructions (NOP) were inserted after the branch code. This
case should have the lowest power consumption from all test cases, because it uses only
one functional unit, next it does not manipulate with any registers (except the jump
address), and it does not modify the memory space.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
.L .S .M .D

Figure 4.1: Functional unit utilization for the case 1

31

4.2.2 Case 2: Load/Store operations
The load and store operations use the .Dx units and perform data transfer between
memory space and general-purpose registers (Figure 4.2). The instructions are
pipelined, so the no-operation instructions are not required, and the next load/store
operation can follow immediately after the previous one. The same applies to the branch
instruction, creating the infinite loop. The data are loaded/stored from/in the shared on-
chip memory.

100%
90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

• p i

H p
I Load
\ Store

Figure 4.2: Functional unit utilization for the case 2

4.2.3 Case 3: Fixed-point operations
A l l DSP's functional units can perform fixed-point operations (Figure 4.3). The
proposed test function contains addition, subtraction and multiplication of register
values. A l l used instructions are also pipelined, similar to the previous case.

Figure 4.3: Functional unit utilization for the case 3

32

4.2.4 Case 4: Floating-point operations
Floating-point operations are supported only by .Lx, .Sx and .Mx units (Figure 4.4). The
.Dx units are not suitable for these operations. Units perform addition, subtraction and
multiplication of floating-point values stored in general-purpose registers.

100%
90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
.L .S .M .D

Figure 4.4: Functional unit utilization for the case 4 without data loading/storing

To reach the maximum DSP core exploitation, the proposed floating-point test cases
were combined with the loading/storing operations as well (Figure 4.5).

.L .S .M .D

Figure 4.5: Functional unit utilization for the case 4 with data loading/storing

4.2.5 Case 5: FFT routines
Above mentioned theoretical test cases were appended by a real application from the
digital signal processing domain. The real and complex FFT routines with length of
N = 8 were tested. The functions adopted single precision floating-point representation
and contain needed arithmetical and loading/storing operations for decimation-in-time

33

FFT algorithm. The routines were executed in data paths A and B (Figure 4.6), and
combine four independent calculations in a single routine call. In average, every 1.28
CPU cycles one FFT transform with a real input vector is calculated, and every 1.97
CPU cycles one FFT transforms with a complex data is calculated with C6678 DSP.

100%

. L l .SI .Ml .Dl .L2 .S2 .M2 .D2

Figure 4.6: Functional unit utilization for the case 5

4.3 Experimental Results
As mentioned in section 3.1.1, the evaluation board has no possibility to measure power
consumption of individual parts. But the power consumption can be measured relatively
from the idle power level. For the measuring reasons, the power supply adapter was
replaced by the regulated laboratory power supply unit Diametral P230R51D and power
consumption was measured with two multimeters Agilent 34405A (for current and
voltage). The multimeters can communicate with PC through the USB, so the samples
can be captured in a synchronous way and the final power consumption can be
calculated. For data capturing, the simple application using .NET and VISA drivers was
programmed. Each measurement was done 10-times with frequency of fm e a s u r e = 2 Hz
and the final value were determined as the mean function from the samples. The
experimental workplace is shown in Figure 4.7.

34

Figure 4.7: Workplace for the measuring the power consumption

The results for routines executed at data path A (half of DSP core), data paths A and
B, and the real FFT functions are shown in Figures 4.8, 4.9 and 4.10 respectively.
Remark: the idle power consumption of the development board was measured when all
DSP cores were stopped. This value is representing the background consumption of the
board (FPGA, clock generators, memory, emulator...) and the static power of the DSP;
the value was 10.93 W.

11,70

11,60

11,50

11,40

j 11,30

| 11,20

11,10

11,00

10,90

10,80

1 2 3 4 5 6 7 8

Number of C66x cores

Figure 4.8: Power consumption of theoretical test cases at data path A

- • - Empty Loop
-*~ Store, Data Path A

Load, Data Path A
- * - Fixed-Point, Data Path A

Floating-Point, Data Path A
Floating-Point + Load/Store, Data Path A

35

Figure 4.9: Power consumption of theoretical test cases at data paths A and B

Figure 4.10: Power consumption ofFFT routines at data paths A and B

A few experimental conclusions can be observed. First, the loading and storing
operations do not have the same complexity; the loading data into the register file is
more power demanding then the storing operation. It relates with the operations'
duration - i.e. instruction for loading double words (LDDW) needs 5 CPU cycles and
instruction for storing double words (STDW) is a single-cycle instruction only. Second
obvious result is the bigger power demanding of floating-point operations then the
consumption of the fixed-point instructions. Finally, in spite of average function units'
loads of real FFT routines (54 % for real and 59 % for complex version, respectively),
the average power consumption is closed to the simplest test case tided "Empty Loop".

36

4.4 Chapter summary
The software of the application does not have impact only on computation time, but also
on the power consumption of the system and the amount of the spent energy to achieve
the result. The utilization rate of the functional unit and processors cores have linear
influence on the power consumption increase, but the static power input is significandy
higher. It means that when the processor is fully utilized on all functional units and
cores, its power input is comparable with the state when only single functional unit is
processing data. The final energy to achieve the result is then given by time, so the way
to reach the best power efficiency is to make software which uses all hardware
resources as much as possible. Some related information was published in [72].

37

5 Instruction mapping tool for DSPs
The previous chapters showed the impact of the software on parallel architectures to the
final performance of the DSP application. The thread parallelism is suitable for applying
the DSP algorithms on larger amount of data like splitting the signals into the smaller
parts and process them separately. This method is inappropriate for creating DSP core
functions. For this purpose, it is better to create parallelism on the instruction level.
Previous test cases were aimed on V L I W architectures, where the parallel execution of
instructions must be desired during the compilation time. The easiest and fastest way to
implement the DSP algorithm is to use high-level language. This process produces
relatively optimized code for scalar architectures, but not for V L I W cores. The low-
level approach using the assembly language is still significantiy better for optimization
in this case. This process demands lots of time and mistakes can be quickly made.

To ease the process of the DSP core functions optimization in low-level languages,
the tool for instruction mapping will be made. The goal of this tool will be to process
some easy writable mid-level notation of the algorithm core and generate the assembly
language code. The result should be comparable to the hand-written implementation.
The tool also must be adapted to fact, that the code can be ported into the different
architecture without intervention in the tools code.

The first part of chapter will introduce the idea of signal-flow graph approach. Next
part shows the definition of target architecture and algorithm to map. Then the text
contains the details about the mapping process. The last part will describe
implementation of the proposed tool.

5.1 The idea of signal-flow graph approach
As we can see from the benchmarks, the main problem of the standard compiler on the
VLIW architecture is that it is not searching for the possible parallel operations. For
example the main optimizations in GCC are based on control flow analysis, data flow
analysis respectively, leading to reduce the call of code with no impact on the result or
reduce the calling of jump functions, such as dead code elimination or redundancy
elimination [57]. Some of them were described in chapter 1.4. These methods lead to
the faster execution of program. Then there are methods for code size optimizations,
which are trying to find similar code parts and reuse them as function calls. But these
methods are aimed more likely for the control applications, where the scalar
architectures are dominant.

The V L I W architectures are intended for use in DSP or generally in data processing
applications. This leads the idea of the new tool to not using the sequential notation in
the algorithm description, but the using of signal flow graph. The name can be similar to

38

the data flow analysis in the GCC, but it has completely different meaning. While the
data flow analysis traces the variables in the code to find out if they are used and there
are not performed useless operations, the signal-flow graph method will be used for
finding relations between operations and subsequently the possible parallel operations
will be searched. So, it will be similar to the hardware description languages (HDL).

5.2 Input files
Because the instruction mapping tool should be independent on the architecture, the
input of the tool is not only the algorithm to map, but also the description of the target.
Next text will describe the format of the input files.

5.2.1 Architecture definition
The hardware architecture is defined in text file in the JavaScript Object Notation
(JSON) format [73]. This format is alternative to the Extensible Markup Language
(XML) [74]. The only advantage of JSON over X M L format is the smaller data
representation and better human readability, because JSON does not use tag pairs. This
is useful in case, when the architecture description file is edited by the hand.

The architecture description model structure is based on the TMS320C6678, which
was chosen to be used in the previous benchmarks, but when some resources are
omitted in the definition, some other architecture such as A R M can be defined. Its
simplified structure is shown in Figure 5.1.

C66x CorePac

Register file A Register file B

s, 1
.L2 .S2

.M2 .D2

LIP Cache LID Cache

L2 Cache

Figure 5.1: Structure of the TMS320C6678

At first sight, it may seem that the core has quite large amount of the resources for
parallel operation, but it has its limitation.

The first is that the functional units are not equal. They are not capable to execute
the same instructions. Functional units are marked .L I , .L2, .SI, .S2, . D l , .D2
and . M l , .M2. The .D units are primary used for loading and storing data into the
memory. The .L and .S units are designed for the general arithmetic, logic and branch

39

operations as well. The last, . M units, are able to perform multiply operations with
single and double precision floating-point values. A l l of the units are also able to
execute other types of instructions, but not with all data types.

The second limitation is caused by the division of the previously mentioned
hardware resources into 2 identical data paths. These data paths are marked as data path
A and data path B. Because of this, it is not possible to direcdy access registers from
data path A with functional unit from data path B. It can be done only through the
register file cross-paths marked l x and 2x. The single cross-path in the C66x is capable
to transfer 64-bit operand in the instruction. In addition, this operand can be used in
multiple instructions in the same execute packed, which was not allowed in the older
C64x core.

The model itself is aimed only on the description of the processor core, not the
processor as the entire unit. Its structure is shown in Figure 5.2. The main parts of the
model are:

• hardware resources of the core (data paths, cross-paths);

• instruction set.

{
"name":
" r e g w i d t h " :
" d a t a P a t h " :

"TMS320C6678",
4,
[

{ * • • i f

" c r o s s P a t h " :
] ,
[

• • i i

" i n s t r u c t i o n " :
] ,
[

}
]

Figure 5.2: Basic structure of the JSON architecture file

5.2.1.1 Hardware resources
The topology of the model is based on the V L I W architecture with the multiple data
path.

40

Data paths
From the external point of view, the data path is the top level element, which contains
all basic hardware resources. For this reason, the part of the model with the hardware
resources is set of structures describing the data path.

The selected TMS320C6678 has 2 practically identical data paths, so the model in
this case can contain only the template of one data path and information about the
number of the data paths in given architecture. But in general, the processor may consist
of several different data paths, so every element in the model has its own definition.

{
"name": "A"
" u n i t " : [

{
"name": " . S I " ,
" c r o s s p a t h " : ["NONE", "X2"]

},
{ . . . }

] ,
" r e g i s t e r " : ["AO", " A l " , . . .] ,
"reggroup": [

{
"name": " p a i r " ,
" a s s i g n ": [

{
" l a b e l " : "A1:A0",
" r e g s " : ["AO", " A l "]

},
{ }

] ,
},
{ . . . }

] ,
"d a t a t y p e " :
{

" i n t 3 2 " : " r e g i s t e r " ,
" i n t 6 4 " : " p a i r " ,

}
}

Figure 5.3: Structure of data path in JSON file

Each data path is defined by:

• list of functional units;

• list of registers;

41

• register groups definition;

• data types representation.

The structure of the data path description is shown in Figure 5.3. Data path is
identified in the system by its name in suing format. The functional units and registers
are stored in the arrays of objects. The register groups and data types are virtual (or
logical) objects for specifying the data representation in registers. These features will be
explained later.

Cross-paths
As it was mentioned in the TMS320C6678 description, the data paths work as the
separated units. The data cannot be directly moved between the register files and the
functional units cannot read the register value. For this purpose, the model is able to
define cross-paths (Figure 5.4).

{
"name": " X I " ,
" s o u r c e " : "A",
" w i d t h " : 2,
"operands": 4

}

Figure 5.4: Structure of cross-path in JSON file

Each cross-path is defined by the following parameters:

• source data path with register file;

• maximum width of the transferred data;

• maximum number of operands where the value can be used.

The meaning of the source data path is clean. The target data path is not defined at
this point, because the functional units in the TMS320C6678 are not handling the
operands in the same way. The .D, . M and .S units can read only the second operand
through the cross-path and the .L units can access to the different register file for both
operands (Figure 5.5) [59]. For this reason, the destination of the cross-paths is defined
individually on the functional units.

42

sou reel

L1
" source2

destination

sou reel

L1
" source2

destination

- r

Register
File A

sou reel

L1
" source2

destination

- r

Register
File A

Register
File A sou reel

.S1 source2

destination

- t

Register
File A sou reel

.S1 source2

destination

- t

Register
File A sou reel

.S1 source2

destination

Register
File A

IX

Register
File B

Figure 5.5: Example of the cross-path connection to the functional units

The maximum width of transferred data is given by the bus width, which is 64-bit in
the selected processor despite the fact, that the register size is 32-bit. There is no need to
define this parameter to different value than the multiply of register width, so the model
keeps only the number of possible transferred registers.

The requirement of parameter which can tell if it is possible to use the operand
transferred by the cross-path in the multiple operations is given by the difference
between the C66x and C64x cores. In the C64x, it is possible to use the data from the
cross-path only in one functional unit at once in compare with the C66x where this
limitation does not exist.

Functional units
Each data path includes the set of functional units. The only one parameter, except the
name, of the functional unit is the identification of the operand input connection to the
cross-path. The referenced C66x and also the older C64x are composed of the 2 data
paths, so in this case the parameter could only be with the meaning connected or
disconnected. But in general, the processor could have more than 2 data paths and
therefore it is needed to identify which cross-path is connected into the functional unit
input.

Registers
The last physical hardware resources in the presented model are the general-purpose
register files. Each data path has one register file defined by the set of the registers. The
registers are identified only by their names. Even the width of the registers is not
mentioned in the model. To determine how many and which registers to represent data
type, virtual resources are used. They will be described in the next chapter parts.

43

Register groups and data types
Register groups are only logical definitions for the tool, to determine which registers
can be used together as a single value (Figure 5.6). As it was mentioned, the model is
not working with the physical width with the registers. Also, the registers can handle
different number of bits on different architectures, so the decision which group to use as
given data type cannot be made. For this reason, the data types supported by the tool are
assigned to the created register groups.

A3:A2:A1:A0 A7:A6:A5:A4
A1:A0 A3: A? ;A5:A4 1 A7:A4

| AO A l A2 A3 j | A4 A5 \ A6 A7 !
l

A11:A10:A9:A8 A15:A14:A13:A12
; A9:A8 A11:A10 |A13:A12 A1.VA14

! A8 A9 A10 A l l | \ A12 A13 | \ A14 A15 j

Figure 5.6: Creating register groups from the physical registers

5.2.1.2 Instruction set
The instruction set is the next part of the processor model (Figure 5.7). It is not divided
into other segments as the hardware resources, but it is only the list of the instructions
that can fit into the operation abstraction of the tool. The model includes 3 types of the
instructions which are:

• arithmetic instructions;

• memory instructions;

• general functions.

Each instruction type is derived from virtual class, which is used in mapping process to
simplify the algorithm. This virtual class contains information about:

• name of the instruction;

• instruction format;

• number of cycles needed to the instruction and operands;

• number of cycles needed to write result to the registers;

• total number of cycles.

The meaning of the instruction name is clear. Its purpose is only the identification by
the user in architecture definition.

44

{
name": "ADD",
format": "ADD u n i t s r c l , s r c 2 , d s t l
t y p e " : "add",
d a t a " : [" i n t 3 2 " , " p o i n t e r "] ,
u n i t s " : [".Dl", " .D2", " . L I "] ,
r e a d " : 1,
w r i t e " : 1,
t o t a l " : 1

1_

Figure 5.7: Structure of instruction in J SON file

The instruction format gives the position of the parameters in the final notation of
the generated code. For example, the ADD instruction format for C66x is
A D D n u n i t n s r c l , n s r c 2 , n d s t l [23].

Some of the instructions are able to process data with different number
representation. For example, the ABS instruction in the C66x is able to process 32-bit
integers and 64-bit integers as well [23]. That is why this parameter is list of the data
types.

Functional units are another list acting as the instruction parameter. This list contains
the functional units from all data paths. They are not divided into smaller groups.

The last group of parameters defines the timing of the instruction. The full
instruction cycle was reduced into 3 stages. During the read stage, a functional unit is
fetching instruction and the input value must be prepared in registers. After this stage,
the functional unit can be used for other purpose and the input register can be
overwritten. The write stage moves the result of the operation into the destination
registers. At this stage, the register must be prepared to receive new data to prevent
overwrite the valid values for other operations. The instruction is executed between
these stages and the resources can be freely used without limitations. Figure 5.8 shows
the timing of the ADDDP [23] instruction as the example.

Pipeline stage 1 2 3 4 5 6 7

Read

Write

Unit in use

s r c l l
src2_l

s r c l h
src2_h

ds t j d s t h

. L / . S . L / . S

Figure 5.8: Execution progress of ADDDP instruction

45

During the execution of the ADDDP (double precision floating-point addition)
instruction, the functional unit .L (or .S) is completely utilized in the first 2 CPU cycles.
Due to pipelining, it can be used to execute other instructions. The input arguments are
stored in 2 register pairs (srcl_h:l, src2_h:l). After the registers are read, they can be
used for another purpose. The result of the operation is stored into the register pair
dst_h:l in cycles 6 and 7. In cycle 8,the value can be used in the next CPU cycle.

Arithmetic instructions
The first derived instruction type is arithmetic instruction. It extends the base instruction
class with the following parameters:

• operation;

• data type.

The operation defines arithmetic function of the instruction. The recognized values
by the tool are specified in Table 5.1. The second parameter is the list of data types
supported by the function. The data types keywords are shown in Table 5.2.

Table 5.1: Arithmetic instruction supported operations

Operation Description

A D D Addition

SUB Subtraction

M P Y Multiplication

DIV Division

Table 5.2: Arithmetic instruction supported data types

Data type Description

INT8 8-bit integer or fixed-point

INT16 16-bit integer or fixed-point

IN32 32-bit integer or fixed-point

INT64 64-bit integer or fixed-point

FLOAT Single-precision floating-point

D O U B L E Double-precision floating-point

POINTER Pointer (usually size of register)

46

Memory instructions
Memory instructions are dedicated to loading registers and storing their values back to
the memory. This type extends the base instruction type with the operation, which is
shown in Table 5.3. There is nothing such as data type like in arithmetic instruction,
because these instructions work only with registers.

Table 5.3: Memory instruction supported operations

Operation Description

L O A D Load from memory through pointer

STORE Store to memory through the pointer

CONST Load constant to the register

CONSTH Load constant to upper half of the register

CONSTL Load constant to lower part of the register

Functional instruction
The functional instructions are for general-purpose. They are used when the operation in
the algorithm does not fall under the previous categories. In this case the base
instruction structure is extended like in arithmetic instruction, but the difference is the
operation. It is not represented by the enumerated value, but with string which is later
compared with the functions in the algorithm.

5.2.2 Algorithm description
The algorithm notation uses the signal-flow graph description based on HDL and the
tools syntax uses two base elements: signals and nodes. The signals are equivalent for
the variables, but there is a limitation for their use. In classic sequential programming
languages, like ANSI C, the variable can change its value during runtime many times. In
the case of this tool, the value of the signal can be assigned only once. There are three
types of signals: input signals which are allocated at the beginning of the runtime, the
output signal must be valid until the end of execution, and temporary signals could be
created and expired when required.

The other elements in the syntax are nodes. A node represents the elementary
operation, while the nodes are architecture and data type independent. These parameters
are assigned during the process of code generation. An example of the algorithm
description and its graphical representation is shown in Figure 5.9. The graphical
representation of the algorithm is on the left side. The right side contains text
representation.

47

INPUT POINTER X
INPUT POINTER Y

TMP = B * W

Figure 5.9: Signal-flow diagram from example algorithm

The example represents a simplified butterfly of FFT, without complex numbers. It
has 3 input signals X, Y and W, which can be compared to the arguments of the function
in ANSI C language. Signal X is the pointer to array with input samples, signal Y is the
pointer to array with output samples and signal W represents the twiddle factor, which
could be also replaced by constant loading. There are also internal signals A, B, C, D and
TMP. The TMP, C and D signals are created by the arithmetic nodes. Signals A and B are
loaded from memory using pointer X. Signals C and D stores the result of the operations
which are passed out of the algorithm by pointer Y. The operations on signals do not
have to be written in the same order as they should be processed. The full syntax will be
described later.

5.3 Algorithm mapping
The mapping process leads to the semi-ideal low-level assembly code of the algorithm
for the target architecture and uses both architecture and algorithm description. The
process can be split into the following steps:

• input files parsing

• assignment of node instructions

• sorting nodes and signals

• mapping nodes and signals

• generating output files

The order of the mapping steps is also shown on Figure 5.10, where is also small
description. The details are given in the next subchapters.

48

Read and parse
input fifes

Assignment
of instructions

Operation
sorting

Assignment
of functional

units
Assignment
of registers

Generate
output files

Read algorithm and
architecture files,
create basic structures

Find suitable instructions
from architecture for
algorithm operations

Create order of instruction
execution based on instruction
parameters

Assign instructions to functional
units based on available resources :

execution order and operation
relations

Assign registers to variables
based on its usage time.

Create A S M files
and information files

Figure 5.10: Mapping process

5.3.1 Input files parsing
First of all, the information about the target architecture and the algorithm needs to be
retrieved from the input files. The architecture description has the same structure as the
processor model described in chapter 5.2.1, which is in JSON format, and contains the
information about

• data paths

• functional units

• registers

• instructions

The second parsed file is the algorithm. The processing of the algorithm description file
creates structure which includes the list of

• nodes

• signals

5.3.1.1 Parsing signals
A l l signals must be defined before the operations. This means that the signal definition
is located at the beginning of the file. Each signal is represented by its name, data type
and role in the algorithm. The example of the definition format is shown on Figure 5.11.

Data type

INPUT POINTER X
Signal role Signal name

Figure 5.11: Signal definition format

The order of the keywords cannot be changed, but not all fields are mandatory. The
data type of the signal is only optional for special cases, when the signal is not the part
of the algorithm processing chain. In this case, it is the pointer to input data. The
supported values are listed in Table 5.4 and 5.5.

49

Table 5.4: Signal definition roles

Signal role Description

INPUT The signal carries the input data. It is located at the beginning of the
algorithm and data is filled outside of the block to the registers.

OUTPUT Output signal usually carries the result of the algorithm. Once the
signal is allocated during the processing it is not destroyed.

SIGNAL This is the internal signal it could be result of the operation or it can
be only the alias of another signal.

Table 5.5: Signal definition data types

Data type Description

INT8 8-bit integer or fixed-point

INT16 16-bit integer or fixed-point

IN32 32-bit integer or fixed-point

INT64 64-bit integer or fixed-point

FLOAT Single-precision floating-point

D O U B L E Double-precision floating-point

POINTER Pointer (usually size of register)

5.3.1.2 Parsing nodes
The nodes are practically every operation with the signal, but the tool recognizes 5 types
of the operations, which have different definition format. These operations are:

• arithmetic operation;

• function;

• constant assignment;

• signal assignment;

• memory operation.

Arithmetic operation
The arithmetic operation contains basic mathematical operations with two input
arguments, which produces one result. The definition is similar to other programming
languages, but there can be only one operation per line. The format is shown on Figure
5.12.

50

Assignment operator Arithmetic operator

X = A + B
Operation result Input arguments

Figure 5.12: Arithmetic operation format

There are 4 types of operations which are supported in arithmetic nodes. The list of
recognized operators is in Table 5.6.

Table 5.6: Operators for arithmetic operations

Operator Operation
+ Addition

- Subtraction

* Multiplication

/ Division

Function
Next type of node is the function. It is generic operation with variable number of inputs
and outputs. It is usually used for operations that does not fall into the other categories.
The format is shown on Figure 5.13. The function is recognized by its name. The name
usually corresponds to the processor instruction name that will be executed. The items
in the result and input argument are separated with comma. Additionally, the input
arguments must be placed into the parenthesis.

Assignment operator Input arguments

X,Y = FOO(A,B)
Operation results / \ Function name

Figure 5.13: Function definition format

Constant
Signal can be loaded directly by the constant. The format of this operation is simple
assignment of the constant number into the signal, what is shown on Figure 5.14. There
is no need to follow numerical format of the constant for floating-point or integer
values, because it will be automatically converted into the proper data type according to
the target signal.

51

Assignment operator

X = 3.14
Target signal / \ Constant value

Figure 5.14: Constant definition format

Signal alias
Signal aliases are used to code clarity when it is constructed from multiple blocks. They
are not actually new signals, only creates new names for existing signals. When the alias
is created from another alias, the new one also references the original signal. The
definition format is shown on Figure 5.15.

Assignment operator

X = A
Signal alias / \ Signal

Figure 5.15: Signal alias definition format

Memory operation
The last node definition is the memory operation. This node can store or load value
from the memory into the signal.

Assignment operator Memory array index

Y = X[5]
Target signal Memory array pointer

Figure 5.16: Memory operation format

Figure 5.16 shows memory load variant. The left and right sides can be changed to
achieve memory storing. The pointer to the memory must be defined as type pointer
(see chapter 5.3.1.1). The memory array index is zero-based integer constant. This index
gives final memory address according to the target signal type width, so it is not
representing shift in bytes.

5.3.1.3 Multi-operation nodes
Some of the nodes in the algorithm description requires multiple operations for
achieving the result. It is typically memory operation mentioned before.

52

The first case is a constant loading. Even if processors support operations with wider
data than its registers, they usually support only register loading, or even worst, only
loading its upper or lower part. For this reason, the constant loading is divided into the
multiple register loading operation according to the size of stored data type. These
registers loadings are independent on each other, but it must be taken into account that
the loading of the upper or lower part of the register can overwrite the whole register.
This is not the problem of the C66x.

The second case is the loading value from the memory or storing value into the
memory. First of all, there is the same problem as the constant loading, which is the
different width of the registers and processed value data types. The second problem is
the identification of the memory address, which is given by pointer at the beginning of
the data array and the value index in that array. So, the mapping algorithm loads
constant which corresponds to the index, then modifies the initial pointer and after that
it can load or store the value.

5.3.2 Finding relations and validation
The next step after the file parsing is relation creation between nodes using the signals
as a connection. The goal is mainly to determine the possible execution order of the
nodes, but also to extend nodes description with the additional information. This process
is also used to validate the algorithm connections.

5.3.2.1 Extending nodes and signals information
The nodes description can be in this step extended with the specific instruction, which
can be executed in the final code. The instruction selection is based on the operation of
the node and the data type of the signals connected to the node. In case that the
instruction set contains multiple instructions with the same function, the one with
shorter execution time is chose.

The signals description can be also extended. Because the signal can be represented
in different data type, it could require different number of registers. According to the
data type of the algorithm, the register group from the architecture structure is chosen
what will lead to physical registers which can be used.

5.3.2.2 Determining execution order
The mapping process, as it could be seen later, is based on the first-fit method. For that
reason, the processing order of the nodes must be considered before the allocation of
functional units.

53

The first and the most important parameter is the execution level of the nodes. The
execution level value is based on the node relations. There are two rules for defining the
execution level of the node:

• The execution level of the node is zero if all its input signals are the input signals
of the algorithm.

• The execution level of the node must be higher than the highest execution level
of the nodes which creates its input signals.

Figure 5.17 shows case where the execution level is given by input signals of the
algorithm. Node 1 has two input signal and both of them are input signals of the
algorithm. This means that the node has execution level equal to zero and it is possible
to execute it in the first instruction cycle. Node 2 also uses the algorithm input signal,
but the second signal is created by the node 1. In this case the second rule is applied,
and the execution level needs to be set to the higher value than the execution level of the
node 1.

INPUT 1 INPUT 2 INPUT 3

OUTPUT

Figure 5.17: Determining execution level using input signals

Figure 5.18 shows case with nodes in the middle of the algorithm. The examined
subject is the node 4, where the process level is given by the nodes 1 to 3. The
maximum execution level of these nodes is N so the execution level of the node 4 is
JV+1.

A special case of the order determination is a constant loading. Because nodes
loading constants are not dependent on input signals from other operations, so it can be
executed in the beginning of the program. With the first execution level it is assured that
the nodes which uses constants as arguments are not blocked and can be mapped as
soon as possible.

This solution could be ineffective, because the generated signals allocates registers
from the beginning of the execution. This could be solved by execution level update on

54

constant loading nodes after execution level assignment of all nodes according to lowest
one execution level of all nodes which uses specific constant.

Execution Level = N-3

Execution Level = N

Execution Level = N+l

Execution Level = N-2

Figure 5.18: Determining execution level using previous nodes

Figure 5.19 shows the situation where node 3 uses constant C as input. Firsdy, this
constant is set to beginning of the execution. After the execution level assignment of all
nodes, the constant C changed its level to one up to reduce the usage of allocated
registers.

INPUT 1 INPUT 2 INPUT 3

Execution Level = 0

Execution Level = 1

Execution Level = 2

C : Execution Level = 0

Execution Level = 1

OUTPUT

Figure 5.19: Determining execution level of constant loading

5.3.3 Node sorting
Node sorting is the last step before allocation process. This operation creates the order
in which the nodes will be allocated into the functional units. The main purpose is to
reduce the demands on computing power on the allocation process. The sorting can also
be used to optimize the resulted code, when the operations that can use only few
available resources will be allocated first and these resources will not be blocked by
another operations.

55

5.3.3.1 Sorting according to execution level
The execution level is the only parameter which is considered in in all sorting methods.
When the execution level is ascending in the list of the nodes, the mapping process can
go through only with one iteration and all nodes are mapped to available resources. This
results in the state that the nodes which operates only with input signals are mapped first
and the nodes which creates output signals are mapped last.

5.3.3.2 Sorting according to the total CPU cycles of the operation
To achieve better performance of the generated code, other parameters should be
considered in determination of the order of node mapping. These parameters will affect
the order of the nodes in the list only within the same execution level.

The first parameter can be a number of total CPU cycles to execute an instruction
assigned to the node. This could reduce execution time of the algorithm. Figure 5.20
shows three pipelined instructions executed on the same functional unit. The left case is
the ideal order, when the first executed instruction takes 5 CPU cycles and the last 3
cycles. The result is written to registers at the same time. The case on the right is the
worst case, when the instructions are executed in the reverse order. The execution of all
instructions takes 7 CPU cycles instead of 5.

h Oh s Functional unit utilization

Result written to the register

Figure 5.20: Instruction execution order based on CPU cycles

5.3.3.3 Sorting according to number of supported functional units
Second parameter could be the number of supported functional units where the
instruction can be executed. Figure 5.21 shows the situation on two functional units A
and B and five instructions. The shorter instructions (3 CPU cycles) can be executed on
both functional units. The longer instructions (4 CPU cycles) can be executed only on
functional unit A . The case on the left side is the worst case, when the short instructions
are allocated first and then are allocated longer instruction (the order is indicated by
numbers on top). The result is that the functional unit B is executing only one
instruction and the rest is executed on the functional unit A . The execution of all
instructions takes 7 CPU cycles. The situation on the right is ideal, because the longer
instructions were allocated first, so they are not blocked by the shorter instructions.

56

Short instructions can be allocated on the functional unit B. The execution now takes 5
CPU cycles.

| [Functional unit utilization

| | Result written to the register

Figure 5.21: Instruction execution order based on number of supported functional units

5.3.3.4 Handling constant loading
Also, the type of operation can play a role in the execution order. As it was previously
mentioned, the constant loading operations could be executed at algorithm beginning,
but it will pointlessly allocate registers holding the constant value for a long time. For
this reason, its execution level was modified to reduce lifetime of the generated signal.
But even after this modification the signal could be generated relatively long time
before it will be used. For this reason, the constant loading operations are placed into
the end of its process level, so they will be allocated as last in the group.

5.3.4 Functional unit allocation
Functional unit allocation can be performed after the execution order of the nodes is
determined from the previous steps (chapters 5.3.2, 5.3.3). This order is also the same as
the order of the allocation process. The allocation process finding the free functional
unit which can be used to execute instruction assigned to the algorithm node.

5.3.4.1 Finding start cycle of the execution
Before the allocating functional unit for instruction, the node needs to have defined the
minimal start cycle, when the instruction can be executed. This cycle can be determined
when the instructions from the previous execution level (chapter 5.3.2.2) are mapped.
These operations create the signals which are processed by currently mapped node. The
only special cases are nodes processing the input signals. These nodes have the
execution level equal to zero and therefore can be executed immediately at the
beginning of the algorithm, the others depend on the previous nodes.

57

I [Functional unit utilization

| | Result written to the register

Figure 5.22: Determining first possible CPU cycle for execution

Figure 5.22 shows the instruction on execution level N which depends on the results
from the three instructions on lower levels. The last result from these instructions is
written on 5 t h CPU cycle, so the examined instruction could be executed on 6 t h CPU
cycle. If there will be another instruction on the lower level which gives result after 5 t h

CPU cycle, but it is not used in examined instruction, this information is irrelevant and
the minimal possible execution start of the examined instruction is not changed.

5.3.4.2 Allocation
The instruction mapping into the functional unit is similar to the first-fit method in the
memory management which means that the instruction is mapped into the first suitable
position. The difference is that this allocation process must consider two dimensions
(functional unit and time), not only single dimension like in memory management. The
tool can be set to take priority on the functional units.

Without priority
This is the simplest method, which is actually equivalent of the first-fit. The tool starts
examining the functional unit usage map from the instruction cycle, which is the first
possible when the operation can be executed (chapter 5.3.4.1). When it finds that any of
the functional units is unused, it places the node into the map. When there is no free
functional unit, it moves on the next instruction cycle and repeats the process.

Global priority on number of supported instructions
The previous method of finding free unit does not consider any parameter. The order of
the unit examination is given by its definition in the architecture. This method prefers
the functional units that supports the least number of instructions, so there is a bigger
chance that the allocated node will not block the next operations. The order of the
functional unit examination is fixed through the process.

58

Priority on remaining number of supported instructions
This method is similar to the previous one. The difference is that the order of the
functional unit examination is dynamic according to the instructions in the remaining
unallocated nodes. In each node allocation step, it finds number of possible upcoming
nodes which can be possibly executed on each functional unit. The highest priority has
the functional unit with the smaller number as in the previous method.

5.3.5 Signal allocation
Signal can be allocated to registers only when all nodes are mapped, because there is
relation between the node's execution time and the signals lifetime. The lifetime of the
signal means the time, when the registers hold the value from the given node which
created the signal and other nodes cannot rewrite this value. The registers are not
allocated during the whole algorithm process, but only for the necessary time.
Generally, the lifetime of the signal starts with the value write and ends with the last
read of the target nodes. Special cases are input and output signals of the algorithm. The
input signal registers are allocated from the first instruction cycle and the output signal
registers keeps their values until the end of the algorithm.

Nodes Signal Nodes Signal

B Functional unit utilization

|5
• Result written to the register

I
Figure 5.23: Determining signal lifetime

Figure 5.23 shows two cases of the signal lifetime determining. The first (left) shows
the situation when the signal is used by two nodes. Signal lifetime starts one CPU cycle
after instruction value write. This one cycle delay is caused by the possibility of using
the same register for input and output by single cycle instructions. The signal lifetime
ends after the last instruction read of the second target node.

The second case shows the situation with instructions which needs more than one
CPU cycle for reading and writing. The lifetime end is after the read like in the previous
case. The difference is in the lifetime start, which is not after writing as it may seem

59

from the previous situation, but it is after the first CPU cycle of the write. The behavior
of determining the lifetime start and end is technically the same in both cases.

When the signals have given its lifetime, they are allocated to the registers in similar
way as the nodes. The two-dimensional map of the register usage in time is created and
the registers are placed into the map like first-fit method.

After this procedure, the final low-level assembly code can be generated, or the
others information files as well.

5.4 Implementation
The tool is implemented purely in C/C++ language, mostiy using standard system
libraries. The only 3rd party library is JSON parser [75]. The tool is divided into two
separated applications, the algorithm editor and the mapping tool itself. The structure of
the code is shown on Figure 5.24.

User input

Architecture
description file
(optional)

Architecture
description file

Algorithm
description
file

Architecture
editor

Console
command
execution

class

Console
command
execution

class

Mapping
tool

Architecture
definition

class

Algorithm
parsing class

Mapping
class

Architecture
description file

Generated A S M file,
-> optional information

fifes

'. n -
User
parameters 1
(optional)

Figure 5.24: Mapping tool structure

The architecture editor is the command line application for defining the target
architecture, so it is based on the architecture and command line classes. The purpose of
this application is creating and editing architecture files which are used in algorithm
mapping. The console command execution class is only parsing the user input and calls
the architecture definition methods.

60

The mapping tool itself has no user interaction during the data processing in contrast
with the architecture editor. It only takes the arguments at process start. From these
arguments are taken paths to the input files to architecture and algorithm definitions
which are parsed and passed to the mapping class. The mapping class can take
additional arguments such as the data type and custom path to the output files. Thanks
to this modular structure, the application can be extended with graphical user interface
(GUI) using some of the multiplatform frameworks such as GTK+ [76] or Qt [77].

As it can be seen, these applications are sharing a considerable part of common
code. It is mainly the architecture class, but also the data types and some of the console
parsing procedures for getting application input arguments. The following text will
describe the tools structure according to its separations into the libraries and executables
in the project.

cJSON library
This library is the only external part of the project, which can be downloaded from [75].
It provides C functions for reading and saving the JSON formatted files. With cJSON,
the application can work with basic types as booleans, numbers and strings. It also
supports arrays with these types and the objects as well.

Command line library
Command line library is used for parsing input from the user in command line interface.
It could be used for executing the functions according to its paired string name. It is also
parsing the input arguments of the application and provides the help description for the
usage.

Common functions library
This library provides common functions and data types for all parts of the project. It
mainly contains types for the architecture and algorithm objects, but also functions for
message printing or program version information.

Algorithm library
Algorithm library provides class for storing the algorithm to map. It contains lists with
the algorithm signals and nodes. It also provides its own parser for reading algorithm
description as it was shown in the chapter 5.3.1.

Architecture library
Architecture library provides the C++ class which describes the target architecture of
the generated code. The class corresponds to its model described in the chapter 5.2.1. It

61

is dependent on the cJSON library, which is used for parsing and saving the architecture
description.

Architecture editor
This part creates command line executable for defining and editing the architecture
object by the user. It mainly uses the architecture and command line libraries, where the
methods from architecture objects are paired with the commands in the user interface.

Mapping application
This application depends on all previously mentioned libraries. It also adds definitions
of the other classes for creating the maps, which are used to generate the output files
with the final assembly code. The mapping process uses process described in the
chapter 5.3.

5.4.1 Build environment
The build process of the instruction mapping tool is controlled by the CMake. This lets
the user to build the tool for the Unix based systems or for the Windows. The only
requirement is the compiler supporting C++11 standard. The tool was developed and
tested under Ubuntu 18.04 LTS and Windows 10 with Visual Studio 2017 Community
Edition (Figure 5.25).

Figure 5.25: Architecture editor running under Linux and Windows system

5.5 Chapter summary
The aim of the thesis is to create tool for ease the process of optimizing DSP algorithms
on V L I W architecture. This chapter described such a tool that was created. This tool is
designed to generate the low-level assembly language from the abstracted code, which
could be used as optimized part of the DSP core functions. The tool is not tied to the
single type of architecture, but the target processor can be specified without the

62

modifying source code only with JSON formatted text file containing the architecture
description.

The proposed tool uses signal-flow chart idea for finding the relations between
operations in the algorithm. This approach is suitable for searching parallel operations,
which can be mapped to be simultaneously executed on different functional units. For
achieving better performance of the generated code, the operations mapping into the
functional units are done with priority given by the statistics which reduces the
occupation of the functional units which could be used by other operations which
cannot be mapped anywhere else.

The tool is realized as two console applications. The first is for architecture
definition and the second for generating assembly language code. These applications are
written in the native C++ and can be compiled on Windows or Unix based systems. The
tools introduction was published in [78], [79] and [80].

63

6 Experimental results
The proposed mapping tool was verified on several basic algorithms with the aim of
observing the efficiency of the processor's functional units and general-purpose
registers. The efficiency is determined from the usage of the resources. The goal of the
tool is to use the potential of the parallel architecture, so the best efficiency is evaluated
when all functional units are used during the all instruction cycles of data processing.
The opposite state is when the V L I W architecture is using only single functional unit in
single moment. At that time, the processor behaves simply as scalar architectures and
takes no benefit from its structure. But the performance is not evaluated only from the
number of used functional units. The architecture can benefit from instruction
pipelining. When it is not used properly, the no-operation gaps start appearing in code.
Because of this, the evaluation will also examine the ration between used and unused
time slots for each functional unit.

Two algorithms were chosen for their high potential of parallelization and for their
indispensability in signal processing and communication domain: FFT and matrix
multiplication. This part will show it's the behavior without any allocation priority. It
will also show the difference with and without memory operations.

6.1.1 Values prepared in registers
The first case will test the algorithms in situation, when the input values are prepared in
the registers. Also, the results of the algorithm will be stored in registers to pass them
away from the function.

6.1.1.1 Fast Fourier Transform
To demonstrate all steps during the mapping process, the 4-point FFT radix-2 with time
decimated complex input (equivalent to Figure 6.1) was implemented. For
simplification, the twiddle factors were substituted by adding and subtracting
operations. This simplification is achieved by twiddle factor

6.1 Basic behavior of algorithm mapping

Wn=e
N

(6.1)

for number of samples JV = 4, when it can reach only values

(6.2)

64

x[0]

x[2]

x[l]

x[3]

INPUT A l RE
INPUT A l IM

. . . (d e f i n i t i o n of A2 to A4)

OUTPUT CI RE
OUTPUT CI IM

. . . (d e f i n i t i o n of C2 to C4)

SIGNAL B l RE
SIGNAL B l IM
$. . . (d e f i n i t i o n of B2 to B4)

Figure 6.2: Part of signal definition in the 4-point FFT implementation

B l RE = A l RE + A2 RE
B l IM = A l IM + A2 IM
B2 RE = A l RE - A2 RE
B2 IM = A l IM - A2 IM
B3 RE = A3 RE + A4 RE
B3 IM = A3 IM + A4 IM
B4 RE = A3 RE - A4 RE
B4 IM = A3 IM A4 IM

CI RE = B l RE • B3 RE
CI IM = B l IM + B3 IM
C2 RE = B2 RE + B4 IM
C2 IM = B2 IM - B4 RE
C3 RE = B l RE - B3 RE
C3 IM = B l IM - B3 IM
C4 RE = B2 RE - B4 IM
C4 IM = B2 IM - B4 RE

Figure 6.3: Source code of the 4-point FFT (without signal definition)

The 4-point algorithm uses 8 input signals (4 real and 4 imaginary parts), 8 output
signals and 8 internal signals. An example of its definition is shown in Figure 6.2. The
signal is defined by its role (input, output, internal signal) and its name. The data type is

65

not defined in the source code, which allows to generate an assembly code for multiple
data types.

The whole algorithm description is shown in Figure 6.3. This code is also abstracted
from the instruction set of the target processor despite the fact that syntax variability is
more like assembly language than a high-level language.

The algorithm can be visualized through the generated DOT file [81] [82] (see
Figure 6.4). The rectangle symbols represent input, output and internal signals and the
ovals represent all mathematical operations.

A3_RE A4_RE A1_RE A2_RE A1_IM A2_IM A3_IM A4_IM A3_ RE

add

1

B3_RE

add

CI RE

A4_ RE

(sub)

B l _ RE

(s u b)

C3_ RE

A l _ RE

(add)

B4_ RE

A2 _RE

'
(sub J

B2_ .IM

r
add

C4_ .IM

A l _IM

' g
(sub

B2_ RE

'_g
(add)

f
C2_ RE

A2_ .IM

1

add

B4 IM

A3. _IM

sub ,

B l . _IM

1

C4_ RE C1_IM

B3_ .IM

'
sub

1 I
C3. _IM

Figure 6.4: Graphical representation of the 4-point FFT

ADD .LI A l , A3, A9 ; B l IM = A l IM + A2 IM
SUB .SI AO, A2, A10 ; B2 RE = A l RE - A2 RE
ADD .Dl AO, A2, A8 ; B l RE = A l RE + A2 RE
ADD .LI A4, A6, A12 ; B3 RE = A3 RE + A4 RE
ADD .SI A5, A7, A13 ; B3 IM = A3 IM + A4 IM
SUB .Dl A l , A3, A l l ; B2 IM = A l IM - A2 IM
SUB .LI A5, A7, A4 ; B4 IM = A3 IM - A4 IM
ADD .SI A8, A12 , AO ; CI RE = B l RE + B3 RE
SUB .Dl A4, A6, A7 ; B4 RE = A3 RE - A4 RE
ADD .LI A10 , A4 , A2 ; C2 RE = B2 RE + B4 IM
SUB .SI A l l , A7 , A3 ; C2 IM = B2 IM - B4 RE
ADD .Dl A9, A13 , A l ; CI IM = B l IM + B3 IM
SUB .LI A9, A13 , A5 ; C3 IM = B l IM - B3 IM
SUB .SI A10 , A4 , A6 ; C4 RE = B2 RE - B4 IM
SUB .Dl A8, A12 , A4 ; C3 RE = B l RE - B3 RE
SUB .Dl A l l , A7 , A7 ; C4 IM = B2 IM - B4 RE
NOP

Figure 6.5: Generated source code for the 4-point FFT with fixed-point representation

66

The final code generated for 32-bit fixed-point number representation is shown in
Figure 6.5 with the appropriate comments with operations from the original code, where
| | sign marks parallel execution of instructions. The tool mapped the algorithm only
into data path A . Due to parallelism, the instructions are executed up to 3 at the same
time. The last NOP operation is only for filling the last execution cycle when all output
data is available in the registers for the next use and can be replaced.

Figures 6.6 and 6.7 show the generated usage maps of the processor resources. The
rows of the maps represent the instruction cycle from the beginning of the execution and
columns represent the hardware resources (functional units, registers). The map for the
functional units (Figure 6.6) contains instructions, which are executed. The light-gray
instructions correspond to the assigning operations of the Cx signals in the source code
(Figure 6.3).

The register map (Figure 6.7) contains the signals assigned to the registers. The gray
signals are input for the gray operations in the functional unit map (Figure 6.6). The last
instruction cycle is not actually part of the algorithm execution. It is only sign of the
prepared signals for next processing.

Cycle .LI .SI . M l . D l
1 ADD SUB ADD
2 ADD ADD SUB
3 SUB ADD SUB
4 ADD SUB ADD
5 SUB SUB SUB
6 SUB

Figure 6.6: Functional unit usage in FFT4 (32-bit integer)

Cycle AO A l A2 A3 A4 A5 A6 A7 A8 A9 A10 A l l A12 A13
1 A1_RE

A1_IM
A2_RE

A2_IM
2

A1_IM A2_IM
A3_RE A3_IM A4_RE A4_IM

3 B1_RE B1_IM B2_RE
4 B4_IM

B1_RE B1_IM B2_RE

B2_IM
B3_RE B3_IM

5 C1_RE

B4_IM
B4_RE

B2_IM

6
C1_RE

C1_IM C2_RE C2_IM
C3_RE C3_IM C4_RE

Output
C3_RE C3_IM C4_RE

C4_IM

Figure 6.7: Assignment of signals in FFT4 (32-bit integer)

Execution time of the code compiled for 32-bit integer values is 7 instruction cycles
(Figure 6.6 and 6.7). Processing of the single precision floating-point data takes 12
instruction cycles (Figure 6.8 and 6.9). In the graphical representation of signal
assignment to the registers (Figure 6.7 and 6.9) the last cycle does not belong to the
processing, only shows the available data on the output.

67

The output implementation in the integer data representation uses 3 functional units,
because the . M unit has not defined the ADD or SUB operations. For the floating-point
data representation, the .D unit is also unused for its incapability of floating-point
operations.

The usage of the registers is practically constant during the program execution. It is
given by the character of the implemented algorithm, where the input values ale
replaced by the same number of the internal variables. The code for the integer data type
slightly increases the allocated registers, because the first temporary results are known
before the deallocation of the input values. The code for the floating-point data type
does not do that, because the floating-point operations take more instruction cycles for
its execution. The utilization level of the functional units and registers is showed in
Figure 6.10.

Cycle .LI .SI . M l . D l
1 FADDSP FADDSP
2 F S U B S P F S U B S P
3 FADDSP FADDSP
4 F S U B S P F S U B S P |
5
6 FADDSP FADDSP 1
7 FADDSP F S U B S P
8 F S U B S P F S U B S P
9 F S U B S P F S U B S P
10
11

Figure 6.8: Functional unit usage in FFT4 (single precision floating-point)

Cycle AO A l A2 I A3 I A4 A5 A6 I A7

Figure 6.9: Assignment of signals in FFT4 (single precision floating-point)

68

To compare the compiler output with the hand-written code, the loading and storing
data should also be considered. But it will be probably very similar with 4 complex
samples on the input and output.

The handling of the higher number of signals was verified with the 8-point FFT
This algorithm also requires the multiplication, not only additions and subtractions like
in the 4-point FFT so the use of all functional units of the data path is expected in some
instruction cycles. The implementation has 17 input signals, where one of them
represents the twiddle factor, 16 represent output signals and 40 internal signals. The
graphical representation of the algorithm is shown in Figure 6.11.

100%

.LI .SI . M l .D l Allocated Utilization
registers of allocated

registers

Figure 6.10: Resource utilization of the 4-point FFT

The usage of the functional units for 32-bit integer algorithm is shown in Figure 6.12
and the signal assignment is in Figure 6.13. The structure of the maps is practically the
same as in the 4-point FFT case. The registers are allocated effectively despite the fact,
that there is no optimization method. The resource utilization can be seen in Figure
6.14.

The tool can handle relatively many signals in previous cases, because there is high-
level of parallelism in the algorithm which can be handled by the hardware and signals
are quickly deallocated. The number of the internal signals is also approximately
constant during the algorithm execution.

69

A3_RE A4_RE A7_RE A8_RE A5_RE A6_RE A1_RE A2_RE A7_IM A8_IM A5_IM A6_IM

D3_IM D7_IM D2_IM D6_IM D4_IM D8_IM D2_RE D6_RE D1_IM D5_IM D4_RE

Figure 6.11: Graphical representation of 8-point FFT

Figure 6.12: Usage of functional units in FFT8 (32-bit integer)

70

Cycle AO A l A2 A3 A4 A5 A6 A7 A8 A9 A10 A l l A12 A13 A14 A15 A16 A17 A19

1 A I R E
A 1 J M

A 2 R E
A 2 J M

2
A 1 J M A 2 J M

A 3 R E A3_IM A 4 R E A4_IM
A 5 R E A5_IM A 6 R E A6_IM

3
A 5 R E A5_IM A 6 R E A6_IM

A 7 R E
A7_IM

A 8 R E
A 8 J M

4
B 1 R E

A7_IM A 8 J M

5
B 1 R E

B2JNI
B1_IM B 3 R E B 2 R E

B3JM
6

B2JNI
B 4 R E B4_IM

B3JM

7 B 5 R E
B5JM

8
B5JM

B 6 R E B6JM B 7 R E B7_IM
B 8 R E

w

9
B 8 R E

B8JM

10
C 1 R E C 1 J M

11
C6_IM • C 1 R E C 1 J M

C 6 R E
C 3 R E

12 C 2 R E C 3 J M
C 2 J M

C 5 R E
C6_IM

C 8 R E C8_IM C6 TM
PI C 5 J M

C 3 R E

13
C 4 R E

C 2 J M C6 TM
P2 C 7 R E

C8 TM
C 7 J M •

14
C 4 R E

C4_IM PI C8 TM
P2

15 •
16 C6W R

E

17 C6W 1
M

D3_IM
D I R E

D 5 R E
D1JM D 3 R E

D5_IM
18 C8W R

E D2_RE

D3_IM

D 6 R E

D 5 R E
D 7 R E

D5_IM
D7JM

19 C8W 1
M

D2_RE

D 4 R E
D2JM

D 6 R E
D6_IM

D 8 R E
Output D4_IM

D 4 R E
D8JM

D 8 R E

Figure 6.13: Assignment of signals in FFT8 (32-bit integer)

Figure 6.14: Resource utilization of the 8-point FFT

6.1.1.2 Matrix multiplication
The multiplication of two matrices should show the different behavior of the tool,
because the target architecture has only one functional unit in data path, which can
perform multiplication.

Several matrix multiplication algorithms of different size were implemented for
demonstration purpose. The simplest case of the matrix multiplication is the size of 2x2.
The source code representing this mathematical operation uses 8 input signals, 4 output

71

signals and 8 internal signals. Total number of elementary arithmetic operations is 12.
The graphical representation is shown in Figure 6.15.

The main operation in the case of the matrix multiplication for TMS320C6678 is the
MPY32 or MPYSP depending on the data type. This is the biggest limitation, because
this instruction can be executed only by the . M unit. Because the parallel option of the
execution is not available, the tool uses the pipelining. The significant difference
between integer and floating-point result is the execution time of the algorithm, because
of the different number of the instruction cycles needed for the instructions.

X l l X12 X21 X22

Figure 6.15: Graphical representation of matrix multiplication 2x2

The register utilization is decreasing by the time of the program execution. In both
cases, 8 registers are used for the input values at the beginning. At the end, the usage is
reduced to 4 registers, which are used for the output values. The other registers could be
used for the other purpose. The usage of the hardware resources is shown in Figure
6.16.

100%

9 0 %

8 0 %

7 0 %

6 0 %

5 0 %

4 0 %

3 0 %

2 0 %

1 0 %

0 %

Figure 6.16: Resource utilization for the matrix 2x2 multiplication

72

• Int32
• Float

.LI .SI . M l .D l Allocated Utilization
registers of allocated

registers

The next case is the matrix multiplication of matrix size 3x3. The source code uses
18 input signals, 9 output signals and 36 internal signals. Number of all arithmetic
operation is 45. The generated signal flow representation is shown in Figure 6.17.

Figure 6.17: Graphical representation of matrix multiplication 3x3

The result for the matrices 3x3 is similar as for 2x2 (Figure 6.18). Because the
algorithm consists of more MPY32 or MPYSP operations, the ADD or FAD DSP
instructions can be executed in parallel after retrieving results from the first operations.
The difference between integer and floating-point output is the execution time of whole
algorithm.

The number of used registers is higher due to dimension of the input and output, but
the character of the allocated space is the same.

100%

9 0 %

8 0 %

.LI .SI . M l .D l Allocated Utilization
registers of allocated

registers

Figure 6.18: Resource utilization for the matrix 3x3 multiplication

The usage of the resources is shown in Table 6.1. There are two types of average
usage. The first is for allocated usage, which is computed only for functional units and
registers which are used. The second is total usage, which is computed for all resources
in data path. The unit usage in the integer cases is higher for two reasons. First is that
not all units are able to perform floating-point operations. The second is, that the
floating-point takes longer time to execute, so there can be some gaps in the code. The

73

register usage represents the number of user slots from all registers in the data path,
which can be used for data storage during the execution.

Table 6.1: Average hardware resources usage on selected algorithms

Algorithm Data
type

Instruction
cycles

Allocated usage [%] Total usage [%]
Algorithm Data

type
Instruction

cycles Functional
unit Registers Functional

unit Registers

Mat. mpy
2x2

Int32 13 46.15 73.08 23.08 18.27
Mat. mpy
2x2 Float 15 40.00 63.33 20.00 15.83 Mat. mpy
2x2

Double 15 40.00 63.33 20.00 31.67

Mat. mpy
3x3

Int32 32 70.31 81.56 35.16 50.98 Mat. mpy
3x3 Float 36 41.67 71.43 32.25 46.88

FFT4R

Int32 5 80.00 76.00 60.00 23.75

FFT4R Float 9 66.67 73.61 33.33 18.40 FFT4R

Double 10 80.00 78.75 40.00 39.38

FFT4C

Int32 7 76.19 66.33 57.14 29.02

FFT4C Float 12 66.67 79.17 33.33 19.79 FFT4C

Double 12 66.67 79.17 33.33 39.58

FFT8R
Int32 13 73.08 74.23 73.08 46.39

FFT8R
Float 22 57.58 74.43 43.18 37.22

FFT8C
Int32 20 70.00 86.00 70.00 53.75

FFT8C
Float 30 62.22 82.55 46.67 43.85

6.1.2 Values stored in memory
The following case counts with the input values stored in the memory. This means that
the input of the algorithms is only the pointer to that data. Also, the result will be stored
back to the memory, so it will be comparable to the classic high-level language
functions.

6.1.2.1 Fast Fourier Transform
The mathematical structure of the algorithm is the same as in the chapter 6.1.1.1. The
difference is in the input/output signal definitions. The example of the differences is
shown on Figure 6.19.

74

INPUT POINTER X
INPUT POINTER Y

SIGNAL A l RE
SIGNAL A l IM
... (d e f i n i t i o n o f A2 to A4)

SIGNAL CI RE
SIGNAL CI IM
... (d e f i n i t i o n o f C2 to C4)

A l RE = X[0]
A l IM = X [1]
. . . (l o a d A2 t o A4)

Y[0] = CI RE
Y [l] = CI IM
... (s t o r e C2 t o C4)

Figure 6.19: Difference of the input/output definition

There can be seen that there are only 2 input signals passed to the function, which
are pointers to input data and output buffer for result. The input and output signals from
Figure 6.2 are now defined as internal signals of the algorithm.

Figure 6.20: Graphical representation of the 4-point FFT with memory operations

Figure 6.20 shows the signal flow diagram of the 4-point FFT with the complex
input. Compared to the implementation with the input samples stored in the registers
(Figure 6.4) there are much more signals and operations. It is given by the multi-
operation nodes (described in chapter 5.3.1.3), which are creating another signals and
operations for achieving desired result.

75

11

17
18

23
24
25

29
30
31

35
36
37

ADD
SUB
ADD
SUB

ADD
ADD
ADD
ADD
ADD
SUB
SUB
SUB

.SI
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH
MVKL

MVKLH

ADD
LDW
ADD
LDW
ADD
LDW
ADD
LDW
ADD
LDW
ADD
LDW
ADD
LDW
ADD
LDW
ADD

ADD
SUB
ADD
SUB
ADD
SUB
ADD
SUB
ADD
STW
ADD
STW
ADD
STW
STW
STW
STW
STW
STW

Figure 6.21: Functional unit usage in FFT4 (32-bit integer, data in memory)

The actual operations performed in time are shown on Figure 6.21. The FFT4
algorithm which uses memory as input/output storage space takes 39 instruction cycles
to perform. The grayed-out operations in the functional unit usage map are related to the
FFT processing, which is from instruction cycle 13 to 28. The rest of the operations are
related to the data loading and storing. The true profit in compare to the high-level

76

language or linear assembly results (Figure 3.9, 3.10) is that the memory operations are
performed in parallel with the data processing without unnecessary waiting.

Figure 6.22: Resource utilization of the 4-point FFT with memory operations

6.1.2.2 Matrix multiplication
The algorithm for matrix multiplication was also rewritten for data processing in
memory. The modification of the original code is similar as in the previous case. The
final generated signal flow is shown on Figure 6.23.

Figure 6.23: Graphical representation of the 2x2 matrix multiplication (data in
memory)

The Figure 6.24 shows the functional unit utilization relatively to the total number of
instruction cycles of the generated code. In contrast with the previous case of matrix
multiplication (Figure 6.16) where the usage of the . M unit was significant because of

77

the algorithm character, this case has the peaks on .S and .D units. These units are used
mainly for the memory access (.S for constant loading, .D for memory access). There
can be also seen the ratio between the memory operations and the data processing on the
small algorithms.

Table 6.2: Average hardware resources usage on selected algorithms (data in memory)

Data
type

Instruction
cycles

Allocated usage [%] Total usage [%]
Algorithm Data

type
Instruction

cycles Functional
unit Registers Functional

unit Registers

Mat. mpy
2x2

Int32 33 45.45 52.27 45.45 19.60
Mat. mpy
2x2 Float 32 46.88 54.26 46.88 18.65 Mat. mpy
2x2

Double 52 51.92 44.49 51.92 30.59

Mat. mpy Int32 64 59.77 50.48 59.77 41.02
3x3 Float 63 60.71 46.43 60.71 34.82

Int32 33 60.61 51.52 45.45 17.71

FFT4R Float 34 58.82 46.32 44.12 17.37

Double 61 61.20 48.52 45.90 30.33

Int32 39 68.38 28.90 51.28 19.87

FFT4C Float 41 65.04 59.27 48.78 18.52

Double 73 65.75 50.27 49.32 31.42

FFT8R
Int32 63 53.17 54.14 35.17 32.14

FFT8R
Float 66 50.76 56.86 50.76 30.21

FFT8C
Int32 78 58.97 53.96 58.97 37.10

FFT8C
Float 85 54.12 53.00 54.12 34.78

Table 6.2 shows the usage of the resource usage of the algorithms which are using
the memory access for input and output data. The first main difference from previous
test case (Table 6.1) is the number of instruction cycles to perform a data processing. It
is given by adding the memory reading and writing, which extends time up to 3-times in
compare to the algorithms which are using the registers to passing data to application.
Also, there are more free time slots for functional units and registers. It is also caused by
data reading, because the processor cannot perform parallel data reading and
subsequently data processing at the beginning. The same can be applied at the end of the
algorithm with data writing back to the memory.

78

100%

9 0 %

.LI .SI . M l .D l Allocated Utilization
registers of allocated

registers

Figure 6.24: Resource utilization for the matrix 2x2 multiplication (data in memory)

6.2 Optimization impact
The previous cases showed results of the instruction mapping without any modification
of operation allocation. The tool supports several kinds of priorities during mapping
process, which should help to improve generated code. The next part will show the
results these methods.

6.2.1 Node priority
The priority of the node mapping can be set to decisions based on the number of
functional units or the number of instruction cycles needed to execute assigned
instruction. Table 6.3 shows the selected algorithms with memory operations where the
methods of node priority mapping were applied. The performance is compared with the
result from the previous part with no optimization. The matrix multiplications do not
take any benefit of this methods, but FFT algorithms can be executed up to 12 % faster.
These top improvements apply on FFT algorithms with floating-point representation
and real signal input. The results for algorithm which have input values prepared in
registers are not showed, because the execution time of generated codes were the same.

There are two types of algorithms with no, or not so significant improvement. The
first type is where the operations have the same features. This is the case of the
algorithms with values prepared in registers. The second type are the algorithms where
the instructions cannot be easily moved to another functional unit. This is the case of the
matrix multiplication. The big part of the instructions performs multiplication which can
be done only with . M units. Also the memory operations can be performed only on .D
units.

79

Table 6.3: Node priority mapping improvements (data in memory)

Algorithm Data
type

Instruction cycles Improvement [%]
Algorithm Data

type No
priority

Units
priority

Cycles
priority

Units
priority

Cycles
priority

Mat. mpy
2x2

Int32 33 33 33 0.00 0.00
Mat. mpy
2x2 Float 32 32 32 0.00 0.00 Mat. mpy
2x2

Double 52 54 54 -3.85 -3.85

Mat. mpy
3x3

Int32 64 66 66 -3.13 -3.13 Mat. mpy
3x3 Float 63 63 63 0.00 0.00

FFT4R

Int32 33 31 30 6.06 9.09

FFT4R Float 34 30 30 11.76 11.76 FFT4R

Double 61 59 59 3.28 3.28

FFT4C

Int32 39 40 40 -2.56 -2.56

FFT4C Float 41 39 39 4.88 4.88 FFT4C

Double 73 70 70 4.11 4.11

FFT8R
Int32 63 59 58 6.35 7.94

FFT8R
Float 66 58 58 12.12 12.12

FFT8C
Int32 78 76 76 2.56 2.56

FFT8C
Float 89 77 77 9.41 9.41

On the other side, the algorithms with the highest improvement contains wide
variety of instructions. This creates the space for manipulation with the instruction
mapping process, but on proposed cases, the results of these two methods are practically
same.

6.2.2 Functional unit priority
The next method how to improve the final performance of the code is mapping priority
of the functional units. This is based on statistics how many potential operations can be
performed on each functional unit. There are two options how the priority is set. The
first is the global priority which is given by the number and it is fixed for the
architecture. The second is dynamically changing according to remaining unmapped
nodes.

The results after applying the priority on mapping were the same as the result
without any priority. This was caused by the definition of the architecture, because the
original mapping was performed according to this definition. But architecture definition
can be different according to the content of the definition file. For that reason, the worst

80

case was synthetically created by process as the mapping with global priority, but with
the opposite conditions.

Table 6.4: Functional unit priority mapping improvements (data in memory)

Algorithm Data
type

Instruction cycles Improvement [%]
Algorithm Data

type Worst case Global
priority

Dynamic
priority

Global
priority

Dynamic
priority

Mat. mpy
2x2

Int32 42 33 30 21.43 28.57
Mat. mpy
2x2 Float 42 32 32 23.81 23.81 Mat. mpy
2x2

Double 78 52 52 33.33 33.33

Mat. mpy
3x3

Int32 95 64 59 32.63 37.89 Mat. mpy
3x3 Float 95 63 63 33.68 33.68

FFT4R

Int32 44 33 33 25.00 25.00

FFT4R Float 44 34 34 22.73 22.73 FFT4R

Double 84 61 61 27.38 27.38

FFT4C

Int32 55 39 39 29.09 29.09

FFT4C Float 54 41 41 24.07 24.07 FFT4C

Double 102 73 73 28.43 28.43

FFT8R
Int32 86 63 63 26.74 26.74

FFT8R
Float 90 66 66 26.67 26.67

FFT8C
Int32 110 78 78 29.09 29.09

FFT8C
Float 111 85 85 23.42 23.42

Table 6.4 shows the comparison of the worst case and these two methods of priority
mapping. As with the previous methods the algorithms where the input values were
prepared in registers, there was no or not significant improvement. For that reason, table
shows only implementations with memory operations.

The difference from the previous cases is that the improvement is significant even
for the matrix multiplication. The speed-up of the code execution can be relatively high,
which is about 25 %. The maximal improvement was for integer matrix multiplication
3x3, with 37 %. This could be unexpected result, because in previous cases this
algorithm had slightly worse performance after mapping with priority than the original
one.

81

6.3 Comparison to other methods
The results from the proposed tool were compared with the standard methods of
programming. Table 6.5 shows the selected execution times of methods mentioned in
the thesis, including data loading and storing into the memory. The hand-written
assembly code depends only how it is written. The C code is equivalent of the code
passing into the tool's generator. This code was optimized with -02 settings. The
unoptimized code was about 3 to 4-times slower. The Texas Instrument DSP library for
C66x is distributed as static library archives and the change of optimization does not
have an effect on the results.

Table 6.5: Comparison of tool results with the standard methods

Algorithm Mapping tool ASM code C code TI-DspLib

FFT4R 34 19 46 -
FFT4C 41 24 80 -
FFT8R 66 34 123 -
FFT8C 85 42 205 145

It can be seen that the hand-written assembly code is achieving the best
performance. But the code generated by the tool is executed 2.4-times faster than the
compiled C code and 1.7-times faster than the DSP library. The DSP library cannot be
compared with the smaller input data, because it has limitation of minimum 8 complex
or 32 real values on the input.

6.4 Chapter summary
The proposed instruction mapping tool was tested with several DSP algorithm with
possible high-level of parallelism and can be used as cores in the bigger part of the DSP
system. These algorithms were mapped into the TMS320C6678, which is V L I W
processor with floating-point support.

The first case was FFT and matrix multiplication with different sizes where input
values were prepared in registers and output was already written into the registers.
These algorithms were mapped with the high density of parallel operations according to
possibility of instruction support on the functional units. The generated code was similar
to the hand-written code for integer data representation and floating-point data
representation as well.

The second case was performed with the same algorithm, but the input and output
were placed into the memory, so the difference was in memory access. Because the
memory operations cannot be executed on all functional units, these parts of code

82

presented the botdeneck of the algorithm. But it was only until the algorithms loads the
registers for next processing and after that the functional units were utilized as much as
possible.

Because the memory access is the bottleneck on the data processing, the tool works
only with registers and the memory access is only for data input and output. Thanks to
this, the processed data are not stored on stack and the performance can be increased.
This approach has also disadvantage. Because the processor core has limited number of
the registers, the algorithm cannot be too much complex. The TMS320C6678 can
handle relatively lots of data, because it has 4 functional units and 32 registers in single
data path. Tested algorithms were also tried to map into the A R M Cortex M4, which has
only 16 registers. The tool was not able to map them all, because there is half of the
place for data as in the C66x core and the data was processed 4-times slower, so the
registers were not freed with the rate as on V L I W architecture.

The tool eliminates the memory access for storing and loading temporary results of
the operations and keeps these values in registers. This leads to the speedup of the data
processing. But at the same time, this feature is also of its limitation. The tool cannot be
used to create complex algorithms. On the other hand, when generated code was
compared with the provided optimized libraries, these libraries were limited with the
minimal number of input samples. So the tool is destined to be used to optimize parts of
algorithms core functions where optimized libraries are not able to handle small input
data. Preliminary results were published in [83], [84], [85] and [86].

83

7 Conclusion
The doctoral thesis was focused on the digital signal processing systems, especially on
the software part. The first part of the text introduced the various architectures that can
be used for signal processing. It also showed the possibilities of the software realization
from the low-level assembly language to the high-level languages with the extensions
for parallel processing of the data. For the high-level languages, the basic optimization
method which are nowadays used were also introduced.

The second part of the thesis was aimed for software component of the digital signal
processing and the new trend which is moving into the parallel data processing. This
part practically showed the methods of creating software for parallel architectures from
instruction level parallelism to the thread and data parallelism. For this purpose, the
DSP TMS320C6678 was chosen because it can handle all of these types of software
creating methods. This demonstration showed how the software can affect the final
performance of the DSP system. It does not influence only the final execution time, but
also the consumed energy.

Data and thread parallelism are good for processing of big amount of data which can
be separated into the smaller parts and executed on separated processor cores. But this
method is absolutely unsuitable for creating the cores of algorithms itself. This is
because the data processing is executed in separated threads which are running on the
different cores. This requires the host operating system to create these threads and if
necessary, the inter-process communication and synchronization as well. If the core
functions of the algorithms will be implemented this way, the overhead of the operating
system for threads could be comparable to the processing itself.

The implementation of the DSP core functions is more effective as simple functions.
The high-level languages such as ANSI C or low-level assembly language can be used
on that purpose. But V L I W architectures, which is also TMS320C6678, are on the
market shorter time than the scalar architectures, so the compilers are not so effective,
he assembly languages can achieve considerably higher performance. The disadvantage
is that the creating software for V L I W architecture requires more concentration.

For that reason, the aim of the thesis is to create a tool which can help to create
optimized parts of the code in the assembly language for V L I W processors. This tool is
presented in the third part of the thesis. The tool is intended to generate assembly code
for desired architecture from abstracted code. The target architecture is not fixed and
can be defined by user without tool modification. The tool uses signal-flow graph
approach to find the relations between the operations, which are subsequently mapped
into the functional units. The mapping of the operations is not linked by the order of the
operations in the algorithm definitions as it can be in standard high-level language

84

compilers. This helps better to find the possible parallel instructions which can be
executed on different functional units at the same time. The results can be optionally
affected by enabling the automatic consideration of mapping priority which could
increase the performance if the generated code. The tool itself is written as console
application in C++, which can be compiled on Windows and Unix based systems.

The approach of the tool was verified by several DSP algorithms which can be used
as core function of bigger complex algorithm. The tool utilizes the functional units to
possible maximum. The performance of generated code was compared to the hand
written assembly code, equivalent C code and DSP library provided by processor
vendor. The assembly code has still the best performance, but the generated code
exceeded the C code and provided DSP library by the execution time. On the other
hand, because the tool uses the memory operations only for getting input data and
storing the results to avoid the bottleneck which can be caused by stack access, the tool
cannot be used for generating complex functions, but it can be still used for optimizing
parts of code with assembly language. These parts can be also reused only by
regenerating the code on another architecture, which could not be possible if these
optimized parts were written directly.

85

References
[I] Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE.

1966. ISSN: 0018-9219.
[2] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers. 1972. ISSN: 0018-9340.
[3] Manoj Franklin. Computer architecture and organization: From software to

hardware. Upper Saddle River: Pearson Education. 2012. ISBN: 0136156703.
[4] Albert Zomaya. Parallel and distributed computing handbook. New York:

McGraw-Hill. 1996. ISBN: 0-07-073020-2.
[5] Alex Peleg, Uri Weiser. M M X technology extension to the Intel architecture.

Micro, IEEE. 1996. ISSN: 0272-1732.
[6] E. S. Harrison, E. J. Schmitt. The structure of System/88, a fault-tolerant

computer. IBM Systems Journal. 1987. ISSN: 0018-8670.
[7] Alan J. George. An overview of RISC vs. CISC. Twenty-Second Southeastern

Symposium on System Theory. 1990. ISBN: 0-8186-2038-2.
[8] Jurij Silc, Borut Robic, Theo Ungerer. Processor Architecture: From Dataflow to

Superscalar and Beyond. Heidelberg: Springer. 1999. ISBN: 978-3-642-58589-0.
[9] Steven W. Smith. The Scientist & Engineer's Guide to Digital Signal Processing.

San Diego: California Technical Pub. 1997. ISBN: 0966017633.
[10] Dake Liu. Embedded DSP Processor Design: Application Specific Instruction Set

Processors. Amsterdam: Elsevier. 2008. ISBN: 978-0-12-374123-3.
[II] Haris Javaid, Sri Parameswaran. Pipelined multiprocessor system-on-chip for

multimedia. New York: Springer. 2014. ISBN: 978-3-319-01112-7.
[12] Frantz Gene. Digital signal processor trends. IEEE Micro. 2000. ISSN: 0272-

1732.
[13] Intel Corporation. Intel® 64 and IA-32 Architectures Developer's Manual.

[Online]. 2016.
<https ://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-devel oper-manual-325462.pdf >.

[14] Advanced Micro Devices. AMD64 Architecture Programmer's, Manual Volume 1:
Application Programming. [Online]. 2017. <https://www.amd.com/system/files/
TechDocs/24592.pdf>.

[15] Advanced Micro Devices. AMD64 Architecture Programmer's, Manual Volume 2:
System Programming. [Online]. 2018. <https://www.amd.com/system/files/
TechDocs/24593.pdf>.

[16] Atmel Corporation. Atmel 8051 Microcontrollers Hardware Manual. [Online].
2007. <http://wwl.microchip.com/downloads/en/DeviceDoc/doc4316.pdf>.

86

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
http://www.amd.com/system/files/
http://www.amd.com/system/files/
http://wwl.microchip.com/downloads/en/DeviceDoc/doc4316.pdf

[17] Microchip Techology Incorporated. PICmicro™ Mid-Range M C U Family
Reference Manual. [Online]. 1997. <http://wwl.microchip.com/downloads/en/
devicedoc/33023a.pdf>.

[18] Atmel Corporation. AVR Instruction Set Manual. [Online]. 2016.
<http ://wwl .microchip, com/downloads/en/devicedoc/atmel-0856-avr-instruction-
set-manual.pdf>.

[19] Lutz Bierl. MSP430 Family Mixed-Signal Microcontroller Application Reports.
[Online]. 2000. <http://www.ti.com/general/docs/lit/getliterature.tsp?
baseLiteratureNumber=slaa024&fileType=pdf>.

[20] A R M Limited. A R M Architecture Reference Manual. [Online]. 2014.
<https://static.docs.arm.eom/ddi0406/c/DDI0406C_C_arm_architecture_reference
_manual.pdf>.

[21] Microchip Technology Incorporated. dsPIC30F Family Reference Manual.
[Online]. 2006.
<http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf>.

[22] Texas Instruments Incorporated. TMS320C28x Extended Instruction Sets.
[Online]. 2015. <http://www.ti.com/lit/ug/spruhsla/spruhsla.pdf>.

[23] Texas Instruments Incorporated. TMS320C66x DSP CPU and instruction set
reference guide. [Online]. 2010. <http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf>.

[24] Freescale Semiconductor Incorporated. Beyond DSPs: StarCore MSC8xxx and
DSP56K Families. [Online]. 2010. <https://www.nxp.com/docs/en/brochure/
BYNDDSPBRO.pdf >.

[25] David Blythe. Rise of the Graphics Processor. Proceedings of the IEEE. 2008.
DOI 10.1109/JPROC.2008.917718.

[26] Marko J. Misic, Dorde M . Durdevic, Milo V. Tomasevic. Evolution and trends in
GPU computing. Proceedings of the 35th International Convention MIPRO. 2012.
ISBN: 978-1-4673-2577-6.

[27] NVIDIA Corporation. NVIDIA C U D A C Programming Guide. [Online]. 2012.
<https ://developer.download.nvidia. com/compute/DevZ one/docs/html/C/doc/
CUDA_C_Programming_Guide.pdf>.

[28] Timothy G. Rogers, Tor M . Aamodt, Wilson Wai Lun Fung. General-Purpose
Graphics Processor Architectures. San Rafael: Morgan & Claypool. 2018. ISBN:
978-1627059237.

[29] NVIDIA Corporation. Graphics Processing Unit (GPU). [Online]. 2019. <https://
www.nvidia.com/object/gpu.hunl>.

[30] Jon Peddie. . New York: Springer. 2013. ISBN: 978-1447149316.
[31] NVIDIA Corporation. NVIDIA Tesla V100 GPU Accelerator. [Online]. 2018.

<https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-vlOO-
datasheet-letter-fnl-web.pdf>.

87

http://wwl.microchip.com/downloads/en/
http://www.ti.com/general/docs/lit/getliterature.tsp
http://static.docs.arm.eom/ddi0406/c/DDI0406C_C_arm_architecture_reference
http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf
http://www.ti.com/lit/ug/spruhsla/spruhsla.pdf
http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf
http://www.nxp.com/docs/en/brochure/
http://www.nvidia.com/object/gpu.hunl
http://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-vlOO-

[32] Philips Incorporated. An Introduction to Very Long Instruction Word Computer
Architecture. 1997. Pub# 9397-750-01759.

[33] Cliff Young, Joseph A . Fisher, Paolo Faraboschi. Embedded Computing.
Amsterdam: Elsevier. 2005. ISBN: 978-1-4933-0365-6.

[34] John Paul Shen. Modern processor design: fundamentals of superscalar
processors. Long Grove: Waveland Press. 2013. ISBN: 9781478607830.

[35] Barney Blaise. Introduction to Parallel Computing. [Online]. 2016.
<https://computing.llnl.gov/tutorials/parallel_comp/>.

[36] Randall Hyde. The Art of Assembly Language. San Francisco: No Starch Press.
2003. ISBN: 978-1886411975.

[37] Agner Fog. Optimizing subroutines in assembly language: An optimization guide
for x86 platforms. [Online]. 2018. <https://www.agner.org/optimize/
optimizing_assembly.pdf >.

[38] Rulph Chassaing, Donald S. Reay. Digital Signal Processing and Applications
with the TMS320C6713 and TMS320C6416 DSK. Hoboken: Wiley-
Interscience. . ISBN: 978-0-470-13866-3.

[39] ISO/IEC 1539-1:2010, Information technology - Programming languages -
Fortran - Part 1: Base language

[40] Ecma International. ECMA-55 Minimal BASIC, 1st edition. [Online]. 1978.
<http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
ECMA-55,%201st%20Edition,%20January%201978.pdf>.

[41] Ecma International. ECMA-116 BASIC, 1st edition. [Online]. 1986.
<http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
ECMA-116,%201st%20edition,%20June%201986.pdf>.

[42] ISO/IEC 9899:2011, Information technology - Programming languages - C
[43] ISO/IEC 14882:2014, Information technology - Programming languages - C++
[44] ISO/IEC 23270:2006, Information technology - Programming languages - C#
[45] James Gosling et al. The Java Language Specification, Java SE 8 Edition.

[Online]. 2015. <https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf>.
[46] Keith Cooper, Linda Torczon. Engineering a Compiler. San Francisco: Morgan

Kaufmann. 2012. ISBN: 978-0120884780.
[47] Texas Instruments Incorporated. TMS320C67x DSP library programmer's

reference guide. [Online]. 2010. <http://www.ti.com/lit/ug/spru657c/
spru657c.pdf>.

[48] A R M Limited. CMSIS - Cortex microcontroller software interface standard.
[Online]. 2016. <http://www.arm.com/products/processors/cortex-m/cortex-
microcontroller-software-interface-standard.php>.

[49] Microchip Technology Incorporated. DSP library for PIC32. [Online]. 2016.
<http://www.microchip.com/SWLibraryWeb/product. aspx?product=DSP
%20Library%20for%20PIC32>.

88

http://computing.llnl.gov/tutorials/parallel_comp/
http://www.agner.org/optimize/
http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://www.ti.com/lit/ug/spru657c/
http://www.arm.com/products/processors/cortex-m/cortex-
http://www.microchip.com/SWLibraryWeb/product

[50] M . Frigo, S. G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE. 2005. doi: 10.1109/JPROC.2004.840301.

[51] OpenMP Architecture Review Board. The OpenMP API specification for parallel
programming. [Online]. 2014. <http://www.openmp.org/>.

[52] Open MPI Project. Open MPI: Open Source High Performance Computing.
[Online]. 2014. <http://www.open-mpi.org/>.

[53] Edward Kandrot, Jason Sanders. Cuda by Example: an Introduction to
General-Purpose GPU. Upper Saddle River, NJ: Addison-Wesley. 2014. ISBN:
978-0131387683.

[54] S. Rajagopalan, S. P. Rajan, S. Malik, S. Rigo, G. Araujo, K. Takayama. A
retargetable V L I W compiler framework for DSPs with instruction-level
parallelism. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. 2001. doi: 10.1109/43.959861.

[55] Des Watson. A Practical Approach to Compiler Construction. New York: Springer.
2017. ISBN: 978-3-319-52789-5.

[56] Robert W. Sebesta. Concepts of programming languages. Boston: Pearson. 2012.
ISBN: 978-0-13-139531-2.

[57] William von Hagen. The Definitive Guide to GCC. Berkeley: Apress. 2006.
ISBN: 978-1-59059-585-5.

[58] Texas Instruments Incorporated. TMS320C64x/C64x+ DSP CPU and Instruction
Set Reference Guide. [Online]. 2010. <http://www.ti.com/lit/ug/spru732j/
spru732j.pdf>.

[59] Texas Instruments Incorporated. TMS320C66x CorePac user guide. [Online].
2013. <http://www.ti.com/lit/ug/sprugwOc/sprugwOc.pdf>.

[60] Texas Instruments Incorporated. TMS320C6678 Multicore Fixed and
Floatingpoint Digital Signal Processor. [Online]. 2014.
<http://www.ti.com/lit/gpn/tms320c6678>.

[61] Advantech Limited. TMDSEVM6678L E V M Technical Reference Manual.
[Online]. 2012. <http://wfcache.advantech.com/support/DSPM8301E_EVM
%20(6678)3.0/TMDSEVM6678L_Technical_Reference_Manual_2V01_0320.pdf
>.

[62] Barney Blaise. OpenMP. [Online]. 2013. <https://computing.llnl.gov/tutorials/
openMP/>.

[63] Sen M . Kuo, Bob H. Lee. Real-time digital signal processing. New York: Wiley &
Sons. 2001. ISBN: 0-470-84137-0.

[64] James W. Cooley, John W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of Computation. 1965. doi:
10.2307/2003354.

[65] Texas Instruments Incorporated. SYS/BIOS (TI-RTOS Kernel) v6.45 User's
Guide. [Online]. 2015. <http://www.ti.com/lit/ug/spruex3p/spruex3p.pdf>.

89

http://www.openmp.org/
http://www.open-mpi.org/
http://www.ti.com/lit/ug/spru732j/
http://www.ti.com/lit/ug/sprugwOc/sprugwOc.pdf
http://www.ti.com/lit/gpn/tms320c6678
http://wfcache.advantech.com/support/DSPM8301E_EVM
http://computing.llnl.gov/tutorials/openMP/
http://computing.llnl.gov/tutorials/openMP/
http://www.ti.com/lit/ug/spruex3p/spruex3p.pdf

[66] Texas Instruments Incorporated. TMS320 DSP/BIOS v5.42 User's Guide.
[Online]. 2015. <http://www.ti.com/lit/ug/spru423i/spru423i.pdf>.

[67] Roman Mego, Tomas Fryza. Performance of parallel algorithms using OpenMP.
23rd International Conference Rádioelektronika. 2013. ISBN: 978-14673-5516-2.

[68] Texas Instruments Incorporated. TMS320C6000 programmer's guide. [Online].
2011. <http://www.ti.com/lit/ug/sprul98k/sprul98k.pdf>.

[69] Steven A . Tretter. Communication system design using DSP algorithms with
laboratory experiments for the TMS320C6713 DSK. New York: Springer. 2008.
ISBN: 978-0-387-74886-3.

[70] Tomas Fryza, Roman Mego. Low level source code optimizing for
single/multi/core digital signal processors. 23rd International Conference
Rádioelektronika. 2013. ISBN: 978-1-4673-5516-2.

[71] Tomas Fryza, Roman Mego. Frequency Domain FIR Filter Optimization for
Multi-core C6678 DSP. 26th International Conference Rádioelektronika. 2016.
ISBN: 978-1-5090-1674-7.

[72] Tomas Fryza, Roman Mego. Power Consumption of Multicore Digital Signal
Processor: Theoretical Analysis and Real Applications. Proceedings of the 2014
IEEE 23rd International Symposium on Industrial Electronics. 2014. ISBN: 978-
1-4799-2399-1.

[73] Ecma International. ECMA-404 The JSON Data Interchange Format, 1st Edition.
[Online]. 2013. <http://www.ecmainternational.org/publications/files/ECMA-ST/
ECMA-404.pdf>.

[74] World wide web consortium (W3C). Extensible markup language (XML) 1.0.
[Online]. 2008. <https://www.w3.org/TR/REC-xml/>.

[75] Dave Gamble. cJSON. [Online]. 2013. <http://cjson.sourceforge.net/>.
[76] The GTK Team. The GTK Project. [Online]. 2019. <https://www.gtk.org/>.
[77] Qt Group. Qt: Cross-platform software development for embedded and desktop.

[Online]. 2019. <https://www.qt.io/>.
[78] Roman Mego, Tomas Fryza. Tool for Algorithms Mapping with Help of Signal-

Flow Graph Approach. 24th International Conference Rádioelektronika. 2014.
ISBN: 978-1-4799-3713-4.

[79] Roman Mego. Processor Model for the Instruction Mapping Tool. Proceedings of
the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS
PhD 2016). 2016. ISBN: 978-84-608-6309-0.

[80] Roman Mego. Instruction mapping process on the V L I W architectures.
Proceedings of the 22nd conference Student EEICT 2016. ISBN: 978-80-214-
5350-0.

[81] Emden Gansner, Eleftherios Koutsofios, Stephen North, Kiemphong Vo. A
Technique for Drawing Directed Graphs. IEEE Transactions on Software
Engineering. 1993. doi: 10.1109/32.221135.

90

http://www.ti.com/lit/ug/spru423i/spru423i.pdf
http://www.ti.com/lit/ug/sprul98k/sprul98k.pdf
http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/REC-xml/
http://cjson.sourceforge.net/
http://www.gtk.org/
http://www.qt.io/

[82] Emden Gansner, Eleftherios Koutsofios, Stephen North. Drawing graphs with dot.
[Online]. 2006. <http://www.graphviz.org/Documentation/dotguide.pdf>.

[83] Roman Mego, Tomas Fryza. Efficiency of the Signal Processing Algorithms
Using Signal-Flow Based Mapping Tool. Efficiency of the Signal Processing
Algorithms Using Signal-Flow Based Mapping Tool. 2015. ISBN: 978-1-4799-
8117-5.

[84] Tomas Fryza, Roman Mego. Advanced Mapping Techniques for Digital Signal
Processors. 16th IEEE International Symposium on Signal Processing and
Information Technology. 2016. ISBN: 978-1-5090-2902-0.

[85] Tomas Fryza, Roman Mego. Instruction-level Programming Approach for Very
Long Instruction Word Digital Signal Processors. Proceedings of the 24th IEEE
International Conference on Electronics, Circuits and Systems (ICECS 2017).
2018. ISBN: 978-1-5386-1911-7.

[86] Roman Mego, Tomas Fryza. A Tool for V L I W Processors Code Optimizing.
Proceedings of the 13th International Conference on Computer Engineering and
Systems (ICCES 2018). 2019. ISBN: 978-1-5386-5111-7.

91

http://www.graphviz.org/Documentation/dotguide.pdf

Curriculum vitae

Research
interests

Education

Academic
appointments

Computer
skills

Roman Mego

Technicka 3082/12
616 00 Brno

Czech Republic

E-mail: roman.mego@vutbr.cz

Control, communication and signal processing applications in
embedded systems and its optimization.

since 2012 Brno University of Technology, Brno, Czech Republic

Doctor of Philosophy (Ph.D.), Electronics and Communication
Thesis: Parallelism in digital signal processing

2010 - 2012 Brno University of technology, Brno, Czech Republic

Master's degree (Ing.), Electronics and Communication
Thesis: RFID based access system in rooms

2007 - 2010 Brno University of Technology, Brno, Czech Republic

Bachelor's degree (Be), Electronics and Communication
Thesis: PC oscilloscope - hardware part

2012 - 2017 Department of Radio Electronics, Brno, University
of Technology
2014 - 2016 Research assistant in communication systems
(PEKOS) projects
2015 - 2017 Research assistant in Systems for effective
hardware modeling and software mapping

Programming languages

• C/C++, C# - Advance
• V H D L - Intermediate
• MatLab, G N U Octave - Intermediate

C A D systems

• KiCad, Eagle - Advance

• FreeCAD, AutoCad - Intermediate

Documents and graphics editors

• MS Office, Libre Office - Advanced

• Gimp, Inkscape, RawTherapee - Intermediate

Others

• Linux server administration - Intermediate

92

mailto:roman.mego@vutbr.cz

Experience • since 2011 ModemTec - Research and development, embedded
system design, signal processing and communication

• 6/2012 - 8/2012 Freescale Semiconductor - student internship
• 2005 - 2006 DcaLaser - CNC programming and technical

documentation conversion

Language • Slovak - Native speaker
skills • English - Intermediate

93

List of publications
2020

Ladislav Stastny, Roman Mego, Josef Pihera, Jaroslav Hornak. Selectivity of inductive
coupling for partial discharge measurement in M V cables. International Conference on
Diagnostics in Electrical Engineering (Diagnostika 2020). 2020. ISBN: 978-1-7281-
5879-2 (submitted for publication).

2019

Roman Mego, Tomas Fryza. A Tool for V L I W Processors Code Optimizing. In
Proceedings of the 13th International Conference on Computer Engineering and
Systems (ICCES 2018). 2019. doi: 10.1109/ICCES.2018.8639186.

2018

Tomas Fryza, Roman Mego. Instruction-level Programming Approach for Very Long
Instruction Word Digital Signal Processors. In Proceedings of the 24th IEEE
International Conference on Electronics, Circuits and Systems (ICECS 2017). 2018.
doi: 10.1109/ICECS.2017.8292060.

2017

Bedrich Benes, Roman Mego. Narrowband Power Line Communication Over Medium
Voltage: An Excellent Tool for Line Diagnostics. Metering & Smart Energy
International. Issue 4. 2017. ISSN: 1025-8248.

2016

Tomas Fryza, Roman Mego. Advanced Mapping Techniques for Digital Signal
Processors. In 16th IEEE International Symposium on Signal Processing and
Information Technology. 2016. doi: 10.1109/ISSPIT.2016.7886037.

Ladislav Stastny, Roman Mego, Lesek Franek, Zdenek Bradac. Zero Cross Detection
Using Phase Locked Loop. In 14th IFAC Conference on Programmable Devices and
Embedded Systems - PDeS 2016. IFAC-PapersOnLine (ELSEVIER). 2016. doi:
10.1016/j.ifacol.2016.12.050.

Roman Mego. Implementation of retargetable configurable CORDIC algorithm for
FPGA devices. Sbornik príspevku študentské konference Blansko 2016. 2016. ISBN:
978-80-214-5389-0.

Tomas Fryza, Roman Mego. Frequency Domain FIR Filter Optimization for Multi-core
C6678 DSP. In 26th International Conference Rádioelektronika. 2016. doi:
10.1109/RADIOELEK.2016.7477430.

94

Roman Mego. Instruction mapping process on the V L I W architectures. In Proceedings
of the 22nd conference Student EEICT. 2016. ISBN: 978-80-214-5350-0.

Roman Mego. Processor Model for the Instruction Mapping Tool. In Proceedings of the
First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD
2016). 2016. ISBN: 978-84-608-6309-0.

2015

Roman Mego, Tomas Fryza. Efficiency of the Signal Processing Algorithms Using
Signal-Flow Based Mapping Tool. In Proceedings of 25th International Conference
Rádioelektronika 2015. 2015. doi: 10.1109/RADIOELEK.2015.7129035.

Roman Mego. Hi-Speed USB Communication with FPGA. In Sbornik príspevku
študentské konference Kohutka 2015. 2015. ISBN: 978-80-214-5239-8.

2014

Tomas Fryza, Roman Mego. Power Consumption of Multicore Digital Signal Processor:
Theoretical Analysis and Real Applications. In Proceedings of the 2014 IEEE 23rd
International Symposium on Industrial Electronics. 2014. doi:
10.1109/ISIE.2014.6864904.

Roman Mego, Tomas Fryza. Tool for Algorithms Mapping with Help of Signal-Flow
Graph Approach. In Proceedings of 24th International Conference Rádioelektronika
2014. 2014. doi: 10.1109/Radioelek.2014.6828429.

Roman Mego. Behavior of hardware acceleration on real-time operating systems. In
Sbornik príspevku študentské konference Zvule 2014. 2014. ISBN: 978-80-214-5005-
9.

2013

Roman Mego. Tomas Fryza. Performance of parallel algorithms using OpenMP. In
Microwave and Radio Electronics Week M A R E W 2013. 2013. doi:
10.1109/RadioElek.2013.6530923.

Tomas Fryza, Roman Mego. Low Level Source Code Optimizing for Single/Multi-core
Digital Signal Processors. In M A R E W 2013. 2013. doi:
10.1109/RadioElek.2013.6530933.

2012

Roman Mego. RFID Access Terminal. In Proceedings of the 18th conference Student
EEICT. 2012. ISBN: 978-80-214-4461-4.

Roman Mego, Tomas Fryza. RFID prístupový terminal. Elektrorevue - Internetovy
časopis (http://www.elektrorevue.cz). 2012. ISSN: 1213-1539.

95

http://www.elektrorevue.cz

