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Abstract

This thesis aims to assess the effect of various compression options and image processing
techniques for different types of fingerprint images. Also, various fingerprint matching
techniques will be tested to measure the similarity between the processed and the original
fingerprint image. The work evaluated the performance of JPEG, PNG, and the WSQ
compression, as well as the minutiae-based, cross-correlation, and the PSNR matchers.
The fingerprint image processing techniques included image normalization, binarization,
depth change, noise removal, and resizing. As a result, the PNG compression recorded the
best average scores for all fingerprint types according to all tested matchers. Furthermore,
the JPEG compression registered the best average compression times, while the WSQ
compression produced the smallest compressed file sizes. Moreover, the fingerprint image
processing techniques did not improve the matching scores, but only made them worse.

Abstrakt

Tato praca si kladie za ciel zhodnotit vplyv réznych moznosti kompresie a technik spra-
covania obrazu pre rozne typy snimok odtlackov prstov. Kvalita kompresnych metéd sa
otestuje pomocou roéznych technik porovnavania odtlackov prstov na meranie podobnosti
medzi spracovanym a povodnym obrazkom odtlacku prsta. Praca hodnotila vykonnost kom-
presii JPEG, PNG a WSQ), ako aj porovnavace zalozené na markantoch, krizovej korelacii
a PSNR. Techniky spracovania odtlackov prstov zahinali normalizaciu obrazu, binarizaciu,
zmenu bitovej hibky, odstranenie §umu a zmenu velkosti obrazu. Vysledkom bolo, ze kom-
presia PNG zaznamenala najlepsie priemerné skore pre vsetky typy odtlackov prstov podla
vsetkych testovanych porovnavacov. Okrem toho kompresia JPEG zaznamenala najlepsie
priemerné kompresné casy, zatial ¢o kompresia WSQ priniesla najmensie komprimované
velkosti siborov. Techniky spracovania snimok odtlackov prstov nezlepsili skére zhody, iba
ich zhorsili.
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Rozsireny abstrakt

Identifikacia os6b na zdklade odtlackov prstov je jednou z najzakladnejsich biometrickych
technik. Nato, aby mohla byt osoba uspesne identifikovana, sa musi v ¢ase porovna-
nia, zhodovat jej odtlacok prsta s porovnavanym snimkom odtlacku v databaze. Takato
databaza, ktora obsahuje mnozstvo obrazkov odtlackov prstov, musi byt niekde umiest-
nend. Starat sa o takuto databazu moze byt ndkladné jednak z ¢asového hladiska nahrava-
nia a stahovania obrazkov, a jednak z hladiska platenia za takéto tlozisko. RieSenim méoze
byt pouzitie kompresie. Skomprimované obrazky zaberaji menej miesta a prenos takychto
obrazkov zaberie menej ¢asu. Tato praca sa zameriava na porovnanie roznych kompres-
nych algoritmov, ich parametrov, a ich vplyvu na roézne typy obrizkov odtlackov prstov.
Kazdy skomprimovany obrazok je porovnany na zhodu so svojim origindlom podla réznych
porovnéavacich algoritmov. Pred kompresiou mozno upravit odtlacok prsta pomocou filtra,
ktory moéze zlepsit vysledok porovnania, alebo urychlit ¢as kompresie. Za tcelom tejto
prace bol implementovany nastroj s grafickym uzivatelskym rozhranim, ktory dokéaze naci-
tat obrazok odtlacku prsta, alebo cely priec¢inok odtlackov prstov. Nésledne je mozné pouzit
jeden z filtrov pre odtlacky prstov, konkrétne ide o normaliziciu obrazu, binariziciu s lokal-
nym prahom, odstrdnenie §umu, zmenu bitovej hibky, alebo zmenu velkosti obrazu. Nato
je mozné pouzit jednu z podporujicich kompresii, konkrétne JPEG, PNG, alebo WSQ. Pre
kompresie JPEG a PNG sa da zvolit kompresny pomer, a pre kompresiu WSQ sa da zvolit
rychlost kddovania. Skomprimovany obrazok mozno porovnat s jeho origindlom na zdklade
porovnania podla markantov, krizovej korelacie alebo PSNR. Vysledna aplikacia bola im-
plementovand v jazyku Java s vyuzitim kniznice JavaFX pre tvorbu uzivatelského rozhrania.
Toto uzivatelské rozhranie nie je nevyhnutné spustit, pretoze aplikacia podporuje nacitanie
suboru typu XML, ktory obsahuje informacie o zdrojovom priec¢inku s obrazkami odtlackov,
kompresiami a filtrami, ktoré aplikovat, a aj porovnavacie techniky, podla ktorych budua
nasledne obrazky porovnané. Vysledky prace ukazali, ze kompresia PNG zaznamenala
najlepsie priemerné skore pri vSetkych druhoch algoritmov porovnania. AvsSak, pre redlne
a syntetické odtlacky vSetky kompresie s pouzitymi filtrami, ale aj bez nich, zaznamenali, na
zéklade porovnania podla markantov, priemerné skore, ktoré je minimalne dva krat vyssie,
ako odporicana hodnota pre zhodu. Pre ostatné typy odtlackov, choré, poskodené a falosné,
zaznamenali iba kompresie JPEG a PNG, bez pouzitych filtrov, priemerné skore, ktoré by
sa dalo povazovat za zhodu. Na zaklade porovnani pre krizovi korelaciu zaznamenala iba
kompresia PNG priemerné skore, ktoré by indikovalo zhodu. Aplikovanie réznych technik
pre spracovanie obrazu, alebo filtrov, neprinieslo o¢akévané vysledky. Priemerné skore pre
varianty, pre ktoré neboli pouzité filtre, je ovela vyssie, ako pre varianty, pre ktoré boli
pouzité filtre. Naproti tomu, aplikacia filtrov pozitivne ovplyvnila priemerny cas kompre-
sie a priemerné velkosti skomprimovanych obrazkov. S pouzitymi filtrami klesol priemerny
Cas kompresie aj velkost skomprimovanych obrazkov. Najviac sa o to zasluzili filtre, ktoré
zmenili hibku obrazku na 1 bit, alebo zmensili obrazok. Dalej sa zistilo, ze hocijakd kom-
binacia kompresie, jej parametrov a filtra dokaze vyprodukovat nulovi zhodu s pévodnym
obrazkom. To mdze byt spdsobené nizkou kvalitou vstupného obrizku odtlacku prsta, ale
aj spracovanim snimku odtlacku. Algoritmy pre porovnanie maji vo vSeobecnosti prob-
lém s odtlackami v nizkej kvalite, alebo s odtlackami, pre ktoré nevedia najst dostatocné
mnozstvo zachytnych bodov, markantov. Taktiez, pre implementaciu technik spracovania
obrazu boli pouzité funkcie kniznice OpenCV. Konverziou reprezenticie obrazu v jazyku
Java na reprezentaciu obrazu pre OpenCV mohlo do6jst k strate tidajov a teda optiméalna
funkcionalita tychto filtrov nemusela byt zaistena.
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Chapter 1

Introduction

”A database is a collection of information that is organized so that it can be easily ac-
cessed, managed and updated”'. In terms of finances and time, managing and updating
such a database can be costly. The storage space required for this database may be ex-
pensive. Also, uploading and downloading high-quality images to and from this storage
space is time-consuming. To deal with this problem a compression can be used and make
the images smaller. The compressed image can be uploaded to the storage space while
requiring less time for transfer and occupying less space. When the image is downloaded
it can be recreated to match the original image. Using a compression means that some
information may be lost, and the image will not be the same when recreated. Also, the
compression and decompression take some time which may no be pleasant if many images
are compressed /decompressed.

This work talks about different compression algorithms that can be used when dealing
with the database of various fingerprint images. The diverse quality of fingerprint images
may require different compressions to obtain satisfactory results. These results are produced
by comparing the original and the recreated fingerprint image with a fingerprint matching
algorithm. Furthermore, for each compression, various compression parameters can be
used. Using the different values of compression parameters may affect the compression
time, compressed file size, and also the comparison score.

An image can be enhanced through the application of various filters. If the image is en-
hanced before the compression, the process is called the pre-processing. The pre-processing
can also alter the compression time, compressed file size, or comparison result. For the fin-
gerprint images, well-known enhancement techniques include image normalization, image
binarization, noise reduction, and thinning.

1.1 Goal of the thesis

The goal of this thesis is to test how various filters, compression algorithms, and compression
parameters affect different kinds of fingerprint images. Specifically, an application will be
proposed, which will offer the user a chance to load either a fingerprint image or a whole
directory of fingerprint images. Then the user will have a chance to apply some image pre-
processing technique, then compress the image with one or more compression algorithms
provided. Then each compressed image can be decompressed, and compared to the original
fingerprint image using some fingerprint matching algorithm. For each compressed image,

"https://searchsqlserver.techtarget.com/definition/database
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file size and compression time are measured which can be used to calculate the performance
of the compression method and the quality of the reconstructed image. The fingerprint
matching algorithm will provide the equivalence between the original and the reconstructed
image.

1.2 Document structure

There are 5 chapters in this thesis.

Chapter 2 provides a summary of the current state. It presents fundamental information
about fingerprints such as their composition, pattern, and a process of how a fingerprint
is taken. Furthermore, the ideas of how to enhance a fingerprint image through various
filters are presented in 2.1.2. These filters aim to reduce the compression time, reduce the
compressed file size, or improve the matching score produced by the fingerprint recognition
algorithm. These fingerprint recognition algorithms are described in 2.1.3. Additionally,
the compression process as well as the JPEG, the PNG, and the WSQ compressions are
outlined in 2.2. Finally, the measurement of the compression efficiency by PSNR and MSE
is explained in 2.2.5.

Chapter 3 talks about the projected functionality of the application that will be imple-
mented. The functionality described in 3.1 will let the user to load a fingerprint image or
a whole directory, apply a filter or a collection of filters to the loaded image(s), to compress
the loaded image(s), or the compare the compressed image with the original one. Section 3.2
describes the implementation specifications, and finally in section 3.7, issues encountered
during the implementation are specified.

Chapter 4 outlines how the application was tested and provides the results for different
kinds of fingerprint images. Fach type of fingerprint image was compressed with a miscella-
neous compression algorithm with various compression parameters. Before the compression,
a filter or a collection of filters was used to see if better matching results can be obtained.

Chapter 5 talks about whether the aims of this thesis were accomplished and discusses
future work.



Chapter 2

Summary of the current state

2.1 Biometrics

Biometrics is "the measurement and analysis of unique physical or behavioral character-
istics (such as fingerprint or voice patterns) especially as a means of verifying personal
identity”'. Fingerprint recognition is the most common and one of the most successful
biometric techniques. Fingerprint is ”an ink impression of the lines upon the fingertip
taken for the purpose of identification””. From a more complex point of view, fingerprint
contains the substances from the epidermis, the secretory glands, and intrinsic components
(such as grease or food contaminants) [5]. It is believed that there are no two identical
fingerprints [25]. Even twins have different fingerprints [15]. Therefore, it provides a great
platform for people identification. Fingerprint recognition has been used in forensic science
for a long time. The first mention of fingerprints usage comes from 1858 when Sir William
Hershel used fingerprints of workers in the Indian Civil Service to document and verify their
identity when collecting their wages [6]. Since then, fingerprints have been used in criminal
investigations to identify the perpetrators. Many features can be told from the fingerprints,
such as donors age, gender, and race [5]. More recently, they have found a new usage in
smartphones, when the phone is allowed to be unlocked by its owner’s finger.

2.1.1 Fingerprint

Another definition of the fingerprint, in contrast to the Merriam-Webster, is: ”A fingerprint
is the pattern of ridges and valleys on the surface of a fingertip” [11]. The uniqueness of
each fingerprint is characterized by the relationships of the ridge characteristics. Most
fingerprint matching algorithms which compare these local ridge characteristics, work with
only two types of ridge characteristics. These characteristics, also called minutiae, consist
of ridge ending and ridge bifurcation [11]. However, in forensic science, there are many
more ridge characteristics used which are derived from the basic types [6]. Other minutiae
include double bifurcation, triple bifurcation, crossover, delta, enclosure, dot, or an island.
Some of the most common minutiae patterns can be seen in figure 2.1.

”A ridge ending is defined as the point where a ridge ends abruptly. A ridge bifurcation
is defined as the point where a ridge forks or diverges into branch ridges.” [11]

Fach fingerprint image is unique and depending on the fingerprint and image quality,
a fingerprint image of good quality can contain 60 to 80 minutiae [24]. A fingerprint quality

https://www.merriam-webster.com/dictionary/biometrics
*https://www.merriam-webster.com/dictionary/fingerprint
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Figure 2.1: Minutiae patterns. Image taken from https://www.bayometric.com/
minutiae-based-extraction-fingerprint-recognition/

is subject to numerous factors. Each fingerprint goes through two stages, the deposition and
the aging [5]. The deposition stage takes place when the fingerprint is taken. During this
time the donor’s age, health, medication, race, gender, diet, and deposition conditions affect
the resulting fingerprint. Depositions conditions include contact time, pressure, angle, and
the substrate. The substrate is used to enhance the composition of the resulting fingerprint.
Depending on the donor’s characteristics various substrates and deposition methods can
be used [5]. The second stage of a fingerprint is the aging stage which begins when the
fingerprint is successfully deposited. A long aging stage can harm the composition of the
fingerprint. The right substrate choice during the deposition stage can slow fingerprint
degradation over time. However, other conditions also affect the fingerprint quality. The
most influential conditions on the fingerprint quality include temperature, humidity, and
light levels [5]. Depending on the time elapsed in the aging stage, some enhancement
techniques can be used to alter the quality of the fingerprint. These enhancement techniques
include chemical or physicochemical methods, for example the effect of aluminum powder
or indanedione can have a significant effect on the fingerprint composition [5]. However,
the impact of these methods depends on the age of the fingerprint. It has been suggested
that the humidity has the largest influence on the quality of the enhancement. The higher
the humidity the lower the quality of the ridge detail. As time passes, the water evaporates
from the fingerprint and the chemical enhancements to the fingerprint have almost no effect.
The evaporation of water can lead to large changes in thickness [5].

To prevent identification a fingerprint image can be forged. These forged fingerprint
images can be produced by fake fingerprints or altered fingerprints [27]. The fake finger-
prints are fingerprints fabricated from materials such as silicone [8]. Their main aim is to
counterfeit the real fingerprint and fool the fingerprint matching device [8]. On the other
hand, the altered fingerprints are real fingers. The altered fingerprint may be ill or other-
wise obfuscated fingerprint. The ill fingerprints are fingerprints that have been produced by
a finger that bears scars, scratches, burns, illnesses, or other skin damage[10]. As mentioned
in [10], any damage done below the epidermis can cause the alteration in the fingerprint
pattern permanently. The obfuscated fingerprints are fingerprints that have been intention-
ally altered to prevent identification [27]. It has been proven that some people [10] may
intentionally try to change their fingerprint patterns to prevent identification. Fingerprint
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images can also be artificially generated to imitate the real fingerprints [18]. The goal of
generating such fingerprints is to ”avoid collecting databases of real fingerprints”[18] which
can be time-consuming [18].

2.1.2 Fingerprint enhancement

The fingerprint matching algorithms depend on the comparison of the ridge characteris-
tics [11]. Therefore, the algorithms heavily depend on the quality of the fingerprint image.
In an ideal fingerprint image, the ridge characteristics are well-defined, meaning "ridges
and valleys alternate and flow in a locally constant direction and minutiae are anomalies
of ridges, i.e., ridge endings and ridge bifurcations” [11]. However, in the real world, these
minutiae are not always very well-defined and therefore they cannot be easily detected. The
easier to detect these local ridge characteristics the more precise the matching algorithm
can be.

To ensure that the minutiae are easily detected various fingerprint enhancement algo-
rithms are used. Fingerprint image which has not been enhanced can produce problems,
such as false minutiae, ignored minutiae or minutiae localization during fingerprint match-
ing [11]. Therefore, it can be said that the main aim of the enhancement algorithms is to
remove the false minutiae, clarify and improve the ridge structures which would be ignored
or wrongly localized during the fingerprint matching process. Simply said, the fingerprint
enhancement improves the quality of the fingerprint image [26].

The fingerprint enhancement algorithm can be run on either binary or gray-scale fin-
gerprint images [11]. Each image type has its advantages and disadvantages. For example
most of the fingerprint matching algorithms work better with binary fingerprint images.
However, to convert an image from grayscale to binary can be time-consuming, even more,
if the whole database has to be converted. Also, during the binarization, a lot of informa-
tion may be lost and the binarization process may prove to be inefficient for low-quality
images [25].

Nevertheless, the fingerprint enhancement does not only improve the fingerprint match-
ing process but also fingerprint image compression can be improved. For example, when the
false minutiae are removed before the compression, the compression time can be reduced
and the size of the compressed image can also be reduced.

Normalization

The aim of the process of normalization is to diminish the variations in gray-level values
along the ridges and valleys. Normalization removes the effect of sensor noise. Thus, nor-
malization is used to change the intensity values of pixels [1]. ”Normalization does not
change the clarity of the ridge and valley structures” [11]. After the normalization, the im-
age’s colors are evenly spread throughout the image and the image is easier to compare [24].
Equation 2.1 [1] defines the normalized value for pixel located at (i,j) coordinate of the
image:
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where N(i,7) is the normalized value at (i,j) coordinate, I(i,j) is gray level value at
(i,7), My is the desired mean, V| is the desired variance and My = Vy = 100 [1]. The
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equations 2.2 [1] and 2.3 [1] define the variables M; (mean) and V; (variance) respectively.
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where L x N is an image dimension in pixels and I(7,j) is the pixel intensity.

Binarization

The binarization aims to convert the fingerprint image to binary. Binary images have a pixel
depth of one bit and are therefore black (0) or white (1). In a grayscale image each pixel
is in the range from 0 (black) to 255 (white). When converting such an image to binary
a threshold is chosen and each pixel that has its value less than this threshold is represented
as 0 otherwise it is represented as 1. This threshold can either be a global or local /adaptive
threshold. Global threshold means that a value is chosen before the binarization process
starts and remains the same for the whole time. When the local threshold is chosen, for
each pixel whose resulting value is determined, values of N-number of neighboring pixels
are summed up and divided by N. The resulting value is used as the threshold. In grayscale
images the pixel intensities vary. It has been suggested that it may be harder for some
matching algorithms to distinguish between the ridges and the valleys and therefore the
extraction of the key features used for verification proves difficult [24].

Thinning

This process aims to covert each ridge to be one-pixel wide [3]. Like the process of binariza-
tion, converting a fingerprint image to have thinned ridges is time-consuming, especially
when the whole database is converted. However, fingerprint images that have thinned ridges
do contain fewer redundancies and the performance of the compression algorithms may not
be as time-consuming as they would normally be if the ridges were not thinned.

Noise reduction

As mention before, in practice, a fingerprint image is not ideal. There are elements of
noise which corrupt the clarity of the ridge structures [3]. This noise produces the false
minutiae and can hide the real one [1]. The noise is created by the variations in skin,
namely scars, dirt, or bad contact with the fingerprint capturing device [3]. Thus, the
noise reduction process enhances the definition of ridges against the valleys minimizing
false minutiae detected. This noise reduction process can be done as a combination of
normalization and Gabor filtering or Median filter, for example. Also, there are other
suggested methods, such as Directional Fourier filtering [3].

Low-quality images come with noisy background. This background needs to be sepa-
rated from the foreground during this process. By doing so, the future noisy background
extraction from the foreground is avoided [2]. It is suggested that the fastest methods for
this process are based on Gabor filters [2]. ”"Gabor filters are orientation-sensitive filters
used for edge and texture analysis” [14]. They are mainly used for edge detection be-
cause the structure of the filter can easily detect edges in the images of various shapes and
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sizes [14]. Simply put, these filters have very good localization properties that fit various
images. By applying a Gabor filter to the fingerprint image, the foreground which contain
ridges of different directions can be extracted from the background.

A more simple method of noise reduction is Median filtering. It does not detect the
edges of an image and then extracts it from the noisy area, but it replaces pixel’s value
with the median of nearby pixels in a window [24]. Median filter method is simple, effective
and it keeps the edges without blurring. However, in practice that is not always the case
as ”in the presence of the noise it does blur edges in images slightly” [24]. It is necessary
to perform noise reduction, such as median filtering, before doing any further higher-level
processing steps [24].

2.1.3 Fingerprint recognition algorithms

The main goal of the fingerprint recognition algorithm is to determine whether two finger-
print patterns have been produced by the same person [26].

There are various techniques used in fingerprint matching. According to [3] there are
four fingerprint matching techniques:

e minutiae-based

pattern matching

correlation-based

e image-based

However, according to [20] there are three fingerprint matching techniques:
e correlation-based

e minutiae-based

e non-minutiae base

It can be seen that both of these classifications mention the minutiae-based and the
correlation-based techniques. Still the classifications differ on the remaining items. Ac-
cording to [20], the non-minutiae based techniques "search for additional fingerprint distin-
guishing features, beyond minutiae” [20].

Minutia-based technique

The most commonly used technique today for scanners is the minutiae-based technique [3].
In this technique, a fingerprint is understood to be made of small local features such as ridge
ending and bifurcation called minutiae. A template is formed by extracting the minutiae
form the fingerprint [20]. "Matching essentially consists of finding the alignment between
the template and the input minutiae sets” [20]. Therefore, the whole fingerprint matching
problem is reduced to the point that two fingerprint images are considered equal if they
have the same minutiae [3]. This technique requires high image quality for reliable minutiae
extractions [25].
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Correlation-based technique

The correlation is a measurement of similarity. The correlation-based technique takes two
images and counts cross-correlation between them. It is a standard image similarity mea-
surement technique. It takes a pixel intensity of the original image and the testing image,
then it calculates their difference, then squares the difference [20]. Nevertheless, the origi-
nal and testing fingerprints are not always ideally aligned, and so more complex algorithms
have to be introduced to calculate the cross-correlation [20]. However, in fingerprint image
recognition it can be quite computationally expensive [3], especially when trying to find
a matching fingerprint image in a big database. Epidermis conditions can cause different
fingerprint image effects, hence more sophisticated correlation algorithms are needed to
increase technique accuracy [3].

Pattern-matching technique

Pattern matching technique is more content-based because unlike minutiae-based technique,
it is based on a series of ridges [3]. These ridges form fingerprint patterns such as arch,
loop, or whirl [13]. This technique compares these patterns in the original and the compared
image [13]. Ridge can be affected by numerous effects such as finger placement on a scanning
sensor [3] when the fingerprint is taken and therefore a positive match does not have to be
found. This is the major drawback of the pattern matching technique. However, at the time
of fingerprint deposition, minutiae points may be affected by wear and tear and minutiae-
based technique would be prone to wrong results [3]. This is where pattern matching has
an advantage over the minutiae-based technique because it is more efficient.

Image-based technique

Image-based technique is a newly emerging technique which can solve intractable prob-
lems [3]. In this technique, minutiae are not extracted from the fingerprint but whole
fingerprint images are compared against each other. Image pre-processing is not required
and a gray-scale fingerprint image may be used for matching [25]. Since pre-processing is
not required, this technique has higher computational efficiency and can be used on images
with low quality where minutiae or pattern-based technique would fail due to unreliable
minutiae extraction [25]. Like pattern matching, this technique is very dependable on the
orientation of the fingerprint in the image and therefore can produce misleading results.

Non-minutiae based technique

For low-quality fingerprint images, the extraction of minutiae may be complicated [20].
Therefore, the non-minutiae based technique must be introduced. This technique is based
on the image texture, either local or global [20]. ”"Image texture is defined by the spatial
repetition of basic elements, and is characterized by properties such as scale, orientation,
frequency, symmetry, isotropy, and so on” [20]. This technique also depends on the right
alignment of the original and the compared fingerprint images [20]. To ensure that images
are correctly aligned, some minutiae may be used as anchor points [20].
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2.2 Compression algorithms

The main goal of a compression algorithm is to reduce the information required to represent
the image [12]. Decompression is the opposite process to the compression. The file created
by the compression is called the compressed file and the file created after the decompres-
sion is called the decompressed file. The image created by the compression is called the
compressed tmage and the image created by the decompression is called the decompressed
tmage. The image compression comprises of two parts. The first part is called a compressor
or an encoder which produces a compressed image from the original image. The second
part is called a decompressor or a decoder and it creates a reconstructed image from the
compressed image. Section 2.2.1 contains more information about the encoder and sec-
tion 2.2.2 contains more information about the decoder. The basic steps of the compression
are shown in figure 2.2 [21].
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Figure 2.2: Figure show the basic compression and decompression steps. Image taken
from [21]

There are two main compression methods: lossy and lossless [23]. When using the lossy
compression, some of the information representing the original image is lost. Thus, allowing
the compressed image to become smaller. On the other hand, the reconstructed image does
not exactly match the original image. Meanwhile, the reconstructed image of the lossless
compression is the replica of the original image but the size of the compressed image is not
as small.

Regardless of the compression type, there are "three basic steps: transformation, quan-
tization, and encoding” [23]. The most common way of compressing an image is to reduce
the correlation or redundancy among the neighboring pixels. This redundancy is also called
spatial correlation. Before the compression, some pre-processing techniques can be used to
prepare an image for the compression, thus making the compression even more effective.
It has been suggested, that reducing the correlation before the compression can improve
the compression effect [12]. After the compressed image has been decompressed some post-
processing techniques can be used to filter out artifacts gained during the compression [12].
JPEG compression is the most commonly known to leave the artifacts.
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2.2.1 Encoder

The compression process starts with data reduction. Then "the second step is the mapping
process, which maps the original image data into the mathematical space where it is easier
to compress the data” [12]. Following the mapping process is the quantization, which
puts the data from the mapping stage in the discrete form [12]. Lastly, the data are
coded [12]. Depending on the compression algorithm, the compressor can consist of all
these stages or only some of them [12], for example the lossless compressions may not
require the quantization process.

2.2.2 Decoder

To decompress the image, reversible transformations are needed to be applied. The quanti-
zation process is not reversible. Therefore, no reversible process exists and some information
is lost.

Decompression starts with reversing the coding [12]. It does so by mapping the codes
to the quantized values [12]. Following the decoding is the “inverse mapping to reverse the
original mapping process” [12]. After this, the reconstructed image is obtained.

2.2.3 Lossy compression

The most common compression algorithms used for images desiring lossy compression are
based on the Discrete cosine transform (DCT) [12]. "The DCT works by separating images
into parts of different frequencies” [4]. The less important frequencies are then discarded
during the quantization. During the reconstruction process the image is only reconstructed
from the non-discarded frequencies, hence the distortion occurs [4].

Compressed images produced by the lossy compression can be much smaller in size than
the ones produced by the lossless compression.

JPEG compression

JPEG compression is a compression scheme specified by the Joint Photographic Experts
Group (JPEG) based on the Discrete cosine transform (DCT). It has been reported that
JPEG is not suitable enough for fingerprint images compression because of the minutiae
degradation and the relics of blocking artifacts [16]. To increase the accuracy of the finger-
print matching algorithms, artifacts of the JPEG compression need to be filtered out [9].

WSQ compression

It has been suggested that desiring a high compression ratio while maintaining high image
quality, wavelets should be used [23]. Although wavelet compression is lossy, the recon-
structed image contains differences that are barely visible to the human eye [23].

WSQ compression can be based on a Discrete wavelet transform (DWT). DWT analyses
the signal in the time-frequency domain. DWT is made of wavelets which correlate with
the signal [6]. These wavelets are defined in the finite time interval [6]. An example
wavelet can be seen in figure 2.3. In contrast to Discrete Fourier transform and Discrete
cosine transform, DWT has better reduction capabilities and better computation time [23].
"DWT can deliver better image quality on higher compression ratios” [23].
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Figure 2.3: A wavelet example, Morlet wavelet. Image taken from https://
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2.2.4 Lossless compression

Compressed images produced by the lossless compression can be perfectly reconstructed
to their original image. Some images, for example, the ones containing the results from
a medical examination, may need to be reconstructed perfectly otherwise they may lead to
wrong diagnosis [12].

PNG compression

The PNG compression is done in two phases, filtering and compression [19]. The filtering
is applied to make the image more compressible. For each pixel, the filter predicts the
value based on the neighboring pixels and then subtracts from the current value [19]. The
compression is based on the Deflate format, which is a combination of Huffman coding and
LZ77 [19]. The LZ77 algorithm reduces the repetitive data [7]. "If the algorithm encounters
a sequence of data that has been previously used in the file, it replaces it with a reference
to the first sequence” [7]. Lastly, it reduces the character representation with the Huffman
coding [7]. Thus, it can be said that if multiple repetitive sequences arise in the image then
the PNG is a perfect choice.

2.2.5 Compression efficiency

There are many ways to measure the compression efficiency. One approach is to calculate
the compression ratio, in equation 2.4 [12], which is calculated as a ratio of the size in bytes
of the original file and the size in bytes of the compressed file.

original  file size

compression ratio = (2.4)

compressed file size

Another way to find out how one image matches the another is to measure the fidelity [16].
Fidelity expresses the difference between the original and the reconstructed image. This
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difference is also called the distortion. If this distortion is small it means that the recon-
structed image is very similar to the original one. To calculate this distortion, firstly one
must calculate a simple form called mean square error (MSE), defined in equation 2.5 [12]

which can be used.
M N

MSE = 3" S (f6.5) — 6. ) (25)

i=1 j=1

where fis an original image, g is a reconstructed image, f(7,j) is the pixel value at (i,j)
coordinate of the original image, g(%,j) is the pixel value at (i,j) coordinate of the recostructed
image, and both images have M x N pixels. "This is a useful measure as it gives an average
loss in the lossy compression of the original image” [12]. Another distortion measure between
the original and the reconstructed image is the peak signal to noise ratio (PSNR). PSNR
is used to describe the similarity (in decibels). Equation 2.6 [16] defines PSNR:

255
vVMSE

where MSE is the mean square error calculated by equation 2.5. Thus, the smaller the
errors the smaller the MSFE the bigger the similarity. Two images are considered to be
identical when the PSNR is higher than 40 dB [23].

PSNR =20 x lOgl()( ) (2.6)
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Chapter 3

Proposed Application

This chapter provides the layout of the projected functionality of the implemented appli-
cation as well as some implementation specifications.

3.1 Projected functionality

The final application will serve as a tool for manipulation with fingerprint images. It will
allow the user to compress and decompress the fingerprint image or a whole directory of
fingerprint images. After the fingerprint image(s) has been decompressed, the user can
compare them with the original image(s).

This application will support both compression types, lossy and lossless. For lossy
compression, the application will provide the compression based on the Discrete cosine
transform (DCT) as well as the Discrete wavelet transform (DWT). For DCT, JPEG com-
pression will be supported and for DWT the WSQ compression will be supported. For
lossless compression, the PNG compression will be supported.

As outlined in [16], the whole compression/decompression can be made in the so-called
compression cycles. The compression cycle is a process in which multiple compression
methods are used to obtain the final compressed image. The compression method used
during the compression cycle can remain the same or different compression methods can be
used. The implemented application will also support the use of these compression cycles.

As mentioned in 2.2, the compression result can be altered with the use of some image
enhancement techniques. Not only the compression results can be altered, but also the fin-
gerprint matching results can be altered with the use of the image enhancement techniques.
Thus, the application will provide the user the choice to normalize the image, to remove
noise from the image(to discard the false minutiae and reveal the real one), to binarize the
image(to decrease the compression time and improve the fingerprint matching result), to
resize the image and to change the depth of the image(as normalization can only be done
on gray-scale images).

For each compressed fingerprint image, the compression time and the size of the com-
pressed file will be measured. For the comparison between the original and the reconstructed
image, the application will support the different fingerprint matching algorithms as well as
calculating the PSNR. The PSNR will be measured to calculate the distortion. These mea-
surements will be taken to compare the efficiency of using different compression methods
with and without the pre-processing techniques.

18



It has been suggested by the supervisor that the application should support loading
of an XML which would contain information about source directory, destination directory,
filters to be used, compressions with their parameters to be used, and matches to be used.
The application would then execute the loaded XML. Such XML would also be used for
testing purposes.

3.2 Implementation specifications

The application is implemented in the Java programming language with the GUI imple-
mented in the JavaFX library with Maven being used for the application’s building process.

The minimum Java version required to launch the application is 11. There is a simple
reason for the version being set so high. The GUI requires the JavaFX library to be
a part of the Java Development Kit (JDK). The library was supposed to be a part of the
JDK until version 1.8. Unfortunately, that is not always the case, as experienced during
the implementation. The library seemed to be included in the JDK but some files were
missing, thus making it unable to launch the GUI. After the missing files were downloaded
and copied to the required directory, the GUI launched successfully. There is a simple
solution to prevent the problems with the JavaFX library. The JavaFX library will be
downloaded' during the build process. One of the requirements for this workaround to
work is having the Java version 11 or posterior.

3.2.1 GUI implementation

GUI works with JavaFX’s scenes. Each scene is divided into three parts. At the top
of each scene, a brief text description of the current scene is provided. The left part of
the scene comprises of clickable buttons which allow the user to interact with the scene.
These are explained below but they include actions such as loading an image, proceeding
to the next scene, or going back to the previous scene. Also, the pre-processing scene
contains a selection box, which allows users to select the filters of their desire. Finally,
the center of the scene, composes of an area that shows loaded images. Figure 3.1 shows
the pre-processing scene, and also it shows how the scene is divided. Furthermore, there
is a pop-up window which is shown when an error is encountered or the selection of the
compression parameters is required.

When the application is run with the GUI, an initial scene is set. This initial scene
provides the user with an ability to load image(s) or load an XML.

When the user chooses to load image(s), options to start the compression process,
or to start the matching process are provided. Selecting the start the compression process
button navigates the user to a pre-processing scene where filters can be applied to an image.
This scene offers buttons for loading an image, loading a directory of images, starting the
compression, or going back to the previous scene. The figure 3.1 shows the pre-processing
scene.

Starting the compression changes the current scene to the compression scene. The
compression scene offers the user a choice to choose one of the supported compressions.
If no images are loaded then a pop-up shows to inform the user that the compression
cannot proceed further, otherwise a pop-up shows to display the selection of the available
compression parameters for the selected compression. Section 3.2.3 talks about the possible

https://openjfx.io/openjfx-docs/#introduction
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compression parameters for each compression. Figure 3.2 shows the compression scene with
the pop-up for selecting the compression parameters for JPEG compression.
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Figure 3.1: Pre-processing scene
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Figure 3.2: Compression scene with the pop-up for selecting the compression parameters

The matching scene is presenting options for users to load an original image, to load
a comparing image, to start minutiae-based matching, to start cross-correlation matching,
or to start PSNR matching. Both, the original and the comparing images have to be loaded
to start the matching.
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When the user chooses to load an XML, options to load an XML, or to execute the
XML are provided. Section 3.2.5 provides more information about the XML which can be
loaded.

At the end of the filter application, image compression, or image matching a pop-up is
shown informing about the success or failure of the performed action.

With the initial scene, the ImageManager class is instantiated. This class is responsi-
ble for holding the image(s) that were loaded and are shown in the GUI. It holds a List
of MyImage objects in mylmages instance variable. By calling ImageManager’s display()
method, all Mylmage objects in the mylmages variable are displayed in the GUI. By call-
ing addImage(MyImage myImage) method, Mylmage object can be added to the list and
by calling clearStackPane() all images that are currently being displayed in the GUI are
cleared. Mylmage class represents an image and holds an image as JavaFx Image object
(used in GUI), BufferedImage object (used for image manipulation, e.g. filtering), and
String containing the name of the image.

3.2.2 Pre-processing implementation

For the previously supposed normalization, binarization, noise reduction, resize and change
depth filters, few modifications had to be made.

First of all, the numerators in the normalization formula 2.1 cited in this work based
on [1] do not match the numerators in the normalization formula:

i+ BIERE gy a1

N(i, j) = = (3.1)
My — \/—(VO)(I(Z{Z)_Mm otherwise

which was defined in [17] and cited in [1]. Both normalization formulas were tried pro-
ducing different results. Figure 3.3 shows the original fingerprint image 3.3a, the resulting
image 3.3b after the 2.1 normalization formula was used, and the resulting image 3.3c after
the 3.1 normalization formula was used.

Fingerprint images which contain the Alpha channel cannot be passed to JPEG com-
pression, or else an exception is thrown. So, an option for the user to remove the alpha
channel by changing the color depth of an image was added. The user can adjust an image
so that each pixel has the bit depth of either one, eight, twenty-four or thirty-two bits. If
the user does not remove the alpha channel then it will be removed.

All of the implemented filters extend the abstract MyFilter class. This abstract class
contains only the constructor and three methods, of which all are abstract. Then each
filter class, either Binarization, ColorDepth, NoiseReduction, Normalization, or Resize im-
plements these abstract methods. The most important method is the filter(BufferedImage
originallmage) method. This method applies the specific filter to the original image. For
example, by calling the Binarization’s filter method, the original image will be binarized,
while calling the NoiseReduction’s filter method will remove the noise in the original image.

The binarization and the noise reduction (by using a Gabor filter) filters, were imple-
mented with the use of the OpenCV library. For binarization, both the global and the
adaptive threshold were implemented. But the global threshold produced unsatisfactory
results, thus only the adaptive threshold was used later on. OpenCV’s adaptive Thresh-
old(src, dst, maxValue, adaptiveMethod, thresholdType, blockSize, C) function being used
for the adaptive threshold, and "the threshold value is a Gaussian-weighted sum of the
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(a) The original fingerprint image. Image taken -
from the database for testing purposes contain- (b) Image normalized with 2.1
ing the real fingerprint images

(¢) Image normalized with 3.1

Figure 3.3: A figure shows the original fingerprint image, and resulting images after each
of the normalization formulas were used

neighboring pixel values””. To use the binarization, firstly an image must be converted to
gray-scale if it is not already. To use the OpenCV’s functions for the binarization, and the
noise removal, an image must be represented by the OpenCV’s Mat class. Thus, Java’s
Bufferedlmage must be converted to the OpenCV’s Mat instance. After the filters were
applied, then the Mat object must be converted back to the Bufferedlmage instance.

For Gabor filtering, firstly a Gabor kernel needs to be created with OpenCV’s get-
GaborKernel(ksize, sigma, theta, lambda, gamma, psi, ktype) function. After creating such
a kernel, it needs to be applied to the image with OpenCV’s filter2D(src, dst, ddepth, ker-
nel) function. The theta parameter ”is the orientation of the normal to the parallel stripes
of the Gabor function” [22] so it may be necessary to create more than one kernel for differ-
ent orientations of the normal. Then, each kernel is applied to the source image resulting
in several partial results which are added together to form a resulting image by OpenCV’s
addWeighted(srcl, alpha, src2, betta, gamma, dst) function. In this case, the theta is set
to 0.0, 45.0, 90.0, and 135.0 degrees respectively. Figure 3.4 shows fingerprint image 3.4f
obtained after all partial images 3.4b, 3.4c, 3.4d, 3.4e were added together.

However, not every fingerprint image gets to be filtered as good as the one in figure 3.4f.
Some fingerprint images have good partial results, but after they are added together, they
produce unsatisfactory results, as seen in 3.5f. The reason behind this behavior remains
unknown.

To resize an image a new instance of the Bufferedlmage class, with the percentage of
the width and height of the original image is created. For example, if the original image
has dimensions of 500 pixels wide and 320 pixels high, and the image should be resized
to 50% of the original size, then the new image will be 250 pixels wide and 160 pixels
high. After the new image class is created, then the Graphics2D is created, by calling
the BufferedImage’s createGraphics() method, to which an image can be drawn with the
Graphics2D’s drawlImage() method.

*https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
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(a) The original finterprint image. Image taken
from the database for testing purposes contain- (b) Image produced with kernel’s theta set to 0°
ing the fake fingerprint images

— ~~

e w

(c) Image produced with kernel’s theta set to (d) Image produced with kernel’s theta set to
45° 90°

(e) Image produced with kernel’s theta set to (f) Image produced by adding all partial images
135° together

Figure 3.4: A figure shows the original fingerprint image, partial images produced with
different theta parameter set for gabor kernel, and resulting image after each of the partial
images were added together

The filter that changes the depth of an image works similarly. Firstly, a new instance of
the Bufferedlmage is created with the desired image type. Then, the Graphics2D is created,
to which the image is drawn.

3.2.3 Compression implementation

The compression is done by ImagelO class which is part of the Java Image I/O framework.
It contains methods for locating Image Writer class which fulfills encoding or ImageReader
class which fulfills decoding. ImageWriter and ImageReader are abstract superclasses, and
for example for PNG compression a Pnglmage Writer subclass is needed. ImagelO can
locate subclasses used for basic compressions, such as JPEG, PNG, BMP, or TIFF. Un-
fortunately, ImageWriter’s and ImageReader’s subclasses needed for WSQ encoding and
decoding are not part of the Java Image I/O framework. For this work, an open-source free
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(e) Image produced with kernel’s theta set to (f) Image produced by adding all partial images
135° together

Figure 3.5: A figure shows the original fingerprint image, partial images produced with
different theta parameter set for gabor kernel, and the unsatisfactory resulting image after
each of the partial images were added together

implementation of WSQ? encoder/decoder which is a part of the Machine Readable Travel
Document standards specified by the International Civil Aviation Organization was used.
The used WSQ implementation is licensed under the GNU Lesser General Public License.

All the implemented compressions extend the abstract MyCompressor class. The most
important methods in this abstract class are the compress(BufferedImage uncompressedIm-
age, String imageFullPath, String destinationDir) and the decompress(File file) methods
which are used for compression, and decompression respectively. The compress method is
abstract and therefore all of the compressor subclasses (JpegCompressor, PngCompressor,
and WsqCompressor) implement it. On the other hand, the decompress method is not
abstract but static. Each of the compressors have their own decompress(F'ile file) method
with protected access. So, by calling MyCompressor’s decompress method, and depending
on the file’s extension, passed as a parameter, the appropriate subclass decompress method
is called.

Also, the compressors are responsible for keeping track of the compression time. This
is done by calling System’s nanoTime() method before and after the ImageWriter’s write

Snttps://github.com/E3V3A/JMRTD/tree/master/wsq_imageio
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method is invoked. Then the starting time is subtracted from the ending time and the
result is converted into milliseconds, which results in the compression time.

For each compression process, certain compression parameters can be set and passed
to the encoder. For JPEG compression, the compression quality can be set to a value
between 0 and 100. A compression quality of 0 indicates that high compression is desired
and a compression quality of 100 indicates that high image quality is desired. In lossy
compressions, like JPEG, this ratio’ should be a compromise between file size and image
quality, for lossless compressions, like PNG, this number should be a compromise between
file size and compression time. For PNG compression, the compression quality can be set to
a value between 0 and 100 and progressive mode can be set to indicate whether the image
should be encoded in a progressive mode. For WSQ compression, the encoding rate can be
set. The encoding rate specifies the bitrate in bits per pixel for encoding, and can be set
to a value between 0.1 and 1.0.

These compression parameters, represented by JpegParams, PngParams, and the Wsq-
Params class, are subclasses of the abstract MyParams class.

3.2.4 Matching implementation

The final application supports the minutiae-based, and the cross-correlation fingerprint
matching as well as the PSNR calculation. All matching classes are subclasses of the
abstract MyMatcher class. The Adapter design pattern was used, as classes for the minutiae-
based and the cross-correlation matching work with the 3rd-party projects.

The minutiae-based matching is done with the open-source SourceAFIS® algorithm for
fingerprint recognition. It matches two fingerprints or searches a database for a match
and the resulting score must be greater than 40 to consider fingerprints identical. For
this project, only matching two fingerprints is supported. The SourceAFIS algorithm is
located in the Maven Central repository, so only Maven dependency is needed to be added
to download it. The SourceAFIS is under Apache Licence 2.0 and the original developer
is Robert Vazan®. This project is still being developed and so the Maven dependency may
become obsolete and the methods in the MinutiaeMatcher class will have to be updated.

The cross-correlation matching is done with the open-source BiometricSDK project’.
Only CFingerprint class was needed from this project as it also comes with GUI which
was not needed. This class matches two fingerprints and the resulting score is returned
as a percentage. The download site of the BiometricSDK project state that the project is
under the Mozilla Public Licence version 1.0 however, the files have a header stating that
they are under the GNU General Public Licence. This discrepancy has led to a decision
that the CFingerprint class required for the implemented CrossCorrelationMatcher class
will not be a part of the project to comply with the GNU GPL. The CFingerprint class
can be downloaded and copied to the BiometricSDK directory however, the project cannot
be conveyed with this class, or the class cannot be modified. Also, it should be stated that
the original developer of this project is a user with a moleisking® username.

For PSNR matching, the PsnrMatcher class was implemented, which for matching,
firstly calculates MSE 2.5 and then PSNR 2.6. As mentioned in [23] the resulting PSNR
score needs to be higher than 40 for two images to be considered identical.

4https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageWriteParam.html#compressionQuality
"https://sourceafis.machinezoo.com/java

Shttps://robert.machinezoo.com/

"https://sourceforgenet/projects/biometricsdk/

Shttps://sourceforge.net/u/moleisking/profile/
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3.2.5 XML implementation

The application does not need to be launched with GUI. If one already knows which fin-
gerprint images to compress, the compression, its parameters, and the matcher to use it is
possible to create an XML that will contain this information.

This XML contains root element entry which encloses a mandatory elements sourceDir,
destinationDir, filters, compressions, matchers.

The sourceDir element contains an absolute path to the directory which contains the
fingerprint images which will be processed. The destinationDir element contains an absolute
path to the directory where the processed fingerprint images will be stored.

The filters element may contain additional filter elements indicating which filters to
use. Each filter element contains mandatory filterName element and filterParams element
as some filters also take parameters. The filterName element contains a name of a filter
which will be used, namely binarization for image binarization, normalization for image
normalization, resize for resizing an image, noiseReduction for reducing the noise in an
image, colorDepth for changing the color depth. Additionally, when the resize, or the
colorDepth filter is selected the filterParams element is needed. For the resize filter, the
filterParams element contains resizePercentage element indicating the percentage to which
the original image will be resized. For the colorDepth filter, the filterParams element
contains newDepth element indicating a new depth of an image. If the filters element does
not contain any additional filter element(s) then no filter is applied.

The compressions element contains supplementary compression elements specifying com-
pressions that will be used. The compression element contains mandatory compressionName
and params elements. The compressionName element implies the compression that will be
used, particularly jpeg, or jpg for JPEG, png for PNG, wsq for the WSQ compression. The
params element contains the ratio element for the JPEG and PNG compressions indicat-
ing the compression ratio. For the WSQ compression, the params element contains the
encodingRate element denoting the encoding rate.

The matchers element may contain additional matcher elements indicating the match-
ers that will be used for matching the processed image with the original one. The matcher
element contains the matcherName element denoting the matcher that will be used, specifi-
cally crossCorrelation for cross-correlation, minutiaeBased for minutiae, psnr for the PSNR
matcher.

This XML is represented by the XmlRepresentation class, which holds the ezecute()
method for executing XML content and the serialize(String saveDir, String fileName)
method for serializing an XML content. Executing an XML content is described in 3.3.
For generating a mass amount of XMLs for testing, class XmlGenerator was implemented.
This class generates all the XMLs that were used for testing described in 4.1. An example
XML can be seen in A.1.

3.3 XML execution

By executing XML content, loading fingerprint images from the source directory, applying
the specified filter, applying the selected compression with its parameters, and matching
via the selected matchers is understood.

The XmlFExzecutor class is responsible for executing XMLs. It can receive one XML
or a whole directory of XMLs to execute. For XML it executes, it loads the fingerprint
images in the source fingerprint image directory, then for each fingerprint image it applies
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a filter or a collection of filters, next it compresses the fingerprint image with the specified
compression, then it loads the compressed image, thus decompressing the image, and lastly,
it compares this image to the original image with the defined matchers.

After the compression and the matching is finished, the compression time, which is
measured by the compressor, and the matching score, which is measured by the matcher,
is saved to an XML file representing results for the current fingerprint image.

The class ScoreResultsExtended is responsible for keeping track of the best and the
worst matching scores, the class TimeResultsExtended is in charge of keeping the fastest
and the slowest compression times, and the class SizeResultsExrtended is accountable for
keeping the smallest and the biggest file sizes for the currently loaded fingerprint images
within the currently executed XML(s). These scores, times, and sizes are measured for each
compression. So, for example, after each compression, the compression time is compared
with the best and the worst compression time recorded, and if the compression time is
better or worse than the currently best or the worst registered, then the compression time
becomes the new best or the worst registered for the given compression and the XML path
is added to the list of the best or the worst in the respective result category.

After all the XMLs are executed then the results are saved to a text file under a specified
file name.

3.4 Results representation

The results from an XML execution are put into the text file. These results contain infor-
mation about the best matching score, the worst matching score, the fastest compression
time, the slowest compression time, the biggest file size, and the smallest file size for each
compression type. In the result text file is also the name of an XML which produced that
result. The following sample illustrates part of the results which may be received:

THE BEST JPEG MINUTIAE SCORES: 661.3097055229035

the best result xmls:
/home/marek/IdeaProjects/IBT/AdvImg2/src/test/resources/
generatedXmls/jpeg/jpegl00/generated_colorDepth_8.xml
THE BIGGEST PNG FILE SIZE: 98807 B

the biggest file sizes xml:
/home/marek/IdeaProjects/IBT/AdvImg2/src/test/resources/
generatedXmls/png/pngl00/generated.xml

Besides the XML execution’s results, also results for each processed fingerprint image
are generated. These results are in the form of an XML with the following structure. The
root element result encloses mandatory elements fileNames, appliedFilters, compression-
Time, and matcherScores. The fileNames element contains the currentFilename, the cur-
rentAbosolutePath, the originalFilename, and the originalFileAbsolutePath elements. Each
of these elements holds a name of a file or an absolute path to the file. The appliedFil-
ter elements may enclose several appliedFilter elements that represent the filter that was
applied. The compressionTime element holds a value in milliseconds representing the com-
pression time. The matcherScores element consists of matcher scores that were obtained
after matching. The minutiaeBasedMatcherScore holds the score for the minutiae-based
matching and the crossCorrelationMatcherScore holds the score for the cross-correlation
matching. An example XML can be seen in A.2.
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3.5 Result parser

Section 3.7.1 talks about the performance issues encountered during the testing phase. One
of the issues was insufficient heap space for source fingerprint image directory containing
many fingerprint images. The temporary solution was to split the source fingerprint image
directory so that it would contain fewer images. Executing the test cases for such directory
results in obtaining only partial results. If the source fingerprint image directory was split
into three directories then three partial results were obtained. These partial results have
to be merged to obtain the real results. For this purpose, the ResultParser class was
implemented.

This class loads all partial results and finds the real matching results, time results,
and size results. The highest score value for a certain compression from all partial results
is taken to obtain the real best matching score for a certain compression. For example,
if partial results number one state that the best minutiae-based matching score obtained
after the JPEG compression is 41 and the partial results number two state that the best
score is 42 then the ResultParser puts 42 as the real best minutiae-based matching score
obtained after the JPEG compression. The same analogy applies to obtaining the longest
compression time and the biggest file size. On the other hand, the lowest score value for an
individual compression is taken to acquire the real worst matching score for an individual
compression. The same can be said for retrieving the shortest compression time, and the
smallest file size.

Apart from result merging, the ResultParser also parses results to already formed
I4TEXtables and plots and saves it in a separate file. For example, the best minutiae-based
matching score obtained after the JPEG compression can be simplified from this:

THE BEST JPEG MINUTIAE SCORES: 661.3097055229035

the best result xmls:
/home/marek/IdeaProjects/IBT/AdvImg2/src/test/resources/
generatedXmls/jpeg/jpegl00/generated_colorDepth_8.xml

which presents the absolute path to the XML which produced this result to this:

% jpeg

\begin{table} [htbp!]

\centering

\begin{tabular}{lclclcl}

\hline

Ratio & Filters & Score \\

\hline\hline

100 & depth changed to 8b & 661.3097055229035 \\
100 & none & 661.3097055229035 \\

\hline

\end{tabular}

\caption{The ratios and filters for the best JPEG minutiae-based match}
\label{fal:bjpmm}

\end{table}

which states the ratio and the filter for this result. Moreover, if there were more ratios
with the same filter that produced the same score they would be grouped.
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3.6 Launching the application

As specified in 3.2 the only pre-requisites required for launching the application are JDK 11
or posterior, and Maven. Maven is responsible for adding the required dependencies. Also,
the cross-correlation matching works a BiometricSDK project must be downloaded and the
CFingerPrint class must be copied to the relevant directory. The project can be either
launched from IntelliJ IDE or from the command line. The README.md file contains
more information about this.

To build the application from the command line, Maven’s clean, compile, package,
install command must be executed:

mvn clean compile package

Application with GUI can be launched by executing the following command:
mvn javafx:run

Help can be displayed with the followng command:
java -jar IBT.jar -h

Generating test XMLs is done with the following command:

java -jar IBT.jar -g "fingerprints_source_dir" \
"fingerprints_destination_dir"

where fingerprints _source__dir is the absolute path to the directory which holds the fin-
gerprint images for which the XMLs should be generated and fingerprints destination__dir
is the absolute path to the directory which will the fingerprint images once they are com-
pressed.

Executing an XML is done with the following command:

java -jar IBT.jar -e "xml_path" "result_file_name"

where xml__path is the absolute path to an XML that will be executed and result_file _name
is the file name that will contain the results.
Parsing and merging result files together is executed with the following command:

java -jar IBT.jar -p "xml_results_dir" "parsed_file_name"

where axml_results dir is the absolute path to the directory which contains partial
results that will be merged and parsed, and parsed_file _name is the file name that will
contain the merged and parsed results.

To execute any of these commands, one must be in the directory that contains the
pom.zml file. All of these are also mentioned in the README.md file.

3.7 Encountered issues

This section covers the issues that arose during test execution. The main issues concern
performance while other issues may concern the usage of the open-source compression/de-
compression.

3.7.1 Performance issues

Executing the tests brought some serious performance issues. While some issues were fixed,

some needed the workaround.

29



The most problematic issue was the performance during the test execution. For each
fingerprint image, there were 225 test cases. Executing these test cases for a directory
that contained 20 or more big size fingerprint images results in the heap memory to run
out. For testing purposes, commenting out log outputs would decrease the execution time.
To deal with the performance problems some temporary solutions were introduced. The
first temporary solution was to split the source fingerprint directory so that it would not
contain so many images. Another temporary solution to this issue may be increasing the
heap size allocated to the application. However, these temporary solutions are not ideal as
they do not solve the problem. The real solution that helped was to reuse the allocated
BufferedIlmage instances and Lists during the XML execution. After this solution, all the
test cases were completed successfully but still took a long time. This time, however, may
only be a subjective case as it was only tested on one device.

Figure 3.6 shows the CPU usage during the test execution.

marek@marek: ~/Documents/sablona2018

File Edit View Search Terminal Help

top - 22:59:10 up 31 days, 50 min, 1 user, load average: 1,43, 1,17, 1,11
Tasks: 278 total, 1 running, 226 sleeping, ©® stopped, © zombie

%Cpu(s): 26,9 us, ©,6 sy, o,0 ni, 71,7 id, o,2 wa, o,0 hi, 0,7 si, 0,0 st
KiB Mem : 8007652 total, 340732 free, 7038828 used, 628092 buff/cache
KiB Swap: 8439804 total, 6310128 free, 2129676 used. 427800 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
7092 marek 20 6 5713120 2,389g 8632 167,3 31,3 1477:38 java
1726 marek 9 -11 3271360 7240 4780 0,7 0,1 222:36.62 pulseaudio
2192 marek 20 6794376 1,983g 15292 2 1:10 java
337 root 20 47028 1712 1072 B.53 systemd-ud+
1126 root 367104 6244 2156 17 apache2
1160 mysql 1490148 1024 0 mysqld
1172 gdm 3523692 32072 4712 gnome-shell
1347 gdm 822412 10680 416 gsd-color
1801 marek 304580 112 0 goa-identi+
2534 marek 4317868 56620 1656 java
6561 marek 3423948 554804 Web Content
15169 root ] 0 B kworker/@:+
marek 52540 4004 top
root 226064 systemd
root kthreadd
root rcu_gp
root rcu_par_gp
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Figure 3.6: CPU usage during the test execution

3.7.2 Other issues

The issues touched in this section relate to the usage of the open-source WSQ compres-
sion /decompression, or the ImagelO’s JPEG compression. The WSQ? issues are not men-
tioned in the Github repository and were encountered during the test execution.

To start with, the WSQ’s encode() method only works for fingerprint images whose
BufferedImage representation is of type TYPE_BYTE, TYPE_3BYTE or TYPE_/BYTE. Therefore,
if the image is represented by TYPE_INT or TYPE_USHORT it firstly needs to be converted to
the above-mentioned byte types.

Secondly, the WSQ’s compress method seems to be having a problem in the quantization
part for the encoding rate set to 0.10. Furthermore, the encoder is having trouble with
array indexing as the ArrayIndexOutOfBoundsFEzception exception is thrown at two different
locations. These two locations are in the getLets() and build__huffcodes() methods. These

“https://github.com/E3V3A/JMRTD/tree/master/wsq_imageio
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exceptions are thrown for the binarized images, or the images with the depth of 1 bit.
Moreover, the WSQ encoded image is decoded via the WSQ’s decode() method. This
decoding leads to an image being represented by the Bitmap class. The issue occurred when
trying to convert this Bitmap representation to the Bufferedlmage class. The conversion,
as done in the test class':

int width = bitmap.getWidth();
int height = bitmap.getHeight();
byte[] data = bitmap.getPixels();
BufferedImage image =

new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY);
WritableRaster raster = image.getRaster();
Raster.setDataElements(0, 0, width,height,data);

can lead to pixels being indexed out of the bounds. The problem is that the newly
created Bufferedlmage does not expect the bitmap to be of different depth than 8 bits.
When the bitmap is of different depth, such as 1 bit, then also this depth has to be taken
into an account when creating Bufferedlmage as proposed in my solution:

int width = bitmap.getWidth();

int height = bitmap.getHeight();

int depth = bitmap.getDepth();

BufferedImage image = new BufferedImage(width, height, depthToType(depth));
byte[] data = Arrays.copyOf (bitmap.getPixels(), widthxheight*depth);
image.getRaster() .setDataElements(0, 0, width, height, data);

As mentioned in 3.2.2 the JPEG issue occurs when an image with an alpha channel
is passed for the JPEG compression. Then the Bogus input colorspace exception will be
thrown by the JPEGImageWriter class. To solve this issue, the image’s depth must be
changed.

YOhttps://github.com/E3V3A/IMRTD/blob/master/wsq_imageio/src/org/jnbis/test/WSQTest.java
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Chapter 4

Testing

This chapter provides the results gathered during the testing phase. For the testing purposes
the implemented application was suggested to be tested on different kinds of fingerprint
images. A large database containing fake, damaged, synthetic, diseased, and real fingerprint
images was provided for the purpose of this project. There were 22 fake, 167 damaged, 258
sick, 950 real, and 590 synthetic fingerprint images.

4.1 Test cases

To compare the effectiveness of different compression algorithms, all the compressions in-
cluded in the implemented application (JPEG, PNG, WSQ) were tested with different
compression parameters. Before the compression, a filter or a collection of filters will be
applied as part of the pre-processing. The application of a filter may speed up the com-
pression process or produce a smaller file size.

Fingerprint images were exposed to 225 test cases. These test cases were composed of
different combinations of filters and compressions with their parameters.

The compression and its parameters were set to the following. The JPEG compression
was set to be run with the compression ratio set to 0, 0.25, 0.50, 0.75, and 1.0. The
same applies to the PNG compression. The WSQ compression was set to be run with the
encoding rate set to 0.10, 0.25, 0.50, 0.75, and 1.0.

It is expected that different compression parameters will produce different matching
scores. The highest matching scores should be obtained by the compressed images with
the compression ratio set to 1.0, while the lowest matching scores should be obtained by
the compressed images with the compression ratio set to 0. Other compression ratios are
anticipated to produce a compromise between the image quality and file size. The ratio set
to 0.75 or 0.50 is still expected to produce an acceptable matching score. The same analogy
applies to the encoding rate. The highest matching score is expected to be obtained with
the encoding rate set to 1.0 and the lowest matching score is expected for the encoding rate
set to 0.10. Setting the encoding rate to 0 will result in an exception being thrown. Thus,
this option is excluded.

The matching score should be higher for the lossless compression. For the PNG com-
pression, the MSE can be measured to ensure that truly no information was lost during the
compression. Thus, no PSNR matching is needed for the PNG compression.

The filters were set to the following possibilities: no filter set, binarization with the
adaptive threshold, changing the depth to 1 bit, changing the depth to 8 bits, reducing
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the noise by using the Gabor filters, reducing the noise by using the Gabor filters then
binarizing using the adaptive threshold, normalization, normalization then binarizing using
the adaptive threshold, normalization then reducing the noise by using the Gabor filters,
normalization then reducing the noise by using the Gabor filters then binarizing using the
adaptive threshold, normalization then reducing the noise by using the Gabor filters then
changing the depth to 1 bit, resizing to the 50% of the original size, resizing to the 80%
of the original size, resizing to the 125% of the original size, resizing to the 150% of the
original size.

There are numerous reasons behind this filter selection. As mentioned in 2.1.2 it can
be harder for some matching algorithms to distinguish between the ridges and the valleys
and so binarizing an image can make it easier for the matcher to produce higher scores.
Therefore, the selection of the binarization with the adaptive threshold which is done via the
OpenCV library. Changing the depth of an image to 1 bit is also binarization but this time it
is via a creation of a new Bufferedlmage class with different depth and the data elements of
the transformed image is redrawn into the new one. As mentioned in 2.1.2, the binarization
for low-quality fingerprint images may be ineffective so the fingerprint image may stay in
gray-scale. If an image is not in gray-scale then it will be converted as many matchers
work with gray-scale images. Thus, changing the depth to 8 bits filter. To ensure that
no false minutiae are used for image comparison, noise reduction is done using the Gabor
filters. Also, to make sure that low-quality images are correctly matched, noise reduction
is followed by binarization. As referred to in 2.1.2 the normalization can make the image
easier to compare, therefore the normalization filter. Also, after the image is normalized,
additional filters may be used to build on the normalized pixel values. To find out, if the
normalization affects the binarization or the noise reduction process, binarization with the
adaptive threshold, or the Gabor filters were used after the normalization. Moreover, the
ultimate combination of the normalization, noise reduction, and binarization was suggested
to ascertain if all three filters can be applied together. Finally, resizing an image to various
proportions was suggested to see if and how it affects the compression speed, compressed
file size, and the matching score.

Each test case contained the minutiae-based and the cross-correlation matcher. Test
cases with lossy compressions also contained the PSNR matcher.

The testing composed of creating previously mentioned XMLs with all the possibilities
of filters and compressions with their parameters mentioned above. There are 15 filter
possibilities, and 5 possibilities of JPEG, PNG, and WSQ compression parameters. That
results in 255 test cases. One test case is covered by one XML. Each XML was executed
for the source directory containing one of the fingerprint image types.

Furthermore, for each bitmap size, the shortest and the longest compression time will be
taken. This bitmap size will be measured for an image without the filter, binarized image,
and an image resized to 50% of the original size. The binarized and the resized image
should have roughly the same bitmap size, and this bitmap size should be much smaller
than the one of the original image. These sizes are measured as the image width times the
image height times the image depth in bytes. The times for these bitmap sizes are taken
so it can be seen, whether the smaller bitmap truly produces a faster compression time.

4.2 Fake fingerprints results

The test results suggest that the shortest average compression time was received with the
JPEG compression, the smallest average file sizes with the WSQ compression, and the best
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matches with the original image after the PNG compression was used. The application of
filters had almost no effect on the average compression times, for the JPEG compression,
as the average compression times are almost the same. The average compression times
are shown in the figure B.4. However, the choice of the filter(s) did affect the average
file sizes which are shown in figure B.5. Yet the biggest difference can be seen on the
average matching scores with the original image B.1, B.2, B.3 where the filter(s) reduced
the score. The PNG compression produced the best minutiae-based and cross-correlation
average scores, the JPEG compression produced the best PSNR average score.

With the applied filters, the shortest compression time, 0.7 milliseconds, was the same
for the JPEG and the PNG compressions. The WSQ compression was slightly behind with
the shortest compression time being 2.8 milliseconds. The JPEG and the WSQ compres-
sions achieved this score when the original image was resized to 50% of the original size
while the PNG compression achieved this when the image was normalized and then bina-
rized. The longest compression time was 143.9 milliseconds for the PNG compression while
the longest compression time for the WS(Q compression was 59.1 milliseconds and for the
JPEG compression 16.4 milliseconds. Filters that produced these times resized the image
to 150% of the original image for the JPEG and the WSQ compressions and reduced the
noise for the PNG compression. The best match achieved through the minutiae matcher
was for the PNG compressed images with the image undergoing through the gray-scale
filter. Meanwhile, the JPEG, and the PNG compressions came with the perfect correlation
score, 99%, when the depth of an image was changed to either 1 or 8 bits or the image was
normalized. An image with reduced noise and the WSQ compression used produced the
smallest file size, 776 Bytes, while an image with reduced noise and the PNG compression
produced the biggest file size, 295512 Bytes.

With no applied filters, the shortest compression time was around 2 milliseconds for
the JPEG and the PNG compressions. The WSQ’s shortest compression times was 8.5
milliseconds. The longest compression time was 71.3 milliseconds for the PNG compression
in contrast to the 5.4 milliseconds recorded by the JPEG compression. The smallest file
size, 1227 Bytes, was produced with the WS(Q compression while the biggest file size, 98807
Bytes, was produced with the PNG compression. The best scores from the minutiae matcher
were produced with the PNG compressions. For the correlation matcher, the JPEG, and
the PNG compressions produced the best results. The best minutiae-based scores are the
same when no filter was applied or the gray-scale filter applied because the original image
was already in gray-scale.

The tables B.17, B.18, and B.19 demonstrate compression parameters and filters used
for obtaining the shortest compression times while the tables B.20, B.21, and B.22 show
compression parameters and filters used for attaining the longest compression times. The
tables B.23, B.24, B.25 display compression parameters and filters used for obtaining the
smallest file sizes while the tables B.26, B.27, B.28 show compression parameters and filters
used for gaining the biggest file sizes. The tables B.1, B.2, B.3 present compression param-
eters and filters used for achieving the best minutiae scores while the tables B.4, B.5, B.6
show compression parameters and filters used for producing the worst minutiae scores. The
tables B.7, B.8, B.9 present compression parameters and filters used for gaining the best
correlation scores while the tables B.10, B.11, B.12 demonstrate compression parameters
and filters used for receiving the worst correlation scores.

Concerning filter application, one fake fingerprint image produced an exemplary results.
As shown in figure 4.1, applying Gabor filter to an image 4.1b produces satisfactory results
and the minutiae score for such an image is 120 for JPEG, 101 for PNG, and 2 for the

34



WSQ compression respectively. However, normalizing the image before the Gabor filter is
applied results in more minutiae being visible 4.1¢, and thus the minutiae score increases
116 for PNG, and 90 for the WSQ compression respectively. Unfortunately, not all fake
fingerprint images reacted positively to this filter combination, and their minutiae score is
much smaller.

Concerning the compression times for the bitmap sizes, the JPEG compression recorded
slightly higher compression times for the binarized image than for the resized image. Addi-
tionally, for the JPEG compression, the fastest compression times for the binarized image
were similar to the times of the image without the filter. Thus, the smaller bitmap size
did not produce a faster compression time. For the WS(Q compression, compressing the
binarized image was impossible as an exception was thrown

(a) The original fake fingerprint image. Image
taken from the database for testing purposes (b) Image filtered with the Gabor filter

containing the fake fingerprint images
v ! =
%‘"f*’%

[

(¢) Image normalized before the Gabor filter is
applied

Figure 4.1: A figure shows the effect of normalization before the noise is reduced from an
image

4.3 Damaged fingerprint results

The test results indicate that the shortest average compression time, with and without the
filters, has been achieved with the JPEG compression while the longest average compression
time, with and without the filters, has been achieved with the WS(Q compression. The
average compression times can be seen in the figure C.4. The application of the filters had
almost no effect on the average file size for the WS(Q compression while the biggest difference
can be seen for the PNG compression. The average file sizes can be seen in the figure C.4.
However, the application of the filters resulted in significantly lower matching scores. While
all the compressions without the filters produced satisfactory average minutiae scores, only
the PNG compression recorded a suitable average correlation score. Furthermore, the PNG
compression with the applied filters also produced a solid average minutiae score. The
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average minutiae and correlation scores are shown in the figures C.1 and C.2 respectively.
The WSQ compression has recorded higher average PSNR scores, with and without the
filters, than the JPEG compression. These average scores are shown in C.3.

With the applied filters, an image resized to 50% of the original image and JPEG
compression recorded the shortest compression time of 0.4 milliseconds. The longest com-
pression time, 163 milliseconds, was produced with the PNG compression. Without the
applied filters the JPEG and the PNG compressions retained their best compression time
close to 1 millisecond. The longest compression time, 79 milliseconds was produced by the
PNG compression. The tables C.17, C.18, C.19, show the compression parameters and fil-
ters used for obtaining the shortest compression times whereas the tables C.20, C.21, C.22
present the compression parameters and filters used for gaining the longest compression
times.

When the filters were applied the smallest file size, 710 Bytes, was achieved by the
WSQ compression, and an image resized to 50% of the original size. The biggest file
size, 519907 Bytes, was produced by the PNG compression. When the filters were not
applied the smallest file size, 1065 Bytes, was also produced by the WSQ compression. The
biggest file size, 173625 Bytes, was produced by the PNG compression. The compression
parameters and filters used for obtaining the smallest or the biggest file sizes are shown in
the tables C.23, C.24, C.25 and C.26, C.27, C.28 respectively .

Regarding the minutiae score, an image with the depth changed to 8 bites, and the
PNG compression used produced the best results. For the correlation score, all the com-
pressions with the applied filters managed to get the perfect score of 99%, or 98% match
with the original image. Without the applied filters, the PNG compression achieved the
best minutiae and correlation results. The original image had already had the depth of 8
bits therefore, the filter that changed the depth to 8 bits had no effect. The compression
parameters and filter used for obtaining the best and the worst minutiae scores are pre-
sented in the tables C.1, C.2, C.3, and C.4, C.5, C.6, respectively. The tables C.7, C.8,
and C.9 demonstrate the compression parameters and filters used for obtaining the best
correlation scores whereas the table C.10, C.11, and C.12 show the compression parameters
and filters used for receiving the worst correlation scores.

For the JPEG and the PNG compression, the binarized image recorded slightly higher
compression times than the resized image. For the WSQ compression, compressing the
binarized image was impossible as an exception was thrown. Furthermore, for the JPEG
compression, the compression times for the binarized image were similar to the times of the
image without the filter. Thus, the smaller bitmap size did not produce a faster compression
time.

4.4 Real fingerprints results

In contrast to other fingerprint types, real fingerprints have produced a solid average score
for the minutiae-based matching score with the applied filters. As seen in D.1, the high-
est average score with and without filters has been registered by the PNG compression.
However, all compressions have produced unsatisfactory average cross-correlation scores, as
shown in D.2. Concerning the PSNR scores, the WS(Q compression has recorded a higher
average score without the filters, but the JPEG compression has registered a higher average
score with the filters. The PSNR average scores are displayed in D.3. The JPEG compres-
sion has recorded the fastest average compression times with and without the filters, shown
in D.4, while the WSQ compression created the smallest file sizes on average, shown in D.5.

36



The PNG compression with all compression ratios has registered the best minutiae-based
matching score of 1179 for an image with the depth changed to 8 bits. All compressions have
the same best score either when no filter was applied or when the depth of an image was
changed to 8 bits. The original image depth was 8 bits already, therefore the filter did not
affect it. The best and the worst minutiae-based scores can be seen in tables D.1, D.2, D.3
and D.4, D.5, D.6 respectively.

Resizing an image to 50% of the original size resulted in compression times being less
than 1 millisecond for the JPEG and the PNG compression. When no filter was applied,
the PNG compression with the compression ratio set to 100 had produced the shortest com-
pression time. The WSQ compression has had the worst shortest compression times. The
compression ratios and the encoding rates that produced these times appear to be ambigu-
ous. While for the shortest compression times for the JPEG and WSQ these compression
parameter values are close to zero, the PNG compression ratio is 100. The shortest and the
longest compression times are presented in tables D.17, D.18, D.19 and D.20, D.21, D.22
respectively.

Unlike other fingerprint types, the smallest file size was produced by an image with the
depth changed to 1bit and the PNG compression. The compression ratios and encoding
rates that produced the smallest file sizes were set to 0, 25, or 0.10 respectively, while the
compression ratios and encoding rates that produced the biggest file sizes were set to 100
or 1.0 respectively. The smallest and the biggest file sizes are shown in D.23, D.24, D.25,
and D.26, D.27, D.28 correspondingly.

For the JPEG and the PNG compression, the binarized image recorded slightly higher
compression times than the resized image. For the WSQ compression, compressing the
binarized image was impossible as an exception was thrown. Furthermore, for the JPEG
compression, the fastest compression times for the binarized image were similar to the times
of the image without the filter, and the longest compression times were interestingly higher
for the binarized image. Hence, for the JPEG compression, the smaller bitmap size did not
produce faster compression time.

4.5 11l fingerprint results

As with the other fingerprint types, the highest average scores, for the minutiae-based and
the cross-correlation matching, were produced by the PNG compression. Also, the average
values for the PNG and the JPEG compressions were higher when no filters were applied.
Only the WSQ compression had higher average values with the applied filters, however,
its average scores were significantly lower than other compressions. The average minutiae-
based and the average cross-correlation scores are shown in E.1 and E.2 respectively. For
the PSNR matcher, the higher average score has been registered by the JPEG compression,
shown in E.3. The shortest average compression times were recorded by the JPEG compres-
sion. The average compression times are shown in E.4. The smallest average compressed
file sizes were produced by the WSQ compression. These average file sizes are shown in E.5.

The compression ratios and the encoding rates that produced the best minutiae-based
scores were set to 100 or 1.0 respectively. Also, the PNG compression managed to obtain the
best score with no applied filter when the compression ratio was set to 0. The compression
ratios and the encoding rates for the best, and the worst minutiae-based score are presented
in E.1, E.2, E.3, and E.4, E.5, E.6 respectively.

When filters were applied the best cross-correlation scores were produced by images with
the depth changed to 1 bit or 8 bits. All tested ratios produced the best cross-correlation
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scores for the PNG compression, and for the JPEG compression with the depth changed to
1 bit. The encodings rates were either 1.0 for the WSQ compression, and the ratios were
set to 100 for the JPEG compression, and the. The ratios and rates that produced the best
and the worst cross-correlation scores are presented in E.7, E.8, E.9 and E.10, E.11, E.12
correspondingly.

As predicted, the shortest compression times were registered after an image was resized
to 50% of the original size. For the JPEG and the WSQ compressions, the compression
ratios and the encodings rates that produced the shortest times were 0 or 1.0, while for
the PNG compression the compression ratio was set to 100. In contrast, the longest com-
pression times were produced with the ratio set to 100, and the rate set to 1.0 for the
JPEG and the WSQ compression, while the PNG compression had the ratio set to 0. The
compression ratios and the encodings rates for the shortest and the longest compression
times are demonstrated in E.17, E.18, E.19, and E.20, E.21, E.22 respectively.

Unsurprisingly, the values of the compression ratios or the encoding rates which pro-
duced the smallest file sizes were set to 0 or 0.1 respectively. When filters were applied, an
image was either resized to 50% of the original size or had the depth changed to 1 bit, as
shown in E.23, E.24, E.25. Additionally, the compression ratios and the encoding rates for
the biggest file sizes were set to 100 or 1.0, as shown in F.26, .27, E.28.

The binarized image recorded slightly higher compression times than the resized image,
for the JPEG compression. However, the fastest compression times for the PNG com-
pression were higher for the resized image. For the WSQ compression, compressing the
binarized image was impossible as an exception was thrown. Moreover, for the JPEG com-
pression, the compression times for the binarized image were similar to the times of the
image without the filter. So, for the JPEG compression, the smaller bitmap size did not
produce faster compression time.

4.6 Synthetic fingerprint results

All compressions managed to obtain satisfactory average minutiae-based scores, whether
with or without the filters. By satisfactory score, a value at least two times as high as
the minimal value for images to be considered a match is meant. Once again, the highest
average scores were obtained by the PNG compression. The average minutiae-based scores
are shown in F.1. Concerning the average cross-correlation score values, only the PNG
compression without the applied filters managed to register the acceptable value. Other
compression values were all under 50%. The average cross-correlation scores are displayed
in F.2. The JPEG compression recorded higher average scores for the PSNR matching,
which are displayed in F.3. One more time, the shortest average compression times were
produced by the JPEG compression, and the longest average compression times were ob-
tained by the WSQ compression. These average compression times are shown in F.4.
However, the smallest average file sizes were produced by the WSQ compression, while
PNG has registered the largest average value. The average file sizes are shown in F.5.

There are certain vaguenesses concerning the compression times as the compression ratio
set to 0 for the JPEG compression and the encoding rate set to 0.1 for the WSQ compression
produced the shortest compression times. Yet, the PNG compression registered the shortest
compression time when the ratio was set to 100. However, the ratio of 0 or 100 also produced
the longest compression times. The shortest and the longest compression times with their
ratios and rates are presented in F.17, F.18, F.19 and F.20, F.21, F.22 respectively.
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If the filters were applied, the smallest file sizes were produced when an image was
resized to 50% of the original size, had the depth changed to 1 bit, or was normalized and
had the noise reduced. The compression ratios for these smallest sizes were set to 0, the
encoding rates to 0.1. For the biggest file sizes, the compression ratios were set to 100, and
the encoding rates were set to 1.0. The ratios and the encodings that produced the smallest
or the biggest file sizes are presented in F.23, F.24, .25 or F.26, F.27, .28 respectively.

The best minutiae-based scores are the same whether the gray-scale filter was applied,
or not. Meaning that the original image had its depth at 8bits. For the JPEG compression,
the ratio of 100 and for the WSQ the encoding of 0.75 produced the best score whether the
filters were or were not applied. While for the PNG, all tested ratios produced the best
score.

The binarized image recorded slightly higher compression times than the resized image,
for the JPEG compression. However, the fastest compression times for the PNG compres-
sion were higher for the resized image. Moreover, for the JPEG compression, the fastest
compression times for the binarized image were similar to the times of the image without
the filter. So, for the JPEG compression, the smaller bitmap size did not produce faster
compression time. Additionally, it is worth mentioning that there are 3 different bitmap
sizes of the binarized image while there are 4 different sizes of resized and non-filtered im-
age. This is because there were images with a depth of 24 bits, and their bitmap size was
698880 bytes. For them to be binarized, they first need to be converted to gray-scale, thus
their bitmap size becomes 232960 bytes. And since there already are gray-scale images with
the bitmap size of 232960 bytes, they both produce the same binarized bitmap size. For the
WSQ compression, compressing the binarized image was impossible as an exception was
thrown.

4.7 Result summary and discussion

For real and synthetic fingerprints, with and without the pre-processing phase, matched
by the minutiae-based technique, almost all compressions recorded the average score at
least twice the minimum required score for them to be considered a match. However, the
average scores from the cross-correlation matching technique suggest that only the PNG
compression without the pre-processing phase produced acceptable results. The average
minutiae-based scores for other fingerprint types suggest that the JPEG and the PNG com-
pressions, without the pre-processing, can be used to obtain adequate results. The average
cross-correlation results imply that only the PNG compression, without the pre-processing,
produces satisfactory results. As mentioned in [15], the minutiae-based technique is the
most used one, so results from this category could have a higher value. But the only com-
pression, that produced satisfactory results with both matching techniques on all fingerprint
types is the PNG compression without the pre-processing phase.

Unlike in [11], the fingerprint enhancement did not improve the matching scores. The
average matching scores suggest that pre-processing an image may lower the matching
score. Furthermore, results in [21] indicate that compressions based on the Discrete wavelet
transform keep better image quality. This study, on the other hand, suggests that the WSQ
compression, based on the Discrete wavelet transform, may not provide such image quality
as lossless compressions like PNG. Although, it is worth noting the used WSQ compression
was error-prone, thus, the full capabilities of the WSQ compression could not be tested.

Without the applied filters, the JPEG compression had higher average PSNR scores
for 3 out of 5 fingerprint types. Also, these average PSNR values produced by the JEPG
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compression for the fake fingerprints, and the WS(Q compression for the real fingerprints
were similar to those in [21]. In that study, the PSNR value for the JPEG compression
was 24.42, and 19.86 for the compression based on the Discrete wavelet transform. The
synthetic fingerprints produced slightly lower average PSNR values but still close to the
ones produced in [21]. For the PNG compression, the PSNR values were not measured.
PNG is a lossless compression, and therefore there is no difference between the original and
the reconstructed image. To test this, the MSE 2.5 was measured for 100 randomly selected
images. FEvery one of these images produced MSE of 0 meaning, no difference between the
original and the reconstructed image.

Nevertheless, the PNG compression does not provide the reduction capabilities or the
compression times as the other compression methods in this study. The results of this
work indicate that the ideal compression, concerning the compression times, is the JPEG
compression, which produced the best average compression times. Yet the best compression,
concerning the compressed file sizes, is the WS(Q compression that produced the smallest
average file sizes. For the JPEG compression, the compression ratio set to 0 produced the
shortest compressions and the smallest file sizes, while the compression ratio of 100 produced
the biggest file sizes and the longest compression times. For the WS(Q compression, the
encoding rate set to 0.1 produced the smallest file sizes and the shortest compression times,
while the encoding rate of 1.0 produced the biggest file sizes and the longest compression
times. However, for the PNG compression, the compression ratio set to 0 produced the
longest compression times and the smallest file sizes, while the compression ratio of 100
produced the shortest compression times and the biggest file sizes. As stated in JavaDoc!,
this ratio is a compromise between the file size and the compression time, for the lossless
compression. Meaning that higher ratio values produce a shorter time and a bigger file size.
For the lossy compression, this ratio is a compromise between the file size and the image
quality. Meaning that lower ratio values produce a smaller file size and a worse quality
image.

The results also suggest that pre-processing an image, like changing its size to 50% of
the original size, or changing its depth to 1 bit may reduce the compression time or the
file size. Still, it may not be ideal, as such images did not register acceptable matching
scores. Only the ill, synthetic, and fake fingerprint images with the depth changed to 1
bit compressed by the JPEG or the PNG compression recorded satisfactory scores by the
cross-correlation matching technique.

Interesting results were provided by the compression times for respective bitmap sizes.
Almost in all cases, the binarized image had higher compression times than the image
resized to 50% of the original size, albeit the binarized image had the smaller bitmap
size. Also, for the JPEG compression, the compression time for the binarized image was
similar to the compression time of an image with no filter applied. It is worth noting
that different compression times were obtained during various test runs, indicating that the
compression times are not deterministic, which may explain the roughness in the graphs.
The binarized images were not compressible with the WSQ compression as the compression
threw ArrayIndexOutOfBoundsException exception.

As mentioned in [1], the pre-processing should eliminate the false minutiae and improve
the matching. However, their pre-processing also included thinning the fingerprint image,
which this implemented application does not support. In addition to that, the implemented
Gabor filter does not always produce relevant images, as displayed in 3.5. This Gabor filter

https://docs.oracle.com/javase/7/docs/api/ javax/imageio/ImageWriteParam html#setCompressionQuality
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works with OpenCV methods, which require an image to be represented by OpenCV’s
Mat class. However, in the implemented application an image is represented by Java’s
Bufferedlmage class. The conversion between these classes may be the reason why the
resulting filtered image is sometimes unusable. Apart from that, the other issue causing
this problem may be the partial images being sometimes wrongly added together.

As seen in the tables for the worst matching scores, any combination of compression,
compression parameter, and applied filter can produce a matching score of 0. There are
a few reasons for this. According to [11] the nature of the ridges differs with the input
fingerprint image. Therefore, the matchers will have trouble with less quality images. Less
error rate is accomplished with the quality images, which is stated in [26]. Also, some types
of fingerprint images are just not ideal for matching. According to [27], the obfuscated,
or damaged fingerprints are harder to match. Additionally, the matchers that were used
are open-source fingerprint matchers. They may not possess the matching quality of the
commercial matchers. It is not stated on their respective project websites how they handle
low-quality fingerprint images.
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Chapter 5

Conclusion

The purpose of this work was to determine how different compression methods affect differ-
ent types of fingerprint images and how different fingerprint matching techniques cope with
these compressed images. This study was conducted on the database consisting of fake,
damaged, ill, synthetic, and real fingerprint images. The compression methods included
JPEG, PNG, and the WSQ compression, and matching included the minutiae-based, the
cross-correlation, and the PSNR matcher. The results showed that the PNG compression
registered the most satisfying and acceptable average scores. Meanwhile, the JPEG com-
pression recorded the best average compression times, and the WS(Q compression produced
the best average file sizes. It was suggested that applying various fingerprint enhancement
techniques could improve the matching scores. However, applying these pre-processing
techniques to an image produced significantly lower average scores.

This work could be further expanded by including the JPEG2000 compression to the
used compressions. This compression provides lossy and lossless compressions, and there-
fore could match the average values achieved by the PNG compression. Also, the pre-
processing techniques could be broadened by the thinning filter. Applying such a filter
to fingerprint images may increase the performance of the matching algorithms. Likewise,
the performance of the implemented noise reduction filter could be improved, so more rele-
vant results are produced. Furthermore, a better implementation of the WSQ compression
should be used since one that was used was prone to errors.
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Appendix A

Example XMLs

A.1 Testing XML

This section includes an example XML used during the testing. This example XML ap-
plies the noise reduction filter to each fingerprint image in the directory in the sourceDir
element. Then the PNG compression with the compression ratio set to 50 is applied. Each
compressed fingerprint image is then saved to the directory in the destinationDir element.
Finally the original image is then compared to the compressed image by the cross-correlation
and the minutiae matcher.

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<entry>
<sourceDir>
/home/marek/Documents/KomplexniPrurez/nemocne_tmp/sourceDir
</sourceDir>
<destinationDir>
/home/marek/Documents/KomplexniPrurez/nemocne_tmp/destinationDir
</destinationDir>
<filters>
<filter>
<filterName>noiseReduction</filterName>
</filter>
</filters>
<compressions>
<compression>
<compressionName>png</compressionName>
<params>
<ratio>50</ratio>
</params>
</compression>
</compressions>
<matchers>
<matcher>
<matcherName>crossCorrelation</matcherName>
</matcher>
<matcher>
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<matcherName>minutiaeBased</matcherName>
</matcher>
</matchers>
</entry>
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A.2 Image result XML

This section includes an example XML holds the results for a certain fingerprint image.
This example fingerprint image was compressed with the PNG compression and had the
noise reduction and the binarization filters applied. The compression time took only 2
milliseconds, the minutiae score was 1.17 and the cross-correlation score was 51.

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<result>
<fileNames>
<currentFilename>173-p2-sec2-denoised-binarized.png</currentFilename>
<currentAbsolutePath>
/home/marek/Documents/KomplexniPrurez/FalesneResults/Falesne2/
compressed/173-p2-sec2-denoised-binarized.png
</currentAbsolutePath>
<originalFilename>173-p2-sec2.png</originalFilename>
<originalFileAbsolutePath>
/home/marek/Documents/KomplexniPrurez/Falesne2/173-p2-sec2.png
</originalFileAbsolutePath>
</fileNames>
<appliedFilters>
<appliedFilter>denoised</appliedFilter>
<appliedFilter>binarized</appliedFilter>
</appliedFilters>
<compressionTime>2</compressionTime>
<matcherScores>
<minutiaeBasedMatcherScore>1.1743483788938347</minutiaeBasedMatcherScore>
<crossCorrelationMatcherScore>51.0</crossCorrelationMatcherScore>
</matcherScores>
</result>
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Appendix B

Fake fingerprint results

B.1 Matching scores

B.1.1 The best minutiae-based scores

‘ Ratio ‘ Filters ‘ Score
100 | depth changed to 8b | 661.3097055229035
100 none 661.3097055229035

Table B.1: The ratios and filters for the best JPEG minutiae-based match

‘ Ratio ‘ Filters ‘ Score ‘
all tested | depth changed to 8b | 829.8393484687903
0 none 829.8393484687903

Table B.2: The ratios and filters for the best PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

‘ Encoding | Filters | Score
0.5 depth changed to 8b | 169.56989170131155
0.5 none 169.56989170131155

Table B.3: The encodings and filters for the best WSQ minutiae-based match

B.1.2 The worst minutiae-based score

‘ Ratio | Filters ‘ Score |
all tested | all tested 0.0
100 none 0.0

Table B.4: The ratios and filters for the worst JPEG minutiae-based match. Ratios of 0,
25, 50, 75, 100 are understood by all tested
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‘ Ratio | Filters ‘ Score |
all tested | all tested 0.0
0 none 0.0

Table B.5: The ratios and filters for the worst PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

‘ Encoding | Filters | Score |
all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised | 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table B.6: The encodings and filters for the worst WSQ minutiae-based match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

B.1.3 The best cross-correlation scores

| Ratio Filters | Score [%] |
75, 100 normalized 99.0
50, 75, 100 | depth changed to 1b 99.0
100 depth changed to 8b 99.0
100 none 99.0

Table B.7: The ratios and filters for the best JPEG cross-correlation match

| Ratio | Filters | Score [%] |
all tested | depth changed to 1b 99.0
all tested normalized 99.0
all tested | depth changed to 8b 99.0
0 none 99.0

Table B.8: The ratios and filters for the best PNG cross-correlation match. Ratios of 0, 25,

50, 75, 100 are understood by all tested
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Table B.9: The encodings and filters for the best WSQ cross-correlation match

Filters | Score [%] |

0.75 normalized 86.0
1.0 none 83.0

| Encoding ‘

B.1.4 The worst cross-correlation scores

| Ratio Filters | Score [%] |
all tested resized to 50% 0.0
25, 75 depth changed to 8b 0.0
0, 25 normalized, binarized 0.0
0, 50 resized to 80% 0.0
25 normalized, denoised, depth changed to 1b 0.0
0, 25 normalized 0.0
25, 100 resized to 125% 0.0
0 binarized 0.0
0 resized to 150% 0.0
0 normalized, denoised 0.0
0 depth changed to 1b 0.0
75 none 0.0

Table B.10: The ratios and filters for the worst JPEG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |
all tested resized to 50% 0.0
all tested resized to 80% 0.0
all tested | depth changed to 8b 0.0
0 none 0.0

Table B.11: The ratios and filters for the worst PNG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested
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Encoding | Filters | Score [%] |

all tested resized to 150% 0.0
0.25, 0.5, 0.75 depth changed to 8b 0.0
all tested resized to 125% 0.0

all tested resized to 50% 0.0

all tested resized to 80% 0.0

all tested normalized, denoised 0.0

all tested denoised 0.0

0.1, 0.25, 0.5, 0.75 normalized 0.0
0.75 none 0.0

Table B.12: The encodings and filters for the worst WSQ cross-correlation match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

B.1.5 The best PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
100 | depth changed to 8b | 63.702294883802786
100 none 63.702294883802786

Table B.13: The ratios and filters for the best JPEG PSNR match

| Encoding | Filters ‘ Score [dB] ‘
0.1 normalized, denoised | 17.576663707024306
1.0 none 16.56645179279506

Table B.14: The encodings and filters for the best WSQ PSNR, match

B.1.6 The worst PSNR scores

| Ratio | Filters ‘ Score [dB] |
0 normalized, denoised | 7.927548033270092
0 none 11.580130244274024

Table B.15: The ratios and filters for the worst JPEG PSNR match

| Encoding | Filters | Score [dB] ‘
0.5 denoised | 6.607181826989057
0.1 none 9.549908806047236

Table B.16: The encodings and filters for the worst WSQ PSNR match
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B.2 Compression times

B.2.1 The shortest compression times

| Ratio | Filters | Time [ms] |
0 resized to 50% | 0.787652
0 none 2.093098

Table B.17: The ratios and filters for the shortest JPEG compression time

| Ratio | Filters | Time [ms] |
100 | normalized, binarized | 0.706703
100 none 1.947856

Table B.18: The ratios and filters for the shortest PNG compression time

‘ Encoding I Filters | Time [ms] |
0.1 resized to 50% | 2.861224
0.1 none 8.561105

Table B.19: The encodings and filters for the shortest WSQ compression time

B.2.2 The longest compression times

| Ratio | Filters | Time [ms] |
100 | resized to 150% | 16.483067
100 none 5.433836

Table B.20: The ratios and filters for the longest JPEG compression time

| Ratio | Filters | Time [ms] |
0 denoised | 143.961452
0 none 71.361985

Table B.21: The ratios and filters for the longest PNG compression time

‘ Encoding | Filters I Time [ms] I
1.0 resized to 150% | 59.137226
0.75 none 19.503243

Table B.22: The encodings and filters for the longest WS(Q compression time
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B.3 Compressed file sizes

B.3.1 The smallest file sizes

| Ratio | Filters | Size [B] |
0 resized to 50% 1199
0 none 2849

Table B.23: The ratios and filters for the smallest JPEG file size

| Ratio | Filters | Size [B] |
0 depth changed to 1b 1289
0 none 10427

Table B.24: The ratios and filters for the smallest PNG file size

| Encoding | Filters | Size [B] |
0.1 denoised 776
0.1 none 1227

Table B.25: The encodings and filters for the smallest WSQ file size

B.3.2 The biggest file sizes

| Ratio | Filters | Size [B] |
100 | resized to 150% | 287048
100 none 110046

Table B.26: The ratios and filters for the biggest JPEG file size

| Ratio | Filters | Size [B] |
100 | normalized, denoised | 295512
100 denoised 295512
100 none 98807

Table B.27: The ratios and filters for the biggest PNG file size

| Encoding | Filters | Size [B] |
1.0 resized to 150% | 23698
1.0 none 7020

Table B.28: The encodings and filters for the biggest WSQ file size
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B.4 The average values

B.4.1 The average minutiae-based scores

The average minutiae-based score for compression
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Figure B.1: The average minutiae-based score for compression. Score more than 40 means
the fingerprints matched.
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B.4.2 The average cross-correlation scores

The average cross-correlation score for compression

T T T T T T T T
= With filters
— Without filters
WSQ - | 33.9 i
o 19.16
S
2
% | 79.77
% PNG | 37.88 i
e}
&
) | 44.2 |
JPEG | 33.23
| | | | | | | |
0 10 20 30 40 50 60 70 80

Cross-correlation score [%]

Figure B.2: The average cross-correlation score for compression. Score expresses percentage
match between fingerprints.

B.4.3 The average PSNR scores

The average PSNR score for compression
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Figure B.3: The average PSNR score for compression. Score more than 40 means the
fingerprints matched.
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B.4.4 The average compression times

The average compression time for compression
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Figure B.4: The average compression time for compression in milliseconds.

B.4.5 The average compressed file sizes

The average compressed file size for compression
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Figure B.5: The average compressed file size for compression in Bytes
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B.5 Compression time dependency on the bitmap size

B.5.1 The fastest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure B.6: Plot shows the fastest JPEG compression time for each bitmap size when image
was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure B.7: Plot shows the shortest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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B.5.2 The longest JPEG compression times for bitmap size

Compression time [ms]

JPEG compression time dependency on the bitmap size when filters were applied
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Figure B.8: Plot shows the longest JPEG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure B.9: Plot shows the longest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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B.5.3 The fastest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure B.10: Plot shows the shortest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure B.11: Plot shows the shortest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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B.5.4 The longest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure B.12: Plot shows the longest PNG compression time for each bitmap size when

image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure B.13: Plot shows the longest PNG compression time for
image was not pre-processed (filters were not applied)
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B.5.5 The fastest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure B.14: Plot shows the shortest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure B.15: Plot shows the shortest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)

62



B.5.6 The longest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure B.16: Plot shows the longest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure B.17: Plot shows the longest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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Appendix C

Damaged fingerprint results

C.1 Matching scores

C.1.1 The best minutiae-based scores

‘ Ratio ‘ Filters ‘ Score ‘
100 | depth changed to 8b | 424.75142757322834
100 none 424.75142757322834

Table C.1: The ratios and filters for the best JPEG minutiae-based match

‘ Ratio ‘ Filters | Score ‘
all tested | depth changed to 8b | 1179.5927929938084
0 none 1179.5927929938084

Table C.2: The ratios and filters for the best PNG minutiae-based match. Ratios of 0, 25,

50, 75, 100 are understood

by all tested

‘ Encoding | Filters | Score
0.75 depth changed to 8b | 310.89555323260913
0.75 none 310.89555323260913

Table C.3: The encodings and filters for the best WSQ minutiae-based match

C.1.2 The worst minutiae-based score

Table C.4: The ratios and filters for the worst JPEG minutiae-based match. Ratios of 0,

‘ Ratio | Filters ‘ Score |
all tested | all tested 0.0
100 none 0.0

25, 50, 75, 100 are understood by all tested
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‘ Ratio | Filters ‘ Score |
all tested | all tested 0.0
0 none 0.0

Table C.5: The ratios and filters for the worst PNG minutiae-based match. Ratios of 0, 25,

50, 75, 100 are understood by all tested

Table C.6: The encodings and filters for the worst WSQ minutiae-based match. Encoding

‘ Encoding | Filters | Score |
all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised | 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

C.1.3 The best cross-correlation scores

| Ratio | Filters | Score [%] |
50, 75, 100 normalized 99.0
50, 75, 100 | normalized, binarized 99.0
75 none 93.0

Table C.7: The ratios and filters for the best JPEG cross-correlation match

| Ratio | Filters | Score [%] |
all tested | normalized, binarized 99.0
all tested normalized 99.0
all tested | depth changed to 8b 99.0
0 none 99.0

Table C.8: The ratios and filters for the best PNG cross-correlation match. Ratios of 0, 25,

50, 75, 100 are understood by all tested
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| Encoding | Filters | Score [%] |
0.5 depth changed to 8b 98.0
0.5 normalized 98.0
0.5 none 98.0

Table C.9: The encodings and filters for the best WSQ cross-correlation match

C.1.4 The worst cross-correlation scores

| Ratio | Filters | Score [%] |
all tested | all tested 0.0
100 none 0.0

Table C.10: The ratios and filters for the worst JPEG cross-correlation match. Ratios of
0, 25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |

all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested binarized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised, depth changed to 1b 0.0
all tested normalized, denoised, binarized 0.0
all tested normalized, binarized 0.0
all tested denoised, binarized 0.0
all tested normalized, denoised 0.0
all tested depth changed to 1b 0.0
all tested resized to 150% 0.0

0 none 99.0

Table C.11: The ratios and filters for the worst PNG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested
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Encoding | Filters | Score [%] |

all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table C.12: The encodings and filters for the worst WSQ cross-correlation match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

C.1.5 The best PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
100 | depth changed to 1b | 21.768398233078692
0 none 19.57734247693712

Table C.13: The ratios and filters for the best JPEG PSNR match

| Encoding | Filters | Score [dB] ‘
1.0 depth changed to 8b | 25.114499414989005
1.0 none 25.114499414989005

Table C.14: The encodings and filters for the best WSQ PSNR, match

C.1.6 The worst PSNR scores

| Ratio | Filters ‘ Score [dB] |
50 depth changed to 8b | 6.29325268254798
50 none 6.29325268254798

Table C.15: The ratios and filters for the worst JPEG PSNR match

| Encoding | Filters ‘ Score [dB] ‘
0.1 normalized, denoised | 6.9089682612922605
0.1 none 8.874867746514719

Table C.16: The encodings and filters for the worst WSQ PSNR match
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C.2 Compression times

C.2.1 The shortest compression times

| Ratio | Filters | Time [ms] |
0 resized to 50% | 0.416831
0 none 1.159169

Table C.17: The ratios and filters for the shortest JPEG compression time

| Ratio | Filters | Time [ms] |
100 | resized to 50% | 0.294821
100 none 0.750107

Table C.18: The ratios and filters for the shortest PNG compression time

‘ Encoding I Filters | Time [ms] |
0.1 resized to 50% | 1.679653
0.1 none 4.369841

C.2.2 The longest compression times

Table C.19: The encodings and filters for the shortest WSQ compression time

| Ratio | Filters | Time [ms] |
100 | resized to 150% | 21.988825
100 none 10.019492

Table C.20: The ratios and filters for the longest JPEG compression time

| Ratio | Filters | Time [ms] |
0 resized to 150% | 163.286202
0 none 79.225599

Table C.21: The ratios and filters for the longest PNG compression time

‘ Encoding | Filters I Time [ms] I
1.0 resized to 150% | 89.209265
1.0 none 36.218393
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C.3 Compressed file sizes

C.3.1 The smallest file sizes

| Ratio | Filters | Size [B] |
0 resized to 50% 1078
0 none 2116

Table C.23: The ratios and filters for the smallest JPEG file size

| Ratio | Filters | Size [B] |
0 depth changed to 1b 725
0 none 7697

Table C.24: The ratios and filters for the smallest PNG file size

| Encoding | Filters | Size [B] |
0.1 resized to 50% 710
0.1 none 1065

Table C.25: The encodings and filters for the smallest WSQ file size

C.3.2 The biggest file sizes

| Ratio | Filters | Size [B] |
100 | resized to 150% | 306716
100 none 150920

Table C.26: The ratios and filters for the biggest JPEG file size

| Ratio | Filters | Size [B] |
100 | normalized, denoised | 519907
100 denoised 519907
100 none 173625

Table C.27: The ratios and filters for the biggest PNG file size

| Encoding | Filters | Size [B] |
1.0 resized to 150% | 27395
1.0 none 12460

Table C.28: The encodings and filters for the biggest WSQ file size
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C.4 The average values

C.4.1 The average minutiae-based scores

The average minutiae-based score for compression
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Figure C.1: The average minutiae-based score for compression. Score more than 40 means
the fingerprints matched.
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C.4.2 The average cross-correlation scores

The average cross-correlation score for compression
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Figure C.2: The average cross-correlation score for compression. Score expresses percentage
match between fingerprints.

C.4.3 The average PSNR scores

The average PSNR score for compression

T T I I

= With filters
= Without filters

= | |12 |
S WsQ | 5.25

¢

o

g

8

e}

S 19.75

> JPEG | 8.56

PSNR score [dB]

Figure C.3: The average PSNR score for compression. Score more than 40 means the
fingerprints matched.
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C.4.4 The average compression times

The average compression time for compression
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Figure C.4: The average compression time for compression in milliseconds.

C.4.5 The average compressed file sizes

The average compressed file size for compression
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Figure C.5: The average compressed file size for compression in Bytes
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C.5 Compression time dependency on the bitmap size

C.5.1 The fastest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure C.6: Plot shows the fastest JPEG compression time for each bitmap size when image
was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure C.7: Plot shows the shortest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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C.5.2 The longest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied

T T T T T I
—— Resized image

— —— Binarized image
g
o 10
e
g
X
7
- s
g
S
’ e————

O | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Bitmap size (width-height-depth) [B] 104

Figure C.8: Plot shows the longest JPEG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure C.9: Plot shows the longest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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C.5.3 The fastest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure C.10: Plot shows the shortest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure C.11: Plot shows the shortest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)

75



C.5.4 The longest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure C.12: Plot shows the longest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure C.13: Plot shows the longest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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C.5.5 The fastest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure C.14: Plot shows the shortest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure C.15: Plot shows the shortest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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C.5.6 The longest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure C.16: Plot shows the longest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure C.17: Plot shows the longest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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Appendix D

Real fingerprint results

D.1 Matching scores

D.1.1 The best minutiae-based scores

‘ Ratio | Filters | Score ‘
100 | depth changed to 8b | 724.8772397674417
100 none 724.8772397674417

Table D.1: The ratios and filters for the best JPEG minutiae-based match

‘ Ratio ’ Filters | Score ‘
all tested | depth changed to 8b | 1179.5927929938084
0 none 1179.5927929938084

Table D.2: The ratios and filters for the best PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

| Encoding | Filters ‘ Score ‘
0.75 depth changed to 8b | 649.7977894701282
0.75 none 649.7977894701282

Table D.3: The encodings and filters for the best WSQ minutiae-based match
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D.1.2 The worst minutiae-based score

‘ Ratio ‘ Filters ‘ Score |
all tested normalized, denoised, depth changed to 1b | 0.0
all tested resized to 150% 0.0
all tested denoised, binarized 0.0

0, 25, 50, 75 normalized, binarized 0.0
all tested denoised 0.0
0, 75, 100 resized to 125% 0.0
all tested resized to 50% 0.0

0,75 normalized 0.0

0 resized to 80% 0.0

all tested depth changed to 1b 0.0
all tested normalized, denoised 0.0
all tested normalized, denoised, binarized 0.0
0 depth changed to 8b 0.0

0 none 0.0

Table D.4: The ratios and filters for the worst JPEG minutiae-based match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Ratio | Filters ‘ Score
all tested normalized, denoised, binarized 0.0
all tested resized to 50% 0.0
all tested normalized 0.0
all tested denoised, binarized 0.0
all tested binarized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested normalized, denoised 0.0
all tested depth changed to 1b 0.0
all tested resized to 150% 0.0
all tested | normalized, denoised, depth changed to 1b 0.0
0 none 141.9909075695878

Table D.5: The ratios and filters for the worst PNG minutiae-based match. Ratios of 0,
25, 50, 75, 100 are understood by all tested
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Table D.6: The encodings and filters for the worst WSQ minutiae-based match. Encoding

Encoding | Filters | Score
all tested resized to 150% 0.0
all tested resized to 50% 0.0
0.1, 0.25, 0.75, 1.0 resized to 80% 0.0
all tested normalized, denoised 0.0
all tested denoised 0.0
0.1, 0.5 resized to 125% 0.0
0.1, 0.75 normalized 0.0

0.1 none 1.7512533241406483

rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

D.1.3 The best cross-correlation scores

Table D.7: The ratios and filters for the best JPEG cross-correlation match

|  Ratio | Filters | Score [%] |
0 denoised 99.0
50, 75, 100 | denoised, binarized 99.0
25 normalized, denoised 99.0
75 resized to 80% 99.0
25 none 96.0

| Ratio | Filters | Score [%] |
all tested depth changed to 8b 99.0
all tested resized to 150% 99.0
all tested resized to 125% 99.0
0, 25, 75 denoised, binarized 99.0
0 normalized, denoised, depth changed to 1b 99.0
0 none 99.0

Table D.8: The ratios and filters for the best PNG cross-correlation match. Ratios of 0, 25,

50, 75, 100 are understood by all tested

Table D.9: The encodings and filters for the best WSQ cross-correlation match

| Encoding ‘ Filters ‘ Score [%] ‘
0.25 depth changed to 8b 99.0
0.5, 1.0 resized to 150% 99.0
0.25, 0.75 resized to 125% 99.0
0.1 normalized 99.0
0.25 none 99.0

81



D.1.4 The worst cross-correlation scores

| Ratio | Filters | Score [%] |
all tested | all tested 0.0
100 none 0.0

Table D.10: The ratios and filters for the worst JPEG cross-correlation match. Ratios of
0, 25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |
all tested | all tested 0.0
0 none 0.0

Table D.11: The ratios and filters for the worst PNG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Encoding | Filters | Score [%] |

all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table D.12: The encodings and filters for the worst WSQ cross-correlation match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

D.1.5 The best PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
75 depth changed to 1b | 24.406654820985278
100 none 21.303054075369026

Table D.13: The ratios and filters for the best JPEG PSNR match

| Encoding | Filters | Score [dB] |
1.0 depth changed to 8b | 35.243883201233686
1.0 none 35.243883201233686

Table D.14: The encodings and filters for the best WSQ PSNR match
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D.1.6 The worst PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
100 | depth changed to 8b | 5.3960317606377455
100 none 5.3960317606377455

Table D.15: The ratios and filters for the worst JPEG PSNR match

| Encoding | Filters ‘ Score [dB] |
1.0 normalized, denoised | 8.068990618862403
0.1 none 9.126309368455237

Table D.16: The encodings and filters for the worst WSQ PSNR match

D.2 Compression times

D.2.1 The shortest compression times

| Ratio | Filters | Time [ms] |
0 resized to 50% | 0.752461
0 none 2.477509

Table D.17: The ratios and filters for the shortest JPEG compression time

| Ratio | Filters | Time [ms] |
100 | resized to 50% | 0.54065
100 none 1.733561

Table D.18: The ratios and filters for the shortest PNG compression time

| Encoding | Filters | Time [ms] |
0.1 resized to 50% | 2.782313
0.1 none 8.778466

Table D.19: The encodings and filters for the shortest WSQ compression time
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D.2.2 The longest compression times

| Ratio | Filters | Time [ms] |
100 | resized to 150% | 37.500664
0 none 13.584782

Table D.20: The ratios and filters for the longest JPEG compression time

| Ratio | Filters | Time [ms] |
0 normalized, denoised | 208.612401
0 none 80.927067

Table D.21: The ratios and filters for the longest PNG compression time

| Encoding | Filters | Time [ms] |
1.0 resized to 150% | 135.700093
1.0 none 99.564061

Table D.22: The encodings and filters for the longest WSQ compression time

D.3 Compressed file sizes

D.3.1 The smallest file sizes

| Ratio | Filters | Size [B] |
0 resized to 50% 1042
0 none 2145

Table D.23: The ratios and filters for the smallest JPEG file size

| Ratio | Filters | Size [B] |
0, 25 | depth changed to 1b 119
0 none 41783

Table D.24: The ratios and filters for the smallest PNG file size

| Encoding | Filters | Size [B] |
0.1 resized to 50% 764
0.1 none 1285

Table D.25: The encodings and filters for the smallest WSQ file size
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D.3.2 The biggest file sizes

| Ratio | Filters | Size [B] |
100 | resized to 150% | 343392
100 none 166582

Table D.26: The ratios and filters for the biggest JPEG file size

| Ratio | Filters | Size [B] |
100 | normalized, denoised | 519907
100 denoised 519907
100 none 173625

Table D.27: The ratios and filters for the biggest PNG file size

| Encoding | Filters | Size [B] |
1.0 resized to 150% | 28779
1.0 none 13874

Table D.28: The encodings and filters for the biggest WSQ file size

D.4 The average values

D.4.1 The average minutiae-based scores

The average minutiae-based score for compression
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Figure D.1: The average minutiae-based score for compression. Score more than 40 means
the fingerprints matched.
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D.4.2 The average cross-correlation scores

The average cross-correlation score for compression
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Figure D.2: The average cross-correlation score for compression. Score expresses percentage
match between fingerprints.

D.4.3 The average PSNR scores

The average PSNR score for compression
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Figure D.3: The average PSNR score for compression. Score more than 40 means the
fingerprints matched.
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D.4.4 The average compression times

Used compression

The average compression time for compression
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Figure D.4: The average compression time for compression in milliseconds.

D.4.5 The average compressed file sizes
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The average compressed file size for compression
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Figure D.5: The average compressed file size for compression in Bytes
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D.5 Compression time dependency on the bitmap size

D.5.1 The fastest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure D.6: Plot shows the fastest JPEG compression time for each bitmap size when image
was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure D.7: Plot shows the shortest JPEG compression time for each bitmap size when

image was not pre-processed (filters were not applied)
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D.5.2 The longest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure D.8: Plot shows the longest JPEG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure D.9: Plot shows the longest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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D.5.3 The fastest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure D.10: Plot shows the shortest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure D.11: Plot shows the shortest PNG compression time for each bitmap size when

image was not pre-processed (filters were not applied)
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D.5.4 The longest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure D.12: Plot shows the longest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure D.13: Plot shows the longest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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D.5.5 The fastest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure D.14: Plot shows the shortest WS(Q compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure D.15: Plot shows the shortest WS(Q compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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D.5.6 The longest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure D.16: Plot shows the longest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure D.17: Plot shows the longest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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Appendix E

I1l fingerprint results

E.1 Matching scores

E.1.1 The best minutiae-based scores

| Ratio ‘ Filters ‘ Score
100 | depth changed to 8b | 1050.3138952418142
100 none 1050.3138952418142

Table E.1: The ratios and filters for the best JPEG minutiae-based match

‘ Ratio ’ Filters | Score ‘
all tested | depth changed to 8b | 1179.5927929938084
0 none 1179.5927929938084

Table E.2: The ratios and filters for the best PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

‘ Encoding | Filters | Score |
1.0 depth changed to 8b | 801.9407278725625
0.5 none 113.93537859516215

Table E.3: The encodings and filters for the best WS(Q minutiae-based match
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E.1.2 The worst minutiae-based score

‘ Ratio ‘ Filters ’ Score ‘
75 resized to 80% 0.0
75 denoised 0.0
75 resized to 150% 0.0
75 depth changed to 1b 0.0
75 normalized, denoised 0.0
75 resized to 125% 0.0
75 normalized, binarized 0.0
75 denoised, binarized 0.0
0, 25, 50, 100 all tested 0.0
75 normalized, denoised, binarized 0.0
75 normalized 0.0
75 resized to 50% 0.0
75 binarized 0.0
75 normalized, denoised, depth changed to 1b | 0.0
75 none 0.0

Table E.4: The ratios and filters for the worst JPEG minutiae-based match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

‘ Ratio | Filters ‘ Score
all tested | all tested 0.0
0 none 86.39675721909222

Table E.5: The ratios and filters for the worst PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

‘ Encoding | Filters ’ Score ‘
all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised | 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table E.6: The encodings and filters for the worst WS(Q minutiae-based match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested
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E.1.3 The best cross-correlation scores

| Ratio | Filters | Score [%] |
all tested | depth changed to 1b 99.0
100 depth changed to 8b 99.0
100 none 99.0

Table E.7: The ratios and filters for the best JPEG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |

all tested | depth changed to 1b 99.0
all tested | depth changed to 8b 99.0
0 none 99.0

Table E.8: The ratios and filters for the best PNG cross-correlation match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

| Encoding | Filters | Score [%] |
1.0 depth changed to 8b 95.0
1.0 none 95.0

Table E.9: The encodings and filters for the best WSQ cross-correlation match

96



E.1.4 The worst cross-correlation scores

| Ratio | Filters | Score [%] |

50, 75, 100 resized to 80% 0.0
50, 75, 100 | normalized, denoised, depth changed to 1b 0.0
50, 75, 100 normalized, binarized 0.0
50, 75, 100 resized to 150% 0.0
50, 75, 100 resized to 50% 0.0
50, 75, 100 binarized 0.0
50, 75, 100 normalized, denoised, binarized 0.0
50, 75, 100 depth changed to 8b 0.0
50, 75, 100 normalized, denoised 0.0
50, 75, 100 denoised 0.0
50, 75, 100 resized to 125% 0.0

0, 25 all tested 0.0
50, 75, 100 denoised, binarized 0.0
50, 75, 100 normalized 0.0

100 none 0.0

Table E.10: The ratios and filters for the worst JPEG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

‘ Ratio | Filters ‘ Score [%] |
all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested binarized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested depth changed to 8b 0.0
all tested | normalized, denoised, depth changed to 1b 0.0
all tested normalized, denoised, binarized 0.0
all tested normalized, binarized 0.0
all tested denoised, binarized 0.0
all tested normalized, denoised 0.0
all tested resized to 150% 0.0

0 none 99.0

Table E.11: The ratios and filters for the worst PNG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested
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Encoding | Filters | Score [%] |

all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table E.12: The encodings and filters for the worst WSQ cross-correlation match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

E.1.5 The best PSNR scores

| Ratio | Filters | Score [dB] ‘
100 | depth changed to 8b | 46.16888504837653
100 none 46.16888504837653

Table E.13: The ratios and filters for the best JPEG PSNR match

| Encoding | Filters ‘ Score [dB] ‘
1.0 depth changed to 8b | 24.29071532212435
1.0 none 24.29071532212435

Table E.14: The encodings and filters for the best WSQ PSNR match

E.1.6 The worst PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
0 depth changed to 8b | 2.900830129464076
0 none 5.881392951683909

Table E.15: The ratios and filters for the worst JPEG PSNR match

| Encoding | Filters ‘ Score [dB] |
0.1 normalized, denoised | 5.296364236116347
0.1 none 5.125237162034955

Table E.16: The encodings and filters for the worst WSQ PSNR match
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E.2 Compression times

E.2.1 The shortest compression times

| Ratio | Filters | Time [ms] |
0 resized to 50% | 0.566321
0 none 1.588024

Table E.17: The ratios and filters for the shortest JPEG compression time

| Ratio | Filters | Time [ms] |
100 | resized to 50% | 0.39697
100 none 1.109979

Table E.18: The ratios and filters for the shortest PNG compression time

‘ Encoding I Filters | Time [ms] |
0.1 resized to 50% | 2.429921
0.1 none 5.843844

E.2.2 The longest compres

sion times

Table E.19: The encodings and filters for the shortest WSQ compression time

| Ratio | Filters | Time [ms] |
100 | resized to 150% | 198.874218
100 none 97.324384

Table E.20: The ratios and filters for the longest JPEG compression time

| Ratio | Filters | Time [ms] |
0 resized to 150% | 787.195029
0 none 425.592341

Table E.21: The ratios and filters for the longest PNG compression time

‘ Encoding I Filters ‘ Time [ms] |
1.0 resized to 150% | 655.620694
1.0 none 297.571566
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E.3 Compressed file sizes

E.3.1 The smallest file sizes

| Ratio | Filters | Size [B] |
0 resized to 50% 1442
0 none 3049

Table E.23: The ratios and filters for the smallest JPEG file size

| Ratio | Filters | Size [B] |
0 denoised, binarized 368
0 none 31345

Table E.24: The ratios and filters for the smallest PNG file size

| Encoding | Filters | Size [B] |
0.1 resized to 50% 729
0.1 none 860

Table E.25: The encodings and filters for the smallest WSQ file size

E.3.2 The biggest file sizes

| Ratio | Filters | Size [B] |
100 | resized to 150% | 2195339
100 none 1109765

Table E.26: The ratios and filters for the biggest JPEG file size

| Ratio | Filters | Size [B] |
100 | resized to 150% | 8853549
100 none 3935287

Table E.27: The ratios and filters for the biggest PNG file size

| Encoding | Filters | Size [B] |
1.0 resized to 150% | 195215
1.0 none 77862

Table E.28: The encodings and filters for the biggest WSQ file size
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E.4 The average values

E.4.1 The average minutiae-based scores

The average minutiae-based score for compression
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Figure E.1: The average minutiae-based score for compression. Score more than 40 means
the fingerprints matched.
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E.4.2 The average cross-correlation scores

The average cross-correlation score for compression
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Figure E.2: The average cross-correlation score for compression. Score expresses percentage
match between fingerprints.

E.4.3 The average PSNR scores

The average PSNR score for compression
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Figure E.3: The average PSNR score for compression. Score more than 40 means the
fingerprints matched.
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E.4.4 The average compression times

The average compression time for compression
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Figure E.4: The average compression time for compression in milliseconds.

E.4.5 The average compressed file sizes

The average compressed file size for compression
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Figure E.5: The average compressed file size for compression in Bytes
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E.5 Compression time dependency on the bitmap size

E.5.1 The fastest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure E.6: Plot shows the fastest JPEG compression time for each bitmap size when image
was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure E.7: Plot shows the shortest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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E.5.2 The longest JPEG compression times for bitmap size
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Figure E.8: Plot shows the longest JPEG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure E.9: Plot shows the longest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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E.5.3 The fastest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure E.10: Plot shows the shortest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure E.11: Plot shows the shortest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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E.5.4 The longest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure E.12: Plot shows the longest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure E.13: Plot shows the longest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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E.5.5 The fastest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure E.14: Plot shows the shortest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure E.15: Plot shows the shortest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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E.5.6 The longest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure E.16: Plot shows the longest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure E.17: Plot shows the longest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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Appendix F

Synthetic fingerprint results

F.1 Matching scores

F.1.1 The best minutiae-based scores

‘ Ratio | Filters | Score
100 | depth changed to 8b | 765.7814791598335
100 none 765.7814791598335

Table F.1: The ratios and filters for the best JPEG minutiae-based match

’ Ratio ‘ Filters ‘ Score ‘
all tested | depth changed to 8b | 864.8146929212922
0 none 864.8146929212922

Table F.2: The ratios and filters for the best PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

| Encoding | Filters ‘ Score ‘
0.75 depth changed to 8b | 532.0896747922129
0.75 none 532.0896747922129

Table F.3: The encodings and filters for the best WSQ minutiae-based match
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F.1.2 The worst minutiae-based score

‘ Ratio | Filters | Score

all tested resized to 50% 0.0
75 resized to 80% 0.0
all tested normalized, denoised, depth changed to 1b 0.0
all tested normalized, denoised 0.0
all tested denoised, binarized 0.0
all tested normalized, denoised, binarized 0.0
all tested denoised 0.0
0, 25 resized to 150% 0.0
all tested depth changed to 1b 0.0
25, 50, 75, 100 normalized 0.0
75 normalized, binarized 0.0

0 none 1.1924114947552458

Table F.4: The ratios and filters for the worst JPEG minutiae-based match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

‘ Ratio | Filters | Score |
all tested normalized, denoised, binarized 0.0
all tested resized to 50% 0.0
all tested normalized, binarized 0.0
all tested normalized 0.0
all tested denoised, binarized 0.0
all tested denoised 0.0
all tested normalized, denoised 0.0
all tested depth changed to 1b 0.0
all tested | normalized, denoised, depth changed to 1b 0.0
0 none 165.30780387125566

Table F.5: The ratios and filters for the worst PNG minutiae-based match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

‘ Encoding | Filters | Score |
all tested resized to 150% 0.0
all tested resized to 125% 0.0
all tested resized to 50% 0.0
all tested resized to 80% 0.0
all tested | normalized, denoised | 0.0
all tested denoised 0.0

0.1 normalized 0.0
0.75 none 0.0

Table F.6: The encodings and filters for the worst WS(Q minutiae-based match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested
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F.1.3 The best cross-correlation scores

‘ Ratio ’ Filters | Score [%] |

0, 50, 100 resized to 150% 99.0
25 resized to 80% 99.0

all tested depth changed to 8b 99.0
25, 50, 75, 100 | normalized, denoised, binarized 99.0
all tested binarized 99.0
all tested depth changed to 1b 99.0
50 denoised 99.0

all tested normalized, binarized 99.0
all tested resized to 125% 99.0
all tested normalized 99.0
100 none 99.0

Table F.7: The ratios and filters for the best JPEG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |

all tested depth changed to 1b 99.0
all tested normalized, binarized 99.0
all tested normalized 99.0
all tested resized to 125% 99.0
all tested depth changed to 8b 99.0
all tested | normalized, denoised, binarized 99.0
all tested resized to 150% 99.0
all tested binarized 99.0

0 none 99.0

Table F.8: The ratios and filters for the best PNG cross-correlation match. Ratios of 0, 25,
50, 75, 100 are understood by all tested

| Encoding | Filters | Score [%] |
0.75 depth changed to 8b 99.0
0.25 resized to 150% 99.0
0.1 normalized 99.0
0.75 resized to 125% 99.0
0.75 none 99.0

Table F.9: The encodings and filters for the best WSQ cross-correlation match
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F.1.4 The worst cross-correlation scores

| Ratio | Filters | Score [%] |
all tested | all tested 0.0
100 none 0.0

Table F.10: The ratios and filters for the worst JPEG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Ratio | Filters | Score [%] |
all tested | all tested 0.0
0 none 0.0

Table F.11: The ratios and filters for the worst PNG cross-correlation match. Ratios of 0,
25, 50, 75, 100 are understood by all tested

| Encoding | Filters | Score [%] |

all tested resized to 50% 0.0
all tested resized to 125% 0.0
all tested normalized 0.0
all tested resized to 80% 0.0
all tested denoised 0.0
all tested | normalized, denoised 0.0
all tested resized to 150% 0.0
all tested | depth changed to 8b 0.0

0.75 none 0.0

Table F.12: The encodings and filters for the worst WSQ cross-correlation match. Encoding
rates of 0.10, 0.25, 0.50, 0.75, 1.00 are understood by all tested

F.1.5 The best PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
100 | depth changed to 8b | 65.90799998896398
100 none 65.90799998896398

Table F.13: The ratios and filters for the best JPEG PSNR match

| Encoding | Filters | Score [dB] |
1.0 depth changed to 8b | 36.11691443992307
1.0 none 36.11691443992307

Table F.14: The encodings and filters for the best WSQ PSNR match
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F.1.6 The worst PSNR scores

| Ratio | Filters ‘ Score [dB] ‘
75 depth changed to 8b | 12.153884281751854
75 none 12.153884281751854

Table F.15: The ratios and filters for the worst JPEG PSNR match

| Encoding | Filters ‘ Score [dB] ‘
0.1 depth changed to 8b | 6.470472992165894
0.1 none 6.470472992165894

Table F.16: The encodings and filters for the worst WSQ PSNR match

F.2 Compression times

F.2.1 The shortest compression times

| Ratio | Filters | Time [ms] |
0 resized to 50% | 0.918237
0 none 3.119148

Table F.17: The ratios and filters for the shortest JPEG compression time

| Ratio | Filters | Time [ms] |
100 | resized to 50% | 0.647011
100 none 2.127085

Table F.18: The ratios and filters for the shortest PNG compression time

| Encoding | Filters | Time [ms] |
0.1 resized to 50% | 3.304723
0.1 none 10.823851

Table F.19: The encodings and filters for the shortest WSQ compression time
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F.2.2 The longest compression times

| Ratio | Filters | Time [ms] |
0 normalized, denoised, binarized | 37.090806
100 none 17.954151

Table F.20: The ratios and filters for the longest JPEG compression time

| Ratio | Filters | Time [ms] |
0 normalized, denoised | 217.210143
0 none 69.039863

Table F.21: The ratios and filters for the longest PNG compression time

| Encoding | Filters | Time [ms] |
1.0 resized to 150% | 122.256735
1.0 none 75.895407

Table F.22: The encodings and filters for the longest WSQ compression time

F.3 Compressed file sizes

F.3.1 The smallest file sizes

| Ratio | Filters | Size [B] |
0 resized to 50% 1674
0 none 4302

Table F.23: The ratios and filters for the smallest JPEG file size

| Ratio | Filters | Size [B] |
0 depth changed to 1b 697
0 none 7257

Table F.24: The ratios and filters for the smallest PNG file size

| Encoding | Filters | Size [B] |
0.1 normalized, denoised 667
0.1 none 866

Table F.25: The encodings and filters for the smallest WSQ file size
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F.3.2 The biggest file sizes

| Ratio | Filters | Size [B] |
100 | resized to 150% | 293448
100 none 130347

Table F.26: The ratios and filters for the biggest JPEG file size

| Ratio | Filters | Size [B] |
100 | resized to 150% | 1574199
100 none 699860

Table F.27: The ratios and filters for the biggest PNG file size

| Encoding | Filters | Size [B] |
1.0 resized to 150% | 39399
1.0 none 16080

Table F.28: The encodings and filters for the biggest WSQ file size

F.4 The average values

F.4.1 The average minutiae-based scores

The average minutiae-based score for compression
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Figure F.1: The average minutiae-based score for compression. Score more than 40 means
the fingerprints matched.
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F.4.2 The average cross-correlation scores

The average cross-correlation score for compression
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Figure F.2: The average cross-correlation score for compression. Score expresses percentage

match between fingerprints.

F.4.3 The average PSNR

scores

The average PSNR score for compression
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Figure F.3: The average PSNR
fingerprints matched.

PSNR score [dB]

score for compression. Score more than 40 means the
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F.4.4 The average compression times

The average compression time for compression
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Figure F.4: The average compression time for compression in milliseconds.

F.4.5 The average compressed file sizes

The average compressed file size for compression
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Figure F.5: The average compressed file size for compression in Bytes
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F.5 Compression time dependency on the bitmap size

F.5.1 The fastest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure F.6: Plot shows the fastest JPEG compression time for each bitmap size when image
was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure F.7: Plot shows the shortest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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F.5.2 The longest JPEG compression times for bitmap size

JPEG compression time dependency on the bitmap size when filters were applied
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Figure F.8: Plot shows the longest JPEG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

JPEG compression time dependency on the bitmap size when no filters were applied
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Figure F.9: Plot shows the longest JPEG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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F.5.3 The fastest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied

6 T T T T T T T I I I
—— Resized image
. —— Binarized image
0
£
) - .
g *
g
X
95}
2
a8 2y
g
S e
O | | | | | |

| | | |
0.2 04 06 08 1 1.2 14 16 18 2 22 24
Bitmap size (width-height-depth) [B] 109

Figure F.10: Plot shows the shortest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure F.11: Plot shows the shortest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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F.5.4 The longest PNG compression times for bitmap size

PNG compression time dependency on the bitmap size when filters were applied
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Figure F.12: Plot shows the longest PNG compression time for each bitmap size when
image was either resized to 50% of the original size or binarized

PNG compression time dependency on the bitmap size when no filters were applied
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Figure F.13: Plot shows the longest PNG compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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F.5.5 The fastest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure F.14: Plot shows the shortest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied
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Figure F.15: Plot shows the shortest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)
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F.5.6 The longest WSQ compression times for bitmap size

WSQ compression time dependency on the bitmap size when filters were applied
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Figure F.16: Plot shows the longest WSQ compression time for each bitmap size when
image was resized to 50% of the original size

WSQ compression time dependency on the bitmap size when no filters were applied

T I I
]0 - —— Image with no filter | |
%)
=
=
= 60
=
g
7
g
= 40 -
3
O
20 | | | | |
1 2 3 4 5 6 7
Bitmap size (width-height-depth) [B] 105

Figure F.17: Plot shows the longest WSQ compression time for each bitmap size when
image was not pre-processed (filters were not applied)

124



