
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

APLIKAČNÍ RÁMEC PRO VÝVOJ INFORMAČNÍCH SYS-
TÉMŮ V JAZYCE DART
WEB APPLICATION FRAMEWORK FOR SOFTWARE DEVELOPMENT IN THE DART LANGUAGE

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MIROSLAV RAŠKA
AUTHOR

VEDOUCÍ PRÁCE RNDr. MAREK RYCHLÝ, Ph.D.
SUPERVISOR

BRNO 2014

Bachelor Project Specification/15690/2013/xraska09

Brno University of Technology ­ Faculty of Information Technology
Department of Information Systems Academic year 2013/2014

Bachelor Project Specification
For: Raška Miroslav
Branch of study: Information Technology
Title: Web Application Framework for Software Development in the Dart Language
Category: Information Systems
Instructions for project work:

1. Make yourself familiar with the Dart language, its specification and available libraries.
2. Analyse the concepts, applications, and potential of software frameworks and the issues related to

the software frameworks design. Make a comparison of features of several software frameworks for
the Dart language and similar, focus particularly on web application frameworks.

3. Propose a novel web application framework supporting software development in the Dart language.
Design its architecture and architecture of its applications, utilised components, details of their
communication and cooperation, and suitable architectural and design patterns.

4. Demonstrate possibilities of application of the framework, propose a sample application.
5. After agreement with the supervisor, implement the proposed application framework as a Dart

language library. Implement also the sample application based on the framework.
6. Evaluate the results and discuss further extensions and future work.

Basic references:
Ralph E. Johnson. Documenting Frameworks as Patterns. In Proceedings of the Conference on
Object­Oriented Programming Systems, Languages, and Applications (OOPSLA '92), Vancouver,
Canada, 1992. ISBN 0­201­53372­3. [http://dx.doi.org/10.1145/141936.141943]
Ademar Aguiar, Gabriel David. Patterns for documenting frameworks: customization. In Proceedings
of the 2006 conference on Pattern languages of programs (PLoP '06). ACM, New York, USA, 10 pp.,
2006. ISBN 978­1­60558­372­3. [http://doi.acm.org/10.1145/1415472.1415491]
Leesa Murray, David Carrington, Paul Strooper. An approach to specifying software frameworks. In
Proceedings of the 27th Australasian conference on Computer science ­ Volume 26 (ACSC '04),
Australian Computer Society, Darlinghurst, Australia, p. 185­192, 2004. ISBN 1­920682­05­8.
[http://crpit.com/confpapers/CRPITV26Murray.pdf]
Dart API Reference. [http://api.dartlang.org/docs/releases/latest/]
The Dart Programming Language Specification (0.20, M2). The Dart Team.
[http://www.dartlang.org/docs/spec/latest/dart­language­specification.html]

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical background
relevant to the problems solved, and specify w hat parts have been used from earlier projects or have been taken over from other
sources.

Each student w ill hand­in printed as w ell as electronic versions of the technical report, an electronic version of the complete
program documentation, program source f iles, and a functional hardw are prototype sample if desired. The information in electronic form
w ill be stored on a standard non­rew ritable medium (CD­R, DVD­R, etc.) in formats common at the FIT. In order to allow regular
handling, the medium w ill be securely attached to the printed report.

Supervisor: Rychlý Marek, RNDr., Ph.D., DIFS FIT BUT
Beginning of work:November 1, 2013
Date of delivery: May 21, 2014

L.S.

Dušan Kolář
Associate Professor and Head of Department

Abstrakt
Vývoj webových aplikacích se potýká se specifickými problémy, které by mohly být vyřešeny
novým webovým aplikačním rámcem kombinujícím moderní technologie a nový přístup k
návrhu aplikací. Jednotlivé problémy webových aplikací jsou nastíněny včetně stavu jejich
řešení v současných webových rámcích. Představena je architektura řízená zprávami, kos-
tra aplikačních komponent a rozličná rozšíření. Popsány jsou problémy při implementaci
obecného řešení v jazyce Dart. Dopady jednotlivých rozhodnutí a řešení problémů jsou
ilustrovány na ukázkách reálných webových aplikací.

Abstract
Web applications development nowadays is experiencing specific difficulties in presentation
layer that could be solved by a framework that combines modern technologies and novel
framework approach. The difficulties are introduced, along with their solution in existing
web frameworks. Novel, message-driven framework architecture, basic component structure
and various framework extensions are analysed and outcomes and effects are discussed.
Technical problems with implementation of generally analysed solutions in the Dart language
are examined. The decisions and solutions are accompanied by their effects on real-world
applications.

Klíčová slova
Webový aplikační rámec, webový rámec, rámec v jazyce JavaScript, rámec v jazyce Dart,
softwarová architektura, Cloud aplikace, Internetová aplikace, architektura řízená událostmi,
architektura orientovaná na služby, modulární architektura, škálovatelná architektura, rozšiřitelný
rámec, modulární rámec, škálovatelný rámec, informační systémy, Dart, JavaScript.

Keywords
Web application framework, Web framework, JavaScript framework, Dart framework, Soft-
ware architecture, Cloud application, Rich Internet application, RIA, Single-page applica-
tion, Event-driven architecture, Service-oriented architecture, SOA, Modular architecture,
Scalable architecture, Extensible framework, Modular framework, Scalable framework, In-
formation systems, Front-end framework, Client-side framework, Dart, JavaScript.

Citace
Miroslav Raška: Web Application Framework for Software Development in the Dart Lan-
guage, bakalářská práce, Brno, FIT VUT v Brně, 2014

Rozšířený abstrakt

Vývoj webových aplikacích se potýká se specifickými problémy, které by mohly být vyřešeny
novým webovým aplikačním rámcem kombinujícím moderní technologie a nový přístup k
návrhu aplikací. Tato práce popisuje průběh návrhu tohoto rámce ve třech logických cel-
cích: úvod do oblasti tvorby webových aplikací, analýza obecného řešení včetně architektury
rámce a průběh implementace rámce v jazyce Dart.

Úvod přibližuje architekturu moderních webových aplikací, především pak těch interak-
tivních. Dále představuje původní motivaci pro vytvoření nového aplikačního rámce a hlavní
cíle. Např. že by rámec měl být univerzální, jednoduchý k použití a předcházet častým chy-
bám při vývoji Internetových aplikací. Zároveň by měl být použitelný v komerční sféře,
proto jsou zanalyzována kritéria, na základě kterých firmy vybírají webový rámec pro své
produkty. Následně jsou představeny tři ukázkové aplikace, na kterých budou v průběhu
práce ilustrovány dopady či výhody zvolených řešení.

Analýza se nejprve zabýva současnými webovými rámci a zkoumá, zda se podobné řešení
již nevyskytuje, případně v jakém rozsahu. Také zkoumá slabá místa současných rámců a
knihoven, tedy možná témata, kterými by se měl nový rámec zabývat, aby byl přínosný.
Poté je popsán průběh návrhu základní architektury, od modulární architektury, přes škálo-
vatelnou architekturu až po architekturu s centrální sběrnicí. Tato architektura kombinuje
výhody všech předchozích architektur a je zároveň kompatibilní s architekturami řízenými
událostmi a architekturami orientovanými na služby. Jsou také definována základní pravidla
pro bezpečnou komunikaci na sběrnici.

V druhé části analýzy je definována základní kostra aplikačních komponent a zabýva se
především přehledností kódu vytvářených komponent a jejich konfigurací. Dále pak vnitřní
bezpečností rámce, tak aby byla vynucena pravidla pro tvorbu komponent a aby tak kom-
ponenty vždy spňovaly určité základní vlastnosti. Na základě těchto zaručených vlastností
je poté představeno několik zajímavých rozšíření, která jsou obvykle implementována velmi
složitě, avšak vlastnosti komponent a architektura rámce umožňuje jejich elegantní imple-
mentaci. Tato rozšíření jsou např. získání stavů komponent a jejich obnova a sdílení,
univerzálně využitelné grafické komponenty, logická hierarchie komponent, testování uživa-
telských interakcí či pokročilá obsluha výjimek. Také jsou představeny běžně používáné
modely pro práci s daty.

V techické sekci je nejprve představen implementační jazyk Dart, jeho výhody a srovnání
s ostatními klientskými webovými jazyky, včetně kompatibility s prohlížeči a rychlosti ap-
likací. Technická analýza se poté zabývá problémy vyplývajícími z vlastností jazyka Dart.
Ten v některých případech neumožňuje, případně omezuje implementaci obecných řešení.
Jsou tak postupně probrány všechny problémy, které bylo nutné vyřešit pro zdárnou imple-
mentaci minimální verze rámce, např. obecná rozšiřitelnost rámce a komponent, bezpečnost
na sběrnici, rozdělení komponent do více tříd a jejich vzájemné provázání či efektivní stat-
ická analýza zdrojového kódu. Také je představeno několik vylepšení, která mají zjednodušit
tvorbu aplikací. Nakonec je zmíněno několik zajímavých, nedořešených technických prob-
lémů.

Závěrem je zhodnocen přínos rámce, výhody navrhnuté architektury a zvolené struk-
tury komponent. Je představen stav implementace, její slabé stránky a možnosti vylepšení.
Rámec byl zveřejněn jako open-source software a na závěr jsou představeny budoucí kroky
tohoto projektu.

Web Application Framework for Software Develop-
ment in the Dart Language

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana RNDr.
Marka Rychlého, Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem
čerpal.

. .
Miroslav Raška
May 20, 2014

Poděkování
Děkuji svému vedoucímu, RNDr. Marku Rychlému, Ph.D., za odborné konzultace v oblasti
architektur informačních systémů, za pomoc při plnění formálních požadavků této bakalářské
práce a s ní souvisejících povinností a především za mnoho věcných a zajímavých připomínek,
poznámek a návrhů.

© Miroslav Raška, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor-
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Layers in a modern web application . 3
1.2 Motivation . 4
1.3 Sample applications . 7

2 Analysis 8
2.1 Analysis of current web frameworks . 8

2.1.1 Comparison results . 8
2.1.2 Implications for the framework . 10

2.2 Architecture . 11
2.2.1 Architecture design . 11
2.2.2 Message bus security . 14
2.2.3 Internal communication . 15
2.2.4 Architecture compatibility . 16
2.2.5 Architecture overview . 17

2.3 Components . 17
2.3.1 Configuration . 17
2.3.2 Component API . 19

2.4 Framework extensions . 19
2.4.1 Component state . 19
2.4.2 Data . 20
2.4.3 Visual components . 21
2.4.4 Logical hierarchy . 22
2.4.5 DOM access . 22
2.4.6 State machine . 23
2.4.7 Testing . 24
2.4.8 Exceptions handling . 25

3 Technical solution 26
3.1 Base technologies . 26
3.2 Libraries structure . 28

3.2.1 Framework . 28
3.2.2 Applications . 28

3.3 Implementation challenges . 28
3.3.1 Programming conventions in the framework core 28
3.3.2 Messages . 29
3.3.3 Messages metadata . 30
3.3.4 Components . 31

1

3.3.5 Base component class . 32
3.3.6 Component constructor . 32
3.3.7 Component-related classes . 33
3.3.8 Message subscriptions . 34
3.3.9 Internal component messages . 35
3.3.10 Internal framework security . 37

3.4 Issues to be solved . 37
3.4.1 Annotations and performance . 37
3.4.2 Annotations and polymorphism . 37

4 Conclusion 39
4.1 Framework overview . 39
4.2 Implementation status . 40
4.3 Accomplished goals . 40
4.4 Weak points and possible improvements . 40
4.5 Future steps . 41

Bibliography 42

A Enclosed medium contents 45

B List of compared frameworks and libraries 47

C Step-by-step example of application development 50
C.1 The TodoMVC application . 50
C.2 Create the application launcher . 52
C.3 Define domain data . 53
C.4 Find existing visual components . 53
C.5 Create visual components wrappers . 53

C.5.1 Todo creator field . 53
C.5.2 List of Todos . 54

C.6 Create application layout . 56
C.7 Create application managers . 58
C.8 Include development tools . 59

C.8.1 Logger . 59
C.8.2 Message bus watcher . 59

2

Chapter 1

Introduction

Modern web applications development is experiencing speficic difficulties that could be
solved by a web application framework described in this thesis. The framework is client-
side only, designed primarily for creation of single-page applications running fully in a web
browser. It is designed around architecture inspired by server-side solutions and features
abstract, non-visual components only. This approach is new for client-side web application
frameworks that are mostly focused on visual components and related features.

Identified difficulties and issues are described in the chapter 2, including possible solu-
tions, their advantages and disadvantages. The framework architecture and technical details
about suggested solutions follow in the chapter 3. Possible usage scenarios and benefits of
chosen solutions are continuously illustrated with sample application examples. Introduc-
tion into the field of web application frameworks follows.

1.1 Layers in a modern web application

Figure 1.1: Architecture of a sample single-page cloud application.

Figure 1.1 shows simplified architecture of a sample interactive cloud application. Com-
pared to a static application, the front-end contains most of the business logic code and
all interactions handling code. Back-end serves only as an adaptor to the database and to

3

a file storage. Because client-side can never be considered fully secure (e.g. HTTP requests
can be sent independently of a web browser or sent using JavaScript console), back-end
has to contain security layer that restricts user access to the database and other services.
Additionally, the services that cannot be easily implemented within a web browser — like
exports to PDF or time-consuming tasks — could be moved to the server-side.

Summed up, majority of the application-specific code is being moved to the front-end
in many Rich Internet applications (RIAs) [22]. Within a three-tier architecture [21] the
client part could include the whole presentation layer and most of the domain layer ,
leaving only the data source layer to the back-end.

1.2 Motivation

Not only technical tasks are being solved in this work, the original motivation of designing a
framework was based on the following ideas where different business fields overlap, including
marketing, project management or commercial insights. All of them are important during
the software development process [32] and the software framework choice has influence on
them.

Goal 1: Design universal framework. This framework is focused primarily on ap-
plications with architecture similar to the one mentioned in the section 1.1. Particularly
interesting are single-page information systems, enterprise applications and other rich Inter-
net applications that bring interesting problems and issues to solve, e.g. scalability, internal
application security or complex user interactions [32]. Yet the goal is to design universal
framework that will be able to power any web application, not only enterprise-level ones.
This is feasible because single-page information systems are complex applications and by
supporting them any simpler application will be supported as well. Universal framework
brings an opportunity to create broad community with insights from different areas of use,
which could bring up many undiscovered issues or enhancements.

Goal 2: Make it easy to use. Application development is easier if the base framework
is not complex and it is clear how to use it and where to start programming [25][39]. User
should be able to develop applications after studying only few basic concepts, while following
some basic recommendations and few simple rules. Framework should also reinforce writing
clean code that is easily readable by others [30][39], because it increases productivity and
eliminates project costs [30].

Goal 3: Prevent mistakes. Project duration and expenses can be decreased if mistakes
and problems are detected early [24], as shown in the Figure 1.2, which compares actual
projects with the same goal and objectives in the aeronautic industry. Project managed
with problems detection mechanisms was finished three times faster and with significantly
lower budged (in the figure signalized as an area below the curves). The results could be
even better if some mistakes were prevented in advance, not just detected early. Framework
should therefore contain methods to eliminate common code mistakes [39][32][30], meaning
that specific constraints will be present and programmer will not be allowed to do absolutely
anything or at least will be warned of possible drawbacks. Applications will be then more
reliable and development process can be effectively managed [30].

4

Figure 1.2: Effects of early problems detection on the project duration and progress. [24]
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

Years

W
or
kf
or
ce

Without detection
With early detection

Goal 4: Solve application-wide issues. Specialized issues can be solved by external
libraries. Framework should primarily address the issues that are application-wide, e.g.
different kinds of communication or interaction between components. Do not solve internal
component issues that might be application specific or are already being solved in existing
web frameworks or libraries. Do not deal with visual components, they were created many
times and can be reused.

Goal 5: Consider business framework selection criteria. The Table 1.1 shows that
most of the criteria used to select a framework or a library for the new company product
do not refer to the technical features the framework provides. Important is also how would
the choice influence future processes within the company [20][28]. The criteria should be
exhaustive as they are based on different points of view — on a scientific research [20] and
a business research company study [28].

The Table 1.1 also clearly shows which criteria are present in the most popular frame-
works and libraries and which are contrarily overlooked by their creators. If the new frame-
work addressed some uncovered issues, it would be a competitive advantage. Generally,
these requirements should be considered when designing a framework in order to be com-
petitive. A framework for developing business applications would be useless if not used by
any company.

Goal 6: Align with the base technology The Dart language [6] was chosen as the base
technology for this framework (details follow in the chapter 3). The framework should follow
general principles and ideas behind the Dart language to be more familiar and easier to use
to programmers already developing in the Dart language. The principal ideas extracted
from the Dart issue tracker [11] and the official Dart website [33] are:

• A language for mainstream. “Dart was designed to look and feel familiar if you’re
coming from other languages.” This implies that framework should be also designed to
look familiar, e.g. should use standard constructions, naming conventions, standard
classes and the same or similar API to the Dart libraries wherever possible.

• Pragmatic approach to the performance. The language features that might be
useful but would have huge impact on virtual machine performance are not imple-

5

Table 1.1: Framework business selection criteria presence in selected web frameworks and
libraries as of 2014-04-01 [20] [28] [10] [16] [9] [35].

A
ng
ul
ar
JS

Ba
ck
bo
ne
.js

D
oj
o

Em
be
r.j
s

Ex
tJ
S

jQ
ue
ry

+
jQ
ue
ry

U
I

K
no
ck
ou
t

M
et
eo
r

M
oo
To

ol
s

Pr
ot
ot
yp
e

+
sc
rip

t.a
cu
lo
.u
s

U
nd
er
sc
or
e.j
s

Y
U
I

Th
is
fra

m
ew
or
k

8

Enterprise ready1 # - # # - - # # - #

Broad functionality2 # - - # - # - - - #

Business components2 # - - # - # - - - # #

Business logic support3 - - # # # - - - - - - -

Clear deliverables # # # # #

Consistent - # # - # #

Cross-browser # #

Easy to use - - # - #

Extensible # -

Good documentation -

Mature4 # - # - # -

Other frameworks5 # # # - #

Scalable6 # - # - # # - # # - - #

Software stability7 # - - - - - - # - - - -

Updated regularly - - #

Legend: - no support or information not available, # partial support, full support

1 Based on official website claims; # mentioned support of highly interactive applications, en-
terprise usage explicitly mentioned.
2 Supported directly, # supported partially, by community or 3rd-party extensions or libraries.
3 Includes workflow and business processes support.
4 Long time on the market, stable and without extensive API changes.
5 Supports other simultaneously running instances of frameworks, does not modify native classes.
6 Unused parts of the framework can be taken out, core components replaced with custom ones.
7 Reinforces stability of the software created with the framework, as described in the section 1.2.
8 Ideal state as of the first stable release. Some criteria are already satisfied by the Dart language.

6

mented. On the other side manual code performance optimizations do not make much
sense, because compiler can take care of most of them, VM performance is improving
with each release and browsers are more and more powerful over time.

• User is smarter than analytic tools. Enable freedom in what programmer does.
Assume that user is smarter than any static analysis tool and code is written with
some purpose. However, warn anytime something looks suspicious. Framework should
therefore implement most constraints as warnings only, and should be extensible
enough to enable replacement of any framework class or module if programmer decides
to provide own solution.

Goal 7: Include recommendations Additionally to the API documentation the frame-
work should contain set of recommendations and examples how to use it properly. These
recommendations should also promote good programming practices, mention common mis-
takes and show examples of code misuse.

1.3 Sample applications

Following web applications were chosen to show the area of possible framework usage and
to illustrate problems and solutions on real world examples. They are also partially imple-
mented on the medium enclosed with this thesis.

App 1: Single-page content management system (CMS). Simple information sys-
tem for updating contents of a blog or an article-based website. Containing 3 sections —
articles, categories and users — with the basic CRUD functionality. It should demonstrate
that framework is able to dynamically create and destroy individual components (views)
and keep the domain data synchronized between views, e.g. when category is added it
should be immediateliy available for selection in the view for creating new article.

App 2: Interactive email service. Web front-end to an email account, the basic func-
tionality is simple CRUD on email domain class. However, additional interactive features
can be present within single view, e.g. responsive filtering in the list, background task check-
ing for new emails, folding of cited text, grouping of related messages or editable email drafts
nested within email detail. Also global language or theme choice is performed dynamically
without reloading the application.

App 3: Project management system. As an enterprise information system it requires
additional features compared to previous B2C web services. Security policies are defined for
each user separately, leading to different behaviour within views of the same entity class.
For example user could have full access to the properties of own tasks, read-only access
to colleagues’ tasks and some properties might not be visible at all within boss’s tasks.
Access to the same entity can be simultaneous from more views and application should
remain consistent even if this entity is removed remotely by other user during its lifetime.
Additional features can be added by turning on application extensions or modules.

7

Chapter 2

Analysis

2.1 Analysis of current web frameworks

The Table 1.1 has already shown how existing frameworks meet business criteria. The next
step is to compare selected technical features and architecture of these frameworks to find
out whether it would be useful to create new framework and to determine which features to
focus on.

The comparison summary is shown in the Table 2.1. The compared features were se-
lected within 3 categories — architectural patterns, functionality and structure of visual
components and non-visual components support. These are some areas that are related
to the framework architecture [31]. The list of frameworks is based on the Table 1.1 and
TodoMVC framework comparison site [3], with libraries and unmaintained frameworks ex-
cluded. Other 130 client-side frameworks and libraries were also taken into account but
are not listed because they are either too specialized, unmaintained, incomplete or do not
bring any innovative ideas or additional features when compared to the listed ones (for the
complete list see Appendix B). Specialized mobile web application frameworks were also ex-
cluded. Table therefore displays mixture of popular, modern or innovative web frameworks.

2.1.1 Comparison results

AngularJS, Ember.js, Knockout and Meteor have similar UI concepts, they try to simplify
creation of components by templates where model is automatically bound to view elements
and is backwards updated with view changes. This functionality is called two-way data
binding [37]. Dart language is equipped with Polymer package that is very similar and
along with AngularJS supports modern HTML5 features and even feature drafts like cus-
tom elements [12] or shadow DOM [1]. Other frameworks use different approach where
visual components are programatically defined from JavaScript. In some frameworks the
views are not even separate classes or files, although the frameworks claim to support MV*
architecture.

Generally, the frameworks are built around visual components, no regularly maintained
abstract framework was present and almost no frameworks have good non-visually oriented
architecture. The possible reasons are:

• Abstract frameworks are developed only as an experiment, a demonstration how frame-
works could be done in a better way, but are not pushed into a stable or usable version.

8

Table 2.1: Comparison of technical features within selected web frameworks as of 2014-04-01.

A
ng
ul
ar
JS

Ba
ck
bo
ne
.js

D
oj
o

Em
be
r.j
s

Ex
tJ
S

K
no
ck
ou
t

M
et
eo
r

Y
U
I

D
ar
t

+
Po
ly
m
er

Architectural patterns

MV* architecture1
Event-driven architecture2 - - - - - - - -
Service-oriented architecture3 # - - - - - - - -
Managed publish-subscribe4 - - # - - #
Multi-level exceptions handling5 # - - - - - - -
AMD compliant6 - - - - - -

Visual components

MV* within components #
Separate HTML views - -
Automatic model-view binding7 - - - -
Restricted component scope8 # # # #
Native HTML5 views9 - - - - - - -
Encapsulated components10 - - - - - - - -
Interaction testing support - - - - - -

Abstract components

Unit-testing support - - - -
Internationalization - - # - - # #
Component lifecycle mgmt.11 - - # # - - - - -

Legend: - no support or information not available, # partial support, full support

1 Also called MVW (Model-View-Whatever); term covers e.g. MVC, MVVM and MVP design
patterns [36][21][23].
2 Event-driven architecture (EDA) is an architecture where any state change is broadcasted as event
notification available to other application components [18].
3 Service-oriented architecture (SOA) is an architecture where global functionality is encapsulated
within standalone service providers. The components and providers are loosely-coupled through
enterprise service bus (ESB) [34].
4 Publish-subscribe (observer) design pattern [23] for handling events. Globally managed subscrip-
tions prevent memory leaks and execution of code on destroyed objects by automatically removing
all handlers when subscriber is destroyed. Explained in details in the section 2.2.3.
5 Exceptions could be handled separately within specific parts of application.
6 Asynchronous module definition (AMD) [8] is completely modular architecture that allows reuse
of 3rd-party components as well as reuse of all classes within application. All the classes are loosely-
coupled and are not available through global identifier.
7 Synchronizes model data with data displayed by the view. Also called two-way binding [37].
8 Component controllers/view-models can only see and work with related data and components.
9 HTML5 custom elements [12] allow creation of custom HTML elements and components without
the need for additional JavaScript code or compilation to JavaScript.
10 Internal component structure (incl. document object model — DOM) is not accessible from
outside. See Shadow DOM [1].
11 E.g. customizable finite-state machine within each component.

9

• Visual components are easily comparable between framework [3], many users select a
framework based on the number or quality of visual components.

• Only experienced programmers think of client-side web applications as of desktop
applications. Many programmers assume that architecture is not that important and
that interactions can be “hardcoded”, therefore choose simpler solutions — often only
libraries like jQuery. The need a for good architecture raises over time with increased
business logic complexity but the framework or the library cannot be easily changed
at that point.

• Some frameworks were initally only a collection of visual components and evolved to
a framework over time. Now, with a large user base, the original concepts could not
be changed without losing the community.

• Visual components and visual appearance can be easily user for marketing, that is
why commercial frameworks focus on them.

Some exceptions with interesting archutectural concepts exist and can be used as an inspi-
ration:

• AngularJS which is partially service-oriented [34], services and components are loosely-
coupled [39] and services are used to extend the component functionality. However,
services cannot be used generally, they act more like framework modules.

• Dojo with aspect-oriented programming [26] features that can be used to extend
functionality of any object, class or group of classes, e.g. to perform security checks
on any object or to verify inputs and handle exceptions within any object method.

• Meteor which is purely event-driven [18] and events can be used e.g. for easier
interaction testing without the simulation of DOM events (see the section 2.4.7).
However, Meteor cannot be easily used with any back-end, it is not pure client-side
framework.

2.1.2 Implications for the framework

The new framework is worth the creation, because only few frameworks have some abstract
architecture and if so, it is one-way oriented. Additional, not yet covered business features
from the Table 1.1 could be also included. Following observations were extracted from the
framework analysis.

Focus on abstract architecture. The newly designed architecture could be compatible
with service-oriented architecture or event-driven architecture and could include MV* sup-
port for components and possibly other software architecture patterns not yet present in
the web frameworks.

Skip visual components. The choice of Dart with Polymer brings the background for
creating visual components and the new framework does not have to deal with it. UI
components can be therefore skipped — other frameworks have many of them, they could
be reused with simple adaptors and Polymer can be used if user needs to create own ones.

10

Communication through libraries. Object-relational mapping, remote communication
standards and formats can be also reused from existing libraries.

Skip language enhancements. Many frameworks try to solve class-related functional-
ity instead of using specialized libraries or leaving the issues to a programming language
that compiles to JavaScript, like Dart or CoffeeScript. The future version of ECMAScript,
codenamed Harmony, will also contain class support [5]. Do not try to improve language
imperfections even if some constructions might do the job better. The improvements may
come over time by the Dart authors or there is a good reason why they were not included.

2.2 Architecture

The architecture will be designed by continuous improvements when dealing with goals and
challenges from the chapter 1.

2.2.1 Architecture design

Mentioned already in the section 1.2, there is a need to anticipate code mistakes, especially
those that are hard to detect and debug. In web application development (and especially
in JavaScript) these include:

• Components can access any DOM element and can accidentaly change a DOM subtree
that belongs to another component. This could be prevented if all the DOM manip-
ulation was done through single point where component scope could be checked.

• Components can also access other application components and invoke ther internal
methods or change their state from outside, because classes and instance objects are
not protected or encapsulated in JavaScript. Components should have access only
to related components [39] and references to them must be obtained from single,
managed point to enforce this. Native encapsulation is solved in other languages
(Dart, CoffeeScript) and in the future version of JavaScript [5].

• When working with components, programmer needs to deal with the component life-
cycle — e.g. needs to check if it is fully functional or whether a visual component has
its DOM rendered. When the component is destroyed, other components need to stop
working with it. It is easy to forget verification of current component lifecycle phase
and in combination with directly referenced components it could lead to code execu-
tion on a component with invalid or unexpected state. One solution is to work with
components completely indirectly, without obtaining reference to them, e.g. using
events.

The Figure 2.1 shows modular, AMD compliant architecture [8]. It includes single point
for DOM access (part of the Framework Core). The references to other components (here
called modules) are obtained indirectly from the module manager by their name; modules are
not available in the global namespace [8]. However, once component reference is obtained,
the modules communicate directly. This concept allows only static change of modules before
an application is launched — once module is referenced from within other module it cannot
be safely replaced.

11

Figure 2.1: Modular architecture example.

Figure 2.2: Scalable architecture example.

The extension of the modular architecture, an architecture that is fully scalable in terms
that components never communicate directly and can be therefore dynamically replaced,
added or removed, was suggested by Nicholas Zakas [38] and is visualized in the Figure 2.2.
The modules do not know about any other application module and all the communication
should flow through the sandbox. There are some drawbacks, though.

• The sandbox is user-defined and it should contain adaptor methods for all the features
from base libraries [38]. If defined in wrong way it will contain hundreds of methods
from libraries and many more for manipulation with application components. The
proper way is to implement only publish-subscribe pattern [23] for communication
and few methods for working with framework core. Even if implemented correctly,
the sandbox API may not stay consistent with future application changes, because
the proper implementation is not enforced in any way.

• While restricting component scope within specific application part, sandbox may be
extended and duplicated for this purpose (as showed on the second Application Mod-
ule). The functionality is then split into multiple objects and this inconsistency could
lead to unintentional errors.

12

• Component permissions are not distributed uniformly. Framework core components
have direct access to all the components while framework modules and application
modules can communicate only through the sandbox [38]. The framework core is not
supposed to reference components, but it is not enforced and it is possible source of
errors.

Figure 2.3: Message Bus architecture example.

The architecture that would solve previously analyzed problems is inspired by advanced
software architectures, e.g. service-oriented architecture or Linux parts. These architectures
have one element in common — a message bus for universal exchange of any piece of
information called message. In Linux the bus is called D-Bus and is designed universally,
allowing e.g. point-to-point communication, addressing, publish-subscribe communication,
remote method invocations, . . . [2]. SOA uses enterprise service bus for indirect service
invocation and gathering the result [34]. The Figure 2.3 shows that all the framework and
application components are equal and that the framework and application implementations
overlap. It is therefore easy to replace any part of the framework by an application-defined
component. The architecture is flexible, modular and scalable, yet very simple. All the
components are loosely-coupled and communicate indirectly.

Example of modularity and loose coupling advantages.

In an email client (Application 2) offline mode will be supported with all the basic
functionality — writing emails and saving them to be sent once Internet connection is
detected again. User will also have access to all previously opened emails and could
perform search, delete or mark as spam operations. In other words the email behaves
the same as in online mode, just works with lower number of records in the database.

The implementation is very simple within this architecture. Component providing
access to the database at server side is replaced with component working with browser
local storage when offline mode is detected. Both components have the same API (they
provide the same services) and because they are not referenced directly anywhere in
the application, the replacement is completely seamless [38]. No application component
could even register the change, so everything works as usually and no special conditional
statements for the offline mode are needed in the code.

13

Figure 2.4: Comparison of communication flows within different framework architectures.

The Figure 2.4 demonstrates differences in the communication flows within these archi-
tectures. Modular and Scalable architectures do not have strict rules and user has more
options how to implement data flows; shown are the best and the worst case scenarios. In
the Modular architecture, the components have to communicate directly with each other
even in the best case scenario. The scalable architecture has the same benefits as the Mes-
sage Bus architecture if used properly. The Message Bus architecture has always only one
possible way of implementing communication flows.

2.2.2 Message bus security

The security on the message bus was not addressed yet. Not all components should have the
same application scope and be allowed to send or receive every message type (it is one of the
framework business requirements mentioned in the Table 2.1). Three types of components
have their behaviour embedded by default in the Message bus.

• Managers have access to all the messages on the bus.

• Providers can provide services available application-wide.

• Normal components can publish events but provision of services is forbidden. By
default they have also access to all the messages on the bus but the access should be
restricted by application-specific security rules. E.g. components could get access to
all the messages of providers and managers, but not to the events of other components.

14

Custom security rules should not be implemented directly withing the bus, it should be
barely extended application class to stay well-tested and optimized. Instead, managers that
have access to all the messages on the bus should control the flow. Any “standard” message
can be firstly encapsulated into a special security check message that only managers have
access to. Every manager will then have the possibility to reject the standard message or
modify its metadata before it enters the bus. However, managers do not have an option to
allow the once-rejected messages re-enter the bus. Every message is allowed by default and
managers could only restrict the rules.

Example of security rules logic.

In the project management system (Application 3) every component has different appli-
cation scope. Every component can access specific range of domain objects and specific
set of application services. The security rules are defined in a security manager that
controls all the messages on the bus and by cooperation with other managers limits and
filters access to the services and domain data.

The huge benefit is that components have no clue whether there are some security
rules or not, the security manager is completely invisible to them. Security mechanisms
are therefore not implemented inside components, which are designed more general
in return. The shift of logic is nicely illustrated on a small example. Normally the
component logic would be “Am I allowed to do this? If not, hide this element.”. With
the security rules implemented outside, the logic is shifted to more general level — “Is
this service available in the application? If not, hide this element.”

2.2.3 Internal communication

Support for specific communication patterns often used in web applications is implemented
by default in the bus, because messages are too general concept. User has an option to
implement other custom communication patterns by extending the bus class. The default
are:

• Events. The global publish-subscribe pattern [23] for event notifications (either from
DOM elements or from components generally).

• Library functionality. Second is the synchronous service request and response, used
to get instant access to the functionality of base libraries. E.g. DOM query message
with the result — DOM elements — instantly available to be used.

• Services. Last is universal asynchronous service request and response that could be
used for external communication or for in-browser tasks that last longer, e.g. ren-
dering of many DOM elements. Technically this could be achieved with synchronous
behaviour where result promise [7] is returned instead of actual result and the promise
is fulfilled later in the future.

The global publish-subscribe has one more useful feature — it prevents memory leaks.
Global management has access to both publisher and subscriber and can automatically
unregister event handlers when some of these components is destroyed. When publish-
subscribe is implemented locally and event handlers are stored within publisher, all the

15

event handlers need to be unsubscribed manually, because the publisher only knows the
handler function but not its scope needed to unregister handler automatically.

If the subscriber is destroyed without unsubscription, the handler is still present. And
because the handler still sees the original subscriber object in its scope, it prevents it from
being destroyed by the garbage collector. The situation is even worse when publisher is
application singleton that never gets destroyed. In this case millions of objects could be
prevented from being freed, which could lead to very slow browser response or even crash
caused by insufficient memory available. All is demonstrated in the Listing 2.1.

Listing 2.1: Memory-leak illustration within publish-subscribe pattern (pseudo code).
1 /// Subscriptions are stored within the publisher instance.
2 class Publisher {
3 constructor: function () {
4 this.subscriptions = [];
5 },
6 subscribe: function(event , handler) {
7 return this.subscriptions.push([event , handler]);
8 },
9 unsubscribe: function(subscription) {
10 this.subscriptions.remove(subscription);
11 }
12 // ... code for publish , destroy
13 }
14 var global = new Publisher (); // a global object
15
16 /// Class that subscribes to the global object event.
17 class Subscriber {
18 constructor: function () {
19 global.subscribe('event', this.handleEvent.bind(this));
20 },
21 handleEvent: function () { /* ... */ },
22 destroy: function () { /* forgotten unsubscribe !!! */ }
23 }
24
25 /// Create and destroy many Subscriber instances.
26 for (var i=0; i <1000*1000; i++) {
27 var subscriber = new Subscriber ();
28 subscriber.destroy (); // subscriber is never freed !!!
29 }

2.2.4 Architecture compatibility

Service-oriented architecture consists of independent applications that provide func-
tionality (services) to other software parts. It was designed primarily for communication
between applications from different vendors or using different technologies [34], but the
concept can be easily applied to internal communication within single application. In the
framework all the communication goes through the Message bus and messages are addressed
indirectly. Therefore the components are independent on each other, can be replaced with
custom or 3rd-party ones [38] (directly or with a simple adaptor). The components can
be even written in a different language or technology, e.g. DOM/HTML events are easily
converted into framework-specific messages. Framework architecture is therefore compatible
with service-oriented architecture concept.

16

Event-driven architecture is an architecture where all the changes within component
state are published through events [18]. Because of the framework architecture, the compo-
nents cannot reference each other and to detect component changes programmer can either
repeatedly test their state with special services or expose the changes through events. The
latter one is preferred and if the programmer decides to expose all the component state
changes as events, the application would be fully event-driven.

2.2.5 Architecture overview

By designing an architecture that would prevent errors, a scalable, modular and flexible
architecture was created. User is able to replace any component from the framework core,
can extend framework functionality by creating new globally available managers and can
define own types of communication within the Message bus. Architecture is compatible with
event-driven architecture and service-oriented architecture concepts. Created applications
have lower probability of having serious DOM inconsistency errors or serious memory leaks.

2.3 Components

One of the ways to improve code clarity and to prevent mistakes, is to design a simple
skeleton of every application component and include few rules that each component must
follow. One of the problems in applications generally is that components can be very complex
and therefore the class containing component logic and interactions implementation can be
long and chaotic. That happens because the implementation is typically included within a
single class. There are already some concepts that separate classes like MVC [36], but it is
not sufficient. The main objective is to split the controller-like class into multiple classes
that would contain the same-purpose functionality [39].

2.3.1 Configuration

Components, and especially visual components, could have hundreds of configuration prop-
erties1 that blend with state properties, internal properties, methods etc. All the configu-
ration properties should be moved to a separatate class [38].

In many frameworks there is unclear border between configuration properties and state
properties or event subscriptions. Listing 2.2 shows the problem. The configuration is used
to initialize a state variable, but uses the same name as the state variable which is confusing.
Beause the configuration is applied directly to the instance object, it effectively replaces the
state property value and therefore the original value is not available later when needed.
Configuration also contains a method that influences component logic, but the behaviour
should be implemented by extending the component class instead.

The configuration should contain only immutable values [21] and methods without com-
ponent logic as shown in the Listing 2.3. To enforce immutability, framework locks for
changes every configuration object when its component is initialized. As a side effect, com-
ponents with the same configuration will always behave the same during their
lifecycle, if placed into the same environment. This happens because the configuration is
the only object that contains instance-specific values that can be influenced from outside2.

1E.g. the basic TextField in ExtJS 4.2.2 has 27 own and 113 inherited configuration properties.
2Note that component behaviour cannot be changed by public instance properties, because programmer

should not have access to these properties since the components are not referenced directly.

17

Listing 2.2: Misuse of configuration properties (pseudo code).
1 // Field constructor applies the configuration directly
2 // to the instance object.
3 var field = new TextField ({
4 // 'value' used as a configuration property.
5 value: 'Initial value',
6 // Event callback passed as a configuration property.
7 onChange: function () {
8 // 'value' used as a state property.
9 if (this.value === 'Some value ') {
10 // Original value is not available.
11 this.value = 'Initial value';
12 }
13 }
14 });

Listing 2.3: Correct usage of configuration properties (pseudo code).
1 // Field stores the configuration in a separate `config ` object.
2 var field = new TextField ({
3 // Configuration property has different name.
4 initialValue: 'Initial value',
5 // This method has no influence on behaviour.
6 formatValue: function(value) {
7 return value + '...';
8 }
9 });
10
11 // Event callback not passed as a configuration property.
12 field.on('change ', function(field) {
13 // State properties change does not influence configuration.
14 if (field.value === 'Some value') {
15 field.value = field.config.initialValue;
16 }
17 }

Summarized, the locked configuration object is a barrier when programmer tries to create
components with the traditional perception of components as complex and fully-featured
systems. As a consequence it forces programmer to split complex components into
several fine-grained components.

Example of components wrapping.

The Email client (Application 2) contains form for creating emails with input fields.
All the fields should contain field labels that should change the displayed text when
application language changes. Field label is not part of the text field state, so it is
often moved to the configuration. But because configuration is locked, it cannot be
dynamically changed. The solution is to split the component into multiple components
that would wrap [23] each other — a field label and the actual text field in this example.
Label component will be later replaced with a new instance without affecting the text
field.

18

2.3.2 Component API

Components communicate heavily on the message bus and for an efficient distribution of
messages, each component should expose its public API [34] that lets the message bus know
in advance which services the component provides or which events publishes. Similarly
to the configuration object, the API is locked after component creation and is therefore
immutable during component lifecycle.

API is a separate object that removes communication-related definitions from the com-
ponent class and improves clarity of the code. Because the API contains all the information
about the way component communicates on the bus, programmer can find out the basic
functionality and component behaviour only by examining its API, without the need to dig
deeper into implementation details.

2.4 Framework extensions

The component structure described in the section 2.3 is fixed and contains only fundamental
concepts. Other features should be implemented as component extensions, letting program-
mer choose the ones to use. This section describes interesting ideas that can be easily
implemented thanks to the framework architecture and are useful for complex applications.
The technical solution of component extensibility is described in the section 3.3.9.

2.4.1 Component state

Component state is a set of instance properties (including private ones) that are being
changed during the component lifecycle. The state exactly describes difference in behaviour
of newly created component and component with the same configuration in any phase of
its lifecycle. If all the state properties were moved into a separate state object, it could
be easily stored, recovered or replaced dynamically. Figure 2.5 shows the difference in
component configuration object and state object roles.

Figure 2.5: Roles of component and its nested objects.

Separating state object brings many possibilities for working with components, e.g.:

• Push existing component into any lifecycle phase by replacing its state object.

• Continuously persist the config and state objects of all application components. When
the application is reloaded, recreate the components with stored config objects and
recover the application state and behaviour by replacing their state objects.

19

• Synchronize instances of the same application opened on more devices by synchroniz-
ing the state objects over HTTP. This could be useful e.g. for implementing applica-
tions supporting online teamwork or for live presentations where all participants have
the application opened on own device, but it is controlled by the presenter.

Although this concept brings interesting opportunities, there are some drawbacks and
this is the reason why it should be implemented as an optional component extension:

• It forces user to stop using instance variables within components. It is hard to keep
this requirement, especially when a single instance variable present would violate the
concept.

• Static variables are not included in the state object and are not stored anywhere.
Programmers would have to stop using them within components. If they are used,
components could have different behaviour even if recovered with the same configura-
tion and state objects.

• The state object is valid only for a specific configuration object. If a state object is
pushed to differently configured component, it might turn into invalid state.

• If components have application dependencies, framework would have to validate that
they have mutually compatible states when state within some of these components is
replaced or recovered. Ideally states of all dependent components should be recovered
at the same time.

2.4.2 Data

One of the implications in the section 2.1.2 was to leave implementation of data objects and
communication to preferred libraries of the programmer. Despite, the framework should
establish a common way how to percieve the different data objects and where and how
should they be used. The figure Figure 2.6 shows usage of the data objects in a sample
application (even at the server-side). The three commonly used types of data objects are:

Domain objects (also called Business objects) model entities of the real world and typ-
ically map the database tables to classes. They are available and used by the whole ap-
plication so they should contain meta-data, methods and transformations related to the
application domain only [15].

Figure 2.6: Example of data objects usage.

20

Data transport objects (DTO) are special objects used to transfer domain objects
[15]. They can contain only partial information about domain object or contrarily can
group multiple domain objects including the related ones into a single DTO [15].

Model objects are specialized views on domain objects. They are specific for each com-
ponent and should simplify handling of domain objects enough to be easily used within the
component. They can contain methods, computations and transformations related to the
component. One model object can be created from multiple domain objects.

In applications created with the MV* concept, the domain objects are used directly in
components [3]. This is all right if the views are simple enough to work with the domain
objects directly. The problem is with the teminology because the term Model object is
vague and the domain objects are often confusingly called Models [13]. The model object
definition in this thesis is significantly different, as shown in the following example.

Example of data objects usage and transformations.

In the CMS system (Application 1) a grid with articles is displayed. The server sends a
list of 20 displayed articles along with their authors and categories, all packed within one
DTO. The Domain Data Provider parses this object back into multiple domain objects
(articles, authors, categories). For usage within the grid, not all the information from
domain objects are necessary, therefore a new, flat model object is created. It contains
only few values matching the grid columns, which are already formatted and ready to
be directly rendered. This model object is then bound [37] to the grid template.

2.4.3 Visual components

From the framework point of view, visual components (UI components, GUI components,graphical
components) are exactly the same as any other component. They might only use services
of DOM-related providers more often. The reason is that framework was designed with the
idea that existing visual components from other frameworks or libraries can be reused (see
the section 1.2).

Figure 2.7: Visual components structure.

21

In practice, for every existing visual component, or custom DOM element, programmer
creates a simple wrapper [23] that exposes component events and state to the Message bus
as shown in the Figure 2.7. If needed, the component also includes application-specific be-
haviour. Note that in the Figure 2.7 the component wrappers do not access the DOM, not
that it would be forbidden, but there is no reason why, because the DOM-related imple-
mentation is already done by the MV* part. Wrappers can then focus fully on application-
specific behaviour. Completely new, custom visual components should be also created as
reusable ones, in a separate library, together with separate application-specific wrapper
classes.

2.4.4 Logical hierarchy

Visual components already partially belong to the DOM elements hierarchy. However, this
hierarchy can be too complicated or can have different meaning than is the purpose and
behaviour of a component. Additional logical hierarchy that is independent on the DOM
should be present and the main benefits of its usage are:

• Also non-visual components can be included, compared to the DOM hierarchy.

• Child components can be automatically destroyed, which prevents memory leaks if
programmer forgets to destroy them manually.

• Component can get equal access to logical child components that are placed in different
DOM subtrees or containers. DOM hierarchy destroys only the DOM elements, not
the component instances.

• Component might be allowed to control or subscribe to children messages on the
Message bus, which is useful e.g. for exception handling [38].

Example of logical hierarchy usage.

In the Project Management system (Application 3) a detail view of a Task is displayed.
It is a form with many fields split into multiple groups and panels. These containers
prevent fields from being direct children of the detail view in the DOM. A logical
hierarchy containing fields as direct children is created, completely ignoring containers
which are not important for application logic. Code that is written with this hierarchy
stays valid even if fields are reordered or put into different containers.

Additionally all the fields have labels that wrap the field (see Example of components
wrapping). In DOM the labels are field parents but logically they should be field
children. It makes even more sense when label is dynamically replaced with other
language label — if label was a parent of the field, the field would be destroyed along
with the label and would need to be recreated with the new one. This is not an issue
when logical hierarchy is used.

2.4.5 DOM access

Reusable visual components should already have access only to the DOM elements they
create. However, application components have generally unlimited access to the DOM.
Ideally they should not use DOM at all, but when they need to for some reason, security

22

rules should enforce that components do not accidentally change a DOM subtree that is
not logically connected to the component. Therefore a DOM manager should be present.
It will:

• Serve as a hub and the only point in the application for accessing and manipulating
DOM elements [38].

• Restrict access to the DOM based on application-specific security rules.

2.4.6 State machine

It would be nice to describe component lifecycle by a finite-state machine, state transitions
could be then published as events and other components could react to these state changes.
Transitions could be also done automatically by reacting to the messages on the bus. The
problem is that the component lifecycle can be very complicated and cannot be described
by a single flat finite-state machine without excessive redundancy. To fully cover all the
possible states without any redundancy, these structures are required:

Hierarchical, concurrent finite-state machine where states can contain substates
within multiple, independent branches [19]. This state machine therefore contains multiple
active states, but all of them are covered by a single state from the top level state machine.

Asynchronous dynamical state chains that consist of a sequence of predefined states
that can be included multiple times. These dynamical states are independent on the main
state machine.

The possibilities are described on the example in the Figure 2.8. The component contains
the top-level state machine (Initializing, Running, Destroyed states) and the Running
state is split into multiple state machines defined by classes and mix-ins in the class hier-
archy, together forming one hierarchical state machine [19]. During the Running phase two

Figure 2.8: Example of simultaneous component states.

23

independent exceptions occured, each creating new dynamical state chain. These chains are
independent on the synchronous state machine, because they could be reversed. E.g. the
Destroying state can be reverted if a superior component prohibits the component from
being destroyed. The Recovering from Exception state can be reversed if the component
or superior component has ways how to cope with the exception. Meanwhile recovering or
destroying the component should logically stay in the original states from the main state
machine. In the example the component is in 7 states at the same time, 3 of which have
the same name and meaning.

2.4.7 Testing

The fully event-driven architecture (see section 2.2.4) opens many extension options. It
can radically change the way web applications are tested today. There are many libraries
for unit testing [39] that is a great way to test classes, but it cannot easily capture user
interactions [21][30]. For these purposes additional browser extensions or tools to simulate
interactions were built3. They work by triggering fake DOM events and then verify the new
DOM structure [29]. Still the programmer needs to install additional software or plugin and
if the DOM structure or names are changed, tests need to be rewritten.

Framework architecture enables interaction testing indepentendly on the DOM structure,
without any additional tool. The prerequisity is that all the components are fully event-
driven — to repeat what was stated in the section 2.2.4, it means that every state change
(even internal) is published on the message bus. Three possible ways of interaction testing
shown in the Figure 2.9 are inspired by testing patterns within service-oriented architectures
[17]. They complement each other — ideally all the test types should be created for every
application module, along with unit tests.

Isolation tests. Only the tested component and the test case component are connected
to the bus. Often the tested component cannot be fully isolated and needs to communicate
with other components or service providers. Functionality of these dependencies can be then
made available e.g. using mock objects that contain only partial or minimal implementation
of the needed functionality [21][29]. Components can be tested in two ways:

• By simulating DOM events directly. The component should respond by publishing
application events that correspond to the DOM events. This test verifies component
reactions to the DOM event, but does not test the functionality or correct behaviour
itself. These tests are dependent on the DOM structure.

• By simulating messages the component listens to. Component should respond by
state change events and other application messages. This tests that component re-
acts correctly to changes in the environment — meaning that it changes its state in
corresponding way, requests correct services and reacts with correct events.

Integration tests test multiple related components at the same time for their correct
cooperation [17]. It is similar to the isolation tests, just works with multiple components.
The test case should work with application events only as the reaction to DOM events is
already verified by isolation tests.

3This type of testing is sometimes called End-to-end testing [29] and tools include Selenium [39] or
AngularJS Protractor [29]

24

Figure 2.9: Three ways of testing component interactions.

2.4.8 Exceptions handling

For more precise handling of exceptions, they can be wrapped into special message type
and processed at multiple levels by components listening on the bus. Exceptions can be for
example passed up in the logical hierarchy tree unless processed, then passed to local or
global exception handlers (special manager components) for logging.

25

Chapter 3

Technical solution

This section covers technical and implementation details of the framework architecture,
selected extensions and technologies. The base technologies used have some limitations or
preferred ways of solving problems and may not allow implementation of the framework in
the full extent, as it was analysed in the chapter 2.

3.1 Base technologies

The Dart language was chosen as the base implementation language. It is new, mod-
ern language that has a goal of being easy to undestrand by average programmer while
adding numerous benefits over currently used languages. The ones with huge impact on
this framework and applications development generally are:

Native class system. Many frameworks focus on creating own class system that is not
present in JavaScript. With Dart all the class-related language features like classes, mix-ins,
interfaces, static fields, annotations, generics, . . . are present. The class system also ensures
that instance variables are not shared accross class instances, which is possible in JavaScript-
based class systems and which causes hard-to-find errors as shown in the Listing 3.1:

Listing 3.1: Example of unexpected behaviour caused by a shared instance variable.
1 Class.create('Container ', {
2 // The programmer has forgotten (or does not know) that
3 // Arrays and Maps defined in the prototype are shared.
4 children: [],
5 title: ''
6 });
7
8 var first = new Container ();
9 first.title = 'First';
10 first.children.push('Child 1');
11
12 var second = new Container ();
13 second.title = 'Second ';
14 second.children.push('Child 2');
15
16 // Unexpected content of the `children ` instance variable !!!
17 // first => {title: 'First ', children: ['Child 1', 'Child 2']}
18 // second => {title: 'Second ', children: ['Child 1', 'Child 2']}

26

Optionally typed variables. It is possible to quickly develop application prototypes
without using type annotations and add them later when prototype is selected for production
development and static analysis is needed. JavaScript does not have type annotations, so
static analysis is extremely difficult, is adjusted separately for each framework and fails if
application breaks framework rules.

Packages and libraries support is included in the SDK and package creation is recom-
mended everywhere. This encourages programmers to structure applications in a better way
and to create public or internal reusable libraries.

Two levels of objects visibility — library private and public. In other words every
object within specific library has access to all the classes, objects and their fields, even private
ones. When library is imported, only public objects are visible. This lack of truly private
or protected objects forces programmer to encapsulate logically related classes together and
create many small libraries in order to keep the security at a sustainable level. Therefore
developers have to analyze applications in more details before programming.

Browsers and performance. Dart is a language created by Google, so it should support
the same browsers that are supported by Google services. The promise is to include the
latest versions of every major browsers and two latest versions of Internet Explorer [4].

Dart can be compiled to JavaScript with Dart2js tool and a special Chromium browser
build, called Dartium, already includes native Dart Virtual Machine (Dart VM). The com-
parison of performance is visualized in the Figure 3.1, which shows one of the benchmarks
used by the Dart team [14]. Dart language running in the native environment already
outperforms JavaScript and more optimizations should come with new Dart SDK releases.

To involve other vendors to include Dart VM into their browsers, an ECMA technical
commitee was established and is working on the Dart language standard. ECMA is the
organization that standardizes JavaScript so it is anticipated that the vendors will join
these efforts [27].

Figure 3.1: Dart performance comparison with the DeltaBlue benchmark [14].

0

2,000

4,000

6,000

8,000

Versions

E
la
ps
ed

ti
m
e
[s
]

JavaScript (V8)
Dart2js (V8)
Dart

2012/06/14 2014/05/10

27

Polymer.dart adds support for not yet implemented HTML5 features to all major browsers.
Visual components can be then easily created with HTML5 Custom Elements API. See Ta-
ble 2.1 for comparison of the features that Polymer brings.

3.2 Libraries structure

3.2.1 Framework

To make framework fully extensible, a small core library called framework.core was created.
It contains implementation of the message bus architecture (section 2.2) and skeleton of a
base application component (section 2.3).

Every extension to the core (see section 2.4) is also packed as a separate library. All the
extensions are then imported and applied to the component in the framework package, but
programmer always has a choice to import framework.core library instead and apply only
the needed extensions, or add custom ones. Framework is therefore extremely modular and
extensible, with the framework.core being the only fixed part.

3.2.2 Applications

Additional packages were created for easier implementation of web applications. The pack-
age called framework_polymer adds Polymer.dart support including its correct initializa-
tion. The polymer_bootstrap includes Polymer-compatible version of Twitter Bootstrap
visual style and typography library. Polymer_elements contains set of reusable visual com-
ponents used e.g. in the sample applications.

The implemented application can combine these packages as needed. The only require-
ment for each application is to create a custom class that extends Application core class.
Its instance should be then manually launched. The implementation must also initialize the
message bus and connect initial components. Some extensions also require initialization of
related providers and managers.

3.3 Implementation challenges

3.3.1 Programming conventions in the framework core

Library private properties and classes are marked with _$ prefix and class private
properties with the standard _ prefix. While analyzing class source code it helps to easily
identify properties that are used elsewhere in the library and where more attention must be
kept during refactoring.

Empty values are always passed as null . Empty strings, arrays or maps should be
used only in special situations. This unites the arguments checks and assertions, because
the values can be tested to null independently on the actual object type. It is also useful for
data types that do not have empty value, like numbers. In JavaScript the null comparison
is not recommended [39] because it does not verify object type. In Dart the situation is
opposite, because the variables have type annotations.

Documentation in the Markdown format that is already supported by Dart SDK in
a slightly modified form.

28

3.3.2 Messages

Messages that enter the bus should be deep immutable, only the metadata should be mod-
ifiable. However, Dart libraries contain shallow immutable collections only. The shallow
immutable objects can be also achieved by const constructors, but then different in-
stances created with the same data will be equal, which is wrong behaviour. Therefore
the framework as of the current version does not support immutable messages and is up to
programmer not to modify them.

The main challenge was to suggest a method to distinguish different message types. The
problem can be demonstrated on events. DOM events contain String name property for
this purpose. When a specific data have to be passed a subclass for the specific event type
is created, but the name still has to be passed to the superclass which leads to unnecessary
code duplication. Additionally it is not a good practice to write String values directly,
so these should be stored as static class constants, which again increases code duplication
and decentralizes event declarations as illustrated in the Listing 3.2. Code is then prone to
copy-and-paste errors because programmer might forget to change some names.

Listing 3.2: Problems with events referenced by the name property.
1 class Event () {
2 static const String CLICK = 'click';
3 static const String MOUSE_DOWN = 'mousedown ';
4
5 final String name;
6 Event(this.name);
7 }
8
9 class KeyPressEvent () {
10 // Duplication of code -- `KeyPress ` is already
11 // present in the class name.
12 static const String KEY_PRESS = 'keypress ';
13
14 final int keyCode;
15 KeyPressEvent(this.keyCode , String name) : super(name);
16 }
17
18 // Decentralized event constants -- some stored in the [Event]
19 // class , some in the [KeyPressEvent] class.
20 Event event = new Event(Event.CLICK);
21 Event event = new KeyPressEvent(Key.ENTER , KeyPressEvent.

KEY_PRESS);
22
23 if (event.name == KeyPressEvent.KEY_PRESS) /* ... */

For more efficient way the String type can be replaced with the Symbol instances
that are faster, but it will not solve any of the previously mentioned issues. The DOM
approach that is used in many frameworks and libraries is therefore not a good way to go.
The solution is to reference messages directly by their class name. For every event type a
new class must be present as shown in the Listing 3.3. This approach requires programmer
to specify the message name only once and was applied to all the messages on the message
bus.

29

Listing 3.3: Events referenced directly by their class type.
1 // Event class cannot be instantialized directly.
2 abstract class Event () {}
3
4 // Each event type has its own class.
5 class ClickEvent extends Event {}
6 class MouseDownEvent extends Event {}
7 class KeyPressEvent extends Event {
8 final int keyCode;
9 KeyPressEvent(this.keyCode);
10 }
11
12 // No constants needed , simply create the event.
13 Event event = new ClickEvent ();
14 Event event = new KeyPressEvent(Key.ENTER);
15
16 // Events are distinguished by their class.
17 if (event is KeyPressEvent) /* ... */

3.3.3 Messages metadata

Application managers and providers need to know additional information about the mes-
sages, like who originated the message and when, and need to mark specific flags for other
managers, etc. If these metadata were placed within the message, they would need to be
initialized in the message constructor, because all the messages are immutable once created.
Therefore directly the component that creates the message would need to deal with them,
which would add additional burden on the programmer, plus the metadata could be easily
faked. Ideally the message bus should take care of this, but when the message enters the
bus, it is too late to change its properties.

Therefore a separate MessageMetadata object is created for each message. The benefits
are that metadata cannot be faked, because they could be created only by the message bus,
and that the actual messages contain only relevant data. The metadata are then linked to
the messages with Expando class that creates loose association between objects and does
not prevent garbage collector from freeing the contained objects. Message metadata are
then returned by the message bus on-demand, they are not passed along with each message,
as shown in the Listing 3.4.

Listing 3.4: Example of message metadata usage.
1 class SecurityManager extends Manager {
2 // ... initialization etc.
3 // Allows only messages from [Provider]s and [Manager]s
4 // to enter the bus.
5 SecurityCheckResponse onMessage(SecurityCheckRequest request) {
6 Message message = request.message;
7 MessageMetadata meta = bus.getMetadata(message);
8
9 if (meta.source is Manager || meta.source is Provider) {
10 return new SecurityCheckResponse(allowed: true);
11 }
12 return new SecurityCheckResponse(allowed: false);
13 }
14 }

30

3.3.4 Components

The Component class is the base abstract class from which all components connected to the
bus must inherit. The Manager , Provider classes and all the class extensions could be
applied to every component as mix-ins. There is no default component class hierarchy —
all the functionality is implemented as mix-ins. This approach allows programmer to create
own base component class, specific for the developed application, by applying mix-ins at a
single place. It leads to more extensible framework, because if there was a class hierarchy,
mix-ins would have to be applied separately to each class. It is demonstrated in listings 3.5
and 3.6.

Listing 3.5: Framework with internal component class hierarchy.
1 // `framework ` package
2 abstract class Component { /* ... */ }
3 abstract class Provider extends Component { /* ... */ }
4 abstract class Manager extends Component { /* ... */ }
5 abstract class UIComponent extends Component { /* ... */ }
6
7 // `application ` - apply [Mixin1] and [Mixin2] to all components
8 abstract class BaseComponent extends Component
9 with Mixin1 , Mixin2 {}
10 abstract class BaseProvider extends Provider
11 with Mixin1 , Mixin2 {}
12 abstract class BaseManager extends Manager
13 with Mixin1 , Mixin2 {}
14 abstract class BaseUIComponent extends UIComponent
15 with Mixin1 , Mixin2 {}
16
17 // Create custom [Manager], not possible to have [Manager]
18 // and [Provider] at the same time , so 2 classes are created.
19 class SecurityManager extends BaseManager { /* ... */ }
20 class SecurityProvider extends BaseProvider { /* ... */ }
21
22 // Create custom UI component.
23 class TextField extends BaseUIComponent { /* ... */ }

Listing 3.6: Framework without component class hierarchy, functionality as mix-ins.
1 // `framework ` package
2 abstract class Component { /* ... */ }
3 abstract class ProviderMixin { /* ... */ }
4 abstract class ManagerMixin { /* ... */ }
5 abstract class UIComponentMixin { /* ... */ }
6
7 // `application ` - apply [Mixin1] and [Mixin2] to all components.
8 abstract class BaseComponent extends Component
9 with Mixin1 , Mixin2 {}
10
11 // Create custom [Manager] and [Provider] at the same time.
12 class SecurityManager extends BaseComponent
13 with ManagerMixin , ProviderMixin {}
14
15 // Create custom UI component
16 class TextField extends BaseComponent with UIComponentMixin {}

31

3.3.5 Base component class

The listings 3.5 and 3.6 show custom base of every application component, called BaseComponent .
It would be nice if programmer could use the name Component instead, meaning that the
custom component implementation would hide the class from the framework core. It could
be achieved by a specific import combination as shown in the Listing 3.7.

Listing 3.7: Extension of core Component class without the name change.
1 import 'package:framework/framework.dart' hide Component;
2 import 'package:framework/framework.dart' as core show Component;
3
4 // [Component] class hides the `Component ` from framework core.
5 class Component extends core.Component with Mixin1 , Mixin2 {}
6
7 // Create custom class based on the extended class
8 class MyComponent extends Component {}

This technique has one drawback demonstrated in the Listing 3.8. If a provider defined
outside the application returns a component, it is of the core.Component type which may
be accidentally assigned to the extended Component variable. This assignment causes ex-
ception because more general class is assigned to its subclass. Generally the service providers
should not return components, because all the communication between components should
be indirect. Still there might be good reasons to return components directly and program-
mers need to know about this issue.

Listing 3.8: Demonstration of the Component class name mismatch.
1 class Component extends core.Component with ... {}
2
3 // Service request that returns [core.Component] instance ,
4 // but the programmer uses the [Component] type.
5 var request = new HirarchyParentRequest(this);
6 HierarchyParentResponse response = bus.send(request);
7
8 // Throws assignment exception.
9 Component parent = response.parent;
10
11 // This works.
12 core.Component parent = response.parent;

3.3.6 Component constructor

The constructor needs to be in a special form, so that static analysis can work correctly
with the config instance variable. The Listing 3.9 illustrates the problem.

Listing 3.9: Correct and incorrect forms of Component constructor.
1 class MyComponentConfig extends ComponentConfig { /* ... */ }
2
3 /// Correctly typed config
4 class MyComponent extends Component {
5 final MyComponentConfig config;
6 MyComponent(MyComponentConfig config) : this.config = config ,

super(config);
7 }

32

8 /// Incorrectly typed config
9 class MyComponent extends Component {
10 MyComponent(MyComponentConfig config) : super(config);
11 // Static analysis considers this.config of [ComponentConfig]
12 // type because the field is inherited from the superclass.
13 }

3.3.7 Component-related classes

The component implementation is split into multiple classes (see section 2.3) and framework
contains a way to specify the class relations. These connections are important for static and
runtime analysis that can detect copy-and-paste errors or wrong object usage more easily.
For this purpose a @PartOf annotation is present in the framework. Static analysis benefits
are shown in the Listing 3.10.

Listing 3.10: Static analysis errors detections with the @PartOf annotation.
1 // Correct definition.
2 @PartOf(MyComponent)
3 class MyComponentConfig extends ComponentConfig {}
4 class MyComponent extends Component {}
5
6 // Copy & paste error -- detected because [OtherComponentConfig]
7 // has @PartOf(OtherComponent) annotation instead of expected
8 // @PartOf(Component).
9 @PartOf(MyComponent)
10 class MyComponentConfig extends OtherComponentConfig {}
11 class MyComponent extends Component {}
12
13 // Copy & parse error -- detected because [MyComponentConfig]
14 // type is expected for the [config] field.
15 @PartOf(MyComponent)
16 class MyComponentConfig extends ComponentConfig {}
17 class MyComponent extends Component {
18 OtherComponentConfig config;
19 // ... constructor
20 }
21
22 // Even copy & paste error within the annotation is detected ,
23 // because [MyComponent] has no related [Config] class.
24 @PartOf(OtherComponent)
25 class MyComponentConfig extends ComponentConfig {}
26 class MyComponent extends Component {}

The @PartOf annotation is used in the same way for the messages on the message bus.
The @Follows annotation is also used for semantic analysis of message classes (and can
be possibly used for any logically subsequent classes). The meaning is illustrated in the
Listing 3.11.

Generally the services need to be manually registered to the component API (as ex-
plained in the section 2.3.2). If the @PartOf annotation is used, the related services can
be registered automatically with framework transformers (Dart code pre-compilers), shown
in the Listing 3.12.

33

Listing 3.11: Usage of the @PartOf annotation for message classes.
1 // Runtime checks verify that only [MyProvider] publishes
2 // [MyEvent] events.
3 @PartOf(MyProvider)
4 class MyEvent extends Event {}
5
6 // Runtime checks verify that only [MyProvider] responds to
7 // [MyServiceRequest] service requests.
8 @PartOf(MyProvider)
9 class MyServiceRequest extends ServiceRequest { /* ... */ }
10
11 // Runtime checks verify that provider always responds with
12 // [MyServiceResponse] to [MyServiceRequest] service requests.
13 @Follows(MyServiceRequest)
14 class MyServiceResponse extends ServiceResponse { /* ... */ }

Listing 3.12: Automatic API registration with @PartOf annotation.
1 // Provider class without the @PartOf annotations usage.
2 class MyProvider extends Component with Provider {
3 // Register the service into [ComponentApi].
4 MyProvider (...) : ..., super (...) {
5 api.add(new ServiceApiElement(MyServiceRequest));
6 }
7 }
8
9 // Provider class with services registered automatically.
10 class MyProvider extends Component with Provider {
11 MyProvider (...) : ..., super (...);
12 }

3.3.8 Message subscriptions

To simplify subscriptions and reaction to messages on the bus, the @On annotation is
present. It is applicable to any private instance method with specified format within
component class. The method declaration format is different for every message type,
e.g. void _method(Event event) is used for events and services handler method is the
ServiceResponse _method(ServiceRequest request) format. The Listing 3.13 shows the
usage.

Listing 3.13: Usage of the @On annotation to simplify message subscriptions.
1 // Manual subscription
2 class MyProvider extends Component with Provider {
3 MyProvider (...) : ..., super (...) {
4 // Register service callback.
5 api.add(new ServiceApiElement(MyServiceRequest , _onService));
6
7 // Event subscription.
8 var request = new SubscribeRequest(OtherComponentEvent);
9 SubscribeResponse response = bus.send(request);
10 request.stream.listen(_onEvent);
11 }
12

34

13 void _onEvent(OtherComponentEvent event) { /* ... */ }
14
15 MyServiceResponse _onService(MyServiceRequest request) {
16 return new MyServiceResponse ();
17 }
18 }
19
20 // Automatic subscription
21 class MyProvider extends Component with Provider {
22 MyProvider (...) : ..., super (...);
23
24 @On(OtherComponentEvent)
25 void _onEvent(OtherComponentEvent event) { /* ... */ }
26
27 @On(MyServiceRequest)
28 MyServiceResponse _onService(MyServiceRequest request) {
29 return new MyServiceResponse ();
30 }
31 }

With the @PartOf and @On annotations it is extremely easy to develop fully
event-driven applications. Component implementation will consist mostly of the mes-
sage subscriptions. No public methods should be needed, because components are not ref-
erenced directly. The component implementation is therefore nicely encapsulated. See also
Appendix C for a step-by-step example of application development where these annotations
are used extensively.

3.3.9 Internal component messages

Different component states were already examined in the section 2.4.1, but the constructor
phase should be analyzed in more details, because all the classes in the class hierarchy,
including mix-ins, are initializing the component at that time. The framework-specific way
of initialization is shown in the Figure 3.2. In the first Configuring phase, the component
configuration is modified and locked for changes at the end. During the Initializing
phase the component state, API and instance variables are initialized. At the beginning of
the Running phase the component is fully functional, publishes its API publicly and starts
communicating on the message bus.

Figure 3.2: Visualization of private messages during component lifecycle.

The challenge is to allow every subclass and mix-in to run their own code during each
phase. If only subclasses were present, it could be easily done by specially named methods
(often called hooks). But the mix-ins in Dart cannot contain the same-name fields as classes
they extend, so another solution must be chosen. Each state/phase could start with an

35

internal component event, to which only subclasses and mix-ins could subscribe, as shown
in the Figure 3.2. For subscription to events on the message bus the components already
use the @On annotation, so if the internal events were tunelled through the message bus,
it could be reused for this purpose. These internal events inherit from the PrivateEvent
class and the message bus makes sure that they are not available publicly. Usage example
is shown in the Listing 3.14.

Listing 3.14: Usage of the @On annotation for internal events subscription.
1 // Internal component events definition.
2 class ComponentConfigure extends PrivateEvent {}
3 class ComponentInitialize extends PrivateEvent {}
4 class ComponentCreated extends PrivateEvent {}
5 class ComponentDestroy extends PrivateEvent {}
6
7 // Component constructor in the framework core publishes events.
8 class Component extends Object with ... {
9 Component (...) : ... {
10 // Plug myself to the bus -- allow reaction to private events
11 bus.plug(this);
12
13 // Configure phase.
14 sendMessage(new ComponentConfigure ());
15 config.lock();
16
17 // Initialize phase
18 sendMessage(new ComponentInitialize ());
19 api.lock();
20
21 // Running phase , executed asynchronously.
22 scheduleMicrotask (() {
23 bus.publishApi(this);
24 sendMessage(new ComponentCreated ());
25 });
26 }
27 }
28
29 // Automatically registers components into a logical hierarchy.
30 class HierarchyMixin {
31 @On(ComponentCreated)
32 void _onCreated () {
33 Component parent = config.parent;
34 bus.send(new HierarchyRegisterRequest(parent));
35 }
36
37 @On(ComponentDestroy)
38 void _onDestroy () {
39 bus.send(new HierarchyUnregisterRequest ());
40 }
41 }

The difference to application events is that internal event subscriptions are not executed
in the registration order but in the order from superclass to subclass. The destroy event is
distributed in reversed order starting with subclasses. That way the class implementation
can rely on correctly initialized functionality by superclasses.

36

3.3.10 Internal framework security

The framework should also contain internal security mechanisms that verify e.g. that com-
ponents cannot fake messages, change message source, metadata etc. Some of these will
be only available with the deep object immutability support, which is not present in the
Dart language yet. The validity of messages can be easily verified only if all the mes-
sages are passed through single message bus access point. For these purposes the methods
sendMessage and getMetadata are available in every component for working with the bus.
The bus.send() and other bus methods referenced in previous code snippets are used only
internally by the framework and are not publicly available.

3.4 Issues to be solved

3.4.1 Annotations and performance

The functionality of the @On , @PartOf and @Follows annotations could be implemented
in two ways.

Using reflection. The component includes special mix-in that makes annotations work by
checking annotations on objects dynamically during the application lifetime. It uses reflec-
tion, which has severe impact on performance. Measured experimentally by the throughput
of the message bus in messages per second, the results in an application that used reflection
were worse in magniture of orders compared to the application without reflection. Addi-
tionally the reflection is not currently supported in the dart2js compiler.

The method is, however, resistant to the changes in Dart language specification and
to framework core changes, which is benefitial in the early framework development stage,
where changes happen rapidly. That is why the annotations are implemented this way in
the current framework version.

Using Dart transformers. Transormers modify the Dart source code before it is com-
piled or passed to the browser. Annotations are found by static analysis of the source
code. The functionality is then added through generated code snippets put directly into the
class implementation. Annotations functionality generated this way have no impact on the
performance, because the reflection is not used.

The drawback is that user does not have control over the generated source code, so
the transformers have to be error-free and well tested. Also, they have to be tested with
every new Dart language version to verify that the generated code complies with the new
specification. The reflection method should be therefore replaced with Dart transformers
only when framework core and Dart language specification are stable.

3.4.2 Annotations and polymorphism

The methods annotated with the @On annotation should be private, therefore not even
visible to own subclasses and should not be overriden. The problem occurs when two
private methods have the same name, because the language polymorphism returns only
one, the most specific, method implementation to be called. This is demonstrated in the
Listing 3.15.

37

Listing 3.15: Usage of the @On annotation for internal events subscription.
1 // subclasses with the same name methods
2 class MyComponent extends Component {
3 @On(SomeEvent)
4 void _onEvent(_) {}
5 }
6 class OtherComponent extends MyComponent {
7 @On(SomeEvent)
8 void _onEvent(_) {}
9 }
10
11 // *** Annotations functionality by reflection ***
12 MethodMirror method = /* method annotated by @On(SomeEvent) */;
13 InstanceMirror component = reflect(new OtherComponent ());
14 Function listener = component.getField(method.simpleName);
15 listener(event);
16 // `getField ` is the only way how to access instance field
17 // and it always returns the most speficic method.
18 // -> Only the [OtherComponent#_onEvent] is called.
19
20 // *** Annotations functionality by transformers ***
21 class MyComponent extends Component {
22 MyComponent (...) : ... {
23 sendMessage(new SubscriptionRequest(SomeEvent))
24 .stream.listen(_onEvent);
25 }
26 void _onEvent(_) {}
27 }
28 class OtherComponent extends MyComponent {
29 OtherComponent (...) : ... {
30 sendMessage(new SubscriptionRequest(SomeEvent))
31 .stream.listen(_onEvent);
32 }
33 void _onEvent(_) {}
34 }
35 // The [OtherComponent#_onEvent] is called twice
36 // within [OtherComponent] instance.

The only solution for the reflection method is to force programmer to name methods
uniquely. And this is not very convenient. If the transformers method is used, the trans-
former can easily rename the method, e.g. add unique suffix and the functionality will be
correct. However, because transformer method it not currently used (see section 3.4.1), the
issue remains unresolved.

38

Chapter 4

Conclusion

4.1 Framework overview

Outcome of this thesis is a novel web application framework with well analyzed base and
architecture. The major results of the analysis are:

• Framework solves only issues that are mostly intact by existing web frameworks.

• The framework and components are designed to be fully modular and extensible.

• All the communication within an application flows through one central point.

• Architecture reduces programmer mistakes and contains internal security control mech-
anisms.

• It includes features to simplify application development and to create organized code.

• Architecture is compatible with many other architectural patterns like service-oriented
architecture or event-driven architecture.

• Additional features important for web frameworks, like working with domain data,
creating visual components or testing, are also analyzed.

• By its structure, the framework forces programmer to analyze components before they
could be implemented.

The main concept is the central message bus that makes some advanced topics easy to
implement. These are for example:

• Different types of communication — synchronous, asynchronous, point-to-point, . . .

• Single interface for handling all these communication types.

• Precise security rules and restrictions of components scope.

• Loose component coupling and prevention of memory leaks.

• Interaction testing through events.

• Multi-level exceptions handling.

39

4.2 Implementation status

The framework is implemented in very basic, yet functional, version. The core classes and
services are stable but not optimized for performance. Internal security mechanisms and
framework extensions are in a draft phase, and are included only to demonstrate how they
could look like if fully implemented.

4.3 Accomplished goals

At the beginning (section 1.2) seven goals were mentioned and they are met by the framework
in the following extent:

Goal 1: Design universal framework. Framework architecture is very abstract, ex-
tensible, modular and general. No application-specific code is present and framework is
therefore universal, usable for both simple and complex web applications.

Goal 2: Make it easy to use. The framework goes in some sense against this goal, be-
cause components are split into multiple classes and even a very simple application contains
many components. At a first sight the created applications look complex and program-
mer would have to understand the underlying concepts to analyse the application quickly.
This effect is partially mitigated by useful helpers (annotations), but the need to under-
stand framework concepts before the applications can be programmed, still remains. The
simplicity was partially sacrificed to keep other benefits the framework offers.

Goal 3: Prevent mistakes. Many typical programmer mistakes are eliminated by the
framework architecture. It was demonstrated in the examples throughout this thesis.

Goal 6: Align with the base technology. The framework tries to meet the API and
scenarios of the Dart language where possible.

Goals 4, 5 and 7 — Solve application-wide issues, Consider busines framework selection
criteria, Include recommendations — were not addressed yet, or only partially, but should
be covered with the first stable release.

4.4 Weak points and possible improvements

Some weak points from the technical point of view were already mentioned in the section 3.4.
The following is a list of main drawbacks that have impact on the practical usage.

No visual components are present and web applications cannot be therefore developed
instantly. Framework will have to contain adaptors to visual component libraries to be
easily used and adopted by the Dart community.

Performance was not addressed yet, but is important for complex applications and frame-
work would have to optimize the heavily used parts to be more efficient. On the other side,
the browsers, Dart VM and Dart compiler performance improves heavily over time, so the
optimizations do not have to be very deep.

40

Lack of tutorials that are important to fully understand framework concepts. Without
them the framework could be used incorrectly. The framework code documentation should
also become more helpful.

4.5 Future steps

The framework is implemented as a public Dart package called dartbase . The package
preview is available through Dart Package Manager1, at GitHub2 and on http://www.
dartbase.org homepage. The source code is released under very permissive open-source
MIT license.

The next step is to collect feedback from the Dart community and with the insights
decide which functionality should be included or improved in the first stable version 1.0.0 .
Except for the functionality, also adequate tests set, documentation and tutorials should be
ready with this version, so that the framework can be easily and immediately used.

1https://pub.dartlang.org/packages/dartbase
2https://github.com/miroslavraska/dartbase

41

http://www.dartbase.org
http://www.dartbase.org
https://pub.dartlang.org/packages/dartbase
https://github.com/miroslavraska/dartbase

Bibliography

[1] Shadow DOM, W3C Working Draft [online]. http://www.w3.org/TR/shadow-dom/,
2013-05-14 [cit. 2014-04-09].

[2] Introduction to D-Bus [online].
http://www.freedesktop.org/wiki/IntroductionToDBus/, 2013-07-14 [cit.
2014-04-10].

[3] TodoMVC: Helping you select an MV* framework [online]. http://todomvc.com/,
2013-08-06 [cit. 2014-03-05].

[4] Dart: Frequently Asked Questions (FAQ) [online].
https://www.dartlang.org/support/faq.html, 2013-12 [cit. 2014-05-01].

[5] Harmony - ECMAScript Wiki [online].
http://wiki.ecmascript.org/doku.php?id=harmony:harmony, 2014-01-30 [cit.
2014-04-09].

[6] Dart API Reference (1.2) [online].
https://api.dartlang.org/apidocs/channels/stable/, 2014-03-07 [cit.
2014-03-24].

[7] The Dart Programming Language Specification (1.2) [online]. https:
//www.dartlang.org/docs/spec/latest/dart-language-specification.html,
2014-03-07 [cit. 2014-03-24].

[8] AMD [online]. https://github.com/amdjs/amdjs-api/blob/master/AMD.md,
2014-03-17 [cit. 2014-04-09].

[9] JavaScript Frameworks Market Share [online].
https://wappalyzer.com/categories/javascript-frameworks, 2014-04-01 [cit.
2014-04-01].

[10] Usage of JavaScript libraries for websites [online].
http://w3techs.com/technologies/overview/javascript_library/all,
2014-04-01 [cit. 2014-04-01].

[11] Dart Issues [online]. https://code.google.com/p/dart/issues/list, 2014-04-03
[cit. 2014-04-03].

[12] HTML 5.1 Nightly - A vocabulary and associated APIs for HTML and XHTML,
Editor’s Draft [online].
http://www.w3.org/html/wg/drafts/html/master/single-page.html, 2014-04-09
[cit. 2014-04-09].

42

http://www.w3.org/TR/shadow-dom/
http://www.freedesktop.org/wiki/IntroductionToDBus/
http://todomvc.com/
https://www.dartlang.org/support/faq.html
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
https://api.dartlang.org/apidocs/channels/stable/
https://www.dartlang.org/docs/spec/latest/dart-language-specification.html
https://www.dartlang.org/docs/spec/latest/dart-language-specification.html
https://github.com/amdjs/amdjs-api/blob/master/AMD.md
https://wappalyzer.com/categories/javascript-frameworks
http://w3techs.com/technologies/overview/javascript_library/all
https://code.google.com/p/dart/issues/list
http://www.w3.org/html/wg/drafts/html/master/single-page.html

[13] Collected Java Practices [online]. http://www.javapractices.com/, 2014-05-01 [cit.
2014-05-01].

[14] Dart VM and dart2js Performance [online].
https://www.dartlang.org/performance/, 2014-05-10 [cit. 2014-05-10].

[15] Deepak Alur, Dan Malks, and John Crupi. Core J2EE Patterns: Best Practices and
Design Strategies (2nd Edition). Prentice Hall, 2003. ISBN 978-0131422469.

[16] Rob Ashton. A comparison of various JS frameworks using cold hard data [online].
http://codeofrob.com/entries/
a-comparison-of-various-js-frameworks-using-cold-hard-data.html,
2013-05-28 [cit. 2014-04-01].

[17] Gerardo Canfora and Massimiliano Penta. Service-oriented architectures testing: A
survey. Software Engineering, page 78–105, 2009. DOI 10.1007/978-3-540-95888-8_4.

[18] Mani K. Chandy. Event-Driven Applications: Costs, Benefits and Design Approaches
[electronic]. Gartner Application Integration and Web Services Summit 2006, Caltech.
http://infospheres.caltech.edu/sites/default/files/Event-Driven%
20Applications%20-%20Costs,%20Benefits%20and%20Design%20Approaches.pdf,
2006.

[19] Doron Drusinsky and David Harel. On the power of bounded concurrency I: Finite
automata. Journal of the ACM, 41(3):517–539, May 1994.
DOI 10.1145/176584.176587.

[20] Mohamed E. Fayad, David S. Hamu, and Davide Brugali. Enterprise frameworks
characteristics, criteria, and challenges. Communications of the ACM, 43(10):39–46,
October 2000. DOI 10.1145/352183.352200.

[21] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002. ISBN 978-0321127426.

[22] Piero Fraternali, Sara Comai, Alessandro Bozzon, and Giovanni Toffetti Carughi.
Engineering Rich Internet applications with a model-driven approach. ACM
Transactions on the Web, 4(2):1–47, Apr 2010. DOI 10.1145/1734200.1734204.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.
ISBN 978-0201633610.

[24] Paulo Gonçalves. Introduction to Project Management [electronic]. Project
Management Course, Università della Svizzera italiana, 2012.

[25] Kevlin Henney. Five Considerations for Software Architects [online]. http://www.
infoq.com/presentations/Five-Considerations-for-Software-Architects,
2009-12-04 [cit. 2014-04-04].

[26] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Lecture Notes
in Computer Science, page 220–242, 1997. DOI 10.1007/bfb0053381.

43

http://www.javapractices.com/
https://www.dartlang.org/performance/
http://codeofrob.com/entries/a-comparison-of-various-js-frameworks-using-cold-hard-data.html
http://codeofrob.com/entries/a-comparison-of-various-js-frameworks-using-cold-hard-data.html
http://infospheres.caltech.edu/sites/default/files/Event-Driven%20Applications%20-%20Costs,%20Benefits%20and%20Design%20Approaches.pdf
http://infospheres.caltech.edu/sites/default/files/Event-Driven%20Applications%20-%20Costs,%20Benefits%20and%20Design%20Approaches.pdf
http://www.infoq.com/presentations/Five-Considerations-for-Software-Architects
http://www.infoq.com/presentations/Five-Considerations-for-Software-Architects

[27] Seth Ladd. Dart News & Updates: Ecma forms TC52 for Dart Standardization
[online]. http://news.dartlang.org/2013/12/
ecma-forms-tc52-for-dart-standardization.html, 2013-12-13 [cit. 2014-05-10].

[28] Anne Lapkin and Deborah Weiss. Ten Criteria for Selecting an Enterprise
Architecture Framework [online]. https://www.gartner.com/doc/838915/,
2008-12-15 [cit. 2014-04-01].

[29] Ari Lerner. ng-book - The Complete Book on AngularJS. Fullstack io, 2013.
ISBN 978-0991344604.

[30] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008. ISBN 978-0132350884.

[31] Leesa Murray, David Carrington, and Paul Strooper. An Approach to Specifying
Software Frameworks. In Proceedings of the 27th Australasian Conference on
Computer Science - Volume 26, ACSC ’04, pages 185–192, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[32] San Murugesan. Web Application Development: Challenges And The Role Of Web
Engineering. In Gustavo Rossi, Oscar Pastor, Daniel Schwabe, and Luis Olsina,
editors, Web Engineering: Modelling and Implementing Web Applications,
Human-Computer Interaction Series, pages 7–32. Springer London, 2008.
DOI 10.1007/978-1-84628-923-1_2.

[33] Bob Nystrom. Idiomatic Dart [online].
https://www.dartlang.org/articles/idiomatic-dart/, 2013-03 [cit. 2014-04-03].

[34] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal, 16(3):389–415, May
2007. DOI 10.1007/s00778-007-0044-3.

[35] Tero Piirainen. Frameworkless JavaScript [online].
https://moot.it/blog/technology/frameworkless-javascript.html, 2013-09-17
[cit. 2014-04-01].

[36] Alexy Shelest. Model View Controller, Model View Presenter, and Model View
ViewModel Design Patt [online]. http://www.codeproject.com/Articles/42830/
Model-View-Controller-Model-View-Presenter-and-Mod, 2009-10-03 [cit.
2014-03-05].

[37] Boris Staal. 2-Way Data Binding under the Microscope [online]. http:
//staal.io/blog/2014/02/05/2-way-data-binding-under-the-microscope/,
2014-02-05 [cit. 2014-04-09].

[38] Nicholas C. Zakas. Scalable JavaScript Application Architecture [online]. http://www.
slideshare.net/nzakas/scalable-javascript-application-architecture,
2009-09-07 [cit. 2014-03-05].

[39] Nicholas C. Zakas. Maintainable JavaScript. O’Reilly Media, 2012.
ISBN 978-1449327682.

44

http://news.dartlang.org/2013/12/ecma-forms-tc52-for-dart-standardization.html
http://news.dartlang.org/2013/12/ecma-forms-tc52-for-dart-standardization.html
https://www.gartner.com/doc/838915/
https://www.dartlang.org/articles/idiomatic-dart/
https://moot.it/blog/technology/frameworkless-javascript.html
http://www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod
http://www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod
http://staal.io/blog/2014/02/05/2-way-data-binding-under-the-microscope/
http://staal.io/blog/2014/02/05/2-way-data-binding-under-the-microscope/
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture

Index

AMD, see Asynchronous module definition
AngularJS, 6, 8–10

Protractor, 24
API

Component, 13, 19, 33, 35
Framework, 5–7

Application
Business logic, 3, 6, 22
Cloud application, 3
Enterprise application, 4
Reliability, 4
Rich Internet application, 4
Single-page application, 3, 4, 7
Static application, 3

Architecture
Abstract, 10
Event-driven architecture, 9, 10, 17, 24
Message bus architecture, 13, 14
Modular architecture, 11, 14
Scalable architecture, 11, 14
Sandbox, 12

Service-oriented architecture, 9, 10, 13,
16, 24

Enterprise service bus, 9, 13
Three-tier architecture, 4
Data source layer, 4
Domain Layer, 4
Presentation Layer, 4

Aspect-oriented programming, 10
Asynchronous module definition, 9, 11

B2C, 7
Back-end, 3, 4, 10, 20
Backbone.js, 6, 9
Business process, 6

Client-side, see Front-end
Code clarity, 4, 19, 40
CoffeeScript, 11

Component
Business logic, 22
Configuration, 17–19, 32, 35
Encapsulation, 11, 27, 35
Enterprise component, 6
Interaction, 5
Lifecycle, 11, 19
Loose coupling, 9–11, 13, 32, 35
Scope, 9, 12
State property, 17–19, 22, 24, 35
Visual component, 3, 5, 8–10, 21, 22, 40

Consistency, 6, 7
Content management system, 7, 21
Cross-browser, see Portability
CRUD, 7

D-Bus, 13
Dart, 5, 6, 8–11, 26–29, 35, 37, 40, 41

Transformer, 33, 37, 38
Data

Data transport object, 21
Domain object, 7, 15, 20, 21
Model object, 21
Two-way binding, 8, 9, 21

Document object model, 9, 11, 17, 21, 22
Element, 11, 15, 22
Event, 10, 15, 24, 29

Dojo, 6, 9, 10
DOM, see Document object model
DTO, see Data transport object

ECMAScript, 11
Harmony, 11

EDA, see Event-driven architecture
Ember.js, 6, 8, 9
ESB, see Enterprise service bus
Extensibility, 6, 7, 28, 31, 40
ExtJS, 6, 9

Finite-state machine, 9, 23

45

Framework
Mobile, 8

Front-end, 3, 4, 7

Garbage collection, 16

HTML5, 8, 28
Custom element, 8, 9, 28
Local storage, 13
Shadow DOM, 8, 9

HTTP, 20
Request, 4

Immutability, 17, 19
Internationalization, 7

JavaScript, 8, 9, 11, 27, 28
Console, 4

jQuery, 6, 10
jQuery UI, 6

Knockout, 6, 8, 9

Linux, see D-Bus

Marketing, 4, 10
Memory leak, 15, 17, 22
Message bus, 13–17, 19, 22, 23, 29, 30, 34–37

Addressing, 13
Asynchronous communication, 15
Point-to-point communication, 13
Synchronous communication, 15

Meteor, 6, 8, 9
Mistakes

Detection, 4
Elimination, 4
Prevention, 4, 7

Model-View-Controller, 9, 17
Model-View-Presenter, 9
Model-View-ViewModel, 9
Model-View-Whatever, 9
Modularity, 11, 17, 28, 40
MooTools, 6
MV*, 8–10, 21, 22

Controller, 9, 17
Model, 8
View-Model, 9

MVC, see Model-View-Controller, MV*
MVP, see Model-View-Presenter, MV*
MVVM, see Model-View-ViewModel, MV*

MVW, see Model-View-Whatever, MV*

Object-relational mapping, 10
ORM, see Object-relational mapping

Pattern
Adaptor, 18
Future, 15
Observer, see Publish-subscribe
Promise, see Future
Publish-subscribe, 9, 13, 15

PDF, 4
Performance, 5, 27, 37, 40

Optimization, 7, 40
Polymer, 8–10, 28
Portability, 6
Productivity, 4
Project

Cost, 4
Duration, 4, 5

Project Management, 4
Prototype, 6

RIA, see Rich Internet application

Scalability, 4, 6, 11, 17
script.aculo.us, 6
Security

Internal application security, 4, 27, 28,
30, 37, 40

Manager, 15
Rules, 7, 15

Selenium, 24
Server-side, see Back-end
Static analysis, 7, 27

Testing
End-to-end testing, 24
Integration testing, 24
Interaction, 10
Isolation testing, 24
Mock object, 24
Unit testing, 24

Underscore.js, 6

Virtual machine, 5, 27, 40
VM, see Virtual machine

Web browser, 7, 16, 24

YUI, 6, 9

46

Appendix A

Enclosed medium contents

Directories description

framework — The web application framework package.
framework/dartdoc-viewer — The documentation package.
framework_polymer — Base package for development with Polymer.dart UI library.
polymer_bootstrap — Package with Twitter Bootstrap theme for Polymer elements.
polymer_elements — Package with UI components used in the sample applications.
sample_cms — Sample content management system application.
sample_email — Sample email client application.
sample_todomvc — Sample TodoMVC application, described by the tutorial .
todomvc_common — Package with TodoMVC resources.
tutorial — Step-by-step example of application development on partially implemented
TodoMVC application. Functional version is in the sample_todomvc .

Structure of the framework package

lib/core — Contains framework core — a small, encapsulated library containing:

• The message bus.

• Minimal skeleton of application component.

• Utils for components connection to the message bus.

• Mechanism for internal communication within components.

lib/extensions — Contains libraries and packages for extension of the framework core.

• bindings — Annotations for simpler programming of applications. They automati-
cally create component associtations, subscribe to events, services, etc.

• data — Tools for working with application-wide domain entities.

• helpers — Helpers for working with the framework core.

• hierarchy — Placement of components into a logical hierarchy.

• state_object — State of component is placed into separate object. It could be then
serialized, dynamically saved and recovered (e.g. from URL).

47

• validation — Validation of @required properties in the configuration, etc.

lib/utils — General extensions applicable to any Dart object.

How to run a sample application?

1. Install the Dart editor (Arch linux — the dart-editor package from AUR)

2. Open all projects with the Open Existing Folder option.

3. Download libraries for each project using Tools -> Pub Get .

4. Run web/app.html application with the Run in Dartium context menu option.

5. The Dartium browser with the application is opened.

How to generate and view the documentation?

The Dart way of publishing code documentation is with the dartdoc-viewer package,
which is a single-page documentation viewer application. It works with the documentation
generated in the JSON format. There is no static version of the generated documentation
and the viewer can be either hosted or executed locally. To display the documentation
locally follow these steps:

1. Install Dart SDK (it is part of the dart-editor package in Arch linux) and Git.

2. Add the installed tools into PATH (Arch linux — /opt/dart-editor/dart-sdk/bin).

3. Generate documentation in JSON format and download the newest version of dartdoc-viewer
application: cd framework/tool/ && ./generate_docs.sh .

4. Documentation is placed into the docs directory in the JSON format.

5. Documentation viewer application is located in the dartdoc-viewer directory.

6. Disable code analysis for the documentation viewer application in the Dart editor
(context menu Don't analyze option).

7. Run framework/dartdoc-viewer/client/web/index.html in the Dartium from the
Dart editor.

48

Appendix B

List of compared frameworks and
libraries

The complete list of frameworks and libraries that were compared during the framework
analysis.

• $$

• AJS

• Abaaso

• AccDc

• ActiveJS

• Agility

• Almond

• Ample SDK

• AmplifyJS

• AngularJS

• Archetype

• AriaTemplates

• Asana Luna

• Atom

• AtomJS

• AUI

• Axton

• Backbone.js

• Batman

• Bindows

• BoilerplateJS

• Bootstrap

• CanJS

• Cappuccino

• Chaplin

• Choco

• ChocolateChip

• Claypool

• Closure Tools

• CommonJS

• CorMVC

• Cujo

• CupQ

• D3JS

• Derby

• Dermis

• Descript

• DHTMLX

49

• Dijon

• Dojo Toolkit

• Duel

• Echo

• Eco

• Ember

• Ender

• Enyo

• EnvJS

• Epitome

• Eventd

• Eyeballs

• Fleegix

• Flight

• Funnyface

• GWT

• Glow

• GLOW

• Heisenberg

• HandlebarsJS

• Infusion

• Jamal

• JavaScriptMVC

• Jo

• Joosy

• jQuery

• jQuery UI

• jQueryMx

• Jquip

• jslibraryboilerplate

• June

• Kendo UI

• Kinetic

• Knockback

• Knockout

• LimeJS

• Lively Kernel

• Lodash

• Maria

• Marionette

• Mass

• Meteor

• Midori

• MochiKit

• Mojito

• ModuleJS

• Montage

• Moo.fx

• MooTools

• Mustache

• Nanoko

• Ojay

• Olives.js

• Opa

• PhantomJS

• Plastron

• Popcorn.js

• Prototype

• Protovis

• Processing.js

50

• PureMVC

• Qooxdoo

• QunitJS

• Qworum

• Raphael

• RAppid

• Rialto

• Rico

• RightJS

• Sammy

• scaleApp

• Script.aculo.us

• Sencha ExtJS

• Serenade

• SimpleJS

• Sizzlejs

• Smart

• SmartClient

• SnackJS

• SocketStream

• Soma.js

• Spine

• SproutCore

• Spry

• Stapes

• StealJS

• Strophe

• SweetDEV

• Terrific

• TheBeast

• Thorax

• TrimJunction

• Troop

• UIZE

• Underscore.js

• Vanilla

• Wakanda

• Wink Toolkit

• YUI

• Zepto

51

Appendix C

Step-by-step example of application
development

In this tutorial you will learn the basics of creating applications with the dartbase frame-
work on the TodoMVC1 application. It was originally designed to compare MV* frameworks
but it could also nicely demonstrate features of this framework, although it is not MV* based.
The application will use Polymer.dart2 for the View functionality and Dartbase for Model-
and Controller-related functionality.

C.1 The TodoMVC application

The application contains a list of Todos that can be dynamically added, removed, modified,
completed or reopened. TodoMVC specification contains more features but this basic CRUD
functionality is enough to demonstrate framework features, therefore the remaining features
like filtering or routing are not addressed by this tutorial. At the end I will show a simple
way how to persist entities in browser local storage.

Start with creating a new Dart web project with the basic structure. Add the
framework_polymer package as a dependency — it is a version of the dartbase framework
configured for working with Polymer.dart library. Include also the todomvc_common package
that contains base TodoMVC skin and resources, to have them stored locally.

Listing C.1: pubspec.yaml
1 name: todomvc
2 description: TodoMVC example with the dartbase framework.
3 dependencies:
4 browser: any
5 framework_polymer:
6 path: ../ framework_polymer
7 todomvc_common:
8 path: ../ todomvc_common

The HTML template should include TodoMVC common files, so that all the TodoMVC
applications look the same.

1http://todomvc.com/
2https://www.dartlang.org/polymer-dart/

52

http://todomvc.com/
https://www.dartlang.org/polymer-dart/

Figure C.1: TodoMVC Screenshot.

Listing C.2: app.html
1 <! DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title> TodoMVC </title>
6
7 <!-- The TodoMVC skin -->
8 <link rel="stylesheet" href="packages/todomvc_common/base.css

">
9 <script src="packages/todomvc_common/base.js" defer ></script>
10
11 <!-- Application layout -->
12 <link rel="stylesheet" href="app.css">
13
14 <!-- Application initializer -->
15 <script type="application/dart" src="app.dart"></script>
16 <script src="packages/browser/dart.js"></script>
17 </head>
18
19 <body>
20 <div id="main"></div>
21 </body>
22 </html>

53

C.2 Create the application launcher

The purpose of the app.dart is only to create instance of the Application and launch it.
Optionally any development tools and helpers should be initialized here.

Listing C.3: app.dart
1 library todomvc;
2
3 import 'dart:html' as dom;
4 import 'package:framework_polymer/framework.dart';
5
6 // Application initializers
7 part 'app/application.dart';
8
9 // The entry point --- should launch the application.
10 void main() {
11 // Init the Polymer library.
12 Zone polymerObservableZone = initPolymer ();
13
14 // Application is running without a global namespace.
15 Application app = new TodoMvcApp(new TodoMvcAppConfig ()
16 .. viewport = dom.querySelector('#main')
17 .. polymerZone = polymerObservableZone
18);
19 app.run();
20 }

The Application implementation should initialize application components.

Listing C.4: app/application.dart
1 part of todomvc;
2
3 @PartOf(TodoMvcApp)
4 class TodoMvcAppConfig extends ApplicationConfig {
5 // The element where application will be rendered.
6 dom.HtmlElement viewport;
7 }
8
9 class TodoMvcApp extends Application {
10 // Store properly typed config.
11 final TodoMvcAppConfig config;
12 TodoMvcApp(TodoMvcAppConfig config) :
13 this.config = config ,
14 super(config ..bus = new MessageBus ());
15
16 void run() {}
17 }

54

C.3 Define domain data

Application works only with one domain class — Todo .

Listing C.5: app/data/todo.dart
1 part of todomvc;
2
3 class Todo extends DomainObject {
4 int id;
5 String title;
6 bool completed;
7 }

C.4 Find existing visual components

One of the key ideas behind the framework is that visual components already exist in many
libraries and can be easily reused, especially in such a simple applications like this one.
Assume that we have found two general components that nicely fit into the TodoMVC
concept.

1. An input element that reacts with custom DOM events when ENTER or ESC key is
pressed. The element is available through keyboard-events-input tag or
KeyboardEventsInputElement class and it fires the enter-key and esc-key events.

2. A simple list of items with the possibility to select items by a checkbox field, edit the
item content or remove the item. The element is available through dynamic-list tag
or DynamicListElement class and it fires the item-edited and item-removed events.
It also contains few configuration options to change default class names in the gener-
ated DOM structure. The displayed data are passed through DynamicListItem model
objects that contain 3 properties (String id , String value and bool selected).
For usage within TodoMVC we will use the selection feature to mark Todos as com-
pleted.

C.5 Create visual components wrappers

Firstly, we need to import the reusable components to the application. Note that we use
ui namespace for the reusable components to keep application namespace clean.

Listing C.6: app.dart
1 import 'lib/dynamic_list_element.dart' as ui;
2 import 'lib/keyboard_events_input_element.dart' as ui;

Now we can start creating the component wrappers that should add some behaviour to
the reusable visual elements.

C.5.1 Todo creator field

The component should encapsulate the ui.KeyboardEventsInput and listen to its enter-key
event. It should then create new Todo domain object and register it into the DomainDataProvider :

55

Listing C.7: app/ui/todo_creator.dart
1 part of todomvc;
2
3 @PartOf(TodoCreator)
4 class TodoCreatorConfig extends UIComponentConfig {
5 }
6
7 class TodoCreator extends UIComponent {
8 // Constructor
9 final TodoCreatorConfig config;
10 TodoCreator(TodoCreatorConfig config) : this.config = config ,

super(config);
11
12 // Property will be initialized from outside.
13 ui.KeyboardEventsInputElement el;
14
15 // Normally the [DomainDataProvider] should take care of this ,

but its implementations
16 // is not yet complete , so IDs must be generated manually

meanwhile.
17 int _nextId = new DateTime.now().millisecondsSinceEpoch;
18
19 // Subscription to DOM event through annotation.
20 @On(DomEvent , name: 'enter -key')
21 void _onDomEnterKey(DomEvent e) {
22 // Create the domain object
23 Todo todo = new Todo()
24 ..id = _nextId ++
25 .. completed = false
26 ..title = el.value.trim();
27
28 // Register it into the [DomainDataProvider].
29 dataRegister(todo);
30
31 // clear value
32 el.value = '';
33 }
34 }

The framework tries to keep the implementation of interactions straightforward. The
component therefore contains only obligatory constructor, one instance property with the
DOM element and subscription to the DOM event.

C.5.2 List of Todos

The second component is the list of Todos that displays, modifies and removes domain
entities. The DynamicListElement doesn’t work with the domain data, so the TodosGrid
class should map Todo domain objects into DynamicListItem model objects and vice versa.
It should also react to domain data changes caused by other components in the application
(e.g. it should refresh the list when new Todo is added).

56

Listing C.8: app/ui/todos_grid.dart
1 part of todomvc;
2
3 @PartOf(TodosGrid)
4 class TodosGridConfig extends UIComponentConfig {
5 }
6
7 class TodosGrid extends UIComponent {
8 // Constructor
9 final TodosGridConfig config;
10 TodosGrid(TodosGridConfig config) : this.config = config , super

(config);
11
12 // Property will be initialized from outside.
13 ui.DynamicListElement el;
14
15 // Display existing Todos when component is created.
16 @On(ComponentCreated)
17 void _onCreated(_) => _refreshTodos ();
18
19 // Fetch the Todo based on the model object ID , then remove it.
20 @On(DomEvent , name: 'item -removed ')
21 void _onDomItemRemoved(DomEvent e) {
22 Todo todo = _getTodo(e.detail);
23 dataRemove(todo);
24 }
25
26 // Fetch and update the Todo with the data from the model

object.
27 @On(DomEvent , name: 'item -edited ')
28 void _onDomItemEdited(DomEvent e) {
29 Todo todo = _getTodo(e.detail);
30 _applyModel(todo , e.detail);
31 dataUpdate(todo);
32 }
33
34 // Subscribe to domain data changes and refresh the list (e.g.

when Todo is added)
35 @On(DomainDataChangeEvent)
36 void _onDataChange(_) => _refreshTodos ();
37
38 // Fetches all the Todos , maps them to the model object and

replaces element contents.
39 void _refreshTodos () {
40 // Get list of all Todos
41 List <DomainObject > todos = dataQuery(Todo);
42
43 // Update the displayed model data
44 el.items
45 ..clear ()
46 .. addAll(todos.map(_getModel));
47 }
48
49

57

50 // Creates model object from the Todo domain object.
51 ui.DynamicListItem _getModel(Todo todo) {
52 ui.DynamicListItem item = new ui.DynamicListItem(todo.id.

toString ())
53 .. selected = todo.completed
54 ..value = todo.title;
55 return item;
56 }
57
58 // Applies model object changes to the Todo domain object.
59 void _applyModel(Todo todo , ui.DynamicListItem item) {
60 todo.completed = item.selected;
61 todo.title = item.value;
62 }
63
64 // Finds Todo by the ID from the model object.
65 Todo _getTodo(ui.DynamicListItem item) {
66 int id = int.parse(item.id);
67 return dataFindFirst(Todo , (Todo t) => t.id == id);
68 }
69 }

And we are done with the interaction logic. The basic CRUD functionality is imple-
mented in 100 lines of code. The components are event-driven and modular.

C.6 Create application layout

Now it is time to connect our reusable elements and two application components together
with a new polymer element, that would serve as an application layout.

Listing C.9: app/layout/main_layout.html
1 <link rel="import" href="../../ lib/dynamic_list_element.html">
2 <link rel="import" href="../../ lib/keyboard_events_input_element.

html">
3
4 <polymer -element name="main -layout">
5 <template >
6
7 <section class="todoapp">
8 <header class="header">
9 <h1 class="h1">todos</h1>
10
11 <!-- create instance of the [KeyboardEventsInputElement]

-->
12 <input is="keyboard -events -input" id="todoCreator" class=

"new -todo"
13 placeholder="What needs to be done?" autofocus />
14 </header >
15
16 <section class="main">
17 <!-- create instance of the [DynamicListElement] -->
18 <dynamic -list id="todosGrid" listClass="todo -list"
19 selectedClass="completed" checkboxClass="toggle"></

dynamic -list>

58

20 </section >
21 </section >
22
23 <footer class="info">
24 <p>Double -click to edit a todo</p>
25 <p>Created by you</p>
26 <p>Part of TodoMVC </p>
27 </footer >
28
29 </template >
30 <script type="application/dart" src="main_layout.dart">
31 </script >
32 </polymer -element >

Listing C.10: app/layout/main_layout.dart
1 library main_layout;
2
3 import 'package:polymer/polymer.dart';
4 import 'dart:html';
5
6 @CustomTag('main -layout ')
7 class MainLayoutElement extends PolymerElement {
8
9 HtmlElement todoCreator;
10 HtmlElement todosGrid;
11
12 MainLayoutElement.created () : super.created ();
13
14 bool get applyAuthorStyles => true;
15
16 @override
17 void enteredView () {
18 super.enteredView ();
19
20 todoCreator = $['todoCreator '];
21 todosGrid = $['todosGrid '];
22 }
23 }

Don’t forget to import the custom HTML element.

Listing C.11: app.html
1 <!-- Application layout -->
2 <link rel="import" href="app/layout/main_layout.html">

Now we have to create the layout element instance, append it to the DOM and initialize
instance variables of application components:

59

Listing C.12: app/application.dart
1 class TodoMvcApp extends Application {
2 // ...
3
4 void run() {
5 // Create application components
6 TodoCreator creator = new TodoCreator(new TodoCreatorConfig ()
7 ..app = this
8);
9 TodosGrid grid = new TodosGrid(new TodosGridConfig ()
10 ..app = this
11);
12
13 // Render the application
14 MainLayoutElement layout = createPolymerElement('main -layout '

);
15 this.config.viewport.append(layout);
16 creator.el = layout.todoCreator;
17 grid.el = layout.todosGrid;
18 }
19 }

C.7 Create application managers

The last step is to create application managers required by the framework — StateStorage ,
StateManager and HierarchyProvider . They are not used in this application, but since
we have based our application on the extended framework version, they have to be included.

We are using one class from the framework core — the DomainDataProvider , which
comes in two versions. The MemoryDomainDataProvider that does not persist entities and
the LocalStorageDomainDataProvider that persists entities in browser local storage. We
will use the second one to demonstrate how simple is to store data.

Listing C.13: app/application.dart
1 class TodoMvcApp extends Application {
2 // ...
3
4 void run() {
5 // Core Managers
6 UrlStateStorage stateStorage = new UrlStateStorage(new

UrlStateStorageConfig ()
7 ..app = this
8);
9 StateManager state = new StateManager(new StateManagerConfig

()
10 ..app = this
11);
12 HierarchyProvider hierarchy = new HierarchyProvider(new

HierarchyProviderConfig ()
13 ..app = this
14);
15
16

60

17 // Persistent data storage
18 DomainDataProvider provider = new

LocalStorageDomainDataProvider(
19 new LocalStorageDomainDataProviderConfig () ..app = this
20);
21
22 // ...
23 }
24 }

C.8 Include development tools

C.8.1 Logger

If logger is set up to the Level.ALL , it will show internal messages from the framework
core that might be useful for debugging. At Level.INFO it shows only caught and resolved
exceptions, plus all the severe issues and messages. If logger is not present, no warnings or
errors are shown, so it is highly recommended that a logger is present in every application.

Listing C.14: app.dart
1 void main() {
2 // ...
3
4 // Init logging
5 Logger.root.level = Level.INFO;
6 Logger.root.onRecord.listen ((LogRecord rec) {
7 print('${rec.loggerName }: ${rec.message}');
8 });
9 }

C.8.2 Message bus watcher

Is a GUI component for watching all the flow on the message bus. It could be included in
the following way:

Listing C.15: application.dart
1 class TodoMvcApp extends Application {
2 // ...
3
4 void run() {
5 // ...
6
7 // Debugging
8 MessageBusWatcher watcher = new MessageBusWatcher(new

MessageBusWatcherConfig ()
9 ..app = this
10);
11
12 // ...
13 }
14 }

61

Listing C.16: app.html
1 <!-- Devel tools -->
2 <link rel="import" href="packages/framework_polymer/devel/

message_bus_watcher_element.html">

Listing C.17: app/layout/main_layout.dart
1 @CustomTag('main -layout ')
2 class MainLayoutElement extends PolymerElement {
3 // ...
4 HtmlElement watcher;
5
6 @override
7 void enteredView () {
8 // ...
9 $['watcher ']. append(watcher);
10 }
11 }

Listing C.18: app/layout/main_layout.html
1 <polymer-element name="main-layout">
2 <template>
3 <!-- ... -->
4 <div id="watcher"></div>
5 </template>
6 </polymer-element>

Figure C.2: Message bus watcher.

62

	Introduction
	Layers in a modern web application
	Motivation
	Sample applications

	Analysis
	Analysis of current web frameworks
	Comparison results
	Implications for the framework

	Architecture
	Architecture design
	Message bus security
	Internal communication
	Architecture compatibility
	Architecture overview

	Components
	Configuration
	Component API

	Framework extensions
	Component state
	Data
	Visual components
	Logical hierarchy
	DOM access
	State machine
	Testing
	Exceptions handling

	Technical solution
	Base technologies
	Libraries structure
	Framework
	Applications

	Implementation challenges
	Programming conventions in the framework core
	Messages
	Messages metadata
	Components
	Base component class
	Component constructor
	Component-related classes
	Message subscriptions
	Internal component messages
	Internal framework security

	Issues to be solved
	Annotations and performance
	Annotations and polymorphism

	Conclusion
	Framework overview
	Implementation status
	Accomplished goals
	Weak points and possible improvements
	Future steps

	Bibliography
	Enclosed medium contents
	List of compared frameworks and libraries
	Step-by-step example of application development
	The TodoMVC application
	Create the application launcher
	Define domain data
	Find existing visual components
	Create visual components wrappers
	Todo creator field
	List of Todos

	Create application layout
	Create application managers
	Include development tools
	Logger
	Message bus watcher

