
VYSOKÉ UČENI TECHNICKE V BRNE 
BRNO UNIVERSITY OF TECHNOLOGY 

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

FACULTY OF INFORMATION TECHNOLOGY 

DEPARTMENT OF INFORMATION SYSTEMS 

APLIKAČNÍ RÁMEC PRO VÝVOJ INFORMAČNÍCH SYS
TÉMŮ V JAZYCE DART 
WEB APPLICATION FRAMEWORK FOR SOFTWARE DEVELOPMENT IN THE DART LANGUAGE 

BAKALÁŘSKÁ PRÁCE 
BACHELOR'S THESIS 

AUTOR PRÁCE MIROSLAV RAŠKA 
AUTHOR 

VEDOUCÍ PRÁCE RNDr. MAREK RYCHLÝ, Ph.D. 
SUPERVISOR 

BRNO 2014 



Zadáni bakalářské práce/15690/2013/xraska09 

Vysoké učení techn ické v Brně - Fakulta in formačn ích technologi í 

Ústav informačních systémů Akademický rok 2013/2014 

Zadání bakalářské práce 
Řešitel: Raška M i r o s l a v 

Obor: Informační technologie 
Téma: A p l i k a č n í r á m e c p r o v ý v o j i n f o r m a č n í c h s y s t é m ů v j a z y c e D a r t 

A p p l i c a t i o n F r a m e w o r k f o r I n f o r m a t i o n S y s t e m D e v e l o p m e n t in D a r t 
Kategorie: Informační systémy 

Pokyny: 
1. Seznamte se s jazykem Dart, jeho specifikací a aplikačním rozhraním dostupných knihoven. 
2. Seznamte se s obecnými možnostmi použití a problematikou tvorby softwarových rámců. 

Povedte analýzu a srovnání vlastností několika softwarových rámců pro implementaci aplikací v 
jazycích podobných jazyku Dart. 

3. Navrhněte vlastní softwarový rámec pro podpru implementace aplikací v jazyce Dart. 
Soustředte se zejména na architekturu aplikací a aplikační komponenty a možnosti jej ich 
integrace a spolupráce, které popište pomocí vhodných architektonických a návrhových vozrů. 

4. Možnosti softwarového rámce i lustrujte na návrhu ukázkové aplikace v jazyce Dart. 
5. Po konzultaci s vedoucím implementuj te navržený softwarový rámec jako knihovnu jazyka 

Dart. Implementu j te také ukázkovou aplikaci využívající softwarový rámec. 
6. Zhodnoťte dosažené výsledky a navrhněte možná rozšíření. 

Li teratura: 
• Ralph E. Johnson. Documenting Frameworks as Patterns. In Proceedings of the Conference on 

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '92) , 
Vancouver, Canada, 1992. ISBN 0-201-53372-3. rh t tp : / /dx .do i .orq /10.1145/141936.1419431 

• Ademar Aguiar, Gabriel David. Patterns for documenting frameworks: customization. In 
Proceedings of the 2006 conference on Pattern languages of programs (PLoP '06). ACM, New 
York, USA, 10 pp., 2006. ISBN 978-1-60558-372-3 . 
rh t tp : / /do i .acm.orq/10.1145/1415472.14154911 

• Leesa Murray, David Carr ington, Paul Strooper. An approach to specifying software 
frameworks. In Proceedings of the 27th Australasian conference on Computer science - Volume 
26 (ACSC '04) , Australian Computer Society, Darl inghurst, Austral ia, p. 185-192, 2004. ISBN 
1-920682-05-8. rht tp: / /crpi t .com/confpapers/CRPITV26Murray.pdf l 

• Dart API Reference, rht tp: / /api .dart lanq.Org/docs/releases/ latest / l 
• The Dart Programming Language Specification (0 .20, M2). The Dart Team. 

rht tp: / /www.dart lanq.orq/docs/spec/ latest /dar t - lanquaqe-speci f icat ion.html l 

Při obhajobě semestrální části projektu je požadováno: 
• Body 1 až 4. 

Podrobné závazné pokyny pro vypracování bakalářské práce naleznete na adrese 
h t tp : / /www. f i t .vu tbr .cz / in fo /szz / 

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a odborná 
východiska řešených problémů a specifikaci etap (20 až 30% celkového rozsahu technické zprávy). 

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy, úplnou 
programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy na standardním 
nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné zprávy tak, aby nemohlo dojít 
k jeho ztrátě při běžné manipulaci. 

Vedoucí: Rych l ý M a r e k , RNDr. , Ph .D . , UIFS FIT VUT 

Datum zadání: 1. listopadu 2013 
Datum odevzdání: 2 1 . května 2014 

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 
Faiculta informačních technologií 

Ústav iníormačrtaíísystémú 
61^-6§-aiíio, B o ^ ^ 

doc. Dr. Ing . Dušan Kolář 
vedoucí ústavu 

http://dx.doi.orq/10.1145/141936.1419431
http://doi.acm.orq/10.1145/1415472.14154911
http://crpit.com/confpapers/CRPITV26Murray.pdfl
http://api.dartlanq.Org/docs/releases/latest/l
http://www.dartlanq.orq/docs/spec/latest/dart-lanquaqe-specification.htmll
http://www.fit.vutbr.cz/info/szz/


Bachelor Project Specification/15690/2013/xraska09 

Brno University of Technology - Faculty of Information Technology 

Department of Information Systems Academic year 2013/2014 

Bachelor Project Specification 
For: Raška Mi ros lav 

Branch of study: Information Technology 

Title: Web Appl icat ion Framework for Sof tware D e v e l o p m e n t in the Dart Language 

Category: Information Systems 

Instructions for project work: 
1. Make yourself familiar with the Dart language, its specification and available libraries. 
2. Analyse the concepts, applications, and potential of software frameworks and the issues related to 

the software frameworks design. Make a comparison of features of several software frameworks for 
the Dart language and similar, focus particularly on web application frameworks. 

3. Propose a novel web application framework supporting software development in the Dart language. 
Design its architecture and architecture of its applications, utilised components, details of their 
communication and cooperation, and suitable architectural and design patterns. 

4. Demonstrate possibilities of application of the framework, propose a sample application. 
5. After agreement with the supervisor, implement the proposed application framework as a Dart 

language library. Implement also the sample application based on the framework. 
6. Evaluate the results and discuss further extensions and future work. 

Basic references: 
• Ralph E. Johnson. Documenting Frameworks as Patterns. In Proceedings of the Conference on 

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA'92), Vancouver, 
Canada, 1992. ISBN 0-201-53372-3. rhttp://dx.doi.ora/10.1145/141936.141943] 

• Ademar Aguiar, Gabriel David. Patterns for documenting frameworks: customization. In Proceedings 
of the 2006 conference on Pattern languages of programs (PLoP '06). ACM, New York, USA, 10 pp., 
2006. ISBN 978-1-60558-372-3. rhttp://doi.acm.ora/10.1145/1415472.1415491] 

• Leesa Murray, David Carrington, Paul Strooper. An approach to specifying software frameworks. In 
Proceedings of the 27th Australasian conference on Computer science - Volume 26 (ACSC '04), 
Australian Computer Society, Darlinghurst, Australia, p. 185-192, 2004. ISBN 1-920682-05-8. 
[http://crpit.com/confpapers/CRPITV26Murray.pdf] 

• Dart API Reference, [http://api.dartlang.org/docs/releases/latest/] 
• The Dart Programming Language Specification (0.20, M2). The Dart Team. 

[http://www.dartlana.ora/docs/spec/latest/dart-lanauaae-specification.html] 

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/ 

The Bachelor Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical background 
relevant to the problems solved, and specify w hat parts have been used from earlier projects or have been taken over from other 
sources. 

Each student w ill hand-in printed as w ell as electronic versions of the technical report, an electronic version of the complete 
program documentation, program source files, and a functional hardw are prototype sample if desired. The information in electronic form 
w ill be stored on a standard non-rew ritable medium (CD-R, DVD-R, etc.) in formats common at the FIT. In order to allow regular 
handling, the medium w ill be securely attached to the printed report. 

Supervisor: Rychlý Marek, RNDr., Ph.D., DIFS FIT BUT 

Beginning of work: November 1, 2013 

Date of delivery: May 2 1 , 2014 

L.S. 

Dušan Kolář 
Associate Professor and Head of Department 

http://dx.doi.ora/10.1145/141936.141943
http://doi.acm.ora/10.1145/1415472.1415491
http://crpit.com/confpapers/CRPITV26Murray.pdf
http://api.dartlang.org/docs/releases/latest/
http://www.dartlana.ora/docs/spec/latest/dart-lanauaae-specification.html
http://www.fit.vutbr.cz/info/szz/


Abstrakt 
Vývoj webových aplikacích se potýká se specifickými problémy, které by mohly být vyřešeny 
novým webovým aplikačním rámcem kombinujícím moderní technologie a nový přístup k 
návrhu aplikací. Jednotlivé problémy webových aplikací jsou nastíněny včetně stavu jejich 
řešení v současných webových rámcích. Představena je architektura řízená zprávami, kos
tra aplikačních komponent a rozličná rozšíření. Popsány jsou problémy při implementaci 
obecného řešení v jazyce Dart. Dopady jednotlivých rozhodnutí a řešení problémů jsou 
ilustrovány na ukázkách reálných webových aplikací. 

Abstract 
Web applications development nowadays is experiencing specific difficulties in presentation 
layer that could be solved by a framework that combines modern technologies and novel 
framework approach. The difficulties are introduced, along with their solution in existing 
web frameworks. Novel, message-driven framework architecture, basic component structure 
and various framework extensions are analysed and outcomes and effects are discussed. 
Technical problems with implementation of generally analysed solutions in the Dart language 
are examined. The decisions and solutions are accompanied by their effects on real-world 
applications. 

Klíčová slova 
Webový aplikační rámec, webový rámec, rámec v jazyce JavaScript, rámec v jazyce Dart, 
softwarová architektura, Cloud aplikace, Internetová aplikace, architektura řízená událostmi, 
architektura orientovaná na služby, modulární architektura, škálovatelná architektura, rozšiřitelný 
rámec, modulární rámec, škálovatelný rámec, informační systémy, Dart, JavaScript. 

Keywords 
Web application framework, Web framework, JavaScript framework, Dart framework, Soft
ware architecture, Cloud application, Rich Internet application, RIA, Single-page applica
tion, Event-driven architecture, Service-oriented architecture, SOA, Modular architecture, 
Scalable architecture, Extensible framework, Modular framework, Scalable framework, In
formation systems, Front-end framework, Client-side framework, Dart, JavaScript. 

Citace 
Miroslav Raška: Web Application Framework for Software Development in the Dart Lan
guage, bakalářská práce, Brno, FIT V U T v Brně, 2014 



Rozšířený abstrakt 

Vývoj webových aplikacích se potýká se specifickými problémy, které by mohly být vyřešeny 
novým webovým aplikačním rámcem kombinujícím moderní technologie a nový přístup k 
návrhu aplikací. Tato práce popisuje průběh návrhu tohoto rámce ve třech logických cel
cích: úvod do oblasti tvorby webových aplikací, analýza obecného řešení včetně architektury 
rámce a průběh implementace rámce v jazyce Dart. 

Úvod přibližuje architekturu moderních webových aplikací, především pak těch interak
tivních. Dále představuje původní motivaci pro vytvoření nového aplikačního rámce a hlavní 
cíle. Např. že by rámec měl být univerzální, jednoduchý k použití a předcházet častým chy
bám při vývoji Internetových aplikací. Zároveň by měl být použitelný v komerční sféře, 
proto jsou zanalyzována kritéria, na základě kterých firmy vybírají webový rámec pro své 
produkty. Následně jsou představeny tři ukázkové aplikace, na kterých budou v průběhu 
práce ilustrovány dopady či výhody zvolených řešení. 

Analýza se nejprve zabýva současnými webovými rámci a zkoumá, zda se podobné řešení 
již nevyskytuje, případně v jakém rozsahu. Také zkoumá slabá místa současných rámců a 
knihoven, tedy možná témata, kterými by se měl nový rámec zabývat, aby byl přínosný. 
Poté je popsán průběh návrhu základní architektury, od modulární architektury, přes škálo-
vatelnou architekturu až po architekturu s centrální sběrnicí. Tato architektura kombinuje 
výhody všech předchozích architektur a je zároveň kompatibilní s architekturami řízenými 
událostmi a architekturami orientovanými na služby. Jsou také definována základní pravidla 
pro bezpečnou komunikaci na sběrnici. 

V druhé části analýzy je definována základní kostra aplikačních komponent a zabýva se 
především přehledností kódu vytvářených komponent a jejich konfigurací. Dále pak vnitřní 
bezpečností rámce, tak aby byla vynucena pravidla pro tvorbu komponent a aby tak kom
ponenty vždy spňovaly určité základní vlastnosti. Na základě těchto zaručených vlastností 
je poté představeno několik zajímavých rozšíření, která jsou obvykle implementována velmi 
složitě, avšak vlastnosti komponent a architektura rámce umožňuje jejich elegantní imple
mentaci. Tato rozšíření jsou např. získání stavů komponent a jejich obnova a sdílení, 
univerzálně využitelné grafické komponenty, logická hierarchie komponent, testování uživa
telských interakcí či pokročilá obsluha výjimek. Také jsou představeny běžně používané 
modely pro práci s daty. 

V techické sekci je nejprve představen implementační jazyk Dart, jeho výhody a srovnání 
s ostatními klientskými webovými jazyky, včetně kompatibility s prohlížeči a rychlosti ap
likací. Technická analýza se poté zabývá problémy vyplývajícími z vlastností jazyka Dart. 
Ten v některých případech neumožňuje, případně omezuje implementaci obecných řešení. 
Jsou tak postupně probrány všechny problémy, které bylo nutné vyřešit pro zdárnou imple
mentaci minimální verze rámce, např. obecná rozšiřitelnost rámce a komponent, bezpečnost 
na sběrnici, rozdělení komponent do více tříd a jejich vzájemné provázání či efektivní stat
ická analýza zdrojového kódu. Také je představeno několik vylepšení, která mají zjednodušit 
tvorbu aplikací. Nakonec je zmíněno několik zajímavých, nedořešených technických prob
lémů. 

Závěrem je zhodnocen přínos rámce, výhody navrhnuté architektury a zvolené struk
tury komponent. Je představen stav implementace, její slabé stránky a možnosti vylepšení. 
Rámec byl zveřejněn jako open-source software a na závěr jsou představeny budoucí kroky 
tohoto projektu. 



Web Application Framework for Software Develop
ment in the Dart Language 

Prohlášení 
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana RNDr. 
Marka Rychlého, Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem 
čerpal. 

Miroslav Raška 
May 20, 2014 

Poděkování 
Děkuji svému vedoucímu, RNDr. Marku Rychlému, Ph.D., za odborné konzultace v oblasti 
architektur informačních systémů, za pomoc při plnění formálních požadavků této bakalářské 
práce a s ní souvisejících povinností a především za mnoho věcných a zajímavých připomínek, 
poznámek a návrhů. 

© Miroslav Raška, 2014. 
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění 
autorem je nezákonné, s výjimkou zákonem definovaných případů. 



Contents 

1 Introduction 3 
1.1 Layers in a modern web application 3 
1.2 Motivation 4 
1.3 Sample applications 7 

2 Analysis 8 
2.1 Analysis of current web frameworks 8 

2.1.1 Comparison results 8 
2.1.2 Implications for the framework 10 

2.2 Architecture H 
2.2.1 Architecture design 11 
2.2.2 Message bus security 14 
2.2.3 Internal communication 15 
2.2.4 Architecture compatibility 16 
2.2.5 Architecture overview 17 

2.3 Components 17 
2.3.1 Configuration 17 
2.3.2 Component A P I 19 

2.4 Framework extensions 19 
2.4.1 Component state 19 
2.4.2 Data 20 
2.4.3 Visual components 21 
2.4.4 Logical hierarchy 22 
2.4.5 D O M access 22 
2.4.6 State machine 23 
2.4.7 Testing 24 
2.4.8 Exceptions handling 25 

3 Technical solution 26 
3.1 Base technologies 26 
3.2 Libraries structure 28 

3.2.1 Framework 28 
3.2.2 Applications 28 

3.3 Implementation challenges 28 
3.3.1 Programming conventions in the framework core 28 
3.3.2 Messages 29 
3.3.3 Messages metadata 30 
3.3.4 Components 31 

I 



3.3.5 Base component class 32 
3.3.6 Component constructor 32 
3.3.7 Component-related classes 33 
3.3.8 Message subscriptions 34 
3.3.9 Internal component messages 35 
3.3.10 Internal framework security 37 

3.4 Issues to be solved 37 
3.4.1 Annotations and performance 37 
3.4.2 Annotations and polymorphism 37 

4 Conclusion 39 
4.1 Framework overview 39 
4.2 Implementation status 40 
4.3 Accomplished goals 40 
4.4 Weak points and possible improvements 40 

4.5 Future steps 41 

Bibliography 42 

A Enclosed medium contents 45 

B List of compared frameworks and libraries 47 

C Step-by-step example of application development 50 
C . l The TodoMVC application 50 
C.2 Create the application launcher 52 
C.3 Define domain data 53 
C.4 Find existing visual components 53 
C.5 Create visual components wrappers 53 

C.5.1 Todo creator field 53 
C.5.2 List of Todos 54 

C.6 Create application layout 56 
C.7 Create application managers 58 
C.8 Include development tools 59 

C.8.1 Logger 59 
C.8.2 Message bus watcher 59 

2 



Chapter 1 

Introduction 

Modern web applications development is experiencing speficic difficulties that could be 
solved by a web application framework described in this thesis. The framework is client-
side only, designed primarily for creation of single-page applications running fully in a web 
browser. It is designed around architecture inspired by server-side solutions and features 
abstract, non-visual components only. This approach is new for client-side web application 
frameworks that are mostly focused on visual components and related features. 

Identified difficulties and issues are described in the chapter 2, including possible solu
tions, their advantages and disadvantages. The framework architecture and technical details 
about suggested solutions follow in the chapter 3. Possible usage scenarios and benefits of 
chosen solutions are continuously illustrated with sample application examples. Introduc
tion into the field of web application frameworks follows. 

1.1 Layers in a modern web application 

Figure 1.1: Architecture of a sample single-page cloud application. 

Figure 1.1 shows simplified architecture of a sample interactive cloud application. Com
pared to a static application, the front-end contains most of the business logic code and 
all interactions handling code. Back-end serves only as an adaptor to the database and to 

3 



a file storage. Because client-side can never be considered fully secure (e.g. H T T P requests 
can be sent independently of a web browser or sent using JavaScript console), back-end 
has to contain security layer that restricts user access to the database and other services. 
Additionally, the services that cannot be easily implemented within a web browser — like 
exports to P D F or time-consuming tasks — could be moved to the server-side. 

Summed up, majority of the application-specific code is being moved to the front-end 
in many Rich Internet applications (RIAs) [22]. Within a three-tier architecture [ ] the 
client part could include the whole presentation layer and most of the domain layer, 
leaving only the data source layer to the back-end. 

1.2 Motivation 

Not only technical tasks are being solved in this work, the original motivation of designing a 
framework was based on the following ideas where different business fields overlap, including 
marketing, project management or commercial insights. A l l of them are important during 
the software development process [ ] and the software framework choice has influence on 
them. 

Goal 1: Design universal framework. This framework is focused primarily on ap
plications with architecture similar to the one mentioned in the section 1.1. Particularly 
interesting are single-page information systems, enterprise applications and other rich Inter
net applications that bring interesting problems and issues to solve, e.g. scalability, internal 
application security or complex user interactions [ ]. Yet the goal is to design universal 
framework that will be able to power any web application, not only enterprise-level ones. 
This is feasible because single-page information systems are complex applications and by 
supporting them any simpler application will be supported as well. Universal framework 
brings an opportunity to create broad community with insights from different areas of use, 
which could bring up many undiscovered issues or enhancements. 

Goal 2: Make it easy to use. Application development is easier if the base framework 
is not complex and it is clear how to use it and where to start programming [25] [39]. User 
should be able to develop applications after studying only few basic concepts, while following 
some basic recommendations and few simple rules. Framework should also reinforce writing 
clean code that is easily readable by others [30] [39], because it increases productivity and 
eliminates project costs [30]. 

Goal 3: Prevent mistakes. Project duration and expenses can be decreased if mistakes 
and problems are detected early [24], as shown in the Figure 1.2, which compares actual 
projects with the same goal and objectives in the aeronautic industry. Project managed 
with problems detection mechanisms was finished three times faster and with significantly 
lower budged (in the figure signalized as an area below the curves). The results could be 
even better if some mistakes were prevented in advance, not just detected early. Framework 
should therefore contain methods to eliminate common code mistakes [39] [32] [30], meaning 
that specific constraints will be present and programmer will not be allowed to do absolutely 
anything or at least will be warned of possible drawbacks. Applications will be then more 
reliable and development process can be effectively managed [30]. 

4 



Figure 1.2: Effects of early problems detection on the project duration and progress. [24] 

Years 

Goal 4: Solve application-wide issues. Specialized issues can be solved by external 
libraries. Framework should primarily address the issues that are application-wide, e.g. 
different kinds of communication or interaction between components. Do not solve internal 
component issues that might be application specific or are already being solved in existing 
web frameworks or libraries. Do not deal with visual components, they were created many 
times and can be reused. 

Goal 5: Consider business framework selection criteria. The Table 1.1 shows that 
most of the criteria used to select a framework or a library for the new company product 
do not refer to the technical features the framework provides. Important is also how would 
the choice influence future processes within the company [! ][28]. The criteria should be 
exhaustive as they are based on different points of view — on a scientific research [ ] and 
a business research company study [28]. 

The Table 1.1 also clearly shows which criteria are present in the most popular frame
works and libraries and which are contrarily overlooked by their creators. If the new frame
work addressed some uncovered issues, it would be a competitive advantage. Generally, 
these requirements should be considered when designing a framework in order to be com
petitive. A framework for developing business applications would be useless if not used by 
any company. 

Goal 6: Align with the base technology The Dart language [(3] was chosen as the base 
technology for this framework (details follow in the chapter 3). The framework should follow 
general principles and ideas behind the Dart language to be more familiar and easier to use 
to programmers already developing in the Dart language. The principal ideas extracted 
from the Dart issue tracker [11] and the official Dart website [33] are: 

• A language for mainstream. "Dart was designed to look and feel familiar if you're 
coming from other languages." This implies that framework should be also designed to 
look familiar, e.g. should use standard constructions, naming conventions, standard 
classes and the same or similar A P I to the Dart libraries wherever possible. 

• Pragmatic approach to the performance. The language features that might be 
useful but would have huge impact on virtual machine performance are not imple-

5 



Table 1.1: Framework business selection criteria presence in selected web frameworks and 
libraries as of 2014-04-01 [20] [28] [10] [16] [9] [35]. 

Enterprise ready1 O -- • o • o - - o o - o • 
Broad functionality2 O -- • - • o - o - - - • o 
Business components2 o -- • - • o - o - - - o o 
Business logic support 3 - - o o o • 
Clear deliverables > o • o • • • o o • o • 
Consistent • 4 ft • o o • • - o • o • 

• 
Easy to use • i ft • - • • • o • • -
Extensible • i ft • • • • • o • • - • • 

• 
Mature 4 O i ft • - • • o - o • • • 
Other frameworks5 • i ft • o • • o o - o • • • 
Scalable6 o -- o - o o - o o - - o • 
Software stability 7 o -- - - - - o - - - - • 
Updated regularly O • 

Legend: - no support or information not available, O partial support, • full support 

1 Based on official website claims; O mentioned support of highly interactive applications, • en
terprise usage explicitly mentioned. 
2 • Supported directly, O supported partially, by community or 3rd-party extensions or libraries. 
3 Includes workflow and business processes support. 
4 Long time on the market, stable and without extensive API changes. 
5 Supports other simultaneously running instances of frameworks, does not modify native classes. 
6 Unused parts of the framework can be taken out, core components replaced with custom ones. 
7 Reinforces stability of the software created with the framework, as described in the section 1.2. 
8 Ideal state as of the first stable release. Some criteria are already satisfied by the Dart language. 

6 



merited. On the other side manual code performance optimizations do not make much 
sense, because compiler can take care of most of them, V M performance is improving 
with each release and browsers are more and more powerful over time. 

• User is smarter than analytic tools. Enable freedom in what programmer does. 
Assume that user is smarter than any static analysis tool and code is written with 
some purpose. However, warn anytime something looks suspicious. Framework should 
therefore implement most constraints as warnings only, and should be extensible 
enough to enable replacement of any framework class or module if programmer decides 
to provide own solution. 

Goal 7: Include recommendations Additionally to the A P I documentation the frame
work should contain set of recommendations and examples how to use it properly. These 
recommendations should also promote good programming practices, mention common mis
takes and show examples of code misuse. 

1.3 Sample applications 

Following web applications were chosen to show the area of possible framework usage and 
to illustrate problems and solutions on real world examples. They are also partially imple
mented on the medium enclosed with this thesis. 

App 1: Single-page content management system (CMS). Simple information sys
tem for updating contents of a blog or an article-based website. Containing 3 sections -
articles, categories and users — with the basic CRUD functionality. It should demonstrate 
that framework is able to dynamically create and destroy individual components (views) 
and keep the domain data synchronized between views, e.g. when category is added it 
should be immediateliy available for selection in the view for creating new article. 

App 2: Interactive email service. Web front-end to an email account, the basic func
tionality is simple C R U D on email domain class. However, additional interactive features 
can be present within single view, e.g. responsive filtering in the list, background task check
ing for new emails, folding of cited text, grouping of related messages or editable email drafts 
nested within email detail. Also global language or theme choice is performed dynamically 
without reloading the application. 

App 3: Project management system. As an enterprise information system it requires 
additional features compared to previous B2C web services. Security policies are defined for 
each user separately, leading to different behaviour within views of the same entity class. 
For example user could have full access to the properties of own tasks, read-only access 
to colleagues' tasks and some properties might not be visible at all within boss's tasks. 
Access to the same entity can be simultaneous from more views and application should 
remain consistent even if this entity is removed remotely by other user during its lifetime. 
Additional features can be added by turning on application extensions or modules. 

7 



Chapter 2 

Analysis 

2.1 Analysis of current web frameworks 

The Table 1.1 has already shown how existing frameworks meet business criteria. The next 
step is to compare selected technical features and architecture of these frameworks to find 
out whether it would be useful to create new framework and to determine which features to 
focus on. 

The comparison summary is shown in the Table 2.1. The compared features were se
lected within 3 categories — architectural patterns, functionality and structure of visual 
components and non-visual components support. These are some areas that are related 
to the framework architecture [31]. The list of frameworks is based on the Table 1.1 and 
TodoMVC framework comparison site [3], with libraries and unmaintained frameworks ex
cluded. Other 130 client-side frameworks and libraries were also taken into account but 
are not listed because they are either too specialized, unmaintained, incomplete or do not 
bring any innovative ideas or additional features when compared to the listed ones (for the 
complete list see Appendix B). Specialized mobile web application frameworks were also ex
cluded. Table therefore displays mixture of popular, modern or innovative web frameworks. 

2.1.1 Comparison results 

AngularJS, Ember.js, Knockout and Meteor have similar UI concepts, they try to simplify 
creation of components by templates where model is automatically bound to view elements 
and is backwards updated with view changes. This functionality is called two-way data 
binding [37]. Dart language is equipped with Polymer package that is very similar and 
along with AngularJS supports modern H T M L 5 features and even feature drafts like cus
tom elements [12] or shadow D O M [1]. Other frameworks use different approach where 
visual components are programatically defined from JavaScript. In some frameworks the 
views are not even separate classes or files, although the frameworks claim to support M V * 
architecture. 

Generally, the frameworks are built around visual components, no regularly maintained 
abstract framework was present and almost no frameworks have good non-visually oriented 
architecture. The possible reasons are: 

• Abstract frameworks are developed only as an experiment, a demonstration how frame
works could be done in a better way, but are not pushed into a stable or usable version. 

8 



Table 2.1: Comparison of technical features within selected web frameworks as of 2014-04-01. 

& 

§ & 
V Q S> 

Architectural patterns 

M V * architecture1 

Event-driven architecture2 

Service-oriented architecture3 
O 

Managed publish-subscribe4 • - • - 0 - • - o 
Multi-level exceptions handling 5 0 - • - - - - - -
A M D compliant 6 - • • - - • - - -

Visual components 

M V * within components • • • • • • o • • 
Separate H T M L views • - • • - • • • • 
Automatic model-view binding 7 • - - • - • • - • 
Restricted component scope8 • 0 • • 0 • 0 o • 
Native H T M L 5 views 9 • - - - - - - - • 
Encapsulated components1 0 - - - - - - - - • 
Interaction testing support • - • • - - - - -

Abstract components 

Unit-testing support • - • • - - - • • 
Internationalization • - • - 0 - - o o 
Component lifecycle mgmt. 1 1 - - o o - - - - -

Legend: - no support or information not available, O partial support, • full support 

1 Also called M V W (Model-View-Whatever); term covers e.g. MVC, M V V M and M V P design 
patterns [36] [21] [23]. 
2 Event-driven architecture (EDA) is an architecture where any state change is broadcasted as event 
notification available to other application components [18]. 
3 Service-oriented architecture (SOA) is an architecture where global functionality is encapsulated 
within standalone service providers. The components and providers are loosely-coupled through 
enterprise service bus (ESB) [34]. 
4 Publish-subscribe (observer) design pattern [23] for handling events. Globally managed subscrip
tions prevent memory leaks and execution of code on destroyed objects by automatically removing 
all handlers when subscriber is destroyed. Explained in details in the section 2.2.3. 
5 Exceptions could be handled separately within specific parts of application. 
6 Asynchronous module definition (AMD) [ ] is completely modular architecture that allows reuse 
of 3rd-party components as well as reuse of all classes within application. Al l the classes are loosely-
coupled and are not available through global identifier. 
7 Synchronizes model data with data displayed by the view. Also called two-way binding [37]. 
8 Component controllers/view-models can only see and work with related data and components. 
9 HTML5 custom elements [12] allow creation of custom HTML elements and components without 
the need for additional JavaScript code or compilation to JavaScript. 
1 0 Internal component structure (incl. document object model — DOM) is not accessible from 
outside. See Shadow DOM [1]. 
1 1 E.g. customizable finite-state machine within each component. 

9 



• Visual components are easily comparable between framework [3], many users select a 
framework based on the number or quality of visual components. 

• Only experienced programmers think of client-side web applications as of desktop 
applications. Many programmers assume that architecture is not that important and 
that interactions can be "hardcoded", therefore choose simpler solutions — often only 
libraries like jQuery. The need a for good architecture raises over time with increased 
business logic complexity but the framework or the library cannot be easily changed 
at that point. 

• Some frameworks were initally only a collection of visual components and evolved to 
a framework over time. Now, with a large user base, the original concepts could not 
be changed without losing the community. 

• Visual components and visual appearance can be easily user for marketing, that is 
why commercial frameworks focus on them. 

Some exceptions with interesting archutectural concepts exist and can be used as an inspi
ration: 

• Angular JS which is partially service-oriented [34], services and components are loosely-
coupled [39] and services are used to extend the component functionality. However, 
services cannot be used generally, they act more like framework modules. 

• Dojo with aspect-oriented programming [! ] features that can be used to extend 
functionality of any object, class or group of classes, e.g. to perform security checks 
on any object or to verify inputs and handle exceptions within any object method. 

• Meteor which is purely event-driven [18] and events can be used e.g. for easier 
interaction testing without the simulation of D O M events (see the section 2.4.7). 
However, Meteor cannot be easily used with any back-end, it is not pure client-side 
framework. 

2.1.2 Implications for the framework 

The new framework is worth the creation, because only few frameworks have some abstract 
architecture and if so, it is one-way oriented. Additional, not yet covered business features 
from the Table 1.1 could be also included. Following observations were extracted from the 
framework analysis. 

Focus on abstract architecture. The newly designed architecture could be compatible 
with service-oriented architecture or event-driven architecture and could include M V * sup
port for components and possibly other software architecture patterns not yet present in 
the web frameworks. 

Skip visual components. The choice of Dart with Polymer brings the background for 
creating visual components and the new framework does not have to deal with it. UI 
components can be therefore skipped — other frameworks have many of them, they could 
be reused with simple adaptors and Polymer can be used if user needs to create own ones. 

10 



Communication through libraries. Object-relational mapping, remote communication 
standards and formats can be also reused from existing libraries. 

Skip language enhancements. Many frameworks try to solve class-related functional
ity instead of using specialized libraries or leaving the issues to a programming language 
that compiles to JavaScript, like Dart or CoffeeScript. The future version of ECMAScrip t , 
codenamed Harmony, will also contain class support [5]. Do not try to improve language 
imperfections even if some constructions might do the job better. The improvements may 
come over time by the Dart authors or there is a good reason why they were not included. 

2.2 Architecture 

The architecture will be designed by continuous improvements when dealing with goals and 
challenges from the chapter 1. 

2.2.1 Architecture design 

Mentioned already in the section 1.2, there is a need to anticipate code mistakes, especially 
those that are hard to detect and debug. In web application development (and especially 
in JavaScript) these include: 

• Components can access any D O M element and can accidentaly change a D O M subtree 
that belongs to another component. This could be prevented if all the D O M manip
ulation was done through single point where component scope could be checked. 

• Components can also access other application components and invoke ther internal 
methods or change their state from outside, because classes and instance objects are 
not protected or encapsulated in JavaScript. Components should have access only 
to related components [39] and references to them must be obtained from single, 
managed point to enforce this. Native encapsulation is solved in other languages 
(Dart, CoffeeScript) and in the future version of JavaScript [5]. 

• When working with components, programmer needs to deal with the component life-
cycle — e.g. needs to check if it is fully functional or whether a visual component has 
its D O M rendered. When the component is destroyed, other components need to stop 
working with it. It is easy to forget verification of current component lifecycle phase 
and in combination with directly referenced components it could lead to code execu
tion on a component with invalid or unexpected state. One solution is to work with 
components completely indirectly, without obtaining reference to them, e.g. using 
events. 

The Figure 2.1 shows modular, A M D compliant architecture [8]. It includes single point 
for D O M access (part of the Framework Core). The references to other components (here 
called modules) are obtained indirectly from the module manager by their name; modules are 
not available in the global namespace [8]. However, once component reference is obtained, 
the modules communicate directly. This concept allows only static change of modules before 
an application is launched — once module is referenced from within other module it cannot 
be safely replaced. 

11 



Framework 

Application 

Figure 2.1: Modular architecture example. 

Figure 2.2: Scalable architecture example. 

The extension of the modular architecture, an architecture that is fully scalable in terms 
that components never communicate directly and can be therefore dynamically replaced, 
added or removed, was suggested by Nicholas Zakas [38] and is visualized in the Figure 2.2. 
The modules do not know about any other application module and all the communication 
should flow through the sandbox. There are some drawbacks, though. 

• The sandbox is user-defined and it should contain adaptor methods for all the features 
from base libraries [38]. If defined in wrong way it will contain hundreds of methods 
from libraries and many more for manipulation with application components. The 
proper way is to implement only publish-subscribe pattern [23] for communication 
and few methods for working with framework core. Even if implemented correctly, 
the sandbox A P I may not stay consistent with future application changes, because 
the proper implementation is not enforced in any way. 

• While restricting component scope within specific application part, sandbox may be 
extended and duplicated for this purpose (as showed on the second Application Mod
ule). The functionality is then split into multiple objects and this inconsistency could 
lead to unintentional errors. 

12 



• Component permissions are not distributed uniformly. Framework core components 
have direct access to all the components while framework modules and application 
modules can communicate only through the sandbox [38]. The framework core is not 
supposed to reference components, but it is not enforced and it is possible source of 
errors. 

Base Library 

Browser 
+ Libraries Application + Framework 

Base Library 
Core Module 

Framework Framework 

Adaptor 
Core Module 

Module Module 

t 1 t J 
Message Bus 

I I 
Application 

Module 
Application 

Module 
Component Component 

Figure 2.3: Message Bus architecture example. 

The architecture that would solve previously analyzed problems is inspired by advanced 
software architectures, e.g. service-oriented architecture or Linux parts. These architectures 
have one element in common — a message bus for universal exchange of any piece of 
information called message. In Linux the bus is called D-Bus and is designed universally, 
allowing e.g. point-to-point communication, addressing, publish-subscribe communication, 
remote method invocations, •••[2]. SOA uses enterprise service bus for indirect service 
invocation and gathering the result [ ]. The Figure 2.3 shows that all the framework and 
application components are equal and that the framework and application implementations 
overlap. It is therefore easy to replace any part of the framework by an application-defined 
component. The architecture is flexible, modular and scalable, yet very simple. A l l the 
components are loosely-coupled and communicate indirectly. 

Example of modularity and loose coupling advantages. 

In an email client (Application 2) offline mode will be supported with all the basic 
functionality — writing emails and saving them to be sent once Internet connection is 
detected again. User will also have access to all previously opened emails and could 
perform search, delete or mark as spam operations. In other words the email behaves 
the same as in online mode, just works with lower number of records in the database. 

The implementation is very simple within this architecture. Component providing 
access to the database at server side is replaced with component working with browser 
local storage when offline mode is detected. Both components have the same A P I (they 
provide the same services) and because they are not referenced directly anywhere in 
the application, the replacement is completely seamless [38]. No application component 
could even register the change, so everything works as usually and no special conditional 
statements for the offline mode are needed in the code. 

13 



Modular Architecture 
(worst case) 

Modular Architecture 
(best case) 

Message Bus 
Architecture 

Base Library 

Framework Core 

Component 4-»» Component 

Scalable Architecture 
(worst case) 

Base Library 

Base Library 

I 
Framework Core 

z z ; s 
Component Component 

Scalable Architecture 
(best case) 

Base Library 

Base Library 

Base Library Adaptor 

I 
Message Bus 

Component Component 

Framework Core 

Sandbox 

Sandbox 

Component Component 

Framework Core 

Sandbox 

Component Component 

Figure 2.4: Comparison of communication flows within different framework architectures. 

The Figure 2.4 demonstrates differences in the communication flows within these archi
tectures. Modular and Scalable architectures do not have strict rules and user has more 
options how to implement data flows; shown are the best and the worst case scenarios. In 
the Modular architecture, the components have to communicate directly with each other 
even in the best case scenario. The scalable architecture has the same benefits as the Mes
sage Bus architecture if used properly. The Message Bus architecture has always only one 
possible way of implementing communication flows. 

2.2.2 Message bus security 

The security on the message bus was not addressed yet. Not all components should have the 
same application scope and be allowed to send or receive every message type (it is one of the 
framework business requirements mentioned in the Table 2.1). Three types of components 
have their behaviour embedded by default in the Message bus. 

• Managers have access to all the messages on the bus. 

• Providers can provide services available application-wide. 

• Normal components can publish events but provision of services is forbidden. By 
default they have also access to all the messages on the bus but the access should be 
restricted by application-specific security rules. E.g. components could get access to 
all the messages of providers and managers, but not to the events of other components. 

14 



Custom security rules should not be implemented directly withing the bus, it should be 
barely extended application class to stay well-tested and optimized. Instead, managers that 
have access to all the messages on the bus should control the flow. Any "standard" message 
can be firstly encapsulated into a special security check message that only managers have 
access to. Every manager will then have the possibility to reject the standard message or 
modify its metadata before it enters the bus. However, managers do not have an option to 
allow the once-rejected messages re-enter the bus. Every message is allowed by default and 
managers could only restrict the rules. 

Example of security rules logic. 

In the project management system (Application 3) every component has different appli
cation scope. Every component can access specific range of domain objects and specific 
set of application services. The security rules are defined in a security manager that 
controls all the messages on the bus and by cooperation with other managers limits and 
filters access to the services and domain data. 

The huge benefit is that components have no clue whether there are some security 
rules or not, the security manager is completely invisible to them. Security mechanisms 
are therefore not implemented inside components, which are designed more general 
in return. The shift of logic is nicely illustrated on a small example. Normally the 
component logic would be "Am I allowed to do this? If not, hide this element.". Wi th 
the security rules implemented outside, the logic is shifted to more general level — "Is 
this service available in the application? If not, hide this element." 

2.2.3 Internal communication 

Support for specific communication patterns often used in web applications is implemented 
by default in the bus, because messages are too general concept. User has an option to 
implement other custom communication patterns by extending the bus class. The default 
are: 

• Events. The global publish-subscribe pattern [23] for event notifications (either from 
D O M elements or from components generally). 

• Library functionality. Second is the synchronous service request and response, used 
to get instant access to the functionality of base libraries. E.g. D O M query message 
with the result — D O M elements — instantly available to be used. 

• Services. Last is universal asynchronous service request and response that could be 
used for external communication or for in-browser tasks that last longer, e.g. ren
dering of many D O M elements. Technically this could be achieved with synchronous 
behaviour where result promise [7] is returned instead of actual result and the promise 
is fulfilled later in the future. 

The global publish-subscribe has one more useful feature — it prevents memory leaks. 
Global management has access to both publisher and subscriber and can automatically 
unregister event handlers when some of these components is destroyed. When publish-
subscribe is implemented locally and event handlers are stored within publisher, all the 

15 



event handlers need to be unsubscribed manually, because the publisher only knows the 
handler function but not its scope needed to unregister handler automatically. 

If the subscriber is destroyed without unsubscription, the handler is still present. And 
because the handler still sees the original subscriber object in its scope, it prevents it from 
being destroyed by the garbage collector. The situation is even worse when publisher is 
application singleton that never gets destroyed. In this case millions of objects could be 
prevented from being freed, which could lead to very slow browser response or even crash 
caused by insufficient memory available. A l l is demonstrated in the Listing 2.1. 

Listing 2 .1: Memory-leak illustration within publish-subscribe pattern (pseudo code). 
/// S u b s c r i p t i o n s are s t o r e d w i t h i n the p u b l i s h e r i n s t a n c e , 
c l a s s P u b l i s h e r { 

c o n s t r u c t o r : f u n c t i o n () { 
t h i s . s u b s c r i p t i o n s = [ ] ; 

} , 
s u b s c r i b e : f u n c t i o n ( e v e n t , h a n d l e r ) { 

r e t u r n t h i s . s u b s c r i p t i o n s . p u s h ( [ e v e n t , h a n d l e r ] ) ; 
} , 
u n s u b s c r i b e : f u n c t i o n ( s u b s c r i p t i o n ) { 

t h i s . s u b s c r i p t i o n s . r e m o v e ( s u b s c r i p t i o n ) ; 
> 
// ... code f o r p u b l i s h , d e s t r o y 

} 
var g l o b a l = new P u b l i s h e r Q ; // a g l o b a l o b j e c t 

/// C l a s s t h a t s u b s c r i b e s to the g l o b a l o b j e c t e v e n t , 
c l a s s S u b s c r i b e r { 

c o n s t r u c t o r : f u n c t i o n () { 
g l o b a l . s u b s c r i b e ( 1 e v e n t ' , t h i s . h a n d l e E v e n t . b i n d ( t h i s ) ) ; 

} , 
h a n d l e E v e n t : f u n c t i o n () { /* ... */ }, 
d e s t r o y : f u n c t i o n ( ) { /* f o r g o t t e n u n s u b s c r i b e !!! */ } 

} 

/// C r e a t e and d e s t r o y many S u b s c r i b e r i n s t a n c e s , 
f o r ( v a r i=0; i<1000*1000; i++) { 

var s u b s c r i b e r = new S u b s c r i b e r ( ) ; 
s u b s c r i b e r . d e s t r o y ( ) ; // s u b s c r i b e r i s never f r e e d !!! 

> 

2.2.4 Architecture compatibility 

Service-oriented architecture consists of independent applications that provide func
tionality (services) to other software parts. It was designed primarily for communication 
between applications from different vendors or using different technologies [ ], but the 
concept can be easily applied to internal communication within single application. In the 
framework all the communication goes through the Message bus and messages are addressed 
indirectly. Therefore the components are independent on each other, can be replaced with 
custom or 3rd-party ones [38] (directly or with a simple adaptor). The components can 
be even written in a different language or technology, e.g. D O M / H T M L events are easily 
converted into framework-specific messages. Framework architecture is therefore compatible 
with service-oriented architecture concept. 

16 



Event-driven architecture is an architecture where all the changes within component 
state are published through events [18]. Because of the framework architecture, the compo
nents cannot reference each other and to detect component changes programmer can either 
repeatedly test their state with special services or expose the changes through events. The 
latter one is preferred and if the programmer decides to expose all the component state 
changes as events, the application would be fully event-driven. 

2.2.5 Architecture overview 

By designing an architecture that would prevent errors, a scalable, modular and flexible 
architecture was created. User is able to replace any component from the framework core, 
can extend framework functionality by creating new globally available managers and can 
define own types of communication within the Message bus. Architecture is compatible with 
event-driven architecture and service-oriented architecture concepts. Created applications 
have lower probability of having serious D O M inconsistency errors or serious memory leaks. 

2.3 Components 

One of the ways to improve code clarity and to prevent mistakes, is to design a simple 
skeleton of every application component and include few rules that each component must 
follow. One of the problems in applications generally is that components can be very complex 
and therefore the class containing component logic and interactions implementation can be 
long and chaotic. That happens because the implementation is typically included within a 
single class. There are already some concepts that separate classes like M V C [36], but it is 
not sufficient. The main objective is to split the controller-like class into multiple classes 
that would contain the same-purpose functionality [39]. 

2.3.1 Configuration 

Components, and especially visual components, could have hundreds of configuration prop
erties1 that blend with state properties, internal properties, methods etc. A l l the configu
ration properties should be moved to a separatate class [38]. 

In many frameworks there is unclear border between configuration properties and state 
properties or event subscriptions. Listing 2.2 shows the problem. The configuration is used 
to initialize a state variable, but uses the same name as the state variable which is confusing. 
Beause the configuration is applied directly to the instance object, it effectively replaces the 
state property value and therefore the original value is not available later when needed. 
Configuration also contains a method that influences component logic, but the behaviour 
should be implemented by extending the component class instead. 

The configuration should contain only immutable values [21] and methods without com
ponent logic as shown in the Listing 2.3. To enforce immutability, framework locks for 
changes every configuration object when its component is initialized. As a side effect, com
ponents with the same configuration will always behave the same during their 
lifecycle, if placed into the same environment. This happens because the configuration is 
the only object that contains instance-specific values that can be influenced from outside2. 

x E . g . the basic TextField in Ex t JS 4.2.2 has 27 own and 113 inherited configuration properties. 
Note that component behaviour cannot be changed by public instance properties, because programmer 

should not have access to these properties since the components are not referenced directly. 

17 



Listing 2.2: Misuse of configuration properties (pseudo code). 
// F i e l d c o n s t r u c t o r a p p l i e s the c o n f i g u r a t i o n d i r e c t l y 
// to the i n s t a n c e o b j e c t , 
var f i e l d = new T e x t F i e l d ( { 

// ' v a l u e ' used as a c o n f i g u r a t i o n p r o p e r t y . 
v a l u e : ' I n i t i a l v a l u e ' , 
// Event c a l l b a c k p a s s e d as a c o n f i g u r a t i o n p r o p e r t y . 
onChange : f u n c t i o n O { 

// ' v a l u e ' used as a s t a t e p r o p e r t y , 
i f ( t h i s . v a l u e === 'Some v a l u e ' ) { 

// O r i g i n a l v a l u e i s not a v a i l a b l e . 
t h i s . v a l u e = ' I n i t i a l v a l u e ' ; 

} 

} 

>); 

Listing 2.3: Correct usage of configuration properties (pseudo code). 
// F i e l d s t o r e s the c o n f i g u r a t i o n i n a s e p a r a t e ~ c o n f i g ~ o b j e c t , 
var f i e l d = new T e x t F i e l d ( { 

// C o n f i g u r a t i o n p r o p e r t y has d i f f e r e n t name. 
i n i t i a l V a l u e : ' I n i t i a l v a l u e ' , 
// T h i s method has no i n f l u e n c e on b e h a v i o u r . 
f o r m a t V a l u e : f u n c t i o n ( v a l u e ) { 

r e t u r n v a l u e + '...'; 
} 

} ) ; 

// Event c a l l b a c k not p a s s e d as a c o n f i g u r a t i o n p r o p e r t y , 
f i e l d . o n ( ' c h a n g e ' , f u n c t i o n ( f i e l d ) { 

// S t a t e p r o p e r t i e s change does not i n f l u e n c e c o n f i g u r a t i o n , 
i f ( f i e l d . v a l u e === 'Some v a l u e ' ) { 

f i e l d . v a l u e = f i e l d . c o n f i g . i n i t i a l V a l u e ; 
} 

} 

Summarized, the locked configuration object is a barrier when programmer tries to create 
components with the traditional perception of components as complex and fully-featured 
systems. As a consequence it forces programmer to split complex components into 
several fine-grained components. 

Example of components wrapping. 

The Email client (Application 2) contains form for creating emails with input fields. 
A l l the fields should contain field labels that should change the displayed text when 
application language changes. Field label is not part of the text field state, so it is 
often moved to the configuration. But because configuration is locked, it cannot be 
dynamically changed. The solution is to split the component into multiple components 
that would wrap [23] each other — a field label and the actual text field in this example. 
Label component will be later replaced with a new instance without affecting the text 
field. 

18 



2.3.2 Component A P I 

Components communicate heavily on the message bus and for an efficient distribution of 
messages, each component should expose its public A P I [34] that lets the message bus know 
in advance which services the component provides or which events publishes. Similarly 
to the configuration object, the A P I is locked after component creation and is therefore 
immutable during component lifecycle. 

A P I is a separate object that removes communication-related definitions from the com
ponent class and improves clarity of the code. Because the A P I contains all the information 
about the way component communicates on the bus, programmer can find out the basic 
functionality and component behaviour only by examining its A P I , without the need to dig 
deeper into implementation details. 

2.4 Framework extensions 

The component structure described in the section 2.3 is fixed and contains only fundamental 
concepts. Other features should be implemented as component extensions, letting program
mer choose the ones to use. This section describes interesting ideas that can be easily 
implemented thanks to the framework architecture and are useful for complex applications. 
The technical solution of component extensibility is described in the section 3.3.9. 

2.4.1 Component state 

Component state is a set of instance properties (including private ones) that are being 
changed during the component lifecycle. The state exactly describes difference in behaviour 
of newly created component and component with the same configuration in any phase of 
its lifecycle. If all the state properties were moved into a separate state object, it could 
be easily stored, recovered or replaced dynamically. Figure 2.5 shows the difference in 
component configuration object and state object roles. 

Component 

(methods, event listeners, service implementations, 
= behaviour 

Configuration object 

(immutable configuration properties) 
: initial difference between class instances 

State object 

(instance variables) 
= difference from the initial state 

Figure 2.5: Roles of component and its nested objects. 

Separating state object brings many possibilities for working with components, e.g.: 

• Push existing component into any lifecycle phase by replacing its state object. 

• Continuously persist the config and state objects of all application components. When 
the application is reloaded, recreate the components with stored config objects and 
recover the application state and behaviour by replacing their state objects. 

19 



• Synchronize instances of the same application opened on more devices by synchroniz
ing the state objects over H T T P . This could be useful e.g. for implementing applica
tions supporting online teamwork or for live presentations where all participants have 
the application opened on own device, but it is controlled by the presenter. 

Although this concept brings interesting opportunities, there are some drawbacks and 
this is the reason why it should be implemented as an optional component extension: 

• It forces user to stop using instance variables within components. It is hard to keep 
this requirement, especially when a single instance variable present would violate the 
concept. 

• Static variables are not included in the state object and are not stored anywhere. 
Programmers would have to stop using them within components. If they are used, 
components could have different behaviour even if recovered with the same configura
tion and state objects. 

• The state object is valid only for a specific configuration object. If a state object is 
pushed to differently configured component, it might turn into invalid state. 

• If components have application dependencies, framework would have to validate that 
they have mutually compatible states when state within some of these components is 
replaced or recovered. Ideally states of all dependent components should be recovered 
at the same time. 

2.4.2 Data 

One of the implications in the section 2.1.2 was to leave implementation of data objects and 
communication to preferred libraries of the programmer. Despite, the framework should 
establish a common way how to percieve the different data objects and where and how 
should they be used. The figure Figure 2.6 shows usage of the data objects in a sample 
application (even at the server-side). The three commonly used types of data objects are: 

Domain objects (also called Business objects) model entities of the real world and typ
ically map the database tables to classes. They are available and used by the whole ap
plication so they should contain meta-data, methods and transformations related to the 
application domain only [15]. 

Component 

I Object 

(Partial) 
f\ Domain Object 

Local Data Provider 

Message Bus 

(Partial) 
Domain Object 

Remote Service 

HTTP 

Data Transport 
Object 

Data Transport 
Object 

ORM 

Domain Object 

Apply 

(Partial) 
Domain Object 

CD 
C/) cd .a cc 
cc 
Q 

Figure 2.6: Example of data objects usage. 

20 



Data transport objects (DTO) are special objects used to transfer domain objects 
[15]. They can contain only partial information about domain object or contrarily can 
group multiple domain objects including the related ones into a single D T O [15]. 

Model objects are specialized views on domain objects. They are specific for each com
ponent and should simplify handling of domain objects enough to be easily used within the 
component. They can contain methods, computations and transformations related to the 
component. One model object can be created from multiple domain objects. 

In applications created with the M V * concept, the domain objects are used directly in 
components [3]. This is all right if the views are simple enough to work with the domain 
objects directly. The problem is with the teminology because the term Model object is 
vague and the domain objects are often confusingly called Models [13]. The model object 
definition in this thesis is significantly different, as shown in the following example. 

Example of data objects usage and transformations. 

In the C M S system (Application 1) a grid with articles is displayed. The server sends a 
list of 20 displayed articles along with their authors and categories, all packed within one 
D T O . The Domain Data Provider parses this object back into multiple domain objects 
(articles, authors, categories). For usage within the grid, not all the information from 
domain objects are necessary, therefore a new, flat model object is created. It contains 
only few values matching the grid columns, which are already formatted and ready to 
be directly rendered. This model object is then bound [ ] to the grid template. 

2.4.3 Visual components 

From the framework point of view, visual components (UI components, GUI components,graphical 
components) are exactly the same as any other component. They might only use services 
of DOM-related providers more often. The reason is that framework was designed with the 
idea that existing visual components from other frameworks or libraries can be reused (see 
the section 1.2). 

Reusable (MV*) 

DOM 

Custom DOM Element 
(from other library) 

UI Component 
(from other framework) 

UI Component 
(new, in own components library) 

Application specific 
(actual implementation) 

UI Component 
(Element wrapper) 

UI Component 
(Other framework wrapper) 

UI Component 
(Own component wrapper) 

Framework 

Figure 2.7: Visual components structure. 

21 



In practice, for every existing visual component, or custom D O M element, programmer 
creates a simple wrapper [23] that exposes component events and state to the Message bus 
as shown in the Figure 2.7. If needed, the component also includes application-specific be
haviour. Note that in the Figure 2.7 the component wrappers do not access the D O M , not 
that it would be forbidden, but there is no reason why, because the DOM-related imple
mentation is already done by the M V * part. Wrappers can then focus fully on application-
specific behaviour. Completely new, custom visual components should be also created as 
reusable ones, in a separate library, together with separate application-specific wrapper 
classes. 

2.4.4 Logical hierarchy 

Visual components already partially belong to the D O M elements hierarchy. However, this 
hierarchy can be too complicated or can have different meaning than is the purpose and 
behaviour of a component. Additional logical hierarchy that is independent on the D O M 
should be present and the main benefits of its usage are: 

• Also non-visual components can be included, compared to the D O M hierarchy. 

• Child components can be automatically destroyed, which prevents memory leaks if 
programmer forgets to destroy them manually. 

• Component can get equal access to logical child components that are placed in different 
D O M subtrees or containers. D O M hierarchy destroys only the D O M elements, not 
the component instances. 

• Component might be allowed to control or subscribe to children messages on the 
Message bus, which is useful e.g. for exception handling [38]. 

Example of logical hierarchy usage. 

In the Project Management system (Application 3) a detail view of a Task is displayed. 
It is a form with many fields split into multiple groups and panels. These containers 
prevent fields from being direct children of the detail view in the D O M . A logical 
hierarchy containing fields as direct children is created, completely ignoring containers 
which are not important for application logic. Code that is written with this hierarchy 
stays valid even if fields are reordered or put into different containers. 

Additionally all the fields have labels that wrap the field (see Example of components 
wrapping). In D O M the labels are field parents but logically they should be field 
children. It makes even more sense when label is dynamically replaced with other 
language label — if label was a parent of the field, the field would be destroyed along 
with the label and would need to be recreated with the new one. This is not an issue 
when logical hierarchy is used. 

2.4.5 D O M access 

Reusable visual components should already have access only to the D O M elements they 
create. However, application components have generally unlimited access to the D O M . 
Ideally they should not use D O M at all, but when they need to for some reason, security 

22 



rules should enforce that components do not accidentally change a D O M subtree that is 
not logically connected to the component. Therefore a D O M manager should be present. 
It will: 

• Serve as a hub and the only point in the application for accessing and manipulating 
D O M elements [38]. 

• Restrict access to the D O M based on application-specific security rules. 

2.4.6 State machine 

It would be nice to describe component lifecycle by a finite-state machine, state transitions 
could be then published as events and other components could react to these state changes. 
Transitions could be also done automatically by reacting to the messages on the bus. The 
problem is that the component lifecycle can be very complicated and cannot be described 
by a single flat finite-state machine without excessive redundancy. To fully cover all the 
possible states without any redundancy, these structures are required: 

Hierarchical, concurrent finite-state machine where states can contain substates 
within multiple, independent branches [19]. This state machine therefore contains multiple 
active states, but all of them are covered by a single state from the top level state machine. 

Asynchronous dynamical state chains that consist of a sequence of predefined states 
that can be included multiple times. These dynamical states are independent on the main 
state machine. 

The possibilities are described on the example in the Figure 2.8. The component contains 
the top-level state machine ( I n i t i a l i z i n g , Running, Destroyed states) and the Running 
state is split into multiple state machines defined by classes and mix-ins in the class hier
archy, together forming one hierarchical state machine [19]. During the Running phase two 

Synchronous, hierarchical finite-state machine 

Initializing Running 

Rendering Rendered 

Loading data Data displayed — ' 

Destroyed 

Asynchronous state chains 
_ • 

Exception ^ Recovering 
from exception 

Exception Recovering 
from Exception 

Nested 
exception Recovering from 

exception 
destroyf) Destroying 

Figure 2.8: Example of simultaneous component states. 

23 



independent exceptions occured, each creating new dynamical state chain. These chains are 
independent on the synchronous state machine, because they could be reversed. E.g. the 
Destroying state can be reverted if a superior component prohibits the component from 
being destroyed. The Recovering from Exception state can be reversed if the component 
or superior component has ways how to cope with the exception. Meanwhile recovering or 
destroying the component should logically stay in the original states from the main state 
machine. In the example the component is in 7 states at the same time, 3 of which have 
the same name and meaning. 

2.4.7 Testing 

The fully event-driven architecture (see section 2.2.4) opens many extension options. It 
can radically change the way web applications are tested today. There are many libraries 
for unit testing [ ] that is a great way to test classes, but it cannot easily capture user 
interactions [21] [30]. For these purposes additional browser extensions or tools to simulate 
interactions were built 3 . They work by triggering fake D O M events and then verify the new 
D O M structure [29]. Still the programmer needs to install additional software or plugin and 
if the D O M structure or names are changed, tests need to be rewritten. 

Framework architecture enables interaction testing indepentendly on the D O M structure, 
without any additional tool. The prerequisity is that all the components are fully event-
driven — to repeat what was stated in the section 2.2.4, it means that every state change 
(even internal) is published on the message bus. Three possible ways of interaction testing 
shown in the Figure 2.9 are inspired by testing patterns within service-oriented architectures 
[17]. They complement each other — ideally all the test types should be created for every 
application module, along with unit tests. 

Isolation tests. Only the tested component and the test case component are connected 
to the bus. Often the tested component cannot be fully isolated and needs to communicate 
with other components or service providers. Functionality of these dependencies can be then 
made available e.g. using mock objects that contain only partial or minimal implementation 
of the needed functionality [21] [29]. Components can be tested in two ways: 

• By simulating D O M events directly. The component should respond by publishing 
application events that correspond to the D O M events. This test verifies component 
reactions to the D O M event, but does not test the functionality or correct behaviour 
itself. These tests are dependent on the D O M structure. 

• By simulating messages the component listens to. Component should respond by 
state change events and other application messages. This tests that component re
acts correctly to changes in the environment — meaning that it changes its state in 
corresponding way, requests correct services and reacts with correct events. 

Integration tests test multiple related components at the same time for their correct 
cooperation [ ]. It is similar to the isolation tests, just works with multiple components. 
The test case should work with application events only as the reaction to D O M events is 
already verified by isolation tests. 

3 T h i s type of testing is sometimes called End-to-end testing [29] and tools include Selenium [39] or 
AngularJS Protractor [29] 

24 



Isolation testing with DOM events 

Message Bus 

i l 
(2) DOM event mapping 

to application event 
(3) Test DOM 

event mapping 

Ul Component Test Case Ul Component 
(1) Fake DOM Event 

Test Case 

Isolation testing with application events 

Message Bus 

(2) Application 
event delivery 

i 

i L 1 

(3) State changes, related (1) Fake application event 
application events (DOM event mapping) 

i 

(4) Test new 
application events 

Ul Component Test Case 

Integration testing 

Message Bus 

(2) 

i 
(3) (4) 

< 

i 

(5) (6) 

i u i 
(7) 

i 
(1) Fake 

application event 

L 
(8) Test new 

events 

Ul Component Ul Component Ul Component Test Case 

Figure 2.9: Three ways of testing component interactions. 

2.4.8 Exceptions handling 

For more precise handling of exceptions, they can be wrapped into special message type 
and processed at multiple levels by components listening on the bus. Exceptions can be for 
example passed up in the logical hierarchy tree unless processed, then passed to local or 
global exception handlers (special manager components) for logging. 

25 



Chapter 3 

Technical solution 

This section covers technical and implementation details of the framework architecture, 
selected extensions and technologies. The base technologies used have some limitations or 
preferred ways of solving problems and may not allow implementation of the framework in 
the full extent, as it was analysed in the chapter 2. 

3.1 Base technologies 

The Dart language was chosen as the base implementation language. It is new, mod
ern language that has a goal of being easy to undestrand by average programmer while 
adding numerous benefits over currently used languages. The ones with huge impact on 
this framework and applications development generally are: 

Native class system. Many frameworks focus on creating own class system that is not 
present in JavaScript. With Dart all the class-related language features like classes, mix-ins, 
interfaces, static fields, annotations, generics, . . . are present. The class system also ensures 
that instance variables are not shared accross class instances, which is possible in JavaScript-
based class systems and which causes hard-to-find errors as shown in the Listing 3.1: 

Listing 3.1: Example of unexpected behaviour caused by a shared instance variable. 
1 C l a s s . c r e a t e ( ' C o n t a i n e r ' , { 
2 // The pro grammer has f o r g o t t e n (or does not know) t h a t 
3 // A r r a y s and Maps d e f i n e d i n the p r o t o t y p e are s h a r e d . 
4 c h i l d r e n : [] , 
5 t i t l e : 
6 
7 
8 

>); 

var f i r s t = new C o n t a i n e r ( ) ; 
9 f i r s t . t i t l e = ' F i r s t ' ; 

10 f i r s t . c h i l d r e n . p u s h ( ); 
11 
12 var second = new C o n t a i n e r ( ) > 
13 s e c o n d . t i t l e = 'Second ' ; 
14 s e c o n d . c h i l d r e n . p u s h ( ' i 2 ' ) ; 
15 
16 // Unexpected c o n t e n t of the " c h i l d r e n " i n s t a n c e v a r i a b l e ! 1 
17 // f i r s t => { t i t l e : ' F i r s t ' c h i l d r e n : [ ' C h i l d 1 ' , ' C h i l d 2 ]} 
18 // second => { t i t l e : 'Second ', c h i l d r e n : [ ' C h i l d 1 ' , ' C h i l d 2 ]} 

26 



Optionally typed variables. It is possible to quickly develop application prototypes 
without using type annotations and add them later when prototype is selected for production 
development and static analysis is needed. JavaScript does not have type annotations, so 
static analysis is extremely difficult, is adjusted separately for each framework and fails if 
application breaks framework rules. 

Packages and libraries support is included in the S D K and package creation is recom
mended everywhere. This encourages programmers to structure applications in a better way 
and to create public or internal reusable libraries. 

Two levels of objects visibility - library private and public. In other words every 
object within specific library has access to all the classes, objects and their fields, even private 
ones. When library is imported, only public objects are visible. This lack of truly private 
or protected objects forces programmer to encapsulate logically related classes together and 
create many small libraries in order to keep the security at a sustainable level. Therefore 
developers have to analyze applications in more details before programming. 

Browsers and performance. Dart is a language created by Google, so it should support 
the same browsers that are supported by Google services. The promise is to include the 
latest versions of every major browsers and two latest versions of Internet Explorer [ ]. 

Dart can be compiled to JavaScript with Dart2js tool and a special Chromium browser 
build, called Dartium, already includes native Dart Virtual Machine (Dart V M ) . The com
parison of performance is visualized in the Figure 3.1, which shows one of the benchmarks 
used by the Dart team [ ]. Dart language running in the native environment already 
outperforms JavaScript and more optimizations should come with new Dart S D K releases. 

To involve other vendors to include Dart V M into their browsers, an E C M A technical 
commitee was established and is working on the Dart language standard. E C M A is the 
organization that standardizes JavaScript so it is anticipated that the vendors will join 
these efforts [27]. 

Figure 3.1: Dart performance comparison with the DeltaBlue benchmark [14]. 

8,000 
JavaScript (V8) 
Dart2js (V8) 
Dart 

2012/06/14 Versions 2014/05/10 

27 



Polymer.dart adds support for not yet implemented H T M L 5 features to all major browsers. 
Visual components can be then easily created with H T M L 5 Custom Elements A P I . See Ta
ble 2.1 for comparison of the features that Polymer brings. 

3.2 Libraries structure 

3.2.1 Framework 

To make framework fully extensible, a small core library called framework, core was created. 
It contains implementation of the message bus architecture (section 2.2) and skeleton of a 
base application component (section 2.3). 

Every extension to the core (see section 2.4) is also packed as a separate library. A l l the 
extensions are then imported and applied to the component in the framework package, but 
programmer always has a choice to import framework. core library instead and apply only 
the needed extensions, or add custom ones. Framework is therefore extremely modular and 
extensible, with the framework.core being the only fixed part. 

3.2.2 Applications 

Additional packages were created for easier implementation of web applications. The pack
age called frame wo rk_polymer adds Polymer.dart support including its correct initializa
tion. The polymer_bootstrap includes Polymer-compatible version of Twitter Bootstrap 
visual style and typography library. Polymer_elements contains set of reusable visual com
ponents used e.g. in the sample applications. 

The implemented application can combine these packages as needed. The only require
ment for each application is to create a custom class that extends Application core class. 
Its instance should be then manually launched. The implementation must also initialize the 
message bus and connect initial components. Some extensions also require initialization of 
related providers and managers. 

3.3 Implementation challenges 

3.3.1 Programming conventions in the framework core 

Library private properties and classes are marked with _$ prefix and class private 
properties with the standard _ prefix. While analyzing class source code it helps to easily 
identify properties that are used elsewhere in the library and where more attention must be 
kept during refactoring. 

Empty values are always passed as n u l l . Empty strings, arrays or maps should be 
used only in special situations. This unites the arguments checks and assertions, because 
the values can be tested to null independently on the actual object type. It is also useful for 
data types that do not have empty value, like numbers. In JavaScript the n u l l comparison 
is not recommended [ ] because it does not verify object type. In Dart the situation is 
opposite, because the variables have type annotations. 

Documentation in the Markdown format that is already supported by Dart S D K in 
a slightly modified form. 

28 



3.3.2 Messages 

Messages that enter the bus should be deep immutable, only the metadata should be mod
ifiable. However, Dart libraries contain shallow immutable collections only. The shallow 
immutable objects can be also achieved by const constructors, but then different in
stances created with the same data will be equal, which is wrong behaviour. Therefore 
the framework as of the current version does not support immutable messages and is up to 
programmer not to modify them. 

The main challenge was to suggest a method to distinguish different message types. The 
problem can be demonstrated on events. D O M events contain String name property for 
this purpose. When a specific data have to be passed a subclass for the specific event type 
is created, but the name still has to be passed to the superclass which leads to unnecessary 
code duplication. Additionally it is not a good practice to write String values directly, 
so these should be stored as static class constants, which again increases code duplication 
and decentralizes event declarations as illustrated in the Listing 3.2. Code is then prone to 
copy-and-paste errors because programmer might forget to change some names. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
15 
1G 
17 
18 
19 
20 
21 

22 
23 

Listing 3.2: Problems with events referenced by the name property. 
c l a s s E v e n t ( ) { 

s t a t i c c onst S t r i n g CLICK = ' c l i c k ' ; 
s t a t i c c onst S t r i n g M0USE_D0WN = 'mousedown I . 

f i n a l S t r i n g name; 
E v e n t ( t h i s . n a m e ) ; 

} 

c l a s s K e y P r e s s E v e n t () { 
// D u p l i c a t i o n of code -- ~KeyPress~ i s a l r e a d y 
// p r e s e n t i n the c l a s s name. 
s t a t i c c onst S t r i n g KEY_PRESS = ' k e y p r e s s ' ; 

} 

f i n a l i n t keyCode; 
K e y P r e s s E v e n t ( t h i s . k e y C o d e , S t r i n g name) : super(name); 

// D e c e n t r a l i z e d event c o n s t a n t s -- some s t o r e d i n the [Event] 
// c l a s s , some i n the [ K e y P r e s s E v e n t ] c l a s s . 
Event event = new E v e n t ( E v e n t . C L I C K ) ; 
Event event = new KeyPressEvent(Key.ENTER, K e y P r e s s E v e n t . 

KEY_PRESS); 

i f (event.name == KeyPressEvent.KEY_PRESS) /* ... */ 

For more efficient way the String type can be replaced with the Symbol instances 
that are faster, but it will not solve any of the previously mentioned issues. The D O M 
approach that is used in many frameworks and libraries is therefore not a good way to go. 
The solution is to reference messages directly by their class name. For every event type a 
new class must be present as shown in the Listing 3.3. This approach requires programmer 
to specify the message name only once and was applied to all the messages on the message 
bus. 

29 



Listing 3.3: Events referenced directly by their class type. 
// Event c l a s s cannot be i n s t a n t i a l i z e d d i r e c t l y , 
a b s t r a c t c l a s s E v e n t ( ) {} 

// Each event type has i t s own c l a s s . 
c l a s s C l i c k E v e n t extends Event {} 
c l a s s MouseDownEvent extends Event {} 
c l a s s K e y P r e s s E v e n t extends Event { 

f i n a l i n t keyCode; 
K e y P r e s s E v e n t ( t h i s . k e y C o d e ) ; 

} 

// No c o n s t a n t s needed, s i m p l y c r e a t e the e v e n t . 
Event event = new C l i c k E v e n t () ; 
Event event = new K e y P r e s s E v e n t ( K e y . E N T E R ) ; 

// E v e n t s are d i s t i n g u i s h e d by t h e i r c l a s s , 
i f ( e v e n t i s K e y P r e s s E v e n t ) /* ... */ 

3.3.3 Messages metadata 

Application managers and providers need to know additional information about the mes
sages, like who originated the message and when, and need to mark specific flags for other 
managers, etc. If these metadata were placed within the message, they would need to be 
initialized in the message constructor, because all the messages are immutable once created. 
Therefore directly the component that creates the message would need to deal with them, 
which would add additional burden on the programmer, plus the metadata could be easily 
faked. Ideally the message bus should take care of this, but when the message enters the 
bus, it is too late to change its properties. 

Therefore a separate MessageMetadata object is created for each message. The benefits 
are that metadata cannot be faked, because they could be created only by the message bus, 
and that the actual messages contain only relevant data. The metadata are then linked to 
the messages with Expando class that creates loose association between objects and does 
not prevent garbage collector from freeing the contained objects. Message metadata are 
then returned by the message bus on-demand, they are not passed along with each message, 
as shown in the Listing 3.4. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 

Listing 3.4: Example of message metadata usage, 
c l a s s S e c u r i t y M a n a g e r extends Manager { 

// ... i n i t i a l i z a t i o n e t c . 
// A l l o w s o n l y messages from [ P r o v i d e r ] s and [Manager]s 
// to e n t e r the bus. 
S e c u r i t y C h e c k R e s p o n s e o n M e s s a g e ( S e c u r i t y C h e c k R e q u e s t r e q u e s t ) { 

Message message = r e q u e s t . m e s s a g e ; 
MessageMetadata meta = b u s . g e t M e t a d a t a ( m e s s a g e ) ; 

i f ( meta.source i s Manager I I meta.source i s P r o v i d e r ) { 
r e t u r n new S e c u r i t y C h e c k R e s p o n s e ( a l l o w e d : t r u e ) ; 

} 
r e t u r n new S e c u r i t y C h e c k R e s p o n s e ( a l l o w e d : f a l s e ) ; 

} 
} 

30 



3.3.4 Components 

The Component class is the base abstract class from which all components connected to the 
bus must inherit. The Manager , Provider classes and all the class extensions could be 
applied to every component as mix-ins. There is no default component class hierarchy -
all the functionality is implemented as mix-ins. This approach allows programmer to create 
own base component class, specific for the developed application, by applying mix-ins at a 
single place. It leads to more extensible framework, because if there was a class hierarchy, 
mix-ins would have to be applied separately to each class. It is demonstrated in listings 3.5 
and 3.6. 

Listing 3.5: Framework with internal component class hierarchy. 
// ~ framework' package 
a b s t r a c t c l a s s Component { /* ... */ } 
a b s t r a c t c l a s s P r o v i d e r extends Component { /* ... */ } 
a b s t r a c t c l a s s Manager extends Component { /* ... */ } 
a b s t r a c t c l a s s UlComponent extends Component { /* ... */ } 

// " a p p l i c a t i o n " - a p p l y [ M i x i n l ] and [ M i x i n 2 ] to a l l components 
a b s t r a c t c l a s s BaseComponent extends Component 

with M i x i n l , M i x i n 2 {} 
a b s t r a c t c l a s s B a s e P r o v i d e r extends P r o v i d e r 

w i t h M i x i n l , M i x i n 2 {} 
a b s t r a c t c l a s s BaseManager extends Manager 

with M i x i n l , M i x i n 2 {} 
a b s t r a c t c l a s s BaseUIComponent extends UlComponent 

with M i x i n l , M i x i n 2 {} 

// C r e a t e custom [Manager], not p o s s i b l e to have [Manager] 
// and [ P r o v i d e r ] at the same ti m e , so 2 c l a s s e s are c r e a t e d , 
c l a s s S e c u r i t y M a n a g e r extends BaseManager { /* ... */ } 
c l a s s S e c u r i t y P r o v i d e r extends B a s e P r o v i d e r { /* ... */ } 

// C r e a t e custom UI component. 
c l a s s T e x t F i e l d extends BaseUIComponent { /* ... */ } 

Listing 3.6: Framework without component class hierarchy, functionality as mix-ins. 
// ~ framework' package 
a b s t r a c t c l a s s Component { /* ... */ } 
a b s t r a c t c l a s s P r o v i d e r M i x i n { /* ... */ } 
a b s t r a c t c l a s s ManagerMixin { /* ... */ } 
a b s t r a c t c l a s s UIComponentMixin { /* ... */ } 

// " a p p l i c a t i o n " - a p p l y [ M i x i n l ] and [ M i x i n 2 ] to a l l components, 
a b s t r a c t c l a s s BaseComponent extends Component 

with M i x i n l , M i x i n 2 {} 

// C r e a t e custom [Manager] and [ P r o v i d e r ] at the same t i m e , 
c l a s s S e c u r i t y M a n a g e r extends BaseComponent 

with ManagerMixin, P r o v i d e r M i x i n {} 

// C r e a t e custom UI component 
c l a s s T e x t F i e l d extends BaseComponent w i t h UIComponentMixin {} 

31 



3.3.5 Base component class 

The listings 3.5 and 3.6 show custom base of every application component, called BaseComponent 
It would be nice if programmer could use the name Component instead, meaning that the 
custom component implementation would hide the class from the framework core. It could 
be achieved by a specific import combination as shown in the Listing 3.7. 

Listing 3.7: Extension of core Component class without the name change. 
import 'package:framework/framework.dart 1 h i d e Component; 
import 'package:framework/framework.dart' as core show Component; 

// [Component] c l a s s h i d e s the ~ Component' from framework c o r e , 
c l a s s Component extends core.Component w i t h M i x i n l , M i x i n 2 {} 

// C r e a t e custom c l a s s based on the extended c l a s s 
c l a s s MyComponent extends Component {} 

This technique has one drawback demonstrated in the Listing 3.8. If a provider defined 
outside the application returns a component, it is of the core. Component type which may 
be accidentally assigned to the extended Component variable. This assignment causes ex
ception because more general class is assigned to its subclass. Generally the service providers 
should not return components, because all the communication between components should 
be indirect. Still there might be good reasons to return components directly and program
mers need to know about this issue. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 

Listing 3.8: Demonstration of the Component class name mismatch, 
c l a s s Component extends core.Component w i t h ... {} 

// S e r v i c e r e q u e s t t h a t r e t u r n s [core.Component] i n s t a n c e , 
// but the programmer uses the [Component] t y p e , 
var r e q u e s t = new H i r a r c h y P a r e n t R e q u e s t ( t h i s ) ; 
H i e r a r c h y P a r e n t R e s p o n s e r e s p o n s e = b u s . s e n d ( r e q u e s t ) ; 

// Throws assignment e x c e p t i o n . 
Component p a r e n t = r e s p o n s e . p a r e n t ; 

// T h i s works. 
core.Component p a r e n t = r e s p o n s e . p a r e n t ; 

3.3.6 Component constructor 

The constructor needs to be in a special form, so that static analysis can work correctly 
with the conf i g instance variable. The Listing 3.9 illustrates the problem. 

Listing 3.9: Correct and incorrect forms of Component constructor, 
c l a s s MyComponentConfig extends ComponentConfig { /* ... */ } 

/// C o r r e c t l y t y p e d c o n f i g 
c l a s s MyComponent extends Component { 

f i n a l MyComponentConfig c o n f i g ; 
MyComponent(MyComponentConfig c o n f i g ) : t h i s . c o n f i g = c o n f i g , 

s u p e r ( c o n f i g ) ; 
> 

32 



/// I n c o r r e c t l y t y p e d c o n f i g 
c l a s s MyComponent extends Component { 

MyComponent(MyComponentConfig c o n f i g ) : s u p e r ( c o n f i g ) ; 
// S t a t i c a n a l y s i s c o n s i d e r s t h i s . c o n f i g of [ComponentConfig] 
// type because the f i e l d i s i n h e r i t e d from the s u p e r c l a s s . 

} 

3.3.7 Component-related classes 

The component implementation is split into multiple classes (see section 2.3) and framework 
contains a way to specify the class relations. These connections are important for static and 
runtime analysis that can detect copy-and-paste errors or wrong object usage more easily. 
For this purpose a QPartOf annotation is present in the framework. Static analysis benefits 
are shown in the Listing 3.10. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
15 
IG 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2G 

Listing 3.10: Static analysis errors detections with the QPartOf annotation. 
// C o r r e c t d e f i n i t i o n . 
QPartOf(MyComponent) 
c l a s s MyComponentConfig extends ComponentConfig {} 
c l a s s MyComponent extends Component {} 

// Copy & p a s t e e r r o r -- d e t e c t e d because [OtherComponentConfig] 
// has QPartOf(OtherComponent) a n n o t a t i o n i n s t e a d of e x p e c t e d 
// QPartOf(Component) . 
QPartOf(MyComponent) 
c l a s s MyComponentConfig extends OtherComponentConfig {} 
c l a s s MyComponent extends Component {} 

// Copy & p a r s e e r r o r -- d e t e c t e d because [MyComponentConfig] 
// type i s e x p e c t e d f o r the [ c o n f i g ] f i e l d . 
QPartOf(MyComponent) 
c l a s s MyComponentConfig extends ComponentConfig {} 
c l a s s MyComponent extends Component { 

OtherComponentConfig c o n f i g ; 
// ... c o n s t r u c t o r 

} 

// Even copy & p a s t e e r r o r w i t h i n the a n n o t a t i o n i s d e t e c t e d , 
// because [MyComponent] has no r e l a t e d [ C o n f i g ] c l a s s . 
Q P artOf(OtherComponent) 
c l a s s MyComponentConfig extends ComponentConfig {} 
c l a s s MyComponent extends Component {} 

The QPartOf annotation is used in the same way for the messages on the message bus. 
The QFollows annotation is also used for semantic analysis of message classes (and can 
be possibly used for any logically subsequent classes). The meaning is illustrated in the 
Listing 3.11. 

Generally the services need to be manually registered to the component A P I (as ex
plained in the section 2.3.2). If the QPartOf annotation is used, the related services can 
be registered automatically with framework transformers (Dart code pre-compilers), shown 
in the Listing 3.12. 

33 



Listing 3.11: Usage of the OPartOf annotation for message classes. 
// Runtime checks v e r i f y t h a t o n l y [ M y P r o v i d e r ] p u b l i s h e s 
// [MyEvent] e v e n t s . 
O P a r t O f ( M y P r o v i d e r ) 
c l a s s MyEvent extends Event {} 

// Runtime checks v e r i f y t h a t o n l y [ M y P r o v i d e r ] responds to 
// [ M y S e r v i c e R e q u e s t ] s e r v i c e r e q u e s t s . 
O P a r t O f ( M y P r o v i d e r ) 
c l a s s M y S e r v i c e R e q u e s t extends S e r v i c e R e q u e s t { /* ... */ } 

// Runtime checks v e r i f y t h a t p r o v i d e r always responds w i t h 
// [ M y S e r v i c e R e s p o n s e ] to [ M y S e r v i c e R e q u e s t ] s e r v i c e r e q u e s t s 
©Follows(MyServiceRequest) 
c l a s s M y S e r viceResponse extends S e r v i c e R e s p o n s e { /* ... */ } 

Listing 3.12: Automatic A P I registration with OPartOf annotation. 
// P r o v i d e r c l a s s w i t h o u t the OPartOf a n n o t a t i o n s usage, 
c l a s s M y P r o v i d e r extends Component w i t h P r o v i d e r { 

// R e g i s t e r the s e r v i c e i n t o [ComponentApi]. 
M y P r o v i d e r (...) : . . . , super (...) { 

api.add(new S e r v i c e A p i E l e m e n t ( M y S e r v i c e R e q u e s t ) ) ; 
} 

} 

// P r o v i d e r c l a s s w i t h s e r v i c e s r e g i s t e r e d a u t o m a t i c a l l y , 
c l a s s M y P r o v i d e r extends Component w i t h P r o v i d e r { 

M y P r o v i d e r (...) : . . . , super ( . . . ) ; 
} 

3.3.8 Message subscriptions 

To simplify subscriptions and reaction to messages on the bus, the OOn annotation is 
present. It is applicable to any private instance method with specified format within 
component class. The method declaration format is different for every message type, 
e.g. void _method(Event event) is used for events and services handler method is the 
ServiceResponse _method(ServiceRequest request) format. The Listing 3.13 shows the 

usage. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 

Listing 3.13: Usage of the OOn annotation to simplify message subscriptions. 
// Manual s u b s c r i p t i o n 
c l a s s M y P r o v i d e r extends Component w i t h P r o v i d e r { 

M y P r o v i d e r (...) : . . . , super (...) { 
// R e g i s t e r s e r v i c e c a l l b a c k . 

api.add(new S e r v i c e A p i E l e m e n t ( M y S e r v i c e R e q u e s t , _ o n S e r v i c e ) ) ; 

// Event s u b s c r i p t i o n . 
var r e q u e s t = new S u b s c r i b e R e q u e s t ( O t h e r C o m p o n e n t E v e n t ) ; 
S u b s c r i b e R e s p o n s e r e s p o n s e = b u s . s e n d ( r e q u e s t ) ; 
r e q u e s t . s t r e a m . l i s t e n ( _ o n E v e n t ) ; 

} 

34 



13 v o i d _ onEvent(OtherComponentEvent event) { /* ... */ > 
14 
15 MyServiceResponse _ o n S e r v i c e ( M y S e r v i c e R e q u e s t reque s t ) { 
16 r e t u r n new M y S e r v i c e R e s p o n s e ( ) ; 
17 } 
18 } 
19 
20 // A u t o m a t i c s u b s c r i p t i o n 
21 c l a s s M y P r o v i d e r extends Component w i t h P r o v i d e r { 
22 M y P r o v i d e r (...) : . . . , super (. . . ) ; 
23 
24 @0n(OtherComponentEvent) 
25 v o i d _ onEvent(OtherComponentEvent event) { /* . . . */ > 
26 
27 @On(MyServiceRequest) 
28 MyServiceResponse _ o n S e r v i c e ( M y S e r v i c e R e q u e s t reque s t ) { 
29 r e t u r n new M y S e r v i c e R e s p o n s e ( ) ; 
30 } 
31 } 

With the QPartOf and QOn annotations it is extremely easy to develop fully 
event-driven applications. Component implementation will consist mostly of the mes
sage subscriptions. No public methods should be needed, because components are not ref
erenced directly. The component implementation is therefore nicely encapsulated. See also 
Appendix C for a step-by-step example of application development where these annotations 
are used extensively. 

3.3.9 Internal component messages 

Different component states were already examined in the section 2.4.1, but the constructor 
phase should be analyzed in more details, because all the classes in the class hierarchy, 
including mix-ins, are initializing the component at that time. The framework-specific way 
of initialization is shown in the Figure 3.2. In the first Configuring phase, the component 
configuration is modified and locked for changes at the end. During the I n i t i a l i z i n g 
phase the component state, A P I and instance variables are initialized. At the beginning of 
the Running phase the component is fully functional, publishes its A P I publicly and starts 
communicating on the message bus. 

Constructor Connected to the bus 

r > 
Configuring 

i. •> 

> 
Initializing 

' •< 

Running 
( s. 

Destroying ^ [ new ] 

r > 
Configuring 

i. •> 

> 
Initializing 

' •< 

Running 
[ destroyO ]"" 

( s. 
Destroying ^ [ new ] 

1 1 1 1 

I Configure | Initialize | Created | Destroy 
I message i message i message i message 

T T T T 

Figure 3.2: Visualization of private messages during component lifecycle. 

The challenge is to allow every subclass and mix-in to run their own code during each 
phase. If only subclasses were present, it could be easily done by specially named methods 
(often called hooks). But the mix-ins in Dart cannot contain the same-name fields as classes 
they extend, so another solution must be chosen. Each state/phase could start with an 

35 



internal component event, to which only subclasses and mix-ins could subscribe, as shown 
in the Figure 3.2. For subscription to events on the message bus the components already 
use the @0n annotation, so if the internal events were tunelled through the message bus, 
it could be reused for this purpose. These internal events inherit from the PrivateEvent 
class and the message bus makes sure that they are not available publicly. Usage example 
is shown in the Listing 3.14. 

Listing 3.14: Usage of the @0n annotation for internal events subscription. 
// I n t e r n a l component ev e n t s d e f i n i t i o n , 
c l a s s ComponentConfigure extends P r i v a t e E v e n t {} 
c l a s s C o m p o n e n t l n i t i a l i z e extends P r i v a t e E v e n t {} 
c l a s s ComponentCreated extends P r i v a t e E v e n t {} 
c l a s s ComponentDestroy extends P r i v a t e E v e n t {} 

// Component c o n s t r u c t o r i n the framework core p u b l i s h e s e v e n t s , 
c l a s s Component extends O b j e c t w i t h ... { 

Component (...) : ... { 
// P l u g myself to the bus -- a l l o w r e a c t i o n to p r i v a t e e v e n t s 
b u s . p l u g ( t h i s ) ; 

// C o n f i g u r e phase. 
sendMessage(new C o m p o n e n t C o n f i g u r e ( ) ) ; 
c o n f i g . l o c k ( ) ; 

// I n i t i a l i z e phase 
sendMessage(new C o m p o n e n t l n i t i a l i z e ( ) ) ; 
a p i . l o c k O ; 

// Running phase, e x e c u t e d a s y n c h r o n o u s l y . 
s c h e d u l e M i c r o t a s k ( () { 

b u s . p u b l i s h A p i ( t h i s ) ; 
sendMessage(new C o m p o n e n t C r e a t e d ( ) ) ; 

>); 
} 

} 

// A u t o m a t i c a l l y r e g i s t e r s components i n t o a l o g i c a l h i e r a r c h y , 
c l a s s H i e r a r c h y M i x i n { 

@0n(ComponentCreated) 
v o i d _ o n C r e a t e d ( ) { 

Component p a r e n t = c o n f i g . p a r e n t ; 
bus.send(new H i e r a r c h y R e g i s t e r R e q u e s t ( p a r e n t ) ) ; 

} 

@0n(ComponentDe s t r o y ) 
v o i d _ o n D e s t r o y ( ) { 

bus.send(new H i e r a r c h y U n r e g i s t e r R e q u e s t ( ) ) ; 
} 

} 

The difference to application events is that internal event subscriptions are not executed 
in the registration order but in the order from superclass to subclass. The destroy event is 
distributed in reversed order starting with subclasses. That way the class implementation 
can rely on correctly initialized functionality by superclasses. 

36 



3.3.10 Internal framework security 

The framework should also contain internal security mechanisms that verify e.g. that com
ponents cannot fake messages, change message source, metadata etc. Some of these will 
be only available with the deep object immutability support, which is not present in the 
Dart language yet. The validity of messages can be easily verified only if all the mes
sages are passed through single message bus access point. For these purposes the methods 
sendMessage and getMetadata are available in every component for working with the bus. 

The bus. sendO and other bus methods referenced in previous code snippets are used only 
internally by the framework and are not publicly available. 

3.4 Issues to be solved 

3.4.1 Annotations and performance 

The functionality of the @0n , QPartOf and QFollows annotations could be implemented 
in two ways. 

Using reflection. The component includes special mix-in that makes annotations work by 
checking annotations on objects dynamically during the application lifetime. It uses reflec
tion, which has severe impact on performance. Measured experimentally by the throughput 
of the message bus in messages per second, the results in an application that used reflection 
were worse in magniture of orders compared to the application without reflection. Addi
tionally the reflection is not currently supported in the d a r t 2 j s compiler. 

The method is, however, resistant to the changes in Dart language specification and 
to framework core changes, which is benefitial in the early framework development stage, 
where changes happen rapidly. That is why the annotations are implemented this way in 
the current framework version. 

Using Dart transformers. Transormers modify the Dart source code before it is com
piled or passed to the browser. Annotations are found by static analysis of the source 
code. The functionality is then added through generated code snippets put directly into the 
class implementation. Annotations functionality generated this way have no impact on the 
performance, because the reflection is not used. 

The drawback is that user does not have control over the generated source code, so 
the transformers have to be error-free and well tested. Also, they have to be tested with 
every new Dart language version to verify that the generated code complies with the new 
specification. The reflection method should be therefore replaced with Dart transformers 
only when framework core and Dart language specification are stable. 

3.4.2 Annotations and polymorphism 

The methods annotated with the @0n annotation should be private, therefore not even 
visible to own subclasses and should not be overriden. The problem occurs when two 
private methods have the same name, because the language polymorphism returns only 
one, the most specific, method implementation to be called. This is demonstrated in the 
Listing 3.15. 

37 



Listing 3.15: Usage of the @0n annotation for internal events subscription. 
// s u b c l a s s e s w i t h the same name methods 
c l a s s MyComponent extends Component { 

@On(SomeEvent) 
v o i d _ o n E v e n t ( _ ) {} 

} 
c l a s s OtherComponent extends MyComponent { 

@On(SomeEvent) 
v o i d _ o n E v e n t ( _ ) {} 

} 

// *** A n n o t a t i o n s f u n c t i o n a l i t y by r e f l e c t i o n *** 
Me t h o d M i r r o r method = /* method a n n o t a t e d by @0n(SomeEvent) */; 
I n s t a n c e M i r r o r component = r e f l e c t ( n e w O t h e r C o m p o n e n t ( ) ) ; 
F u n c t i o n l i s t e n e r = c o m p o n e n t . g e t F i e l d ( m e t h o d . s i m p l e N a m e ) ; 
l i s t e n e r ( e v e n t ) ; 
// ~ g e t F i e l d ~ i s the o n l y way how to a c c e s s i n s t a n c e f i e l d 
// and i t always r e t u r n s the most s p e f i c i c method. 
// -> Only the [OtherComponent#_onEvent] i s c a l l e d . 

// *** A n n o t a t i o n s f u n c t i o n a l i t y by t r a n s f o r m e r s *** 
c l a s s MyComponent extends Component { 

MyComponent (...) : ... { 
sendMessage(new S u b s c r i p t i o n R e q u e s t ( S o m e E v e n t ) ) 

. s t r e a m . l i s t e n ( _ o n E v e n t ) ; 
} 
v o i d _ o n E v e n t ( _ ) {} 

} 
c l a s s OtherComponent extends MyComponent { 

OtherComponent (...) : ... { 
sendMessage(new S u b s c r i p t i o n R e q u e s t ( S o m e E v e n t ) ) 

. s t r e a m . l i s t e n ( _ o n E v e n t ) ; 
} 
v o i d _ o n E v e n t ( _ ) {} 

> 
// The [OtherComponent#_onEvent] i s c a l l e d t w i c e 
// w i t h i n [OtherComponent] i n s t a n c e . 

The only solution for the reflection method is to force programmer to name methods 
uniquely. And this is not very convenient. If the transformers method is used, the trans
former can easily rename the method, e.g. add unique suffix and the functionality will be 
correct. However, because transformer method it not currently used (see section 3.4.1), the 
issue remains unresolved. 

38 



Chapter 4 

Conclusion 

4.1 Framework overview 

Outcome of this thesis is a novel web application framework with well analyzed base and 
architecture. The major results of the analysis are: 

• Framework solves only issues that are mostly intact by existing web frameworks. 

• The framework and components are designed to be fully modular and extensible. 

• A l l the communication within an application flows through one central point. 

• Architecture reduces programmer mistakes and contains internal security control mech
anisms. 

• It includes features to simplify application development and to create organized code. 

• Architecture is compatible with many other architectural patterns like service-oriented 
architecture or event-driven architecture. 

• Additional features important for web frameworks, like working with domain data, 
creating visual components or testing, are also analyzed. 

• By its structure, the framework forces programmer to analyze components before they 
could be implemented. 

The main concept is the central message bus that makes some advanced topics easy to 
implement. These are for example: 

• Different types of communication — synchronous, asynchronous, point-to-point, . . . 

• Single interface for handling all these communication types. 

• Precise security rules and restrictions of components scope. 

• Loose component coupling and prevention of memory leaks. 

• Interaction testing through events. 

• Multi-level exceptions handling. 

39 



4.2 Implementation status 

The framework is implemented in very basic, yet functional, version. The core classes and 
services are stable but not optimized for performance. Internal security mechanisms and 
framework extensions are in a draft phase, and are included only to demonstrate how they 
could look like if fully implemented. 

4.3 Accomplished goals 

At the beginning (section 1.2) seven goals were mentioned and they are met by the framework 
in the following extent: 

Goal 1: Design universal framework. Framework architecture is very abstract, ex
tensible, modular and general. No application-specific code is present and framework is 
therefore universal, usable for both simple and complex web applications. 

Goal 2: Make it easy to use. The framework goes in some sense against this goal, be
cause components are split into multiple classes and even a very simple application contains 
many components. At a first sight the created applications look complex and program
mer would have to understand the underlying concepts to analyse the application quickly. 
This effect is partially mitigated by useful helpers (annotations), but the need to under
stand framework concepts before the applications can be programmed, still remains. The 
simplicity was partially sacrificed to keep other benefits the framework offers. 

Goal 3: Prevent mistakes. Many typical programmer mistakes are eliminated by the 
framework architecture. It was demonstrated in the examples throughout this thesis. 

Goal 6: Align with the base technology. The framework tries to meet the A P I and 
scenarios of the Dart language where possible. 

Goals 4, 5 and 7 — Solve application-wide issues, Consider busines framework selection 
criteria, Include recommendations — were not addressed yet, or only partially, but should 
be covered with the first stable release. 

4.4 Weak points and possible improvements 

Some weak points from the technical point of view were already mentioned in the section 3.4. 
The following is a list of main drawbacks that have impact on the practical usage. 

No visual components are present and web applications cannot be therefore developed 
instantly. Framework will have to contain adaptors to visual component libraries to be 
easily used and adopted by the Dart community. 

Performance was not addressed yet, but is important for complex applications and frame
work would have to optimize the heavily used parts to be more efficient. On the other side, 
the browsers, Dart V M and Dart compiler performance improves heavily over time, so the 
optimizations do not have to be very deep. 

40 



Lack of tutorials that are important to fully understand framework concepts. Without 
them the framework could be used incorrectly. The framework code documentation should 
also become more helpful. 

4.5 Future steps 

The framework is implemented as a public Dart package called dartbase . The package 
preview is available through Dart Package Manager 1, at Gi tHub 2 and on http://www. 
dartbase. org homepage. The source code is released under very permissive open-source 
M I T license. 

The next step is to collect feedback from the Dart community and with the insights 
decide which functionality should be included or improved in the first stable version 1.0.0 . 
Except for the functionality, also adequate tests set, documentation and tutorials should be 
ready with this version, so that the framework can be easily and immediately used. 

xhttps://pub.dartlang.org/packages/dartbase  
2https://github.com/miroslavraska/dartbase 

41 

http://www
https://pub.dartlang.org/packages/dartbase
https://github.com/miroslavraska/dartbase


Bibliography 

[1] Shadow DOM, W3C Working Draft [online]. h t t p : / / w w w . w 3 . o r g / T R / s h a d o w - d o m / , 

2013- 05-14 [cit. 2014-04-09] . 

[2] Introduction to D-Bus [online]. 

h t t p : / / w w w . f r e e d e s k t o p . o r g / w i k i / I n t r o d u c t i o n T o D B u s / , 2013-07-14 [cit. 

2014- 04-10]. 

[3] TodoMVC: Helping you select an MV* framework [online], h t t p : / / t o d o m v c . c o m / , 

2013- 08-06 [cit. 2014-03-05] . 

[4] Dart: Frequently Asked Questions (FAQ) [online]. 

h t t p s : / / w w w . d a r t l a n g . o r g / s u p p o r t / f a q . h t m l , 2013-12 [cit. 2014-05-01] . 

[5] Harmony - ECMAScript Wiki [online]. 

h t t p : / / w i k i . e c m a s c r i p t . o r g / d o k u . p h p ? i d = h a r m o n y : h a r m o n y , 2014-01-30 [cit. 

2014- 04-09]. 

[6] Dart API Reference (1.2) [online]. 

h t t p s : / / a p i . d a r t l a n g . o r g / a p i d o c s / c h a n n e l s / s t a b l e / , 2014-03-07 [cit. 

2014-03-24] . 

[7] The Dart Programming Language Specification (1.2) [online], h t t p s : 

/ / w w w . d a r t l a n g . o r g / d o c s / s p e c / l a t e s t / d a r t - l a n g u a g e - s p e c i f i c a t i o n . h t m l , 

2014-03-07 [cit. 2014-03-24] . 

[8] AMD [online]. h t t p s : / / g i t h u b . c o m / a m d j s / a m d j s - a p i / b l o b / m a s t e r / A M D . m d , 

2014-03-17 [cit. 2014-04-09] . 

[9] JavaScript Frameworks Market Share [online]. 

h t t p s : / / w a p p a l y z e r . c o m / c a t e g o r i e s / j a v a s c r i p t - f r a m e w o r k s , 2014-04-01 [cit. 

2014-04-01] . 

[10] Usage of JavaScript libraries for websites [online]. 

h t t p : / / w 3 t e c h s . c o m / t e c h n o l o g i e s / o v e r v i e w / j a v a s c r i p t _ l i b r a r y / a l l , 

2014-04-01 [cit. 2014-04-01] . 

[11] Dart Issues [online], h t t p s : / / c o d e . g o o g l e . e o m / p / d a r t / i s s u e s / l i s t , 2014-04-03 

[cit. 2014-04-03] . 

[12] HTML 5.1 Nightly - A vocabulary and associated APIs for HTML and XHTML, 
Editor's Draft [online]. 
h t t p : / / w w w . w 3 . o r g / h t m l / w g / d r a f t s / h t m l / m a s t e r / s i n g l e - p a g e . h t m l , 2014-04-09 

[cit. 2014-04-09] . 

42 

http://www.w3.org/TR/shadow-dom/
http://www.freedesktop.org/wiki/IntroductionToDBus/
http://todomvc.com/
https://www.dartlang.org/support/faq.html
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
https://api.dartlang.org/apidocs/channels/stable/
http://www.dartlang.org/docs/spec/latest/dart-language-specification.html
https://github.com/amdjs/amdjs-api/blob/master/AMD.md
https://wappalyzer.com/categories/javascript-frameworks
http://w3techs.com/technologies/overview/javascript_library/all
https://code.google.eom/p/dart/issues/list
http://www.w3.org/html/wg/drafts/html/master/single-page.html


[13] Collected Java Practices [online], http : / /www. javaprac t ices .com/ , 2014-05-01 [cit. 
2014-05-01]. 

[14] Dart VM and dart2js Performance [online]. 
https://www.dartlang.org/performance/, 2014-05-10 [cit. 2014-05-10]. 

[15] Deepak Alur, Dan Malks, and John Crupi. Core J2EE Patterns: Best Practices and 
Design Strategies (2nd Edition). Prentice Hall, 2003. ISBN 978-0131422469. 

[16] Rob Ashton. A comparison of various JS frameworks using cold hard data [online], 
http : / / codeo f rob . com/en t r i e s / 
a-comparison-of-various-js-frameworks-using-cold-hard-data.html, 
2013-05-28 [cit. 2014-04-01]. 

[17] Gerardo Canfora and Massimiliano Penta. Service-oriented architectures testing: A 
survey. Software Engineering, page 78-105, 2009. DOI 10.1007/978-3-540-95888-8_4. 

[18] Mani K . Chandy. Event-Driven Applications: Costs, Benefits and Design Approaches 
[electronic]. Gartner Application Integration and Web Services Summit 2006, Caltech. 
h t tp : / / i n f ospheres. ca l t ech .edu / s i t e s /de fau l t / f i l e s /Even t -Dr iven 0 / , 
2 0 A p p l i c a t i o n s % 2 0 - 0 / o 2 0 C o s t s , %20Benef i t s 0 / 0 2 0 a n d 0 / 0 2 0 D e s i g n % 2 0 A p p r o a c h e s .pdf, 

2006. 

[19] Doron Drusinsky and David Harel. On the power of bounded concurrency I: Finite 
automata. Journal of the ACM, 41(3):517-539, May 1994. 
DOI 10.1145/176584.176587. 

[20] Mohamed E . Fayad, David S. Hamu, and Davide Brugali. Enterprise frameworks 
characteristics, criteria, and challenges. Communications of the ACM, 43(10):39-46, 
October 2000. DOI 10.1145/352183.352200. 

[21] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley 
Professional, 2002. ISBN 978-0321127426. 

[22] Piero Fraternali, Sara Comai, Alessandro Bozzon, and Giovanni Toffetti Carughi. 
Engineering Rich Internet applications with a model-driven approach. ACM 
Transactions on the Web, 4(2):l-47, Apr 2010. DOI 10.1145/1734200.1734204. 

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. 
ISBN 978-0201633610. 

[24] Paulo Goncalves. Introduction to Project Management [electronic]. Project 
Management Course, Universita della Svizzera italiana, 2012. 

[25] Kevlin Henney. Five Considerations for Software Architects [online], http://www. 
infoq.com/presenta t ions /Five-Considera t ions-for-Sof tware-Archi tec ts , 
2009-12-04 [cit. 2014-04-04]. 

[26] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, 
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Lecture Notes 
in Computer Science, page 220-242, 1997. DOI 10.1007/bfb0053381. 

43 

http://www.javapractices.com/
https://www.dartlang.org/performance/
http://codeofrob.com/entries/
http://caltech.edu/sites/default/files/Event
http://www


[27] Seth Ladd. Dart News & Updates: Ecma forms TC52 for Dart Standardization 
[online], h t tp : / /news.dar t lang.org/2013/12/ 
ecma-forms-tc52-for-dart-s tandardizat ion.html, 2013-12-13 [cit. 2014-05-10]. 

[28] Anne Lapkin and Deborah Weiss. Ten Criteria for Selecting an Enterprise 
Architecture Framework [online], https://www.gartner.com/doc/838915/, 
2008- 12-15 [cit. 2014-04-01]. 

[29] A r i Lerner. ng-book - The Complete Book on AngularJS. Fullstack io, 2013. 
ISBN 978-0991344604. 

[30] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. 
Prentice Hall, 2008. ISBN 978-0132350884. 

[31] Leesa Murray, David Carrington, and Paul Strooper. A n Approach to Specifying 
Software Frameworks. In Proceedings of the 21th Australasian Conference on 
Computer Science - Volume 26, A C S C '04, pages 185-192, Darlinghurst, Australia, 
Australia, 2004. Australian Computer Society, Inc. 

[32] San Murugesan. Web Application Development: Challenges And The Role Of Web 
Engineering. In Gustavo Rossi, Oscar Pastor, Daniel Schwabe, and Luis Olsina, 
editors, Web Engineering: Modelling and Implementing Web Applications, 
Human-Computer Interaction Series, pages 7-32. Springer London, 2008. 
DOI 10.1007/978-1-84628-923-1 _2. 

[33] Bob Nystrom. Idiomatic Dart [online]. 
h t t p s : / /www.da r t l ang .o rg / a r t i c l e s / i d ioma t i c -da r t / , 2013-03 [cit. 2014-04-03]. 

[34] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures: 
approaches, technologies and research issues. The VLDB Journal, 16(3):389-415, May 
2007. DOI 10.1007/s00778-007-0044-3. 

[35] Tero Piirainen. Frameworkless JavaScript [online]. 
h t tps : / /moot . i t /b log/ technology/ f rameworkless - javascr ip t .h tml , 2013-09-17 
[cit. 2014-04-01]. 

[36] Alexy Shelest. Model View Controller, Model View Presenter, and Model View 
ViewModel Design Patt [online]. ht tp: / /www.codeproject .com/Articles/42830/ 
Model-View-Controller-Model-View-Presenter-and-Mod, 2009-10-03 [cit. 
2014-03-05]. 

[37] Boris Staal. 2-Way Data Binding under the Microscope [online], h t tp : 
/ / s taa l . io /blog/2014/02/05/2-way-data-binding-under- the-microscope/ , 
2014-02-05 [cit. 2014-04-09]. 

[38] Nicholas C. Zakas. Scalable JavaScript Application Architecture [online], http://www. 
s l idesha re .ne t /nzakas / sca l ab le - j avasc r ip t - app l i ca t ion -a rch i t ec tu re , 
2009- 09-07 [cit. 2014-03-05]. 

[39] Nicholas C. Zakas. Maintainable JavaScript. O'Reilly Media, 2012. 
ISBN 978-1449327682. 

44 

http://news.dartlang.org/2013/12/
https://www.gartner.com/doc/838915/
https://www.dartlang.org/articles/idiomatic-dart/
https://moot.it/blog/technology/frameworkless-javascript.html
http://www.codeproject.com/Articles/42830/
http://www


Index 

A M D , see Asynchronous module definition 
AngularJS, 6, 8-10 

Protractor, 24 
A P I 

Component, 13, 19, 33, 35 
Framework, 5-7 

Application 
Business logic, 3, 6, 22 
Cloud application, 3 
Enterprise application, 4 
Reliability, 4 
Rich Internet application, 4 
Single-page application, 3, 4, 7 
Static application, 3 

Architecture 
Abstract, 10 
Event-driven architecture, 9, 10, 17, 24 
Message bus architecture, 13, 14 
Modular architecture, 11, 14 
Scalable architecture, 11, 14 

Sandbox, 12 
Service-oriented architecture, 9, 10, 13, 

16, 24 
Enterprise service bus, 9, 13 

Three-tier architecture, 4 
Data source layer, 4 
Domain Layer, 4 
Presentation Layer, 4 

Aspect-oriented programming, 10 
Asynchronous module definition, 9, 11 

B2C, 7 
Back-end, 3, 4, 10, 20 
Backbone.js, 6, 9 
Business process, 6 

Client-side, see Front-end 
Code clarity, 4, 19, 40 
CoffeeScript, 11 

Component 
Business logic, 22 
Configuration, 17-19, 32, 35 
Encapsulation, 11, 27, 35 
Enterprise component, 6 
Interaction, 5 
Lifecycle, 11, 19 
Loose coupling, 9-11, 13, 32, 35 
Scope, 9, 12 
State property, 17-19, 22, 24, 35 
Visual component, 3, 5, 8-10, 21, 22, 40 

Consistency, 6, 7 
Content management system, 7, 21 
Cross-browser, see Portability 
C R U D , 7 

D-Bus, 13 
Dart, 5, 6, 8-11, 26-29, 35, 37, 40, 41 

Transformer, 33, 37, 38 
Data 

Data transport object, 21 
Domain object, 7, 15, 20, 21 
Model object, 21 
Two-way binding, 8, 9, 21 

Document object model, 9, 11, 17, 21, 22 
Element, 11, 15, 22 
Event, 10, 15, 24, 29 

Dojo, 6, 9, 10 
D O M , see Document object model 
D T O , see Data transport object 

ECMAScrip t , 11 
Harmony, 11 

E D A , see Event-driven architecture 
Ember.js, 6, 8, 9 
ESB, see Enterprise service bus 
Extensibility, 6, 7, 28, 31, 40 
ExtJS, 6, 9 

Finite-state machine, 9, 23 

45 



Framework 
Mobile, 8 

Front-end, 3, 4, 7 

Garbage collection, 16 

H T M L 5 , 8, 28 
Custom element, 8, 9, 28 
Local storage, 13 
Shadow D O M , 8, 9 

H T T P , 20 
Request, 4 

Immutability, 17, 19 
Internationalization, 7 

JavaScript, 8, 9, 11, 27, 28 
Console, 4 

jQuery, 6, 10 
j Query UI, 6 

Knockout, 6, 8, 9 

Linux, see D-Bus 

Marketing, 4, 10 
Memory leak, 15, 17, 22 
Message bus, 13-17, 19, 22, 23, 29, 30, 34-37 

Addressing, 13 
Asynchronous communication, 15 
Point-to-point communication, 13 
Synchronous communication, 15 

Meteor, 6, 8, 9 
Mistakes 

Detection, 4 
Elimination, 4 
Prevention, 4, 7 

Model-View-Controller, 9, 17 
Model-View-Presenter, 9 
Model-View-ViewModel, 9 
Model-View-Whatever, 9 
Modularity, 11, 17, 28, 40 
MooTools, 6 
M V * , 8-10, 21, 22 

Controller, 9, 17 
Model, 8 
View-Model, 9 

M V C , see Model-View-Controller, M V * 
M V P , see Model-View-Presenter, M V * 
M V V M , see Model-View-ViewModel, M V * 

M V W , see Model-View-Whatever, M V * 

Object-relational mapping, 10 
O R M , see Object-relational mapping 

Pattern 
Adaptor, 18 
Future, 15 
Observer, see Publish-subscribe 
Promise, see Future 
Publish-subscribe, 9, 13, 15 

P D F , 4 
Performance, 5, 27, 37, 40 

Optimization, 7, 40 
Polymer, 8-10, 28 
Portability, 6 
Productivity, 4 
Project 

Cost, 4 
Duration, 4, 5 

Project Management, 4 
Prototype, 6 

RIA, see Rich Internet application 

Scalability, 4, 6, 11, 17 
script.aculo.us, 6 
Security 

Internal application security, 4, 27, 28, 
30, 37, 40 

Manager, 15 
Rules, 7, 15 

Selenium, 24 
Server-side, see Back-end 
Static analysis, 7, 27 

Testing 
End-to-end testing, 24 
Integration testing, 24 
Interaction, 10 
Isolation testing, 24 
Mock object, 24 
Unit testing, 24 

Underscore.js, 6 

Virtual machine, 5, 27, 40 
V M , see Virtual machine 

Web browser, 7, 16, 24 

Y U I , 6, 9 

46 



Appendix A 

Enclosed medium contents 

Directories description 

framework — The web application framework package. 
f ramework/dartdoc-viewer — The documentation package. 
framework_polymer — Base package for development with Polymer.dart UI library. 
polymer_bootstrap — Package with Twitter Bootstrap theme for Polymer elements. 
polymer_elements — Package with UI components used in the sample applications. 
sample_cms — Sample content management system application. 
sample_email — Sample email client application. 
sample_todomvc — Sample TodoMVC application, described by the t u t o r i a l . 
todomvc_common — Package with TodoMVC resources. 
t u t o r i a l - Step-by-step example of application development on partially implemented 

TodoMVC application. Functional version is in the sample_todomvc . 

Structure of the framework package 

l i b / c o r e — Contains framework core — a small, encapsulated library containing: 

• The message bus. 

• Minimal skeleton of application component. 

• Utils for components connection to the message bus. 

• Mechanism for internal communication within components. 

lib/extensions — Contains libraries and packages for extension of the framework core. 

• bindings — Annotations for simpler programming of applications. They automati
cally create component associtations, subscribe to events, services, etc. 

• data — Tools for working with application-wide domain entities. 

• helpers — Helpers for working with the framework core. 

• hierarchy — Placement of components into a logical hierarchy. 

• state_object — State of component is placed into separate object. It could be then 
serialized, dynamically saved and recovered (e.g. from U R L ) . 

47 



• v a l i d a t i o n — Validation of Orequired properties in the configuration, etc. 

l i b / u t i l s — General extensions applicable to any Dart object. 

How to run a sample application? 

1. Install the Dart editor (Arch linux — the dart-editor package from AUR) 

2. Open all projects with the Open Exi s t i n g Folder option. 

3. Download libraries for each project using Tools -> Pub Get . 

4. Run web/app.html application with the Run i n Dartium context menu option. 

5. The Dartium browser with the application is opened. 

How to generate and view the documentation? 

The Dart way of publishing code documentation is with the dartdoc-viewer package, 
which is a single-page documentation viewer application. It works with the documentation 
generated in the JSON format. There is no static version of the generated documentation 
and the viewer can be either hosted or executed locally. To display the documentation 
locally follow these steps: 

1. Install Dart SDK (it is part of the dart-editor package in Arch linux) and Git. 

2. Add the installed tools into PATH (Arch linux — /opt/dart-editor/dart-sdk/bin ). 

3. Generate documentation in JSON format and download the newest version of dartdoc-viewer 
application: cd framework/tool/ && ./generate_docs.sh . 

4. Documentation is placed into the docs directory in the JSON format. 

5. Documentation viewer application is located in the dartdoc-viewer directory. 

6. Disable code analysis for the documentation viewer application in the Dart editor 
(context menu Don't analyze option). 

7. Run framework/dartdoc-viewer/client/web/index.html in the Dartium from the 
Dart editor. 

48 



Appendix B 

List of compared frameworks and 
libraries 

The complete list of frameworks and libraries that were compared during the framework 
analysis. 

$$ • Batman 

AJS • Bindows 

Abaaso • BoilerplateJS 

AccDc 
• Bootstrap 

• CanJS 
ActiveJS 

• Cappuccino 
Agility 

• Chaplin 
Almond • Choco • Choco 

Ample SDK • ChocolateChip 

AmplifyJS • Claypool 

AngularJS • Closure Tools 

Archetype • CommonJS 

AriaTemplates • C o r M V C 

• Cujo 
Asana Luna 

• Cujo 

• CupQ 
Atom 

• D3JS 
Atom J S 

• Derby 
AUI • Dermis 

Axton • Descript 

Backbone .js • D H T M L X 

49 



• Dijon • jslibraryboilerplate 

• Dojo Toolkit • June 

• Duel • Kendo UI 

• Echo • Kinetic 

• Eco 
• Knockback 

• Eco 
• Knockout 

• Ember 
• LimeJS 

• Ender 
• Lively Kernel 

• Enyo 
• Lodash 

• EnvJS 
• Maria 

• Epitome 
• Marionette 

• Eventd • Mass 

• Eyeballs • Meteor 

• Fleegix • Midori 

• Flight • MochiKit 

• Funnyface • Mojito 

• G W T • ModuleJS 

• Glow • Montage 

• G L O W • Moo.fx 

• Heisenberg 
• MooTools 

• Mustache 
• HandlebarsJS 

• Nanoko 
• Infusion 

• Ojay 
• Jamal 

• Olives.js 
• JavaScriptMVC 

• Opa 
• Jo • Phantom JS 
• Joosy • Plastron 

• j Query • Popcorn.js 

• j Query UI • Prototype 

• j Query M x • Protovis 

• Jquip • Processing.js 

50 



P u r e M V C 

Qooxdoo 

QunitJS 

Qworum 

Raphael 

RAppid 

Rialto 

Rico 

RightJS 

Sammy 

scaleApp 

Script.aculo.us 

Sencha ExtJS 

Serenade 

SimpleJS 

Sizzlejs 

Smart 

SmartClient 

SnackJS 

SocketStream 

• Soma.js 

• Spine 

• SproutCore 

• Spry 

• Stapes 

• StealJS 

• Strophe 

• SweetDEV 

• Terrific 

• TheBeast 

• Thorax 

• TrimJunction 

• Troop 

• UIZE 

• Underscore.js 

• Vanilla 

• Wakanda 

• Wink Toolkit 

• Y U I 

• Zepto 

51 



Appendix C 

Step-by-step example of application 
development 

In this tutorial you will learn the basics of creating applications with the dartbase frame
work on the T o d o M V C 1 application. It was originally designed to compare M V * frameworks 
but it could also nicely demonstrate features of this framework, although it is not M V * based. 
The application will use Polymer.dart 2 for the View functionality and Dartbase for Model-
and Controller-related functionality. 

C . l The T o d o M V C application 

The application contains a list of Todos that can be dynamically added, removed, modified, 
completed or reopened. TodoMVC specification contains more features but this basic C R U D 
functionality is enough to demonstrate framework features, therefore the remaining features 
like filtering or routing are not addressed by this tutorial. At the end I will show a simple 
way how to persist entities in browser local storage. 

Start with creating a new Dart web project with the basic structure. Add the 
f ramework_polymer package as a dependency — it is a version of the dartbase framework 

configured for working with Polymer .dart library. Include also the todomvc_common package 
that contains base TodoMVC skin and resources, to have them stored locally. 

Listing C . l : p u b s p e c . y a m l 

name: todomvc 
d e s c r i p t i o n : TodoMVC example w i t h the d a r t b a s e framework, 
d e p e n d e n c i e s : 

browser: any 
framework_polymer : 

p a t h : ../framework_polymer 
todomvc_common : 

p a t h : ../todomvc_common 

The H T M L template should include TodoMVC common files, so that all the TodoMVC 
applications look the same. 

xhttp://todomvc.com/ 
2https://www.dartlang.org/polymer-dart/ 

52 

http://todomvc.com/
https://www.dartlang.org/polymer-dart/


todo 
What needs to be done? 

Do some nerdy stuff 

Redesign the website 

1 i t e m Left ALL A c t i v e C o m p L e t e d Clear completed (1) 

Figure C . l : TodoMVC Screenshot. 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Listing C.2: a p p . h t m l 

<!D0CTYPE html> 
<html lang="en"> 

<head> 
<meta c h a r s e t = " u t f - 8 " > 
< t i t l e > T o d o M V C < / t i t l e > 

<!-- The TodoMVC s k i n --> 
< l i n k r e l = " s t y l e s h e e t " href="packages/todomvc_common/base.ess 

" > 
< s c r i p t src="packages/todomvc_common/base.js" d e f e r > < / s c r i p t > 

<!-- A p p l i c a t i o n l a y o u t --> 
< l i n k r e l = " s t y l e s h e e t " h r e f = " a p p . e s s " > 

<!-- A p p l i c a t i o n i n i t i a l i z e r --> 
< s c r i p t t y p e = " a p p l i c a t i o n / d a r t " s r c = " a p p . d a r t " > < / s c r i p t > 
< s c r i p t s r c = " p a c k a g e s / b r o w s e r / d a r t . j s " x / s c r i p t > 

</head> 

<body> 
<div id="main"></div> 

</body> 
</html> 

58 



C.2 Create the application launcher 

The purpose of the app.dart is only to create instance of the Application and launch it. 
Optionally any development tools and helpers should be initialized here. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
15 
1G 
17 
18 
19 
20 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 
15 
1G 
17 

Listing C.3: a p p . d a r t 

l i b r a r y todomvc; 

import ' d a r t : h t m l ' as dom; 
import ' p a ckage:framework_polymer/framework.dart'; 

// A p p l i c a t i o n i n i t i a l i z e r s 
p a r t ' a p p / a p p l i c a t i o n . d a r t ' ; 

// The e n t r y p o i n t s h o u l d l a u n c h the a p p l i c a t i o n . 
v o i d main() { 

// I n i t the Polymer l i b r a r y . 
Zone p o l y m e r O b s e r v a b l e Z o n e = i n i t P o l y m e r ( ) ; 

// A p p l i c a t i o n i s r u n n i n g w i t h o u t a g l o b a l namespace. 
A p p l i c a t i o n app = new TodoMvcApp(new TodoMvcAppConfig() 

. . v i e w p o r t = d o m . q u e r y S e l e c t o r ( ' # m a i n ' ) 

..polymerZone = p o l y m e r O b s e r v a b l e Z o n e 
) ; 
app.run ( ) ; 

} 

The Application implementation should initialize application components. 

Listing C.4: a p p / a p p l i c a t i o n . d a r t 

p a r t of todomvc; 

QPartOf(TodoMvcApp) 
c l a s s TodoMvcAppConfig extends A p p l i c a t i o n C o n f i g { 

// The element where a p p l i c a t i o n w i l l be r e n d e r e d , 
dom.HtmlElement v i e w p o r t ; 

> 

c l a s s TodoMvcApp extends A p p l i c a t i o n { 
// S t o r e p r o p e r l y t y p e d c o n f i g . 
f i n a l TodoMvcAppConfig c o n f i g ; 
TodoMvcApp(TodoMvcAppConfig c o n f i g ) : 

t h i s . c o n f i g = c o n f i g , 

s u p e r ( c o n f i g ..bus = new M e s s a g e B u s ( ) ) ; 

v o i d run () {} 

54 



C.3 Define domain data 

Application works only with one domain class — Todo . 

Listing C.5: a p p / d a t a / t o d o . d a r t 

p a r t of todomvc; 

c l a s s Todo extends DomainObject { 
i n t i d ; 
S t r i n g t i t l e ; 
b o o l completed; 

} 

C.4 Find existing visual components 

One of the key ideas behind the framework is that visual components already exist in many 
libraries and can be easily reused, especially in such a simple applications like this one. 
Assume that we have found two general components that nicely fit into the TodoMVC 
concept. 

1. A n input element that reacts with custom D O M events when E N T E R or ESC key is 
pressed. The element is available through keyboard-events-input tag or 
KeyboardEventsInputElement class and it fires the enter-key and esc-key events. 

2. A simple list of items with the possibility to select items by a checkbox field, edit the 
item content or remove the item. The element is available through dynamic-list tag 
or DynamicListElement class and it fires the item-edited and item-removed events. 
It also contains few configuration options to change default class names in the gener
ated D O M structure. The displayed data are passed through DynamicListltem model 
objects that contain 3 properties ( String i d , String value and bool selected ). 
For usage within TodoMVC we will use the selection feature to mark Todos as com
pleted. 

C.5 Create visual components wrappers 

Firstly, we need to import the reusable components to the application. Note that we use 
u i namespace for the reusable components to keep application namespace clean. 

Listing C.6: a p p . d a r t 

import ' l i b / d y n a m i c _ l i s t _ e l e m e n t . d a r t ' as u i ; 
import ' l i b / k e y b o a r d _ e v e n t s _ i n p u t _ e l e m e n t . d a r t ' as u i ; 

Now we can start creating the component wrappers that should add some behaviour to 
the reusable visual elements. 

C.5.1 Todo creator field 

The component should encapsulate the u i . KeyboardEventsInput and listen to its enter-key 
event. It should then create new Todo domain object and register it into the DomainDataProvider : 

55 



Listing C.7: app/ui/todo_creator.dart 
p a r t of todomvc; 

Q P a r t O f ( T o d o C r e a t o r ) 
c l a s s T o d o C r e a t o r C o n f i g extends U l C o m p o n e n t C o n f i g { 
} 

c l a s s T o d o C r e a t o r extends UlComponent { 
// C o n s t r u c t o r 
f i n a l T o d o C r e a t o r C o n f i g c o n f i g ; 
T o d o C r e a t o r ( T o d o C r e a t o r C o n f i g c o n f i g ) : t h i s . c o n f i g = c o n f i g , 

s u p e r ( c o n f i g ) ; 

// P r o p e r t y w i l l be i n i t i a l i z e d from o u t s i d e , 
u i . K e y b o a r d E v e n t s I n p u t E l e m e n t e l ; 

// N o r m a l l y the [ D o m a i n D a t a P r o v i d e r ] s h o u l d take care of t h i s , 
but i t s i m p l e m e n t a t i o n s 

// i s not yet complete , so IDs must be g e n e r a t e d m a n u a l l y 
meanwhile. 

i n t _ n e x t l d = new D a t e T i m e . n o w ( ) . m i l l i s e c o n d s S i n c e E p o c h ; 

// S u b s c r i p t i o n to DOM event t h r o u g h a n n o t a t i o n . 
@0n(DomEvent , name: ' e n t e r - k e y ' ) 
v o i d _onDomEnterKey(DomEvent e) { 

// C r e a t e the domain o b j e c t 
Todo todo = new T o d o O 

. . i d = _nextld++ 

..completed = f a l s e 

. . t i t l e = e l . v a l u e . t r i m () ; 

// R e g i s t e r i t i n t o the [ D o m a i n D a t a P r o v i d e r ] . 
d a t a R e g i s t e r ( t o d o ) ; 

// c l e a r v a l u e 
e l . v a l u e = ' ' ; 

} 

} 

The framework tries to keep the implementation of interactions straightforward. The 
component therefore contains only obligatory constructor, one instance property with the 
D O M element and subscription to the D O M event. 

C.5.2 List of Todos 

The second component is the list of Todos that displays, modifies and removes domain 
entities. The DynamicListElement doesn't work with the domain data, so the TodosGrid 
class should map Todo domain objects into DynamicListltem model objects and vice versa. 
It should also react to domain data changes caused by other components in the application 
(e.g. it should refresh the list when new Todo is added). 

56 



1 
2 
3 
4 
5 
G 
7 
8 
9 
10 

11 
12 
13 
14 
15 
1G 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2G 

27 
28 
29 
30 
31 
32 
33 
34 

35 
3G 
37 
38 

39 
40 
41 
42 
43 
44 
45 
4G 
47 
48 
49 

Listing C.8: a p p / u i / t o d o s _ g r i d . d a r t 

p a r t of todomvc; 

Q P a r t O f ( T o d o s G r i d ) 
c l a s s T o d o s G r i d C o n f i g extends U l C o m p o n e n t C o n f i g { 
> 
c l a s s T o d o s G r i d extends UlComponent { 

// C o n s t r u c t o r 
f i n a l T o d o s G r i d C o n f i g c o n f i g ; 
T o d o s G r i d ( T o d o s G r i d C o n f i g c o n f i g ) : t h i s . c o n f i g = c o n f i g , super 

(conf i g ) ; 

// P r o p e r t y w i l l be i n i t i a l i z e d from o u t s i d e , 
u i . D y n a m i c L i s t E l e m e n t e l ; 

// D i s p l a y e x i s t i n g Todos when component i s c r e a t e d . 
QOn (ComponentCreated) 
v o i d _ o n C r e a t e d ( _ ) => _ r e f r e s h T o d o s ( ) ; 

// F e t c h the Todo based on the model o b j e c t ID, then remove i t . 
QOn(DomEvent , name: ' item-removed') 
v o i d _onDomItemRemoved(DomEvent e) { 

Todo todo = _ g e t T o d o ( e . d e t a i l ) ; 
dataRemove(todo) ; 

> 

// F e t c h and update the Todo w i t h the d a t a from the model 
o b j e c t . 

QOn(DomEvent , name: ' item - e d i t e d ' ) 
v o i d _onDomItemEdited(DomEvent e) { 

Todo todo = _ g e t T o d o ( e . d e t a i l ) ; 
_ a p p l y M o d e l ( t o d o , e . d e t a i l ) ; 
d a t a U p d a t e ( t o d o ) ; 

> 

// S u b s c r i b e to domain d a t a changes and r e f r e s h the l i s t ( e . g . 
when Todo i s added) 

QOn(DomainDataChangeEvent) 
v o i d _onDataChange(_) => _ r e f r e s h T o d o s () ; 

// F e t c h e s a l l the Todos, maps them to the model o b j e c t and 
r e p l a c e s element c o n t e n t s , 

v o i d _ r e f r e s h T o d o s () { 
// Get l i s t of a l l Todos 
L i s t < D o m a i n 0 b j e c t > todos = d a t a Q u e r y ( T o d o ) ; 

// Update the d i s p l a y e d model d a t a 
e l . i t e m s 

. . c l e a r ( ) 

. . a d d A l l ( t o d o s . m a p ( _ g e t M o d e l ) ) ; 
> 

57 



// C r e a t e s model o b j e c t from the Todo domain o b j e c t , 
u i . D y n a m i c L i s t l t e m _getModel(Todo todo) { 

u i . D y n a m i c L i s t l t e m item = new u i . D y n a m i c L i s t l t e m ( t o d o . i d . 
t o S t r i n g ( ) ) 

. . s e l e c t e d = t o d o . c o m p l e t e d 

.. v a l u e = t o d o . t i t l e ; 
r e t u r n i t e m ; 

} 

// A p p l i e s model o b j e c t changes to the Todo domain o b j e c t , 
v o i d _ a p p l y M o d e l ( T o d o t o d o , u i . D y n a m i c L i s t l t e m item) { 

t o d o . c o m p l e t e d = i t e m . s e l e c t e d ; 
t o d o . t i t l e = i t e m . v a l u e ; 

} 

// F i n d s Todo by the ID from the model o b j e c t . 
Todo _ g e t T o d o ( u i . D y n a m i c L i s t l t e m item) { 

i n t i d = i n t . p a r s e ( i tem . i d ) ; 
r e t u r n d a t a F i n d F i r s t ( T o d o , (Todo t ) => t . i d == i d ) ; 

} 
} 

And we are done with the interaction logic. The basic C R U D functionality is imple
mented in 100 lines of code. The components are event-driven and modular. 

C.6 Create application layout 

Now it is time to connect our reusable elements and two application components together 
with a new polymer element, that would serve as an application layout. 

Listing C.9: a p p / l a y o u t / m a i n _ l a y o u t . h t m l 
<1 i n k r e l = " i m p o r t " h r e f = " . ./. . / l i b / d y n a m i c _ l i s t _ e l e m e n t . h t m l " > 
<1 i n k r e l = " i m p o r t " h r e f = " . ./. . / l i b / k e y b o a r d _ e v e n t s _ i n p u t . e l e m e n t . 

html "> 

<polymer- element name = "main - l a y o u t " > 
<template > 

< s e c t i o n c l a s s = " t o d o a p p " > 
<header c l a s s = "header " > 

<hl c l a s s = " h l " > t o d o s < / h l > 

<!-- c r e a t e i n s t a n c e of the [ K e y b o a r d E v e n t s I n p u t E l e m e n t ] 
- - > 

<input i s = " k e y b o a r d - events - i n p u t " i d = " t o d o C r e a t o r " c l a s s = 
"new -todo" 
p l a c e h o l d e r = " W h a t needs to be done?" a u t o f o c u s /> 

</header > 

< s e c t i o n class="main"> 
<!-- c r e a t e i n s t a n c e of the [ D y n a m i c L i s t E l e m e n t ] --> 
< d y n a m i c - l i s t i d = " t o d o s G r i d " l i s t C l a s s = " t o d o - 1 i s t " 

s e l e c t e d C l a s s = " c o m p l e t e d " c h e c k b o x C l a s s = " t o g g l e " > < / 
dynamic - l i s t > 

58 



20 < / s e c t i o n > 
21 < / s e c t i o n > 
22 
23 < f o o t e r c l a s s = " i n f o " > 
24 < p > D o u b l e - c l i c k to e d i t a todo</p> 
25 <p>Created by <a href= " h t t p : / / t o d o m v c . c o m ">you</a></p> 
26 <p>Part of <a href="h t tp : / / todomvc .com">TodoMVC</a></p> 
27 < / f o o t e r > 
28 
29 </1 emplat e > 
30 < s c r i p t type=" a p p l i c a t i o n / d a r t " src= " m a i n _ l a y o u t . d a r t " > 
31 < / s c r i p t > 
32 </polymer - element > 

Listing C.10: app/layout/main_layout. dart 
1 
0 

l i b r a r y m a i n _ l a y o u t ; 
L. 

3 import 1 p a c k a g e : p o l y m e r / p o l y m e r . d a r t ' ; 
4 
r. 

import ' d a r t : h t m l ' ; 

O 
6 QCustomTag( ' m a i n - l a y o u t ' ) 
7 
x 

c l a s s M a i n L a y o u t E l e m e n t extends PolymerElement { 
o 
9 HtmlElement t o d o C r e a t o r ; 
10 HtmlElement t o d o s G r i d ; 
11 
12 MainLay o u t E l e m e n t . c r e a t e d ( ) : s u p e r . c r e a t e d () ; 
13 
14 b o o l get a p p l y A u t h o r S t y l e s => t r u e ; 
15 
16 ©override 
17 v o i d e n t e r e d V i e w ( ) { 
18 super. e n t e r e d V i e w O ; 
19 
20 t o d o C r e a t o r = $ [ ' t o d o C r e a t o r ' ] ; 
21 t o d o s G r i d = $ [ ' t o d o s G r i d ' ] ; 
22 } 
23 > 

Don't forget to import the custom H T M L element. 

Listing C . l l : app.html 
1 <!-- A p p l i c a t i o n l a y o u t --> 
2 < l i n k rel=" i m p o r t " href= " a p p / l a y o u t / m a i n _ l a y o u t . h t m l " > 

Now we have to create the layout element instance, append it to the D O M and initialize 

instance variables of application components: 

59 

http://todomvc.com%22%3eyou%3c/a%3e%3c/p
http://todomvc.com%22%3eTodoMVC%3c/a%3e%3c/p


Listing C.12: a p p / a p p l i c a t i o n . d a r t 
c l a s s TodoMvcApp extends A p p l i c a t i o n { 

// . . . 

v o i d run () { 
// C r e a t e a p p l i c a t i o n components 
T o d o C r e a t o r c r e a t o r = new T o d o C r e a t o r ( n e w T o d o C r e a t o r C o n f i g ( ) 

..app = t h i s 
) ; 
T o d o s G r i d g r i d = new TodosGrid(new T o d o s G r i d C o n f i g ( ) 

..app = t h i s 
); 

// Render the a p p l i c a t i o n 
M a i n L a y o u t E l e m e n t l a y o u t = c r e a t e P o l y m e r E l e m e n t ( ' m a i n - l a y o u t ' 

); 
t h i s . c o n f i g . v i e w p o r t . a p p e n d ( l a y o u t ) ; 
c r e a t o r . e l = l a y o u t . t o d o C r e a t o r ; 
g r i d . e l = l a y o u t . t o d o s G r i d ; 

} 

C.7 Create application managers 

The last step is to create application managers required by the framework — StateStorage . 
StateManager and HierarchyProvider . They are not used in this application, but since 

we have based our application on the extended framework version, they have to be included. 
We are using one class from the framework core — the DomainDataProvider , which 

comes in two versions. The MemoryDomainDataProvider that does not persist entities and 
the LocalStorageDomainDataProvider that persists entities in browser local storage. We 
will use the second one to demonstrate how simple is to store data. 

1 
2 
3 
4 
5 
G 

7 
8 
9 

10 
11 
12 

13 
14 
15 
IG 

Listing C.13: a p p / a p p l i c a t i o n . d a r t 
c l a s s TodoMvcApp extends A p p l i c a t i o n { 

// . . . 

v o i d run () { 
// Core Managers 
U r l S t a t e S t o r a g e S t a t e S t o r a g e = new U r l S t a t e S t o r a g e (new 

U r l S t a t e S t o r a g e C o n f i g O 
..app = t h i s 

); 
StateManager s t a t e = new StateManager(new S t a t e M a n a g e r C o n f i g 

() 
..app = t h i s 

); 
H i e r a r c h y P r o v i d e r h i e r a r c h y = new H i e r a r c h y P r o v i d e r ( n e w 

H i e r a r c h y P r o v i d e r C o n f i g ( ) 
..app = t h i s 

); 

60 



// P e r s i s t e n t d a t a s t o r a g e 
D o m a i n D a t a P r o v i d e r p r o v i d e r = new 

L o c a l S t o r a g e D o m a i n D a t a P r o v i d e r ( 
new L o c a l S t o r a g e D o m a i n D a t a P r o v i d e r C o n f i g () 

); 
• app t h i s 

// 

C .8 Include development tools 

C.8.1 Logger 

If logger is set up to the Level.ALL , it will show internal messages from the framework 
core that might be useful for debugging. At Level. INFO it shows only caught and resolved 
exceptions, plus all the severe issues and messages. If logger is not present, no warnings or 
errors are shown, so it is highly recommended that a logger is present in every application. 

Listing C.14: a p p . d a r t 

1 v o i d main() { 
2 // . . . 
3 
4 // I n i t l o g g i n g 
5 L o g g e r . r o o t . l e v e l = Level. I N F O ; 
6 L o g g e r . r o o t . o n R e c o r d . l i s t e n ( ( L o g R e c o r d r e c ) { 
7 p r i n t ( ' ${ rec . l o g g e r N a m e } : $ { r e c . m e s s a g e } ' ) ; 
8 } ) ; 
9 } 

C.8.2 Message bus watcher 

Is a GUI component for watching all the flow on the message bus. It could be included in 
the following way: 

Listing C.15: a p p l i c a t i o n . d a r t 
c l a s s TodoMvcApp extends A p p l i c a t i o n { 

// . . . 

v o i d run () { 
// . . . 

// Debugging 
MessageBusWatcher watcher = new MessageBusWatcher(new 

Mes s a g e B u s W a t c h e r C o n f i g () 
..app = t h i s 

); 

// ... 
} 

61 



Listing C.16: a p p . h t m l 

1 <!-- Devel t o o l s --> 
2 < l i n k r e l = " i m p o r t " h r e f = " p a c k a g e s / f r a m e w o r k _ p o l y m e r / d e v e l / 

message_bus_watcher_ element.html"> 

Listing C.17 a p p / l a y o u t / m a i n _ l a y o u t . d a r t 

1 QCustomTag('main-layout ' ) 
2 c l a s s M a i n L a y o u t E l e m e n t e x t e n d s PolymerElement { 
3 // . . . 
4 
K 

HtmlElement watcher; 

6 Q o v e r r i d e 
7 v o i d e nteredView () { 
8 // . . . 
9 $ [ ' w a t c h e r ' ] . a p p e n d ( w a t c h e r ) ; 

10 } 
11 } 

Listing C.18 a p p / l a y o u t / m a i n _ l a y o u t . h t m l 

1 <polymer-element name= m a i n - l a y o u t " > 
2 <template> 
3 <! __ . . . __> 

4 < d i v id="watcher"></div> 
5 </template> 
6 </polymer-element> 

Message Bus Watcher 0 i 

# Time Category Class Content Source 

636 1:35:39.439 Service DomainDataRegisterResponse Null 

635 1:35:39.439 Service DomainDataListResponse Null 

634 1:35:39.439 Service DomainDataListRequest Label ActionToolbar 

633 1:35:39.438 Service DomainDataListResponse Null 

632 1:35:39.438 Service DomainDataListRequest Label ActionToolbar 

631 1:35:39.438 Event EventDelivery -> ActionToolbar Null 

630 1:35:39.437 Service DomainDataListResponse Null 

629 1:35:39.437 Service DomainDataListRequest Emai LabelMenu 

Figure C.2: Message bus watcher. 

62 


