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Endosymbiont-organelle transition: better three hours too

soon than a minute too late.

Filip Husnik

Faculty of Science, University of South Bohemia & Institute of Parasitology, Biology Centre 

ASCR, Ceske Budejovice 370 05, Czech Republic.

Abstract:

Mitochondria and plastids are now the cellular organelles of eukaryotes, but they

were derived early in eukaryotic history from bacterial symbionts. Numerous recent

studies show that similar bacterial symbionts are found across eukaryotic lineages

and  some  of  these  symbionts  rival  organelles  in  genome  reduction.  Do  these

endosymbionts also rival organelles in cellular integration? Are these symbionts on

the path to becoming organelles, or are there any other evolutionary processes in

play? In this introduction, I focus on the transition period between an endosymbiont

and  an  organelle.  I  review  recent  developments  in  both  the  endosymbiont  and

organelle  fields,  paying  particular  attention  to  how  the  endosymbiont-organelle

transition is affected by time. I conclude that most of the evolutionary processes that

have shaped bacterial endosymbionts are similar to the processes that shaped the

plastid  and mitochondrial  ancestors.  The differences  between  endosymbionts  and

organelles  most  likely  reflect  their  different  age,  the  stochastic  nature  of

endosymbiosis, and the simple fact that mitochondria were first and thus paved the

way for subsequent endosymbioses between eukaryotic cells and bacteria.

Keywords: eukaryogenesis, protein import, endosymbiosis, horizontal gene transfer
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I. Is there any difference between an endosymbiont and an

organelle?  Should  we  care  about  this  transition  and  its

precise timing?

If we replayed the tape of life and observed the origin of the essential eukaryotic

organelles,  mitochondria  and plastids,  would  there  be  a  period of  time when we

would call these organisms bacterial symbionts? Surely, yes. That these organelles

originated from bacterial endosymbionts is no longer questioned  (Gray & Doolittle

1982). But when would we start calling them organelles, and how much time did this

endosymbiont-organelle transition take? Our perception of these transitions is very

limited because they likely took millions of years and happened billions of years ago.

However, we can try to infer the key innovation that would lead us to change our

label  from 'endosymbiont'  to  'organelle'.  This  innovation is  often suggested to be

protein import from the host cell  (Box 1) and is perhaps the most widely accepted

definition of organelles. With functional protein import, host proteins from the host

cytoplasm make endosymbiont homologs obsolete, and eventually lead to losses of

genes coding even the most essential components such as DNA and RNA polymerases

from symbiont genomes. The endosymbiont then becomes part of its host cell – an

organelle.

The extreme age of the transition from endosymbiont to a highly integrated cellular

component  has  resulted  in  relatively  sparse  and  weak  data,  and  as  such  has

generated extensive debates (Archibald 2006; Theissen & Martin 2006; Keeling &

Archibald 2008; Keeling et al. 2015; Booth & Doolittle 2015b; Lane & Martin 2015;

McCutcheon 2016). Luckily, there are much younger symbiotic systems that allow us

to see the timing of genetic, cellular, and metabolic integration in both unicellular

and  multicellular  symbiotic  systems  more  clearly  (Figure  1,  Figure  2).

Mitochondrion and plastid acquisition each happened only once, so these fields will

always  lack  the  power  of  comparative  analysis  for  primary  symbioses.  But  these

younger  symbioses  have  originated  many  times  independently  in  various  host

systems, and can therefore provide us with hints about the possible time frames and

outcomes of these processes  (Figure 2, Figure 3). For example, how long does it

take for an endosymbiont to lose majority of its ancestral genome? How long does it

take to establish metabolic integration? Have some of the younger, but still quite old

(e.g. ~300 Mya in some insects) symbioses had time to establish protein import? If
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not,  why  not?  If  yes,  how  and  when?  Can  highly  integrated  endosymbionts  be

replaced, and how long does it take for the new partner to itself become  integrated?

Is this process faster thanks to the pre-existing symbiosis? When and for how long

does endosymbiotic gene transfer (EGT) influence the transition? And how does the

contribution of horizontal gene transfer (HGT) from other organisms affect the timing

and process of integration?

For at least two decades, the level of integration in symbiotic systems of arthropods,

protists, marine animals, and other eukaryotes was viewed as less than that of the

classic cellular organelles, and the  questions I outlined above were rarely considered

(Dubilier et al. 2008; Moran et al. 2008; Nowack & Melkonian 2010; McCutcheon &

Moran 2011;  Hentschel  et  al. 2012;  Moran & Bennett  2014;  Douglas  2016).  For

example,  there  was  little  evidence  for  host  genes  (either  eukaryotic  or  HGTs)

interacting with endosymbionts in any obvious or meaningful way, and endosymbiont

lability and replacement, although sometimes observed, was mostly interpreted as

rare and ancient.  However, recent developments in the field strongly suggest that

most, if not all, features previously used to define organelles occur  in these much

younger  systems  (Table  1,  Table  2,  Figure  2).  Diverse  bacterial  symbionts  of

eukaryotes were shown to be extremely tightly integrated at the genetic, cellular, and

metabolic level, some of them even crossing the River Styx to the ‘organelle world’ by

protein  import  from  the  host  cell  (McCutcheon  &  Keeling  2014).  Overall,  the

mechanistic  and  genetic  parallels  between  these  symbionts  and  organelles  make

clear distinctions hard to see.

From  the  organelle  and  eukaryotic  perspective,  several  findings  related  to  the

transition stage have emerged as well. Perhaps the most important finding is that the

ancestral cell that acquired mitochondria about 2.5 billion years ago was very likely

archaeal  and related to  the  recently  named Asgard superphylum (Williams  et  al.

2013; Williams & Embley 2014; Spang et al. 2015; Koonin 2015; Martin et al. 2015;

Zaremba-Niedzwiedzka  et al. 2017). It is hotly debated whether the mitochondrial

‘symbiont’ came in rather late in the evolution of a cell that already looked eukaryote-

like (Spang et al. 2015; Pittis & Gabaldón 2016; Zaremba-Niedzwiedzka et al. 2017)

or whether the mitochondrion acquisition was early and was the main stimulus for

the origin of eukaryotes (Figure 3) (Lane & Martin 2015; Martin et al. 2016).  Gene

transfer from other bacteria was clearly involved before and after the acquisition of

mitochondria, but the taxonomic diversity of these transfers makes it impossible to
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infer phylogenies with high confidence using single gene sequences for a variety of

both biological and methodical reasons (Kurland & Andersson 2000; Qiu et al. 2013;

Gray  2015).  Dating  of  the  deeply-branching  eukaryotic  lineages  (supergroups)  is

unfortunately  also  very  unclear  (Dacks  et  al. 2016),  but  it  seems that  the  major

lineages  have  diverged  rather  quickly  after  mitochondrion  acquisition  (and  its

genome  reduction).  Several  deeply-branching  lineages  such  as  jakobid  protists

harbor gene-rich mitochondrial genomes (Burger  et al. 2013), providing interesting

data about the genes that were likely present in this ancestor of mitochondria. The

very  same  situation,  although  with  different  levels  of  genome  reduction,  is  also

observed in plastids of mostly glaucophytes and red algae (Smith & Keeling 2015;

Lee  et al. 2016). But interpreting the order of events in these systems is  further

blurred by the shuffling of plastid genes due to secondary, tertiary, and higher-level

endosymbioses (Keeling 2013).

II. Our view of genetic, cellular, and metabolic integration of

eukaryotic  endosymbionts  has  quite  dramatically  changed

over the last five years.

Genome reduction  of  insect  endosymbionts  is  much  more  extensive  than

originally  imagined. In  recent  years,  numerous  endosymbiont  genomes  were

sequenced from diverse eukaryotes revealing a range of genome sizes. However, the

smallest genomes are almost always found in hemipteran insects (Figure 1, Figure

2, Table 2). The smallest reported genome from a non-organelle bacterium is from

the leafhopper endosymbiont Nasuia deltocephalinicola (Bennett & Moran 2013). Its

genome size of 112 kb and total number of protein-coding genes (137) is even smaller

than in some red algal plastid genomes such as Porphyridium purpureum (218 kbp;

224 protein-coding genes) (Bhattacharya et al. 2013; Lee et al. 2016). How old is the

leafhopper symbiosis? It is not so easy to tell, but it co-resides in the insect with one

more symbiont, Sulcia muelleri, and this co-residence was estimated up to the origin

of Auchenorrhyncha, i.e. around 260-280 Mya (Moran et al. 2005; Bennett & Moran

2013). The Auchenorrhyncha lineage includes also other sap-feeding insects such as

spittlebugs, cicadas, planthoppers, treehoppers, or lanternflies. The majority of these

insects house  Sulcia with one or more additional co-symbionts. This long-term co-

symbiosis of Sulcia has been followed by both ancient and recent replacements of the

second partner (Hodgkinia,  Zinderia/Nasuia/Vidania, Sodalis, and likely others), and
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thus  presents  a  fascinating  system  to  study  the  speed  of  genome  reduction  in

symbionts  of  various  ages  (Bennett  &  Moran  2015).  Other  tiny  endosymbiont

genomes are found in hemipteran insects such as psyllids, whiteflies, moss bugs, and

scale insects (Sloan & Moran 2012a; b; Sabree et al. 2012; Rosas-Pérez et al. 2014;

Santos-Garcia  et  al. 2014; Husnik  & McCutcheon 2016).  Importantly,  all  of  these

symbioses were estimated to originate more than 100 million years ago (Figure 3),

but  they  often  involve  also  other  (much  younger)  obligate  co-symbionts  or  show

replacements of the partners. The idea that time is needed to establish an intimate

organelle-like  symbiosis  is  rarely  questioned,  but  numerous  examples  of

endosymbiont  losses  and  replacements  show  that  the  time  required  to  adapt  to

symbiosis  may  be  initially  required  by  the  host,  but  once  established  the

endosymbiont population can sometimes change relatively rapidly.  One fascinating

model  system  supporting  this  hypothesis  is  the  mealybug-Tremblaya-

gammaproteobacteria symbiosis examined in great detail by the manuscripts of my

thesis (Husnik et al. 2013; Duncan et al. 2014; Husnik & McCutcheon 2016).

Endosymbionts from unicellular eukaryotes show less genome reduction than

those  from  insect  systems,  but  both  symbioses  show  high  levels  of

integration with their hosts. Simple logic would suggest that we should most often

find organelle-like endosymbionts  in  unicellular  eukaryotes.  These  eukaryotes  are

commonly bacterivorous and domestication  of  an endosymbiont  through EGT and

protein  import  should  be  more  straightforward  inside  their  single  cells  than  in

multicellular eukaryotes with highly protected germline cells.  Moreover,  we know

that  such a  transition  happened at  least  once  when the  archaeplastidal  ancestor

(already  harboring a  mitochondrion)  acquired cyanobacterial  symbionts  that  later

became plastids. Unicellular protists should have had plenty of time to develop these

symbioses, because the major eukaryotic supergroups have diverged early after the

origin of LECA (Knoll 2014).

So why do we find no such novel organelles in protists? Perhaps we have not sampled

hard enough, especially in comparison to the insect lineages discussed above, but

several  endosymbionts  with  severe  genome  reduction  do  exist  in  single-celled

eukaryotes.  These symbioses are in most cases nutritional  in nature,  such as the

cyanobacterial symbionts (called spheroid bodies) in Rhopalodiaceae diatoms (Prechtl

et  al. 2004;  Kneip  et  al. 2008;  Nakayama  et  al. 2014),  cyanobacterial  symbionts

(called UCYN-A lineage, Atelocyanobacterium thalassa) in haptophytes  (Zehr  et al.
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2008; Tripp et al. 2010; Thompson et al. 2012; Bombar et al. 2014; Cornejo-Castillo

et  al. 2016),  two  independent  betaproteobacterial  symbioses  in  trypanosomatids

(Kinetoplastibacterium and  Pandoraea species)  (Alves  et al. 2013a; b;  Klein  et al.

2013;  Kostygov  et  al. 2016),  numerous  bacterial  symbionts  in  ciliates  (e.g.

Polynucleobacter necessarius in  Euplotes spp. or a lineage called TC1 in  Trimyema

compressum)  (Boscaro  et  al. 2013;  Shinzato  et  al. 2016),  and   numerous

endosymbioses of protists inhabiting termite guts  (Brune & Dietrich 2015) such as

Endomicrobium  trichonymphae (Hongoh  et  al. 2008;  Izawa  et  al. 2016)  or

Desulfovibrio trichonymphae (Kuwahara et al. 2016).

Strikingly,  there  is  one  example  where  the  symbiotic  cyanobacterium  (called

chromatophore  or  cyanelle)  is  kept  for  exactly  the  same  reason  as  the  ancient

archaeplastidal  symbiosis  –  for  photosynthesis.  The  host  organism,  Paulinella

chromatophora,  is an amoeboid protist from the Rhizaria lineage. Similarly to the

other protist  symbioses described above,  it  has acquired the symbiont (relatively)

recently, about 60-200 million years ago. Despite its young age and modest amount of

genome reduction (1,021,616 bp),  it  seems to be on the path to becoming highly

integrated into its host. For example, it is already dependent on proteins imported

from the host cytoplasm (Marin et al. 2005; Nowack et al. 2008, 2011, 2016; Nowack

& Grossman 2012; Nowack 2014).

Endosymbionts  of  eukaryotes are often dependent on various compounds,

including proteins, imported from the host cell. There is a growing body of both

genomic and experimental evidence that various endosymbionts rely on their hosts

for provisioning of essential compounds. When any compound is freely available from

the host cytoplasm, metabolic pathways encoded on the symbiont genome are no

longer under strong selection and ‘use it or loose it’ strategy of bacterial genome

evolution is inevitable. For example, aphids provide to their Buchnera endosymbiont

almost all non-essential amino acids  (Shigenobu & Wilson 2011; Hansen & Moran

2011; Poliakov et al. 2011; Macdonald et al. 2012) and likely several vitamins and co-

factors  needed  by  the  endosymbiont  enzymes  (Charles  et  al. 2011),  so  these

pathways were eventually lost from the Buchnera genome (Shigenobu et al. 2000). In

a similar manner, the most extremely reduced endosymbiont genomes such as Nasuia

or  Tremblaya no  longer  code  genes  for  ATP  synthase,  NADH  dehydrogenase,

cytochrome  oxidase,  TCA  cycle,  lipid  metabolism,  sugar  metabolism,  nucleotide

metabolism, etc. because compounds from these pathways are provided from either
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their  host/mitochondria  or  their  obligate  co-symbionts  (von  Dohlen  et  al. 2001;

Gottlieb et al. 2008; Bennett & Moran 2013; Moran & Bennett 2014).

Transporters  were  so  far  studied  predominantly  for  the  aphid-Buchnera model

system,  where they seem to play a central  role in the aphid/Buchnera symbiosis.

Published studies conclude that  Buchnera retains only a few general transporters,

some of which very likely lost their substrate specificity (Charles et al. 2011). Among

the aphid transporters, 82 genes were reported to be up-regulated in bacteriocytes

(Hansen  &  Moran  2011),  amino  acid  transporters  were  found  to  be  extensively

duplicated and specialized for bacteriocyte transfer (Price et al. 2011; Duncan et al.

2014),  and some of  them implicated  to  be  essential  for  endocytosis  of  Buchnera

during transmission (Lu et al. 2016).

Indirect evidence from different animal and protist symbioses implies that there is an

immense flow of both small and large compounds from and to symbiont cells, but the

precise  mechanical  functioning  of  this  transport  is  poorly  understood.  A  major

transport  role  is  likely  played  by  the  outermost  host-derived  ‘symbiosomal’

membrane covering every symbiont cell (although not present in all systems). The

membrane  likely  incorporates  transporters  and  controls  which  compounds  are

provided to the symbiont and how often  (Price  et al. 2013). That the most highly

integrated  endosymbionts  are  engulfed  by  completely  host-derived  cell  envelopes

further supports the hypothesis that any machinery for transport is host-derived and

inside  the  cell  envelope.  Apart  from  exchange  of  various  metabolites,  protein

exchange is likely needed for some endosymbioses,  but experimental  data testing

protein  import/export  to  and  from   symbionts  are  extremely  scarce  due  to

methodological difficulties facing experimental work with non-model species (Box 1).

Genes  of  bacterial  origin  on  the  host  genome  compensate  for  genome

reduction of endosymbionts. Five years ago,  there was little evidence for HGT

interacting  with  endosymbionts  in  any  obvious  or  meaningful  way,  although

numerous genes believed to be essential were found to be missing from the symbiont

genomes.  This  situation  started  to  change  after  the  discovery  of  several  likely

functional  bacterial  genes  in  the  aphid  genome  (Nikoh  et  al. 2010).  Since  then,

bacterial  genes  have  been  found  in  many  eukaryotes  harboring  intracellular

symbionts  such as  mealybugs (Husnik  et  al. 2013;  Husnik  & McCutcheon 2016),

psyllids  (Sloan  et  al. 2014),  whiteflies  (Luan  et  al. 2015;  Chen  et  al. 2016),
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Angomonas and  Strigomonas trypanosomatids (Alves  et  al. 2013a),  and  Paulinella

chromatophora (Nowack et al. 2016). In most cases (except in aphids), the bacterial

genes seem to fill  in gaps in pathways predicted to be carried out in cooperation

between  the  host  and  its  symbiont.  The  host  thus  takes  over  enzymatic  steps

originally coded by the symbiont genome. Importantly, very few of these bacterial

genes found in eukaryotic genomes come from the current endosymbiont, but rather

from bacteria common in the environment, i.e. for multicellular eukaryotes mostly

from bacteria infecting oocytes. It  now seems that the role of gene transfer from

diverse  bacteria  to  eukaryotes  with  symbionts  is  to  compensate  for  gene  loss  in

extant symbionts to maintain function in the symbiosis (Husnik et al. 2013; Nowack

et al. 2016).

III. A few hints about timing and evolution of mitochondria

and plastids have appeared in the last five years

The cell that became an eukaryotic ancestor was an archaeon. Eukaryotes are

cellular and genetic chimeras of two or more organisms. The last eukaryotic common

ancestor  from  which  all  contemporary  eukaryotes  descend  originated  roughly  2

billion  years  ago  from  a  symbiotic  event  between  an  archaeal  host  cell  and  an

alphaproteobacterial endosymbiont  (Gray & Doolittle 1982; Embley & Martin 2006;

Koonin 2010, 2015; Booth & Doolittle 2015a; Zaremba-Niedzwiedzka  et al. 2017).

The phylogenetic origin of the archaeal host is now consistently being resolved to be

close to or within the Asgard superphylum (Williams et al. 2013; Williams & Embley

2014; Spang et al. 2015; Zaremba-Niedzwiedzka et al. 2017), but cellular complexity

of the host cell and mitochondria-early or mitochodria-late timing of the symbiosis

keeps to be hotly debated (Ettema 2016; Pittis & Gabaldon 2016; Pittis & Gabaldón

2016; Martin et al. 2016). There are therefore only two domains of life, Bacteria and

Archaea, not three as suggested by ribosomal RNA trees (Woese  et al. 1990), and

eukaryotes are deeply nested inside Archaea. Interestingly, several lines of evidence

suggest  that  the  proto-eukaryote  host  cell  already  contained  many  genes  and

functions  previously  considered  to  be  eukaryote-specific  innovations  such  as

cytoskeletal  components,  membrane-trafficking  machinery  components,  and  coat

proteins involved in vesicle biogenesis (Zaremba-Niedzwiedzka et al. 2017).

Unlike  for  the  host  cell  ancestor,  the  exact  present-day  closest  relative  of  the

alphaproteobacterial  lineage  from  which  mitochondria  descent  remains  elusive
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(Wang & Wu 2014, 2015), but a recent study has shed some light on the origin of

primary  plastids.  Interestingly,  a  freshwater  cyanobacterium  Gloeomargarita

lithophora was inferred as the most closely related lineage to plastids suggesting that

the  first  photosynthetic  eukaryote  most  likely  evolved  in  terrestrial-freshwater

settings, not in oceans (Ponce-Toledo et al. 2017).

Mitochondrial and plastid evolution: from stability to craziness.  Genomes of

mitochondria and plastids can be both immensely stable and remarkably dynamic.

Different organelle lineages show large ranges of genome size, GC content, coding

density, structure, and content. Some genomes expand, such as plant mitochondrial

genomes (Sloan et al. 2012), while other genomes shrink, such as plastid genomes of

non-photosynthetic  plants  (Logacheva  et  al. 2016) or  mitochondrial  genomes  of

dinoflagellates, apicomplexans, and their relatives  (Waller & Jackson 2009; Oborník

& Lukeš 2015). Mitochondrial genomes can be lost and the remaining organelles then

rely solely on imported proteins  (Stairs  et al. 2015) and one recent study suggests

that even the entire organelle can be lost  (Karnkowska  et al. 2016).  Very similar

evolutionary history of genome loss also likely  affected plastid evolution  (Smith &

Lee 2014).

This  diversity  (and  sometimes  eccentricity)  of  mitochondria  and  plastids  can  be

explained by combination of their age, DNA repair processes, mutation rates, and

population genetic structure (Smith & Keeling 2015). Importantly, the diversity also

provides  us  with  almost  unbelievable  examples  of  what  is  possible  in  organelle

evolution and shows that ‘anything goes’ for both mitochondria and plastids (Burger

et al. 2003; Archibald & Richards 2010). When stripped to the bone, the omnipresent

function of mitochondria (and various mitochondria like organelles)  seems to be iron

sulfur  assembly  (Lill  et  al. 2012).  This  process  is  present  in  the  majority  of

endosymbionts  as  well  (McCutcheon & Moran 2011),  but  is  not  likely  as  crucial

because iron-sulfur clusters are already available from the host mitochondrion.

Perhaps the most relevant genomes for this review are the gene-rich mitochondrial

genomes of  jakobid protists (Burger et al. 2013) and the gene-rich plastid genomes

of red algae (Janouškovec et al. 2013; Lee et al. 2016) (Table 2). In terms of gene

content,  these  genomes  are  akin  to  the  tiniest  endosymbiont  genomes  such  as

Tremblaya or  Nasuia as  they  still  retain  four  genes  encoding  bacterial  RNA

polymerase  (rpoABC)  together  with  its  sigma  factor  (rpoD),  large  portion  of
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ribosomal proteins, and even some translational factors  (Figure 4). But there are

several significant differences related to the bacterial genetic machinery. First is that

unlike endosymbionts, no organellar genomes retain genes for even a minimal DNA

polymerase nor any aminoacyl tRNA synthetases. They are completely dependent on

their hosts for replication and translation (and transcription in mitochondria other

than from jakobid protists).  The only endosymbiont lineage that has lost all  of its

aminoacyl tRNA synthetases is Tremblaya princeps with its own bacterial symbionts

likely supplementing this lost function (McCutcheon & von Dohlen 2011). If there is

any bacterial essence remaining in these tiny symbiont genomes that differentiates

them from organelles,  it  is  their  ability  to  independently  replicate their  genomes

(McCutcheon 2010).

Complex plastid acquisitions across the tree of life

Acquiring  a  photosynthetic  ability  was  crucial  for  the  diversification  of  many

eukaryotic lineages. Since the origin of primary plastids, several lineages of algae

have been acquired as multi-genome symbiotic sets to form secondary and tertiary

endosymbioses.  Secondary  plastids  are  known  from  euglenids  (Excavata)  and

chlorarachniophytes  (Rhizaria)  which  both  secondarily  acquired  green  algae.

Haptophyta,  Cryptomonada,  and  several  lineages  in  Alveolata  and  Stramenopila

acquired red-algal plastids in symbiotic events that remain unresolved (Keeling 2013;

Ševčíková  et  al. 2015).  Interestingly,  two   lineages  with  complex  plastids,

chlorarachniophytes and cryptomonads, still keep highly reduced nuclei between two

sets of plastid membranes (Curtis et al. 2012). Several additional layers of symbiotic

complexity  are  known  from  dinoflagellates  (Alveolata).  Although  they  harbor  an

ancestral plastid of red-algal origin, some dinoflagellate lineages have acquired new

plastids  by  subsequent  serial  endosymbioses  of  green  algae  (serial  secondary

endosymbiosis) or haptophytes and diatoms (tertiary endosymbiosis) which in some

cases still retain their own nuclei and even mitochondria (Dorrell & Howe 2015).

Proteomes  of  organelles  are  incredibly  mosaic. Endosymbiotic  gene  transfer

from mitochondria and plastids to the nucleus and re-targeting of proteins back to

the organelles has  long been viewed as one of the major steps in eukaryogenesis

(Timmis et al. 2004). A recent taxon-rich (55 eukaryotes) analysis of gene clustering

and  phylogenetic  analyses  of  eukaryotic  gene  families  with  prokaryotic  gene

homologs  detected  2,585  gene  clusters  containing  sequences  from  at  least  two

eukaryotic and five prokaryotic lineages. While cyanobacterial EGT signal was clearly
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detected by the analyses, alphaproteobacterial signal was basically absent. However,

all  these  2,585  clusters  were  determined  to  be  putative  EGTs  by  the  authors,  a

conclusion  which  in  my  view  is  quite  unconservative  (1,525  clusters  from  the

mitochondrial ancestor and 1,060 from the plastid ancestor) (Ku et al. 2015b). When

contrasting these results to several previous analyses  (Kurland & Andersson 2000;

Gabaldón & Huynen 2004, 2005, 2007; Esser et al. 2004; Cotton & McInerney 2010;

Thiergart et al. 2012; Reyes-Prieto & Moustafa 2012; Huynen et al. 2013; Qiu et al.

2013;  Gray 2015),  it  becomes abundantly  clear  that  such analyses are extremely

method  and  sampling  dependent  and  that  the  bacterial  part  of  nucleus-encoded

mitochondrial  and  plastid  proteomes  shows  striking  taxonomic  diversity  when

evaluated by single-gene trees  (Kurland & Andersson 2000; Qiu  et al. 2013; Gray

2015).

This discrepancy between different studies has been suggested to result from poor

phylogenetic  signal  in  single-gene  matrices,  inherited  chimerism  of  bacterial

ancestors  of  organelles,  lineage-specific  gene  losses  combined  with  poor  taxon

sampling, and previous and ongoing horizontal gene transfers from diverse sources

such as unsuccessful symbionts (Larkum et al. 2007; Ku et al. 2015a; b; Gray 2015).

Of course, simple models will likely never fully reconstruct the evolutionary history of

eukaryotes, and so most of the processes mentioned above  (and possibly a few more)

have probably occurred in distinct eukaryotic clades with different frequencies. The

presence of numerous bacterial-like genes in the Asgard archaea genomes might in

the near future clarify the importance of horizontal and endosymbiotic gene transfer

for mitochondrial evolution (Zaremba-Niedzwiedzka et al. 2017).

IV.  On  the  importance  of  protein  import  from  the  host

preceding massive genome reduction (<100 kbp)

How  far  can  endosymbiont  genome  reduction  go? Six  years  ago,  it  was

calculated that a theoretical minimal genome size for an intracellular symbiont of

insects was approximately in the range of 70–80 kb (McCutcheon & Moran 2011). In

terms of gene context, such a genome would be  almost indistinguishable from the

most gene-rich mitochondrial  genomes from jakobid protists  (Burger  et al. 2013).

However,  after  more  than  six  years  and  very  comprehensive  sampling  of  insect

lineages  with  intracellular  endosymbionts,  no  data  suggest  such  highly  reduced

genomes actually occur.
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Although it is still possible that such an extremely degenerate endosymbiont will be

discovered in the near future, it is perhaps appropriate to start asking questions. If

we are not finding these tiny genomes, why not? It has been shown repeatedly that

the initial stages of genome reduction can be extremely fast. For example, it has been

estimated that 55% percent of an ancestral endosymbiont genome was lost in only

∼28,000 years (Oakeson et al. 2014). However, once the symbiont genome is reduced

to approximately 250 kbp, the host might be more likely to face extinction because of

its reliance on such a degenerate symbiont, so gene loss is very likely much slower at

this  stage  and  relies  upon  first  evolving  complementarity  with  the  host.

Complementarity can be achieved in several different ways, but this period of slow

gradual  increase  of  interdependence  (observable  in  some  endosymbiont  systems)

likely coincides with the beginning of symbiont-organelle transition.

Why  do  we  find  no  novel  organelles  in  unicellular  eukaryotes? Several

scenarios can be put forward to explain why unicellular eukaryotes have not formed

any  other  highly  integrated  symbioses  since  mitochondrion  and  plastid  origins.

Putting aside that it  is still  possible that we did not find them yet,  another likely

scenario  is  that  they  were  not  stable  over  evolutionary  history  and  either  were

replaced or the lineage went extinct before fixed (Keeling et al. 2015). In principle,

the  transfer of both too few and too many of essential genes can lead to  symbiont

extinction. With too many transfers, the symbiont (or at least its genome) may no

longer be needed by the host. On the other hand, genes kept on the symbiont genome

drive  the  symbiosis  into  the  symbiotic  rabbit  hole  (Box  2).  Eukaryotic  genomes

contain genes from bacteria (Keeling & Palmer 2008; Alsmark et al. 2013; Wybouw et

al. 2016), and these genes often code enzymes involved in nutrition. These HGTs can

thus be thought of as ‘ghosts’ of  symbiosis past. When a specialized compartment is

not  needed for  the symbiont  function (as has been shown for   mitochondria  and

plastids)  and  some  proteins  do  not  have  to  be  translated  in  the  organelle  (e.g.

hydrophobic  membrane  proteins  would  likely  be  targeted  to  the  endoplasmic

reticulum if  they were nuclear-encoded  (Björkholm  et al. 2015), the symbiont can

‘dissolve’  in  its  host  (Karnkowska  et  al. 2016),  for  exampe after  donating  genes

originally essential for the symbiosis such as genes for biosynthetic pathways shown

to be crucial in almost all protist symbioses. It is therefore interesting that in most

cases, plastids have not evolved independently and  de-novo  (as in  Paulinella),  but

rather acquired in the form of a plastid-containing lineage.
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Another scenario explaining the lack of ‘novel’ organelles in eukaryotes might be that

eukaryotes already contain hundreds to thousands of  genes (EGT and HGT) from

bacteria  transferred  to  their  chromosomes.  Perhaps  there  is  no  need  for  novel

organelles as horizontal gene transfer or  alternative ways of adaptive evolution such

as  acquisition  of  a  co-symbiont  or  symbiont  replacement  allow  much  faster

innovations.  Mitochondrion-generated  ATP  allowed  eukaryotes  to  grow  large  and

complex cells  (Martin & Müller 1998). But how does the presence of mitochondria

decrease  a  chance  to  establish  novel  symbioses?  For  example,  leakage  of

mitochondria-targeted  proteins  into  plastids  and  rapid  establishment  of  dual

targeting can be hypothesized as mechanisms causing parallel evolution of plastid

genomes (Smith & Keeling 2015), but how mitochondria-targeted proteins influence

symbiont evolution has never been tested.

Timing  is  essential  for  an  endosymbiont  to  become  an  organelle.

Endosymbiont genome reduction has been shown to be extremely fast. In some cases

it can take only thousands-to-millions of years to lose several thousand endosymbiont

genes  (Clayton  et al. 2012; Oakeson  et al. 2014). After this initial massive genome

reduction, the reductive evolution seems to often slow down for tens of millions of

years with approximately  500-1000 functional  genes left  in  the symbiont  genome

(Figure 2). It is possible that a similar pace of gene loss also affected the ancestors

of  mitochondria  and  plastids.  If  so,  it  is  unlikely  that  concurrent  functional  EGT

coupled with fine-tuning of protein import could  manage to compensate for such

extremely  fast  gene  loss.  Numerous  genes  complementing  the  organelles  were

needed for the symbiont to survive and become the organelle, but the rate of gene

loss would mean that many of them were likely not there yet.

It  also  seems  unlikely  that  both  organelles  were  successful  on  the  first  try.

Endosymbiont dynamism has long been observed, but most of it seemed rare and

ancient  (Moran  et  al. 2008).  However,  recent  findings  from many  endosymbiont-

housing eukaryotes (Douglas 2016) point towards extreme instability and dynamism

of symbioses, especially when reaching near-organelle genome sizes. Symbiosis loss,

complementation,  and  replacement  were  shown  to  occur  even  when  the  current

symbiont is extremely highly integrated into its host cells  (Husnik & McCutcheon

2016). This dynamism sometimes also leads to irremediable complexity (‘craziness’)

at the genomic and cellular levels, paralleling what is  observed in organelles (Gray
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et al. 2010; Wu  et al. 2015). For example, a single circular genome of the cicada

endosymbiont Hodgkinia cicadicola MAGTRE has been split into numerous genomes

present in separate cells over evolutionary history (Van Leuven et al. 2014; Campbell

et al. 2015). Somehow, these new lineages seem to share even the most essential

proteins such as for DNA and RNA polymerases.

The evolution of the cellular organelles was probably not a neat and tidy process. The

orderly transfer of massive numbers of EGTs combined with rapid co-evolution of

protein-targeting seems incredibly unlikely. Rather, I argue that the process was an

inefficient and chaotic one, involving failed endosymbioses and HGT from numerous

sources. In my view, this transition required previous and late HGTs to allow the final

'evolutionarily lucky' symbiont to survive the symbiont-organelle transition. Further

adjustments to the cell biology of the host took hundreds of millions of years, and

explains why other examples of endosymbionts in diverse eukaryotes differ mainly by

the level of integration in the host cell, not by genome reduction.

Display items

Box 1: The most important piece of the puzzle is missing: protein import into

endosymbionts. Many endosymbiont and organelle researchers would agree that

the point when   an endosymbiont becomes organelle-like is when there is a well-

established protein  import  from the host.  This  reasoning is  based on the current

situation of organelles – a majority of their proteins come from the host cytoplasm

and  protein  complexes  importing  them  (such  as  TIM/TOM  in  mitochondria  and

TIC/TOC in plastids)  (Soll & Schleiff 2004; Doležal et al. 2006; Balsera et al. 2009).

Are there many cases of proteins being shown to be imported into an endosymbiont

from the host cytoplasm? No, there are not. Whether it is a result of methodologically

challenging  experiments,  or  a  true  biological  state,  there  is  only  a  handful  of

examples,  including  chromatophores  in  Paulinella protists  (Nowack  &  Grossman

2012), bacterial symbionts of trypanosomatids  (Morales  et al. 2016), and  Buchnera

symbionts  in  aphids  (Nakabachi  et  al. 2014).  However,  no  protein  silencing

experiments are presently available for these organisms, so it is still not clear how

important   protein  import  is  for  these  symbioses  or  if  it  is  more  akin  to  a  host

mechanism used to manipulate the symbionts such as in plant-Rhizobium (Van de

Velde et al. 2010) or weevil-Sodalis systems (Login et al. 2011).
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Importantly, one significant difference between organelles and recent endosymbionts

might be the status of the eukaryotic endomembrane system at the establishment of

symbiosis. If it was not present in the eukaryotic ancestor, evolution of protein import

complexes  was   crucial  for  eukaryogenesis.  On  the  other  hand,  if  late-coming

symbioses  could  use  an  already  established  endomembrane  system,  this  might

obviate the need for a specific import system, especially given that entirely  host-

derived  outer  membranes of  some of  these symbionts are likely  highly  similar  to

membranes  of  other  cellular  compartments  (such  as  mitochondria)  (Husnik  &

McCutcheon 2016). In addition, outer membrane vesicles (OMV) were shown to be

critical elements in many extracellular host-microbe interactions such as the squid-

Vibrio (Aschtgen  et al. 2016) or human-gut microbiota  (Elhenawy  et al. 2014), but

their role in intracellular symbioses remains enigmatic. Comprehensive analysis of

metabolite and protein exchange at the host-symbiont interfaces in diverse systems,

although methodologically challenging, is thus needed to answer in our view the most

important  question  of  the  field.  How  are  proteins  imported  into  organelle-like

endosymbionts?

Box 2:  The  symbiotic rabbit hole: when your population genetic structure

brings you to the verge of extinction but selection keeps you there for over a

billion of  years. The total  population  of  heritable  symbiotic  bacteria  in  a single

individual  is  subsampled every generation (for  example into  eggs in  multicellular

animals)  and  maternally  transmitted  to  offspring.  This  bottlenecking  leads  to

extremely  small  effective  population  sizes  of  endosymbiotic  bacteria  and  random

genetic  drift  accumulating  deleterious  mutations  in  their  genomes  (Moran  1996;

Lambert & Moran 1998; Woolfit & Bromham 2003). Since the lineages are asexual

and  often  missing  DNA  repair  and  recombination  genes,  these  changes  are

irreversible due to Muller’s ratchet (Moran 1996). Features of endosymbiotic bacteria

such as rapid sequence evolution, gene loss, lower thermal stability of proteins and

RNAs,  and  extreme  biases  in  nucleotide  composition  root  from  this  population

structure (McCutcheon & Moran 2011).

Over evolutionary time, this process eventually ends in a state where the host is

incredibly dependent on a symbiont that is degenerating and, in some cases, seems

clumsily  balanced  on  the  verge  of  extinction.  This  irreversible  host-symbiont  co-

dependence resulting from population genetics structure of symbionts was described
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as the ‘symbiotic  rabbit  hole’  (Bennett  & Moran 2015).  Any of  these detrimental

changes potentially leading to extinction of both partners can be slowed down by

selection acting either on the symbiont or host level (Wernegreen 2002), but selection

can be dangerously inefficient when acting on populations of polyploid symbiont cells

(Van Leuven  et al. 2014; Campbell  et al. 2015). Is there any other way out for the

host  from  this  degenerative  ratchet?  It  seems  that  there  is.  Endosymbiont

replacement can rescue the host by providing an endosymbiont with a ‘fresh’ genome

(Husnik  &  McCutcheon  2016),  but  this  rescue  is,  of  course,  only  temporary.

Transferring endosymbiont genes out of the reach of deleterious mutations, i.e. to the

host genome from either the current symbiont (EGT) or from other organisms (HGT),

or adjusting native genes to carry out symbiont functions is the solution that allowed

eukaryotes  to  keep  their  quintessential  symbionts,  mitochondria,  for  almost  two

billions years (Timmis et al. 2004).
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Table 1: Various genomic and cellular features usually characterizing organelles and their presence in diverse 
endosymbiont lineages. Features never reported from endosymbionts include for example loss of genes for DNA and RNA polymerases, group II 
catalytic introns, and RNA editing. RNA and DNA polymerase genes were lost in individual Hodgkinia lineages co-residing in bacteriomes of some cicadas, but
this example is not included here for simplicity (Campbell et al. 2015).  #I am not aware of any manuscripts examining cell division in animal symbioses. 

Feature ‘Endosymbiont’ lineages References

Massive genome reduction (<250 kbp) and associated 
changes (highly gene-dense genomes with overlapping 
genes, increased ortholog length variation, and loss of large 
accessory proteins)

Tremblaya, Hodgkinia, Nasuia/Zinderia
Carsonella

(McCutcheon & Moran 2011; Kenyon & Sabree 
2014; Moran & Bennett 2014)

Origin of an alternative genetic code Hodgkinia, Nasuia/Zinderia (McCutcheon  et  al. 2009a;  McCutcheon  &  Moran
2010; Bennett & Moran 2013)

Loss of genes for translation, i.e. translation factors, tRNAs, 
rRNAs, RNA modification genes and ribosomal proteins

Tremblaya, Hodgkinia, Nasuia/Zinderia, 
Carsonella

(McCutcheon  et  al. 2009b;  McCutcheon  &  Von
Dohlen  2011;  Bennett  &  Moran  2013;  Husnik  &
McCutcheon 2016)

Import of some compounds and intermediate products 
(amino acids, vitamins, ATP, sugars, nucleotides, etc.) from 
the host cytoplasm

All obligate symbionts of insects
‘spheroid body’ in diatoms
‘chromatophore’ in Paulinella
Kinetoplastibacterium

(McCutcheon  &  Moran  2011;  Hansen  &  Moran
2011;  Poliakov  et  al. 2011;  Duncan  et  al. 2014;
Moran & Bennett 2014; Douglas 2016)

Reliance on proteins from the host genome that are of 
bacterial origin (HGT)

Tremblaya, Buchnera, Carsonella, 
Portiera, ‘chromatophore’, 
Kinetoplastibacterium

(Nikoh  et al. 2010; Husnik  et al. 2013; Sloan  et al.
2014; Nakabachi et al. 2014; Luan et al. 2015; Chen
et  al. 2016;  Nowack  et  al. 2016;  Husnik  &
McCutcheon 2016; Morales et al. 2016)

Endosymbiotic gene transfer from the current symbiont to 
the host genome (EGT)

Paulinella-chromatophore (~58 genes), 
psyllids-Carsonella (1 gene)

(Sloan et al. 2014; Nowack et al. 2016)

Import of proteins from the host cytoplasm to the symbiont 
cell

Buchnera, chromatophore, 
Kinetoplastibacterium

(Alves et al. 2013a; Klein et al. 2013; Nakabachi  et
al. 2014; Nowack et al. 2016)

Loss of peptidoglycan and phospholipid pathways and thus 
reliance on host-derived cell envelopes (often with an 
outermost ‘symbiosomal’ membrane)

Tremblaya, Hodgkinia, Nasuia/Zinderia,
Carsonella

(McCutcheon  et  al. 2009b;  McCutcheon  &  Von
Dohlen  2011;  Bennett  &  Moran  2013;  Husnik  &
McCutcheon 2016)

Reliance on the host cell for division# chromatophore
Kinetoplastibacterium

(Nowack et al. 2008; Motta et al. 2010; Brum et al.
2014)



Table  2: Genome  features  of  the  most  highly  reduced  genomes  of  animal
endosymbionts  (Carsonella,  Hodgkinia,  Tremblaya,  Nasuia),  the  most  gene-rich
organelle  genomes  (mitochondrial  genomes  of  Jakobida  and  plastid  genomes  of
glaucophyta  and  red  algae),  and  several  selected  endosymbionts  of  unicellular
eukaryotes.

Lineage Genome size
(bp)

CDS
(pseudo)

G + C 
(%)

tRNAs |
rRNAs

Endosymbionts of unicellular eukaryotes

‘chromatophore’ (P. chromatophora) 1,021,616 bp 867 (NA) 39.0 42 | 6

Kinetoplastibacterium oncopeltii 810,172 bp 694 (NA) 31.2 43 | 9

Atelocyanobacterium thalassa 1,443,806 bp 1133 (NA) 31.1 37 | 6

‘spheroid body’ (Epithemia turgida) 2,794,318 bp 1720
(225)

33.4 39 | 6

Endomicrobium trichonymphae Rs-D17 1,125,857 bp 761 (121) 35.2 45 | 3

Highly reduced genomes of animal (insects in all cases) endosymbionts

Carsonella ruddii HT 157,543 bp 180 (NA) 14.6 28 | 3

Tremblaya phenacola PAVE 170,756 bp 178 (3) 42.2 31 | 4

Tremblaya princeps PCIT 138,927 bp 125 (16) 58.8 10 | 6

Nasuia deltocephalinicola ALF 112,091 bp 137 (NA) 17.1 29 | 3

Hodgkinia cicadicola DSEM 143,795 bp 169 (NA) 58.4 15 | 3

Gene-rich chloroplast genomes (from Glaucophyta and Rhodophyta)

Cyanophora paradoxa 135,599 bp 149 (NA) 30.5 36 | 6

Cyanidioschyzon merolae 149,987 bp 207 (NA) 37.6 31 | 3

Porphyridium purpureum 217,694 bp 224 (NA) 30.0 30 | 6

Porphyra purpurea 191,028 bp 209 (NA) 33.0 37 | 6

Hildenbrandia rivularis 189,725 bp 184 (NA) 32.4 31 | 3

Gene-rich mitochondrial genomes (from Jakobida)

Reclinomonas americana 69,034 bp 67 (NA) 26.1 26 | 4

Andalucia godoyi 67,656 bp 72 (NA) 36.3 29 | 3

Histiona aroides 70,177 bp 72 (NA) 35.4 26 | 3

Jakoba libera 100,252 bp 84 (NA) 32.0 26 | 3

Jakoba bahamiensis 65,327 bp 68 (NA) 32.2 26 | 3
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Figure 1: (A): Bacterial genome size correlates to total number of protein-coding
genes. The X axis represents genome size and the Y axis represents total number of
protein coding genes.  (B): Bacterial genome sizes compared to GC content. The X
axis represents genome size and the Y axis represents GC content. Bacteria are in
blue, plastids in green, and mitochondria in magenta.
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Figure 2: Selected lineages of symbiotic bacteria and organelles sorted according to
genome sizes and annotated with estimates of their age. Note that early obligate
endosymbionts such as several Sodalis lineages or ‘spheroid bodies’ of diatoms have
large genome sizes. Several lineages with a different genus name, but originating
from the same ancestor (e.g.  Wolbachia,  Sodalis and  Arsenophonus)  are collapsed
into  a  single  row  to  highlight  genome  reduction  associated  with  facultative  or
obligate  lifestyle.  Endosymbionts  of  animals  are  in  black  and  endosymbionts  of
unicellular eukaryotes are in orange. Secondarily expanded gene-poor genomes of
mitochondria and plastids are not shown for simplicity.
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Figure 3: A  schematic  timeline  of  almost  two billion  years of  mitochondrial  and
plastid evolution contrasted to much shorter evolution of the oldest known and most
cellulary integrated symbioses in multicellular (insects)  and unicellular (Paulinella
chromatophora)  eukaryotes.  Numerous  acquisitions  of  complex  plastids  are  not
shown for simplicity.
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Figure 4: Genetic machinery (replication, transciption, and translation) genes shared
by  the  most  highly  reduced  endosymbiont  genomes  (Carsonella,  Hodgkinia,
Tremblaya,  Nasuia)  in  comparison  to  two  gene-rich  organelle  genomes  (the
mitochondrial genome of  Andalucia godoyi and the plastid genome of  Porphyridium
purpureum). Three different cellular organizations found in insect endosymbionts are
shown:  single  species  symbiosis,  obligate  ‘intrabacterial’  co-symbiosis  (one
endosymbiont inside another), and obligate co-symbiosis with both symbionts present
in their  own bacteriocytes.  Note that  that all  of  the endosymbiont genomes have
retained  at  least   a  minimal  set  of  DNA polymerase  proteins  and  that  the  only
endosymbiont lineage missing all aminoacyl-tRNA synthetases is Tremblaya princeps
with intrabacterial symbionts likely supplementing this function.
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Summary

This PhD thesis unfolds a path to an intimate endosymbiosis that can be compared to
what we think happened before (and to some extent after)  bacterial  ancestors of
eukaryotic organelles, mitochondria and plastids, became highly integrated into their
host cells. First, the extreme genome reduction of mealybug symbionts has not been
enabled  by  endosymbiotic  gene  transfer  to  the  host  nucleus,  but  rather  by  very
intimate  host-symbiont-symbiont  cooperation  and  horizontal  gene  transfer  from
diverse  bacteria  infecting  the  host  oocytes.  Second,  the  marked  fluidity  over
evolutionary time in the mealybug system implies that serial symbiont replacement
can happen even in the most intricate symbiotic arrangements, and that pre-existing
horizontally transferred genes can remain stable on genomes in the face of extensive
symbiont turnover. Do these results allow us to say that insect endosymbionts are
comparable to mitochondria and plastids? They do not if you define organelles as
organisms that originated early in the eukaryotic clade and dramatically shaped its
evolution. But if we put aside age and perceived specialness, many of the mechanistic
and evolutionary outcomes of intimate endosymbiosis discussed in this thesis seem
similar between organelles and insect endosymbionts. I argue that these other, much
younger symbioses may tell us something about how the mitochondria and plastids
came to be,  at  the very least by revealing what types of  evolutionary events are
possible as stable intracellular relationships proceed along the path of integration.
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