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Abstract 

The aim of this thesis is to explore the application of various artificial intelligence (AI) 

techniques for the prediction of time series data, which is prevalent in fields such as 

finance, economics, and engineering. Accurate time series prediction is essential for 

effective decision-making and planning. This thesis reviews several traditional and 

state-of-the-art AI techniques used for time series prediction, including linear 

regression, ARIMA, support vector regression, random forests, and deep learning. 

These techniques are applied to different time series datasets, encompassing both 

univariate and multivariate data. The performance of the predictive models is evaluated 

using various scalar metrics. The performance of the models was different depending on 

the type of the dataset. Additionally, this thesis includes the development of a user 

interface application that allows users to change parameters and forecast new results 

based on their entries. Furthermore, the thesis discusses the challenges and limitations 

of using AI techniques for time series prediction and provides suggestions for future 

research directions. 
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INTRODUCTION 

 

Time series forecasting can aid in comprehending how past data impacts the future, 

making it a valuable tool. By examining previous data, identifying patterns, and 

generating short or long-term predictions, this process is accomplished. Time series is 

considered a special type of data set in which one or more variables are measured over 

time. This measurement could be daily, monthly, quarterly, or yearly [1]. 

 

Artificial intelligence (AI) has become a powerful tool for time series prediction, 

allowing for the analysis and forecasting of patterns and trends in data. The use of AI 

for time series prediction has the potential to greatly improve our ability to analyse and 

forecast patterns and trends. With continued advances in AI and deep learning, we can 

expect to see even more powerful and accurate models for time series prediction in the 

future. However, time series prediction using AI is not without its challenges. One 

major challenge is dealing with missing or incomplete data, as well as handling the 

large amounts of data that are typically present in time series datasets. Another 

challenge is dealing with non-stationary data, where the statistical properties of the data 

change over time. By using preprocessing techniques to adjust the datasets and feature 

engineering to improve them, we can develop very powerful models for time series 

forecasting [2]. 

 

Mainly using ML (Machine Learning), which is a subset of artificial intelligence, 

enables computers to learn without being explicitly programmed with predefined rules. 

One of the biggest features of machine learning algorithms is their ability to improve 

over time. As larger quantities of data are processed, ML technology can enhance its 

efficiency and precision. This enables the algorithm to gain more experience, leading to 

better decision-making and predictions. With the advent of machine learning methods, it 

becomes more robust and more convenient to deal with the aforementioned difficulties 

[3]. 

 



10 

 

In this thesis, multiple machine learning models are developed and applied to time-

series datasets to predict the future. The datasets can be related to fields such as 

economics and networking. Several machine learning methods will be utilized, 

including supervised and unsupervised learning. Moreover, deep learning algorithms 

will also be employed. Furthermore, the thesis illustrates which groups of algorithms 

are the most suitable and have the best performance. 
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1. TIME SERIES   

 

Time series is a special type of dataset in which one or more variables are measured 

over time. In time series, observations are measured over time, with each data point 

corresponding to a specific point in time. This means that there is a relationship between 

different data points in your dataset. This has important implications for the types of 

machine learning algorithms that you can choose and apply to the time series dataset 

[4]. 

 

There are already many readily available datasets on the internet, and in this master’s 

thesis, multiple datasets will be used to try different models and compare the 

performance of each model’s algorithms, selecting the most suitable one. 

1.1 Time Series Main Purposes and Usages 

 

There are many uses of time series analysis, and some of the main applications are: 

 

Forecasting: Time series analysis can be used in fields like finance, where forecasting 

stock prices and market patterns is crucial for making investment decisions. It estimates 

future values of a variable based on past observations. 

Trend analysis: Time series analysis can identify patterns in data over time. This is a 

useful tool for identifying shifts in consumer behaviour, market demand, and other 

elements that affect business performance. 

Seasonality analysis: Time series analysis can help identify seasonal patterns in data. 

This is useful for many industries, such as retail, where sales tend to rise at particular 

times of the year. 

Anomaly detection: Time series analysis can detect anomalies or outliers in data. This is 

helpful for various purposes, including identifying manufacturing equipment failure and 

financial transaction fraud. 

Control charting: Time series analysis can be used to create control charts that monitor 

processes over time. This is useful in manufacturing, where monitoring the quality of 

production processes is critical for ensuring product quality. 
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In general, time series analysis is a valuable method for comprehending and analysing 

time-dependent data in a range of fields and applications [5]. 

1.2 Time Series Forecasting In Machine Learning 

 

Machine learning, like the human brain, acquires knowledge and comprehension 

through input. The process of machine learning commences with the collection of 

observations or data, including examples, direct experience, or instruction. It seeks 

patterns in the data to facilitate future inferences based on the given examples. The 

primary aim of ML is to allow computers to learn autonomously without human 

intervention or assistance and adjust actions accordingly. Machine learning forecasting 

has proven to be the most efficient method for capturing patterns in sequences of both 

structured and unstructured data for further time series analysis and forecasting. 

 

ML has proven to be valuable because it can solve problems at a speed and scale 

unattainable by humans. With massive amounts of computational ability behind a single 

task or multiple specific tasks, machines can be trained to identify patterns and 

relationships in input data and automate routine processes [6]. 
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2. TIME SERIES ANALYSIS AND PREDICTION 

 

Time series analysis is a statistical method used to analyse time-dependent data 

collected at regular intervals, enabling observation of past and present data to forecast 

future trends. 

 

The process of time series analysis encompasses several steps: 

- Data collection: Time series data is collected at regular intervals, such as hourly, 

daily, weekly, or monthly. 

- Data preparation: The data is pre-processed to ensure suitability for analysis, 

including verification for missing values, outliers, and other errors. 

- Data analysis: The data is analysed and visualized to identify patterns, trends, 

and other characteristics. 

- Model selection: A statistical model that best fits the data and enables prediction 

is chosen. 

- Model estimation: Using the provided data, the parameters of the selected model 

are calculated. 

- Model evaluation: The performance of the model is assessed using various 

metrics, including mean squared error, mean absolute error, and others. 

- Forecasting: The model is utilized to forecast future values of the time series [7]. 

Below in the Figure 2.1 it shows the steps of the process from the start to the end. 

 

 

Fig 2.1 : Flowchart of  the Time Series analysis 
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2.1 Time series stationary data 

 

Time series data that is stationary has statistical features like mean, variance, and 

autocorrelation that don't change over time. The time series' statistical characteristics, in 

other words, do not change over time. 

Because almost every time series models require stationarity, stationary data is crucial 

in time series analysis. Making predictions based on historical data is made simpler by 

stationarity, which also streamlines the modelling process. 

 

Stationarity has two types: 

 

Strict stationarity: A time series is strictly stationary if the joint distribution of any 

collection of time points is not affected by time translation. This indicates that 

regardless of when the data is obtained, the distribution of the data remains constant. 

Mathematically, if 𝑋𝑡 represents the time series, then for any 𝑡1, 𝑡2, … , 𝑡𝑘, 

and any time shift ℎ, the joint distribution of 𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑘, is the same as the joint 

distribution of 𝑋𝑡1+ℎ, 𝑋𝑡2+ℎ, … , 𝑋𝑡𝑘+ℎ [8]. 

 

Weak stationarity: If a time series' mean, variance, and autocorrelation remain 

constant throughout its course, it is considered weakly stationary. This indicates that 

while the distribution of the data may change over time, the statistical characteristics of 

the data remain constant. 

The main distinction between strict and weak stationarity is that strict stationarity 

demands that the statistical characteristics of the time series remain constant regardless 

of the measurement time, whereas weak stationarity permits some change in these 

characteristics across time. 

 

Non-stationary time series are those that are not constant throughout time. Non-

stationary data may indicate trends, seasonality, and other recurring patterns. It may be 

essential to alter the data in order to remove the trend or seasonality before performing 

an analysis on non-stationary data [9] [8]. 
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2.2 Time series decomposition 

 

Time Series Decomposition is a technique used to extract multiple types of variation 

from your dataset. 

Seasonality is a recurring movement that is present in your time series variable. 

Trend can be a long-term upward or downward pattern and describe increasing or 

decreasing behaviour of the time series frequently presented in linear modes. 

Noise refers to the non-systematic aspect of a time series that deviates from the 

common model values and cannot be explained by seasonality or trend. 

A created dataset could be used as an example to understand how to decompose a time 

series in Python. The code to import the data is as follows: (Dataset to data frame using 

Pandas). After that, the decomposition can be done using the Statsmodels’ 

seasonal_decompose function to generate a plot that will split the time series into trend, 

seasonality, and noise. An example of how it should look like is provided. This 

decomposition data shows an upward trend and strong seasonality [10]. 

2.3 Time series models univariate vs multivariate 

 

There are two types of time series models univariate vs multivariate 

The Univariate time series models are forecasting models that use only one variable 

(the target variable) and its temporal variation to forecast the future. Univariate models 

are specific to time series. 

(Time series with a one time-dependent variable and a single independent variable) . 

 

If there is other data that will influence the predictions. In this case, Multivariate time 

series models can be used. Multivariate time series models are similar to univariate time 

series models but are adapted to integrate external variables. 

(Time series with one time-dependent variable and more than one independent variable) 

[11]. 

 

In the Table 2.1 briefly describes the differences between The Univariate Model and the 

Multivariate Model. 
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Univariate Model Multivariate Model 

Uses only one independent variable Uses more than one independent variable 

Used when the model depends on only a 

single variable. 

Used when other data will influence the 

predictions. 

The model assumes that there is no 

relationship between the target variable 

and other variables. 

It takes into account the relationships 

between multiple variables. 

Simple and requires less computation and 

resources compared to multivariate 

models 

More complex and computationally 

intensive. However, it can offer a deeper 

understanding of the modelled system 

Tab. 2.1: Comparison of Univariate and Multivariate Models 
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3. TIME SERIES FORECASTING MODELS 

 

There are several classical and modern machine learning methods that differ in many 

things like accuracy, speed, errors and losses.  

The properties of the time series data, the forecasting horizon, the presence of trends 

and seasonality, and the available processing power all influence model selection. 

Several different forms of time series analysis would be discussed below. 

3.1 Classical time series models 

 

Typically, these models are only suitable for time series analysis and not applicable to 

other types of machine learning. They rely heavily on temporal variations within a time 

series and work well with univariate time series. Some advanced options exist to add 

external variables into the models as well. 

Although they may have prioritized linear relationships, these models are still advanced 

and exhibit strong performance on a diverse range of problems, assuming that your data 

is suitably prepared and the method is well-configured. 

 

3.1.1  ARIMA Family 

The ARIMA family of models is a set of smaller models that can be combined. Each 

part of the ARMIA model can be used as a stand-alone component, or the different 

building blocks can be combined. When all of the individual components are put 

together, the SARIMAX model is obtained [12]. 

 

1. Autoregression (AR) Represents the model of the following step in the 

sequence as a linear equation involving the observations from previous time 

steps. The notation for the model involves specifying the order of the model p as 

a parameter to the AR function, The simplest model is the AR(1) model: It 

utilizes solely the preceding timestep's value to forecast the current value. The 

maximum number of values that can be used is the total length of the time 
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series. The method is suitable for univariate time series without trend and 

seasonal components. 

 

The mathematics equation of an autoregressive model of order p (AR(p)) can be 

expressed as: 

 

𝑦𝑡 =  𝑐 +  𝛴(𝛼𝑖 ∗  𝑦{𝑡−𝑖}) + 𝜀𝑡.                                                                                (3.1) 

 

where 𝑦𝑡 stands for the dependent variable at time t, c is a constant term, 𝛼𝑖 is 

the dependent variable's lag coefficients up to order p, and 𝜀𝑡 is the error term at 

time t, which is assumed to have a normal distribution with a mean of zero and a 

constant variance. Based on 𝑦𝑡 's previous values up to order p, weighted by the 

associated coefficients, the autoregressive model forecasts its value. 

 

2. Moving average (MA) The Moving Average is the second building block of the 

larger SARIMAX model. It operates similarly to the AR model: it uses past 

values to predict the current value of the variable. A moving average model is 

different from calculating the moving average of the time series. The MA model 

can use multiple steps back in time as well. This is represented in the order 

parameter called q. For example, an MA(1) model has an order of 1 and uses 

only one time step back. The method is suitable for univariate time series 

without trend and seasonal components. 

 

The mathematics equation of a moving average model of order q (MA(q)) can be 

expressed as: 

 

𝑦𝑡 =  𝜇 +  𝜀𝑡 +  𝛴(𝛽𝑗 ∗  𝜀{𝑡−𝑗}).                                                                      (3.2) 

 

where 𝑦𝑡 represents the dependent variable at time t, μ is the mean of the series, 

𝜀𝑡 is the error term at time t, and 𝛽𝑗 are the coefficients of the lagged error terms 

up to order q. The moving average model predicts the value of 𝑦𝑡 based on the 

past error terms up to order q, weighted by the corresponding coefficients [13]. 
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3. Autoregressive moving average (ARMA) it combines the two previous 

building blocks into one model. ARMA can employ both the value and the 

forecast errors from the previous instances. ARMA can have different values for 

the lag of the AR and MA processes. For example an ARMA(1, 0) model has an 

AR order of 1 ( p = 1) and an MA order of 0 (q=0). This is actually just an 

AR(1) model. The MA(1) model is the same as the ARMA(0, 1) model. Other 

combinations are possible: ARMA(3, 1) for example has an AR order of 3 

lagged values and uses 1 lagged value for the MA. 

The method is suitable for univariate time series without trend and seasonal 

components. 

 

The mathematics equation of an Autoregressive Moving Average model of order 

p and q (ARMA(p,q)) can be expressed as: 

 

𝑦𝑡 =  𝑐 +  𝛴(𝛼𝑖 ∗  𝑦{𝑡−𝑖}) +  𝛴(𝛽𝑗 ∗  𝜀{𝑡−𝑗}) +  𝜀𝑡.                                          (3.3) 

 

where 𝑦𝑡 represents the dependent variable at time t, c is a constant term, 𝛼𝑖 are 

the coefficients of the lags of the dependent variable up to order p, 𝛽𝑗 are the 

coefficients of the lagged error terms up to order q, 𝜀𝑡 is the error term at time t, 

which is assumed to be normally distributed with mean zero and constant 

variance. The ARMA model predicts the value of 𝑦𝑡 based on its past values up 

to order p and the past error terms up to order q, weighted by the corresponding 

coefficients. 

 

4. Autoregressive integrated moving average (ARIMA) It represents the 

subsequent step in the sequence as a linear equation involving the differenced 

observations and residual errors from previous time steps. It combines both 

Autoregression (AR) and Moving Average (MA) models as well as a 

differencing pre-processing step of the sequence to make the sequence 

stationary, called integration (I). For example, an ARMA(1,1) that needs to be 

differenced one time would result in the following notation: ARIMA(1, 1, 1). 
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The first 1 is for the AR order, the second one is for the differencing, and the 

third 1 is for the MA order. ARIMA(1, 0, 1) would be the same as ARMA(1, 1). 

This model needs a stationary time series, stationarity means that a time series 

remains stable. The method is suitable for univariate time series with trends and 

without seasonal components. 

 

The mathematics equation of an Autoregressive Integrated Moving Average 

model of order p, d, q (ARIMA(p,d,q)) can be expressed as: 

 

𝛥𝑑𝑦𝑡 =  𝑐 +  𝛴(𝛼𝑖 ∗  𝛥𝑑𝑦{𝑡−𝑖}) +  𝛴(𝛽𝑗 ∗  𝜀{𝑡−𝑗}) +  𝜀𝑡.                                 (3.4) 

 

where 𝛥𝑑 represents the differencing operator applied d times to the series, 𝑦𝑡 

represents the dependent variable at time t, c is a constant term, 𝛼𝑖 are the 

coefficients of the lags of the differenced dependent variable up to order p, 𝛽𝑗 

are the coefficients of the lagged error terms up to order q, 𝜀𝑡 is the error term at 

time t, which is assumed to be normally distributed with mean zero and constant 

variance. The ARIMA model predicts the value of the differenced series at time 

t based on its past values up to order p, the past error terms up to order q, and the 

degree of differencing d. The original series can be obtained by reversing the 

differencing operation [14]. 

 

5. Seasonal autoregressive integrated moving-average (SARIMA) SARIMA 

notation is quite a bit more complex than ARIMA, as each component 

incorporates a seasonal parameter in addition to the standard parameter. The 

model represents the subsequent step in the sequence as a linear equation 

involving the differenced observations, errors, differenced seasonal 

observations, and seasonal errors from previous time steps. It combines the 

ARIMA model with the ability to perform the same autoregression, differencing, 

and moving average modelling at the seasonal level. For example, let’s consider 

the ARIMA(p, d, q) as seen before. In SARIMA notation, this becomes 

SARIMA(p, d, q)(P, D, Q)m. 
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6. Seasonal autoregressive integrated moving-average with exogenous 

regressors (SARIMAX) It’s the most complex variant. It regroups 

Autoregressive AR, Moving Average MA, differencing, and seasonal effects. 

And it adds the X: external variables. 

So it is considered as a significant advancement in time series forecasting 

because of its capacity to adapt to both external forces and seasonal patterns. 

SARIMAX captures complicated temporal dynamics better than ARIMA since it 

includes seasonal components and exogenous variables. Because of its 

adaptability, SARIMAX can forecast time series data that change seasonally and 

are impacted by outside variables with greater accuracy and dependability. 

SARIMAX is the best option in the ARIMA group for tackling real-world 

forecasting difficulties since it gives analysts and researchers an effective tool 

for modelling and predicting a broad range of time series phenomena. 

 

3.1.2 Vector autoregression (VAR) and its derivatives VARMA and VARMAX 

Vector Autoregression, or VAR as a multivariate alternative to Arima. So instead of 

predicting one dependent variable, it can predict multiple time series at the same 

time. This can be especially useful when there are strong relationships between your 

different time series [15].  

1. The VARMA model is the multivariate equivalent of the ARMA model. 

VARMA is to ARMA what VAR is to AR: it adds a Moving Average 

component to the model. 

2. VARMAX The X represents external (exogenous) variables. Exogenous 

variables are variables that can help your model to make better forecasts, but 

that do not need to be forecasted themselves. 

3. More advanced versions, such as seasonal VARMAX (SVARMAX), do exist, 

but they can become quite complex and specialized. It can be challenging to 

find efficient and user-friendly implementations for these models. When 

models become overly complex, it may become difficult to understand their 

inner workings, and it is often better to explore other, more familiar models. 
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3.2 Supervised models 

 

Supervised models are a family of models that are used for many machine-learning 

tasks. A supervised machine learning model employs well-defined input variables and 

one or multiple output (target) variables. The main difference between Classic models 

and Supervised models is that they consider that variables are either dependent variables 

or independent variables. Dependent variables, or target variables, are the variables that 

you want to predict. Independent variables are the variables that help you to predict. 

And supervised learning models can be divided into two groups Regression and 

Classification [16]. 

3.2.1 Linear regression  

 

It’s the simplest supervised machine learning model. Linear Regression estimates linear 

relationships: Each independent variable possesses a coefficient that reflects its impact 

on the target variable. 

 

3.2.2 Simple Linear Regression (SLR) 

 

is a Linear Regression in which there is only one independent variable. An example of a 

Simple Linear Regression model in non-time series data could be the following: hot 

chocolate sales that depend on the outside temperature 

The model should relate between two variables, the independent variable (often denoted 

as 𝑥) and the dependent variable (often denoted as 𝑦) [17]. 

 

The mathematical equation for a simple linear regression model is: 

 

𝑦 =  𝛽0  + 𝛽1𝑥 +  𝜀.                                                                                                 (3.5) 

 

where: 

y is the dependent variable (or response variable) 

x is the independent variable (or predictor variable) 

𝛽0 is the intercept (or constant) 
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𝛽1 is the slope (or regression coefficient) 

ε is the error term (or residual) 

The relationship between the independent variable x and the dependent variable y is 

represented by a straight line in the equation. The value of y, when x is equal to zero, is 

represented by the intercept, while the slope indicates the change in y for each unit 

change in x, and we can use the regression equation to make predictions about the 

dependent variable based on new values of the independent variable [18]. 

 

3.2.3 Multiple Linear Regression (MLR) 

 

Rather than using only one independent variable, multiple independent variables are 

employed. It’s like converting a 2D graph into a 3D graph, where the third axis 

represents the variable Price. In this case, a linear model that explains sales using 

temperature and price is built. As many variables as needed could be added. 

 

However, in this example, the dataset is not a time series. Therefore, it should be 

slightly modified to employ this technique for time series data, incorporating variables 

such as year, month, day of the week, etc. [19]. 

 

In multiple linear regression, where there are more than one independent variable, the 

equation is: 

 

𝑦 =  𝛽0  + 𝛽1𝑥1  +  𝛽2𝑥2 + . . . + 𝛽𝑛𝑥𝑛  +  𝜀.                                                             (3.6) 

 

Where 𝒙𝟏, 𝒙𝟐, ..., 𝒙𝒏 are the n independent variables and 𝜷𝟏, 𝜷𝟐, ..., βn are their 

corresponding regression coefficients [18]. 

 

3.2.4 Decision Tree (DT) 

 

A decision tree is a simple algorithm with a tree-like structure used for both 

classification and regression tasks. It has a hierarchical tree structure consisting of a root 

node, branches, internal nodes, and leaf nodes. The decision tree begins with a root 

node that does not have any incoming branches. Outgoing branches from the root node 
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feed into internal nodes, also known as decision nodes. Leaf nodes represent all possible 

outcomes within the dataset, and the root node represents the entire dataset. 

 

The decision tree model is not represented by a single mathematical equation. Instead, it 

is a hierarchical structure consisting of nodes and branches representing decision rules 

based on the values of input features. 

 

In the decision tree model, nodes and branches represent decision rules based on input 

features. Each internal node corresponds to a feature or attribute, and each branch 

represents a decision rule based on the value of that feature. The decision tree 

recursively partitions the data into smaller subsets based on the values of the input 

features until a stopping criterion is met. 

 

Once the decision tree reaches a leaf node, it provides a prediction for the corresponding 

input features. The prediction can be a single value, such as in regression trees, or a 

class label, such as in classification trees. Therefore, the decision tree model is not 

expressed as a mathematical equation, but rather as a set of decision rules represented 

by the tree structure [20]. 

The concept of information gain is one of the main features determining the best 

splitting ways of the data for each node to achieve the best performance. 

Another concept is entropy, which measures the impurity in the dataset and quantifies 

the randomness in the data. A node with low entropy is considered pure, while high 

entropy indicates mixed data. 

Information gain, therefore, aims to reduce the entropy of the data and create more 

homogeneous subsets, resulting in a purer dataset. 

This is the method used to select the best split at each node - utilizing information gain - 

to achieve a more effective partitioning of the data [21]. 

In the below Figure 3.1 shows the decomposition of the decision tree. 
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Fig 3.1 : Graphs of the Decision tree decomposition 

 

Overfitting is one of the most common issues in the Decision tree, as they often produce 

intricate models that capture noise in training data rather than underlying patterns. 

 

To overcome this issue, several strategies can be employed: 

- Pruning: Cutting off parts of the tree that don't significantly contribute to making 

predictions. This simplifies the tree and prevents it from overfitting to noise. 

- Limiting the Depth: Restricting the depth of the tree or making decisions based 

on a minimum number of examples. This prevents the tree from learning too 

much from small details. 

- Minimum Samples per Group: Ensuring that each group in the tree has a 

sufficient number of examples. This prevents the tree from making decisions 

based on too few examples. 

- Cross-Validation: Assessing how well the tree performs on new data that it 

hasn't seen before. This helps in selecting the best settings for the tree and 

prevents it from overfitting to the training data. 

Ensemble Methods: Using many trees together to make predictions. This helps to smooth 

out the mistakes that individual trees might make and generate more reliable predictions 

[22]. 
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3.2.5 Random Forest (RF) 

 

It is a multiple DT algorithms running at once, It is an ensemble of decision trees. These 

many trees are constructed in a certain “random” way from a Random Forest. Each of 

the trees makes its own individual prediction and these predictions are then calculated 

as average to obtain a single result.  

The averaging process makes a random forest more effective than a single decision tree, 

improving its accuracy and reducing overfitting. There is no single mathematical 

equation for the random forest model as a whole; rather, each individual decision tree in 

the forest is represented by a set of decision rules and corresponding weights that define 

the importance of each input feature in the tree [20]. 

Figure 3.2 below describes how the concept of an RF algorithm goes through, dataset is 

randomly split into multiple subsets with each subset assigned to a different decision 

tree. Forecasts are then gathered from each decision tree, and the optimal path is chosen. 

 

By choosing the most effective splitting point at each node according to factors like 

variance reduction for regression or information gain for classification, the tree grows 

recursively. 

 

After training each decision tree, predictions are generated by averaging the forecasts of 

each individual tree. This process is referred to as voting (for classification) or 

averaging (for regression). In classification tasks, the final prediction is determined by 

computing the mode, or the most frequent class label, among the predictions. For 

regression tasks, the average of the predictions is utilized.   

  



27 

 

 

Fig 3.2 : Flowchart of the selection in Random Forest 

 

3.2.6 XGBoost 

 

It is an implementation of gradient-boosting decision trees and it is designed for speed, 

ease of use, and performance on large datasets. It stands out for its speed, as it does not 

require parameter optimization or tuning, allowing immediate use after installation 

without further configuration. Despite its speed, XGBoost maintains high accuracy. 

As an ensemble learning technique, XGBoost creates decision trees sequentially, with 

each tree correcting the mistakes of its predecessors. 

 

The boosting technique, on which XGBoost is based, aggregates the predictions of 

multiple weak learners, typically decision trees. Unlike bagging techniques such as 

Random Forest, which constructs trees independently, boosting techniques build trees 

sequentially, with each new tree learning from the mistakes of the previous ones. 

 

XGBoost uses many regularisation strategies to mitigate overfitting and enhance overall 

generalisation. 
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These strategies include shrinkage, depth constraint, and minimum child weight. 

And one of the main of its efficient handling of missing values, which allows it to 

handle real-world data with missing values without requiring significant pre-processing. 

Additionally, XGBoost has built-in support for parallel processing taking advantage of 

multicore processors and distributed computing frameworks like Apache Spark to speed 

up training on large datasets [23]. 

 

The objective function in the XGBoost combines a loss function L with a regularization 

term Ω. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐿 + 𝛺.                                                                                                   (3.7) 

 

Loss Function: It measures the difference between the predicted values and the actual 

labels. 

Regularization Term: It condemns complex models to prevent overfitting. It typically 

consists of two parts: 

- Tree Complexity Term: Measures the complexity of individual trees. 

- Number of Leaves Term. 

 

3.2.7 Support vector machines (SVM) 

 

It is a learning model that is used for classification or regression. This approach works 

well with high-dimensional spaces and can be used with small data sets effectively. 

When the algorithm is trained on a dataset, it can easily classify new observations 

efficiently. It achieves this by creating one or multiple hyperplanes that can separate the 

dataset into two classes. Hyperplanes serve as boundaries separating different classes, 

and their dimensionality depends on the number of input variables [24]. 

SVM can take many different forms, including Linear SVM which is the simplest form 

which tries to find a linear decision boundary and it works better when the data is 

linearly separable. 
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There are several other forms of SVM that are used to handle non-linearly separable 

data, those alternative forms use different kernel functions and methods aiming to 

modify the inputs by swapping them to be linearly separable again. 

The choice of the specific kernel function would be depending on the type or the nature 

of the input data. 

Polynomial SVM: this form uses from its name a polynomial kernel function which is 

aiming to map the input data to become a higher-dimensional space.    

 

𝐾(𝑥𝑡, 𝑥′) = (𝑥𝑡𝑥′
+ 𝐶)𝑑.                                                                                                                (3.8) 

 

where d is the degree of the polynomial and c is a constant. 

if the degree of the d is increased, the ability of the SVM to capture more complex 

decision boundaries gets better. 

Radial Basis Function (RBF) SVM: Also from its name, it uses RBF kernel function. 

 

𝐾(𝑥, 𝑥′) = exp (−𝛾||𝑥 − 𝑥′||2).                                                                    (3.9) 

 

here γ represents the kernel's bandwidth. 

This form is widely used with non-linear decision boundaries as it’s more fixable. 

Also, there are many other forms, even there are Custom Kernels which would be 

tailored to be matched with the captured data and designed after that [25]. 

 

3.2.8 Naive Bayesian Model 

 

It’s also one of the most popular Supervised models and it works greatly with very 

small data sets. but even with this simplification, The algorithm could be successfully 

applied to complex problems. It is not a single algorithm but a family of algorithms 

where all of them share a common principle. This model draws on common data 

assumptions, such as each attribute is independent [26]. 

The mathematical equation for the Naive Bayes model can be expressed as: 

 

P(y | 𝑥1, 𝑥2, . . . , 𝑥𝑛)  =  P(y)  ∗  P(𝑥1 | y)  ∗  P(𝑥2| y)  ∗ . . .∗  P(𝑥𝑛 | y) / P(𝑥1, 𝑥2, . . . , 𝑥𝑛).     (3.10) 
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y is the class variable.  

𝑥1, 𝑥2, ..., 𝑥𝑛 are the feature variables.  

P (y | 𝑥1, 𝑥2, ..., 𝑥𝑛) is the posterior probability of y given the values of 𝑥1, 𝑥2, ..., 𝑥𝑛. 

P(y) is the prior probability of y. 

P(𝑥1 | y), P(𝑥2 | y), ..., P(𝑥𝑛 | y) are the conditional probabilities of the values of 𝑥1, 𝑥2, 

..., 𝑥𝑛 given y. 

The joint probability model would be expressed as: 

 

𝑃(𝑦|𝑥) =
𝑃(𝑥1|𝑦)𝑃(𝑥2|𝑦)…𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2)…𝑃(𝑥𝑛)
 .                                                               (3.11)                                    

 

After a few adjustments, the equation used by the classifier can be expressed like this: 

 

ŷ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛
𝑖=1 .                                                          (3.12) 

 

This equation can be used to compute the posterior probability of each class y for a given 

input 𝑥1, 𝑥2, ..., 𝑥𝑛 and the class with the highest probability can be chosen as the 

predicted class for the input [27]. 

 

 

 

3.3 Deep learning-based time series models 

 

After the classical models and the supervised models have been discussed, each of them 

with their specific ways of fitting the models. 

Classical time series models primarily focus on the relationship between past and 

present data. 

Supervised machine learning models concentrate on identifying cause and effect 

relationships. 

Now, delving deeper into deep learning-based time series models, which is an advanced 

subfield of ML that employs algorithms inspired by the structure and function of 
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Artificial Neural Networks. These models improve on their own by analysing computer 

algorithms. There are various types of algorithms used in Deep Learning, some of 

which will be discussed below [28]. 

 

3.3.1 Recurrent Neural Network (RNN) 

 

I t’s basically a neural network with memory that can be used for predicting time-

dependent targets. RRNs are capable of retaining the previously recorded input state, 

enabling them to make decisions for future time steps. This allows the network to learn 

from sequential data, making it useful for various applications, including understanding 

time series [29]. 

The mathematical equation for the Recurrent Neural Network model can be expressed 

as: 

 

ℎ𝑡 = 𝑓(ℎ𝑡−1; 𝑥).                                                                                                         (3.13) 

 

When x is inputted into this network, state h, also referred to as a hidden state that is 

sent forward, incorporates it. A single time step is delayed as indicated by the black 

square. 

It simply allows the information which persists over time with recurrent connections to 

move from the previous time step to a new output, allowing the network to capture the 

dependencies in the data [30]. 

During the whole-time steps, the same shared set of parameters remains unchanged 

saving some processing and efficiently training the RNN more.  

And RNNs could be involved in many different applications or tasks because of their 

good ability to capture temporal dependencies making them perfect to suit any task 

whatever the data looks like. 

Below in the Figure 3.3 describes a recurrent neural network with no output which 

represents the equation. 
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Fig 3.3 : A recurrent neural network with no output which represents the equation 

 

 

3.3.2 LSTM (Long Short-Term Memory) 

 

LSTMs are a specific type of RNNs. They have proven useful for time series 

forecasting on multiple occasions. By retaining the previous input state, It is empowered 

to make decisions for future time steps, facilitating the network's learning from 

sequential data. And they were created mainly to find a solution to the gradient problem 

by providing the model with several gates to choose from. These gates let the model 

decide what information to identify as meaningful and what information to ignore [31]. 

 

LSTM mainly came for handling and vanishing gradients, it processes the sequence data 

and introduces a more sophisticated memory mechanism which is some cells repeating 

one after another to control the flow of information. 

Those cells consist of many components such as:  

- Forget Gate 𝒇𝒕 which decides if the information is needed or it could be discarded 

from the cell state. 

 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓).                                                                                     (3.14) 
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This gate (Forget Gate) decides which parts of the previous cell state 𝑐𝑡−1 are to be 

forgotten. 

σ is the sigmoid function, which outputs a value between 0 and 1.  

This value multiplies the previous cell state 𝑐𝑡−1 , and then decides the extent to which 

each component of the cell state is remembered or forgotten. A value close to 0 means 

“forget it”, while a value close to 1 means “retain it”. 

- 𝑊𝑓 is the weight matrix for the forget gate. 

- ℎ𝑡−1 is the output from the previous time step. 

- 𝑥𝑡 is the current input. 

- 𝑏𝑓 is the bias term for the forget gate. 

 

- Cell State 𝑐𝑡 which holds the important information and gets many time steps with 

many different states. 

 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡.                                                                                           (3.15) 

 

The previous cell state 𝐶𝑡−1 multiplied by the forget gate output 𝑓𝑡  determines how 

much the old state can retain. 

The candidate cell state 𝐶𝑡 multiplied by the input gate output 𝑖𝑡 determines how much 

of the new state to add. 

 

- Input Gate 𝑖𝑡 and Output Gate 𝑜𝑡, those gates are for the determination of the state of 

the cell and if it should be stored or output from the cell state. And the output gate 𝑜𝑡 

determines which parts of the cell state should be output as the hidden state ℎ𝑡. 

The output gate  𝑜𝑡 regulates the information flow from the cell state 𝑐𝑡 to the hidden 

state ℎ𝑡 The hidden state is passed to the next time step and can also be used as the final 

output of the LSTM. 

 

For the Input Gate:        

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖).                                                                                        (3.16) 
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For the Output Gate: 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜).                                                                                      (3.17) 

And for the hidden state ℎ𝑡: 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡).                                                                                                   (3.18) 

 

When this tanh is applied to 𝐶𝑡 scales the cell state values are between -1 and 1. 

All of this is described in the below Figure 3.4 as the LSTM architecture. 

 

 

Fig 3.4 : LSTM architecture 

 

 

3.3.3 Prophet and DeepAR 

 

They are 2 time series libraries that were open-sourced by Facebook and Amazon they 

are considered as black-box models. The idea is to have a Python library that does all 

the heavy lifting for you. Forecasts can be generated with minimal user input as they 

require little user specification. This can be an advantage, as it’s possible to 

automatically generate forecasting models without much knowledge or effort. But on 

the other hand, there is also a potential risk that if not carefully monitored, the 

automated model-building tool may produce a model that appears to be effective but 

does not actually perform well in reality [32] [33]. 
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The good thing about Prophet is that it is specifically designed for time series 

forecasting tasks with daily observations that exhibit trends, seasonality, and holiday 

effects, which is the main topic of this study. 

And what could be known about the model is that it decomposes the time series into 

three main components: trend, seasonality, and holidays. 

 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡.                                                                               (3.19) 

 

g(t) represents the trend component. 

s(t) represents the seasonal component. 

h(t) represents the holiday component. 

𝜀𝑡 is the error term, representing random noise in the data. 

 

And Prophet usually detects Seasonality automatically using the Fourier series even for 

the complex effects making it more flexible and give the option to specify and define 

the holiday component all of those options with easy and simple interface for the user 

without any complexity like in the RNN-LSTM for example all of this with a good 

handling and fitting for any large datasets [33]. 

 

Also the same for the DeepAR from Amazon was developed specifically for forecasting 

time series data and it should be using RNNs mixed with some autoregressive approach 

where previous observations provide the basis for the forecasts developed at each time 

step. and the RNNs capture dependencies over time. 

One of the advantages of this model is that it can parallelize training across multiple 

GPUs and instances, making it faster to train any big datasets and easier to customise 

requirements like hyperparameters [34]. 
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4. TIME SERIES FORECASTING LIBRARIES 

 

There are a wide variety of tools or techniques that could be used for time series 

forecasting as discussed in the first part of the thesis from classical statistical methods, 

the Supervised way, or advanced approaches like deep learning.  

There are many different choices of libraries or frameworks that can be used for time 

series forecasting. Each of the libraries has different methods for dealing with the 

various time series learning tasks regression, classification, or forecasting. 

Here are many of the main and most used ones with forecasting. 

 

4.1 Statsmodels 

 

Statsmodels is a Python library for statistical modelling and econometric analysis also it 

has Python packages that provide a complement to SciPy for statistical computations 

including a range of tools for classical statistical tests and models, including linear 

regression, time series analysis, and generalized linear models also advanced statistical 

methods such as panel data analysis, survival analysis, and Bayesian statistics. is 

designed to work with NumPy arrays and Pandas data frames. An extensive list of result 

statistics is available for each estimator. The results are tested against existing statistical 

packages to ensure that they are correct. 

It also provides tools for visualizing time series data, including line plots, scatter plots, 

autocorrelation plots, and partial autocorrelation plots. This helps to explore and 

diagnose a lot of factors and even potential issues over the data. 

Statsmodels is widely used in academia, finance, and industry for data analysis and 

modelling. It can be used of course Time Series Analysis with different modelling 

frameworks primarily focused on classical statistical modelling such as ARIMA, 

ARIMAX, VARMA, and VARMAX models as it includes classes for estimating those 

models and it allows the user to modify or specify the parameters of the model so it 

obtains the future forecast [35]. 
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There are many other functions included in the library that could be useful for time 

series forecasting The ‘seasonal_decompose’ function which decomposes a time series 

into its trend, seasonal, and residual components and this is very useful to analyse the 

patterns of the data. 

 

4.2 Sktime 

 

A unified framework for machine learning with time series. It takes inspiration from 

scikit-learn with a similar API and it provides an easy-to-use, flexible, and modular 

open-source framework for a wide range of time series machine learning tasks and 

provides a wide range of tools and algorithms for time series forecasting, classification, 

clustering, and regression.  

Sktime supports both univariate and multivariate time series and includes various pre-

processing, feature extraction, and evaluation methods specific to time series data. It 

also provides an interface for integrating external time series libraries and datasets. And 

the main technical specifications are: -In-memory computation of a single machine, no 

distributed computing. It is designed to be user-friendly and scalable. And is used in 

diverse applications such as finance, healthcare, and transportation. 

- Medium-sized data in pandas and NumPy.     

- Modular, principled, and object-oriented API. 

It’s mostly used and supports in focused on machine learning with time series data, 

including forecasting, classification, clustering, and regression like Supervised Time 

Series algorithms and methods, including implementation of interval-based classifiers, 

such as the supervised time series forest, as well as ROCKET [36]. 

 

4.3  Keras 

 

It is also one of the most used deep learning frameworks that support LSTMs and RNNs 

models. It’s Simple, Flexible, and Powerful The primary reason to use Keras is its 

guiding principle of being user-friendly, which translates to its ease of use for both 
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learning and building models, Keras offers the advantages of broad adoption and 

support for a wide range of production deployment options. 

It could be running on top of multiple backend libraries and be compatible with them 

like TensorFlow, Theano, or Microsoft Cognitive Toolkit. Switching between those 

different engines without any changes to the code. 

There are two main types of models available in Keras, the Sequential model, and the 

Functional one. As the sequential one is simpler and made of layers one is on the top of 

another like a stack each layer has one input and one output, and the data should be 

flowing sequentially through the layers, from input to output. 

On the other hand, The Functional API is more powerful and flexible, as it allows to 

modification of the whole architecture defines the model with multiple inputs and 

outputs, and then connects them using functional API layers. Making it perfect for more 

complex tasks with its advanced features. 

Keras also supplies many of the common deep-learning sample datasets via the Keras. 

Datasets class, for example, cifar10 and cifar100 small colour images, IMDB movie 

reviews [37]. 

 

4.4 Prophet 

 

Prophet is open-source software released by Facebook and it is a procedure for 

forecasting time series data based on an additive model where non-linear trends are fit 

with yearly, weekly, and daily seasonality, plus holiday effects. It is most effective 

when working with time series data that exhibit prominent seasonal effects and have a 

substantial amount of historical data spanning multiple seasons. Prophet is robust to 

missing data and shifts in the trend and typically handles outliers well [32]. 

 

And finally, below in Table 4.1 a comparison between the Time Series Forecasting 

Libraries. 
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Statsmodels Sktime Keras Prophet 

Python library for 

statistical modelling 

Python library for 

machine learning 

Python library for 

deep learning 

Python library for 

forecasting with 

seasonality 

It’s widely used in 

the academic 

community, 

finance, and 

industry for data 

analysis and 

modelling 

It’s mostly used 

and focused on 

machine learning 

with time series 

but it’s not widely 

used in the 

academic 

community 

It offers a variety 

of deep learning 

models for time 

series forecasting, 

like LSTM and 

GRU. 

It is widely used in 

industry but it may 

not be suitable for 

complex time 

series forecasting 

tasks. 

It may not be as 

user-friendly as 

other libraries. it 

provides many 

features but it may 

require some 

programming skills 

to use 

It's easy to use and 

it offers a 

unified API for 

time series 

forecasting, 

making it simple 

to compare and 

evaluate various 

models. 

It is easy to use, 

and it provides a 

high-level API for 

building deep 

learning models 

but it may require 

more 

computational 

resources 

compared to other 

libraries 

It is easy to use, 

and it provides a 

simple API for 

forecasting besides 

having unique 

features like 

automatic trend 

detection and 

seasonal 

decomposition 

It’s primarily 

focused on classical 

statistical modelling 

It’s mainly focused 

on ML Supervised 

Time Series 

algorithms and 

methods 

Mainly focused on 

deep learning 

Modelling 

Mainly focused on 

simple time series 

forecasting tasks 

Tab. 4.1: Comparison of Time Series Forecasting Libraries 
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5. TIME SERIES DATA PRE-PROCESSING 

 

The online datasets or the collected ones can have various formats and contain various 

data. Data pre-processing involves converting raw data into a useful and 

comprehensible format. Real-world or raw data usually has inconsistent formatting, and 

human errors, and can also be incomplete. So data pre-processing is a critical step that 

improves the completeness and efficiency of datasets for performing data analysis It's a 

crucial process that can affect the success of data mining and machine learning projects. 

It may affect the performance of machine learning models [38]. 

And this procedure includes many main steps like: 

1. Data Cleaning: The data can have many irrelevant and missing parts so to fix that  

- Missing Data can be handled in various ways like Ignore the tuples or fill the Missing 

values. 

Also, the missing data or values can be handled by many different approaches like 

replacing the missing values with the most recent observations by the forward-filling 

approach. Or replacing the missing values with the next observed value with the 

Backward-filling approach. Or just remove those time points if they could be neglected 

and will not affect the estimation or the forecasting 

- Noisy data refers to data that lacks meaning and cannot be interpreted by machines. 

This type of data is often generated as a result of faulty data collection or data entry 

errors. etc. It can be handled in the following ways Binning Method, Regression, and 

Clustering. 

2. Data Transformation: This step is taken in order to transform the data into 

appropriate forms suitable for the mining process. This involves the following ways 

Aggregation, Discretization, and Normalization. 

 

 

https://colab.research.google.com/drive/1UmTOoX332sYs0CT4n9vVXZCFdvcQRTzU?usp=sharing 

https://colab.research.google.com/drive/1UmTOoX332sYs0CT4n9vVXZCFdvcQRTzU?usp=sharing
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There are many common methods to bring the data to a common scale and to promote 

the development of the model including Min-max scaling and in that method, the data 

would be scaled with some certain range according to its value.  

Or other ways like Log transformation and Z-score normalization. 

 

3. Data Reduction: Since data mining is a technique that is used to handle huge 

amounts of data. While working with a huge volume of data, analysis became harder in 

such cases. In order to get rid of this, we use a data reduction technique. It aims to 

increase the storage efficiency and reduce data storage and analysis costs. 

And also many other ways to clean and prepare the data to be processed. 

By performing these pre-processing steps, Time series data can be cleaned, transformed, 

and made ready for analysis and modelling, which will increase the accuracy as well as 

reliability of any projections or insights derived from the data [39]. 

 

 

5.1 Dataset pre-processing for the models 

 

In the project, there will be 3 different datasets with the kind of univariate used and for 

each dataset, there will be 3 models applied on each and the datasets will be pre-

processed in a different way for each model to be ready for the processes and the 

forecasting eventually.  

Then there would be 2 another different Multivariate datasets which will be complex 

because there will be more than one column, also there will be two different models 

applied to them.   
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And below in the figures are the snippets of the datasets which would be used: 

 

Fig. 5.1: The generated dataset from Yahoo Finance 

                                   

                  

Fig. 5.2: Dataset 1 - Discount Rate & Dataset 2 - Number of accidents 

 

The first dataset we have it will be about the discount rate changed over time here in the 

Czech Republic according to CNB (Czech National Bank) it's a kind of simple dataset 



43 

 

that won't need a lot of pre-processing. But regarding the model that will be applied to 

the dataset, there should be some kind of modifications that should be applied first to 

the dataset to be able to be worked on, So for the first model which will be applied 

(SARIMAX) it should be converted to this valid format first as it’s shown in Listing 

5.1. 

# Convert 'VALID_FROM' column to datetime format 

df['VALID_FROM'] = pd.to_datetime(df['VALID_FROM'], 

format='%Y%m%d') 

 

# Generate some random data 

x = df['VALID_FROM'] 

y = df["CNB_DISCOUNT_RATE_IN_%"] 

 

# Set 'VALID_FROM' column as the index 

df = df.set_index('VALID_FROM') 

 

# Sort the dataframe by index (date) 

df = df.sort_index() 

 

 

Listing 5.1: Dataset pre-processing for SARIMAX Model 

 

And now then the dataset should be pre-processed and it can be continued with the next 

steps for the model. 

For the same dataset also there will be another model which will be applied on – below 

in Listing 5.2 - and it will need to be modified a little to be prepared and ready for this 

model. The other model would be (Prophet) it’s a time series forecasting model 

developed by Facebook. In addition to the previous pre-processing to the dataset there 

should be extra steps done to the dataset so it would be ready for the model. For this 

specific model the columns must be named as “ds” and “y” so the model can work on 

the dataset. 

 

# Load the dataset 

df = pd.read_csv(path+"/data.csv", sep="|") 
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# Convert 'VALID_FROM' column to datetime format 

df['VALID_FROM'] = pd.to_datetime(df['VALID_FROM'], 

format='%Y%m%d') 

 

# Set 'VALID_FROM' column as the index 

df = df.set_index('VALID_FROM') 

 

# Sort the dataframe by index (date) 

df = df.sort_index() 

 

 

# Prepare the data for Prophet 

train_data_prophet = train_data.reset_index() 

train_data_prophet.columns = ['ds', 'y'] 

 

Listing 5.2: Dataset pre-processing for Prophet Model 

 

Finally for the third model ( LSTM ) which is one of the most famous Deep learning 

models for Time series Forecasting it needs a lot of more data pre-processing to be able 

to work on the dataset effectively. So here also it will be like the previous codes it reads 

the data from a CSV file located at the specified path. The columns are renamed to 'date' 

and 'discount_rate', and the 'date' column is converted to a datetime object with the 

format '%Y%m%d'. Finally, the 'date' column is set as the index for the DataFrame. 

But after that there will be extra steps done starting from Scales the 'discount_rate' 

values in the DataFrame using the MinMaxScaler from the scikit-learn library. The 

values are scaled between 0 and 1. Scaling the data: Scaling the data to a common 

range, such as between 0 and 1, is often necessary to ensure that the model can learn 

from the data effectively. In this code, the MinMaxScaler from the scikit-learn library is 

used to scale the 'discount_rate' values between 0 and 1. 

There also will be splitting the data which it will be mentioned in the next pages so it 

could be skipped for now but there will be an important step also regarding the data pre-

processing which is called reshaping by restructuring the training and testing sets into a 

time series analysis-friendly manner, where each training example consists of a single 

input value (X_train) and an output value (Y_train), which is next in the sequence. 
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Afterward, two arrays are created, X_train and Y_train, each having the input and 

output values for the training set, and X_test and Y_test, each containing the input and 

output values for the testing set. In time series analysis, the data must frequently be 

reshaped into a certain format that is appropriate for the model being employed. Each 

training example in this code consists of a single input value and its associated output 

value. The training and testing data are reshaped into a format appropriate for time 

series analysis. 

 

# Read the data 

df = pd.read_csv(path+'/data.csv', sep='|') 

df.columns = ['date', 'discount_rate'] 

df['date'] = pd.to_datetime(df['date'], format='%Y%m%d') 

df.set_index('date', inplace=True) 

 

# Scale the data 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled_values = scaler.fit_transform(df.values.reshape(-1, 1)) 

 

# Split into train/test 

train_size = int(len(scaled_values) * 0.8) 

train, test = scaled_values[0:train_size,:], 

scaled_values[train_size:len(scaled_values),:] 

 

# Reshape into X=t and Y=t+1 

X_train, Y_train = [], [] 

for i in range(len(train)-1): 

    X_train.append(train[i]) 

    Y_train.append(train[i+1]) 

X_train, Y_train = np.array(X_train), np.array(Y_train) 

 

X_test, Y_test = [], []  

for i in range(len(test)-1): 

    X_test.append(test[i]) 

    Y_test.append(test[i+1]) 

X_test, Y_test = np.array(X_test), np.array(Y_test) 

Listing 5.3: Dataset pre-processing for LSTM Model 

All of this pre-processing which took place previously on the first dataset almost would 

be the same on the second dataset. Which is nearly close to the first dataset, but it’s 
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more complex. And it’s about the number of car accidents in the Czech Republic since 

2006 on a daily basis. But there will be of course some few changes needs to be done on 

the dataset to be prepared. 

For the third dataset, it will be not used a ready dataset from the internet like in the first 

two datasets. But this time the dataset would be created using API from Yahoo Finance 

to generate the third dataset. The ticker symbol "AAPL" is commonly used to represent 

Apple Inc. in financial markets, including stock exchanges. Ticker symbols are unique 

identifiers assigned to publicly traded companies to facilitate trading and tracking their 

stock prices. 

 

First, it’s needed to import Yahoo Finance and then fetch historical stock data for Apple 

Inc. from Yahoo Finance. And then generate the dataset and save it in df3 . Symbol = 

"AAPL" sets the variable symbol to "AAPL", which is the stock ticker symbol for 

Apple Inc. As shown in the Listing 5.4 below, the start-date and the end-date were 

provided to generate the desired dataset. 

import yfinance as yf 

 

# Fetching data from Yahoo Finance 

yf.pdr_override() 

symbol = "AAPL" 

start_date = "2010-01-01" 

end_date = "2022-12-31" 

df3 = pdr.get_data_yahoo(symbol, start=start_date, end=end_date) 

 

 

Listing 5.4: Dataset generated using API 
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And here it will be the generated dataset looks like as in the below Figure 5.1 

 

Fig. 5.1: The generated dataset 

 

Hypothesis Test 

A hypothesis test is used in time series forecasting to determine if a pattern or trend 

found in previous data is statistically significant and likely to continue in the future. A 

hypothesis on the time series' behaviour, such as whether it follows a specific pattern or 

trend, provides the basis of the study. After that, information from the time series is 

gathered, and statistical tests are run on it to determine how strong the evidence is in 

behalf of the hypothesis. With a certain degree of confidence, future values of the time 

series can be predicted using the outcomes of the hypothesis test. 

The code of the Hypothesis Test is described in the below Listing 5.5. 

from scipy import stats 

 

stat, p = stats.normaltest(df.Global_active_power) 

print('Statistics=%.3f, p=%.3f' % (stat, p)) 
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alpha = 0.05 

if p > alpha: 

    print('Data looks Gaussian (fail to reject H0)') 

else: 

    print('Data does not look Gaussian (reject H0)') 

Listing 5.5: Hypothesis Test 

 

So this code was to check whether the data follows a normal distribution or not, based 

on the calculated test statistic and p-value. 

And based on that it would show that or determine if a pattern or trend will be found in 

the data is statistically significant and likely to continue in the future. 

 

Dickey-Fuller test 

The Dickey-Fuller test is a statistical test used to determine whether a time series is 

stationary or not. 

By using this test, analysts can ascertain whether there are any trends or seasonality in a 

time series that should be taken into consideration before using forecasting models. 

- Null Hypothesis (H0): It suggests the time series has a unit root, meaning it is 

non-stationary. It has some time-dependent structure. 

- Alternate Hypothesis (H1): It suggests the time series does not have a unit root, 

meaning it is stationary. It does not have a time-dependent structure. 

- p-value > 0.05: Accept the null hypothesis (H0), the data has a unit root and is 

non-stationary. 

- p-value <= 0.05: Reject the null hypothesis (H0), the data does not have a unit 

root and is stationary. 

 

from statsmodels.tsa.stattools import adfuller 

from statsmodels.tsa.stattools import pacf 

 

#df2=df1.resample('D', how=np.mean) 

df2=df1.resample('D').agg(np.mean) 
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def test_stationarity(timeseries): 

    rolmean = timeseries.rolling(window=30).mean() 

    rolstd = timeseries.rolling(window=30).std() 

 

    plt.figure(figsize=(14,5)) 

    sns.despine(left=True) 

    orig = plt.plot(timeseries, color='blue',label='Original') 

    mean = plt.plot(rolmean, color='red', label='Rolling Mean') 

    std = plt.plot(rolstd, color='black', label = 'Rolling Std') 

 

    plt.legend(loc='best'); plt.title('Rolling Mean & Standard 

Deviation') 

    plt.show() 

 

    print ('') 

    dftest = adfuller(timeseries, autolag='AIC') 

    dfoutput = pd.Series(dftest[0:4], 

                         index=['Test Statistic','p-value','#Lags 

Used','Number of Observations Used']) 

    for key,value in dftest[4].items(): 

        dfoutput['Critical Value (%s)'%key] = value 

    print(dfoutput) 

test_stationarity(df2.Global_active_power.dropna()) 

Listing 5.6: The Dickey-Fuller Test 
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6.  TIME SERIES DATA SPLITTING 

Splitting a dataset refers to dividing a given dataset into two or more separate subsets, 

The main objective of splitting a dataset is to train and evaluate machine learning 

models effectively. This entails randomly separating the data into subsets, one of which 

will be used to train the model and the other for evaluating how well it performs. 

Machine learning frequently uses dataset splitting to evaluate the model's accuracy and 

generalizability. 

Splitting time series data is a crucial step in creating and testing prediction models. We 

can make sure that our models appropriately depict the patterns and trends in the data by 

maintaining the temporal order of the data. The size and complexity of the dataset, as 

well as the particular research topic being addressed, will determine which splitting 

strategy is used [40]. 

Time series data can be split using a variety of methods, but we'll probably go with the 

Fixed Split: In a fixed split, the dataset is simply divided into two parts, one of which is 

used for training and the other for testing. The first 80% of the data, for instance, can be 

used for training, and the remaining 20% is suitable for testing as shown in the below 

Figure 6.1. Although this methodology is simple to use, but it’s sometimes not the 

optimal one when dealing with huge datasets or time series with complex patterns [41]. 

 

Fig. 6.1: Splitting the dataset into training and test, As X= Date and Y= Stock Price’s 

Close 
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6.1  Train / Test Split 

 

In this thesis as mentioned before in the previous section the data pre-processing. Three 

models would be applied to 3 datasets, and all of those datasets would be handled in this 

section almost with the same way with the fixed split which mentioned before in the last 

paragraph.  

So for the first dataset it would be split in the ratio 80% for the training and the rest 20% 

for the test which mentioned in the below Listing 6.1 . 

# Define the ratio point (where to split the plot) 

ratio = 0.8 

 

# Split the data into training and testing sets 

train_size = int(len(df) * 0.8)  # 80% for training, 20% for 

testing 

train_data = df[:train_size] 

test_data = df[train_size:] 

 

Listing 6.1: Splitting data into training and test 

   

And here it will be the result as in the Figure 6.2 below 

 

Fig. 6.2: Splitting data into training and test As X= Date and Y= Number of Accidents 
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This splitting would be applied in the first and third models (SARIMAX) and (LSTM) 

but for the second model (Prophet) it won’t be applied because it’s a kind of black box 

model Because the method is built to handle time-series data with well-known 

seasonality patterns, the Prophet model does not normally divide the dataset into 

training and testing sets. The model analyses the previous data and uses it to forecast the 

future while considering seasonal changes and other data patterns. 

In other words, the Prophet model is a forecasting model which predicts future values 

by studying historical trends and patterns. It can manage seasonality and non-linear 

trends in the data since it models trend changes and seasonal patterns using a Bayesian 

framework. And this may lead to a good performance sometimes and a very bad 

performance other times depending on the dataset and its pattern which will be 

discussed in the next parts of the thesis. 
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7.  TIME SERIES FORECASTING MODELS 

 

In this thesis, three different kinds of Models will be applied to the datasets to compare 

their performances and accuracy those 3 models will be from the 3 different categories 

so the first model would be (SARIMAX) it's from the classic statistical time series 

model used for forecasting, The second model would be (Prophet) it's kind of black-box 

model which developed by Facebook and it is considered a type of machine learning 

model that falls under the category of additive models. The third model will be (LSTM) 

Long Short-Term Memory and it is a type of Recurrent Neural Network (RNN) which 

is a category of Deep Learning models used for time series forecasting. And here there 

will be the details of these models when they were applied to the different datasets and 

the differences between their implementations. 

 

7.1  SARIMAX 

 

The SARIMAX model is from Statsmodels. And Statsmodels is a Python library where 

a large selection of statistical models and tools are provided for data analysis. It contains 

functionality for statistical modelling, estimation, hypothesis testing, and more and is 

developed on top of NumPy, SciPy, and Pandas. One of the key components of 

Statsmodels is the tsa module, which focuses on time series analysis. 

 

Within the tsa module, Statsmodels provides the SARIMAX class, which stands for 

Seasonal Autoregressive Integrated Moving Average with Exogenous regressors. 

SARIMAX is an extension of the popular ARIMA (Autoregressive Integrated Moving 

Average) model, capable of managing seasonal trends in time series data. 

 

SARIMAX allows you to model and forecast time series by incorporating 

autoregressive (AR), differencing (I), moving average (MA), and seasonal (S) 

components. The model parameters, denoted as (p, d, q) × (P, D, Q, s), represent the 

orders of the AR, I, MA, and seasonal components, respectively. 
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Here's a breakdown of the parameters in SARIMAX: 

 

- p: The order of the autoregressive component, representing the number of 

lagged observations to include in the model. 

- d: The order of differencing, indicating the number of times the series needs to 

be differenced to achieve stationarity. 

- q: The order of the moving average component, representing the number of 

lagged forecast errors to include in the model. 

- P: The order of the seasonal autoregressive component. 

- D: The order of seasonal differencing. 

- Q: The order of the seasonal moving average component. 

- s: The length of the seasonal cycle (e.g., 12 for monthly data with yearly 

seasonality). 

And starting with code the first step would be importing the model from the library in 

Listing 7.1. 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

Listing 7.1: Importing the model from the Statsmodels library 

 

this of course would be after the general imports within Listing 7.2. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

Listing 7.2: General imports 

and then the next steps before applying the model on the dataset there should be some 

other steps which discussed before in the previous parts of the thesis from importing or 

generating the dataset itself, then making the data pre-processing and splitting it into 

training and testing. After that, the models themselves would be applied. Then the last 

step is the performance evaluation to determine which model is the best with the 

dataset. 

 



55 

 

7.1.1  Dataset 1 - Discount Rate 

 

First SARIMAX() function creates a SARIMA model instance. 

- The first argument ( train_data ) is the training data used to train the model. 

- The ( order ) parameter specifies the order of the autoregressive, integration, and 

moving average components of the model, respectively. In this case, it is set to 

(1,1,1), which means the model has one autoregressive term, one differencing 

term, and one moving average term. 

- The ( seasonal_order ) parameter specifies the order of the seasonal 

autoregressive, integration, and moving average components of the model, as 

well as the number of time steps in the seasonal pattern. In this case, it is set to 

(1,1,1,12), which means the model has one seasonal autoregressive term, one 

seasonal differencing term, one seasonal moving average term, and the seasonal 

pattern repeats every 12 time-steps (months, in this case). 

- The fit() function is used to train the SARIMA model using the specified 

training data. And then the trained model is stored in the ( result ) variable. 

- After that, the trained SARIMA model will be ready to predictions on new data 

in Listing 7.3 below. 

 

# Create and train the SARIMA model 

model = SARIMAX(train_data, order=(1, 1, 1), seasonal_order=(1, 1, 

1, 12)) 

result = model.fit() 

 

# Perform predictions on the test set 

predictions = result.predict(start=len(train_data), end=len(df)-1) 

Listing 7.3: Creating the train and test model 

 

After that it should be the Visualize the actual values vs. predicted values to compare 

the graphs and see the behaviour and the accuracy of the forecasting.  

The next step which would be discussed in the next sections would be to the evaluation 

of the performance and the accuracy of the predictions and forecasting using some 
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metrics. But at least you would be able to see that difference in the graphs below 

(Figure 7.1). 

 

Fig. 7.1: Difference between Actual and predicted data 

As shown in the graph the behaviour of the actual data and the predicted ones are not 

following the same numbers or the same pattern and the accuracy is not that much good 

of this model on this dataset but this will be discussed later. 

 

7.1.2 Dataset 2 - Number of accidents 

 

As the previous dataset this dataset also will be pretty much the same but with some 

little differences.  

So here instead of training on a subset of the data, it is using the entire dataset “df2” to 

see if the accuracy will be better or if the training would be longer or be done on a 

bigger amount of data. 

And then with the ( order ) and ( seasonal_order ) which are hyperparameters that 

specify the characteristics of the model discussed before  

- The ( order ) parameter is a tuple that specifies the order of the non-seasonal part 

of the ARIMA model. The (1,0,1) tuple means that the model is an 

ARIMA(1,0,1), where p=1 is the order of the autoregressive term, d=0 is the 

degree of differencing (which means that the time series is not differenced), and 

q=1 is the order of the moving average term. 
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- The ( seasonal_order ) parameter is a tuple that specifies the order of the 

seasonal part of the ARIMA model. The (1,0,1,12) tuple means that the model is 

a SARIMA(1,0,1)(1,0,1,12), where the first tuple (1,0,1) is the same as the non-

seasonal order, and the second tuple (1,0,1,12) specifies the order of the seasonal 

component of the model. The s=12 means that the model has a seasonal period 

of 12 (monthly data) 

Compared to the previous dataset the degree of differencing (which means that the time 

series is not differenced here is zero instead of one in the previous dataset and 

differencing refers to the process of computing the differences between consecutive 

observations of a time series. The time series does not need to be differed to make it 

stationary when the order of differencing (d) is zero. For many time series models, a 

stationary time series which has consistent statistical features across time, such as 

constant mean and variance is optimum. 

This technique could make a difference in the accuracy of the prediction. By removing 

trend and seasonality from a time series, which simplifies modelling and forecasting. 

The model might not be able to recognize and take into account any underlying trends 

or seasonality in the data if the time series are not differencing, which could result in 

less precise forecasts. However, whether or not differencing improves the accuracy of 

the prediction depends on the specific time series and the pattern of the data. In some 

cases, differencing may not be necessary or may even lead to worse predictions. It is 

important to evaluate the model's performance with and without differencing to 

determine the best approach for the specific problem. 

 

Finally, the model is used to make predictions for a specified time period from 2020-04-

01 to 2025-05-31 in the Listing 7.4.  

model = SARIMAX(df2, order=(1, 0, 1), seasonal_order=(1, 0, 1, 12)) 

model_fit = model.fit() 

predictions = model_fit.predict(start=pd.to_datetime('2020-04-01'), 

end=pd.to_datetime('2024-05-31')) 

Listing 7.4: Model Fitting 
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And the final result after these modifications that the accuracy of the predictions is 

higher than the previous dataset with the same model as it could be shown in the Figure 

7.2 below. 

 

Fig. 7.2: Difference between Actual and predicted data 

 

7.1.3 Dataset 3 - Yahoo Finance 

In the third dataset the properties of the model would be almost identical to the previous 

dataset and also the prediction accuracy to the test data is very high and almost follow 

the pattern as shown in the below Figure 7.3. 

 

 

Fig. 7.3: Difference between Actual and predicted data 
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7.2  Prophet 

 

The second model which will be applied to the 3 datasets would be the Prophet. 

The Facebook Core Data Science team developed Prophet, a time series forecasting 

model. It is made to handle a variety of time series forecasting tasks, including those 

that involve erratic patterns, trends, seasonality, and holiday effects. Prophet creates 

flexible additive decomposition models with the strength of Bayesian inference to 

produce forecasts that are precise and easy to understand. It's kind of Black-box model 

that automatically detects patterns and relationships in the data, making it easy to use 

even for non-experts. It's not a must to know everything about the statistics of the 

dataset or to split the dataset to train and test the model is simpler but at the same time if 

the data is complex or the pattern does not have trends or seasonality the accuracy and 

the performance of the model won't be the best. 

 

7.2.1 Dataset 1 - Discount Rate 

 

The first step is to prepare the training data for the Prophet model. The training data is 

in the form of a Pandas DataFrame train_data with two columns, one containing the 

dates and the other containing the values of the time series. The code creates a new 

DataFrame train_data_prophet which is a copy of the train_data DataFrame, but with 

the column names renamed to "ds" and "y" to be compatible with the Prophet model 

mentioned before. 

The next step is to create and fit the Prophet model using the training data. The 

Prophet() function is called to create an instance of the Prophet model and then the fit() 

method is called with the train_data_prophet DataFrame as the argument to train the 

model. 

Once the model is trained, the code creates a future DataFrame containing the dates for 

which the model will make predictions. The make_future_dataframe() method is called 

with the argument periods=len(test_data) to create a DataFrame with the same 

frequency as the training data and with a length equal to the length of the test data. 
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The predict() method is then called on the model object with the future DataFrame as 

the argument to obtain the forecasted values for the time series. 

Finally, the code (Listing 7.5) extracts the predicted values from the forecast DataFrame 

by selecting the 'yhat' column and filtering out the training data. The predicted values 

are stored in the predictions variable for later use. 

# Prepare the data for Prophet 

train_data_prophet = train_data.reset_index() 

train_data_prophet.columns = ['ds', 'y'] 

 

# Create and fit the Prophet model 

model = Prophet() 

model.fit(train_data_prophet) 

 

# Forecast on the test set 

future = model.make_future_dataframe(periods=len(test_data)) 

forecast = model.predict(future) 

 

# Extract the predicted values 

predictions = forecast['yhat'][train_size:] 

Listing 7.5: Preparing the data for the model 

The default parameters of the Prophet model are used in this script due to their general 

effectiveness across various datasets. 

And here’s the Figure 7.4 while training the dataset  

 

Fig. 7.4: Training the model 
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And the predicted data compared to the actual data below in Figure 7.5. 

 

Fig. 7.5: Difference between Actual and predicted data 

Here as shown in the figure the accuracy is not good and the pattern of predicted data 

compared to the actual data is not accurate this means that this dataset didn't have trends 

or seasonality in its pattern that's why the Prophet wasn't the best to fit that dataset. 

7.2.2 Dataset 2 - Number of accidents 

 

The second dataset will be the same as the previous dataset First, the code renames the 

columns of the dataframe to match the required format of Prophet, where 'ds' is the 

column containing the dates, and 'y' is the column containing the target variable. 

Next, the code creates an instance of the Prophet model and fits it to the data in df2. 

This involves learning the trends, seasonality, and other patterns in the data that will be 

used to make future predictions. 

Then, the code generates a new dataframe future_dates containing a range of dates for 

which we want to make predictions. In this case, the code generates dates for the next 

361 days, starting from the last date in df2. 

Finally, the code as shown below in Listing 7.6 uses the predict() method of the Prophet 

model to generate predictions for the dates in future_dates, and stores the predicted 

values in the predictions variable. These predictions can then be used for further 

analysis or visualization. 
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df2 = pd.read_excel(path+"/nehody.xlsx", header=4) 

df2['Date'] = pd.to_datetime(df2['Date'], format='%d/%m/%Y') 

df2.columns = ['ds', 'y'] 

 

# Create and fit the Prophet model 

model = Prophet() 

model.fit(df2) 

 

# Generate future dates for prediction 

future_dates = model.make_future_dataframe(periods=361)  # Predict 

for 61 days (May and June 2023) 

 

# Make predictions 

predictions = model.predict(future_dates) 

Listing 7.6: Creating the model  

 

And here in the figure of the comparison of the predictions and actual data, the accuracy 

of the predictions is very high. In this case of this dataset which makes this model fits 

this dataset because it has some seasonality which makes this model performs better and 

predicts more accurate results as shown in Figure 7.6 below.

 

Fig. 7.6: The forecasted data 
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7.2.3  Dataset 3 - Yahoo Finance 

 

Here also the Prophet model will be applied to the third dataset to make predictions on a 

test set, which can be used to evaluate the accuracy of the model. But in this dataset as 

could be observed in Figure 7.7, the accuracy of the predictions wasn't so good it could 

be possible that the dataset itself doesn't fit this model because of the pattern of data like 

the trend and seasonality. Also, it could be possible to be related to the generated dataset 

itself wasn't pre-processed in a good way to deal with this model. 

# Prepare the data for Prophet 

train_data_prophet = train_data.reset_index() 

train_data_prophet.columns = ['ds', 'y'] 

 

# Create and fit the Prophet model 

model = Prophet() 

model.fit(train_data_prophet) 

 

# Forecast on the test set 

future = model.make_future_dataframe(periods=len(test_data)) 

forecast = model.predict(future) 

 

# Extract the predicted values 

predictions = forecast['yhat'][train_size:] 

Listing 7.7: Preparing the model 

 

 

Fig. 7.7: Difference between Actual and predicted data 
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7.3 LSTM 

 

LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) that 

has grown in preference for tasks involving time series forecasting. It is a deep learning 

model that is best suited for evaluating and predicting time series since it is made to 

capture persistent dependencies and patterns in sequential data. 

 

When dealing with time series data that have complicated temporal dependencies, non-

linear relationships, and variable-length sequences, LSTM models perform very well. 

They can identify patterns in the data, including trends, seasonality, and irregularities. 

 

And here in the project after applying this model 3 times with different 3 datasets. Its 

performance was almost the best and the most accurate as will be discussed next in the 

next parts. 

7.3.1 Dataset 1 - Discount Rate 

 

For this model it will be a little more complex than the previous models but eventually 

with higher performance and more accuracy. This code (Listing 7.8 below) first uses the 

MinMaxScaler from the scikit-learn library to scale the data between 0 and 1. And then 

splits the scaled data into training and testing sets, with 80% of the data used for 

training and 20% used for testing as mentioned before. Then the pre-processing part and 

the reshaping to adjust the dataset and make it ready for the model by reshaping the 

training and testing sets into the format of input (X) and output (Y) pairs for an LSTM 

model. Specifically, the input is the current value (X=t) and the output is the next value 

(Y=t+1). 
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After that the building of the LSTM model with two layers of 50 neurons each, 

followed by a single dense layer with one output. The model is compiled with a mean 

squared error loss function and the Adam optimizer. The model is then trained on the 

training set for 10 epochs with a batch size of 1 and a verbose level of 2. 

This makes this model trains the data many times and the more epochs are the more 

accurate predictions till some certain point it could reach some overtraining and could 

lead to unacceptable inaccurate predictions. 

The default parameters were used for most steps, but the key parameters such as the 

number of time steps, LSTM units, epochs, and batch size adjusted a little based on this 

dataset specific requirements.  

LSTM Layers: 

50 Units: Each LSTM layer has 50 units. This number adjusted based on the model 

complexity and data characteristics. More units can capture more complex patterns but 

may require more data and computational power. 

 

Fitting the Model: 

Epochs=10: The number of epochs is set to 10, meaning the model will iterate over the 

entire training set 10 times. The choice of 10 epochs and a batch size of 1 is a trade-off 

between training time and performance. More epochs can lead to better performance but 

risk overfitting, while a larger batch size can speed up training but may reduce model 

accuracy. 

Batch_size=1: This means the model weights are updated after each training example. 

This can be set higher to improve training speed but may affect convergence. 

 

# Scale the data 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled_values = scaler.fit_transform(df.values.reshape(-1, 1)) 

 

# Build LSTM model 

model = Sequential() 

model.add(LSTM(50, return_sequences=True, input_shape=(1, 1))) 
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model.add(LSTM(50, return_sequences=False)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

model.fit(X_train, Y_train, validation_data=(X_test, Y_test), 

epochs=10, batch_size=1, verbose=2) 

 

# Make predictions 

train_predict = model.predict(X_train) 

test_predict = model.predict(X_test) 

Listing 7.8: Building the LSTM model 

 

Here is the final graph as it can be seen in Figure 7.8 that the accuracy of this model on 

this dataset with almost identical to the actual data which means the performance of this 

model was very good but this will be discussed in more detail in the next section. 

 

Fig. 7.8: Difference between Actual, Trained and tested data 

 

7.3.2 Dataset 2 - Number of accidents 

 

In the second dataset the data are bigger than the first data so that means more possible 

training to the model and is supposed to be with a better performance and accuracy.  

As mentioned before, the dataset will be imported, pre-processed and split into training 

and test. Normalize the data using the MinMaxScaler from scikit-learn. Normalizing the 
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data is a common pre-processing step that scales the values to a range of 0 to 1. And 

then Define a function called ( create_sequences ) that creates input/output sequences 

for the LSTM model. The function takes in a time series dataset and a number of time 

steps as input. It returns two numpy arrays: one containing the input sequences and one 

containing the output sequences. Define the number of time steps to use in the LSTM 

model. The time steps represent the number of past values that the model will use to 

predict the next value in the sequence. Using the ( create_sequences ) function to create 

input/output sequences for the training data. The input sequences are created by 

selecting a window of time steps from the training data which created before, and the 

output sequences are created by selecting the value that follows the end of each input 

sequence.  

Using the Sequential API of Keras to construct the LSTM model. Each of the model's 

two LSTM layers includes 50 memory units. Sequences are returned by the first LSTM 

layer but not by the second. A dense layer with only one output unit makes up the top 

layer. The optimizer is Adam., while mean squared error serves as the loss metric. 

Train the LSTM model on the training data using the fit method. The model is trained 

for 5 epochs, with a batch size of 1. Verbose is set to 2 to print progress updates. Use 

the predict method of the LSTM model to generate predictions for the test data. 

Rescale the predicted values using the inverse of the scaler used for the training data. 

The predicted values now represent the original scale of the time series. 

 

The default parameters were used for most steps, but the key parameters such as the 

number of time steps, LSTM units, epochs, and batch size adjusted a little based on this 

dataset specific requirements.  

Model Architecture: 

First LSTM Layer: 50 units with return_sequences=True to return the full sequence to 

the next LSTM layer. 

Second LSTM Layer: 50 units without return_sequences as it is the last LSTM layer. 

Dense Layer: A single neuron to output the prediction. 
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Sequence Creation: A function is defined to create sequences of a specified number of 

time steps (7 in this case). This means the model will look back 7 days to make a 

prediction. 

Time Steps: The choice of 7 time steps can be based on domain knowledge (e.g., 

weekly patterns) 

  

# Create the training data sequences 

def create_sequences(data, time_steps): 

    X, Y = [], [] 

    for i in range(len(data) - time_steps - 1): 

        X.append(data[i:(i + time_steps), 0]) 

        Y.append(data[i + time_steps, 0]) 

    return np.array(X), np.array(Y) 

 

# Define the number of time steps 

time_steps = 7 

 

# Create the training sequences 

X_train, Y_train = create_sequences(train_data, time_steps) 

 

# Reshape the input data for LSTM 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 

1)) 

 

# Build the LSTM model 

model = Sequential() 

model.add(LSTM(50, return_sequences=True, input_shape=(time_steps, 

1))) 

model.add(LSTM(50)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

model.fit(X_train, Y_train, epochs=5, batch_size=1, verbose=2) 

 

# Predict on the test data 

inputs = df2[-len(test_data)-time_steps:].values.reshape(-1, 1) 

inputs = scaler.transform(inputs) 

X_test, Y_test = create_sequences(inputs, time_steps) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 

predicted = model.predict(X_test) 

predicted = scaler.inverse_transform(predicted) 

Listing 7.9: The prediction of the model 
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7.3.3 Dataset 3 - Yahoo Finance 

 

Here also like the second dataset the data are bigger than the first dataset which means 

more training and more accuracy. 

First as usual the importing and pre-processing of the data, then the splitting as 

mentioned many times before. After that Two arguments are passed to the function 

create_sequences and seq_length, the length of the input sequence, and data, a time 

series of data. The function generates input-output pairs from the time series data, with 

each input sequence having length seq_length and the associated output being the 

subsequent value in the time series. The result of the function is two numpy arrays: y, 

which includes the corresponding outputs, and X, which contains the input sequences.  

The create_sequences function is then used by the algorithm to produce training and 

testing sequences for the train and test sets of data, respectively. The two numpy arrays 

that are produced, X_train and X_test, have the following shapes: (n_samples, 

sequence_length, 1), where n_samples is the total number of samples in the dataset. 

Numpy arrays of shape (n_samples,) make up the y_train and y_test variables. 

The input data X_train and X_test are then reshaped into a 3D array of shape 

(n_samples, sequence_length, 1) to be compatible with the LSTM model. 

The Sequential class from Keras is then used in the code to create an LSTM model. 

Two LSTM layers with 50 memory units each make up the model. To guarantee that a 

sequence rather than a single value is output from the first LSTM layer, the 

return_sequences parameter is set to True. At the network's ends, a dense layer with a 

single output is added. The mean_squared_error loss function and the Adam optimizer 

are used in the model's compilation. 

The model is trained on the training data using the fit method of the model object. The 

training is run for 50 epochs with a batch size of 32 as described below in the Listing 

7.10. 
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After training, the model is used to make predictions on the test data using the predict 

method of the model object. The resulting (predictions). 

Finally, the predicted values and the actual values are inverse transformed using the 

inverse_transform method of the scaler object used to scale the data. 

 

# Define the function to create input and output sequences 

def create_sequences(data, seq_length): 

    X = [] 

    y = [] 

    for i in range(len(data) - seq_length): 

        X.append(data[i:i+seq_length]) 

        y.append(data[i+seq_length]) 

    return np.array(X), np.array(y) 

 

# Set the sequence length 

sequence_length = 10 

 

# Create training sequences 

X_train, y_train = create_sequences(train_data, sequence_length) 

 

# Create testing sequences 

X_test, y_test = create_sequences(test_data, sequence_length) 

 

# Reshape the input data for LSTM 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 

1)) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 

 

# Build the LSTM model 

model = Sequential() 

model.add(LSTM(50, return_sequences=True, 

input_shape=(sequence_length, 1))) 

model.add(LSTM(50)) 

model.add(Dense(1)) 

model.compile(optimizer='adam', loss='mean_squared_error') 

 

# Train the model 

model.fit(X_train, y_train, epochs=50, batch_size=32) 

 

# Perform predictions on the test set 

predictions = model.predict(X_test) 

 

# Inverse transform the predictions and actual values 
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predictions = scaler.inverse_transform(predictions) 

y_test = scaler.inverse_transform(y_test) 

Listing 7.10: The LSTM model  

 

And the graph in Figure 7.9  here shows that the predicted data is almost identical to the 

actual data and follows its pattern and that’s because of the long training and also 

training using epochs which allows the model to improve its performance over time by 

adjusting its weights to better fit the training data. In general, as the number of epochs 

increases, the model has the potential to learn more complex patterns and relationships 

in the data, which can improve its accuracy on both the training and testing data. 

The number of epochs must be balanced with the possibility of overfitting, though. 

Overfitting happens when a model loses its ability to generalize to new data because it 

becomes too concentrated on the training set of data. The model may overfit the training 

data and perform badly on the testing data if the number of epochs is too high. 

Therefore, it is important to choose the number of epochs carefully. This 

hyperparameter is frequently modified during the model selection and optimization 

process. The size of the dataset, the complexity of the issue, and the design of the 

LSTM model can all affect the perfect number of epochs. 

 

Fig. 7.9: Difference between Actual and predicted data 
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8. TIME SERIES MODELS EVALUATION 

There are many ways or approaches to evaluate and modify our model and dataset we 

could use until we get the perfect and most performance output  

Time series metrics 

To go further with model selection, you will need to define a metric to evaluate your 

models. A very often used model in forecasting is the Mean Squared Error. This 

metric measures the error at each point in time and takes the square of it. The average of 

those squared errors is called the Mean Squared Error. Also, there is an often-used 

alternative is the Root Mean Squared Error: the square root of the Mean Squared 

Error. 

Another frequently used metric is the Mean Absolute Error: rather than taking the 

square of each error, it takes the absolute value here. The Mean Absolute Percent Error 

is a variation on this where the Absolute Error at each point in time is expressed as a 

percentage of the actual value. This yields a metric that is a percentage, which is very 

easy to interpret [42]. 

8.1 Mean Squared Error 

 

MSE stands for Mean Squared Error, and it is a widely used metric for evaluating the 

performance of regression models. It measures the average squared difference between 

the predicted and actual values in a regression problem. 

The formula for MSE is: 

 

𝑀𝑆𝐸 =  1/𝑛 ∗  𝛴(𝑦𝑖 −  ŷ𝑖)².                                                                                   (8.1) 

Where: 

n: the number of samples in the dataset. 

yi: the actual value of the target variable for the i-th sample. 
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ŷi: the predicted value of the target variable for the i-th sample. 

A measurement error of 0 indicates a perfect fit, where the predicted and actual values 

are the same for all samples. The MSE value is always non-negative. The performance 

of the model is worse the higher the MSE as this shows greater differences between the 

predicted and actual values. 

As a result, it is suggested that using MSE along with other metrics to evaluate the 

performance of a regression model. These metrics can offer additional information on 

the model's performance and assist in the detection of potential problems. For example, 

MAE can be used to examine the amount of errors, and R-squared can be used to 

evaluate the model's overall goodness-of-fit. So it should be used in combination with 

other metrics to evaluate the performance of a regression model [43]. 

8.2 Root Mean Squared Error 

 

Root Mean Squared Error (RMSE) is another metric used to evaluate the performance 

of a regression model. It is very similar to Mean Squared Error (MSE), but it has one 

additional step - taking the square root of the MSE. 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡(𝑀𝑆𝐸).                                                                                               (8.2) 

Where MSE is the mean of the squared differences between the predicted and actual 

values of the target variable. 

Therefore, it is always suggested that you use MSE alongside with other metrics to 

evaluate a regression model's performance as mentioned before. These metrics can give 

additional information about the model's performance and aid in problem detection. For 

instance, R-squared can be utilized to evaluate the overall goodness-of-fit of the model, 

and MAE can be used to evaluate the size of errors [44]. 

8.3 Mean Absolute Error 

 

Mean Absolute Error (MAE) is also a metric used to evaluate the performance of 

regression models like the previous models. It measures the average absolute difference 



74 

 

between the predicted and actual values in a dataset. But unlike Mean Squared Error 

(MSE), MAE is not sensitive to outliers because it does not involve squaring the errors. 

The mathematical equation for MAE is as follows: 

𝑀𝐴𝐸 =  (1/𝑛)  ∗  𝛴|𝑖 = 1 𝑡𝑜 𝑛| |𝑦𝑖 −  ŷ𝑖|.                                                               (8.3) 

where n is the number of data points, yi is the actual value of the target variable, and ŷi 

is the predicted value of the target variable. 

It provides an idea of how far on average the predictions deviate from the actual 

numbers. A lower MAE shows that the model is more accurate in its predictions. 

When it comes to the direction of the errors, or whether the forecasts are overestimating 

or underestimating the actual values, MAE isn’t the perfect metric to do that. 

8.4 Evaluation of the performance of the datasets 

 

So eventually the best scenario is to use the 3 metrics with each other for each dataset 

evaluation and compare their performance with each other. 

8.4.1 Evaluation of the first dataset 

 

The MAE, MSE, and RMSE of every model would be calculated for the first dataset. 

Then a table would be implemented for the comparison and decide which model has the 

best performance and accuracy. 

The following code (Listing 8.1) for the evaluation of the model for the first model of 

SARIMAX 

# Evaluate the model 

mae_1_2 = mean_absolute_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions) 

mse_1_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions) 

rmse_1_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions, squared=False) 

 

Listing 8.1: Evaluation of the model  
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And here’s the evaluation’s results for SARIMAX model. 

Evaluation Metrics: 

Mean Absolute Error (MAE): 3.42 

Mean Squared Error (MSE): 14.95 

Root Mean Squared Error (RMSE): 3.87 

Also for the next evaluation of the Prophet model will do almost the same in Listing 8.2 

below. 

# Evaluate the model 

mae_1_2 = mean_absolute_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions) 

mse_1_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions) 

rmse_1_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'], 

predictions, squared=False) 

Listing 8.2: Evaluation of the Prophet model  

And here’s again the evaluation’s results for the Prophet model. 

Evaluation Metrics: 

Mean Absolute Error (MAE): 3.76 

Mean Squared Error (MSE): 18.60 

Root Mean Squared Error (RMSE): 4.31 

 

Finally for the last model LSTM the following code for the evaluation of the model in 

the Listing 8.3. 

# Calculate MSE 

train_mse = mean_squared_error(y_train[:-1], train_predict) 

mse_1_3 = mean_squared_error(y_test[:-1], test_predict) 

 

# Calculate RMSE 

train_rmse = math.sqrt(train_mse) 

rmse_1_3 = math.sqrt(mse_1_3) 

 

# Calculate MAE 

train_mae = mean_absolute_error(y_train[:-1], train_predict) 

mae_1_3 = mean_absolute_error(y_test[:-1], test_predict) 

Listing 8.3: Evaluation of the LSTM model  
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And here’s the evaluation’s results for the LSTM model. 

MSE: 0.4533803426218304 

RMSE: 0.6733352379178075 

MAE: 0.5531002342700959 

And the Table 8.1 below is the evaluation trade-off for the First Dataset and the colour 

of the cells has been done according to this threshold  

def style_cells(value): 

    style = 'background-color: red' if value > 4 else  'background-

color: green' 

    return style 

Listing 8.4: Visualising the results  

 

 

Tab. 8.1: Comparison of the evaluation metrics for the 1st  dataset with threshold 4 

 

Looking at the given metrics, it seems that the LSTM model has performed better than 

the other two models. The MSE, RMSE and MAE values for LSTM are the lowest 

among the three models, indicating that the predictions made by the LSTM model are 

the closest to the actual values. 

The reason for this difference in performance between the models could be due to the 

differences in the algorithms used by each model. SARIMAX and Prophet are both 

classical time series models that rely on statistical methods to make predictions, 

whereas LSTM is a type of deep learning model that uses neural networks to model the 

patterns in the data. 
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LSTM is known to perform well on time series data due to its ability to capture complex 

patterns and dependencies in the data. In contrast, classical time series models like 

SARIMAX and Prophet may struggle with capturing such patterns and may not perform 

as well on datasets with complex dependencies. 

Additionally, the quality of the data and the features used by each model could also play 

a role in the differences in performance. It is possible that the LSTM model was able to 

learn more informative features from the data and therefore was able to make better 

predictions. 

 

8.4.2 Evaluation of the Second dataset 

 

 

Tab. 8.2: Comparison of the evaluation metrics for the 2nd  dataset with threshold 50 

 

Here also looking at the results in the Table 8.2 , it seems like the LSTM model 

performed the best across all three metrics, with the lowest values of MSE, RMSE, and 

MAE. The SARIMAX and Prophet models, on the other hand, had higher values across 

all three metrics. 

But here also it could be seen that in this time the Prophet’s performance was better 

than SARIMAX and had better values. This could be SARIMAX has some assumptions 

regarding stationarity, linearity, and the normal distribution of residuals that need to be 

met for the model to work properly. These assumptions may not hold for this dataset On 

the other hand, Prophet does not have such assumptions and can handle non-linear and 
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non-stationary data better. Also Prophet sometimes is more flexible and can handle a 

wide range of data types and structures. 

8.4.3 Evaluation of the Third dataset 

 

And finally, The results in Table 8.3 shows the comparison of the evaluation metrics for 

the 3rd dataset with threshold 4, and the model of SARIMAX had the lowest values 

which means its performance was the best. This should be due to its ability to handle 

seasonality and trends effectively, and it has more effective tuning and parameter 

optimization compared to the other models in this dataset. Prophet is also designed to 

handle seasonality and trends, it might not be as precise as SARIMAX for this type of 

dataset.  

 

Tab. 8.3: Comparison of the evaluation metrics for the 3rd dataset with threshold 4 
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9. THE USER INTERFACE APPLICATION 

 

In this project Prophet model would be applied to a Multivariate dataset of 

“Temperature Forecasting for IOT Device generated Data” this time, and there will be a 

creation of a user interface application with 2 features of choosing of IN/OUT 

Temperature status and the number of time points of the forecasting. 

In this dataset, temperature readings were taken from IoT devices installed outside and 

inside of an anonymous room. Due to the testing phase of the device, it was uninstalled 

or shut off several times during the entire reading period, resulting in some outliers and 

missing values. 

Building a time-series model to predict future temperature inside/outside the room by 

Prophet. 

Prophet was chosen this time for the time-series modelling tool based on below reasons: 

- Automatic detection of trend and seasonality. 

- Robustness against outliers. 

- Customizable seasonality. 

 

Of course, The first steps would be done similarly to before with the previous datasets 

like Importing the libraries and loading the dataset, which is included in Listing 9.1 

below. 

 

 

 

 

 

https://colab.research.google.com/drive/1HX6OXR1bb-r61qVLtezXu4EQFvyys-Ws?usp=sharing 
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import numpy as np 

import pandas as pd 

import holoviews as hv 

from holoviews import opts 

hv.extension('bokeh') 

from matplotlib import pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

import os 

from prophet import Prophet 

from prophet.plot import add_changepoints_to_plot 

import streamlit as st 

df = pd.read_csv(r"./IOT-temp.csv" 

 

 

Listing 9.1: Importing the libraries and loading the dataset 

Then Pre-processing of the data as Column 'room_id/id' has only one value(Room 

Admin), so we don't need this column for analysis, and Change column names to 

understand easily. 

df['room_id/id'].value_counts() 

df.rename(columns={'noted_date':'date', 'out/in':'place'}, 

inplace=True) 

df.head() 

 

Listing 9.2: data pre-processing  

 

Datetime column has a lot of information such as year, month, weekday and so on. To 

utilize this information in EDA and modelling phase, we need extract them from 

datetime column. 
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Hour variable can be broken into Night, Morning, Afternoon, and Evening based on its 

number. 

- Night : 22:00 - 23:59 / 00:00 - 03:59. 

- Morning : 04:00 - 11:59. 

- Afternoon : 12:00 - 16:59. 

- Evening : 17:00 - 21:59. 

|Also for the Seasonal information, it could be broken into for example the Indian 

seasonal which has four climatological seasons as below. 

- Winter : December to February. 

- Summer : March to May. 

- Monsoon : June to September. 

- Post-monsoon : October to November. 

Listing 9.2 below describing how to implement that. 

def month2seasons(x): 

    if x in [12, 1, 2]: 

        season = 'Winter' 

    elif x in [3, 4, 5]: 

        season = 'Summer' 

    elif x in [6, 7, 8, 9]: 

        season = 'Monsoon' 

    elif x in [10, 11]: 

        season = 'Post_Monsoon' 

    return season 

 

def hours2timing(x): 

    if x in [22,23,0,1,2,3]: 

        timing = 'Night' 

    elif x in range(4, 12): 

        timing = 'Morning' 

    elif x in range(12, 17): 

        timing = 'Afternoon' 

    elif x in range(17, 22): 

        timing = 'Evening' 

    else: 

        timing = 'X' 

    return timing 

 

Listing 9.3: Season and hour variable 
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And after many other modifications to the dataset like checking whether any record is 

duplicated and if so duplicate records should be put into one unique record (Listing 9.4). 

 

df[df.duplicated()] 

df[df['id']=='__export__.temp_log_196108_4a983c7e'] 

df.drop_duplicates(inplace=True) 

df[df.duplicated()] 

 

Listing 9.4: Duplication detection  

And many other pre-processing of the data, the semi-final shape of the data would be 

like this in Figure 9.1 below. 

 

Fig. 9.1: Dataset after pre-processing  

As this is Multivariate so, Temperature clearly consists of multiple distributions of 

Place, Season, and Timing. 

Monthly Readings by Place  

pl_cnt = np.round(df['place'].value_counts(normalize=True) * 100) 

 

in_month = np.round(df[df['place']=='In']['date'].apply(lambda x : 

x.strftime("%Y-%m")).value_counts(normalize=True).sort_index() * 

100, decimals=1) 

out_month = np.round(df[df['place']=='Out']['date'].apply(lambda x 

: x.strftime("%Y-%m")).value_counts(normalize=True).sort_index() * 

100, decimals=1) 
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in_out_month = 

pd.merge(in_month,out_month,right_index=True,left_index=True).renam

e(columns={'date_x':'In', 'date_y':'Out'}) 

in_out_month = pd.melt(in_out_month.reset_index(), 

['index']).rename(columns={'index':'Month', 'variable':'Place'}) 

 

Listing 9.5: Monthly reading by place 

Inside temperature is composed of a single distribution, while outside temperature is 

composed of multiple distributions as implemented in Listing 9.6 below. 

Temperature by Season 

season_agg = df.groupby('season').agg({'temp': ['min', 'max']}) 

season_maxmin = 

pd.merge(season_agg['temp']['max'],season_agg['temp']['min'],right_

index=True,left_index=True) 

season_maxmin = pd.melt(season_maxmin.reset_index(), 

['season']).rename(columns={'season':'Season', 

'variable':'Max/Min'}) 

 

Listing 9.6: Temperature by Season 

Temperature by Timing 

timing_agg = df.groupby('timing').agg({'temp': ['min', 'max']}) 

timing_maxmin = 

pd.merge(timing_agg['temp']['max'],timing_agg['temp']['min'],right_

index=True,left_index=True) 

timing_maxmin = pd.melt(timing_maxmin.reset_index(), 

['timing']).rename(columns={'timing':'Timing', 

'variable':'Max/Min'}) 

Listing 9.7: Temperature by Timing 

The outside temperature has a larger time series change than the inside temperature. 

It is thought that the inside temperature is adjusted by air conditioner, but the outside 

temperature is affected by seasonal temperature fluctuations. 

Time-series analysis can be easily conducted with unique time-index data. Thus, mean 

values need to be calculated by the 'date' column, and the 'id' column should be deleted. 
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Daily and Monthly Temperature Mean 

in_month = 

tsdf[tsdf['place']=='In'].groupby('month').agg({'temp':['mean']}) 

in_month.columns = [f"{i[0]}_{i[1]}" for i in in_month.columns] 

out_month = 

tsdf[tsdf['place']=='Out'].groupby('month').agg({'temp':['mean']}) 

out_month.columns = [f"{i[0]}_{i[1]}" for i in out_month.columns] 

 

tsdf['daily'] = tsdf['date'].apply(lambda x : 

pd.to_datetime(x.strftime('%Y-%m-%d'))) 

in_day = 

tsdf[tsdf['place']=='In'].groupby(['daily']).agg({'temp':['mean']}) 

in_day.columns = [f"{i[0]}_{i[1]}" for i in in_day.columns] 

out_day = 

tsdf[tsdf['place']=='Out'].groupby(['daily']).agg({'temp':['mean']}

) 

out_day.columns = [f"{i[0]}_{i[1]}" for i in out_day.columns] 

 

 

import matplotlib.pyplot as plt 

 

# Extracting data from HoloViews Curves 

in_day_data = in_day.reset_index() 

out_day_data = out_day.reset_index() 

 

# Plotting with Matplotlib 

plt.figure(figsize=(10, 6)) 

 

plt.plot(in_day_data['daily'], in_day_data['temp_mean'], 

label='In', marker='o') 

plt.plot(out_day_data['daily'], out_day_data['temp_mean'], 

label='Out', marker='o') 

 

# Adding labels and title 

plt.title("Daily Temperature Mean") 

plt.xlabel("Day") 

plt.ylabel("Temperature") 

plt.legend() 

plt.grid(True) 

 

# Show plot 

plt.show() 

 

Listing 9.8: Temperature Mean 
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And here is the Figure 9.2 showing the difference between In and Out. 

 

Fig. 9.2: Daily Temperature Mean  

Missing data 

Plotting overall data, it is found that there are some missing data points randomly 

throughout the whole period. 

Interpolating with 'nearest' method looks better(yet far from best), but there are many 

gaps in interpolated data. 

In order to forecast future temperature, it’s better to convert data into rough granularity. 

Using interpolated daily mean data looks good solution as in Listing 9.9 below. 

in_tsdf = tsdf[tsdf['place']=='In'].reset_index(drop=True) 

in_tsdf.index = in_tsdf['date'] 

in_all = hv.Curve(in_tsdf['temp']).opts(title="[In] Temperature 

All", ylabel="Temperature", xlabel='Time', color='red') 

 

out_tsdf = tsdf[tsdf['place']=='Out'].reset_index(drop=True) 

out_tsdf.index = out_tsdf['date'] 

out_all = hv.Curve(out_tsdf['temp']).opts(title="[Out] Temperature 

All", ylabel="Temperature", xlabel='Time', color='blue') 
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in_tsdf_int = 

in_tsdf['temp'].resample('1min').interpolate(method='nearest') 

in_tsdf_int_all = hv.Curve(in_tsdf_int).opts(title="[In] 

Temperature All Interpolated with 'nearest'", ylabel="Temperature", 

xlabel='Time', color='red', fontsize={'title':11}) 

out_tsdf_int = 

out_tsdf['temp'].resample('1min').interpolate(method='nearest') 

out_tsdf_int_all = hv.Curve(out_tsdf_int).opts(title="[Out] 

Temperature All Interpolated with 'nearest'", ylabel="Temperature", 

xlabel='Time', color='blue', fontsize={'title':11}) 

inp_df = pd.DataFrame() 

in_d_inp = in_day.resample('1D').interpolate('spline', order=5) 

out_d_inp = out_day.resample('1D').interpolate('spline', order=5) 

inp_df['In'] = in_d_inp.temp_mean 

inp_df['Out'] = out_d_inp.temp_mean 

 

Listing 9.9: Missing data 

Hyperparameter tuning 

Here, some hyperparameter tuning techniques would be applied to the model to see if 

the performance would change and to choose the best performer among them. Below in 

Listing 9.10 some snippet of the code with apply grid search to select best 

hyperparameters.  

 

# Define the function to evaluate the model 

def evaluate_model(place, changepoint_prior_scale, 

yearly_seasonality, weekly_seasonality): 

    prediction_periods = 30  # Define the number of periods to 

predict 

    result = run_prophet_with_params(place, prediction_periods, 

changepoint_prior_scale, yearly_seasonality, weekly_seasonality) 

 

    # Calculate MSE between actual and predicted values 

    actual = org_df[place][-prediction_periods:].values 

    predicted = result['yhat'][-prediction_periods:].values 

    mse = mean_squared_error(actual, predicted) 

 

    return mse 

 

# Grid search parameters 
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param_grid = { 

    'changepoint_prior_scale': [0.01, 0.1, 0.5], 

    'yearly_seasonality': [2, 5, 10], 

    'weekly_seasonality': [False, True] 

} 

 

# Generate all combinations of parameters 

param_combinations = 

list(product(param_grid['changepoint_prior_scale'], 

param_grid['yearly_seasonality'], 

param_grid['weekly_seasonality'])) 

 

# Perform grid search 

best_params = None 

best_mse = float('inf') 

results = [] 

 

for params in param_combinations: 

    changepoint_prior_scale, yearly_seasonality, weekly_seasonality 

= params 

    mse = evaluate_model("Out", changepoint_prior_scale, 

yearly_seasonality, weekly_seasonality) 

    results.append((params, mse)) 

 

    if mse < best_mse: 

        best_mse = mse 

        best_params = params 

 

# Print the best parameters and MSE 

print("Best Parameters:", best_params) 

print("Best MSE:", best_mse) 

 

# Optionally, you can convert results to a DataFrame for better 

visualization 

results_df = pd.DataFrame(results, columns=['Parameters', 'MSE']) 

print(results_df) 

Listing 9.10: Hyperparameter tunning 

 

And here are the results with the best MSE as shown in Figure 9.3. 

Best MSE: 4.5756250669266185 

           Parameters         MSE 

0    (0.01, 2, False)  132.697364 

1     (0.01, 2, True)  153.003574 
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2    (0.01, 5, False)    4.630651 

3     (0.01, 5, True)   14.546761 

4   (0.01, 10, False)    5.546444 

5    (0.01, 10, True)    6.167597 

6     (0.1, 2, False)  139.604486 

7      (0.1, 2, True)  136.147785 

8     (0.1, 5, False)    4.575625 

9      (0.1, 5, True)    5.723650 

10   (0.1, 10, False)    6.163159 

11    (0.1, 10, True)    6.170643 

12    (0.5, 2, False)  371.156863 

13     (0.5, 2, True)  408.270783 

14    (0.5, 5, False)   20.028329 

15     (0.5, 5, True)    9.234085 

16   (0.5, 10, False)  213.200977 

17    (0.5, 10, True)   20.372572 

 

Fig. 9.3: MSE for Different Combinations of Parameters   

Below in Listing 9.11 describes the build of the model and the prediction.  

def run_prophet(place, prediction_periods, plot_comp=True): 

    # make dataframe for training 

    prophet_df = pd.DataFrame() 

    prophet_df["ds"] = pd.date_range(start=org_df['daily'][0], 

end=org_df['daily'][133]) 

    prophet_df['y'] = org_df[place] 
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    # add seasonal information 

    prophet_df['monsoon'] = org_df['season_Monsoon'] 

    prophet_df['post_monsoon'] = org_df['season_Post_Monsoon'] 

    prophet_df['winter'] = org_df['season_Winter'] 

 

    # train model by Prophet 

    m = Prophet(changepoint_prior_scale=0.1, yearly_seasonality=2, 

weekly_seasonality=False) 

    # include seasonal periodicity into the model 

    m.add_seasonality(name='season_monsoon', period=124, 

fourier_order=5, prior_scale=0.1, condition_name='monsoon') 

    m.add_seasonality(name='season_post_monsoon', period=62, 

fourier_order=5, prior_scale=0.1, condition_name='post_monsoon') 

    m.add_seasonality(name='season_winter', period=93, 

fourier_order=5, prior_scale=0.1, condition_name='winter') 

    m.fit(prophet_df) 

 

    # make dataframe for prediction 

    future = m.make_future_dataframe(periods=prediction_periods) 

    # add seasonal information 

    future_season = pd.get_dummies(future['ds'].apply(lambda x : 

month2seasons(x.month))) 

    future['monsoon'] = future_season['Monsoon'] 

    future['post_monsoon'] = future_season['Monsoon'] 

    future['winter'] = future_season['Winter'] 

 

    # predict the future temperature 

    prophe_result = m.predict(future) 

Listing 9.11: The build 

 

As it can be seen in Figures 9.4 and 9.5 The IN and OUT predictions of the 

Temperature during the Time.  

The Red Line is the Linear introduction of the mean of the points.  
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Fig. 9.4: Prediction of IN temperature   

 

Fig. 9.5: Prediction of IN temperature   
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In the provided code, the features used for the Prophet model are: 

Date-Time Features: 

• Year: Extracted from the timestamp to capture any yearly trends or seasonality. 

• Month: Extracted to capture seasonal patterns within each month. 

• Day: Extracted to account for any potential daily variations or trends. 

• Weekday: Extracted to capture any day-of-week patterns or fluctuations. 

• Weekofyear: Derived to understand the week of the year, which might have its 

own patterns. 

• Hour: Extracted to capture variations throughout the day. 

• Minute: Extracted for more granular analysis, although not utilized in this 

specific model. 

Seasonal Features: 

• Season: Derived from the month to categorize data into different seasons 

(Winter, Summer, Monsoon, Post-Monsoon). This helps capture seasonal 

patterns and trends specific to each season. 

Additional Temporal Features: 

• Timing: Derived from the hour to categorize data into different time 

segments (Morning, Afternoon, Evening, Night). This adds another layer of 

temporal granularity, capturing potential variations based on the time of day. 

These features are used to provide the model with as much relevant information as 

possible to capture the underlying patterns and trends in the temperature data. By 

including various temporal features, the model can learn and account for different 

patterns that may emerge at different time scales, such as daily, weekly, monthly, or 

seasonal patterns. Additionally, incorporating seasonal information allows the model to 

capture recurring patterns associated with different seasons, which can significantly 

impact temperature fluctuations. 

And for the user interface application, Streamlit app would be used for this with the two 

main features of choosing the Temperature IN/OUT and the second one of choosing the 
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TimePoints as the days of the forecasting with the following piece of code (Listing 

9.12). 

# Streamlit app 

def main(): 

    st.title("Temperature Prediction App") 

     

    # Dropdown for Temperature status 

    temp_status = st.selectbox("Temperature status:", ["IN", 

"OUT"]) 

     

    # Number input for TimePoints 

    time_points = st.number_input("TimePoints:", min_value=1, 

step=1, value=30) 

     

    # Button to execute the code 

    if st.button("Run Prophet"): 

        if temp_status == "IN": 

            run_prophet("In", time_points) 

        else: 

            run_prophet("Out", time_points) 

 

Listing 9.12: The user interface app 

And the output of this application would be in the Figure 9.6 below  

The main page will have two options that the user can change:  

- Temperature statues: It has two options to choose from IN/OUT 

- TimePoints: Each Point represents one day, and the user can change the days 

(points) according to their desire to forecast the desired duration. 
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Fig. 9.6: The main page of the app   

As the TimePoints could be increased or decreased  

Here are the results of 30 TimePoint and 90 TimePoints in Figures 9.7 and 9.8 

respectively below. 

 

Fig. 9.7: Prediction of IN temperature with 30 TimePoints   

 

Fig. 9.8: Prediction of IN temperature with 90 TimePoints   
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So in conclusion Outside temperature is composed of multiple distributions, while 

inside temperature has a single distribution. 

Inside temperature has flat trend, but outside temperature has the trend that is seemed to 

be affected by time-series factor such as seasonality. 

So many drops in the data made it difficult to build model, so interpolating daily-mean 

data by 'spline' method worked. 

Some outliers made it difficult to build forecasting model, but thanks to Prophet it is 

thought we built a robust model against outliers. 
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CONCLUSION 

The Time Series Forecasting is a major topic nowadays for the future predictions, it can help with 

many different applications. In this paper, we explored the effectiveness of three prominent time 

series forecasting models with different backgrounds: SARIMAX, Prophet, and LSTM. These 

models were applied to various univariate and multivariate datasets to assess their performance 

across different types of data. 

 

The first dataset, "Dataset 1 - Discount Rate," consisted of the discount rate changes over time in the 

Czech Republic, sourced from the Czech National Bank (CNB). This relatively simple dataset 

required minimal pre-processing. Among the models, the LSTM model showed superior 

performance, accurately capturing the temporal patterns in the data. SARIMAX also provided 

reasonable results, while the Prophet model lagged slightly behind. 

 

The second dataset, "Dataset 2 - Number of Accidents," comprised a more complex dataset, 

detailing the number of car accidents in the Czech Republic on a daily basis since 2006. In this case, 

the LSTM model again showed the best performance, effectively capturing the intricate patterns 

within the data. Prophet performed better than SARIMAX, but both were less effective compared to 

LSTM. 

 

The third dataset, "Dataset 3 - Yahoo Finance," was created using the Yahoo Finance API to 

generate stock data for Apple Inc. (AAPL). For this dataset, the SARIMAX model performed well, 

especially given the stock data's inherent volatility. The LSTM model provided intermediate results, 

showcasing its adaptability to different data complexities. The Prophet model, however, showed less 

effectiveness in handling the volatility of financial data. 

 

Additionally, we applied the Prophet model to another multivariate dataset, involving inside and 

outside temperature measurements, and performed hyperparameter tuning. The outside temperature 

showed seasonal trends, while the inside temperature had a flat trend. Challenges such as drops and 

outliers were addressed using interpolation and Prophet's robustness, resulting in an effective 

forecasting model. 

 

Furthermore, it was observed that the LSTM model's performance improved with more extensive 

training, indicating its potential for further optimization. 

 

In conclusion, the LSTM model consistently demonstrated superior performance across all datasets, 

highlighting its robustness and capability in capturing complex temporal patterns. While SARIMAX 

was effective for simpler datasets and certain types of data, it struggled with more complex datasets. 

The Prophet model, despite its ease of use and quick setup, generally exhibited lower performance, 

particularly in volatile and complex datasets. These findings emphasize the importance of selecting 

appropriate models based on the specific characteristics and complexities of the datasets in time 

series forecasting tasks. Moreover, the application of hyperparameter tuning and addressing data 

irregularities are crucial steps in improving model performance. 
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