
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electr ical Eng ineer ing and

Commun i c a t i o n

MASTER'S THESIS

Brno, 2024 Ing. Islam Elrefaei, BA

T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

T I M E S E R I E S F O R E C A S T I N G U S I N G M A C H I N E L E A R N I N G
TIME SERIES FORECASTING USING MACHINE LEARNING

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Ing. Islam Elrefaei, BA
AUTOR PRÁCE

SUPERVISOR doc. Ing. Jiří Hošek, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY OF ELECTRICAL

UNIVERSITY ENGINEERING

OF TECHNOLOGY A N D COMMUNICATION

M a s t e r ' s T h e s i s

Master's study program Communicat ions and Networking

Department of Telecommunications
Student: Ing. Islam Elrefaei, BA ID: 233552

Year of
2 Academic year: 2023/24

study:

TITLE OF THESIS:

Time Series Forecast ing Using Machine Learning

INSTRUCTION:

Time series forecasting has been widely used in various fields such as engineering, medicine, and economics.

The goal of this diploma thesis is to develop and apply multiple machine learning models on time-series datasets

to predict the future, which can be related to economics, networking, etc. For example, the delay in a network can

be predicted based on past datasets. The developed algorithms will be verified through numerical simulations as

well as implementation in an experimental environment. The preferred programming language for this work is

Python.

The first step will be to review the state-of-the-art machine learning models used for time series forecasting.

Then, the student will prepare the dataset required for the machine learning models using Python. Next, one

selected machine learning model will be applied to the dataset. Once the selected ML model is verified, the

student will focus on applying multiple ML models on various time series datasets to predict the future. Based on

the analysis of the achieved results, the optimal models will be identified and compared with other models

available on the market.

RECOMMENDED LITERATURE:

[1] Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms,

ISBN:1107057132, Pages: 397, Year: 2014.

[2] Aileen Nielsen, Practical Time Series Analysis : Prediction with Statistics and Machine Learning,

ISBN:1492041653, Pages: 400, Year: 2019.

Date of project Deadline for
5.2.2024 21.5.2024

specification: submission:

Supervisor: doc. Ing. Jiří Hošek, Ph.D.

doc. Ing. Jiří Hošek, Ph.D.
WARNING: Chair of study program board
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Abstract
The aim of this thesis is to explore the application of various artificial intelligence (AI)
techniques for the prediction of time series data, which is prevalent in fields such as
finance, economics, and engineering. Accurate time series prediction is essential for
effective decision-making and planning. This thesis reviews several traditional and
state-of-the-art AI techniques used for time series prediction, including linear
regression, A R I M A , support vector regression, random forests, and deep learning.

These techniques are applied to different time series datasets, encompassing both
univariate and multivariate data. The performance of the predictive models is evaluated
using various scalar metrics. The performance of the models was different depending on
the type of the dataset. Additionally, this thesis includes the development of a user
interface application that allows users to change parameters and forecast new results
based on their entries. Furthermore, the thesis discusses the challenges and limitations
of using AI techniques for time series prediction and provides suggestions for future
research directions.

Keywords
Time Series, Forecasting, Python, Machine Learning

ELREFAEI, Islam. Time Series Forecasting Using Machine Learning [online]. Brno, 2024 [cit.
2024-05-21]. Available f rom: ht tps: / /www.vut.cz/student i /zav-prace/detai l /153602.
Master's Thesis. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
technologií, Department of Telecommunicat ions. Supervisor Jiří Hošek.

https://www.vut.cz/studenti/zav-prace/detail/153602

Author's Declaration

Author: Islam Elrefaei

Author's ID: 233552

Paper type: Master's Thesis

Academic year: 2023/24

Topic: Time Series Forecasting Using Machine
Learning

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited
in the project and listed in the comprehensive bibliography at the end of the project.

As the author, I furthermore declare that, with respect to the creation of this paper, I have
not infringed any copyright or violated anyone's personal and/or ownership rights. In this
context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant Acts
such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll., Section
2, Head VI, Part 4.

Brno, May 21,2024
author's signature

ACKNOWLEDGEMENT

I want to thank my supervisor doc. Ing. Jiří Hošek, Ph.D. and consultant
Ing. Nabhan Khatib, Ph.D. from AT&T Global Network Services Czech
Republic s.r.o. for providing valuable knowledge, guidance, patience
and helpful suggestions. I would like to extend my sincere thanks to my
parents for moral and financial support throughout the studies.

Contents
I N T R O D U C T I O N

1.1 T I M E SERIES M A I N PURPOSES A N D U S A G E S 11

1.2 T I M E S ERIES F O R E C A S T I N G I N M A C H I N E L E A R N I N G 12

2.1 T I M E SERIES STATIONARY D A T A 14

2.2 T I M E SERIES DECOMPOSITION 15

2.3 T I M E SERIES M O D E L S U N I V A R I A T E VS M U L T I V A R I A T E 15

3.1 C L A S S I C A L TIME SERIES M O D E L S 17

3.1.1 AR1MA Family 17
3.1.2 Vector autoregression (VAR) and its derivatives VARMA and VARMAX 21

3.2 SUPERVISED M O D E L S 2 2

3.2.1 Linear regression 22
3.2.2 Simple Linear Regression (SLR) 2 2
3.2.3 Multiple Linear Regression (MLR) 23
3.2.4 Decision Tree (DT) 23
3.2.5 Random Forest (RF) 2 6
3.2.6 XGBoost 2 7
3.2.7 Support vector machines (SVM) 28
3.2.8 Naive Bayesian Model 2 9

3.3 D E E P L E A R N I N G - B A S E D T I M E SERIES M O D E L S 3 0

3.3.1 Recurrent Neural Network (RNN) 31
3.3.2 LSTM (Long Short-Term Memory) 32
3.3.3 Prophet and DeepAR 34

4.1 S T A T S M O D E L S 3 6

4.2 S K T I M E 37

4.3 K E R A S 37

4.4 P R O P H E T 3 8

5.1 D A T A S E T PRE-PROCESSING FOR T H E MODELS 41

6.1 T R A I N / T E S T SPLIT 51

7.1 S A R I M A X 53

7.7.7 Dataset 1 - Discount Rate -55
7.7.2 Dataset 2 - Number of accidents 56
7.1.3 Dataset 3 - Yahoo Finance 58

7.2 P R O P H E T 5 9

7.2.7 Dataset 1 - Discount Rate 59
7.2.2 Dataset 2 - Number of accidents 61
7.2.3 Dataset 3 - Yahoo Finance 63

7.3 L S T M 64

7.3.7 Dataset 1 - Discount Rate 64
7.3.2 Dataset 2 - Number of accidents 66
7.3.3 Dataset 3 - Yahoo Finance 69

8.1 M E A N S Q U A R E D E R R O R 7 2

8.2 R O O T M E A N S Q U A R E D E R R O R 73

7

8.3 M E A N A B SOLUTE E R R O R 73

8.4 E V A L U A T I O N OF T H E P E R F O R M A N C E OF T H E DATASETS 7 4

8.4.1 Evaluation of the first dataset 74
8.4.2 Evaluation of the Second dataset 77
8.4.3 Evaluation of the Third dataset 78

9. T H E U S E R I N T E R F A C E A P P L I C A T I O N

C o n c l u s i o n

8

I N T R O D U C T I O N

Time series forecasting can aid in comprehending how past data impacts the future,

making it a valuable tool. By examining previous data, identifying patterns, and

generating short or long-term predictions, this process is accomplished. Time series is

considered a special type of data set in which one or more variables are measured over

time. This measurement could be daily, monthly, quarterly, or yearly JJJ.

Artificial intelligence (AI) has become a powerful tool for time series prediction,

allowing for the analysis and forecasting of patterns and trends in data. The use of AI

for time series prediction has the potential to greatly improve our ability to analyse and

forecast patterns and trends. With continued advances in AI and deep learning, we can

expect to see even more powerful and accurate models for time series prediction in the

future. However, time series prediction using AI is not without its challenges. One

major challenge is dealing with missing or incomplete data, as well as handling the

large amounts of data that are typically present in time series datasets. Another

challenge is dealing with non-stationary data, where the statistical properties of the data

change over time. By using preprocessing techniques to adjust the datasets and feature

engineering to improve them, we can develop very powerful models for time series

forecasting \2\.

Mainly using M L (Machine Learning), which is a subset of artificial intelligence,

enables computers to learn without being explicitly programmed with predefined rules.

One of the biggest features of machine learning algorithms is their ability to improve

over time. As larger quantities of data are processed, M L technology can enhance its

efficiency and precision. This enables the algorithm to gain more experience, leading to

better decision-making and predictions. With the advent of machine learning methods, it

becomes more robust and more convenient to deal with the aforementioned difficulties

[31-

9

In this thesis, multiple machine learning models are developed and applied to time-

series datasets to predict the future. The datasets can be related to fields such as

economics and networking. Several machine learning methods will be utilized,

including supervised and unsupervised learning. Moreover, deep learning algorithms

will also be employed. Furthermore, the thesis illustrates which groups of algorithms

are the most suitable and have the best performance.

10

1. T I M E S E R I E S

Time series is a special type of dataset in which one or more variables are measured

over time. In time series, observations are measured over time, with each data point

corresponding to a specific point in time. This means that there is a relationship between

different data points in your dataset. This has important implications for the types of

machine learning algorithms that you can choose and apply to the time series dataset

141.

There are already many readily available datasets on the internet, and in this master's

thesis, multiple datasets will be used to try different models and compare the

performance of each model's algorithms, selecting the most suitable one.

1.1 Time Series Main Purposes and Usages

There are many uses of time series analysis, and some of the main applications are:

Forecasting: Time series analysis can be used in fields like finance, where forecasting

stock prices and market patterns is crucial for making investment decisions. It estimates

future values of a variable based on past observations.

Trend analysis: Time series analysis can identify patterns in data over time. This is a

useful tool for identifying shifts in consumer behaviour, market demand, and other

elements that affect business performance.

Seasonality analysis: Time series analysis can help identify seasonal patterns in data.

This is useful for many industries, such as retail, where sales tend to rise at particular

times of the year.

Anomaly detection: Time series analysis can detect anomalies or outliers in data. This is

helpful for various purposes, including identifying manufacturing equipment failure and

financial transaction fraud.

Control charting: Time series analysis can be used to create control charts that monitor

processes over time. This is useful in manufacturing, where monitoring the quality of

production processes is critical for ensuring product quality.

11

In general, time series analysis is a valuable method for comprehending and analysing

time-dependent data in a range of fields and applications £51.

1.2 Time Series Forecasting In Machine Learning

Machine learning, like the human brain, acquires knowledge and comprehension

through input. The process of machine learning commences with the collection of

observations or data, including examples, direct experience, or instruction. It seeks

patterns in the data to facilitate future inferences based on the given examples. The

primary aim of M L is to allow computers to learn autonomously without human

intervention or assistance and adjust actions accordingly. Machine learning forecasting

has proven to be the most efficient method for capturing patterns in sequences of both

structured and unstructured data for further time series analysis and forecasting.

M L has proven to be valuable because it can solve problems at a speed and scale

unattainable by humans. With massive amounts of computational ability behind a single

task or multiple specific tasks, machines can be trained to identify patterns and

relationships in input data and automate routine processes £61.

12

2. T I M E S E R I E S A N A L Y S I S A N D P R E D I C T I O N

Time series analysis is a statistical method used to analyse time-dependent data

collected at regular intervals, enabling observation of past and present data to forecast

future trends.

The process of time series analysis encompasses several steps:

Data collection: Time series data is collected at regular intervals, such as hourly,

daily, weekly, or monthly.

Data preparation: The data is pre-processed to ensure suitability for analysis,

including verification for missing values, outliers, and other errors.

Data analysis: The data is analysed and visualized to identify patterns, trends,

and other characteristics.

Model selection: A statistical model that best fits the data and enables prediction

is chosen.

Model estimation: Using the provided data, the parameters of the selected model

are calculated.

Model evaluation: The performance of the model is assessed using various

metrics, including mean squared error, mean absolute error, and others.

Forecasting: The model is utilized to forecast future values of the time series [7].

Below in the Figure 2.1 it shows the steps of the process from the start to the end.

Fig 2.1 : Flowchart of the Time Series analysis

13

2.1 Time series stationary data

Time series data that is stationary has statistical features like mean, variance, and

autocorrelation that don't change over time. The time series' statistical characteristics, in

other words, do not change over time.

Because almost every time series models require stationarity, stationary data is crucial

in time series analysis. Making predictions based on historical data is made simpler by

stationarity, which also streamlines the modelling process.

Stationarity has two types:

Strict stationarity: A time series is strictly stationary if the joint distribution of any

collection of time points is not affected by time translation. This indicates that

regardless of when the data is obtained, the distribution of the data remains constant.

Mathematically, if Xt represents the time series, then for any tv t2,..., tk,

and any time shift h, the joint distribution of Xtl,Xt2, —,Xtk, is the same as the joint

distribution of Xtl+h,Xt2+h, ...,Xtk+h £8]-

Weak stationarity: If a time series' mean, variance, and autocorrelation remain

constant throughout its course, it is considered weakly stationary. This indicates that

while the distribution of the data may change over time, the statistical characteristics of

the data remain constant.

The main distinction between strict and weak stationarity is that strict stationarity

demands that the statistical characteristics of the time series remain constant regardless

of the measurement time, whereas weak stationarity permits some change in these

characteristics across time.

Non-stationary time series are those that are not constant throughout time. Non-

stationary data may indicate trends, seasonality, and other recurring patterns. It may be

essential to alter the data in order to remove the trend or seasonality before performing

an analysis on non-stationary data [9] £81.

14

2.2 Time series decomposition

Time Series Decomposition is a technique used to extract multiple types of variation

from your dataset.

Seasonality is a recurring movement that is present in your time series variable.

Trend can be a long-term upward or downward pattern and describe increasing or

decreasing behaviour of the time series frequently presented in linear modes.

Noise refers to the non-systematic aspect of a time series that deviates from the

common model values and cannot be explained by seasonality or trend.

A created dataset could be used as an example to understand how to decompose a time

series in Python. The code to import the data is as follows: (Dataset to data frame using

Pandas). After that, the decomposition can be done using the Statsmodels'

seasonal_decompose function to generate a plot that will split the time series into trend,

seasonality, and noise. An example of how it should look like is provided. This

decomposition data shows an upward trend and strong seasonality £101.

2.3 Time series models univariate vs multivariate

There are two types of time series models univariate vs multivariate

The Univariate time series models are forecasting models that use only one variable

(the target variable) and its temporal variation to forecast the future. Univariate models

are specific to time series.

(Time series with a one time-dependent variable and a single independent variable).

If there is other data that will influence the predictions. In this case, Multivariate time

series models can be used. Multivariate time series models are similar to univariate time

series models but are adapted to integrate external variables.

(Time series with one time-dependent variable and more than one independent variable)

m i .

In the Table 2.1 briefly describes the differences between The Univariate Model and the

Multivariate Model.

15

Univariate Model Multivariate Model

Uses only one independent variable Uses more than one independent variable

Used when the model depends on only a

single variable.

Used when other data will influence the

predictions.

The model assumes that there is no

relationship between the target variable

and other variables.

It takes into account the relationships

between multiple variables.

Simple and requires less computation and

resources compared to multivariate

models

More complex and computationally

intensive. However, it can offer a deeper

understanding of the modelled system

Tab. 2.1: Comparison of Univariate and Multivariate Models

16

3. T I M E S E R I E S F O R E C A S T I N G M O D E L S

There are several classical and modern machine learning methods that differ in many

things like accuracy, speed, errors and losses.

The properties of the time series data, the forecasting horizon, the presence of trends

and seasonality, and the available processing power all influence model selection.

Several different forms of time series analysis would be discussed below.

3.1 Classical time series models

Typically, these models are only suitable for time series analysis and not applicable to

other types of machine learning. They rely heavily on temporal variations within a time

series and work well with univariate time series. Some advanced options exist to add

external variables into the models as well.

Although they may have prioritized linear relationships, these models are still advanced

and exhibit strong performance on a diverse range of problems, assuming that your data

is suitably prepared and the method is well-configured.

3.1.1 ARIMA Family

The A R I M A family of models is a set of smaller models that can be combined. Each

part of the A R M I A model can be used as a stand-alone component, or the different

building blocks can be combined. When all of the individual components are put

together, the S A R I M A X model is obtained [121.

1. Autoregression (AR) Represents the model of the following step in the

sequence as a linear equation involving the observations from previous time

steps. The notation for the model involves specifying the order of the model p as

a parameter to the A R function, The simplest model is the AR(1) model: It

utilizes solely the preceding timestep's value to forecast the current value. The

maximum number of values that can be used is the total length of the time

17

series. The method is suitable for univariate time series without trend and

seasonal components.

The mathematics equation of an autoregressive model of order p (AR(p)) can be

expressed as:

yt = c + Z(at * y { t _ 0) + et. (3.1)

where yt stands for the dependent variable at time t, c is a constant term, at is

the dependent variable's lag coefficients up to order p, and et is the error term at

time t, which is assumed to have a normal distribution with a mean of zero and a

constant variance. Based on yt's previous values up to order p, weighted by the

associated coefficients, the autoregressive model forecasts its value.

2. Moving average (MA) The Moving Average is the second building block of the

larger S A R I M A X model. It operates similarly to the A R model: it uses past

values to predict the current value of the variable. A moving average model is

different from calculating the moving average of the time series. The M A model

can use multiple steps back in time as well. This is represented in the order

parameter called q. For example, an MA(1) model has an order of 1 and uses

only one time step back. The method is suitable for univariate time series

without trend and seasonal components.

The mathematics equation of a moving average model of order q (MA(q)) can be

expressed as:

yt = n + Et + E(Pj * % _ ; }) . (3.2)

where yt represents the dependent variable at time t, [i is the mean of the series,

et is the error term at time t, and /?;- are the coefficients of the lagged error terms

up to order q. The moving average model predicts the value of yt based on the

past error terms up to order q, weighted by the corresponding coefficients £131.

18

3. Autoregressive moving average (ARMA) it combines the two previous

building blocks into one model. A R M A can employ both the value and the

forecast errors from the previous instances. A R M A can have different values for

the lag of the A R and M A processes. For example an ARMA(1 , 0) model has an

A R order of 1 (p = 1) and an M A order of 0 (q=0). This is actually just an

AR(1) model. The MA(1) model is the same as the ARMA(0, 1) model. Other

combinations are possible: ARMA(3 , 1) for example has an A R order of 3

lagged values and uses 1 lagged value for the M A .

The method is suitable for univariate time series without trend and seasonal

components.

The mathematics equation of an Autoregressive Moving Average model of order

p and q (ARMA(p,q)) can be expressed as:

yt = c + Z(at * y { t _ 0) + * %_ ; }) + et. (3.3)

where yt represents the dependent variable at time t, c is a constant term, at are

the coefficients of the lags of the dependent variable up to order p, /?;- are the

coefficients of the lagged error terms up to order q, et is the error term at time t,

which is assumed to be normally distributed with mean zero and constant

variance. The A R M A model predicts the value of yt based on its past values up

to order p and the past error terms up to order q, weighted by the corresponding

coefficients.

4. Autoregressive integrated moving average (ARIMA) It represents the

subsequent step in the sequence as a linear equation involving the differenced

observations and residual errors from previous time steps. It combines both

Autoregression (AR) and Moving Average (MA) models as well as a

differencing pre-processing step of the sequence to make the sequence

stationary, called integration (I). For example, an ARMA(1,1) that needs to be

differenced one time would result in the following notation: ARIMA(1, 1, 1).

19

The first 1 is for the A R order, the second one is for the differencing, and the

third 1 is for the M A order. ARIMA(1, 0, 1) would be the same as ARMA(1 , 1).

This model needs a stationary time series, stationarity means that a time series

remains stable. The method is suitable for univariate time series with trends and

without seasonal components.

The mathematics equation of an Autoregressive Integrated Moving Average

model of order p, d, q (ARIMA(p,d,q)) can be expressed as:

Adyt = c + £(at * Ady{t_i}) + * %_;}) + et. (3.4)

where Ad represents the differencing operator applied d times to the series, yt

represents the dependent variable at time t, c is a constant term, at are the

coefficients of the lags of the differenced dependent variable up to order p, /?;-

are the coefficients of the lagged error terms up to order q, et is the error term at

time t, which is assumed to be normally distributed with mean zero and constant

variance. The A R I M A model predicts the value of the differenced series at time

t based on its past values up to order p, the past error terms up to order q, and the

degree of differencing d. The original series can be obtained by reversing the

differencing operation £141.

5. Seasonal autoregressive integrated moving-average (SARIMA) SARIMA

notation is quite a bit more complex than A R I M A , as each component

incorporates a seasonal parameter in addition to the standard parameter. The

model represents the subsequent step in the sequence as a linear equation

involving the differenced observations, errors, differenced seasonal

observations, and seasonal errors from previous time steps. It combines the

A R I M A model with the ability to perform the same autoregression, differencing,

and moving average modelling at the seasonal level. For example, let's consider

the ARIMA(p, d, q) as seen before. In SARIMA notation, this becomes

SARIMA(p, d, q)(P, D, Q)m.

20

6. Seasonal autoregressive integrated moving-average with exogenous

regressors (SARIMAX) It's the most complex variant. It regroups

Autoregressive AR, Moving Average M A , differencing, and seasonal effects.

And it adds the X : external variables.

So it is considered as a significant advancement in time series forecasting

because of its capacity to adapt to both external forces and seasonal patterns.

S A R I M A X captures complicated temporal dynamics better than A R I M A since it

includes seasonal components and exogenous variables. Because of its

adaptability, S A R I M A X can forecast time series data that change seasonally and

are impacted by outside variables with greater accuracy and dependability.

S A R I M A X is the best option in the A R I M A group for tackling real-world

forecasting difficulties since it gives analysts and researchers an effective tool

for modelling and predicting a broad range of time series phenomena.

3.1.2 Vector autoregression (VAR) and its derivatives VARMA and VARMAX

Vector Autoregression, or VAR as a multivariate alternative to Arima. So instead of

predicting one dependent variable, it can predict multiple time series at the same

time. This can be especially useful when there are strong relationships between your

different time series IT51.

1. The VARMA model is the multivariate equivalent of the A R M A model.

V A R M A is to A R M A what V A R is to AR: it adds a Moving Average

component to the model.

2. VARMAX The X represents external (exogenous) variables. Exogenous

variables are variables that can help your model to make better forecasts, but

that do not need to be forecasted themselves.

3. More advanced versions, such as seasonal VARMAX (SVARMAX), do exist,

but they can become quite complex and specialized. It can be challenging to

find efficient and user-friendly implementations for these models. When

models become overly complex, it may become difficult to understand their

inner workings, and it is often better to explore other, more familiar models.

21

3.2 Supervised models

Supervised models are a family of models that are used for many machine-learning

tasks. A supervised machine learning model employs well-defined input variables and

one or multiple output (target) variables. The main difference between Classic models

and Supervised models is that they consider that variables are either dependent variables

or independent variables. Dependent variables, or target variables, are the variables that

you want to predict. Independent variables are the variables that help you to predict.

And supervised learning models can be divided into two groups Regression and

Classification £16].

3.2.1 Linear regression

It's the simplest supervised machine learning model. Linear Regression estimates linear
relationships: Each independent variable possesses a coefficient that reflects its impact
on the target variable.

3.2.2 Simple Linear Regression (SLR)

is a Linear Regression in which there is only one independent variable. An example of a

Simple Linear Regression model in non-time series data could be the following: hot

chocolate sales that depend on the outside temperature

The model should relate between two variables, the independent variable (often denoted

as x) and the dependent variable (often denoted as y) JT7J.

The mathematical equation for a simple linear regression model is:

y = /?0 + A * + £. (3.5)

where:

y is the dependent variable (or response variable)

x is the independent variable (or predictor variable)

/?0 is the intercept (or constant)

22

/?! is the slope (or regression coefficient)

s is the error term (or residual)

The relationship between the independent variable x and the dependent variable y is

represented by a straight line in the equation. The value of y, when x is equal to zero, is

represented by the intercept, while the slope indicates the change in y for each unit

change in x, and we can use the regression equation to make predictions about the

dependent variable based on new values of the independent variable £181.

3.2.3 Multiple Linear Regression (MLR)

Rather than using only one independent variable, multiple independent variables are

employed. It's like converting a 2D graph into a 3D graph, where the third axis

represents the variable Price. In this case, a linear model that explains sales using

temperature and price is built. As many variables as needed could be added.

However, in this example, the dataset is not a time series. Therefore, it should be

slightly modified to employ this technique for time series data, incorporating variables

such as year, month, day of the week, etc. £19].

In multiple linear regression, where there are more than one independent variable, the

equation is:

y = p0 + + p2x2 + ... + pnxn + a. (3.6)

Where x±, x 2 , x n are the n independent variables and /? 2 , Pn are their
corresponding regression coefficients £18].

3.2.4 Decision Tree (DT)

A decision tree is a simple algorithm with a tree-like structure used for both

classification and regression tasks. It has a hierarchical tree structure consisting of a root

node, branches, internal nodes, and leaf nodes. The decision tree begins with a root

node that does not have any incoming branches. Outgoing branches from the root node

23

feed into internal nodes, also known as decision nodes. Leaf nodes represent all possible

outcomes within the dataset, and the root node represents the entire dataset.

The decision tree model is not represented by a single mathematical equation. Instead, it

is a hierarchical structure consisting of nodes and branches representing decision rules

based on the values of input features.

In the decision tree model, nodes and branches represent decision rules based on input

features. Each internal node corresponds to a feature or attribute, and each branch

represents a decision rule based on the value of that feature. The decision tree

recursively partitions the data into smaller subsets based on the values of the input

features until a stopping criterion is met.

Once the decision tree reaches a leaf node, it provides a prediction for the corresponding

input features. The prediction can be a single value, such as in regression trees, or a

class label, such as in classification trees. Therefore, the decision tree model is not

expressed as a mathematical equation, but rather as a set of decision rules represented

by the tree structure [20].

The concept of information gain is one of the main features determining the best

splitting ways of the data for each node to achieve the best performance.

Another concept is entropy, which measures the impurity in the dataset and quantifies

the randomness in the data. A node with low entropy is considered pure, while high

entropy indicates mixed data.

Information gain, therefore, aims to reduce the entropy of the data and create more

homogeneous subsets, resulting in a purer dataset.

This is the method used to select the best split at each node - utilizing information gain -

to achieve a more effective partitioning of the data [21].

In the below Figure 3.1 shows the decomposition of the decision tree.

24

Root hlode

Fig 3.1 : Graphs of the Decision tree decomposition

Overfitting is one of the most common issues in the Decision tree, as they often produce

intricate models that capture noise in training data rather than underlying patterns.

To overcome this issue, several strategies can be employed:

Pruning: Cutting off parts of the tree that don't significantly contribute to making

predictions. This simplifies the tree and prevents it from overfitting to noise.

Limiting the Depth: Restricting the depth of the tree or making decisions based

on a minimum number of examples. This prevents the tree from learning too

much from small details.

Minimum Samples per Group: Ensuring that each group in the tree has a

sufficient number of examples. This prevents the tree from making decisions

based on too few examples.

Cross-Validation: Assessing how well the tree performs on new data that it

hasn't seen before. This helps in selecting the best settings for the tree and

prevents it from overfitting to the training data.

Ensemble Methods: Using many trees together to make predictions. This helps to smooth
out the mistakes that individual trees might make and generate more reliable predictions
[221.

25

3.2.5 Random Forest (RF)

It is a multiple DT algorithms running at once, It is an ensemble of decision trees. These

many trees are constructed in a certain "random" way from a Random Forest. Each of

the trees makes its own individual prediction and these predictions are then calculated

as average to obtain a single result.

The averaging process makes a random forest more effective than a single decision tree,

improving its accuracy and reducing overfitting. There is no single mathematical

equation for the random forest model as a whole; rather, each individual decision tree in

the forest is represented by a set of decision rules and corresponding weights that define

the importance of each input feature in the tree £2Q1.

Figure 3.2 below describes how the concept of an RF algorithm goes through, dataset is

randomly split into multiple subsets with each subset assigned to a different decision

tree. Forecasts are then gathered from each decision tree, and the optimal path is chosen.

By choosing the most effective splitting point at each node according to factors like

variance reduction for regression or information gain for classification, the tree grows

recursively.

After training each decision tree, predictions are generated by averaging the forecasts of

each individual tree. This process is referred to as voting (for classification) or

averaging (for regression). In classification tasks, the final prediction is determined by

computing the mode, or the most frequent class label, among the predictions. For

regression tasks, the average of the predictions is utilized.

26

Fig 3.2 : Flowchart of the selection in Random Forest

3.2.6 XGBoost

It is an implementation of gradient-boosting decision trees and it is designed for speed,

ease of use, and performance on large datasets. It stands out for its speed, as it does not

require parameter optimization or tuning, allowing immediate use after installation

without further configuration. Despite its speed, XGBoost maintains high accuracy.

As an ensemble learning technique, XGBoost creates decision trees sequentially, with

each tree correcting the mistakes of its predecessors.

The boosting technique, on which XGBoost is based, aggregates the predictions of

multiple weak learners, typically decision trees. Unlike bagging techniques such as

Random Forest, which constructs trees independently, boosting techniques build trees

sequentially, with each new tree learning from the mistakes of the previous ones.

XGBoost uses many regularisation strategies to mitigate overfitting and enhance overall

generalisation.

27

These strategies include shrinkage, depth constraint, and minimum child weight.

And one of the main of its efficient handling of missing values, which allows it to

handle real-world data with missing values without requiring significant pre-processing.

Additionally, XGBoost has built-in support for parallel processing taking advantage of

multicore processors and distributed computing frameworks like Apache Spark to speed

up training on large datasets [23].

The objective function in the XGBoost combines a loss function L with a regularization

term Q.

Objective = L + n. (3.7)

Loss Function: It measures the difference between the predicted values and the actual

labels.

Regularization Term: It condemns complex models to prevent overfitting. It typically

consists of two parts:

Tree Complexity Term: Measures the complexity of individual trees.

Number of Leaves Term.

3.2.7 Support vector machines (SVM)

It is a learning model that is used for classification or regression. This approach works

well with high-dimensional spaces and can be used with small data sets effectively.

When the algorithm is trained on a dataset, it can easily classify new observations

efficiently. It achieves this by creating one or multiple hyperplanes that can separate the

dataset into two classes. Hyperplanes serve as boundaries separating different classes,

and their dimensionality depends on the number of input variables [241.

S V M can take many different forms, including Linear S V M which is the simplest form

which tries to find a linear decision boundary and it works better when the data is

linearly separable.

28

There are several other forms of S V M that are used to handle non-linearly separable

data, those alternative forms use different kernel functions and methods aiming to

modify the inputs by swapping them to be linearly separable again.

The choice of the specific kernel function would be depending on the type or the nature

of the input data.

Polynomial S V M : this form uses from its name a polynomial kernel function which is

aiming to map the input data to become a higher-dimensional space.

where d is the degree of the polynomial and c is a constant.

if the degree of the d is increased, the ability of the S V M to capture more complex

decision boundaries gets better.

Radial Basis Function (RBF) S V M : Also from its name, it uses RBF kernel function.

here y represents the kernel's bandwidth.

This form is widely used with non-linear decision boundaries as it's more fixable.

Also, there are many other forms, even there are Custom Kernels which would be

tailored to be matched with the captured data and designed after that [25]..

3.2.8 Naive Bayesian Model

It's also one of the most popular Supervised models and it works greatly with very

small data sets, but even with this simplification, The algorithm could be successfully

applied to complex problems. It is not a single algorithm but a family of algorithms

where all of them share a common principle. This model draws on common data

assumptions, such as each attribute is independent \26].

The mathematical equation for the Naive Bayes model can be expressed as:

P (y | * i . * 2 * n) = P (y) * P (* i l y) * P t a l y) * • • • * P (* n l y) / P (* i . * 2 xn). o . i o)

K(xt,x'') = (x f x ' + c)d. (3.8)

K(x,x') = exp (—y\\x — x'\\2). (3.9)

29

y is the class variable.

xx, x 2 , x n are the feature variables.

P (y I Xj_, x 2 , x n) is the posterior probability of y given the values of xx, x 2 , x n .

P(y) is the prior probability of y.

P (x i I yX P (* 2 I yX P (x n I y) a r e the conditional probabilities of the values of xx, x2,

xn given y.

The joint probability model would be expressed as:

T^r I n P(x1\y)P(x2\y)...P(xn\y)P(y)
P(y\x) = —, \ , \ \ — • (3.11) J P(x 1)P(x 2)...P(x n)

After a few adjustments, the equation used by the classifier can be expressed like this:

y = argmax P(y) YK=1P(xt\y). (3.12)

This equation can be used to compute the posterior probability of each class y for a given
input xx, x2, xn and the class with the highest probability can be chosen as the
predicted class for the input [27].

3.3 Deep learning-based time series models

After the classical models and the supervised models have been discussed, each of them

with their specific ways of fitting the models.

Classical time series models primarily focus on the relationship between past and

present data.

Supervised machine learning models concentrate on identifying cause and effect

relationships.

Now, delving deeper into deep learning-based time series models, which is an advanced

subfield of M L that employs algorithms inspired by the structure and function of

30

Artificial Neural Networks. These models improve on their own by analysing computer

algorithms. There are various types of algorithms used in Deep Learning, some of

which will be discussed below £281.

3.3.1 Recurrent Neural Network (RNN)

I t's basically a neural network with memory that can be used for predicting time-

dependent targets. RRNs are capable of retaining the previously recorded input state,

enabling them to make decisions for future time steps. This allows the network to learn

from sequential data, making it useful for various applications, including understanding

time series 129]..

The mathematical equation for the Recurrent Neural Network model can be expressed

as:

hl = f(ht~1;x). (3.13)

When x is inputted into this network, state h, also referred to as a hidden state that is

sent forward, incorporates it. A single time step is delayed as indicated by the black

square.

It simply allows the information which persists over time with recurrent connections to

move from the previous time step to a new output, allowing the network to capture the

dependencies in the data 130]..

During the whole-time steps, the same shared set of parameters remains unchanged

saving some processing and efficiently training the R N N more.

And RNNs could be involved in many different applications or tasks because of their

good ability to capture temporal dependencies making them perfect to suit any task

whatever the data looks like.

Below in the Figure 3.3 describes a recurrent neural network with no output which

represents the equation.

31

Fig 3.3 : A recurrent neural network with no output which represents the equation

3.3.2 LSTM (Long Short-Term Memory)

LSTMs are a specific type of RNNs. They have proven useful for time series

forecasting on multiple occasions. By retaining the previous input state, It is empowered

to make decisions for future time steps, facilitating the network's learning from

sequential data. And they were created mainly to find a solution to the gradient problem

by providing the model with several gates to choose from. These gates let the model

decide what information to identify as meaningful and what information to ignore [3JJ.

L S T M mainly came for handling and vanishing gradients, it processes the sequence data

and introduces a more sophisticated memory mechanism which is some cells repeating

one after another to control the flow of information.

Those cells consist of many components such as:

- Forget Gate ft which decides if the information is needed or it could be discarded

from the cell state.

ft= a(Wr.[Kt-i.Xt[+bj). (3.14)

32

This gate (Forget Gate) decides which parts of the previous cell state ct_1 are to be

forgotten.

o is the sigmoid function, which outputs a value between 0 and 1.

This value multiplies the previous cell state ct_t, and then decides the extent to which

each component of the cell state is remembered or forgotten. A value close to 0 means

"forget it", while a value close to 1 means "retain it".

Wf is the weight matrix for the forget gate.

ht_t is the output from the previous time step.

xt is the current input.

bj is the bias term for the forget gate.

- Cell State ct which holds the important information and gets many time steps with

many different states.

Ct = ft* Q - i + i t * Q - (3-15)

The previous cell state Ct_t multiplied by the forget gate output ft determines how

much the old state can retain.

The candidate cell state Ct multiplied by the input gate output it determines how much

of the new state to add.

- Input Gate it and Output Gate ot, those gates are for the determination of the state of

the cell and if it should be stored or output from the cell state. And the output gate ot

determines which parts of the cell state should be output as the hidden state ht.

The output gate ot regulates the information flow from the cell state ct to the hidden

state ht The hidden state is passed to the next time step and can also be used as the final

output of the L S T M .

For the Input Gate:

it = a(Wi.[ht_1,xt] + bi). (3.16)

33

For the Output Gate:

ot = o(W0-[ht-i.Xt\ + bo)-

And for the hidden state ht:

ht = o t *tanh (Q).

(3.17)

(3.18)

When this tanh is applied to Ct scales the cell state values are between -1 and 1.

A l l of this is described in the below Figure 3.4 as the L S T M architecture.

Cell State

Output Gate

tanh tanh segmoid

Fig 3.4 : L S T M architecture

3.3.3 Prophet and DeepAR

They are 2 time series libraries that were open-sourced by Facebook and Amazon they

are considered as black-box models. The idea is to have a Python library that does all

the heavy lifting for you. Forecasts can be generated with minimal user input as they

require little user specification. This can be an advantage, as it's possible to

automatically generate forecasting models without much knowledge or effort. But on

the other hand, there is also a potential risk that if not carefully monitored, the

automated model-building tool may produce a model that appears to be effective but

does not actually perform well in reality \32] T331.

34

The good thing about Prophet is that it is specifically designed for time series

forecasting tasks with daily observations that exhibit trends, seasonality, and holiday

effects, which is the main topic of this study.

And what could be known about the model is that it decomposes the time series into

three main components: trend, seasonality, and holidays.

y(t) = g(t)+s(t)+h(t) + et. (3.19)

g(t) represents the trend component.

s(t) represents the seasonal component.

h(t) represents the holiday component.

et is the error term, representing random noise in the data.

And Prophet usually detects Seasonality automatically using the Fourier series even for

the complex effects making it more flexible and give the option to specify and define

the holiday component all of those options with easy and simple interface for the user

without any complexity like in the R N N - L S T M for example all of this with a good

handling and fitting for any large datasets £331.

Also the same for the DeepAR from Amazon was developed specifically for forecasting

time series data and it should be using RNNs mixed with some autoregressive approach

where previous observations provide the basis for the forecasts developed at each time

step, and the RNNs capture dependencies over time.

One of the advantages of this model is that it can parallelize training across multiple

GPUs and instances, making it faster to train any big datasets and easier to customise

requirements like hyperparameters £341.

35

4. T I M E S E R I E S F O R E C A S T I N G L I B R A R I E S

There are a wide variety of tools or techniques that could be used for time series

forecasting as discussed in the first part of the thesis from classical statistical methods,

the Supervised way, or advanced approaches like deep learning.

There are many different choices of libraries or frameworks that can be used for time

series forecasting. Each of the libraries has different methods for dealing with the

various time series learning tasks regression, classification, or forecasting.

Here are many of the main and most used ones with forecasting.

4.1 Statsmodels

Statsmodels is a Python library for statistical modelling and econometric analysis also it

has Python packages that provide a complement to SciPy for statistical computations

including a range of tools for classical statistical tests and models, including linear

regression, time series analysis, and generalized linear models also advanced statistical

methods such as panel data analysis, survival analysis, and Bayesian statistics, is

designed to work with NumPy arrays and Pandas data frames. An extensive list of result

statistics is available for each estimator. The results are tested against existing statistical

packages to ensure that they are correct.

It also provides tools for visualizing time series data, including line plots, scatter plots,

autocorrelation plots, and partial autocorrelation plots. This helps to explore and

diagnose a lot of factors and even potential issues over the data.

Statsmodels is widely used in academia, finance, and industry for data analysis and

modelling. It can be used of course Time Series Analysis with different modelling

frameworks primarily focused on classical statistical modelling such as ARIMA,

A R I M A X , VAPvMA, and V A R M A X models as it includes classes for estimating those

models and it allows the user to modify or specify the parameters of the model so it

obtains the future forecast T351.

36

There are many other functions included in the library that could be useful for time

series forecasting The 'seasonaldecompose' function which decomposes a time series

into its trend, seasonal, and residual components and this is very useful to analyse the

patterns of the data.

4.2 Sktime

A unified framework for machine learning with time series. It takes inspiration from

scikit-learn with a similar API and it provides an easy-to-use, flexible, and modular

open-source framework for a wide range of time series machine learning tasks and

provides a wide range of tools and algorithms for time series forecasting, classification,

clustering, and regression.

Sktime supports both univariate and multivariate time series and includes various pre

processing, feature extraction, and evaluation methods specific to time series data. It

also provides an interface for integrating external time series libraries and datasets. And

the main technical specifications are: -In-memory computation of a single machine, no

distributed computing. It is designed to be user-friendly and scalable. And is used in

diverse applications such as finance, healthcare, and transportation.

Medium-sized data in pandas and NumPy.

Modular, principled, and object-oriented API.

It's mostly used and supports in focused on machine learning with time series data,

including forecasting, classification, clustering, and regression like Supervised Time

Series algorithms and methods, including implementation of interval-based classifiers,

such as the supervised time series forest, as well as ROCKET [36].

4.3 Keras

It is also one of the most used deep learning frameworks that support LSTMs and RNNs

models. It's Simple, Flexible, and Powerful The primary reason to use Keras is its

guiding principle of being user-friendly, which translates to its ease of use for both

37

learning and building models, Keras offers the advantages of broad adoption and

support for a wide range of production deployment options.

It could be running on top of multiple backend libraries and be compatible with them

like TensorFlow, Theano, or Microsoft Cognitive Toolkit. Switching between those

different engines without any changes to the code.

There are two main types of models available in Keras, the Sequential model, and the

Functional one. As the sequential one is simpler and made of layers one is on the top of

another like a stack each layer has one input and one output, and the data should be

flowing sequentially through the layers, from input to output.

On the other hand, The Functional API is more powerful and flexible, as it allows to

modification of the whole architecture defines the model with multiple inputs and

outputs, and then connects them using functional API layers. Making it perfect for more

complex tasks with its advanced features.

Keras also supplies many of the common deep-learning sample datasets via the Keras.

Datasets class, for example, cifarlO and cifarlOO small colour images, IMDB movie

reviews [37].

4.4 Prophet

Prophet is open-source software released by Facebook and it is a procedure for

forecasting time series data based on an additive model where non-linear trends are fit

with yearly, weekly, and daily seasonality, plus holiday effects. It is most effective

when working with time series data that exhibit prominent seasonal effects and have a

substantial amount of historical data spanning multiple seasons. Prophet is robust to

missing data and shifts in the trend and typically handles outliers well [32j.

And finally, below in Table 4.1 a comparison between the Time Series Forecasting

Libraries.

38

Statsmodels Sktime Keras Prophet

Python library for Python library for Python library for Python library for

statistical modelling machine learning deep learning forecasting with

seasonality

It's widely used in It's mostly used It offers a variety It is widely used in

the academic and focused on of deep learning industry but it may

community, machine learning models for time not be suitable for

finance, and with time series series forecasting, complex time

industry for data but it's not widely like L S T M and series forecasting

analysis and used in the GRU. tasks.

modelling academic

community

It may not be as It's easy to use and It is easy to use, It is easy to use,

user-friendly as it offers a and it provides a and it provides a

other libraries, it unified API for high-level API for simple API for

provides many time series building deep forecasting besides

features but it may forecasting, learning models having unique

require some making it simple but it may require features like

programming skills to compare and more automatic trend

to use evaluate various computational detection and

models. resources seasonal

compared to other decomposition

libraries

It's primarily It's mainly focused Mainly focused on Mainly focused on

focused on classical on M L Supervised deep learning simple time series

statistical modelling Time Series Modelling forecasting tasks

algorithms and

methods

Tab. 4.1: Comparison of Time Series Forecasting Libraries

39

5. T I M E SERIES D A T A P R E - P R O C E S S I N G

The online datasets or the collected ones can have various formats and contain various

data. Data pre-processing involves converting raw data into a useful and

comprehensible format. Real-world or raw data usually has inconsistent formatting, and

human errors, and can also be incomplete. So data pre-processing is a critical step that

improves the completeness and efficiency of datasets for performing data analysis It's a

crucial process that can affect the success of data mining and machine learning projects.

It may affect the performance of machine learning models [38].

And this procedure includes many main steps like:

1. Data Cleaning: The data can have many irrelevant and missing parts so to fix that

- Missing Data can be handled in various ways like Ignore the tuples or fill the Missing

values.

Also, the missing data or values can be handled by many different approaches like

replacing the missing values with the most recent observations by the forward-filling

approach. Or replacing the missing values with the next observed value with the

Backward-filling approach. Or just remove those time points if they could be neglected

and will not affect the estimation or the forecasting

- Noisy data refers to data that lacks meaning and cannot be interpreted by machines.

This type of data is often generated as a result of faulty data collection or data entry

errors, etc. It can be handled in the following ways Binning Method, Regression, and

Clustering.

2. Data Transformation: This step is taken in order to transform the data into

appropriate forms suitable for the mining process. This involves the following ways

Aggregation, Discretization, and Normalization.

https://colab.research.google.com/drive/lUmTOoX332sYsOCT4n9vVXZCFdvcQRTzU?usp=sharing

40

https://colab.research.google.com/drive/lUmTOoX332sYsOCT4n9vVXZCFdvcQRTzU?usp=sharing

There are many common methods to bring the data to a common scale and to promote

the development of the model including Min-max scaling and in that method, the data

would be scaled with some certain range according to its value.

Or other ways like Log transformation and Z-score normalization.

3. Data Reduction: Since data mining is a technique that is used to handle huge

amounts of data. While working with a huge volume of data, analysis became harder in

such cases. In order to get rid of this, we use a data reduction technique. It aims to

increase the storage efficiency and reduce data storage and analysis costs.

And also many other ways to clean and prepare the data to be processed.

By performing these pre-processing steps, Time series data can be cleaned, transformed,

and made ready for analysis and modelling, which will increase the accuracy as well as

reliability of any projections or insights derived from the data [391.

5.1 Dataset pre-processing for the models

In the project, there will be 3 different datasets with the kind of univariate used and for

each dataset, there will be 3 models applied on each and the datasets will be pre-

processed in a different way for each model to be ready for the processes and the

forecasting eventually.

Then there would be 2 another different Multivariate datasets which will be complex

because there will be more than one column, also there will be two different models

applied to them.

41

And below in the figures are the snippets of the datasets which would be used:

Date

Open High Low Close Adj Close Volume

2010-01-04 7.622500 7.660714 7 585000 7.643214 6.496293 493729600

2010-01-05 7 664286 7.699643 7616071 7.656429 6.507525 601904800

2010-01-06 7.656429 7.686786 7.526786 7.534643 6.404015 552160000

2010-01-07 7.562500 7.571429 7.466071 7.520714 6.392176 477131200

2010-01-08 7.510714 7.571429 7.466429 7.570714 6.434674 447610800

...

2022-12-23 130.919998 132.419998 129.639999 131.860001 131.477127 63314900

2022-12-27 131.380005 131.410004 128720001 130.029999 129.652435 69007800

2022-12-28 129.669998 131.029999 125.870003 126.040001 125.674026 85438400

2022-12-29 127.989998 130.479996 127730003 129.610001 129.233658 75703700

2022-12-30 128.410004 129.949997 127 430000 129.929993 129.552719 77034200

3272 raws x 6 columns

Fig. 5.1: The generated dataset from Yahoo Finance

1 VALID_FROM|CNB_DISCOUNT_RATE.IN_%
2 1990010114.00
3 1990040115.00 3 Chart time period 1/1/2006 to 3/31/2023
4 1990100117.00 4 4 1990100117.00 5 Date number of a ccid e nts
5 19901111|8.50 e 01/01/2006 499
6 19910101110.00 7 02/01/2006 492

7 1991090819.50 s 03/01/2006 571 7 1991090819.50 9 04/01/2006 535
8 1992032519.00 i o 05/01/2006 518
9 1992082618.00 11 06/01/2006 555

10 1992123019.50 12 07/01/2006 337 10 1992123019.50 13 08/01/2006 243
11 19930610|8.00 14 09/01/2006 656
12 1994102418.50 15 10/01/2006 630

13 1995062619.50 16
17

11/01/2006
12/01/2006

633
647 14 19960621110.50 IS 13/01/2006 704

15 19970527113.00 19 14/01/2006 382

16 19980814111.50 20
21

15/01/2006
16/01/2006

251
6Q7 17 19981027|10.00 22 17/01/2006 649

23 18/01/2006 1076
24 19/01/2006 677

Fig. 5.2: Dataset 1 - Discount Rate & Dataset 2 - Number of accidents

The first dataset we have it will be about the discount rate changed over time here in the

Czech Republic according to CNB (Czech National Bank) it's a kind of simple dataset

42

that won't need a lot of pre-processing. But regarding the model that will be applied to

the dataset, there should be some kind of modifications that should be applied first to

the dataset to be able to be worked on, So for the first model which will be applied

(SARTMAX) it should be converted to this valid format first as it's shown in Listing

5.1.

Convert 'VALID_FROM' column to datetime format
df['VALID_FROM'] = pd.to_datetime(df['VALID_FROM'],
format='%Y%m%d')

Generate some random data
x = df['VALID_FROM']
y = df["CNB_DISCOUNT_RATE_IN_%"]

Set 'VALID_FROM' column as the index
df = df.set_index('VALID_FROM')

S o r t the dataframe by index (date)
df = d f . s o r t index()

Listing 5.1: Dataset pre-processing for S A R I M A X Model

And now then the dataset should be pre-processed and it can be continued with the next

steps for the model.

For the same dataset also there will be another model which will be applied on - below

in Listing 5.2 - and it will need to be modified a little to be prepared and ready for this

model. The other model would be (Prophet) it's a time series forecasting model

developed by Facebook. In addition to the previous pre-processing to the dataset there

should be extra steps done to the dataset so it would be ready for the model. For this

specific model the columns must be named as "ds" and "y" so the model can work on

the dataset.

Load the d a t a s e t
df = pd.read_csv(path+"/data.csv", sep="|")

43

Convert 'VALID_FROM' column to datetime format
df['VALID_FROM'] = pd.to_datetime(df['VALID_FROM'],
format='%Y%m%d')

Set 'VALID_FROM' column as the index
df = df.set_index('VALID_FROM')

S o r t the dataframe by index (date)
df = d f . s o r t index()

Prepare the data f o r Prophet
t r a i n _ d a t a _ p r o p h e t = t r a i n _ d a t a . r e s e t _ i n d e x ()
t r a i n _ d a t a _ p r o p h e t . c o l u m n s = ['ds', 'y']

Listing 5.2: Dataset pre-processing for Prophet Model

Finally for the third model (L S T M) which is one of the most famous Deep learning

models for Time series Forecasting it needs a lot of more data pre-processing to be able

to work on the dataset effectively. So here also it will be like the previous codes it reads

the data from a CSV file located at the specified path. The columns are renamed to 'date'

and 'discount_rate', and the 'date' column is converted to a datetime object with the

format '%Y%m%d'. Finally, the 'date' column is set as the index for the DataFrame.

But after that there will be extra steps done starting from Scales the 'discount_rate'

values in the DataFrame using the MinMaxScaler from the scikit-learn library. The

values are scaled between 0 and 1. Scaling the data: Scaling the data to a common

range, such as between 0 and 1, is often necessary to ensure that the model can learn

from the data effectively. In this code, the MinMaxScaler from the scikit-learn library is

used to scale the 'discount_rate' values between 0 and 1.

There also will be splitting the data which it will be mentioned in the next pages so it

could be skipped for now but there will be an important step also regarding the data pre

processing which is called reshaping by restructuring the training and testing sets into a

time series analysis-friendly manner, where each training example consists of a single

input value (Xjxain) and an output value (Yjxain), which is next in the sequence.

44

Afterward, two arrays are created, Xjxain and Yjxain, each having the input and

output values for the training set, and X_test and Y_test, each containing the input and

output values for the testing set. In time series analysis, the data must frequently be

reshaped into a certain format that is appropriate for the model being employed. Each

training example in this code consists of a single input value and its associated output

value. The training and testing data are reshaped into a format appropriate for time

series analysis.

Read the data
df = pd.read_csv(path+'/data.csv', sep='|')
df.columns = ['date', ' d i s c o u n t _ r a t e ']
d f [' d a t e '] = p d . t o _ d a t e t i m e (d f [' d a t e '] , format='%Y%m%d')
d f . s e t _ i n d e x (' d a t e ' , inplace=True)

Scale the data
s c a l e r = MinMaxScaler(feature_range=(0, 1))
s c a l e d _ v a l u e s = s c a l e r . f i t _ t r a n s f o r m (d f . v a l u e s . r e s h a p e (- 1 , 1))

S p l i t i n t o t r a i n / t e s t
t r a i n _ s i z e = i n t (l e n (s c a l e d _ v a l u e s) * 0.8)
t r a i n , t e s t = s c a l e d _ v a l u e s [0 : t r a i n _ s i z e , :] ,
s c a l e d v a l u e s [t r a i n s i z e : l e n (s c a l e d v a l u e s) , :]

Reshape i n t o X=t and Y=t+1
X _ t r a i n , Y _ t r a i n = [] , []
f o r i i n r a n g e (l e n (t r a i n) - 1) :

X _ t r a i n . a p p e n d (t r a i n [i])
Y _ t r a i n . a p p e n d (t r a i n [i + 1])

X t r a i n , Y t r a i n = np.array(X t r a i n) , np.array(Y t r a i n)

X _ t e s t , Y _ t e s t = [] , []
f o r i i n range (l e n (t e s t) - 1) :

X _ t e s t . a p p e n d (t e s t [i])
Y _ t e s t . a p p e n d (t e s t [i + 1])

X _ t e s t , Y _ t e s t = n p . a r r a y (X _ t e s t) , n p . a r r a y (Y _ t e s t)

Listing 5.3: Dataset pre-processing for L S T M Model

A l l of this pre-processing which took place previously on the first dataset almost would

be the same on the second dataset. Which is nearly close to the first dataset, but it's

45

more complex. And it's about the number of car accidents in the Czech Republic since

2006 on a daily basis. But there will be of course some few changes needs to be done on

the dataset to be prepared.

For the third dataset, it will be not used a ready dataset from the internet like in the first

two datasets. But this time the dataset would be created using API from Yahoo Finance

to generate the third dataset. The ticker symbol " A A P L " is commonly used to represent

Apple Inc. in financial markets, including stock exchanges. Ticker symbols are unique

identifiers assigned to publicly traded companies to facilitate trading and tracking their

stock prices.

First, it's needed to import Yahoo Finance and then fetch historical stock data for Apple

Inc. from Yahoo Finance. And then generate the dataset and save it in df3 . Symbol =

" A A P L " sets the variable symbol to "AAPL" , which is the stock ticker symbol for

Apple Inc. As shown in the Listing 5.4 below, the start-date and the end-date were

provided to generate the desired dataset.

import y f i n a n c e as y f

F e t c h i n g data from Yahoo Finance
y f . p d r _ o v e r r i d e ()
symbol = "AAPL"
s t a r t _ d a t e = "2010-01-01"
end_date = "2022-12-31"
df3 = pdr.get_data_yahoo(symbol, s t a r t = s t a r t _ d a t e , end=end_date)

Listing 5.4: Dataset generated using API

46

And here it will be the generated dataset looks like as in the below Figure 5.1

Open High Low Close Adj Close Volume

Date

2010-01-04 7.622500 7.660714 7.585000 7.643214 6.496293 493729600

2010-01-05 7 664286 7.699643 7616071 7.656429 6.507525 601904800

2010-01-06 7.656429 7.686786 7.526786 7.534643 6.404015 552160000

2010-01-07 7.562500 7.571429 7.466071 7.520714 6.392176 477131200

2010-01-08 7.510714 7.571429 7 466429 7.570714 6.434674 447610800

...

2022-12-23 130.919998 132.419998 129.639999 131.860001 131.477127 63314900

2022-12-27 131.380005 131.410004 128.720001 130.029999 129.652435 69007800

2022-12-28 129.669998 131.029999 125.870003 126.040001 125 674026 85438400

2022-12-29 127.989998 130.479996 127730003 129.610001 129.233658 75703700

2022-12-30 128.410004 129.949997 127 430000 129.929993 129.552719 77034200

3272 rows x 6 columns

Fig. 5.1: The generated dataset

Hypothesis Test

A hypothesis test is used in time series forecasting to determine if a pattern or trend

found in previous data is statistically significant and likely to continue in the future. A

hypothesis on the time series' behaviour, such as whether it follows a specific pattern or

trend, provides the basis of the study. After that, information from the time series is

gathered, and statistical tests are run on it to determine how strong the evidence is in

behalf of the hypothesis. With a certain degree of confidence, future values of the time

series can be predicted using the outcomes of the hypothesis test.

The code of the Hypothesis Test is described in the below Listing 5.5.

from s c i p y import s t a t s

s t a t , p = s t a t s . n o r m a l t e s t (d f . G l o b a l _ a c t i v e _ p o w e r)
p r i n t (' S t a t i s t i c s = % . 3f, p=%.3f % (s t a t , p))

47

alpha = 0.05
i f p > al p h a :

p r i n t (' D a t a looks Gaussian (f a i l t o r e j e c t HO)')
e l s e :

p r i n t (' D a t a does not look Gaussian (r e j e c t HO)')

Listing 5.5: Hypothesis Test

So this code was to check whether the data follows a normal distribution or not, based

on the calculated test statistic and p-value.

And based on that it would show that or determine if a pattern or trend will be found in

the data is statistically significant and likely to continue in the future.

Dickey-Fuller test

The Dickey-Fuller test is a statistical test used to determine whether a time series is

stationary or not.

By using this test, analysts can ascertain whether there are any trends or seasonality in a

time series that should be taken into consideration before using forecasting models.

Null Hypothesis (HO): It suggests the time series has a unit root, meaning it is

non-stationary. It has some time-dependent structure.

Alternate Hypothesis (HI): It suggests the time series does not have a unit root,

meaning it is stationary. It does not have a time-dependent structure,

p-value > 0.05: Accept the null hypothesis (HO), the data has a unit root and is

non-stationary.

p-value <= 0.05: Reject the null hypothesis (HO), the data does not have a unit

root and is stationary.

from s t a t s m o d e l s . t s a . s t a t t o o l s import a d f u l l e r
from s t a t s m o d e l s . t s a . s t a t t o o l s import pacf

#df2=df1.resample('D', how=np.mean)
df2=df1.resample('D').agg(np.mean)

48

def t e s t _ s t a t i o n a r i t y (t i m e s e r i e s) :
rolmean = timeseries.rolling(window=30).mean()
r o l s t d = t i m e s e r i e s . r o l l i n g (w i n d o w = 3 0) . s t d ()

p i t . f i g u r e (f i g s i z e = (1 4 , 5))
s n s . d e s p i n e (l e f t = T r u e)
o r i g = p i t . p l o t (t i m e s e r i e s , c o l o r = ' b l u e ' , l a b e l = ' O r i g i n a l ')
mean = p i t . p l o t (r o l m e a n , c o l o r = ' r e d ' , l a b e l = ' R o l l i n g Mean')
s t d = p i t . p l o t (r o l s t d , c o l o r = ' b l a c k ' , l a b e l = ' R o l l i n g Std')

p i t . l e g e n d (l o c = ' b e s t ') ; p i t . t i t l e (' R o l l i n g Mean & Standard
D e v i a t i o n ')

pit.show()

p r i n t ('')
d f t e s t = a d f u l l e r (t i m e s e r i e s , autolag='AIC')
d f o u t p u t = p d . S e r i e s (d f t e s t [0 : 4] ,

index=['Test S t a t i s t i c ' , ' p - v a l u e ' , ' # L a g s
Used','Number of Observations Used'])

f o r key,value i n d f t e s t [4] . i t e m s () :
d f o u t p u t [' C r i t i c a l Value (%s)'%key] = value

p r i n t (d f o u t p u t)
t e s t _ s t a t i o n a r i t y (d f 2 . G l o b a l _ a c t i v e _ p o w e r . d r o p n a ())

Listing 5.6: The Dickey-Fuller Test

49

6. T I M E SERIES D A T A S P L I T T I N G

Splitting a dataset refers to dividing a given dataset into two or more separate subsets,

The main objective of splitting a dataset is to train and evaluate machine learning

models effectively. This entails randomly separating the data into subsets, one of which

will be used to train the model and the other for evaluating how well it performs.

Machine learning frequently uses dataset splitting to evaluate the model's accuracy and

generalizability.

Splitting time series data is a crucial step in creating and testing prediction models. We

can make sure that our models appropriately depict the patterns and trends in the data by

maintaining the temporal order of the data. The size and complexity of the dataset, as

well as the particular research topic being addressed, will determine which splitting

strategy is used T401.

Time series data can be split using a variety of methods, but we'll probably go with the

Fixed Split: In a fixed split, the dataset is simply divided into two parts, one of which is

used for training and the other for testing. The first 80% of the data, for instance, can be

used for training, and the remaining 20% is suitable for testing as shown in the below

Figure 6.1. Although this methodology is simple to use, but it's sometimes not the

optimal one when dealing with huge datasets or time series with complex patterns I4JJ.

Line Plat Split by Ratio - Train-Test separable

0-1 , , , , , , I , _
2010 2012 2014 2011 201» 2020 2022

I.

Fig. 6.1: Splitting the dataset into training and test, As X= Date and Y= Stock Price's

Close

50

6.1 Train/Test Split

In this thesis as mentioned before in the previous section the data pre-processing. Three

models would be applied to 3 datasets, and all of those datasets would be handled in this

section almost with the same way with the fixed split which mentioned before in the last

paragraph.

So for the first dataset it would be split in the ratio 80% for the training and the rest 20%

for the test which mentioned in the below Listing 6.1 .

Define the r a t i o p o i n t (where t o s p l i t the p l o t)
r a t i o = 0.8

S p l i t the data i n t o t r a i n i n g and t e s t i n g s e t s
t r a i n _ s i z e = i n t (l e n (d f) * 0.8) # 80% f o r t r a i n i n g , 20% f o r
t e s t i n g
t r a i n _ d a t a = d f [: t r a i n _ s i z e]
t e s t data = d f [t r a i n s i z e :]

Listing 6.1: Splitting data into training and test

And here it will be the result as in the Figure 6.2 below

Line Plot Split by Ratio - Train-Test separable

Training Data Testing Data
Ratio

Fig. 6.2: Splitting data into training and test As X= Date and Y= Number of Accidents

51

This splitting would be applied in the first and third models (SARIMAX) and (LSTM)

but for the second model (Prophet) it won't be applied because it's a kind of black box

model Because the method is built to handle time-series data with well-known

seasonality patterns, the Prophet model does not normally divide the dataset into

training and testing sets. The model analyses the previous data and uses it to forecast the

future while considering seasonal changes and other data patterns.

In other words, the Prophet model is a forecasting model which predicts future values

by studying historical trends and patterns. It can manage seasonality and non-linear

trends in the data since it models trend changes and seasonal patterns using a Bayesian

framework. And this may lead to a good performance sometimes and a very bad

performance other times depending on the dataset and its pattern which will be

discussed in the next parts of the thesis.

52

7. T I M E SERIES F O R E C A S T I N G M O D E L S

In this thesis, three different kinds of Models will be applied to the datasets to compare

their performances and accuracy those 3 models will be from the 3 different categories

so the first model would be (SARIMAX) it's from the classic statistical time series

model used for forecasting, The second model would be (Prophet) it's kind of black-box

model which developed by Facebook and it is considered a type of machine learning

model that falls under the category of additive models. The third model will be (LSTM)

Long Short-Term Memory and it is a type of Recurrent Neural Network (RNN) which

is a category of Deep Learning models used for time series forecasting. And here there

will be the details of these models when they were applied to the different datasets and

the differences between their implementations.

7.1 S A R I M A X

The S A R I M A X model is from Statsmodels. And Statsmodels is a Python library where

a large selection of statistical models and tools are provided for data analysis. It contains

functionality for statistical modelling, estimation, hypothesis testing, and more and is

developed on top of NumPy, SciPy, and Pandas. One of the key components of

Statsmodels is the tsa module, which focuses on time series analysis.

Within the tsa module, Statsmodels provides the S A R I M A X class, which stands for

Seasonal Autoregressive Integrated Moving Average with Exogenous regressors.

S A R I M A X is an extension of the popular A R I M A (Autoregressive Integrated Moving

Average) model, capable of managing seasonal trends in time series data.

S A R I M A X allows you to model and forecast time series by incorporating

autoregressive (AR), differencing (I), moving average (MA), and seasonal (S)

components. The model parameters, denoted as (p, d, q) x (P, D, Q, s), represent the

orders of the AR, I, M A , and seasonal components, respectively.

53

Here's a breakdown of the parameters in S A R I M A X :

p: The order of the autoregressive component, representing the number of

lagged observations to include in the model.

d: The order of differencing, indicating the number of times the series needs to

be differenced to achieve stationarity.

q: The order of the moving average component, representing the number of

lagged forecast errors to include in the model.

P: The order of the seasonal autoregressive component.

D: The order of seasonal differencing.

Q: The order of the seasonal moving average component.

s: The length of the seasonal cycle (e.g., 12 for monthly data with yearly

seasonality).

And starting with code the first step would be importing the model from the library in

Listing 7.1.

from s t a t s m o d e l s . t s a . s t a t e s p a c e . s a r i m a x import SARIMAX

Listing 7.1: Importing the model from the Statsmodels library

this of course would be after the general imports within Listing 7.2.

import pandas as pd
import numpy as np
import m a t p l o t l i b . p y p l o t as p i t

Listing 7.2: General imports

and then the next steps before applying the model on the dataset there should be some

other steps which discussed before in the previous parts of the thesis from importing or

generating the dataset itself, then making the data pre-processing and splitting it into

training and testing. After that, the models themselves would be applied. Then the last

step is the performance evaluation to determine which model is the best with the

dataset.

54

7.1.1 Dataset 1 - Discount Rate

First SARIMAXO function creates a SARIMA model instance.

The first argument (train_data) is the training data used to train the model.

The (order) parameter specifies the order of the autoregressive, integration, and

moving average components of the model, respectively. In this case, it is set to

(1,1,1), which means the model has one autoregressive term, one differencing

term, and one moving average term.

The (seasonal_order) parameter specifies the order of the seasonal

autoregressive, integration, and moving average components of the model, as

well as the number of time steps in the seasonal pattern. In this case, it is set to

(1,1,1,12), which means the model has one seasonal autoregressive term, one

seasonal differencing term, one seasonal moving average term, and the seasonal

pattern repeats every 12 time-steps (months, in this case).

The fit() function is used to train the SARIMA model using the specified

training data. And then the trained model is stored in the (result) variable.

After that, the trained SARIMA model will be ready to predictions on new data

in Listing 7.3 below.

Create and t r a i n the SARIMA model
model = SARIMAX(train_data, o r d e r = (l , 1, 1), seasonal_order=(1, 1,
1, 12))
r e s u l t = m o d e l . f i t ()

Perform p r e d i c t i o n s on the t e s t s e t

p r e d i c t i o n s = r e s u l t . p r e d i c t (s t a r t = l e n (t r a i n _ d a t a) , end=len(df)-1)

Listing 7.3: Creating the train and test model

After that it should be the Visualize the actual values vs. predicted values to compare

the graphs and see the behaviour and the accuracy of the forecasting.

The next step which would be discussed in the next sections would be to the evaluation

of the performance and the accuracy of the predictions and forecasting using some

55

metrics. But at least you would be able to see that difference in the graphs below

(Figure 7.1).

-2 -

1 "

2018-072019-012019-072020-012020-072021-012021-072022-012022-07
Date

Fig. 7.1: Difference between Actual and predicted data

As shown in the graph the behaviour of the actual data and the predicted ones are not

following the same numbers or the same pattern and the accuracy is not that much good

of this model on this dataset but this will be discussed later.

7.1.2 Dataset 2 - Number of accidents

As the previous dataset this dataset also will be pretty much the same but with some

little differences.

So here instead of training on a subset of the data, it is using the entire dataset "df2" to

see if the accuracy will be better or if the training would be longer or be done on a

bigger amount of data.

And then with the (order) and (seasonal_order) which are hyperparameters that

specify the characteristics of the model discussed before

The (order) parameter is a tuple that specifies the order of the non-seasonal part

of the A R I M A model. The (1,0,1) tuple means that the model is an

ARIMA(1,0,1), where p=l is the order of the autoregressive term, d=0 is the

degree of differencing (which means that the time series is not differenced), and

q=l is the order of the moving average term.

56

The (seasonal_order) parameter is a tuple that specifies the order of the

seasonal part of the A R I M A model. The (1,0,1,12) tuple means that the model is

a SARIMA(1,0,1)(1,0,1,12), where the first tuple (1,0,1) is the same as the non-

seasonal order, and the second tuple (1,0,1,12) specifies the order of the seasonal

component of the model. The s=12 means that the model has a seasonal period

of 12 (monthly data)

Compared to the previous dataset the degree of differencing (which means that the time

series is not differenced here is zero instead of one in the previous dataset and

differencing refers to the process of computing the differences between consecutive

observations of a time series. The time series does not need to be differed to make it

stationary when the order of differencing (d) is zero. For many time series models, a

stationary time series which has consistent statistical features across time, such as

constant mean and variance is optimum.

This technique could make a difference in the accuracy of the prediction. By removing

trend and seasonality from a time series, which simplifies modelling and forecasting.

The model might not be able to recognize and take into account any underlying trends

or seasonality in the data if the time series are not differencing, which could result in

less precise forecasts. However, whether or not differencing improves the accuracy of

the prediction depends on the specific time series and the pattern of the data. In some

cases, differencing may not be necessary or may even lead to worse predictions. It is

important to evaluate the model's performance with and without differencing to

determine the best approach for the specific problem.

Finally, the model is used to make predictions for a specified time period from 2020-04-

01 to 2025-05-31 in the Listing 7.4.

model = SARIMAX(df2, o r d e r = (l , 0, 1) , seasonal_order=(1, 0, 1, 12))
m o d e l _ f i t = m o d e l . f i t ()
p r e d i c t i o n s = m o d e l _ f i t . p r e d i c t (s t a r t = p d . t o _ d a t e t i m e (' 2 0 2 0 - 0 4 - 0 1 ') ,
end=pd.to_datetime('2024-05-31'))

Listing 7.4: Model Fitting

57

And the final result after these modifications that the accuracy of the predictions is

higher than the previous dataset with the same model as it could be shown in the Figure

7.2 below.

SARIMAX Model - Number of Accidents
ACtUäl

- - Predicted

2006 2008 2010 2012 2014 2016 2016 2020 2022 2024
Date

Fig. 7.2: Difference between Actual and predicted data

7.1.3 Dataset 3 - Yahoo Finance
In the third dataset the properties of the model would be almost identical to the previous

dataset and also the prediction accuracy to the test data is very high and almost follow

the pattern as shown in the below Figure 7.3.

SARIMAX Model - stock exchange price

o -I , , , , , , ,—
2010 2012 2014 2016 2018 2020 2022 Date

Fig. 7.3: Difference between Actual and predicted data

58

7.2 Prophet

The second model which will be applied to the 3 datasets would be the Prophet.

The Facebook Core Data Science team developed Prophet, a time series forecasting

model. It is made to handle a variety of time series forecasting tasks, including those

that involve erratic patterns, trends, seasonality, and holiday effects. Prophet creates

flexible additive decomposition models with the strength of Bayesian inference to

produce forecasts that are precise and easy to understand. It's kind of Black-box model

that automatically detects patterns and relationships in the data, making it easy to use

even for non-experts. It's not a must to know everything about the statistics of the

dataset or to split the dataset to train and test the model is simpler but at the same time if

the data is complex or the pattern does not have trends or seasonality the accuracy and

the performance of the model won't be the best.

7.2.1 Dataset 1 - Discount Rate

The first step is to prepare the training data for the Prophet model. The training data is

in the form of a Pandas DataFrame train_data with two columns, one containing the

dates and the other containing the values of the time series. The code creates a new

DataFrame train_data_prophet which is a copy of the train_data DataFrame, but with

the column names renamed to "ds" and "y" to be compatible with the Prophet model

mentioned before.

The next step is to create and fit the Prophet model using the training data. The

Prophet() function is called to create an instance of the Prophet model and then the fit()

method is called with the train_data_prophet DataFrame as the argument to train the

model.

Once the model is trained, the code creates a future DataFrame containing the dates for

which the model will make predictions. The make_future_dataframe() method is called

with the argument periods=len(test_data) to create a DataFrame with the same

frequency as the training data and with a length equal to the length of the test data.

59

The predict() method is then called on the model object with the future DataFrame as

the argument to obtain the forecasted values for the time series.

Finally, the code (Listing 7.5) extracts the predicted values from the forecast DataFrame

by selecting the 'yhat' column and filtering out the training data. The predicted values

are stored in the predictions variable for later use.

Prepare the data f o r Prophet
t r a i n _ d a t a _ p r o p h e t = t r a i n _ d a t a . r e s e t _ i n d e x ()
t r a i n _ d a t a _ p r o p h e t . c o l u m n s = ['ds', 1y']

Create and f i t the Prophet model
model = Prophet()
m o d e l . f i t (t r a i n _ d a t a _ p r o p h e t)

F o r e c a s t on the t e s t s e t
f u t u r e = model.make_future_dataframe(periods=len(test_data))
f o r e c a s t = m o d e l . p r e d i c t (f u t u r e)

E x t r a c t the p r e d i c t e d v a l u e s
p r e d i c t i o n s = f o r e c a s t [' y h a t '] [t r a i n _ s i z e :]

Listing 7.5: Preparing the data for the model

The default parameters of the Prophet model are used in this script due to their general

effectiveness across various datasets.

And here's the Figure 7.4 while training the dataset

Discount Rate Forecast

10.0 -10.0 -

A - A " „ ' / V

• \"4 A

0 0 -

—2.5 -

0 0 -

—2.5 -

-5 .0 -
1991 1995 1999 2003 2007 2011

Date

Fig. 7.4: Training the model

60

And the predicted data compared to the actual data below in Figure 7.5.

-7

2018-07 2019-01 2019-07 2020-01 2020-07 2021 01 2021 07 2022-01 2022-07

Date

Fig. 7.5: Difference between Actual and predicted data

Here as shown in the figure the accuracy is not good and the pattern of predicted data

compared to the actual data is not accurate this means that this dataset didn't have trends

or seasonality in its pattern that's why the Prophet wasn't the best to fit that dataset.

7.2.2 Dataset 2 - Number of accidents

The second dataset will be the same as the previous dataset First, the code renames the

columns of the dataframe to match the required format of Prophet, where 'ds' is the

column containing the dates, and 'y' is the column containing the target variable.

Next, the code creates an instance of the Prophet model and fits it to the data in df2.

This involves learning the trends, seasonality, and other patterns in the data that will be

used to make future predictions.

Then, the code generates a new dataframe future_dates containing a range of dates for

which we want to make predictions. In this case, the code generates dates for the next

361 days, starting from the last date in df2.

Finally, the code as shown below in Listing 7.6 uses the predict() method of the Prophet

model to generate predictions for the dates in future_dates, and stores the predicted

values in the predictions variable. These predictions can then be used for further

analysis or visualization.

61

df2 = pd.read_excel(path+"/nehody.xlsx", header=4)
df2['Date'] = p d . t o _ d a t e t i m e (d f 2 [' D a t e '] , format='%d/%m/%Y')
df2.columns = ['ds', 'y']

Create and f i t the Prophet model
model = Prophet()
m o d e l . f i t (d f 2)

Generate f u t u r e dates f o r p r e d i c t i o n
f u t u r e _ d a t e s = model.make_future_dataframe(periods=361) # P r e d i c t
f o r 61 days (May and June 2023)

Make p r e d i c t i o n s
p r e d i c t i o n s = m o d e l . p r e d i c t (f u t u r e _ d a t e s)

Listing 7.6: Creating the model

And here in the figure of the comparison of the predictions and actual data, the accuracy

of the predictions is very high. In this case of this dataset which makes this model fits

this dataset because it has some seasonality which makes this model performs better and

predicts more accurate results as shown in Figure 7.6 below.

Prophet Model - Number of Accidents

2007 2009 2011 2013 2015 2017 2019 2021 2023 2025
Date

Fig. 7.6: The forecasted data

62

7.2.3 Dataset 3 - Yahoo Finance

Here also the Prophet model will be applied to the third dataset to make predictions on a

test set, which can be used to evaluate the accuracy of the model. But in this dataset as

could be observed in Figure 7.7, the accuracy of the predictions wasn't so good it could

be possible that the dataset itself doesn't fit this model because of the pattern of data like

the trend and seasonality. Also, it could be possible to be related to the generated dataset

itself wasn't pre-processed in a good way to deal with this model.

Prepare the data f o r Prophet
t r a i n _ d a t a _ p r o p h e t = t r a i n _ d a t a . r e s e t _ i n d e x ()
t r a i n _ d a t a _ p r o p h e t . c o l u m n s = ['ds', 1y']

Create and f i t the Prophet model
model = Prophet()
m o d e l . f i t (t r a i n _ d a t a _ p r o p h e t)

F o r e c a s t on the t e s t s e t
f u t u r e = model.make_future_dataframe(periods=len(test_data))
f o r e c a s t = m o d e l . p r e d i c t (f u t u r e)

E x t r a c t the p r e d i c t e d v a l u e s
p r e d i c t i o n s = f o r e c a s t [' y h a t '] [t r a i n _ s i z e :]

Listing 7.7: Preparing the model

63

7.3 LSTM

L S T M (Long Short-Term Memory) is a type of recurrent neural network (RNN) that

has grown in preference for tasks involving time series forecasting. It is a deep learning

model that is best suited for evaluating and predicting time series since it is made to

capture persistent dependencies and patterns in sequential data.

When dealing with time series data that have complicated temporal dependencies, non

linear relationships, and variable-length sequences, L S T M models perform very well.

They can identify patterns in the data, including trends, seasonality, and irregularities.

And here in the project after applying this model 3 times with different 3 datasets. Its

performance was almost the best and the most accurate as will be discussed next in the

next parts.

7.3.1 Dataset 1 - Discount Rate

For this model it will be a little more complex than the previous models but eventually

with higher performance and more accuracy. This code (Listing 7.8 below) first uses the

MinMaxScaler from the scikit-learn library to scale the data between 0 and 1. And then

splits the scaled data into training and testing sets, with 80% of the data used for

training and 20% used for testing as mentioned before. Then the pre-processing part and

the reshaping to adjust the dataset and make it ready for the model by reshaping the

training and testing sets into the format of input (X) and output (Y) pairs for an L S T M

model. Specifically, the input is the current value (X=t) and the output is the next value

(Y=t+1).

64

After that the building of the L S T M model with two layers of 50 neurons each,

followed by a single dense layer with one output. The model is compiled with a mean

squared error loss function and the Adam optimizer. The model is then trained on the

training set for 10 epochs with a batch size of 1 and a verbose level of 2.

This makes this model trains the data many times and the more epochs are the more

accurate predictions till some certain point it could reach some overtraining and could

lead to unacceptable inaccurate predictions.

The default parameters were used for most steps, but the key parameters such as the

number of time steps, L S T M units, epochs, and batch size adjusted a little based on this

dataset specific requirements.

L S T M Layers:

50 Units: Each L S T M layer has 50 units. This number adjusted based on the model

complexity and data characteristics. More units can capture more complex patterns but

may require more data and computational power.

Fitting the Model:

Epochs=10: The number of epochs is set to 10, meaning the model will iterate over the

entire training set 10 times. The choice of 10 epochs and a batch size of 1 is a trade-off

between training time and performance. More epochs can lead to better performance but

risk overfitting, while a larger batch size can speed up training but may reduce model

accuracy.

Batch_size=l: This means the model weights are updated after each training example.

This can be set higher to improve training speed but may affect convergence.

Scale the data
s c a l e r = MinMaxScaler(feature_range=(0, 1))
sc a l e d _ v a l u e s = s c a l e r . f i t _ t r a n s f o r m (d f . v a l u e s . r e s h a p e (- 1 , 1))

B u i l d LSTM model
model = S e q u e n t i a l ()
model.add(LSTM(50, return_sequences=True, input_shape=(1, 1)))

65

model.add(LSTM(50, return_sequences=False))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
m o d e l . f i t (X _ t r a i n , Y _ t r a i n , v a l i d a t i o n _ d a t a = (X _ t e s t , Y _ t e s t) ,
epochs=10, b a t c h _ s i z e = l , verbose=2)

Make p r e d i c t i o n s
t r a i n _ p r e d i c t = m o d e l . p r e d i c t (X _ t r a i n)
t e s t _ p r e d i c t = m o d e l . p r e d i c t (X _ t e s t)

Listing 7.8: Building the L S T M model

Here is the final graph as it can be seen in Figure 7.8 that the accuracy of this model on

this dataset with almost identical to the actual data which means the performance of this

model was very good but this will be discussed in more detail in the next section.

Discount Rate Predictions

1992 1996 2000 2004 2008 201 ; 2016 2020 2024

•ate

Fig. 7.8: Difference between Actual, Trained and tested data

7.3.2 Dataset 2 - Number of accidents

In the second dataset the data are bigger than the first data so that means more possible

training to the model and is supposed to be with a better performance and accuracy.

As mentioned before, the dataset will be imported, pre-processed and split into training

and test. Normalize the data using the MinMaxScaler from scikit-learn. Normalizing the

66

data is a common pre-processing step that scales the values to a range of 0 to 1. And

then Define a function called (create_sequences) that creates input/output sequences

for the L S T M model. The function takes in a time series dataset and a number of time

steps as input. It returns two numpy arrays: one containing the input sequences and one

containing the output sequences. Define the number of time steps to use in the L S T M

model. The time steps represent the number of past values that the model will use to

predict the next value in the sequence. Using the (create_sequences) function to create

input/output sequences for the training data. The input sequences are created by

selecting a window of time steps from the training data which created before, and the

output sequences are created by selecting the value that follows the end of each input

sequence.

Using the Sequential API of Keras to construct the L S T M model. Each of the model's

two L S T M layers includes 50 memory units. Sequences are returned by the first L S T M

layer but not by the second. A dense layer with only one output unit makes up the top

layer. The optimizer is Adam., while mean squared error serves as the loss metric.

Train the L S T M model on the training data using the fit method. The model is trained

for 5 epochs, with a batch size of 1. Verbose is set to 2 to print progress updates. Use

the predict method of the L S T M model to generate predictions for the test data.

Rescale the predicted values using the inverse of the scaler used for the training data.

The predicted values now represent the original scale of the time series.

The default parameters were used for most steps, but the key parameters such as the

number of time steps, L S T M units, epochs, and batch size adjusted a little based on this

dataset specific requirements.

Model Architecture:

First L S T M Layer: 50 units with return_sequences=True to return the full sequence to

the next L S T M layer.

Second L S T M Layer: 50 units without return_sequences as it is the last L S T M layer.

Dense Layer: A single neuron to output the prediction.

67

Sequence Creation: A function is defined to create sequences of a specified number of

time steps (7 in this case). This means the model will look back 7 days to make a

prediction.

Time Steps: The choice of 7 time steps can be based on domain knowledge (e.g.,

weekly patterns)

Create the t r a i n i n g data sequences
def c r e a t e _ s e q u e n c e s (d a t a , t i m e _ s t e p s) :

X, Y = [] , []
f o r i i n ra n g e (l e n (d a t a) - time_steps - 1):

X . a p p e n d (d a t a [i : (i + t i m e _ s t e p s) , 0])
Y.append(data[i + t i m e _ s t e p s , 0])

r e t u r n n p . a r r a y (X) , np.array(Y)

Define the number of time steps
time_steps = 7

Create the t r a i n i n g sequences
X _ t r a i n , Y _ t r a i n = c r e a t e _ s e q u e n c e s (t r a i n _ d a t a , time_steps)

Reshape the i n p u t data f o r LSTM
X _ t r a i n = n p . r e s h a p e (X _ t r a i n , (X _ t r a i n . s h a p e [0] , X _ t r a i n . s h a p e [1] ,
1))

B u i l d the LSTM model
model = S e q u e n t i a l ()
model.add(LSTM(50, return_sequences=True, input_shape=(time_steps,
1)))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
m o d e l . f i t (X _ t r a i n , Y _ t r a i n , epochs=5, b a t c h _ s i z e = l , verbose=2)

P r e d i c t on the t e s t data
i n p u t s = d f 2 [- l e n (t e s t _ d a t a) - t i m e _ s t e p s :] . v a l u e s . r e s h a p e (- 1 , 1)
in p u t s = s c a l e r . t r a n s form(inputs)
X _ t e s t , Y _ t e s t = c r e a t e _ s e q u e n c e s (i n p u t s , time_steps)
X _ t e s t = np.reshape(X_test, (X _ t e s t . s h a p e [0] , X _ t e s t . s h a p e [1] , 1))
p r e d i c t e d = m o d e l . p r e d i c t (X _ t e s t)
p r e d i c t e d = s c a l e r . i n v e r s e _ t r a n s f o r m (p r e d i c t e d)

Listing 7.9: The prediction of the model

68

7.3.3 Dataset 3 - Yahoo Finance

Here also like the second dataset the data are bigger than the first dataset which means

more training and more accuracy.

First as usual the importing and pre-processing of the data, then the splitting as

mentioned many times before. After that Two arguments are passed to the function

create_sequences and seq_length, the length of the input sequence, and data, a time

series of data. The function generates input-output pairs from the time series data, with

each input sequence having length seq_length and the associated output being the

subsequent value in the time series. The result of the function is two numpy arrays: y,

which includes the corresponding outputs, and X , which contains the input sequences.

The create_sequences function is then used by the algorithm to produce training and

testing sequences for the train and test sets of data, respectively. The two numpy arrays

that are produced, Xjxa in and X_test, have the following shapes: (n_samples,

sequence_length, 1), where n_samples is the total number of samples in the dataset.

Numpy arrays of shape (n_samples,) make up the yjxain and y_test variables.

The input data Xjxain and X_test are then reshaped into a 3D array of shape

(n_samples, sequence_length, 1) to be compatible with the L S T M model.

The Sequential class from Keras is then used in the code to create an L S T M model.

Two L S T M layers with 50 memory units each make up the model. To guarantee that a

sequence rather than a single value is output from the first L S T M layer, the

return_sequences parameter is set to True. At the network's ends, a dense layer with a

single output is added. The mean_squared_error loss function and the Adam optimizer

are used in the model's compilation.

The model is trained on the training data using the fit method of the model object. The

training is run for 50 epochs with a batch size of 32 as described below in the Listing

7.10.

69

After training, the model is used to make predictions on the test data using the predict

method of the model object. The resulting (predictions).

Finally, the predicted values and the actual values are inverse transformed using the

inversejxansform method of the scaler object used to scale the data.

Define the f u n c t i o n to c r e a t e i n p u t and output sequences
def c r e a t e _ s e q u e n c e s (d a t a , s e q _ l e n g t h) :

X = []
y = []
f o r i i n ra n g e (l e n (d a t a) - s e q _ l e n g t h) :

X . a p p e n d (d a t a [i : i + seq_length])
y. app e n d (d a t a [i + seq_length])

r e t u r n n p . a r r a y (X) , np.array(y)

Set the sequence l e n g t h
sequence_length = 10

Create t r a i n i n g sequences
X _ t r a i n , y _ t r a i n = c r e a t e _ s e q u e n c e s (t r a i n _ d a t a , sequence_length)

Create t e s t i n g sequences
X _ t e s t , y _ t e s t = c r e a t e _ s e q u e n c e s (t e s t _ d a t a , sequence_length)

Reshape the i n p u t data f o r LSTM
X _ t r a i n = n p . r e s h a p e (X _ t r a i n , (X _ t r a i n . s h a p e [0] , X _ t r a i n . s h a p e [1] ,
1))
X _ t e s t = np.reshape(X_test, (X _ t e s t . s h a p e [0] , X _ t e s t . s h a p e [1] , 1))

B u i l d the LSTM model
model = S e q u e n t i a l ()
model.add(LSTM(50, return_sequences=True,
input_shape=(sequence_length, 1)))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')

T r a i n the model
m o d e l . f i t (X _ t r a i n , y _ t r a i n , epochs=50, batch_size=32)

Perform p r e d i c t i o n s on the t e s t s e t
p r e d i c t i o n s = m o d e l . p r e d i c t (X _ t e s t)

Inverse t r a n s f o r m the p r e d i c t i o n s and a c t u a l values

70

p r e d i c t i o n s = s c a l e r . i n v e r s e _ t r a n s f o r m (p r e d i c t i o n s)
y _ t e s t = s c a l e r . i n v e r s e _ t r a n s f o r m (y _ t e s t)

Listing 7.10: The L S T M model

And the graph in Figure 7.9 here shows that the predicted data is almost identical to the

actual data and follows its pattern and that's because of the long training and also

training using epochs which allows the model to improve its performance over time by

adjusting its weights to better fit the training data. In general, as the number of epochs

increases, the model has the potential to learn more complex patterns and relationships

in the data, which can improve its accuracy on both the training and testing data.

The number of epochs must be balanced with the possibility of overfitting, though.

Overfitting happens when a model loses its ability to generalize to new data because it

becomes too concentrated on the training set of data. The model may overfit the training

data and perform badly on the testing data if the number of epochs is too high.

Therefore, it is important to choose the number of epochs carefully. This

hyperparameter is frequently modified during the model selection and optimization

process. The size of the dataset, the complexity of the issue, and the design of the

L S T M model can all affect the perfect number of epochs.

BO -I , , , , , , , , , , ,
2020-07 2020-10 2021-01 2021-04 2021-07 2021-10 2022-01 2022-04 2022-07 2022-10 2023-01

0,-,rr-

Fig. 7.9: Difference between Actual and predicted data

71

8. T I M E SERIES M O D E L S E V A L U A T I O N

There are many ways or approaches to evaluate and modify our model and dataset we

could use until we get the perfect and most performance output

Time series metrics

To go further with model selection, you will need to define a metric to evaluate your

models. A very often used model in forecasting is the Mean Squared Error. This

metric measures the error at each point in time and takes the square of it. The average of

those squared errors is called the Mean Squared Error. Also, there is an often-used

alternative is the Root Mean Squared Error: the square root of the Mean Squared

Error.

Another frequently used metric is the Mean Absolute Error: rather than taking the

square of each error, it takes the absolute value here. The Mean Absolute Percent Error

is a variation on this where the Absolute Error at each point in time is expressed as a

percentage of the actual value. This yields a metric that is a percentage, which is very

easy to interpret \42].

8.1 Mean Squared Error

M S E stands for Mean Squared Error, and it is a widely used metric for evaluating the

performance of regression models. It measures the average squared difference between

the predicted and actual values in a regression problem.

The formula for M S E is:

MSE = 1/n * I(yi - yi)2. (8.1)

Where:

n: the number of samples in the dataset.

yi: the actual value of the target variable for the i-th sample.

72

yi: the predicted value of the target variable for the i-th sample.

A measurement error of 0 indicates a perfect fit, where the predicted and actual values

are the same for all samples. The M S E value is always non-negative. The performance

of the model is worse the higher the M S E as this shows greater differences between the

predicted and actual values.

As a result, it is suggested that using M S E along with other metrics to evaluate the

performance of a regression model. These metrics can offer additional information on

the model's performance and assist in the detection of potential problems. For example,

M A E can be used to examine the amount of errors, and R-squared can be used to

evaluate the model's overall goodness-of-fit. So it should be used in combination with

other metrics to evaluate the performance of a regression model [43J.

8.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) is another metric used to evaluate the performance

of a regression model. It is very similar to Mean Squared Error (MSE), but it has one

additional step - taking the square root of the MSE.

RMSE = sqrt(MSE). (8.2)

Where M S E is the mean of the squared differences between the predicted and actual

values of the target variable.

Therefore, it is always suggested that you use M S E alongside with other metrics to

evaluate a regression model's performance as mentioned before. These metrics can give

additional information about the model's performance and aid in problem detection. For

instance, R-squared can be utilized to evaluate the overall goodness-of-fit of the model,

and M A E can be used to evaluate the size of errors T441.

8.3 Mean Absolute Error

Mean Absolute Error (MAE) is also a metric used to evaluate the performance of

regression models like the previous models. It measures the average absolute difference

73

between the predicted and actual values in a dataset. But unlike Mean Squared Error

(MSE), M A E is not sensitive to outliers because it does not involve squaring the errors.

The mathematical equation for M A E is as follows:

MAE = (1/n) * E\i = lton\ \yi - yi\. (8.3)

where n is the number of data points, yi is the actual value of the target variable, and yi

is the predicted value of the target variable.

It provides an idea of how far on average the predictions deviate from the actual

numbers. A lower M A E shows that the model is more accurate in its predictions.

When it comes to the direction of the errors, or whether the forecasts are overestimating

or underestimating the actual values, M A E isn't the perfect metric to do that.

8.4 Evaluation of the performance of the datasets

So eventually the best scenario is to use the 3 metrics with each other for each dataset

evaluation and compare their performance with each other.

8.4.1 Evaluation of the first dataset

The M A E , MSE, and RMSE of every model would be calculated for the first dataset.

Then a table would be implemented for the comparison and decide which model has the

best performance and accuracy.

The following code (Listing 8.1) for the evaluation of the model for the first model of

S A R I M A X

Evalua t e the model
mae_l_2 = mean_absolute_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s)
mse_l_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s)
rmse_l_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s , squared=False)

Listing 8.1: Evaluation of the model

74

And here's the evaluation's results for S A R I M A X model.

E v a l u a t i o n M e t r i c s :
Mean A b s o l u t e E r r o r (MAE): 3.42
Mean Squared E r r o r (MSE): 14.95
Root Mean Squared E r r o r (RMSE): 3.87

Also for the next evaluation of the Prophet model will do almost the same in Listing 8.2

below.

Evalu a t e the model
mae_l_2 = mean_absolute_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s)
mse_l_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s)
rmse_l_2 = mean_squared_error(test_data['CNB_DISCOUNT_RATE_IN_%'],
p r e d i c t i o n s , squared=False)

Listing 8.2: Evaluation of the Prophet model

And here's again the evaluation's results for the Prophet model.

E v a l u a t i o n M e t r i c s :
Mean A b s o l u t e E r r o r (MAE): 3.76
Mean Squared E r r o r (MSE): 18.60
Root Mean Squared E r r o r (RMSE): 4.31

Finally for the last model L S T M the following code for the evaluation of the model in

the Listing 8.3.

C a l c u l a t e MSE
train_mse = me a n _ s q u a r e d _ e r r o r (y _ t r a i n [: - 1] , t r a i n _ p r e d i c t)
mse_l_3 = m e a n _ s q u a r e d _ e r r o r (y _ t e s t [: - 1] , t e s t _ p r e d i c t)

C a l c u l a t e RMSE
tr a i n _ r m s e = math.sqrt(train_mse)
rmse_l_3 = math.sqrt(mse_l_3)

C a l c u l a t e MAE
train_mae = m e a n _ a b s o l u t e _ e r r o r (y _ t r a i n [: - 1] , t r a i n _ p r e d i c t)
mae_l_3 = m e a n _ a b s o l u t e _ e r r o r (y _ t e s t [: - 1] , t e s t _ p r e d i c t)

Listing 8.3: Evaluation of the L S T M model

75

And here's the evaluation's results for the L S T M model.

MSE: 0.4533803426218304
RMSE: 0.6733352379178075
MAE: 0.5531002342700959

And the Table 8.1 below is the evaluation trade-off for the First Dataset and the colour

of the cells has been done according to this threshold

def s t y l e _ c e l l s (v a l u e) :
s t y l e = 'background-color: r e d ' i f value > 4 e l s e 'background-

c o l o r : green'
r e t u r n s t y l e

Listing 8.4: Visualising the results

MSE RMSE MAE

SARI M A X 14.949495 3 866458 3.417446

P r o p h e t 18.600330 4.312S10 3.759066

L S T M 0.453380 0.673335 0.553100

Tab. 8.1: Comparison of the evaluation metrics for the 1s t dataset with threshold 4

Looking at the given metrics, it seems that the L S T M model has performed better than

the other two models. The MSE, RMSE and M A E values for L S T M are the lowest

among the three models, indicating that the predictions made by the L S T M model are

the closest to the actual values.

The reason for this difference in performance between the models could be due to the

differences in the algorithms used by each model. S A R I M A X and Prophet are both

classical time series models that rely on statistical methods to make predictions,

whereas L S T M is a type of deep learning model that uses neural networks to model the

patterns in the data.

76

L S T M is known to perform well on time series data due to its ability to capture complex

patterns and dependencies in the data. In contrast, classical time series models like

S A R I M A X and Prophet may struggle with capturing such patterns and may not perform

as well on datasets with complex dependencies.

Additionally, the quality of the data and the features used by each model could also play

a role in the differences in performance. It is possible that the L S T M model was able to

learn more informative features from the data and therefore was able to make better

predictions.

8.4.2 Evaluation of the Second dataset

MSE RMSE MAE

S A R I M A X 5813.758536 76.248007 54865720

P r o p h e t 3530.434766 59.417462 39.122976

L S T M 2507.393216 50.073878 37.646138

Tab. 8.2: Comparison of the evaluation metrics for the 2 dataset with threshold 50

Here also looking at the results in the Table 8.2 , it seems like the L S T M model

performed the best across all three metrics, with the lowest values of MSE, RMSE, and

M A E . The S A R I M A X and Prophet models, on the other hand, had higher values across

all three metrics.

But here also it could be seen that in this time the Prophet's performance was better

than S A R I M A X and had better values. This could be S A R I M A X has some assumptions

regarding stationarity, linearity, and the normal distribution of residuals that need to be

met for the model to work properly. These assumptions may not hold for this dataset On

the other hand, Prophet does not have such assumptions and can handle non-linear and

77

non-stationary data better. Also Prophet sometimes is more flexible and can handle a

wide range of data types and structures.

8.4.3 Evaluation of the Third dataset

And finally, The results in Table 8.3 shows the comparison of the evaluation metrics for

the 3 r d dataset with threshold 4 , and the model of S A R I M A X had the lowest values

which means its performance was the best. This should be due to its ability to handle

seasonality and trends effectively, and it has more effective tuning and parameter

optimization compared to the other models in this dataset. Prophet is also designed to

handle seasonality and trends, it might not be as precise as S A R I M A X for this type of

dataset.

MSE RM5E MAE

S A R I M A X 4 .180719 2 044681 1 296307

P r o p h e t 3732 .017309 61 .498108 53 .379229

L S T M 38 .821212 6 .230667 5 .282454

Tab. 8.3: Comparison of the evaluation metrics for the 3 dataset with threshold 4

78

9. T H E U S E R I N T E R F A C E A P P L I C A T I O N

In this project Prophet model would be applied to a Multivariate dataset of

"Temperature Forecasting for IOT Device generated Data" this time, and there will be a

creation of a user interface application with 2 features of choosing of IN/OUT

Temperature status and the number of time points of the forecasting.

In this dataset, temperature readings were taken from IoT devices installed outside and

inside of an anonymous room. Due to the testing phase of the device, it was uninstalled

or shut off several times during the entire reading period, resulting in some outliers and

missing values.

Building a time-series model to predict future temperature inside/outside the room by

Prophet.

Prophet was chosen this time for the time-series modelling tool based on below reasons:

Automatic detection of trend and seasonality.

Robustness against outliers.

Customizable seasonality.

Of course, The first steps would be done similarly to before with the previous datasets

like Importing the libraries and loading the dataset, which is included in Listing 9.1

below.

https://colab.research.google.com/drive/lHX60XRlbb-r61qVLtezXu4EQFvyys-Ws?usp=sharing

79

https://colab.research.google.com/drive/lHX60XRlbb-r61qVLtezXu4EQFvyys-Ws?usp=sharing

import numpy as np
import pandas as pd
import holoviews as hv
from holoviews import opts
hv.extension('bokeh')
from m a t p l o t l i b import p y p l o t as p i t
from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r , LabelEncoder
import os
from prophet import Prophet
from p r o p h e t . p l o t import a d d _ c h a n g e p o i n t s _ t o _ p l o t
import s t r e a m l i t as s t
df = pd.read_csv(r"./IOT-temp.csv"

Listing 9.1: Importing the libraries and loading the dataset

Then Pre-processing of the data as Column 'room_id/id' has only one value(Room

Admin), so we don't need this column for analysis, and Change column names to

understand easily.

d f [' r o o m _ i d / i d '] . v a l u e _ c o u n t s ()
df.rename(columns={'noted_date':'date', ' o u t / i n ' : ' p l a c e ' } ,
inplace=True)
df.head()

Listing 9.2: data pre-processing

Datetime column has a lot of information such as year, month, weekday and so on. To

utilize this information in E D A and modelling phase, we need extract them from

datetime column.

80

Hour variable can be broken into Night, Morning, Afternoon, and Evening based on its

number.

- Night: 22:00 - 23:59 / 00:00 - 03:59.

- Morning : 04:00- 11:59.

- Afternoon : 12:00 - 16:59.

- Evening : 17:00-21:59.

|Also for the Seasonal information, it could be broken into for example the Indian

seasonal which has four climatological seasons as below.

Winter : December to February.

Summer : March to May.

Monsoon : June to September.

Post-monsoon : October to November.

Listing 9.2 below describing how to implement that.

def month2seasons(x):
i f x i n [12, 1, 2] :

season = 'Winter'
e l i f x i n [3, 4, 5] :

season = 'Summer'
e l i f x i n [6, 7, 8, 9] :

season = 'Monsoon'
e l i f x i n [10, 11] :

season = 'Post_Monsoon'
r e t u r n season

def h o u r s 2 t i m i n g (x) :
i f x i n [22, 23, 0, 1, 2, 3] :

t i m i n g = 'Night'
e l i f x i n range(4, 12):

t i m i n g = 'Morning'
e l i f x i n range(12, 17):

t i m i n g = 'Afternoon'
e l i f x i n range(17, 22):

t i m i n g = 'Evening'
e l s e :

t i m i n g = 'X'
r e t u r n t i m i n g

Listing 9.3: Season and hour variable

81

And after many other modifications to the dataset like checking whether any record is

duplicated and if so duplicate records should be put into one unique record (Listing 9.4).

d f [d f . d u p l i c a t e d ()]
d f [d f [' i d '] = = ' export .temp_log_19 610 8_4a98 3c7e']
d f . d r o p _ d u p l i c a t e s (i n p l a c e = T r u e)
d f [d f . d u p l i c a t e d ()]

Listing 9.4: Duplication detection

And many other pre-processing of the data, the semi-final shape of the data would be

like this in Figure 9.1 below.

i d date temp place year month day weekday weekofyear hour minute season t iming

84141 4000 2018-09-09 16:24:00 29 Out 2018 9 9 Sunday 36 16 24 Monsoon Afternoon

84142 4002 2018-09-09 16:24:00 29 Out 2018 9 9 Sunday 36 16 2- Monsoon Afternoon

84144 4004 2018-09-09 16:23:00 28 Out 2018 9 9 Sunday 36 16 23 Monsoon Afternoon

84128 4006 2018-09-09 16:24:00 28 Out 2018 9 9 Sunday 36 16 2^ Monsoon Afternoon

84132 4007 2018-09-09 16:24:00 29 Out 2018 9 9 Sunday 36 16 24 Monsoon Afternoon

84136 4009 2018-09-09 16:24:00 28 Out 2018 9 9 Sunday 36 16 2^ Monsoon Afternoon

84137 4010 2018-09-09 16:24:00 28 Out 2018 9 9 Sunday 36 16 24 Monsoon Afternoon

Fig. 9.1: Dataset after pre-processing

As this is Multivariate so, Temperature clearly consists of multiple distributions of

Place, Season, and Timing.

Monthly Readings by Place

p l _ c n t = np. r o u n d (d f [' p l a c e '] . v a l u e _ c o u n t s (n o r m a l i z e = T r u e) * 100)

in_month = np . r o u n d (d f [d f [' p l a c e '] = = ' I n '] [' d a t e '] . a p p l y (l a m b d a x :
x . s t r f t i m e (" % Y - % m ")) . v a l u e _ c o u n t s (n o r m a l i z e = T r u e) . s o r t _ i n d e x () *
100, decimals=l)
out_month = np.round(df[df['place']=='Out']['date'].apply(lambda x
: x . s t r f t i m e (" % Y - % m ")) . v a l u e _ c o u n t s (n o r m a l i z e = T r u e) . s o r t _ i n d e x () *
100, decimals=l)

82

in_out_month =
pd.merge(in_month,out_month,right_index=True,left_index=True).renam
e(columns={'date_x':'In', 'date_y':'Out'})
in_out_month = p d . m e l t (i n _ o u t _ m o n t h . r e s e t _ i n d e x () ,
['index'])•rename(columns={'index':'Month', ' v a r i a b l e ' : ' P l a c e ' })

Listing 9.5: Monthly reading by place

Inside temperature is composed of a single distribution, while outside temperature is

composed of multiple distributions as implemented in Listing 9.6 below.

Temperature by Season

season_agg = df.groupby('season') .agg ({ 'temp' : ['min'
season_maxmin =
pd.merge(season_agg['temp']['max'],season_agg['temp']
index=True,left_index=True)
season_maxmin = pd.melt(season_maxmin.reset_index(),
['season']).rename(columns={'season':'Season',
'variable':'Max/Min'})

Listing 9.6: Temperature by Season

Temperature by Timing

timing_agg = df.groupby('timing') .agg ({ 'temp' : ['min', 'max']})
timing_maxmin =
pd.merge(timing_agg['temp']['max'],timing_agg['temp']['min'],right_
index=True,left_index=True)
timing_maxmin = pd. m e l t (t i m i n g _ m a x m i n . r e s e t _ i n d e x () ,
['timing']).rename(columns={'timing':'Timing',
'variable':'Max/Min'})

Listing 9.7: Temperature by Timing

The outside temperature has a larger time series change than the inside temperature.

It is thought that the inside temperature is adjusted by air conditioner, but the outside

temperature is affected by seasonal temperature fluctuations.

Time-series analysis can be easily conducted with unique time-index data. Thus, mean

values need to be calculated by the 'date' column, and the 'id' column should be deleted.

, 'max']})

['min'],right

83

Daily and Monthly Temperature Mean

in_month =
t s d f [t s d f [' p l a c e '] = = ' I n '] .groupby('month') .agg({ 'temp' : ['mean'] })
in_month.columns = [f " { i [0] } _ { i [1] } " f o r i i n in_month.columns]
out_month =
tsdf[tsdf['place']=='Out'].groupby('month').agg({'temp':['mean']})
out_month.columns = [f " { i [0] } _ { i [1] } " f o r i i n out_month.columns]

t s d f [' d a i l y '] = t s d f [' d a t e '] . a p p l y (l a m b d a x :
pd . t o _ d a t e t i m e (x . s t r f t i m e (' % Y - % m - % d ')))
in_day =
t s d f [t s d f [' p l a c e '] = = ' I n '] . g r o u p b y ([' d a i l y ']) .agg({ 1 temp' : ['mean']})
in_day.columns = [f " { i [0] } _ { i [1] } " f o r i i n in_day.columns]
out_day =
t s d f [t s d f [' p l a c e '] = = ' O u t '] . g r o u p b y ([' d a i l y ']) .agg({ 1 temp' : ['mean']}
)
out_day.columns = [f " { i [0] } _ { i [1] } " f o r i i n out_day.columns]

import m a t p l o t l i b . p y p l o t as p i t

E x t r a c t i n g data from HoloViews Curves
in_d a y _ d a t a = i n _ d a y . r e s e t _ i n d e x ()
out_day_data = o u t _ d a y . r e s e t _ i n d e x ()

P l o t t i n g w i t h M a t p l o t l i b
p i t . f i g u r e (f i g s i z e = (1 0 , 6))

p i t . p l o t (i n _ d a y _ d a t a [' d a i l y '] , in_day_data['temp_mean'],
l a b e l = ' I n ' , marker='o')
p i t . p l o t (o u t _ d a y _ d a t a [' d a i l y '] , out_day_data['temp_mean'],
label='Out', marker='o')

Adding l a b e l s and t i t l e
p i t . t i t l e (" D a i l y Temperature Mean")
p l t . x l a b e l (" D a y ")
p i t . y l a b e l (" T e m p e r a t u r e ")
p i t . l e g e n d ()
p i t . g r i d (T r u e)

Show p l o t
pit.show()

Listing 9.8: Temperature Mean

84

And here is the Figure 9.2 showing the difference between In and Out.

Daily Temperature Mean

N •
- • - In
- • - Out

/ \ fs
* N *\

A.
*

2016- 08-02018 08-15 2018-
f
09-01018-09-1

5 2018-10-01018-10-15 2018 11-OE018-

V

11-15 2018

\
12-01

Day

Fig. 9.2: Daily Temperature Mean

Missing data

Plotting overall data, it is found that there are some missing data points randomly
throughout the whole period.

Interpolating with 'nearest' method looks better(yet far from best), but there are many
gaps in interpolated data.

In order to forecast future temperature, it's better to convert data into rough granularity.

Using interpolated daily mean data looks good solution as in Listing 9.9 below.

i n _ t s d f = t s d f [t s d f [' p l a c e '] = = ' I n '] . r e s e t _ i n d e x (d r o p = T r u e)
i n _ t s d f . i n d e x = i n _ t s d f [' d a t e ']
i n _ a l l = h v . C u r v e (i n _ t s d f [' t e m p ']) . o p t s (t i t l e = " [I n] Temperature
A l l " , ylabel="Temperature", xlabel='Time', color='red')

o u t _ t s d f = t s d f [t s d f [' p l a c e '] = = ' O u t '] . r e s e t _ i n d e x (d r o p = T r u e)
o u t _ t s d f . i n d e x = o u t _ t s d f [' d a t e ']
o u t _ a l l = h v . C u r v e (o u t _ t s d f [' t e m p ']) . o p t s (t i t l e = " [O u t] Temperature
A l l " , ylabel="Temperature", xlabel='Time', color='blue')

85

i n _ t s d f _ i n t =
in _ t s d f [' t e m p '] .resample('lmin') .interpolate(method='nearest')
i n _ t s d f _ i n t _ a l l = h v . C u r v e (i n _ t s d f _ i n t) . o p t s (t i t l e = " [I n]
Temperature A l l I n t e r p o l a t e d w i t h 'nearest'", ylabel="Temperature",
xlabel='Time', c o l o r = ' r e d ' , f o n t s i z e = { ' t i t l e ' : 1 1 })
o u t _ t s d f _ i n t =
ou t _ t s d f [' t e m p '] . r e s a m p l e (' l m i n ') . i n t e r p o l a t e (m e t h o d = ' n e a r e s t ')
o u t _ t s d f _ i n t _ a l l = h v . C u r v e (o u t _ t s d f _ i n t) . o p t s (t i t l e = " [O u t]
Temperature A l l I n t e r p o l a t e d w i t h 'nearest'", ylabel="Temperature",
xlabel='Time', c o l o r = ' b l u e ' , f o n t s i z e = { ' t i t l e ' : 1 1 })
i n p _ d f = pd.DataFrame()
i n _ d _ i n p = i n _ d a y . r e s a m p l e (' I D ') . i n t e r p o l a t e (' s p l i n e ' , order=5)
out_d_inp = o u t _ d a y . r e s a m p l e (' I D ') . i n t e r p o l a t e (' s p l i n e ' , order=5)
i n p _ d f [' I n '] = in_d_inp.temp_mean
in p _ d f [' O u t '] = out_d_inp.temp_mean

Listing 9.9: Missing data

Hyperparameter tuning

Here, some hyperparameter tuning techniques would be applied to the model to see if

the performance would change and to choose the best performer among them. Below in

Listing 9.10 some snippet of the code with apply grid search to select best

hyperparameters.

Define the f u n c t i o n to eva l u a t e the model
def e v a l u a t e _ m o d e l (p l a c e , c h a n g e p o i n t _ p r i o r _ s c a l e ,
y e a r l y _ s e a s o n a l i t y , w e e k l y _ s e a s o n a l i t y) :

p r e d i c t i o n _ p e r i o d s = 3 0 # Define the number of p e r i o d s t o
p r e d i c t

r e s u l t = run_prophet_with_params(place, p r e d i c t i o n _ p e r i o d s ,
c h a n g e p o i n t _ p r i o r _ s c a l e , y e a r l y _ s e a s o n a l i t y , w e e k l y _ s e a s o n a l i t y)

C a l c u l a t e MSE between a c t u a l and p r e d i c t e d v a l u e s
a c t u a l = o r g _ d f [p l a c e] [- p r e d i c t i o n _ p e r i o d s :] . v a l u e s
p r e d i c t e d = r e s u l t [' y h a t '] [- p r e d i c t i o n _ p e r i o d s :] . v a l u e s
mse = mea n _ s q u a r e d _ e r r o r (a c t u a l , p r e d i c t e d)

r e t u r n mse

G r i d search parameters

86

param_grid = {
' c h a n g e p o i n t _ p r i o r _ s c a l e ' : [0.01, 0.1, 0.5],
' y e a r l y _ s e a s o n a l i t y ' : [2, 5, 10],
'w e e k l y _ s e a s o n a l i t y ' : [F a l s e , True]

}

Generate a l l combinations of parameters
param_combinations =
l i s t (p r o d u c t (p a r a m _ g r i d [' c h a n g e p o i n t _ p r i o r _ s c a l e '] ,
p a r a m _ g r i d [' y e a r l y _ s e a s o n a l i t y '] ,
p a r a m _ g r i d [' w e e k l y _ s e a s o n a l i t y ']))

Perform g r i d search
best_params = None
best_mse = f l o a t ('inf')
r e s u l t s = []

f o r params i n param_combinations:
c h a n g e p o i n t _ p r i o r _ s c a l e , y e a r l y _ s e a s o n a l i t y , w e e k l y _ s e a s o n a l i t y

= params
mse = evaluate_model("Out", c h a n g e p o i n t _ p r i o r _ s c a l e ,

y e a r l y _ s e a s o n a l i t y , w e e k l y _ s e a s o n a l i t y)
results.append((params, mse))

i f mse < best_mse:
best_mse = mse
best_params = params

P r i n t the best parameters and MSE
p r i n t (" B e s t Parameters:", best_params)
p r i n t (" B e s t MSE:", best_mse)

O p t i o n a l l y , you can convert r e s u l t s to a DataFrame f o r b e t t e r
v i s u a l i z a t i o n
r e s u l t s _ d f = pd.DataFrame(results, columns=['Parameters', 'MSE'])
p r i n t (r e s u l t s _ d f)

Listing 9.10: Hyperparameter tunning

And here are the results with the best M S E as shown in Figure 9.3.

Best MSE: 4.5756250669266185
Parameters MSE

0 (0.01, 2, False) 132.697364
1 (0.01, 2, True) 153.003574

87

2 (0.01, 5, False) 4 630651
3 (0.01 , 5, True) 14 546761
4 (0.01, 10, False) 5 546444
5 (0.01, 10, True) 6 167597
6 (0.1, 2, False) 139 604486
7 (0.1 , 2, True) 136 147785
8 (0.1, 5, False) 4 575625
9 (0.1 , 5, True) 5 723650
10 (0.1, 10, False) 6 163159
11 (0.1, 10, True) 6 170643
12 (0.5, 2, False) 371 156863
13 (0.5 , 2, True) 408 270783
14 (0.5, 5, False) 20 028329
15 (0.5 , 5, True) 9 234085
16 (0.5, 10, False) 213 200977

17 (0.5, 10, True) 20 372572

MSE for Different Combinations of Parameters
WeR<ly Seasonality

0.01 0.1 0.5
Changepoint Prior Scale

Fig. 9.3: M S E for Different Combinations of Parameters

Below in Listing 9.11 describes the build of the model and the prediction.

def r u n _ p r o p h e t (p l a c e , p r e d i c t i o n _ p e r i o d s , plot_comp=True):
make dataframe f o r t r a i n i n g
prophet_df = pd.DataFrame()
pro p h e t _ d f [" d s "] = p d . d a t e _ r a n g e (s t a r t = o r g _ d f [' d a i l y '] [0] ,

e n d = o r g _ d f [' d a i l y '] [1 3 3])
p r o p h e t _ d f [' y '] = o r g _ d f [p l a c e]

88

add seasonal i n f o r m a t i o n
prophet_df['monsoon'] = org_df['season_Monsoon']
prophet_df['post_monsoon'] = org_df['season_Post_Monsoon']
p r o p h e t _ d f [' w i n t e r '] = org_df['season_Winter']

t r a i n model by Prophet
m = P r o p h e t (c h a n g e p o i n t _ p r i o r _ s c a l e = 0 . 1 , y e a r l y _ s e a s o n a l i t y = 2 ,

w e e k l y _ s e a s o n a l i t y = F a l s e)
i n c l u d e seasonal p e r i o d i c i t y i n t o the model
m.add_seasonality(name='season_monsoon', period=12 4,

f o u r i e r _ o r d e r = 5 , p r i o r _ s c a l e = 0 . 1 , condition_name='monsoon')
m.add_seasonality(name='season_post_monsoon', period=62,

f o u r i e r _ o r d e r = 5 , p r i o r _ s c a l e = 0 . 1 , condition_name='post_monsoon')
m.add_seasonality(name='season_winter', period=93,

f o u r i e r _ o r d e r = 5 , p r i o r _ s c a l e = 0 . 1 , condition_name='winter')
m. f i t (p r o p h e t _ d f)

make dataframe f o r p r e d i c t i o n
f u t u r e = m.make_future_dataframe(periods=prediction_periods)
add seasonal i n f o r m a t i o n
f u t u r e _ s e a s o n = pd.get_dummies(future['ds'].apply(lambda x :

month2seasons(x.month)))
future['monsoon'] = future_season['Monsoon']
future['post_monsoon'] = future_season['Monsoon']
f u t u r e [' w i n t e r '] = f u t u r e season['Winter']

p r e d i c t the f u t u r e temperature
p r o p h e _ r e s u l t = m . p r e d i c t (f u t u r e)

Listing 9.11: The build

As it can be seen in Figures 9.4 and 9.5 The IN and OUT predictions of the

Temperature during the Time.

The Red Line is the Linear introduction of the mean of the points.

89

In Prediction
• Actual points

Mean of points
Varience of points

2018-08 2018-09 2018-10 2018-11 2018-12 2019-01
Time

Fig. 9.4: Prediction of EN temperature

Out Prediction

2018-08 2018-09 2018-10 2018-11 2018-12 2019-01
Time

Fig. 9.5: Prediction of EN temperature

90

In the provided code, the features used for the Prophet model are:

Date-Time Features:

• Year: Extracted from the timestamp to capture any yearly trends or seasonality.

• Month: Extracted to capture seasonal patterns within each month.

• Day: Extracted to account for any potential daily variations or trends.

• Weekday: Extracted to capture any day-of-week patterns or fluctuations.

• Weekofyear: Derived to understand the week of the year, which might have its

own patterns.

• Hour: Extracted to capture variations throughout the day.

• Minute: Extracted for more granular analysis, although not utilized in this

specific model.

Seasonal Features:

• Season: Derived from the month to categorize data into different seasons

(Winter, Summer, Monsoon, Post-Monsoon). This helps capture seasonal

patterns and trends specific to each season.

Additional Temporal Features:

• Timing: Derived from the hour to categorize data into different time

segments (Morning, Afternoon, Evening, Night). This adds another layer of

temporal granularity, capturing potential variations based on the time of day.

These features are used to provide the model with as much relevant information as

possible to capture the underlying patterns and trends in the temperature data. By

including various temporal features, the model can learn and account for different

patterns that may emerge at different time scales, such as daily, weekly, monthly, or

seasonal patterns. Additionally, incorporating seasonal information allows the model to

capture recurring patterns associated with different seasons, which can significantly

impact temperature fluctuations.

And for the user interface application, Streamlit app would be used for this with the two

main features of choosing the Temperature IN/OUT and the second one of choosing the

91

TimePoints as the days of the forecasting with the following piece of code (Listing

9.12).

S t r e a m l i t app
def main():

s t . t i t l e (" T e m p e r a t u r e P r e d i c t i o n App")

Dropdown f o r Temperature s t a t u s
temp_status = st. s e l e c t b o x (" T e m p e r a t u r e s t a t u s : " , ["IN",

"OUT"])

Number i n p u t f o r TimePoints
t i m e _ p o i n t s = st.number_input("TimePoints:", min_value=l,

s t e p = l , value=30)

Button to execute the code
i f s t . b utton("Run P r o p h e t ") :

i f temp_status == "IN":
r u n _ p r o p h e t (" I n " , t i m e _ p o i n t s)

e l s e :
run_prophet("Out", t i m e _ p o i n t s)

Listing 9.12: The user interface app

And the output of this application would be in the Figure 9.6 below

The main page will have two options that the user can change:

Temperature statues: It has two options to choose from IN/OUT

TimePoints: Each Point represents one day, and the user can change the days

(points) according to their desire to forecast the desired duration.

Temperature Prediction App
Temperature status:

IN

TimePoints:

30 - +

Run Prophet

92

Fig. 9.6: The main page of the app

As the TimePoints could be increased or decreased

Here are the results of 30 TimePoint and 90 TimePoints in Figures 9.7 and 9.8

respectively below.

Temperature Prediction App
Temperature status

IN W

TimePoints.

In Prediction

.• _ -s.

2018 0« 201 09 1019 19 201B 11 101 12 201*01

Fig. 9.7: Prediction of IN temperature with 30 TimePoints

Temperature Prediction App
Temperature status:

in
JimePaints:

90

Run Prophet

- • •
?
|
E •

In Prediction

•

Fig. 9.8: Prediction of IN temperature with 90 TimePoints

So in conclusion Outside temperature is composed of multiple distributions, while

inside temperature has a single distribution.

Inside temperature has flat trend, but outside temperature has the trend that is seemed to

be affected by time-series factor such as seasonality.

So many drops in the data made it difficult to build model, so interpolating daily-mean

data by 'spline' method worked.

Some outliers made it difficult to build forecasting model, but thanks to Prophet it is

thought we built a robust model against outliers.

94

CONCLUSION

The Time Series Forecasting is a major topic nowadays for the future predictions, it can help with
many different applications. In this paper, we explored the effectiveness of three prominent time
series forecasting models with different backgrounds: SARIMAX, Prophet, and LSTM. These
models were applied to various univariate and multivariate datasets to assess their performance
across different types of data.

The first dataset, "Dataset 1 - Discount Rate," consisted of the discount rate changes over time in the
Czech Republic, sourced from the Czech National Bank (CNB). This relatively simple dataset
required minimal pre-processing. Among the models, the LSTM model showed superior
performance, accurately capturing the temporal patterns in the data. SARIMAX also provided
reasonable results, while the Prophet model lagged slightly behind.

The second dataset, "Dataset 2 - Number of Accidents," comprised a more complex dataset,
detailing the number of car accidents in the Czech Republic on a daily basis since 2006. In this case,
the LSTM model again showed the best performance, effectively capturing the intricate patterns
within the data. Prophet performed better than SARIMAX, but both were less effective compared to
LSTM.

The third dataset, "Dataset 3 - Yahoo Finance," was created using the Yahoo Finance API to
generate stock data for Apple Inc. (AAPL). For this dataset, the SARIMAX model performed well,
especially given the stock data's inherent volatility. The LSTM model provided intermediate results,
showcasing its adaptability to different data complexities. The Prophet model, however, showed less
effectiveness in handling the volatility of financial data.

Additionally, we applied the Prophet model to another multivariate dataset, involving inside and
outside temperature measurements, and performed hyperparameter tuning. The outside temperature
showed seasonal trends, while the inside temperature had a flat trend. Challenges such as drops and
outliers were addressed using interpolation and Prophet's robustness, resulting in an effective
forecasting model.

Furthermore, it was observed that the LSTM model's performance improved with more extensive
training, indicating its potential for further optimization.

In conclusion, the LSTM model consistently demonstrated superior performance across all datasets,
highlighting its robustness and capability in capturing complex temporal patterns. While SARIMAX
was effective for simpler datasets and certain types of data, it struggled with more complex datasets.
The Prophet model, despite its ease of use and quick setup, generally exhibited lower performance,
particularly in volatile and complex datasets. These findings emphasize the importance of selecting
appropriate models based on the specific characteristics and complexities of the datasets in time
series forecasting tasks. Moreover, the application of hyperparameter tuning and addressing data
irregularities are crucial steps in improving model performance.

95

L I T E R A T U R E

[1] Hayes, A. (2022). Time Series. Investopedia. Available from URL:
https://www.investopedia.eom/terms/t/timeseries.asp

[2] Barkved, K. (2022). Introducing Obviously AI Time Series. Obviously AI.
Available from URL: https://www.obviously.ai/post/introducing-obviously-ai-time-
series

[3] Sharma, A. Different Approaches to Conventional Programming v/s Machine
Learning. KDnuggets. Available from URL:

https://www.kdnuggets.com/2018/12/different-conventional-programming-machine-
learning.html

[4] Brownlee, J. (2020, August 15). Time Series Forecasting. Machine Learning
Mastery. Available from URL:

https://machinelearningmastery.com/time-series-forecasting/

[5] Kaur, M . (2020, February 22). Time Series Analysis. Quantlnsti. Available from
URL: https://blog.quantinsti.com/time-series-analysis/

[6] Machine Learning. GeeksforGeeks. Last updated January 25, 2024. Available from
URL: https://www.geeksforgeeks.org/machine-learning/

[7] Manika. (2024, April 9). Time Series Forecasting Models. ProjectPro. Available
from URL: https://www.projectpro.io/article/time-series-forecasting-models/559

[8] Palachy Affek, S. (2019, April 8). Stationarity in Time Series Analysis. Towards
Data Science. Available from URL:

https://towardsdatascience.com/stationaritv-in-time-series-analvsis-90c94f27322

[9] Iordanova, T. (2022, January 5). Understanding Stationarity in Time Series
Analysis. Investopedia. Retrieved from

https://www.investopedia.com/articles/trading/07/stationary.asp

[10] Pathak, P. P. (2021, September 8). Time Series Forecasting: A Complete Guide.
Medium. Available from URL:

https://medium.com/analytics-vidhya/time-series-forecasting-a-complete-guide-
d963142da33f

96

https://www.investopedia.eom/terms/t/timeseries.asp
https://www.obviously.ai/post/introducing-obviously-ai-time-
https://www.kdnuggets.com/2018/12/different-conventional-programming-machine-
https://machinelearningmastery.com/time-series-forecasting/
https://blog.quantinsti.com/time-series-analysis/
https://www.geeksforgeeks.org/machine-learning/
https://www.projectpro.io/article/time-series-forecasting-models/559
https://towardsdatascience.com/stationaritv-in-time-series-analvsis-90c94f27322
https://www.investopedia.com/articles/trading/07/stationary.asp
https://medium.com/analytics-vidhya/time-series-forecasting-a-complete-guide-

[11] Bobbitt, Z. (2022, April 25). Univariate vs. Multivariate Analysis. Statology.
Available from URL:

https://www.statology.org/univariate-vs-multivariate-analysis/

[12] Baruah, I. D. (2020, September 28). Combining Time Series Analysis with
Artificial Intelligence: The Future of Forecasting. Medium. Available from URL:
https://medium.com/analytics-vidhya/combining-time-series-analysis-with-artificial-
intelligence-the-future-of-forecasting-5196f57db913

[13] Autoregressive Moving Average (ARMA(p,q)) Models for Time Series Analysis:
Part 2. QuantStart. Available from URL:

https://www.quantstart.com/articles/Autoregressive-Moving-Average-ARMA-p-q-
Models-for-Time-Series-Analysis-Part-2/

[14] Shweta. (2021, July 30). Introduction to Time Series Forecasting: Part 2 - A R I M A
Models. Towards Data Science. Available from URL:

https://towardsdatascience.com/introduction-to-time-series-forecasting-part-2-arima-
models-9f47bf0f476b

[15] Statespace V A R M A X . StatsModels. Available from URL:
https://www.statsmodels.org/dev/examples/notebooks/generated/statespace varmax.htm
1

[16] Brownlee, J. (2023, October 3). Supervised and Unsupervised Machine Learning
Algorithms. Machine Learning Mastery. Available from URL:
https://machinelearningmasterv.com/supervised-and-unsupervised-machine-learning-
algorithms/

[17] Linear Regression. Wikipedia. Available from URL:
https://en.wikipedia.org/wiki/Linear regression

[18] Johnson, P. (2024, Jan 23). Linear Relationship. WallStreetMojo. Available from
URL: https://www.wallstreetmojo.com/linear-relationship/

[19] Bevans, R. (2020, February 20). Multiple Linear Regression. Scribbr. Available
from URL: https://www.scribbr.com/statistics/multiple-linear-regression/

[20] Random Forest. IBM. Available from URL:

https://www.ibm.com/topics/random-forest

97

https://www.statology.org/univariate-vs-multivariate-analysis/
https://medium.com/analytics-vidhya/combining-time-series-analysis-with-artificial-
https://www.quantstart.com/articles/Autoregressive-Moving-Average-ARMA-p-q-
https://towardsdatascience.com/introduction-to-time-series-forecasting-part-2-arima-
https://www.statsmodels.org/dev/examples/notebooks/generated/statespace
https://machinelearningmasterv.com/supervised-and-unsupervised-machine-learning-
https://en.wikipedia.org/wiki/Linear
https://www.wallstreetmojo.com/linear-relationship/
https://www.scribbr.com/statistics/multiple-linear-regression/
https://www.ibm.com/topics/random-forest

[21] Joseph. (2022, August 15). Machine Learning: Information Gain. Reason Town.
Available from URL:

https://reason.town/machine-learning-information-gain/

[22] Jun M . (2020, November 13). Construct a Decision Tree and How to Deal With
Overfitting. Towards Data Science. Available from URL:

https://towardsdatascience.com/construct-a-decision-tree-and-how-to-deal-with-
overfitting-f907efc 1492d

[23] XGBoost. GeeksforGeeks. Available from URL:

https://www.geeksforgeeks.org/xgboost/

[24] Stecanella, B. (2017, June 22). Introduction to Support Vector Machines (SVM).
MonkeyLearn. Available from URL:

https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

[25] Support Vector Machine Algorithm. GeeksforGeeks. Available from URL:
https://www.geeksforgeeks.org/support-vector-machine-algorithm/

[26] Naive Bayes. IBM. Available from URL:

https://www.ibm.com/topics/naive-bayes

[27] Binhuraib, T. (2020, September 30). The Mathematics Behind Naive Bayes
Classifiers. Medium. Available from URL:

https://taha-huraibb99.medium.com/the-mathematics-behind-naive-bayes-classifiers-
333b6486f39c

[28] Arik, S. O., & Pfister, T. (2021, December 13). Interpretable Deep Learning for
Time Series Forecasting. Google Research Blog. Available from URL:
https://research.google/blog/interpretable-deep-learning-for-time-series-forecasting/

[29] Aishwarya. (2023, December 4). Introduction to Recurrent Neural Network.
GeeksforGeeks. Available from URL:

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

[30] In-Depth Explanation of Recurrent Neural Network. Analytics Vidhya. Available
from URL: https://www.analyticsvidhya.com/blog/2021/07/in-depth-explanation-of-
recurrent-neural-network/

98

https://reason.town/machine-learning-information-gain/
https://towardsdatascience.com/construct-a-decision-tree-and-how-to-deal-with-
https://www.geeksforgeeks.org/xgboost/
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://www.ibm.com/topics/naive-bayes
https://taha-huraibb99.medium.com/the-mathematics-behind-naive-bayes-classifiers-
https://research.google/blog/interpretable-deep-learning-for-time-series-forecasting/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.analyticsvidhya.com/blog/2021/07/in-depth-explanation-of-

[31] Understanding of L S T M Networks. GeeksforGeeks. Available from URL:
https://www.geeksforgeeks.org/understanding-of-lstm-networks/

[32] Prophet. Facebook. Available from URL:

https://facebook.github.io/prophet/

[33] DeepAR Forecasting Algorithm. Amazon SageMaker Developer Guide. Available
from URL: https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html

[34] Time Series and Forecasting Using R. GeeksforGeeks. Available from URL:
https://www.geeksforgeeks.org/time-series-and-forecasting-using-r/

[35] Statsmodels. GitHub. Available from URL:

https://github.com/statsmodels/statsmodels

[36] Lenczuk, J. (2021, August 17). Why Start Using sktime for Forecasting. Towards
Data Science. Available from URL:

https://towardsdatascience.com/why-start-using-sktime-for-forecasting-8d688 Ic0a518

[37] Heller, M . (2019, January 28). What is Keras? The Deep Neural Network API
Explained. InfoWorld. Available from URL:

https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-
api-explained.html

[38] Geisler Mesevage, T. (2021, May 24). Data Preprocessing: What It Is and How to
Do It. MonkeyLearn. Available from URL:

https://monkeylearn.com/blog/data-preprocessing/

[39] Bains, R. (2022, February 16). Prepare Time Series Data with Amazon SageMaker
Data Wrangler. Vedere AI. Available from URL:

https://www.vedereai.com/prepare-time-series-data-with-amazon-sagemaker-data-
wrangler/

[40] isitapol. (2022, May 25). How to Split a Dataset into Train and Test Sets Using
Python. GeeksforGeeks. Available from URL:

https://www.geeksforgeeks.org/how-to-split-a-dataset-into-train-and-test-sets-using-
python/

99

https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://facebook.github.io/prophet/
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
https://www.geeksforgeeks.org/time-series-and-forecasting-using-r/
https://github.com/statsmodels/statsmodels
https://towardsdatascience.com/why-start-using-sktime-for-forecasting-8d688
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-
https://monkeylearn.com/blog/data-preprocessing/
https://www.vedereai.com/prepare-time-series-data-with-amazon-sagemaker-data-
https://www.geeksforgeeks.org/how-to-split-a-dataset-into-train-and-test-sets-using-

[41] The Data Detective (Jan 31, 2020) The 80/20 Split Intuition and an Alternative
Split Method. Available from URL:

https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-
data-plus-an-alternative-method-oh-yes-edc77e96295d

[42] Kumar, A . (2022, April 2). Steps for Evaluating & Validating Time Series Models.
Vitalflux. Available from URL:

https://vitalflux.com/steps-for-evaluating-validating-time-series-
models/?utm content=cmp-true

[43] Evaluation of Regression Models in Scikit-Learn. Data Courses. Available from
URL: https://www.datacourses.com/evaluation-of-regression-models-in-scikit-learn-
846/

[44] Priya, J. (2022, January 24). Complete List of Performance Metrics for Monitoring
Regression Models. Qualdo AI. Available from URL:

https://www.qualdo.ai/blog/complete-list-of-performance-metrics-for-monitoring-
regression-models/

100

https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-
https://vitalflux.com/steps-for-evaluating-validating-time-series-
https://www.datacourses.com/evaluation-of-regression-models-in-scikit-learn-
https://www.qualdo.ai/blog/complete-list-of-performance-metrics-for-monitoring-

