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S u m m a r y 

Wide variety of optimum design problems in engineering leads to optimization models con

strained by ordinary or partial differential equations ( O D E or P D E ) . Numerical methods 
based on discretising domain are required to obtain a nondifferential numerical descrip

tion of the differential parts of constraints because the analytical solutions can be found 
only for simple problems. We chose the finite element method. 

The real problems are often largescale and exceed computational capacity. Hence, 
we employ the progressive hedging algorithm ( P H A )  an efficient scenario decomposi

tion method for solving scenariobased stochastic programs, which can be implemented 
in parallel to reduce the computing time. A modified P H A was used for an original con

cept of spatial decomposition based on the mesh created for approximation of differential 
equation constraints. The algorithm consists of a few main steps: solve our problem 
with a raw discretization, decompose it into overlapping parts of the domain, and solve 
it again iteratively by the P H A with a finer discretization  using values from the raw 
discretization as boundary conditions unti l a given accuracy is reached. 

The spatial decomposition is applied to a basic test problem from the civi l engineering 
area: design of beam cross section dimensions. The algorithms are implemented in G A M S 
software and finally results are evaluated with respect to a computational complexity 
and a length of overlap. 

K e y w o r d s 
optimization, stochastic program, differential equation, finite element method, beam, pro

gressive hedging algorithm, scenario decomposition, spatial decomposition, overlapping 
constraints 
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A b s t r a k t 

Rozsáhlá t ř í da inženýrských opt imal izačních úloh vede na modely s omezeními ve tva

ru obyčejných nebo parciálních diferenciálních rovnic ( O D R nebo P D R ) . Pro tože difer

enciálních rovnice je možné řešit analyticky jen v nejjednodušších př ípadech, bylo k řešení 
použi to numerických metod založených na diskretizaci oblasti. Zvoli l i jsme metodu koneč

ných prvků, k te rá umožňuje převod omezení ve tvaru diferenciálních rovnic na omezení 
ve tvaru soustavy l ineárních rovnic. 

Reálné problémy jsou často velmi rozsáhlé a přesahují dostupnou výpoče tn í kapacitu. 
Výpoče tn í čas lze snížit pomocí progressive hedging algoritmu ( P H A ) , kte rý umožňuje 
paralelní implementaci. P H A je efektivní scénářová dekompoziční metoda pro řešení scé

nářových stochast ických úloh. Modifikovaný P H A byl využi t pro původn í př í s tup pros

torové dekompozice. Aproximace diferenciálních rovnic v modelu problému je dosaženo 
pomocí diskretizace oblasti. Diskretizace je dále využ i ta pro prostorovou dekompozici 
modelu. Algoritmus prostorové dekompozice se skládá z několika hlavních kroků: vyřešení 
problému s hrubou diskretizaci, rozdělení oblasti problému do překrývajících se část í a ite

rační řešení pomoc í P H A s jemnějš í diskretizaci s využi t ím hodnot z hrubé diskretizace 
jako okrajových podmínek . 

Pros to rová dekompozice byla apl ikována na základní testovací prob lém z oboru sta

vebního inženýrství , kte rý se zabývá n á v r h e m rozměrů průřezu nosníku. Algoritmus byl 
implementován v softwaru G A M S . Získané výsledky jsou zhodnoceny vzhledem k výpo

četní náročnost i a délce překryt í . 

K l í č o v á s lova 
optimalizace, úloha s tochast ického programování , diferenciální rovnice, metoda konečných 
prvků, nosník, progressive hedging algoritmus, scénářová dekompozice, pros torová dekom

pozice, omezení na překry t í 
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Chapter 1 

Introduction 

Wide variety of engineering problems is described by ordinary or partial differential equa
tion ( O D E or P D E ) constrained models. We can find a closed-form solution only for simple 
O D E s or P D E s , hence we have to approximate their solution using numerical methods 
based on discretization of domain in most cases. The most common approximation tech
niques for solving these equations include the finite difference method, the finite volume 
method and also the finite element method that was chosen for our purpose. Then we can 
approximate the ini t ial O D E / P D E constrained optimization problem by a mathemati
cal program. There are a lot of well developed and tested methods for solving these 
deterministic programs. 

In practice, some parameters and data from the given problem description are not 
given as fixed quantities but very often are random. Therefore, we obtain stochastic 
programs differing from the deterministic programs mentioned above. 

The combination of these two areas leads in many cases to very large-scale O D E / P D E 
constrained stochastic optimization problems wi th hundreds of variables or /and equations. 
Solving these problems is difficult and can exceed the computational capacity. Hence, it is 
desirable to employ some decomposition techniques. 

There are several ways how to decompose optimization problems and we have de
veloped one completely new approach of spatial decomposition suitable for O D E / P D E 
constrained problems. Our original approach is based on the progressive hedging algo
r i thm ( P H A ) allowing the scenario decomposition for scenario-based stochastic programs. 
The algorithm can be implemented in parallel to reduce the computing time and the scale 
of problems and can be used for deterministic and stochastic programs too. There are 
some other decomposition algorithms but we used the P H A because there are some ex
perience wi th this algorithm on our department. 

The spatial decomposition is presented on a particular problem from the civi l engi
neering area in the Chapter 6. Our goal is to find an optimum design of beam cross 
section dimensions. 

To be able to create the appropriate model we need to have a basic information 
about modeling. We obtained the stochastic programming problem so we have to get r id 
of uncertainties. Hence, we listed some deterministic reformulations. Then, the implemen
tation in G A M S software can be made. A l l mentioned concepts together wi th one short 
solved example for better understanding could be find in the Chapter 3. One more diffi
culty comes wi th O D E constraints in our model, we have to approximate them by the finite 
element method described in the Chapter 4. 
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Finally, we can involve the spatial decomposition based on the penalty functions ap

proach explained in the Appendix C. The main part of the algorithm comes from the pro

gressive hedging algorithm and other decomposition techniques listed in the Chapter 5. 
There the progressive hedging algorithm is presented on a quite simple example. The spa

t ial decomposition was worked out for two deterministic reformulations in G A M S (an ex

ample of a source code can be found in the Appendix D) and the results were evaluated 
with respect to a computational complexity. We must remember that the P H A converges 
to the optimal solution only for programs with a convex objective function and a convex 
feasible set what is not our case. But we are able to determine a pretty good starting 
point for the algorithm to provide a convergence in computations. 

The research was supported by F M E B U T projects no. FSIJ117 "Optimalizace 
a numerické modelování úloh s fázovými a s t ruk tu rá ln ími přeměnami" and no. FSIJ 

1222 "Aplikace metod numerického modelování a optimalizace v inženýrských úlohách 
se změnou skupens tv í struktury". The thesis has been inspired by the problems solved 
in a research plan from M Š M T of the Czech Republic no. MSM0021630519. 
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Chapter 2 

Aims of master's thesis 

The main aims of this master's thesis can be divided as follows: 

1. We wi l l introduce main ideas of optimization wi th focus on stochastic programming 
in which decisions are taken under an uncertainty modeled by random variables. 
The uncertainties have to be removed by a deterministic reformulation. Therefore, 
the list of these reformulations wi l l be given. The ideas of stochastic programming 
wi l l be extended to two-stage stochastic programs. The most of the mentioned 
notion and concepts wi l l be illustrated on a simple solved problem. 

2. Since we are focused on the differential equation constrained stochastic programs, 
we need a numerical method to treat up the derivatives. The finite element method 
has been chosen. Hence, we wi l l give a basic information about this method and its 
main steps. 

3. Mathematical programs modeling real problems are usually large-scale. There
fore, a decomposition technique allowing a parallel implementation is required. 
We wi l l give the basic insight to scenario decomposition methods focusing mainly 
on the progressive hedging algorithm ( P H A ) . The progressive hedging algorithm 
forms the basis of the original spatial decomposition approach. A simple example 
solved by the P H A is included for better understanding of this algorithm. Fur
ther, we wi l l focus on our concept of the spatial decomposition and we wi l l evaluate 
the advantages of the parallel implementation. 

4. Last but not least, the foregoing knowledge wi l l be applied to a particular test 
problem from the area of c ivi l engineering. The finite element method wi l l be used 
for the approximation of the derivatives in the problem formulation. The spa
t ial decomposition wi l l be implemented for two deterministic reformulations of this 
problem. Finally, the results wi l l be evaluated and discussed. 

17 



Chapter 3 

Optimization 

3.1 Motivation 

Optimizat ion problems arise in many different disciplines. Optimizat ion plainly domi
nates the design, operation and planning of engineering systems. A bridge is designed 
by minimizing its building costs but maintaining appropriate security standards. Railway 
systems are expanded to minimize building and operation costs while operation and se
curity standards must hold. Analogously, if you decide to optimize an electric energy 
system power demands has to be supplied at minimum costs. Note that this section is 
based on [1]. 

Optimization is "the science of the best" in the sense that it helps us to make a de
cision which is not only respectable, but the best decision subject to certain constraints 
describing the domain where the decision has to be taken. Mathematical programming 
models provide the appropriate framework for these optimization decisions in a precise 
and formal manner. 

The objective to be minimized (or maximized) is expressed as a real-valued mathe
matical function named as the objective function. This function depends on one or several 
decision variables whose optimal values are sought. 

The restrictions that have to be satisfied define what is denominated the feasibility 
set of the problem. This set should include many possible decisions which make sense 
for the optimization problem. The feasibility region is formally defined through equality 
and/or inequality conditions and we called them as constraints of the problem. 

Mathematical programming problems are classified depending on the type of variables 
and the objective function and the functions used for the constraints. If the variables are 
continuous and both the objective function and the constraints are linear, the problem is 
called as linear programing problem (LP). If any of the variables is integer or binary, while 
the constraints and the objective function are both linear, the problem is denominated 
mixed-integer linear programming problem (MILP). Analogously, if the objective function 
or any of the constraints is nonlinear and all variables are continuous, the problem is 
the nonlinear programming problem (NLP) and so on. 

Linear programming problems are routinely solved even if they involve hundreds 
or thousands of variables and constraints. Nonlinear problems are solved if they meet 
certain regularity conditions related to the mathematical concept of convexity. Mixed-
integer problems are generally hard to solve and can be numerically intractable. 

18 



To be able to solve an optimization problem, we have to create the model of reality 
first. We identify activities which we can control and influence. Each such activity is 
associated wi th a decision variable whose value is to be decided. The remaining quantities 
are constants in the problem. We create a real-valued objective function of the variable 
values. The quantity is minimized or maximized depending on our goal. The activity 
levels cannot be arbitrarily large, it is usually associated wi th some resources or demands. 
So we create constraints. We can also meet wi th some uncertainties in our model, then 
we are speaking about the stochastic programming problem (SP). 

The modelling process comes wi th some difficulties. The communication can be dif
ficult because two groups speak different languages in terms of describing the problem. 
The optimization problem quite often has uncertainties in the data, which moreover are 
not always easy to collect or to quantify. There is often a conflict between problem solv
ability and problem realism. We can get thanks some optimization algorithms an optimal 
value and an optimal solution, if they exist. This result is then interpreted and evaluated, 
which may lead to alterations of the model, and to questions regarding the applicability 
of the optimal solution. The optimization model can also be altered in order to answer 
sensitivity analysis type questions concerning the effect of small variations in data. The fi
nal problems are connected to the interpretation of the result. The result has to make 
sense to those who want to use the solution. It must be possible to transfer the solution 
back into the world where the problem came from. 

The forming a good optimization model is basically a difficult process. It is often pos
sible to construct more than one form of an mathematical model that represents the same 
problem equally accurately, and the computational complexity can differ between them. 
A well-designed model is crucial for success of the application. 

3.2 History of optimization 
Several branches of mathematics are associated wi th the optimization: analysis, topology, 
algebra, discrete mathematics, etc. Optimizat ion is also sometimes called as mathematical 
programming (G. B . Dantzig [10], 1947-1949). The term program has nothing to do wi th 
a computer program, it should be understood as a decision program, that is a strategy 
or decision rule. This section is based mainly on the literature referenced in [1]. 

The history of optimization is quite long. Many geometrical or mechanical prob
lems, that Archimedes, Euclides and others formulated and also solved, are optimization 
problems. We can mention, for instance, the problem of maximizing the volume of a three-
dimensional object built from a two-dimensional sheet of metal wi th a given area. 

Many years later some other famous mathematicians like D . Bernoull i , J . L . Lagrange, 
L . Euler or K . Weierstrass developed variational calculus by studying problems in applied 
physics such as how to find the best trajectory for a flying object. The notion of optimality 
and how to characterize an optimal solution was developed at the same time. 

The fastest development of optimization occurred in the Second Wor ld War, when 
the US and Br i t i sh mil i tary commands hired scientists from several disciplines to try 
to solve complex problems regarding the best way to construct convoys in order to avoid 
or protect the cargo ships from German submarines and how to best cover the Br i t i sh 
isles with radars and so on. 

Among the scientists that took part in the Second Wor ld War we find several re
searchers in mathematics, physics, and economics, who contributed greatly to the foun-
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dations of the optimization as we now know it. We mention only few of them here. 
G . B . Dantzig invented the simplex method for solving the linear optimization problems, 
as well as the whole machinery of modelling such problems. The knowledge of duality 
came from J . von Neumann. A large part of the duality theory was developed in collab
oration wi th the mathematician A . W . Tucker. 

The stochastic programming, where uncertain parameters occurred, has been studied 
since 1955, when G . B . Dantzig introduced a concept of the linear programming un
der an uncertainty. The theory for stochastic programs is much more complicated and it 
is harder to find some generalized laws for a wide class of problems. The first important 
theoretical results were published in the sixties by pioneers of the stochastic program
ming A . Madansky, R. Wets, A . Prekopa, etc. Lately, the first monographs appeared 
(e.g. by P. Ka i l ) . The seventies brought deep theoretical results (e.g. from R. T. Rock-
afellar). A remarkable progress was made in the eighties wi th development of algorithms 
and the multistage stochastic programming (J. R. Birge [5]). New areas of interest were in
teger stochastic programming problems and stochastic programming networks (S. W . Wal 
lace [19]). Usually we obtain large scale problems wi th hundreds of variables so we 
need some decomposition techniques to be able to solve our problems in a finite time. 
In the nineties, the question related to the availability of modelling and algorithmic tools 
and parallel implementation of algorithms has become more an more important. 

3.3 Key concepts of mathematical analysis 
The analysis of optimization problems and related algorithms requires the basic under
standing of the multidimensional analysis and other branches of mathematics. Here we 
only give the essential definitions, and basic facts that we wi l l use in subsequent chapters. 

D e f i n i t i o n 3 .3 .1 . A set S C M n is called convex if for each x x , x 2 G S, the point 

A x 1 + (1 - A ) x 2 

for VA G (0,1) belongs to S. This says that all points on a line connecting two points 
in the set are in the set. A set is convex if, from everywhere in S, all other points of S 
are visible. 

T h e o r e m 3.3 .1 . Suppose that Sk, k G K, is any collection of convex sets. Then, their 
intersection 

s=f]sk 

k&K 
is convex set too. 

Proof. Assume that x 1 and x 2 belong to S. Then x 1 G Sk and x 2 G Sk for al l k G K. 
Take A G (0,1). B y the convexity of the sets Sk, A x 1 + (1 — A ) x 2 G Sk for all k G K. So, 

A x 1 + (1 - A ) x 2 G p | Sk = S. 
k&K 

• 
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D e f i n i t i o n 3.3.2. A function / : S —> M., where S is a convex subset of M.n, is convex if 
for any x i , x 2 6 S and any A G (0,1) 

/ ( A X l + (1 - A ) x 2 ) < A / ( X l ) + (1 - A ) / ( x 2 ) 

holds. 

In other words, a function is convex if the function between two arbitrary points is 
lower 1 or equal as the straight line between these two points. 

D e f i n i t i o n 3.3.3. Consider S C M™ is a nonempty set and / : M n —> M . We say that 
x m i n G >S is a global minimum of / over £ if / attains its lowest value over S at x m i n , i.e.. 

/(Xmin) < / ( x ) , V x G 5". 

In the following text we wi l l use the norm, or the length of a vector v e l " wi th the fol
lowing meaning 

V (v, v) 

We can use some other norms of course, but this is the most common one. Thanks to norm 
we can introduce the open Euclidean ball wi th radius e centered at x as 

£? e (x) = { y G Rn\ | | y - x | | < e } . 

We can use the open ball for the following definition. 

D e f i n i t i o n 3.3.4. Consider S C M™ is a nonempty set and / : M n —> M . We say that 
x m i n G >S is a /oca/ minimum of / over £ if 

3e > 0 such that / ( x m m ) < / ( x ) , V x G S1 fl £ > e ( x m m ) . 

Note that a global minimum in particular is a local minimum. When is a local mini
mum the global one? This question is resolved in the case of convex problems by the fol
lowing fundamental theorem. 

T h e o r e m 3.3.1 (Fundamental theorem of global optimality). Consider S C M n is 
a nonempty set and f : M n —> M , where S is a convex set and f is convex on S. Then, 
every local minimum of f over S is also the global minimum. 

Proof. Suppose that x m i n is a local minimum but not the global one, while x is the global 
minimum. Then / ( x ) < / ( x m i n ) . B y the convexity of S and / , 

Ax + (1 - A ) x m i n G S, 

/ ( A x + (1 - A ) x m i n ) < A / ( x ) + (1 - A ) / ( x m i n ) < / ( x m i n ) 

for each A G (0,1). Choosing A > 0 small enough leads to a contradiction to the local 
optimality of x m i n . • 

We can image from the proof design how it works. If x m i n is a local minimum, then 
/ cannot go down-hill from x m i n in any direction, but if / has in x a lower value, then / 
has to go down-hill sooner or later. No convex function can have this shape. 

This amount of theory should be enough for this moment, we wi l l add some other 
definitions, theorems and some notions later. 

1 Word lower should be understood in the sense of the comparison between the y-coordinates of the re
spective function at the same coordinates. 
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3.4 Deterministic programming 
We have already mentioned what the mathematical programming is about. In this section 
we would like to describe deterministic programs. Deterministic programs are mathemat
ical programs for which all data 2 is deterministic, i.e., fully known. 

A mathematical program was only mentioned but we have to formulate formally 
the general mathematical programming problem. A large class of situations involving 
optimization can be expressed in the following form. 

D e f i n i t i o n 3 .4 .1 . A general mathematical programming problem is defined as 

min / ( x ) , (3.1) 
X 

s.t. x e C, 

where x is a vector of decision variables, C C M n is a feasible set, n G N and / : C —> K 
is an objective function to be minimized (eventually maximized). The feasible set C is 
determined by equality or inequality constraints 

C = {x | g(x) < 0, h(x) = 0, x e X}, 

where X CRn. 

Sometimes we can obtain more than one objective function to be minimized or max
imized. For example, we want to maximize a rigidity of a beam that we are designing 
and at same time minimize its weight. These types of problems are difficult to handle 
because the objective functions are often contradictory. 

One possibility how to labor wi th more functions is to assign weights to each objective 
function depending on their relative importance and then define a composite objective 
function as a weighted sum of all these functions, as follows: 

/ ( x ) = wx/xtx) + • • • + wNfN(x), (3.2) 

where wi,... ,WN are suitable weighting factors and TV e N , TV is finite. The success 
of the method clearly depends on clever choice of these weighting factors. 

Another possibility is to select the most important goal as the single objective function 
and treat the others as constraints wi th reasonable l imit ing values. Detailed information 
about a multiple criteria optimization can be found in [33]. 

The methods for solving the general form of the optimization problem require a con
siderable numerical effort. More efficient methods are available for certain special forms 
of the general problem. For this purpose, the optimization problems are usually classified 
into the following types. 

D e f i n i t i o n 3.4.2. A n unconstrained problem is defined as 

m i n / ( x ) , 
X 

where x is a vector of decision variables and / : M. —> M. is an objective function. 

2 B y the word data we mentioned parameters and coefficients of the program. 
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These problems have an objective function but no constraints. Obviously the objective 
function is nonlinear, because the minimum of an unconstrained linear objective function 
is — oo. 

Many real world situations can be modeled as linear programs, it means that we have 
a linear objective function and constraints are linear too. 

D e f i n i t i o n 3.4.3. A linear programming problem in the standard form is a problem 
of the form 

min c T x , 
X 

s.t. A x = b, (3.3) 

x < 0 ™ , 

where x e W1, e e l ™ and c T is transposed c , A e M m x n and b e M.m. 

Each linear program can be transformed into the standard form by following few steps: 

• Express the objective function in the minimization form - the minimization is equiv
alent with the maximization of the objective function multiplied by (—1). 

• Transform all the constraints into equality constraints by adding additional vari
ables. We also require non-negative right-hand sides of constraints. 

• Transform any unrestricted and non-positive variables into non-negative ones -
by splitting it into two parts, the first is positive and the second is negative. 

The standard form is the form that the simplex method requires. The simplex method is 
efficient and robust algorithm for solving these problems. We have to transform a solution 
gained by the simplex method back to the origin variables. 

If the objective function is quadratic and all constraint functions are linear functions 
of decision variables, the problem is called a quadratic programming problem. The problem 
from the progressive hedging algorithm formulation presented in the fourth chapter is 
an example of a quadratic optimization problem. 

General constrained optimization problems, in which one or more functions are non
linear, are called nonlinear programming problems. 

Because of the straight relation of mathematical programs to the underlying programs 
in the stochastic programming we define a parametric mathematical program. 

D e f i n i t i o n 3.4.4. A parametric mathematical program is defined as 

min / ( x , a ) , 
(3.4) 

s.t. x e C (a ) , 

where a e M f c is a constant parameter and C(a) is the feasible set. 

Some other types of mathematical programs can be found, for example if all variables 
are integer we are talking about integer programs, if only some variables are integer then 
it is the mixed-integer programming, et cetera. 

There are many theoretical results in mathematical programming theory and many 
methods for solving different problems were described. Their summary can be find for in
stance in [1]. 
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3.5 Stochastic programming 
In the previous section we discussed deterministic programs. This section covers a case 
when the decisions must be made under an uncertainty so the model parameters are not 
completely known. These optimization applications can be modeled by the stochastic 
programming. Model parameters of a problem can be considered uncertain and are thus 
represented as random variables. So we need to introduce the basic concepts of probability 
theory. 

We can model the uncertainty by an experiment, the result of an experiment is called 
its outcome. In general, we cannot predict wi th a certainty the outcome of an experiment 
in advance of its completion, we can only list the collection of possible outcomes. 

D e f i n i t i o n 3 .5 .1 . The set of all possible outcomes of an experiment is called the sample 
space and is denoted by Q. 

We think of events as subsets of the sample space Q. Many common situations require 
that the collection of events has to be closed under the operation of taking countable 
unions. A n y collection of subsets of Q wi th these properties is called a a-field. 

D e f i n i t i o n 3.5.2. A collection J^~of subsets of Q is called a a-field if it satisfies the fol
lowing conditions 3: 

(a) 0 G 

(b) if Au A2,... G & then U = i A e ^ 

(c) if A G & then Ac G 

We wish to be able to discuss the likelihoods of the occurrence of events. So we define 
a probability function P applied to the set of events. Likelihoods of the members of & is 
called a probability measure. 

D e f i n i t i o n 3.5.3. A probability measure P on (Q, is a function P : & —> [0,1] satisfying 

(b) if A\, A2,... is a collection of disjoint members of in that Ai fl Aj = 0 for all pairs 
i,j satisfying % ^ j, then 

The triple P) , comprising a set Q, a a-field & of subsets of Q and a probability 
measure P on (fi, is called a probability space. Furthermore, if F(A) = 1, we say that 
A occurs almost surely, the abbreviation a.s. is often used. 

We shall not always be interested in an experiment itself, but rather in some conse
quence of its random outcome. These consequences may be thought as a function which 
map Q into the real line M., and these functions are called random variables. 

D e f i n i t i o n 3.5.4. A random variable is a function £ : Q —> M. wi th property that 
{u G fl : £(a>) < x} G J^ fo r each 1 6 I Such a function is said to be ^-measurable. 

3AC is complement of A , event that no outcome in A occurs. 

(a) P(0) = 0, P(fi) = 1, 
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Every random variable has a distribution function which is very important and useful. 

D e f i n i t i o n 3.5.5. The distribution function of a random variable £ is the function 
F : R -»• [0,1] given by = P ( f (w) < x) . 

D e f i n i t i o n 3.5.6. A mean value, or an expectation, or an expected value of the random 
variable £ : f2 —>• R is defined to be 

E ( 0 = / C M d P M , (3.5) 

where the integral converges absolutely 4 . The expectation for discrete random variable 5 

£ is given by 

i, 

where Pi = P{£ = and the series converges absolutely 6 . 

D e f i n i t i o n 3.5.7. A variance (also is called as the 2nd central moment) of the random 
variable £ : Q —>• R is defined to be 

v a r ( 0 = E ( £ - E ( 0 ) 2 -

More detailed information, further definitions and concepts from the probability theory 
can be found in [16]. 

Now we have defined the uncertainty what is the main ingredient in many decision 
problems. So we can define problems where the model parameters are not completely 
known. 

Stochastic programming (SP) uses approach based on probabilistic models of the un
certainty. The objective functions and the constraints of the corresponding mathematical 
programming model can be defined by averaging possible outcomes or considering prob
abilities of events. 

The first step to obtain stochastic program is the formulation of an underlying pro
gram. This can be done easily from the parametric mathematical program by replacing 
some constant parameters by random variables in (3.4). 

D e f i n i t i o n 3.5.8. A n underlying program (UP) is defined as 

min / ( x , w ) , 
(3.6) 

s.t. x G C(u), 

where u G Q is a random vector element. 

The random data is usually realized by a finite number of parameters. Therefore, 
the objective function is given as / (x ,u ; ) = / ( x , £(a>)), where £(o>) : £1 —> R ^ is a finite 
dimensional random vector defined on probability space (Q, JP, P) and / ( x , £) is a function 

4 T h e integral / f(x)dx of a real or complex-valued function converges absolutely if f \f(x)\dx < oo. 
A A 

5 T h e random variable £ is called discrete if it takes values in some countable subset {£i, £2,. . . } of R. 
00 00 

6 A real or complex series ^ an converges abolutely if ^2 |a„| < 00. 
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of two vector variables x and £. Realization of £ is £(u)s) for each us G Q and we wi l l use 
the notation £ s for this realization. 

A n important question is how to work with the uncertainty or in other words the ran
domness of parameters. The program (3.6) is not well defined, because we do not know 
what is the meaning of the minima unti l we observe the realizations of We need to as
sign the deterministic reformulation to (3.6) to be able to solve this program correctly. 
We deal wi th the probability distribution instead of constant parameters in case of deter
ministic programming. Let us assume that the probability distribution of £ is completely 
known. 

D e t e r m i n i s t i c reformulations 

We wi l l now present different kinds of deterministic reformulation of the underlying pro
gram described in (3.6), that correctly interpret random parameters. 

The main question is when the decision x has to be taken. Whether before the ran
dom parameters £ are observed or after the observations £ s are known. When the de
cision x is made after observing the randomness £, this case is called the wait-and-see 
(WS) approach. This approach is applicable when we have the perfect information about 
the future. In this case, we can modify our decision by the observation, that's why 
the decision x(u;) and also the objective function f(x(u), £(u))) are random variables. 
This approach has its importance specifically for long-term planning. 

But the decision makers must often take a decision before the observations of £ are 
known. Therefore, the decision x must be the same for any future realization of £ G S, 
where S is the space of al l possible realizations of We usually call this approach 
as here-and-now (HN) approach in stochastic programming. 

Several approaches of deterministic equivalents of the objective function and of the fea
sible set can be done. We can divide the equivalents into two classes, the equivalents 
of the objective function and equivalents of the feasible set. Combining these two classes 
wi l l result in the deterministic equivalents of (3.6), some typical deterministic equivalents 
are listed further. A l l discussed equivalents define one-stage stochastic program, the struc
ture of equivalents is even simpler because the randomness can enter only the objective 
or the feasible set. The used notion was taken from [26]. 

We denote the optimal objective function values for any deterministic reformulation • 
as z^in and optimal decision as x ^ i n . We assume that the expected value is taken wi th re
spect to a known probability distribution and that E(£ ) and E ( / ( x , £)) exist and are well 
defined. 

D e f i n i t i o n 3.5.9. Wait-and-see (WS) deterministic reformulation of the underlying pro
gram (3.6) is defined by 

E * ( / ( x W S ( 0 , 0 ) , (3-7) 
where 

/ ( x w s ( 0 , 0 = min / ( x ( 0 , 0 , 
x « ) (3.8) 
s.t. x ( 0 e C ( 0 , V £ e S . 

Its optimal value is z^f? and the optimal solution is denoted by x ^ | . Unfortunately, 
finding the W S solution may be impossible if the information about the future is not 
available. Therefore, the H N approach is usually used and several H N deterministic 
reformulations are commonly used instead of the W S equivalent. 
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D e f i n i t i o n 3.5.10. Individual scenario (IS) deterministic reformulation of the underlying 
program (3.6) is defined as 

min / ( x , £ s ) , 
(3.9) 

s.t. x e C ( £ s ) , 

where £ s G S is a specified individual scenario. Denote its optimal value and solution 
by i and x ^ i n . 

This reformulation is based on the idea that the random parameters in the (3.6) 
are replaced by a typical realization £ s called a scenario. It is useful when we have 
a recommendation from the experts that some scenario is a typical realization of 

Another frequently used reformulation is obtained when we remove the uncertainty 
by taking its expected value. 

D e f i n i t i o n 3 .5 .11. Expected value (EV) deterministic reformulation of the underlying 
program (3.6) is defined as 

min / ( x , E ( 0 ) , 
(3.10) 

s.t. x e C ( E ( £ ) ) , 

where E(£ ) is the expected value of see (3.5) for the definition of expected value. 
The optimal value is denoted z^n and the optimal solution as x ^ . 

This program is useful for ini t ial studies of applications of stochastic programming, 
but it often leads to solution wi th low reliability so it is always unacceptable for the users. 

Further we could want to measure how good is the solution of E V deterministic 
reformulation for the underlying objective function, so we define the following character
istic. 

D e f i n i t i o n 3.5.12. Consider the E V deterministic reformulation wi th optimal solu
tion . We define the expected objective function value for the optimal solution of the ex
pected value deterministic reformulation (EEV) as 

E E V = ^ ( / ( x ^ , 0 ) . (3-11) 

The E E V characteristic can be used to measure whether z^n looks realistic by com
puting the difference 

E E V -

between the optimistic forecasted objective function value z^[n and the true average cost 
computed by the E E V . 

We can define one more deterministic equivalent using the expected value incorporated 
in the objective function. 

D e f i n i t i o n 3.5.13. Expected objective (EO) deterministic reformulation of the underlying 
program (3.6) is defined as 

min E € ( / ( x , 0 ) , 
(3.12) 

s.t. x e C ( £ ) a.s. 

and we denote the minimal objective function value as z^n and the optimal solution 
REO 
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Between the E O and the E V solution a relation can be found, this relation is called 
Jensen's inequality (1906). 

T h e o r e m 3.5.1 (Jensen's inequality). For function / ( x , £ ) , which is convex in the in
equality E ( / ( x , £)) > / ( x , E (£ ) ) is satisfied. 

It seems reasonable to compare the optimal values for different equivalents. Therefore, 
we define the following value that measures a relation between the E E V and the optimal 
value of the E O objective function. 

D e f i n i t i o n 3.5.14. The value of stochastic solution (VSS) is defined as 

V S S = E E V - z m ° . (3.13) 

The V S S characteristic measures how much can be saved when the true H N approach 
is used instead of the E V approach. It expresses how suitable is to use the E V approach 
instead of the E O approach and also how many could be gained by solving the E O program 
instead of the simpler E V program. Unfortunately we have to compute the E O solution 
and the E V V characteristic. A small value of the V S S means that the approximation 
of the stochastic program by the E V program is a good one. 

In the similar way, we try to find how to compare optimal solutions of the W S 
and the H N programs. We consider the E O program as a suitable representative of the class 
of H N deterministic reformulations. 

D e f i n i t i o n 3.5.15. The expected value of perfect information (EVPI) is defined as 

E V P I = - z™. (3.14) 

It measures the maximum amount a decision maker would be ready to pay in return 
for complete (and accurate) information about the future. The large E V P I says that 
the information about the future is valuable, a small value of the E V P I informs about little 
savings when we reach the perfect information. 

The following relations between the defined values have been established by A . Madan-
sky and J . Jensen. 

T h e o r e m 3.5 .1 . The defined values satisfied the following relations. 

WS < EO < F F V 

and moreover for stochastic programs with fixed objective coefficients and any convex ob
jective function /(£) of £: 

EV < WS 
min — min' 

Proof. The proofs are obtainable from [5]. • 

Because in the engineering problems we usually can not buy any additional informa
tion about the future, therefore the V S S becomes more practically relevant characteristic 
of using stochastic programming than the E V P I . 

We can also use some other reformulations such as a variance objective (VO) if we 
want to avoid the large fluctuations of / ( x , £ ) . It can be also useful to find compromise 
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between two deterministic reformulations, e.g., between E O and V O . But this is not goal 
of this thesis, more detailed information can be find in [27]. 

In some models, constraints need not hold almost surely as we assumed to this point. 
They can instead hold wi th some probability. These probabilistic, or chance constraints 
take the form: 

P(A\UJ)X > h\oj)) >p\ 

where 0 < p% < 1 and % — 1 , . . . , / is an index of the constraints that must hold jointly. 
We can, of course, model these constraints in a general expectational form. Or we can 
provide the deterministic equivalents of these constraints. More detailed information 
in [5]. 

Two-stage stochastic p r o g r a m m i n g 

In the previous part, we discussed stochastic programming problems in which the decision 
maker took only one decision. In this section we mention programs in which the decision 
maker wi l l take two decisions in two different moments in time. 

The first decision x is taken when there are no available information about the fu
ture realization £ s of random parameters This decision is called a first-stage decision 
and the period when this decision is taken is called the first stage (master program). 

The second decision y ( £ ) is taken after particular realization of random parameters £ s 

becomes known. The decision is called a second-stage decision and the corresponding 
period is called the second stage (subprogram). Such a decision process can be described 
as follows: 

decision x —> observation £ s —> decision y ( £ s ) , 

where y ( £ ) means dependence of y on 
We may put together the first-stage and the second-stage program to have a complete 

mathematical description of the discussed decision situation. We have chosen the linear 
program for its simplicity. 

D e f i n i t i o n 3.5.16. Two-stage stochastic linear program is the problem of finding 

min ( c T x + E £ ( Q ( x , £ ) ) ) , 
X 

s.t. A x = b, 

x > 0, 

where Q(x , is the optimal value of the second stage problem 

min q ( £ ) T y ( £ ) , 
y 

s.t. T ( 0 x + w ( £ ) y ( 0 = h ( 0 , 

y ( £ ) > o. 

The vector x represents the first-stage decision. The second-stage decision y ( £ ) de
pends on the vector £ = (q, h, T, W) where some elements can be random. The matr ix T is 
called technology matrix and W is recourse matrix. If the matrix W is fixed, the program 
is called two-stage program with fixed recourse. The two-stage programs are sometimes 
called programs with recourse. 
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For a given realization £ s , the second-stage data £s = ( q s , h s , T s , W s ) become known. 
The notation was simplified in the following manner q s = q (£ s ) and so on. The second-
stage decision y s or y s ( x ) must be taken. The decisions y s are typically not the same 
under different realizations of £ s . Bu t the decisions have to be chosen in order that 
the constraints hold almost surely, i.e., for all £ G S wi th the potential exception of set 
wi th zero probability. 

The objective function is composed of a deterministic term c T x and the expectation 
of the second-stage objective q j y s taken over all realization of the random parameters 
The second-stage term is more complicated because the value y s is the solution of a linear 
program for each realization of uncertainty £ s . To stress this fact we can use the notation 
of a deterministic equivalent program. For each realization of let 

Q ( x , 0 = m i n q ( £ ) T y ( 0 , 
y 

s.t. W ( £ ) y ( 0 = h(£) - T ( O x , 

y ( 0 > o 

be the second-stage value function. Then, define the expected second-stage value function 

Q(x) = E 4 Q ( x , 0 

and the deterministic equivalent program is 

min c T x + Q(x) , 
X 

s.t. A x = b, 

x > 0. 

This representation of a two-stage stochastic program illustrates that the major difference 
from a deterministic formulation is in the second-stage value function. If that function is 
given, then a stochastic program is just an ordinary nonlinear program. 

The generalization of the presented two-stage stochastic programs are the multi-stage 
stochastic programs that combine time and uncertainty in a more complex way. There 
are several stages (more than two) and the decisions are taken sequentially in different 
moments and also the realizations of random parameters sequentially become known. 
Some difficulties wi th possible dependencies of random parameters across the stages can 
occur. The two-stage program is the special case of multi-stage program. The multi-stage 
stochastic programs were not solved in this thesis, we mentioned them only wi th a refer
ence to the further research. More detailed information about the stochastic programming 
can be found in [5], [19], [27], [30]. 

3.6 G A M S 
A l l following models have been implemented in the optimization software G A M S . There
fore, we give here a basic information about General Algebraic Modeling System ( G A M S ) , 
which was started as a research project at the Wor ld Bank in 1976. G A M S went com
mercial in 1987. 

G A M S was developed to provide a high-level language for the compact representation 
of large and complex models, to allow changes to be made in model specifications simply 
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and safely, to allow unambiguous statements of algebraic relationships and to permit 
model descriptions that are independent of solution algorithms. 

The G A M S model representation is in a form that can be easily read by people 
and by computers. This means that the G A M S program itself is the documentation 
of the model, and that the separate description required in the past is no longer needed. 

The modelling language follows modelling steps discussed in the Section 3.1. A G A M S 
model is a collection of statements in the G A M S Language. The terminology adopted is 
as follows: indices are called Sets , a given data are called Parameters, decision variables 
are called V a r i a b l e s and constraints and the objective function are called Equa t ions . 
Moreover we need the keyword Model followed by the name of the model followed by a list 
of equation names, which determines the collection of Equa t ions included in a model. 
The statement So lve calls the solver. After that we type name of the model to be 
solved and the keyword u s i n g wi th some available solution procedure (e.g., l p for linear 
programming problems or n i p for nonlinear one). There are many others keywords, 
but we have mentioned the most important of them. The statements are consistent 
to mathematical programming problem parts. G A M S has a wide Model Library which is 
full of useful examples and models. 

The solvers differ in the methods they use, in whether they find a globally optimal 
solution wi th proven optimality, in the size of models they can handle, and in the format 
of models they accept. C P L E X is a solver for linear programs and is based on the sim
plex method described for example in [1]. C O N O P T is a solver especially for nonlinear 
programs and its algorithm is based on the generalized reduced gradient ( G R G ) method. 
Since we solved nonlinear programs and used the C O N O P T solver, you can find some ad
ditional information about this solver in the Appendix B . B A R O N is a solver for nonlinear 
and mixed-integer nonlinear programs. It implements algorithm of the branch-and-bound. 

We have encountered some difficulties during the G A M S implementation of our mod
els. For example, the matrix operations such as multiplication or summing of two matrices 
are not implemented in this software and you have to create them yourself. The absolute 
value is a non-smooth function and may cause numerical problems, especially when the ar
guments of the function are variables. Therefore, we have utilized a known transformation 
for absolute values illustrated further. The term |x| < 1 can be replaced by the following 
two terms 

x < 1, 

-x < 1. 

We cannot plot our results in G A M S directly, so all graphical results have been ob
tained by M A T L A B R2009b which was developed by The MathWorks, Inc., U S A . Figures 
not directly related to outcomes from G A M S were made by mfpic, a package of macros 
for M E T A P O S T - part of L T e X , described in [21]. 

3.7 News vendor problem 
This section presents a classical simple stochastic programming problem taken over with so
me additional comments from [5]. We extended the problem solution by some notes 
and mainly by implementation in G A M S . This problem is included to help in under
standing of the previous theory. 
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Let us formulate our problem. A news vendor goes to the publisher every morning 
and buys x newspapers at a price of c per paper. This number is usually bounded above 
by some limit u, representing either the news vendor's purchase power or a limit set 
by the publisher to each vendor. The vendor then walks along the streets to sell as many 
newspapers as possible at the selling price q. A n y unsold newspaper can be returned 
to the publisher at a return price r, wi th r < c. 

We are asked to help the news vendor decide how many newspapers x to buy every 
morning. Demand for newspapers varies over days and is described by a random variable £. 

It is assumed here that the news vendor cannot return to the publisher during the day 
to buy more newspapers. Other news vendors would have taken the remaining newspa
pers. Readers also only want the last edition. 

To describe the news vendor's profit, we define y as the effective sales and w as the num
ber of newspapers returned to the publisher at the end of the day. We may then formulate 
the problem as 

min cx + Q(x), 
s.t. 0 < x < u, 

where 

Q ( x ) = E c g ( x , 0 , 

and 

Q ( x , £ ) = m i n (-qy(0 - rw(£)), 

s-t. y(0 < f, 

y(0 + w(0<x, 
y(OMO>o, 

where Eg denotes the expectation wi th respect to £. 
In this notation, — Q(x) is the expected profit on sales and returns, while —Q(x,£) is 

the profit on sales and returns if the demand is at a level £. So we used the E O deter
ministic reformulation, where term cx can be given out of the expectation because it is 
not function of £. The model illustrates the two-stage aspect of the news vendor prob
lem. The buying decision has to be taken before any information is given on the demand 
(the H N approach). When the demand is known in the so-called second stage, which rep
resents the end of the sales period of a given edition, the profit can be computed (the W S 
approach). The model is a typical example on the two-stage stochastic problem with fixed 
recourse which was mentioned earlier. 

The profit can be computed analytically taking a few steps and applying some simple 
rules. Y o u can find the exact procedure how to compute the analytical solution in [5]. 
The optimal solution has the following form: 

0 if jEf < F(0 ) , 

« i f H > F ( « ) ' (3-15) 
F-1 i^r) otherwise, 

where F(£) represents the distribution function of £ (see (3.5.5) for a definition of the dis
tr ibution function). So the vendor may sti l l need to consult a statistician, who would 
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provide an accurate the distribution function Only then a precise solution x m i n wi l l 
be available. 

Moreover we implemented our model into G A M S . We do not further require integer 
values for variables as it is defined by selling pieces of newspaper because we emphasize 
explanatory role of our example. 

We used specified values of parameters and also the specified distribution function. 
We supposed that c = 0.5 $, q — 1.5 $, r = 0.2 $ and demand is uniform on the interval 
[50,150]. The simple G A M S model that utilizes approximation of the expected value 
of the objective function by sampling from the uniform distribution to get the scenario-
based two-stage program follows. 

$ t i t l e The news v e n d o r p r o b l e m 

S e t s 

P a r a m e t e r d ( s ) 
d ( s ) = 

P a r a m e t e r 

P o s i t i v e v a r i a b l e s 

S c a l a r s 

V a r i a b l e 

E q u a t i o n 

P ( s ) 
P ( s ) 

X 

y (s) 
w (s) 

c 
q 

ob j 

s c e n a r i o s 

n e w s p a p e r demand; 
u n i f o r m ( 5 0 , 1 5 0 ) ; 

s c e n a r i o p r o b a b i l i t y ; 
l / c a r d ( s ) ; 

b o u g h t q u a n t i t y 
e f f e c t i v e s a l e s 
r e t u r n e d q u a n t i t y ; 

p r i c e p e r p a p e r 
s e l l i n g p r i c e p e r p a p e r 
r e t u r n p r i c e 

/ 1 * 1 0 2 1 / 

/ 0 . 5 / 
/ 1 . 5 / 
/ 0 . 2 / ; 

v a r i a b l e f o r o b j e c t i v e f u n c t i o n ; 

o b j e c t i v e o b j e c t i v e f u n c t i o n 
d e m a n d b o u n d ( s ) s o l d p a p e r s b o u n d b y demand 
i n v e n t o r y ( s ) i n v e n t o r y b o u n d ; 

o b j e c t i v e . , o b j =e= c * x + s u m ( s , p ( s ) * ( - q * y ( s ) - r * w ( s ) ) ) ; 
d e m a n d b o u n d ( s ) . . y ( s ) =1= d ( s ) ; 
i n v e n t o r y ( s ) . . y ( s ) + w ( s ) =1= x; 

m o d e l n e w s b o y / a l l / ; 
s o l v e n e w s b o y u s i n g l p m i n i m i z i n g o b j ; 
d i s p l a y x . l , o b j . l ; 

We ran the model and got the optimal solution and the optimal value of the ob
jective function in this solution. The news vendor should buy = 125 newspapers 
from the publisher and then he can expect gain around — z^n = 86 $ according to the ob
tained solution. 

31 VARIABLE x . L 
VARIABLE o b j . L 

125.582 b o u g h t q u a n t i t y 
-86.898 o b j e c t i v e f u n c t i o n 
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We can check our result wi th the analytical solution from (3.15). We assumed that 
the demand has the uniform distribution on [50,150] wi th the distribution function 

( 0 £ < 0 , 
nt)={ ifeSo 5 0 < e < 1 5 0 , 

( 1 f > 150. 

The inverse function (also called the a-quantile of F) inside of [50,150] has the form 

F~1(a) = 50 + a - (150 - 50). 

Now we have all necessary information and we can compute the exact optimal solution. 

xmm = F~1 (^—^] = 50 + ^ ^ - ( 1 5 0 - 5 0 ) = 50+ 1 - 5 ~ ° ' 5 - 1 0 0 = 126.923 newspapers. 
\q — r J q — r 1.5 — 0.2 

We can see, that the solution from the G A M S implementation is little bit more pessimistic 
than the exact one, because it is computed with a not large enough number of realizations 
of the uncertainty (scenarios) obtained by sampling of the uniform dsitibution. 

We also solved this model as the deterministic one by using the expected value 
of the demand instead of a random demand, i.e., the E V reformulation was employed. 
We obtained the optimal solution x^(n = 100 newspapers and the value of the objective 
function in this solution is — z^fn = 100 $. 

We can check if the relation mentioned in the Theorem 3.5.1 holds 

-100 < -86.898. 

Some of the defined concepts and relations were implemented and demonstrated on this 
simple example. We hope that it could be profitable for understanding of the basic ideas 
of the stochastic programming. 
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Chapter 4 

Finite element method 

Mathematical modeling is a simplifying step. But models of physical systems are not 
necessarily simple to solve. They often involve ordinary or partial differential equations 
in space and time subject to boundary and/or ini t ial conditions. 

We can treat up derivatives by analytical or numerical solutions. Analy t ica l solutions 
cannot be applied to a wide class of problems or the problems have to be restricted 
to regular geometries and simple boundary conditions. So often a numerical evaluation is 
useful. Here is where the finite element method and the digital computer enter the scene. 

Unlike the traditional finite difference method, the finite element method is not ob

tained as an approximation of the differential equation directly. Instead integrated forms 
of the differential equations are used. In the following section inspired by [17] we shall 
look at a simple onedimensional example and deduce the formulations that we need in or

der to formulate the finite element method discretization for our further mathematical 
programing model. 

The theoretical side of the finite element method for finding the solutions of partial 
differential equations based on the functional analysis such as a convergence to an optimal 
solution was deeply studied at the Institute of Mathematics at the Faculty of Mechanical 
Engineering at Brno University of Technology, e.g. by M . Zlámal, A . Ženíšek, J . Franců 
or L . Čermák , their results can be studied in [15], [9] written in Czech or in [35], [13] written 
in English. We are focused on a practical application of this method not on a theoretical 
view. The eligibility of the solution can be checked from the physical meaning of the solved 
problem. 

We consider the balance of vir tual work for a simple problem, which covers many different 
physical problems: find v such that 

where c is a velocity parameter, assumed known. This equation describes a heat con

duction in a fluid flow with a flow velocity c, with a temperature v sti l l being a function 

4.1 Vir tua l work 
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of a position x. Following boundary conditions must be supplied 

v(0) = ^ ( l ) = 0, 
ax 

j A l ) - cu(l) = 0. 
ax 

We start by mult iplying (4.1) by a function u, such that u(0) = 0, followed by inte
grating the differential equation over the domain 

' d / _ ^ ^ = > 
dx \ ax J J 

o o 
We use the integration by parts to obtain 

, dv\ d « . 
cv — k— —ax + 

ax J ax 
, dv 1 r CV — K — = dx o J 

fudx, 

and apply the boundary conditions to arrive at the following formulation of (4.1): find v 
such that 

i i 
dv \ du f 

-cv + k— I — dx = / fudx, (4.2) 
dx J dx J 

0 0 
for all admissible u called as a test function, we say that the differential equation has been 
tested with u. Clearly some restrictions have to be put on our choice of u and on the so
lution v. A t the very least, they have to be nice enough for the integrals in (4.2) to exist. 

The basic idea is that if we just test wi th a sufficiently large number of test functions 
(indeed, infinitely many), it seems probable that the differential equation is forced to hold 
point-wise. B y use of the partial integration, we can go back one step and write (4.2) as 

' d / . dv\\ , 
/ + — I — cv + k— udx = u. 

dx \ dx J J 
o 

so that if we are allowed to choose v and u from a sufficiently large class of functions, 
then we may say that the vir tual work principle is equivalent to the differential equation. 
A n important point is that the equations of vir tual work allow us to work with functions 
that are less regular than required for solutions to the differential equation. Clearly, this 
is beneficial if we wish to use (4.2) to generate approximate solutions, which normally are 
less regular than the exact solution. 

It is common in engineering to interpret (4.2) as a statement about the balance between 
the external and the internal virtual work, the test functions are then regarded as virtual 
displacements. 

4.2 Galerkin's method 
Galerkin's method is an approximation method which was based on the vir tual work 
equation (4.2). If the approximate solution is written as 

n 
V(x) = ^TiaiNi(x), (4.3) 
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where % G {1,2,... ,n}, the Oj are unknown real numbers and the iVj(x) are known, simple 
functions, such as polynomials or trigonometric functions, then one should make sure that 
(4.2) is satisfied for all admissible u of the same form as V, i.e., u = J27=i biNi(x). The only 
way to ensure this is to enforce (4.2) for each Ni separately, since then the equation must 
also hold for an arbitrary combination of the JVj 1. 

Thus, one should simply choose as test functions Nj, j G { 1 , 2 , . . . , n}. W i t h this choice 
we find that we have to solve the algebraic problem 

for j — 1 ,2 , . . . , n. So, we obtained the Galerkin's procedure. It is always possible to take 
a general differential equation and mult iply wi th a test function, integrate over the domain 
to obtain the Galerkin's method. The real strength of the Galerkin's method lies in its 
minimization properties. 

It is usable to know the formula for the integration by parts for functions of several 
variables to obtain the vir tual work equation for much more complicated problems. We 
can avoid some differentiating by using: 

where Q is a domain in two or three dimensions, dfl is the boundary of the domain, 
u and v are functions and rii are components of the outward pointing normal to dVL. 

The previous two sections were based on the literature referenced in [17], where some 
additional information about the F E M can be found. 

4.3 Basic concepts of finite element method 
The Galerkin's method has been discussed only for approximations that are defined 
and also continuous on the whole interval. However, there is nothing that requires this. 
The approximation can very well be only piecewise continuous and integrated piece-wisely. 
The Galerkin's method together wi th the use of piecewise polynomials is what constitutes 
the finite element method. 

Let us summarize major steps of the finite element method and make some explanatory 
comments further. 

1. Discretization of the domain into a finite number of subdomains (elements). 

2. Selection of interpolation functions. 

3. Development of the element matrix for the subdomain. 

4. Assembly of the element matrices for each subdomain to obtain the global matrix 
for the entire domain. 

5. Imposition of the boundary conditions. 

1 T h i s claim is based on the knowledge of linear algebra, namely the theory of Hilbert space and its base. 

(4.4) 

(4.5) 
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6. Solution of equations. 

7. Addi t ional computations (if desired). 

The described procedure wi l l be applied for particular problem and explained in details. 
The finite element method ( F E M ) is a technique for numerical solving partial or or

dinary differential equations by discretising these equations in their space dimensions, 
same as the finite difference method ( F D M ) . W i t h the F D M , the differential equation is 
written for each node, and the derivatives are replaced by finite differences. This method 
is easy to understand and employable in simple problems, it becomes difficult to apply 
to problems wi th complex geometries or complex boundary conditions, or for nonisotropic 
material properties. In contrast, the F E M uses integral formulations (e.g., (4.2)) to cre
ate a system of algebraic equations (e.g., (4.4)). The solution is generated by connecting 
the individual solutions for each element, allowing for the continuity at the inter-elemental 
boundaries. 

The F E M is a numerical procedure which can be used to obtain a solution to a large 
class of engineering problems involving stress analysis, heat transfer, electromagnetism, 
fluid flow, etc.. This method could be viewed as a procedure for obtaining numeri
cal approximations to the solution of boundary value problems posed over a domain. 
This domain is replaced by the finite union of disjoint subdomains called finite elements. 
The replacement is done by discretization. So the F E M reduces the problem to that 
of a finite number of unknowns by dividing the domain into elements and by expressing 
the unknown field variable in terms of the assumed approximating functions within each 
element. These unknown functions are defined in terms of the values (function and its 
derivatives) of the field variables at specific points, reffered nodes. Nodes are usually 
located along the element boundaries, and they connect adjacent elements. Functions 
determined by unit node values are called shape functions. These functions are con
structed in several ways, Lagrange polynomials are usually used, and they approximate 
an unknown function on each sub domain. 

The Galerkin's method is used on each finite element to obtain the local element 
matrix. After that we can create the global matrix for whole problem composing the local 
matrices together by an assembly process. We also have to consider given boundary 
conditions. 

It was stated that the most popular and also the most widely used discretization tech
nique in structural mechanics is the finite element method. There are some other methods, 
for example the energy-based finite difference method or the finite volume method, these 
methods are particularly well entrenched in computational gas dynamics. More detailed 
information especially about the finite element method can be find in [14], [17], [24], [34] 
or further for a particular case. 
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Chapter 5 

Decomposition 

The size of a mathematical programming problem can be very large. One can encounter 
in practice problems wi th several hundred thousands of equations and/or unknowns. 
To solve these problems the use of some special techniques is either convenient or re
quired. Alternatively, a distributed solution of large problems may be desirable for tech
nical or practical reasons. Decomposition techniques allow certain type of problems to be 
solved in a decentralized or distributed fashion. Alternatively, they lead to a drastic 
simplification of the solution procedure of the problem under study. 

Some decomposition algorithms for deterministic programming were developed, e.g., 
the Dantzig-Wolfe decomposition algorithm for linear programming problems wi th com
plicating constraints same as the Benders decomposition, see [3]. Nonlinear programming 
problems can be decomposed only if they have decomposable structure, there are three 
basic procedures: the Lagrangian relaxation, the augmented Lagrangian decomposition 
and the optimality condition decomposition [8]. The last procedure presents the most 
efficient computational behaviour in the most of cases. There are also some methods 
of decomposition for mixed-integer linear programming problems. 

It is also very useful to do a sensitivity analysis of our decomposition method of the pa
rameters settings influences. Different methods of decomposition wi th detailed algorithms 
were described by E . Castillo in [8]. 

Decomposition procedures are computational techniques that split the problem into 
at least two smaller and/or simpler subproblems. The price that has to be paid for such 
a simplification is repetition. That is, instead of solving the original compacted prob
lem, at least two problems are solved iteratively, i.e., repetitively. Obviously we have 
to consider our profit from doing a decomposition and analyze the numerical behaviour 
of the used decomposition algorithm and show that the result obtained by the decompo
sition technique is identical to the solution of the original problem. 

If we deal wi th an uncertainty, our problems are usually larger than in the deterministic 
case. So some sophisticated decomposition methods for stochastic programming problems 
were developed too. 

5.1 Scenario decomposition methods 
Consideration of uncertainties dramatically increases the size of a resulting mathematical 
program. When these problems are formulated appropriately the resulting decomposable 
block structure could be advantageously exploited for parallelization. The uncertainty 
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is incorporated into the problem by the use of scenarios. Each realization of random 
quantities is referred to a scenario. 

Those decomposable optimization problems are ubiquitous in engineering and science 
applications. There are some decomposition techniques which can be used, for example 
the Dantzig-Wolfe decomposition approach, the L-shaped decomposition, the Benders 
decomposition and mainly the progressive hedging algorithm to that we wi l l focus on 
because it is appropriate for our purposes and there is an experience wi th this algorithm 
at our university. Heuristic techniques can also be considered. The most of mentioned 
methods can be studied from [5]. 

The most of decompositions are based on the master programme and subprograms. 
A separate calculation of subprograms may be realized in parallel instead of the usual 
serial way. We wi l l explain this concept deeper in the next section. 

5.2 Progressive hedging algorithm 
In this section, we wi l l describe a parallel computational technique for solving scenario-
based stochastic programming problems known as a progressive hedging algorithm (PEA) 
developed by R. T. Rockafellar and R. J . -B . Wets in 1991. More detailed information can 
be found, e.g., in their article [28]. 

P H A achieves a full separation of the scenario subproblems for each iteration to deal 
wi th the parallelization of solving those subproblems on a hardware with several processors 
simultaneously. Therefore, we have less work at each iteration but the number of iterations 
may be greater. The P H A solves a version of the scenario subproblem and progressively 
enforces the nonanticipativity constraints. The benefits of the parallel implementation 
are described in the Section 5.7. 

J . M . Mulvey and H . Vlad imirou implemented the progressive hedging algorithm 
on several shared memory machines and also on the network workstations for their 
stochastic network programs used in finance. The comparison showed an efficiency about 
90% for the parallel implementation and worse results for the distributed implementation 
caused by slow communication in the computer network. Y o u can read more in [25]. 

We wi l l consider scenario-based models for the stochastic programming problem. 
Therefore, the uncertainty is realized by scenarios, the uncertain parameters can reach 
only specified values and each setting of uncertain parameters is modeled by one scenario. 
We denote all scenarios by set S, 

where L is the number of all scenarios, assumed a small number. If the number of sce
narios is large, we choose several scenarios, for instance, by an expert opinion about their 
importance, or by a representative discretization or by sampling. For each scenario s e S . 
we solve a subproblem 

where / ( x , s) is the objective function and Cs C M n is the feasible set for the scenario s. 
We assume that each subproblem has the optimal solution x s for all s G S. 

5 = {s* I i = l , . . . L} 

m i n / ( x , s) 
X 

s.t. x G Cs, 
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Further we continue wi th a scenario analysis. We analyze all scenario-solutions x s , 
discover trends or some clusters of solution. Then a weighted sum of scenario solutions 
x s is computed and again analyzed by the scenario analysis, etc. Our goal is to find one 
universal solution that is "optimal" for an arbitrary scenario occurs. 

Denote the weight corresponding to the scenario s and its solution x s by ps for all 
s G S. The weights ps fulfill conditions: 

0<ps < 1, 

In other words, ps is the probability that a particular scenario s occurs. These weights may 
be obtained, e.g., from experts recommendations corresponding to the relative importance 
of each scenario. Further, define an average solution x as 

x = J ] p s x s . (5.2) 
seS 

The average solution can be considered as a defense against the uncertainty of the model 
in the P H A . In this algorithm, the average solution is used in the penalty terms for the sce
nario-related objective functions as it is further shown. 

If we are looking for the solution that wi l l be resistant and robust wi th respect to all 
possible scenarios, we wi l l solve the following problem: 

min Y V / ( x , s ) , 
s e 5 (5.3) 

s.t. x G ( | Cs. 
seS 

Its solution x m i n hedges all possible realizations of uncertain parameters that can occur. 
But the scenario analysis is stil l reasonable in comparison to solve the problem (5.3) 

directly. One reason is that the stochastic programming problem is often very large, 
difficult to solve and exceeds computational capacity. If we use the scenario analysis 
and the weights are changed during the computing process, we can easily check how these 
changes change the solution. Other significant reason is that the parallel computing can 
speed up the calculations by working wi th several scenarios at the same time. 

5.3 P H A for one-stage optimization problems 
In this section, we wi l l introduce the P H A for one-stage stochastic programs. So we go 
from scenario-solutions x s of subproblems (5.1) to the solutions that converge to the so
lution x m i n of the problem (5.3). 

We make an assumption that all scenario-solutions x s of subproblems (5.1) for s G S 
are known. The average solution x defined in (5.2) is called implementable, i.e., scenario-
independent. We called a general solution x as admissible if it is feasible for all scenario 
subproblems, i.e., for each s G S. Thus, admissibility is equivalent with a requirement 

x G P| Ca, 
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where Cs is a feasible set for a given scenario s. 
We are looking for the feasible solution x m i n to the problem (5.3) which means that 

the solution is implementable and also admissible. Admissibi l i ty has not to be uncondi
tionally satisfied. The decision maker can accept a slightly inadmissible solution, for exam
ple, if the violation of the feasible set Cs was realized by a particular scenario s wi th a low 
probability. Therefore, we can accept a solution that is nearly admissible. 

However, we wi l l look for a feasible solution, thus implementable and admissible 
in the algorithm described below. The procedure wi l l generate a sequence of solutions 
x J , j = 1,2,... from scenario-solutions x s of subproblems (5.1). This sequence converges 
to the optimal solution x m i n of (5.3) for the convex case and its authors report algorithm 
convergence also for certain non convex cases. Its terms x J are obtained by increasing 
the requirement that the scenario-solutions x s to the subproblems have to be imple
mentable. The exact structure of the algorithm for one-stage models taken from [20] 
and [36] follows. 

One-stage progressive hedging a l g o r i t h m 

0. Choose a penalty parameter g > 0 and the termination parameter e > 0. Set 
a vector w ° = 0 for each s 6 S , set the ini t ial estimate x° = 0 and j'• = 1. 

1. For each s & S solve the approximation problem obtained by a modification of (5.3) 

m i n / ( x , s ) + ( w ^ _ 1 ) T x + | | |x - x> _ 1 1| 2 , 
x 2 11 11 (5.4) 

s.t. x G Cs 

and denote its optimal solution as x^. 

2. Calculate the average solution 

ses 

3. Evaluate the termination condition 

S= ( W^-1-X\\2+ J2Ps\\xj

s-xJ\\2 ) <e. (5.5) 
ses 

If the condition holds, stop the algorithm and x J is the solution to the problem (5.3) 
wi th a given tolerance e. Otherwise, update the perturbation term 

for each s G S and return to step 1 of the algorithm with j = j + 1. 

Let us describe the algorithm deeper. The algorithm generates a sequence of solutions 
converging to the solution x m i n of the problem (5.3). For this purpose we solve only 
linear-quadratic perturbed versions of scenario-based subproblems (5.1). 
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The objective function (5.4) contains two penalty terms on the comparison wi th the ob
jective function of subproblems (5.1). This arrangement is based on the augmented La-
grangian function. The penalty functions and the Lagrangian function concept are men
tioned in the Appendix C . 

We are looking for a solution that wi l l stay optimal for an arbitrary scenario, i.e., 
we want to find x J close to for all s G S. The quadratic penalty term 

forces x^ to x J ' _ 1 . The linear penalty term ( w ^ _ 1 ) T x penalizes the difference between x^ 
and x J from the foregoing iteration of the algorithm. 

Remark that norms used above are Euclidean norms on MP that are defined in the Sec
tion 3.3. We can use some other norms than Euclidean, of course. But this is the most 
common. 

Note that the termination condition (5.5) of the algorithm measures how close x^ is 
to x J for all s G S and how x J varies wi th j, therefore we call ó as the distance parameter. 
If the termination condition holds, we found the solution wi th a given tolerance e, where 
e > 0, and the loop of the algorithm is terminated. Otherwise the algorithm continues 
to the new iteration. 

The behaviour of the progressive hedging algorithm is extremely sensitive to the choice 
of the penalty parameter g. Most problems could be solved faster by a properly searched 
value of Q. But there is unfortunately no universal approach how to determine the value 
of Q to obtain a good behaviour of the algorithm. The penalty parameter has to be de
termined by experiments. This fact is the biggest weakness of the progressive hedging 
algorithm. Some numerical manipulations of the penalty parameters were done for exam
ple in the literature referenced as [18] wi th substantial savings. 

Because the choice of the penalty parameter is so difficult, we can also change the pe
nalty parameter wi th iterations and utilize heuristics. For instance, if the difference 
between two subsequent distance parameters 5 is "large", we can enlarge the value of g 
and conversely. 

The main advantage of the P H A is that it uses locally convergent nonlinear program
ming algorithms having many available well-tested implementations. In addition, the so
lution averages guarantee a robustness of computational processes, but the convergence 
is usually slow. 

The progressive hedging algorithm can be formulated for two-stage and also for mult i
stage programming problems but it is not goal of this thesis. The exact algorithms 
wi th a complementary terminology can be found in [20]. Even though, one concept 
from the multi-stage P H A is important for further discussions, so let us tell a few words 
about nonanticipativity constraints. 

N o n a n t i c i p a t i v i t y 

We require satisfying a nonanticipativity of the first-stage decision in the two-stage or mult i
stage stochastic programming. The first-stage decision has to be taken before any obser
vation of random parameters £ is known. The principle of nonanticipativity consists 
in independence of the first-stage decision on the future realization of so the first-stage 
decision is constant for whatever happens in the future. 
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This requirement can be ensured directly by adding the nonanticipativity constraints 
explicitly to the formulation of our problem, i.e., we require a constant first-stage decision 
for all scenarios. For instance, we require fulfillment of the following constraint for two 
scenarios 

V s 1 , s2 G S : x s i = x s 2 . 

The nonanticipativity requirement can be alternatively ensured by adding the penalty 
term to the objective function, see the Appendix C for more information about penalty 
functions. In the one-stage P H A , the nonanticipativity is ensured by the quadratic penalty 
term in the program (5.4). 

5.4 One-stage P H A example 
Let us present the one-stage progressive hedging algorithm on a simple model. This ex
ample wi th a solution and a figure was taken from [20]. The example illustrates the steps 
of the P H A very well and can help to understand the point of the algorithm. 

The model wi th two scenarios and two variables has the form: 

min ( X l - ^ ) 2 + ( x 2 - £ 2

s ) 2 , 

s.t. Cs < * i < & 

£5 < *2 < & 

with the particular realization of random parameters for the scenario s 1: 

C 1 = ( £ , & & C U U e f = (3 ,4 ,1 ,3 ,2 ,4 ) T 

and for the scenario s2: 

f = te2, ^ e l , ^ e 6 T = (4, 3, 2 ,4 ,1 , 3 ) T . 

The objective functions are paraboloids with vertices in points (3,4) and (4, 3). The fea
sible sets are two shifted squares. The scenario s1 corresponding to £ x is represented 
by blue color and the scenario s2 corresponding to £ 2 is represented by red color. The da
shed circles represent cuts of paraboloids by planes parallel to the X1X2 plane, so-called 
contours. 

The optimal solution for the scenario s1 is obviously the right upper vertex of the square 
feasible set x ^ i n = (3 ,4 ) T and the optimal solution for the scenario s2 is the point 
x mm = (4, 3 ) T . These points could be viewed in the Figure 5.1 as small colored squares. 

The results produced by the progressive hedging algorithm for individual scenarios x^ 
in individual iterations are pictured by small red and blue circles and average solutions xP 
are pictured by black circles. The probability of both scenarios equals to | , the penalty 
parameter was set as g = 3 and the termination tolerance as e = 10~ 9 . 

The algorithm produces the sequence of points x,- that converges to the optimal solu
tion x m i n = (3, 3 ) T plotted by green circle. This point is implementable and admissible, 
hence feasible. The optimal solution wi th given tolerance was reached in 17 iterations 
of the P H A . 

Let us note here again that the choice of penalty parameter is crucial. A value 
of Q has to be determine by experimentations. There is the significant relationship be
tween the penalty parameter and the number of iterations needed to find the solution 
wi th a given tolerance even in this simple case. Detailed information is stated in [20]. 
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Figure 5.1: Scenario solutions and generated average solutions 

5.5 Idea of spatial decomposition 
In this section our original approach of the spatial decomposition method for large-scale 
partial or ordinary differential equation ( P D E / O D E ) constrained programs (some appli
cations and algorithms for these programs can be found in [6]) is described. This method 
can be used for both deterministic and stochastic programming problems. But the main 
ideas wi l l be discussed on deterministic programs. 

t = l t = 2 t = 3 
i i i 
i i i 

+ i i 

»• = >&r~i&r~® 

• " = : 0 i - W - C i ) 

••=i(j>j-$r-(£> 
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Figure 5.2: P H A - nonanticipativity 

The idea of the spatial decomposition is based on the scenario decomposition method -
the P H A . It is algorithm designed for the decomposition into individual scenarios with in
volvement the nonanticipativity requirement into the objective function by the penalty 
terms. It allows a parallel implementation. The decomposition can be viewed schemat
ically in the Figure 5.2, where the nonanticipativity requirements are depicted by red 
dashed ellipses. 

This thought was extended by M . Steinbach in his presentation at the Stochastic 
Programming Conference in Berl in 2001, see [32]. He applied ideas from the dynamic 

H 1 ¥ 
\ / J 
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programming for his multi-stage stochastic problem. He identified state variables link
ing subsequent stages, relaxed them and included them in the form of penalty terms 
in the extended objective functions related to both scenarios and stages. Schematically, 
a state of system in one stage is y i and the state in another stage is y 2 ( y i ) - The asterisk 
represents the relaxation of the same state variable y i for subsequent stages. Therefore, 
we replace one state variable for two stages by two different variables, i.e., one for each 
stage. However, we build the distance term 

l l y i - y * l l > 

that leads to addition a penalty term into an objective function similar to the P H A . 
This approach can be called as a decomposition in time and it also allows the parallel 
implementation. 

Steinbach's approach had inspired P. Popela towards the idea of a spatial decompo
sition for more complex optimized design structures that was born several years later. 
He also discussed this idea with specialists in civi l and mechanical engineering and they 
have shown their interests to this approach. Therefore, after the recent discussion among 
D . Morton, P. Popela and M . Steinbach at the International Conference Prague Stochas-
tics, 2010, the goal for this thesis to test the idea seriously has been defined. The stochas
tic program involving differential equation-based constraints for the prototype application 
has been chosen. 

5.6 Basic steps of spatial decomposition 
The spatial decomposition can be employed for solving P D E / O D E constrained programs 
which are very common in engineering applications. The algorithm uses a mesh which was 
created for the approximative description of P D E / O D E constraints and it could be used 
for both stochastic and also deterministic programs. We present the steps of algorithm 
for deterministic programs because of its simplicity. Stochastic programs can be reformu
lated easily as the deterministic programs. A n uncertainty wi l l be added to the algorithm 
in particular example presented further. 

Let us describe our original approach step by step for a deterministic model wi th P D E 
or O D E constraints. The algorithm is followed by several remarks. 

1. Choose a penalty parameter and a tolerance, set all necessary init ial values. 

2. Use an approximation scheme based on the discretization for P D E / O D E constraints 
to reformulate derivatives as a system of linear equations. 

3. Solve the optimization model with a raw discretization to obtain boundary condi
tions for subproblems. 

4. Introduce a decomposition of the problem's domain into parts wi th an overlap. 

5. A d d the values of approximative solution at the end points of subdomains computed 
in step 2 as boundary conditions to models of subproblems. Solve subproblems 
wi th a finer discretization on individual subdomains. 

6. Compute the average solution, i.e., average two or more values on overlaps and take 
particular values of solution on parts of domain, where no overlap is available. 
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7. Evaluate the termination condition. If the condition holds, you have the solu
tion wi th a given tolerance and you can stop the algorithm. Otherwise, increase 
the counter of iterations by one and solve modified subproblems again. Modifica
tion lies in adding the penalty term to the objective function same as in the P H A 
and in not considering boundary conditions from step 2 longer. Recompute the per
turbation term same as in the P H A and go back to step 6. 

We have to use a numerical method to obtain a non-differential numerical description 
of the constraints. We chose the finite element method described in the Chapter 4. 
This method is based on a discretization of the domain into a finite number of subdomains. 
The created discretization is moreover used for the spatial decomposition. 

The raw discretization determines possible spatial decompositions. We can decompose 
the original domain only in end points of finite elements (nodes). The finer discretization 
has to be selected in such a way that we received the values of a solution in the matching 
spatial points. Therefore, we must carefully consider how many elements should be used 
in the raw and the finer mesh respectively. 

Figure 5.3: Line overlap Figure 5.4: Spatial overlap 

The length of overlap and the setting of penalty parameters are very important 
for the behaviour of the algorithm. But we do not have any universal approach how 
to determine them. The setting of these parameters for a test problem wi l l be discussed 
later. We tried to implement the degenerate line overlap (Figure 5.3) wi th unsatisfac
tory results. Therefore, we recommend to use a spatial overlap wi th a greater length, 
schematically shown in the Figure 5.4. 

The boundary conditions gained from the solution on the raw discretized domain can 
be used only in the first iteration of the algorithm. Otherwise, we wi l l get the inaccurate 
solution with jumps. 

B y splitt ing the problem we obtained smaller subproblems to solve but we have to re
peat our computations iteratively. Hence, we have to consider responsibly if this decom
position technique is suitable for our problem or not. 

We st i l l have to remember that the progressive hedging algorithm converges to the op
t imal solution only for convex feasible sets and objective functions. We wi l l meet very 
often real problems for which the convergence of the P H A is not guaranteed. O n the other 
hand, we can find a pretty good starting point to provide the convergence of the algorithm. 
The convergence theorem of the P H A with its proof can be find in [5] or [28]. 
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5.7 Parallel implementation of P H A 
Real optimization problems are modeled using large-scale programs. Usually only one 
processor is used to perform all tasks required by the algorithm. But the implemented 
algorithm may be unsuccessful in searching the optimal solution because of existing com
puter speed limits. Some algorithms mentioned earlier decompose the problem into several 
steps called tasks, which are related in some sense but can be proceeded independently. 
Therefore, a multiprocessor parallel technique can be used. The description of the parallel 
implementation can be found in [20]. 

The parallelism is provided by the property of the progressive hedging algorithm that 
decomposes an original problem into independent subproblems for each particular scenario 
in the scenario decomposition or for each particular part in the spatial decomposition. 
The subproblems can be solved separately and in parallel on hardware with several pro
cessors instead of the classical serial technique. This fact saves the computing time since 
n subproblems can be solved simultaneously on n parallel processors in the same time 
as one subproblem on one-processor machine. 

The classical approach is the serial implementation. The subproblems, the total num
ber of subproblems is L , are solved one by one as is schematically depicted in the F ig 
ure 5.5. Denote the computing time for solving one subproblem for a particular scenario 
or a part by r and the total number of iterations of the progressive hedging algorithm by N. 
The total computing time consumed by solving all subproblems serially is T^OTAL = TNL, 

the superscript s indicates the serial approach. 

subproblem s1 subproblem s2 subproblem s1 subproblem s2 subproblem sr' 

Figure 5.5: Serial implementation scheme 

The alternative approach is based on availability of n processors, n is usually less than 
the number of subproblems L . These processors can solve n subproblems simultaneously, 
i.e., in parallel. The parallel part of computations, its scheme is in the Figure 5.6, is 
repeated in a loop unti l all subproblems are solved, i.e., |~^]-times 1. Therefore, this 
approach is in fact a combination of parallel computing of n subproblems and a serial loop 
repeated |~ ]̂ -times. Denote again the computing time for solving n subproblems in one 
loop as r . The total computing time consumed by solving all subproblems in parallel is 
then Tfotal = TN |~^], the superscript p indicates the parallel approach. 

We can compare stated theoretical total computing times for the serial and the par
allel implementation of the progressive hedging algorithm. Make an assumption that 
the optimal solution is reached in TV iterations. Then, we obtain the following inequality. 

T*OTAL = TNL > TN rpp 
total' 

So the total computing time consumed by parallel implementation is less or equal than 
the time consumed by serial implementation. The equality holds for n — 1 of parallel 

1 \x~\ is the smallest integer not less than x, this map is called ceiling function. 
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subproblem s1 subproblem s1 

subproblem s2 subproblem s2 

subproblem sn subproblem sn 

Figure 5.6: Parallel implementation scheme 

processors, that is the serial case. If we increase the number of processors n, the difference 
Ttotai ~ ^totai increases. For n > L we get the least total computing time consumed 
by a parallel implementation T^otal = rN. 
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Chapter 6 

Design of beam cross section 
dimensions 

6.1 Problem formulation 
Consider an ordinary differential equation constrained two-stage stochastic nonlinear pro
gram modeling an optimization problem from the area of c ivi l engineering describing 
a deflection of a beam 1 . 

This problem was taken from [36], we did only some supplementary changes in a load 
of the beam. The author solved it by using the finite difference method and wi th fo
cus on scenario-based models. Our goal is the solution wi th the finite element method 
and especially the implementation of the concept of the spatial decomposition. The main 
advantage of using the already solved example is the possibility to compare some early 
results. 

The objective of the optimization is to find an optimal design of beam cross section di
mensions while its weight is minimized (6.1) and rigidity is maximized (6.2), see the model 
and the Figure (6.1) further. 

min pabl, 

E(Oab3 

max 12 

s.t. E(0 
ab3 d4w 

12 d x 4 
= h(x), x e ( 0 , / ) , £ e E, 

dv 
^ , o ) = o , — ( £ , o ) = o , £ e S , 

*;(£,/) = o, £ ( £ , / ) = o , £ e ~ , 

d2v b 

min — ^ &max-

< Puma, x e ( 0 , / ) , £ e E, 

(6.1 

(6.2 

(6.3 

(6.4 

(6.5 

(6.6 

(6.7 

(6 

1 Assume that cross-section dimensions remain constant throughout its length and are substantially 
smaller than the length of the beam. Therefore, the beam can be modeled by the prismatic bar and the or
dinary differential equation describes the deflection of the centerline. 
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where p is the beam density, a and b are decision variables (dimensions of the beam 
cross section), / is the beam length, £ : S —> K. is a random variable, is random 
Young's modulus 2 (because of varying uncertain material characteristics), x is the space 
coordinate, v(£,x) is a deflection wi th the opposite direction than the axis y and h(x) is 
a deterministic static load. 

The O D E (6.3) describes transverse deflection of the beam, boundary conditions 
for clamped end points are given by (6.4) and (6.5), i.e., there are zero transverse de
flections and their slopes. Furthermore, the maximum stress 

a,, x 
M{x) 

J 
±E 

d2v b 

where 

is the bending moment, J 

M(x) = -EJ 
dx2 x 

its 
12 

is the second moment of the cross section wi th respect 
to the axis z and ymax = ± f , must be bounded because of safety reasons, see the con
straint (6.6). L imi t ing value oumit is defined as stress at which a material begins deform 
plastically. It is the end of the area of elastic behaviour described by Hooke's law where 
the stress is proportional to the relative deformation. Finally, the dimensions of the beam 
cross section must be bounded, see (6.7) and (6.8). 

h 

r 
'/// 

% > 

'/// 

% > '/// ? 
/// X 

I / 

'/// ? 
/// X 

I a 

Figure 6.1: Scheme of loaded beam and its cross section 

Hence, we obtain a continuous two-stage stochastic nonlinear program. The first stage 
here-and-now decision is realized by variables a and b. The second stage wait-and-see 
decision v(£s,x) is taken after an observation of random parameter £. 

6.2 IS deterministic reformulation 
A s we mentioned in the Section 3.5, a deterministic reformulation of the underlying pro
gram (UP) (6.1)-(6.8) has to be made. We are not able to solve the U P directly. For in
stance, we do not know how to minimize the objective function in variable x if this function 
also contains some uncertain parameters. 

We wi l l consider the IS reformulation, it means that the random parameter in the pro
gram is replaced by a typical realization - individual scenario value, it is one specified 

2 T h e Young's modulus is the constant describing the elastic properties of a material. 
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value of Young's modulus. This reformulation can be understood as the E V reformula
tion too, because the expected value of random parameter can be used as the individual 
scenario. We took the value of Young's modulus from material tables for a specific ma
terial. Hence, we obtained a deterministic nonlinear program, where we denoted Young's 
modulus in the individual scenario £ s as Es and similarly the deflection in the individual 

scenario as VAX) 

min pabl, (6.9) 

max (6.10) 

s-t. £ s ^ ^ ( x ) = h(x), x e (0,/), (6.11) 

v.(0) = 0 , - ^ ( 0 ) = 0, (6.12) 

vs(l) = 0 , - ^ ( / ) = 0 , (6.13) 
ax 

s dx*{X)2 

&min — & — &maxi (6.15) 

bmin ^ b ^ b m a x . (6.16) 

< o-Hmit, x e (0,1), (6.14) 

The reformulated program (6.9)-(6.16) does not contain any uncertainties, the random 
parameter was removed. But we still need to do a few steps to receive a solvable and im-
plementable model. We have stated above that the approximations of derivatives must 
be made, i.e., the finite element method wi th uniform grid for discretization in the space 
coordinate x is used to get r id of the derivatives in O D E constraints. 

6.3 F E M for beam element 
The described problem was solved using the finite difference method in [36]. We wi l l use 
the finite element method to obtain a numerical and non-differential description of diffe
rential constraints. This method can be advantageously used further. The accuracy 
of both methods is same. 

We need an approximation of the fourth derivative (the highest derivative in the model) 
of the unknown function vs included in the constraint (6.11), the second derivative of vs 

contained in (6.14) can be easily obtained subsequently. 
The one-dimensional slender beam with the space dimension x is subdivided into N 

finite elements according to the Figure 6.2. Each element is bounded by two nodes. 
In the following text we wi l l denote the approximation of function vs(x) in the node xe as 

and its derivative in the same node as 

ox 

Now consider the e-th element loaded by uniformly distributed transverse load h(x) 
per unit length, schematically shown in the Figure 6.3. There are two degrees of freedom 
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1 2 N 

-|—> x 
X0 X\ X2 ••• Xe-i xe ... XN-1 XN 

Figure 6.2: Meshed beam 

in each node. The end nodes x e _ i and xe are loaded by forces Fe_i, Fe and moments 
M e _ i , Me, gained by the discretization of load h(x), that result in translations V ^ e - i , VSje 

and rotations # S j e_i, #s,e. The length of element is d, where d = jj. 

Fe-! 

^ s , e - l 

# s , e - l ( 

h(x) 

> 

FP 

XE-1 

H-

Figure 6.3: Slender beam element 

The function t>s on the e-th element - vs^e is approximated by well chosen shape func
tions and discrete nodal values VSje and V ^ e - i , but we do not use only nodal values but also 
the nodal values of derivatives 0 s e - i , # s e- We write 

/ Vs,e-1 \ 

>s,e-\ 
V, 

V 
vS:e « ( i V i , 7V2, 7V3, AT4 ) 

Shape functions JVj, z G {1,2,3,4} are exactly chosen cubic polynomials 

(6.17) 

/ 

N1 = 3dx2 + 2 x 3 

N2 = j2{d2x- - 2dx2 + x3 

N3 = \-A3dx2 

d6 
- 2 x 3 ) , 

iV 4 = — fx 3 -
d*[ 

dx2). 

These shape functions have the property that they or their derivatives equal one at a spe
cific node and zero at all others, the properties are illustrated in the Figure 6.4. Note that 
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the scale of the vertical axis for Aq and N3 is different than the scale for N2 and N4 
for a better clarity. 

x=0 x= d x=0 x=d 

x=0 x=d x=0 x=d 

Figure 6.4: Shape functions 

To develop the element matrix for the subdomain we need to derive the integral 
formulation of (6.11) as was mentioned in the Chapter 4. Therefore, we mult iply (6.11) 
by a test function u followed by integrating over the domain to obtain 

d d 

uE, 
ab3 dAv* 

x)dx = / h(x)udx. (6.18) 
12 d x 4 

0 0 

Because this integral identity has to be satisfied for all admissible u, we can simply 
choose the shape function itself as the test function. Substitution (6.17) into (6.18) 
and using the mentioned test function u on the e-th element lead to the four element 
equations: 

d ( N l \ ( Vs,e-1 \ d / i V l \ 

iV2 
N3 

ab3 <94 

12" ~dxi 
( Ni, N2, 7V3, N4 ) 

9 s,e—l 
V, 

\ s.e 

dx h 

J 

N2 

N3 

dx. (6.19) 

Integration by parts stated in (4.5) is used to avoid differentiating four times, the boundary 
terms were neglected because they are not significant in the global approximation matrix 
structure 

AT dAN, f 8N d3N3 f d2N d2Nj 

ox* J ox ox6 J oxz oxz 

where %, j G {1, 2, 3,4}. Hence, assuming that Es, a, b and h are not functions of x and also 
V S i e _ i , # S ) e - i , VSj£, 9Sj£ are specific values of constants, the equations (6.19) become 

/ Vs,e_i \ d ( Ni \ 

h E, 
ab3 

12 
d2N d2N , 

dx 
dx2 dx2 

\ 

7s,e-l 

vs,e 
9S „ J 

N2 

Ns 

dx. 
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where i,j G {1 ,2 ,3 ,4} . Evaluation of the integrals gives the symmetric element matrix: 

ab3  

~12 

12 

sym. 

JL 
,.P 

d 

12 
d? 

6 
,.P \ / Vs,e-\ / d 

2 \ 
6 2 a d2 

d? 
12 

(i 
6 

"s,e-l 

Vs,e 

= h 12 
d 

d:i d 2 

"s,e-l 

Vs,e 2 
1 
f/ / ) \ d 2 

12 / 

(6.20) 

The equation (6.20) recovers the standard slope-deflection equation for beam elements. 
In more compact matrix notation (we have to mult iply each element of matrix by TTT first) 

/ Vs,e-1 \ 

E,ab3KP 

\ 

's,e-l 
Vs,e 

9s,e J 
So we developed the element matrix for the subdomain, this matrix is the same for all 

elements e, where e G { 2 , . . . ,N — 1}. The first and the last element matrices are af
fected by zero boundary conditions (6.12) and (6.13). The conditions determine the zero 
values of VS>0, 9SjQ, VS>N and 9SjN. Therefore, we have to delete the corresponding rows 
and columns from the element matrices to avoid the singularity in the global matrix. 

Now we know how all the element matrices look like and we can easily put together 
the global matrix for the entire domain. The global matrix can be obtained by an assembly 
operation realized by the localization operator, it is a 4 x 2(TV + 1) matrix of the form 

/ o . . . 0 1 
0 . . . 0 0 
0 . . . 0 0 

V o . . . 0 0 

0 0 0 0 . . . 0 \ 
1 0 0 0 . . . 0 
0 1 0 0 . . . 0 
0 0 1 0 . . . 0 / 

where 1 is placed in the (2e — l ) - th , (2e)-th, (2e + l ) - th , (2e + 2)-th columns. Then 
we received the approximation for the entire domain 

( Vs,0 \ 

Esab6K 

7 s , 0 

VS,N 

N N 

Esab6KVs h , where K = J ^ L j K e L e and h = J ^ L j h e , (6.21) 
e = l e = l 

where the first two and the last two equations are redundant because they contain 
the known values of deformations and their known slopes, so we have to delete them. 
This approach can be used only for zero boundary conditions. If there are some nonzero 
boundary conditions, we have to treat them up by a different approach described later. 
Now we have the approximation of the fourth derivative of unknown function vs(x) 
for whole beam with impositioned boundary conditions. 

Further, we have to deal with the second derivative of the unknown function vs(x) 
contained in (6.14). Now we assume that we already know the vector discretely approxi-
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mating the function vs(x): 

( Vs, \ s ,0 

s,0 

vs,N 

V @s,N J 
from the previously described system of linear equations (6.21). We have to limit the stress 
on each element, so we substitute (6.17) into (6.14) on e-th element to obtain 

Es\ ( K , NZ, N», N'l ) 

( Vs,e-1 \ 

&s,e-l 

vs,e V 8s,e J 

— 0~ limit-

This equation describing the stress in one specific node holds only for the end nodes 
belonging precisely to one element. The constraint for the first node wi th the spatial 
coordinate x0 

Es- ( N»{0), N»{0), N»{0), JV?(0) ) 

/ V . , 0 \ 

Vs,l 
0*,1 ) 

— 0~Umit 

must be satisfied and also for the the last node with the spatial coordinate xjq 

Es\ ( K{d), N»(d), Ng(d), N'l{d) ) 

( Vs,N-l \ 

&s,N-l 

Vs,N 
\ @s,N ) 

— 0~limit 

must hold. The rest of nodes belongs to two adjacent elements. Thus, we have the value 
of stress from the left element and also from the right element. The stresses are not equal, 
so we take the average stress in this nodal stress discontinuity 

/ Va,e-1 \ 

Es- ( iV7(0), A^'(O), JV£(0), iVl'(O) ) 

+ ( N?(d), N»(d), Ng(d), N'l{d) ) 

's,e-l 
Vs,e 

+ 
V 
/ Vs,e \ 

Vs,e+1 
\ &s,e+l 

— 0~ limit-

This constraint must hold for nodes with the spatial coordinates xe, where the index 
e e { 2 , . . . , JV — 1}. We can rewrite this constraints together wi th the constraints for end 
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nodes in a matrix notation as 

6 4 6 
d? d <i2 

3 2 6 
d? d? r i 2 

0 0 3 
d2 

0 

0 -
__2_ 

d2 

_3_ 
r i 2 

JL 
d2 

_3_ 
d2 

0 V 
0 

0 

V . , 0 

0 
0 

U J2 J2 J2 0 - 4 j2_ 
d2 

n 3_ z_ _D_ 
U J2 J2 J2 

A 
d2 

_3 
<i2 

U j 2 

_3_ 
( / 2 

6_ 
d2 

A 
(/2 

2 

0 
2 

_3_ 
\ i 2 

_6_ 
d? 

0 
2 
(/ 
1 
d 

VSjN-l 

@s,N-l 

7s,N 

where | • | indicates the absolute value. The equivalent approximative equation to con
straint (6.14) on the whole beam has the simple matrix form (we multiplied each element 
of matrix by \ first to make the notation more compact): 

\EsbC\s\ < a l i m i t . (6.22) 

The order of accuracy of the used finite element approximation is O(ol2), i.e., the difference 
between exact and approximative solution is proportional to h2. 

6.4 IS reformulation with F E M approximations 
In mathematical programming we can deal only wi th one objective function, so we have 
to create a multi-criterial, single-objective function instead of two objective functions 
stated in (6.9) and (6.10) by the weighted sum approach described in (3.2): 

. / Esab3 pabl \ 
m m I -a— + f3 ) , (6.23) 

\ frigid ^weight J 

where a, (3 are weighting coefficients, a, (3 G [0,1] and a + (3 = 1, crigid, cweight are typical 
values of rigidity and weight of the beam (normalizing constants). These values were ob
tained by author of [36] as the optimal values of objective function of two single-objective 
optimization problems. The maximization of function (6.10) is equivalent wi th minimiza
tion of the same function multiplied by (—1). 

Now we can rewrite our IS reformulated two-objective beam model into a deterministic 
nonlinear program wi th derivatives approximated by the F E M and wi th only one objective 
function. 

/ Esab3 _ pabl \ 
mm (-a-f + (3^ , (6.24) 

\ J-^Crigid ^weight J 
s.t. Esab3KVs = h , (6.25) 

Vs,o = 0, 9sfi = 0, (6.26) 

VS,N — 0, 0SjN — 0, (6.27) 

\EsbCVs\<alimit) (6.28) 

drain ^ O ̂  a m a x , (6.29) 

(6.30) Jmaxj 
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where (6.25) is taken from (6.21), (6.28) is derived in (6.22) and how to obtain the objective 
function is described at the beginning of this section. The constraints (6.26), (6.27) are 
rewritten constraints for clamped end points into approximate notation and (6.29), (6.30) 
are the constraints from the original model l imit ing values of the cross section dimensions. 

The results are presented for the following input data. For better scaling we did not 
compute wi th SI units but wi th units common in engineering computations, i.e. length 
is considered in m m (millimeters), weight in t (tons) and stress is given in M P a (mega-
pascals). The load is uniform and is given per unit length hs(x) = 10 N m m " 1 , the length 
of steel beam is / = 1000 m m with density p = 7.85 • 10~ 9 t m m - 3 . The stress l imitat ion is 
orumit = 100 M P a . Number of elements was set to TV = 100 and bounding values of beam 
dimensions are a m i n = b m i n = 10 mm, a m a x = bmax = 100 mm. The weighting coefficients 
are chosen as a = 0.5, /3 = 0.5. The normalizing constants have the following values 
Crigidity = 1-80 • 10 1 2 N m m 2 , cweight = 0.007 t, Young's modulus was found in material 
tables for steel, E = 2,1 • 10 5 M P a . 

Model consists of the objective function (6.24) and constraints (6.25)-(6.30) was imple
mented in G A M S software and it was solved wi th the solver C O N O P T (more about this 
solver in the Appendix B ) . We obtained the optimal objective function value z^in = 0.379. 
The optimal dimensions are a ^ i n = 10 mm and 6^ i n = 70.707 mm. The largest optimal 
deflection of beam is 0.421 m m and is placed in the middle of beam. We also computed 
the stress in each node by substituting the deflection vector into (6.22). The deflection 
and the stress on the whole beam are presented in the Figure 6.5. The largest stress 
100 M P a is placed in the clamped end points. 

Figure 6.5: The optimal beam deflection and stress 

We were interested in the influence of the mesh size h on the accuracy of the solution. 
Thus, we solved the model wi th different numbers of elements N. We used only even 
N to have one node in the middle of beam, where the maximum of deflection is placed. 
Then, we are able to compare the maximal deflection in various mesh sizes. The solutions 
for our model solved wi th different mesh sizes are listed in the Table 6.1 and plotted 
in the Figure 6.6. 

A s can be seen from the table and mainly from the figure, where z^in, m a x ( V f m i n ) 
and &J^ in are plotted as functions of N, the accuracy of obtained solution is influenced 
by mesh size primarily when N is small, for our case N < 18. There is no need to use too 
many elements N, it does not result in the significant improvement of the accuracy. It is 
always necessary to weigh between the accuracy and computational costs. 
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N[-] 
T Q r -] 

<in[rnm ^in[rnm 71S [-1 ^min L J 
m a x ( V i s

m i n ) [ m m ] m a x a i s

m i n [ M P a ] 

2 10 61.237 0.332 0.648 100 
4 10 68.465 0.368 0.464 100 
6 10 69.722 0.374 0.439 100 
8 10 70.156 0.376 0.431 100 
10 10 70.356 0.377 0.427 100 
12 10 70.465 0.378 0.425 100 
14 10 70.530 0.378 0.424 100 
18 10 70.601 0.378 0.423 100 
22 10 70.638 0.378 0.422 100 
28 10 70.666 0.379 0.422 100 
36 10 70.683 0.379 0.421 100 
50 10 70.697 0.379 0.421 100 
76 10 70.705 0.379 0.421 100 
100 10 70.707 0.379 0.421 100 
200 10 70.710 0.379 0.421 100 
300 10 70.710 0.379 0.421 100 

Table 6.1: Solutions of the F E M approximated IS reformulation for different N 
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Figure 6.6: Solutions of the F E M approximated IS reformulation for different TV 
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C o m p a r i s o n of F D M and F E M 

We can compare our results wi th F D M approximation scheme results, which was imple
mented in [36]. We made only some additional corrections of load in G A M S code presented 
in the Appendix A . 2 of [36] and solved the problem wi th the same setting of parameters. 

We received completely same results 
as for the F E M approximation scheme, 
it means we obtained the optimal ob
jective function value z^in = 0.379 
and the optimal beam cross section dimen
sions aj^ i n = 10 mm, &^ i n = 70.707 mm. 
But if we solve the problem by the F E M , 
we get one extra information - approxi
mation of the first derivative of vs, i.e. 
9S)e in each node and the approximation 
scheme is more compact and more gen
eral. In the Figure 6.7 you can see that 
the result is completely same in the rate 
of beam deflection too, the blue line - indi
cates the F E M solution and the red line - indicates the F D M solution are overlapping along 
the whole beam. The accuracies of these methods are the same in this one-dimensional 
case, i.e. 0(h2). 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x m 

Figure 6.7: F E M , F D M beam deflection 

6.5 Spatial decomposition for IS reformulation 
This section provides the detailed description of the original concept of the spatial de
composition based on the progressive hedging algorithm applied on the discussed beam 
problem. Note that this problem is a basic test problem for the spatial decomposition 
concept. In fact this problem can be solved quickly and no decomposition is needed. 
The spatial decomposition was implemented in G A M S software as well. 

Consider the steel beam wi th length /. We have introduced the F E M approximation 
technique. Thus, we can solve the model (6.24)-(6.30) on the raw mesh, let us call this 
mesh as primary mesh. We chose to solve the beam problem by using four element mesh, 
N = 4 and we obtained the deflection VSfi and the rotation 0 s e for e G {0,1, 2, 3,4} 

V s = ( 0 , 0, 0.261, 0.00, 0.464, 0, 0.261, -0 .001, 0, o f m m . 

We can use these values as boundary conditions for subproblems created by the spatial 
decomposition. It is important to realize that we solved only a small-scale problem con
suming the short computing time thanks to using only a few of elements. Hence, we 
got an inaccurate solution that was computed earlier and can be found in the Table 6.1. 
The described situation is presented in the Figure 6.8. The values that wi l l be used 
as boundary conditions are marked by black circles. A s you can see only the solution 
in the middle node wi l l not be used in following computations. 

The next step of our concept lies in the decomposition of problem's domain into two 
overlapping subdomains. We have several possibilities how to carry out the decomposition 
but only one possibility for our choice of the primary mesh gives the same only rotated 
structure of problem for both parts, this symmetric possibility was used for its clarity 
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and simplicity and is illustrated in the Figure 6.8, where xP)£ is the coordinate of the e-th 
node on the p-ih part and the length of one part is lp = 750 mm. 

> i i i 

h 

9 9 
X Q Xl X2 X3 X4 

h 

9 f 
»1,0 »1 ,1 »1,2 »1 ,3 »1,4 »1,5 »1,6 

h 

->x 
»2,0 »2 ,1 »2,2 »2 ,3 »2,4 »2,5 »2,6 

Figure 6.8: Decomposed structure of the steel beam 

We have to employ a secondary finer mesh on the both subdomains. A secondary mesh 
has to be chosen to get values of deflection and their slopes in the same spatial points 
on both parts. We chose the number of elements N = 6 and solved both subproblems 
wi th mentioned boundary conditions. But these conditions are not longer equal to zero 
as in the original model. So we have to modify the model a little bit. Let us define 
a vectors V ^ 0 wi th lengths 2 ( i V + 1) for p e {1, 2} filled by nonzero boundary conditions 
on appropriate places, the rest of elements is put equal to zero. The upper index 0 indicates 
pre-iteration of the P H A , in that the objective function does not contain any penalty 
terms. 

/ 0 \ 

V bc,0 
s ,l 0 

Vs,3 

\ 

( o \ 

'.s,3 / V 

o 

0.261 
-0.001 

/ V., \ 

\ /bc ,0 
) V s , 2 

_ s , l 

1,1 
0 

V 0 

/ 0.261 \ 
0.001 

0 

/ V o / 
We have to modify the equation (6.25) to the equation containing non-zero boundary 
conditions and also the constraints (6.26) and (6.27) to obtain the models for p e {1,2} 

pablp 
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We solved these models on different subdomains independently (i.e., possibly in parallel) 
and then we can compute the ini t ial average solutions V ° p for p G {1,2} for the "warm" 
start of our algorithm 

V ° 

V •s,2 

v° ^°1,2+K°2,0 

1/° 

gg,l,6+gg, ; 

2 

«,2,6 

(6.31) 

We can average only on the overlap, we simply take the proper value of the deformation 
out of the overlap. Let us make the notation clearer. We used four indices for the de
flection Vj , where s is previously used index for realization of uncertain parameters 
by the scenario s, p indicates different parts and p G {1, 2}, e is the nodal index and j is 
the counter of iterations, similarly for slopes. 

F ina l ly we can employ a modified P H A algorithm for the spatial decomposition. 
For this purpose we have to define some aiding operators. First one is a localization 
operator 1 0 to be able to work with translations and rotations separately. They have dif
ferent dimensions so we need to use different penalty parameters. We also need the vector 
1 filled by ones. 

1 0 = ( 1, 0, 1, 0, i , o, y ( 1 , 1, 1, 1, i , i , y 
where the length of In and 1 is 2(TV + 1 ) . For the same reason we define localization 
square matrices of the size 2(7V+ 1) x 2(7V+ 1): 

11 0 0 0 . . . o \ 

0 0 0 0 . . . 0 
0 0 1 0 . . . 0 

0 0 0 1 0 
0 0 0 0 0 / 

/ 1 
0 

0 
1 

0 . . . 
0 . . . 

0 1 
0 0 

o \ 

0 

Then proceed to own modified progressive hedging algorithm step by step, some com
ments and notes follow. 

0. Choose the penalty parameters gv — 40 > 0, QQ = 40 • 10 3 > 0 and the termination 
parameter e = 10~ 3 > 0. Set w ° = 0, use ini t ial average solutions V ° from (6.32) 
for p = 1,2 and set the iteration counter as j = 1. 

1. For p = 1, 2 solve the problem 

m m 
Esab3 _ pabL , „• l x T , „• 1 

— + + (K ) VS,P + oft. 
lZCrigid ^weight ^ 

In ( V J - V J ' - 1 X 

0 V s,p s,p I + 

+ ; i - i o ) T ( v ^ - v ^ 
s.t. Esab3K\{p = h - Esab3KVh

s^p

j, 

\EsbCY3

SjP\ < (Tlimit, 

^m,in ^ b ^ bmax • 

and denote its solutions as Vi 
s,p 
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2. Calculate average solutions on both parts 

s.l 

V3 

V s,2 

^S,1,0) • • "J 

^ 1 , 2 + ^ 2 , 0 

^ , 1 , 1 ' 
^ 1 , 2 + ^ 2 , 0 

2 

• 
V3 f)j 

(6.32) 

3. Evaluate the termination condition 

£ In;' - v 
vP=l 

2 1 
+ - * s,p * s,p < e. 

If the condition holds, then stop, the solution to the problem with given tolerance 
e has the form 

V3 

s ^s,l,0) °s,l,0i v s , l , l ' ^1,1,1: 
^ , 1 , 2 + ^ , 2 , 0 ff,l,2+ff,2,0 

1/J 

«,2,5; 

Otherwise, calculate for p G {1,2} 

f)3 V3 03 

W : w 3~L + Q M V Í , p - vQ + e»(n - Ho ) (vi , - v y 

and 

V bc,j 

s.l. 

V 

N 

s,l,iV 

/ ^ 2 , 1 \ 

) v s,2 

/ 

7 s ,2 , l 

V o J 
set J = j + 1, and return to step 1 of algorithm. 

Let us add some notes. One important note is connected with boundary conditions. 
The conditions can be used as explicit constraints only in the pre-iteration j = 0. If we 
used them in all iterations, we would get optimal deflection wi th jumps and we would not 
expect a high accuracy. We can think about them as some starting values. 

Penalty terms don't modify the value of objective function at the end of algorithm, 
their absolute values are negligible. The optimal value of objective function is not com
parable to the optimal value of objective function on the whole beam because we are 
working only with lp = 750 m m long subdomains and the length is contained in the ob
jective function explicitly. But the value can be easily recomputed from the subdomain 
to the whole beam: 

^ ' = < p + / 3 - ^ - ( J - J p ) . 
Cyjeight 

So all values of the objective function are recomputed to the whole beam in the following 
text to have a comparison wi th the solution obtained earlier. 

We used the earlier defined Euclidean norm in steps 1 and 3 of the modified P H A . We 
can also try to use some other norms, if the obtained solution is unsatisfactory for us. 
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The modified P H A can be written in more compact form of course, but we choose 
to write it in this extensive form for better understanding and illustrating the computing 
procedure in details. 

The whole procedure was implemented in G A M S wi th mentioned primary and sec
ondary meshes, penalty parameters from the step 0 of the P H A were used. The val
ues of penalty parameters were determined by comparison the objective function values 
and the difference between a deflection and an average deflection and similarly for slopes. 
The same data as in the non-decomposed IS model implementation was used. The ex
ample of the source code from the G A M S implementation is listed in the Appendix D . 
The optimal solution wi th the required accuracy was reached in 26 iterations. Obtained 
optimal beam cross section dimensions are a 2 6 = 10 m m and 6 2 6 = 70.145 mm, the re
computed optimal value of the objective function is zf = 0.376 related to the whole 
beam. In the Figure 6.9 the deflection rates in the first three iterations are presented. 
The position of maximal deflection is corrected to the right point - the middle of the beam. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x[m] 

Figure 6.9: First three iterations of P H A 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x[m] 

Figure 6.10: A l l iterations of P H A 

The rest of iterations is illustrated in the Figure 6.10. Note that we obtained only 
7 values of deflection in each iteration. Hence, we made an interpolation by a poly
nomial to plot the graph of the deflection in each iteration. The optimal deflection rate 
wi th the maximal deflection value 0.431 m m is placed in the largest concentration of rates. 

Penalty Penalty Number 
parameter gv parameter gg of iterations j 

40 40 • 10 3 26 
10 10 • 10 3 25 
5 5- 10 3 25 
1 1 • 10 3 24 

0.1 0.1 • 10 3 27 
0.01 0.01 • 10 3 27 

Table 6.2: The number of iterations needed for different penalty parameters 

The algorithm is very sensitive to the choice of the penalty parameter. Furthermore, 
we have two penalty parameters. One of them gv caused overshoot up and the second 
one go caused overshoot down from the optimal solution (see Figure 6.10). The effect 
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of penalty parameters is illustrated in the Table 6.2. This table for e = 10~ 3 shows that 
we could save two iterations of the P H A by better choice of penalty parameters, i.e. gv — 1 
and QQ — 1 • 10 3. 

L e n g t h of overlap 

One more interesting point is how the length of the overlap influences the accuracy 
of the solution obtained by the spatial decomposition. Therefore, we solved our problem 
with different lengths of the overlap and listed results in following tables. In the F ig 
ure 6.11 you can see the designs of different symmetric overlaps. We used the primary 
mesh with 8 finite elements, hence we had three possibilities for the symmetric overlap. 
It is the 6 elements long overlap, the 4 and the 2 elements long overlap. Then, we in
troduced secondary finer mesh by dividing each element from primary mesh into two 
parts and solved decomposed problem iteratively by the modified P H A . We set gv = 20 
and QQ = 20 • 10 3. The rest of the used data was the same as earlier. 

original beam: 8/8 

overlap: 6/8 

overlap: 4/8 

overlap: 2/8 

Figure 6.11: Different overlap's lengths 

We define one more distance parameter <50 because of evaluation reasons. This pa
rameter takes into account the distance between a? and Gfi„ obtained on the whole beam 
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with TV = 100 finite elements - we consider this solution as accurate enough, V and 6j^ i n 

and also the distance between max(V^) and m a x ( V f m i n ) . The optimal value of the objec
tive function was not considered because its value depends on already considered values 
of cross section dimensions. The distance parameter is defined as follows 

So = \ l « S

i n - <*)2 + \ l - V? + 1 0 ^ ( m a x { V i s

m i n - V I } ) 2 . 

We solved the decomposed problem for different overlap lengths and different given 
tolerances e and wrote down how many iterations we needed to fulfill the tolerance 
and also the recomputed values of the objective function, values of cross-section dimen
sions and maximal deflections of beam. We also computed the distance from the solution 
obtained on the whole beam with TV = 100 and listed all results in the Table 6.3. 

e overlap length 3 zj [-1 ^sl J max \ J

S [mm a J [mm ^ [ m m 50 

0.005 6/8 25 0.379 0.424 10.000 70.647 0.089 0.005 

4/8 51 0.378 0.435 10.000 70.822 0.153 

0.005 

2/8 39 0.470 0.460 15.178 56.746 20.148 

0.0025 6/8 26 0.379 0.424 10.000 70.657 0.079 0.0025 

4/8 55 0.378 0.423 10.000 70.438 0.286 

0.0025 

2/8 64 0.497 0.549 16.787 54.225 24.546 

0.001 6/8 29 0.378 0.423 10.000 70.545 0.184 0.001 

4/8 59 0.378 0.424 10.000 70.629 0.104 
0.001 

2/8 96 0.513 0.564 17.753 52.874 27.017 

0.0001 6/8 35 0.379 0.423 10.000 70.570 0.161 0.0001 

4/8 69 0.378 0.423 10.000 70.571 0.160 

0.0001 

2/8 175 0.523 0.573 18.333 52.113 28.449 

0.00001 6/8 42 0.379 0.423 10.000 70.572 0.159 0.00001 

4/8 77 0.378 0.423 10.000 70.572 0.159 

0.00001 

2/8 253 0.523 0.574 18.390 52.039 28.590 

Table 6.3: Results for different overlap lengths wi th the 5 termination condition 

The tolerance e is connected wi th the original distance parameter S, this parameter 
evaluates distance between solutions in two foregoing iterations. This tolerance gives us 
an information about the speed of convergence of the algorithm but not about the distance 
from the exact solution. Therefore, we decided to modify the stop condition according 
to the distance from the solution obtained on the whole beam with TV = 100 elements 
characterized by the distance parameter <50 and the tolerance e0. We solved the model 
again for different accuracies and listed results in the Table 6.4. 

Now, we can evaluate the results listed in the Table 6.3 and in the Table 6.4. The op
t imal solution obtained by the spatial decomposition into two parts wi th the shortest 
overlap is not accurate enough. It is even getting worse with additional iterations. Thus, 
the length of 2 elements, i.e. one quarter of beam, is not sufficient. The algorithm 
with the longest overlap needed the smallest number of iterations but the number of equa
tions is not reduced enough by the decomposition. The overlap with the length of the half 
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overlap length 3 zj [-1 ^sl J max [mm a J [mm V [mm] 

6.5 6/8 5 0.339 0.390 10.000 72.114 6.5 

4/8 4 0.585 0.465 13.421 71.202 
6.5 

2/8 2 0.475 0.426 10.541 76.437 

2 6/8 5 0.339 0.390 10.000 72.114 2 

4/8 10 0.332 0.378 10.000 70.416 

2 

2/8 > 500 — — — — 

1 6/8 15 0.371 0.421 10.000 70.513 1 

4/8 10 0.332 0.378 10.000 70.416 

1 

2/8 > 500 — — — 

0.1 6/8 21 0.380 0.423 ".Mill 70.787 0.1 

4/8 43 0.377 0.428 10.000 70.691 

0.1 

2/8 > 500 — — — — 

0.051 6/8 > 500 — — — — 0.051 

4/8 53 0.379 0.423 10.000 70.735 

0.051 

2/8 > 500 — — — — 

Table 6.4: Results for different overlap lengths wi th the 5Q termination condition 

of beam provided the best results. We also managed to find the best approximation 
of the exact solution by this choice of the overlap. 

It could be interesting to know how close to the solution obtained on the mesh 
wi th TV = 100 elements we are on other meshes. Hence, we evaluated the SQ distance 
parameter for different numbers of elements N. 

Number of elements TV 2 4 10 26 28 100 

Distance parameter <52 64.917 2.668 0.414 0.057 0.048 0 

Table 6.5: The distance parameter 5Q for different TV 

From the Table 6.5 is clear that by the spatial decomposition procedure we are able 
to obtain the solution with the roughly same accuracy as the accuracy of the solution 
computed directly on the mesh with TV = 26 elements is. Let us repeat that this accuracy 
was gained on the primary mesh wi th 8 elements and the secondary mesh wi th 12 elements, 
the used length of overlap was one half of the whole beam length and we needed 53 
iterations of the P H A . 

6.6 E O reformulation with F E M approximations 
We assume random Young's modulus, the randomness of Young's modulus can be caused 
by different heat-treating processes of steel such as forming, rolling, annealing or by differ
ent quality of the material. We were dealing wi th the IS reformulation in the previous text. 
We used only one chosen scenario to represent the random Young's modulus but we have 
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more possibilities how to work wi th the uncertainty, for example the E O deterministic 
reformulation. 

The random variable must be approximated by the scenario-based approach. There
fore, the random Young's modulus E(£) is represented by a realizations E(£s) = Es, 
s = 1,...,R. The continuous two-stage stochastic nonlinear program (6.1)-(6.8) is ap
proximated by a large multi-objective deterministic nonlinear program. The F E M method 
was used again to approximate the derivatives in the model. 

min pabl, (6.33) 

U E.ab3 

max 12 
=1 

s.t. Esab3KVs = h,s=l,...,R, (6.35) 

^ ,0 = 0,^,0 = 0 , 3 = 1 , . . . , ^ , (6.36) 

VaiN = 0,9aiN = 0,s = l,...,R, (6.37) 

\EsbCVs\ < crHmit,s = 1,...,R, (6.38) 

drain ^ O ̂  Ojmax, (6.39) 

bmin ^ b ^ bmax- (6.40) 

This multi-objective program can be modified to single-objective one by the same weighted 
sum approach as earlier. The objective functions (6.33) and (6.34) are replaced by the ob
jective function: 

aJ) V *-^Crigid ^-weight I 

The model with the objective function (6.41) and constraints (6.35)-(6.40) was imple
mented in G A M S wi th the same data as was used in the IS reformulation. The Young's 
modulus was assumed random: 

Es = 2 • 10 5 M P a + E r a n d o m , s , where E r a n d o m > s ~ U(-l • 10 4, 5 • 10 4) M P a , 

where U(a,b) is the continuous uniform distribution on the support [a, b]. We restricted 
the number of scenarios to R — 3 because we wi l l deal wi th the spatial decomposi
tion further and we want to maintain the clarity of results and the implementation. 
The proper values were generated by pseudorandom values generator from uniform dis
tr ibution in M A T L A B : 

Ex = 1.9714 • 10 5 M P a , E2 = 2.1990 • 10 5 M P a , E3 = 2.4758 • 10 5 M P a . 

The representation of random variable is quite simple, we should use hundreds of scenarios 
to acceptable representation. But we only want to illustrate how our algorithm works 
for different types of reformulation. This problem was solved using the Monte Carlo 
technique and large number of scenarios in [36]. 

We solved the reformulation directly wi th TV = 100 elements and we obtained the op
t imal objective function value z^n = 0.379. Thus, the inequality from the Theorem 3.5.1 
is fulfilled wi th the equality because of independence the value of the objective function 
on here-and-know variables, i.e., the deflection. The optimal dimensions are a^n = 10 mm 
and b^n = 70.707 mm. The largest optimal deflection of beam is placed in the middle 
of beam for al l three scenarios. The deflections and the stresses along the whole beam 
are presented in the Figure 6.12. The stress rate is same for all scenarios, because it is 
independent of the realization of the random variable, the reasons are described in [36]. 
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Figure 6.12: The optimal beam deflection and stress 

6.7 Spatial decomposition for E O reformulation 
We wi l l not specify the spatial decomposition algorithm step by step for the E O reformu
lation. The main idea is the same as for the IS reformulated problem. We only point out 
some interesting details and comment the results. 

We can employ the spatial decomposition approach or the spatial decomposition ap
proach combined wi th the scenario decomposition. The first approach is nearly the same 
as the worked out decomposition for IS reformulation. Only one difference is in penalty 
parameters contained in the modified objective function, we have to add the penalty 
terms for each scenario. The objective function for the P H A part of decomposition is 
then in the following form 

R 

mm -a E Esab3 _ pabl , „• l x T , „• 1 

s=l 
12c rigid C-weight 

1?(V; y i - i + 

+ l o ) T ( V ^ s,p I 

where is computed for each scenario separately. The corresponding constraints have 
to be fulfill for all scenarios s G { 1 , . . . , R}. Note that we are not penalize the cross section 
dimensions a, b between parts nor scenarios. This approach enables decompose our model 
into two spatial subproblems. This idea is explained deeper at the end of this section. 

If we employ the spatial decomposition together wi th the scenario decomposition we 
can obtain decomposition into 2R subproblems and reduce the computational time sig
nificantly. We used only three scenarios in the E O reformulation so we obtained 6 sub-
problems, each of them has the objective function 

mm -a-

+ 

Esab3 

l - l o 

pabl 

^weight 
y i - i + 

where s = 1,2,3 and p — 1,2. The appropriate constraints must be fulfilled, 
approaches were implemented with almost same results presented further. 

Both 
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We solved the decomposed model iteratively in G A M S software with penalty param
eters gv = 10, QQ — 10 • 10 3 . The optimal solution wi th the accuracy e = 10~ 4 was 
reached in j = 72 iterations. The found optimal beam cross section dimensions values 
are a72 = 10 m m and b72 = 70.158 mm. The optimal value of the objective function 
recomputed to the whole beam is z72 = 0.375. The obtained deflections and stresses 
for the scenarios s = 1,2,3 are plotted in the Figure 6.13 by dashed red lines, we can 
compare them with solutions from the previous section plotted by blue lines. 

Figure 6.13: Comparison of the spatial decomposition wi th the direct solution 

The accuracy e = 10~ 3 used for IS reformulation was reached in 33 iterations but 
the absolute value of penalty terms was not small enough. The spatial decomposition 
of the E O reformulation requires generally more iterations then the spatial decomposi
tion of the IS reformulation because the objective function contains more penalty terms 
to minimize or more subproblems have to be solved. 

Note that we have not included penalty terms on all possible here-and-now variables 
related to the first stage. The question is why we found it useful. 

When we formulated the problem, we noted that cross-section dimensions are here-
and-now variables. Hence, they are not dependent on the realization of the uncertainty 
by a scenario. Nevertheless, these variables can depend on the appropriate spatial part. 
The use of our approach is supported by the following idea. 

Consider a simple optimization problem 

min f(x,y), 

s.t. y = g(x), 

that can be decomposed to two fully independent subproblems 

min f(xi,yi), 

s.t. y i = g(xi), 

and 

min f(x2,y2), 

s-t. y2 = g(x2). 

70 



Further we have to require the fulfillment of the nonanticipativity constraints 

2/l = 2/2; 

X\ = x2. 

The fulfillment of these constraints can be guaranteed by adding a penalty term for the dif
ference between yi, y2 and xi, x2 respectively to the objective function. 

However, we may use only penalty term related to x\ and x2 and leave the term 
related to dependent variables y\ and y2 as we indirectly utilize constraints y\ = g(x\). 
2/2 = g(x2). This penalty term guarantees that | | x i — X2II —> 0 and in case of the locally 
uniqueness of the optimal solution also that \\yi — 2/2II -> 0. If we used both penalty terms 
for the difference of X\ and x2 and also for the difference of yi, y2, we would add in fact 
the redundant constraint that creates computational problems in the runs of algorithms. 

This idea explains why we were averaging only the deflection V S J 9 and not cross section 
dimensions a, b on different parts in the implementation of both reformulations. 
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Chapter 7 

Conclusions 

The applicability of the spatial decomposition approach to two deterministic reformula
tion of one civi l engineering problem has been discussed. Problem has been concerned 
in the optimal design of beam cross section dimensions with a random Young's modulus. 
The model led to the O D E constrained multi-objective stochastic nonlinear program. 

In general, the proposed computational scheme consisting of the modified progressive 
hedging algorithm and some additional steps applicable for approximated O D E / P D E con
strained deterministic and also stochastic programs seems to be robust enough for future 
applications to advanced large-scale optimization problems in which a decomposition is 
required. 

The spatial decomposition has been implemented and tested wi th respect to future 
possibilities of parallel computing of large engineering problems. The implementation has 
shown that the approach can be used even if the mathematical conditions for the conver
gence are not fulfilled but still a suitable starting point can be found. 

M a i n disadvantage of the progressive hedging algorithm that forms the basis of the spa
t ial decomposition is that the performance of the algorithm is very sensitive to the choice 
of the penalty parameter g. Unfortunately, there is no general rule how to determine 
the best value of this parameter. Furthermore, in the spatial decomposition several 
penalty parameters are contained. The convergence performance of the P H A can be im
proved by some heuristic techniques allowing the updating g in each step. Many aspects 
of the procedures need further investigations. In particular, we need a method for ad
justing the penalties to ensure fast convergence. For any realistic problem the number 
of scenarios wi l l be formidable. 

Future research could concern in the practical parallel implementation of the spatial 
decomposition on multiple processors computers and in testing the algorithm for other 
two-dimensional and also three-dimensional problems. It is not recommended to treat up 
whole model in G A M S because the finite element method can not be comfortably used 
in this software. Hence, it could be good to connect some other software wi th G A M S 

solver. 
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List of abbreviations 

I would like to introduce abbreviations used in the thesis. Symbols and a notation are 
not listed here. Everything is explained when it is used. 

L P linear programming problem 

M I L P mixed-integer linear programming problem 

N L P nonlinear programming problem 

U P underlying program 

SP stochastic programming problem 

W S wait-and-see 

H N here-and-now 

IS individual scenario 

E V expected value 

E E V expected result of using the expected value solution 

E O expected objective 

v s s value of stochastic solution 

E V P I expected value of perfect information 

G A M S general algebraic modeling system 

G R G generalized reduced gradient method 

F D M finite difference method 

F E M finite element method 

P H A progressive hedging algorithm 

P D E partial differential equation 

O D E ordinary differential equation 

M A T L A B matrix laboratory 
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SI international system of units 

s.t. such that, subject to 

a.s. almost surely 

R G reduced gradient method 

K K T Karush-Kean-Tucker 

T P P three-point pattern 

P D F portable document format 
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Appendix A 

Optimality conditions 

In this appendix, we wi l l briefly describe the Karush-Kuhn-Tucker (KKT) optimality 
conditions for the problem with inequality constraints 

min / ( x ) , 
X 

s.t. <7J(X) < 0, % — 1, . . . , m, ( A . l ) 

x e l 

T h e o r e m A . l (Karush-Kuhn-Tucker necessary optimality conditions). Consider the pro
gram (A.l). Assume that X is a nonempty open set in MN, f and gi : RN —> K. for all 
i — 1 , . . . , m are functions, the set I is defined as I — {i G { 1 , . . . , m} : <7J(X) = 0} and x 
is a feasible point. Assume that the functions f and gi for all i & I are differentiable 
at point x 7 the functions gi for all i ^ I are continuous at the point x . Furthermore, 
the gradients V<7J(X) for all i & I are linearly independent. If the point x is a local 
minimum to the problem (A.l), then there exist numbers /Xj for all i & I such that 

V / ( x ) + J > * V ^ ( x ) = 0 , 
i&I 

Hi>0, Vie I 

If gi for alii £ I are also differentiable at point x , then (A.2) can be rewritten to the equiv
alent form 

V / ( x ) + 5 ^ V # ( x ) = 0, 
i&I 

^ ( x ) = 0, Vz = 1, . . . ,m, 

Hi > 0, Vz = 1 , . . . , m. 

The scalars \ii are called the Lagrange multipliers. A point x is said to be a Karush-
Kuhn-Tucker (KKT) point if there exist Lagrange multipliers / x i , . . . , fxm such that the point 
x wi th them satisfies the K K T optimality conditions. 

The proof of the previous theorem can be found in [1], these conditions can be also 
easily extended to programs wi th equality constraints. 
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Appendix B 

Solver C O N O P T 

Nonlinear models created wi th G A M S must be solved with a nonlinear programing ( N L P ) 
algorithm. Currently, three solvers for N L P are available - C O N O P T , M I N O S and S N O P T . 
These solvers are based on different mathematical algorithms, and they behave differently 
for different models. G A M S cannot select the best algorithm automatically, we must se
lect one as the default. C O N O P T was chosen for our models. It is well suited for models 
wi th very nonlinear constraints and recursive equations, variables are solved and removed 
from the model. We have models where many equations have to be solved and C O N O P T 
has been designed for large and sparse models what is our case. 

C O N O P T is a generalized reduced gradient algorithm ( G R G ) based solver specifi
cally designed for large nonlinear programming problems. This solver was developed 
by A . Drud. The actual implementation has many modifications to make it efficient 
for large models and for models written in the G A M S language. Details of the algorithm 
can be found in [2]. Here we wi l l give a basic description of the reduced gradient and gen
eralized reduced gradient algorithms and also Newton-Raphson line search method used 
in the G R G method. 

B . l Reduced gradient method 
In this section we want to introduce procedure for generating improving feasible direc
tions. The method depends on reducing the dimensionality of the problem by representing 
all the variables in terms of an independent subset of the variables. The reduced gradient 
method (RG) was developed by P. Wolfe in 1963 to solve a nonlinear programming prob
lem having linear constraints. The method was generalized by J . Abadie and J . Carpentier 
in 1969 to handle nonlinear constraints. Consider the following problem. 

min / ( x ) , 
X 

s.t. A x = b, 

x > 0, 

where A is an m x n matrix of rank m, h is a vector wi th length m, x is a vector 
of unknown variables wi th length n and / is a continuously differentiable function on Mn. 
We have to make some non-degeneracy assumptions. A n y m columns of A are linearly 
independent, every extreme point of the feasible region has m strictly positive variables. 

Now let x be a feasible solution. B y the non-degeneracy assumptions, note that A 
can be decomposed into (B, N) and x T into ( x j , x j ) , where B is an m x m invertible 
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matrix and x B > 0. Here x B is called the basic vector, and each of its components is 
strictly positive. The components of the nonbasic vector x ^ may be positive or zero. 
Let V / ( x ) T = ( V B / ( X ) t , V N / ( X ) t ) , where V B / ( X ) is the gradient of / wi th respect 
to the basic vector XB and analogously V N / ( X ) . A direction d is an improving feasible 
direction of / at x if V / ( x ) T d < 0, and if A d = 0 wi th dj > 0 if Xj = 0. We now specify 
a direction vector d satisfying these properties, d T is decomposed into ( d j , d j ) . Note 
that 0 = A d = l d B + N d N , then d B = - B _ 1 N d N . Let 

r T = ( r £ , r £ ) = V / ( x ) T - V B / ( x ) T B " 1 A = (0, V N / ( x ) T - V B / ( x ) T l " 1 N ) 

be the reduced gradient, and let us examine the term V / ( x ) T d : 

V / ( x ) T d = V B / ( x ) T d B + V N / ( x ) T d N = ( V N / ( x ) T - V B / ( x ) T B " 1 N ) d N = r £ d N . 

We must choose d N that r ^ d N < 0 and that dj > 0 if Xj = 0. 
The following rule is adopted. For each nonbasic component j, let dj = —r-j if Tj < 0, 

and let dj = —XJTJ if Tj > 0. This ensures that dj > 0 if Xj = 0, and prevents unduly small 
steps sizes when Xj > 0, but small, while Vj > 0. This also helps make the direction-
finding map closed, thereby enabling convergence. Furthermore, V / ( x ) T d < 0, where 
the strict inequality holds if d N ^ 0. We have described a procedure for constructing 
an improving feasible direction. This fact, as well as the fact that d = 0 holds if and only 
if x is a K K T point defined in the Appendix A . This fact was proved in [2]. 

The main steps of algorithm of reduced gradient method are listed below. 

0. Choose a starting point x i satisfying A x i = b, x i > 0 and let k — 1 and go to Step 1. 

1. Let d £ = (dg ,d^) where d^ and d B are obtained as below from (B.4) and (B.5), 
respectively. If d f c = 0, stop; x f c is a K K T point. Otherwise, go to Step 2. 

Ik = index set of the m largest components of x f c , ( B . l ) 

B = {a , | j e 4}, N = {a , | j <£ Ik}, (B.2) 

r V / ( x f c ) T - V B / ( x f c ) T B " 1 A , (B.3) 

d = [ ~ri i f J i h and r3 < 0, 4  

J 1 —XjVj if j ^ Ik and Tj > 0, 

d B = - B _ 1 N d N . (B.5) 

2. Solve the following line search problem: 

min / ( x f c + Ad f c) 

s.t. 0 < A < A m , 

where 

AT 

mmi<j<n{-j^- | djk < 0} 

oc 
if d f c ^ 0, 

if d f c > 0, 
(B.6) 

and Xjk, djk are the j - t h components of x f c and d f c , respectively. Let A^ be an optimal 
solution, and let x f c + 1 = x f c + Afcdfc. Replace k by k + 1 and go to Step 1. 
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B.2 Generalized reduced gradient algoritm 
We can extend the reduced gradient method to handle nonlinear constraints. This ex
tension is referred to as the generalized reduced gradient method ( G R G ) , and is sketched 
below briefly. 

Consider a nonlinear programming problem of the form 

min / ( x ) , 
X 

s.t. h(x) = 0, 

x > 0, 

where h(x) = 0 represents m equality constraints, x e Mn, and suitable variable trans
formations have been used to represent all variables as being nonnegative. Here, any in
equality constraint can be assumed to have been written as an equality by introducing 
a nonnegative slack variable. 

Now, given a feasible solution x&, consider a linearization of h(x) = 0 given by 

h(x f c ) + V h ( x f c ) ( x - x f c ) = 0, 

where Vh(xfc) is the m x n Jacobian 1 of h evaluated at x&. Noting that h(xfc) = 0, 
the set of linear constraints given by Vh(xfc)x = Vh(xfc)xfc is of the form A x = b, where 
Xfc > 0 is a feasible solution. Assuming that the Jacobian A = Vh(xfc) has full row rank, 
and partitioning it suitably into [B, N] and, accordingly partitioning x T = ( x j , x £ ) (where 
hopefully, x B > 0 in x f c ) , we can compute the reduced gradient r v ia (B.3) and, hence, 
obtain the direction of motion d& via (B.5) and (B.4). A s before, we obtain d& = 0 if and 
only if Xfc is a K K T point, hence the procedure terminates. Otherwise, a line search is 
performed along d^. 

Earlier versions of this method adopted the following strategy. First , a line search is 
performed by determining \ m a x v ia (B.6) and then finding \ k as the solution to the line 
search problem to 

min / ( x f c + Ad f c ) , 

S.t. 0 < A < Xmax-

This gives x* = Xfc + A^d^ . Since h(x*) = 0 is not necessarily satisfied, we need a cor
rection step. Toward this end, the Newton-Raphson method is then used to obtain x^+i 
satisfying h ( x f c + 1 ) = 0, starting wi th the solution x* and keeping the components of x N 

fixed at the values x^ . Hence, x N remains at x ^ > 0 during this iterative process, but 
some components of x B may tend to become negative. A t such a point, a switch is made 
by replacing a negative basic variable xr wi th a nonbasic variable xq that is preferably pos
itive and that has a significantly nonzero element in the corresponding row r of the column 
B _ 1 a g . The Newton-Raphson process then continues as above wi th the revised basis (hav
ing now fixed xr at zero) and the revised linearized system, unti l a nonnegative solution 
x f c + 1 satisfying h ( x f c + 1 ) = 0 is finally obtained. 

More recent versions of the G R G method adopt a discrete sequence of positive step 
sizes and attempt to find a corresponding x^+i for each such step size sequentially using 

l rThe Jacobian matrix is the matrix of all first-order partial derivatives of vector function h with respect 
to the vector 
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the foregoing Newton-Raphson scheme. Using the value / ( x f e + 1 ) at each such point, 
when a three-point pattern ( T P P ) of the quadratic interpolation method is obtained, 
a quadratic fit is used to determine a new step size, for which the corresponding point 
Xfc+i is again computed as above using the Newton-Raphson scheme. A feasible point 
having the smallest objective value thus found is used as the next iterate. This technique 
appears to yield a more reliable algorithm. 

The iterative Newton-Raphson scheme complicates convergence arguments. The ex
isting convergence proofs use restrictive and difficult to verify assumptions. Nonetheless, 
this type of algorithm provides quite a robust and efficient scheme for solving nonlinear 
programming problems. 

The individual steps are of course much more detailed in a practical implementa
tion like C O N O P T . The optimizing steps are specialized in several versions according 
to the whether the model appears to be almost linear or not. For "almost" linear models 
some of the linear algebra work involving the Jacobian and B matrices can be avoided 
or done using cheap LP- type updating techniques and the steepest edge procedure can 
be useful. Similarly, when the model appears to be fairly nonlinear other aspects can be 
optimized, the set of basic variables wi l l often remain constant over several iterations, 
and other parts of the sparse matrix algebra wi l l take advantage of this. 

Newton's method is method for minimizing a function of a single variable. The method 
of Newton is a procedure that deflects the steepest descent direction by premultiplying 
it by the inverse of the Hessian matrix (square matrix of second order partial derivatives 
of a function / ) . This operation is motivated by finding a suitable direction for the qua
dratic approximation to the function. To motivate the procedure, consider the following 
approximation q at a given point x^: 

where Hl(xfc) is the Hessian matrix of / at x&. A necessary condition for a minimum 
of the quadratic approximation q is that V g ( x ) = 0, or V/(xfc) + HI(xfc)(x — Xfc) = 0. 
Assuming that the inverse of Hl(xfc) exists, the successor point x^+i is given by 

Equation (B.7) can be viewed as an application of the Newton-Raphson method to the so
lution of the system of equations V / ( x ) = 0. Given a well-determined system of nonlinear 
equations, each iteration of the Newton-Raphson method adopts a first-order Taylor series 
approximation to this equation system at the current iterate and solves the resulting linear 
system to determine the next iterate. App ly ing this to the system V / ( x ) = 0 at an iterate 
Xfc, the first-order approximation to V / ( x ) is given by V/(xfc) + HI(xfc)(x — Xfc). Setting 
this equal to zero and solving produces the solution x = x^+i as given by (B.7). 

B.3 Newton-Raphson line search method 

_(x) = / ( x f c ) + V / ( x f c ) T ( x - x f c ) + - ( x - Xfc) T M(x f c ) (x - x f c ) 

(B.7) 
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Appendix C 

Penalty functions 

In this appendix we deal wi th the approaches to convert nonlinear programming prob
lems wi th equality and/or inequality constrains into an equivalent unconstrained problem 
or problems with simple constraints. 

There are two alternative approaches achieving this described detailed in [1]. The first 
is called the penalty, or the exterior penalty function method, in which we add a penalty 
term to the objective function for points not lying in the feasible set and thus violating 
some of the constraints. This method generated a sequence of infeasible points whose 
limit is an optimal solution to the original problem. The second method is the bar
rier or interior penalty function method, in which a barrier penalty term that prevents 
the points generated from leaving the feasible region is added to the objective function. 
This method generates a sequence of feasible interior points whose limit is an optimal 
solution to the original constrained problem. 

Clearly we would like to transfer some properties of original constrained problems, 
such as convexity, smoothness, etc. to penalized problems as well. We can achieve this 
by carefully choosing penalty functions. 

Further only the basic concept of penalty functions is introduced. The basic idea 
behind all penalty algorithms is to replace constrained problem wi th the equivalent un
constrained one or with a sequence of unconstrained problem. The constraints are placed 
into the objective function via a penalty parameter in a way that penalizes any violation 
of the constraints. 

C . l Exterior penalty function method 
Consider the following problem wi th single constraint: 

min / ( x ) , 
X 

s.t. /i(x) = 0. 

This problem is replaced by the unconstrained problem, where the penalty parameter 
fj, > 0 is an appropriate large number: 

min / ( x ) + /x/i 2 (x), 
X 

s.t. x e W1. 
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We can see that an optimal solution to the above problem must have /i2(x) close to zero, 
otherwise a large penalty term /^/i2(x) wi l l occur. 

Now consider problem with single inequality constraint: 

min /(x), 
X 

s.t. #(x) < 0. 

The previous approach is not appropriate, because a penalty wi l l occur whether g(x) < 0 
or g(x) > 0. But a penalty is desired only it the point x is not feasible, that is, if g(x) > 0. 
A suitable unconstrained problem is given by: 

min /(x) + / imax{0 ,g(x)} . 
X 

s.t. x e M n . 

If g(x) < 0, then max{0,g(x)} = 0 and no penalty occurs and if g(x) > 0, then 
max{0,g(x)} > 0 and the penalty term /xg(x) is realized. If differentiability is desir
able, we can consider instead a penalty function term of the type JJL (max{0, g(x)})2. 

In general, a penalty function must incur a positive penalty for infeasible points and no 
penalty for feasible points. If we consider inequality constraints of the form (7«(x) < 0 
for % = 1 , . . . , m and equality constraints of the form /ij(x) for % = 1 , . . . , / , a suitable 
penalty function a is defined by 

m I 

a(x) = ^ (^W) + ^ (^W)' 
i=l i=l 

where 0 and ip are continuous functions satisfying the following: 

f = 0 if 2/ < 0 , , , ( = 0 if y = 0 
^ y ) { > 0 iiy>0 ' > 0 i f y ^ O . 

Typically, 0 and ip are of the forms 

(j){y) = (max{0, | /}) | , , 

1>(y) = W; 

where p is a positive integer. Then the penalty function a is of the form 

m I 

a(x) = J ] (max{0,a (x )}f + J ] |̂ (x)|̂ . 
i=l i=l 

The function /(x) + /xa(x) is the auxiliary function. 

T h e o r e m C . l (global convergence of a penalty method). Assume that the original con
strained problem possesses optimal solutions. Then, every limit point of the sequence 
{x̂ }, (j, —> oo of globally optimal solutions to equivalent unconstrained problem is globally 
optimal in the original constrained problem. 

Proof of previous theorem can be found in [1] and more detailed information can be 
found in [2]. 
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C.2 Interior penalty function method 
The idea behind exterior penalty functions is to approximate a feasible set on the who
le Mn. The interior penalty function methods construct approximations only inside the fea
sible set and set a barrier against leaving it. The method generates a sequence of interior 
points that converges to it. 

We consider inequality constraints of the form gi(x) for % — 1 , . . . , m. For the method 
to work, we need to assume that there exists a strictly feasible point x e Mn, such 
that <7J(X) < 0, % — 1, . . . , m. So in contrast wi th the exterior method, we cannot include 
equality constraints into the penalty term. Of course, it is possible to extend the discussion 
to equality constraints, but we prefer simple notation. 

Suitable penalty function a is defined by 

m 

"(X) = J^0(#(x)) > 
i=l 

where 0 is continuous function satisfying following: 

rh( \ / > 0 i f y < ° : 

\ = oo otherwise. 

Typical example of the function <ft is (f>\{y) = —y-1 or foiy) = — log (min{ l , —y}). 
Similarly to the exterior penalty functions, the theorem about the convergence to glob

ally optimal solutions can be formulated wi th some additional assumptions. More detailed 
information could be found again in [1] and especially in [2]. 

C.3 Computational difficulties 
A s the penalty parameter increases in the exterior penalty methods or decreases in the in
terior penalty methods, the approximating problem becomes more and more ill-con
ditioned. Therefore, a typical computational strategy is to start from "safe" values 
of the penalty parameter (relatively small for exterior penalties, or large for interior 
penalties), and then proceed step after step slightly modifying the penalty parameter 
heuristically (for example by mult iplying it wi th some number close to 1). 

We have to note here that there is no general rule how to determine the value of penalty 
parameter to obtain optimal solution in the shortest time. The same problem was men
tioned in the P H A description. 

We are interested in penalty functions that can reach the optimal solution to the origi
nal problem for finite value of the penalty parameter. The augmented Lagrangian penalty 
function satisfies this property and preserves differentiability of the objective function. 
We take the shifted quadratic penalty function and expend it. Then we have the penalty 
function which is composed of a linear and a quadratic term. Aga in the equality con
straints are treated up in other way than the inequality constraints. Here we gave you 
only basic insight, for more detailed information see [5]. 
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Appendix D 

Sample of G A M S source code 

$ t i t l e S p a t i a l d e c o m p o s i t i o n f o r I S r e f o r m u l a t e d beam 

S c a l a r s N number o f e l e m e n t s on p a r t /6/ 
1 l e n g t h o f p a r t o f beam [mm] /750/ 
bb l o a d c o n s t a n t [Nmm-1] /10/ 
r o s t e e l d e n s i t y [tmm-3] 1 1 . 85E-9/ 
a l f a r i g i d i t y w e i g h t c o e f f i c i e n t /o. 5/ 
b e t a w e i g h t w e i g h t c o e f f i c i e n t /o. 5/ 
s i g m a s t r e s s l i m i t a t i o n [MPa] /100/ 
r i g i d i t y n o r m a l i z a t i o n c o n s t a n t / l . 7 5E12/ 
w e i g h t n o r m a l i z a t i o n c o n s t a n t /o. 007/ 
E Young's m o d u l u s [MPa] /210E3/; 

Sets i n ode i n d e x / l * 14/ 
e l e l e m e n t i n d e x / l * 6/ 
j i n d e x i n e l e m e n t / l * 4/; 

Parameter d s p a t i a l s t e p ; 
d = l / N ; 

Parameter h e l ( e l , i ) e x t e r n f o r c e s and moments on one e l e m e n t ; 
loop ( e l , 

l o o p ( i , 
h e l ( e l , i ) $ ( o r d ( i ) 
h e l ( e l , i ) $ ( o r d ( i ) 
h e l ( e l , i ) $ ( o r d ( i ) 
h e l ( e l , i ) $ ( o r d ( i ) 

e q ( 2 * o r d ( e l ) - 1 ) ) = b b * d / 2 ; 
eq ( 2 * o r d ( e l ) ) ) = b b * d * * 2 / 1 2 ; 
eq ( 2 * o r d ( e l ) + l ) ) = b b * d / 2 ; 
eq ( 2 * o r d ( e l ) + 2 ) ) = - b b * d * * 2 / 1 2 ; 

) 
) 

Parameter h ( i ) e x t e r n f o r c e s a n d moments f o r w h o l e beam; 
h ( i ) = s u m ( e l , h e l ( e l , i ) ) ; 

A l i a s ( i , i i ) ; 

Parameter b c v e c l ( i ) 
b c v e c l ( i ) = 0 ; 
b c v e c l ( i ) $ ( o r d ( i ) e q ( c a r d ( i 
b c v e c l ( i ) $ ( o r d ( i ) e q c a r d ( i ) 

v e c t o r w i t h b o u n d a r y c o n d i t i o n s - p a r t 1; 

-1) ) 
= -0 . 

=0.261; 
001; 

Parameter b c v e c 2 ( i ) 
b c v e c 2 ( i ) = 
b c v e c 2 ( ' 1 1 

b c v e c 2 ( ' 2 1 

v e c t o r w i t h b o u n d a r y c o n d i t i o n s - p a r t 2; 

=0.261; 
=0.001; 
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K e l j - j ) s y m m e t r i c e l e m e n t s t i f f n e s s m a t r i x ; 
K e l '1' , 1 1 1 ) = 1 2 / ( d * * 3 ) ; K e l ( 1 1 ' ' 3 1 ) = - K e l ( ' 1 ' , '1 
K e l '3 ' , 1 1 1 ) = - K e l ( ' 1 ' , ' 1 ' ) ; K e l ( , 3 , ' 3 1 ) = K e l ( ' 1 ' , 1 1 1 

K e l '1' , 1 2 1 ) = 6 / ( d * * 2 ) ; K e l ( 1 1 ' ' 4 1 ) = K e l ( ' 1 ' , 2 1 

K e l '2 ' , 1 1 1 ) = K e l ( ' 1 ' , ' 2 ' ) ; K e l ( 1 2 ' ' 3 1 ) = - K e l ( ' 1 ' , '2 
K e l '3 ' , 1 2 1 ) = - K e l ( ' 1 ' , ' 2 ' ) ; K e l ( , 3 , ' 4 1 ) = - K e l ( ' 1 ' , '2 
K e l '4 ' , 1 1 1 ) = K e l ( ' 1 ' , ' 2 ' ) ; K e l ( i 4 i ' 3 1 ) = - K e l ( ' 1 ' , '2 
K e l '2 ' , 1 2 1 )=4/d; K e l ( i 4 i ' 4 1 ) = K e l ( ' 2 ' , 2 1 

K e l '2 ' , i 4 < )=2/d; K e l ( i 4 i ' 2 1 ) = K e l ( ' 2 ' , 4 ' 

P a r a m e t e r L e i ( e l , j , i ) l o c a l i z a t i o n o p e r a t o r ; 
l o o p ( j , l o o p ( i , 

L e i ( e l , ' 1 ' , i ) $ ( o r d ( i ) e q ( 2 * o r d ( e l ) - 1 ) ) = 1 ; 
L e i ( e l , ' 2 ' , i ) $ ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) = 1 ; 
L e i ( e l , ' 3 ' , i ) $ ( o r d ( i ) e q ( 2 * o r d ( e l ) + 1 ) ) = 1 ; 
L e i ( e l , ' 4 ' , i ) $ ( o r d ( i ) e q ( 2 * o r d ( e l ) + 2 ) ) = 1 ) ;) ; 

P a r a m e t e r L e l T r a n s ( e l , i , j ) t r a n s p o s e d l o c a l i z a t i o n o p e r a t o r ; 
l o o p ( e l , l o o p ( i , l o o p ( j , L e l T r a n s ( e l , i , j ) = L e l ( e l , j , i ) ) ;) ;) ; 

A l i a s ( j , j j ) ; 

P a r a m e t e r K L ( e l , j , i ) K e l * L e l f o r a l l e l e m e n t s ; 
l o o p ( e l , l o o p ( j , l o o p ( i , K L ( e l , j , i ) = 
s u m ( j j , K e l ( j , j j ) * L e l ( e l , j j , i ) ) ; ) ; ) ; ) ; 

P a r a m e t e r L K L ( e l , i , i ) L e l T r a n s * K L f o r a l l e l e m e n t s ; 
l o o p ( e l , l o o p ( i i , l o o p ( i , L K L ( e l , i , i i ) = 
sum ( j , L e l T r a n s ( e l , i , j ) * K L ( e l , j , i i ) ) ; ) ; ) ; ) ; 

P a r a m e t e r K ( i , i ) s t i f f n e s s m a t r i x f o r t h e beam; 
K ( i , i ) = 0 ; l o o p ( e l , K ( i , i i ) = K ( i , i i ) + L K L ( e l , i , i i ) ) ; 

V a r i a b l e s z l v a r i a b l e f o r o b j e c t i v e f u n c t i o n on p a r t 1 
z2 v a r i a b l e f o r o b j e c t i v e f u n c t i o n on p a r t 2 
v l ( i ) d e f o r m a t i o n o f p a r t 1 ( d i s p l a c e m e n t s a n d r o t a t i o n s ) 
v 2 ( i ) d e f o r m a t i o n o f p a r t 2 ( d i s p l a c e m e n t s a n d r o t a t i o n s ) ; 

P o s i t i v e v a r i a b l e s 
a d i m e n s i o n o f c r o s s s e c t i o n 
b d i m e n s i o n o f c r o s s s e c t i o n ; 

o b j l o b j e c t i v e f u n c t i o n on p a r t 1 
o b j 2 o b j e c t i v e f u n c t i o n on p a r t 2 
BCL11 l e f t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 1 
BCL12 l e f t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 1 
B C R 1 1 ( i ) r i g h t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 1 
B C R 1 2 ( i ) r i g h t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 1 
BCL21 l e f t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 2 
BCL22 l e f t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 2 
B C R 2 1 ( i ) r i g h t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 2 
B C R 2 2 ( i ) r i g h t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 2 
F E M 1 ( i ) c o n s t r a i n t w i t h 4 t h d e r i v a t i v e - p a r t 1 
F E M 2 ( i ) c o n s t r a i n t w i t h 4 t h d e r i v a t i v e - p a r t 2 
M a x S t r e s s 1 0 m a x i m a l s t r e s s i n t h e f i r s t node - p a r t 1 
M a x S t r e s s l d ( e l , i ) m a x i m a l s t r e s s i n t h e l a s t node - p a r t 1 
M a x S t r e s s l ( e l , i ) m a x i m a l s t r e s s i n i - t h node - p a r t 1 
M i n S t r e s s l O m i n i m a l s t r e s s i n t h e f i r s t node - p a r t 1 
M i n S t r e s s l d ( e l , i ) m i n i m a l s t r e s s i n t h e l a s t node - p a r t 1 
M i n S t r e s s l ( e l , i ) m i n i m a l s t r e s s i n i - t h node - p a r t 1 
M a x S t r e s s 2 0 m a x i m a l s t r e s s i n t h e f i r s t node - p a r t 2 
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M a x S t r e s s 2 d ( e l , i ) 
M a x S t r e s s 2 ( e l , i ) 
M i n S t r e s s 2 0 
M i n S t r e s s 2 d ( e l , i ) 
M i n S t r e s s 2 ( e l , i ) 

m a x i m a l s t r e s s i n t h e l a s t node - p a r t 2 
m a x i m a l s t r e s s i n i - t h node - p a r t 2 
m i n i m a l s t r e s s i n t h e f i r s t node - p a r t 2 
m i n i m a l s t r e s s i n t h e l a s t node - p a r t 2 
m i n i m a l s t r e s s i n i - t h node - p a r t 2 

* j g deterministic reformulation part 1 
o b j l . . z l =e= - a l f a * E * a * b * * 3 / ( 1 2 * r i g i d i t y ) + b e t a * r o * a * b * l / w e i g h t ; 
B C L 1 1 . . v l ( ' 1 ' ) = e = 0 ; 
BCL12.. v l ( ' 2 ' ) = e = 0 ; 
B C R 1 1 ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 1 ) ) . . v l ( i ) = e = b c v e c l ( i ) ; 
B C R 1 2 ( i ) $ ( o r d ( i ) e q c a r d ( i ) ) . . v l ( i ) = e = b c v e c l ( i ) ; 
F E M 1 ( i ) $ ( ( o r d ( i ) ne l ) a n d ( o r d ( i ) ne 2 ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 1 ) ) a n d 
( o r d ( i ) ne c a r d ( i ) ) ) . . ( ( E * a * ( b * * 3 ) ) / ( 1 2 ) ) * s u m ( i i $ ( ( o r d ( i i ) ne l ) a n d 
( o r d ( i i ) ne 2 ) a n d ( o r d ( i i ) ne ( c a r d ( i i ) - 1 ) ) a n d ( o r d ( i i ) ne c a r d ( i i ) ) ) , 
K ( i , i i ) * v l ( i i ) ) = e = h ( i ) - ( ( E * a * ( b * * 3 ) ) / ( 1 2 ) ) * s u m ( i i , K ( i , i i ) * b c v e c l ( i i ) ) ; 
M a x S t r e s s l O . . E * ( b / 2 ) * ( ( - 6 / d * * 2 ) * v l ( ' 1 ' ) + ( - 4 / d ) * v l ( ' 2 ' ) + ( 6 / d * * 2 ) * v l ( ' 3 ' ) + 
( - 2 / d ) * v l ( ' 4 ' ) ) = l = s i g m a ; 
M a x S t r e s s l d ( e l , i ) $ ( ( o r d ( e l ) e q c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . E * ( b / 2 ) * 
( ( 6 / d * * 2 ) * v l ( i - 1 ) + ( 2 / d ) * v l ( i ) + ( - 6 / d * * 2 ) * v l ( i + 1) + ( 4 / d ) * v l ( i + 2 ) ) = l = s i g m a ; 
M a x S t r e s s l ( e l , i ) $ ( ( o r d ( e l ) n e c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . 
E* (b/4) * ( (6/d**2) * v l ( i - 1 ) + (2/d) * v l ( i ) + (-6/d**2) * v l ( i + 1) + (4/d) * v l ( i + 2) + 
( - 6 / d * * 2 ) * v l ( i + 1 ) + ( - 4 / d ) * v l ( i + 2 ) + ( 6 / d * * 2 ) * v l ( i + 3 ) + ( - 2 / d ) * v l ( i + 4 ) ) = l = s i g m a ; 
M i n S t r e s s l O . . - E * ( b / 2 ) * ( ( - 6 / d * * 2 ) * v l ( ' 1 ' ) + ( - 4 / d ) * v l ( ' 2 ' ) + ( 6 / d * * 2 ) * v l ( ' 3 ' ) + 
( - 2 / d ) * v l ( ' 4 ' ) ) = l = s i g m a ; 
M i n S t r e s s l d ( e l , i ) $ ( ( o r d ( e l ) e q c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . - E * ( b / 2 ) 
( ( 6 / d * * 2 ) * v l ( i - 1 ) + ( 2 / d ) * v l ( i ) + ( - 6 / d * * 2 ) * v l ( i + 1) + ( 4 / d ) * v l ( i + 2 ) ) = l = s i g m a ; 
M i n S t r e s s l ( e l , i ) $ ( ( o r d ( e l ) n e c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . 
- E * ( b / 4 ) * ( ( 6 / d * * 2 ) * v l ( i - 1 ) + ( 2 / d ) * v l ( i ) + ( - 6 / d * * 2 ) * v l ( i + 1 ) + ( 4 / d ) * v l ( i + 2 ) + 
( - 6 / d * * 2 ) * v l ( i + 1 ) + ( - 4 / d ) * v l ( i + 2 ) + ( 6 / d * * 2 ) * v l ( i + 3 ) + ( - 2 / d ) * v l ( i + 4 ) ) = l = s i g m a ; 
* J 5 deterministic reformulation part 2 
o b j 2 . . z2 =e= - a l f a * E * a * b * * 3 / ( 1 2 * r i g i d i t y ) + b e t a * r o * a * b * l / w e i g h t ; 
B C L 2 1 . . v 2 ( ' 1 ' ) = e = b c v e c 2 ( ' 1 ' ) ; 
BCL22. . v 2 ( ' 2 ' ) = e = b c v e c 2 ( '2') ; 
B C R 2 1 ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 1 ) ) . . v 2 ( i ) = e = 0 ; 
B C R 2 2 ( i ) $ ( o r d ( i ) e q c a r d ( i ) ) . . v 2 ( i ) = e = 0 ; 
F E M 2 ( i ) $ ( ( o r d ( i ) ne 1 ) a n d ( o r d ( i ) ne 2 ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 1 ) ) a n d 
( o r d ( i ) ne c a r d ( i ) ) ) . . ( ( E * a * ( b * * 3 ) ) / ( 1 2 ) ) * s u m ( i i $ ( ( o r d ( i i ) ne l ) a n d 
( o r d ( i i ) ne 2 ) a n d ( o r d ( i i ) ne ( c a r d ( i i ) - 1 ) ) a n d ( o r d ( i i ) ne c a r d ( i i ) ) ) , 
K ( i , i i ) * v 2 ( i i ) ) = e = h ( i ) - ( ( E * a * ( b * * 3 ) ) / ( 1 2 ) ) * s u m ( i i , K ( i , i i ) * b c v e c 2 ( i i ) ) ; 
M a x S t r e s s 2 0 . . E * ( b / 2 ) * ( ( - 6 / d * * 2 ) * v 2 ( ' 1 ' ) + ( - 4 / d ) * v 2 ( ' 2 ' ) + ( 6 / d * * 2 ) * v 2 ( ' 3 ' ) + 
( - 2 / d ) * v 2 ( ' 4 ' ) ) = l = s i g m a ; 
M a x S t r e s s 2 d ( e l , i ) $ ( ( o r d ( e l ) e q c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . E * ( b / 2 ) * 
( (6/d**2) *v2 ( i - 1 ) + (2/d) *v2 ( i ) + (-6/d**2) *v2 ( i + 1) + (4/d) *v2 ( i + 2) ) = l = s i g m a ; 
M a x S t r e s s 2 ( e l , i ) $ ( ( o r d ( e l ) n e c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . 
E* (b/4) * ( (6/d**2) *v2 ( i - 1 ) + (2/d) *v2 ( i ) + (-6/d**2) *v2 ( i + 1) + (4/d) *v2 ( i + 2) + 
(-6/d**2) * v 2 ( i + 1) + ( - 4 / d ) * v 2 ( i + 2) + ( 6 / d * * 2 ) * v 2 ( i + 3) + ( - 2 / d ) * v 2 ( i + 4 ) ) = l = s i g m a ; 
M i n S t r e s s 2 0 . . - E * ( b / 2 ) * ( ( - 6 / d * * 2 ) * v 2 ( ' 1 ' ) + ( - 4 / d ) * v 2 ( ' 2 ' ) + ( 6 / d * * 2 ) * v 2 ( ' 3 ' ) + 
( - 2 / d ) * v 2 ( ' 4 ' ) ) = l = s i g m a ; 
M i n S t r e s s 2 d ( e l , i ) $ ( ( o r d ( e l ) e q c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . - E * ( b / 2 ) 
( (6/d**2) *v2 ( i - 1 ) + (2/d) *v2 ( i ) + (-6/d**2) *v2 ( i + 1) + (4/d) *v2 ( i + 2) ) = l = s i g m a ; 
M i n S t r e s s 2 ( e l , i ) $ ( ( o r d ( e l ) n e c a r d ( e l ) ) a n d ( o r d ( i ) e q ( 2 * o r d ( e l ) ) ) ) . . 
- E * ( b / 4 ) * ( ( 6 / d * * 2 ) * v 2 ( i - 1 ) + ( 2 / d ) * v 2 ( i ) + ( - 6 / d * * 2 ) * v 2 ( i + 1 ) + ( 4 / d ) * v 2 ( i + 2 ) + 
(-6/d**2) * v 2 ( i + 1) + ( - 4 / d ) * v 2 ( i + 2) + ( 6 / d * * 2 ) * v 2 ( i + 3) + ( - 2 / d ) * v 2 ( i + 4 ) ) = l = s i g m a ; 
* O-iteration without penalty terms part 1 
model D e t e r m l / o b j l , B CL11, BCL12, BCR11, BCR12, FEM1, M a x S t r e s s l O , 

M a x S t r e s s l d , M a x S t r e s s l , M i n S t r e s s l O , M i n S t r e s s l d , 
M i n S t r e s s l / , • 

a . l o = 1 0 ; 
a. up=100; 
b. l o = 1 0 ; 
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b.up=100; 
a. 1=100; 
b. 1=100; 
v l . l ( i ) = 0 ; 
s o l v e D e t e r m l u s i n g n i p m i n i m i z i n g z l ; 
D i s p l a y a . l , b . l , z l . l , v l . l ; 
* 0 - i t e r a t i o n without penalty terms part 2 * 
m o d e l Determ2 / o b j 2 , BCL21, BCL22, BCR21, BCR22, FEM2, M a x S t r e s s 2 0 , 

M a x S t r e s s 2 d , M a x S t r e s s 2 , M i n S t r e s s 2 0 , M i n S t r e s s 2 d , 
M i n S t r e s s 2 / ; 

a . l o = 1 0 ; 
a. up=100; 
b. l o = 1 0 ; 
b.up=100; 
a. 1=100; 
b. 1=100; 
v 2 . 1 ( i ) = 0 ; 
s o l v e Determ2 u s i n g n i p m i n i m i z i n g z 2 ; 
D i s p l a y a . l , b . l , z 2 . 1 , v 2 . 1 ; 
* PHA:l-p i t e r a t i o n s * 
S c a l a r s r h o p e n a l i z a t i o n c o e f f i t c i e n t / 40.00 /, 

e p s i l o n t o l e r a t i o n f o r s t o p a l g o r i t h m / 0.0001 /, 
q c o e f f i c i e n t f o r r o t a t i o n s / 1000 /; 

P a r a m e t e r d e l t a s t o p c o n d i t i o n ; 
d e l t a = 1; 

S e t s p m a x i m a l i t e r a t i o n i n d e x / 0 * 1 0 0 0 / ; 

P a r a m e t e r e o ( i ) e v e n o r o d d p a r a m e t e r ( d i f e r r e n t i t a t e v a n d t h e t a ) 
l o o p ( i , i f ( ( ( 0 . 5 * o r d ( i ) ) e q ( r o u n d ( 0 . 5 * o r d ( i ) ) ) ) , e o ( i ) = 0 ; 

e l s e eo ( i ) = 1 ; ) ; ) ; 

P a r a m e t e r v b a r l ( i ) a v e r a g e s o l u t i o n - p a r t 1; 
v b a r l ( i ) = 0; 

P a r a m e t e r v b a r 2 ( i ) a v e r a g e s o l u t i o n - p a r t 2; 
v b a r 2 ( i ) = 0; 

P a r a m e t e r v b a r l b f ( i ) a v e r a g e s o l u t i o n i n p r e v i o u s i t e r a t i o n - p a r t 1; 

P a r a m e t e r v b a r 2 b f ( i ) a v e r a g e s o l u t i o n i n p r e v i o u s i t e r a t i o n - p a r t 2; 

P a r a m e t e r w l ( i ) l i n e a r p e n a l i z a t i o n p a r a m e t e r - p a r t 1; 
w l ( i ) = 0 ; 

P a r a m e t e r w 2 ( i ) 
w 2 ( i ) = 0 ; 

V a r i a b l e s z P H A l 
ZPHA2 

l i n e a r p e n a l i z a t i o n p a r a m e t e r - p a r t 2, 

v a r i a b l e f o r PHA o b j e c t i v e f u n c t i o n - p a r t 1 
v a r i a b l e f o r PHA o b j e c t i v e f u n c t i o n - p a r t 2; 

E q u a t i o n s o b j P H A l o b j e c t i v e PHA f u n c t i o n w i t h p e n a l t y t e r m s - p a r t 1 
objPHA2 o b j e c t i v e PHA f u n c t i o n w i t h p e n a l t y t e r m s - p a r t 2; 

o b j P H A l . . z P H A l =e= - a l f a * E * a * b * * 3 / ( 1 2 * r i g i d i t y ) + b e t a * r o * a * b * l / w e i g h t + 
s u m ( i , ( e o ( i ) * w l ( i ) * v l ( i ) ) + ( ( l - e o ( i ) ) * w l ( i ) * v l ( i ) ) ) + 0 . 5 * r h o * 
s u m ( i , e o ( i ) * ( v l ( i ) - v b a r l ( i ) ) * ( v l ( i ) - v b a r l ( i ) ) + q * ( 1 - e o ( i ) ) * ( v l ( i ) -
v b a r l ( i ) ) * ( v l ( i ) - v b a r l ( i ) ) ) ; 
o b j P H A 2 . . zPHA2 =e= - a l f a * E * a * b * * 3 / ( 1 2 * r i g i d i t y ) + b e t a * r o * a * b * l / w e i g h t + 
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s u m ( i , ( e o ( i ) * w 2 ( i ) * v 2 ( i ) ) + ( ( 1 - e o ( i ) ) * w 2 ( i ) * v 2 ( i ) ) ) + 0 . 5 * r h o * 
s u m ( i , e o ( i ) * ( v 2 ( i ) - v b a r 2 ( i ) ) * ( v 2 ( i ) - v b a r 2 ( i ) ) + q * ( 1 - e o ( i ) ) * ( v 2 ( i ) -
v b a r 2 ( i ) ) * (v2 ( i ) - v b a r 2 ( i ) ) ) ; 
* PHA-partl 
model PHA1 / o b j P H A l , BCL11, BCL12, FEM1, M a x S t r e s s l O , 

M a x S t r e s s l d , M a x S t r e s s l , M i n S t r e s s l O , M i n S t r e s s l d , 
M i n S t r e s s l / ; 

a . l o = 1 0 ; 
a. up=100; 
b. l o = 1 0 ; 
b.up=100; 
a. 1=100; 
b. 1=100; 
v l . l ( i ) = 0 ; 
* PHA-part2 
model PHA2 / o b j P H A 2 , BCR21, BCR22, FEM2, M a x S t r e s s 2 0 , 

M a x S t r e s s 2 d , M a x S t r e s s 2 , M i n S t r e s s 2 0 , M i n S t r e s s 2 d , 
M i n S t r e s s 2 / ; 

a . l o = 1 0 ; 
a. up=100; 
b. l o = 1 0 ; 
b.up=100; 
a. 1=100; 
b. 1=100; 
v 2 . 1 ( i ) = 0 ; 

v b a r l ( ' 1 ' ) = v l . 1 ( ' 1 ' ) ; 
v b a r l ( ' 2 ' ) = v l . 1 ( ' 2 ' ) ; 
v b a r l ( ' 3 ' ) = v l . 1 ( ' 3 ' ) ; 
v b a r l ( ' 4 ' ) = v l . 1 ( ' 4 ' ) ; 
v b a r l ( i ) $ ( ( o r d ( i ) ne 1 ) a n d ( o r d ( i ) ne 2 ) a n d ( o r d ( i ) ne 3 ) a n d ( o r d ( i ) ne 4 ) ) = 
0 . 5* ( v l . 1 ( i ) + v 2 . 1 ( i - 4 ) ) ; 

v b a r 2 ( i ) $ ( o r d ( i ) e q c a r d ( i ) ) = v 2 . 1 ( i ) ; 
v b a r 2 ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 1 ) ) = v 2 .1 ( i ) ; 
v b a r 2 ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 2 ) ) = v 2 . 1 ( i ) ; 
v b a r 2 ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 3 ) ) = v 2 . 1 ( i ) ; 
v b a r 2 ( i ) $ ( ( o r d ( i ) ne c a r d ( i ) ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 1 ) ) a n d 
( o r d ( i ) ne ( c a r d ( i ) - 2 ) ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 3 ) ) ) = 0 . 5 * ( v l . 1 ( i + 4 ) + v 2 . 1 ( i ) ) ; 

l o o p ( p, i f ( ( d e l t a g t e p s i l o n ) , 
s o l v e PHA1 u s i n g n i p m i n i m i z i n g z P H A l ; 
s o l v e PHA2 u s i n g n i p m i n i m i z i n g zPHA2; 

v b a r l b f ( i ) = v b a r l ( i ) ; 
v b a r l ( ' 1 ' ) = v l . 1 ( ' 1 ' ) ; 
v b a r l ( ' 2 ' ) = v l . 1 ( ' 2 ' ) ; 
v b a r l ( ' 3 ' ) = v l . 1 ( ' 3 ' ) ; 
v b a r l ( ' 4 ' ) = v l . 1 ( ' 4 ' ) ; 
v b a r l ( i ) $ ( ( o r d ( i ) ne 1 ) a n d ( o r d ( i ) ne 2 ) a n d ( o r d ( i ) ne 3 ) a n d ( o r d ( i ) ne 4 ) ) = 
0 . 5* ( v l . 1 ( i ) + v 2 . 1 ( i - 4 ) ) ; 

v b a r 2 b f ( i ) = v b a r 2 ( i ) 
v b a r 2 ( i ) $ ( o r d ( i ) e q 

$ ( o r d ( i ) e q 
$ ( o r d ( i ) e q 
$ ( o r d ( i ) e q 
$ ( ( o r d ( i 

v b a r 2 ( i ] 
v b a r 2 ( i ] 
v b a r 2 ( i ] 
v b a r 2 ( i ] 
( o r d ( i ) 

c a r d ( i ) ) = v 2 . 
( c a r d ( i ) - 1 ) ) 
( c a r d ( i ) - 2 ) ) 
( c a r d ( i ) - 3 ) ) 

M i ) ; 
=v2.1 (i) 
=v2.1 ( i ) 
=v2.1 ( i ) 

ne c a r d ( i ) ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 1 ) ) a n d 
ne ( c a r d ( i ) - 2 ) ) a n d ( o r d ( i ) ne ( c a r d ( i ) - 3 ) ) ) = 0 . 5 * ( v l . 1 ( i + 4 ) + v 2 . 1 ( i ) ) 

d e l t a = ( s u m ( i , ( v b a r l b f ( i ) - v b a r l ( i ) ) * ( v b a r l b f ( i ) - v b a r l ( i ) ) ) + s u m ( i , 

90 



( v b a r 2 b f ( i ) - v b a r 2 ( i ) ) * ( v b a r 2 b f ( i ) - v b a r 2 ( i ) ) ) +0 . 5* (sum ( i , ( v i .1 ( i ) -
v b a r l ( i ) ) * ( v i . 1 ( i ) - v b a r l ( i ) ) ) +sum(i, (v2 .1 ( i ) - v b a r 2 ( i ) ) * (v2 .1 ( i ) -
v b a r 2 ( i ) ) ) ) ) * * 0 . 5 ; 

w l ( i ) =wl ( i ) +rho*eo ( i ) * ( v i . 1 ( i ) - v b a r l ( i ) ) + r h o * q * (1-eo ( i ) ) * ( v i . 1 ( i ) - v b a r l ( i ) ) 
w2 ( i ) =w2 ( i ) +rho*eo ( i ) * (v2 .1 ( i ) - v b a r 2 ( i ) ) + r h o * q * (1-eo ( i ) ) * (v2 .1 ( i ) - v b a r 2 ( i ) ) 

b c v e c l ( i ) $ ( o r d ( i ) e q ( c a r d ( i ) - 1 ) ) = v l . 1 ( i ) ; 
b c v e c l ( i ) $ ( o r d ( i ) e q c a r d ( i ) ) = v l . 1 ( i ) ; 
b c v e c 2 ( ' 1 ' ) = v 2 . 1 ( ' 1 ' ) ; 
b c v e c 2 ('2')=v2. 1 ( ' 2 ' ) ; ) ; ) ; 
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Appendix E 

What is on the C D 

The C D attached to the thesis contains 

• the thesis in P D F format: thesis.pdf 

• the implementation of the news vendor problem (Section 3.7): newsvendor.gms 

• the implementation of the IS reformulation wi th F E M approximations of the beam 
problem (Section 6.4): ISFEM.gms 

• the implementation of the spatial decomposition for the IS reformulation of the beam 
problem (Section 6.5): ISdecomp.gms 

• the implementation of the E O reformulation wi th F E M approximations of the beam 
problem (Section 6.6): EOFEM.gms 

• the implementation of the spatial decomposition for the E O reformulation of the beam 
problem (Section 6.7): EOdecomp.gms 
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