
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV M A T E M A T I K Y

F A C U L T Y O F M E C H A N I C A L E N G I N E E R I N G

I N S T I T U T E O F M A T H E M A T I C S

SPATIAL DECOMPOSITION FOR DIFFERENTIAL EQUATION
CONSTRAINED STOCHASTIC PROGRAMS
PROSTOROVÁ D E K O M P O Z I C E ÚLOH STOCHASTICKÉHO PROGRAMOVÁNÍ

S OMEZENÍMI V E T V A R U DIFERENCIÁLNÍCH R O V N I C

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

A U T O R PRÁCE Bc. Z U Z A N A ŠABARTOVÁ
A U T H O R

VEDOUCÍ P R A C E RNDr. PAVEL P O P E L A , Ph.D.
SUPERVISOR

BRNO 2012

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav matematiky
Akademický rok: 2011/2012

Z A D Á N Í D I P L O M O V É P R Á C E

student(ka): Bc. Zuzana Šabartová

který/která studuje v magi s t e r ském navazuj íc ím s tud i jn ím programu

obor: M a t e m a t i c k é inženýrs tv í (3901T021)

Ředitel ústavu V á m v souladu se zákonem č.l 11/1998 o vysokých školách a se Studijním a
zkušebním řádem V U T v Brně určuje následující téma diplomové práce:

P r o s t o r o v á dekompozice úloh s tochas t ického p r o g r a m o v á n í s omezen ími ve tvaru

diferenciálních rovnic

v anglickém jazyce:

Spatial Decomposition for Differential Equat ion Constrained Stochastic Programs

Stručná charakteristika problematiky úkolu:

Student si prohloubí znalosti problematiky modelů stochastického programování se zaměřením na
problematiku úloh s omezeními ve tvaru diferenciálních rovnic. Zaměří se na možnosti docílení
původních výsledků v oblasti dekompozice úloh. Téma práce navazuje na dlouhodobě rozvíjenou
problematiku optimalizačních modelů zahrnujících omezení ve tvaru diferenciálních rovnic a
náhodné koeficienty řešených ve spolupráci s dalšími ústavy (UPEI, E U) a fakultami (FAST) . Pro
efektivní modifikaci a implementaci modelu diplomant využije vhodné aproximační schéma a
dekompoziční principy.

Cíle diplomové práce:

Vybraná třída modelů bude implementována a testována s cílem přispět k řešení náročných
inženýrských úloh. Důraz bude kladen na diskretizační a dekompoziční přístupy.

Seznam odborné literatury:

P. K a l i , S. W . Wallace. Stochastic Programming, Wiley and Sons, 1993.
J.R. Birge, F. Louveaux. Introduction to Stochastic Programming, Wiley and Sons, 1996.
I. M . Smith, D . V . Griffiths. Programming the Finite Element Method, Wiley and Sons, 1988.
E. Žampachová. Approximations in Stochastic Optimization and Their Applications, V U T FSI
Brno, 2010.

Vedoucí diplomové práce: R N D r . Pavel Popela, Ph.D.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2011/2012.

V Brně, dne 26.10.2010

L.S .

prof. R N D r . Josef Šlapal, CSc.
Ředitel ústavu

prof. R N D r . Miroslav Doupovec, CSc.
Děkan fakulty

S u m m a r y

Wide variety of optimum design problems in engineering leads to optimization models con

strained by ordinary or partial differential equations (O D E or P D E) . Numerical methods
based on discretising domain are required to obtain a nondifferential numerical descrip

tion of the differential parts of constraints because the analytical solutions can be found
only for simple problems. We chose the finite element method.

The real problems are often largescale and exceed computational capacity. Hence,
we employ the progressive hedging algorithm (P H A) an efficient scenario decomposi

tion method for solving scenariobased stochastic programs, which can be implemented
in parallel to reduce the computing time. A modified P H A was used for an original con

cept of spatial decomposition based on the mesh created for approximation of differential
equation constraints. The algorithm consists of a few main steps: solve our problem
with a raw discretization, decompose it into overlapping parts of the domain, and solve
it again iteratively by the P H A with a finer discretization using values from the raw
discretization as boundary conditions unti l a given accuracy is reached.

The spatial decomposition is applied to a basic test problem from the civi l engineering
area: design of beam cross section dimensions. The algorithms are implemented in G A M S
software and finally results are evaluated with respect to a computational complexity
and a length of overlap.

K e y w o r d s
optimization, stochastic program, differential equation, finite element method, beam, pro

gressive hedging algorithm, scenario decomposition, spatial decomposition, overlapping
constraints

Š A B A R T O V Á , Z. Spatial decomposition for differential equation constrained stochastic
programs, Brno: Vysoké učení technické v Brně, Fakulta s t ro jního inženýrství , 20f2.
92 s. Vedoucí diplomové práce R N D r . Pavel Popela, P h . D .

A b s t r a k t

Rozsáhlá t ř í da inženýrských opt imal izačních úloh vede na modely s omezeními ve tva

ru obyčejných nebo parciálních diferenciálních rovnic (O D R nebo P D R) . Pro tože difer

enciálních rovnice je možné řešit analyticky jen v nejjednodušších př ípadech, bylo k řešení
použi to numerických metod založených na diskretizaci oblasti. Zvoli l i jsme metodu koneč

ných prvků, k te rá umožňuje převod omezení ve tvaru diferenciálních rovnic na omezení
ve tvaru soustavy l ineárních rovnic.

Reálné problémy jsou často velmi rozsáhlé a přesahují dostupnou výpoče tn í kapacitu.
Výpoče tn í čas lze snížit pomocí progressive hedging algoritmu (P H A) , kte rý umožňuje
paralelní implementaci. P H A je efektivní scénářová dekompoziční metoda pro řešení scé

nářových stochast ických úloh. Modifikovaný P H A byl využi t pro původn í př í s tup pros

torové dekompozice. Aproximace diferenciálních rovnic v modelu problému je dosaženo
pomocí diskretizace oblasti. Diskretizace je dále využ i ta pro prostorovou dekompozici
modelu. Algoritmus prostorové dekompozice se skládá z několika hlavních kroků: vyřešení
problému s hrubou diskretizaci, rozdělení oblasti problému do překrývajících se část í a ite

rační řešení pomoc í P H A s jemnějš í diskretizaci s využi t ím hodnot z hrubé diskretizace
jako okrajových podmínek .

Pros to rová dekompozice byla apl ikována na základní testovací prob lém z oboru sta

vebního inženýrství , kte rý se zabývá n á v r h e m rozměrů průřezu nosníku. Algoritmus byl
implementován v softwaru G A M S . Získané výsledky jsou zhodnoceny vzhledem k výpo

četní náročnost i a délce překryt í .

K l í č o v á s lova
optimalizace, úloha s tochast ického programování , diferenciální rovnice, metoda konečných
prvků, nosník, progressive hedging algoritmus, scénářová dekompozice, pros torová dekom

pozice, omezení na překry t í

I declare that my master's thesis Spatial decomposition for differential equation constrained
stochastic programs is the result of my own work according to the instructions of my super
visor R N D r . Pavel Popela, Ph .D . , and using the sources duly listed in the bibliography.

Be. Zuzana Sabartova

I would like to express my deep thanks to my supervisor R N D r . Pavel Popela, P h . D .
for supervising my master's thesis, his invaluable advice, comments, ideas and also moti
vation and support.

I would also like to thank to Ing. Mgr . Eva Zampachová , P h . D . for early discussions
of the results of her P h . D . thesis and to Ing. Lubomí r Klimeš for his advice which helped
to improve my thesis.

Last but not least, my special thanks belong to my parents for their support during
my studies and to Pavel for his patience, love and support.

Be. Zuzana Šabar tová

Contents

1 I n t r o d u c t i o n 15

2 A i m s o f mas t e r ' s thes is 17

3 O p t i m i z a t i o n 18

3.1 Motivat ion 18
3.2 History of optimization 19
3.3 K e y concepts of mathematical analysis 20
3.4 Deterministic programming 22
3.5 Stochastic programming 24
3.6 G A M S 30
3.7 News vendor problem 31

4 F i n i t e e lement m e t h o d 35
4.1 V i r t u a l work 35
4.2 Galerkin's method 36
4.3 Basic concepts of finite element method 37

5 D e c o m p o s i t i o n 39
5.1 Scenario decomposition methods 39
5.2 Progressive hedging algorithm 40
5.3 P H A for one-stage optimization problems 41
5.4 One-stage P H A example 44
5.5 Idea of spatial decomposition 45
5.6 Basic steps of spatial decomposition 46
5.7 Parallel implementation of P H A 48

6 D e s i g n o f b e a m cross s e c t i o n d i m e n s i o n s 50
6.1 Problem formulation 50
6.2 IS deterministic reformulation 51
6.3 F E M for beam element 52
6.4 IS reformulation with F E M approximations 57
6.5 Spatial decomposition for IS reformulation 60
6.6 E O reformulation wi th F E M approximations 67

6.7 Spatial decomposition for E O reformulation 69

7 C o n c l u s i o n s 72

B i b l i o g r a p h y 73

13

L i s t o f a b b r e v i a t i o n s 76

A O p t i m a l i t y c o n d i t i o n s 78

B S o l v e r C O N O P T 79

B . l Reduced gradient method 79
B.2 Generalized reduced gradient algoritm 81
B . 3 Newton-Raphson line search method 82

C P e n a l t y func t ions 83
C . l Exterior penalty function method 83
C.2 Interior penalty function method 85
C.3 Computational difficulties 85

D S a m p l e o f G A M S source code 86

E W h a t is o n t he C D 92

14

Chapter 1

Introduction

Wide variety of engineering problems is described by ordinary or partial differential equa
tion (O D E or P D E) constrained models. We can find a closed-form solution only for simple
O D E s or P D E s , hence we have to approximate their solution using numerical methods
based on discretization of domain in most cases. The most common approximation tech
niques for solving these equations include the finite difference method, the finite volume
method and also the finite element method that was chosen for our purpose. Then we can
approximate the ini t ial O D E / P D E constrained optimization problem by a mathemati
cal program. There are a lot of well developed and tested methods for solving these
deterministic programs.

In practice, some parameters and data from the given problem description are not
given as fixed quantities but very often are random. Therefore, we obtain stochastic
programs differing from the deterministic programs mentioned above.

The combination of these two areas leads in many cases to very large-scale O D E / P D E
constrained stochastic optimization problems wi th hundreds of variables or /and equations.
Solving these problems is difficult and can exceed the computational capacity. Hence, it is
desirable to employ some decomposition techniques.

There are several ways how to decompose optimization problems and we have de
veloped one completely new approach of spatial decomposition suitable for O D E / P D E
constrained problems. Our original approach is based on the progressive hedging algo
r i thm (P H A) allowing the scenario decomposition for scenario-based stochastic programs.
The algorithm can be implemented in parallel to reduce the computing time and the scale
of problems and can be used for deterministic and stochastic programs too. There are
some other decomposition algorithms but we used the P H A because there are some ex
perience wi th this algorithm on our department.

The spatial decomposition is presented on a particular problem from the civi l engi
neering area in the Chapter 6. Our goal is to find an optimum design of beam cross
section dimensions.

To be able to create the appropriate model we need to have a basic information
about modeling. We obtained the stochastic programming problem so we have to get r id
of uncertainties. Hence, we listed some deterministic reformulations. Then, the implemen
tation in G A M S software can be made. A l l mentioned concepts together wi th one short
solved example for better understanding could be find in the Chapter 3. One more diffi
culty comes wi th O D E constraints in our model, we have to approximate them by the finite
element method described in the Chapter 4.

15

Finally, we can involve the spatial decomposition based on the penalty functions ap

proach explained in the Appendix C. The main part of the algorithm comes from the pro

gressive hedging algorithm and other decomposition techniques listed in the Chapter 5.
There the progressive hedging algorithm is presented on a quite simple example. The spa

t ial decomposition was worked out for two deterministic reformulations in G A M S (an ex

ample of a source code can be found in the Appendix D) and the results were evaluated
with respect to a computational complexity. We must remember that the P H A converges
to the optimal solution only for programs with a convex objective function and a convex
feasible set what is not our case. But we are able to determine a pretty good starting
point for the algorithm to provide a convergence in computations.

The research was supported by F M E B U T projects no. FSIJ117 "Optimalizace
a numerické modelování úloh s fázovými a s t ruk tu rá ln ími přeměnami" and no. FSIJ

1222 "Aplikace metod numerického modelování a optimalizace v inženýrských úlohách
se změnou skupens tv í struktury". The thesis has been inspired by the problems solved
in a research plan from M Š M T of the Czech Republic no. MSM0021630519.

16

Chapter 2

Aims of master's thesis

The main aims of this master's thesis can be divided as follows:

1. We wi l l introduce main ideas of optimization wi th focus on stochastic programming
in which decisions are taken under an uncertainty modeled by random variables.
The uncertainties have to be removed by a deterministic reformulation. Therefore,
the list of these reformulations wi l l be given. The ideas of stochastic programming
wi l l be extended to two-stage stochastic programs. The most of the mentioned
notion and concepts wi l l be illustrated on a simple solved problem.

2. Since we are focused on the differential equation constrained stochastic programs,
we need a numerical method to treat up the derivatives. The finite element method
has been chosen. Hence, we wi l l give a basic information about this method and its
main steps.

3. Mathematical programs modeling real problems are usually large-scale. There
fore, a decomposition technique allowing a parallel implementation is required.
We wi l l give the basic insight to scenario decomposition methods focusing mainly
on the progressive hedging algorithm (P H A) . The progressive hedging algorithm
forms the basis of the original spatial decomposition approach. A simple example
solved by the P H A is included for better understanding of this algorithm. Fur
ther, we wi l l focus on our concept of the spatial decomposition and we wi l l evaluate
the advantages of the parallel implementation.

4. Last but not least, the foregoing knowledge wi l l be applied to a particular test
problem from the area of c ivi l engineering. The finite element method wi l l be used
for the approximation of the derivatives in the problem formulation. The spa
t ial decomposition wi l l be implemented for two deterministic reformulations of this
problem. Finally, the results wi l l be evaluated and discussed.

17

Chapter 3

Optimization

3.1 Motivation

Optimizat ion problems arise in many different disciplines. Optimizat ion plainly domi
nates the design, operation and planning of engineering systems. A bridge is designed
by minimizing its building costs but maintaining appropriate security standards. Railway
systems are expanded to minimize building and operation costs while operation and se
curity standards must hold. Analogously, if you decide to optimize an electric energy
system power demands has to be supplied at minimum costs. Note that this section is
based on [1].

Optimization is "the science of the best" in the sense that it helps us to make a de
cision which is not only respectable, but the best decision subject to certain constraints
describing the domain where the decision has to be taken. Mathematical programming
models provide the appropriate framework for these optimization decisions in a precise
and formal manner.

The objective to be minimized (or maximized) is expressed as a real-valued mathe
matical function named as the objective function. This function depends on one or several
decision variables whose optimal values are sought.

The restrictions that have to be satisfied define what is denominated the feasibility
set of the problem. This set should include many possible decisions which make sense
for the optimization problem. The feasibility region is formally defined through equality
and/or inequality conditions and we called them as constraints of the problem.

Mathematical programming problems are classified depending on the type of variables
and the objective function and the functions used for the constraints. If the variables are
continuous and both the objective function and the constraints are linear, the problem is
called as linear programing problem (LP). If any of the variables is integer or binary, while
the constraints and the objective function are both linear, the problem is denominated
mixed-integer linear programming problem (MILP). Analogously, if the objective function
or any of the constraints is nonlinear and all variables are continuous, the problem is
the nonlinear programming problem (NLP) and so on.

Linear programming problems are routinely solved even if they involve hundreds
or thousands of variables and constraints. Nonlinear problems are solved if they meet
certain regularity conditions related to the mathematical concept of convexity. Mixed-
integer problems are generally hard to solve and can be numerically intractable.

18

To be able to solve an optimization problem, we have to create the model of reality
first. We identify activities which we can control and influence. Each such activity is
associated wi th a decision variable whose value is to be decided. The remaining quantities
are constants in the problem. We create a real-valued objective function of the variable
values. The quantity is minimized or maximized depending on our goal. The activity
levels cannot be arbitrarily large, it is usually associated wi th some resources or demands.
So we create constraints. We can also meet wi th some uncertainties in our model, then
we are speaking about the stochastic programming problem (SP).

The modelling process comes wi th some difficulties. The communication can be dif
ficult because two groups speak different languages in terms of describing the problem.
The optimization problem quite often has uncertainties in the data, which moreover are
not always easy to collect or to quantify. There is often a conflict between problem solv
ability and problem realism. We can get thanks some optimization algorithms an optimal
value and an optimal solution, if they exist. This result is then interpreted and evaluated,
which may lead to alterations of the model, and to questions regarding the applicability
of the optimal solution. The optimization model can also be altered in order to answer
sensitivity analysis type questions concerning the effect of small variations in data. The fi
nal problems are connected to the interpretation of the result. The result has to make
sense to those who want to use the solution. It must be possible to transfer the solution
back into the world where the problem came from.

The forming a good optimization model is basically a difficult process. It is often pos
sible to construct more than one form of an mathematical model that represents the same
problem equally accurately, and the computational complexity can differ between them.
A well-designed model is crucial for success of the application.

3.2 History of optimization
Several branches of mathematics are associated wi th the optimization: analysis, topology,
algebra, discrete mathematics, etc. Optimizat ion is also sometimes called as mathematical
programming (G. B . Dantzig [10], 1947-1949). The term program has nothing to do wi th
a computer program, it should be understood as a decision program, that is a strategy
or decision rule. This section is based mainly on the literature referenced in [1].

The history of optimization is quite long. Many geometrical or mechanical prob
lems, that Archimedes, Euclides and others formulated and also solved, are optimization
problems. We can mention, for instance, the problem of maximizing the volume of a three-
dimensional object built from a two-dimensional sheet of metal wi th a given area.

Many years later some other famous mathematicians like D . Bernoull i , J . L . Lagrange,
L . Euler or K . Weierstrass developed variational calculus by studying problems in applied
physics such as how to find the best trajectory for a flying object. The notion of optimality
and how to characterize an optimal solution was developed at the same time.

The fastest development of optimization occurred in the Second Wor ld War, when
the US and Br i t i sh mil i tary commands hired scientists from several disciplines to try
to solve complex problems regarding the best way to construct convoys in order to avoid
or protect the cargo ships from German submarines and how to best cover the Br i t i sh
isles with radars and so on.

Among the scientists that took part in the Second Wor ld War we find several re
searchers in mathematics, physics, and economics, who contributed greatly to the foun-

19

dations of the optimization as we now know it. We mention only few of them here.
G . B . Dantzig invented the simplex method for solving the linear optimization problems,
as well as the whole machinery of modelling such problems. The knowledge of duality
came from J . von Neumann. A large part of the duality theory was developed in collab
oration wi th the mathematician A . W . Tucker.

The stochastic programming, where uncertain parameters occurred, has been studied
since 1955, when G . B . Dantzig introduced a concept of the linear programming un
der an uncertainty. The theory for stochastic programs is much more complicated and it
is harder to find some generalized laws for a wide class of problems. The first important
theoretical results were published in the sixties by pioneers of the stochastic program
ming A . Madansky, R. Wets, A . Prekopa, etc. Lately, the first monographs appeared
(e.g. by P. Ka i l) . The seventies brought deep theoretical results (e.g. from R. T. Rock-
afellar). A remarkable progress was made in the eighties wi th development of algorithms
and the multistage stochastic programming (J. R. Birge [5]). New areas of interest were in
teger stochastic programming problems and stochastic programming networks (S. W . Wal
lace [19]). Usually we obtain large scale problems wi th hundreds of variables so we
need some decomposition techniques to be able to solve our problems in a finite time.
In the nineties, the question related to the availability of modelling and algorithmic tools
and parallel implementation of algorithms has become more an more important.

3.3 Key concepts of mathematical analysis
The analysis of optimization problems and related algorithms requires the basic under
standing of the multidimensional analysis and other branches of mathematics. Here we
only give the essential definitions, and basic facts that we wi l l use in subsequent chapters.

D e f i n i t i o n 3 .3 .1 . A set S C M n is called convex if for each x x , x 2 G S, the point

A x 1 + (1 - A) x 2

for VA G (0,1) belongs to S. This says that all points on a line connecting two points
in the set are in the set. A set is convex if, from everywhere in S, all other points of S
are visible.

T h e o r e m 3.3 .1 . Suppose that Sk, k G K, is any collection of convex sets. Then, their
intersection

s=f]sk

k&K
is convex set too.

Proof. Assume that x 1 and x 2 belong to S. Then x 1 G Sk and x 2 G Sk for al l k G K.
Take A G (0,1). B y the convexity of the sets Sk, A x 1 + (1 — A) x 2 G Sk for all k G K. So,

A x 1 + (1 - A) x 2 G p | Sk = S.
k&K

•

20

D e f i n i t i o n 3.3.2. A function / : S —> M., where S is a convex subset of M.n, is convex if
for any x i , x 2 6 S and any A G (0,1)

/ (A X l + (1 - A) x 2) < A / (X l) + (1 - A) / (x 2)

holds.

In other words, a function is convex if the function between two arbitrary points is
lower 1 or equal as the straight line between these two points.

D e f i n i t i o n 3.3.3. Consider S C M™ is a nonempty set and / : M n —> M . We say that
x m i n G >S is a global minimum of / over £ if / attains its lowest value over S at x m i n , i.e..

/(Xmin) < / (x) , V x G 5".

In the following text we wi l l use the norm, or the length of a vector v e l " wi th the fol
lowing meaning

V (v, v)

We can use some other norms of course, but this is the most common one. Thanks to norm
we can introduce the open Euclidean ball wi th radius e centered at x as

£? e (x) = { y G Rn\ | | y - x | | < e } .

We can use the open ball for the following definition.

D e f i n i t i o n 3.3.4. Consider S C M™ is a nonempty set and / : M n —> M . We say that
x m i n G >S is a /oca/ minimum of / over £ if

3e > 0 such that / (x m m) < / (x) , V x G S1 fl £ > e (x m m) .

Note that a global minimum in particular is a local minimum. When is a local mini
mum the global one? This question is resolved in the case of convex problems by the fol
lowing fundamental theorem.

T h e o r e m 3.3.1 (Fundamental theorem of global optimality). Consider S C M n is
a nonempty set and f : M n —> M , where S is a convex set and f is convex on S. Then,
every local minimum of f over S is also the global minimum.

Proof. Suppose that x m i n is a local minimum but not the global one, while x is the global
minimum. Then / (x) < / (x m i n) . B y the convexity of S and / ,

Ax + (1 - A) x m i n G S,

/ (A x + (1 - A) x m i n) < A / (x) + (1 - A) / (x m i n) < / (x m i n)

for each A G (0,1). Choosing A > 0 small enough leads to a contradiction to the local
optimality of x m i n . •

We can image from the proof design how it works. If x m i n is a local minimum, then
/ cannot go down-hill from x m i n in any direction, but if / has in x a lower value, then /
has to go down-hill sooner or later. No convex function can have this shape.

This amount of theory should be enough for this moment, we wi l l add some other
definitions, theorems and some notions later.

1 Word lower should be understood in the sense of the comparison between the y-coordinates of the re
spective function at the same coordinates.

21

3.4 Deterministic programming
We have already mentioned what the mathematical programming is about. In this section
we would like to describe deterministic programs. Deterministic programs are mathemat
ical programs for which all data 2 is deterministic, i.e., fully known.

A mathematical program was only mentioned but we have to formulate formally
the general mathematical programming problem. A large class of situations involving
optimization can be expressed in the following form.

D e f i n i t i o n 3 .4 .1 . A general mathematical programming problem is defined as

min / (x) , (3.1)
X

s.t. x e C,

where x is a vector of decision variables, C C M n is a feasible set, n G N and / : C —> K
is an objective function to be minimized (eventually maximized). The feasible set C is
determined by equality or inequality constraints

C = {x | g(x) < 0, h(x) = 0, x e X},

where X CRn.

Sometimes we can obtain more than one objective function to be minimized or max
imized. For example, we want to maximize a rigidity of a beam that we are designing
and at same time minimize its weight. These types of problems are difficult to handle
because the objective functions are often contradictory.

One possibility how to labor wi th more functions is to assign weights to each objective
function depending on their relative importance and then define a composite objective
function as a weighted sum of all these functions, as follows:

/ (x) = wx/xtx) + • • • + wNfN(x), (3.2)

where wi,... ,WN are suitable weighting factors and TV e N , TV is finite. The success
of the method clearly depends on clever choice of these weighting factors.

Another possibility is to select the most important goal as the single objective function
and treat the others as constraints wi th reasonable l imit ing values. Detailed information
about a multiple criteria optimization can be found in [33].

The methods for solving the general form of the optimization problem require a con
siderable numerical effort. More efficient methods are available for certain special forms
of the general problem. For this purpose, the optimization problems are usually classified
into the following types.

D e f i n i t i o n 3.4.2. A n unconstrained problem is defined as

m i n / (x) ,
X

where x is a vector of decision variables and / : M. —> M. is an objective function.

2 B y the word data we mentioned parameters and coefficients of the program.

22

These problems have an objective function but no constraints. Obviously the objective
function is nonlinear, because the minimum of an unconstrained linear objective function
is — oo.

Many real world situations can be modeled as linear programs, it means that we have
a linear objective function and constraints are linear too.

D e f i n i t i o n 3.4.3. A linear programming problem in the standard form is a problem
of the form

min c T x ,
X

s.t. A x = b, (3.3)

x < 0 ™ ,

where x e W1, e e l ™ and c T is transposed c , A e M m x n and b e M.m.

Each linear program can be transformed into the standard form by following few steps:

• Express the objective function in the minimization form - the minimization is equiv
alent with the maximization of the objective function multiplied by (—1).

• Transform all the constraints into equality constraints by adding additional vari
ables. We also require non-negative right-hand sides of constraints.

• Transform any unrestricted and non-positive variables into non-negative ones -
by splitting it into two parts, the first is positive and the second is negative.

The standard form is the form that the simplex method requires. The simplex method is
efficient and robust algorithm for solving these problems. We have to transform a solution
gained by the simplex method back to the origin variables.

If the objective function is quadratic and all constraint functions are linear functions
of decision variables, the problem is called a quadratic programming problem. The problem
from the progressive hedging algorithm formulation presented in the fourth chapter is
an example of a quadratic optimization problem.

General constrained optimization problems, in which one or more functions are non
linear, are called nonlinear programming problems.

Because of the straight relation of mathematical programs to the underlying programs
in the stochastic programming we define a parametric mathematical program.

D e f i n i t i o n 3.4.4. A parametric mathematical program is defined as

min / (x , a) ,
(3.4)

s.t. x e C (a) ,

where a e M f c is a constant parameter and C(a) is the feasible set.

Some other types of mathematical programs can be found, for example if all variables
are integer we are talking about integer programs, if only some variables are integer then
it is the mixed-integer programming, et cetera.

There are many theoretical results in mathematical programming theory and many
methods for solving different problems were described. Their summary can be find for in
stance in [1].

23

3.5 Stochastic programming
In the previous section we discussed deterministic programs. This section covers a case
when the decisions must be made under an uncertainty so the model parameters are not
completely known. These optimization applications can be modeled by the stochastic
programming. Model parameters of a problem can be considered uncertain and are thus
represented as random variables. So we need to introduce the basic concepts of probability
theory.

We can model the uncertainty by an experiment, the result of an experiment is called
its outcome. In general, we cannot predict wi th a certainty the outcome of an experiment
in advance of its completion, we can only list the collection of possible outcomes.

D e f i n i t i o n 3 .5 .1 . The set of all possible outcomes of an experiment is called the sample
space and is denoted by Q.

We think of events as subsets of the sample space Q. Many common situations require
that the collection of events has to be closed under the operation of taking countable
unions. A n y collection of subsets of Q wi th these properties is called a a-field.

D e f i n i t i o n 3.5.2. A collection J^~of subsets of Q is called a a-field if it satisfies the fol
lowing conditions 3:

(a) 0 G

(b) if Au A2,... G & then U = i A e ^

(c) if A G & then Ac G

We wish to be able to discuss the likelihoods of the occurrence of events. So we define
a probability function P applied to the set of events. Likelihoods of the members of & is
called a probability measure.

D e f i n i t i o n 3.5.3. A probability measure P on (Q, is a function P : & —> [0,1] satisfying

(b) if A\, A2,... is a collection of disjoint members of in that Ai fl Aj = 0 for all pairs
i,j satisfying % ^ j, then

The triple P) , comprising a set Q, a a-field & of subsets of Q and a probability
measure P on (fi, is called a probability space. Furthermore, if F(A) = 1, we say that
A occurs almost surely, the abbreviation a.s. is often used.

We shall not always be interested in an experiment itself, but rather in some conse
quence of its random outcome. These consequences may be thought as a function which
map Q into the real line M., and these functions are called random variables.

D e f i n i t i o n 3.5.4. A random variable is a function £ : Q —> M. wi th property that
{u G fl : £(a>) < x} G J^ fo r each 1 6 I Such a function is said to be ^-measurable.

3AC is complement of A , event that no outcome in A occurs.

(a) P(0) = 0, P(fi) = 1,

24

Every random variable has a distribution function which is very important and useful.

D e f i n i t i o n 3.5.5. The distribution function of a random variable £ is the function
F : R -»• [0,1] given by = P (f (w) < x) .

D e f i n i t i o n 3.5.6. A mean value, or an expectation, or an expected value of the random
variable £ : f2 —>• R is defined to be

E (0 = / C M d P M , (3.5)

where the integral converges absolutely 4 . The expectation for discrete random variable 5

£ is given by

i,

where Pi = P{£ = and the series converges absolutely 6 .

D e f i n i t i o n 3.5.7. A variance (also is called as the 2nd central moment) of the random
variable £ : Q —>• R is defined to be

v a r (0 = E (£ - E (0) 2 -

More detailed information, further definitions and concepts from the probability theory
can be found in [16].

Now we have defined the uncertainty what is the main ingredient in many decision
problems. So we can define problems where the model parameters are not completely
known.

Stochastic programming (SP) uses approach based on probabilistic models of the un
certainty. The objective functions and the constraints of the corresponding mathematical
programming model can be defined by averaging possible outcomes or considering prob
abilities of events.

The first step to obtain stochastic program is the formulation of an underlying pro
gram. This can be done easily from the parametric mathematical program by replacing
some constant parameters by random variables in (3.4).

D e f i n i t i o n 3.5.8. A n underlying program (UP) is defined as

min / (x , w) ,
(3.6)

s.t. x G C(u),

where u G Q is a random vector element.

The random data is usually realized by a finite number of parameters. Therefore,
the objective function is given as / (x ,u ;) = / (x , £(a>)), where £(o>) : £1 —> R ^ is a finite
dimensional random vector defined on probability space (Q, JP, P) and / (x , £) is a function

4 T h e integral / f(x)dx of a real or complex-valued function converges absolutely if f \f(x)\dx < oo.
A A

5 T h e random variable £ is called discrete if it takes values in some countable subset {£i, £2,. . . } of R.
00 00

6 A real or complex series ^ an converges abolutely if ^2 |a„| < 00.

25

of two vector variables x and £. Realization of £ is £(u)s) for each us G Q and we wi l l use
the notation £ s for this realization.

A n important question is how to work with the uncertainty or in other words the ran
domness of parameters. The program (3.6) is not well defined, because we do not know
what is the meaning of the minima unti l we observe the realizations of We need to as
sign the deterministic reformulation to (3.6) to be able to solve this program correctly.
We deal wi th the probability distribution instead of constant parameters in case of deter
ministic programming. Let us assume that the probability distribution of £ is completely
known.

D e t e r m i n i s t i c reformulations

We wi l l now present different kinds of deterministic reformulation of the underlying pro
gram described in (3.6), that correctly interpret random parameters.

The main question is when the decision x has to be taken. Whether before the ran
dom parameters £ are observed or after the observations £ s are known. When the de
cision x is made after observing the randomness £, this case is called the wait-and-see
(WS) approach. This approach is applicable when we have the perfect information about
the future. In this case, we can modify our decision by the observation, that's why
the decision x(u;) and also the objective function f(x(u), £(u))) are random variables.
This approach has its importance specifically for long-term planning.

But the decision makers must often take a decision before the observations of £ are
known. Therefore, the decision x must be the same for any future realization of £ G S,
where S is the space of al l possible realizations of We usually call this approach
as here-and-now (HN) approach in stochastic programming.

Several approaches of deterministic equivalents of the objective function and of the fea
sible set can be done. We can divide the equivalents into two classes, the equivalents
of the objective function and equivalents of the feasible set. Combining these two classes
wi l l result in the deterministic equivalents of (3.6), some typical deterministic equivalents
are listed further. A l l discussed equivalents define one-stage stochastic program, the struc
ture of equivalents is even simpler because the randomness can enter only the objective
or the feasible set. The used notion was taken from [26].

We denote the optimal objective function values for any deterministic reformulation •
as z^in and optimal decision as x ^ i n . We assume that the expected value is taken wi th re
spect to a known probability distribution and that E(£) and E (/ (x , £)) exist and are well
defined.

D e f i n i t i o n 3.5.9. Wait-and-see (WS) deterministic reformulation of the underlying pro
gram (3.6) is defined by

E * (/ (x W S (0 , 0) , (3-7)
where

/ (x w s (0 , 0 = min / (x (0 , 0 ,
x «) (3.8)
s.t. x (0 e C (0 , V £ e S .

Its optimal value is z^f? and the optimal solution is denoted by x ^ | . Unfortunately,
finding the W S solution may be impossible if the information about the future is not
available. Therefore, the H N approach is usually used and several H N deterministic
reformulations are commonly used instead of the W S equivalent.

26

D e f i n i t i o n 3.5.10. Individual scenario (IS) deterministic reformulation of the underlying
program (3.6) is defined as

min / (x , £ s) ,
(3.9)

s.t. x e C (£ s) ,

where £ s G S is a specified individual scenario. Denote its optimal value and solution
by i and x ^ i n .

This reformulation is based on the idea that the random parameters in the (3.6)
are replaced by a typical realization £ s called a scenario. It is useful when we have
a recommendation from the experts that some scenario is a typical realization of

Another frequently used reformulation is obtained when we remove the uncertainty
by taking its expected value.

D e f i n i t i o n 3 .5 .11. Expected value (EV) deterministic reformulation of the underlying
program (3.6) is defined as

min / (x , E (0) ,
(3.10)

s.t. x e C (E (£)) ,

where E(£) is the expected value of see (3.5) for the definition of expected value.
The optimal value is denoted z^n and the optimal solution as x ^ .

This program is useful for ini t ial studies of applications of stochastic programming,
but it often leads to solution wi th low reliability so it is always unacceptable for the users.

Further we could want to measure how good is the solution of E V deterministic
reformulation for the underlying objective function, so we define the following character
istic.

D e f i n i t i o n 3.5.12. Consider the E V deterministic reformulation wi th optimal solu
tion . We define the expected objective function value for the optimal solution of the ex
pected value deterministic reformulation (EEV) as

E E V = ^ (/ (x ^ , 0) . (3-11)

The E E V characteristic can be used to measure whether z^n looks realistic by com
puting the difference

E E V -

between the optimistic forecasted objective function value z^[n and the true average cost
computed by the E E V .

We can define one more deterministic equivalent using the expected value incorporated
in the objective function.

D e f i n i t i o n 3.5.13. Expected objective (EO) deterministic reformulation of the underlying
program (3.6) is defined as

min E € (/ (x , 0) ,
(3.12)

s.t. x e C (£) a.s.

and we denote the minimal objective function value as z^n and the optimal solution
REO

27

Between the E O and the E V solution a relation can be found, this relation is called
Jensen's inequality (1906).

T h e o r e m 3.5.1 (Jensen's inequality). For function / (x , £) , which is convex in the in
equality E (/ (x , £)) > / (x , E (£)) is satisfied.

It seems reasonable to compare the optimal values for different equivalents. Therefore,
we define the following value that measures a relation between the E E V and the optimal
value of the E O objective function.

D e f i n i t i o n 3.5.14. The value of stochastic solution (VSS) is defined as

V S S = E E V - z m ° . (3.13)

The V S S characteristic measures how much can be saved when the true H N approach
is used instead of the E V approach. It expresses how suitable is to use the E V approach
instead of the E O approach and also how many could be gained by solving the E O program
instead of the simpler E V program. Unfortunately we have to compute the E O solution
and the E V V characteristic. A small value of the V S S means that the approximation
of the stochastic program by the E V program is a good one.

In the similar way, we try to find how to compare optimal solutions of the W S
and the H N programs. We consider the E O program as a suitable representative of the class
of H N deterministic reformulations.

D e f i n i t i o n 3.5.15. The expected value of perfect information (EVPI) is defined as

E V P I = - z™. (3.14)

It measures the maximum amount a decision maker would be ready to pay in return
for complete (and accurate) information about the future. The large E V P I says that
the information about the future is valuable, a small value of the E V P I informs about little
savings when we reach the perfect information.

The following relations between the defined values have been established by A . Madan-
sky and J . Jensen.

T h e o r e m 3.5 .1 . The defined values satisfied the following relations.

WS < EO < F F V

and moreover for stochastic programs with fixed objective coefficients and any convex ob
jective function /(£) of £:

EV < WS
min — min'

Proof. The proofs are obtainable from [5]. •

Because in the engineering problems we usually can not buy any additional informa
tion about the future, therefore the V S S becomes more practically relevant characteristic
of using stochastic programming than the E V P I .

We can also use some other reformulations such as a variance objective (VO) if we
want to avoid the large fluctuations of / (x , £) . It can be also useful to find compromise

28

between two deterministic reformulations, e.g., between E O and V O . But this is not goal
of this thesis, more detailed information can be find in [27].

In some models, constraints need not hold almost surely as we assumed to this point.
They can instead hold wi th some probability. These probabilistic, or chance constraints
take the form:

P(A\UJ)X > h\oj)) >p\

where 0 < p% < 1 and % — 1 , . . . , / is an index of the constraints that must hold jointly.
We can, of course, model these constraints in a general expectational form. Or we can
provide the deterministic equivalents of these constraints. More detailed information
in [5].

Two-stage stochastic p r o g r a m m i n g

In the previous part, we discussed stochastic programming problems in which the decision
maker took only one decision. In this section we mention programs in which the decision
maker wi l l take two decisions in two different moments in time.

The first decision x is taken when there are no available information about the fu
ture realization £ s of random parameters This decision is called a first-stage decision
and the period when this decision is taken is called the first stage (master program).

The second decision y (£) is taken after particular realization of random parameters £ s

becomes known. The decision is called a second-stage decision and the corresponding
period is called the second stage (subprogram). Such a decision process can be described
as follows:

decision x —> observation £ s —> decision y (£ s) ,

where y (£) means dependence of y on
We may put together the first-stage and the second-stage program to have a complete

mathematical description of the discussed decision situation. We have chosen the linear
program for its simplicity.

D e f i n i t i o n 3.5.16. Two-stage stochastic linear program is the problem of finding

min (c T x + E £ (Q (x , £))) ,
X

s.t. A x = b,

x > 0,

where Q(x , is the optimal value of the second stage problem

min q (£) T y (£) ,
y

s.t. T (0 x + w (£) y (0 = h (0 ,

y (£) > o.

The vector x represents the first-stage decision. The second-stage decision y (£) de
pends on the vector £ = (q, h, T, W) where some elements can be random. The matr ix T is
called technology matrix and W is recourse matrix. If the matrix W is fixed, the program
is called two-stage program with fixed recourse. The two-stage programs are sometimes
called programs with recourse.

29

For a given realization £ s , the second-stage data £s = (q s , h s , T s , W s) become known.
The notation was simplified in the following manner q s = q (£ s) and so on. The second-
stage decision y s or y s (x) must be taken. The decisions y s are typically not the same
under different realizations of £ s . Bu t the decisions have to be chosen in order that
the constraints hold almost surely, i.e., for all £ G S wi th the potential exception of set
wi th zero probability.

The objective function is composed of a deterministic term c T x and the expectation
of the second-stage objective q j y s taken over all realization of the random parameters
The second-stage term is more complicated because the value y s is the solution of a linear
program for each realization of uncertainty £ s . To stress this fact we can use the notation
of a deterministic equivalent program. For each realization of let

Q (x , 0 = m i n q (£) T y (0 ,
y

s.t. W (£) y (0 = h(£) - T (O x ,

y (0 > o

be the second-stage value function. Then, define the expected second-stage value function

Q(x) = E 4 Q (x , 0

and the deterministic equivalent program is

min c T x + Q(x) ,
X

s.t. A x = b,

x > 0.

This representation of a two-stage stochastic program illustrates that the major difference
from a deterministic formulation is in the second-stage value function. If that function is
given, then a stochastic program is just an ordinary nonlinear program.

The generalization of the presented two-stage stochastic programs are the multi-stage
stochastic programs that combine time and uncertainty in a more complex way. There
are several stages (more than two) and the decisions are taken sequentially in different
moments and also the realizations of random parameters sequentially become known.
Some difficulties wi th possible dependencies of random parameters across the stages can
occur. The two-stage program is the special case of multi-stage program. The multi-stage
stochastic programs were not solved in this thesis, we mentioned them only wi th a refer
ence to the further research. More detailed information about the stochastic programming
can be found in [5], [19], [27], [30].

3.6 G A M S
A l l following models have been implemented in the optimization software G A M S . There
fore, we give here a basic information about General Algebraic Modeling System (G A M S) ,
which was started as a research project at the Wor ld Bank in 1976. G A M S went com
mercial in 1987.

G A M S was developed to provide a high-level language for the compact representation
of large and complex models, to allow changes to be made in model specifications simply

30

and safely, to allow unambiguous statements of algebraic relationships and to permit
model descriptions that are independent of solution algorithms.

The G A M S model representation is in a form that can be easily read by people
and by computers. This means that the G A M S program itself is the documentation
of the model, and that the separate description required in the past is no longer needed.

The modelling language follows modelling steps discussed in the Section 3.1. A G A M S
model is a collection of statements in the G A M S Language. The terminology adopted is
as follows: indices are called Sets , a given data are called Parameters, decision variables
are called V a r i a b l e s and constraints and the objective function are called Equa t ions .
Moreover we need the keyword Model followed by the name of the model followed by a list
of equation names, which determines the collection of Equa t ions included in a model.
The statement So lve calls the solver. After that we type name of the model to be
solved and the keyword u s i n g wi th some available solution procedure (e.g., l p for linear
programming problems or n i p for nonlinear one). There are many others keywords,
but we have mentioned the most important of them. The statements are consistent
to mathematical programming problem parts. G A M S has a wide Model Library which is
full of useful examples and models.

The solvers differ in the methods they use, in whether they find a globally optimal
solution wi th proven optimality, in the size of models they can handle, and in the format
of models they accept. C P L E X is a solver for linear programs and is based on the sim
plex method described for example in [1]. C O N O P T is a solver especially for nonlinear
programs and its algorithm is based on the generalized reduced gradient (G R G) method.
Since we solved nonlinear programs and used the C O N O P T solver, you can find some ad
ditional information about this solver in the Appendix B . B A R O N is a solver for nonlinear
and mixed-integer nonlinear programs. It implements algorithm of the branch-and-bound.

We have encountered some difficulties during the G A M S implementation of our mod
els. For example, the matrix operations such as multiplication or summing of two matrices
are not implemented in this software and you have to create them yourself. The absolute
value is a non-smooth function and may cause numerical problems, especially when the ar
guments of the function are variables. Therefore, we have utilized a known transformation
for absolute values illustrated further. The term |x| < 1 can be replaced by the following
two terms

x < 1,

-x < 1.

We cannot plot our results in G A M S directly, so all graphical results have been ob
tained by M A T L A B R2009b which was developed by The MathWorks, Inc., U S A . Figures
not directly related to outcomes from G A M S were made by mfpic, a package of macros
for M E T A P O S T - part of L T e X , described in [21].

3.7 News vendor problem
This section presents a classical simple stochastic programming problem taken over with so
me additional comments from [5]. We extended the problem solution by some notes
and mainly by implementation in G A M S . This problem is included to help in under
standing of the previous theory.

31

Let us formulate our problem. A news vendor goes to the publisher every morning
and buys x newspapers at a price of c per paper. This number is usually bounded above
by some limit u, representing either the news vendor's purchase power or a limit set
by the publisher to each vendor. The vendor then walks along the streets to sell as many
newspapers as possible at the selling price q. A n y unsold newspaper can be returned
to the publisher at a return price r, wi th r < c.

We are asked to help the news vendor decide how many newspapers x to buy every
morning. Demand for newspapers varies over days and is described by a random variable £.

It is assumed here that the news vendor cannot return to the publisher during the day
to buy more newspapers. Other news vendors would have taken the remaining newspa
pers. Readers also only want the last edition.

To describe the news vendor's profit, we define y as the effective sales and w as the num
ber of newspapers returned to the publisher at the end of the day. We may then formulate
the problem as

min cx + Q(x),
s.t. 0 < x < u,

where

Q (x) = E c g (x , 0 ,

and

Q (x , £) = m i n (-qy(0 - rw(£)),

s-t. y(0 < f,

y(0 + w(0<x,
y(OMO>o,

where Eg denotes the expectation wi th respect to £.
In this notation, — Q(x) is the expected profit on sales and returns, while —Q(x,£) is

the profit on sales and returns if the demand is at a level £. So we used the E O deter
ministic reformulation, where term cx can be given out of the expectation because it is
not function of £. The model illustrates the two-stage aspect of the news vendor prob
lem. The buying decision has to be taken before any information is given on the demand
(the H N approach). When the demand is known in the so-called second stage, which rep
resents the end of the sales period of a given edition, the profit can be computed (the W S
approach). The model is a typical example on the two-stage stochastic problem with fixed
recourse which was mentioned earlier.

The profit can be computed analytically taking a few steps and applying some simple
rules. Y o u can find the exact procedure how to compute the analytical solution in [5].
The optimal solution has the following form:

0 if jEf < F(0) ,

« i f H > F («) ' (3-15)
F-1 i^r) otherwise,

where F(£) represents the distribution function of £ (see (3.5.5) for a definition of the dis
tr ibution function). So the vendor may sti l l need to consult a statistician, who would

32

provide an accurate the distribution function Only then a precise solution x m i n wi l l
be available.

Moreover we implemented our model into G A M S . We do not further require integer
values for variables as it is defined by selling pieces of newspaper because we emphasize
explanatory role of our example.

We used specified values of parameters and also the specified distribution function.
We supposed that c = 0.5 $, q — 1.5 $, r = 0.2 $ and demand is uniform on the interval
[50,150]. The simple G A M S model that utilizes approximation of the expected value
of the objective function by sampling from the uniform distribution to get the scenario-
based two-stage program follows.

$ t i t l e The news v e n d o r p r o b l e m

S e t s

P a r a m e t e r d (s)
d (s) =

P a r a m e t e r

P o s i t i v e v a r i a b l e s

S c a l a r s

V a r i a b l e

E q u a t i o n

P (s)
P (s)

X

y (s)
w (s)

c
q

ob j

s c e n a r i o s

n e w s p a p e r demand;
u n i f o r m (5 0 , 1 5 0) ;

s c e n a r i o p r o b a b i l i t y ;
l / c a r d (s) ;

b o u g h t q u a n t i t y
e f f e c t i v e s a l e s
r e t u r n e d q u a n t i t y ;

p r i c e p e r p a p e r
s e l l i n g p r i c e p e r p a p e r
r e t u r n p r i c e

/ 1 * 1 0 2 1 /

/ 0 . 5 /
/ 1 . 5 /
/ 0 . 2 / ;

v a r i a b l e f o r o b j e c t i v e f u n c t i o n ;

o b j e c t i v e o b j e c t i v e f u n c t i o n
d e m a n d b o u n d (s) s o l d p a p e r s b o u n d b y demand
i n v e n t o r y (s) i n v e n t o r y b o u n d ;

o b j e c t i v e . , o b j =e= c * x + s u m (s , p (s) * (- q * y (s) - r * w (s))) ;
d e m a n d b o u n d (s) . . y (s) =1= d (s) ;
i n v e n t o r y (s) . . y (s) + w (s) =1= x;

m o d e l n e w s b o y / a l l / ;
s o l v e n e w s b o y u s i n g l p m i n i m i z i n g o b j ;
d i s p l a y x . l , o b j . l ;

We ran the model and got the optimal solution and the optimal value of the ob
jective function in this solution. The news vendor should buy = 125 newspapers
from the publisher and then he can expect gain around — z^n = 86 $ according to the ob
tained solution.

31 VARIABLE x . L
VARIABLE o b j . L

125.582 b o u g h t q u a n t i t y
-86.898 o b j e c t i v e f u n c t i o n

33

We can check our result wi th the analytical solution from (3.15). We assumed that
the demand has the uniform distribution on [50,150] wi th the distribution function

(0 £ < 0 ,
nt)={ ifeSo 5 0 < e < 1 5 0 ,

(1 f > 150.

The inverse function (also called the a-quantile of F) inside of [50,150] has the form

F~1(a) = 50 + a - (150 - 50).

Now we have all necessary information and we can compute the exact optimal solution.

xmm = F~1 (^—^] = 50 + ^ ^ - (1 5 0 - 5 0) = 50+ 1 - 5 ~ ° ' 5 - 1 0 0 = 126.923 newspapers.
\q — r J q — r 1.5 — 0.2

We can see, that the solution from the G A M S implementation is little bit more pessimistic
than the exact one, because it is computed with a not large enough number of realizations
of the uncertainty (scenarios) obtained by sampling of the uniform dsitibution.

We also solved this model as the deterministic one by using the expected value
of the demand instead of a random demand, i.e., the E V reformulation was employed.
We obtained the optimal solution x^(n = 100 newspapers and the value of the objective
function in this solution is — z^fn = 100 $.

We can check if the relation mentioned in the Theorem 3.5.1 holds

-100 < -86.898.

Some of the defined concepts and relations were implemented and demonstrated on this
simple example. We hope that it could be profitable for understanding of the basic ideas
of the stochastic programming.

34

Chapter 4

Finite element method

Mathematical modeling is a simplifying step. But models of physical systems are not
necessarily simple to solve. They often involve ordinary or partial differential equations
in space and time subject to boundary and/or ini t ial conditions.

We can treat up derivatives by analytical or numerical solutions. Analy t ica l solutions
cannot be applied to a wide class of problems or the problems have to be restricted
to regular geometries and simple boundary conditions. So often a numerical evaluation is
useful. Here is where the finite element method and the digital computer enter the scene.

Unlike the traditional finite difference method, the finite element method is not ob

tained as an approximation of the differential equation directly. Instead integrated forms
of the differential equations are used. In the following section inspired by [17] we shall
look at a simple onedimensional example and deduce the formulations that we need in or

der to formulate the finite element method discretization for our further mathematical
programing model.

The theoretical side of the finite element method for finding the solutions of partial
differential equations based on the functional analysis such as a convergence to an optimal
solution was deeply studied at the Institute of Mathematics at the Faculty of Mechanical
Engineering at Brno University of Technology, e.g. by M . Zlámal, A . Ženíšek, J . Franců
or L . Čermák , their results can be studied in [15], [9] written in Czech or in [35], [13] written
in English. We are focused on a practical application of this method not on a theoretical
view. The eligibility of the solution can be checked from the physical meaning of the solved
problem.

We consider the balance of vir tual work for a simple problem, which covers many different
physical problems: find v such that

where c is a velocity parameter, assumed known. This equation describes a heat con

duction in a fluid flow with a flow velocity c, with a temperature v sti l l being a function

4.1 Vir tua l work

35

of a position x. Following boundary conditions must be supplied

v(0) = ^ (l) = 0,
ax

j A l) - cu(l) = 0.
ax

We start by mult iplying (4.1) by a function u, such that u(0) = 0, followed by inte
grating the differential equation over the domain

' d / _ ^ ^ = >
dx \ ax J J

o o
We use the integration by parts to obtain

, dv\ d « .
cv — k— —ax +

ax J ax
, dv 1 r CV — K — = dx o J

fudx,

and apply the boundary conditions to arrive at the following formulation of (4.1): find v
such that

i i
dv \ du f

-cv + k— I — dx = / fudx, (4.2)
dx J dx J

0 0
for all admissible u called as a test function, we say that the differential equation has been
tested with u. Clearly some restrictions have to be put on our choice of u and on the so
lution v. A t the very least, they have to be nice enough for the integrals in (4.2) to exist.

The basic idea is that if we just test wi th a sufficiently large number of test functions
(indeed, infinitely many), it seems probable that the differential equation is forced to hold
point-wise. B y use of the partial integration, we can go back one step and write (4.2) as

' d / . dv\\ ,
/ + — I — cv + k— udx = u.

dx \ dx J J
o

so that if we are allowed to choose v and u from a sufficiently large class of functions,
then we may say that the vir tual work principle is equivalent to the differential equation.
A n important point is that the equations of vir tual work allow us to work with functions
that are less regular than required for solutions to the differential equation. Clearly, this
is beneficial if we wish to use (4.2) to generate approximate solutions, which normally are
less regular than the exact solution.

It is common in engineering to interpret (4.2) as a statement about the balance between
the external and the internal virtual work, the test functions are then regarded as virtual
displacements.

4.2 Galerkin's method
Galerkin's method is an approximation method which was based on the vir tual work
equation (4.2). If the approximate solution is written as

n
V(x) = ^TiaiNi(x), (4.3)

36

where % G {1,2,... ,n}, the Oj are unknown real numbers and the iVj(x) are known, simple
functions, such as polynomials or trigonometric functions, then one should make sure that
(4.2) is satisfied for all admissible u of the same form as V, i.e., u = J27=i biNi(x). The only
way to ensure this is to enforce (4.2) for each Ni separately, since then the equation must
also hold for an arbitrary combination of the JVj 1.

Thus, one should simply choose as test functions Nj, j G { 1 , 2 , . . . , n}. W i t h this choice
we find that we have to solve the algebraic problem

for j — 1 ,2 , . . . , n. So, we obtained the Galerkin's procedure. It is always possible to take
a general differential equation and mult iply wi th a test function, integrate over the domain
to obtain the Galerkin's method. The real strength of the Galerkin's method lies in its
minimization properties.

It is usable to know the formula for the integration by parts for functions of several
variables to obtain the vir tual work equation for much more complicated problems. We
can avoid some differentiating by using:

where Q is a domain in two or three dimensions, dfl is the boundary of the domain,
u and v are functions and rii are components of the outward pointing normal to dVL.

The previous two sections were based on the literature referenced in [17], where some
additional information about the F E M can be found.

4.3 Basic concepts of finite element method
The Galerkin's method has been discussed only for approximations that are defined
and also continuous on the whole interval. However, there is nothing that requires this.
The approximation can very well be only piecewise continuous and integrated piece-wisely.
The Galerkin's method together wi th the use of piecewise polynomials is what constitutes
the finite element method.

Let us summarize major steps of the finite element method and make some explanatory
comments further.

1. Discretization of the domain into a finite number of subdomains (elements).

2. Selection of interpolation functions.

3. Development of the element matrix for the subdomain.

4. Assembly of the element matrices for each subdomain to obtain the global matrix
for the entire domain.

5. Imposition of the boundary conditions.

1 T h i s claim is based on the knowledge of linear algebra, namely the theory of Hilbert space and its base.

(4.4)

(4.5)

37

6. Solution of equations.

7. Addi t ional computations (if desired).

The described procedure wi l l be applied for particular problem and explained in details.
The finite element method (F E M) is a technique for numerical solving partial or or

dinary differential equations by discretising these equations in their space dimensions,
same as the finite difference method (F D M) . W i t h the F D M , the differential equation is
written for each node, and the derivatives are replaced by finite differences. This method
is easy to understand and employable in simple problems, it becomes difficult to apply
to problems wi th complex geometries or complex boundary conditions, or for nonisotropic
material properties. In contrast, the F E M uses integral formulations (e.g., (4.2)) to cre
ate a system of algebraic equations (e.g., (4.4)). The solution is generated by connecting
the individual solutions for each element, allowing for the continuity at the inter-elemental
boundaries.

The F E M is a numerical procedure which can be used to obtain a solution to a large
class of engineering problems involving stress analysis, heat transfer, electromagnetism,
fluid flow, etc.. This method could be viewed as a procedure for obtaining numeri
cal approximations to the solution of boundary value problems posed over a domain.
This domain is replaced by the finite union of disjoint subdomains called finite elements.
The replacement is done by discretization. So the F E M reduces the problem to that
of a finite number of unknowns by dividing the domain into elements and by expressing
the unknown field variable in terms of the assumed approximating functions within each
element. These unknown functions are defined in terms of the values (function and its
derivatives) of the field variables at specific points, reffered nodes. Nodes are usually
located along the element boundaries, and they connect adjacent elements. Functions
determined by unit node values are called shape functions. These functions are con
structed in several ways, Lagrange polynomials are usually used, and they approximate
an unknown function on each sub domain.

The Galerkin's method is used on each finite element to obtain the local element
matrix. After that we can create the global matrix for whole problem composing the local
matrices together by an assembly process. We also have to consider given boundary
conditions.

It was stated that the most popular and also the most widely used discretization tech
nique in structural mechanics is the finite element method. There are some other methods,
for example the energy-based finite difference method or the finite volume method, these
methods are particularly well entrenched in computational gas dynamics. More detailed
information especially about the finite element method can be find in [14], [17], [24], [34]
or further for a particular case.

38

Chapter 5

Decomposition

The size of a mathematical programming problem can be very large. One can encounter
in practice problems wi th several hundred thousands of equations and/or unknowns.
To solve these problems the use of some special techniques is either convenient or re
quired. Alternatively, a distributed solution of large problems may be desirable for tech
nical or practical reasons. Decomposition techniques allow certain type of problems to be
solved in a decentralized or distributed fashion. Alternatively, they lead to a drastic
simplification of the solution procedure of the problem under study.

Some decomposition algorithms for deterministic programming were developed, e.g.,
the Dantzig-Wolfe decomposition algorithm for linear programming problems wi th com
plicating constraints same as the Benders decomposition, see [3]. Nonlinear programming
problems can be decomposed only if they have decomposable structure, there are three
basic procedures: the Lagrangian relaxation, the augmented Lagrangian decomposition
and the optimality condition decomposition [8]. The last procedure presents the most
efficient computational behaviour in the most of cases. There are also some methods
of decomposition for mixed-integer linear programming problems.

It is also very useful to do a sensitivity analysis of our decomposition method of the pa
rameters settings influences. Different methods of decomposition wi th detailed algorithms
were described by E . Castillo in [8].

Decomposition procedures are computational techniques that split the problem into
at least two smaller and/or simpler subproblems. The price that has to be paid for such
a simplification is repetition. That is, instead of solving the original compacted prob
lem, at least two problems are solved iteratively, i.e., repetitively. Obviously we have
to consider our profit from doing a decomposition and analyze the numerical behaviour
of the used decomposition algorithm and show that the result obtained by the decompo
sition technique is identical to the solution of the original problem.

If we deal wi th an uncertainty, our problems are usually larger than in the deterministic
case. So some sophisticated decomposition methods for stochastic programming problems
were developed too.

5.1 Scenario decomposition methods
Consideration of uncertainties dramatically increases the size of a resulting mathematical
program. When these problems are formulated appropriately the resulting decomposable
block structure could be advantageously exploited for parallelization. The uncertainty

39

is incorporated into the problem by the use of scenarios. Each realization of random
quantities is referred to a scenario.

Those decomposable optimization problems are ubiquitous in engineering and science
applications. There are some decomposition techniques which can be used, for example
the Dantzig-Wolfe decomposition approach, the L-shaped decomposition, the Benders
decomposition and mainly the progressive hedging algorithm to that we wi l l focus on
because it is appropriate for our purposes and there is an experience wi th this algorithm
at our university. Heuristic techniques can also be considered. The most of mentioned
methods can be studied from [5].

The most of decompositions are based on the master programme and subprograms.
A separate calculation of subprograms may be realized in parallel instead of the usual
serial way. We wi l l explain this concept deeper in the next section.

5.2 Progressive hedging algorithm
In this section, we wi l l describe a parallel computational technique for solving scenario-
based stochastic programming problems known as a progressive hedging algorithm (PEA)
developed by R. T. Rockafellar and R. J . -B . Wets in 1991. More detailed information can
be found, e.g., in their article [28].

P H A achieves a full separation of the scenario subproblems for each iteration to deal
wi th the parallelization of solving those subproblems on a hardware with several processors
simultaneously. Therefore, we have less work at each iteration but the number of iterations
may be greater. The P H A solves a version of the scenario subproblem and progressively
enforces the nonanticipativity constraints. The benefits of the parallel implementation
are described in the Section 5.7.

J . M . Mulvey and H . Vlad imirou implemented the progressive hedging algorithm
on several shared memory machines and also on the network workstations for their
stochastic network programs used in finance. The comparison showed an efficiency about
90% for the parallel implementation and worse results for the distributed implementation
caused by slow communication in the computer network. Y o u can read more in [25].

We wi l l consider scenario-based models for the stochastic programming problem.
Therefore, the uncertainty is realized by scenarios, the uncertain parameters can reach
only specified values and each setting of uncertain parameters is modeled by one scenario.
We denote all scenarios by set S,

where L is the number of all scenarios, assumed a small number. If the number of sce
narios is large, we choose several scenarios, for instance, by an expert opinion about their
importance, or by a representative discretization or by sampling. For each scenario s e S .
we solve a subproblem

where / (x , s) is the objective function and Cs C M n is the feasible set for the scenario s.
We assume that each subproblem has the optimal solution x s for all s G S.

5 = {s* I i = l , . . . L}

m i n / (x , s)
X

s.t. x G Cs,

40

Further we continue wi th a scenario analysis. We analyze all scenario-solutions x s ,
discover trends or some clusters of solution. Then a weighted sum of scenario solutions
x s is computed and again analyzed by the scenario analysis, etc. Our goal is to find one
universal solution that is "optimal" for an arbitrary scenario occurs.

Denote the weight corresponding to the scenario s and its solution x s by ps for all
s G S. The weights ps fulfill conditions:

0<ps < 1,

In other words, ps is the probability that a particular scenario s occurs. These weights may
be obtained, e.g., from experts recommendations corresponding to the relative importance
of each scenario. Further, define an average solution x as

x = J] p s x s . (5.2)
seS

The average solution can be considered as a defense against the uncertainty of the model
in the P H A . In this algorithm, the average solution is used in the penalty terms for the sce
nario-related objective functions as it is further shown.

If we are looking for the solution that wi l l be resistant and robust wi th respect to all
possible scenarios, we wi l l solve the following problem:

min Y V / (x , s) ,
s e 5 (5.3)

s.t. x G (| Cs.
seS

Its solution x m i n hedges all possible realizations of uncertain parameters that can occur.
But the scenario analysis is stil l reasonable in comparison to solve the problem (5.3)

directly. One reason is that the stochastic programming problem is often very large,
difficult to solve and exceeds computational capacity. If we use the scenario analysis
and the weights are changed during the computing process, we can easily check how these
changes change the solution. Other significant reason is that the parallel computing can
speed up the calculations by working wi th several scenarios at the same time.

5.3 P H A for one-stage optimization problems
In this section, we wi l l introduce the P H A for one-stage stochastic programs. So we go
from scenario-solutions x s of subproblems (5.1) to the solutions that converge to the so
lution x m i n of the problem (5.3).

We make an assumption that all scenario-solutions x s of subproblems (5.1) for s G S
are known. The average solution x defined in (5.2) is called implementable, i.e., scenario-
independent. We called a general solution x as admissible if it is feasible for all scenario
subproblems, i.e., for each s G S. Thus, admissibility is equivalent with a requirement

x G P| Ca,

41

where Cs is a feasible set for a given scenario s.
We are looking for the feasible solution x m i n to the problem (5.3) which means that

the solution is implementable and also admissible. Admissibi l i ty has not to be uncondi
tionally satisfied. The decision maker can accept a slightly inadmissible solution, for exam
ple, if the violation of the feasible set Cs was realized by a particular scenario s wi th a low
probability. Therefore, we can accept a solution that is nearly admissible.

However, we wi l l look for a feasible solution, thus implementable and admissible
in the algorithm described below. The procedure wi l l generate a sequence of solutions
x J , j = 1,2,... from scenario-solutions x s of subproblems (5.1). This sequence converges
to the optimal solution x m i n of (5.3) for the convex case and its authors report algorithm
convergence also for certain non convex cases. Its terms x J are obtained by increasing
the requirement that the scenario-solutions x s to the subproblems have to be imple
mentable. The exact structure of the algorithm for one-stage models taken from [20]
and [36] follows.

One-stage progressive hedging a l g o r i t h m

0. Choose a penalty parameter g > 0 and the termination parameter e > 0. Set
a vector w ° = 0 for each s 6 S , set the ini t ial estimate x° = 0 and j'• = 1.

1. For each s & S solve the approximation problem obtained by a modification of (5.3)

m i n / (x , s) + (w ^ _ 1) T x + | | |x - x> _ 1 1| 2 ,
x 2 11 11 (5.4)

s.t. x G Cs

and denote its optimal solution as x^.

2. Calculate the average solution

ses

3. Evaluate the termination condition

S= (W^-1-X\\2+ J2Ps\\xj

s-xJ\\2) <e. (5.5)
ses

If the condition holds, stop the algorithm and x J is the solution to the problem (5.3)
wi th a given tolerance e. Otherwise, update the perturbation term

for each s G S and return to step 1 of the algorithm with j = j + 1.

Let us describe the algorithm deeper. The algorithm generates a sequence of solutions
converging to the solution x m i n of the problem (5.3). For this purpose we solve only
linear-quadratic perturbed versions of scenario-based subproblems (5.1).

42

The objective function (5.4) contains two penalty terms on the comparison wi th the ob
jective function of subproblems (5.1). This arrangement is based on the augmented La-
grangian function. The penalty functions and the Lagrangian function concept are men
tioned in the Appendix C .

We are looking for a solution that wi l l stay optimal for an arbitrary scenario, i.e.,
we want to find x J close to for all s G S. The quadratic penalty term

forces x^ to x J ' _ 1 . The linear penalty term (w ^ _ 1) T x penalizes the difference between x^
and x J from the foregoing iteration of the algorithm.

Remark that norms used above are Euclidean norms on MP that are defined in the Sec
tion 3.3. We can use some other norms than Euclidean, of course. But this is the most
common.

Note that the termination condition (5.5) of the algorithm measures how close x^ is
to x J for all s G S and how x J varies wi th j, therefore we call ó as the distance parameter.
If the termination condition holds, we found the solution wi th a given tolerance e, where
e > 0, and the loop of the algorithm is terminated. Otherwise the algorithm continues
to the new iteration.

The behaviour of the progressive hedging algorithm is extremely sensitive to the choice
of the penalty parameter g. Most problems could be solved faster by a properly searched
value of Q. But there is unfortunately no universal approach how to determine the value
of Q to obtain a good behaviour of the algorithm. The penalty parameter has to be de
termined by experiments. This fact is the biggest weakness of the progressive hedging
algorithm. Some numerical manipulations of the penalty parameters were done for exam
ple in the literature referenced as [18] wi th substantial savings.

Because the choice of the penalty parameter is so difficult, we can also change the pe
nalty parameter wi th iterations and utilize heuristics. For instance, if the difference
between two subsequent distance parameters 5 is "large", we can enlarge the value of g
and conversely.

The main advantage of the P H A is that it uses locally convergent nonlinear program
ming algorithms having many available well-tested implementations. In addition, the so
lution averages guarantee a robustness of computational processes, but the convergence
is usually slow.

The progressive hedging algorithm can be formulated for two-stage and also for mult i
stage programming problems but it is not goal of this thesis. The exact algorithms
wi th a complementary terminology can be found in [20]. Even though, one concept
from the multi-stage P H A is important for further discussions, so let us tell a few words
about nonanticipativity constraints.

N o n a n t i c i p a t i v i t y

We require satisfying a nonanticipativity of the first-stage decision in the two-stage or mult i
stage stochastic programming. The first-stage decision has to be taken before any obser
vation of random parameters £ is known. The principle of nonanticipativity consists
in independence of the first-stage decision on the future realization of so the first-stage
decision is constant for whatever happens in the future.

43

This requirement can be ensured directly by adding the nonanticipativity constraints
explicitly to the formulation of our problem, i.e., we require a constant first-stage decision
for all scenarios. For instance, we require fulfillment of the following constraint for two
scenarios

V s 1 , s2 G S : x s i = x s 2 .

The nonanticipativity requirement can be alternatively ensured by adding the penalty
term to the objective function, see the Appendix C for more information about penalty
functions. In the one-stage P H A , the nonanticipativity is ensured by the quadratic penalty
term in the program (5.4).

5.4 One-stage P H A example
Let us present the one-stage progressive hedging algorithm on a simple model. This ex
ample wi th a solution and a figure was taken from [20]. The example illustrates the steps
of the P H A very well and can help to understand the point of the algorithm.

The model wi th two scenarios and two variables has the form:

min (X l - ^) 2 + (x 2 - £ 2

s) 2 ,

s.t. Cs < * i < &

£5 < *2 < &

with the particular realization of random parameters for the scenario s 1:

C 1 = (£ , & & C U U e f = (3 ,4 ,1 ,3 ,2 ,4) T

and for the scenario s2:

f = te2, ^ e l , ^ e 6 T = (4, 3, 2 ,4 ,1 , 3) T .

The objective functions are paraboloids with vertices in points (3,4) and (4, 3). The fea
sible sets are two shifted squares. The scenario s1 corresponding to £ x is represented
by blue color and the scenario s2 corresponding to £ 2 is represented by red color. The da
shed circles represent cuts of paraboloids by planes parallel to the X1X2 plane, so-called
contours.

The optimal solution for the scenario s1 is obviously the right upper vertex of the square
feasible set x ^ i n = (3 ,4) T and the optimal solution for the scenario s2 is the point
x mm = (4, 3) T . These points could be viewed in the Figure 5.1 as small colored squares.

The results produced by the progressive hedging algorithm for individual scenarios x^
in individual iterations are pictured by small red and blue circles and average solutions xP
are pictured by black circles. The probability of both scenarios equals to | , the penalty
parameter was set as g = 3 and the termination tolerance as e = 10~ 9 .

The algorithm produces the sequence of points x,- that converges to the optimal solu
tion x m i n = (3, 3) T plotted by green circle. This point is implementable and admissible,
hence feasible. The optimal solution wi th given tolerance was reached in 17 iterations
of the P H A .

Let us note here again that the choice of penalty parameter is crucial. A value
of Q has to be determine by experimentations. There is the significant relationship be
tween the penalty parameter and the number of iterations needed to find the solution
wi th a given tolerance even in this simple case. Detailed information is stated in [20].

44

X2

- 4

- 3

- 2

- 1

I 2 3 4
1 1 1 1—̂- Xi

Figure 5.1: Scenario solutions and generated average solutions

5.5 Idea of spatial decomposition
In this section our original approach of the spatial decomposition method for large-scale
partial or ordinary differential equation (P D E / O D E) constrained programs (some appli
cations and algorithms for these programs can be found in [6]) is described. This method
can be used for both deterministic and stochastic programming problems. But the main
ideas wi l l be discussed on deterministic programs.

t = l t = 2 t = 3
i i i
i i i

+ i i

»• = >&r~i&r~®

• " = : 0 i - W - C i)

••=i(j>j-$r-(£>

+ T i

Figure 5.2: P H A - nonanticipativity

The idea of the spatial decomposition is based on the scenario decomposition method -
the P H A . It is algorithm designed for the decomposition into individual scenarios with in
volvement the nonanticipativity requirement into the objective function by the penalty
terms. It allows a parallel implementation. The decomposition can be viewed schemat
ically in the Figure 5.2, where the nonanticipativity requirements are depicted by red
dashed ellipses.

This thought was extended by M . Steinbach in his presentation at the Stochastic
Programming Conference in Berl in 2001, see [32]. He applied ideas from the dynamic

H 1 ¥
\ / J

45

programming for his multi-stage stochastic problem. He identified state variables link
ing subsequent stages, relaxed them and included them in the form of penalty terms
in the extended objective functions related to both scenarios and stages. Schematically,
a state of system in one stage is y i and the state in another stage is y 2 (y i) - The asterisk
represents the relaxation of the same state variable y i for subsequent stages. Therefore,
we replace one state variable for two stages by two different variables, i.e., one for each
stage. However, we build the distance term

l l y i - y * l l >

that leads to addition a penalty term into an objective function similar to the P H A .
This approach can be called as a decomposition in time and it also allows the parallel
implementation.

Steinbach's approach had inspired P. Popela towards the idea of a spatial decompo
sition for more complex optimized design structures that was born several years later.
He also discussed this idea with specialists in civi l and mechanical engineering and they
have shown their interests to this approach. Therefore, after the recent discussion among
D . Morton, P. Popela and M . Steinbach at the International Conference Prague Stochas-
tics, 2010, the goal for this thesis to test the idea seriously has been defined. The stochas
tic program involving differential equation-based constraints for the prototype application
has been chosen.

5.6 Basic steps of spatial decomposition
The spatial decomposition can be employed for solving P D E / O D E constrained programs
which are very common in engineering applications. The algorithm uses a mesh which was
created for the approximative description of P D E / O D E constraints and it could be used
for both stochastic and also deterministic programs. We present the steps of algorithm
for deterministic programs because of its simplicity. Stochastic programs can be reformu
lated easily as the deterministic programs. A n uncertainty wi l l be added to the algorithm
in particular example presented further.

Let us describe our original approach step by step for a deterministic model wi th P D E
or O D E constraints. The algorithm is followed by several remarks.

1. Choose a penalty parameter and a tolerance, set all necessary init ial values.

2. Use an approximation scheme based on the discretization for P D E / O D E constraints
to reformulate derivatives as a system of linear equations.

3. Solve the optimization model with a raw discretization to obtain boundary condi
tions for subproblems.

4. Introduce a decomposition of the problem's domain into parts wi th an overlap.

5. A d d the values of approximative solution at the end points of subdomains computed
in step 2 as boundary conditions to models of subproblems. Solve subproblems
wi th a finer discretization on individual subdomains.

6. Compute the average solution, i.e., average two or more values on overlaps and take
particular values of solution on parts of domain, where no overlap is available.

46

7. Evaluate the termination condition. If the condition holds, you have the solu
tion wi th a given tolerance and you can stop the algorithm. Otherwise, increase
the counter of iterations by one and solve modified subproblems again. Modifica
tion lies in adding the penalty term to the objective function same as in the P H A
and in not considering boundary conditions from step 2 longer. Recompute the per
turbation term same as in the P H A and go back to step 6.

We have to use a numerical method to obtain a non-differential numerical description
of the constraints. We chose the finite element method described in the Chapter 4.
This method is based on a discretization of the domain into a finite number of subdomains.
The created discretization is moreover used for the spatial decomposition.

The raw discretization determines possible spatial decompositions. We can decompose
the original domain only in end points of finite elements (nodes). The finer discretization
has to be selected in such a way that we received the values of a solution in the matching
spatial points. Therefore, we must carefully consider how many elements should be used
in the raw and the finer mesh respectively.

Figure 5.3: Line overlap Figure 5.4: Spatial overlap

The length of overlap and the setting of penalty parameters are very important
for the behaviour of the algorithm. But we do not have any universal approach how
to determine them. The setting of these parameters for a test problem wi l l be discussed
later. We tried to implement the degenerate line overlap (Figure 5.3) wi th unsatisfac
tory results. Therefore, we recommend to use a spatial overlap wi th a greater length,
schematically shown in the Figure 5.4.

The boundary conditions gained from the solution on the raw discretized domain can
be used only in the first iteration of the algorithm. Otherwise, we wi l l get the inaccurate
solution with jumps.

B y splitt ing the problem we obtained smaller subproblems to solve but we have to re
peat our computations iteratively. Hence, we have to consider responsibly if this decom
position technique is suitable for our problem or not.

We st i l l have to remember that the progressive hedging algorithm converges to the op
t imal solution only for convex feasible sets and objective functions. We wi l l meet very
often real problems for which the convergence of the P H A is not guaranteed. O n the other
hand, we can find a pretty good starting point to provide the convergence of the algorithm.
The convergence theorem of the P H A with its proof can be find in [5] or [28].

47

5.7 Parallel implementation of P H A
Real optimization problems are modeled using large-scale programs. Usually only one
processor is used to perform all tasks required by the algorithm. But the implemented
algorithm may be unsuccessful in searching the optimal solution because of existing com
puter speed limits. Some algorithms mentioned earlier decompose the problem into several
steps called tasks, which are related in some sense but can be proceeded independently.
Therefore, a multiprocessor parallel technique can be used. The description of the parallel
implementation can be found in [20].

The parallelism is provided by the property of the progressive hedging algorithm that
decomposes an original problem into independent subproblems for each particular scenario
in the scenario decomposition or for each particular part in the spatial decomposition.
The subproblems can be solved separately and in parallel on hardware with several pro
cessors instead of the classical serial technique. This fact saves the computing time since
n subproblems can be solved simultaneously on n parallel processors in the same time
as one subproblem on one-processor machine.

The classical approach is the serial implementation. The subproblems, the total num
ber of subproblems is L , are solved one by one as is schematically depicted in the F ig
ure 5.5. Denote the computing time for solving one subproblem for a particular scenario
or a part by r and the total number of iterations of the progressive hedging algorithm by N.
The total computing time consumed by solving all subproblems serially is T^OTAL = TNL,

the superscript s indicates the serial approach.

subproblem s1 subproblem s2 subproblem s1 subproblem s2 subproblem sr'

Figure 5.5: Serial implementation scheme

The alternative approach is based on availability of n processors, n is usually less than
the number of subproblems L . These processors can solve n subproblems simultaneously,
i.e., in parallel. The parallel part of computations, its scheme is in the Figure 5.6, is
repeated in a loop unti l all subproblems are solved, i.e., |~^]-times 1. Therefore, this
approach is in fact a combination of parallel computing of n subproblems and a serial loop
repeated |~]̂ -times. Denote again the computing time for solving n subproblems in one
loop as r . The total computing time consumed by solving all subproblems in parallel is
then Tfotal = TN |~^], the superscript p indicates the parallel approach.

We can compare stated theoretical total computing times for the serial and the par
allel implementation of the progressive hedging algorithm. Make an assumption that
the optimal solution is reached in TV iterations. Then, we obtain the following inequality.

T*OTAL = TNL > TN rpp
total'

So the total computing time consumed by parallel implementation is less or equal than
the time consumed by serial implementation. The equality holds for n — 1 of parallel

1 \x~\ is the smallest integer not less than x, this map is called ceiling function.

48

subproblem s1 subproblem s1

subproblem s2 subproblem s2

subproblem sn subproblem sn

Figure 5.6: Parallel implementation scheme

processors, that is the serial case. If we increase the number of processors n, the difference
Ttotai ~ ^totai increases. For n > L we get the least total computing time consumed
by a parallel implementation T^otal = rN.

49

Chapter 6

Design of beam cross section
dimensions

6.1 Problem formulation
Consider an ordinary differential equation constrained two-stage stochastic nonlinear pro
gram modeling an optimization problem from the area of c ivi l engineering describing
a deflection of a beam 1 .

This problem was taken from [36], we did only some supplementary changes in a load
of the beam. The author solved it by using the finite difference method and wi th fo
cus on scenario-based models. Our goal is the solution wi th the finite element method
and especially the implementation of the concept of the spatial decomposition. The main
advantage of using the already solved example is the possibility to compare some early
results.

The objective of the optimization is to find an optimal design of beam cross section di
mensions while its weight is minimized (6.1) and rigidity is maximized (6.2), see the model
and the Figure (6.1) further.

min pabl,

E(Oab3

max 12

s.t. E(0
ab3 d4w

12 d x 4
= h(x), x e (0 , /) , £ e E,

dv
^ , o) = o , — (£ , o) = o , £ e S ,

*;(£,/) = o, £ (£ , /) = o , £ e ~ ,

d2v b

min — ^ &max-

< Puma, x e (0 , /) , £ e E,

(6.1

(6.2

(6.3

(6.4

(6.5

(6.6

(6.7

(6

1 Assume that cross-section dimensions remain constant throughout its length and are substantially
smaller than the length of the beam. Therefore, the beam can be modeled by the prismatic bar and the or
dinary differential equation describes the deflection of the centerline.

50

where p is the beam density, a and b are decision variables (dimensions of the beam
cross section), / is the beam length, £ : S —> K. is a random variable, is random
Young's modulus 2 (because of varying uncertain material characteristics), x is the space
coordinate, v(£,x) is a deflection wi th the opposite direction than the axis y and h(x) is
a deterministic static load.

The O D E (6.3) describes transverse deflection of the beam, boundary conditions
for clamped end points are given by (6.4) and (6.5), i.e., there are zero transverse de
flections and their slopes. Furthermore, the maximum stress

a,, x
M{x)

J
±E

d2v b

where

is the bending moment, J

M(x) = -EJ
dx2 x

its
12

is the second moment of the cross section wi th respect
to the axis z and ymax = ± f , must be bounded because of safety reasons, see the con
straint (6.6). L imi t ing value oumit is defined as stress at which a material begins deform
plastically. It is the end of the area of elastic behaviour described by Hooke's law where
the stress is proportional to the relative deformation. Finally, the dimensions of the beam
cross section must be bounded, see (6.7) and (6.8).

h

r
'///

% >

'///

% > '/// ?
/// X

I /

'/// ?
/// X

I a

Figure 6.1: Scheme of loaded beam and its cross section

Hence, we obtain a continuous two-stage stochastic nonlinear program. The first stage
here-and-now decision is realized by variables a and b. The second stage wait-and-see
decision v(£s,x) is taken after an observation of random parameter £.

6.2 IS deterministic reformulation
A s we mentioned in the Section 3.5, a deterministic reformulation of the underlying pro
gram (UP) (6.1)-(6.8) has to be made. We are not able to solve the U P directly. For in
stance, we do not know how to minimize the objective function in variable x if this function
also contains some uncertain parameters.

We wi l l consider the IS reformulation, it means that the random parameter in the pro
gram is replaced by a typical realization - individual scenario value, it is one specified

2 T h e Young's modulus is the constant describing the elastic properties of a material.

51

value of Young's modulus. This reformulation can be understood as the E V reformula
tion too, because the expected value of random parameter can be used as the individual
scenario. We took the value of Young's modulus from material tables for a specific ma
terial. Hence, we obtained a deterministic nonlinear program, where we denoted Young's
modulus in the individual scenario £ s as Es and similarly the deflection in the individual

scenario as VAX)

min pabl, (6.9)

max (6.10)

s-t. £ s ^ ^ (x) = h(x), x e (0,/), (6.11)

v.(0) = 0 , - ^ (0) = 0, (6.12)

vs(l) = 0 , - ^ (/) = 0 , (6.13)
ax

s dx*{X)2

&min — & — &maxi (6.15)

bmin ^ b ^ b m a x . (6.16)

< o-Hmit, x e (0,1), (6.14)

The reformulated program (6.9)-(6.16) does not contain any uncertainties, the random
parameter was removed. But we still need to do a few steps to receive a solvable and im-
plementable model. We have stated above that the approximations of derivatives must
be made, i.e., the finite element method wi th uniform grid for discretization in the space
coordinate x is used to get r id of the derivatives in O D E constraints.

6.3 F E M for beam element
The described problem was solved using the finite difference method in [36]. We wi l l use
the finite element method to obtain a numerical and non-differential description of diffe
rential constraints. This method can be advantageously used further. The accuracy
of both methods is same.

We need an approximation of the fourth derivative (the highest derivative in the model)
of the unknown function vs included in the constraint (6.11), the second derivative of vs

contained in (6.14) can be easily obtained subsequently.
The one-dimensional slender beam with the space dimension x is subdivided into N

finite elements according to the Figure 6.2. Each element is bounded by two nodes.
In the following text we wi l l denote the approximation of function vs(x) in the node xe as

and its derivative in the same node as

ox

Now consider the e-th element loaded by uniformly distributed transverse load h(x)
per unit length, schematically shown in the Figure 6.3. There are two degrees of freedom

52

1 2 N

-|—> x
X0 X\ X2 ••• Xe-i xe ... XN-1 XN

Figure 6.2: Meshed beam

in each node. The end nodes x e _ i and xe are loaded by forces Fe_i, Fe and moments
M e _ i , Me, gained by the discretization of load h(x), that result in translations V ^ e - i , VSje

and rotations # S j e_i, #s,e. The length of element is d, where d = jj.

Fe-!

^ s , e - l

s , e - l (

h(x)

>

FP

XE-1

H-

Figure 6.3: Slender beam element

The function t>s on the e-th element - vs^e is approximated by well chosen shape func
tions and discrete nodal values VSje and V ^ e - i , but we do not use only nodal values but also
the nodal values of derivatives 0 s e - i , # s e- We write

/ Vs,e-1 \

>s,e-\
V,

V
vS:e « (i V i , 7V2, 7V3, AT4)

Shape functions JVj, z G {1,2,3,4} are exactly chosen cubic polynomials

(6.17)

/

N1 = 3dx2 + 2 x 3

N2 = j2{d2x- - 2dx2 + x3

N3 = \-A3dx2

d6
- 2 x 3) ,

iV 4 = — fx 3 -
d*[

dx2).

These shape functions have the property that they or their derivatives equal one at a spe
cific node and zero at all others, the properties are illustrated in the Figure 6.4. Note that

53

file:///-A3dx2

the scale of the vertical axis for Aq and N3 is different than the scale for N2 and N4
for a better clarity.

x=0 x= d x=0 x=d

x=0 x=d x=0 x=d

Figure 6.4: Shape functions

To develop the element matrix for the subdomain we need to derive the integral
formulation of (6.11) as was mentioned in the Chapter 4. Therefore, we mult iply (6.11)
by a test function u followed by integrating over the domain to obtain

d d

uE,
ab3 dAv*

x)dx = / h(x)udx. (6.18)
12 d x 4

0 0

Because this integral identity has to be satisfied for all admissible u, we can simply
choose the shape function itself as the test function. Substitution (6.17) into (6.18)
and using the mentioned test function u on the e-th element lead to the four element
equations:

d (N l \ (Vs,e-1 \ d / i V l \

iV2
N3

ab3 <94

12" ~dxi
(Ni, N2, 7V3, N4)

9 s,e—l
V,

\ s.e

dx h

J

N2

N3

dx. (6.19)

Integration by parts stated in (4.5) is used to avoid differentiating four times, the boundary
terms were neglected because they are not significant in the global approximation matrix
structure

AT dAN, f 8N d3N3 f d2N d2Nj

ox* J ox ox6 J oxz oxz

where %, j G {1, 2, 3,4}. Hence, assuming that Es, a, b and h are not functions of x and also
V S i e _ i , # S) e - i , VSj£, 9Sj£ are specific values of constants, the equations (6.19) become

/ Vs,e_i \ d (Ni \

h E,
ab3

12
d2N d2N ,

dx
dx2 dx2

\

7s,e-l

vs,e
9S „ J

N2

Ns

dx.

54

where i,j G {1 ,2 ,3 ,4} . Evaluation of the integrals gives the symmetric element matrix:

ab3

~12

12

sym.

JL
,.P

d

12
d?

6
,.P \ / Vs,e-\ / d

2 \
6 2 a d2

d?
12

(i
6

"s,e-l

Vs,e

= h 12
d

d:i d 2

"s,e-l

Vs,e 2
1
f/ /) \ d 2

12 /

(6.20)

The equation (6.20) recovers the standard slope-deflection equation for beam elements.
In more compact matrix notation (we have to mult iply each element of matrix by TTT first)

/ Vs,e-1 \

E,ab3KP

\

's,e-l
Vs,e

9s,e J
So we developed the element matrix for the subdomain, this matrix is the same for all

elements e, where e G { 2 , . . . ,N — 1}. The first and the last element matrices are af
fected by zero boundary conditions (6.12) and (6.13). The conditions determine the zero
values of VS>0, 9SjQ, VS>N and 9SjN. Therefore, we have to delete the corresponding rows
and columns from the element matrices to avoid the singularity in the global matrix.

Now we know how all the element matrices look like and we can easily put together
the global matrix for the entire domain. The global matrix can be obtained by an assembly
operation realized by the localization operator, it is a 4 x 2(TV + 1) matrix of the form

/ o . . . 0 1
0 . . . 0 0
0 . . . 0 0

V o . . . 0 0

0 0 0 0 . . . 0 \
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0 /

where 1 is placed in the (2e — l) - th , (2e)-th, (2e + l) - th , (2e + 2)-th columns. Then
we received the approximation for the entire domain

(Vs,0 \

Esab6K

7 s , 0

VS,N

N N

Esab6KVs h , where K = J ^ L j K e L e and h = J ^ L j h e , (6.21)
e = l e = l

where the first two and the last two equations are redundant because they contain
the known values of deformations and their known slopes, so we have to delete them.
This approach can be used only for zero boundary conditions. If there are some nonzero
boundary conditions, we have to treat them up by a different approach described later.
Now we have the approximation of the fourth derivative of unknown function vs(x)
for whole beam with impositioned boundary conditions.

Further, we have to deal with the second derivative of the unknown function vs(x)
contained in (6.14). Now we assume that we already know the vector discretely approxi-

55

mating the function vs(x):

(Vs, \ s ,0

s,0

vs,N

V @s,N J
from the previously described system of linear equations (6.21). We have to limit the stress
on each element, so we substitute (6.17) into (6.14) on e-th element to obtain

Es\ (K , NZ, N», N'l)

(Vs,e-1 \

&s,e-l

vs,e V 8s,e J

— 0~ limit-

This equation describing the stress in one specific node holds only for the end nodes
belonging precisely to one element. The constraint for the first node wi th the spatial
coordinate x0

Es- (N»{0), N»{0), N»{0), JV?(0))

/ V . , 0 \

Vs,l
0*,1)

— 0~Umit

must be satisfied and also for the the last node with the spatial coordinate xjq

Es\ (K{d), N»(d), Ng(d), N'l{d))

(Vs,N-l \

&s,N-l

Vs,N
\ @s,N)

— 0~limit

must hold. The rest of nodes belongs to two adjacent elements. Thus, we have the value
of stress from the left element and also from the right element. The stresses are not equal,
so we take the average stress in this nodal stress discontinuity

/ Va,e-1 \

Es- (iV7(0), A^'(O), JV£(0), iVl'(O))

+ (N?(d), N»(d), Ng(d), N'l{d))

's,e-l
Vs,e

+
V
/ Vs,e \

Vs,e+1
\ &s,e+l

— 0~ limit-

This constraint must hold for nodes with the spatial coordinates xe, where the index
e e { 2 , . . . , JV — 1}. We can rewrite this constraints together wi th the constraints for end

56

nodes in a matrix notation as

6 4 6
d? d <i2

3 2 6
d? d? r i 2

0 0 3
d2

0

0 -
__2_

d2

3
r i 2

JL
d2

3
d2

0 V
0

0

V . , 0

0
0

U J2 J2 J2 0 - 4 j2_
d2

n 3_ z_ _D_
U J2 J2 J2

A
d2

_3
<i2

U j 2

3
(/ 2

6_
d2

A
(/2

2

0
2

3
\ i 2

6
d?

0
2
(/
1
d

VSjN-l

@s,N-l

7s,N

where | • | indicates the absolute value. The equivalent approximative equation to con
straint (6.14) on the whole beam has the simple matrix form (we multiplied each element
of matrix by \ first to make the notation more compact):

\EsbC\s\ < a l i m i t . (6.22)

The order of accuracy of the used finite element approximation is O(ol2), i.e., the difference
between exact and approximative solution is proportional to h2.

6.4 IS reformulation with F E M approximations
In mathematical programming we can deal only wi th one objective function, so we have
to create a multi-criterial, single-objective function instead of two objective functions
stated in (6.9) and (6.10) by the weighted sum approach described in (3.2):

. / Esab3 pabl \
m m I -a— + f3) , (6.23)

\ frigid ^weight J

where a, (3 are weighting coefficients, a, (3 G [0,1] and a + (3 = 1, crigid, cweight are typical
values of rigidity and weight of the beam (normalizing constants). These values were ob
tained by author of [36] as the optimal values of objective function of two single-objective
optimization problems. The maximization of function (6.10) is equivalent wi th minimiza
tion of the same function multiplied by (—1).

Now we can rewrite our IS reformulated two-objective beam model into a deterministic
nonlinear program wi th derivatives approximated by the F E M and wi th only one objective
function.

/ Esab3 _ pabl \
mm (-a-f + (3^ , (6.24)

\ J-^Crigid ^weight J
s.t. Esab3KVs = h , (6.25)

Vs,o = 0, 9sfi = 0, (6.26)

VS,N — 0, 0SjN — 0, (6.27)

\EsbCVs\<alimit) (6.28)

drain ^ O ̂ a m a x , (6.29)

(6.30) Jmaxj

57

where (6.25) is taken from (6.21), (6.28) is derived in (6.22) and how to obtain the objective
function is described at the beginning of this section. The constraints (6.26), (6.27) are
rewritten constraints for clamped end points into approximate notation and (6.29), (6.30)
are the constraints from the original model l imit ing values of the cross section dimensions.

The results are presented for the following input data. For better scaling we did not
compute wi th SI units but wi th units common in engineering computations, i.e. length
is considered in m m (millimeters), weight in t (tons) and stress is given in M P a (mega-
pascals). The load is uniform and is given per unit length hs(x) = 10 N m m " 1 , the length
of steel beam is / = 1000 m m with density p = 7.85 • 10~ 9 t m m - 3 . The stress l imitat ion is
orumit = 100 M P a . Number of elements was set to TV = 100 and bounding values of beam
dimensions are a m i n = b m i n = 10 mm, a m a x = bmax = 100 mm. The weighting coefficients
are chosen as a = 0.5, /3 = 0.5. The normalizing constants have the following values
Crigidity = 1-80 • 10 1 2 N m m 2 , cweight = 0.007 t, Young's modulus was found in material
tables for steel, E = 2,1 • 10 5 M P a .

Model consists of the objective function (6.24) and constraints (6.25)-(6.30) was imple
mented in G A M S software and it was solved wi th the solver C O N O P T (more about this
solver in the Appendix B) . We obtained the optimal objective function value z^in = 0.379.
The optimal dimensions are a ^ i n = 10 mm and 6^ i n = 70.707 mm. The largest optimal
deflection of beam is 0.421 m m and is placed in the middle of beam. We also computed
the stress in each node by substituting the deflection vector into (6.22). The deflection
and the stress on the whole beam are presented in the Figure 6.5. The largest stress
100 M P a is placed in the clamped end points.

Figure 6.5: The optimal beam deflection and stress

We were interested in the influence of the mesh size h on the accuracy of the solution.
Thus, we solved the model wi th different numbers of elements N. We used only even
N to have one node in the middle of beam, where the maximum of deflection is placed.
Then, we are able to compare the maximal deflection in various mesh sizes. The solutions
for our model solved wi th different mesh sizes are listed in the Table 6.1 and plotted
in the Figure 6.6.

A s can be seen from the table and mainly from the figure, where z^in, m a x (V f m i n)
and &J^ in are plotted as functions of N, the accuracy of obtained solution is influenced
by mesh size primarily when N is small, for our case N < 18. There is no need to use too
many elements N, it does not result in the significant improvement of the accuracy. It is
always necessary to weigh between the accuracy and computational costs.

58

N[-]
T Q r -]

<in[rnm ^in[rnm 71S [-1 ^min L J
m a x (V i s

m i n) [m m] m a x a i s

m i n [M P a]

2 10 61.237 0.332 0.648 100
4 10 68.465 0.368 0.464 100
6 10 69.722 0.374 0.439 100
8 10 70.156 0.376 0.431 100
10 10 70.356 0.377 0.427 100
12 10 70.465 0.378 0.425 100
14 10 70.530 0.378 0.424 100
18 10 70.601 0.378 0.423 100
22 10 70.638 0.378 0.422 100
28 10 70.666 0.379 0.422 100
36 10 70.683 0.379 0.421 100
50 10 70.697 0.379 0.421 100
76 10 70.705 0.379 0.421 100
100 10 70.707 0.379 0.421 100
200 10 70.710 0.379 0.421 100
300 10 70.710 0.379 0.421 100

Table 6.1: Solutions of the F E M approximated IS reformulation for different N

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0<)0< X X

«*>< X X X X-

x-x-*-** X X -X-

0 10 20 30 40 50 60 70 80 90 100

Nf-1

Figure 6.6: Solutions of the F E M approximated IS reformulation for different TV

59

C o m p a r i s o n of F D M and F E M

We can compare our results wi th F D M approximation scheme results, which was imple
mented in [36]. We made only some additional corrections of load in G A M S code presented
in the Appendix A . 2 of [36] and solved the problem wi th the same setting of parameters.

We received completely same results
as for the F E M approximation scheme,
it means we obtained the optimal ob
jective function value z^in = 0.379
and the optimal beam cross section dimen
sions aj^ i n = 10 mm, &^ i n = 70.707 mm.
But if we solve the problem by the F E M ,
we get one extra information - approxi
mation of the first derivative of vs, i.e.
9S)e in each node and the approximation
scheme is more compact and more gen
eral. In the Figure 6.7 you can see that
the result is completely same in the rate
of beam deflection too, the blue line - indi
cates the F E M solution and the red line - indicates the F D M solution are overlapping along
the whole beam. The accuracies of these methods are the same in this one-dimensional
case, i.e. 0(h2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x m

Figure 6.7: F E M , F D M beam deflection

6.5 Spatial decomposition for IS reformulation
This section provides the detailed description of the original concept of the spatial de
composition based on the progressive hedging algorithm applied on the discussed beam
problem. Note that this problem is a basic test problem for the spatial decomposition
concept. In fact this problem can be solved quickly and no decomposition is needed.
The spatial decomposition was implemented in G A M S software as well.

Consider the steel beam wi th length /. We have introduced the F E M approximation
technique. Thus, we can solve the model (6.24)-(6.30) on the raw mesh, let us call this
mesh as primary mesh. We chose to solve the beam problem by using four element mesh,
N = 4 and we obtained the deflection VSfi and the rotation 0 s e for e G {0,1, 2, 3,4}

V s = (0 , 0, 0.261, 0.00, 0.464, 0, 0.261, -0 .001, 0, o f m m .

We can use these values as boundary conditions for subproblems created by the spatial
decomposition. It is important to realize that we solved only a small-scale problem con
suming the short computing time thanks to using only a few of elements. Hence, we
got an inaccurate solution that was computed earlier and can be found in the Table 6.1.
The described situation is presented in the Figure 6.8. The values that wi l l be used
as boundary conditions are marked by black circles. A s you can see only the solution
in the middle node wi l l not be used in following computations.

The next step of our concept lies in the decomposition of problem's domain into two
overlapping subdomains. We have several possibilities how to carry out the decomposition
but only one possibility for our choice of the primary mesh gives the same only rotated
structure of problem for both parts, this symmetric possibility was used for its clarity

60

and simplicity and is illustrated in the Figure 6.8, where xP)£ is the coordinate of the e-th
node on the p-ih part and the length of one part is lp = 750 mm.

> i i i

h

9 9
X Q Xl X2 X3 X4

h

9 f
»1,0 »1 ,1 »1,2 »1 ,3 »1,4 »1,5 »1,6

h

->x
»2,0 »2 ,1 »2,2 »2 ,3 »2,4 »2,5 »2,6

Figure 6.8: Decomposed structure of the steel beam

We have to employ a secondary finer mesh on the both subdomains. A secondary mesh
has to be chosen to get values of deflection and their slopes in the same spatial points
on both parts. We chose the number of elements N = 6 and solved both subproblems
wi th mentioned boundary conditions. But these conditions are not longer equal to zero
as in the original model. So we have to modify the model a little bit. Let us define
a vectors V ^ 0 wi th lengths 2 (i V + 1) for p e {1, 2} filled by nonzero boundary conditions
on appropriate places, the rest of elements is put equal to zero. The upper index 0 indicates
pre-iteration of the P H A , in that the objective function does not contain any penalty
terms.

/ 0 \

V bc,0
s ,l 0

Vs,3

\

(o \

'.s,3 / V

o

0.261
-0.001

/ V., \

\ /bc ,0
) V s , 2

_ s , l

1,1
0

V 0

/ 0.261 \
0.001

0

/ V o /
We have to modify the equation (6.25) to the equation containing non-zero boundary
conditions and also the constraints (6.26) and (6.27) to obtain the models for p e {1,2}

pablp
mm -a-

Esab3

s.t. Esab3KVlp -•
rbc,0

+ (3-
G-weight

Esab3KVh^p°,

V°

s,p,0

vs,p,N

0 _
s,p,0

•rruc,u nO
vs,p,N' us,p,N

£ , 6 C V ° |

T / D C , U M
Vs,p,0) u°

rbc,0

qbc,0
s,p,0-

_ nbcfl

— 0~limit

brain — ^ — bmax.

61

We solved these models on different subdomains independently (i.e., possibly in parallel)
and then we can compute the ini t ial average solutions V ° p for p G {1,2} for the "warm"
start of our algorithm

V °

V •s,2

v° ^°1,2+K°2,0

1/°

gg,l,6+gg, ;

2

«,2,6

(6.31)

We can average only on the overlap, we simply take the proper value of the deformation
out of the overlap. Let us make the notation clearer. We used four indices for the de
flection Vj , where s is previously used index for realization of uncertain parameters
by the scenario s, p indicates different parts and p G {1, 2}, e is the nodal index and j is
the counter of iterations, similarly for slopes.

F ina l ly we can employ a modified P H A algorithm for the spatial decomposition.
For this purpose we have to define some aiding operators. First one is a localization
operator 1 0 to be able to work with translations and rotations separately. They have dif
ferent dimensions so we need to use different penalty parameters. We also need the vector
1 filled by ones.

1 0 = (1, 0, 1, 0, i , o, y (1 , 1, 1, 1, i , i , y
where the length of In and 1 is 2(TV + 1) . For the same reason we define localization
square matrices of the size 2(7V+ 1) x 2(7V+ 1):

11 0 0 0 . . . o \

0 0 0 0 . . . 0
0 0 1 0 . . . 0

0 0 0 1 0
0 0 0 0 0 /

/ 1
0

0
1

0 . . .
0 . . .

0 1
0 0

o \

0

Then proceed to own modified progressive hedging algorithm step by step, some com
ments and notes follow.

0. Choose the penalty parameters gv — 40 > 0, QQ = 40 • 10 3 > 0 and the termination
parameter e = 10~ 3 > 0. Set w ° = 0, use ini t ial average solutions V ° from (6.32)
for p = 1,2 and set the iteration counter as j = 1.

1. For p = 1, 2 solve the problem

m m
Esab3 _ pabL , „• l x T , „• 1

— + + (K) VS,P + oft.
lZCrigid ^weight ^

In (V J - V J ' - 1 X

0 V s,p s,p I +

+ ; i - i o) T (v ^ - v ^
s.t. Esab3K\{p = h - Esab3KVh

s^p

j,

\EsbCY3

SjP\ < (Tlimit,

^m,in ^ b ^ bmax •

and denote its solutions as Vi
s,p

62

2. Calculate average solutions on both parts

s.l

V3

V s,2

^S,1,0) • • "J

^ 1 , 2 + ^ 2 , 0

^ , 1 , 1 '
^ 1 , 2 + ^ 2 , 0

2

•
V3 f)j

(6.32)

3. Evaluate the termination condition

£ In;' - v
vP=l

2 1
+ - * s,p * s,p < e.

If the condition holds, then stop, the solution to the problem with given tolerance
e has the form

V3

s ^s,l,0) °s,l,0i v s , l , l ' ^1,1,1:
^ , 1 , 2 + ^ , 2 , 0 ff,l,2+ff,2,0

1/J

«,2,5;

Otherwise, calculate for p G {1,2}

f)3 V3 03

W : w 3~L + Q M V Í , p - vQ + e»(n - Ho) (vi , - v y

and

V bc,j

s.l.

V

N

s,l,iV

/ ^ 2 , 1 \

) v s,2

/

7 s ,2 , l

V o J
set J = j + 1, and return to step 1 of algorithm.

Let us add some notes. One important note is connected with boundary conditions.
The conditions can be used as explicit constraints only in the pre-iteration j = 0. If we
used them in all iterations, we would get optimal deflection wi th jumps and we would not
expect a high accuracy. We can think about them as some starting values.

Penalty terms don't modify the value of objective function at the end of algorithm,
their absolute values are negligible. The optimal value of objective function is not com
parable to the optimal value of objective function on the whole beam because we are
working only with lp = 750 m m long subdomains and the length is contained in the ob
jective function explicitly. But the value can be easily recomputed from the subdomain
to the whole beam:

^ ' = < p + / 3 - ^ - (J - J p) .
Cyjeight

So all values of the objective function are recomputed to the whole beam in the following
text to have a comparison wi th the solution obtained earlier.

We used the earlier defined Euclidean norm in steps 1 and 3 of the modified P H A . We
can also try to use some other norms, if the obtained solution is unsatisfactory for us.

63

The modified P H A can be written in more compact form of course, but we choose
to write it in this extensive form for better understanding and illustrating the computing
procedure in details.

The whole procedure was implemented in G A M S wi th mentioned primary and sec
ondary meshes, penalty parameters from the step 0 of the P H A were used. The val
ues of penalty parameters were determined by comparison the objective function values
and the difference between a deflection and an average deflection and similarly for slopes.
The same data as in the non-decomposed IS model implementation was used. The ex
ample of the source code from the G A M S implementation is listed in the Appendix D .
The optimal solution wi th the required accuracy was reached in 26 iterations. Obtained
optimal beam cross section dimensions are a 2 6 = 10 m m and 6 2 6 = 70.145 mm, the re
computed optimal value of the objective function is zf = 0.376 related to the whole
beam. In the Figure 6.9 the deflection rates in the first three iterations are presented.
The position of maximal deflection is corrected to the right point - the middle of the beam.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x[m]

Figure 6.9: First three iterations of P H A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x[m]

Figure 6.10: A l l iterations of P H A

The rest of iterations is illustrated in the Figure 6.10. Note that we obtained only
7 values of deflection in each iteration. Hence, we made an interpolation by a poly
nomial to plot the graph of the deflection in each iteration. The optimal deflection rate
wi th the maximal deflection value 0.431 m m is placed in the largest concentration of rates.

Penalty Penalty Number
parameter gv parameter gg of iterations j

40 40 • 10 3 26
10 10 • 10 3 25
5 5- 10 3 25
1 1 • 10 3 24

0.1 0.1 • 10 3 27
0.01 0.01 • 10 3 27

Table 6.2: The number of iterations needed for different penalty parameters

The algorithm is very sensitive to the choice of the penalty parameter. Furthermore,
we have two penalty parameters. One of them gv caused overshoot up and the second
one go caused overshoot down from the optimal solution (see Figure 6.10). The effect

64

of penalty parameters is illustrated in the Table 6.2. This table for e = 10~ 3 shows that
we could save two iterations of the P H A by better choice of penalty parameters, i.e. gv — 1
and QQ — 1 • 10 3.

L e n g t h of overlap

One more interesting point is how the length of the overlap influences the accuracy
of the solution obtained by the spatial decomposition. Therefore, we solved our problem
with different lengths of the overlap and listed results in following tables. In the F ig
ure 6.11 you can see the designs of different symmetric overlaps. We used the primary
mesh with 8 finite elements, hence we had three possibilities for the symmetric overlap.
It is the 6 elements long overlap, the 4 and the 2 elements long overlap. Then, we in
troduced secondary finer mesh by dividing each element from primary mesh into two
parts and solved decomposed problem iteratively by the modified P H A . We set gv = 20
and QQ = 20 • 10 3. The rest of the used data was the same as earlier.

original beam: 8/8

overlap: 6/8

overlap: 4/8

overlap: 2/8

Figure 6.11: Different overlap's lengths

We define one more distance parameter <50 because of evaluation reasons. This pa
rameter takes into account the distance between a? and Gfi„ obtained on the whole beam

65

with TV = 100 finite elements - we consider this solution as accurate enough, V and 6j^ i n

and also the distance between max(V^) and m a x (V f m i n) . The optimal value of the objec
tive function was not considered because its value depends on already considered values
of cross section dimensions. The distance parameter is defined as follows

So = \ l « S

i n - <*)2 + \ l - V? + 1 0 ^ (m a x { V i s

m i n - V I }) 2 .

We solved the decomposed problem for different overlap lengths and different given
tolerances e and wrote down how many iterations we needed to fulfill the tolerance
and also the recomputed values of the objective function, values of cross-section dimen
sions and maximal deflections of beam. We also computed the distance from the solution
obtained on the whole beam with TV = 100 and listed all results in the Table 6.3.

e overlap length 3 zj [-1 ^sl J max \ J

S [mm a J [mm ^ [m m 50

0.005 6/8 25 0.379 0.424 10.000 70.647 0.089 0.005

4/8 51 0.378 0.435 10.000 70.822 0.153

0.005

2/8 39 0.470 0.460 15.178 56.746 20.148

0.0025 6/8 26 0.379 0.424 10.000 70.657 0.079 0.0025

4/8 55 0.378 0.423 10.000 70.438 0.286

0.0025

2/8 64 0.497 0.549 16.787 54.225 24.546

0.001 6/8 29 0.378 0.423 10.000 70.545 0.184 0.001

4/8 59 0.378 0.424 10.000 70.629 0.104
0.001

2/8 96 0.513 0.564 17.753 52.874 27.017

0.0001 6/8 35 0.379 0.423 10.000 70.570 0.161 0.0001

4/8 69 0.378 0.423 10.000 70.571 0.160

0.0001

2/8 175 0.523 0.573 18.333 52.113 28.449

0.00001 6/8 42 0.379 0.423 10.000 70.572 0.159 0.00001

4/8 77 0.378 0.423 10.000 70.572 0.159

0.00001

2/8 253 0.523 0.574 18.390 52.039 28.590

Table 6.3: Results for different overlap lengths wi th the 5 termination condition

The tolerance e is connected wi th the original distance parameter S, this parameter
evaluates distance between solutions in two foregoing iterations. This tolerance gives us
an information about the speed of convergence of the algorithm but not about the distance
from the exact solution. Therefore, we decided to modify the stop condition according
to the distance from the solution obtained on the whole beam with TV = 100 elements
characterized by the distance parameter <50 and the tolerance e0. We solved the model
again for different accuracies and listed results in the Table 6.4.

Now, we can evaluate the results listed in the Table 6.3 and in the Table 6.4. The op
t imal solution obtained by the spatial decomposition into two parts wi th the shortest
overlap is not accurate enough. It is even getting worse with additional iterations. Thus,
the length of 2 elements, i.e. one quarter of beam, is not sufficient. The algorithm
with the longest overlap needed the smallest number of iterations but the number of equa
tions is not reduced enough by the decomposition. The overlap with the length of the half

66

overlap length 3 zj [-1 ^sl J max [mm a J [mm V [mm]

6.5 6/8 5 0.339 0.390 10.000 72.114 6.5

4/8 4 0.585 0.465 13.421 71.202
6.5

2/8 2 0.475 0.426 10.541 76.437

2 6/8 5 0.339 0.390 10.000 72.114 2

4/8 10 0.332 0.378 10.000 70.416

2

2/8 > 500 — — — —

1 6/8 15 0.371 0.421 10.000 70.513 1

4/8 10 0.332 0.378 10.000 70.416

1

2/8 > 500 — — —

0.1 6/8 21 0.380 0.423 ".Mill 70.787 0.1

4/8 43 0.377 0.428 10.000 70.691

0.1

2/8 > 500 — — — —

0.051 6/8 > 500 — — — — 0.051

4/8 53 0.379 0.423 10.000 70.735

0.051

2/8 > 500 — — — —

Table 6.4: Results for different overlap lengths wi th the 5Q termination condition

of beam provided the best results. We also managed to find the best approximation
of the exact solution by this choice of the overlap.

It could be interesting to know how close to the solution obtained on the mesh
wi th TV = 100 elements we are on other meshes. Hence, we evaluated the SQ distance
parameter for different numbers of elements N.

Number of elements TV 2 4 10 26 28 100

Distance parameter <52 64.917 2.668 0.414 0.057 0.048 0

Table 6.5: The distance parameter 5Q for different TV

From the Table 6.5 is clear that by the spatial decomposition procedure we are able
to obtain the solution with the roughly same accuracy as the accuracy of the solution
computed directly on the mesh with TV = 26 elements is. Let us repeat that this accuracy
was gained on the primary mesh wi th 8 elements and the secondary mesh wi th 12 elements,
the used length of overlap was one half of the whole beam length and we needed 53
iterations of the P H A .

6.6 E O reformulation with F E M approximations
We assume random Young's modulus, the randomness of Young's modulus can be caused
by different heat-treating processes of steel such as forming, rolling, annealing or by differ
ent quality of the material. We were dealing wi th the IS reformulation in the previous text.
We used only one chosen scenario to represent the random Young's modulus but we have

67

more possibilities how to work wi th the uncertainty, for example the E O deterministic
reformulation.

The random variable must be approximated by the scenario-based approach. There
fore, the random Young's modulus E(£) is represented by a realizations E(£s) = Es,
s = 1,...,R. The continuous two-stage stochastic nonlinear program (6.1)-(6.8) is ap
proximated by a large multi-objective deterministic nonlinear program. The F E M method
was used again to approximate the derivatives in the model.

min pabl, (6.33)

U E.ab3

max 12
=1

s.t. Esab3KVs = h,s=l,...,R, (6.35)

^ ,0 = 0,^,0 = 0 , 3 = 1 , . . . , ^ , (6.36)

VaiN = 0,9aiN = 0,s = l,...,R, (6.37)

\EsbCVs\ < crHmit,s = 1,...,R, (6.38)

drain ^ O ̂ Ojmax, (6.39)

bmin ^ b ^ bmax- (6.40)

This multi-objective program can be modified to single-objective one by the same weighted
sum approach as earlier. The objective functions (6.33) and (6.34) are replaced by the ob
jective function:

aJ) V *-^Crigid ^-weight I

The model with the objective function (6.41) and constraints (6.35)-(6.40) was imple
mented in G A M S wi th the same data as was used in the IS reformulation. The Young's
modulus was assumed random:

Es = 2 • 10 5 M P a + E r a n d o m , s , where E r a n d o m > s ~ U(-l • 10 4, 5 • 10 4) M P a ,

where U(a,b) is the continuous uniform distribution on the support [a, b]. We restricted
the number of scenarios to R — 3 because we wi l l deal wi th the spatial decomposi
tion further and we want to maintain the clarity of results and the implementation.
The proper values were generated by pseudorandom values generator from uniform dis
tr ibution in M A T L A B :

Ex = 1.9714 • 10 5 M P a , E2 = 2.1990 • 10 5 M P a , E3 = 2.4758 • 10 5 M P a .

The representation of random variable is quite simple, we should use hundreds of scenarios
to acceptable representation. But we only want to illustrate how our algorithm works
for different types of reformulation. This problem was solved using the Monte Carlo
technique and large number of scenarios in [36].

We solved the reformulation directly wi th TV = 100 elements and we obtained the op
t imal objective function value z^n = 0.379. Thus, the inequality from the Theorem 3.5.1
is fulfilled wi th the equality because of independence the value of the objective function
on here-and-know variables, i.e., the deflection. The optimal dimensions are a^n = 10 mm
and b^n = 70.707 mm. The largest optimal deflection of beam is placed in the middle
of beam for al l three scenarios. The deflections and the stresses along the whole beam
are presented in the Figure 6.12. The stress rate is same for all scenarios, because it is
independent of the realization of the random variable, the reasons are described in [36].

68

PL,

100
80
60
40
20

0
-20
-40
-60

x[m]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x[m]

Figure 6.12: The optimal beam deflection and stress

6.7 Spatial decomposition for E O reformulation
We wi l l not specify the spatial decomposition algorithm step by step for the E O reformu
lation. The main idea is the same as for the IS reformulated problem. We only point out
some interesting details and comment the results.

We can employ the spatial decomposition approach or the spatial decomposition ap
proach combined wi th the scenario decomposition. The first approach is nearly the same
as the worked out decomposition for IS reformulation. Only one difference is in penalty
parameters contained in the modified objective function, we have to add the penalty
terms for each scenario. The objective function for the P H A part of decomposition is
then in the following form

R

mm -a E Esab3 _ pabl , „• l x T , „• 1

s=l
12c rigid C-weight

1?(V; y i - i +

+ l o) T (V ^ s,p I

where is computed for each scenario separately. The corresponding constraints have
to be fulfill for all scenarios s G { 1 , . . . , R}. Note that we are not penalize the cross section
dimensions a, b between parts nor scenarios. This approach enables decompose our model
into two spatial subproblems. This idea is explained deeper at the end of this section.

If we employ the spatial decomposition together wi th the scenario decomposition we
can obtain decomposition into 2R subproblems and reduce the computational time sig
nificantly. We used only three scenarios in the E O reformulation so we obtained 6 sub-
problems, each of them has the objective function

mm -a-

+

Esab3

l - l o

pabl

^weight
y i - i +

where s = 1,2,3 and p — 1,2. The appropriate constraints must be fulfilled,
approaches were implemented with almost same results presented further.

Both

69

We solved the decomposed model iteratively in G A M S software with penalty param
eters gv = 10, QQ — 10 • 10 3 . The optimal solution wi th the accuracy e = 10~ 4 was
reached in j = 72 iterations. The found optimal beam cross section dimensions values
are a72 = 10 m m and b72 = 70.158 mm. The optimal value of the objective function
recomputed to the whole beam is z72 = 0.375. The obtained deflections and stresses
for the scenarios s = 1,2,3 are plotted in the Figure 6.13 by dashed red lines, we can
compare them with solutions from the previous section plotted by blue lines.

Figure 6.13: Comparison of the spatial decomposition wi th the direct solution

The accuracy e = 10~ 3 used for IS reformulation was reached in 33 iterations but
the absolute value of penalty terms was not small enough. The spatial decomposition
of the E O reformulation requires generally more iterations then the spatial decomposi
tion of the IS reformulation because the objective function contains more penalty terms
to minimize or more subproblems have to be solved.

Note that we have not included penalty terms on all possible here-and-now variables
related to the first stage. The question is why we found it useful.

When we formulated the problem, we noted that cross-section dimensions are here-
and-now variables. Hence, they are not dependent on the realization of the uncertainty
by a scenario. Nevertheless, these variables can depend on the appropriate spatial part.
The use of our approach is supported by the following idea.

Consider a simple optimization problem

min f(x,y),

s.t. y = g(x),

that can be decomposed to two fully independent subproblems

min f(xi,yi),

s.t. y i = g(xi),

and

min f(x2,y2),

s-t. y2 = g(x2).

70

Further we have to require the fulfillment of the nonanticipativity constraints

2/l = 2/2;

X\ = x2.

The fulfillment of these constraints can be guaranteed by adding a penalty term for the dif
ference between yi, y2 and xi, x2 respectively to the objective function.

However, we may use only penalty term related to x\ and x2 and leave the term
related to dependent variables y\ and y2 as we indirectly utilize constraints y\ = g(x\).
2/2 = g(x2). This penalty term guarantees that | | x i — X2II —> 0 and in case of the locally
uniqueness of the optimal solution also that \\yi — 2/2II -> 0. If we used both penalty terms
for the difference of X\ and x2 and also for the difference of yi, y2, we would add in fact
the redundant constraint that creates computational problems in the runs of algorithms.

This idea explains why we were averaging only the deflection V S J 9 and not cross section
dimensions a, b on different parts in the implementation of both reformulations.

71

Chapter 7

Conclusions

The applicability of the spatial decomposition approach to two deterministic reformula
tion of one civi l engineering problem has been discussed. Problem has been concerned
in the optimal design of beam cross section dimensions with a random Young's modulus.
The model led to the O D E constrained multi-objective stochastic nonlinear program.

In general, the proposed computational scheme consisting of the modified progressive
hedging algorithm and some additional steps applicable for approximated O D E / P D E con
strained deterministic and also stochastic programs seems to be robust enough for future
applications to advanced large-scale optimization problems in which a decomposition is
required.

The spatial decomposition has been implemented and tested wi th respect to future
possibilities of parallel computing of large engineering problems. The implementation has
shown that the approach can be used even if the mathematical conditions for the conver
gence are not fulfilled but still a suitable starting point can be found.

M a i n disadvantage of the progressive hedging algorithm that forms the basis of the spa
t ial decomposition is that the performance of the algorithm is very sensitive to the choice
of the penalty parameter g. Unfortunately, there is no general rule how to determine
the best value of this parameter. Furthermore, in the spatial decomposition several
penalty parameters are contained. The convergence performance of the P H A can be im
proved by some heuristic techniques allowing the updating g in each step. Many aspects
of the procedures need further investigations. In particular, we need a method for ad
justing the penalties to ensure fast convergence. For any realistic problem the number
of scenarios wi l l be formidable.

Future research could concern in the practical parallel implementation of the spatial
decomposition on multiple processors computers and in testing the algorithm for other
two-dimensional and also three-dimensional problems. It is not recommended to treat up
whole model in G A M S because the finite element method can not be comfortably used
in this software. Hence, it could be good to connect some other software wi th G A M S

solver.

72

Bibliography

[I] N . Andréasson , A . Evgrafov, M . Patriksson. An Introduction to Continuous Optimiza

tion. Studentlitteratur, Lund , 2009.

[2] M . S. Bazaraa, H . D . Sherali, C. M . Shetty. Nonlinear Programming: Theory and Al

goritms. A John Wiley & Sons, New Jersey, 2006.

[3] J . F . Benders. Partioning procedures for solving mixedvariables programming prob

lems. Numerische Mathematik 4, pages 238252, 1962.

[4] M . A . Bhat t i . Practical Optimization Methods With Mathematica Applications.
SpringerVerlag, New York, 2000.

[5] J . R. Birge, F . Louveaux. Introduction to Stochastic Programming. SpringerVerlag,
New York, 1997.

[6] L . T. Biegler, O. Ghattas, M . Heinkenschloss, B . van Bioemen Waanders. LargeScale
P DEConstrained Optimization. SpringerVer lag, Berl in Heidelberg, 2003.

[7] M . R. Bussieck, L . S. Lasdon, J . D . Pintér , N . V . Sahinidis. Global Optimization
with GAMS Applications and Performance. G A M S Development Corporation, 2003.
Available at http://gams.com/presentations/present_BLOglobal.pdf. [Online;
cited December 25, 2011].

[8] E . Castillo, R. Minguez, A . J . Conejo, R. GarciaBertrand. Decomposition Techniques
in Mathematical Programming. Springer Science+Business Media, Berl in, 2006.

[9] L . Cermák. Rešení eliptických a parabolických problému druhého rádu s obecnými okra

jovými podmínkami metódou konečných prvku. P h D thesis, Vysoké učení technické
v Brné, Fakulta s t ro jního inženýrství , 1981.

[10] G . B . Dantzig, M . N . Thapa. Linear Programming, 1: Introduction. Springer series
in operations research, New York, 1997.

[II] A . de Silva, D . Abramson. Computational Experience with the Parallel Progressive
Hedging Algorithm for Stochastic Linear Programs. Griffith University, Nathan, 1994.

[12] A . S. Drud. CONOPT. A R K I Consulting and Development A / S , Bagsvaerd, Den

mark. Available at http://www.gams.com/dd/docs/solvers/conopt.pdf. [Online;
cited December 25, 2011].

[13] M . Feistauer, A . Zeníšek. Finite Element Solution of Nonlinear Elliptic Problems.
Numerische Mathematik, Volume 50, Number 4, pages 451475, 1986.

73

http://gams.com/presentations/present_BLOglobal.pdf
http://www.gams.com/dd/docs/solvers/conopt.pdf

[14] C. A . Felippa. Introduction to Finite Elements Methods. Lecture Notes, University
of Colorado at Boulder, 2001.

[15] J . Franců. Moderní metody řešeni diferenciálních rovnic. Akademické naklada te l s tv í
C E R M , 2. rozšířené vydání , Brno, 2006.

[16] G . Grimmett , D . Stirzaker. Probability and Random Processes. Oxford University
Press Inc., New York, 2001.

[17] P. Hansbo. Computations Engineering. Lecture Notes, Chalmers University of Tech

nology at Goteborg, 2009.

[18] T. Helgason, S. W . Wallace. Approximate scenario solutions in the progressive hedging
algorithm: A numerical study with an application to fisheries management. Annals
of Operations Research 31, pages 425444, 1991.

[19] P. K a i l , S. W . Wallace. Stochastic Programming. John Wiley and Sons, Inc., Chich

ester, second edition, 1994.

[20] L . Klimeš. Stochastic Programming Algorithms. Master's thesis, Vysoké učení tech

nické v Brně, Fakulta s t rojního inženýrství , 2010.

[21] M . Krá tká . Tvorba obrázků pro matematické texty pomoci metapostu. Masarykova
univerzita v Brně , Př í rodovědecká fakulta, Brno, 2001.

[22] P. Lidstrom. Mechanical Vibrations. Lecture Notes, Lunds Tekniska Hogskola
at Lund, Div . of Mechanics, 2010.

[23] E . Madenci, I. Guven. The finite element method and applications in engineering
using ANSYS. Springer Science+Business Media, New York, 2006.

[24] S. Moaveni. Finite element analysis, Theory and Application with ANSYS. Prentice

Hal l , New Jersey, 1999.

[25] J . M . Mulvey, H . Vladimírou. Applying the progressive hedging algorithm to stochastic
generalized networks. Annals of Operations Research 31, pp. 399424, 1991.

[26] P. Popela. An ObjectedOriented Approach to Multistage Stochastic Programming.
P h D thesis, Charles University in Prague, 1998.

[27] P. Popela. Stochastic Programming. Lecture Notes, University of Mal ta , Department
of Statistics and Operations Research, 2004.

[28] R. T. Rockafellar, R. J . B . Wets. Scenarios and policy aggregation in optimization
under uncertainity. Mathematics of Operations Research 16, pp. 119147, 1991.

[29] R. E . Rosenthal, GAMS A User's Guide. Gams Development Corpora

tion, Washington D C , 2011. Available at http://gams.com/dd/docs/bigdocs/
GAMSUsersGuide.pdf. [Online; cited December 25, 2011].

[30] A . Shapiro, D . Dentcheva, A . Ruszczyňski . Lectures on Stochastic Programming:
Modelling and Theory. Society for Industrial and Appl ied Mathematics and the Math

ematical Programming Society, Philadelphia, 2009.

74

http://gams.com/dd/docs/bigdocs/

[31] I. M . Smith, D . V . Griffiths. Programming the finite element method. John Wiley
& Sons, New York, second edition, 1988.

[32] M . C. Steinbach. TreeSparse Convex Programs. KonradZuseZentrum für Informa

tionstechnik, Berl in , 2001.

[33] R. E . Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
John Wiley & Sons, New York, 1986.

[34] O. C. Zienkiewicz, R. L . Taylor. The Finite Element Method: Volume 1: The Basic.
ButterworthHeinemann, Oxford, 2000.

[35] M . Zlamal. On the Finite Element Method. Numerische Mathematik, Volume 12,
Number 5 , pages 394409, 1968.

[36] E . Zampachová . Approximations in stochastic optimization and their applications.
P h D thesis, Vysoké učení technické v Brně, Fakulta s t rojního inženýrství , 2010.

[37] E . Zampachová , P. Popela, M . Mrázek. Optimum beam design via stochastic pro

gramming. Paper in Kybernetika, volume 46, pages 575586, 2010.

75

List of abbreviations

I would like to introduce abbreviations used in the thesis. Symbols and a notation are
not listed here. Everything is explained when it is used.

L P linear programming problem

M I L P mixed-integer linear programming problem

N L P nonlinear programming problem

U P underlying program

SP stochastic programming problem

W S wait-and-see

H N here-and-now

IS individual scenario

E V expected value

E E V expected result of using the expected value solution

E O expected objective

v s s value of stochastic solution

E V P I expected value of perfect information

G A M S general algebraic modeling system

G R G generalized reduced gradient method

F D M finite difference method

F E M finite element method

P H A progressive hedging algorithm

P D E partial differential equation

O D E ordinary differential equation

M A T L A B matrix laboratory

76

SI international system of units

s.t. such that, subject to

a.s. almost surely

R G reduced gradient method

K K T Karush-Kean-Tucker

T P P three-point pattern

P D F portable document format

77

Appendix A

Optimality conditions

In this appendix, we wi l l briefly describe the Karush-Kuhn-Tucker (KKT) optimality
conditions for the problem with inequality constraints

min / (x) ,
X

s.t. <7J(X) < 0, % — 1, . . . , m, (A . l)

x e l

T h e o r e m A . l (Karush-Kuhn-Tucker necessary optimality conditions). Consider the pro
gram (A.l). Assume that X is a nonempty open set in MN, f and gi : RN —> K. for all
i — 1 , . . . , m are functions, the set I is defined as I — {i G { 1 , . . . , m} : <7J(X) = 0} and x
is a feasible point. Assume that the functions f and gi for all i & I are differentiable
at point x 7 the functions gi for all i ^ I are continuous at the point x . Furthermore,
the gradients V<7J(X) for all i & I are linearly independent. If the point x is a local
minimum to the problem (A.l), then there exist numbers /Xj for all i & I such that

V / (x) + J > * V ^ (x) = 0 ,
i&I

Hi>0, Vie I

If gi for alii £ I are also differentiable at point x , then (A.2) can be rewritten to the equiv
alent form

V / (x) + 5 ^ V # (x) = 0,
i&I

^ (x) = 0, Vz = 1, . . . ,m,

Hi > 0, Vz = 1 , . . . , m.

The scalars \ii are called the Lagrange multipliers. A point x is said to be a Karush-
Kuhn-Tucker (KKT) point if there exist Lagrange multipliers / x i , . . . , fxm such that the point
x wi th them satisfies the K K T optimality conditions.

The proof of the previous theorem can be found in [1], these conditions can be also
easily extended to programs wi th equality constraints.

78

(A.2)

(A.3)

Appendix B

Solver C O N O P T

Nonlinear models created wi th G A M S must be solved with a nonlinear programing (N L P)
algorithm. Currently, three solvers for N L P are available - C O N O P T , M I N O S and S N O P T .
These solvers are based on different mathematical algorithms, and they behave differently
for different models. G A M S cannot select the best algorithm automatically, we must se
lect one as the default. C O N O P T was chosen for our models. It is well suited for models
wi th very nonlinear constraints and recursive equations, variables are solved and removed
from the model. We have models where many equations have to be solved and C O N O P T
has been designed for large and sparse models what is our case.

C O N O P T is a generalized reduced gradient algorithm (G R G) based solver specifi
cally designed for large nonlinear programming problems. This solver was developed
by A . Drud. The actual implementation has many modifications to make it efficient
for large models and for models written in the G A M S language. Details of the algorithm
can be found in [2]. Here we wi l l give a basic description of the reduced gradient and gen
eralized reduced gradient algorithms and also Newton-Raphson line search method used
in the G R G method.

B . l Reduced gradient method
In this section we want to introduce procedure for generating improving feasible direc
tions. The method depends on reducing the dimensionality of the problem by representing
all the variables in terms of an independent subset of the variables. The reduced gradient
method (RG) was developed by P. Wolfe in 1963 to solve a nonlinear programming prob
lem having linear constraints. The method was generalized by J . Abadie and J . Carpentier
in 1969 to handle nonlinear constraints. Consider the following problem.

min / (x) ,
X

s.t. A x = b,

x > 0,

where A is an m x n matrix of rank m, h is a vector wi th length m, x is a vector
of unknown variables wi th length n and / is a continuously differentiable function on Mn.
We have to make some non-degeneracy assumptions. A n y m columns of A are linearly
independent, every extreme point of the feasible region has m strictly positive variables.

Now let x be a feasible solution. B y the non-degeneracy assumptions, note that A
can be decomposed into (B, N) and x T into (x j , x j) , where B is an m x m invertible

79

matrix and x B > 0. Here x B is called the basic vector, and each of its components is
strictly positive. The components of the nonbasic vector x ^ may be positive or zero.
Let V / (x) T = (V B / (X) t , V N / (X) t) , where V B / (X) is the gradient of / wi th respect
to the basic vector XB and analogously V N / (X) . A direction d is an improving feasible
direction of / at x if V / (x) T d < 0, and if A d = 0 wi th dj > 0 if Xj = 0. We now specify
a direction vector d satisfying these properties, d T is decomposed into (d j , d j) . Note
that 0 = A d = l d B + N d N , then d B = - B _ 1 N d N . Let

r T = (r £ , r £) = V / (x) T - V B / (x) T B " 1 A = (0, V N / (x) T - V B / (x) T l " 1 N)

be the reduced gradient, and let us examine the term V / (x) T d :

V / (x) T d = V B / (x) T d B + V N / (x) T d N = (V N / (x) T - V B / (x) T B " 1 N) d N = r £ d N .

We must choose d N that r ^ d N < 0 and that dj > 0 if Xj = 0.
The following rule is adopted. For each nonbasic component j, let dj = —r-j if Tj < 0,

and let dj = —XJTJ if Tj > 0. This ensures that dj > 0 if Xj = 0, and prevents unduly small
steps sizes when Xj > 0, but small, while Vj > 0. This also helps make the direction-
finding map closed, thereby enabling convergence. Furthermore, V / (x) T d < 0, where
the strict inequality holds if d N ^ 0. We have described a procedure for constructing
an improving feasible direction. This fact, as well as the fact that d = 0 holds if and only
if x is a K K T point defined in the Appendix A . This fact was proved in [2].

The main steps of algorithm of reduced gradient method are listed below.

0. Choose a starting point x i satisfying A x i = b, x i > 0 and let k — 1 and go to Step 1.

1. Let d £ = (dg ,d^) where d^ and d B are obtained as below from (B.4) and (B.5),
respectively. If d f c = 0, stop; x f c is a K K T point. Otherwise, go to Step 2.

Ik = index set of the m largest components of x f c , (B . l)

B = {a , | j e 4}, N = {a , | j <£ Ik}, (B.2)

r V / (x f c) T - V B / (x f c) T B " 1 A , (B.3)

d = [~ri i f J i h and r3 < 0, 4

J 1 —XjVj if j ^ Ik and Tj > 0,

d B = - B _ 1 N d N . (B.5)

2. Solve the following line search problem:

min / (x f c + Ad f c)

s.t. 0 < A < A m ,

where

AT

mmi<j<n{-j^- | djk < 0}

oc
if d f c ^ 0,

if d f c > 0,
(B.6)

and Xjk, djk are the j - t h components of x f c and d f c , respectively. Let A^ be an optimal
solution, and let x f c + 1 = x f c + Afcdfc. Replace k by k + 1 and go to Step 1.

80

B.2 Generalized reduced gradient algoritm
We can extend the reduced gradient method to handle nonlinear constraints. This ex
tension is referred to as the generalized reduced gradient method (G R G) , and is sketched
below briefly.

Consider a nonlinear programming problem of the form

min / (x) ,
X

s.t. h(x) = 0,

x > 0,

where h(x) = 0 represents m equality constraints, x e Mn, and suitable variable trans
formations have been used to represent all variables as being nonnegative. Here, any in
equality constraint can be assumed to have been written as an equality by introducing
a nonnegative slack variable.

Now, given a feasible solution x&, consider a linearization of h(x) = 0 given by

h(x f c) + V h (x f c) (x - x f c) = 0,

where Vh(xfc) is the m x n Jacobian 1 of h evaluated at x&. Noting that h(xfc) = 0,
the set of linear constraints given by Vh(xfc)x = Vh(xfc)xfc is of the form A x = b, where
Xfc > 0 is a feasible solution. Assuming that the Jacobian A = Vh(xfc) has full row rank,
and partitioning it suitably into [B, N] and, accordingly partitioning x T = (x j , x £) (where
hopefully, x B > 0 in x f c) , we can compute the reduced gradient r v ia (B.3) and, hence,
obtain the direction of motion d& via (B.5) and (B.4). A s before, we obtain d& = 0 if and
only if Xfc is a K K T point, hence the procedure terminates. Otherwise, a line search is
performed along d^.

Earlier versions of this method adopted the following strategy. First , a line search is
performed by determining \ m a x v ia (B.6) and then finding \ k as the solution to the line
search problem to

min / (x f c + Ad f c) ,

S.t. 0 < A < Xmax-

This gives x* = Xfc + A^d^ . Since h(x*) = 0 is not necessarily satisfied, we need a cor
rection step. Toward this end, the Newton-Raphson method is then used to obtain x^+i
satisfying h (x f c + 1) = 0, starting wi th the solution x* and keeping the components of x N

fixed at the values x^ . Hence, x N remains at x ^ > 0 during this iterative process, but
some components of x B may tend to become negative. A t such a point, a switch is made
by replacing a negative basic variable xr wi th a nonbasic variable xq that is preferably pos
itive and that has a significantly nonzero element in the corresponding row r of the column
B _ 1 a g . The Newton-Raphson process then continues as above wi th the revised basis (hav
ing now fixed xr at zero) and the revised linearized system, unti l a nonnegative solution
x f c + 1 satisfying h (x f c + 1) = 0 is finally obtained.

More recent versions of the G R G method adopt a discrete sequence of positive step
sizes and attempt to find a corresponding x^+i for each such step size sequentially using

l rThe Jacobian matrix is the matrix of all first-order partial derivatives of vector function h with respect
to the vector

81

the foregoing Newton-Raphson scheme. Using the value / (x f e + 1) at each such point,
when a three-point pattern (T P P) of the quadratic interpolation method is obtained,
a quadratic fit is used to determine a new step size, for which the corresponding point
Xfc+i is again computed as above using the Newton-Raphson scheme. A feasible point
having the smallest objective value thus found is used as the next iterate. This technique
appears to yield a more reliable algorithm.

The iterative Newton-Raphson scheme complicates convergence arguments. The ex
isting convergence proofs use restrictive and difficult to verify assumptions. Nonetheless,
this type of algorithm provides quite a robust and efficient scheme for solving nonlinear
programming problems.

The individual steps are of course much more detailed in a practical implementa
tion like C O N O P T . The optimizing steps are specialized in several versions according
to the whether the model appears to be almost linear or not. For "almost" linear models
some of the linear algebra work involving the Jacobian and B matrices can be avoided
or done using cheap LP- type updating techniques and the steepest edge procedure can
be useful. Similarly, when the model appears to be fairly nonlinear other aspects can be
optimized, the set of basic variables wi l l often remain constant over several iterations,
and other parts of the sparse matrix algebra wi l l take advantage of this.

Newton's method is method for minimizing a function of a single variable. The method
of Newton is a procedure that deflects the steepest descent direction by premultiplying
it by the inverse of the Hessian matrix (square matrix of second order partial derivatives
of a function /) . This operation is motivated by finding a suitable direction for the qua
dratic approximation to the function. To motivate the procedure, consider the following
approximation q at a given point x^:

where Hl(xfc) is the Hessian matrix of / at x&. A necessary condition for a minimum
of the quadratic approximation q is that V g (x) = 0, or V/(xfc) + HI(xfc)(x — Xfc) = 0.
Assuming that the inverse of Hl(xfc) exists, the successor point x^+i is given by

Equation (B.7) can be viewed as an application of the Newton-Raphson method to the so
lution of the system of equations V / (x) = 0. Given a well-determined system of nonlinear
equations, each iteration of the Newton-Raphson method adopts a first-order Taylor series
approximation to this equation system at the current iterate and solves the resulting linear
system to determine the next iterate. App ly ing this to the system V / (x) = 0 at an iterate
Xfc, the first-order approximation to V / (x) is given by V/(xfc) + HI(xfc)(x — Xfc). Setting
this equal to zero and solving produces the solution x = x^+i as given by (B.7).

B.3 Newton-Raphson line search method

_(x) = / (x f c) + V / (x f c) T (x - x f c) + - (x - Xfc) T M(x f c) (x - x f c)

(B.7)

82

Appendix C

Penalty functions

In this appendix we deal wi th the approaches to convert nonlinear programming prob
lems wi th equality and/or inequality constrains into an equivalent unconstrained problem
or problems with simple constraints.

There are two alternative approaches achieving this described detailed in [1]. The first
is called the penalty, or the exterior penalty function method, in which we add a penalty
term to the objective function for points not lying in the feasible set and thus violating
some of the constraints. This method generated a sequence of infeasible points whose
limit is an optimal solution to the original problem. The second method is the bar
rier or interior penalty function method, in which a barrier penalty term that prevents
the points generated from leaving the feasible region is added to the objective function.
This method generates a sequence of feasible interior points whose limit is an optimal
solution to the original constrained problem.

Clearly we would like to transfer some properties of original constrained problems,
such as convexity, smoothness, etc. to penalized problems as well. We can achieve this
by carefully choosing penalty functions.

Further only the basic concept of penalty functions is introduced. The basic idea
behind all penalty algorithms is to replace constrained problem wi th the equivalent un
constrained one or with a sequence of unconstrained problem. The constraints are placed
into the objective function via a penalty parameter in a way that penalizes any violation
of the constraints.

C . l Exterior penalty function method
Consider the following problem wi th single constraint:

min / (x) ,
X

s.t. /i(x) = 0.

This problem is replaced by the unconstrained problem, where the penalty parameter
fj, > 0 is an appropriate large number:

min / (x) + /x/i 2 (x),
X

s.t. x e W1.

83

We can see that an optimal solution to the above problem must have /i2(x) close to zero,
otherwise a large penalty term /^/i2(x) wi l l occur.

Now consider problem with single inequality constraint:

min /(x),
X

s.t. #(x) < 0.

The previous approach is not appropriate, because a penalty wi l l occur whether g(x) < 0
or g(x) > 0. But a penalty is desired only it the point x is not feasible, that is, if g(x) > 0.
A suitable unconstrained problem is given by:

min /(x) + / imax{0 ,g(x)} .
X

s.t. x e M n .

If g(x) < 0, then max{0,g(x)} = 0 and no penalty occurs and if g(x) > 0, then
max{0,g(x)} > 0 and the penalty term /xg(x) is realized. If differentiability is desir
able, we can consider instead a penalty function term of the type JJL (max{0, g(x)})2.

In general, a penalty function must incur a positive penalty for infeasible points and no
penalty for feasible points. If we consider inequality constraints of the form (7«(x) < 0
for % = 1 , . . . , m and equality constraints of the form /ij(x) for % = 1 , . . . , / , a suitable
penalty function a is defined by

m I

a(x) = ^ (^W) + ^ (^W)'
i=l i=l

where 0 and ip are continuous functions satisfying the following:

f = 0 if 2/ < 0 , , , (= 0 if y = 0
^ y) { > 0 iiy>0 ' > 0 i f y ^ O .

Typically, 0 and ip are of the forms

(j){y) = (max{0, | /}) | , ,

1>(y) = W;

where p is a positive integer. Then the penalty function a is of the form

m I

a(x) = J] (max{0,a (x)}f + J] |̂ (x)|̂ .
i=l i=l

The function /(x) + /xa(x) is the auxiliary function.

T h e o r e m C . l (global convergence of a penalty method). Assume that the original con
strained problem possesses optimal solutions. Then, every limit point of the sequence
{x̂ }, (j, —> oo of globally optimal solutions to equivalent unconstrained problem is globally
optimal in the original constrained problem.

Proof of previous theorem can be found in [1] and more detailed information can be
found in [2].

84

C.2 Interior penalty function method
The idea behind exterior penalty functions is to approximate a feasible set on the who
le Mn. The interior penalty function methods construct approximations only inside the fea
sible set and set a barrier against leaving it. The method generates a sequence of interior
points that converges to it.

We consider inequality constraints of the form gi(x) for % — 1 , . . . , m. For the method
to work, we need to assume that there exists a strictly feasible point x e Mn, such
that <7J(X) < 0, % — 1, . . . , m. So in contrast wi th the exterior method, we cannot include
equality constraints into the penalty term. Of course, it is possible to extend the discussion
to equality constraints, but we prefer simple notation.

Suitable penalty function a is defined by

m

"(X) = J^0(#(x)) >
i=l

where 0 is continuous function satisfying following:

rh(\ / > 0 i f y < ° :

\ = oo otherwise.

Typical example of the function <ft is (f>\{y) = —y-1 or foiy) = — log (min{ l , —y}).
Similarly to the exterior penalty functions, the theorem about the convergence to glob

ally optimal solutions can be formulated wi th some additional assumptions. More detailed
information could be found again in [1] and especially in [2].

C.3 Computational difficulties
A s the penalty parameter increases in the exterior penalty methods or decreases in the in
terior penalty methods, the approximating problem becomes more and more ill-con
ditioned. Therefore, a typical computational strategy is to start from "safe" values
of the penalty parameter (relatively small for exterior penalties, or large for interior
penalties), and then proceed step after step slightly modifying the penalty parameter
heuristically (for example by mult iplying it wi th some number close to 1).

We have to note here that there is no general rule how to determine the value of penalty
parameter to obtain optimal solution in the shortest time. The same problem was men
tioned in the P H A description.

We are interested in penalty functions that can reach the optimal solution to the origi
nal problem for finite value of the penalty parameter. The augmented Lagrangian penalty
function satisfies this property and preserves differentiability of the objective function.
We take the shifted quadratic penalty function and expend it. Then we have the penalty
function which is composed of a linear and a quadratic term. Aga in the equality con
straints are treated up in other way than the inequality constraints. Here we gave you
only basic insight, for more detailed information see [5].

85

Appendix D

Sample of G A M S source code

$ t i t l e S p a t i a l d e c o m p o s i t i o n f o r I S r e f o r m u l a t e d beam

S c a l a r s N number o f e l e m e n t s on p a r t /6/
1 l e n g t h o f p a r t o f beam [mm] /750/
bb l o a d c o n s t a n t [Nmm-1] /10/
r o s t e e l d e n s i t y [tmm-3] 1 1 . 85E-9/
a l f a r i g i d i t y w e i g h t c o e f f i c i e n t /o. 5/
b e t a w e i g h t w e i g h t c o e f f i c i e n t /o. 5/
s i g m a s t r e s s l i m i t a t i o n [MPa] /100/
r i g i d i t y n o r m a l i z a t i o n c o n s t a n t / l . 7 5E12/
w e i g h t n o r m a l i z a t i o n c o n s t a n t /o. 007/
E Young's m o d u l u s [MPa] /210E3/;

Sets i n ode i n d e x / l * 14/
e l e l e m e n t i n d e x / l * 6/
j i n d e x i n e l e m e n t / l * 4/;

Parameter d s p a t i a l s t e p ;
d = l / N ;

Parameter h e l (e l , i) e x t e r n f o r c e s and moments on one e l e m e n t ;
loop (e l ,

l o o p (i ,
h e l (e l , i) $ (o r d (i)
h e l (e l , i) $ (o r d (i)
h e l (e l , i) $ (o r d (i)
h e l (e l , i) $ (o r d (i)

e q (2 * o r d (e l) - 1)) = b b * d / 2 ;
eq (2 * o r d (e l))) = b b * d * * 2 / 1 2 ;
eq (2 * o r d (e l) + l)) = b b * d / 2 ;
eq (2 * o r d (e l) + 2)) = - b b * d * * 2 / 1 2 ;

)
)

Parameter h (i) e x t e r n f o r c e s a n d moments f o r w h o l e beam;
h (i) = s u m (e l , h e l (e l , i)) ;

A l i a s (i , i i) ;

Parameter b c v e c l (i)
b c v e c l (i) = 0 ;
b c v e c l (i) $ (o r d (i) e q (c a r d (i
b c v e c l (i) $ (o r d (i) e q c a r d (i)

v e c t o r w i t h b o u n d a r y c o n d i t i o n s - p a r t 1;

-1))
= -0 .

=0.261;
001;

Parameter b c v e c 2 (i)
b c v e c 2 (i) =
b c v e c 2 (' 1 1

b c v e c 2 (' 2 1

v e c t o r w i t h b o u n d a r y c o n d i t i o n s - p a r t 2;

=0.261;
=0.001;

86

K e l j - j) s y m m e t r i c e l e m e n t s t i f f n e s s m a t r i x ;
K e l '1' , 1 1 1) = 1 2 / (d * * 3) ; K e l (1 1 ' ' 3 1) = - K e l (' 1 ' , '1
K e l '3 ' , 1 1 1) = - K e l (' 1 ' , ' 1 ') ; K e l (, 3 , ' 3 1) = K e l (' 1 ' , 1 1 1

K e l '1' , 1 2 1) = 6 / (d * * 2) ; K e l (1 1 ' ' 4 1) = K e l (' 1 ' , 2 1

K e l '2 ' , 1 1 1) = K e l (' 1 ' , ' 2 ') ; K e l (1 2 ' ' 3 1) = - K e l (' 1 ' , '2
K e l '3 ' , 1 2 1) = - K e l (' 1 ' , ' 2 ') ; K e l (, 3 , ' 4 1) = - K e l (' 1 ' , '2
K e l '4 ' , 1 1 1) = K e l (' 1 ' , ' 2 ') ; K e l (i 4 i ' 3 1) = - K e l (' 1 ' , '2
K e l '2 ' , 1 2 1)=4/d; K e l (i 4 i ' 4 1) = K e l (' 2 ' , 2 1

K e l '2 ' , i 4 <)=2/d; K e l (i 4 i ' 2 1) = K e l (' 2 ' , 4 '

P a r a m e t e r L e i (e l , j , i) l o c a l i z a t i o n o p e r a t o r ;
l o o p (j , l o o p (i ,

L e i (e l , ' 1 ' , i) $ (o r d (i) e q (2 * o r d (e l) - 1)) = 1 ;
L e i (e l , ' 2 ' , i) $ (o r d (i) e q (2 * o r d (e l))) = 1 ;
L e i (e l , ' 3 ' , i) $ (o r d (i) e q (2 * o r d (e l) + 1)) = 1 ;
L e i (e l , ' 4 ' , i) $ (o r d (i) e q (2 * o r d (e l) + 2)) = 1) ;) ;

P a r a m e t e r L e l T r a n s (e l , i , j) t r a n s p o s e d l o c a l i z a t i o n o p e r a t o r ;
l o o p (e l , l o o p (i , l o o p (j , L e l T r a n s (e l , i , j) = L e l (e l , j , i)) ;) ;) ;

A l i a s (j , j j) ;

P a r a m e t e r K L (e l , j , i) K e l * L e l f o r a l l e l e m e n t s ;
l o o p (e l , l o o p (j , l o o p (i , K L (e l , j , i) =
s u m (j j , K e l (j , j j) * L e l (e l , j j , i)) ;) ;) ;) ;

P a r a m e t e r L K L (e l , i , i) L e l T r a n s * K L f o r a l l e l e m e n t s ;
l o o p (e l , l o o p (i i , l o o p (i , L K L (e l , i , i i) =
sum (j , L e l T r a n s (e l , i , j) * K L (e l , j , i i)) ;) ;) ;) ;

P a r a m e t e r K (i , i) s t i f f n e s s m a t r i x f o r t h e beam;
K (i , i) = 0 ; l o o p (e l , K (i , i i) = K (i , i i) + L K L (e l , i , i i)) ;

V a r i a b l e s z l v a r i a b l e f o r o b j e c t i v e f u n c t i o n on p a r t 1
z2 v a r i a b l e f o r o b j e c t i v e f u n c t i o n on p a r t 2
v l (i) d e f o r m a t i o n o f p a r t 1 (d i s p l a c e m e n t s a n d r o t a t i o n s)
v 2 (i) d e f o r m a t i o n o f p a r t 2 (d i s p l a c e m e n t s a n d r o t a t i o n s) ;

P o s i t i v e v a r i a b l e s
a d i m e n s i o n o f c r o s s s e c t i o n
b d i m e n s i o n o f c r o s s s e c t i o n ;

o b j l o b j e c t i v e f u n c t i o n on p a r t 1
o b j 2 o b j e c t i v e f u n c t i o n on p a r t 2
BCL11 l e f t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 1
BCL12 l e f t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 1
B C R 1 1 (i) r i g h t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 1
B C R 1 2 (i) r i g h t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 1
BCL21 l e f t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 2
BCL22 l e f t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 2
B C R 2 1 (i) r i g h t b o u n d a r y c o n d i t i o n f o r d e f l . - p a r t 2
B C R 2 2 (i) r i g h t b o u n d a r y c o n d i t i o n f o r r o t . - p a r t 2
F E M 1 (i) c o n s t r a i n t w i t h 4 t h d e r i v a t i v e - p a r t 1
F E M 2 (i) c o n s t r a i n t w i t h 4 t h d e r i v a t i v e - p a r t 2
M a x S t r e s s 1 0 m a x i m a l s t r e s s i n t h e f i r s t node - p a r t 1
M a x S t r e s s l d (e l , i) m a x i m a l s t r e s s i n t h e l a s t node - p a r t 1
M a x S t r e s s l (e l , i) m a x i m a l s t r e s s i n i - t h node - p a r t 1
M i n S t r e s s l O m i n i m a l s t r e s s i n t h e f i r s t node - p a r t 1
M i n S t r e s s l d (e l , i) m i n i m a l s t r e s s i n t h e l a s t node - p a r t 1
M i n S t r e s s l (e l , i) m i n i m a l s t r e s s i n i - t h node - p a r t 1
M a x S t r e s s 2 0 m a x i m a l s t r e s s i n t h e f i r s t node - p a r t 2

87

M a x S t r e s s 2 d (e l , i)
M a x S t r e s s 2 (e l , i)
M i n S t r e s s 2 0
M i n S t r e s s 2 d (e l , i)
M i n S t r e s s 2 (e l , i)

m a x i m a l s t r e s s i n t h e l a s t node - p a r t 2
m a x i m a l s t r e s s i n i - t h node - p a r t 2
m i n i m a l s t r e s s i n t h e f i r s t node - p a r t 2
m i n i m a l s t r e s s i n t h e l a s t node - p a r t 2
m i n i m a l s t r e s s i n i - t h node - p a r t 2

* j g deterministic reformulation part 1
o b j l . . z l =e= - a l f a * E * a * b * * 3 / (1 2 * r i g i d i t y) + b e t a * r o * a * b * l / w e i g h t ;
B C L 1 1 . . v l (' 1 ') = e = 0 ;
BCL12.. v l (' 2 ') = e = 0 ;
B C R 1 1 (i) $ (o r d (i) e q (c a r d (i) - 1)) . . v l (i) = e = b c v e c l (i) ;
B C R 1 2 (i) $ (o r d (i) e q c a r d (i)) . . v l (i) = e = b c v e c l (i) ;
F E M 1 (i) $ ((o r d (i) ne l) a n d (o r d (i) ne 2) a n d (o r d (i) ne (c a r d (i) - 1)) a n d
(o r d (i) ne c a r d (i))) . . ((E * a * (b * * 3)) / (1 2)) * s u m (i i $ ((o r d (i i) ne l) a n d
(o r d (i i) ne 2) a n d (o r d (i i) ne (c a r d (i i) - 1)) a n d (o r d (i i) ne c a r d (i i))) ,
K (i , i i) * v l (i i)) = e = h (i) - ((E * a * (b * * 3)) / (1 2)) * s u m (i i , K (i , i i) * b c v e c l (i i)) ;
M a x S t r e s s l O . . E * (b / 2) * ((- 6 / d * * 2) * v l (' 1 ') + (- 4 / d) * v l (' 2 ') + (6 / d * * 2) * v l (' 3 ') +
(- 2 / d) * v l (' 4 ')) = l = s i g m a ;
M a x S t r e s s l d (e l , i) $ ((o r d (e l) e q c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . . E * (b / 2) *
((6 / d * * 2) * v l (i - 1) + (2 / d) * v l (i) + (- 6 / d * * 2) * v l (i + 1) + (4 / d) * v l (i + 2)) = l = s i g m a ;
M a x S t r e s s l (e l , i) $ ((o r d (e l) n e c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . .
E* (b/4) * ((6/d**2) * v l (i - 1) + (2/d) * v l (i) + (-6/d**2) * v l (i + 1) + (4/d) * v l (i + 2) +
(- 6 / d * * 2) * v l (i + 1) + (- 4 / d) * v l (i + 2) + (6 / d * * 2) * v l (i + 3) + (- 2 / d) * v l (i + 4)) = l = s i g m a ;
M i n S t r e s s l O . . - E * (b / 2) * ((- 6 / d * * 2) * v l (' 1 ') + (- 4 / d) * v l (' 2 ') + (6 / d * * 2) * v l (' 3 ') +
(- 2 / d) * v l (' 4 ')) = l = s i g m a ;
M i n S t r e s s l d (e l , i) $ ((o r d (e l) e q c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . . - E * (b / 2)
((6 / d * * 2) * v l (i - 1) + (2 / d) * v l (i) + (- 6 / d * * 2) * v l (i + 1) + (4 / d) * v l (i + 2)) = l = s i g m a ;
M i n S t r e s s l (e l , i) $ ((o r d (e l) n e c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . .
- E * (b / 4) * ((6 / d * * 2) * v l (i - 1) + (2 / d) * v l (i) + (- 6 / d * * 2) * v l (i + 1) + (4 / d) * v l (i + 2) +
(- 6 / d * * 2) * v l (i + 1) + (- 4 / d) * v l (i + 2) + (6 / d * * 2) * v l (i + 3) + (- 2 / d) * v l (i + 4)) = l = s i g m a ;
* J 5 deterministic reformulation part 2
o b j 2 . . z2 =e= - a l f a * E * a * b * * 3 / (1 2 * r i g i d i t y) + b e t a * r o * a * b * l / w e i g h t ;
B C L 2 1 . . v 2 (' 1 ') = e = b c v e c 2 (' 1 ') ;
BCL22. . v 2 (' 2 ') = e = b c v e c 2 ('2') ;
B C R 2 1 (i) $ (o r d (i) e q (c a r d (i) - 1)) . . v 2 (i) = e = 0 ;
B C R 2 2 (i) $ (o r d (i) e q c a r d (i)) . . v 2 (i) = e = 0 ;
F E M 2 (i) $ ((o r d (i) ne 1) a n d (o r d (i) ne 2) a n d (o r d (i) ne (c a r d (i) - 1)) a n d
(o r d (i) ne c a r d (i))) . . ((E * a * (b * * 3)) / (1 2)) * s u m (i i $ ((o r d (i i) ne l) a n d
(o r d (i i) ne 2) a n d (o r d (i i) ne (c a r d (i i) - 1)) a n d (o r d (i i) ne c a r d (i i))) ,
K (i , i i) * v 2 (i i)) = e = h (i) - ((E * a * (b * * 3)) / (1 2)) * s u m (i i , K (i , i i) * b c v e c 2 (i i)) ;
M a x S t r e s s 2 0 . . E * (b / 2) * ((- 6 / d * * 2) * v 2 (' 1 ') + (- 4 / d) * v 2 (' 2 ') + (6 / d * * 2) * v 2 (' 3 ') +
(- 2 / d) * v 2 (' 4 ')) = l = s i g m a ;
M a x S t r e s s 2 d (e l , i) $ ((o r d (e l) e q c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . . E * (b / 2) *
((6/d**2) *v2 (i - 1) + (2/d) *v2 (i) + (-6/d**2) *v2 (i + 1) + (4/d) *v2 (i + 2)) = l = s i g m a ;
M a x S t r e s s 2 (e l , i) $ ((o r d (e l) n e c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . .
E* (b/4) * ((6/d**2) *v2 (i - 1) + (2/d) *v2 (i) + (-6/d**2) *v2 (i + 1) + (4/d) *v2 (i + 2) +
(-6/d**2) * v 2 (i + 1) + (- 4 / d) * v 2 (i + 2) + (6 / d * * 2) * v 2 (i + 3) + (- 2 / d) * v 2 (i + 4)) = l = s i g m a ;
M i n S t r e s s 2 0 . . - E * (b / 2) * ((- 6 / d * * 2) * v 2 (' 1 ') + (- 4 / d) * v 2 (' 2 ') + (6 / d * * 2) * v 2 (' 3 ') +
(- 2 / d) * v 2 (' 4 ')) = l = s i g m a ;
M i n S t r e s s 2 d (e l , i) $ ((o r d (e l) e q c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . . - E * (b / 2)
((6/d**2) *v2 (i - 1) + (2/d) *v2 (i) + (-6/d**2) *v2 (i + 1) + (4/d) *v2 (i + 2)) = l = s i g m a ;
M i n S t r e s s 2 (e l , i) $ ((o r d (e l) n e c a r d (e l)) a n d (o r d (i) e q (2 * o r d (e l)))) . .
- E * (b / 4) * ((6 / d * * 2) * v 2 (i - 1) + (2 / d) * v 2 (i) + (- 6 / d * * 2) * v 2 (i + 1) + (4 / d) * v 2 (i + 2) +
(-6/d**2) * v 2 (i + 1) + (- 4 / d) * v 2 (i + 2) + (6 / d * * 2) * v 2 (i + 3) + (- 2 / d) * v 2 (i + 4)) = l = s i g m a ;
* O-iteration without penalty terms part 1
model D e t e r m l / o b j l , B CL11, BCL12, BCR11, BCR12, FEM1, M a x S t r e s s l O ,

M a x S t r e s s l d , M a x S t r e s s l , M i n S t r e s s l O , M i n S t r e s s l d ,
M i n S t r e s s l / , •

a . l o = 1 0 ;
a. up=100;
b. l o = 1 0 ;

88

b.up=100;
a. 1=100;
b. 1=100;
v l . l (i) = 0 ;
s o l v e D e t e r m l u s i n g n i p m i n i m i z i n g z l ;
D i s p l a y a . l , b . l , z l . l , v l . l ;
* 0 - i t e r a t i o n without penalty terms part 2 *
m o d e l Determ2 / o b j 2 , BCL21, BCL22, BCR21, BCR22, FEM2, M a x S t r e s s 2 0 ,

M a x S t r e s s 2 d , M a x S t r e s s 2 , M i n S t r e s s 2 0 , M i n S t r e s s 2 d ,
M i n S t r e s s 2 / ;

a . l o = 1 0 ;
a. up=100;
b. l o = 1 0 ;
b.up=100;
a. 1=100;
b. 1=100;
v 2 . 1 (i) = 0 ;
s o l v e Determ2 u s i n g n i p m i n i m i z i n g z 2 ;
D i s p l a y a . l , b . l , z 2 . 1 , v 2 . 1 ;
* PHA:l-p i t e r a t i o n s *
S c a l a r s r h o p e n a l i z a t i o n c o e f f i t c i e n t / 40.00 /,

e p s i l o n t o l e r a t i o n f o r s t o p a l g o r i t h m / 0.0001 /,
q c o e f f i c i e n t f o r r o t a t i o n s / 1000 /;

P a r a m e t e r d e l t a s t o p c o n d i t i o n ;
d e l t a = 1;

S e t s p m a x i m a l i t e r a t i o n i n d e x / 0 * 1 0 0 0 / ;

P a r a m e t e r e o (i) e v e n o r o d d p a r a m e t e r (d i f e r r e n t i t a t e v a n d t h e t a)
l o o p (i , i f (((0 . 5 * o r d (i)) e q (r o u n d (0 . 5 * o r d (i)))) , e o (i) = 0 ;

e l s e eo (i) = 1 ;) ;) ;

P a r a m e t e r v b a r l (i) a v e r a g e s o l u t i o n - p a r t 1;
v b a r l (i) = 0;

P a r a m e t e r v b a r 2 (i) a v e r a g e s o l u t i o n - p a r t 2;
v b a r 2 (i) = 0;

P a r a m e t e r v b a r l b f (i) a v e r a g e s o l u t i o n i n p r e v i o u s i t e r a t i o n - p a r t 1;

P a r a m e t e r v b a r 2 b f (i) a v e r a g e s o l u t i o n i n p r e v i o u s i t e r a t i o n - p a r t 2;

P a r a m e t e r w l (i) l i n e a r p e n a l i z a t i o n p a r a m e t e r - p a r t 1;
w l (i) = 0 ;

P a r a m e t e r w 2 (i)
w 2 (i) = 0 ;

V a r i a b l e s z P H A l
ZPHA2

l i n e a r p e n a l i z a t i o n p a r a m e t e r - p a r t 2,

v a r i a b l e f o r PHA o b j e c t i v e f u n c t i o n - p a r t 1
v a r i a b l e f o r PHA o b j e c t i v e f u n c t i o n - p a r t 2;

E q u a t i o n s o b j P H A l o b j e c t i v e PHA f u n c t i o n w i t h p e n a l t y t e r m s - p a r t 1
objPHA2 o b j e c t i v e PHA f u n c t i o n w i t h p e n a l t y t e r m s - p a r t 2;

o b j P H A l . . z P H A l =e= - a l f a * E * a * b * * 3 / (1 2 * r i g i d i t y) + b e t a * r o * a * b * l / w e i g h t +
s u m (i , (e o (i) * w l (i) * v l (i)) + ((l - e o (i)) * w l (i) * v l (i))) + 0 . 5 * r h o *
s u m (i , e o (i) * (v l (i) - v b a r l (i)) * (v l (i) - v b a r l (i)) + q * (1 - e o (i)) * (v l (i) -
v b a r l (i)) * (v l (i) - v b a r l (i))) ;
o b j P H A 2 . . zPHA2 =e= - a l f a * E * a * b * * 3 / (1 2 * r i g i d i t y) + b e t a * r o * a * b * l / w e i g h t +

89

s u m (i , (e o (i) * w 2 (i) * v 2 (i)) + ((1 - e o (i)) * w 2 (i) * v 2 (i))) + 0 . 5 * r h o *
s u m (i , e o (i) * (v 2 (i) - v b a r 2 (i)) * (v 2 (i) - v b a r 2 (i)) + q * (1 - e o (i)) * (v 2 (i) -
v b a r 2 (i)) * (v2 (i) - v b a r 2 (i))) ;
* PHA-partl
model PHA1 / o b j P H A l , BCL11, BCL12, FEM1, M a x S t r e s s l O ,

M a x S t r e s s l d , M a x S t r e s s l , M i n S t r e s s l O , M i n S t r e s s l d ,
M i n S t r e s s l / ;

a . l o = 1 0 ;
a. up=100;
b. l o = 1 0 ;
b.up=100;
a. 1=100;
b. 1=100;
v l . l (i) = 0 ;
* PHA-part2
model PHA2 / o b j P H A 2 , BCR21, BCR22, FEM2, M a x S t r e s s 2 0 ,

M a x S t r e s s 2 d , M a x S t r e s s 2 , M i n S t r e s s 2 0 , M i n S t r e s s 2 d ,
M i n S t r e s s 2 / ;

a . l o = 1 0 ;
a. up=100;
b. l o = 1 0 ;
b.up=100;
a. 1=100;
b. 1=100;
v 2 . 1 (i) = 0 ;

v b a r l (' 1 ') = v l . 1 (' 1 ') ;
v b a r l (' 2 ') = v l . 1 (' 2 ') ;
v b a r l (' 3 ') = v l . 1 (' 3 ') ;
v b a r l (' 4 ') = v l . 1 (' 4 ') ;
v b a r l (i) $ ((o r d (i) ne 1) a n d (o r d (i) ne 2) a n d (o r d (i) ne 3) a n d (o r d (i) ne 4)) =
0 . 5* (v l . 1 (i) + v 2 . 1 (i - 4)) ;

v b a r 2 (i) $ (o r d (i) e q c a r d (i)) = v 2 . 1 (i) ;
v b a r 2 (i) $ (o r d (i) e q (c a r d (i) - 1)) = v 2 .1 (i) ;
v b a r 2 (i) $ (o r d (i) e q (c a r d (i) - 2)) = v 2 . 1 (i) ;
v b a r 2 (i) $ (o r d (i) e q (c a r d (i) - 3)) = v 2 . 1 (i) ;
v b a r 2 (i) $ ((o r d (i) ne c a r d (i)) a n d (o r d (i) ne (c a r d (i) - 1)) a n d
(o r d (i) ne (c a r d (i) - 2)) a n d (o r d (i) ne (c a r d (i) - 3))) = 0 . 5 * (v l . 1 (i + 4) + v 2 . 1 (i)) ;

l o o p (p, i f ((d e l t a g t e p s i l o n) ,
s o l v e PHA1 u s i n g n i p m i n i m i z i n g z P H A l ;
s o l v e PHA2 u s i n g n i p m i n i m i z i n g zPHA2;

v b a r l b f (i) = v b a r l (i) ;
v b a r l (' 1 ') = v l . 1 (' 1 ') ;
v b a r l (' 2 ') = v l . 1 (' 2 ') ;
v b a r l (' 3 ') = v l . 1 (' 3 ') ;
v b a r l (' 4 ') = v l . 1 (' 4 ') ;
v b a r l (i) $ ((o r d (i) ne 1) a n d (o r d (i) ne 2) a n d (o r d (i) ne 3) a n d (o r d (i) ne 4)) =
0 . 5* (v l . 1 (i) + v 2 . 1 (i - 4)) ;

v b a r 2 b f (i) = v b a r 2 (i)
v b a r 2 (i) $ (o r d (i) e q

$ (o r d (i) e q
$ (o r d (i) e q
$ (o r d (i) e q
$ ((o r d (i

v b a r 2 (i]
v b a r 2 (i]
v b a r 2 (i]
v b a r 2 (i]
(o r d (i)

c a r d (i)) = v 2 .
(c a r d (i) - 1))
(c a r d (i) - 2))
(c a r d (i) - 3))

M i) ;
=v2.1 (i)
=v2.1 (i)
=v2.1 (i)

ne c a r d (i)) a n d (o r d (i) ne (c a r d (i) - 1)) a n d
ne (c a r d (i) - 2)) a n d (o r d (i) ne (c a r d (i) - 3))) = 0 . 5 * (v l . 1 (i + 4) + v 2 . 1 (i))

d e l t a = (s u m (i , (v b a r l b f (i) - v b a r l (i)) * (v b a r l b f (i) - v b a r l (i))) + s u m (i ,

90

(v b a r 2 b f (i) - v b a r 2 (i)) * (v b a r 2 b f (i) - v b a r 2 (i))) +0 . 5* (sum (i , (v i .1 (i) -
v b a r l (i)) * (v i . 1 (i) - v b a r l (i))) +sum(i, (v2 .1 (i) - v b a r 2 (i)) * (v2 .1 (i) -
v b a r 2 (i))))) * * 0 . 5 ;

w l (i) =wl (i) +rho*eo (i) * (v i . 1 (i) - v b a r l (i)) + r h o * q * (1-eo (i)) * (v i . 1 (i) - v b a r l (i))
w2 (i) =w2 (i) +rho*eo (i) * (v2 .1 (i) - v b a r 2 (i)) + r h o * q * (1-eo (i)) * (v2 .1 (i) - v b a r 2 (i))

b c v e c l (i) $ (o r d (i) e q (c a r d (i) - 1)) = v l . 1 (i) ;
b c v e c l (i) $ (o r d (i) e q c a r d (i)) = v l . 1 (i) ;
b c v e c 2 (' 1 ') = v 2 . 1 (' 1 ') ;
b c v e c 2 ('2')=v2. 1 (' 2 ') ;) ;) ;

91

Appendix E

What is on the C D

The C D attached to the thesis contains

• the thesis in P D F format: thesis.pdf

• the implementation of the news vendor problem (Section 3.7): newsvendor.gms

• the implementation of the IS reformulation wi th F E M approximations of the beam
problem (Section 6.4): ISFEM.gms

• the implementation of the spatial decomposition for the IS reformulation of the beam
problem (Section 6.5): ISdecomp.gms

• the implementation of the E O reformulation wi th F E M approximations of the beam
problem (Section 6.6): EOFEM.gms

• the implementation of the spatial decomposition for the E O reformulation of the beam
problem (Section 6.7): EOdecomp.gms

92

