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 Introduction 

The industry 4.0 is consistently being implemented through all levels of supply 

chain and AI is part and parcel of this inevitably coming tendency. The need for 

automation in the automotive production industry has bounced up in the last two 

decades than ever before. The demand for new technologies and new solutions in 

the supply chain are the most sought out tools in the production. Neural networks 

(NN) have been elaborated in order to optimize procedures alleviating human’s job 

decreasing cost generating higher revenue. However, NN embedding is 

accompanied by higher risks since any teeny imprecision in predictions can lead to 

unwanted consequences such as cost, overproduction, a break in assembly line 

and etc. The main objective of the thesis is to practically implement one type of 

neural network which has the ability to memorise data from the past considering it 

for future prediction. This tool can become useful for supply chain if we want to 

gauge demand for production of a good for next week, month or year under 

unstable market. 

Nowadays all industries are facing significant challenges, which are increasingly 

demanding customers, immense competition, and permanently mounting demand 

for decreasing total cost. One way to deal with the new circumstances is definitely 

the automation of logistic processes by means of taking attempt to embed neural 

networks in logistics. Basically, it is essential in supply chain that everything 

happens at the right time, in right place and in the right amount. These 

requirements can be easily converted into task for a NN to fulfil the assigned 

requirements. For instance, predict timely delivered of some items to the right 

place and in the right amount to the plant. Another example, predict unloading or 

loading good in a plant by DHL for a next month. The derived data can be a good 

source for choosing better suppliers optimizing supply chain. Thus, it is substantial 

to understand the significance of the development of modern technologies and 

concentrate more on them.  

The diploma thesis is structured into three parts. The first chapter is dedicated to 

the theoretical aspect of the thesis introducing AI’s implementation into supply 

chain tackling various tasks beginning from computer vision to inventing smart 

forklift. Moreover, a subchapter explains specification of recurrent type of neural 
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network which is predecessor of long short-term memory network which is utilized 

later. Second chapter is crucial one since it explains the nuances of neural 

network learning procedure from mathematical viewpoint delving into optimization 

algorithms and their differences which have significant influence on the final 

output. One subchapter unleashes mystery from distinction between normalization 

and standardization, another one reveals hidden problems with underfitting and 

overfitting which have their own options to treat them and evaluation indicators 

enable to assess model’s performance to determine the steps which are 

necessary to do either to implement it into process or keep improving it up to 

desired requirements. The third chapter is dedicated to hands-on elaboration of 

neural network using python with corresponding libraries to invent, learn and 

assess LSTM type of neural network with stock market price data utilization as a 

primary time-series structured one. The result of it should give the answer for the 

task of possible embedding of NN into supply chain. As a core method to solve the 

thesis topic is inventing python code with main documentation sources of Keras, 

Pandas, Numpy, Matplotlib and Tensorflow. 
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1 Artificial intelligence and digital transformation in Supply 
Chain Management: theory and instances. 

Digitalization is the fast-moving phenomena trends which has enormous impact on 

continuous the industrial world shaping opening contemporary opportunities 

around a wide range of areas. Nowadays artificial intelligence is conceived as a 

key-point driving force of industrial digital transformation that has the capacity to 

present a new comprehensive source of development. Relatively recent 

breakthrough in both machine learning and neural network have created a whole 

new business ecosystem which is energetically being rendered by IT companies, 

car manufacturers such as TESLA Motors and one of the largest e-commerce 

companies in the world which titles Amazon. Pursuant to a survey by the VDI, 

approximately 25% of companies are about to consider artificial intelligence 

(AI/NN) and machine learning (Moroff and Sardesai, 2019). 

There are some vagueness and unclarity are over about the role of AI in 

manufacturing since most of researchers have not defined a clear statement of it. 

Nonetheless, the unity between them converged on AI value for the industry 4.0 in 

field of operations where advanced robotics and NN are involved (Tjahjono et 

al.,2017). 

One of the fundamental topics where AI implementation is deemed vital is digital 

twin. It turned out that researchers made a mountain out of a molehill because the 

overwhelming majority of literatures on digital twins are related to the area of 

production management revealing the basic theoretical analysis and only quarter 

of them describes precise use cases.  However, the simulation level or prototypes 

are the maximum what is given (Zhihan and Shuxuan el al., 2022). 

Another example of AI hands-on application is smart forklift. A forklift is fitted with 

several sensors modules which collect data into digital cloud, processed in real-

time and displayed on a monitor. Since there is collected data, it is possible to 

analyze it and as the result, some ML-engineers decided to embed a K-Nearest 

Neighborhoods algorithm (KNNs) for classification problem solving collecting time 

series data from equipped sensors (Jie, et al., 2022). 

Another prominent example is computer vision implementation in cars where 

nowadays Tesla has attained the best results. Auto-pilot system is based on 
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computer vision accompanied by ML and video streams from the cameras. 

Afterword, the raw footage is processed by Convolutional Neural Networks (CNNs) 

for object tracking and detection. In addition to cameras, each Tesla car has radar 

and ultrasonic sensors where the first one gauges the distance between car and 

objects and the second one measure proximity with passive objects enhancing 

drivers’ safety. As for the neural network embedded in the car, the title is ResNet-

50 that can run 1000×1000 images at time. For instance, one NN solves a task 

with stop signs, another one recurrently tackles pedestrians crossing a road and 

yet another copes with traffic lights. The title for all together networks is hydranets. 

Overall Tesla trained 48 networks fulfilling 1000 predictions consuming 70000 

GPU hours. That is what they call a real breakthrough (Almeida, 2021). 

However, the digitalization process and its survey began in the 1990s with 

consistent data records process collecting and networked systems especially in 

supply chain management. Although computing power has not been ample to 

store data, along with increasing computing power changing and inventing new 

algorithms it is today possible to analyze the converged data sets of companies 

and render them wholesomely. Algorithms have been developed in order to 

analyze large amounts of information to distinguish patterns that can be employed 

as decision framework for future planning and processes (Tarpend, Tyler, Krause, 

Handfield, 2008). One of the most conventional approaches in ML is taking 

historical data or so-called time series one which evolves consistently. In this 

regard demand forecasting in the supply chain planning becomes an important 

employment area for various ML’s methods, as multiple various real-lives variables 

affect the market and traditional statistical methods reaches their ceiling. 

Forecasting in Supply Chain Management describes the operation of further 

resources requirements to quantity and time which must be fulfilled. In SCM 

unquestionably everything is highly dependent on the demand planning output 

therefore it is vital for the company both profitability and prolificacy to reach a high 

forecast rate and to diminish vagueness (Muddassir, 2016). Consequently, 

machine learning and neural networks come to play. There is a bundle of 

forecasting models analyzing the past in order to foresee future events. It is 

deemed that those events follow the same implications and constitute a pattern 

which is quite stable and so-called as time stability theory. According to this 
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supposition, there are discrepancies between the predicted output and reality 

which are evaluated as deviation or error.  Simply saying, demand planning is 

based on prediction results of the historical recorded data outlined in the past. 

However, in order to attain the desired high rate of forecasting, both ample 

database and computing effort are part and parcel of hence selection procedure is 

necessary of the forecasting model. 

Because of the rapidly advancing progress of computer technologies, conventional 

prediction algorithms which come to our minds from statistics or econometrics are 

being substituted by much sophisticated approaches. Nowadays a myriad number 

of companies tend towards the machine learning or neural networks to enhance 

the prediction by means of internal and external data. 

However, on the way of data analysis data scientists stumble across uncovered 

predicaments such as multidimensionality, preliminary wrong data filling-in or the 

lack of data rules which should be stipulated by an inner company charter. Once 

Habla analyzed various number machine learning methods and have deduced that 

innovative products have a significantly smaller product life cycle than standard 

ones thereby sales behavior can be forecasted much less precisely (Moroff and 

Sardesai, 2019). Apart from it, even with well-structured data basis there are some 

hidden challenges might be like data interpretation or its refining. In 2017 there 

have been elaborated a data extraction process which embraces several steps: 

the definition of the targeted quantity of data, which is sufficient for proper 

analyzing, data cleansing step is crucial one since it is highly important to decide 

which of the given columns must be chosen and which of them must be taken out 

from the observation and resultantly it has direct influence on the final forecast 

(Mathes, Klaben and Pieper, 2017).  

Machine learning models divide into three types: supervised, unsupervised and 

reinforcement learning. The first one is trained by means of using known 

previously recorded data and the output is already known as well, this learning 

approach targets at looking-up a relation in the form of the stated rules that 

connect input data to its result and ultimately apply the learned rules to new data. 

From this point of view, the computer program is getting trained. Once the model 

is being trained it can predict future input and output data. Usually, the supervised 

models are rendered in solving such tasks as classification and regression. 
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Another model called unsupervised learning describes a system that is able to 

obtain knowledge without correct answers providing thus there are no pre-labelled 

target values. That pattern is so-called as “learning without a teacher”. A widely 

applied task of unsupervised learning is clustering issue whereas the model 

identifies affinity between the input data classifying them by common patterns. 

The last unique approach is known as reinforcement learning where feasible or 

optimal solutions are unknown to the model at the beginning of learning step and 

therefore it must be defined iteratively based on rewards and punishments system. 

Being in the learning phase, sensible approaches are rewarded, and vice versa 

wrong steps are prone to be punished. As a result, the system looks for its own 

solutions autonomously through directional rewards and punishments (Hannah, 

Daniel and Saskia, 2019). 

To better understand the primary point of ML the model scheme can be presented 

in the following-up image where each type of algorithm solves the corresponding 

task. For instance, supervised machine learning conventionally encompasses 

such tasks as both classification and regression or, for example, unsupervised 

algorithms are in clustering and association rule mining and reinforcement learning 

the rest of them in the Figure 1: 

 

Source: (Witten, Eibe and Hall, 2011)  

Figure 1: The Machine Learning algorithm types with its corresponding tasks. 

As it has already been pointed out that each algorithm oversees its own particular 

task, but it is utterly important to comprehend the outright task’s essences to be 
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not confused by variety of existing ones. The classification procedure is used to 

categorize objects in compliance with their properties based on the underlying 

dataset. Input data undergoes assortment where finally gets into the calculated 

grid according to their attributes. Since the classification procedure is quite 

discrete one thus the destination is usually unambiguous. Having sorted the data 

point, the classes are recalculated on the basis of the newly formed set of data to 

attain continuous enhancement of the classification output (Witten, Eibe and Hall, 

2011). 

Regression procedure is widely rendered by various number of companies around 

the world for forecasting demand because it may predict the future trends 

considering the historical variables. As in the traditional statistics, there are both 

endogenous and indigenous values which are examined in order to track back 

their interplay to each other. The range of tools in ML ranges from well-known 

simple regression to Lasso method or poison regression. For these concrete, 

fathomable reasons, they are wholesome in prediction case of scenario since they 

are able to take into account of several variables with subsequent inherent 

restrictions which in case of their breaking can lead to distorted results (Moroff and 

Sardesai, 2019).  

Clustering analysis is utilized in grouping and classifying data points pursuant to 

their properties so that it is crucial to have measurable data point to commit 

comparative analysis. The whole process is divided into two phases. At the 

beginning, it is necessary to find out similarity between the new data point and the 

existing set of data basis. This is followed by a division of similar sets of data into 

several independent groups thus forming clusters. At this stage, difference is 

accomplished between hard and soft algorithms of clustering and hence the 

unique data point assortment points to a cluster. If clustering algorithm is soft the 

data point might belong to several clusters as well and vice versa it is a hard 

clustering algorithm if a data point is always assigned uniquely to a cluster. 

These above-mentioned tasks are solving the machine learning algorithms in 

hands-on application in the real-life world (Moroff and Sardesai, 2019).   

However, machine learning algorithms have significant outright shortcomings 

which might cost huge amount of money in case of making mistakes or false 
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positive predictions compared to neural networks which are much more resistible 

in case of outliers or emissions in a set of data. To better understand the core 

difference between two at the first glance similar items is human-hand interference 

in the process of learning. 

The input data must be processed in ML algorithms, features are extracted, and 

classification is done. But deep learning performs both steps together. Moreover, a 

major privilege of NN is time saving contrary to the high training period required for 

ML models. Apart from it, NN secures input data flexibility not needing preliminary 

well-structured data where ML algorithms are sensible to any tiny changes in a 

data set. Finally, is the size of set of data where NN models are improved 

consistently, however ML algorithms would deteriorate. Finally, to learn any NN 

model expensive hardware is required while ML implementation itself requires 

professional expertise (Turing, 2020). 

Having briefly described advantages and shortcoming of both approaches we may 

induce that ML algorithms are suitable only in case of moderate amount of data 

with the least quantity of outliers otherwise the final output may change depending 

on the increasing number of observations. Furthermore, Supply Chain 

Management is an area where data is being refreshed on a daily basis and any 

wrongly predicted result may cost huge amount of money. Therefore, the following 

narration will be dedicated to only neural networks and its hands-on application. 

1.1 Recurrent neural network (RNN) 

Recurrent neural network is a type of existing artificial neural network which 

utilizes sequential flow of data or time series one. Nowadays this type of algorithm 

is widely used for ordinal problems like image captioning, speech recognition, 

forecasting or language translation. This kind of architecture is already embedded 

into Siri, voice assistant, and google translator. One of the primary advantages of 

RNN is memory while conventional deep neural networks presume that both 

inputs and outputs are connectionless of each other. Meanwhile the output of RNN 

relies on the preceding elements in format of the sequence (IBM, 2020). To better 

grasp the neural network architecture, you may take a look at Figure 2 presented 

bellow which picturizes the difference between RNN and other traditional ones. 
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Source: (Biswal, 2022)  

Figure 2: Simple RNN. 

As you may observe from the image, RNN works on the principle of saving the 

result of the hidden layer which is brown one and feeding this back to the input in 

order to forecast the output of the layer. “x” labeled variables represent input layer, 

“h” is known as hidden one and “y” is the output layer. A, B, C are the network 

elements whose aim is to improve overall output result by fetching back the 

combination of input vector at time step x(t) and old state of x(t-1) (Biswal,2022). 

Supremacy of this type of NN over the others is possibility of processing inputs of 

any length, the stability of model size while increasing of inputs and weights are 

shared across time. However, computation speed as well as absence of a 

possibility to take into account of any future input for the current state (Amidi, 

2020). 

Another distinguishing characteristic of RNN is that they share parameters across 

each layer of the whole neural network. Meanwhile feedforward networks have 

divers’ weights across the nodes, RNN have the same weight parameter within 

each corresponding layer of the network, but the weights are still adjusted in the 

through the processes of backpropagation and gradient descent to promote 

reinforcement learning.  

However, there is a slightly different type of backpropagation process which is 

called through time BPTT algorithm to measure the gradients. The pattern of 

BPTT is the same as conventional backpropagation where the algorithm trains 

itself by calculating errors from its output layer to its input one. These calculations 

enable us to adjust and adapt the parameters of the model appropriately. 
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Backpropagation through time differentiates in sums of errors at each time step 

whereas traditional architecture of NN don’t need to sum errors. 

Thus, the RNNs are prone to run into other problems such as exploding gradients 

and vanishing ones. It may arise by the size of the gradient which is the slope of 

the loss function along the error curve.  When the gradient is too small, it keeps 

going to consistently diminishing up to 0. Hence the algorithm is no longer 

learning, and it results in updating the weight parameters which stop its adjusting 

and overall accuracy becomes immutable. Vice versa tendency may occur when 

the gradient is too large, and it directly have effect on model’s stability where the 

algorithm weights grow too large and become as NaN type. However, the solution 

is simple it is necessary to shrink the number of hidden layers eliminating the RNN 

model complexity (IBM, 2020). 

Apart from advantages and drawbacks there are several types of RNN (Biswal, 

2022): 

• One – to – one. This variant of neural network is known as the Vanilla NN 

which has a single input gate and a single output gate. 

• One – to – many. The type of NN has a single input and multiple outputs. 

Usually, the model is applied for image caption. 

• Many – to – one. The RNN take several inputs and generate only one 

output gate. 

• Many – to – many. This type of RNN takes sequence of inputs and 

generates a sequence of outputs. Usually, you may find the model 

application in machine translation. 

Each of the models has been elaborated to solve respective real-life tasks. We 

may also present the neural network mathematically to understand the principle of 

the model in Figure 3.  
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Source: (Saeed, 2021)  

Figure 3: Unfolding A Recurrent Neural Network. 

In the gray rectangle can be unfold in 3-time steps to form the second network 

depicted below but during a RNN development it is possible to vary the 

architecture n time steps. The following-up notation is leveraged (Saeed, 2021): 

• 𝑥𝑡 ∈ 𝑅 is the input gate at time step t. The input data may be a scalar value 

with a single feature or n-dimensional vector. 

• 𝑦𝑡 ∈ 𝑅 is the output gate at time step t. One or multiple outputs in the 

network may be produced. 

• ℎ𝑡 ∈  𝑅𝑚 is the vector keeping the values of the hidden states at time t. This 

is usually called the current context where “m” is the number of hidden 

states and ℎ0 vector is initialized to zero. 

• 𝑤𝑥 ∈  𝑅𝑚 are weights which are bound with inputs in recurrent layer. 

• 𝑤ℎ ∈  𝑅𝑚×𝑚 are weights connected with hidden states in recurrent layer. 

• 𝑤𝑦 ∈ 𝑅𝑚 are weights which are associated with hidden output states. 

• 𝑏ℎ ∈ 𝑅𝑚 is just the bias which is associated with the recurrent layer. 

• 𝑏𝑦 ∈ 𝑅 is the bias as well which is associated with the feedforward layer. 

At each time step we can unroll the network for k time steps to receive the output 

at time step with k+1. As you may notice that the unfolded network resembles a 

feedforward neural network and general formula (1) looks accordingly: 
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                                                                   ℎ𝑡+1 = 𝑓(𝑥𝑡 , ℎ𝑡 , 𝑤𝑥 , 𝑤ℎ , 𝑏ℎ) = 𝑓(𝑤𝑥𝑥𝑡 + 𝑤ℎℎ𝑡 + 𝑏ℎ)                           (1) 

The output (2) of “y” at time t is compiled as: 

                                                                  𝑦𝑡 = 𝑓(ℎ𝑡 , 𝑤𝑦) = 𝑓(𝑤𝑦 ∗ ℎ𝑡 + 𝑏𝑦)                                                               (2) 

As the result, the feedforward pass of a RNN, calculate the values of the hidden 

units and the output after k time steps iterations. The weights which are connected 

with the neural network are shared temporally and each recurrent layer has two 

set of weights where one is geared to input and the second one for hidden unit. 

The last layer computes the total result for k-th time step as a usual layer of a 

conventional neural network (Saeed, 2021). 

Since the RNN’s concept has been comprehended it is high time to precede to 

another integral part of any neural network which is known as activation function. 

Nowadays there are three of the most widely applied activation functions which 

employed according to the task which a network should fulfill. Activation function 

determines whether a neuron should be activated. If an ML developer builds a 

neural network with 7 or 8 hidden layers so it is recommended to leverage whether 

a sigmoid function or hyperbolic tangent. If a ML developer elaborates a neural 

network with over 7 or 8 hidden layers so it means an automatic switchover to the 

field of deep learning and the abovementioned activation function types become 

irrelevant because the result might be distorted or lead to appalling outputs. 

Hence, scientists have taken on another activation function for deep learning 

which is called RELU. The mathematical formulas and corresponding graphs are 

essential to understand how they function in the Figure 4 below (Amidi, 2020). 

 

 

Source: (Amidi, 2020) 

Figure 4: Activation Functions. 
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The nonlinear functions usually convert the output of a given neuron to a range of 

values between 0 and 1 or -1 and 1 (IBM, 2020). RNN can have as many hidden 

states as a ML developer may wish but there is one significant constant. Each 

hidden state must always have the same activation function and the output of each 

layer is calculated using the same function. You may ask which one of the given 

activation functions to leverage during a neural network elaboration? If the network 

stays within easy-solving issues you may use sigmoid, but some ML developers 

would recommend utilizing hyperbolic tangent because it decreases occurrences 

of vanishing gradient problem and RELU is always for deep learning (Bento, 

2017).  

We have already discussed the types of RNN, but another important topic is RNN 

architectures which should be mentioned. In today’s day there is three types of 

architectures of RNN. The first one is bidirectional recurrent neural networks 

(BRNN). The difference between unidirectional RNNs is in drawing inputs from the 

previous records in order to make predictions about the current state but BRNN 

pulls in future data to improve the accuracy of it. Simply saying a neural network 

learning goes in two directions.  

Long short-term memory networks (LSTM) are a unique type of RNN which can 

remember long-term dependencies. It also has a chain-like structure and instead 

of a single NN layer, four interacting layers are communicating as shown on Figure 

5. 

 

Source: (Dobilas, 2019) 

Figure 5: LSTM’s unfolded scheme. 
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To understand the contemporary LSTM model each part plays a significant role.  

ℎ𝑡−1 is hidden state from a previous timestep and 𝑥𝑡 is the input at a current 

timestep which are all together combined before passing its copies through 

various gates. There is a forget gate controlling the information which should be 

forgotten. Sigmoid activation function ranges between 0 and 1 and it decides 

which values in the cell state must be thrown out multiplying an incoming value by 

0 and to remember it multiplied by 1, partially remembered it multiplies by some 

value between 0 and 1. The input gate helps to distinguish significant elements 

that must be added to the cell state. The essential note where the results of the 

input gate get multiplied by cell state candidate with only the information deemed 

important by the input gate being added to the cell state. After that, 𝑐𝑡−1 is the 

previous cell state which gets multiplied by the results received from the forget 

gate and then we add new information from input gate which has been multiplied 

by the cell state candidate in order to obtain the latest cell state denoted as 𝑐𝑡. The 

last step of neural network learning is hidden state updating. The latest cell state 

denoted as 𝑐𝑡 is passed through the tanh activation function and multiplied by the 

results of the output gate. At the end the latest cell state 𝑐𝑡 and the hidden state ℎ𝑡 

come back in order to repeat the process at timestep t+1 and it lasts until we reach 

the end of the sequence (Dobilas, 2019).  

In 2014 Kyunghyun Cho introduced a new type of RNN which is called gated 

recurrent units (GRU). GRUs are very similar to LSTM, and both have gates to 

control the flow of information. However, GRU is deemed as more alleviated than 

LSTM in terms of several differences. For instance, the former one has only two 

gates compared to the latter one having three gates. Moreover, GRU does not 

possess any internal memory and doesn’t have an output gate. Apart from it, 

LSTM’s both the input and target gates are coupled by an update one but in GRU 

reset gate is utilized directly for the antecedent hidden state (Lendave, 2021). To 

better understand the GRU’s functionality is highly important to have a look at the 

neuron’s structure that depicted on the Figure 6. 
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Source: (Lendave, 2021) 

Figure 6: The unfolded GRU’s neuron. 

As you may see again the architecture reminds us LSTM where at each timestamp 

t, it takes an input 𝑥𝑡 and the hidden state ℎ𝑡−1 from the previous timestamp t-1. 

Later, it produces a new hidden state ℎ𝑡 which again passed to another timestamp 

cycle and now there are primarily two gates in a GRU. The update gate is in 

charge of long-term memory, the equation (3) of the gate presented below. 

                                                                   𝑧𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑢 + 𝐻𝑡−1 ∗ 𝑊𝑢)                                                                        (3) 

𝑈𝑢 is simultaneously weight metric and differ from LSTM. Having processed 

elements through update gates they undergo the reset gate that is liable for the 

short-term memory of the whole network and the respective formula (4) presented 

below. 

                                                                   𝑟𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑟 + 𝐻𝑡−1 ∗ 𝑊𝑡)                                                                         (4) 

The 𝑟𝑡 value ranges from 0 to 1 because of the sigmoid function and the 𝑈𝑟 and 𝑊𝑟 

are weight metrices for reset gate.  

Having completed both procedures, they head down to another two-step process. 

The first one oversees generating the candidate hidden state which has a 

corresponding formula (5). 

                                                                  𝐻𝑡 = tanh(𝑥𝑡 ∗ 𝑈𝑔 + (𝑟𝑡 ∗ 𝐻𝑡−1) ∗ 𝑊𝑔)                                                  (5) 

The formula (5) encompasses input data and the hidden state from the antecedent 

timestamp t-1 which is multiplied by the reset gate result 𝑟𝑡. Later, it passed the 

information through the tanh activation function, the output value is the candidate’s 

hidden state. The most important part of equation is how the reset gate value is 
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used to control the hidden state influence on the candidate state. In case of 𝑟𝑡’s 

value mads up 1 then it makes us out that the entire information from previous 

hidden state ℎ𝑡−1 is being taken into account of. Likewise, if 𝑟𝑡 value makes up 0 

then the entire data from antecedent hidden state is neglected. 

Once the candidate state has arisen, it is time to generate the ongoing hidden 

state 𝐻𝑡 and the update state comes into play. LSTM utilizes separate gate, but 

GRU applies only update gate in order to control both previous information which 

is denoted as 𝐻𝑡−1 and the new information (6) from candidate state. 

                                                                      𝐻𝑡 = 𝑧𝑡 ∗ 𝐻𝑡−1 + (1 − 𝑧𝑡) ∗ 𝐻𝑡                                                                 (6) 

Let’s suppose that the 𝑧𝑡 is around 0 then the first part of the equation will 

disappear which makes us out that the hidden state will not have much data from 

antecedent hidden state. However, the second term of formula gets one that 

means the current timestamp will contain data from the candidate state only and it 

may happen vice versa that the candidate state may equal 0 but the hidden state 

with historical information can be equal 1 (Saxena,2021). 

To sum it up, you may observe some petite discrepancies between RNN, LSTM 

and GRU types but the final performance of the up-to-date approaches generates 

more robust result which is highly important in predictive analysis applying neural 

network as the main tool in solving real-life Supply Chain Management’s task on 

demand prediction. 
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2 The factors of neural network training. 

Any type of neural network has its own specifications and features, but some 

common things leave and must be considered during the development. Talking 

about details data scientist as well as ML developers have outlined the following 

attributes which must be calibrated in order to obtain a desired result: 

• Optimization 

• Standardization vs Normalization 

• Overfitting and underfitting issues 

• Evaluation indicators 

2.1 Optimization algorithms 

Any neural network model aims to generalize the incoming data with an algorithm 

and endeavors to predict unseen data. To map the inputs in order to receive the 

expected output it is necessary to optimize weights that minimize the error. 

Optimization algorithms significantly affect neural network accuracy. During the 

deep model learning the modification of epoch’s weights and minimization or the 

loss function are desired. An optimizer is an algorithm that modifies both weights 

and learning rate. Hence, it improves the overall accuracy, but the task is to 

choose the correct weights for the model is becoming daunting since there are 

millions of combinations (Gupta, 2021).  

Nowadays there are nine optimizers which are well-known in hands-on ANN 

application (Nagesh, 2020): 

• Gradient Descent 

• Stochastic Gradient Descent (SGD) 

• Mini Batch Stochastic Gradient Descent (MB-SGD) 

• SGD with momentum 

• Nesterov Accelerated Gradient (NAG) 

• Adaptive Gradient (AdaGrad) 

• AdaDelta 

• RMSprop 

• Adam 
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Gradient descent is the first foundational optimization algorithm of how the model 

is trained tweaking its parameters iteratively reaching out to its local minimum of a 

differentiable function. The primary goal is to minimize a cost function (7) as far as 

possible. 

                                                                                    𝜃 = 𝜃 − 𝜂 ∗ ∇𝐽(𝜃)                                                                          (7) 

The above-mentioned one is the parameter updates where ‘ŋ’ is learning rate and 

‘∇𝐽(𝜃)′ is the loss gradient function. Gradient descent was used in order to 

optimize weights updating them in a direction of the loss function minimization. 

Once the Backpropagation approach has been mentioned and when the model 

propagates backwards the Network carries error terms updating weights values 

with the Gradient Descent. 

 

Source: (Nagesh, 2020) 

Figure 7: The Gradient Descent function. 

In the gradient descent algorithm, there is a disguised variable which is part and 

parcel of final loss function output which is known as learning rate. Learning rate 

defines the convergence level by the assigned steps of gradient descent. In order 

to reach the local minimum, it is highly important to properly set the learning rate 

value which is neither too low nor too high. If the steps are too big it may not reach 

the local minimum bouncing back and forth between the convex function of the 

gradient descent. Vice versa, setting too small steps will get the local minimum, 

but it takes a while (Nagesh, 2020). Hence, we can deduce that gradient descent 

has both advantages and setbacks. On the one hand, it is easy to compute, to 

implement and to understand but it may trap at local minima, model’s weights are 

changed after the gradient on the whole dataset where it takes years to converge 

to the minima if the dataset is too enormous and the approach consumes large 
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memory to calculate the gradient on the whole dataset. Hence the stochastic 

gradient descent has been elaborated rectifying previous disadvantages. 

SGD is deemed as the extended version of the gradient descent where it performs 

a parameter update for each training example (8). The algorithm is faster and 

presents one update at a time. 

                                                                                  𝜃 = 𝜃 − 𝜂 ∗ ∇𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖))                                                        (8) 

Due to these frequent updates the high variance of parameters updates occurs 

and causes the loss function fluctuation. On the one hand, this is a good sign in a 

direction of the better local minima discovering but because of both frequent 

updates and fluctuations it compounds the convergence to the precise minimum 

keeping overshooting. Since most of disadvantages had left unsolved, another 

approach comes to play which is known as mini batch gradient descent (Nagesh, 

2020). 

MB-SGD is an extended version of the SGD, and it handled large time-consuming 

problems. This algorithm takes a subset of points from the dataset to compute 

derivative. However, after a while some surveys showed that the derivative of the 

loss function for MB-SGD is almost the same as a derivative of the loss function 

for conventional GD after some number of iterations. Moreover, the number of 

required iterations to get a local minimum is still large for MB-SGD as for GD. The 

updating of weights is dependent on the derivative of loss for a subset of points. 

MB-SGD’ updates are much fuzzy because the derivative doesn’t go toward 

minima. The basic principle of the algorithm is dividing the datasets into small 

batches and after each subset, the parameters are renewed. On average the mini 

batch is made up of size 50. The core advantage is less time-consuming in 

convergency way compared to the above-mentioned algorithms. However, some 

setbacks emerge such as noisiness and stuck at a local minimum (Nagesh, 2020). 
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Source: (Nagesh, 2020) 

Figure 8: The SGD vs MB-GD. 

Since the problem is severe the demand for denoising left. Therefore, the SGD 

with momentum has been invented to overcome this issue denoising the 

gradients. Having denoised the gradients, the convergence time is decreased 

updating of weights by means of exponential weighting average using. As a result, 

it gives more weightage to the recently renewed updates in comparison with the 

previous update speeding up convergence and reducing fluctuation. However, a 

petite hyperparameter is embedded in this method (9) known as momentum and 

the formula looks accordingly: 

                                                                         ∨ (𝑡) = 𝛾 ∨ (𝑡 − 1) + 𝑎. ∇𝐽(𝜃)                                                               (9) 

The momentum term ‘y’ is usually set manually to 0.9 or a close value. ‘t’ is 

momentum at time which is computed employing all previous updates providing 

with more weightage to recent updates compared to the past update accelerating 

the convergence. Here the momentum reminds the momentum in classical 

physics, when we cast a ball down a hill it collects momentum, and its terminal 

velocity keeps on mounting. The same one happens with parameters leading to 

the swifter and stable convergence reducing oscillations. As such, only one 

disadvantage is manually adjusted momentum (Nagesh, 2020). 
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Source: (Nagesh, 2020) 

Figure 9: The SGD vs SGD with momentum. 

As has been mentioned before, the momentum is set manually and is still a good 

approach but if the parameter is too high the overall algorithm may miss the local 

minima and can continue to increase. This problem endeavored to tackle Yuri 

Nesterov where the method makes a big jump based on the past momentum in 

the direction of the updated accumulated gradient then it calculates the gradient 

and then make a correction which results in a NAG update. This update avoids 

going too fast and does not miss the minima. 

NAG compared to SGD with momentum secures from vague and unknown 

momentum’s parameter giving him kind of prescience. Since we are already aware 

that we will use momentum term 𝛾 ∨ (𝑡 − 1) to move forward the parameters θ 

modifying the weights (10) so,𝜃 − 𝛾𝑉(𝑡 − 1) roughly tells the next position of the 

parameters (11) which are going to be. Now, the calculation is based on these 

future parameters rather than the current one and the formulas look accordingly 

(Nagesh, 2020). 

                                                                                   𝑉(𝑡) =  𝛾𝑉(𝑡 − 1) + 𝜂                                                                 (10) 

                                                                                𝐽 = (𝜃 − 𝛾𝑉(𝑡 − 1))                                                                    (11) 

The second one updates the parameters. But again, the hyperparameter must be 

selected manually. 

Up to this moment all optimizers had the constant learning rate which is set 0.01 

by default. To handle this indicator the Adaptive Gradient Descent (AdaGrad) has 

been created in order to have an adaptive learning rate for each of the weights. 

Hence, the algorithm performs tinier updates for parameters associated with 

frequently occurring features and bigger updates for rarely occurring features. For 
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this reason, it is well-suited for dealing with sparse data. To understand the main 

point, scientists used 𝑔𝑡 to denote the gradient at time step and 𝑔𝑡,𝑖 is then the 

partial derivative of the loss function to the parameter 𝜃𝑖 at time step, 𝜂 is the 

learning rate and the ∇𝜃  is partial derivative of loss function (12) where the final 

formula is: 

                                                                               𝑔𝑡,𝑖 = ∇𝐽(𝜃𝑡,𝑖)                                                                                     (12) 

And the SGD update function (13) looked like this: 

                                                                             𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂 ∗ 𝑔𝑡,𝑖                                                                          (13) 

But now the rule has been updated where the learning rate modifies at each time 

step for every parameter based on the previous gradient and the formula (14) 

looks accordingly: 

                                                                            𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖 + 𝜖
𝑔𝑡,𝑖                                                              (14) 

G is the sum of the squares of the previous gradients to all parameters. The 

advantage is that we don’t need to set the learning rate, but the curse of the 

algorithm is squared gradients in the denominator because each newly added 

term is positive. Therefore, the accumulated sum keeps increasing during training 

of a neural network making the learning rate decrease and getting small and as 

the result in vanishing gradient problem. Simply speaking, with increasing number 

of iterations the learning rate leads to shrinking causing slow convergence 

(Nagesh, 2020). 

That’s why another couple of algorithms have been elaborated which are known 

as AdaDelta and RMSprop. To rectify the previous issue, AdaDelta algorithm has 

an idea to take an exponentially decaying average. AdaDelta adapts learning rate 

based on a moving window of gradient updates, instead of accumulating all 

previous gradients. Instead of saving previous squared gradients, the sum of 

gradients is determined as decaying average of all previous squared gradients. 

The running average depends only on the past average and ongoing gradient and 

formula (15) for this is: 

                                                                          𝐸[𝑔2] =  𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2                                                      (15) 

Where ‘y’ is set conventionally around 0.9 and rewriting the AdaGrad formula (16) 

we derive the following-up: 
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                                                                        ∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡                                                                         (16) 

In RMSprop as almost identical one but Hinton proposed to use the learning rate 

by default is 0.001 (Nagesh, 2020). 

The last optimization function is Adaptive Moment Estimation (Adam) which can 

be considered as a mixing of RMSprop and SGD with momentum. Adam 

computes adaptive learning rates for each given parameter. Apart from storing an 

exponentially decaying average of previous squared gradients like RMSprop, 

Adam saves an exponentially decaying average of past gradients, like momentum. 

Hyperparameters 𝛽1, 𝛽2𝜖[0,1] control the exponential decay level of these moving 

averages. Scientists compute the decaying averages of previous ones and past 

squared gradients respectively: 

                                                                         𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                                (17) 

                                                                         𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                                  (18) 

‘mt’ and ‘vt’ are evaluating of the first mean moment (17) and the second 

uncentered variance of the gradients (18). 

 

Source: (Nagesh, 2020). 

Figure 10: Comparative analysis of all optimization functions. 
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As the chart shows, the training cost attained the least moment for Adam. As for 

the rest of them, the SGD algorithm got stuck at a saddle point, so it can be used 

only for small networks. 

AdaDelta is being the fastest followed by momentum algorithms. AdaGrad and 

AdaDelta algorithm are well-suited for sparse data. As for NAG and algorithms 

with momentum, they work well for most cases but much slower. 

2.2 Normalization vs Standardization 

Having figured out with the various types of optimizations, another petite one but 

essential detail plays role which is called data normalization. However, 

occasionally ML-engineers employ standardization instead of that’s why it 

becomes important to clear the question up in order to enhance the neural 

network’s performance. 

Why should we normalize inputs in a neural network? The answer is simple. 

Usually, datasets have numeric input features which could take on values in 

potentially different ranges. For instance, let’s assume that we have a dataset with 

several columns containing the weight and temperature of people who have got 

over COVID-19. It is obvious that weight is measured in kilograms, but 

temperature is in Celsius, and ranges may start from 0 to 200 ibs and 36 up to 45, 

for example. Hence, some mathematical techniques must be leveraged in order to 

eliminate the data scatter. Neglecting this step may lead to longer training time 

and to propagate through the layers of the network heading to the huge, 

accumulated gradients error that makes the training procedure unstable. 

To avert the pointed-out problem there are two options for an input layer to choose 

either normalization (19) which works by mapping values of features to be in the 

range 0 to 1 applying the transformation: 

                                                                              𝑥𝑛𝑜𝑟𝑚 =
𝑥 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

                                                                       (19) 

Or to use the standardization (20) one that follows a normal distribution with zero 

mean and unit variance in accordance with Gaussian distribution. Mathematically 

speaking, the transformation undergoes with mean µ, and standard deviation is 

given by: 



 

30 

INTERNAL 

                                                                                   𝑥𝑠𝑡𝑑 =
𝑥 −  𝜇

𝜎
                                                                                 (20) 

These two above-mentioned methods help to avoid the long-lasting convergence 

procedure of a neural network (Bala, 2021). 

In 2015 Sergey Ioffe and Christian Szegedy found out that preprocessing 

normalization or standardization doesn’t tackle problem with internal covariate shift 

or simply saying that the input layer is constantly changing due to weight update. 

Therefore, the corresponding layer must always be adapted to the new 

distribution. This tool performs a way of controlling and optimizing the distribution 

after each layer (Balawejder, 2020). Mathematically, batch normalization layer 

converts each input into mini batch by means of subtracting mean and dividing it 

by the standard deviation. However, we shouldn’t expect inputs with zero mean 

and unit variance, but it can perform better with some other mean and variance. 

Hence, the BN layer introduces two learnable variables ‘y’ and ‘ꞵ’. The 

corresponding formulas look respectively: 

                                                    𝜇𝛽 ←
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

− 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑚𝑒𝑎𝑛                                                                    (21) 

                                                   𝜎𝛽
2 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝛽)

2
 

𝑚

𝑖=1

− 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒                                             (22) 

                                                   𝑥𝑖 ←
𝑥 − 𝜇𝛽

√𝜎𝛽
2 + 𝜖

− 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒                                                                                       (23) 

                                                   𝑦𝑖 ← 𝑦 ∗ 𝑥𝑖 + 𝛽 = 𝐵𝑁𝑦,𝛽(𝑥) − 𝑠𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡                                                    (24) 

Practically, the network calculates the gradient based on the ongoing inputs to any 

layer and reduces the weights in the way indicated by the gradient. However, the 

layers are stacked one after other, the data distribution to any layer changes 

swiftly due to slight weights update of earlier layer and as the result the gradient 

might perform sub optional signals for the network. But BN restricts the distribution 

to any layer which aids the network to constitute better gradients for weights 

update. Therefore, BN secures a much more stable and accelerated training pace. 

However, there are some cons of BN. First, BN does the calculation of mean and 

variance in every training iteration, therefore it demands larger batch sizes while 

training so that it is able to prolifically approximate the mean and variance from 
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mini batch and it makes BN harder to train networks for solving such tasks as 

object detection, segmentation. It happens because of working with high input 

resolution and is applicable for large batch sizes. Another setback of BN is that it 

isn’t well-suitable for RNN type of a neural network. The problem of RNN is a 

recurrent connection to previous timestamps and would requests a separate ꞵ and 

‘y’ for each timestep in the batch normalization layer instead supplements 

additional complexity. The last interesting detail is difference in calculation 

approaches where during the test time, the BN doesn’t calculate the mean and 

variance from the test data mini batches but applies the fixed mean and variance 

from precalculated training dataset (Vijayrania, 2020).  

Inspired by the results of Batch Normalization, Jimmy Lei Ba, Jamie Ryan Kiros 

and Geoffrey E. Hinton presented the transformer paper where the layer 

normalization has been put forward in order to handle vectors mostly in the RNN 

outputs since BN didn’t perform well. In comparison with BN, layer normalization is 

computed across all channels and spatial dims. Thus, the variance and mean 

value are independent of the batch. The formulas look respectively: 

                                                               𝜇𝑖 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚

𝑗=1

− 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒                                                                        (25) 

                                                              𝜎𝑖
2 =

1

𝑚
∑ 𝑥𝑖𝑗(𝑥𝑖𝑗 − 𝜇𝑖)

2
𝑚

𝑗=1

− 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒                                                        (26) 

                                                         𝑥𝑖,𝑗
𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 =

𝑥𝑖𝑗 − 𝜇𝑖

√𝜎𝑖
2 + 𝜖

− 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒                                                                  (27) 

It refers to the batches and j refers to the features, so as can be seen from the 

above-mentioned formulas, the features are also normalized and not the batches. 

LN is mainly applicable to RNN by normalizing separately at each time step. From 

this point of view, it reminds batch normalization but instead of its statistics, the 

mean and variance correspond to exact input to the neurons in a particular layer 

(Ampadu, 2021). 

In 2016 Dmitry Ulyanov introduced Instance Normalization as another attempt to 

reduce dependency on the batch to improve the results of the style transfer 

network for CNN architecture. Normalization across both batch and channel allows 

removing specific contrast information from the image which provides the 
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generalization. Mainly the method has acquired popularity among generative types 

of models such as Pix2Pix or CycleGAN and became predecessor for Adaptive 

Instance Normalization which is used in the StyleGAN2 model. 

In 2018 group normalization was introduced which directly addresses the batch 

normalization for CNN since the spike of computer vision occurred. The main 

disadvantage of BN as it has already mentioned before is dependency on the 

huge number of batches, at least 32 required but GN was invented with the idea of 

splitting tensor(batch) into many machines. Hence, these are trained on a small 

number of examples like 6 or 8 and sometimes even 1 or 2 keeping the stable low 

error rate compared to BN. It is kind of hybrid of layer and instance normalization 

where GN just divides channels into groups and normalizes across them. This 

scheme makes the computation independent of the batch sizes. However, when 

the group size falls to 16 or 32 and higher the error rate performs better for BN. 

Almost every hyperparameter has been mentioned for normalization or 

standardization but weight has left intake. This theory has been proposed in 2019 

about the weight standardization. Weights can grow large being out of any 

controller especially when the output normalizes. As a result, smoothing effect of 

weights is desirable. Since the conversation is about standardization the formulas 

are obvious: 

                                                                                    𝑊 =
𝑊𝑖,𝑗 − 𝜇𝑊𝑖

𝜎𝑊𝑖,𝑗

                                                                           (28) 

                                                                  𝜇𝑤𝑖 =
1

𝑖
∑ 𝑊𝑖,𝑗

𝑖
𝑗=1                                                                           (29) 

                                                                  𝜎𝑤𝑖 = √
1

𝑖
∑ (𝑊𝑖,𝑗 − 𝜇𝑤𝑖)

2𝑖
𝑖=1                                                        (30) 

In essence, weight standardization controls the first-order statistics of the weights 

of each output channel separately. In this way, WS is oriented to normalize 

gradients during the training. Theoretically speaking, the core idea is to keep the 

convolutional weights in a compact space smoothing the loss landscape and 

improving training. The result of different types of normalizations and 

standardizations and its hybrid forms presented on Figure 11 (Adaloglou, 2020). 
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Source: (Adaloglou, 2020) 

Figure 11: Comparing normalization methods on ImageNet and COCO. 

2.3 Overfitting and underfitting issues 

Out of all existing things that go wrong with ML model or NN is a detrimental 

overfitting or underfitting error. It is a common pitfall for deep learning algorithms 

where a model attempts to fit the training data considering the intricacies and 

noise in the training data to the point where it detracts from its effectiveness on 

new data. It also involves noise or fluctuations in the training dataset. Simply 

saying, overfitting takes place because of too much learning from the data, and it 

can have influence on model’s ability to generalize limiting its overall performance. 

The model performs exceptionally well only in its training set however it does not 

generalize prolifically enough when used for predictions outside of the training 

dataset. Unfortunately, nonlinear models have less flexibility and more freedom in 

the target function during the learning process resulting in an overfitting problem. 

Moreover, no sample of the population can ever be unbiased. Overfitted models 

are biased toward sample rather than being independent and representative of the 

entire dataset.  

Underfitting is a situation when it fails to detect the primary dataset’s trend within 

the data leading to both training mistakes and poor model performance. Hence, if 

a model’s ability to generalize to new data is limited as the result it can’t be used 

for classification problem or forecasting tasks. 

In order to recognize an underfitting or overfitting problem the model must be 

taught on the training dataset to see the results. If the model achieved 95% 

percent accuracy on the training set and 60% percent accuracy on the test set that 
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would be a huge overfitting problem. Vice versa, if the result shows a high level of 

bias and a low level of variance it means the model is underfitted (Larkin, 2022). 

Having found out the definitions of both overfitting and underfitting problems, we 

haven’t pinpointed the reasons for both issues which occur after training. 

First of all, the overfitting emerges when data isn’t cleansed and contains 

redundant values which distort the main data’s trend capturing noise in a training 

dataset resulting to generalization failure. Secondly, the model can encompass 

high variance. Thirdly, the training dataset isn’t ample, and the neural network is 

taught on the limited training data for several epochs. The last common reason is 

model’s complexity, bigger number of neural network layers, longer time is 

required to teach the model and as the result it leads to overfitting problem. 

As for underfitting causes, unclean data with noises or outliers might be reasons 

for a model’s inability to trace down the primary pattern from the dataset. The 

second one is high bias due to the huge difference between the predicted value 

and target one. The last common mistake is oversimplification of the model when 

number of layers is too small, for instance (Baheti, 2022). 

However, the reality might be tough and in practice most engineers run up against 

a phenomenon which is known as bias-variance tradeoff. The concept is simple 

where increasing model’s complexity causes a lower bias error on the one hand 

but makes variance spike on the other. The ideal option is finding a sweet spot 

where the curves of variance and bias intersect as it is depicted on the Figure 12. 

 

Source: (Oppermann, 2021) 

Figure 12: Variance-Bias-Tradeoff. 
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We came off to define the most common reasons for overfitting and underfitting 

problems. Up to today the huge experience of all engineers has been collected in 

this area and there are some conventional solving options. Adding more data is 

the first approach which can eliminate this problem. Since the model fails to 

generalize to new data it means the data wasn’t representative enough. So, the 

model must be retrained on a bigger and more diverse set of data to improve its 

performance. However, the data collection procedure can be expensive, or the 

number of data might be limited. Hence, the second option was put forward which 

is called data augmentation which is more affordable. Data augmentation makes a 

sample look a bit different every time the model processes it. As I mentioned 

before computer vision tasks became popular among engineers therefore this 

approach is geared to CNN’s structure. Data transformation happens by means of 

artificially adding more images with horizontally flipped ones or vertically, they 

might be cropped or rotated up-side-down. This helps in increasing data size and 

thus reduces overfitting, as we add more information, the model gets incapable of 

overfitting all the samples and is enforced to generalize. The following result you 

can see on Figure 13 (Goyal, 2021). 

 

Source: (Goyal, 2021) 

Figure 13: Embedding of data augmentation into a neural network. 

Since augmentation approach isn’t applicable for RNN’s structure another 

experience of engineers prompts that the model was trained on too complex 

number of data features thus a pattern hasn’t been detected. Removing some 

features and making the data simpler can help to reduce overfitting problems. 

However, some ML-engineers would like to keep a model’s complexity and there 

is a list of tools which is known as regularization. The main idea standing behind it 

is complexity penalty to a model. If the model wants to avoid incurring a penalty it 
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must concentrate on the best patterns which contain a higher chance of 

generalizing well. These techniques are the most preferable and powerful and 

almost all the models contain them in some way (Chemama, 2018). 

The first tool out of all existing ones is changing the network structure (number of 

weights). For instance, the structure could be tuned by means of grid search until 

a suitable number of nodes or layers is sought to reduce overfitting. Alternately, 

the model could be pruned by removing nodes until it satisfies suitable result on a 

validation dataset (Brownlee, 2019). The second tool is changing network 

parameters (value of weights) by adding a weight penalty term which penalizes the 

large value of weights in the network. Forcing the optimization algorithm to reduce 

larger weights values to smaller weights leads to stability of the network and 

introduces good performance. In this approach, the network configuration leaves 

unchanged since it only does modification of the weights value minimizing loss 

function as well apart from error reduction between predicted value and actual 

one. 

                                      (𝐿1 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 𝐶𝑜𝑠𝑡 =  ∑  (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝐽
𝑀
𝐽=0

𝑁
𝑖=0 )2 + 𝜆 ∑ |𝑊𝐽|𝑀

𝑗=0                         (31) 

                                      (𝐿2 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 𝐶𝑜𝑠𝑡 =  ∑ (𝑁
𝑖=0 𝑦𝑖 −  ∑ 𝑥𝑖𝑗𝑊𝐽)2 + 𝜆𝑀

𝑗=0 ∑ 𝑊𝑗
2𝑀

𝑗=0                    (32) 

The first component represents loss function and the second one is the weight 

penalty of the regularization term. Without the regularization term the overall loss 

of the network is the same as the output of loss function. If the network overfits on 

training data, the error between predicted value and the actual one for a training 

data is very small. Therefore, since training error has a very small value, then the 

error gradient value is also very small. As the result, a change in weights is very 

small and when iteration is finished, the new weights value is almost the same as 

the previous one, thus the network still has overfit issue.  

Vice versa, embedding regularization term causes error increasing, then the error 

gradient weights also rise which results in a significant change in weight update. If 

weights value gets larger the regularization penalizes it. So, larger values of 

weights result in a larger penalty to the loss function, thus pushing the network 

toward smaller and stabilized values of weights. There are obviously some 

differences between L1 and L2 presented in Figure 14. 
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Source: (Goyal, 2021) 

Figure 14:  L1 vs L2. 

L1 regularization (31) is usually applied for simple data and L2 one (32) is better 

choice if the data is too complex. However, there is not a silver bullet for it and a 

technique depends on the problem statement that engineer is trying to tackle 

(Goyal, 2021). 

Apart from the above-mentioned ones there are additional regularization 

techniques such as activity regularization which penalizes the model during 

training base on the magnitude of the activations, dropout method which 

deactivates neurons ranging over from 20% to 50%, noise technique is added as 

statistical one to inputs during a training procedure, and the last one is early 

stopping which is widely employed monitoring model performance on a validation 

set and it stops training when performance degrades. Based on the ML-engineers’ 

experience they prepared some recommendations for different structures of neural 

networks. For instance, during CNN’s structure elaboration it is conventionally 

recommended to utilize early stopping and L2 regularization. Alternately, you can 

combine early stopping and added noise with a weight constraint establishing as a 

max value equal 1 and min one equals 0. However, contemporary approach 

suggests combining early stopping and dropout in addition to a weight constraint. 

As for RNN’s structure, engineers conventionally use early stopping with added 

weight noise and weight constraint. However modern technique is combination of 

early stopping with dropout and weight constraint (Brownlee,2018). 

Underfitting runes come across much rarely compared to previous problems but if 

it occurs it is necessary to increase complexity model switching from linear model 

to non-linear one adding more layers and neurons. If the model is not linear but 

there is an underfitting issue it is recommended to reduce regularization function 

influence. These techniques may help to overcome the underfitting problem 

(Chemama, 2018). 
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2.4 Evaluation indicators 

Up to this moment we have almost everything to create any type of NN, however 

one missing significant component remains and must be embedded into the 

structure. The last part is evaluation metric which provides us with the most 

valuable information which determines further decision of a company. Depending 

on problem solving either classification task or regression one, there are related 

evaluation lists of metrics. 

For Regression solving problem, ML-engineers traditionally as the first indicator 

uses mean absolute error (MAE). The MAE is simply defined as the sum of all the 

residuals (difference between the actual value and predicted one) divided by the 

total number of points in the dataset. It is the absolute average distance of our 

model prediction with the corresponding formula (33). 

                                                                                       𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 − 𝑦̂|

𝑁

𝑖=1

                                                             (33) 

As you can understand from the formula that negative residual is converted to 

positive so that it doesn’t cancel out other positive residuals. Indicator depicts how 

close the predictions are to the actual model on average. Larger MAE values 

indicate that the model is poor at prediction. The MAE compared to the following 

indicators is robust towards outliers since it doesn’t exaggerate errors. However, 

on the other hand, it doesn’t give us an idea of the direction of the error, i.e., 

whether the value is under-predicting value or over-prediction the data. 

Another popular one is mean squared error (MSE). Perhaps, it is the most popular 

metric in the field of regression analysis. Compared to the MAE it is a differentiable 

metric, so it can be optimized better. Moreover, it penalizes even small errors by 

squaring them which essentially leads to an overestimation of how bad the model 

is. However, the core disadvantage is the metric’s propensity to outliers. 

Since the MSE is inclined to outliers, root mean squared error (34) has been 

created as an improvement to the MSE. Mathematically, it can be represented as: 

                                                                           𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝐽=1

                                                                (34) 
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It mainly addresses a few downsides in MSE. It still retains the differentiable 

property of MSE. It still handles the penalization of smaller errors done by MSE by 

square rooting it and it is less prone to struggle with possible outliers (Shwetha, 

2021). 

Other types of metrics relate to ML types of algorithms which I decided to omit.  

To sum it up by now, we can certainly say that neural network training is quite a 

challenging procedure since each petite component must be considered to attain 

the highest possible precision score and model’s correctness toward predictions. 

Each percentage of accuracy matters especially when we intend to try neural 

network models toward possible embedding into supply chain management where 

even tiny mistake can cause possible subsequent expenses. Nevertheless, huge 

companies shouldn’t rule out such algorithms which potentially can automate or 

even generate more revenue or avert from unseen predicted expenses.  
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3 Process of the neural networking learning to predict future 
price based on example of PAO Gazprom shares. 

Every single neural network must be taught and tailored according to the given 

data since each dataset contains its own tendency, features, and difficulties. To 

better understand the neural network process teaching it is compulsory to 

demonstrate a hands-on example. As an instance, the time-series data has been 

taken to show the Gazprom share price prediction being taught on LSTM 

approach, which is deemed as contemporary approach to forecast weather, or a 

team win during a World Cup. However, a bid has been taken to embed the model 

in Supply Chain since for neural network doesn’t matter the data’s classification, 

but time-series structure is crucial for it. 
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Source(Dzhuraev, 2022) 

Figure 15: The practical part map. 

As you can observe from the Figure 15, each step in the scheme corresponds to 

the sub-title of the chapter 3 and has its one sub-steps which delve into details of 

the neural network elaboration. 

3.1 Data pre-processing step 

The first part of any neural network teaching is data extraction and its data pre-

processing step. At the beginning, it is necessary to import libraries which will be 

employed during the above-mentioned steps. 

For data manipulation procedure, there is a bundle of libraries such as ‘NumPy’, 

‘pandas’ and ‘matplotlib’. As for ‘NumPy’ and ‘pandas’, there are needed to extract 

data with different formats like xml, excel, csv, txt and many others. Moreover, we 

can use these libraries for the creation of tables, adding or deleting columns, rows, 

values containing other helpful functions. Another library is geared to build graphs 

of various types to depict tendencies, to show dependencies of x and y values. 

Another group of libraries such as ‘keras’ and ‘tensorflow’ are required for direct 

neural network teaching. It is traditionally to import these two libraries because 

they have been elaborated by Google who delves into neural network for a long 

time securing its status in this field having invented such prominent neural network 

like LaMDA who ponders like human, or another example is google translator 

which is leveraged by a lot of users around the world. 

 

Source: (Dzhuraev, 2022) 

Figure 16: Libraries importing. 

On the figure 16 you can see how it is committed practically importing some 

necessary tools for further application. If it is presumed to upload whole tools from 
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a library, you need to begin the command from the word ‘import’. If you plan to 

import only a few of them, it is necessary to start from the word ‘from’ specifying a 

concrete tool which you are interested in. 

Having summoned the methods, the next step is to extract data from a file using 

‘pandas’ with the command ‘read_csv’ and in parentheses to write a file title and 

specifying separator. Afterword, some columns have been renamed to remove 

redundant characters from headers. Another function is converting date type 

column into readable format tapping ‘pd.to_datetime’ and in brackets pointing out 

column and time format.  

 

Source: (Dzhuraev,2022) 

Figure 17. Data pre-processing. 

Having pre-processed data in the respective step, we have approached to direct 

neural network teaching step.  

3.2 Neural network structure creation and learning step 

Before beginning to neural network structure creation, we should have a look at 

data tendency in order to highlight some crucial data districts on Figure 18. 

 

 

Source:(Dzhuraev, 2022) 

Figure 18: PAO Gazprom shares tendency. 
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As you may see from the graph, vertical axes depict price per share and horizontal 

one is row number over the time. The data has been taken from January 

beginning 2006 up to 16 of December 2022 at close moment on stock market in 

order to receive as hard data structure as possible under an unstable market when 

most of existing prediction models depict extremely distorted result. However, we 

may presume that is a demand for cars per day where a company should produce, 

and our goal is to predict demand of required cars for tomorrow under the 

extremely fluctuated market. According to the figure, the company had several 

nosedives because of market instability in 2008 and in 2022 being sanctioned. In 

terms of current models such as regression models or logistic one is strict 

requiring to follow some rules. As for LSTM model, it can remember the input data 

with all fluctuations, nosedives and spikes and considers them during the 

prediction output.  

First crucial part is splitting whole data set into trained one and test. From the title 

is understandable that train chunk will be fed to LSTM and test one will assess the 

mistake between trained one and actual one. Conventionally data scientists split 

according to the ratio of 80% per cent for training and 20 % per cent for test part. 

In our particular case the goal is to predict price of share at the close moment. 

That’s why we split data taking only ‘close’ column and ‘volume’ one depicted in 

Figure 18. 

 

Source:(Dzhuraev, 2022) 

Figure 19: Data splitting step. 

As we can see from the picture, the data set has 4201 rows where 3360 samples 

will be trained and 841 will assess the result during the validation procedure. 

Next crucial part is data normalization process for both chunks training one and 

testing batch. Without normalizing of data, the model would never converge since 

the value is constantly moving to absolute type. To combat this n-sized window of 

training and test data will be taken and normalized each one to reflect percentage 
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changes from the start of that window.  The normalization procedure will employ 

the formula which has already been mentioned before: 

                                                                                  𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

                                                                   (35) 

According to this equation (35) the values will be converted to range from 0 to 1. 

These windows will also allow us to draw the data result at the end utilizing python 

generator which means memory utilization will be minimized dramatically. The way 

the windows creation goes depicted on the Figure 20. 

 

Source: (Dzhuraev,2022) 

Figure 20: Data normalization step. 

Having shown the data normalization step, the most significant one is a neural 

network model creation. The whole theory part which has been dedicated to the 

parameters which are set in a NN model considering data specification and task 

description. For this part we have everything to build it and the example is 

depicted in Figure 21. 

 

Source:(Dzhuraev, 2022) 

Figure 21: NN model creation step. 

First, as you may see from the scheme, the type of the model is sequential one 

because we need to build one-to-one model with single input and output gates. 

Since we consider only the ‘close’ column for prediction that’s why input gate and 
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output one has only one entrance and one exit. Each layer will consider 100 

neurons. It is a standard number which is just assigned by ML-engineers 

conventionally at the beginning to see the result to decide either to increase 

number of them or decrease depending on many factors as underfitting or 

overfitting problem presence, number of features and task hardness for the neural 

network. In our case we have only around 4 thousand rows with 1 column hence 

there is no necessity to increase the neural network structure hardness. Another 

important part is ‘return_sequences’ is assigned as ‘True’ since we have LSTM 

structure which must return result and memorize the past data specification. After 

the first layer and last one we assigned dropout function to preliminary prevent 

overfitting issue turning off 10% neurons to decrease the model hardness. As for 

activation function, we assigned ‘linear’ one since the number of observations is 

small and quantity of layers is petite. Below of the model structure, you can see 

the ‘adam’ optimizer which is deemed the best one elaborated by scientists. As it 

has been mentioned before, it computes adaptive learning rates for each given 

parameter storing an exponentially decaying average of previous squared 

gradients like RMSprop and saving an exponentially decaying average of past 

gradients, like momentum. For assessing the model result we consider the ‘mean 

squared error’ metric to see lowest possible error between real data and predicted 

one to achieve the best possible result decreasing the number of epochs if it is 

needed. 

After 70 epochs of learning, we should see graphically the coincidence of training 

data and validation one to assess the model’s quality on Figure 22. 
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Source:(Dzhuraev, 2022) 

Figure 22: Train vs validation loss. 

As we can deduce from the Figure 22, two curves depict stable learning procedure 

without underfitting of overfitting issues thanks for both techniques such as earlier 

stopping and dropouts which have been engaged in the code as preventive 

measure according to the contemporary recommendations (Browniee,2018). Train 

and validation curves are almost coincided, it signals the completed healthy 

teaching step. However, it is compulsory to verify it according to measuring metric 

which clearly assesses the outcome depicting the least mean square error 

between real result and the predicted one on Figure 23. 

 

Source:(Dzhuraev, 2022) 

Figure 23: Mean squared error result. 

MSE depicts the graph of train and validation curves where the difference between 

real data and the predicted one is 0.0120 whereas it is low. The larger the number 

the larger the error. In this case we have obtained the mean squared value less 

than 0 meaning that the model is perfect. 

So, now we must normalize back the values of the data set to see the predicted 

value and compare it with the actual one to see how close we are. To normalize 

back the result, we just take each value from the range multiplying it by the 

difference between maximum value and minimum and adding minimum one. The 

code implementation is written below in Figure 24. 

 

Source:(Dzhuraev, 2022) 

Figure 24: Back normalization function. 

Having normalized back the data we can see the predicted price and compare it 

with the real one. Let’s see the predicted output and the actual one in Figure 25. 
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Source:(Dzhuraev, 2023) 

Figure 25: PAO Gazprom share price per one unit. 

It is time to see the actual outcome from Moscow’s stock market the share price of 

PAO Gazprom 19 of December keeping in mind that we have data up to 16th of 

December on Friday in Figure 26. 

 

Source:(PAO Gazprom, 2022) 

Figure 26: PAO Gazprom share price per one unit in Stock market by 19th of December. 

As we can see from both Figures the predicted price made up 160.12 ruble per 

one share and the actual one was 160.65. The difference is extremely low what 

we can strongly claim that the model’s accuracy is very high, and it becomes as a 

candidate for its possible embedding into supply chain to predict not only annual 

company’s demand on monthly or annual basis, but it is able to predict possible 

upcoming procurement of raw materials based on memorized data from the past. 

However, model has one potential disadvantage it is compulsory to maintain its 

accuracy automatically updating data inputs by means of database plugging via 

supplement libraries or applying ‘rest API’ to optimize the data flow into table 

memorizing new info and producing an adjusted outcome which is close to reality. 

To sum it up, we can certainly claim that LSTM NN structure is suitable for supply 

chain because the model’s feature is able to memorize the data from the past 

considering diverse tendencies. LSTM application unleashes the opportunity to 

reduce cost of a company cutting off the number of employees, optimizing demand 

by means of predicting possible demand for upcoming month or year avoiding 

overproduction. Hence, the model can be considered as a possible tool for supply 

chain on several levels. 
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3.3 Neural network usage recommendation 

LSTM isn’t intricate tool for application, but some expertise is required to use 

prolifically. First, any data set needs to be refined before being fed to neural 

network cleansing out from redundant symbols such as brackets, titles beginning 

from capital character or adjusting data types converting float format column into 

integers one. Secondly, the data set must be normalized or standardized to get 

convergence of a neural network. Sometimes, if the task requires the string format 

columns must be converted into binary variables. Thirdly, the dataset must be 

sliced into two groups for training procedure and testing under the proportion 

80/20. Another step is splitting data into batches where 32 tensors are 

recommended one. To map and visualize the result graphically we need to create 

a window which analyzes the first number of data and the last one oversees data 

prediction drawing the result on a graph. The crucial part is LSTM structure 

creation specifying return outcome after each iteration. At the beginning, it is 

recommended to set up 100 neurons keeping in mind possible overfitting problem 

employing dropouts, early stopping, regularization and other tools to solve it. 

Moreover, the number of epochs with loss function indicator provides help tracing 

down the learning procedure and as soon as the problem arises to stop the 

process catching the least possible error. Having wound up the neural network 

teaching process without any problems, the back normalization leaves to see the 

predicted result. That’s the shortcut of LSTM neural network procedure. 

However, any data set has its own specifications, intricacies, and features. Apart 

from them, a task defines the LSTM structure with different well-suitable 

parameters. It is strongly recommended to apply this model after several years 

since the model must be tested to check its reliability. If we ignore the 

recommendation, a business can generate unwanted losses since the model 

hasn’t been adapted to specific requirements and doesn’t meet the unpredictable 

challenges. Moreover, the model is useless if there is not a plugged database with 

constantly updating data otherwise the model would produce distorted results. 

Therefore, stable database maintenance and keeping an eye on the trained model 

are part and parcel of overall prediction result.  

As for the direct model embedding into supply chain, it is already possible to 

implement it into the process. For instance, if a procurement department requires 
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to order specific number of some items, the LSTM model can fulfill the same task 

without human interference or in an inbound logistics the number of produced 

items for tomorrow or next month the system can recommend considering the 

information from the past.  

We can certainly claim that Industry 4.0 is still able to unleash its potential on all 

levels of a supply chain optimizing production reducing cost of a company by 

means of cutting off workers consistently substituting them depends on AI overall 

quality performance. 
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Conclusion 

The purpose of this thesis is application of neural network advantages for a 

possible embedding into supply chain management. The thesis was carried out 

individually and under the guidance of the professor ing. Tomash Malchic, Ph.D. 

The data was provided by the Moscow stock market website to demonstrate the 

neural network abilities to consider data from the past for further prediction of 

data’s output with extremely low mean squared error between forecasted result 

and actual one. 

The first chapter of the thesis described the theoretical part of the subject that the 

topic is dealing with. In detail about literature search in field of AI’s edges in supply 

chain utilized by several big companies which test not only computer vision but 

invent smart forklift. Moreover, there were presented different types of neural 

networks fulfilling its own tasks but the chapter was delved more into RNN and 

LSTM structures which have been practically considered and elaborated in 

subsequent chapters. 

The second chapter went into details about factors which must be taken into 

consideration during the neural network elaboration such as myriad types of 

optimization algorithms, distinction between standardization and data 

normalization procedures, overfitting and underfitting issues, evaluation indicators. 

Each of above-mentioned element can significantly distorts overall final result if the 

mathematical understanding is omitted. That’s why the chapter is fitted with 

mathematical formulas unleashing shroud from AI and its inherent complexity. 

The third chapter is dedicated to direct presentation of practical application of 

neural network in time series dataset. The neural network model has been 

designed on python language in the Jupiter Notebook software. The whole 

process has been described begging from external libraries plugging such as 

Tensorflow, Keras, Pandas, winding up with comparison between the predicted 

result and actual one. Moreover, some recommendations have been suggested for 

its possible embedding into supply chain since the mean squared error made up 

much less than 0 proving its ability to predict something under unstable situation 

on the market if the data has at least time series structure. 
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The problem has been defined and the evaluation has been carried out regarding 

the data set specification and its features. First of all, some necessary libraries 

have been uploaded for further application for specific tasks. Secondly, some 

necessary libraries such NumPy and Pandas have been utilized in order to clean 

out redundant features, to rename columns, to change time format and many other 

things. Having completed the data pre-processing step, the neural network 

structure elaboration process went ahead. The data set has been splitted into two 

parts training chunk and testing one according to 80/20 ratio with further windows 

creation for drawing results and prediction of output. Afterword, the LSTM one-to-

one structure with embedded dropouts and early stopping attributes has been 

created with 100 neurons at each layer apart from the last one which was forming 

the predicted output preventing possible overfitting issue. Having trained the 

neural network, the graph with training line and validation one has been drawn in 

order to observe the possible arising of overfitting problem. Apart from it, we 

assessed the mean squared error to understand the model’s quality for this 

particular data set. The last step was an output prediction which we compared with 

the actual one where distinction was extremely low thus proving the model’s 

usefulness for a possible application into supply chain.  Some recommendations 

have been put forward to apply neural network in supply chain.  
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network in time series dataset. The neural network model 
has been designed on python language in the Jupiter 
Notebook software. At the end, the problem has been 
defined and the evaluation has been carried out regarding 
the data set specification and its features. 
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