

INTERNAL

ŠKODA AUTO VYSOKÁ ŠKOLA o.p.s.

Course: N0413A050001 Business Administration

Field of study/specialisation: Specialization International Supply Chain
Management

Application of neural network edges for

a possible embedding into supply chain

management

Diploma Thesis

Temur Dzhuraev

Thesis Supervisor: Ing. Tomáš Malčic, Ph.D.

INTERNAL

Remove and replace this list by final confirmed bachelor´s assignment with the
electronic signatures. Please note that the bachelor´s assignment must be printed
on both sides in the original printed version.

3

INTERNAL

I declare that I have prepared this thesis on my own and listed all the sources

used in the bibliography. I declare that, while preparing the thesis, I followed the

internal regulation of ŠKODA AUTO VYSOKÁ ŠKOLA o.p.s. (hereinafter referred

to as ŠAVŠ), directive Thesis guidelines.

I am aware that this thesis is covered by Act No. 121/2000 Coll., the Copyright Act,

that it is schoolwork within the meaning of Section 60 and that under Section 35

(3) ŠAVŠ is entitled to use my thesis for educational purposes or internal

requirements. I agree with my thesis being published in accordance with Section

47b of Act No. 111/1998 Coll., on Higher Education Institutions.

I understand that ŠAVŠ has the right to enter into a licence agreement for this

work under standard conditions. If I use this thesis or grant a licence for its use, I

agree to inform ŠAVŠ about it. In this case, ŠAVŠ is entitled to demand a

contribution to cover the costs incurred in the creation of this work up to their

actual amount.

Mladá Boleslav, Date Signature

4

INTERNAL

Contents

Introduction... 6

1 Artificial intelligence and digital transformation in Supply Chain Management:

theory and instances. .. Error! Bookmark not defined.

1.1 Recurrent neural network (RNN) .. 13

2 The factors of neural network training .. 22

2.1 Optimization algorithms ... 22

2.2 Normalization vs Standardization .. 29

2.3 Overfitting and Underfitting issues .. 33

 2.4 Evaluation indicators ... 38

3 Process of the neural network learning to predict future price based on

example of PAO Gazprom shares .. 40

3.1 Data pre-processing step .. 41

3.2 Neural network structure creation and learning step 42

3.3 Neural network usage recommendation .. 48

Conclusion.. 50

Bibliography .. 52

List of figures and tables .. 55

5

INTERNAL

List of abbreviations and symbols

AI Artificial Intelligence

AdaGrad Adaptive Gradient

BPTT Backpropagation Process Trough Time

BN Batch Normalization

BRNN Bidirectional Recurrent Neural Networks

CNN Convolutional Neural Networks

GN Group Normalization

GRU Gated Recurrent Units

LN Layer Normalization

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

MB – SGD Mini Batch Stochastic Gradient Descent

NAG Nesterov Accelerated Gradient

NN Neural Networks

RNN Recurrent Neural Network

RMSE Root Mean Squared Error

SGD Stochastic Gradient Descent

WS Weight Standardization

6

INTERNAL

 Introduction

The industry 4.0 is consistently being implemented through all levels of supply

chain and AI is part and parcel of this inevitably coming tendency. The need for

automation in the automotive production industry has bounced up in the last two

decades than ever before. The demand for new technologies and new solutions in

the supply chain are the most sought out tools in the production. Neural networks

(NN) have been elaborated in order to optimize procedures alleviating human’s job

decreasing cost generating higher revenue. However, NN embedding is

accompanied by higher risks since any teeny imprecision in predictions can lead to

unwanted consequences such as cost, overproduction, a break in assembly line

and etc. The main objective of the thesis is to practically implement one type of

neural network which has the ability to memorise data from the past considering it

for future prediction. This tool can become useful for supply chain if we want to

gauge demand for production of a good for next week, month or year under

unstable market.

Nowadays all industries are facing significant challenges, which are increasingly

demanding customers, immense competition, and permanently mounting demand

for decreasing total cost. One way to deal with the new circumstances is definitely

the automation of logistic processes by means of taking attempt to embed neural

networks in logistics. Basically, it is essential in supply chain that everything

happens at the right time, in right place and in the right amount. These

requirements can be easily converted into task for a NN to fulfil the assigned

requirements. For instance, predict timely delivered of some items to the right

place and in the right amount to the plant. Another example, predict unloading or

loading good in a plant by DHL for a next month. The derived data can be a good

source for choosing better suppliers optimizing supply chain. Thus, it is substantial

to understand the significance of the development of modern technologies and

concentrate more on them.

The diploma thesis is structured into three parts. The first chapter is dedicated to

the theoretical aspect of the thesis introducing AI’s implementation into supply

chain tackling various tasks beginning from computer vision to inventing smart

forklift. Moreover, a subchapter explains specification of recurrent type of neural

7

INTERNAL

network which is predecessor of long short-term memory network which is utilized

later. Second chapter is crucial one since it explains the nuances of neural

network learning procedure from mathematical viewpoint delving into optimization

algorithms and their differences which have significant influence on the final

output. One subchapter unleashes mystery from distinction between normalization

and standardization, another one reveals hidden problems with underfitting and

overfitting which have their own options to treat them and evaluation indicators

enable to assess model’s performance to determine the steps which are

necessary to do either to implement it into process or keep improving it up to

desired requirements. The third chapter is dedicated to hands-on elaboration of

neural network using python with corresponding libraries to invent, learn and

assess LSTM type of neural network with stock market price data utilization as a

primary time-series structured one. The result of it should give the answer for the

task of possible embedding of NN into supply chain. As a core method to solve the

thesis topic is inventing python code with main documentation sources of Keras,

Pandas, Numpy, Matplotlib and Tensorflow.

8

INTERNAL

1 Artificial intelligence and digital transformation in Supply
Chain Management: theory and instances.

Digitalization is the fast-moving phenomena trends which has enormous impact on

continuous the industrial world shaping opening contemporary opportunities

around a wide range of areas. Nowadays artificial intelligence is conceived as a

key-point driving force of industrial digital transformation that has the capacity to

present a new comprehensive source of development. Relatively recent

breakthrough in both machine learning and neural network have created a whole

new business ecosystem which is energetically being rendered by IT companies,

car manufacturers such as TESLA Motors and one of the largest e-commerce

companies in the world which titles Amazon. Pursuant to a survey by the VDI,

approximately 25% of companies are about to consider artificial intelligence

(AI/NN) and machine learning (Moroff and Sardesai, 2019).

There are some vagueness and unclarity are over about the role of AI in

manufacturing since most of researchers have not defined a clear statement of it.

Nonetheless, the unity between them converged on AI value for the industry 4.0 in

field of operations where advanced robotics and NN are involved (Tjahjono et

al.,2017).

One of the fundamental topics where AI implementation is deemed vital is digital

twin. It turned out that researchers made a mountain out of a molehill because the

overwhelming majority of literatures on digital twins are related to the area of

production management revealing the basic theoretical analysis and only quarter

of them describes precise use cases. However, the simulation level or prototypes

are the maximum what is given (Zhihan and Shuxuan el al., 2022).

Another example of AI hands-on application is smart forklift. A forklift is fitted with

several sensors modules which collect data into digital cloud, processed in real-

time and displayed on a monitor. Since there is collected data, it is possible to

analyze it and as the result, some ML-engineers decided to embed a K-Nearest

Neighborhoods algorithm (KNNs) for classification problem solving collecting time

series data from equipped sensors (Jie, et al., 2022).

Another prominent example is computer vision implementation in cars where

nowadays Tesla has attained the best results. Auto-pilot system is based on

9

INTERNAL

computer vision accompanied by ML and video streams from the cameras.

Afterword, the raw footage is processed by Convolutional Neural Networks (CNNs)

for object tracking and detection. In addition to cameras, each Tesla car has radar

and ultrasonic sensors where the first one gauges the distance between car and

objects and the second one measure proximity with passive objects enhancing

drivers’ safety. As for the neural network embedded in the car, the title is ResNet-

50 that can run 1000×1000 images at time. For instance, one NN solves a task

with stop signs, another one recurrently tackles pedestrians crossing a road and

yet another copes with traffic lights. The title for all together networks is hydranets.

Overall Tesla trained 48 networks fulfilling 1000 predictions consuming 70000

GPU hours. That is what they call a real breakthrough (Almeida, 2021).

However, the digitalization process and its survey began in the 1990s with

consistent data records process collecting and networked systems especially in

supply chain management. Although computing power has not been ample to

store data, along with increasing computing power changing and inventing new

algorithms it is today possible to analyze the converged data sets of companies

and render them wholesomely. Algorithms have been developed in order to

analyze large amounts of information to distinguish patterns that can be employed

as decision framework for future planning and processes (Tarpend, Tyler, Krause,

Handfield, 2008). One of the most conventional approaches in ML is taking

historical data or so-called time series one which evolves consistently. In this

regard demand forecasting in the supply chain planning becomes an important

employment area for various ML’s methods, as multiple various real-lives variables

affect the market and traditional statistical methods reaches their ceiling.

Forecasting in Supply Chain Management describes the operation of further

resources requirements to quantity and time which must be fulfilled. In SCM

unquestionably everything is highly dependent on the demand planning output

therefore it is vital for the company both profitability and prolificacy to reach a high

forecast rate and to diminish vagueness (Muddassir, 2016). Consequently,

machine learning and neural networks come to play. There is a bundle of

forecasting models analyzing the past in order to foresee future events. It is

deemed that those events follow the same implications and constitute a pattern

which is quite stable and so-called as time stability theory. According to this

10

INTERNAL

supposition, there are discrepancies between the predicted output and reality

which are evaluated as deviation or error. Simply saying, demand planning is

based on prediction results of the historical recorded data outlined in the past.

However, in order to attain the desired high rate of forecasting, both ample

database and computing effort are part and parcel of hence selection procedure is

necessary of the forecasting model.

Because of the rapidly advancing progress of computer technologies, conventional

prediction algorithms which come to our minds from statistics or econometrics are

being substituted by much sophisticated approaches. Nowadays a myriad number

of companies tend towards the machine learning or neural networks to enhance

the prediction by means of internal and external data.

However, on the way of data analysis data scientists stumble across uncovered

predicaments such as multidimensionality, preliminary wrong data filling-in or the

lack of data rules which should be stipulated by an inner company charter. Once

Habla analyzed various number machine learning methods and have deduced that

innovative products have a significantly smaller product life cycle than standard

ones thereby sales behavior can be forecasted much less precisely (Moroff and

Sardesai, 2019). Apart from it, even with well-structured data basis there are some

hidden challenges might be like data interpretation or its refining. In 2017 there

have been elaborated a data extraction process which embraces several steps:

the definition of the targeted quantity of data, which is sufficient for proper

analyzing, data cleansing step is crucial one since it is highly important to decide

which of the given columns must be chosen and which of them must be taken out

from the observation and resultantly it has direct influence on the final forecast

(Mathes, Klaben and Pieper, 2017).

Machine learning models divide into three types: supervised, unsupervised and

reinforcement learning. The first one is trained by means of using known

previously recorded data and the output is already known as well, this learning

approach targets at looking-up a relation in the form of the stated rules that

connect input data to its result and ultimately apply the learned rules to new data.

From this point of view, the computer program is getting trained. Once the model

is being trained it can predict future input and output data. Usually, the supervised

models are rendered in solving such tasks as classification and regression.

11

INTERNAL

Another model called unsupervised learning describes a system that is able to

obtain knowledge without correct answers providing thus there are no pre-labelled

target values. That pattern is so-called as “learning without a teacher”. A widely

applied task of unsupervised learning is clustering issue whereas the model

identifies affinity between the input data classifying them by common patterns.

The last unique approach is known as reinforcement learning where feasible or

optimal solutions are unknown to the model at the beginning of learning step and

therefore it must be defined iteratively based on rewards and punishments system.

Being in the learning phase, sensible approaches are rewarded, and vice versa

wrong steps are prone to be punished. As a result, the system looks for its own

solutions autonomously through directional rewards and punishments (Hannah,

Daniel and Saskia, 2019).

To better understand the primary point of ML the model scheme can be presented

in the following-up image where each type of algorithm solves the corresponding

task. For instance, supervised machine learning conventionally encompasses

such tasks as both classification and regression or, for example, unsupervised

algorithms are in clustering and association rule mining and reinforcement learning

the rest of them in the Figure 1:

Source: (Witten, Eibe and Hall, 2011)

Figure 1: The Machine Learning algorithm types with its corresponding tasks.

As it has already been pointed out that each algorithm oversees its own particular

task, but it is utterly important to comprehend the outright task’s essences to be

12

INTERNAL

not confused by variety of existing ones. The classification procedure is used to

categorize objects in compliance with their properties based on the underlying

dataset. Input data undergoes assortment where finally gets into the calculated

grid according to their attributes. Since the classification procedure is quite

discrete one thus the destination is usually unambiguous. Having sorted the data

point, the classes are recalculated on the basis of the newly formed set of data to

attain continuous enhancement of the classification output (Witten, Eibe and Hall,

2011).

Regression procedure is widely rendered by various number of companies around

the world for forecasting demand because it may predict the future trends

considering the historical variables. As in the traditional statistics, there are both

endogenous and indigenous values which are examined in order to track back

their interplay to each other. The range of tools in ML ranges from well-known

simple regression to Lasso method or poison regression. For these concrete,

fathomable reasons, they are wholesome in prediction case of scenario since they

are able to take into account of several variables with subsequent inherent

restrictions which in case of their breaking can lead to distorted results (Moroff and

Sardesai, 2019).

Clustering analysis is utilized in grouping and classifying data points pursuant to

their properties so that it is crucial to have measurable data point to commit

comparative analysis. The whole process is divided into two phases. At the

beginning, it is necessary to find out similarity between the new data point and the

existing set of data basis. This is followed by a division of similar sets of data into

several independent groups thus forming clusters. At this stage, difference is

accomplished between hard and soft algorithms of clustering and hence the

unique data point assortment points to a cluster. If clustering algorithm is soft the

data point might belong to several clusters as well and vice versa it is a hard

clustering algorithm if a data point is always assigned uniquely to a cluster.

These above-mentioned tasks are solving the machine learning algorithms in

hands-on application in the real-life world (Moroff and Sardesai, 2019).

However, machine learning algorithms have significant outright shortcomings

which might cost huge amount of money in case of making mistakes or false

13

INTERNAL

positive predictions compared to neural networks which are much more resistible

in case of outliers or emissions in a set of data. To better understand the core

difference between two at the first glance similar items is human-hand interference

in the process of learning.

The input data must be processed in ML algorithms, features are extracted, and

classification is done. But deep learning performs both steps together. Moreover, a

major privilege of NN is time saving contrary to the high training period required for

ML models. Apart from it, NN secures input data flexibility not needing preliminary

well-structured data where ML algorithms are sensible to any tiny changes in a

data set. Finally, is the size of set of data where NN models are improved

consistently, however ML algorithms would deteriorate. Finally, to learn any NN

model expensive hardware is required while ML implementation itself requires

professional expertise (Turing, 2020).

Having briefly described advantages and shortcoming of both approaches we may

induce that ML algorithms are suitable only in case of moderate amount of data

with the least quantity of outliers otherwise the final output may change depending

on the increasing number of observations. Furthermore, Supply Chain

Management is an area where data is being refreshed on a daily basis and any

wrongly predicted result may cost huge amount of money. Therefore, the following

narration will be dedicated to only neural networks and its hands-on application.

1.1 Recurrent neural network (RNN)

Recurrent neural network is a type of existing artificial neural network which

utilizes sequential flow of data or time series one. Nowadays this type of algorithm

is widely used for ordinal problems like image captioning, speech recognition,

forecasting or language translation. This kind of architecture is already embedded

into Siri, voice assistant, and google translator. One of the primary advantages of

RNN is memory while conventional deep neural networks presume that both

inputs and outputs are connectionless of each other. Meanwhile the output of RNN

relies on the preceding elements in format of the sequence (IBM, 2020). To better

grasp the neural network architecture, you may take a look at Figure 2 presented

bellow which picturizes the difference between RNN and other traditional ones.

14

INTERNAL

Source: (Biswal, 2022)

Figure 2: Simple RNN.

As you may observe from the image, RNN works on the principle of saving the

result of the hidden layer which is brown one and feeding this back to the input in

order to forecast the output of the layer. “x” labeled variables represent input layer,

“h” is known as hidden one and “y” is the output layer. A, B, C are the network

elements whose aim is to improve overall output result by fetching back the

combination of input vector at time step x(t) and old state of x(t-1) (Biswal,2022).

Supremacy of this type of NN over the others is possibility of processing inputs of

any length, the stability of model size while increasing of inputs and weights are

shared across time. However, computation speed as well as absence of a

possibility to take into account of any future input for the current state (Amidi,

2020).

Another distinguishing characteristic of RNN is that they share parameters across

each layer of the whole neural network. Meanwhile feedforward networks have

divers’ weights across the nodes, RNN have the same weight parameter within

each corresponding layer of the network, but the weights are still adjusted in the

through the processes of backpropagation and gradient descent to promote

reinforcement learning.

However, there is a slightly different type of backpropagation process which is

called through time BPTT algorithm to measure the gradients. The pattern of

BPTT is the same as conventional backpropagation where the algorithm trains

itself by calculating errors from its output layer to its input one. These calculations

enable us to adjust and adapt the parameters of the model appropriately.

15

INTERNAL

Backpropagation through time differentiates in sums of errors at each time step

whereas traditional architecture of NN don’t need to sum errors.

Thus, the RNNs are prone to run into other problems such as exploding gradients

and vanishing ones. It may arise by the size of the gradient which is the slope of

the loss function along the error curve. When the gradient is too small, it keeps

going to consistently diminishing up to 0. Hence the algorithm is no longer

learning, and it results in updating the weight parameters which stop its adjusting

and overall accuracy becomes immutable. Vice versa tendency may occur when

the gradient is too large, and it directly have effect on model’s stability where the

algorithm weights grow too large and become as NaN type. However, the solution

is simple it is necessary to shrink the number of hidden layers eliminating the RNN

model complexity (IBM, 2020).

Apart from advantages and drawbacks there are several types of RNN (Biswal,

2022):

• One – to – one. This variant of neural network is known as the Vanilla NN

which has a single input gate and a single output gate.

• One – to – many. The type of NN has a single input and multiple outputs.

Usually, the model is applied for image caption.

• Many – to – one. The RNN take several inputs and generate only one

output gate.

• Many – to – many. This type of RNN takes sequence of inputs and

generates a sequence of outputs. Usually, you may find the model

application in machine translation.

Each of the models has been elaborated to solve respective real-life tasks. We

may also present the neural network mathematically to understand the principle of

the model in Figure 3.

16

INTERNAL

Source: (Saeed, 2021)

Figure 3: Unfolding A Recurrent Neural Network.

In the gray rectangle can be unfold in 3-time steps to form the second network

depicted below but during a RNN development it is possible to vary the

architecture n time steps. The following-up notation is leveraged (Saeed, 2021):

• 𝑥𝑡 ∈ 𝑅 is the input gate at time step t. The input data may be a scalar value

with a single feature or n-dimensional vector.

• 𝑦𝑡 ∈ 𝑅 is the output gate at time step t. One or multiple outputs in the

network may be produced.

• ℎ𝑡 ∈ 𝑅𝑚 is the vector keeping the values of the hidden states at time t. This

is usually called the current context where “m” is the number of hidden

states and ℎ0 vector is initialized to zero.

• 𝑤𝑥 ∈ 𝑅𝑚 are weights which are bound with inputs in recurrent layer.

• 𝑤ℎ ∈ 𝑅𝑚×𝑚 are weights connected with hidden states in recurrent layer.

• 𝑤𝑦 ∈ 𝑅𝑚 are weights which are associated with hidden output states.

• 𝑏ℎ ∈ 𝑅𝑚 is just the bias which is associated with the recurrent layer.

• 𝑏𝑦 ∈ 𝑅 is the bias as well which is associated with the feedforward layer.

At each time step we can unroll the network for k time steps to receive the output

at time step with k+1. As you may notice that the unfolded network resembles a

feedforward neural network and general formula (1) looks accordingly:

17

INTERNAL

 ℎ𝑡+1 = 𝑓(𝑥𝑡 , ℎ𝑡 , 𝑤𝑥 , 𝑤ℎ , 𝑏ℎ) = 𝑓(𝑤𝑥𝑥𝑡 + 𝑤ℎℎ𝑡 + 𝑏ℎ) (1)

The output (2) of “y” at time t is compiled as:

 𝑦𝑡 = 𝑓(ℎ𝑡 , 𝑤𝑦) = 𝑓(𝑤𝑦 ∗ ℎ𝑡 + 𝑏𝑦) (2)

As the result, the feedforward pass of a RNN, calculate the values of the hidden

units and the output after k time steps iterations. The weights which are connected

with the neural network are shared temporally and each recurrent layer has two

set of weights where one is geared to input and the second one for hidden unit.

The last layer computes the total result for k-th time step as a usual layer of a

conventional neural network (Saeed, 2021).

Since the RNN’s concept has been comprehended it is high time to precede to

another integral part of any neural network which is known as activation function.

Nowadays there are three of the most widely applied activation functions which

employed according to the task which a network should fulfill. Activation function

determines whether a neuron should be activated. If an ML developer builds a

neural network with 7 or 8 hidden layers so it is recommended to leverage whether

a sigmoid function or hyperbolic tangent. If a ML developer elaborates a neural

network with over 7 or 8 hidden layers so it means an automatic switchover to the

field of deep learning and the abovementioned activation function types become

irrelevant because the result might be distorted or lead to appalling outputs.

Hence, scientists have taken on another activation function for deep learning

which is called RELU. The mathematical formulas and corresponding graphs are

essential to understand how they function in the Figure 4 below (Amidi, 2020).

Source: (Amidi, 2020)

Figure 4: Activation Functions.

18

INTERNAL

The nonlinear functions usually convert the output of a given neuron to a range of

values between 0 and 1 or -1 and 1 (IBM, 2020). RNN can have as many hidden

states as a ML developer may wish but there is one significant constant. Each

hidden state must always have the same activation function and the output of each

layer is calculated using the same function. You may ask which one of the given

activation functions to leverage during a neural network elaboration? If the network

stays within easy-solving issues you may use sigmoid, but some ML developers

would recommend utilizing hyperbolic tangent because it decreases occurrences

of vanishing gradient problem and RELU is always for deep learning (Bento,

2017).

We have already discussed the types of RNN, but another important topic is RNN

architectures which should be mentioned. In today’s day there is three types of

architectures of RNN. The first one is bidirectional recurrent neural networks

(BRNN). The difference between unidirectional RNNs is in drawing inputs from the

previous records in order to make predictions about the current state but BRNN

pulls in future data to improve the accuracy of it. Simply saying a neural network

learning goes in two directions.

Long short-term memory networks (LSTM) are a unique type of RNN which can

remember long-term dependencies. It also has a chain-like structure and instead

of a single NN layer, four interacting layers are communicating as shown on Figure

5.

Source: (Dobilas, 2019)

Figure 5: LSTM’s unfolded scheme.

19

INTERNAL

To understand the contemporary LSTM model each part plays a significant role.

ℎ𝑡−1 is hidden state from a previous timestep and 𝑥𝑡 is the input at a current

timestep which are all together combined before passing its copies through

various gates. There is a forget gate controlling the information which should be

forgotten. Sigmoid activation function ranges between 0 and 1 and it decides

which values in the cell state must be thrown out multiplying an incoming value by

0 and to remember it multiplied by 1, partially remembered it multiplies by some

value between 0 and 1. The input gate helps to distinguish significant elements

that must be added to the cell state. The essential note where the results of the

input gate get multiplied by cell state candidate with only the information deemed

important by the input gate being added to the cell state. After that, 𝑐𝑡−1 is the

previous cell state which gets multiplied by the results received from the forget

gate and then we add new information from input gate which has been multiplied

by the cell state candidate in order to obtain the latest cell state denoted as 𝑐𝑡. The

last step of neural network learning is hidden state updating. The latest cell state

denoted as 𝑐𝑡 is passed through the tanh activation function and multiplied by the

results of the output gate. At the end the latest cell state 𝑐𝑡 and the hidden state ℎ𝑡

come back in order to repeat the process at timestep t+1 and it lasts until we reach

the end of the sequence (Dobilas, 2019).

In 2014 Kyunghyun Cho introduced a new type of RNN which is called gated

recurrent units (GRU). GRUs are very similar to LSTM, and both have gates to

control the flow of information. However, GRU is deemed as more alleviated than

LSTM in terms of several differences. For instance, the former one has only two

gates compared to the latter one having three gates. Moreover, GRU does not

possess any internal memory and doesn’t have an output gate. Apart from it,

LSTM’s both the input and target gates are coupled by an update one but in GRU

reset gate is utilized directly for the antecedent hidden state (Lendave, 2021). To

better understand the GRU’s functionality is highly important to have a look at the

neuron’s structure that depicted on the Figure 6.

20

INTERNAL

Source: (Lendave, 2021)

Figure 6: The unfolded GRU’s neuron.

As you may see again the architecture reminds us LSTM where at each timestamp

t, it takes an input 𝑥𝑡 and the hidden state ℎ𝑡−1 from the previous timestamp t-1.

Later, it produces a new hidden state ℎ𝑡 which again passed to another timestamp

cycle and now there are primarily two gates in a GRU. The update gate is in

charge of long-term memory, the equation (3) of the gate presented below.

 𝑧𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑢 + 𝐻𝑡−1 ∗ 𝑊𝑢) (3)

𝑈𝑢 is simultaneously weight metric and differ from LSTM. Having processed

elements through update gates they undergo the reset gate that is liable for the

short-term memory of the whole network and the respective formula (4) presented

below.

 𝑟𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑟 + 𝐻𝑡−1 ∗ 𝑊𝑡) (4)

The 𝑟𝑡 value ranges from 0 to 1 because of the sigmoid function and the 𝑈𝑟 and 𝑊𝑟

are weight metrices for reset gate.

Having completed both procedures, they head down to another two-step process.

The first one oversees generating the candidate hidden state which has a

corresponding formula (5).

 𝐻𝑡 = tanh(𝑥𝑡 ∗ 𝑈𝑔 + (𝑟𝑡 ∗ 𝐻𝑡−1) ∗ 𝑊𝑔) (5)

The formula (5) encompasses input data and the hidden state from the antecedent

timestamp t-1 which is multiplied by the reset gate result 𝑟𝑡. Later, it passed the

information through the tanh activation function, the output value is the candidate’s

hidden state. The most important part of equation is how the reset gate value is

21

INTERNAL

used to control the hidden state influence on the candidate state. In case of 𝑟𝑡’s

value mads up 1 then it makes us out that the entire information from previous

hidden state ℎ𝑡−1 is being taken into account of. Likewise, if 𝑟𝑡 value makes up 0

then the entire data from antecedent hidden state is neglected.

Once the candidate state has arisen, it is time to generate the ongoing hidden

state 𝐻𝑡 and the update state comes into play. LSTM utilizes separate gate, but

GRU applies only update gate in order to control both previous information which

is denoted as 𝐻𝑡−1 and the new information (6) from candidate state.

 𝐻𝑡 = 𝑧𝑡 ∗ 𝐻𝑡−1 + (1 − 𝑧𝑡) ∗ 𝐻𝑡 (6)

Let’s suppose that the 𝑧𝑡 is around 0 then the first part of the equation will

disappear which makes us out that the hidden state will not have much data from

antecedent hidden state. However, the second term of formula gets one that

means the current timestamp will contain data from the candidate state only and it

may happen vice versa that the candidate state may equal 0 but the hidden state

with historical information can be equal 1 (Saxena,2021).

To sum it up, you may observe some petite discrepancies between RNN, LSTM

and GRU types but the final performance of the up-to-date approaches generates

more robust result which is highly important in predictive analysis applying neural

network as the main tool in solving real-life Supply Chain Management’s task on

demand prediction.

22

INTERNAL

2 The factors of neural network training.

Any type of neural network has its own specifications and features, but some

common things leave and must be considered during the development. Talking

about details data scientist as well as ML developers have outlined the following

attributes which must be calibrated in order to obtain a desired result:

• Optimization

• Standardization vs Normalization

• Overfitting and underfitting issues

• Evaluation indicators

2.1 Optimization algorithms

Any neural network model aims to generalize the incoming data with an algorithm

and endeavors to predict unseen data. To map the inputs in order to receive the

expected output it is necessary to optimize weights that minimize the error.

Optimization algorithms significantly affect neural network accuracy. During the

deep model learning the modification of epoch’s weights and minimization or the

loss function are desired. An optimizer is an algorithm that modifies both weights

and learning rate. Hence, it improves the overall accuracy, but the task is to

choose the correct weights for the model is becoming daunting since there are

millions of combinations (Gupta, 2021).

Nowadays there are nine optimizers which are well-known in hands-on ANN

application (Nagesh, 2020):

• Gradient Descent

• Stochastic Gradient Descent (SGD)

• Mini Batch Stochastic Gradient Descent (MB-SGD)

• SGD with momentum

• Nesterov Accelerated Gradient (NAG)

• Adaptive Gradient (AdaGrad)

• AdaDelta

• RMSprop

• Adam

23

INTERNAL

Gradient descent is the first foundational optimization algorithm of how the model

is trained tweaking its parameters iteratively reaching out to its local minimum of a

differentiable function. The primary goal is to minimize a cost function (7) as far as

possible.

 𝜃 = 𝜃 − 𝜂 ∗ ∇𝐽(𝜃) (7)

The above-mentioned one is the parameter updates where ‘ŋ’ is learning rate and

‘∇𝐽(𝜃)′ is the loss gradient function. Gradient descent was used in order to

optimize weights updating them in a direction of the loss function minimization.

Once the Backpropagation approach has been mentioned and when the model

propagates backwards the Network carries error terms updating weights values

with the Gradient Descent.

Source: (Nagesh, 2020)

Figure 7: The Gradient Descent function.

In the gradient descent algorithm, there is a disguised variable which is part and

parcel of final loss function output which is known as learning rate. Learning rate

defines the convergence level by the assigned steps of gradient descent. In order

to reach the local minimum, it is highly important to properly set the learning rate

value which is neither too low nor too high. If the steps are too big it may not reach

the local minimum bouncing back and forth between the convex function of the

gradient descent. Vice versa, setting too small steps will get the local minimum,

but it takes a while (Nagesh, 2020). Hence, we can deduce that gradient descent

has both advantages and setbacks. On the one hand, it is easy to compute, to

implement and to understand but it may trap at local minima, model’s weights are

changed after the gradient on the whole dataset where it takes years to converge

to the minima if the dataset is too enormous and the approach consumes large

24

INTERNAL

memory to calculate the gradient on the whole dataset. Hence the stochastic

gradient descent has been elaborated rectifying previous disadvantages.

SGD is deemed as the extended version of the gradient descent where it performs

a parameter update for each training example (8). The algorithm is faster and

presents one update at a time.

 𝜃 = 𝜃 − 𝜂 ∗ ∇𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) (8)

Due to these frequent updates the high variance of parameters updates occurs

and causes the loss function fluctuation. On the one hand, this is a good sign in a

direction of the better local minima discovering but because of both frequent

updates and fluctuations it compounds the convergence to the precise minimum

keeping overshooting. Since most of disadvantages had left unsolved, another

approach comes to play which is known as mini batch gradient descent (Nagesh,

2020).

MB-SGD is an extended version of the SGD, and it handled large time-consuming

problems. This algorithm takes a subset of points from the dataset to compute

derivative. However, after a while some surveys showed that the derivative of the

loss function for MB-SGD is almost the same as a derivative of the loss function

for conventional GD after some number of iterations. Moreover, the number of

required iterations to get a local minimum is still large for MB-SGD as for GD. The

updating of weights is dependent on the derivative of loss for a subset of points.

MB-SGD’ updates are much fuzzy because the derivative doesn’t go toward

minima. The basic principle of the algorithm is dividing the datasets into small

batches and after each subset, the parameters are renewed. On average the mini

batch is made up of size 50. The core advantage is less time-consuming in

convergency way compared to the above-mentioned algorithms. However, some

setbacks emerge such as noisiness and stuck at a local minimum (Nagesh, 2020).

25

INTERNAL

Source: (Nagesh, 2020)

Figure 8: The SGD vs MB-GD.

Since the problem is severe the demand for denoising left. Therefore, the SGD

with momentum has been invented to overcome this issue denoising the

gradients. Having denoised the gradients, the convergence time is decreased

updating of weights by means of exponential weighting average using. As a result,

it gives more weightage to the recently renewed updates in comparison with the

previous update speeding up convergence and reducing fluctuation. However, a

petite hyperparameter is embedded in this method (9) known as momentum and

the formula looks accordingly:

 ∨ (𝑡) = 𝛾 ∨ (𝑡 − 1) + 𝑎. ∇𝐽(𝜃) (9)

The momentum term ‘y’ is usually set manually to 0.9 or a close value. ‘t’ is

momentum at time which is computed employing all previous updates providing

with more weightage to recent updates compared to the past update accelerating

the convergence. Here the momentum reminds the momentum in classical

physics, when we cast a ball down a hill it collects momentum, and its terminal

velocity keeps on mounting. The same one happens with parameters leading to

the swifter and stable convergence reducing oscillations. As such, only one

disadvantage is manually adjusted momentum (Nagesh, 2020).

26

INTERNAL

Source: (Nagesh, 2020)

Figure 9: The SGD vs SGD with momentum.

As has been mentioned before, the momentum is set manually and is still a good

approach but if the parameter is too high the overall algorithm may miss the local

minima and can continue to increase. This problem endeavored to tackle Yuri

Nesterov where the method makes a big jump based on the past momentum in

the direction of the updated accumulated gradient then it calculates the gradient

and then make a correction which results in a NAG update. This update avoids

going too fast and does not miss the minima.

NAG compared to SGD with momentum secures from vague and unknown

momentum’s parameter giving him kind of prescience. Since we are already aware

that we will use momentum term 𝛾 ∨ (𝑡 − 1) to move forward the parameters θ

modifying the weights (10) so,𝜃 − 𝛾𝑉(𝑡 − 1) roughly tells the next position of the

parameters (11) which are going to be. Now, the calculation is based on these

future parameters rather than the current one and the formulas look accordingly

(Nagesh, 2020).

 𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 (10)

 𝐽 = (𝜃 − 𝛾𝑉(𝑡 − 1)) (11)

The second one updates the parameters. But again, the hyperparameter must be

selected manually.

Up to this moment all optimizers had the constant learning rate which is set 0.01

by default. To handle this indicator the Adaptive Gradient Descent (AdaGrad) has

been created in order to have an adaptive learning rate for each of the weights.

Hence, the algorithm performs tinier updates for parameters associated with

frequently occurring features and bigger updates for rarely occurring features. For

27

INTERNAL

this reason, it is well-suited for dealing with sparse data. To understand the main

point, scientists used 𝑔𝑡 to denote the gradient at time step and 𝑔𝑡,𝑖 is then the

partial derivative of the loss function to the parameter 𝜃𝑖 at time step, 𝜂 is the

learning rate and the ∇𝜃 is partial derivative of loss function (12) where the final

formula is:

 𝑔𝑡,𝑖 = ∇𝐽(𝜃𝑡,𝑖) (12)

And the SGD update function (13) looked like this:

 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂 ∗ 𝑔𝑡,𝑖 (13)

But now the rule has been updated where the learning rate modifies at each time

step for every parameter based on the previous gradient and the formula (14)

looks accordingly:

 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖 + 𝜖
𝑔𝑡,𝑖 (14)

G is the sum of the squares of the previous gradients to all parameters. The

advantage is that we don’t need to set the learning rate, but the curse of the

algorithm is squared gradients in the denominator because each newly added

term is positive. Therefore, the accumulated sum keeps increasing during training

of a neural network making the learning rate decrease and getting small and as

the result in vanishing gradient problem. Simply speaking, with increasing number

of iterations the learning rate leads to shrinking causing slow convergence

(Nagesh, 2020).

That’s why another couple of algorithms have been elaborated which are known

as AdaDelta and RMSprop. To rectify the previous issue, AdaDelta algorithm has

an idea to take an exponentially decaying average. AdaDelta adapts learning rate

based on a moving window of gradient updates, instead of accumulating all

previous gradients. Instead of saving previous squared gradients, the sum of

gradients is determined as decaying average of all previous squared gradients.

The running average depends only on the past average and ongoing gradient and

formula (15) for this is:

 𝐸[𝑔2] = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (15)

Where ‘y’ is set conventionally around 0.9 and rewriting the AdaGrad formula (16)

we derive the following-up:

28

INTERNAL

 ∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡 (16)

In RMSprop as almost identical one but Hinton proposed to use the learning rate

by default is 0.001 (Nagesh, 2020).

The last optimization function is Adaptive Moment Estimation (Adam) which can

be considered as a mixing of RMSprop and SGD with momentum. Adam

computes adaptive learning rates for each given parameter. Apart from storing an

exponentially decaying average of previous squared gradients like RMSprop,

Adam saves an exponentially decaying average of past gradients, like momentum.

Hyperparameters 𝛽1, 𝛽2𝜖[0,1] control the exponential decay level of these moving

averages. Scientists compute the decaying averages of previous ones and past

squared gradients respectively:

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (17)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (18)

‘mt’ and ‘vt’ are evaluating of the first mean moment (17) and the second

uncentered variance of the gradients (18).

Source: (Nagesh, 2020).

Figure 10: Comparative analysis of all optimization functions.

29

INTERNAL

As the chart shows, the training cost attained the least moment for Adam. As for

the rest of them, the SGD algorithm got stuck at a saddle point, so it can be used

only for small networks.

AdaDelta is being the fastest followed by momentum algorithms. AdaGrad and

AdaDelta algorithm are well-suited for sparse data. As for NAG and algorithms

with momentum, they work well for most cases but much slower.

2.2 Normalization vs Standardization

Having figured out with the various types of optimizations, another petite one but

essential detail plays role which is called data normalization. However,

occasionally ML-engineers employ standardization instead of that’s why it

becomes important to clear the question up in order to enhance the neural

network’s performance.

Why should we normalize inputs in a neural network? The answer is simple.

Usually, datasets have numeric input features which could take on values in

potentially different ranges. For instance, let’s assume that we have a dataset with

several columns containing the weight and temperature of people who have got

over COVID-19. It is obvious that weight is measured in kilograms, but

temperature is in Celsius, and ranges may start from 0 to 200 ibs and 36 up to 45,

for example. Hence, some mathematical techniques must be leveraged in order to

eliminate the data scatter. Neglecting this step may lead to longer training time

and to propagate through the layers of the network heading to the huge,

accumulated gradients error that makes the training procedure unstable.

To avert the pointed-out problem there are two options for an input layer to choose

either normalization (19) which works by mapping values of features to be in the

range 0 to 1 applying the transformation:

 𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (19)

Or to use the standardization (20) one that follows a normal distribution with zero

mean and unit variance in accordance with Gaussian distribution. Mathematically

speaking, the transformation undergoes with mean µ, and standard deviation is

given by:

30

INTERNAL

 𝑥𝑠𝑡𝑑 =
𝑥 − 𝜇

𝜎
 (20)

These two above-mentioned methods help to avoid the long-lasting convergence

procedure of a neural network (Bala, 2021).

In 2015 Sergey Ioffe and Christian Szegedy found out that preprocessing

normalization or standardization doesn’t tackle problem with internal covariate shift

or simply saying that the input layer is constantly changing due to weight update.

Therefore, the corresponding layer must always be adapted to the new

distribution. This tool performs a way of controlling and optimizing the distribution

after each layer (Balawejder, 2020). Mathematically, batch normalization layer

converts each input into mini batch by means of subtracting mean and dividing it

by the standard deviation. However, we shouldn’t expect inputs with zero mean

and unit variance, but it can perform better with some other mean and variance.

Hence, the BN layer introduces two learnable variables ‘y’ and ‘ꞵ’. The

corresponding formulas look respectively:

 𝜇𝛽 ←
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

− 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑚𝑒𝑎𝑛 (21)

 𝜎𝛽
2 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝛽)

2

𝑚

𝑖=1

− 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (22)

 𝑥𝑖 ←
𝑥 − 𝜇𝛽

√𝜎𝛽
2 + 𝜖

− 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (23)

 𝑦𝑖 ← 𝑦 ∗ 𝑥𝑖 + 𝛽 = 𝐵𝑁𝑦,𝛽(𝑥) − 𝑠𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 (24)

Practically, the network calculates the gradient based on the ongoing inputs to any

layer and reduces the weights in the way indicated by the gradient. However, the

layers are stacked one after other, the data distribution to any layer changes

swiftly due to slight weights update of earlier layer and as the result the gradient

might perform sub optional signals for the network. But BN restricts the distribution

to any layer which aids the network to constitute better gradients for weights

update. Therefore, BN secures a much more stable and accelerated training pace.

However, there are some cons of BN. First, BN does the calculation of mean and

variance in every training iteration, therefore it demands larger batch sizes while

training so that it is able to prolifically approximate the mean and variance from

31

INTERNAL

mini batch and it makes BN harder to train networks for solving such tasks as

object detection, segmentation. It happens because of working with high input

resolution and is applicable for large batch sizes. Another setback of BN is that it

isn’t well-suitable for RNN type of a neural network. The problem of RNN is a

recurrent connection to previous timestamps and would requests a separate ꞵ and

‘y’ for each timestep in the batch normalization layer instead supplements

additional complexity. The last interesting detail is difference in calculation

approaches where during the test time, the BN doesn’t calculate the mean and

variance from the test data mini batches but applies the fixed mean and variance

from precalculated training dataset (Vijayrania, 2020).

Inspired by the results of Batch Normalization, Jimmy Lei Ba, Jamie Ryan Kiros

and Geoffrey E. Hinton presented the transformer paper where the layer

normalization has been put forward in order to handle vectors mostly in the RNN

outputs since BN didn’t perform well. In comparison with BN, layer normalization is

computed across all channels and spatial dims. Thus, the variance and mean

value are independent of the batch. The formulas look respectively:

 𝜇𝑖 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚

𝑗=1

− 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 (25)

 𝜎𝑖
2 =

1

𝑚
∑ 𝑥𝑖𝑗(𝑥𝑖𝑗 − 𝜇𝑖)

2
𝑚

𝑗=1

− 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (26)

 𝑥𝑖,𝑗
𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 =

𝑥𝑖𝑗 − 𝜇𝑖

√𝜎𝑖
2 + 𝜖

− 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (27)

It refers to the batches and j refers to the features, so as can be seen from the

above-mentioned formulas, the features are also normalized and not the batches.

LN is mainly applicable to RNN by normalizing separately at each time step. From

this point of view, it reminds batch normalization but instead of its statistics, the

mean and variance correspond to exact input to the neurons in a particular layer

(Ampadu, 2021).

In 2016 Dmitry Ulyanov introduced Instance Normalization as another attempt to

reduce dependency on the batch to improve the results of the style transfer

network for CNN architecture. Normalization across both batch and channel allows

removing specific contrast information from the image which provides the

32

INTERNAL

generalization. Mainly the method has acquired popularity among generative types

of models such as Pix2Pix or CycleGAN and became predecessor for Adaptive

Instance Normalization which is used in the StyleGAN2 model.

In 2018 group normalization was introduced which directly addresses the batch

normalization for CNN since the spike of computer vision occurred. The main

disadvantage of BN as it has already mentioned before is dependency on the

huge number of batches, at least 32 required but GN was invented with the idea of

splitting tensor(batch) into many machines. Hence, these are trained on a small

number of examples like 6 or 8 and sometimes even 1 or 2 keeping the stable low

error rate compared to BN. It is kind of hybrid of layer and instance normalization

where GN just divides channels into groups and normalizes across them. This

scheme makes the computation independent of the batch sizes. However, when

the group size falls to 16 or 32 and higher the error rate performs better for BN.

Almost every hyperparameter has been mentioned for normalization or

standardization but weight has left intake. This theory has been proposed in 2019

about the weight standardization. Weights can grow large being out of any

controller especially when the output normalizes. As a result, smoothing effect of

weights is desirable. Since the conversation is about standardization the formulas

are obvious:

 𝑊 =
𝑊𝑖,𝑗 − 𝜇𝑊𝑖

𝜎𝑊𝑖,𝑗

 (28)

 𝜇𝑤𝑖 =
1

𝑖
∑ 𝑊𝑖,𝑗

𝑖
𝑗=1 (29)

 𝜎𝑤𝑖 = √
1

𝑖
∑ (𝑊𝑖,𝑗 − 𝜇𝑤𝑖)

2𝑖
𝑖=1 (30)

In essence, weight standardization controls the first-order statistics of the weights

of each output channel separately. In this way, WS is oriented to normalize

gradients during the training. Theoretically speaking, the core idea is to keep the

convolutional weights in a compact space smoothing the loss landscape and

improving training. The result of different types of normalizations and

standardizations and its hybrid forms presented on Figure 11 (Adaloglou, 2020).

33

INTERNAL

Source: (Adaloglou, 2020)

Figure 11: Comparing normalization methods on ImageNet and COCO.

2.3 Overfitting and underfitting issues

Out of all existing things that go wrong with ML model or NN is a detrimental

overfitting or underfitting error. It is a common pitfall for deep learning algorithms

where a model attempts to fit the training data considering the intricacies and

noise in the training data to the point where it detracts from its effectiveness on

new data. It also involves noise or fluctuations in the training dataset. Simply

saying, overfitting takes place because of too much learning from the data, and it

can have influence on model’s ability to generalize limiting its overall performance.

The model performs exceptionally well only in its training set however it does not

generalize prolifically enough when used for predictions outside of the training

dataset. Unfortunately, nonlinear models have less flexibility and more freedom in

the target function during the learning process resulting in an overfitting problem.

Moreover, no sample of the population can ever be unbiased. Overfitted models

are biased toward sample rather than being independent and representative of the

entire dataset.

Underfitting is a situation when it fails to detect the primary dataset’s trend within

the data leading to both training mistakes and poor model performance. Hence, if

a model’s ability to generalize to new data is limited as the result it can’t be used

for classification problem or forecasting tasks.

In order to recognize an underfitting or overfitting problem the model must be

taught on the training dataset to see the results. If the model achieved 95%

percent accuracy on the training set and 60% percent accuracy on the test set that

34

INTERNAL

would be a huge overfitting problem. Vice versa, if the result shows a high level of

bias and a low level of variance it means the model is underfitted (Larkin, 2022).

Having found out the definitions of both overfitting and underfitting problems, we

haven’t pinpointed the reasons for both issues which occur after training.

First of all, the overfitting emerges when data isn’t cleansed and contains

redundant values which distort the main data’s trend capturing noise in a training

dataset resulting to generalization failure. Secondly, the model can encompass

high variance. Thirdly, the training dataset isn’t ample, and the neural network is

taught on the limited training data for several epochs. The last common reason is

model’s complexity, bigger number of neural network layers, longer time is

required to teach the model and as the result it leads to overfitting problem.

As for underfitting causes, unclean data with noises or outliers might be reasons

for a model’s inability to trace down the primary pattern from the dataset. The

second one is high bias due to the huge difference between the predicted value

and target one. The last common mistake is oversimplification of the model when

number of layers is too small, for instance (Baheti, 2022).

However, the reality might be tough and in practice most engineers run up against

a phenomenon which is known as bias-variance tradeoff. The concept is simple

where increasing model’s complexity causes a lower bias error on the one hand

but makes variance spike on the other. The ideal option is finding a sweet spot

where the curves of variance and bias intersect as it is depicted on the Figure 12.

Source: (Oppermann, 2021)

Figure 12: Variance-Bias-Tradeoff.

35

INTERNAL

We came off to define the most common reasons for overfitting and underfitting

problems. Up to today the huge experience of all engineers has been collected in

this area and there are some conventional solving options. Adding more data is

the first approach which can eliminate this problem. Since the model fails to

generalize to new data it means the data wasn’t representative enough. So, the

model must be retrained on a bigger and more diverse set of data to improve its

performance. However, the data collection procedure can be expensive, or the

number of data might be limited. Hence, the second option was put forward which

is called data augmentation which is more affordable. Data augmentation makes a

sample look a bit different every time the model processes it. As I mentioned

before computer vision tasks became popular among engineers therefore this

approach is geared to CNN’s structure. Data transformation happens by means of

artificially adding more images with horizontally flipped ones or vertically, they

might be cropped or rotated up-side-down. This helps in increasing data size and

thus reduces overfitting, as we add more information, the model gets incapable of

overfitting all the samples and is enforced to generalize. The following result you

can see on Figure 13 (Goyal, 2021).

Source: (Goyal, 2021)

Figure 13: Embedding of data augmentation into a neural network.

Since augmentation approach isn’t applicable for RNN’s structure another

experience of engineers prompts that the model was trained on too complex

number of data features thus a pattern hasn’t been detected. Removing some

features and making the data simpler can help to reduce overfitting problems.

However, some ML-engineers would like to keep a model’s complexity and there

is a list of tools which is known as regularization. The main idea standing behind it

is complexity penalty to a model. If the model wants to avoid incurring a penalty it

36

INTERNAL

must concentrate on the best patterns which contain a higher chance of

generalizing well. These techniques are the most preferable and powerful and

almost all the models contain them in some way (Chemama, 2018).

The first tool out of all existing ones is changing the network structure (number of

weights). For instance, the structure could be tuned by means of grid search until

a suitable number of nodes or layers is sought to reduce overfitting. Alternately,

the model could be pruned by removing nodes until it satisfies suitable result on a

validation dataset (Brownlee, 2019). The second tool is changing network

parameters (value of weights) by adding a weight penalty term which penalizes the

large value of weights in the network. Forcing the optimization algorithm to reduce

larger weights values to smaller weights leads to stability of the network and

introduces good performance. In this approach, the network configuration leaves

unchanged since it only does modification of the weights value minimizing loss

function as well apart from error reduction between predicted value and actual

one.

 (𝐿1 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 𝐶𝑜𝑠𝑡 = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝐽
𝑀
𝐽=0

𝑁
𝑖=0)2 + 𝜆 ∑ |𝑊𝐽|𝑀

𝑗=0 (31)

 (𝐿2 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 𝐶𝑜𝑠𝑡 = ∑ (𝑁
𝑖=0 𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝐽)2 + 𝜆𝑀

𝑗=0 ∑ 𝑊𝑗
2𝑀

𝑗=0 (32)

The first component represents loss function and the second one is the weight

penalty of the regularization term. Without the regularization term the overall loss

of the network is the same as the output of loss function. If the network overfits on

training data, the error between predicted value and the actual one for a training

data is very small. Therefore, since training error has a very small value, then the

error gradient value is also very small. As the result, a change in weights is very

small and when iteration is finished, the new weights value is almost the same as

the previous one, thus the network still has overfit issue.

Vice versa, embedding regularization term causes error increasing, then the error

gradient weights also rise which results in a significant change in weight update. If

weights value gets larger the regularization penalizes it. So, larger values of

weights result in a larger penalty to the loss function, thus pushing the network

toward smaller and stabilized values of weights. There are obviously some

differences between L1 and L2 presented in Figure 14.

37

INTERNAL

Source: (Goyal, 2021)

Figure 14: L1 vs L2.

L1 regularization (31) is usually applied for simple data and L2 one (32) is better

choice if the data is too complex. However, there is not a silver bullet for it and a

technique depends on the problem statement that engineer is trying to tackle

(Goyal, 2021).

Apart from the above-mentioned ones there are additional regularization

techniques such as activity regularization which penalizes the model during

training base on the magnitude of the activations, dropout method which

deactivates neurons ranging over from 20% to 50%, noise technique is added as

statistical one to inputs during a training procedure, and the last one is early

stopping which is widely employed monitoring model performance on a validation

set and it stops training when performance degrades. Based on the ML-engineers’

experience they prepared some recommendations for different structures of neural

networks. For instance, during CNN’s structure elaboration it is conventionally

recommended to utilize early stopping and L2 regularization. Alternately, you can

combine early stopping and added noise with a weight constraint establishing as a

max value equal 1 and min one equals 0. However, contemporary approach

suggests combining early stopping and dropout in addition to a weight constraint.

As for RNN’s structure, engineers conventionally use early stopping with added

weight noise and weight constraint. However modern technique is combination of

early stopping with dropout and weight constraint (Brownlee,2018).

Underfitting runes come across much rarely compared to previous problems but if

it occurs it is necessary to increase complexity model switching from linear model

to non-linear one adding more layers and neurons. If the model is not linear but

there is an underfitting issue it is recommended to reduce regularization function

influence. These techniques may help to overcome the underfitting problem

(Chemama, 2018).

38

INTERNAL

2.4 Evaluation indicators

Up to this moment we have almost everything to create any type of NN, however

one missing significant component remains and must be embedded into the

structure. The last part is evaluation metric which provides us with the most

valuable information which determines further decision of a company. Depending

on problem solving either classification task or regression one, there are related

evaluation lists of metrics.

For Regression solving problem, ML-engineers traditionally as the first indicator

uses mean absolute error (MAE). The MAE is simply defined as the sum of all the

residuals (difference between the actual value and predicted one) divided by the

total number of points in the dataset. It is the absolute average distance of our

model prediction with the corresponding formula (33).

 𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂|

𝑁

𝑖=1

 (33)

As you can understand from the formula that negative residual is converted to

positive so that it doesn’t cancel out other positive residuals. Indicator depicts how

close the predictions are to the actual model on average. Larger MAE values

indicate that the model is poor at prediction. The MAE compared to the following

indicators is robust towards outliers since it doesn’t exaggerate errors. However,

on the other hand, it doesn’t give us an idea of the direction of the error, i.e.,

whether the value is under-predicting value or over-prediction the data.

Another popular one is mean squared error (MSE). Perhaps, it is the most popular

metric in the field of regression analysis. Compared to the MAE it is a differentiable

metric, so it can be optimized better. Moreover, it penalizes even small errors by

squaring them which essentially leads to an overestimation of how bad the model

is. However, the core disadvantage is the metric’s propensity to outliers.

Since the MSE is inclined to outliers, root mean squared error (34) has been

created as an improvement to the MSE. Mathematically, it can be represented as:

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝐽=1

 (34)

39

INTERNAL

It mainly addresses a few downsides in MSE. It still retains the differentiable

property of MSE. It still handles the penalization of smaller errors done by MSE by

square rooting it and it is less prone to struggle with possible outliers (Shwetha,

2021).

Other types of metrics relate to ML types of algorithms which I decided to omit.

To sum it up by now, we can certainly say that neural network training is quite a

challenging procedure since each petite component must be considered to attain

the highest possible precision score and model’s correctness toward predictions.

Each percentage of accuracy matters especially when we intend to try neural

network models toward possible embedding into supply chain management where

even tiny mistake can cause possible subsequent expenses. Nevertheless, huge

companies shouldn’t rule out such algorithms which potentially can automate or

even generate more revenue or avert from unseen predicted expenses.

40

INTERNAL

3 Process of the neural networking learning to predict future
price based on example of PAO Gazprom shares.

Every single neural network must be taught and tailored according to the given

data since each dataset contains its own tendency, features, and difficulties. To

better understand the neural network process teaching it is compulsory to

demonstrate a hands-on example. As an instance, the time-series data has been

taken to show the Gazprom share price prediction being taught on LSTM

approach, which is deemed as contemporary approach to forecast weather, or a

team win during a World Cup. However, a bid has been taken to embed the model

in Supply Chain since for neural network doesn’t matter the data’s classification,

but time-series structure is crucial for it.

41

INTERNAL

Source(Dzhuraev, 2022)

Figure 15: The practical part map.

As you can observe from the Figure 15, each step in the scheme corresponds to

the sub-title of the chapter 3 and has its one sub-steps which delve into details of

the neural network elaboration.

3.1 Data pre-processing step

The first part of any neural network teaching is data extraction and its data pre-

processing step. At the beginning, it is necessary to import libraries which will be

employed during the above-mentioned steps.

For data manipulation procedure, there is a bundle of libraries such as ‘NumPy’,

‘pandas’ and ‘matplotlib’. As for ‘NumPy’ and ‘pandas’, there are needed to extract

data with different formats like xml, excel, csv, txt and many others. Moreover, we

can use these libraries for the creation of tables, adding or deleting columns, rows,

values containing other helpful functions. Another library is geared to build graphs

of various types to depict tendencies, to show dependencies of x and y values.

Another group of libraries such as ‘keras’ and ‘tensorflow’ are required for direct

neural network teaching. It is traditionally to import these two libraries because

they have been elaborated by Google who delves into neural network for a long

time securing its status in this field having invented such prominent neural network

like LaMDA who ponders like human, or another example is google translator

which is leveraged by a lot of users around the world.

Source: (Dzhuraev, 2022)

Figure 16: Libraries importing.

On the figure 16 you can see how it is committed practically importing some

necessary tools for further application. If it is presumed to upload whole tools from

42

INTERNAL

a library, you need to begin the command from the word ‘import’. If you plan to

import only a few of them, it is necessary to start from the word ‘from’ specifying a

concrete tool which you are interested in.

Having summoned the methods, the next step is to extract data from a file using

‘pandas’ with the command ‘read_csv’ and in parentheses to write a file title and

specifying separator. Afterword, some columns have been renamed to remove

redundant characters from headers. Another function is converting date type

column into readable format tapping ‘pd.to_datetime’ and in brackets pointing out

column and time format.

Source: (Dzhuraev,2022)

Figure 17. Data pre-processing.

Having pre-processed data in the respective step, we have approached to direct

neural network teaching step.

3.2 Neural network structure creation and learning step

Before beginning to neural network structure creation, we should have a look at

data tendency in order to highlight some crucial data districts on Figure 18.

Source:(Dzhuraev, 2022)

Figure 18: PAO Gazprom shares tendency.

43

INTERNAL

As you may see from the graph, vertical axes depict price per share and horizontal

one is row number over the time. The data has been taken from January

beginning 2006 up to 16 of December 2022 at close moment on stock market in

order to receive as hard data structure as possible under an unstable market when

most of existing prediction models depict extremely distorted result. However, we

may presume that is a demand for cars per day where a company should produce,

and our goal is to predict demand of required cars for tomorrow under the

extremely fluctuated market. According to the figure, the company had several

nosedives because of market instability in 2008 and in 2022 being sanctioned. In

terms of current models such as regression models or logistic one is strict

requiring to follow some rules. As for LSTM model, it can remember the input data

with all fluctuations, nosedives and spikes and considers them during the

prediction output.

First crucial part is splitting whole data set into trained one and test. From the title

is understandable that train chunk will be fed to LSTM and test one will assess the

mistake between trained one and actual one. Conventionally data scientists split

according to the ratio of 80% per cent for training and 20 % per cent for test part.

In our particular case the goal is to predict price of share at the close moment.

That’s why we split data taking only ‘close’ column and ‘volume’ one depicted in

Figure 18.

Source:(Dzhuraev, 2022)

Figure 19: Data splitting step.

As we can see from the picture, the data set has 4201 rows where 3360 samples

will be trained and 841 will assess the result during the validation procedure.

Next crucial part is data normalization process for both chunks training one and

testing batch. Without normalizing of data, the model would never converge since

the value is constantly moving to absolute type. To combat this n-sized window of

training and test data will be taken and normalized each one to reflect percentage

44

INTERNAL

changes from the start of that window. The normalization procedure will employ

the formula which has already been mentioned before:

 𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (35)

According to this equation (35) the values will be converted to range from 0 to 1.

These windows will also allow us to draw the data result at the end utilizing python

generator which means memory utilization will be minimized dramatically. The way

the windows creation goes depicted on the Figure 20.

Source: (Dzhuraev,2022)

Figure 20: Data normalization step.

Having shown the data normalization step, the most significant one is a neural

network model creation. The whole theory part which has been dedicated to the

parameters which are set in a NN model considering data specification and task

description. For this part we have everything to build it and the example is

depicted in Figure 21.

Source:(Dzhuraev, 2022)

Figure 21: NN model creation step.

First, as you may see from the scheme, the type of the model is sequential one

because we need to build one-to-one model with single input and output gates.

Since we consider only the ‘close’ column for prediction that’s why input gate and

45

INTERNAL

output one has only one entrance and one exit. Each layer will consider 100

neurons. It is a standard number which is just assigned by ML-engineers

conventionally at the beginning to see the result to decide either to increase

number of them or decrease depending on many factors as underfitting or

overfitting problem presence, number of features and task hardness for the neural

network. In our case we have only around 4 thousand rows with 1 column hence

there is no necessity to increase the neural network structure hardness. Another

important part is ‘return_sequences’ is assigned as ‘True’ since we have LSTM

structure which must return result and memorize the past data specification. After

the first layer and last one we assigned dropout function to preliminary prevent

overfitting issue turning off 10% neurons to decrease the model hardness. As for

activation function, we assigned ‘linear’ one since the number of observations is

small and quantity of layers is petite. Below of the model structure, you can see

the ‘adam’ optimizer which is deemed the best one elaborated by scientists. As it

has been mentioned before, it computes adaptive learning rates for each given

parameter storing an exponentially decaying average of previous squared

gradients like RMSprop and saving an exponentially decaying average of past

gradients, like momentum. For assessing the model result we consider the ‘mean

squared error’ metric to see lowest possible error between real data and predicted

one to achieve the best possible result decreasing the number of epochs if it is

needed.

After 70 epochs of learning, we should see graphically the coincidence of training

data and validation one to assess the model’s quality on Figure 22.

46

INTERNAL

Source:(Dzhuraev, 2022)

Figure 22: Train vs validation loss.

As we can deduce from the Figure 22, two curves depict stable learning procedure

without underfitting of overfitting issues thanks for both techniques such as earlier

stopping and dropouts which have been engaged in the code as preventive

measure according to the contemporary recommendations (Browniee,2018). Train

and validation curves are almost coincided, it signals the completed healthy

teaching step. However, it is compulsory to verify it according to measuring metric

which clearly assesses the outcome depicting the least mean square error

between real result and the predicted one on Figure 23.

Source:(Dzhuraev, 2022)

Figure 23: Mean squared error result.

MSE depicts the graph of train and validation curves where the difference between

real data and the predicted one is 0.0120 whereas it is low. The larger the number

the larger the error. In this case we have obtained the mean squared value less

than 0 meaning that the model is perfect.

So, now we must normalize back the values of the data set to see the predicted

value and compare it with the actual one to see how close we are. To normalize

back the result, we just take each value from the range multiplying it by the

difference between maximum value and minimum and adding minimum one. The

code implementation is written below in Figure 24.

Source:(Dzhuraev, 2022)

Figure 24: Back normalization function.

Having normalized back the data we can see the predicted price and compare it

with the real one. Let’s see the predicted output and the actual one in Figure 25.

47

INTERNAL

Source:(Dzhuraev, 2023)

Figure 25: PAO Gazprom share price per one unit.

It is time to see the actual outcome from Moscow’s stock market the share price of

PAO Gazprom 19 of December keeping in mind that we have data up to 16th of

December on Friday in Figure 26.

Source:(PAO Gazprom, 2022)

Figure 26: PAO Gazprom share price per one unit in Stock market by 19th of December.

As we can see from both Figures the predicted price made up 160.12 ruble per

one share and the actual one was 160.65. The difference is extremely low what

we can strongly claim that the model’s accuracy is very high, and it becomes as a

candidate for its possible embedding into supply chain to predict not only annual

company’s demand on monthly or annual basis, but it is able to predict possible

upcoming procurement of raw materials based on memorized data from the past.

However, model has one potential disadvantage it is compulsory to maintain its

accuracy automatically updating data inputs by means of database plugging via

supplement libraries or applying ‘rest API’ to optimize the data flow into table

memorizing new info and producing an adjusted outcome which is close to reality.

To sum it up, we can certainly claim that LSTM NN structure is suitable for supply

chain because the model’s feature is able to memorize the data from the past

considering diverse tendencies. LSTM application unleashes the opportunity to

reduce cost of a company cutting off the number of employees, optimizing demand

by means of predicting possible demand for upcoming month or year avoiding

overproduction. Hence, the model can be considered as a possible tool for supply

chain on several levels.

48

INTERNAL

3.3 Neural network usage recommendation

LSTM isn’t intricate tool for application, but some expertise is required to use

prolifically. First, any data set needs to be refined before being fed to neural

network cleansing out from redundant symbols such as brackets, titles beginning

from capital character or adjusting data types converting float format column into

integers one. Secondly, the data set must be normalized or standardized to get

convergence of a neural network. Sometimes, if the task requires the string format

columns must be converted into binary variables. Thirdly, the dataset must be

sliced into two groups for training procedure and testing under the proportion

80/20. Another step is splitting data into batches where 32 tensors are

recommended one. To map and visualize the result graphically we need to create

a window which analyzes the first number of data and the last one oversees data

prediction drawing the result on a graph. The crucial part is LSTM structure

creation specifying return outcome after each iteration. At the beginning, it is

recommended to set up 100 neurons keeping in mind possible overfitting problem

employing dropouts, early stopping, regularization and other tools to solve it.

Moreover, the number of epochs with loss function indicator provides help tracing

down the learning procedure and as soon as the problem arises to stop the

process catching the least possible error. Having wound up the neural network

teaching process without any problems, the back normalization leaves to see the

predicted result. That’s the shortcut of LSTM neural network procedure.

However, any data set has its own specifications, intricacies, and features. Apart

from them, a task defines the LSTM structure with different well-suitable

parameters. It is strongly recommended to apply this model after several years

since the model must be tested to check its reliability. If we ignore the

recommendation, a business can generate unwanted losses since the model

hasn’t been adapted to specific requirements and doesn’t meet the unpredictable

challenges. Moreover, the model is useless if there is not a plugged database with

constantly updating data otherwise the model would produce distorted results.

Therefore, stable database maintenance and keeping an eye on the trained model

are part and parcel of overall prediction result.

As for the direct model embedding into supply chain, it is already possible to

implement it into the process. For instance, if a procurement department requires

49

INTERNAL

to order specific number of some items, the LSTM model can fulfill the same task

without human interference or in an inbound logistics the number of produced

items for tomorrow or next month the system can recommend considering the

information from the past.

We can certainly claim that Industry 4.0 is still able to unleash its potential on all

levels of a supply chain optimizing production reducing cost of a company by

means of cutting off workers consistently substituting them depends on AI overall

quality performance.

50

INTERNAL

Conclusion

The purpose of this thesis is application of neural network advantages for a

possible embedding into supply chain management. The thesis was carried out

individually and under the guidance of the professor ing. Tomash Malchic, Ph.D.

The data was provided by the Moscow stock market website to demonstrate the

neural network abilities to consider data from the past for further prediction of

data’s output with extremely low mean squared error between forecasted result

and actual one.

The first chapter of the thesis described the theoretical part of the subject that the

topic is dealing with. In detail about literature search in field of AI’s edges in supply

chain utilized by several big companies which test not only computer vision but

invent smart forklift. Moreover, there were presented different types of neural

networks fulfilling its own tasks but the chapter was delved more into RNN and

LSTM structures which have been practically considered and elaborated in

subsequent chapters.

The second chapter went into details about factors which must be taken into

consideration during the neural network elaboration such as myriad types of

optimization algorithms, distinction between standardization and data

normalization procedures, overfitting and underfitting issues, evaluation indicators.

Each of above-mentioned element can significantly distorts overall final result if the

mathematical understanding is omitted. That’s why the chapter is fitted with

mathematical formulas unleashing shroud from AI and its inherent complexity.

The third chapter is dedicated to direct presentation of practical application of

neural network in time series dataset. The neural network model has been

designed on python language in the Jupiter Notebook software. The whole

process has been described begging from external libraries plugging such as

Tensorflow, Keras, Pandas, winding up with comparison between the predicted

result and actual one. Moreover, some recommendations have been suggested for

its possible embedding into supply chain since the mean squared error made up

much less than 0 proving its ability to predict something under unstable situation

on the market if the data has at least time series structure.

51

INTERNAL

The problem has been defined and the evaluation has been carried out regarding

the data set specification and its features. First of all, some necessary libraries

have been uploaded for further application for specific tasks. Secondly, some

necessary libraries such NumPy and Pandas have been utilized in order to clean

out redundant features, to rename columns, to change time format and many other

things. Having completed the data pre-processing step, the neural network

structure elaboration process went ahead. The data set has been splitted into two

parts training chunk and testing one according to 80/20 ratio with further windows

creation for drawing results and prediction of output. Afterword, the LSTM one-to-

one structure with embedded dropouts and early stopping attributes has been

created with 100 neurons at each layer apart from the last one which was forming

the predicted output preventing possible overfitting issue. Having trained the

neural network, the graph with training line and validation one has been drawn in

order to observe the possible arising of overfitting problem. Apart from it, we

assessed the mean squared error to understand the model’s quality for this

particular data set. The last step was an output prediction which we compared with

the actual one where distinction was extremely low thus proving the model’s

usefulness for a possible application into supply chain. Some recommendations

have been put forward to apply neural network in supply chain.

52

INTERNAL

Bibliography

Books and monographs:

HANNAH, Wenzel, Smit DANIEL and Sardesai SASKIA. A literature review on

machine learning in supply chain management. Proceedings of the Hamburg

International Conference of Logistics (HICL), o.p.s, 2019. ISBN 978-3-7502-4947-

9.

MOROFF, Nikolas. Machine Learning in Demand Planning: Cross-industry

Overview, Proceedings of the Hamburg International Conference of Logistics

(HICL), o.p.s, 2017. ISBN 978-3-7502-4947-9.

TJAHJONO, Benny. What does Industry 4.0 mean to Supply Chain ?. UK: School

of Applied Sciences Cranfield University, o.p.s, 2017. DOI

10.1016/j.promfg.2017.09.191.

WITTEN, Ian, Frank EIBE and Mark HALL. Data Mining: Practical Machine

Learning Tools and Techniques. USA, o.p.s, 2011. ISBN 978-0-12-374856-0.

Articles in professional journals:

JIE, Ren. Deep Learning-Based Intelligent Forklift Cargo Accurate Transfer

System. MDPI. 2022, 22(1), 6-7.

TERPEND, Regis, TYLER, Beverly, Daniel KRAUSE and Robert HANDFIELD.

Buyer-supplier relationships: Derived value over two decades. Journal of Supply

Chain Management. 2008, 44(2), 22-24.

MATHES, Tim, Pauline KLAßEN and Dawid PIEPER. Frequency of data

extraction errors and methods to increase data extraction quality: a methodological

review. BMC Medical Research Methodology. 2017, 152(17), 5-6.

ZHIHAN, Lu and Xie SHUXUAN. Artificial intelligence in the digital twins: State of

the art, challenges, and future research topics. Digital Twin. 2022, 12(1), 14-16.

Websites:

AIM [online]. USA: LENDAVE, Vijaysinh, a.s., 2021 [2022-08-20]. Available from:

https://analyticsindiamag.com/lstm-vs-gru-in-recurrent-neural-network-a-

comparative-study/.

53

INTERNAL

AllCloud [online]. USA: CHEMAMA, Jonathan, a.s., 2018 [2022-09-24]. Available

from: https://allcloud.io/blog/how-to-solve-underfitting-and-overfitting-data-models/.

AI Pool [online]. USA: AMPADU, Hyacinth, a.s., 2021 [2022-09-04]. Available

from: https://ai-pool.com/a/s/normalization-in-deep-learning.

AI Summer [online]. USA: ADALOGLOU, Nikolas, a.s., 2020 [2022-09-05].

Available from: https://theaisummer.com/normalization/.

Fireblaze AI School [online]. India: ALMEIDA, Riona, a.s., 2021 [2022-11-15].

Available from: https://www.fireblazeaischool.in/blogs/how-tesla-uses-ai-and-cv/.

IBM [online]. USA: Recurrent Neural Networks, a.s., 2020 [2022-08-13]. Available

from: https://www.ibm.com/cloud/learn/recurrent-neural-networks.

KDnuggets [online]. USA: NAGESH, Singh Chauhan, a.s., 2020 [2022-08-21].

Available from: https://www.kdnuggets.com/2020/12/optimization-algorithms-

neural-networks.html.

Levity [online]. USA: LARKIN, ZOE, a.s., 2022 [2022-09-21]. Available from:

https://levity.ai/blog/overfitting-vs-underfitting-in-machine-learning.

Machine Learning Mastery [online]. USA: SAEED, Mehreen, a.s., 2022 [2022-11-

17]. Available from: https://machinelearningmastery.com/an-introduction-to-

recurrent-neural-networks-and-the-math-that-powers-them/.

Machine Learning Mastery [online]. USA: BROWNLEE, Jason, a.s., 2019 [2022-

11-11]. Available from: https://machinelearningmastery.com/introduction-to-

regularization-to-reduce-overfitting-and-improve-generalization-error/.

Medium [online]. USA: BENTO, Karolina, a.s., 2022 [2022-08-18]. Available from:

https://towardsdatascience.com/recurrent-neural-networks-explained-with-a-real-

life-example-and-python-code-e8403a45f5de.

Medium [online]. USA: DOBILAS, Saul, a.s., 2022 [2022-08-19]. Available from:

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-

network-to-remember-the-past-55e54c2ff22e.

Medium [online]. USA: SAXENA, Salli, a.s., 2021 [2022-08-20]. Available from:

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-

gru/.

54

INTERNAL

Medium [online]. USA: GUPTA, Allan, a.s., 2021 [2022-08-20]. Available from:

https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-

learning-optimizers/.

Medium [online]. USA: BALAWEJDER, Maciej, a.s., 2022 [2022-09-02]. Available

from: https://medium.com/nerd-for-tech/overview-of-normalization-techniques-in-

deep-learning-e12a79060daf.

Medium [online]. USA: VIJAYRANIA, Nilesh, a.s., 2020 [2022-09-03]. Available

from: https://towardsdatascience.com/different-normalization-layers-in-deep-

learning-1a7214ff71d6.

Medium [online]. USA: GOYAL, Chirag, a.s., 2021 [2022-09-05]. Available from:

https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-prevent-

overfitting-in-neural-networks-part-1/.

Medium [online]. USA: SHWETHA, Acharya, a.s., 2021 [2022-09-15]. Available

from: https://towardsdatascience.com/what-are-rmse-and-mae-e405ce230383.

Pinecone England [online]. London: BALA, Priya, a.s., 2021 [2022-08-21].

Available from: https://www.pinecone.io/learn/batch-layer-normalization/.

Stanford.edu [online]. USA: AMIDI, Afshine, a.s., 2020 [2022-08-14]. Available

from: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-

networks.

Supply Chain [online]. USA: Muddassir, Ahmed, a.s., 2016 [2022-09-13]. Available

from: https://supplychaindigital.com/top10/seven-reasons-why-you-need-forecast-

supply-chain.

Simplilearn [online]. USA: AVIJEET, Biswal, a.s., 2022 [2022-12-01]. Available

from: https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn#GoTop.

Turing [online]. USA: Deep Learning vs Machine Learning: The Ultimate Battle,

a.s., 2021 [2022-08-12]. Available from: https://www.turing.com/kb/ultimate-battle-

between-deep-learning-and-machine-learning.

V7 [online]. USA: BAHETI, Pragati, a.s., 2022 [2022-09-22]. Available from:

https://www.v7labs.com/blog/overfitting.

55

INTERNAL

List of figures and tables

List of figures

Figure 1 The Machine Learning algorithm types with its corresponding tasks 11

Figure 2 Simple RNN……………………………………………………………………14

Figure 3 Unfolding A Recurrent Neural Network……………………….……………16

Figure 4 Activation Functions…………………………………………………………..17

Figure 5 LSTM’s unfolded scheme …………………………………………………...18

Figure 6 The unfolded GRU’s neuron…………………………………………………20

Figure 7 The Gradient Descent function…………………………………………...…23

Figure 8 The SGD vs MB-GD………………………………………………………….25

Figure 9 The SGD vs SGD with momentum………………………………………….26

Figure 10 Comparative analysis of all optimization functions………………………28

Figure 11 Comparing normalization methods on ImageNet and COCO………….33

Figure 12 Variance-Bias-Tradeoff………………………………………………….….34

Figure 13 Embedding of data augmentation into a neural network…………….….35

Figure 14 L1 vs L2………………………………………………………………………37

Figure 15 The practical part map………………………………………………………40

Figure 16 Libraries importing………………………………………………………......41

Figure 17 Data pre-processing………………………………………………………...42

Figure 18 PAO Gazprom shares tendency…………………………………………...42

Figure 19 Data splitting step…………………………………………………………...43

Figure 20 Data normalization step………………………………………………….…44

Figure 21 NN model creation step…………………………………………………….44

Figure 22 Train vs validation loss……………………………………………………...46

Figure 23 Mean squared error result………………………………………………….46

Figure 24 Back normalization function ……………………………………………….46

Figure 25 PAO Gazprom share price per one unit…………………………………..47

Figure 26 PAO Gazprom share price per one unit in Stock market by 19th of

December………………………………………………………………………………...47

56

INTERNAL

ANNOTATION

 AUTHOR Dzhuraev Temur

 FIELD Specialization International Supply Chain Management

 THESIS TITLE

Application of neural network edges for a possible
embedding into supply chain management

 SUPERVISOR Ing. Tomáš Malčic, Ph.D.

 DEPARTMENT KRVLK -
Department of
Production,
Logistics and
Quality
Management

 YEAR 2023

 NUMBER OF PAGES 56

 NUMBER OF PICTURES 26

 NUMBER OF TABLES 0

 NUMBER OF APPENDICES 0

 SUMMARY

The purpose of this thesis is application of neural
network advantages for a possible embedding into
supply chain management. There were presented
different types of neural networks fulfilling its own tasks
but the chapter 1 was delved more into RNN and LSTM
structures which have been practically considered and
elaborated in subsequent chapters. The second chapter
went into details about factors which must be taken into
consideration during the neural network elaboration such
as myriad types of optimization algorithms, distinction
between standardization and data normalization
procedures, overfitting and underfitting issues,
evaluation indicators. The third chapter is dedicated to
direct presentation of practical application of neural
network in time series dataset. The neural network model
has been designed on python language in the Jupiter
Notebook software. At the end, the problem has been
defined and the evaluation has been carried out regarding
the data set specification and its features.

 KEY WORDS LSTM, ML, Supply Chain Management, RNN, AI, Neural
Network, Prediction, Optimization, CNN

