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Abstract
The goal of this thesis is to develop a new, efficient profiler to extend the Perun tool suite,
which focuses on systematic and long-term performance monitoring of software projects.
The new profiler is based on a technique of compile-time instrumentation using the Pass
Framework API within the LLVM compiler infrastructure project. The implemented profiler
focuses on collecting the number of executions of each basic block in the program. Several
optimization techniques, including inlining instrumentation code and function control flow
graph analysis were used to reduce the runtime overhead of the profiler. The performance
of the profiler was evaluated on two real-world projects and experiments have shown that
it achieved lower profiling overhead than some established open-source tools.

Abstrakt
Cílem této práce je vyvinout nový, efektivní profilovací nástroj, který rozšiřuje sadu nástrojů
Perun, která je zaměřena na systematické a dlouhodobé monitorování výkonu softwarových
projektů. Nový nástroj je založený na technice instrumentace při překladu, s využitím
API systému Pass Framework, který je součástí projektu LLVM. Implementovaný profilo-
vací nástroj sbírá počet vykonání základních bloků v programu. Několik optimalizačních
technik, jako je inlining instrumentačního kódu nebo analýza grafu toku řízení funkcí, bylo
využito pro snížení profilovací režie tohoto nástroje. Výkon nástroje byl vyhodnocen na
dvou projektech a experimenty ukázaly, že jeho profilovací režie je nižší než režie některých
existujících open-source nástrojů.
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Rozšířený abstrakt
Výkon spotřebitelských aplikací je významným faktorem uživatelské zkušenosti, jak ukazují
studie zaměřené na analýzu výkonu webových stránek a spokojenosti zákazníků, přičemž
79% uživatelů, kteří byli nespokojeni s výkonem webové stránky při jejich první návštěvě,
ji pravděpodobně nikdy znovu nenavštíví. Stačí jednosekundové zpoždění načítání stránky
internetového obchodu, aby míra konverze zákazníků klesla o 7% [5].

Provozování efektivnějších aplikací v datových centrech by mohlo pomoci snížit jejich
spotřebu energie, která by podle některých předpovědí měla do roku 2030 dosáhnout 3
biliony kWh ročně, oproti méně než 500 miliardám kWh v roce 2010 [14].

Výkon softwaru je také důležitý ve vestavěných a mobilních systémech, kde jsou zdroje
omezené a zařízení jsou běžně poháněna bateriemi s omezenou kapacitou. Optimalizováním
aplikací mohou vývojáři zlepšit výdrž baterie na jedno nabití a s tím i životnost baterie. [30]

Po desetiletí byla neustále rostoucí poptávka po výpočetním výkonu kompenzována
Mooreovým zákonem, předpovědí spoluzakladatele společnosti Intel Gordona Moorea, že
počet tranzistorů na čipech se bude každé dva roky zdvojnásobovat. V poslední době se
objevily známky, že Mooreův zákon zpomaluje, protože návrháři čipů se blíží fyzikálním
limitům. Nelze ale říci, že by požadavky moderních aplikací na stále více výpočetních
zdrojů zpomalovaly s ním. [19, 31].

Aby vývojáři vyhověli požadavkům na výkon aplikací ve světě, který se již neřídí Moore-
ovým zákonem, budou muset věnovat více času a pozornosti optimalizaci aplikací a před-
cházení výkonnostní degradaci. Specializované nástroje jsou nezbytné pro sběr, interpretaci
a vizualizaci výkonnostních dat, stejně jako pro monitoring výkonu softwarových projektů
během celého vývojového cyklu. Jedním z prostředků vyvinutých pro tento účel je open-
source sada nástrojů Perun [8].

Většina profilerů používaných v sadě nástrojů Perun je založena na dobře zavedené
technice profilování: instrumentaci. I když instrumentace nabízí velkou flexibilitu co se
týče rozsahu dostupných metrik, které lze měřit v různé granularitě, dosahuje toho za cenu
vysoké režie. Tato režie by mohla být omezena použitím technik, jako je instrumentace při
překladu.

V rámci této práce jsme vytvořili nový profilovací nástroj, který rozšíří sadu nástrojů
Perun. Tento nový nástroj se zaměřuje na efektivní profilování počtu vykonaných instrukcí
v programech napsaných v jazycích C a C++ s granularitou na úrovni základních bloků,
přičemž minimalizuje režii využitím optimalizačních technik specifických pro profilování
založené na instrumentaci při překladu.

Celkem byly vyvinuty a porovnány 4 verze nástroje. Nejprve byly optimalizovány datové
struktury, do kterých se při profilování ukládají informace, aby režie spojená se zápisem
do těchto struktur byla co nejnižší. Volání instrumentačních funkcí bylo nahrazeno inline
instrumentací. V neposlední řadě bylo využito statické analýzy grafu toku řízení pro snížení
počtu instrumentačních bodů, aniž by byla ovlivněna přesnost výsledného profilu. Kromě
nástroje samotného byla vyvinuta i interaktivní vizualizace naměřených dat.

Vyvinutý nástroj byl vyhodnocen na dvou open-source projektech, kompresním nástroji
CCSDS a interpretu CPython. Experimenty ukázaly, že oproti první verzi nástroje byla režie
snížena o více než 90%. Nástroj byl porovnán se dvěma open-source profilovacími nástroji
Callgrind a gprof. Výsledky ukázaly, že optimalizovaná verze nástroje dosahuje nižší
režie, než tyto zavedené nástroje.
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Chapter 1

Introduction

The performance of consumer applications is a significant factor in user experience, as shown
by studies focused on analyzing website performance and customer satisfaction, with 79%
of users who were dissatisfied with website performance on their first visit being less likely
ever to use it again. Additionally, it takes just a one-second delay in page loading time on
an e-commerce website for the customer conversion rate to drop by 7% [5].

Running more efficient applications in data center and cloud computing environments
could help reduce their energy consumption, which is, according to some predictions, on
track to reach 3 trillion kWh per year by 2030, up from less than 500 billion in 2010 [14].

Better software performance is also important in embedded and mobile systems, where
resources are scarce, and devices are commonly powered by batteries with limited capacities.
By optimizing applications to be more efficient, developers can improve the battery life of
these devices and the lifespan of the batteries [30].

For decades, the ever-increasing demand for computing power has been compensated by
Moore’s law, a prediction made by the co-founder of Intel, Gordon Moore, that the number
of transistors on chips would double every two years. Recently, there have been signs that
Moore’s law might be slowing down as chip designers are approaching the limits of physics.
There is, however, no evidence that the appetite of modern applications for more computing
power is slowing down with it. [19, 31].

To meet demands on application performance, developers in post-Moore’s law world
will have to dedicate more time and attention to optimizing applications and avoiding
performance degradation. Specialized tools are necessary for the purpose of collecting,
interpreting, and visualizing performance-related data, as well as performance monitoring
of software projects throughout their development life cycle. One of the tools developed
for this purpose is the open-source tool suite Perun [8], built specifically with continuous
integration and long-term performance monitoring in mind.

Most of the profilers used in Perun’s tool suite are based on a well-established profiling
technique: instrumentation. While instrumentation offers great flexibility in terms of the
range of available metrics that can be measured at various granularities, it comes at a
price of substantial overhead. This overhead could be limited by using more lightweight
techniques, such as compile-time instrumentation.

This work aims to create a new profiling tool to extend Perun’s tool suite. This new tool
focuses on efficiently profiling the number of executed instructions in C/C++ programs with
basic-block-level granularity while minimizing overhead by taking advantage of optimization
techniques specific to profiling based on compile-time instrumentation.
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Sturcture of the thesis. Chapter 2 introduces common profiling techniques, their
unique advantages and tradeoffs. Chapter 3 describes the Perun tool suite, its architecture,
and the currently implemented performance data collectors. Chapter 4 provides an overview
of the architecture of the LLVM Compiler Infrastructure, which is used by the implemented
profiler for instrumentation through its Pass Framework. Chapter 5 describes the design
and implementation of the profiler, with a focus on the techniques used to improve its
performance by reducing runtime overhead. This chapter also contains an experimental
evaluation of the profiler on two projects, highlighting the incremental improvements in
usability and runtime overhead in each version. Chapter 6 shows the implemented visual-
izations of collected data. Chapter 7 compares the performance of the implemented profiler
with two established open-source profilers. Chapter 8 summarises the results and discusses
potential future work.
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Chapter 2

Performance Analysis

In a book written by an acclaimed performance expert, Brendan Gregg, Systems Perfor-
mance and the Cloud [13], Gregg describes profiling as ‘use of tools that perform sampling:
taking a subset of measurements to paint a coarse picture of the target.’ In this thesis, the
word ‘profiling’ will be used to describe the overarching process of dynamic performance
analysis and testing, similar to publications like [23]. In this context, profiling is a tech-
nique that software engineers use to analyze the behavior of a program by collecting various
performance-related metrics, such as time, memory or power consumption, I/O utilization,
and others.

Performance analysis has become crucial in modern software development. Computers
nowadays are much more complex than just a few decades ago, and it is near impossible for
programmers to accurately assess how exactly their program interacts with the hardware
executing it. Specialized tools, called profilers, aim to solve this problem. Profilers collect
the required performance data about the program, which engineers can then interpret and
utilize to tweak the program to improve its performance.

This chapter first introduces instrumentation as an essential technique used in many
modern profilers. We compare different approaches to instrumentation and describe their
advantages and disadvantages. Finally, we provide an overview of other common profiling
techniques, summarize their characteristics, and provide example tools that utilize each
technique.

2.1 Instrumentation
Instrumentation involves modifying an existing program by adding additional code (further
referred to as ‘instrumentation code’). This can be done manually by the programmer or
by an automated tool that operates with a predefined instrumentation policy. For example,
the policy might dictate that a call to an instrumentation function is inserted before and
after each function call.

The advantage of using instrumentation-based techniques for profiling is the level of
detail that the analysis can provide. By using custom instrumentation functions, all kinds
of information about the running program can be recorded at various points of its execution,
with various levels of granularity1. However, the main drawback is the overhead introduced

1Granularity refers to the level of detail that the method provides, e.g., a profiling method with function-
level granularity can provide performance information about functions, but cannot distinguish finer details
within those functions, such as lines of code or individual instructions.
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by the additional code, which can significantly affect the program’s performance and may
not be suitable for profiling in production environments. Since instrumentation modifies
the program, it may introduce side effects, such as cache pollution, which could cause useful
program data to be evicted from the cache in favor of data related to the instrumentation
code. As a result, it may produce distortions in the collected performance data.

2.1.1 Static instrumentation

Static instrumentation involves inserting code into a program before it runs or compiles.
This type of instrumentation can take place at the source-code level, as is typically the case
with manually added instrumentation points or with tools that specialize in the automatic
instrumentation of code written in a particular language. The advantage of this approach
is that the tool has complete access to all source-level information. This can be used for
detailed analysis before any instrumentation is performed, possibly leading to more efficient
instrumentation. The obvious disadvantage is the lack of flexibility – it can only be used
for one source language. The added instrumentation code also increases the size of the
resulting executable file.

More commonly, static instrumentation takes place at the binary level. That involves
disassembling the executable file or object files, inserting instrumentation code, and re-
assembling the binary again. This approach is used, e.g., by the PEBIL tool [18].

A middle ground between these two approaches is the instrumentation of an interme-
diate representation (IR) language, which compilers use to perform internal analyses and
transformations, especially optimizations [22]. Intermediate representations retain more
information about the original code, which can be used for more detailed analysis before
performing the instrumentation. At the same time, however, they can be source-language-
agnostic, which lends them more flexibility than the instrumentation of high-level source
code.

2.1.2 Dynamic instrumentation

Dynamic instrumentation refers to rewriting the executable code at runtime. Therefore,
this instrumentation can only be done at the binary level. This is done either by using a
wrapper over the analyzed program, an external process, or tools provided by the operating
system, e.g., uprobes or kprobes in Linux, described in Section 2.3. The major advantage
of this approach is that it is usable for programs that utilize dynamically generated code,
and provides full coverage of the target, including dynamically loaded libraries. It also
typically does not require any preparation of the profiled program, making it very convenient
for users. The disadvantage is that the cost of instrumentation is incurred at runtime.
Additionally, when handling the instrumentation routines, the program has to be paused,
its state (such as the contents of registers) saved and then restored once the routines have
been completed. These factors make it one of the slowest methods of dynamic analysis.
Valgrind, SystemTap, and Intel Pin are examples of popular tools that utilize dynamic
instrumentation. [24, 23]

2.2 Statistical profiling
Another notable technique is statistical profiling, sometimes referred to as just sampling.
This method does not typically require instrumentation of the program: it merely samples
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the program’s stack trace or the CPU’s instruction pointer at set intervals. The major
advantage of this technique is that the added overhead is minimal compared to other tech-
niques. Since the code of the program is not modified, this method can avoid some side
effects of instrumentation-based methods. The disadvantage is that the resulting profile
is not a completely accurate representation of the program’s performance, and the degree
of inaccuracy depends on the sampling rate. Increasing the sampling rate will improve
accuracy but incurs additional overhead [12]. An example of a tool that provides statistical
profiling capabilities is the Linux tool perf.

2.3 Tracing
Tracing is an event-based approach to profiling, where each instance of an event in a set
of events is recorded. This recording produces a program’s trace – a complete picture of
the events that took place during the program’s run. The disadvantage of tracing is that it
can be very expensive in terms of overhead, depending on the rate of the observed events.
Tracing also often produces a large amount of data, which takes up a lot of disk space, and
the post-processing required to interpret the collected data can be very time-consuming.
Linux tools strace and ftrace are examples of tracing profilers. The former is designed to
trace system calls and incoming signals, while the latter traces function calls.

Some tracing tools utilize kernel tracepoints, static probes inserted into logical execution
points inside the Linux kernel. They provide a stable interface, which means that robust
tools can be built around them. Their advantage is that the overhead is very small, though
this largely depends on the rate of events. They can also be disabled, transforming them
into no-op instructions, causing only negligible overhead.

Other tools utilize kprobes, which are probes based on dynamic instrumentation – they
expose raw kernel functions and arguments that can change between kernel versions. There
is also a user-space variant of kprobes, called uprobes, which dynamically instrument func-
tions in applications and libraries. [13]

2.3.1 Hardware tracing

Some CPU manufacturers provide hardware CPU tracing on their architectures. This
includes tools such as Intel Processor Trace [15] or AMD 𝜇𝑃𝑟𝑜𝑓 [1]. Because of the tight
integration with the CPU and its architecture, this profiling method is one of the cheapest
in terms of incurred time overhead [27]. Apart from the common, higher-level metrics, such
as instruction execution count or time information, it also enables accurate monitoring
of low-level metrics, such as cache hits and misses or thermal performance and energy
consumption, as is the case with AMD 𝜇𝑃𝑟𝑜𝑓 . CPU manufacturers also provide software
tools to analyze and visualize the collected data, making hardware profiling a complete
solution for developers looking to monitor these metrics. The disadvantage is that this
method is entirely dependent on hardware features. Therefore, it is not portable to other
architectures.

2.4 Conclusion
This chapter introduced some of the most common profiling techniques used by modern
profilers. No matter which technique is used, a profiler must always balance the granularity
and accuracy of collected metrics, overhead, and portability.
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Chapter 3

Perun

Perun is an open-source software project that aims to help developers monitor their pro-
gram’s performance throughout its development lifecycle. It works by wrapping over ex-
isting version control systems like Git and providing various performance-related tools for
profiling, visualizing measured data, detecting performance degradation, modeling perfor-
mance based on statistical models, fuzz testing, etc. This chapter provides a brief overview
of Perun’s architecture and describes Perun collectors with a focus on the main collector,
Tracer, designed to collect performance data of C and C++ programs. It is based on
Perun’s online documentation [9] and a paper written by Perun’s authors. [8]

3.1 Architecture
Perun’s architecture centers around profiles, a data unit stored in a format based on JSON1,
which acts as an interface between all tools in the Perun tool suite. These profiles are
created by a collector module responsible for collecting the program’s raw performance
data. Profiles can be transformed using post-processing tools, which can also be used
for statistical analysis. Visualization modules enable users to interpret the collected data
using scatter plots, flame graphs, etc. After post-processing, profiles are assigned their
minor version (the VCS2 commit they belong to) and stored in a compressed format in the
persistent storage. With subsequent versions, these profiles can be retrieved and used to
check for performance degradation in a new commit. The entire process can be automated
using runners, which are configured using the YAML3 format and they can be set up to
automatically run after committing changes to a code base, e.g., with Git hooks.

Perun provides a simple API that allows users to register their own collectors, post-
processors, or visualization tools by placing their tool in the appropriate subdirectory
(perun.collect, perun.postprocess or perun.view) and implementing the run.py mod-
ule. This makes Perun easily extendable with new tools, suited for custom analytics and
performance monitoring tailored to a specific project’s needs. Figure 3.1 depicts Perun’s
architecture.

1JavaScript Object Notation: https://www.json.org/json-en.html
2Version Control System
3YAML Ain’t Markup Language: https://yaml.org/
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Figure 3.1: A schema of the Perun tool suite’s architecture. [9]

3.2 Collectors
Collectors measure a program’s performance to create profiles. Their work can be divided
into four phases:

• Before: This is an optional phase that occurs before the actual collection of profiling
data. Its purpose is to initialize the collector and prepare the project being profiled
for the collection process, e.g., using a custom compilation process.

• Collect: In this phase, the profiled program is run, the collector collects the raw
performance data, and, ideally, generates the profile in the unified format.

• After: The final and optional phase occurs after the resources have been successfully
collected. This phase includes filtering or transforming the profile as needed.

• Teardown: In this phase, the collection resources are cleaned up. e.g., files, processes,
locks, kernel modules, etc.

Perun’s API allows users to register their own collector by defining the before, collect,
after and teardown methods in the collector’s run.py module. Additionally, Perun comes
with several pre-registered collectors, focused on profiling various performance metrics. The
profiling tool developed in this thesis will soon be on the list of available collectors.

3.2.1 Time Collector

As a simple wrapper over the Unix time utility, this collector provides the total execution
time of the program, as well as the amount of user time (the actual work of the program)
and kernel time (the time spent executing system calls).

9



Figure 3.2: Schematic representation of Trace collector’s workflow. [8]

3.2.2 Memory Collector

This collector provides information about memory allocations in C/C++ programs. It logs
the amount of allocated memory, allocation type (e.g., malloc, realloc), address of the
allocated memory, and the location in the source code where the allocation took place,
together with the stack trace at the time of allocation. It accomplishes this by overriding
the standard C library’s memory allocation functions with custom functions, which log the
additional information and delegate the allocation to the original functions. [26]

3.2.3 Complexity Collector

This collector gathers information about time spent in functions and the size of their inputs.
It uses this information together with regression analysis to estimate the complexity of algo-
rithms. It is based on compile-time instrumentation through the -finstrument-functions
command line parameter of the gcc and clang compilers. [25]

3.2.4 Trace Collector

Trace collector (Tracer) is the most sophisticated collector that comes with Perun. It
measures time spent in functions of C and C++ programs by collecting timestamps at the
entry and exit points of functions. It is built on SystemTap and eBPF frameworks, thus
relying on binary instrumentation. It is extendable, allowing new profiling frameworks to
be integrated into Tracer, and there is currently a pending merge request4 in the Perun
repository for a new Tracer engine5 that uses Intel Pin as the underlying framework. Tracer
is highly configurable, allowing users to select, e.g., the instrumentation engine, the probing
strategy (which can be set to utilize sampling), or manually specify the functions to be
profiled. If no functions are specified, Tracer can automatically extract the functions from
the binary based on the selected probing strategy. Figure 3.2 shows Tracer’s profiling
workflow.

Collecting the time spent in a program’s functions is a resource-intensive endeavor,
especially if the user requires a complete picture of the program’s performance and, there-
fore, does not consider sampling as a viable method of reducing the profiling overhead.
Additionally, Tracer’s underlying frameworks are based exclusively on dynamic binary in-

4PIN-based Tracer engine with visualizations: https://github.com/Perfexionists/perun/pull/157/
commits

5Tracer engine – the underlying framework that performs the instrumentation.

10

https://github.com/Perfexionists/perun/pull/157/commits
https://github.com/Perfexionists/perun/pull/157/commits


strumentation, which, as described in Chapter 2, generally incurs higher time overhead than
other types of instrumentation. The engines currently supported by Tracer are only built
for the Linux platform, compromising Tracer’s flexibility and applicability across different
operating systems. The SystemTap engine also requires the user to install a compatible
kernel version with debugging symbols, which places a heavy prerequisite burden on the
user. This requirement can be a significant barrier for users who do not have the necessary
permissions or capabilities to change their system’s kernel, such as users using managed or
restricted environments where such modifications are not permitted.

The new collector developed in this thesis aims to address these shortcomings by pro-
viding the option to measure cheaper metrics, utilizing compile-time instrumentation, and
offering a less restrictive set of dependencies.
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Chapter 4

LLVM Compiler Infrastructure

LLVM is a modern, modular, open-source compiler infrastructure, built around a source-
independent intermediate representation LLVM IR. It is primarily used to compile lan-
guages from the C language family, e.g., C, C++, or Objective C. The modular nature
of the compiler allows for other languages to be compiled as well, provided that there is
a front-end that can compile the language in question into the aforementioned LLVM IR
language. Therefore, many compilers for other programming languages leverage the LLVM
infrastructure for optimizations and machine code generation, e.g., swiftc, the compiler for
the Swift programming language, or the Glasgow Haskell Compiler. [3, 10]

This chapter describes LLVM’s architecture, LLVM IR, and the Pass Framework, which
can be used to customize the compilation process. The information included in this chapter
is based primarily on the online LLVM API documentation, the LLVM language reference
manual, and the LLVM conference paper. [20, 21, 17]

4.1 Architecture
The LLVM infrastructure comprises several sub-projects that work together to provide a
comprehensive compiler framework. Its architecture is based on the popular three-phase
architecture on which many modern compilers are built [6]. The first part is the front
end, responsible for parsing the source code and creating an intermediate representation.

Figure 4.1: A High-level overview of LLVM’s three-phase architecture. The front end for
a given source language compiles the source code to LLVM IR, which acts as input to
the optimizer. After optimizations, the target architecture is selected, and the appropriate
backend generates object code or assembly code for the selected architecture. [6]
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Then comes the middle end, which analyses the intermediate representation and performs
optimizations. Lastly comes the back end, which takes the optimized intermediate repre-
sentation and turns it into the target architecture’s machine or assembly code. LLVM’s
modular nature allows for each of these parts to be swapped out, meaning that compiler
developers can create a front end for any programming language and use the other parts of
the LLVM infrastructure for optimizations and target code generation. The same applies
to the back end – languages with an implemented front end to LLVM IR can be ported
to new architectures by creating a new back-end module that compiles LLVM IR into that
architecture’s instruction set. Figure 4.1 shows a high-level schema of LLVM’s architecture.

4.2 LLVM IR
Using an intermediate representation in the compilation process simplifies the compiler
optimizations that make the resulting machine code more efficient. LLVM uses a custom
intermediate representation called LLVM IR. It is designed to be a source-language-agnostic
representation, allowing all kinds of languages to be compiled into this common represen-
tation and leverage the possibilities of the entire LLVM toolchain. LLVM IR is based on
the SSA (Single Static Assignment) form, which dicatates that every variable is a target of
only one assignment and the definition of a variable dominates all of its uses. This form
simplifies and improves the efficiency of several types of optimizations, including constant
propagation, value numbering, or partial-redundancy elimination. [22]

LLVM IR is designed to be used in three equivalent forms: an in-memory compiler
IR, an on-disk bitcode representation to be used for JIT compilers, and a human-readable
representation useful for debugging purposes.

LLVM programs are composed of Modules, with one module created for every compila-
tion unit in the source code. Modules can also be linked using the l lvm-link tool provided
by the toolchain.

4.2.1 LLVM IR Module

LLVM IR modules contain global variables, type definitions, target architecture metadata,
function declarations, and definitions. Optionally, debugging information in a debugger-
agnostic format may be included as well. This format is convertible to different formats to
be consumed by various debuggers (e.g. DWARF format for DWARF-based debuggers or
a proprietary format such as PDB for Microsoft Visual Studio debugger).

Listing 4.3 shows the LLVM IR module produced by clang by compiling C code shown
in Listing 4.1

Identifiers

LLVM identifiers are either global or local. A global identifier is prefixed with the @ char-
acter, while local identifiers, primarily virtual registers, are prefixed with the % character.
Values can be named or unnamed: named values are identified by their scope prefix and a
string, which corresponds to their name in the original source code. Unnamed values are
identified by their scope prefix and an integer.
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int global_variable = 0;
int main() {

int local_variable = 5;
global_variable = 10 +

local_variable;
return 0;

}

Listing 4.1: A module written in the
C language, containing one function and
one global variable.

!3 = !DIFile(filename: "main.c", ...)
!14 = distinct !DISubprogram(...)
!18 = !DILocalVariable(name: "

local_variable", ...)
!19 = !DILocation(line: 4, column: 6,

scope: !14)
!20 = !DILocation(line: 5, column: 9,

scope: !14)
!21 = !DILocation(line: 5, column:

24, scope: !14)
!22 = !DILocation(line: 5, column: 2,

scope: !14)

Listing 4.2: Location nodes in the LLVM
metadata graph. The nodes are prefixed
with the ! character and they are being
referenced from the IR instructions.

; ModuleID = ’main.c’
source_filename = "main.c"
target triple = "x86_64-unknown-linux-gnu

"

@global_variable = dso_local global i32
0, align 4, !dbg !0

; Function Attrs: noinline nounwind
optnone uwtable

define dso_local i32 @main() #0 !dbg !14
{

%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 0, ptr %1, align 4
call void @llvm.dbg.declare(metadata

ptr %2, metadata !18, metadata !
DIExpression()), !dbg !19

store i32 10, ptr %2, align 4, !dbg !19
%3 = load i32, ptr %2, align 4, !dbg

!20
%4 = add nsw i32 %3, 5, !dbg !21
ret i32 %4, !dbg !22

}

Listing 4.3: An LLVM IR module compiled
from the code shown in listing 4.1. Apart from
regular instructions, it contains a debugger
intrinsic instruction llvm.dbg.declare,
which tracks a source code variable through
compiler optimizations.

Functions

Functions in LLVM modules can be either defined with complete bodies or declared as exter-
nal references. Each function is linked to an attribute node that specifies its characteristics,
such as calling conventions or optimization strategies.

Functions consist of basic blocks1, each uniquely identified within the scope of its func-
tion. By default, basic blocks are labeled with integer identifiers, which share the inte-
ger pool with virtual registers in the same function. However, the clang compiler option
fno-discard-value-names can be used to give basic blocks more descriptive labels depend-
ing on their relationship to the source code. For example, a basic block that represents an
else block in a conditional structure is named if.else.

Instructions

Basic blocks are comprised of instructions. Most LLVM IR instructions are in 3-address
form, meaning they take one or two inputs, produce a single result, and store this result in

1Basic block – a linear sequence of instructions that has one entry point and one exit point.
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the destination operand. The instruction set was designed to be a low-level representation
of a program, thus enabling a straightforward compilation to target architectures while
supporting high-level analyses and transformations. Apart from arithmetic, bitwise, and
memory access operations, which are standard in all 3-address languages, LLVM IR con-
tains many other types of instructions, such as vector instructions which represent vector
operations in a target-independent way, or 𝜑-instructions, which select the correct value for
variables depending on which path was taken through the control flow. [16]

Metadata

At the end of each LLVM IR module are debugging metadata. Metadata nodes are prefixed
with the ! character and contain different types of information depending on the node type,
such as information about data types, information about which lines in the source code
created a particular instruction, and others. The identifiers of metadata nodes are attached
to IR instructions, and some types of nodes can contain links to other nodes, forming a
graph. Listing 4.2 contains some metadata nodes, which are attached to instructions in
Listing 4.3.

4.3 LLVM Pass Framework
LLVM Passes are modular components within the LLVM framework designed to analyze
or transform the LLVM IR of programs during compilation. They are primarily used to
facilitate compiler optimizations or to gather additional debugging information about the
program. Passes operate at various granularities, defined by the unit of IR on which the
pass operates, e.g., a loop, a function, or an entire module. Passes are grouped into pass
pipelines that define which passes are run on each unit of IR and in what order – for
example, depending on the chosen optimization level using the -O parameter in clang, a
different pass pipeline is internally constructed and run on the program.

LLVM’s C++ API allows developers to create their own passes, allowing for custom
analyses and transformations. These passes can be created as standalone executable pro-
grams linked with the LLVM API, or as Pass Plugins, which are executed after being loaded
into other LLVM tools as shared objects.

Relevant classes

Before a Pass can be executed on a unit of IR, several classes have to be instantiated. These
classes include the PassBuilder and the PassManager2, which facilitate the building and
running of the pass pipelines, and a specific instance of an AnalysisManager class (e.g.,
a ModuleAnalysisManager for Module Passes). A PassManager contains a sequence of
passes, which run one after another on a unit of IR. The pass manager itself is a pass
responsible for running the passes it contains and propagating the AnalysisManager object
to the passes it runs.

The AnalysisManager object caches the computed analyses of each pass in the pipeline,
allowing for faster pipeline executions without performing redundant analyses. To ac-
complish this, the run() method of a pass returns a PreservedAnalysis object, which

2There are currently two pass managers in the LLVM project: a new pass manager, introduced in LLVM
13, and the legacy pass manager. In this thesis, the term ‘pass manager’ refers to the new pass manager.
While the legacy pass manager is still available in recent LLVM versions, it is now considered deprecated
and will eventually be removed.
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contains the analyses that are preserved after the pass finishes running. Passes that do
not transform the IR in any way (referred to as Analysis passes) typically return the
PreservedAnalyses::all() object, which tells the next pass in the pipeline that no pre-
viously computed analyses have been invalidated. Passes that modify the IR (referred
to as Transformation Passes) typically invalidate the results of many previous analyses
and must either return the PreservedAnalyses::none() object, which invalidates all pre-
viously computed analyses, or the programmer can build a custom PreservedAnalyses
object and add a set of analyses which are preserved and can be used by the following
passes.

Passes extend the PassInfoMixin class. They override the run() method, which takes
an instance of AnalysisManager and the reference to the unit of IR the pass is supposed to
operate on. The Pass Manager enables the registration of four types of passes, depending
on the unit:

• Module Pass – runs on an entire LLVM IR module.

• CGSCC (Call-Graph Strongly Connected Components) Pass – runs on strongly con-
nected components in the call graph, typically used for callee simplification and in-
lining passes.

• Function Pass – runs on one function in a module at a time, independent of other
functions in the module.

• Loop Pass – runs on every loop inside a function, independent of other loops in the
function.

This pass hierarchy exists primarily for the purposes of pipeline optimization. Declaring
a pass as, e.g., a Function Pass does not restrict its ability to modify the containing module.
However, separate invocations of the same pass are completely independent and do not
share any internal state. For this reason, even if a pass needs to modify only the bodies
of individual functions but requires information about other functions to perform these
modifications, it makes sense to use a Module Pass. Doing the same with a Function Pass
would require managing the state through external means, such as by writing to and reading
from files.

4.3.1 Pass Plugins

Pass plugins are LLVM passes that are injected into the compiler’s default optimization
pipelines. This is achieved by registering the custom pass with the PassManager object
and using the PassBuilder object to specify the point in the optimization pipeline where
the custom pass should run, e.g., after or before loop-related optimizations. Plugins are
designed to be loaded into compatible LLVM tools, such as clang or opt. To make them
recognize passes as valid plugins, at least one of two entry points has to be provided by the
plugin.

• Static entry point. This entry point is used in case the developer wants to link
the plugin with compatible tools statically. This makes sense, for example, when
developing a pass directly in the LLVM source tree with the goal of contributing to
the project.
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using namespace llvm;
class SamplePass : public PassInfoMixin<SamplePass> {

public:
// This function is called by the PassManager to run the pass.
PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM) {

errs() << M.getName() << "\n";
return PreservedAnalyses::all();

}
};

// Entry point for the static registration of the plugin
PassPluginLibraryInfo getSamplePassPluginInfo() {

auto passPluginCallback = [](PassBuilder &PB) {
// Registers the pass at the end of the function
// optimization pipeline
PB.registerOptimizerLastEPCallback(

[](ModulePassManager &MPM, OptimizationLevel L) {
MPM.addPass(SamplePass());

}
);

};
return {LLVM_PLUGIN_API_VERSION, "sample-pass", "v1.0", passPluginCallback};

}

// Entry point for the dynamic registration of the plugin
extern "C"
PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK llvmGetSamplePassPluginInfo() {

return getSamplePassPluginInfo();
}

Listing 4.4: An example of a simple analysis LLVM Pass Plugin, operating on the Module
unit. The pass prints the name of the module to the standard error output stream. The
functions getSamplePassPluginInfo() and llvmGetSamplePassPluginInfo() act as the
static and dynamic entry point for plugin-compatible LLVM tools.

• Dynamic entry point. This entry point is used when the pass plugin is compiled
into a shared library, which can be loaded into compatible tools through command
line options.

In either case, the entry point is a function that returns an instance of the PassPlugin-
LibraryInfo structure. This structure provides the necessary information to the tool run-
ning this pass. Specifically, it contains the LLVM API version that the plugin understands,
the name and version of the plugin, and a callback function that registers the pass with the
PassBuilder instance of the tool that loaded this plugin. Listing 4.4 contains an example
of a simple pass plugin that runs on the Module unit and contains both a static and a
dynamic entry point.

4.4 Instrumentation in LLVM
While the IR generation capabilities of the LLVM API are primarily intended for developing
new language front-ends, the same API can also be used to perform custom instrumentation.
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The simplest and most efficient way to build new instructions is through the IRBuilder
class, which provides methods for creating all types of instructions and inserting them
into basic blocks. The user can specify an insertion point to the IRBuilder through its
SetInsertionPoint() method, which takes an instance of Instruction as a parameter.
Any instructions created through that instance of IRBuilder will be placed before the
instruction set as an insertion point. Besides instructions, the IRBuilder can insert new
global variables into the module or create and modify metadata.

Instrumentation will typically involve inserting call instructions, which call instrumen-
tation functions located in a separate instrumentation code module. Before a call can
be inserted, the function first has to be declared inside the module. This can be eas-
ily done through the Module object’s getOrInsertFunction() method, which takes the
name of the function and a FunctionType object that contains the signature of that func-
tion. The method returns a FunctionCallee object, which is passed to the IRBuilder’s
CreateCall() method together with the arguments in the form of instances of the Value
class. These instances can also be created with the IRBuilder, which provides methods
such as getInt32() that take an integer value as input and return a ConstantInt object
which represents that value in LLVM IR.
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Chapter 5

Design and Implementation

As stated in previous chapters, this work aims to leverage the LLVM Pass Framework API
to implement a lightweight profiler based on compile-time static instrumentation. This
chapter describes the optimizations performed in different versions of this profiler and the
core design philosophy and implementation details. Section 5.1 introduces the benchmarks
on which we evaluate the performance of each new profiler version. Sections 5.2, 5.3, 5.5,
and 5.6 describe the changes between major optimized versions of the profiler, and their
performance is compared using the benchmarks.

5.1 Benchmarks
The profiler was benchmarked on one small C project and one larger C project to evaluate
its efficiency. The smaller project is a program implementing the CCSDS compression
algorithm1 used to compress images taken on a spacecraft before sending them to Earth.
The larger project is CPython2, the reference implementation of the Python programming
language and the most widely used Python interpreter.

The estimated profiling overhead on the CCSDS project was obtained by running the
compression algorithm on different input images3. The original and instrumented versions
of the compiled executable ran 100 times; the average runtime was calculated for each input,
and these two averages were compared. Table 5.1 shows the information about images used
as inputs.

For CPython benchmarks, the Python package PyPerformance [29] was used to evalu-
ate performance. PyPerformance is a project that aims to evaluate the interpreter’s per-
formance in various benchmarks, from testing templating libraries or serialization to math
operations and raytracing. A subset of PyPerformance benchmark groups were selected for
the experimental evaluation:

• MATH: Set of benchmarks focused on testing the performance of big integer arith-
metic and floating point number calculations.

• REGEX: Several benchmarks testing the performance of Python’s regular expression
engine.

1https://pajda.fit.vutbr.cz/perferts/ccsds
2CPython GitHub repository: https://github.com/python/cpython
3https://pajda.fit.vutbr.cz/perferts/ccsds-data
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Image Width Height Max gray value Size
cdf97-psi.pgm 609 423 255 257 KB
Babboon.pgm 512 512 255 262 KB
P1010042.pgm 591 591 255 349 KB
frame.pgm 1920 1080 65535 4.15 MB
g10.pgm 3840 2160 1023 16.59 MB
m612-be.pgm 2564 5117 4095 26.24 MB

Table 5.1: Input images for CCSDS benchmarks

Benchmark group Benchmarks

Math nbody, pidigits, float

Regex regex_compile, regex_dna, regex_effbot, regex_v8

Scimark
scimark_fft, scimark_lu, scimark_monte_carlo,
scimark_sor, scimark_sparse_mat_mult

Apps 2to3, chameleon, docutils, html5lib, tornado_http

Serialize

json_dumps, json_loads, pickle, pickle_dict,
pickle_list, pickle_pure_python, tomli_loads,
unpickle, unpickle_list, unpickle_pure_python,
xml_etree

Table 5.2: PyPerformance benchmark groups used in the evaluation and the specific bench-
marks they contain.

• SCIMARK: A popular set of benchmarks for scientific and mathematical computing,
including Fast Fourier Transform, Monte Carlo algorithm, or sparse matrix multipli-
cation.

• APPS: A benchmark testing several application libraries, such as the Tornado HTTP
web framework or the Chameleon templating engine.

• SERIALIZE: A larger group of serialization and de-serialization benchmarks, testing
the JSON and pickle modules.

Table 5.2 shows the PyPerformance benchmarks contained in each group.
All benchmarks were run on a machine with the following specifications:

CPU AMD Ryzen 5 3500U
Memory 16GB @ 2666 MHz
OS Linux Mint 20.3 Cinnamon
Kernel version 5.13.0-52-generic

5.2 Hashtable-based implementation
In this first version of the profiler, the std::unordered_map class from the standard C++
library was used to store information about the number of executions of each basic block.
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Image Original time [s] Instrumented time [s] Overhead
cdf97-psi.pgm 0.029 1.646 56.76x
Babboon.pgm 0.030 1.627 54.23x
P1010042.pgm 0.039 2.177 55.82x
frame.pgm 0.279 15.075 54.03x
g10.pgm 0.815 38.879 47.70x
m612-be.pgm 1.431 70.762 49.45x
Average 52.99x

Table 5.3: The profiling overhead measured on CCSDS of a hashtable-based implementa-
tion.

This unordered map uses a unique identifier of each basic block as a key and stores a corre-
sponding execution count as the value. The key contains the name of the basic block and
the name of the function and module it belongs to. The map is declared in the instrumen-
tation code module, which is linked to the instrumented program after the compilation.
A call to an instrumentation function __bb_enter() is inserted at the start of every ba-
sic block. This function takes the unique identifier of the basic block as input, checks if
this identifier is already present in the map, and either increments the existing counter or
creates a new key-value pair for this basic block. To export the collected data, a call to a
function __prof_export(), which writes the resulting profile into a file, is inserted before
the return instruction from the main() function and also before every call to the exit()
function.

This approach is very simple and convenient, as no additional processing has to be done
besides the instrumentation. Additional information about the basic blocks, such as the
source code location, can be included directly in the identifier saved in the map, creating
almost no compilation overhead. This approach also guarantees that memory is allocated
only for basic blocks that were executed at least once4, minimizing the memory overhead
compared to a structure that would statically allocate space for every basic block in the
program.

However, even though the map has a constant time complexity for searching and in-
serting, the added runtime overhead of this approach is extremely high. To keep the time
complexity constant on average, the map has to periodically allocate space for new buckets
to accommodate additional basic blocks. This frequent reallocation can be very expensive,
potentially explaining the massive overhead. Additionally, the hash function could be very
expensive, causing further time overhead. Table 5.3 shows the measured overhead of this
implementation on the CCSDS project. Because the overhead on a smaller project was
already so large, this version was not tested on CPython, as it would easily exceed the
one-hour timeout limit which was used with these benchmarks.

5.3 An array-based implementation
To prevent the overhead caused by frequent hashing using an expensive hash function and
frequent memory reallocations, a static array can be used to store the basic block execution

4Excluding the memory that is pre-allocated automatically by all standard library containers to reduce
the number of re-allocations.
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Image Orig. time [s] Inst. time [s] Overhead
cdf97-psi.pgm 0.029 0.069 2.38x
Babboon.pgm 0.030 0.064 2.13x
P1010042.pgm 0.039 0.087 2.23x
frame.pgm 0.279 0.659 2.36x
g10.pgm 0.815 1.700 2.08x
m612-be.pgm 1.431 3.153 2.20x
Average 2.23x

Table 5.4: The profiling overhead measured on CCSDS of an implementation using a single
static array to store execution counts.

counts. Indexing an array also has a constant time complexity, and if the array is statically
allocated, no runtime memory reallocation is required.

The array is declared as a static global array of unsigned long integers in the instru-
mentation code module, and the __bb_enter() function is used to increment the values
inside this array. As with the previous implementation, a call to this function is inserted
at the start of every basic block. Each basic block is assigned an unsigned long integer ID.
This ID is used as an index into this execution count array. Before the program exits, the
execution counts are exported in a simple format, mapping the ID of the basic block to the
number of its executions.

This approach, however, requires additional processing during compile time. Since
only the ID and execution count of each basic block are exported after profiling, the other
information about the basic blocks has to be exported during compile time. Post-processing
is also necessary to map the IDs to the basic block information. To ensure that the array
can accommodate all basic block execution counters, the instrumentation code must be
compiled with a macro definition containing the number of basic blocks in the profiled
program, passed to the compiler with the -D command line option. This means that the
instrumentation code has to be compiled specifically for every program.

While this approach sacrifices the memory efficiency of only allocating memory for basic
blocks that were executed at least once, the time overhead is significantly reduced. Table
5.4 shows the measured overhead of this implementation on the CCSDS project. This
implementation was tested on the CPython project as well, but all of the PyPerformance
benchmark runs have timed out after 1 hour. This shows that while there is a significant
performance improvement over the previous implementation, the solution still does not
scale well.

Using a single array still has a major flaw, though. Since each basic block needs to
have a unique ID assigned during compilation, the instrumentation pass has to keep track
of the last assigned ID after instrumenting a module. As mentioned in Chapter 4, separate
invocations of a pass do not share any internal state, which means that to remember the
last assigned ID, it has to be written to a file after each invocation and then read back at
the start of the next invocation. While this operation does not add significant overhead to
compile time, it makes it impossible for multiple compilation jobs to be run concurrently,
making this approach unsuitable for larger projects. This flaw is addressed in Section 5.5.
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5.4 Inlining instrumentation code
Inline expansion (inlining) refers to replacing a function call with the function’s body,
eliminating the call instruction and the overhead associated with it. This includes saving
the register content from the caller’s context, passing the function parameters, and creating
a stack frame. Inlining is typically performed automatically by the compiler, which can
decide to inline a function at only a subset of call sites, using heuristics to determine
where such an expansion is likely to affect performance positively. According to [22], these
heuristics take into account the following:

1. The size of the function’s body: the smaller, the better.

2. The number of calls to the function: with only one call, inlining is almost certain to
reduce execution time.

3. Whether the function is called inside a loop: if so, inlining it could provide opportu-
nities for additional optimization.

4. Whether the call includes constant-valued parameters, which makes it more likely
that the inlined body of the function is optimizable.

Since the body of the __bb_enter() function contains only code that indexes an array
and increments an integer, and its only argument is the constant ID of the basic block,
points 1 and 4 are relevant. The overhead associated with setting up the function call
could be relatively high compared to the actual work of the function. Inlining could also
improve the locality of reference, providing further performance improvement by reducing
the number of cache misses. [28] However, because the instrumentation function is defined in
the instrumentation code module, but called from the modules of the profiled program, the
compiler cannot inline this call automatically without using link-time optimization, which is
a feature that is not by default supported by most compilers. Therefore, the instrumentation
function was removed and instead of inserting a function call, the instrumentation pass
inserts a load instruction to read the current count for that basic block from memory,
the add instruction to increment the counter, and the store instruction to write back the
updated counter.

The result of this optimization can be observed in the objdump output of the instru-
mented binary. Listing 5.3 shows the disassembled contents of the bio_get_bit() function,
instrumented with calls to __bb_enter(). Listing 5.2 shows the same function with inline
instrumentation. Listing 5.1 shows the body of the __bb_enter() function.

This optimization was very effective in reducing profiling overhead. Table 5.5 shows the
profiling overhead on the CCSDS project. Inlining the instrumentation code reduced the
time overhead by 50% on average, with the average overhead reduced to less than 10%.

5.5 A per-module static array implementation
As mentioned in Section 5.3, assigning each basic block in a program a unique ID restricts
the ability to compile multiple modules concurrently, which would significantly affect the
usability of this profiler on larger projects that take a long time to compile. To address
this, each module of the program has a separate pool of integers to assign as IDs to its
basic blocks, and rather than storing all execution counts in a single array, each module’s
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0000000000001b10 __bb_enter:
mov 0x1691(%rip),%rax # 31a8 _DYNAMIC

+0x1d8
mov (%rax,%rdi,8),%rcx
add $0x1,%rcx
mov %rcx,(%rax,%rdi,8)
retq

Listing 5.1: Disassembled object code of the
__bb_enter() function.

0000000000214020 bio_get_bit:
lea 0xb2a9(%rip), %rcx # 21f2d0

__basicblocks
incq 0x8580(%rcx)
cmpq $0x8,0x18(%rdi)
jne 214064 bio_get_bit+0x44
incq 0x8590(%rcx)
mov 0x8(%rdi),%rax
test %rax,%rax
je 21408b bio_get_bit+0x6b
lea 0x1(%rax),%rdx
incq 0x8598(%rcx)
...

Listing 5.2: Disassembled code of a part
of the CCSDS bio_get_bit() function,
instrumented inline with load, add, and
store instructions. The lea instruction
loads the address of the __basicblocks
array into the %rcx register at the
start of the function, after which the
incq instruction records each basic block’s
execution.

0000000000412cd0 bio_get_bit:
push %rbp
push %r15
push %r14
push %rbx
push %rax
mov %rdi,%rbx
mov $0x251a,%edi
mov %rsi,%r14
callq 41c6b0 __bb_enter
cmpq $0x8,0x18(%rbx)
jne 412d25 bio_get_bit+0x55
mov $0x251c,%edi
callq 41c6b0 __bb_enter
mov 0x8(%rbx),%r15
test %r15,%r15
je 412d4f bio_get_bit+0x7f
mov $0x251d,%edi
callq 41c6b0 __bb_enter
...

Listing 5.3: Disassembled code of a part
of the CCSDS bio_get_bit() function,
instrumented with calls to __bb_enter().
The start of the function contains extra
push instructions, as the caller has to save
the contents of the registers.

basic block execution counts are stored in a separate array. Before the first basic block in
each module is instrumented, a declaration of a pointer to unsigned long integer array is
inserted into the module, with its linkage type set to external. The instrumentation pass
keeps track of the number of basic blocks in the module. After the last one is instrumented,
the name of the module, the name of the declared external pointer, and the number of
basic blocks in the module are written to a temporary file modules.tmp. Before linking the
program, this file is consumed by another pass, called PostInstrumentationPass. This
pass is designed to run on the instrumentation code module. It reads the modules.tmp file
and defines the array variables inside the instrumentation code module. It also inserts one
call to the function __export_array() per module, which exports the collected execution
counts.

To relieve the user from the headache of setting up a custom compilation process, a
simple shell script is provided to be used as a custom linker through clang’s -fuse-ld com-
mand line option. This linker wrapper script automatically compiles the instrumentation
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Image Original time [s] Instrumented time [s] Overhead
cdf97-psi.pgm 0.029 0.030 1.03x
Babboon.pgm 0.028 0.031 1.11x
P1010042.pgm 0.038 0.041 1.08x
frame.pgm 0.254 0.288 1.13x
g10.pgm 0.768 0.842 1.10x
m612-be.pgm 1.339 1.485 1.11x
Average 1.09x

Table 5.5: The profiling overhead measured on CCSDS with the instrumentation code
inlined.

Image Orig. time [s] Inst. time [s] Overhead
cdf97-psi.pgm 0.029 0.033 1.14x
Babboon.pgm 0.028 0.033 1.18x
P1010042.pgm 0.038 0.043 1.13x
frame.pgm 0.254 0.309 1.22x
g10.pgm 0.768 0.894 1.16x
m612-be.pgm 1.339 1.543 1.15x
Average 1.16x

Table 5.6: The profiling overhead measured on CCSDS with one counter array in each
module.

code, runs the PostInstrumentationPass, and invokes the real linker with the original
arguments plus the object file of the instrumentation code module.

While the primary goal of this change was not to improve the profiler’s overhead, it was
still measured. This version of the profiler was also the first version that could success-
fully profile the CPython interpreter using the PyPerformance benchmarks. The overhead
measurements on the CCSDS and CPython projects, as shown in Table 5.6 and Table 5.7,
indicate that the changes described in this chapter may have slightly increased the over-
head. However, the increase is not significant. For large projects, the ability to compile
concurrently still accelerates the profiling process considerably.

Benchmark Orig. time [s] Inst. time [s] Overhead
Math 56.76 78.05 1.38x
Regex 95.59 111.03 1.16x
Scimark 122.58 151.03 1.23x
Apps 510.51 625.13 1.22x
Serialize 594.07 694.86 1.17x
Average 1.23x

Table 5.7: The profiling overhead measured on an instrumented CPython interpreter run-
ning PyPerformance benchmarks, with one counter array in each module.
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5.6 Control flow graph patterns
In all previously described approaches, every basic block in the program was instrumented
to obtain complete execution count information in the profiled program. However, by
examining the control flow graph5 of each function before the instrumentation, some basic
blocks could be excluded without sacrificing the completeness of the result. This is because
the number of executions of a particular basic block could be inferred from the number of
executions of another basic block, or a group of other basic blocks.

To test this approach, an algorithm to analyze the control flow graph of each function
was developed. This algorithm checks for the presence of basic block patterns – subgraphs
of the control flow graph – commonly observed in compiled programs as a result of high-
level language control flow structures being compiled into a low-level language.

For all formal definitions in this section, we define 𝑠𝑢𝑐𝑐(𝑥) as the set of immediate
successors of a block 𝑥, where 𝑦 is an immediate successor of 𝑥 if there is an edge from 𝑥
to 𝑦. Similarly, we define 𝑝𝑟𝑒𝑑(𝑥) as the set of immediate predecessors of a block 𝑥, where
𝑦 is an immediate predecessor of 𝑥 if there is an edge from 𝑦 to 𝑥. Additionally, we define
the function 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏, 𝑖𝑛) : 𝐵 × 𝐼 → N0, where 𝐵 is the set of all basic blocks in a
control flow graph 𝐺 = (𝐵,𝐸) and 𝐼 is the set of all possible inputs to the program. The
function 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏, 𝑖𝑛) represents the number of times the basic block 𝑏 is executed by
the program, given input 𝑖𝑛.

5.6.1 The Diamond pattern

This pattern involves 4 or more basic blocks. It begins with an entry block, which then
branches to any number of successors. These successors all have a single common successor.
This common successor does not have any predecessors from outside this pattern. This
pattern is typically generated from an if statement followed by an else statement. The entry
block is the condition inside the if statement. This block branches into two blocks, which
are executed depending on the boolean result of the if condition. Both blocks then join
after the if-else statement. This pattern, with any number of branches, can also be compiled
from a switch statement, though only the if-else statement support was implemented in this
thesis.

Formal definition. Let 𝐺 = (𝐵,𝐸) be a control flow graph. A Diamond pattern
subgraph 𝐺′ = (𝐵′, 𝐸′) is defined as:

𝐵′ = {entry, 𝑏1, 𝑏2, . . . , 𝑏𝑛, join} ⊆ 𝐵, (5.1)
𝐸′ = {(entry, 𝑏1), (entry, 𝑏2), . . . , (entry, 𝑏𝑛), (𝑏1, join), (𝑏2, join), . . . , (𝑏𝑛, join)} ⊆ 𝐸, (5.2)

and the following conditions apply:

𝑠𝑢𝑐𝑐(entry) = {𝑏1, 𝑏2, . . . , 𝑏𝑛}, (5.3)
∀𝑏𝑖 ∈ {𝑏1, 𝑏2, . . . , 𝑏𝑛} : 𝑠𝑢𝑐𝑐(𝑏𝑖) = {join} ∧ 𝑝𝑟𝑒𝑑(𝑏𝑖) = {entry} (5.4)

𝑝𝑟𝑒𝑑(join) = {𝑏1, 𝑏2, . . . , 𝑏𝑛}. (5.5)

The entry and join blocks can be entirely excluded from the instrumentation. This is
because the sum of the executions of the branch blocks will always equal the number of

5A control flow graph is a directed graph 𝐺 = (𝐵,𝐸) in which the nodes (𝐵) represent basic blocks and
the edges (𝐸) represent control flow paths. [2]
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executions of the entry and join blocks as long as the program does not terminate in either
of the branches. Formally, given an input 𝑖𝑛,

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(entry, 𝑖𝑛) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(join, 𝑖𝑛) =
𝑛∑︁

𝑖=1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏𝑖, 𝑖𝑛) (5.6)

Figure 5.1 shows an example of a diamond pattern.

entry

if.then if.else

if.end

Figure 5.1: An example of the Diamond
pattern in a control flow graph. The
red blocks if.then, if.else are instru-
mented, while the entry and if.end
blocks are not.

entry

if.then

if.end

Figure 5.2: An example of the Half-diamond
pattern in a control flow graph. The entry
block, colored blue, does not have to be in-
strumented, as its execution count can be
inferred from the if.end block execution
count.

5.6.2 The Half-diamond pattern

This pattern is very similar to the diamond pattern, except the entry block has two succes-
sors, with one of these successors having a single edge, which leads to the other successor,
who has no predecessor from outside this pattern. This pattern is often created by compil-
ing an if statement not followed by an else statement. The entry block is the if condition,
the first successor is the block executed when the condition evaluates to true, and the other
successor is the join block where the program continues regardless of whether the condition
was evaluated as true or false.

Formal definition. Let 𝐺 = (𝐵,𝐸) be a control flow graph. A Half-diamond
pattern subgraph 𝐺′ = (𝐵′, 𝐸′) is defined as:

𝐵′ = {entry, 𝑏1, join} ⊆ 𝐵, (5.7)
𝐸′ = {(entry, 𝑏1), (entry, join), (𝑏1, join)} ⊆ 𝐸, (5.8)
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and the following conditions apply:

𝑠𝑢𝑐𝑐(entry) = {𝑏1, join}, (5.9)
𝑠𝑢𝑐𝑐(𝑏1) = {join}, (5.10)
𝑝𝑟𝑒𝑑(𝑏1) = {entry}, (5.11)

𝑝𝑟𝑒𝑑(join) = {𝑏1, entry}. (5.12)

If this pattern is present in the control flow graph, either the entry block or the exit block
can be excluded from the instrumentation, as the number of executions of one will always
equal the number of executions of the other, as long as the program does not terminate
inside the if-then block. Formally, given an input 𝑖𝑛

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(entry, 𝑖𝑛) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(join, 𝑖𝑛) (5.13)

Figure 5.2 shows an example of this pattern.

for.cond

for.body

for.inc

for.end

Figure 5.3: Example of an unconditional
jump in a control flow graph compiled from
a for-loop. The for.body block can be ex-
cluded from instrumentation, as its number
of executions will be identical to that of the
for.inc block.

5.6.3 Unconditional jump pattern

This pattern contains two basic blocks. The
first basic block has a single edge to another
basic block, and this successor has only the
first basic block as a predecessor. Since an
execution of the first block is always fol-
lowed by an execution of the second block,
only one of these blocks has to be instru-
mented.

Formal definition. Let 𝐺 = (𝐵,𝐸) be
a control flow graph. An Unconditional
jump pattern subgraph 𝐺′ = (𝐵′, 𝐸′) is
defined as:

𝐵′ = {𝑏1, 𝑏2} ⊆ 𝐵, (5.14)
𝐸′ = {(𝑏1, 𝑏2)} ⊆ 𝐸, (5.15)

𝑠𝑢𝑐𝑐(𝑏1) = {𝑏2}, (5.16)
𝑝𝑟𝑒𝑑(𝑏2) = {𝑏1}. (5.17)

Formally, given an input 𝑖𝑛, the relationship between execution counts is

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏1, 𝑖𝑛) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏2, 𝑖𝑛) (5.18)

This pattern primarily shows up in control flow graphs of functions containing for loops,
as the clang compiler sometimes separates the body and the increment part of the for loop
into two basic blocks. However, compiler optimizations will likely remove any redundant
unconditional jumps, meaning that this pattern is less likely to appear in practical scenar-
ios. Figure 5.3 shows an example of a control flow graph of a for loop that contains an
unconditional jump.

28



Benchmark Original [s] No pattern opt. Pattern opt. Change [%]Time [s] Overhead Time [s] Overhead
Math 56.76 78.05 1.38x 74.97 1.32x 4.35
Regex 95.59 111.03 1.16x 110.18 1.15x 0.86
Scimark 122.58 151.03 1.23x 149.66 1.22x 0.81
Apps 510.51 625.13 1.22x 604.03 1.18x 3.28
Serialize 594.07 694.86 1.17x 699.96 1.18x -0.85
Average 1.23x 1.21x 1.69

Table 5.8: A comparison of profiling overhead when using pattern optimizations vs no
pattern optimizations on an instrumented CPython executable compiled with -O3, running
PyPerformance benchmarks.

Project Original compilation time [s] Compilation time with instrumentation [s]
No pattern opt. Pattern opt.

CCSDS 2.708 3.207 4.159
CPython 24.581 76.499 435.14

Table 5.9: Impact of the instrumentation on compilation times of CCSDS and CPython.

5.6.4 Sum of exit block executions

This pattern appears in every function containing more than one basic block. Since each
function has a dedicated entry block with no incoming edges and any number of exit blocks,
the entry block never has to be instrumented, as the sum of the number of executions of
the exit blocks will equal the number of executions of the entry block, unless the program
terminates before it reaches an exit block.

Formal definition. Let 𝐺 = (𝐵,𝐸) be a control flow graph. Define 𝑒𝑥𝑖𝑡𝑠(𝐺) as:

𝑒𝑥𝑖𝑡𝑠(𝐺) = {𝑏 ∈ 𝐵 | succ(𝑏) = ∅} (5.19)

Define 𝑒𝑛𝑡𝑟𝑦(𝐺) as the block 𝑏 ∈ 𝐵 such that pred(𝑏) = ∅. For a given input 𝑖𝑛,∑︁
𝑏∈𝑒𝑥𝑖𝑡𝑠(𝐺)

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠(𝑏, 𝑖𝑛) = executions(𝑒𝑛𝑡𝑟𝑦(𝐺), 𝑖𝑛) (5.20)

5.6.5 Impact of pattern optimizations on overhead

Table 5.12 shows the number of patterns (excluding the sum of exits pattern) found in
CCSDS and CPython compiled with different optimization levels. The results show that
the number of patterns found in unoptimized code is significantly higher than in optimized
code. Tables 5.10 and 5.8 show the impact of this optimization on the profiling overhead
on the CCSDS and CPython benchmarks with compiler optimization level -O3. Table
5.11 shows the same for CPython compiled with -O0. While experiments on unoptimized
programs have shown that it is a potentially viable method of reducing overhead, the impact
of this optimization greatly diminishes when used together with compiler optimizations,
while the impact on the compilation time is significant, as shown by Table 5.9. Optimizing
the pattern-finding algorithm or extending it with more complex patterns, which appear
more often in compiler-optimized control flow graphs, could be a subject of future work.
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Image Original [s] No pattern opt. Pattern opt.
Time [s] Overhead Time [s] Overhead Change [%]

cdf97-psi.pgm 0.029 0.033 1.14x 0.032 1.10x 3.50
Babboon.pgm 0.028 0.033 1.18x 0.033 1.18x 0.00
P1010042.pgm 0.038 0.043 1.13x 0.041 1.08x 4.42
frame.pgm 0.254 0.309 1.22x 0.303 1.19x 2.46
g10.pgm 0.768 0.894 1.16x 0.871 1.13x 2.59
m612-be.pgm 1.339 1.543 1.15x 1.586 1.18x -2.61
Average 1.16x 1.14x 1.73

Table 5.10: Comparison of profiling overhead of a version of the profiler using pattern
optimization vs no pattern optimization on CCSDS with compiler optimization level -O3.

Benchmark Original [s] No pattern opt. Pattern opt. Change [%]Time [s] Overhead Time [s] Overhead
Math 260.51 349.01 1.34x 292.42 1.12x 16.42
Regex 230.43 345.52 1.50x 297.87 1.29x 14.00
Scimark 540.98 739.10 1.37x 600.50 1.10x 19.71
Apps 1786.14 2518.03 1.41x 2096.54 1.17x 17.02
Serialize 2250.49 3073.18 1.37x 2613.35 1.16x 15.33
Average 1.40x 1.17x 16.50

Table 5.11: Comparison of profiling overhead of a version of the profiler using pattern
optimizations vs no pattern optimization, on an instrumented CPython compiled with -O0,
running PyPerformance benchmarks.

Project Opt. level Basic blocks Patterns found Instr. points saved
CCSDS -O3 2613 44 158
CCSDS -O0 4674 285 468
CPython -O3 199534 2986 16899
CPython -O0 270701 35477 41182

Table 5.12: Number of patterns (excluding sum of exits) and the total number of instru-
mentation points saved in CCSDS and CPython with -O0 and -O3 optimization levels.
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5.7 Final implementation
The final implementation of the collector is composed of several parts:

Instrumentation pass. This LLVM pass, compiled as a shared library, is the pass that
performs the actual instrumentation. It is designed to be loaded into the clang compiler us-
ing the -fpass-plugin command line option and run on every module in the instrumented
program. The pass is registered to run at the end of the function optimization pipeline, a
point after which the compiler does not modify the control flow graph of functions.

The instrumentation pass goes through each function in the module. It analyzes the
control flow graph of each function, checking for control flow graph patterns that could
be used to reduce the number of instrumentation points. Before the first basic block is
instrumented, an array containing this module’s counters is declared as a global external
pointer. Each basic block that cannot be excluded from instrumentation by a pattern is
instrumented with a load instruction that loads the value of the counter for that basic block.
An add instruction is inserted to increment the counter, and a store instruction stores the
incremented value back into the array. The name of the declared array, the number of basic
blocks in the module, and the name of the original source file are recorded in a modules.tmp
file. To ensure that the profile is exported before the program finishes running, the pass
inserts a call to __prof_export() before the return instruction in the main() function and
before calls to the exit() function. The pass also exports information about basic blocks
and control flow graph patterns in a JSON format into files in directories .basicblocks
and .patterns, respectively. These JSON files are later used for visualization and post-
processing by a script described in Chapter 6. Listings 5.4 and 5.6 show how basic blocks
and patterns are stored in the JSON format.

Instrumentation code module. This module, written in C, contains the previously
mentioned __export_module() and __prof_export() functions. The former takes the
module’s name, the pointer to the counter array, and its length as arguments and formats
this information into JSON, which is then written into the profiling output file. This file is
titled profile_data_pid_<PID>.json, where PID is the ID of the process that spawned
this profile. Listing 5.5 shows an example of this profile.

Post-instrumentation pass. This pass is designed to run on the instrumentation code
module before it is linked to the profiled program. It consumes the modules.tmp file and
defines the arrays that store basic block execution counts. It also inserts one call to the
__export_array() function per module into the __prof_export() function.

Linker script. This script is designed to be used as a custom linker for the clang com-
piler, using the -fuse-ld command line option. It automates the instrumentation code
compilation, including running the post-instrumentation pass. Then, it invokes the real
linker to link the program’s object files with the instrumentation code. The purpose of this
script is to make it easier for the user to incorporate the profiler into their existing build
configuration by only modifying their CFLAGS and LDFLAGS environment variables.
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{
"function": "main",
"id": 0,
"name": "entry",
"debug": [

{
"line": 5,
"columns": [6]

},
{

"line": 6,
"columns": [5,7]

}
],
"successors": [1,2],
"ir": [

"%retval = alloca i32, align 4",
"%a = alloca i32, align 4",
"store i32 0, ptr %retval, align 4"

,
"store i32 5, ptr %a, align 4, !dbg

!16",
"%0 = load i32, ptr %a, align 4, !

dbg !17",
"%cmp = icmp sgt i32 %0, 3, !dbg

!19",
...

]
},

Listing 5.4: One basic block object,
produced by the instrumentation pass, in
the JSON format. It contains the name of
the block, source code location information,
IDs of its successors, and the LLVM IR
instructions excluding debugger intrinsic
instructions which do not compile into any
object code instructions.

{
"modules": [

{
"name": "dwt.c",
"basicBlocks": [

{
"id": 1,
"executionCount": 1

},
{

"id": 4,
"executionCount": 1

},
{

"id": 6,
"executionCount": 1

},
{

"id": 9,
"executionCount": 1

}
]

},
...

]
}

Listing 5.5: One module in the JSON profile
containing the IDs and execution counts of
basic blocks which were executed at least
once.

{
"functionName": "convert_bpp_to_maxval",
"patterns": [

{
"id": 1,
"type": "diamond",
"condBlock": 7,
"joinBlock": 10,
"branchBlocks": [8, 9]

}
]

},

Listing 5.6: A JSON object of a Diamond patterns in the convert_bpp_to_maxval function.
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Chapter 6

Post processing and visualization

An interactive HTML visualization generator was created to interpret the collected profile.
This visualization is created by a Python script generate_html.py. This script takes the
path to the JSON profile and the path to the directory containing the .basicblocks and
.patterns directories. It first processes these files to reconstruct the complete profile.
Then, using the BeautifulSoup1 library, it loads prepared HTML templates, which provide
the base HTML markup for the visualization components.

The script gets the paths to the original source code modules from the JSON profile. It
creates one copy of a source_code_template.html template per module and inserts each
module’s source code into the prepared <code> element. Then, the Graphviz2 API is used
to generate a control flow graph visualization in the SVG format for every function in the
program. The concurrent.futures library is used to parallelize this task, as it takes quite
a lot of time to generate many control flow graph visualizations sequentially. Each SVG
graph is inserted into a separate copy of the blocks_template.html template created for
each function. The template is also embedded with hidden <div> elements, which contain
data from the performance profile in their attributes and are later processed by JavaScript.
After all the HTML files for the functions are created, the index_template.html is filled
with the names of the modules, the aggregate number of instructions executed in the
functions inside each module, and the relative contribution of each module to the total
number of executed instructions. Finally, the files that compose the visualization are saved
in a directory specified by the user with a command-line option.

The visualization is made interactive with several JavaScript scripts and libraries. The
table, displayed on the index page, is extended with search capabilities, paging, and sorting
using the Datatables.js3 library. The rows in the table can also be expanded, revealing
a sub-table that contains the names of functions in that module, the number of executed
instructions in these functions, and their contribution to the number of instructions executed
in the module. Figure 6.1 shows the index table of a CCSDS profile, with one row expanded.

The user can click the function’s name in the expanded sub-table to reveal the control
flow graph visualization. The nodes in the graph are color-coded in a green to red color
palette, depending on the relative number of instructions executed in that basic block.
Figure 6.2 shows an example of this graph visualization. Each node in the graph is clickable,
revealing the details about the basic block. Figure 6.3 shows an example of the detail page.
The ‘Go to source code’ link opens a page with the source code, highlighting the lines

1BeautifulSoup4 – HTML and XML parsing library: https://pypi.org/project/beautifulsoup4/
2Graphviz – open-source graph visualization software: https://graphviz.org/
3Datatables.js – JavaScript table library: https://datatables.net/

33

https://pypi.org/project/beautifulsoup4/
https://graphviz.org/
https://datatables.net/


Figure 6.1: A module table created from a
CCSDS profile, showing each module’s con-
tribution to the total number of executed
instructions. The row containing the dwt.c
module is expanded, revealing a nested ta-
ble with functions contained in this module.

Figure 6.2: A visualization
update_parent_types() control flow
graph. The nodes are colored based on
their contribution to the total number of
instructions executed in this function. The
nodes also contain the approximate number
of instructions executed in each block.

containing the code that created the examined basic block using the Prism.js4 library.
Figure 6.4 shows the source code view with highlighted lines.

4Prism.js – Syntax highlighting library: https://prismjs.com/
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Figure 6.3: Detail of the for.body basic block in the update_parent_types() function.

Figure 6.4: Source code of the update_parent_types() function, with the lines of the
for.body basic block highlighted.
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Chapter 7

Comparison with Established Tools

The performance of the implemented profiler was comparatively evaluated against two
established open-source tools, which also contain an option to collect basic block execution
counts. Although these tools also gather other information, making true apples-to-apples
comparison challenging, this analysis still serves as a valuable benchmark. It shows how
the new profiler would perform in real-world scenarios when used by a user specifically
interested in profiling basic block execution counts.

7.1 Callgrind
Callgrind is a profiling tool based on dynamic binary instrumentation. It is a part of
the Valgrind tool suite. By default, it collects the number of instructions executed, their
relationship to source code lines, caller/callee relationships between functions, and the num-
ber of calls. Like all Valgrind tools, Callgrind does not run the profiled program directly
on the CPU. Instead, it runs the program on a simulated CPU. It uses a disassemble-
and-resynthesize approach, converting machine code to its internal intermediate represen-
tation, performing instrumentation and optimizations, and recompiling back to machine
code. Since it is primarily designed to be a heavyweight profiling tool, the overhead com-
pared to our solution is very high, as shown by Table 7.1, being similar to the very first,
slowest version described in Section 5.2. Since it is a dynamic binary instrumentation tool,
Callgrind does not require recompilation or any special setup, making it very convenient to
use. However, in scenarios when a user wants to perform many profiling runs on different
inputs, and the program has a long runtime, this convenience might not be relevant when
compared to the enormous amount of time taken by the profiling. [24]

7.2 gprof
gprof is a lightweight, compile-time-instrumentation-based profiler, activated by using the
-pg option in the gcc or clang compilers. Internally, its basic block execution counting
mechanism works very similarly to our solution, placing static counter arrays into every
object file. However, it also uses sampling to collect information about time spent in
functions and constructs a dynamic call graph based on the actual execution paths. [7, 11]

Table 7.2 shows the overhead comparison between the implemented profiler and gprof
on the CCSDS project. Table 7.3 contains the same comparison on CPython.
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Image Orig. time [s] Callgrind Implemented profiler
Time [s] Overhead Time [s] Overhead

cdf97-psi.pgm 0.029 1.580 54.48x 0.032 1.10x
Babboon.pgm 0.028 1.574 56.21x 0.033 1.18x
P1010042.pgm 0.038 1.984 52.21x 0.041 1.08x
frame.pgm 0.254 12.155 47.85x 0.303 1.19x
g10.pgm 0.768 37.947 49.41x 0.871 1.13x
m612-be.pgm 1.339 63.120 47.14x 1.586 1.18x
Average 51.22x 1.14x

Table 7.1: A comparison of profiling overhead of Callgrind versus the optimized version of
the implemented profiler, measured on the CCSDS project.

Image Orig. time [s] gprof Implemented profiler
Time [s] Overhead Time [s] Overhead

cdf97-psi.pgm 0.029 0.065 2.24x 0.032 1.10x
Babboon.pgm 0.028 0.066 2.36x 0.033 1.18x
P1010042.pgm 0.038 0.086 2.26x 0.041 1.08x
frame.pgm 0.254 0.596 2.35x 0.303 1.19x
g10.pgm 0.768 1.627 2.12x 0.871 1.13x
m612-be.pgm 1.339 3.120 2.33x 1.586 1.18x
Average 2.28x 1.14x

Table 7.2: A comparison of profiling overhead of gprof versus the optimized version of the
implemented profiler on the CCSDS project (optimization level -O3).

Benchmark Orig. time [s] gprof Implemented profiler
Time [s] Overhead Time [s] Overhead

Math 56.76 79.73 1.40x 74.97 1.32x
Regex 95.59 124.82 1.31x 110.18 1.15x
Scimark 122.58 215.49 1.76x 149.66 1.22x
Apps 510.51 803.48 1.57x 604.03 1.18x
Serialize 594.07 914.59 1.54x 699.96 1.18x
Average 1.52x 1.21x

Table 7.3: A comparison of profiling overhead of gprof versus the optimized version of the
implemented profiler on the CPython interpreter (optimization level -O3).
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Chapter 8

Conclusion

This work aimed to extend the Perun tool suite by implementing a new collector based
on compile-time instrumentation. This collector is a lightweight, low-overhead alternative
to the Trace collector, focusing on profiling basic block execution counts. The implemen-
tation uses the LLVM Pass Framework to perform the instrumentation. The profiler was
designed to easily integrate into build systems like CMake or Unix Makefiles by setting
environment variables and using a custom linker. The runtime overhead was reduced us-
ing several optimization methods, including inlining instrumentation code and control flow
graph analysis to limit the number of instrumentation points without sacrificing the ac-
curacy of the resulting profile. An interactive visualization was implemented to interpret
the profiles. The performance of the profiler was evaluated on two C projects, the CCSDS
image compressing algorithm, and the CPython interpreter. The results show that the
overhead was reduced by about 98% compared to the initial version. The optimized version
of the profiler has achieved an overhead of about 14% on CPython, proving that the profiler
scales well and is usable even for larger projects. The profiler was evaluated against two
existing open-source profilers, achieving lower overhead than even the gprof profiler, which
utilizes similar profiling principles.

Future work. The CFG-based optimizations could be extended with path profiling, such
as the Ball-Larus efficient profiling algorithm [4]. Next, the existing pattern-finding algo-
rithms could be made more efficient to reduce the impact on compile time. Furthermore,
the implemented visualization could be extended to use column number information to vi-
sualize the information more accurately when there are more basic blocks on a single line.
The format of the output files could be adjusted to reduce their size. Lastly, the profiler
will be integrated into the Perun tool suite as a new collector.
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