BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

EFFICIENT INSTRUMENTATION OF PROGRAMS
USING LLVM FRAMEWORK

EFEKTIVNi INSTRUMENTACE PROGRAMU V LLVM

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR VLADIMIR HUCOVIC
AUTOR PRACE
SUPERVISOR Ing. JIRi PAVELA,

VEDOUCI PRACE

BRNO 2024

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Bachelor's Thesis Assignment 1|

Institut: Department of Intelligent Systems (DITS) 156402
Student: Hucovi¢ Vladimir

Programme: Information Technology

Title: Efficient Instrumentation of Programs using LLVM Framework

Category: Software analysis and testing

Academic year: 2023/24

Assignment:

1. Get acquainted with the Perun project (performance version system) and the field of software
profiling.

2. Study the LLVM infrastructure and its program instrumentation methods for resource consumption
measurement (e.g., function duration, executed instructions or memory consumption).

3. Design and implement a profiler using LLVM-based instrumentation. Focus on improving the
efficiency and/or precision of the instrumentation and resource measurement processes.

4. Design and implement suitable visualisation of the resulting collected data (e.g., flame graph or tree
view), or use and enhance one of the existing visualisations in Perun.

5. Demonstrate the solution on at least one non-trivial use-case.

Literature:
+ Oficialni stranky projektu Perun: https://github.com/Perfexionists/perun
» The LLVM Compiler Infrastructure: https://llvm.org/
» Gregg, B. (2020). Systems Performance, (2nd ed.). Pearson. ISBN: 9780136821694.

Requirements for the semestral defence:
First two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Pavela Jifi, Ing.
Consultant: Fiedor Tomas, Ing., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 6.11.2023

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

Abstract

The goal of this thesis is to develop a new, efficient profiler to extend the Perun tool suite,
which focuses on systematic and long-term performance monitoring of software projects.
The new profiler is based on a technique of compile-time instrumentation using the Pass
Framework API within the LLVM compiler infrastructure project. The implemented profiler
focuses on collecting the number of executions of each basic block in the program. Several
optimization techniques, including inlining instrumentation code and function control flow
graph analysis were used to reduce the runtime overhead of the profiler. The performance
of the profiler was evaluated on two real-world projects and experiments have shown that
it achieved lower profiling overhead than some established open-source tools.

Abstrakt

Cilem této prace je vyvinout novy, efektivni profilovaci nastroj, ktery rozsituje sadu nastrojt
Perun, ktera je zamérena na systematické a dlouhodobé monitorovani vykonu softwarovych
projekti. Novy néstroj je zalozeny na technice instrumentace pri prekladu, s vyuzitim
API systému Pass Framework, ktery je soucasti projektu LLVM. Implementovany profilo-
vaci nastroj sbird pocet vykonani zédkladnich blokt v programu. Neékolik optimalizac¢nich
technik, jako je inlining instrumentacniho kédu nebo analyza grafu toku fizeni funkci, bylo
vyuzito pro snizeni profilovaci rezie tohoto nastroje. Vykon néastroje byl vyhodnocen na
dvou projektech a experimenty ukazaly, ze jeho profilovaci rezie je nizsi nez rezie nékterych
existujicich open-source nastroju.

Keywords

performance analysis, compile-time instrumentation, static instrumentation, LLVM, Perun,
LLVM pass framework, LLVM pass plugin

Klicova slova
vykonnostni analyza, instrumentace pii prekladu, statickd instrumentace, LLVM, Perun,
LLVM prtchod, LLVM pass plugin

Reference

HUCOVIC, Vladimir. Efficient Instrumentation of Programs
using LLVM Framework. Brno, 2024. Bachelor’s thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor Ing. Jifi Pavela,

Rozsireny abstrakt

Vykon spotrebitelskych aplikaci je vyznamnym faktorem uzivatelské zkusenosti, jak ukazuji
studie zamérené na analyzu vykonu webovych stranek a spokojenosti zdkazniki, pricemz
79% uzivateli, kter{ byli nespokojeni s vykonem webové stranky pfi jejich prvni navstéve,
ji pravdépodobné nikdy znovu nenavstivi. Staci jednosekundové zpozdéni nacitani stranky
internetového obchodu, aby mira konverze zdkaznikua klesla o 7% [5].

Provozovani efektivnéjsich aplikaci v datovych centrech by mohlo pomoci snizit jejich
spotfebu energie, kterd by podle nékterych predpovédi méla do roku 2030 dosdhnout 3
biliony kWh ro¢né, oproti méné nez 500 miliarddm kWh v roce 2010 [14].

Vykon softwaru je také dilezity ve vestavénych a mobilnich systémech, kde jsou zdroje
omezené a zarizeni jsou bézné pohanéna bateriemi s omezenou kapacitou. Optimalizovanim
aplikaci mohou vyvojari zlepsit vydrz baterie na jedno nabiti a s tim i zivotnost baterie. [30]

Po desetileti byla neustédle rostouci poptavka po vypocetnim vykonu kompenzovana
Mooreovym zdikonem, predpovédi spoluzakladatele spolec¢nosti Intel Gordona Moorea, ze
pocet tranzistoru na ¢ipech se bude kazdé dva roky zdvojnasobovat. V posledni dobé se
objevily znamky, ze Mooretuv zdkon zpomaluje, protoze navrhari ¢ipu se blizi fyzikdlnim
limitim. Nelze ale Fici, ze by pozadavky modernich aplikaci na stile vice vypocetnich
zdroju zpomalovaly s nim. [19, 31].

Aby vyvojari vyhovéli pozadavkim na vykon aplikaci ve svété, ktery se jiz nefidi Moore-
ovym zakonem, budou muset vénovat vice ¢asu a pozornosti optimalizaci aplikaci a pred-
chazeni vykonnostni degradaci. Specializované nastroje jsou nezbytné pro sbér, interpretaci
a vizualizaci vykonnostnich dat, stejné jako pro monitoring vykonu softwarovych projektu
béhem celého vyvojového cyklu. Jednim z prostiedkil vyvinutych pro tento tcel je open-
source sada néstroji Perun [8].

Vétsina profilerd pouzivanych v sadé nastroji Perun je zaloZena na dobie zavedené
technice profilovani: instrumentaci. I kdyz instrumentace nabizi velkou flexibilitu co se
tyce rozsahu dostupnych metrik, které lze mérit v riizné granularité, dosahuje toho za cenu
vysoké rezie. Tato rezie by mohla byt omezena pouzitim technik, jako je instrumentace pii
prekladu.

V ramci této prace jsme vytvorili novy profilovaci nastroj, ktery rozsiii sadu nastroju
Perun. Tento novy nastroj se zaméfuje na efektivni profilovani po¢tu vykonanych instrukei
v programech napsanych v jazycich C a C++ s granularitou na trovni zékladnich blokii,
pri¢emz minimalizuje rezii vyuzitim optimaliza¢nich technik specifickych pro profilovani
zalozené na instrumentaci pri prekladu.

Celkem byly vyvinuty a porovnany 4 verze nastroje. Nejprve byly optimalizovany datové
struktury, do kterych se pri profilovani ukladdaji informace, aby rezie spojena se zapisem
do téchto struktur byla co nejnizsi. Volani instrumentacnich funkci bylo nahrazeno inline
instrumentaci. V neposledni fadé bylo vyuzito statické analyzy grafu toku fizeni pro snizeni
poctu instrumentacnich bodu, aniz by byla ovlivnéna presnost vysledného profilu. Kromé
néstroje samotného byla vyvinuta i interaktivni vizualizace namérenych dat.

Vyvinuty nastroj byl vyhodnocen na dvou open-source projektech, kompresnim nastroji
CCSDS a interpretu CPython. Experimenty ukazaly, Ze oproti prvni verzi nastroje byla rezie
snizena o vice nez 90%. Néstroj byl porovnan se dvéma open-source profilovacimi nastroji
Callgrind a gprof. Vysledky ukazaly, Ze optimalizovana verze nastroje dosahuje nizsi
rezie, nez tyto zavedené nastroje.

Efficient Instrumentation of Programs
using LLVM Framework

Declaration

I hereby declare that this bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Jit{ Pavela and Ing. Tomas Fiedor, Ph.D. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

Vladimir Hucovi¢
May 8, 2024

Acknowledgements

I would like to thank Ing. Jifi Pavela and Ing. Tomas Fiedor, Ph.D. for providing me with
excellent guidance, advice, and feedback. I would also like to thank my friends and family
for always supporting me in pursuing my academic goals.

Contents

Introduction

Performance Analysis

2.1 Instrumentation
2.1.1 Static instrumentation
2.1.2 Dynamic instrumentation Lo 0L

2.2 Statistical profiling

2.3 Tracing
2.3.1 Hardware tracing

2.4 Conclusion e e e e

Perun

3.1 Architecture e

3.2 Collectors e
3.2.1 Time Collector
3.2.2 Memory Collector
3.2.3 Complexity Collector
3.2.4 Trace Collector e

LLVM Compiler Infrastructure

4.1 Architecture
4.2 LIVMIR e
421 LLVMIR Module
4.3 LLVM Pass Framework
4.3.1 PassPlugins
4.4 Instrumentation in LLVM oo

Design and Implementation

5.1 Benchmarks e
5.2 Hashtable-based implementation
5.3 An array-based implementation L.
5.4 Inlining instrumentation code o 0oL
5.5 A per-module static array implementationo
5.6 Control flow graph patterns oL
5.6.1 The Diamond pattern
5.6.2 The Half-diamond pattern
5.6.3 Unconditional jump pattern
5.6.4 Sum of exit block executions oL

N BEN B e RN er N e NG I, w

© oo @

10
10

12
12
13
13
15
16
17

5.6.5 Impact of pattern optimizations on overhead
5.7 Final implementation L Lo Lo

6 Post processing and visualization

7 Comparison with Established Tools
7.1 Callgrind e
T2 gprof . ..o

8 Conclusion

Bibliography

33

36
36
36

38

39

Chapter 1

Introduction

The performance of consumer applications is a significant factor in user experience, as shown
by studies focused on analyzing website performance and customer satisfaction, with 79%
of users who were dissatisfied with website performance on their first visit being less likely
ever to use it again. Additionally, it takes just a one-second delay in page loading time on
an e-commerce website for the customer conversion rate to drop by 7% [5].

Running more efficient applications in data center and cloud computing environments
could help reduce their energy consumption, which is, according to some predictions, on
track to reach 3 trillion kWh per year by 2030, up from less than 500 billion in 2010 [14].

Better software performance is also important in embedded and mobile systems, where
resources are scarce, and devices are commonly powered by batteries with limited capacities.
By optimizing applications to be more efficient, developers can improve the battery life of
these devices and the lifespan of the batteries [30].

For decades, the ever-increasing demand for computing power has been compensated by
Moore’s law, a prediction made by the co-founder of Intel, Gordon Moore, that the number
of transistors on chips would double every two years. Recently, there have been signs that
Moore’s law might be slowing down as chip designers are approaching the limits of physics.
There is, however, no evidence that the appetite of modern applications for more computing
power is slowing down with it. [19, 31].

To meet demands on application performance, developers in post-Moore’s law world
will have to dedicate more time and attention to optimizing applications and avoiding
performance degradation. Specialized tools are necessary for the purpose of collecting,
interpreting, and visualizing performance-related data, as well as performance monitoring
of software projects throughout their development life cycle. One of the tools developed
for this purpose is the open-source tool suite Perun [8], built specifically with continuous
integration and long-term performance monitoring in mind.

Most of the profilers used in Perun’s tool suite are based on a well-established profiling
technique: instrumentation. While instrumentation offers great flexibility in terms of the
range of available metrics that can be measured at various granularities, it comes at a
price of substantial overhead. This overhead could be limited by using more lightweight
techniques, such as compile-time instrumentation.

This work aims to create a new profiling tool to extend Perun’s tool suite. This new tool
focuses on efficiently profiling the number of executed instructions in C/C++ programs with
basic-block-level granularity while minimizing overhead by taking advantage of optimization
techniques specific to profiling based on compile-time instrumentation.

Sturcture of the thesis. Chapter 2 introduces common profiling techniques, their
unique advantages and tradeoffs. Chapter 3 describes the Perun tool suite, its architecture,
and the currently implemented performance data collectors. Chapter 4 provides an overview
of the architecture of the LLVM Compiler Infrastructure, which is used by the implemented
profiler for instrumentation through its Pass Framework. Chapter 5 describes the design
and implementation of the profiler, with a focus on the techniques used to improve its
performance by reducing runtime overhead. This chapter also contains an experimental
evaluation of the profiler on two projects, highlighting the incremental improvements in
usability and runtime overhead in each version. Chapter 6 shows the implemented visual-
izations of collected data. Chapter 7 compares the performance of the implemented profiler
with two established open-source profilers. Chapter 8 summarises the results and discusses
potential future work.

Chapter 2

Performance Analysis

In a book written by an acclaimed performance expert, Brendan Gregg, Systems Perfor-
mance and the Cloud [13], Gregg describes profiling as ‘use of tools that perform sampling:
taking a subset of measurements to paint a coarse picture of the target. In this thesis, the
word ‘profiling’” will be used to describe the overarching process of dynamic performance
analysis and testing, similar to publications like [23]. In this context, profiling is a tech-
nique that software engineers use to analyze the behavior of a program by collecting various
performance-related metrics, such as time, memory or power consumption, I/O utilization,
and others.

Performance analysis has become crucial in modern software development. Computers
nowadays are much more complex than just a few decades ago, and it is near impossible for
programmers to accurately assess how exactly their program interacts with the hardware
executing it. Specialized tools, called profilers, aim to solve this problem. Profilers collect
the required performance data about the program, which engineers can then interpret and
utilize to tweak the program to improve its performance.

This chapter first introduces instrumentation as an essential technique used in many
modern profilers. We compare different approaches to instrumentation and describe their
advantages and disadvantages. Finally, we provide an overview of other common profiling
techniques, summarize their characteristics, and provide example tools that utilize each
technique.

2.1 Instrumentation

Instrumentation involves modifying an existing program by adding additional code (further
referred to as ‘instrumentation code’). This can be done manually by the programmer or
by an automated tool that operates with a predefined instrumentation policy. For example,
the policy might dictate that a call to an instrumentation function is inserted before and
after each function call.

The advantage of using instrumentation-based techniques for profiling is the level of
detail that the analysis can provide. By using custom instrumentation functions, all kinds
of information about the running program can be recorded at various points of its execution,
with various levels of granularity'. However, the main drawback is the overhead introduced

!Granularity refers to the level of detail that the method provides, e.g., a profiling method with function-
level granularity can provide performance information about functions, but cannot distinguish finer details
within those functions, such as lines of code or individual instructions.

by the additional code, which can significantly affect the program’s performance and may
not be suitable for profiling in production environments. Since instrumentation modifies
the program, it may introduce side effects, such as cache pollution, which could cause useful
program data to be evicted from the cache in favor of data related to the instrumentation
code. As a result, it may produce distortions in the collected performance data.

2.1.1 Static instrumentation

Static instrumentation involves inserting code into a program before it runs or compiles.
This type of instrumentation can take place at the source-code level, as is typically the case
with manually added instrumentation points or with tools that specialize in the automatic
instrumentation of code written in a particular language. The advantage of this approach
is that the tool has complete access to all source-level information. This can be used for
detailed analysis before any instrumentation is performed, possibly leading to more efficient
instrumentation. The obvious disadvantage is the lack of flexibility — it can only be used
for one source language. The added instrumentation code also increases the size of the
resulting executable file.

More commonly, static instrumentation takes place at the binary level. That involves
disassembling the executable file or object files, inserting instrumentation code, and re-
assembling the binary again. This approach is used, e.g., by the PEBIL tool [18].

A middle ground between these two approaches is the instrumentation of an interme-
diate representation (IR) language, which compilers use to perform internal analyses and
transformations, especially optimizations [22]. Intermediate representations retain more
information about the original code, which can be used for more detailed analysis before
performing the instrumentation. At the same time, however, they can be source-language-
agnostic, which lends them more flexibility than the instrumentation of high-level source
code.

2.1.2 Dynamic instrumentation

Dynamic instrumentation refers to rewriting the executable code at runtime. Therefore,
this instrumentation can only be done at the binary level. This is done either by using a
wrapper over the analyzed program, an external process, or tools provided by the operating
system, e.g., uprobes or kprobes in Linux, described in Section 2.3. The major advantage
of this approach is that it is usable for programs that utilize dynamically generated code,
and provides full coverage of the target, including dynamically loaded libraries. It also
typically does not require any preparation of the profiled program, making it very convenient
for users. The disadvantage is that the cost of instrumentation is incurred at runtime.
Additionally, when handling the instrumentation routines, the program has to be paused,
its state (such as the contents of registers) saved and then restored once the routines have
been completed. These factors make it one of the slowest methods of dynamic analysis.
Valgrind, SystemTap, and Intel Pin are examples of popular tools that utilize dynamic
instrumentation. [24, 23]

2.2 Statistical profiling

Another notable technique is statistical profiling, sometimes referred to as just sampling.
This method does not typically require instrumentation of the program: it merely samples

the program’s stack trace or the CPU’s instruction pointer at set intervals. The major
advantage of this technique is that the added overhead is minimal compared to other tech-
niques. Since the code of the program is not modified, this method can avoid some side
effects of instrumentation-based methods. The disadvantage is that the resulting profile
is not a completely accurate representation of the program’s performance, and the degree
of inaccuracy depends on the sampling rate. Increasing the sampling rate will improve
accuracy but incurs additional overhead [12]. An example of a tool that provides statistical
profiling capabilities is the Linux tool perf.

2.3 Tracing

Tracing is an event-based approach to profiling, where each instance of an event in a set
of events is recorded. This recording produces a program’s trace — a complete picture of
the events that took place during the program’s run. The disadvantage of tracing is that it
can be very expensive in terms of overhead, depending on the rate of the observed events.
Tracing also often produces a large amount of data, which takes up a lot of disk space, and
the post-processing required to interpret the collected data can be very time-consuming.
Linux tools strace and ftrace are examples of tracing profilers. The former is designed to
trace system calls and incoming signals, while the latter traces function calls.

Some tracing tools utilize kernel tracepoints, static probes inserted into logical execution
points inside the Linux kernel. They provide a stable interface, which means that robust
tools can be built around them. Their advantage is that the overhead is very small, though
this largely depends on the rate of events. They can also be disabled, transforming them
into no-op instructions, causing only negligible overhead.

Other tools utilize kprobes, which are probes based on dynamic instrumentation — they
expose raw kernel functions and arguments that can change between kernel versions. There
is also a user-space variant of kprobes, called uprobes, which dynamically instrument func-
tions in applications and libraries. [13]

2.3.1 Hardware tracing

Some CPU manufacturers provide hardware CPU tracing on their architectures. This
includes tools such as Intel Processor Trace [15] or AMD pProf [1]. Because of the tight
integration with the CPU and its architecture, this profiling method is one of the cheapest
in terms of incurred time overhead [27]. Apart from the common, higher-level metrics, such
as instruction execution count or time information, it also enables accurate monitoring
of low-level metrics, such as cache hits and misses or thermal performance and energy
consumption, as is the case with AMD pProf. CPU manufacturers also provide software
tools to analyze and visualize the collected data, making hardware profiling a complete
solution for developers looking to monitor these metrics. The disadvantage is that this
method is entirely dependent on hardware features. Therefore, it is not portable to other
architectures.

2.4 Conclusion

This chapter introduced some of the most common profiling techniques used by modern
profilers. No matter which technique is used, a profiler must always balance the granularity
and accuracy of collected metrics, overhead, and portability.

Chapter 3

Perun

Perun is an open-source software project that aims to help developers monitor their pro-
gram’s performance throughout its development lifecycle. It works by wrapping over ex-
isting version control systems like Git and providing various performance-related tools for
profiling, visualizing measured data, detecting performance degradation, modeling perfor-
mance based on statistical models, fuzz testing, etc. This chapter provides a brief overview
of Perun’s architecture and describes Perun collectors with a focus on the main collector,
Tracer, designed to collect performance data of C and C++4 programs. It is based on
Perun’s online documentation [9] and a paper written by Perun’s authors. [8]

3.1 Architecture

Perun’s architecture centers around profiles, a data unit stored in a format based on JSON',
which acts as an interface between all tools in the Perun tool suite. These profiles are
created by a collector module responsible for collecting the program’s raw performance
data. Profiles can be transformed using post-processing tools, which can also be used
for statistical analysis. Visualization modules enable users to interpret the collected data
using scatter plots, flame graphs, etc. After post-processing, profiles are assigned their
minor version (the VCS? commit they belong to) and stored in a compressed format in the
persistent storage. With subsequent versions, these profiles can be retrieved and used to
check for performance degradation in a new commit. The entire process can be automated
using runners, which are configured using the YAML? format and they can be set up to
automatically run after committing changes to a code base, e.g., with Git hooks.

Perun provides a simple API that allows users to register their own collectors, post-
processors, or visualization tools by placing their tool in the appropriate subdirectory
(perun.collect, perun.postprocess or perun.view) and implementing the run.py mod-
ule. This makes Perun easily extendable with new tools, suited for custom analytics and
performance monitoring tailored to a specific project’s needs. Figure 3.1 depicts Perun’s
architecture.

! JavaScript Object Notation: https://www.json.org/json-en.html
2Version Control System
3YAML Ain’t Markup Language: https://yaml.org/

https://www.json.org/json-en.html
 https://yaml.org/

Collect
Call

PERUN ves
GIT
Detection Interact
' Il T
By Average —
. Interact
A uses with
<€ >
| By Complexity I Call Profile
| i | and
ostprocess
B — Generates Runners
Call ¢ Uses
Regression | -
Analysis | nterpretation |
oo S |
| Regressogrm | Flame Graph
! Kernel Estimate +
el st cLI

Generators

Generate
Workload

Collectors

Figure 3.1: A schema of the Perun tool suite’s architecture. [9]

3.2 Collectors

Collectors measure a program’s performance to create profiles. Their work can be divided

into four phases:

o Before: This is an optional phase that occurs before the actual collection of profiling
data. Its purpose is to initialize the collector and prepare the project being profiled

for the collection process, e.g., using a custom compilation process.

e Collect: In this phase, the profiled program is run, the collector collects the raw

performance data, and, ideally, generates the profile in the unified format.

o After: The final and optional phase occurs after the resources have been successfully
collected. This phase includes filtering or transforming the profile as needed.

e Teardown: In this phase, the collection resources are cleaned up. e.g., files, processes,

locks, kernel modules, etc.

Perun’s API allows users to register their own collector by defining the before, collect,
after and teardown methods in the collector’s run.py module. Additionally, Perun comes
with several pre-registered collectors, focused on profiling various performance metrics. The
profiling tool developed in this thesis will soon be on the list of available collectors.

3.2.1 Time Collector

As a simple wrapper over the Unix time utility, this collector provides the total execution
time of the program, as well as the amount of user time (the actual work of the program)

and kernel time (the time spent executing system calls).

Instrumentation Instrumented Performance Performance
Program Executables Raw Data Profile
Instr

E- : Exirecson i Instrument E-E Run N
. agPing Ra=Ri

il
Instrumentation -

Specification
(optional)

Executables

Figure 3.2: Schematic representation of Trace collector’s workflow. [8]

3.2.2 Memory Collector

This collector provides information about memory allocations in C/C++ programs. It logs
the amount of allocated memory, allocation type (e.g., malloc, realloc), address of the
allocated memory, and the location in the source code where the allocation took place,
together with the stack trace at the time of allocation. It accomplishes this by overriding
the standard C library’s memory allocation functions with custom functions, which log the
additional information and delegate the allocation to the original functions. [26]

3.2.3 Complexity Collector

This collector gathers information about time spent in functions and the size of their inputs.
It uses this information together with regression analysis to estimate the complexity of algo-
rithms. It is based on compile-time instrumentation through the -finstrument-functions
command line parameter of the gcc and clang compilers. [25]

3.2.4 Trace Collector

Trace collector (Tracer) is the most sophisticated collector that comes with Perun. It
measures time spent in functions of C and C++ programs by collecting timestamps at the
entry and exit points of functions. It is built on SystemTap and eBPF frameworks, thus
relying on binary instrumentation. It is extendable, allowing new profiling frameworks to
be integrated into Tracer, and there is currently a pending merge request’ in the Perun
repository for a new Tracer engine’ that uses Intel Pin as the underlying framework. Tracer
is highly configurable, allowing users to select, e.g., the instrumentation engine, the probing
strategy (which can be set to utilize sampling), or manually specify the functions to be
profiled. If no functions are specified, Tracer can automatically extract the functions from
the binary based on the selected probing strategy. Figure 3.2 shows Tracer’s profiling
workflow.

Collecting the time spent in a program’s functions is a resource-intensive endeavor,
especially if the user requires a complete picture of the program’s performance and, there-
fore, does not consider sampling as a viable method of reducing the profiling overhead.
Additionally, Tracer’s underlying frameworks are based exclusively on dynamic binary in-

4PIN-based Tracer engine with visualizations: https://github.com/Perfexionists/perun/pull/157/
commits
®Tracer engine — the underlying framework that performs the instrumentation.

10

https://github.com/Perfexionists/perun/pull/157/commits
https://github.com/Perfexionists/perun/pull/157/commits

strumentation, which, as described in Chapter 2, generally incurs higher time overhead than
other types of instrumentation. The engines currently supported by Tracer are only built
for the Linux platform, compromising Tracer’s flexibility and applicability across different
operating systems. The SystemTap engine also requires the user to install a compatible
kernel version with debugging symbols, which places a heavy prerequisite burden on the
user. This requirement can be a significant barrier for users who do not have the necessary
permissions or capabilities to change their system’s kernel, such as users using managed or
restricted environments where such modifications are not permitted.

The new collector developed in this thesis aims to address these shortcomings by pro-
viding the option to measure cheaper metrics, utilizing compile-time instrumentation, and
offering a less restrictive set of dependencies.

11

Chapter 4

LLVM Compiler Infrastructure

LLVM is a modern, modular, open-source compiler infrastructure, built around a source-
independent intermediate representation LLVM IR. It is primarily used to compile lan-
guages from the C language family, e.g., C, C4++, or Objective C. The modular nature
of the compiler allows for other languages to be compiled as well, provided that there is
a front-end that can compile the language in question into the aforementioned LLVM IR
language. Therefore, many compilers for other programming languages leverage the LLVM
infrastructure for optimizations and machine code generation, e.g., swiftc, the compiler for
the Swift programming language, or the Glasgow Haskell Compiler. [3, 10]

This chapter describes LLVM’s architecture, LLVM IR, and the Pass Framework, which
can be used to customize the compilation process. The information included in this chapter
is based primarily on the online LLVM API documentation, the LLVM language reference
manual, and the LLVM conference paper. [20, 21, 17]

4.1 Architecture

The LLVM infrastructure comprises several sub-projects that work together to provide a
comprehensive compiler framework. Its architecture is based on the popular three-phase
architecture on which many modern compilers are built [6]. The first part is the front
end, responsible for parsing the source code and creating an intermediate representation.

Y
—
x86 backend —> x86 object code

C/C++ code —»| C/C++ frontend (clang)

w‘
~ @@

LLVM IR

Optimized IR
~ @@

Optimized IR

Haskell code —>»] Haskell frontend (ghc) Optimizer (opt) ARM backend —> ARM object code

Swift code —»y

-
Y

Swift frontend (swiftc)

LLVM IR

~— @@

Optimized IR

~— @@
YN

PowerPC backend

—> PowerPC object code

~ @@

Figure 4.1: A High-level overview of LLVM’s three-phase architecture. The front end for
a given source language compiles the source code to LLVM IR, which acts as input to
the optimizer. After optimizations, the target architecture is selected, and the appropriate
backend generates object code or assembly code for the selected architecture. [6]

12

Then comes the middle end, which analyses the intermediate representation and performs
optimizations. Lastly comes the back end, which takes the optimized intermediate repre-
sentation and turns it into the target architecture’s machine or assembly code. LLVM’s
modular nature allows for each of these parts to be swapped out, meaning that compiler
developers can create a front end for any programming language and use the other parts of
the LLVM infrastructure for optimizations and target code generation. The same applies
to the back end — languages with an implemented front end to LLVM IR can be ported
to new architectures by creating a new back-end module that compiles LLVM IR into that
architecture’s instruction set. Figure 4.1 shows a high-level schema of LLVM’s architecture.

4.2 LLVM IR

Using an intermediate representation in the compilation process simplifies the compiler
optimizations that make the resulting machine code more efficient. LLVM uses a custom
intermediate representation called LLVM IR. It is designed to be a source-language-agnostic
representation, allowing all kinds of languages to be compiled into this common represen-
tation and leverage the possibilities of the entire LLVM toolchain. LLVM IR is based on
the SSA (Single Static Assignment) form, which dicatates that every variable is a target of
only one assignment and the definition of a variable dominates all of its uses. This form
simplifies and improves the efficiency of several types of optimizations, including constant
propagation, value numbering, or partial-redundancy elimination. [22]

LLVM IR is designed to be used in three equivalent forms: an in-memory compiler
IR, an on-disk bitcode representation to be used for JIT compilers, and a human-readable
representation useful for debugging purposes.

LLVM programs are composed of Modules, with one module created for every compila-
tion unit in the source code. Modules can also be linked using the llvm-link tool provided
by the toolchain.

4.2.1 LLVM IR Module

LLVM IR modules contain global variables, type definitions, target architecture metadata,
function declarations, and definitions. Optionally, debugging information in a debugger-
agnostic format may be included as well. This format is convertible to different formats to
be consumed by various debuggers (e.g. DWARF format for DWARF-based debuggers or
a proprietary format such as PDB for Microsoft Visual Studio debugger).

Listing 4.3 shows the LLVM IR module produced by clang by compiling C code shown
in Listing 4.1

Identifiers

LLVM identifiers are either global or local. A global identifier is prefixed with the @ char-
acter, while local identifiers, primarily virtual registers, are prefixed with the % character.
Values can be named or unnamed: named values are identified by their scope prefix and a
string, which corresponds to their name in the original source code. Unnamed values are
identified by their scope prefix and an integer.

13

int global_variable = O;
int main() {
int local_variable = 5;
global_variable = 10 +
local_variable;
return O;

3

Listing 4.1: A module written in the
C language, containing one function and
one global variable.

13 = IDIFile(filename: "main.c", ...)
114 = distinct !DISubprogram(...)
118 = !DILocalVariable(name: "

local_variable", ...)
119 = 'DILocation(line: 4, column: 6,
scope: !14)
120 = !'DILocation(line: 5, column: 9,
scope: !14)
121 = IDILocation(line: 5, column:

24, scope: !14)
122 = IDILocation(line: 5, column: 2,
scope: !14)

; ModulelID = ’main.c’
source_filename = "main.c"
target triple = "x86_64-unknown-linux-gnu

Oglobal_variable = dso_local global i32
0, align 4, !dbg !'0

; Function Attrs: noinline nounwind
optnone uwtable
define dso_local i32 @main() #0 !dbg !14
{
%1 alloca i32, align 4
%2 = alloca i32, align 4
store i32 0, ptr %1, align 4
call void @llvm.dbg.declare(metadata
ptr %2, metadata !18, metadata !
DIExpression()), !dbg !19
store i32 10, ptr %2, align 4, !dbg !19
%3 = load i32, ptr %2, align 4, !dbg

120
%4 = add nsw i32 %3, 5, !dbg !21
ret i32 %4, !dbg !22

}

Listing 4.2: Location nodes in the LLVM
metadata graph. The nodes are prefixed
with the ! character and they are being
referenced from the IR instructions.

Functions

Listing 4.3: An LLVM IR module compiled
from the code shown in listing 4.1. Apart from
regular instructions, it contains a debugger
intrinsic instruction 1llvm.dbg.declare,
which tracks a source code variable through
compiler optimizations.

Functions in LLVM modules can be either defined with complete bodies or declared as exter-
nal references. Each function is linked to an attribute node that specifies its characteristics,
such as calling conventions or optimization strategies.

Functions consist of basic blocks', each uniquely identified within the scope of its func-
tion. By default, basic blocks are labeled with integer identifiers, which share the inte-
ger pool with virtual registers in the same function. However, the clang compiler option
fno-discard-value—-names can be used to give basic blocks more descriptive labels depend-
ing on their relationship to the source code. For example, a basic block that represents an
else block in a conditional structure is named if.else.

Instructions

Basic blocks are comprised of instructions. Most LLVM IR instructions are in 3-address
form, meaning they take one or two inputs, produce a single result, and store this result in

'Basic block — a linear sequence of instructions that has one entry point and one exit point.

14

the destination operand. The instruction set was designed to be a low-level representation
of a program, thus enabling a straightforward compilation to target architectures while
supporting high-level analyses and transformations. Apart from arithmetic, bitwise, and
memory access operations, which are standard in all 3-address languages, LLVM IR con-
tains many other types of instructions, such as vector instructions which represent vector
operations in a target-independent way, or ¢-instructions, which select the correct value for
variables depending on which path was taken through the control flow. [16]

Metadata

At the end of each LLVM IR module are debugging metadata. Metadata nodes are prefixed
with the ! character and contain different types of information depending on the node type,
such as information about data types, information about which lines in the source code
created a particular instruction, and others. The identifiers of metadata nodes are attached
to IR instructions, and some types of nodes can contain links to other nodes, forming a
graph. Listing 4.2 contains some metadata nodes, which are attached to instructions in
Listing 4.3.

4.3 LLVM Pass Framework

LLVM Passes are modular components within the LLVM framework designed to analyze
or transform the LLVM IR of programs during compilation. They are primarily used to
facilitate compiler optimizations or to gather additional debugging information about the
program. Passes operate at various granularities, defined by the unit of IR on which the
pass operates, e.g., a loop, a function, or an entire module. Passes are grouped into pass
pipelines that define which passes are run on each unit of IR and in what order — for
example, depending on the chosen optimization level using the -0 parameter in clang, a
different pass pipeline is internally constructed and run on the program.

LLVM’s C++4 API allows developers to create their own passes, allowing for custom
analyses and transformations. These passes can be created as standalone executable pro-
grams linked with the LLVM API, or as Pass Plugins, which are executed after being loaded
into other LLVM tools as shared objects.

Relevant classes

Before a Pass can be executed on a unit of IR, several classes have to be instantiated. These
classes include the PassBuilder and the PassManager”, which facilitate the building and
running of the pass pipelines, and a specific instance of an AnalysisManager class (e.g.,
a ModuleAnalysisManager for Module Passes). A PassManager contains a sequence of
passes, which run one after another on a unit of IR. The pass manager itself is a pass
responsible for running the passes it contains and propagating the AnalysisManager object
to the passes it runs.

The AnalysisManager object caches the computed analyses of each pass in the pipeline,
allowing for faster pipeline executions without performing redundant analyses. To ac-
complish this, the run() method of a pass returns a PreservedAnalysis object, which

2There are currently two pass managers in the LLVM project: a new pass manager, introduced in LLVM
13, and the legacy pass manager. In this thesis, the term ‘pass manager’ refers to the new pass manager.
While the legacy pass manager is still available in recent LLVM versions, it is now considered deprecated
and will eventually be removed.

15

contains the analyses that are preserved after the pass finishes running. Passes that do
not transform the IR in any way (referred to as Analysis passes) typically return the
PreservedAnalyses::all() object, which tells the next pass in the pipeline that no pre-
viously computed analyses have been invalidated. Passes that modify the IR (referred
to as Transformation Passes) typically invalidate the results of many previous analyses
and must either return the PreservedAnalyses: :none() object, which invalidates all pre-
viously computed analyses, or the programmer can build a custom PreservedAnalyses
object and add a set of analyses which are preserved and can be used by the following
passes.

Passes extend the PassInfoMixin class. They override the run() method, which takes
an instance of AnalysisManager and the reference to the unit of IR the pass is supposed to
operate on. The Pass Manager enables the registration of four types of passes, depending
on the unit:

e Module Pass — runs on an entire LLVM IR module.

o CGSCC (Call-Graph Strongly Connected Components) Pass — runs on strongly con-
nected components in the call graph, typically used for callee simplification and in-
lining passes.

e Function Pass — runs on one function in a module at a time, independent of other
functions in the module.

e Loop Pass — runs on every loop inside a function, independent of other loops in the
function.

This pass hierarchy exists primarily for the purposes of pipeline optimization. Declaring
a pass as, e.g., a Function Pass does not restrict its ability to modify the containing module.
However, separate invocations of the same pass are completely independent and do not
share any internal state. For this reason, even if a pass needs to modify only the bodies
of individual functions but requires information about other functions to perform these
modifications, it makes sense to use a Module Pass. Doing the same with a Function Pass
would require managing the state through external means, such as by writing to and reading
from files.

4.3.1 Pass Plugins

Pass plugins are LLVM passes that are injected into the compiler’s default optimization
pipelines. This is achieved by registering the custom pass with the PassManager object
and using the PassBuilder object to specify the point in the optimization pipeline where
the custom pass should run, e.g., after or before loop-related optimizations. Plugins are
designed to be loaded into compatible LLVM tools, such as clang or opt. To make them
recognize passes as valid plugins, at least one of two entry points has to be provided by the
plugin.

e Static entry point. This entry point is used in case the developer wants to link
the plugin with compatible tools statically. This makes sense, for example, when
developing a pass directly in the LLVM source tree with the goal of contributing to
the project.

16

using namespace llvm;
class SamplePass : public PassInfoMixin<SamplePass> {
public:
// This function is called by the PassManager to run the pass.
PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM) {
errs() << M.getName() << "\n";
return PreservedAnalyses::all();

};

// Entry point for the static registration of the plugin
PassPluginLibraryInfo getSamplePassPluginInfo() {
auto passPluginCallback = [](PassBuilder &PB) {
// Registers the pass at the end of the function
// optimization pipeline
PB.registerOptimizerLastEPCallback(
[1 (ModulePassManager &MPM, OptimizationLevel L) {
MPM.addPass (SamplePass()) ;
}
)5
};
return {LLVM_PLUGIN_API_VERSION, "sample-pass", "v1.0", passPluginCallback};
}

// Entry point for the dynamic registration of the plugin

extern "C"

PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK llvmGetSamplePassPluginInfo() {
return getSamplePassPluginInfo();

¥

Listing 4.4: An example of a simple analysis LLVM Pass Plugin, operating on the Module
unit. The pass prints the name of the module to the standard error output stream. The
functions getSamplePassPluginInfo() and 1lvmGetSamplePassPluginInfo() act as the
static and dynamic entry point for plugin-compatible LLVM tools.

e Dynamic entry point. This entry point is used when the pass plugin is compiled
into a shared library, which can be loaded into compatible tools through command
line options.

In either case, the entry point is a function that returns an instance of the PassPlugin-
LibraryInfo structure. This structure provides the necessary information to the tool run-
ning this pass. Specifically, it contains the LLVM API version that the plugin understands,
the name and version of the plugin, and a callback function that registers the pass with the
PassBuilder instance of the tool that loaded this plugin. Listing 4.4 contains an example
of a simple pass plugin that runs on the Module unit and contains both a static and a
dynamic entry point.

4.4 Instrumentation in LLVM

While the IR generation capabilities of the LLVM API are primarily intended for developing
new language front-ends, the same API can also be used to perform custom instrumentation.

17

The simplest and most efficient way to build new instructions is through the IRBuilder
class, which provides methods for creating all types of instructions and inserting them
into basic blocks. The user can specify an insertion point to the IRBuilder through its
SetInsertionPoint () method, which takes an instance of Instruction as a parameter.
Any instructions created through that instance of IRBuilder will be placed before the
instruction set as an insertion point. Besides instructions, the IRBuilder can insert new
global variables into the module or create and modify metadata.

Instrumentation will typically involve inserting call instructions, which call instrumen-
tation functions located in a separate instrumentation code module. Before a call can
be inserted, the function first has to be declared inside the module. This can be eas-
ily done through the Module object’s getOrInsertFunction() method, which takes the
name of the function and a FunctionType object that contains the signature of that func-
tion. The method returns a FunctionCallee object, which is passed to the IRBuilder’s
CreateCall() method together with the arguments in the form of instances of the Value
class. These instances can also be created with the IRBuilder, which provides methods
such as getInt32() that take an integer value as input and return a ConstantInt object
which represents that value in LLVM IR.

18

Chapter 5

Design and Implementation

As stated in previous chapters, this work aims to leverage the LLVM Pass Framework API
to implement a lightweight profiler based on compile-time static instrumentation. This
chapter describes the optimizations performed in different versions of this profiler and the
core design philosophy and implementation details. Section 5.1 introduces the benchmarks
on which we evaluate the performance of each new profiler version. Sections 5.2, 5.3, 5.5,
and 5.6 describe the changes between major optimized versions of the profiler, and their
performance is compared using the benchmarks.

5.1 Benchmarks

The profiler was benchmarked on one small C project and one larger C project to evaluate
its efficiency. The smaller project is a program implementing the CCSDS compression
algorithm' used to compress images taken on a spacecraft before sending them to Earth.
The larger project is CPython?, the reference implementation of the Python programming
language and the most widely used Python interpreter.

The estimated profiling overhead on the CCSDS project was obtained by running the
compression algorithm on different input images®. The original and instrumented versions
of the compiled executable ran 100 times; the average runtime was calculated for each input,
and these two averages were compared. Table 5.1 shows the information about images used
as inputs.

For CPython benchmarks, the Python package PyPerformance [29] was used to evalu-
ate performance. PyPerformance is a project that aims to evaluate the interpreter’s per-
formance in various benchmarks, from testing templating libraries or serialization to math
operations and raytracing. A subset of PyPerformance benchmark groups were selected for
the experimental evaluation:

« MATH: Set of benchmarks focused on testing the performance of big integer arith-
metic and floating point number calculations.

« REGEX: Several benchmarks testing the performance of Python’s regular expression
engine.

"https://pajda.fit.vutbr.cz/perferts/ccsds
2CPython GitHub repository: https://github.com/python/cpython
3https://pajda.fit.vutbr.cz/perferts/ccsds-data

19

https://pajda.fit.vutbr.cz/perferts/ccsds
https://github.com/python/cpython
https://pajda.fit.vutbr.cz/perferts/ccsds-data

Image Width

Height Max gray value Size

cdf97-psi.pgm
Babboon.pgm
P1010042.pgm
frame.pgm
g10.pgm
m612-be.pgm

609
512
991
1920
3840
2564

423 255 257 KB
512 255 262 KB
991 255 349 KB
1080 65535 4.15 MB
2160 1023 16.59 MB
5117 4095 26.24 MB

Table 5.1: Input images for CCSDS benchmarks

Benchmark group

Benchmarks

Math nbody, pidigits, float
Regex regex_compile, regex_dna, regex_effbot, regex_v8
. scimark_fft, scimark_lu, scimark _monte_carlo,
Scimark scimark_sor, scimark_sparse_mat_mult
}prs 2to3, chameleon, docutils, html5l1ib, tornado_http
json_dumps, json_loads, pickle, pickle_dict,
o pickle_list, pickle_pure_python, tomli_loads,
Serialize

unpickle, unpickle_list, unpickle_pure_python,

xml_etree

Table 5.2: PyPerformance benchmark groups used in the evaluation and the specific bench-

marks they contain.

e SCIMARK: A popular set of benchmarks for scientific and mathematical computing,
including Fast Fourier Transform, Monte Carlo algorithm, or sparse matrix multipli-

cation.

o APPS: A benchmark testing several application libraries, such as the Tornado HTTP
web framework or the Chameleon templating engine.

e SERIALIZE: A larger group of serialization and de-serialization benchmarks, testing
the JSON and pickle modules.

Table 5.2 shows the PyPerformance benchmarks contained in each group.
All benchmarks were run on a machine with the following specifications:

CPU
Memory
OS

AMD Ryzen 5 3500U
16GB @ 2666 MHz
Linux Mint 20.3 Cinnamon

Kernel version 5.13.0-52-generic

5.2 Hashtable-based implementation

In this first version of the profiler, the std: :unordered_map class from the standard C++
library was used to store information about the number of executions of each basic block.

20

Image Original time [s] Instrumented time [s] Overhead

cdf97-psi.pgm 0.029 1.646 56.76x
Babboon.pgm 0.030 1.627 54.23x
P1010042.pgm 0.039 2.177 55.82x
frame.pgm 0.279 15.075 54.03x
£10.pgm 0.815 38.879 47.70x
m612-be.pgm 1.431 70.762 49.45x%
Average 52.99x

Table 5.3: The profiling overhead measured on CCSDS of a hashtable-based implementa-
tion.

This unordered map uses a unique identifier of each basic block as a key and stores a corre-
sponding execution count as the value. The key contains the name of the basic block and
the name of the function and module it belongs to. The map is declared in the instrumen-
tation code module, which is linked to the instrumented program after the compilation.
A call to an instrumentation function __bb_enter () is inserted at the start of every ba-
sic block. This function takes the unique identifier of the basic block as input, checks if
this identifier is already present in the map, and either increments the existing counter or
creates a new key-value pair for this basic block. To export the collected data, a call to a
function __prof_export (), which writes the resulting profile into a file, is inserted before
the return instruction from the main() function and also before every call to the exit ()
function.

This approach is very simple and convenient, as no additional processing has to be done
besides the instrumentation. Additional information about the basic blocks, such as the
source code location, can be included directly in the identifier saved in the map, creating
almost no compilation overhead. This approach also guarantees that memory is allocated
only for basic blocks that were executed at least once®, minimizing the memory overhead
compared to a structure that would statically allocate space for every basic block in the
program.

However, even though the map has a constant time complexity for searching and in-
serting, the added runtime overhead of this approach is extremely high. To keep the time
complexity constant on average, the map has to periodically allocate space for new buckets
to accommodate additional basic blocks. This frequent reallocation can be very expensive,
potentially explaining the massive overhead. Additionally, the hash function could be very
expensive, causing further time overhead. Table 5.3 shows the measured overhead of this
implementation on the CCSDS project. Because the overhead on a smaller project was
already so large, this version was not tested on CPython, as it would easily exceed the
one-hour timeout limit which was used with these benchmarks.

5.3 An array-based implementation

To prevent the overhead caused by frequent hashing using an expensive hash function and
frequent memory reallocations, a static array can be used to store the basic block execution

4Excluding the memory that is pre-allocated automatically by all standard library containers to reduce
the number of re-allocations.

21

Image Orig. time [s] Inst. time [s] Overhead

cdf97-psi.pgm 0.029 0.069 2.38x
Babboon.pgm 0.030 0.064 2.13x
P1010042.pgm 0.039 0.087 2.23x
frame.pgm 0.279 0.659 2.36x
g10.pgm 0.815 1.700 2.08x
m612-be.pgm 1.431 3.153 2.20x
Average 2.23x

Table 5.4: The profiling overhead measured on CCSDS of an implementation using a single
static array to store execution counts.

counts. Indexing an array also has a constant time complexity, and if the array is statically
allocated, no runtime memory reallocation is required.

The array is declared as a static global array of unsigned long integers in the instru-
mentation code module, and the __bb_enter () function is used to increment the values
inside this array. As with the previous implementation, a call to this function is inserted
at the start of every basic block. Each basic block is assigned an unsigned long integer ID.
This ID is used as an index into this execution count array. Before the program exits, the
execution counts are exported in a simple format, mapping the ID of the basic block to the
number of its executions.

This approach, however, requires additional processing during compile time. Since
only the ID and execution count of each basic block are exported after profiling, the other
information about the basic blocks has to be exported during compile time. Post-processing
is also necessary to map the IDs to the basic block information. To ensure that the array
can accommodate all basic block execution counters, the instrumentation code must be
compiled with a macro definition containing the number of basic blocks in the profiled
program, passed to the compiler with the -D command line option. This means that the
instrumentation code has to be compiled specifically for every program.

While this approach sacrifices the memory efficiency of only allocating memory for basic
blocks that were executed at least once, the time overhead is significantly reduced. Table
5.4 shows the measured overhead of this implementation on the CCSDS project. This
implementation was tested on the CPython project as well, but all of the PyPerformance
benchmark runs have timed out after 1 hour. This shows that while there is a significant
performance improvement over the previous implementation, the solution still does not
scale well.

Using a single array still has a major flaw, though. Since each basic block needs to
have a unique ID assigned during compilation, the instrumentation pass has to keep track
of the last assigned ID after instrumenting a module. As mentioned in Chapter 4, separate
invocations of a pass do not share any internal state, which means that to remember the
last assigned ID, it has to be written to a file after each invocation and then read back at
the start of the next invocation. While this operation does not add significant overhead to
compile time, it makes it impossible for multiple compilation jobs to be run concurrently,
making this approach unsuitable for larger projects. This flaw is addressed in Section 5.5.

22

5.4 Inlining instrumentation code

Inline expansion (inlining) refers to replacing a function call with the function’s body,
eliminating the call instruction and the overhead associated with it. This includes saving
the register content from the caller’s context, passing the function parameters, and creating
a stack frame. Inlining is typically performed automatically by the compiler, which can
decide to inline a function at only a subset of call sites, using heuristics to determine
where such an expansion is likely to affect performance positively. According to [22], these
heuristics take into account the following;:

1. The size of the function’s body: the smaller, the better.

2. The number of calls to the function: with only one call, inlining is almost certain to
reduce execution time.

3. Whether the function is called inside a loop: if so, inlining it could provide opportu-
nities for additional optimization.

4. Whether the call includes constant-valued parameters, which makes it more likely
that the inlined body of the function is optimizable.

Since the body of the __bb_enter () function contains only code that indexes an array
and increments an integer, and its only argument is the constant ID of the basic block,
points 1 and 4 are relevant. The overhead associated with setting up the function call
could be relatively high compared to the actual work of the function. Inlining could also
improve the locality of reference, providing further performance improvement by reducing
the number of cache misses. [28] However, because the instrumentation function is defined in
the instrumentation code module, but called from the modules of the profiled program, the
compiler cannot inline this call automatically without using link-time optimization, which is
a feature that is not by default supported by most compilers. Therefore, the instrumentation
function was removed and instead of inserting a function call, the instrumentation pass
inserts a load instruction to read the current count for that basic block from memory,
the add instruction to increment the counter, and the store instruction to write back the
updated counter.

The result of this optimization can be observed in the objdump output of the instru-
mented binary. Listing 5.3 shows the disassembled contents of the bio_get_bit () function,
instrumented with calls to __bb_enter (). Listing 5.2 shows the same function with inline
instrumentation. Listing 5.1 shows the body of the __bb_enter () function.

This optimization was very effective in reducing profiling overhead. Table 5.5 shows the
profiling overhead on the CCSDS project. Inlining the instrumentation code reduced the
time overhead by 50% on average, with the average overhead reduced to less than 10%.

5.5 A per-module static array implementation

As mentioned in Section 5.3, assigning each basic block in a program a unique ID restricts
the ability to compile multiple modules concurrently, which would significantly affect the
usability of this profiler on larger projects that take a long time to compile. To address
this, each module of the program has a separate pool of integers to assign as IDs to its
basic blocks, and rather than storing all execution counts in a single array, each module’s

23

0000000000001b10 _ _bb_enter:
mov 0x1691(/rip),%rax # 31a8 _DYNAMIC
+0x1d8
mov (%rax,’%rdi,8),%rcx
add $0x1,%rcx
mov Jjrcx, (rax,%rdi,8)
retq

Listing 5.1: Disassembled object code of the
__bb_enter() function.

0000000000214020 bio_get_bit:
lea 0xb2a9(J%rip), %rcx # 21£2d0
__basicblocks
incq 0x8580(%rcx)
cmpqg $0x8,0x18(Y%rdi)
jne 214064 bio_get_bit+0x44
incq 0x8590(%rcx)

0000000000412cd0 bio_get_bit:
push 7rbp
push Jri15
push %rid
push Jrbx
push Jrax
mov %rdi,’%rbx
mov $0x251a,’%edi
mov %rsi,%rild
callq 41c6b0 __bb_enter
cmpq $0x8,0x18 (%rbx)
jne 412d25 bio_get_bit+0x55
mov $0x251c,’%edi
callq 41c6b0 __bb_enter
mov 0x8(%rbx),%rl5
test %rib5,%rl5
je 412d4f bio_get_bit+0x7f
mov $0x251d,%edi

mov 0x8(rdi) ,’%rax
test Y%rax,’rax

callq 41c6b0 __bb_enter

je 21408b bio_get_bit+0x6b
lea 0x1(%rax),%rdx
incq 0x8598(/rcx)

Listing 5.3: Disassembled code of a part
of the CCSDS bio_get_bit() function,
instrumented with calls to __bb_enter().

The start of the function contains extra
push instructions, as the caller has to save
the contents of the registers.

Listing 5.2: Disassembled code of a part
of the CCSDS bio_get_bit() function,
instrumented inline with load, add, and
store instructions. The lea instruction
loads the address of the __basicblocks
array into the Y%rcx register at the
start of the function, after which the
incq instruction records each basic block’s
execution.

basic block execution counts are stored in a separate array. Before the first basic block in
each module is instrumented, a declaration of a pointer to unsigned long integer array is
inserted into the module, with its linkage type set to external. The instrumentation pass
keeps track of the number of basic blocks in the module. After the last one is instrumented,
the name of the module, the name of the declared external pointer, and the number of
basic blocks in the module are written to a temporary file modules.tmp. Before linking the
program, this file is consumed by another pass, called PostInstrumentationPass. This
pass is designed to run on the instrumentation code module. It reads the modules. tmp file
and defines the array variables inside the instrumentation code module. It also inserts one
call to the function __export_array() per module, which exports the collected execution
counts.

To relieve the user from the headache of setting up a custom compilation process, a
simple shell script is provided to be used as a custom linker through clang’s ~fuse-1d com-
mand line option. This linker wrapper script automatically compiles the instrumentation

24

Image Original time [s] Instrumented time [s] Overhead

cdf97-psi.pgm 0.029 0.030 1.03x
Babboon.pgm 0.028 0.031 1.11x
P1010042.pgm 0.038 0.041 1.08x
frame.pgm 0.254 0.288 1.13x
£10.pgm 0.768 0.842 1.10x
m612-be.pgm 1.339 1.485 1.11x
Average 1.09x

Table 5.5: The profiling overhead measured on CCSDS with the instrumentation code
inlined.

Image Orig. time [s] Inst. time [s] Overhead
cdf97-psi.pgm 0.029 0.033 1.14x
Babboon.pgm 0.028 0.033 1.18x
P1010042.pgm 0.038 0.043 1.13x
frame.pgm 0.254 0.309 1.22x
g10.pgm 0.768 0.894 1.16x
m612-be.pgm 1.339 1.543 1.15x
Average 1.16x

Table 5.6: The profiling overhead measured on CCSDS with one counter array in each
module.

code, runs the PostInstrumentationPass, and invokes the real linker with the original
arguments plus the object file of the instrumentation code module.

While the primary goal of this change was not to improve the profiler’s overhead, it was
still measured. This version of the profiler was also the first version that could success-
fully profile the CPython interpreter using the PyPerformance benchmarks. The overhead
measurements on the CCSDS and CPython projects, as shown in Table 5.6 and Table 5.7,
indicate that the changes described in this chapter may have slightly increased the over-
head. However, the increase is not significant. For large projects, the ability to compile
concurrently still accelerates the profiling process considerably.

Benchmark Orig. time [s] Inst. time [s] Overhead

Math 56.76 78.05 1.38x
Regex 95.59 111.03 1.16x
Scimark 122.58 151.03 1.23x
Apps 510.51 625.13 1.22x
Serialize 594.07 694.86 1.17x
Average 1.23x

Table 5.7: The profiling overhead measured on an instrumented CPython interpreter run-
ning PyPerformance benchmarks, with one counter array in each module.

25

5.6 Control flow graph patterns

In all previously described approaches, every basic block in the program was instrumented
to obtain complete execution count information in the profiled program. However, by
examining the control flow graph® of each function before the instrumentation, some basic
blocks could be excluded without sacrificing the completeness of the result. This is because
the number of executions of a particular basic block could be inferred from the number of
executions of another basic block, or a group of other basic blocks.

To test this approach, an algorithm to analyze the control flow graph of each function
was developed. This algorithm checks for the presence of basic block patterns — subgraphs
of the control flow graph — commonly observed in compiled programs as a result of high-
level language control flow structures being compiled into a low-level language.

For all formal definitions in this section, we define succ(z) as the set of immediate
successors of a block x, where y is an immediate successor of x if there is an edge from =z
to y. Similarly, we define pred(z) as the set of immediate predecessors of a block x, where
y is an immediate predecessor of x if there is an edge from y to x. Additionally, we define
the function executions(b,in) : B x I — Ny, where B is the set of all basic blocks in a
control flow graph G = (B, E) and [is the set of all possible inputs to the program. The
function executions(b,in) represents the number of times the basic block b is executed by
the program, given input in.

5.6.1 The Diamond pattern

This pattern involves 4 or more basic blocks. It begins with an entry block, which then
branches to any number of successors. These successors all have a single common successor.
This common successor does not have any predecessors from outside this pattern. This
pattern is typically generated from an if statement followed by an else statement. The entry
block is the condition inside the if statement. This block branches into two blocks, which
are executed depending on the boolean result of the if condition. Both blocks then join
after the if-else statement. This pattern, with any number of branches, can also be compiled
from a switch statement, though only the if-else statement support was implemented in this
thesis.

Formal definition. Let G = (B, E) be a control flow graph. A Diamond pattern
subgraph G’ = (B, E') is defined as:

B’ = {entry, by, b, ..., by, join} C B, (5.1)
E' = {(entry, by), (entry, bo), ..., (entry, by,), (b1, join), (ba, join), . .., (by,join)} C E,

and the following conditions apply:

succ(entry) = {b1,ba,...,bp}, (5.3)
Vb; € {b1,ba,...,bn} : succ(b;) = {join} A pred(b;) = {entry} (5.4)
pred(join) = {b1,ba, ..., by}

The entry and join blocks can be entirely excluded from the instrumentation. This is
because the sum of the executions of the branch blocks will always equal the number of

A control flow graph is a directed graph G = (B, E) in which the nodes (B) represent basic blocks and
the edges (E) represent control flow paths. [2]

26

executions of the entry and join blocks as lon
of the branches. Formally, given an input in,

g as the program does not terminate in either

n
executions(entry, in) = executions(join, in) = Z executions(b;,in) (5.6)

Figure 5.1 shows an example of a diamond p
entry
if.then if.else
if.end

Figure 5.1: An example of the Diamond
pattern in a control flow graph. The
red blocks if.then, if.else are instru-
mented, while the entry and if.end
blocks are not.

5.6.2 The Half-diamond pattern

=1

attern.

entry

if.then

N

if.end

Figure 5.2: An example of the Half-diamond
pattern in a control flow graph. The entry
block, colored blue, does not have to be in-
strumented, as its execution count can be
inferred from the if.end block execution
count.

This pattern is very similar to the diamond pattern, except the entry block has two succes-
sors, with one of these successors having a single edge, which leads to the other successor,
who has no predecessor from outside this pattern. This pattern is often created by compil-
ing an if statement not followed by an else statement. The entry block is the if condition,
the first successor is the block executed when the condition evaluates to true, and the other
successor is the join block where the program continues regardless of whether the condition

was evaluated as true or false.
Formal definition. Let G = (B, E)

be a control flow graph. A Half-diamond

pattern subgraph G’ = (B, F’) is defined as:

B’ = {entry, by, join} C B, (5.7)
E' = {(entry, by), (entry, join), (b1, join)} C E, (5.8)

27

and the following conditions apply:

succ(entry) = {b1, join}, (5.9)
succ(by) = {join}, (5.10)
pred(by) = {entry}, (5.11)

pred(join) = {by, entry}. (5.12)

If this pattern is present in the control flow graph, either the entry block or the exit block
can be excluded from the instrumentation, as the number of executions of one will always
equal the number of executions of the other, as long as the program does not terminate
inside the if-then block. Formally, given an input in

executions(entry,in) = executions(join, in) (5.13)

Figure 5.2 shows an example of this pattern.

for.cond 5.6.3 Unconditional jump pattern

This pattern contains two basic blocks. The
/ 1 first basic block has a single edge to another

basic block, and this successor has only the
first basic block as a predecessor. Since an

e forend execution of the first block is always fol-
lowed by an execution of the second block,
only one of these blocks has to be instru-
mented.

_ Formal definition. Let G = (B, E) be
forine a control flow graph. An Unconditional
jump pattern subgraph G' = (B’ F’) is

defined as:

Figure 5.3: Example of an unconditional cunec as
jump in a control flow graph compiled from B ={b;,by} CB (5.14)

a for-loop. The for.body block can be ex- / .
= C .
cluded from instrumentation, as its number BT =A(b,ba)} € B, (5.15)
of executions will be identical to that of the succ(br) = {ba}, (5.16)
for.inc block. pred(bz) = {b1}. (5.17)
Formally, given an input in, the relationship between execution counts is

executions(by,in) = executions(bs,in) (5.18)

This pattern primarily shows up in control flow graphs of functions containing for loops,
as the clang compiler sometimes separates the body and the increment part of the for loop
into two basic blocks. However, compiler optimizations will likely remove any redundant
unconditional jumps, meaning that this pattern is less likely to appear in practical scenar-
ios. Figure 5.3 shows an example of a control flow graph of a for loop that contains an
unconditional jump.

28

No pattern opt. Pattern opt.

Benchmark Original [s] Time [s] Overhead Time [s] Overhead Change [%]
Math 56.76 78.05 1.38x 74.97 1.32x 4.35
Regex 95.59 111.03 1.16x