
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

DEVELOPMENT BOARD FOR 32-BIT MICROCONTROLLER ATMEL AT91SAM9261

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. MARTIN DEMIN
AUTHOR

VEDOUCÍ PRÁCE Ing. SIMEK VACLAV,
SUPERVISOR

BRNO 2009

Abstrakt
Vestaveny hardware je velice popularni v teto dobe. Proto jsme se rozhodli vytvorit desku s
mikrokontrolerem AT91SAM9261 spolu so standartnim a nestandartnim hardwarem. Stan-
dartnim, beznym by se dal nazvat port LAN alebo audio vstup-vystup. Nestandartnim,
specialnim by mohl byt obvod FPGA firmy Xilinx o velikosti 200k. Toto dovoluje vyuzit
zarizeni v oblastech, kde vypocetni sila obycejniho CPU jiz neni dostacujici.

Abstract
Embedded hardware is very popular nowadays; we chose to design a board with AT91SAM9261
microcontroller with some standard and non-standard peripherals attached. As for the stan-
dard, common we have included audio port or a LAN controller. The non-standard, special
is a 200k Xilinx FPGA. Using the FPGA, we may be able to achive higher throughput in
some applications that are not very suitable for plain CPUs.

Klíčová slova

Keywords
embedded, FPGA, xilinx, atmel, AT91SAM9261, development board

Citace
Martin Demin: Development Board for 32-bit Microcontroller Atmel AT91SAM9261, diplo-
mová práce, Brno, FIT VUT v Brně, 2009

Development Board for 32-bit Microcontroller At-
mel AT91SAM9261

Prohlášení
Prohlasuji, ze jsem tuto diplomovou praci vypracoval samostatne pod vedenim pana Simeka
Vaclava.

. .
Martin Demin

June 1, 2009

c© Martin Demin, 2009.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 AT91SAM family . 3
1.2 Description of MCU . 3

2 Hardware description 5
2.1 Selection of Parts . 6

2.1.1 Parallel FLASH Memory . 6
2.1.2 spiFLASH Memory . 7
2.1.3 Main Memory (SDRAM) . 8
2.1.4 FPGA . 8
2.1.5 DRAM for FPGA . 8
2.1.6 LAN PHY & MAC . 9
2.1.7 Audio Codec . 10
2.1.8 UART . 10

3 Proposal of Hardware 11
3.1 Power Supply . 11

3.1.1 Low Power Modes . 12
3.2 Clock Generators . 12

3.2.1 MCU . 12
3.2.2 FPGA . 13
3.2.3 LAN Controller . 13

3.3 Signal Connections . 13
3.3.1 System Bus . 13
3.3.2 FPGA . 13
3.3.3 SPI bus . 13
3.3.4 I2S . 14
3.3.5 LAN interface . 15
3.3.6 Interrupts . 15

4 Printed Circuit Board 16
4.1 Schematic . 16

4.1.1 Power Supplies . 16
4.1.2 Oscillators . 20
4.1.3 System Bus . 22
4.1.4 SPI . 24
4.1.5 I2S . 27
4.1.6 LAN interface . 27

1

4.1.7 USB Host Interface . 27
4.1.8 RS232 Converter . 27

4.2 Board . 29
4.2.1 Creating New Parts in Eagle . 29
4.2.2 Components’ Placement . 30
4.2.3 Routing . 32
4.2.4 Production Output from Eagle . 35

4.3 Populating the board . 37

5 Software 38
5.1 Applications and Develompent Tools . 38

5.1.1 Compilers . 38
5.1.2 Debugging . 38
5.1.3 Boot Loader . 38
5.1.4 Operating System . 38

5.2 Theory of Operation . 38
5.3 Building and using Tools . 39

5.3.1 OpenEmbedded . 39
5.3.2 SAM Boot Assistant . 40
5.3.3 AT91bootstrap . 41
5.3.4 Das U-Boot . 42
5.3.5 Linux Kernel . 42

6 Conclusion 44

A List of Appendicies 46

B Errata 47

C Schematic 48

D Board 50

2

Chapter 1

Introduction

With the rapid development of hardware and rising complexity of chips is getting design
of embedded systems simpler, faster and not least cheaper. For our work we have chosen
a low-power microcontroller based on ARM926EJ-S processor. The reason for this was a
relatively low pin count, availability of a wide variety of peripherals and a presence of a
Memory Managament unit, which will allow running a full-scale GNU/Linux.

The work is divided into several chapters. At first we will introduce the AT91SAM
microcontroller family, specially AT91SAM9261, which will be used in our work. We will
further proceed into description of choses parts for the board and how they will be con-
nected. Afterwards we will focus onto design of the board in CAD software, configuring the
autorouter and preparing data for fabrication. We will finish with a little software overlook.

1.1 AT91SAM family

Atmel’s AT91SAM 32-bit ARM Flash MCUs and Embedded MPUs are designed for system
control, wired & wireless connectivity, user interface management, low power and ease of
use.

The whole family is divided into two bigger groups:

• AT91SAM Flash MCUs feature Flash memories with densities of 16k Bytes, migrat-
ing up to 512k Bytes and operating frequencies up to 200MHz. A coherent set of
peripherals allow reuse of software over the whole family. Usage of DMA channels
provides optimization of bus utilization, freeing the processor for application. .

• a AT91SAM Embedded MPU are ARM926-based with operating frequencies up to
400 MHz.

1.2 Description of MCU

Note: Following section may contain information taken from AT91SAM9261 datasheet [2].
The hearth of MCU is a ARM926EJ-S ARM Thumb Processing unit which features a DSP
instruction extension, JAVA Acceleration Technology and memory management unit. For
faster execution are 16Kbyte data cache and 16Kbyte instruction cache included. When it
comes to debugging the core offers us EmbeddedICE debug communication channel support.

3

The die also has in 32 Kbytes of internal ROM and 160 Kbytes of static RAM built in.
Internal ROM allows for various boot strategies, while internal RAM can be used for frame
buffer or for other DMA transfers.

The following peripherals are present for usage:

• LCD controller

• USB 2.0 full speed dual port host controller with in-chip transceiver

• USB 2.0 full speed device port with transceiver

• Reset controller, shutdown controller, clock generator and power management unit

• Advanced interrupt controller

• Debug unit

• Real-time clock

• Multimedia Card interface

• Three Synchronous Serial controllers

• Three UART ports

• Two SPI ports

• Two Wire interface

• JTAG port

A block diagram is present in the figure 1.1.

Figure 1.1: Block diagram

4

Chapter 2

Hardware description

As mentioned, the core of the board will be an AT91SAM9261 microcontroller with periph-
erals attached. The board should have following proposed features:

• 8 Gbit Flash memory

• 128 Mbytes of SDRAM

• 64 Mbit spiFLASH boot ROM

• FPGA with 16 Mbytes of DRAM attached

• LAN controller with Ethernet port

• Audio IO

After specification, we have created a simplistic block diagram which is shown in the
figure 2.1.

Figure 2.1: Block diagram

5

2.1 Selection of Parts

2.1.1 Parallel FLASH Memory

For parallel FLASH memory we have chosen K9K8G08U0A 8Gb in a 48-TSOP surface
mounted package[1].

Power supply requirements:

• 3.3 V

Offered in 1G x 8bit, the K9K8G08U0A is a 8G-bit NAND Flash Memory with spare
256M-bit. Its NAND cell provides the most costeffective solution for the solid state applica-
tion market. A program operation can be performed in typical 200Îźs on the (2K+64)Byte
page and an erase operation can be performed in typical 1.5ms on a (128K+4K)Byte block.
Data in the data register can be read out at 25ns cycle time per Byte. The I/O pins serve
as the ports for address and data input/output as well as command input. The on-chip
write controller automates all program and erase functions including pulse repetition, where
required, and internal verification and margining of data. Even the write-intensive systems
can take advantage of the K9K8G08U0A’s extended reliability of 100K program/ erase
cycles by providing ECC(Error Correcting Code) with real time mapping-out algorithm.
The K9K8G08U0A is an optimum solution for large nonvolatile storage applications such
as solid state file storage and other portable applications requiring non-volatility. An ul-
tra high density solution having two 8Gb stacked with two chip selects is also available in
standard TSOPI package.

When it comes to theory, there are two types of flash memories: NAND and NOR.

NOR vs. NAND

Reading from NOR memories is very much similar to reading from RAM or ROM because
NOR memories use the very same address and data interface along with control signals like
RD, WR and CE. Single bytes may be programmed individually but only block erasure is
possible. Typical block sizes are 64, 128 or 256 KB. Most older NOR flashes do not feature
any bad block management and this is left onto the device driver. Special commands
are necessary for programming, erasure or locking. These are issued using Common Flash
Memory Interface (CFI) which also supports identification of the chip. These chips are used
mostly as boot memories on embedded devices because no internal ROM or flash memory
are needed.

As for the NAND memories, these feature much higher densities and, on the contrary,
much more complicated interface. The chips function as block devices much like hard drives
or memory cards. Each block contains some number of pages. Typical page sizes are 512,
2048 or 4096 bytes. Each page has its own ECC bits for correction/error detection.

While reading and programming can be performed on page basis, erasure can only
be performed on a block basis. Another obstacle is that a block can be written only
sequentially.

6

NAND devices require bad block management in the device driver or controller. In
linux, this is done by the JFFS2 filesystem. This filesystem also provides wear leveling
since every block can be erased only limited number of times. Most chips provide extra free
space to replace bad blocks.

ECC is provided to correct errors during reading. Depending on the number of bits
used for ECC, it may correct 1 bit on each 2048bits or up to 22 bits in 2048 bits for MLC
NAND devices. The bad block may be marked bad and avoided from usage.

NAND memories use less complicated communication interface than in NOR flashes.
It consist of 8 or 16 data lines and 6 other control signals: CE, R/B, ALE, CLE, OE and
WE. Usage of these flashes require specialized hardware or software controller.

SLC vs. MLC

As the requirement for memory sizes increases, companies are pushed to research for more
dense memories. Currently a trend is to use multi-level cell in flash memories. These
memories allow to store more than 1 bit per cell - typically up to 4 bits. This increases
storage capacity but also increases error-proness. These device have only 10k write life
durability. To compensate for the errors, stronger ECC codes are implemented. The size
of the chips are as high as 64Gbits.

2.1.2 spiFLASH Memory

AT45DB642D-TU 64Mbit boot flash was selected for this purpose as it is widely available
and supported as boot memory. The part is available with 2 interfaces: parallel or serial.
As a boot ROM we required and have chosen the serial version in CASON package.

Power supply requirements:

• 2.7 - 3.3 V

The AT45DB642D is a 2.7-volt, dual-interface sequential access Flash memory ideally
suited for a wide variety of digital voice-, image-, program code- and data-storage appli-
cations. The AT45DB642D supports RapidS serial interface and Rapid8 8-bit interface.
RapidS serial interface is SPI compatible for frequencies up to 66 MHz. The dual-interface
allows a dedicated serial interface to be connected to a DSP and a dedicated 8-bit interface
to be connected to a microcontroller or vice versa. However, the use of either interface is
purely optional. Its 69,206,016 bits of memory are organized as 8,192 pages of 1,024 bytes
(binary page size) or 1,056 bytes (standard DataFlash page size) each. In addition to the
main memory, the AT45DB642D also contains two SRAM buffers of 1,024 (binary buffer
size) bytes/1,056 bytes (standard DataFlash buffer size) each. The buffers allow receiving
of data while a page in the main Memory is being reprogrammed, as well as writing a
continuous data stream. EEPROM emulation (bit or byte alterability) is easily handled
with a self-contained three step read-modifywrite operation

7

2.1.3 Main Memory (SDRAM)

The processor offers us 2 signal voltages 1.8V for low-power DRAM or 3.3V for stan-
dard SDRAM. To avoid using BGA packages we have selected standard 3.3V SDRAM
MT48LC32M16A2TG capable of running up to 133MHz clock. The RAM’s width is 16
bit and MCU supports 32 bit access. To gain speed and capacity there will be 2 parts
connected in parallel.

Power supply requirements:

• 3.3 V

The K4S511632D is 536,870,912 bits synchronous high data rate Dynamic RAM or-
ganized as 4 x 8,392,608words by 16bits, fabricated with SAMSUNG’s high performance
CMOS technology

2.1.4 FPGA

We have decided to include FPGA in the design to allow high-speed processing for specific
applications. FPGA will have a DRAM attached. It can also be used to generate VGA
signal along with the DRAM to store frame buffer. Accessing FPGA’s DRAM through main
bus for displaying graphics will significantly offload main memory and bus. The FPGA will
further provide IO pins for general usage. The chip we have chosen to use is an XC3S200.

Power supply requirements:

• 3.3 V - Output driver

• 1.200 - Internal supply voltage

• 2.500 - Auxilary supply voltage

The selected FPGA contains:

• 200K of System Gates

• 30K of Distributed RAM Bits

• 216K of Block RAM Bits

• 12 Dedicated Multipliers

• 4 DCMs

2.1.5 DRAM for FPGA

Since the requirement for capacity of RAM for FPGA may not be high, we have selected
to use a 64Mbit SDRAM with 8 bit wide bus. Part number: MT48LC8M8A2P-75.

Power supply requirements:

• 3.3 V

8

2.1.6 LAN PHY & MAC

The MCU does not feature any MAC interface. We have found SiLabs’ CP2200/1 MAC
and PHY interesting and included it in our design. The PHY will furter be connected to a
LAN port with integrated balun.

Power supply requirements:

• 3.3 V

The CP2200/1[10] is a single-chip Ethernet controller containing an integrated IEEE
802.3 Ethernet Media Access Controller (MAC), 10BASE-T Physical Layer (PHY), and
8 kB Non-Volatile Flash Memory available in a compact 48-pin TQFP package. The
CP2200/1 can add Ethernet connectivity to any microcontroller or host processor with
11 or more Port I/O pins. The 8-bit parallel interface bus supports both Intel and Mo-
torola bus formats in multiplexed and non-multiplexed mode. The data transfer rate in
non-multiplexed mode can exceed 30 Mbps. The on-chip Flash memory may be used to
store user constants, web server content, or as general purpose nonvolatile memory. The
Flash is factory preprogrammed with a unique 48-bit MAC address stored in the last six
memory locations. Having a unique MAC address stored in the CP2200/1 often removes
the serialization step from the product manufacturing process of most embedded systems.
The CP2200/1 has four power modes with varying levels of functionality that allow the host
processor to manage the overall system power consumption. The optional interrupt pin also
allows the host to enter a sleep mode and awaken when a packet is received or when the
CP2200/1 is plugged into a network. Auto-negotiation allows the device to automatically
detect the most efficient duplex mode (half/full duplex) supported by the network. A block
diagram of a LAN subsystem is shown in the figure 2.2.

Figure 2.2: Block Diagram of CP2200[10]

9

2.1.7 Audio Codec

As an audio codec, we have chosen to use a TLV320AIC23B[5], which has the following
power supply requirements:

• 3.3 V - Digital power supply

• 5 V - Analog power supply

The TLV320AIC23B is a high-performance stereo audio codec with highly integrated
analog functionality. The analog-to-digital converters (ADCs) and digital-to-analog con-
verters (DACs) within the TLV320AIC23B use multibit sigma-delta technology with inte-
grated oversampling digital interpolation filters. Data-transfer word lengths of 16, 20, 24,
and 32 bits, with sample rates from 8 kHz to 96 kHz, are supported. The ADC features an
architecture with up to 90-dBA signal-to-noise ratio (SNR) at audio sampling rates up to
96 kHz, enabling high-fidelity audio recording in a compact, power-saving design. The DAC
modulator features an architecture with up to 100-dBA SNR at audio sampling rates up to
96 kHz, enabling high-quality digital audio-playback capability, while consuming less than
23 mW during playback only. The TLV320AIC23B is the ideal analog input/output (I/O)
choice for our application. Integrated analog features consist of stereo-line inputs with an
analog bypass path, a stereo headphone amplifier, with analog volume control and mute,
and a complete electret-microphone-capsule biasing and buffering solution. The headphone
amplifier is capable of delivering 30 mW per channel into 32Ω. The analog bypass path al-
lows use of the stereo-line inputs and the headphone amplifier with analog volume control,
while completely bypassing the codec, thus enabling further design flexibility. A micro-
phone bias-voltage output provides a low-noise current source for electret-capsule biasing.
The AIC23B has an integrated adjustable microphone amplifier (gain adjustable from 1 to
5) and a programmable gain microphone amplifier (0 dB or 20 dB). The microphone signal
can be mixed with the output signals if a sidetone is required.

2.1.8 UART

For debugging and development purposes, a serial connection will be provided that allows
direct connection of a PC via a null-modem cable. The MCU itself has an UART controller
onboard. These pins will be connected to a MAX3232 chip that will translate the signal
levels to the RS232 standard.

Power supply requirements:

• 3.3 V for MAX3232

10

Chapter 3

Proposal of Hardware

3.1 Power Supply

As was seen during initial parts consideration, there are 4 different power supply voltages
reguired: 5, 3.3, 2.5, 1.2 . All voltages will be generated by using bulk voltage regulators,
except for 5V branch.

5 V - The branch is needed for USB host port. The linear regulator selected for the design
is LF50CV. This regulator has only 0.2V drop so a power supply with 5.2V or more
output will be useable to power the system.

The LF00 series are very low drop regulator available in various packages and also
in wide range of output voltages. The low drop voltage makes them suitable for
low noise, low power applications. Some packages are pin compatible with famous
LM7805 regulators. Only input and output capacitors are required. This regulator
can provide up to 1A this should be fully compliant with two 500mA USB devices
connected to the board.

2.5 V and 1.2 V - The branches both utilize LM2574M-ADJ adjustable bulk voltage reg-
ulator.

LM2574 is a monolithic integrated circuit that provide all the active functions for a
step-down switching regulator, capable of driving a 0.5A load with sufficient line and
load regulation. It requires only a minimum of external components and that makes
it suitable for out application. This IC has an integrated fixed-frequency oscillator
and transistor. The regulator’s output can be inhibited using an ON/OFF pin which
is a required feature for suspend.

3.3 V The branch is built on LM2738 adjustable bulk voltage regulator capable of deliv-
ering up to 1.5A current using the integrated transistor.

LM2738 regulator is a monolithic, high frequency, PWM step-down DC/DC con-
verter. It provides all active functions for local DC/DC conversion with fast transient
response and accurate regulation. Thanks to the packages, it is provided in, the whole
regulating system can be implemented in a small area. The switching frequency is
1.6MHz which allows to use only a very small inductor and capacitor. Also an inhibit

11

pin is provided and the regulator may be shut down to save power during suspend.
Stand-by current is only 400nA.

1.2 V back-up - The branch will be used to power the VDDBU branch of the MCU. This
will provide supply to the shutdown controller to allow wake-up using a button and
for the RTC. This branch will have very low pover consumption of 3 uA at room
temperature and can reach up to 20 uA when MCU heated to 85 degrees centigrade.
The voltage will be regulated using LM317 linear regulator.

The LM317 regulator is capable of providing up to 1.5A in a wide input range. It
features adjustable output voltage which can be programmed using a resistor voltage
divider. The output voltage can be as low as 1.2V and this makes it suitable for this
application. It needs only input and output bypass capacitor.

3.1.1 Low Power Modes

As with all devices today, there is a need for low power modes, e.g. shutdown or sleep. Both
of these modes will be supported. To support shutdown, there are 2 dedicated pins provided
by MCU. One separate part of MCU, shutdown controller, provides control signal to voltage
controller. If we want to shutdown the board, we only have to modify corresponding
registers in the MCU and the voltage regulator will be disabled. This cuts off power for
the whole board and peripherals, leaving only the shutdown controller powered.

As for suspend, the situation gets more complicated, the devices will have to be indi-
vidually forced into low power modes by software and only then the MCU can be switched
to sleep mode, leaving only necessary parts of MCU powered to maintain program control.
Omitting control of peripherals would have negative effect on power consumption.

Since there is a separate master-capable device present, the FPGA, this will have to
be disabled too. The FPGA itself does not provide any direct control for that, however,
the datasheet describes that 2 supply voltages may be taken down, leaving only IO logic
powered. The IO logic contains protective diodes to the internal supply lanes and these
would provide excessive load on the bus, when supply not provided. To accomplish this, the
two FPGA dedicated power supplies 2.5V and 1.2V will be connected through a P channel
MOSFET and may be enabled/disabled as needed.

When it comes to other peripherals: LAN and audio codec, these provide direct inter-
faces for low power modes. The audio codec is equipped with a PDWN pin, which will force
ADC and DAC to turn off. The same comes for the headphone amplifier used. With the
LAN controller, the situation is a little different. This will have to be accomplished from
software through a control register.

3.2 Clock Generators

3.2.1 MCU

The MCU requires 2 clock oscilators: slow and main. The slow oscilator is used for powerup
and RTC. Slow oscilator uses 32.768 kHz reference crystal. For main crystal, the frequency
can be up to 50 MHz, but we have chosen to use a 18.432 MHz crystal. It is important

12

that this crystal is supported for autodetection in the AT91’s ROM, if we want to use the
serial debug port[2].

3.2.2 FPGA

As for FPGA, it requires a clock signal connected to one of the clock generators. For
simplicity and interoperability with existing platform, we have chosen to use the same
resonator as used by FITkit - 7.3728 MHz [15].

3.2.3 LAN Controller

The LAN Controller uses a 20 MHz reference crystal.[10]

3.3 Signal Connections

3.3.1 System Bus

The MCU provides 32-bit-wide System Bus called External Bus Interface. It features 32
data lines and 26 address lines, along with 8 chip select lines.

Note: We originally proposed to use all 32 data lines, but later this turned out to be an
issue and was reduced to 16 bits. See Appendix B.

The MCU has a direct support for NAND Flash memories and it is therefore not nec-
essary to provide any auxiliary logic to support these memories. The memory will be
connected directly to the MCU.

The SDRAM will be controlled by integrated SDRAM controller. The two SDRAM
chips will share all of its address lines and be only dividing 32 bit data bus into two 16-bit
lanes.

As for the other devices connected to the system bus, the connection is simple cross
connection of RD, WR, data & address lines and using a coresponding CS line.

3.3.2 FPGA

The bus of the FPGA is very flexible and depends on the internal configuration. The
SDRAM will be connected to the FPGA the same way as it is connected in the FITkit [15]
to allow usage of the same software. The FPGA will further provide its spare GPIOs to a
header to allow connection of peripherals, e.g. ADCs, DACs.

The FPGA will be configured through SPI interface and some further signals must be
provided from the GPIOs of MCU for control.

3.3.3 SPI bus

The MCU provides SPI bus lines along with 4 Chip Selects, allowing connection of 4 different
devices. Two of these will be occupied by SPI flash memory and FPGA as configuration
interface. Third will be connected to the audio codec to allow control of volume, sampling
rate etc.

13

Figure 3.1: Typical timing of an 8 bit transmittion on SPI[2]

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard
that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame. Multiple slave devices may be connected using
separate chip select signals. The SPI bus specifies following signals:

• SCLK - Serial Clock provided by the master

• MOSI/SIMO - Master Output, Slave Input provided by the master

• MISO/SOMI - Master Input, Slave Output provided by the slave

• SS - Slave Select (Chip Select, active low)

An example of a data transmittion is shown in the figure 3.1. Many devices allow clock
frequencies to be as high as 20MHz and even higher. Word length does not have to be
limited to 8 bits and may have arbitrary size.

3.3.4 I2S

The I2S will be used for audio codec. The I2S will provide IO interface for digital audio
transfer. Both audio input and output will be supported.

Integrated Interchip Sound, or I2S for short, is an electrical serial bus interface specially
designed for transmitting digital audio signals. The bus features separate data and clock
lines which results in lower jitter. Normally the bus has the following signals:

• Bit clock

• Word clock

• One or more data lines

14

One master is present on the bus and is responsible for generation of clock signals. The
data is transmitted in MSB to LSB order. Various word lengths are supported.

3.3.5 LAN interface

The analog IO interface from the LAN PHY will be connected to an embedded connector
with a balancing balun and LEDs.

3.3.6 Interrupts

As with all flexible hardware, the board should allow interrupt based communication with
peripherals. Most of the devices provide interface for such communication, and these lines
will be routed to the MCU. FPGA will share some GPIOs with MCU and these may be
dedicated for use as interrupt requests.

15

Chapter 4

Printed Circuit Board

For design of the board, application EAGLE Layout Editor will be used. The PCBs di-
mensions will be determined uppon design, since no size constrains are given. The PCB
itself will be a 4-layer-board, because number of the signal traces for the data bus is very
restraining along with some more than 16 address lines.

The relatively high operation frequency of peripherals (100MHz) may generate a lot
of noise that may be transmitted onto power lanes and disrupt error-free operation. For
these purposes various capacitors will be placed along the board and especially MCU and
FPGA. The FPGA manufacturer also provides very detailed guide for calculation of power
supply requirements and capacitor placement, but this will not be critical for our board.
Special care must also be taken not to produce a much longer trace for some single signal
traces. This may especially happen with a misconfigured autorouter. These longer traces
may provide for some longer delay.

4.1 Schematic

We have decided to draw the schematic onto a single sheet. In this section we shall describe
the most important pieces of the design. For reference, the schematic is available in the
Appendix A. We begin with the power supply and go on with auxiliary circuits for MCU
as shutdown, PLL filter, serial module or boot mode select. Further we will go into details
on connecting the system bus to the memories, FPGA and LAN. Finally we will show how
the audio and LAN circuits are connected.

4.1.1 Power Supplies

While designing the power supplies, we used the original LM2738 and LM2574 datasheets as
reference. These provide us with typical schematic diagram and with necessary calculations
for inductors and capacitors, respectively.

LM2738

The typical connection of LM2738 is shown in the figure 4.1. Now we have to focus onto
the selection of the necessary inductor, the output capacitor and the setting resistors. The
datasheet[8] provides us with a detailed guide that we have followed.

16

Figure 4.1: Typical schematic of LM2738

1. Voltage setting is done using a voltage divider connected to the output and the feed-
back pin of the IC. For calculation, the following formula is used:

R1 = R2

(
VOUT
VREF

− 1
)

In our case, for the 3.3V, we have chosen the R2 to be 10k and we get:

R1 = 10k
(

3.3V
0.8V − 1

)
= 31.25k

2. As for a correct inductor L1, we have to perform some calculations according to the
datasheet:

L =
(
DTS
2∆iL

)
× (VIN − VOUT),

where D is duty cycle calculated as:

D = VO+VD
VIN +VD+VSW

,

where VD is voltage drop of the diode in the range from 0.3V to 0.7V. Specification
for the chosen shottky diode MBRA210LT3G says 0.35V. VO is output voltage, VIN is
input voltage and finally, VSW is voltage drop on the switching transistor calculated
as:

VSW = IOUT ×RDSON ,

where IOUT is output current and RDSON is resistance of the internal switching
transistor.

Last we need to know the ∆iL given by a general rule:

∆iL = 0.1× IOUT −→ 0.2× IOUT

17

Now we may proceed with calculations with given constants:

IOUT = 1A
∆iL = 0.15× 1A = 0.15A

VSW = 1A× 250mohm = 0.25V
TS = 0.000000625s

D =
3.3V + 0.35V

6V + 0.35V + 0.25V
= 0.553

Finally, as for the inductor:

L =
(

0.5530.000000625s
2×0.15A

)
× (6V − 3.3V) = 3.1µH

We have chosen to use an inductor NR6045T1R3N from Digi-Key Corporation.

3. When it comes to the output capacitor, the datasheet recommends at least 22µF elec-
trolyt better with lower ESR. Usage of parallel multilayer ceramic capacitors of X7R
or X5R type is also recommended since they provide high frequency noise filtering.

4. We chose a Schottky catch diode because of lower forward voltage drop and faster
switching times. The Digi-Key part number is MBRA210LT3G.

LM2574

The typical connection of LM2574 is shown in the figure 4.2. Now we have to focus onto
the selection of the necessary inductor, the output capacitor and the setting resistors. The
datasheet[7] provides us with a detailed guide that we have followed.

Figure 4.2: Typical schematic of LM2574

1. Voltage setting is done using a voltage divider connected to the output and the feed-
back pin of the IC. For calculation, the following formula is used:

VOUT = VREF

(
1 + R2

R1

)

18

where VOUT is the requested output voltage, VREF is 1.23V and R1 is between 1k and
5k. To calculate the R2, we get:

R2 = R1

(
VOUT
VREF

− 1
)

In our case, for the 2.5V we have chosen the R1 to be 4.75k and we get:

R2 = 4.75k
(

2.5V
1.23V − 1

)
= 4.90k

In case of the 1.23V supply, the FB pin has to be directly connected to the output.
This way the regulator will maintain a voltage of 1.23V.

2. Inductor value is chosen from the graph 4.3, using two reference values, E . T and the
maximum load current. The E . T value is calculated using the following formula:

E.T = (VIN − VOUT)VOUT
VIN

• 1000
f(inkHz)(V • µs)

For the 2.5V power source we get:

E.T = (6V − 2.5V)2.5V
6V •

1000
52kHz (V • µs) = 28V • µs

For the 1.2V power source we get:

E.T = (6V − 1.2V)1.2V
6V •

1000
52kHz (V • µs) = 18V • µs

Picking the maximum current to be about 300mA for each supply and using the
provided graph 4.3, we get the the inductors to be 150µH and 100µH, respectively.
The inductors have to be suitable for 52kHz, as this is the operating frequency of the
buck regulator and widthstand a minimum of 1.5 times the maximum load current.
The parts TSL1112RA-151K1R1-PF and TSL1112RA-101K1R4-PF were chosen from
Digi-key Corporation[3].

3. As for the output capacitors, also a formula is specified:

COUT >= 13, 300 VIN(max)
VOUT•L(µH)(µF)

For our two cases, 2.5V and 1.2V, we get:

COUT >= 13, 300 6V
2.5V •150µH = 212µF

and

COUT >= 13, 300 6V
1.2V •100µH = 665µF

However, for both cases we have chosen to use a 1000µF capacitor rated for the
required voltage.

LM317

The LM317 is connected as shown in the typical connection diagram 4.4. The input capac-
itor was ommited because of the presence of a global input capacitor and output capacitor
was set to be 100µF . The ADJ pin is connected directly to the ground thus the output
voltage is 1.2V.

19

Figure 4.3: Helper Graph for Inductor Selection

LF50CV

The LF50CV is connected as shown in the figure 4.5. Input capacitor was not used because
a global input capacitor is present. The output capacitor is a 100µF electrolytic one.

Sleep Mode

Two dedicated pins are present on the MCU for power management - WKUP and SHDWN.
The WKUP pin is input only and is provided to wake-up the MCU from a sleep. The whole
shutdown controller to which these pins are connected is powered using the backup 1.2V
power supply that is always present. This supply is also provided for reset controller to
allow a proper reset uppon wake-up. The WKUP is configurable to be sensitive to rising,
falling or both edges. We have connected this pin to a switch and a pull-up resistor. The
resistor connects the net to 1.2V backup voltage and switch connects the net to the ground.
This way a falling edge is generated.

The shutdown controller has an output pin SHDWN that is used to control the power
for the rest of the system. This pin is connected to enable pin of the DC/DC controllers.
One input had to be inverted using a MOS-FET transitor and a pull-up resistor.

4.1.2 Oscillators

The MCU requires 2 oscillators, though only 1, slow, is needed. The slow clock oscillator is
used to provide clock reference for the shutdown controller, reset controller and also may be
used to clock the ARM core. The main oscillator is used to provide clock for PLL synthesis.

20

Figure 4.4: Typical connection of LM317[9]

Figure 4.5: Typical connection of LF50[14]

The slow clock oscillator uses a 32768Hz crystal connected as shown in the figure 4.6.
No additional component is necessary.

Figure 4.6: Connection of slow clock oscillator[2]

The main clock oscillator uses a 18.432MHz crystal connected as shown in the figure 4.6.
An additional resistor may be connected, but is required only for crystals with frequency
less than 8MHz.

Both PLLs require a RC filter. Such a filter is shown in the figure 4.8. These filter have
to be picked to provide sufficent filtering and allow fast oscillator startup. We have chosen
the values to be as followed:

R1 = 4.87k
C1 = 4.7n
C2 = 470p

Both PLL filter us the same value of components. The same values are used widely in the

21

Figure 4.7: Connection of main clock oscillator[2]

designs for such processors and therefore no calculations were done.

Figure 4.8: Connection of the Bypassing Filter[2]

The FPGA uses a dedicated oscilator ASFL1-7.3728MHZ-EK-T that is connected di-
rectly to the power supply and FPGA DCM input pin.

4.1.3 System Bus

SDRAM

The SDRAM is connected to the MCU as is shown in the figure 4.9. Explanation of single
signals is provided in the table 4.1.

An SDRAM uses multiplexed address lines to allow selecting a row and a column that
we are working with. Most SDRAMs have more banks that are chosen using the BA0-BA1
pins. SDRAMs are provided with 8, 16 and 32-bit width of data bus. For the purpose of
this work we use a 16-bit-wide data bus. A typical block diagram of SDRAM is shown in
the figure 4.10 to help understand the way addressing in SDRAM works.

We originally planned to use 32-bit-wide system bus, but the complexity of the board
rose significantly and we were forced to omit 1 SDRAM chip and reduce data bus to 16
bits.

22

Figure 4.9: Connection of SDRAM to MCU[2]

Figure 4.10: SDRAM block diagram[6]

23

Pin Name Function
CLK System Clock System clock
CS Chip Select Disables or enables device operation

by masking or enabling all inputs
CKE Clock enable Mask system clock to freeze operation for

the next clock cycle
A0-A12 Address 4 Row/column addresses are multiplexed
BA0-BA1 Bank select address Selects activated bank during address

latch time
RAS Row address strobe Latches row address
CAS Column address strobe Latches column address
WE Write enable Enables write operation and row

precharge. Latches data in starting
from CAS, WE active

DQM Data I/O mask Makes data output Z after clock and
masks the output

DQ0-DQ15 Data I/O Data I/O pins
VDD/VSS Power supply/ground Power and ground for input buffers and

core logic
VDDQ/VSSQ Data output power/ground Power and ground for output drivers

Table 4.1: Typical SDRAM Pinout[6]

LAN Controller

The LAN Controller is connected to the system bus as shown in next sections in the figure
4.13. Since it will be necessary to receive interrupt request from the controller, we have
connected the INT pin to PB30 pin of the MCU. This way the MCU may be notified that
the controller needs attention.

NAND Flash Memory

As for the NAND Flash, we had a choice to use a 16-bit or an 8-bit wide data bus. Since
the 8-bit chips are more common, we chose that way. The final connection is show in the
figure 4.11.

FPGA

The FPGA is connected to the system bus according to the table 4.2
The FPGA also features its own SDRAM. The interconnection table is shown 4.3.

4.1.4 SPI

The typical connection of devices to the SPI bus is show in the figure 4.12. We have followed
this recomendation for every device we used, only FPGA needed special attention.

24

MCU FPGA MCU FPGA
A0 L01 N4 A20 L21 P6
A1 L01 P4 A21 L22 N6
A2 L27 P4 A22 L22 P6
A3 L30 N4 NRD L23 N6
A4 L30 P4 NWR L23 P6
A5 L32 N4 D0 L24 N6
A6 L40 P3 D1 L24 P6
A7 L01 N5 D2 L40 N6
A8 L01 P5 D3 L40 P6
A9 L28 N5 D4 L01 N7
A10 L28 P5 D5 L01 P7
A11 L31 N5 D6 L20 N7
A12 L31 P5 D7 L20 P7
A13 L32 N5 D8 L21 N7
A14 L32 P5 D9 L21 P7
A15 L01 N6 D10 L22 N7
A16 L01 P6 D11 L22 P7
A17 L20 N6 D12 L23 N7
A18 L20 P6 D13 L23 P7
A19 L21 N 6 D14 L24 N7
NCS0 L40 P7 D15 L24 P7

Table 4.2: Connection of FPGA to the MCU

SDRAM FPGA SDRAM FPGA
A0 L01 N1 A20 L21 P6
A1 L01 P1 A21 L22 N6
A2 L28 N1 A22 L22 P6
A3 L28 P1 NRD L23 N6
A4 L31 N1 CLKE L23 P6
A5 L31 P1 D0 L27 N0
A6 L32 N1 D1 L27 P0
A7 L32 P1 D2 L30 N0
A8 L01 N2 D3 L30 P0
A9 L01 P2 D4 L31 N0
A10 L20 N2 D5 L31 P0
A11 L20 P2 D6 L32 N0
A12 L21 N2 D7 L32 P0
BA0 L21 P2 CLK L40 N2
BA1 L22 N2 WE L24 N2
DQM L22 P2 CAS L24 N2
CS L23 N26 RAS L23 P2

Table 4.3: Connection of FPGA to its SDRAM

25

Figure 4.11: Connection of NAND Flash Memory to MCU[2]

Figure 4.12: Connection of the SPI bus[2]

SPI DataFlash Memory

The SPI DataFlash memory is connected to the CS0 pin of the SPI0 interface on MCU.
This further allows us to boot from this memory using the internal SAM bootloader.

FPGA Programming

The FPGA supports various programming interface as shown in the table 4.4. We have
chosen to use the slave serial interface. This interface is compatible with SPI. We have to
ommit the CS signal as this is not supported by the FPGA. Instead a dedicated GPIOs pins

26

configuration Mode M0 M1 M2 Data Width
Master Serial 0 0 0 1
Slave Serial 1 1 1 1
Master Parallel 1 1 0 8
Slave Parallel 0 1 1 8
JTAG 1 0 1 1

Table 4.4: FPGA Configuration

has to be connected the the INIT B, PROG B and DONE pins. The bit clock is provide
by the SPI subsystem.

To program the FPGA, a driver has to be written that will take over the SPI bus, since
no other transitions on the bus are allowed while programming the FPGA. We have not
found this to be very limiting, since, mostly, only one design has to be present in FPGA
throughout the lifetime of an application.

Audio Codec

The audio CODEC is connected to the CS2 of the SPI0 bus of the MCU. This bus is used
only for setting of the filters, volumes, sampling rate and etc. It is not used to transfer
audio. To transfer audio, a seperate I2S link is connected to this CODEC. The CODEC
features a standard SPI interface.

4.1.5 I2S

The CODEC supports more than one audio interface. The correct interface has to be chosen
using the SPI bus prior to operation of the audio I/O.

4.1.6 LAN interface

The LAN PHY is built into the CP2200 integrated circuit. The LAN PHY requires two
balun transformers for each direction of communication. These baluns are built into the
connectors and greatly simplify the design of the board and schematic. This connector also
provides an activity and link LED to help identify the status of the device. A recommended
schematic diagram is shown in the diagram 4.13.

4.1.7 USB Host Interface

The board features two USB full speed 2.0 host ports. No additional USB PHY transceiver
is necessary, since it is already build-in to help simplify the design. There is however need
for some external pull-up resistors to help the host distinguish if a device is connected. The
host has to provide power for the USB devices and this power is taken from a dedicated
LF50CV linear regulator. The way the ports are connected is shown in the figure 4.14.

4.1.8 RS232 Converter

The RS232 converter is built on a MAX3232 integrated circuit. The IC can operate on
3.3V supply and supports 3.3V logic that is used by the MCU. As for the charge pump

27

Figure 4.13: Typical connection of the CP2200[10]

Figure 4.14: Connecting USB Host Ports[2]

capacitors, the values are provide by the datasheet [4]:

C1 = 0.1µF
C2 = C3 = C4 = 0.1µF

A typical connection is shown in the figure 4.15.

28

Figure 4.15: Connecting MAX3232[4]

4.2 Board

The board was autogenerated from the schematic that was draw in the Eagle. We chose to
use a 4-layer PCB to be able to route the design.

4.2.1 Creating New Parts in Eagle

Before we were able to place the parts onto a board, we had to draw them and put them
into the library. Many parts that we use can be found finished on the Internet using a
search engine, so we could focus onto the parts that are not so frequently used or whose
packages are not published in libraries.

Typically, we begin with drawing a symbol using an interface that is shown in the figure
4.16. Onto this symbol we place pins. Optionally we may specify direction, type and length
of the pins. The direction may come handy later, when we want to do an ERC, however
this is not entirelly bullet-proof because the Eagle does not allow to specify very detailed
constrains onto the pin. For example, the pin may be input, but must not be connected,
because it features an internal pullup. In this case, it will be shown as a warning or even
as an error. We should assign correct names to the pins to speed up connection later and
to make the schematic more clear.

To be able to see a name and a value of a component in the schematic, we have do write
a text > NAME onto the Name Layer and > V ALUE onto the Value Layer, respectively.
The Eagle will interpret these substitutions and replace the with component name and
value.

29

Figure 4.16: Eagle’s Interface To Draw a Symbol

Once we are finished with a symbol, we may proceed to drawing a package. The package
is drawn in a separate interface as shown in the figure 4.17. We may start with drawing
the outline and proceeding to the pads. Every datasheet of a component contains precise
footprint of every package the device is shipped in. To be able to see the component’s name
and value on a board, we should write > NAME and > V ALUE here as we also have for
the symbol. We also should note the name of the pins or, prefferably, change them to pin
number to greatly simplify connection later.

When the package and symbol are ready, we may create a new device. We start with
specifying the device’s name. Now we have to tell which symbol to use for that particular
device by adding a symbol that we have drawn previously. Once this is done, we have to
choose a package for that device. Once device may have more packages, we will be able to
choose between them later during design.

For Eagle to know which symbol’s pin to connect with which package’s pad, we have a
connect tool available. Example is shown in the figure 4.18. Every pad should be connected
to some pin, otherwise we may not be able to use the device in a design.

Once we are finished and everything is correct, we will be present with a green tick
mark next to a package as is shown in the figure 4.19.

4.2.2 Components’ Placement

Once we are ready with the schematic, we may let Eagle create a board for us as shown
in the figure 4.22. Eagle does not contain an autoplacement tool, so we are left to do this

30

Figure 4.17: Package of *555

Figure 4.18: Connecting the pins with pads

manually. Although, this is a very tedious work, because we have a lot of small components,

31

Figure 4.19: Finished *555 device

this work is important because it has a direct influence onto routability of the board and
price - bigger boards cost more. We decided to place all important big parts onto top side
of the board and left small discrete components to be placed onto the bottom side.

4.2.3 Routing

Once we are finished with the placement of the components, we start with routing. The
Eagle’s autorouter is not one of the best available in the market, so we were forced to do
manual routing for the BGA. During the routing, we had to keep some constrains that are
specific for every PCB manufacturer. We have chosen to use PragoBoard s.r.o in Prague.
The constrains were:

• Minimum drill 0.3 mm

• Wire/Space distance 150µm

• Wire width 150µm

We have found out that using these constrains, we are not able to place anything between
the balls of the BGA package, neither a via nor a wire. After a little negotiation with the
PCB manufacturer, we have found out that they are able to produce wire thickness down
to 100µm and with wire/space distance down to 100µm. As it turned out 125µm for wire
thickness and wire/space distance was enough to place a wire in between the pads. We did
not want to do the whole bga using this wire thickness, so we did the manual routing using

32

Figure 4.20: Board with Components not in place

Figure 4.21: Configuring the DRC

this thickness and let autorouter connect to these thin wires with normal thickness. The
manually routed BGA may be seen in the figure 4.23.

A crucial tool to do routing is Design Rule Check (DRC), this tool check all the con-
strains that are necessary to keep to produce a good quality PCB (figure 4.21). These

33

Figure 4.22: Components are connected only using air wires

constrains are also kept by the autorouter and during manual routing we may run a DRC
to see the problems. These checks include:

• Minimum drill

• Wire width

• Pad-pad, pad-via, pad-wire, wire-via, wire-wire and via-via distance

• Minimal distance from board side

• And more

To utilize this DRC properly, we have created 3 sets of the rules

1. Fine - used under the BGA

2. Normal - used globally on the board

3. Fill - used to spill copper

The fine setting was set to keep distance wire-wire 0.125mm and wire-pad and wire-via
0.15mm. The normal setting was 0.15mm for every clearence. We chose the fill setting to
avoid wires, pads, vias by 0.5mm and board edge by 3mm.

34

Figure 4.23: We were forced to manually route the BGA

As for the autorouter, before we are able to use it, we have to specify the the way it
should route. The setting for the router was:

• Layer Top - direction

• Layer Route 2 - direction /

• Layer Route 3 - direction \

• Layer Bottom - direction -

• Routing Grid - 0.15mm

• Via shape - round

Next we set all layers to have an equal cost for all optimizations. The whole process of
routing took some considerate amount because of the board complexity. The setting of the
autorouter is shown in the figure 4.24.

4.2.4 Production Output from Eagle

According to the PCB manufacturer’s website the following files are required

35

Figure 4.24: Setting of the Autorouter

FileName description type
top.gbr top layer copper gerber
bot.grb bottom layer copper gerber
smt.gbr solder mask top gerber
smb.gbr solder mask bottom gerber
plt.gbr print top gerber
plb.gbr print bottom gerber
in2.gbr internal copper layer to top gerber
in3.gbr internal copper layer to bottom gerber
mil.gbr Data to cut the board edge gerber
pth.exc metalic drill exceltron
npth.exc non-metalic drill exceltron

The manufacturer also provides a CAM script file to produce these files, but only for
2-layer board. The in2.gbr and in3.gbr files had to be added into the script file to produce
complete output. These files were packed and sent via e-mail for production. Estimated
production time is 10 days.

36

4.3 Populating the board

The whole board was manually populated. For SMD parts we have used Pb-free solder in
paste. For through-hole mounted parts, like connectors, inductors etc. we have used Pb
wire solder.

We started to populate the board with the MCU as this was the most complex package.
We have applied enough flux onto all BGA pads, placed the chip very precisely into place
and carefully put it into a grill. To know the temperature, a drop of Pb-free solder paste
was placed into a place where no vias or pads were present. This drop was closely monitored
throughout the heating process and once it has melted, the grill was opened and shutdown.
The board was let to cool for a few minutes.

As a next step, we started to place all the parts necessary for the DC/DC converter to
place, this included the IC, capacitors, resistors, power connector and transistors. This step
was important, because we need to check if the provided voltage is correct before powering
the MCU. This MCU is not powered as long as the solder bridges for every voltage are not
joined. In this step we have found out that some DC/DC convertors needed some load for
correct regulation, especially both 1.2V regulators. Once this was fixed the power supplies
were operating correctly and the solder bridges could be connect.

Next we placed the MAX3232 in place along with the capacitors and D-BUS connector
for serial link. We selected to use the DBGU port.

Before we could powerup the system, we had to place components for PLL filter onto
the board, because also the internal boot program needs to start the PLLB. Afterwards we
place the crystals for the MCU and R42 to select boot mode. We powered up the system
and tried to communicate with it via serial port set to 115200,n,8.

Once we had enough software ready, we had to put SDRAM in place, this turned out
to be a picky work, because it was hard to make all pins connected properly. We ended up
debugging bits written and read from SDRAM and determining the unconnected pins.

Next had to modify some software and put the SPI dataflash in place. The communi-
cation was flawless and we could start flashing some bootloader into it.

Next steps were not performed and are provided only for reference

Afterwards we put the NAND in place and flash some meaningful filesystem in it. We
would boot the system and start to modify the drivers to support our board. First we would
start with the LEDs, we would solder them in place and modify the LED layer in Linux
kernel. Next we would proceed with LAN controller and audio controller. Once we had
those wourking, we would solder the FPGA on the board and try programming something
into it. As a last step we would put the SDRAM for FPGA in place.

37

Chapter 5

Software

5.1 Applications and Develompent Tools

There are variety of software tools and application available already designed for AT91SAM9261.

5.1.1 Compilers

For compiling operating systems and applications there is a GNU toolchain available
built on GCC [11] compiler. This toolchain can be downloaded pre-built also for win32
platform[13].

5.1.2 Debugging

As this an ARM processor core, there are a lot of debugger tools available. The MCU
supports EmbeddedICE which allows in circuit emulation/debugging of embedded applica-
tions. The EmbeddedICE is accessible on the JTAG interface.

5.1.3 Boot Loader

As a first stage bootloader, we have chosen U-Boot[12]. This MCU is already supported and
a bootloader will provide a more flexible and robust interface to allow faster development.

5.1.4 Operating System

As for the available operating systems, the well know and developed Linux is already
ported to this MCU. This makes porting for this platform simpler. Most of the integrated
peripherals should already be supported, the problems may arrise only from the externally
connected devices like LAN controller or codec.

When it comes to different operating systems, also Windows CE (Windows Mobile) are
available. These were, however, not tested, but test images for various development board
are available from the Atmel website.

5.2 Theory of Operation

We will now try to draft theory of operation, from powerup to booting of custom OS.

38

Power Up, Stage One After powerup, the boot ROM is executed. This ROM is mapped
onto the 0x00000000 address. In this ROM is a simple SAM bootloader that allows
us to upload some code into memory and execute it. This feature is used by the SAM
Boot Assistant(SAM-BA) refered to in section 5.3.2.

This initial bootloader also allows to download some bigger program from an SPI
dataFlash into SRAM (the AT91SAM9261 has up to 160kbytes of SRAM) and execute
it. This feature is used in production.

Stage Two - AT91bootstrap In this stage an at91bootstrap is loaded from dataFlash
by the initial ROM bootloader. This bootstrap is further analyzed in section 5.3.3.
This tool is responsible for setting up SDRAM and finding next boot program.

Stage Three - U-Boot U-Boot is a fairly complex tool and therefore can not fit into
SRAM directly and has to be loaded into SDRAM. This tool allows to access jffs2
or vfat filesystems on USB mass storage, NAND memories or even on dataFlash.
Further can access network and provide network boot. We use it to load Linux kernel
from dataFlash to SDRAM and boot it. This tool is further analyzed in section 5.3.4.

Stage Four - OS The OS is starting in this stage. Modules are loaded for the hardware
by the kernel and finally an user application is loaded. For details in building the OS
see section 5.3.5.

5.3 Building and using Tools

5.3.1 OpenEmbedded

As a build system, we have used Gentoo linux. First we have to obtail Bitbake. We have
decided to use a stable release as opposed to a git release.

$ emerge =bitbake-1.8.12

Once we have Bitbake, we create a basic directory structure for our OE environment.

$ mkdir -p /OE/build/conf

$ cd /OE/

Next we need to optain local copy of openembedded using git:

$ git clone git://git.openembedded.org/openembedded

Once we have OE pulled from the server, we may create our configuration file for example.

$ cd /OE/

$ cp openembedded/conf/local.conf.sample build/conf/local.conf

$ vi build/conf/local.conf

Some lines have to be modified using an editor:

BBFILES =
’’
/stuff/openembedded/recipes/*/*.bb‘‘

DISTRO =
’’
angstrom-2008.1‘‘

MACHINE =
’’
farmboard‘‘

39

In order for OE to support our machine, we had to create a config from an existing one:

cp /OE/openembedded/conf/machine/at91sam9261ek.conf

/OE/openembedded/conf/machine/farmboard.conf

So far we don’t need to do any modifications in it. Setting the environment:

$ export BBPATH=/OE/build:/OE/openembedded

Now we may start building some package because this process will take long time, this
build system has to compile toolchain for our processor, including gcc and libraries.

$ bitbake at91bootstrap

5.3.2 SAM Boot Assistant

SAM Boot Assistant (SAM-BA) is a specialized tool for working with SAM series of AT91
microcontrollers. This tool allows working with all memories that are connected to such
an MCU. To accomplish this, applets are used. These applets are pieces of code that are
uploaded into SRAM or SDRAM and executed.

After we start the application, we have to select a communication and type of board
as can be seen in the figure 5.1. To be able to select our custom board, we had to copy

Figure 5.1: select

directory lib/AT91SAM9261EK to lib/FARMBOARD and compile an applet that needed
modification. Since our board has only 16-bit wide data bus, we had to create board
directory by copying applets/at91lib/boards/at91sam9261-ek to farmboard. The file that
has to be modified is board memories.c as follows on the marked line:

void BOARD_ConfigureSdram()

{

WRITE(AT91C_BASE_SDRAMC, SDRAMC_CR, AT91C_SDRAMC_NC_10

| AT91C_SDRAMC_NR_13

| AT91C_SDRAMC_CAS_2

| AT91C_SDRAMC_NB_4_BANKS

----> | AT91C_SDRAMC_DBW_16_BITS

| AT91C_SDRAMC_TWR_2

| AT91C_SDRAMC_TRC_7

| AT91C_SDRAMC_TRP_2

| AT91C_SDRAMC_TRCD_2

| AT91C_SDRAMC_TRAS_5

| AT91C_SDRAMC_TXSR_8);

...

}

40

to compile the correct applet, we do (provided we have the correct toolchain in path):

$ cd applets/isp-applets/extram/

$ make CHIP=at91sam9261 BOARD=farmboard MEMORY=sram_samba DYN_TRACES=1 clean all

Next we have to copy the applet into correct directory:

$ cp bin/isp-extram-at91sam9261.bin ../../../lib/FARMBOARD/

Now we may start to use the SAM Boot Assistant. The interface will look as shown in
the figure 5.2. Using this tool we may flash AT91bootstrap and U-Boot into the dataFlash

Figure 5.2: samba

memory.

5.3.3 AT91bootstrap

We found best to use OE to build this tool by running:

bitbake -b /OE/openembedded/recipes/at91bootstrap/at91bootstrap_2.11.bb

-DDDD -c configure

This way we get a source in the /OE/tmp/work/farmboard-angstrom-linux-gnueabi/at91bootstrap-
2.11-r0/ directory and we have to modify file board/at91sam9261ek/at91sam9261ek.c to
initialize only 16 bits of the SDRAM bus. Once we were finished we may compile the tool:

bitbake -b /OE/openembedded/recipes/at91bootstrap/at91bootstrap_2.11.bb

-DDDD -c compile

The binary file may be found in the binaries directory. The at91sam9261ek-dataflashboot-
2.11-r0.bin.fixboot file si to be flashed into dataflash at address 0x0.

41

5.3.4 Das U-Boot

Das U-Boot is a very portable bootloader that has many drivers taken from linux kernel,
thus supports a lot of devices. We did not compile our own U-Boot, but have used one
provide by a demonstration package intended for use with AT91SAM9261 Evaluation Kit.
The U-Boot should be flashed at address 0x8400 into dataFlash and will be loaded into
SDRAM uppon startup. Once U-Boot is running, it will communicate with us using DBGU
serial port. On the host we may use for example a Hyperterminal configured for 115200,n,8
5.3. The U-Boot is presented with a command prompt where the user may issue various

Figure 5.3: hyperterm

commands. Once we have U-Boot running, we may start obtaining an image for it to load.

5.3.5 Linux Kernel

A working Linux Kernel image was obtained from demonstration package intended for use
with AT91SAM9261 Evaluation Kit. This was intended for rapid development, but will
have to be customly compiled and modified, because of the differences that exist between
this board and the evaluation kit.

To flash the kernel, we have to first load it into SDRAM by calling:

loady 22000000

After calling this command, u-boot is accepting Ymodem upload on the serial port. Once
this is finished, we have a kernel image on the address 0x22000000 in the SDRAM. Now we
have to flash this image into dataFlash at address 0xC0042000 by running:

42

cp.b 22000000 C0042000 <size_of_image>

Next modify the bootcmd environment variable by running:

setenv bootcmd ’cp.b C0042000 22200000 210000; bootm 22200000’

The boot arguments for the kernel may be set using:

setenv bootargs ’console=ttyS0 root=/dev/mtdblock0

mtdparts=AT45DB642x-nand:6072k@252000 rootfstype=jffs2’

Finally we may save the environment:

saveenv

And reboot using the button.

43

Chapter 6

Conclusion

We have found the PCB design to be a very complex task. It is almost impossible for one
person to avoid doing a single mistake. In the first version of the board, we have forgotten
to connect Boot Mode Select pin which resulted in system being unbootable, although we
tried to repair the board and also to reball the BGA, we ended up replacing both in a very
limited time. In the end not leaving us enough time to finish porting an OS and drivers
onto the board.

Even in the second version of hardware we have found many flaws that were left unseen
in the first version. All of them are listed in the chapter Errata. Some were easily fixable,
some harder and some impossible. However, we have learned a lot about the soldering of
BGAs and routing of complex 4-layer boards.

As for the chosen CAD software Eagle, we would say that it is barely sufficient for
boards with such a complexity. Many times be were left with few unconnected signals and
we were forced to do some manual routing and moving of the components around. Modern
CAD softwares specifically designed for PCB further allow component autoplacement and
we may set constrains for individual signals. These constrains may include length of wires -
keeping all signals of a bus within the same length or keeping differential signals next to each
other to minimize EMI. Also, for Eagle, it would be a big improvement if the autorouter
could utilize multiple processors by spawning more threads with the autorouter. However,
this was all designed in the 4.16r2 version of the Eagle and there are many never releases
available in which some of the features could already be present.

For future, we have found out that a faster 400MHz ARM processor is available from
Atmel, it may have very similar package, so this design may be modified and corrected to
support a faster processor. Also more precise fabrication process may allow to route all
BGA pads outside and make the board more universal as more GPIOs would be available.

44

Bibliography

[1] Atmel Corporation. At45db642 datasheet.
http://www.gaw.ru/pdf/Atmel/AT45/at45db642.pdf .

[2] Atmel Corporation. At91 arm thumb-based microcontrollers at91sam9261.
http://www.atmel.com/dyn/resources/prod documents/doc6062.pdf .

[3] Digikey Corporation. Digikey corporation. http://www.digikey.com .

[4] Texas Instruments Incorporated. Max3232 datasheet.
http://focus.ti.com/lit/ds/symlink/max3232.pdf .

[5] Texas Instruments Incorporated. Tlv320aic23b. http://ti.com/ .

[6] Samsung. K4s511632d-uc75. http://www.samsung.com/ .

[7] National Semiconductors. Lm2574 - simple switcher 0.5a.
http://www.national.com/pf/LM/LM2574.html .

[8] National Semiconductors. Lm2738 - 550khz/1.6mhz 1.5a step-down regulator.
http://www.national.com/pf/LM/LM738.html .

[9] National Semiconductors. Lm317 - 3-terminal adjustable regulator.
http://www.national.com/pf/LM/LM317.html .

[10] SiLabs. Cp2200/1. https://www.silabs.com/Support
Documents/TechnicalDocs/CP2200.pdf .

[11] Open Source. Gcc, the gnu compiler collection. http://gcc.gnu.org/ .

[12] Sourceforge. Das u-boot - universal bootloader.
http://sourceforge.net/projects/u-boot .

[13] Martin THOMAS. Arm-projects.
http://www.siwawi.arubi.uni-kl.de/avr projects/arm projects/ .

[14] Unknown. Lf00 series. http:// .

[15] FIT VUT v Brne. Fitkit. http://merlin.fit.vutbr.cz/FITkit/ .

45

Appendix A

List of Appendicies

The followint Appendicies are part of this work:

1. This List

2. Errata

3. Schematic Diagram

4. Board Drawing

46

Appendix B

Errata

This page is provided to warn the users about the flaws that are present in the current
design (both, schematic and board)

1. The IC U$8 LM2738 has an incorrect footprint on the board, the footprint is mirrored.

2. The address and data bus that are drawn separately on the schematic for the dedicated
SDRAM for the FPGA are in fact, thanks to the unique feature of the Cadsoft Eagle,
joined with the main bus. It is therefore impossible to place this SDRAM onto board
and use it !

3. Footprint for 32768Hz crystal is incorrect, see datasheet for correct footprint.

4. CE pin on the NAND memory is not connected, should be connected to PC14 of
MCU.

5. ALE and CLE pins are interchanged, should be swapped.

47

Appendix C

Schematic

48

Figure C.1: Schematic Diagram
49

Appendix D

Board

Figure D.1: Copper layer - TOP

50

Figure D.2: Copper layer - IN2

Figure D.3: Copper layer - IN3

51

Figure D.4: Copper layer - BOTTOM

Figure D.5: Component placement - TOP

52

Figure D.6: Component placement - BOTTOM

53

