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1 Introduction

In the world of growing needs for land urbanization and exploitation of resources, yet with
raising concerns on unstable climate conditions, the matters of environmental safety come
under the spotlight. As the world population condenses by over-settling existing areas or
settling new unpopulated areas, bigger and bigger volumes of geological environment
become disturbed, encountered biomass suffers drastic reduction, while microclimatic effects
amplify (Turner & Shuster 1996, Maskrey et al. 2009), which all allows various influences to
embark and jeopardize the subjected population. In such circumstances, natural hazards
stand among the most threatening influences to the safety of human lives and property.
Different natural hazards unfold with different scenarios, causing various disasters, but more
dangerously, they tend to combine and chain-up their effects. Thus, they all superimpose,
making their separate influences and outcomes indistinct, which leaves their authenticity
unclear (Bell 1999). For instance, an earthquake near the coastline can generate a tsunami
wave, and they both can then trigger landslides, cause subsidence, storms, or provoke
technological and other types of hazards, and in turn, completely devastate an area (like in a
tragic episode that stroke Japan in March of 2011). In the aftermath of such a scenario it is
difficult to separate effect of each hazard individually. Holistic (general) approach to the
natural hazard and risk is therefore the only reasonable solution, but for now, it is an initiative
to strive toward rather than a feasible praxis (Lee & Jones 2004). In order to have at least
some idea on the overall hazard and risk distribution, a global and regional view on the
natural hazard is yet necessary, and it is traditionally interpreted by plain statistical analysis
of the historical records (Alcantara-Ayala 2002). It is apparent that analysis of longer time
intervals brings inconsistency in the data acquisition (awareness and attention to the
phenomena has changed over time, as well as standards and methodology of the data
acquisition), so the figures and percentages are only portraying the principle trends. In such
guantification, the most common natural hazards include earthquakes, volcanoes, floods,
storms and landslides/mass movements (Bell 1999). The latter, with their 5% share (Fig. 1)
in the total tolls* of natural disasters, are to be regarded hereinafter.

Indisputably, the landslide hazard awareness reached considerable quota in recent
years. It involves not just the general population, but the academic circles and political
officials, as well. Google’s insight for search (covering 2004 — present time span) indicates
considerable average ascent in interest for keywords such as landslide, debris flow, landslide
hazard and susceptibility. The interest is particularly high right after the events that had
caused considerable damage to society and that have been followed-up by media.
Consequently, the interest is the highest in the affected areas (Fig. 2). These speculations
are relative and disregard the influence of technological literacy and capability (availability of
computer/internet configurations). The insight that one can track within the academic circles
is by far more objective, and it is based on the publication activity records (Gokceoglu &
Sezer 2009). Scientific and research teams have shown rising interest in the landslide-
related topics since the late '80s. This abrupt and exponential (Gokceoglu & Sezer 2009)
increase in activity has resulted in more than 150 scientific articles per year. Widening of the
problematic, technological innovations and holistic approaches to the solution are promising
prolific activity within research community in the future. Numbers of scholars per publication
is also rising, presumably indicating the growth within the multidisciplinary teams that have
been dealing with such matter. Records also show that researchers follow geographical
distribution of the events (Nadim et al. 2006), meaning that they also mostly come from the
areas affected by the landslides (Circum Pacific Region, mountainous regions in the Alps,

! According to some recent research results there has been nearly 90000 landslide casualties

worldwide in the past decade (9000 per year), which is much more than 5% of global natural
hazard toll. The research has been done by using Google News services (Petley 2012).



the Himalaya, and other volcanic and seismic areas worldwide). However, they show that the
most of the researchers and the most significant researchers come from just a few countries:
Italy, USA, Canada, UK, China, France, Japan and Spain (in the respective order)
(Gokceoglu & Sezer 2009, Chacén et al. 2006, Petley 2012). The rest of the world is left with
a few research teams and individuals to cope with the problematic. In such context, the
problem is treated singlehandedly, and although it represents one of the most complex,
versatile and the most wide-spread natural phenomena (Varnes 1984, Chacon et al. 2006,
Gokceoglu & Sezer 2009, Guzzetti et al. 2012) and although the researchers’ curiosity has
an exponential response thus far, the number of studies, contributions and researchers has
yet to grow. Only then the problematic of the landslides and the hazard they produce will be
fully understood.
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Figure 1. Global (per continent) distribution of different hazard types. The incept to the right shows
total hazard distributions per continent (after Alcantara-Ayala 2002).

These global trends were thus the principal motifs for this research: inevitable need
for broadening of the landslide hazard researchers pool, fact that landslides affect the society
more frequently and more broadly than before, rising awareness to the problematic among
the planner/decision-maker pools, availability of the advanced methodology and technology
to remediate and monitor the landslides, opening funds for regional research projects. This
study shows particular interest in the regional type of studies, due to their applicability on one
hand, and scientific contribution on the other. It is further quite appreciable to work with such
problematic in a Geographic Information System (GIS) environment, which allows various
numerical, statistical or heuristic implementations to be conducted relatively easily. It was
actually expected that the researchers will incline toward regional studies in nearer future,
since such studies directly contribute to the landslide hazard mitigation (Gokceoglu & Sezer
2009, Brenning 2012), especially if they represent systematical comparisons of multiple
modeling approaches and techniques (Brenning 2005, Yilmaz 2009). It was also expected to
have various combinations of slope stability modeling, monitoring and landslide hazard
modeling, and development of the Early-Warning Systems. These prognoses turned quite
reasonable if one looks at the contribution lists and contents of the most recent, major
landslide forums, congresses and symposia, organized by the leading communities in the
field (International Association for Engineering Geology — IAEG, International Consortium on



Landslides — ICL, International Society of Soil Mechanics and Geotechnical Engineering —
ISSMGE, International Society of Rock Mechanics — ISRM). Finally, the researchers at
present also experiment with the incorporation of the landslide hazard into a holistic hazard
assessment, and will continue to strive toward that final goal in the future, but this matter
brings about complexity and compatibility issues and requires simultaneous development of
all natural hazard branches in analogue or similar frameworks.
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Figure 2. People exposure to landslides (app. 2.2 million per year). Note that small island countries
have high relative exposure, while in the absolute exposure Asian countries — India, Indonesia, China

and others dominate (after Maskrey et al. 2009).



2 Objectives

Resting on the abovementioned motifs, this research was shaped to meet the standardized
requirements (Varnes 1984, WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky 2008, Gerath
et al. 2010, Brenning 2012) in terms of methodology of data acquisition and manipulation,
choices of the advanced modeling approaches for landslide assessment, as well as the
model evaluation techniques, and finally, the visualization choices, all via GIS. These
objectives could be structured as follows:

1.

Exploiting only low-cost data resources (available or open-source topographic,
geological, satellite imagery and other repositories) and open source software
packages.

Inspecting of the phenomena from different case-studies, including similar, but
sufficiently different terrains (in order to compare the modeling results and test the
capabilities of proposed methodological solutions).

Standardizing the data acquisition regarding the data type, scale, preprocessing
procedures and so forth (in order to have fully comparable models from different
case-studies) using GIS.

Implementing a variety of well-known modeling approaches, but also experimenting
with the state-of-the-art techniques, advanced methods and unprecedented solutions
for landslide assessment using GIS. Resulting models are to present transient relative
values over the area, pinpointing landslide-endangered zones and safe zones (which
shall be further elaborated).

Evaluating the results, i.e. the models performance in the most appropriate fashion,
obtaining qualitative and quantitative descriptors of the models performance using
GIS in combination with statistical tools.

Visualizing and publishing the results in the form of generic maps per each case-
study using GIS, and web-GIS and estimating their applicability.
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3 Theoretical Background

In order to present the problematic of this thesis systematically, it is first necessary to define
and communicate the basic theoretical background behind the landslide phenomenology,
comprehension of qualitative landslide assessment, impact of available technology which is
in service of landslide assessment and the way in which GIS is enrolled in it.

Translational landslide Block slide

Debris avalanche

Latteral spread

Figure 3. A simplified illustrative landslide classification after Varnes (after Lynn & Bobrowsky 2008).
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3.1 Landslide Phenomenology — Definitions and Scope

As in many cases of terminological disputes, landslide as a term has endured various
interpretations, as the scientific disciplines that treat it changed and developed over time. It is
also the matter of different conception of the term by different research-schools worldwide. In
regard with the latter, landslide can express more specific or more general phenomenon. It
seems logical that more general definitions broaden the phenomena, making it more
complex to understand and offer solutions. Herein, such debates will not be of particular
interest (although they are further influential to selection of the modeling techniques or
modeling approaches for instance), since abundant information on that topic could be found
elsewhere (Lee & Jones 2004, Chaco6n et al. 2006). Hereinafter, one of the broadest
definitions and classifications endorsed by the leading communities and consortiums (Varnes
1984) is adopted (Fig. 3). The following paragraphs define the main terms and principles of
the landslide phenomenology rather informally, in order to introduce the main problematic of
this research.

Crown craks

Minor scarp

Transverse cracks

Trarasverse
ridges

Radkal
cracks

Surface of rupture

Toe
Main body

Foot Toe of surface of rupture

Surface of separation
Figure 4. Landslide elements (after Lynn & Bobrowsky 2008).

Landslides are downward movements of rock, debris or earth masses, usually
developed along predefined planar discontinuities. These are called slip-surfaces (simple
planar or higher order — complex surfaces), which propagate throughout the mass and
clearly separate intact bedrock material from the moved material above. Other
(morphological) elements of a landslide include crown and head, separated by a scarp; main
body, channeled by flanks; foot, terminated by a toe; depletion zone capturing upper and
accumulation zone capturing lower portions of a landslide (Fig. 4) Landslides can drastically
vary in size and area, as well in some other measurements (Fig. 5). They can develop in
natural or engineered/constructed slopes. Consequently, they have been studied in various
scientific branches ranging from Geology and Geomorphology to Geological, Geotechnical
and Civil Engineering, from a variety of aspects (Varnes 1984, Lee & Jones 2004, Bell 2007).
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Figure 5. Spans of different measures of landslides (after Guzzetti et al. 2012). Note how broad and
variable the orders of measures are, making landslides very diverse and very complex phenomena.

Slope stability rests on the equilibrium between the forces that act upon a slope.
Displacement takes place when the resisting forces are succumbed by the driving forces,
which in turn generates irreversible change to the slope. The former, resisting forces, are
represented by shear strength and cohesion of the material, as well as friction along a slip
surface, which all further depend on the nature and condition of the slope material (freshness
— weathering degree; structural elements — presence of joints and fissures; heterogeneity —
contrasts of water permeability or deformability; presence/absence of vegetation), as well as
on the slope morphology/geometry (steepness, elevation, curvature etc.). Driving forces on
the other hand, usually involve: increase of weight or shear stress (via water saturation,
adding load and rearranging of the slope geometry), loss of support (via erosion and
rearranging of the slope geometry) or dynamic influences. The features that influence driving
and resisting forces and their balance are commonly called Conditioning Factors. In
regional scales these are different geological, geomorphological and environmental
properties of the ground. In other words, Conditioning Factors are providing the background
of the landslide occurrence. Once the terms are reached, the process unfolds under the
influence of different Triggering Factors or in their combination. The most typical Triggering
Factors are: earthquake, volcanic eruption, intense rainfall, abrupt groundwater regime
change, flood, rapid snowmelt, successive erosion and human intervention (Lee & Jones
2004, Bell 2007).

Landslide activity is another important parameter, which requires attention. Since
landslides develop progressively and cyclically once they enter the process, it is important to
estimate the state of their current activity in order to scale the future displacement rates. In
particular, relative displacements are the highest during the initial activation, and decrease
per each reactivation cycle, but the frequency of the events increases as a landslide
progresses toward an active stage. Stage of the first failure is followed by the stage of
reactivation, which are separated by suspended and dormant stages and this repeats per
every cycle until the active stage is reached (Fig. 6).
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Figure 6. Landslide activity stages (after Leroueil et al. 1996).

| |
| |
| |
| |
(O]

g 5 | . |
= "© | occasional |
© s | ; . |

N = reactivation
0] 3 | |
S o | |
| I active I
| | landslide |
| | W
| | 4 A |

vV v
time

Table 1. Updated Varnes landslide classification (after Hungr et al. 2012).

type of movement rock soil

fall 1" rock fall 2" boulder/debris/silt fall

topple 3" rock block topple 5 gravel/sand/silt topple
4 rock flexural topple

slide 6 rock rotational slide 11 clay/silt rotational slide
7_rock translational slide 12 clay/silt translational slide
8 wedge slide 13 gravel/sand/debris slide
9 rock compound slide 14 clay/silt compound slide
10 rock collapse

spread 15 rock slope spread 16: sand/silt liquefaction spread

17 sensitive clay spread
flow 18" rock avalanche 19 sand/silt/debris dry flow

20" sand/silt/debris flow slide

2

1" sensitive clay flow slide

22" debris flow

23" mud flow

24 debris flood

25 debris avalanche
26 earth flow

27 peat flow

slope deformation

28 mountain slope deformation
29 rock slope deformation

30 soil slope deformation

3

1 soil creep

32 solifluction
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Figure 7. Schematic illustration of landslide types according to the updated Varnes landslide
classification given in Table 1. (some of the examples are missing). Asterisks indicate high velocity
movements. Scale of the illustrations varies (after Hungr et al. 2012).

Displacement mechanism can further define the landslide movement typology as
follows: fall, topple, slide, flow, spread and composite (creeps are sometimes another
separate category) (Fig. 3, 7). Together with the information on the type of the moved
material it makes a basis for conventional classifications. Moreover, the landslide velocity,
as another important landslide descriptor, is also governed by material type and movement
mechanism, and can vary from extremely slow (mm per year in creep) through extremely
rapid (m per second in debris flows). Displacement mechanisms have characteristic behavior
which will not be described in detail herein, but can be found well elaborated in work of
Varnes (1984), who basically founded the terminology that is later to be adopted by the
international community (Turner & Shuster 1996).

Described features represent the base for development of the modified Varnes
classification (Hungr et al. 2012) (Tab. 1, Fig. 7). Thus, every landslide could be classified



in accordance with this system by combining principally material and movement type,
complemented with the estimation of the activity state and velocity. However, there are
exceptions, which make this system more complex (this is the reason behind which the local
classifications are occasionally preferred), and encourage its further refinement, since it
suffers from a certain simplification and subjectivity, just as any other classification system
(Guzzetti et al. 2012).

3.2 Susceptibility, Hazard and Risk — Definitionsa  nd Scope

Hitherto, terms hazard and risk might have been used in their broader, intuitive meaning,
spoken as of something that poses a danger that come from a certain natural phenomenon.
Following paragraphs are dedicated to elaborate and articulate their meaning in the
analytical, quantitative framework, which is consistent with the internationally approved
terminology of Geo-Engineering communities. From this chapter on, their articulation will be
used only as such.

Landslide susceptibility (M) stands for the spatial distribution and magnitude
estimation of landslides which exist or may potentially occur over an area. It could also be
treated as a pure spatial probability of landslide occurrence (Fell et al. 2008). Landslide
magnitude can be expressed by means of total area, volume or velocity (if applicable) of a
landslide. Although it is intuitive that more susceptible slopes will be affected more frequently
than less susceptible ones, susceptibility remains explicitly in a spatial frame, with no
temporal component. Terms landslide potential, sensitivity, relative hazard, total landslide
density and likely frequency partly match term landslide susceptibility, but have not been
used in suffice (Lee & Jones 2004, Chacon et al. 2006).

Landslide hazard (H) stands for a probability of damaging landslide occurrence over
an area within a given time period (temporal probability — p;). It could be regarded as a
temporal extension of susceptibility. It is sometimes confused with susceptibility, but it is
sufficient to notice its temporal dimension to make a distinction. Actually, susceptibility could
be regarded as a special case of hazard that has a single temporal perspective instead of a
time series (Einstein 1988, Lee & Jones 2004). In a broader sense, hazard is founded on the
estimates of the landslide magnitude (area or volume) and probability of its recurrence (Eq.
1) (Fell 1994).

H=MIp, 1)

Element at Risk (ER) is any entity (any component of the terrain) which is potentially
affected by a damaging phenomenon. It involves population, objects of personal property
(real-estate and movables), engineering works and infrastructure, economic activities, public
services and environmental valuables. While susceptibility and hazard analysis are not
influenced by the choice of Element at Risk, Risk itself is, and could be separated in different
categories according to the chosen element (Lee & Jones 2004, Fell et al. 2008).

Vulnerability (V(ER)) is denoted as a degree of loss of an Element at Risk within the
affected area. It could be also interpreted as a measure of exposure toward the hazard or
potential to suffer damage. It can vary spatially, temporally and individually, hence according
subtypes of vulnerability could be derived. For instance, hospitalized persons of a nursing
home for the elderly which is directly facing a landslide would have greater total vulnerability
than workers in a factory nearby, outside the landslide accumulation zone (temporal
exposure of the workers is reduced to only several working hours per day, spatial
vulnerability is reduced because the factory is not directly facing a landslide, workers are
more agile and vital, so their individual capability to survive damaging event is greater, thus
the individual vulnerability is smaller) (Fell 1994, Lee & Jones 2004, Fell et al. 2008).

R =H [V(ER) 2
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Risk (R) is formulated (Eg. 2) as a measure of landslide occurrence probability and
severity of its effects. Risk comprehension is somewhat difficult, due to the linguistic flexibility
of the term itself (and intuitive similarities with terms susceptibility, hazard, vulnerability) and
the fact that it resides in the future. It turns difficult to concept, especially to decision-makers
who need to act upon risk estimations in advance, before disasters strike. As afore
mentioned, several risk categories can be segregated, given a different Element at Risk, i.e.
societal risk, individual risk, group risk, but also categories derived particularly for decision-
making, such as acceptable and tolerable risk (Fell 1994, Lee & Jones 2004).

It is pertinent to accept this internationally approved terminology for quantitative risk
assessment in order to avoid any misunderstandings. In this thesis, as well as in the author's
preceding work (Marjanovi¢ 2009, Marjanovi¢ et al. 2009, Marjanovi¢ 2010a, Marjanovié
2010b, Marjanovi¢c & Caha 2011, Marjanovi¢ et al. 201la, Marjanovi¢ et al. 2011b,
Marjanovi¢ et al. 2011c, Marjanovi¢ 2012, Marjanovi¢ 2013), all terminology is in accordance
with the appropriate conventions (WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky 2008,
Gerath et al. 2010, Varnes 1984). Due to the nature of the subsumed research work, this
thesis will mostly concentrate on susceptibility assessment, while the hazard and risk will be
only speculated by their feasibility for further extensions of the research.

3.3 Landslide Assessment Concepts, Principles and P roblematic

Herein, assessment is treated in a more specific sense than its original meaning instructs. It
stands for a systematic gathering of the available information, processing/modeling with that
information and forming a judgment about it in a transient workflow (Lee & Jones 2004).
Landslide assessment workflow unfolds through phases of initiation of research (where the
objectives, level of detail, scale, assessment type and study area are defined), acquisition (of
data and background information), analysis and modeling (of landslide
susceptibility/hazard/risk), evaluation, recommending/advising and
reporting/publishing/visualizing (Gerath et al. 2010). In all mentioned stages, aspects of this
problematic differ from one case to another, depending on the choices in the assessment
approach. It involves not only the choice of the principal modeling approach, but also choices
of other sub-stages, primarily regarding data acquisition and analysis. Hence, the
aforementioned stages need a short insight and discussion hereafter, but first, it is necessary
to articulate the basic principles on which the landslide assessment is founded.

The idea of landslide investigations and landslide assessment revolves around
several principles and assumptions (Chacon et al. 2006, Guzzetti et al. 2012):

Slope failures do not occur randomly or by chance, but as a result of interplay of
different conditions, governed by different physical processes and laws.

Landslides leave more-or-less distinct footprints (upon activation or after reasonable
period of inactivity) that could be mapped in the field or remotely.

Same types of landslide movement may result in similar landslide footprints.

Principle of historical recurrence of landslides implies that the landslides are likely to
reoccur on the same location, once activated in the past.

Principle of uniformitarianism (past and present are keys for the future) implies that
the slope failures are more likely to occur under those conditions that have led to
instability in the past or at present at other, environmentally similar locations.

Knowledge on landslides of some area can be generalized and expanded to other
areas where similar conditions apply.

Implicitly, conditions that are not taken into account in the model do not change
systematically in time or space (time/space invariant).
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It is crucial to understand the limitations and conditions under which all these
assumptions apply, and to single-out special cases and exceptions, to reach a common
(standardized) level of resulting products: Landslide Inventory maps, landslide susceptibility
maps, landslide hazard maps and eventually, landslide risk maps. These postulates are
approved by conventions (Varnes 1984, WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky
2008, Gerath et al. 2010), as well is the concepts and methodology which are further to be
described. This thesis, as well as the author's previous researches (Marjanovi¢ 2009,
Marjanovi¢ et al. 2009, Marjanovi¢ 2010a, Marjanovi¢ 2010b, Marjanovi¢ & Caha 2011,
Marjanovi¢ et al. 2011a, Marjanovi¢ et al. 2011b, Marjanovi¢ et al. 2011c, Marjanovi¢ 2012,
Marjanovi¢ 2013) stand in accordance with the latter.

3.3.1 Data Acquisition Issues in Landslide Assessme  nt

Data acquisition in the landslide assessment framework is usually classified in respect to the
type of investigation, i.e. its methodology and technology (Lee & Jones 2004). One can
easily separate among mining of the historical records, field mapping techniques,
instrumental monitoring techniques and Remote Sensing techniques. Furthermore, one can
speculate between old, conventional and new methods for data acquisition (Guzzetti et al.
2012). These are all affected by the initial case study definition, i.e. required scale, level of
detail, landslide size, mechanism type, configuration of the terrain, availability of the
repositories, and they all bring about specific problematic, precision/accuracy issues,
certainty issues and so forth.

Common or conventional methods have been established for a long time and have
been proven in practice, but yet suffer from specific limitations.

Investigation of the historical records is one of the necessary stages of any
landslide-related endeavor. It includes not only familiarizing with the facts on the landslides
over an area, but also facts on geology, geomorphology, climatology, seismicity, Land Use,
history of disasters and so forth. It is also presumed that one needs to get familiar with
features of the wider surroundings of a chosen area, in order to have a better perspective on
regional and local conditions in action. Principal investigation of historical records includes
analyses of historical topographic and geological repositories, where applicable. Surprisingly,
newspaper and diary reports on disastrous events can also be very resourceful, especially
for hazard analysis. They can contribute to the existing databases, but must be treated with
caution and criticism in order to avoid misconceptions, and where applicable, to be confirmed
by other plausible resources. Tracking in such, merely unsystematic context is much easier
nowadays, in the era of digital information and global networking. In particular, there are a
number of websites, web-services and blogs dedicated practically only to the “landslide
journalism”, filtering-out all other, undesired journalistic contents (www.geoprac.net,
www.geohazards.usgs.gov, www.landslideblog.orqg, and the most recent
http://landsliderisk.wordpress.com) and there are also web tools such as RSS feeds and
Google Alert and Google News for setting alarms for certain information in digital newspaper
repositories.

Field mapping , albeit geological, geomorphological or engineering-geological (with
special aspect on the slope processes) is confined by the practitioner's observational field of
view, perspective of view, which might be obscured by the urban or vegetation cover, or by
more recent geomorphological entities (in the case of larger or older landslides).
Interpretation of larger landslide sites is therefore rather difficult. The interpretational
subjectivity is also present throughout the map design (estimation of the landslide shapes
and spread and their compilation at different scales), which leaves final result somewhat
uncertain. This is usually reduced to some extent by augmented borehole testing (core
mapping, specimen sampling, groundwater level checking), laboratory testing, in-situ testing,
geophysical probing and so forth, but it additionally affects the research budget.
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Table 2. Contemporary RS systems (after Guzzetti et al. 2012).

bands revisiting time
satellite spectra # resolution [m] stereo mode nadir off-nadir
Landsat 7 pan 1 15 - 16 -
r,o,b 3 30
nir, swir, mwir 3 30
tir 1 60
Terra (ASTER) gy, or 2 15 al 16 5
nir, swir 6 30
tir 5 90
SPOT 5 pan 1 5 allac 26 5
gy, or 2 10
nir 1
swir 1
IRS pan 1 58 - 24 5
gy, or 2
nir 1 23
swir 1 70
ALOS pan 1 25 al 46 2
RESOURCESAT 1 gy, or 2 56 - 5
nir 1 56
CARTOSAT 1 pan 1 25 al 125 5
FORMOSAT 2 pan 1 2 - 1 1
r,gb 3 8
nir 1
EROS Al pan 1 1.8 allac 7 25
IKONOS 2 pan 1 1 al 3 15
r,gb 3
nir 1 4
QickBird 2 pan 1 06 al 35 1
rgb 3 24
nir 1
WorldView 1 p 1 05 al 5.4 1
GeoEye 1-2 pan 1 04 al 8.3 2.8
rgb 3 16
nir 1

R=red, G=green, B=blue, OR=orange-red, GY=green-yellow, nir=near-infrared, swir=short-wave-
infrared, mwir=mid-wave-infrared, tir=thermal-infrared, al=along-track, ac=across track

Visual interpretation of aerial photographs by using stereoscopic techniques and
equipment is also a well-known conventional method, which overcomes synoptic issues,
allowing the practitioner to observe much wider areas with better perspective. It is also
affected by presence of vegetation or infrastructural and urban objects (especially for shallow
landslides and debris flows). In contrast to field mapping, the analysis is relatively easily
combined and compiled across different scales (with some georeferencing difficulties due to
the spherical geometry of acquisition which needs further orthogonal re-projection), and
seems independent of field conditions (apart from the final evaluation stage, which requires
certain amount of field work and therefore depends on field conditions). As for the
subjectivity, it is even more pronounced than in the field mapping techniques due to the
individual visual perception capabilities. However, some standard criteria for landslide
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recognition do exist’, thus uncertainty prevails only to some extent. Important benefit is
possibility of analyzing different time series and scales (some countries have multiple records
in different scales, from several periodic surveys, usually restricted in repositories for military
purposes or other purposes in different national institutions).

New methods for data acquisition primarily involve novel Remote Sensing (RS), field
(in-situ) and surveying instrumentation technologies (Savvaidis 2003), complemented by
according software and hardware development in order to support their full capability.

Contemporary RS came along with the advent of the high-tech satellite technologies
and several Earth Observation programs. New opportunities have been introduced by
widening perceptional capabilities with new sensors, focused at different parts of wide
electro-magnetic spectrum (Tab. 2). Since unprecedented parts of the spectrum became
available, new spectral features have been exploited. From the most recent perspective, the
latter involve global coverage by multi-channeled sensors, i.e. multispectral and
hyperspectral sensors for visible, but also infra-red and thermal spectral domains, as well as
microwave sensors, with unparalleled spectral, temporal and spatial resolution. At airborne
and terrestrial level, microwave and laser techniques appeared and brought unprecedented
precision. These involved Light Detection and Ranging (LiDAR) and Side Aperture Radar
(SAR) techniques, particularly interferometric (INSAR), differential interferometric (DINSAR)
and polarimetric techniques (PolSAR), as well as Small Baseline (SB) and Permanent
Scatter (PS) techniques (Ferretti et al. 2007). These approaches (LIDAR and InSAR in
particular) have promoted surface-based monitoring, since systematic, high-resolution, on-
demand surveys became possible. This facilitated production of high resolution Digital
Elevation Models (DEM), allowing near-real-time tracking of surface deformation, by imaging
at desired temporal frequency (temporal resolution). Geophysical satellite/airborne systems
also fall in this group, providing even more details on the geological and physical conditions
of the terrain (by means of different gravimeters, accelerometers, magnetometers, gamma-
spectrometers and so forth). Further upgrades in RS technology can be expected principally
due to the increase of the spatial and spectral resolution, conditionally temporal too, since
many satellite programs today tend to satisfy the principle of data continuation (e.g. Landsat
series) so that their data could be considered compatible with the missions that they have
substituted. Benefits of using RS techniques in landslide assessment are multiple, including,
but not limiting to: synoptic view, georeferenced data, lower expense of research,
encouraged raster modeling approach, possibility of quantitative modeling method
implementation (pixel and object-based classifications implementation, pixel and object-
based classifications through combination of advanced statistics and Machine Learning with
GIS) and therefore reduced subijectivity in design, possibility for urgent response and Early-
Warning Systems for disastrous landslide events, even enabling on-screen visual 2-3D
analysis, via special hardware/software configurations (Guzzetti et al. 2012). Special
attention in the most recent technology is drawn by the unmanned vehicles and micro-
vehicles, which are capable of producing high-resolution imagery at extremely low cost.
Limitations on the other hand, are mostly technical: unavailability of specific sensor at the site
(particularly, pricey and rare airborne/terrestrial LIDAR and SAR data), relatively short
operational history of RS programs (only several decades, through which the data are not
entirely consistent in terms of resolution and other technical features), and therefore limited
applicability for temporal (hazard) framework. It is probably the most advisable to combine
novel RS techniques and conventional aerial photography in order to achieve the optimal
acquisition.

Field (in-situ) instrumentation , often referred to as geotechnical instrumentation,
has also undergone some technological improvement, primarily toward near-real-time and

Criteria for geomorphological landslide signature exist and usually include: shape, size, tone, color,
texture, pattern of shadows, pattern of objects, overall topography and setting. It is assumed that
occurrence of landslides causes characteristic optical properties of mentioned elements.
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real-time data acquisition and distribution, based on the advent of wireless and internet
networking technology. In-situ measurements of displacements, carried out by standard
inclinometers, tiltmeters, extensometers or electro-optical systems (such as Time Domain
Reflectometry — TDR) with the highest precision (in mm), provides valuable information for
the assessment of landslide activity. Moreover, it involved measuring of the physical
parameters of the triggering event (rainfall amount/intensity/duration, earthquake magnitude,
water table level/pore-water pressure etc. via pluviometers, seismometers and piezometers,
respectively), working toward modeling of the trigger-landslide relation, which in combination
with real-time data distribution eventually allowed development of Early-Warning Systems,
crucial for the suppression and mitigation of the landslide risk. The major drawback is the
equipment cost, together with the installation and maintenance requirements, and localized
information, rarely transferable from one study area to another.

Surveying equipment has experienced improvements from several aspects including,
faster acquisition time with sufficient precision, more precise optical-laser systems for
distance measuring (which reimbursed field mapping precision), but mostly via Global
Navigation Satellite System (GNSS) and synergy of Photogrammetric and high-resolution
optical imaging (terrestrial, airborne and satellite). GNSS receivers tend to gain higher and
higher precision, allowing very precise systematic surveys of chosen critical points of the
terrain. In turn, the information on total 3D displacement of these points and possibility to
model landslides at different scales are provided. Near-real-time, i.e. robotic total station
surveys are rather experimental for now, but seem to meet the precision and efficiency
requirements, and could be easily assembled alongside with the standard in-situ
instrumentation. Less proficient mobile GNSS receivers are being regularly used as
complementary equipment for field mapping, reimbursing for the subjectivity in the mapping
process. They also complement the commercial digital cameras which enable better
precision in photo-documentation of the landslide events. The only drawback of GNSS
technology in such framework is its dependence on the terrain physiographic condition
(configuration and setting, screening by vegetation cover and urban objects). On the other
hand, reception of the satellite signal tends to increase with appearance of new missions
(existing GPS and GLONAS systems are soon to be joined by GALILEO mission, which will
bring more satellites in the GNSS constellation and accordingly, better reception on the
ground). Photogrammetric survey advancements are simply related to the imaging (spatial)
resolution of aerial and terrestrial sensors — higher the resolution, higher the precision. It also
necessarily follows the advent of the associated software/hardware configurations.
Nowadays, it is possible to use Photogrammetric technique to produce high precision DEMs,
paralleling the quality of LiDAR-based or INSAR-based DEMs. Its principal limitation is the
engagement of the practitioner, making it time-consuming and resource-intensive (Savvaidis
2003, Guzzetti et al. 2012).

It is probably the most advisable to combine as many of the acquisition techniques as
possible and never to rely entirely on a single one. Those older, conventional methods,
especially aerial photography interpretation, are not to be neglected among acquisition
techniques, and should be cherished in the landslide assessment practice (Guzzetti et al.
2012). Novel techniques, which are developing toward automatic (semi-supervised) landslide
mapping, will hardly reach sufficient levels of certainty, since they face different, non-
compensable limitations unlike visual, expert-driven interpretation.

3.3.2 Modeling Approach Issues in Landslide Assessm ent

Once the data are chosen and structured, they need to be fed to a proper modeling method,
where particular choices strongly influence the quality and type of the outcomes. Model's
predictability is a feature which can be adopted as a criterion for distinction between two
separate cases: temporally predictive and temporally non-predictive (spatial analysis) models
(Brenning 2012), although in practical situations this distinction remains deficient, due to the

15



tendency of obtaining more interpretable models (transition from predictive to non-predictive),
thus mixing of the two.

Predictive models are based on non-linear supervised classification problem upon
spatial or temporal reference (Brenning 2005). In particular, predictive models can relate
spatial conditions of an area with its past landslide occurrence, in turn localizing endangered
zones in adjacent areas. Alternatively they can relate several generations of past
occurrences within the same area and predict the future events. They both require that
general principles and assumptions apply (see the postulates in Chapter 3.3) and also
require certain structure and type of the data. It is for instance indispensible that analyzed
areas contain thematic variables (Conditioning Factors), including geological,
geomorphological or even geotechnical parameters on one hand, and reliable Landslide
Inventory or multi-temporal inventory on the other. Even though the resulting model provides
numerical, i.e. quantitative measure (usually probability of spatial/temporal occurrence),
relative scoring is yet preferred due to the great deal of assumptions which trouble the
quantitative way of expressing the landslide susceptibility/risk/hazard®. It is further advisable
to treat a non-linear problem with non-linear techniques, even though the current practice
has shown different, but this is probably due to the lack of cases with properly applied non-
linear techniques. Systematic comparative studies (Brenning 2005, Yilmaz 2009) hence give
preference to linear or moderately non-linear techniques on behalf of both, their performance
and their simplicity (in respect of time consumption and processing intensity). Implicitly, some
advanced techniques, such as Machine Learning-based ones, turned less efficient than
regression methods, discriminant analysis or even general additive modeling. This fact
however, should not discourage experimenting with advanced techniques, on the contrary.

In non-predictive approach the objective is realized through the spatial analyses of
different thematic variables (Conditioning Factors), and chiefly involves determination of their
total contribution to the landslide susceptibility/hazard/risk, by exploring the statistical relation
between the factor and landslide occurrence (landslide presence/absence), but also the
relation among themselves. They call for a simpler, i.e. less time/computation-demanding
techniques, in order to be testable by statistical hypotheses. In turn, non-predictive approach
comes up with quantified values of individual impact of each factor. Although these methods
decrease the uncertainty by surpassing some of the assumptions that are commonly made in
the predictive modeling, they tend to subject uncertainties through the data preparation, due
to arbitrary/empirical rearrangement of the raw data (slicing/ranging continual data into
intervals, transforming the data, quantifying non-numerical data and so forth). The most
appreciated techniques involve multivariate statistical tools (e.g. different types of regression
techniques), which fully explore statistical possibilities (to relate the Landslide Inventory with
thematic variables, but also thematic variables among themselves), and different linear and
non-linear tools (such as odds indexing, entropy scores, conditional probability weighting,
and other general additive modeling techniques). Important benefit of this approach is its
quantitative nature, which is relatively easily communicable to non-landslide experts,
planners and decision-makers (Brenning 2012).

One can alternatively discuss the modeling choice and brief the problematic which it
brings, by accommodating a more conventional perspective. The most usual classification of
methodological approaches sorts them into (i) heuristic/lempirical or expert-driven, (ii)
statistical and (iii) deterministic/physical. In respect to the preceding passages, only statistical
methods qualify as predictive approach, but could also be enlisted among non-predictive,
while the remaining two only qualify as non-predictive approaches. In brief, (i) use thematic
data (variables such as geological, geomorphological, Land Use, infrastructure and so forth)
and suffer from uncertainty related to the subjectivity of the practitioner in both, data

® Some assumptions are taken into account but some of the uncertainties usually remain

unconsidered, and it is therefore disputable to measure susceptibility/hazard/risk in absolute
guantitative scale.
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preparation and modeling itself. Statistical modeling (ii) can suffer from uncertainty due to the
data preparation, but the tendency of using advanced techniques, such as Machine Learning
algorithms, might be helpful due to their capability of canceling-out these sources of
uncertainty. Deterministic models (iii), regard only the simplest mechanisms (in regional
scales) and introduce numerous assumptions into the modeling (Montgomery & Dietrich
1994), thus their uncertainty is relatively high. In conclusion, it seems that statistical methods,
especially the more advanced (predictive) ones turn out to be the most promising and least
limited for the exploration, but they do not necessarily grant the optimal solution (Bonham-
Carter 1994).

3.3.3 GIS Issues in Landslide Assessment

Past few decades of landslide assessment had been witnessing paramount improvements in
computer science and technology, eventually resulting in GIS. As GIS gained more attention
in all spatially-featured disciplines, a prompt scientific evolution took place due to both, new
possibilities for better data manipulation and more advanced modeling opportunities (Carrara
& Pike 2008). This particularly applies to regional landslide studies, where geological,
geomorphological and Land Use variables are preferred, unlike sight-specific studies where
geotechnical parameters are required and sampled through a series of instrumental
measurements and laboratory tests.

A firm relation between a landslide occurrence and conditions which host it is
accomplished through morphological features of the terrain surface. Thus, development of
DEM through GIS and RS virtually led to the morphometric revolution by introducing new,
unparalleled tools for surface features extraction and creation of novel thematic spatial
layers, unachievable through conventional — analogue practice. Other geo-environmental
features became available in digital format, and also came about as thematic layers in a GIS
environment. Features within such layers, presented by point/line/polygon vectors or gridded
in the case of raster formats, became analyzable, synthesizable, decomposable, combinable,
scalable, in other words, fully spatially operable (Bonham-Carter 1994). However, with such
great capabilities came even greater difficulty of suiting the data for a specific research.
Using different data resources, types and scales brings about the data quality and
compatibility issues, which are topics on their own, but will be regarded in approaching
chapters and case studies (see Chapter 6.).

Numerous modules onboard GIS platforms made majority of spatial modeling
techniques available, including even complex, time/software/hardware-demanding
techniques. These in particular include regression methods and Machine Learning
algorithms. It is important to mention that raster format has made a major breakthrough for
implementation of these advanced methods.

Once properly prepared for the desired modeling concept®, raster formats allow bulk
spatial information to become easily reproducible and directly accessible to different module
demands, including filtering, sampling and calculating, while keeping the spatial reference
consistent. Such flexibility put very demanding modules into play. To this end, strong efforts
are made to aggregate more and more complex algorithms through GIS environment.

Although the most critical GIS aspects in landslide assessment are presented above,
it should be mentioned that GIS turned revolutionary for a number of other, more general
innovations, valid for any spatial context, starting with the data structure. It allowed allocating
each data input within a thematic layer, as well as its frequent editing/updating, networking
and storing. It also allowed attributing practically unlimited amount of features to a single data

Spatial/spectral/temporal resolution of the grid cell needs to be justified by the nature of a
phenomenon, e.g. Landsat images are sufficient to monitor landslides bigger than 30 m in
diameter, which leave visual imprints within the Landsat band spectra (VIS, NIR, SWIR, TIR), and
do not change significantly over 16 days (repeat cycle of Lansat series).
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input within each thematic layer, which had met even very demanding modeling
requirements. The same applies to any thematic layer which is appended, while
spatial/geometrical consistency among the layers remains persistent. The later is particularly
important for working with time-series in hazard/risk assessment scenarios. This consistency
is provided by georeferencing, i.e. attributing a particular geographical coordinate to each
piece of information, making it always properly positioned in space, and therefore
interoperable with other data and ready to subject to any desired spatial operation. GIS also
became indispensible in terms of visualization of both, the input data and the resulting
models. Once locally dense spatial information became much easier to visualize in
multidimensional 2/3/4-D displays. In combination with web-GIS systems, global
(GoogleEarth, BingMaps) or local GIS portals for different (usually administrative) purposes,
landslide information became much better disseminated and visualized (Guzzetti et al. 2012).

The most recent trends imply merging of Remote Sensing, (Geo)statistical and GIS
platforms especially among the open-source communities (e.g. SagaGIS, GrassGIS, ILWIS,
R, SEXTANTE, and many other platforms). This is beneficial for extending analytical power
of a practitioner or assembling a cross-disciplinary team of practitioners to work under the
same framework and achieve better communication, better interoperability and eventually
better results. The downside of this increasing “user-friendliness” of GIS platforms is
recognized in lack of criticism, particularly by neglecting the input data quality issues and
focusing rather on the complexity of the data manipulation and model implementation
(Carrara & Pike 2008). Data manipulation or modeling technique, however sophisticated, can
never compensate for inadequate quality, scale or theme of the inputs, due to intrinsic error
that is continually replicated within. On the other hand, data availability and open-source
policies are one of the most significant issues in research budget design, and lack of
affordable data could lead to the decreasing of assessment quality, but this is rather financial
than scientific issue to discuss.

3.3.4 Other Issues in Landslide Assessment

Although a couple of preceding passages revealed the most critical concerns in landslide
assessment framework, there is still suffice of other issues in landslide problematic, ranging
from scientific, practical, technical, to social speculations.

Uncertainty is definitely one of the major issues for plausibility of resulting landslide
models. It can originate from the data, from the modeling procedure choice and from the
environment (real-world conditions). The former two were partly discussed before (see
Chapter 3.3.1 and 3.3.2), but some specific details are to be emphasized:

Fuzziness and randomness are omnipresent in measured/imaged spatial data and
contribute to the total uncertainty. Fuzziness is contributing by appending local imprecision,
while randomness contributes by preventing regularity in patterns of distribution of data
values. Both are especially pronounced in noised, biased or skewed data. In the case of non-
predictive modeling, these sources of uncertainty can be treated and taken into account
through the probability theory.

Incompleteness is nourished by oversimplification in the modeling stage. Landslide
assessment has many assumptions (see the postulates in Chapter 3.3) and therefore it is
highly affected with simplification (especially in deterministic modeling). One delicate issue
within is the exclusion of conditionally unimportant data. There is a debate (van Westen et al.
2006, Carrara & Pike 2008) on whether any data shall be excluded, even if biased. On the
other hand, some data are not excluded on purpose, but due to the lack of resources for the
corresponding phenomenon (e.g. involving parameters of the trigger, geotechnical
parameters, weathering parameters, soil thickness or groundwater parameters might be
critical for yielding a reliable model, but having them sampled at regional scales is inapt due
to the intolerable costs and strong distributional variability) or it is simply unforeseen as a
pertinent factor by mistake or insufficient knowledge.
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Environmental or real-world uncertainty is highly unpredictable and includes
consequential actions of administration, public or individuals (conscious or subconscious
deeds that can deliberately drive even high quality predictions off the course), and which are
impossible to account for. This applies in both directions, actions in the future, which are
impossible to specify, and actions from the past (especially from a long time ago), which
have remained unknown. Due to this dimension of uncertainty, the further away one is from
the present moment higher is the difficulty to predict landsliding (Lee & Jones 2004).

Quality check of data and results is another important issue, which troubles the
production of reliable landslide susceptibility/hazard/risk maps. Data quality check is a
necessary step, particularly due to the rising resourcefulness in contemporary researches
(data from different scales, different spatial reference, different geometries, different
precision and level of detail), but it is this plentitude of resources that limits possibility to
standardize and objectify the quality check. Two basic quality check requirements should be
met: appropriate strategy for model performance evaluation and actual valorization of the
model (van Westen et al. 2006, Carrara & Pike 2008, Brenning 2012). It is hence
recommendable to propose spatially-driven sampling strategy (which applies only for
predictive models), for distinguishing training-testing-valorization sets within a model by a
meaningful physical (spatial) splitting. For non-predictive models, the evaluation is intrinsic,
governed by the statistical confidence intervals attached to the particular technique. Actual
valorization of the model implies its confirmation through time, and particularly concerns
hazard/risk models due to their temporal dimension.

Most of the times practitioners are more concerned with their modeling choice, while
attempting to design the best model to suite the universal circumstances, which is most likely
futile, assuming that the best model is the most complex and robust one (Carrara & Pike
2008, van Westen et al. 2006). Instead, the above mentioned result and data quality check
might be an apt response to the particular problem posed before them. In some cases the
Occam’s razor directly applies, so that the simplest solution — the simplest modeling method
can provide optimal solution. It would provide the optimal balance between the quality and
complexity of the model (Lee & Jones 2004, Brenning 2012).

Another peculiarity due to the resourcefulness of the data comes along with the rising
popularity of RS products in landslide assessment (aerial photographs, multi/hyperspectral
satellite imagery, LIDAR and SAR products, i.e. DEMs, Principal Components, different
indices such as ratios, vegetation indices, change detection indices and so forth). Usage of
raw products is the easiest but irresponsible solution, since each one of them contains
intrinsic noise, which foremost requires determination of its type, quantity and propagation.
Subsequently, noise filtering is managed through image preprocessing, i.e. pansharpening,
orthorectification, coregistration and radiometric correction, in this respective order (Mondini
et al. 2011). Working with initial noise is qualified as a systematic error and will affect,
perhaps even sabotage the model. Working with time series in the case of hazard
assessment further perplexes the problematic by requiring pre-event and post-event noise
filtering, as well as technical consistency in acquisition (images need to be taken in very
similar conditions, such as view angle, altitude, mode of the sensor and also in compatible
meteorological conditions).

Temporally dependent assessment (hazard/risk) also suffers from the possible
misdating of a landslide vs. trigger(s) records and it is therefore usually reduced to
separation of pre/post-event observations. The latter introduces substantial temporal
tolerance, during which pertinent changes among Conditioning Factors could have taken
place (with the exception of geological setting and to some extent, geomorphological
features, but with the emphasis on Land Use). Postulate of temporal/spatial invariant (see
the postulates in Chapter 3.3) is therefore merely plausible (Brenning 2012).

One important research hint infers distinction of the landslide assessment according
to the landslide typology, because different landslide mechanisms, e.g. debris flows and
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deep-seated slides, will exhibit completely different behaviors, but more importantly, will be
induced under different circumstances in respect to the Conditioning Factors and Triggering
Factors. For this reason alone, it is advised to assess only one landslide type at a time, and
eventually combine these separate assessments later on (van Westen et al. 2006). It is
further advisable to concentrate on characterization of the depletion areas, since they host
the slope failure, while the accumulation zone is only the collateral result of the posterior
downward movement, and its characterization does not lead to the real cause of the failure.
Such division is rather difficult in regional studies, due to the size of the occurrences and
spatial continuity of source and accumulation, but yet feasible in some cases (Guzzetti et al.
1999).

Difficulties also arise from purely technical causes, such as the lack of independent,
long-lasting, institutionalized landslide agencies on national level, which would focus on all
the aspects of landslide problematic, including their assessment and provide the research
continuity. At present, individual projects at universities or institutes are treating this problem,
but only during the project lifetime. At best, there are cases where multi-scaled and nation-
wide researches are involved, but most commonly landslide assessment is disconnected into
separate case-studies, and focused on very specific project objectives, rather than revealing
of the fundamental breakthroughs in landslide knowledge (van Westen et al. 2006, Carrara &
Pike 2008).
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4 Related Work

It is rather difficult, if even feasible to systematically and chronologically summarize all
published landslide assessment references. Some earlier attempts to systematize the
landslide literature could be found (Aleotti & Chowdhury 1999, Chacén et al. 2006), but even
these were focused on particular topics. Contemporary volumes of literature would be
probably much more challenging to review, thus eventual systematization of such kind would
probably end-up in even stronger secession of topics, e.g. review of contributions in
susceptibility/hazard mapping domain only, or in risk mapping only, only in GIS-based
modeling or in input data evaluation or evaluation of the model. The following passages are
therefore intended for reviewing only those critical contributions in landslide
susceptibility/hazard mapping, which radicalized landslide assessment practice and
pioneered advanced methods, particularly Machine Learning-based ones. Hereupon, the
work which turned out to be the most inspiring for research design and the topic of this thesis
are to be scrutinized in greater detail.

Early works in the GIS-based landslide susceptibility assessment came along as the
GIS software/hardware components became more available to practitioners, i.e. as the
related field of computer science has emerged in 1970's (Brabb et al. 1972). Pioneering
attempts involved simple solutions including heuristic and simple statistical non-predictive
models, but these rapidly changed toward the implementation of more sophisticated
mathematical and statistical models. Availability of digital formats of previously analog input
data, such as topographic, geological and geomorphological maps, subordinately, Land Use,
pedological, seismic maps and so forth, propelled implementation of statistical methods via
GIS. One of the most productive groups, gathered around IRPI institute in Italy, with Guzzetti
as the most cited author in entire landslide assessment literature (Gokceoglu & Sezer 2009),
have contributed in domain of GIS-based statistical assessment approach since their early
opus (Guzzetti et al. 1999, Guzzetti et al. 2000), but also kept perfecting their practice till
present (Rossi et al. 2010, Brunetti et al. 2010, Guzzetti et al. 2012). Copious as it is, their
work is difficult to present in detail, but several points are to be discussed hereafter. Their
early practice regarded the basic capabilities of GIS-based landslide analyses, and more
importantly, the choice and the manner of partitioning of the slope units, prior to the analyses
(Carrara et al. 1991). These are being developed on the basis of geomorphological and
watershed analyses and have been further improved (Carrara et al. 1999, Guzzetti et al.
1999). Another important issue addressed in this early stage regarded the importance of
Landslide Inventory (its certainty and quality), thereto speculating capabilities of producing
multi-temporal inventories for hazard assessments (Malamud et al. 2004). Such thematic
was recently revisited, and resulted in a very systematic perspective on inventory
problematic (Guzzetti et al. 2012). Their practice sublimed in a series of articles and case
studies where optimal techniques (according to their findings) have been practiced (Rossi et
al. 2010). Numerous case studies from various aspects have been subjected to their
practice, but the focus was on central Italy (Umbria region), where all of their breakthroughs
were first experimented. Meanwhile, they have contributed toward the development of
national landslide information system and Early-Warning System for rainfall-triggered
landslides, which became the principal preoccupation of the group henceforward (Guzzetti et
al. 2007, Guzzetti et al. 2008). Finally, some contributions regarding the state-of-the-art
technology attract attention, principally involving various INSAR and integrated GNSS
techniques (Guzzetti et al. 2009, Santangelo et al. 2010). In conclusion, the most relevant
findings that relate to the topic of this thesis regard the sampling strategy, which suggests 1:2
size ratio between the training and testing samples (Rossi et al. 2010). Despite of introducing
the bias in the testing sample, such ratio ensures the robustness of the model, which has
been acknowledged by the thesis author in his preceding work (Marjanovi¢ et al. 2011a,b).
Another good example of the influence of this group is featured through the selection and
manipulation of the input data (Guzzetti et al. 2006, Rossi et al. 2010). In particular, the
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group has committed very exhaustive work on defining relevant data inputs, ranging from
essential geological, geomorphological and environmental layers®, through their conceptual
derivates® and statistical/computational derivative variables’. Due to the different approach in
appreciation of the base unit by the thesis author (the grid cell approach over slope unit
approach has been preferred in this work), the input data strategies presented by the group
could not be directly adopted in the thesis case studies, but they have been proven
indispensible for any true hazard assessment and turned inspiring for the future work of the
thesis author. The group has thoroughly implemented various landslide susceptibility
modeling techniques by means of predictive modeling, and their experience is duly noted.
Another very original finding on behalf of this group is the combination of the forecasts, i.e.
the optimization of the multiple models by means of the ultimate supervised classification,
which turns to be a very inspiring proposition for model post-processing, particularly when
multiple modeling methods are in use (Rossi et al. 2010). Regardless to the introduced bias
by domination of specific individual models in the final classification, and occasionally better
performance of individual models over the post-processed one, higher certainty is achieved
in post-processed models (because of the lower standard deviation rate) than in individual
models (Rossi et al. 2010). Finally, the group suggested extensive qualitative/quantitative
performance evaluation by always using several statistical descriptors (k-index, ROC,
bootstrapped error) and emphasizing the role of False Negative error in model's
predictability, which is also adopted by the thesis author (Marjanovi¢ 2013).

Another prominent group, gathered around Joint Technical Committee on Landslides
and Engineered Slopes (JTC-1), has been experimenting over numerous case studies world-
wide, and has included different methodological aspects and has processed voluminous
problematic in order to optimize susceptibility/hazard/risk assessment. Their long experience
has sublimed in form of the guidelines for further researchers (Fell et al. 2008). Their range
of interest goes from basic assessment, i.e. landslide zoning to advanced monitoring
techniques, mitigation measures and management toward better Land Use planning. Yet, the
accent was always on rainfall-induced landslides, involving rainfall in combination with
groundwater interplay as a triggering mechanism for all slow moving (Cascini et al. 2010a)
and flow-like landslides (Fell et al. 2007, Cascini et al. 2010b, Cascini et al. 2011), as well as
for rockfalls (Corominas et al. 2005, Mavrouli et al. 2009), wherein the group has exhibited a
significant amount of modeling. Particular attention has been directed and significant
contribution for future researchers has been introduced in their work on the problematic of
scale (Cascini 2008). Possibilities for differently-scaled landslide zoning were scrutinized,
and involved the problems of different data sources and different modeling techniques at
different scales. Their guidelines have since been adopted by the most of the researchers,
including the thesis author (Marjanovi¢ et al. 2011a,b). Another authentic contribution that
could be linked to the group is regarding the analysis of the landslide frequency, i.e. mostly
rockfall frequency via dendrochronology (Corominas & Moya 2010), as a significant step in
transition from susceptibility toward hazard assessment. The group in general, rather prefers
deterministic approach in landslide modeling and concentrates on shallow and flow-like
landslides. The latter involves a very complex geological environment, represented by
unsaturated soils®, which entails further complexity in the laboratory experimenting stage
(special conditions, longer experiments, special equipment). In compensation,

Variables like lithological units, slope units — hydrogeological units, Land Use and so forth.

Geological domains layer in particular, which are derived by combining geological maps and aerial
photograph interpretation and relate the bedding attitude to the slope inclination.

Various morphometric sub-variables, different buffers, means and standard deviation and other
statistical descriptors of original variables.

Acknowledging that the soil exists through all its phases: solid, liquid and air, instead of
approximating to the solid and liquid only.
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acquired/measured parameters tend to be more realistic, and therefore improve the
reliability/certainty of their models (Sorbino et al. 2010).

Deterministic approach in landslide assessment has been pioneered relatively early
(Montgomery & Dietrich 1994) and there have been several succeeding developments
involved. They all gradually perplexed the model and introduced more variables, by
decreasing the number of approximations, but their reach in applicability has been disputed,
i.e. limited to a very specific, homogeneous ambient and conditions, very rarely present in
actual terrains. Recent attempts (Cotecchia et al. 2010) have been led by the experts in clay
mechanics and slope stability, and proposed a very interesting, but complex solution, which
combines regional variables with site-specific variables in a GIS database (specially
designed to enclose both regional and site-specific data). The assessment is conducted by
using different level of analysis (ranging from 1% level — preliminary heuristic analysis, 2™
level — limit equilibrium modeling to 3™ level — advanced numerical modeling by Finite
Elements) in two stages: acquisition (identification of relevant pre-Conditioning Factors at
regional scale — geological, geomorphological, environmental, but also at site-specific scale —
geomechanical and hydraulic properties of the geological units) and selection (which entails
defining of representativeness of particular sites). Throughout the first stage, different geo-
hydro-mechanical set-ups are determined across the entire area, as well as different
landslide mechanisms, to be subsequently generalized as representative for that area of
interest in the second stage of the research. Once detected representative, they are to
become principal concern of the 2"-3" level analysis, through which their general trends
and overall characteristics are then either confirmed and extended to a wider area (with
similar setups), either denied (Cotecchia et al. 2010). Such approach has not been exploited
in its full extent, and many additional case studies, with many different geological
configurations are necessary for the future affirmation of the approach, or its definite
abandoning. In conclusion, the deterministic approach, remains an open issue, and remains
a promising foreground for future investigators, which is why it has been partly integrated in
this thesis.

Further fruitful ground for landslide assessment research turned out to be a
combination of pure statistical and heuristic models. There have been several authors who
have revisited the heuristic methods since the very first attempts at the very beginning of the
GIS-based landslide assessment practice, as they combined/matched them together with
statistical methods, claiming that heuristic touch introduces the necessary non-linearity into
otherwise very ordered statistical models, i.e. they mirror the uncertainty imbedded in each
thematic layer, and therefore yield better accuracy in resulting susceptibility or hazard maps
(Ercanoglu et al. 2008). Komac is to be singled-out as the author who has gone the furthest
distance in combining of the two, heuristic and statistic approaches. His PhD project and
associated articles are to witness his efforts in refining their relation, even though his
expertise extends beyond susceptibility/hazard/risk assessment scope, and relates to
engineering geological mapping, development of national (Slovenian) geological information
system, and some other fundamental geological applications, applied Remote Sensing and
environmental applications (Komac 2003, Komac 2005). In his work landslide susceptibility is
approached by several aspects, regarding acquisition and building of the Landslide
Inventory, data preprocessing and feature selection, and finally, heuristic analysis, paralleled
and compared by statistical analysis. As for the acquisition, the advanced image fusion®
techniques are proposed for apparently, quite accurate landslide detection and successful

® Medium resolution satellite images are herein combined with the high-resolution orthorectified

aerial photographs. Principal Components of satellite images are extracted and PCA fusion
(replacing the first PC by high-resolution image) was performed. Subsequently, reverse PCA
transforms components back to the original satellite bands and an improved band stack is
obtained. Unsupervised classification over such stack, by RGB clustering method then takes-over,
and finally gets transformed into CIE L*a*b* color model, producing numerous color composites.
Generated classes from composites are then aggregated to only those related to landslides.
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semi-automatic generation of the Landslide Inventory (Komac 2005) under given
circumstances (conveniently the vegetation and urban cover were not abundant in his study
areas). The author was also very dedicated to the input data pre-processing, by
implementing laborious univariate statistics to rank each spatial data layer and determine its
significance to the landslide occurrence. Even though it is not always supported due to their
possible influence in the multivariate statistics stage (van Westen et al. 2006) the author
turned to exclusion of insignificant variables to reduce computational cost. Further,
multivariate statistics are typically involved in his practice, but what is exceptional is the
parallel involvement of multivariate statistics in heuristic model, such as Analytical Hierarchy
Process (AHP). More precisely, AHP matrix indices, obtained through the multivariate stage,
are challenged against purely heuristically®® chosen indices in the AHP engine (in a GIS
environment). According to the standard deviation, the maps coming from this model yield a
higher accuracy and higher certainty, as indicated above. However, the author also turns to
the calculation of hazard, but only by estimating the spatial probability, i.e. by reclassifying
the generated susceptibility map, which is inconsistent with the hazard definition. Such
choice is even more unusual if one learns that the repositories used in the research have
relatively consistent temporal dimension (dated displacements), thus providing elements for
multi-temporal approach via landsliding frequency, instead of speculating probability via
standard deviation. The author further tends to evaluate the societal landslide risk over the
area by overlaying population distribution and road infrastructure (as GIS layers) to the
hazard maps, and qualitatively describes the proportions of endangered and risk-free areas
(Komac 2006). Having in mind the aforementioned shortcomings of the hazard maps, these
risk qualifications are also to be regarded with some reserve, but the author's authenticity
and expertise in the susceptibility part is indisputable. As a paradigm in this thesis research
the heuristic approach has been integrated and its applicability has been speculated, as well
as in the author's previous work (Marjanovi¢ 2009, Marjanovi¢ et al. 2009, Marjanovi¢ 2010b,
Marjanovi¢ & Caha 2011, Marjanovi¢ et al. 2011a, Marjanovi¢ 2013).

Weather using ordinary Fuzzy Sets, or fuzzy measures, or even combining fuzzy with
other statistical or classification approaches (Dempster-Shafer, k-Means, Neural Networks)
the ultimate advantage of fuzzy approach is recognized in providing a substantial possibility
for standardization of the analysis, since Fuzzy Logic procedure tends to be repeatable,
adjustable and reliable (Jiang & Estman 2000). When it comes to the landslide assessment
analysis in particular, a number of researchers have applied fuzzy approach to handle the
embedded non-linearity. The Himalayan terrains were addressed in many investigations with
Fuzzy Set Theory background, starting from standard Fuzzy Set approach (Chamaptiray et
al. 2006, Kanungo et al. 2009, Srivastava et al. 2010), through combinations of ANN-fuzzy
(Kanungo et al. 2006) and risk-oriented fuzzy approach (Kanungo et al. 2008). Most of these
studies agreed that plausible susceptibility models could be obtained by cautious application
of fuzzy operators, with preference toward Cosine Amplitude method for obtaining
memberships. Very similar conclusions with analogue methodology have been drawn in
Iranian case studies (Tangestani 2004), and in Turkey (Ercanoglu & Gokceoglu 2006), China
(Wang et al. 2009), and so forth. The latter is also interesting in respect of harmonizing
expert-based and fuzzy-driven solutions, inferring that one does not exclude another, but
supports it. Regmi with his research team (Regmi et al. 2010) has conducted one of the most
consistent investigations, where many different fuzzy configurations were put to the test.
Detailed elaboration of the choice of fuzzy operator type, optimal fitting of gamma operator
as a method of preference, and some suggestions on handling multi-type landslide cases,
can be found in that research. In addition, most of the researchers encourage the usage of
the fuzzy method in other, similar (mountainous regions with flows and falls as dominant
landslide types) or entirely different ambient, worldwide. The thesis author has been

1 This means “not arbitrarily”, but by interviewing relevant experts through standardized

questionnaires, as proposed by AHP methodology (Saaty 1980).

24



practicing such methods under the influence of findings of aforementioned researchers
(Marjanovi¢ & Caha 2011).

Finally, the "advanced" methods used in landslide assessment are to be addressed
hereafter. These are including the same methods termed "advanced" throughout this thesis
and used in the thesis case studies, i.e. Multivariate Statistics and Machine Learning.

New solutions for non-linear classification problem were recognized in Machine
Learning technigues such as Logistic Regression, Decision Trees, Artificial Neural Networks
(ANN) and Support Vector Machines (SVM).

Logistic Regression has a longer tradition in natural hazard assessment, and
landslide susceptibility is not an exception. It has been proven successful in numerous case
studies, but lately it is being broadly challenged by other Machine Learning approaches.
Logistic Regression has usually been involved in comparative case studies, but there are
several contributions dedicated to Logistic Regression in greater detail (Falaschi et al. 2009,
Bai et al. 2010). Their findings are confidently promoting the method as very reliable and very
convenient in the landslide assessment framework. In extension, a very interesting approach
has been proposed in a Southern Norway case study (Erener & Dlzgiin 2010), in which
Geographically Weighted Regression variants have been utilized together with Global
regression models (Logistic Regression and Spatial Regression). They have revealed that
Geographical Weighting, i.e. incorporating spatial correlation structure in regression, aids
global regression models and enhances their predicting performance.

Decision Trees are often denoted as classification data mining algorithms that reveal
complex relation between the elements (instances) in data structure. The advantage is that
those algorithms are not true black-box models like ANN or SVM algorithms (Hwang et al.
2009). Instead, obtained hierarchical relations are observable in the most of the cases. There
were a few attempts to utilize Decision Tree algorithms within the landslide susceptibility
framework. In the case study from the South Korea (Hwang et al. 2009) very extensive work
has been applied to the national database of engineered slopes. All the abovementioned
authors yet admit that the task turned distasteful, due to the imperfections and more
importantly, the size of the database, but they were persistent in their goal to rule-out the
most important attributes. Another coupled case study from Japan (Saito et al. 2009)
encountered similar problem that was handled by automatic and manual filtering of the
database for incomplete or unwanted content. The ranking of the database attributes was
required prior to the implementation of the decision tree algorithm. The algorithm then
examined how chosen attributes were related to the Landslide Inventory. Their potential is
more related to the Expert Systems design since the most of the Decision Tree techniques
give an insight into the particular conditions that are potentially correlated with landslide
occurrences (decomposing the tree to a congregation of rules gives an insight into the
attribute-landslide relationship). Both studies came to a similar conclusion that some
important relations could be ruled-out (even though expected, as in the case of the seepage
and precipitation relations to the landslide occurrence) but majority of relations remained too
complex for interpretation. Both of the studies have resulted in a proper landslide
susceptibility replication based on modeled rules with some 70% of accuracy. One
comparative study (Brenning 2005), which will be addressed in greater detail later on,
asserts that Decision Tree method copes with overoptimistic assessments due to the overfit
of the input data (even if the data are pre-processed and filtered), so the study preferred
SVM and Logistic Regression models as alternatives to the Decision Tree.

One of the most popular and most broadly used Machine Learning technique in the
landslide assessment field is multi-layered feed-forward (neurons are processed from one
layer to another) ANN with back-propagation learning algorithm (Lee et al. 2007). Among the
numerous case studies some pioneering works as well as the comparative studies are here
to be mentioned. Initially, the problem of multi-dimensionality and non-linearity of input data
were solved by prediction of system’s behavior with ANN algorithms, rather than by its
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complex and never complete mathematical or statistical model. This has been first
experimented in the case studies in South Korea (Lee et al. 2004) where ANN procedure,
trained over likelihood ratio result obtained fairly precise susceptibility models. Therein,
overfitting had been addressed as a serious drawback and usage of independent testing
area (not included in the training stage) was suggested as a precaution measure. As in the
most of the other studies (Aleotti & Chowdhury 1999, Ermini et al. 2005, Kanungo et al.
2006, Caniani et al. 2008, Nefeslioglu et al. 2008), the utmost advantages of the method
included: no need for particular data distribution, mixing of ordinal and nominal data and the
generalization power of the algorithm. The drawbacks were recognized in GIS integration
issues, time-consuming data preparation (data normalization), sometimes very demanding
fitting of the parameters of the Neural Network and associated optimization problems of the
back-propagation learning algorithm, and durable evaluation period. In comparison to the
other methods (Logistic Regression, cluster analysis, fuzzy approach etc.) in mentioned
studies, ANN was characterized as significant and perspective technique in the landslide
susceptibility and hazard evaluation.

The practice of SVM in geo-spatial modeling has quite recent history. Pioneering the
application in landslide susceptibility (Yao & Dai 2006, Yao et al. 2008) compared single-
class vs. two-class (binary) SVM in the Hong Kong area. The authors demonstrated how the
latter provided better conditions for algorithm training and testing, since it is clearly favorable
to know both, where landslides exist and where they do not. Naturally, this brings about
whole another dimension to the problem, since geotechnical engineering practice turns more
reliable in determining where landslides occur than where they are being absent. Another
study (Yuan & Zhang 2006) regards only one aspect of the landslide phenomena, i.e. the
debris flows, by comparing SVM and fuzzy approach. Since it outperformed fuzzy method in
the testing mode, SVM method was considered appropriate and more convenient for this
kind of assessment in the area of interest (Yunnan Province, China). In the framework of
geotechnical engineering, but from another - deterministic modeling aspect, SVM was used
to overcome the calculation difficulties of implicit expressions of Safety Index (and derived
Factor of Safety) (Zhao et al. 2008). SVM was used to predict Factor of Safety in several
scenarios, and proved effective for the slope reliability analysis. This aspect of SVM is
certainly more interesting in site-specific scale, where deterministic slope stability models
prevail over statistical or probabilistic methods. SVMs were also proven suitable for large
scale geological studies involving 3D modeling of geological bodies from the drill core data
samples (Smirnoff et al. 2008). Nevertheless, similar philosophy could equally hold true in
the case of geotechnical 3D models, for advanced thematic interpolation, be it particular
geological stratification, groundwater table or stress and strain distribution. Thus, as long as
there are methods to measure and monitor parameters of subsurface conditions, SVM
seems to be capable in retrieving proper interpretation after optimal training over measured
data. The use of SVM in geotechnical engineering for the seismic liquefaction phenomena
assessment (Goh & Goh 2007) presented another aspect of large scale geotechnical hazard,
solved in similar fashion, but the authors were not satisfied with revealing only the potential
of liquefaction, not knowing the internal relations of the input seismic parameters that had
driven it, and they intend to particularize that problem in the future. Piling-up the individual
case studies usually turns problematic, since the scholars point out to the specific merits or
shortcomings (Carrara & Pike 2008). It is rather comparative researches that are illustrating
true value of the method. Few contributions have been made in this sense. The first to
mention concerned a case study from the Ecuadorian Andes (Brenning 2005) by employing
Logistic Regression, Decision Trees and SVM. The author emphasized the necessity of
thorough input data preparation, and pointed to the overoptimistic accuracy of the Machine
Learning techniques, yet turning less efficient than Logistic Regression model. Finally, more
recent comparative research appeared (Yilmaz 2009), giving a very complete perspective on
the landslide assessment methodology. Various modeling methods have been considered
and compared, including ANN and SVM Machine Learning. The study shows, that several
methods turned very precise and efficient. However, it also underlines the GIS compatibility

26



issue as a serious drawback. Those last two studies gain gravity for their practical
contribution, as the first ones to compare various approaches and to analyze their suitability.
Subsequently, a host of researchers, including the thesis author, have been attracted by
these findings, and encouraged to experiment with SVM on their own, albeit in typical
landslide susceptibility framework (Yao et al. 2008, Marjanovi¢ et al. 2011a) or in more
specific cases, involving particular landslide mechanisms (Xu et al. 2012a,b). Relevance
Vector Machines (Tipping 2001) is another quite similar classifier and regression module,
which surpasses the SVM drawbacks by introducing probability of classification, similarly as
Logistic Regression does. Even though there have been attempts to apply RVM in
classification and regression scenarios (Samui et al. 2011), the method seems to be
unexploited, yet very promising for some future attempts.
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5 Methods and Procedures

This chapter is structured in several subsections which depict implementation of different
methodologies at different stages of the research, i.e. feature selection methods, landslide
assessment methods and model evaluation methods. In addition, some other specifications
of the methodology are to be presented in the workflow. Details on the chosen software
solutions are also discussed.

Instead of a general style that could be found elsewhere, in various textbooks and
articles, this chapter is explaining these different methods in the light of the GIS landslide
assessment, using respective examples and descriptions, which brings the topic closer and
with better comprehension.

5.1 Attribute Selection Methods
This branch of methods is featuring the Objective 3 (see Chapter 2).

Attribute Selection, also referred to as Feature Selection and Variable Selection is a
preprocessing™ tool that has been found to be useful in spatial modeling, particularly in
classification tasks, where sophisticated classifiers come into play, but it also contributes to
any type of spatial calculations (Varmuza & Filzmoser 2009, Witten et al. 2011). In the
landslide assessment framework, as regarded in this thesis so far, the attributes are called
Conditioning Factors, represented by various thematic inputs (i.e. thematic layers in a GIS
environment), including geological, morphometric, hydrological and environmental
parameters, as well as synthetic parameters derived by discretization, reclassification or
performing statistical operations over original inputs. In turn, there could be so many
attributes that further application of a particular landslide assessment method could be
compromised. Attribute Selection usually leads to the reduction of the number of input
variables, i.e. the reduction of the dimensionality of the input dataset (Varmuza & Filzmoser
2009).

There are a number of arguments to support this end, and they mostly underline the
reduction of time and computational efforts as primary benefits of the Attribute Selection
(Varmuza & Filzmoser 2009). What is even more pronounced is the case of the classifiers
(i.e. implementation of the Machine Learning or regression tasks in landslide assessment),
where another important benefit comes through better control of overfit, that can appear due
to the shear abundance of input data. On the other hand, there are counter-arguments which
claim that in any multivariate classification framework it is not particularly meaningful to
exclude variables because of their internal relations. A variable might not be relevant for the
landslide occurrence directly, but by affecting the other variables (van Westen et al. 2006).
The ultimate true for Attribute Selection is thus in trial-and-error, as with any relatively novel
and unexplored method. Sometimes it provides a better ground for further modeling, but
sometimes it can compromise the results. Therefore, in this thesis the Attribute Selection has
been performed in the preparatory stages of each case study, but only to justify the choice
and to better portray the importance of different attributes, without exclusion of the particular
ones (Tab. 3). The exception is the last case study, where Attribute Selection had been more
engaged.

1 Other preprocessing techniques have been implemented throughout the research but they have

been regarded rather common and therefore excluded from the description. They involved different
basic manipulations on input data, such as normalization of monotonous and dichotomous data,
quantification of nominal data, integerization, transformation, scaling, and so forth.
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There are numerous Attribute Selection schemes elaborated thus far, starting from
univariate and bivariate (filtering), to more complex ones, such as Principal Components or
even those which are implementing learning tasks (wrapping) prior to the classification itself.
The latter is an example usually related with the Decision Trees and successive linear
classifiers (such as SVM). Decision Trees are actually based on the internal Attribute
Selection (which takes place during the initial process of populating the tree) through which
some of the attributes might never satisfy the criteria and enter the tree. If it turns out that the
tree had gave good results, then only those attributes approved through the tree building
procedure could have been fed to a chosen model (e.g. model which is very sensitive to the
relevance of each attribute, like k-NN), leading to the improved performance of the latter
model. Also, some linear models (linear classifiers), which are very appropriate for iterative,
sequential adjustment of the internal modeling parameters, may have integrated Attribute
Selection within the classification process, by starting with all of the available attributes and
eliminating the ones with the lowest rank in every consecutive iteration (leave-one-out*). The
optimal assembly of the attributes will appear in the model that shows the best performance
(Mitchell 1997, Witten et al. 2011). However, it has been mentioned that the purpose of
Attribute Selection in this thesis is more formal than that (the third case study is an exception
— see Chapter 6.3.3).and serves mostly to ensure and justify the choice of attributes
proposed in the literature.

In parlance of the latter, two statistical tests have been considered, each one with the
emphasis on tracking the attributes with the weakest relation to the dependent variable
(referent landslide classes). These are rather simple solutions and include bivariate
descriptor — Chi-Square and entropy-based descriptor — Information Gain (IG). One ranking
scheme based on these two methods is shown in Table 3. below, as a part of the second
case study within this thesis (see Chapter 6.2).

Table 3. Attribute ranking for Star€a Basin case study

Conditioning Factor Chi-rank Chi-Square IG- rank IG

lithology 1 11225.111 1 0.06157
channel network base elevations 2 8546.6167 2 0.04034
groundwater depth 3 5311.0166 7 0.02680
Stream Power Index (SPI) 4 4626.1226 4 0.03038
aspect 5 4469.4704 5 0.02828
altitude above channels 6 4442.2272 3 0.03078
Topographic Wetness Index(TWI) 7 4223.8196 6 0.02789
Land Cover 8 3823.2823 10 0.02129
downslope gradient 9 3401.1757 8 0.02413
LS factor 7 3052.666 9 0.02241
slope angle 11 2749.7677 11 0.02100
convergence index 12 2441.8224 12 0.01723
plan curvature 13 1298.7882 14 0.00800
distance from structures 14 1255.0141 13 0.00938
profile curvature 15 948.26960 15 0.00605
slope length 16 940.12422 16 0.00600

2 | eave-one-out technique considers iterative learning task. After each run the dimensionality (in this

case the number of landslide Conditioning Factors) is reduced for one dimension (one factor) on
the basis of model error or Feature Selection rank. Such reduced feature space then reenters the
learning process until the optimal performance is achieved, i.e. in accordance with the Occam’s
razor, until a sufficient performance is reached with the minimal feature space size (Mitchell 1997).
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5.1.1 Chi-Square

The Chi-Square is based on a cross-tabulation of dependant variable (Landslide Inventory in
this case) with all of the independent variables (Conditioning Factor, i.e. geological,
morphometric, hydrological, environmental or synthetic terrain attributes). Chi-Square
statistic parameter —x° relates the apparent frequencies of the observed independent
variable instances ¢, within the dependent variable classes (landslide classes), and
expected frequencies of the observed independent variable ¢, in the following fashion:

| n - 2
=y ZM (3)
izl j=1 (qu

where | is the number of classes of a dependent variable, and n the number of the
independent variable classes, i.e. | represents Landslide Inventory classes (landslide
classes, such as active, dormant, abandoned landslides or simply, landslide and non-
landslide class), while n disclose the classes of a particular Conditioning Factor, since x*
needs to pair every single factor with the dependent variable separately. A given
Conditioning Factor disapproves the hypothesis of being statistically independent from the
Landslide Inventory classes only if it fails to exceed the critical x* threshold, defined by the
level of confidence (in respect with the normal distribution) and degrees of freedom (defined
by reduced product of | and n, i.e. (I-1)(n-1)). In effect, this method reveals the relation of an
attribute and the referent Landslide Inventory, but the ranking among multiple attributes is
rather relative (unless the sets are subjectively normalized), mostly due to the measurement
scale and unit dependence of x* (Bonham-Carter 1994).

5.1.2 Information Gain (IG)

The second employed technique is Information Gain, defined as a reduction in entropy E(C)
of a referent Landslide Inventory C (with | classes), due to the informational interference of a
Conditioning Factor F (with n classes). Given the E(C) as a measure of homogeneity of C:

|
E(C):—ZGi Iogz 6i ] (4)
i=1
(where &, is a proportion of the i class values within the entire set) and introducing m
factor classes with values vy, v,,...vy, the Information Gain IG(F) partitions the entropy by a
factor of weighted expected entropy E(F,v).

IG(F) =E(C) - !Z ME(CV) (5)
[ m} |C|

The latter comes as summed entropy of C, subsets of C, matched with the factor’s
class value v, and weighted by the subset proportion to C.

This technique is integrated in the Decision Tree algorithm, and is going to be
presented in greater detail in section 5.2.3.2. Here, it should be mentioned that unlike Chi-
Square statistic, this parameter allows preliminary ranking, since it disregards measure
scales and units of Conditioning Factors (Mitchell 1997).
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5.2 Landslide Assessment Methods
This branch of methods is featuring the Objective 4 (see Chapter 2).

Landslide assessment methods used in this thesis involved numerous techniques, structured
in several different approaches: heuristic, statistic, Machine Learning and deterministic.
Herein, these are to be presented in detail, with particular focus on the Machine Learning
approach.

5.2.1 Heuristic Approach

Heuristic approach implies the experience-based solution to the problem. Using heuristics is
rather controversial issue in the landslide assessment (Barredo et al. 2000, Ercanoglu et al.
2008), but it is generally accepted that heuristics could and should be used for preliminary
levels of research. It may be used for more detailed levels of research only when combined
with more exact approaches. Even within the heuristic approach one can distinguish many
different techniques, ranging from plain expert-opinion modeling through techniques that
quantify the raw expert judgment to some extent and methods that include fuzzy/gray
systems, pattern recognition etc.

5.2.1.1 Plain Multi-Criteria Analysis

Multi-Criteria Analysis (MCA) has not been originally developed for the spatial modeling
problems, but rather for decision support with multiple choices, when there are
disagreements between different parties that offer those choices. However, it has been
successfully applied in the landslide assessment with the analogically proposed problem.

In the most basic variant, the MCA comes down to the judgment of the importance of
the multiple factors, which is the basic case in the landslide assessment framework. Herein,
the choices are made on the arbitrarily assigned weights of importance of a Conditioning
Factor, w; (i.e. its level of influence on the landslide susceptibility), by a shear expert's
judgment, or several experts’ judgments'®. Thus, each particular factor (such as lithological
unit, slope angle, aspect, elevation, drainage buffer, Land Use unit and so forth) is being
weighted (Eq. 6) and simple addition of the weighted factors delivers a MCA model in the
GIS environment.

Muica :ZWiFi =Mapp (6)
i=1
In the case of multiple experts’ judgments, it is common that the weights vary
significantly, so that averaged weights v could come into play (Eq. 7).

n .
Myca = ZWi Fi (7)
i=1

Even though the pool of experts might be chosen cautiously (so that the experts meet
all the requirements, i.e. that they are very familiar with the approach and with the study area
at hand), it is important to stress that the method faces a very high level of subjectivity,
arising from entirely arbitrary judgments. Still, the method can be substantially refined, while
still carrying that precious touch of personal experience in particular landslide hazard
problem.

* These judgments are usually delivered by filling in the prepared questionnaires, where the

importance (weight) of each factor (litological unit, slope angle, aspect, elevation, drainage buffer,
Land Use unit and so forth) is being scored on a custom predefined scale, usually 0-9, or 1-10.
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5.2.1.2 Analytical Hierarchy Process

Analytical Hierarchy Process (AHP) was also developed for decision making based on
economic and management grounds (Saaty 1980), but turned out to be a proper way of
gquantifying expert’s judgment involved in the spatial analysis within GIS framework. In fact, it
IS now incorporated in a host of GIS platforms (commercial, like ArcGIS and open source,
like SagaGIS for example) in the form of different modules, macros extensions or add-ins
(Marinoni 2004). Another arising possibility is to combine the AHP quantitatively with some
other technique (Komac 2005, 2006), e.g. bivariate statistics, Fuzzy Logic, cluster analysis,
etc.

AHP is a convenient procedure for raster-based modeling in a multi-criteria
hierarchical configuration (Geniest & Rivest 1994, Ercanoglu et al. 2008) and has thus been
equally applied in landslide assessment, as in any spatial modeling framework (Komac 2006,
Ercanoglu et al. 2008). It is important to mention that the AHP implementation in spatial
analysis is usually restricted to the first level AHP, since true AHP implies k-fold structure,
where levels from the 1% through the k—1" involve criteria analyses, while the last k™ level
involves selection of the alternatives'. Herein, the procedure is going to be explained in
detail and illustrated in such context.

Prior to the obtaining of the true weights of the corresponding landslide factors (such
as lithology, slope angle, aspect, elevation, Land Use and so forth), the procedure engages a
gross estimation of each factor's importance score, established by the expert(s) judgment
(through a personal advisement with the scholars and engineers or formally through the
questionnaires). If n is the number of Conditioning Factors, then the total number of
comparisons that an expert needs to establish is n(n-1)/2, which makes this procedure
comfortable for no more than a dozen of factors.

The original technique (Saaty 1980) implies 9-leveled scoring scale™, but a different
(arbitrary) range is also viable. The 9-leveled scoring system is then applied to a two-
dimensional nxn reciprocal matrix, also called the comparison matrix (Tab. 4), which is
generated by pair-wising all of the factors across each other. Note that the scores are being
transposed over the main diagonal of the matrix, so that the corresponding scores (1 through
9) turn reciprocal (1 through 1/9) symmetrically over the main diagonal.

To obtain the priority vector'® as a vector of weights (Tab. 5, shaded column), the
procedure further requires a normalization of the comparison matrix and averaging of scores
from comparison matrix (Tab. 4) by their row sums (Geniest & Rivest 1994, Saaty 2003).
Priority vector will represent the utter distribution of the weights w; once the matrix turns
consistent, i.e. when there is none or little contradiction in scoring. Since the vector is
normalized, the weights sum should be 1 (100%). The procedure for shifting from
inconsistent to near-consistent matrix is featured by versatile solutions, considered by

" In the landslide assessment, this would involve multi-leveled criteria analysis, where i"level criteria

set would be progressively singled-out for a Conditioning Factor that have turned the least
important in the i—1™ (previous level) criteria analysis. The alternatives would normally represent
different landslide types. It could then be speculated which factors (lithological, morphometrical,
environmental, hydrological etc.) would most strongly affect which landslide type (shallow landslide,
debris flow, rockfall etc.). However, the knowledge and experience on the relations between a
landslide type and Conditioning Factors is far from profound, which is why the spatial AHP analysis
usually sticks with the 1-fold variant.

Saaty's scale contains an array of {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9},
where the following relations apply: 1 — equal importance (landslide-wise), 3 — weak dominance of
the observed factor, 5 — strong dominance, 7 — demonstrated (witnessed) dominance, 9 — absolute
dominance, 2,4,6,8 — tansitive scores.

15

'® " Computationally, the priority vector is very similar to the principal Eigen vector of the matrix.
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different authors (Geniest & Rivest 1994, Laininen & Hamalainen 2003, Saaty 2003).
However, their results prove to be just a fraction different from the simplified technique. Thus,
it is understandable to control the matrix consistency on the simplest basis, i.e. by Saaty’'s
consistency parameters Cl, Rl and CR (Consistency Index, Random Index and Consistency
Ratio, respectively) using the following criterion: CR=(CI/RI)<0.1. By this manner, initial
subjectivity of score distribution (Tab. 4) has been unbiased up to a certain level, leaving the
refined scores depicting the final distribution of weights in the priority vector (Tab. 5, shaded
columns). Finally, the priority vector or more appropriately, the normalized linear distribution
of the weights can be defined as before (Eq. 6), where F corresponds to the Conditioning
Factor, respective to their order of appearance in Table 4 (F, = lithology, F, = slope... F; =
aspect), and w; refers to the factor’s weight, which reflects its overall importance in the
landslide susceptibility model. The model is then directly calculated by multiplying and adding
the appropriate variables in a GIS environment. The weights in the model are simply the
multipliers of the thematic GIS layers, as they multiply each pixel (its Digital Number — DN
value) of each raster layer and then sum all (multiplied) layers together, yielding a final raster
model — the raw model of landslide susceptibility. It depicts spatial distribution of the
susceptible zones (revealing low susceptibility by low, and high susceptibility by high
overalls) in a custom scale. The custom scale is inappropriate so normalization procedure is
used to arrange the scale in a more common fashion, e.g. in 0-1 span or 0-100%. It is
further possible to choose more appropriate cut-offs and qualify intervals arbitrarily, e.g. Low,
Moderate, and High susceptibility. However, the arbitrary (re)classification of such kind is
entirely another issue, beyond the AHP scope, and depends on the particular case at hand.

Table 4. An example of AHP comparison matrix.

Fi F, F, . F,
F1 aig iz . Ain
F. azy az; . Azn
Fn an1 an2 . Ann
b3 2ain 2ao, . 2ann

Table 5. An example of AHP weights derivation.

Fi Fl Fz . Fn Wi %

Fi a’ll(:an/Zaln) a' . a’ln W1 (: Za’n]_/n) 100- W1
F2 'y Ay . a'on Wy 100" w,
Fn a,nl a,nz . a,nn Wn 100 Wn
Anax=___;Cl=__ _;RI=___; CR=__ (CR<0.1); 2=1 2=100

5.2.2 Statistical Approach

Unlike expert-based approach above (which relies on experience and knowledge on the
process), or deterministic approach described later on (which starts with theoretical
conditions of the Limit Equilibrium on the landslide-affected slope), statistical approach starts
with the available data (Conditioning Factors). It relates the values, distributions,
aggregations and other data features with the consequence, in this case, a landslide
occurrence. It extracts that relation and brings about a more objective prognostic dimension
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to the model, although the prognosis is not temporal, only spatial, as explained in Chapter
3.3.2.

There is a host of various techniques that are normally used in this context, and
choosing the optimal one is rather based on trial-and-error. In addition, they tend to provide
similar modeling performance, according to the results of this research. One can distinguish
between bivariate statistics and Multivariate techniques which are principally different in one
single postulate, regarding the independency between the Conditioning Factor and landslide
occurrence. While bivariate techniques observe one factor at a time and correlate it to the
landslide occurrence, relaying on its independence from the rest of the factors, Multivariate
techniques correlate all the factors among themselves and factors with the landslide
occurrence simultaneously (Bonham-Carter 1994).

5.2.2.1 Conditional Probability

In plain statistical terms, the primary goal of Conditional Probability is to increase the
probability of predicting a variable, by having other variables at disposal to correlate against

(Eq. 8).
o(c.F) = FCNF} (8)

#F
T
C: 1-1" landslide units in the area
F: 1-m" class unit of 1-n" factor in the area

T: total number of units (pixels) in the area
p(C,F): posterior (conditional) probability of landslide occurrence given the specific F

In landslide assessment terms, the referent variable is landslide occurrence pattern
and the variables that enter the correlation with the former are given as Conditioning Factors
(lithological, morphometric, environmental etc.). Pattern of landslide occurrence has its own
initial spatial probability, called prior probability. In bivariate context, the Conditioning Factors
can be checked for correlation against the referent landslide pattern one at a time, yielding
the posterior probability per each factor (spatial probability after the correlation). If the
significant correlation is achieved, the posterior probability will be higher than prior spatial
probability. Eventually, the posterior probabilities of all factors should be cumulated, giving
the total increase of the probability, hence giving the model of spatial probability i.e. landslide
susceptibility. There are a number of mechanisms for developing a Conditional Probability
analysis, and they all involve different weighting measures, such as Likelihood Ratios,
various Odds Ratios, Weights of Evidence, and so forth. Herein the latter shall be discussed
in detail, while some of the ratios are also used and explained in the Fuzzy Logic section
(see Chapter 5.2.2.2).

Weights of Evidence is a log-linear Bayes rule-based technique. It enables the
prediction of a posterior probability of landslide occurrence by using its prior probability and
enhancing it by weights, which are dependent on Conditioning Factors i.e. by generating
correlative positive W™ and negative W~ weights of Conditioning Factors. Positive weights are
differences between prior and posterior logits’’ of a Conditioning Factor's class, given the
presence of landslide occurrences. Negative weights are also prior/posterior logits
differences, given the absence of landslides, i.e. given the presence of non-landslides. The
simplest case is to assume a binary class type of landslide occurrence (landslide and non-
landslide classes), but multi-class types (non-landslide, dormant, active, fossil, suspended
and other standard inventory classes) are also feasible, by simply extracting I-1 binary cases
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Logit of a given probability p is defined as: logit(p) = % Eﬂn[ﬁj .
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(I being the number of landslide classes). What is important in this technique is that the
weighting (extraction of the prior/posterior probabilities) in a GIS environment can be done by
simple raster cross-tabulation (contingency table) of the Landslide Inventory on one side, and
a classified Conditioning Factor on the other. From cross-tabulation matrix, the contingency
portions of CNF (overlap of landslide class and the given factor’s class), =CNF (overlap of
non-landslide class and the given factor’'s class) and the other respective overlaps (CN-F —
landslides out of class, -CN-F — non-landslides out of class) are easily extracted, and fed
into equations (Eq. 9, 10).

. _ #conF}
W —Inm 9)
#{c n -F}

W‘:In—{ﬁ-
# ﬂCm“Fi

Thus, each class in each factor is provided with a pair of weights that describe the
intensity and the character (£) of its engagement with the landslide occurrence pattern. GIS
environment eases the further operational effort toward the final spatial probability model. By
assuming the conditional independence of all n Conditioning Factors (the prime postulate of
bivariate statistics) the latter can be expressed as prior probability of landslides corrected by
the sum of positive/negative weights of all m; Conditioning Factor's classes, depending on
the presence or absence of landslides, respectively (Eq. 11).

(10)

logit(p(C,F)) = logit(C) + i W (11)

Simple spatial calculation over a raster set of Conditioning Factors in respect to
equation (Eq. 11) yields a final landslide susceptibility (raster) map (Bonham-Carter 1994).

It is also feasible to calculate the certainty of every class of every factor'®, and mask
all data instances that are too uncertain or missing.

Advantages of the technique certainly lies in objective, data-driven assessment,
capability to operate with multiple inputs and multiple classes, ease of handling of missing or
irrelevant data (by assigning zero or close-to-zero weights), to accompany the result with the
certainty estimate and to make according exclusions where needed.

On the other hand, shortcomings are not numerous. These mostly regard the
conditional independency assumption (bivariate postulate), which disables the interrelation
among the factors, and the contribution which it might bring to the model. Furthermore, it
does not work with nominal Conditioning Factors, but requires quantification and
normalization prior to the analysis, while another promising, but time-consuming and
computationally-intensive alternative is to segregate such nominal Conditioning Factors into
m binary cases. Also, the numeric Conditioning Factors with ordinal and dichotomous scales
cannot keep continual values, but have to be reclassified and ranged by arbitrary intervals,
which can be optimized only through the trial-and-error variations of the number of classes
(m) and values of interval cut-offs. This turns very demanding with large number of such
inputs, not to mention how it introduces considerable subjectivity in the procedure. Finally,
the drawback is also high dependency on the proportion of independent variable’s classes, in
this case, the number of landslide vs. non-landslide instances, since very few landslides will
not provide as reliable model as some other, more sophisticated techniques.

18 Certainty could be extracted from standard deviation o of posterior probabilities by approximate

1 and oW )= 1 1

lations: = '
relations: o(W ™) #{CmF}+#{ﬂCﬂF} Cn—|F}+#{—.CnﬂF}

Relative certainty is then calculated as W*/o(W™), which is usually called "Studentization".
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5.2.2.2 Fuzzy Logic

Concepts of Fuzzy Logic have a long tradition in spatial analysis framework. The main
purpose of Fuzzy Logic is to deal with vague information and with data that contain some
kind of uncertainty (Zadeh 1965). When using the Fuzzy Set Theory or Fuzzy Logic in the
landslide assessment, each class of each Conditioning Factor is given a value within 0-1
interval, indicating its membership to the landslide occurrence. This concept is very helpful
for categorization of data and for decision making in landslide management framework,
because unlike Boolean Logic it produces valid results with specific degree of truth. That
helps finding not only the perfect match for a given criteria (in this case the criteria is to
discern landslide susceptibility zones, i.e. to point-out to highly susceptible areas), but also
showing how much each of the possibilities meet the given criteria. At some specific
situations, when modeling physical geographical crisp sets, Boolean Logic fails to provide
good results because of the nature of the phenomena at hand. In such cases, Fuzzy Set
Theory and Fuzzy Logic provide solutions for dealing with imprecise and vague data, which
would be hard or even impossible to process by any other means.

The most delicate part of the problem regards the fuzzy membership. Its value is
determined by a membership function (Eq. 12), which stands for a function that maps all
given elements to 0-1 interval of values:

e :F - <0,1>, (22)

where ¢ is a membership function (in this case of the landslide classes), F is a set of
elements (in this case Conditioning Factors classes). Then for each instance value x (xeF),
K(x) is a membership value of that instance (pixel of the grid) to the referent landslide set C
(Zadeh 1965). There are a number of ways to express the membership, involving linear and
non-linear functions. For purpose of this research, two common functions have been used for
computing the membership values: Frequency Ratio and Cosine Amplitude.

Frequency Ratio (FR) gives proportion of the landslide instances in the specific class
for each of the Conditioning Factors. It can be described as a ratio of relative frequency of
landslide instances in the particular class to the relative frequency of all landslide instances
in the area (Eq. 13):

_ H(C)H(F)

= , 13
#(C)H(T) (13)

where #(C)) is the number of landslide cells in the ji™ class of a Conditioning Factor,
#(F)) is the total number of instances of the i" class of factor F, #(C) is the total number of all
landslide instances and #(T) is the total number of instances in the grid (total number of
pixels). If the result is higher than 1 it shows higher density of landslide cells in the class than
the dataset overall. Results lower than 1 point to the classes that have density of landslides
lower than the dataset overall. To transform FR to membership values those outputs have to
be normalized by dividing each FR by FR .« in the given group of classes. The membership
values are then ordered into 0-1 interval (normalization). Higher this number is the higher is
the influence of that particular class on the landslide occurrence.

Another method for determining the membership values of factor’s classes to the set
of landslide occurrence is Cosine Amplitude (CA) method (Eq. 14).
ca- 1€ (14)

J# (F)E (C)

In this case, the membership value is calculated as a ratio between the number of
landslide instances in the class and the square root of the class size (in number of instances)
product with the total number of landslide instances in the area. Unlike FR the output values
do not have to be normalized because they already fall into 0-1 interval.
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Once the fuzzy memberships are determined, the issue of the combinations between
the sets (sets of Conditioning Factors) remains. The latter is solved by involving different
fuzzy operators and choosing the optimal, at one or multiple levels. The best-known
operators are AND and OR, but both of them suffer from the problem of extremes, i.e. one of
the combined sets are preferred and their influence is predominant. In case of the operator
AND the factor with the minimal membership classes is the one that shapes the output, while
in the case of OR operator it is the one with the maximal membership values. The Fuzzy
Algebraic Product, Fuzzy Algebraic Sum, Gamma Operation and Weighted Average are
proposed as more objective solutions (Bonham-Carter 1994). Herein are given some basic
relations that apply for these, but first it is necessary to acknowledge Equation 15. for better
notation purposes used later on:

t=3ym,, (15)
i=1
where m; is the number of classes in i"" Conditioning Factor and n is the number of
Conditioning Factors, which then makes t a total number of all membership functions to be
combined. The above means that a membership function is calculated for every class of
every Conditioning Factor at hand. In the Fuzzy Algebraic Product and Fuzzy Algebraic Sum
the memberships are defined as:

t
IJproduct = |_I1 IJj (X) ! (16)
j=

t
Hsum :1—|‘l(1—uj<x))’ (17)
j=

respectively, where p(x) is the membership function of the instance x belonging to
one of the m classes of the Conditioning Factor F. The Fuzzy Algebraic Product tends to
produce output function lower or equal to the lowest function given, while the Fuzzy
Algebraic Sum is complementary to the former, so it provides output function higher than all
the inputs but never higher than 1. Regarding (Eq. 16—17) Gamma Operation can be defined

by:
/Jy = (/Jsum )V H/Jproduct )1—y ) (18)

The exponent y, which is a number from 0-1, allows optimization of the membership
combination because it balances between pyoduee @and Hsum. Setting y to the extremes give
either Fuzzy Algebraic Sum (y=1) or Fuzzy Algebraic Product (y=0). Weighted Average is
defined as:

: (19)

where wj; is the weight of the i™ membership function, indicating its importance to the
result. Weight system in this equation allows more interaction of the practitioner, because it
allows emphasis of certain classes by choosing their weights arbitrarily.

5.2.2.3 Multivariate Regression Analysis

In contrast to the conventional statistics, based on the bivariate Bayes approach, stands a
group of Multivariate techniques, which are found to be very convenient in spatial analysis,
and much more elaborated, for that matter. The principal advantage revolves around the fact
that multiple factors are examined simultaneously, and that their interplay is allowed. As
mentioned before, independent variables that are poorly correlated with the dependant
variable are not necessarily useless, because they could be mutually correlated with other
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independents (which are for example very well correlated with the dependant), and therefore
influence the final posterior probability of the dependant. Regression methods turned out to
be among the most favorable ones (Brenning 2005), although the majority of Machine
Learning techniques and discriminant analysis could be also classified as Multivariate.
Hence, the struggle for supremacy in such context is tight, but it should be emphasized that
the general preference on the most favorable technique cannot be made, since every case is
specific in its own way. The only acceptable approach is to pair together several different
techniques, which are initially suspected as effective, and then make a choice toward the
optimal one.

Regression methods are numerous, and inconveniently, they all require some
delicate presumptions that sometimes might not apply in reality (Stizen & Doyuran 2004).
The crucial among these is the assumption on normal data distribution within all the
variables, linear relationship between the independent variables (Conditioning Factors) and
the preference of binary format of the dependent variable (i.e. Landslide Inventory is
preferred to be structured by landslide vs. non-landslide classes, while multiclass Landslide
Inventory poses a problem insurmountable for some of the regression methods, but for
others, like ANN-regression and Logistic Regression it is not particularly difficult). Since
Logistic Regression seems to be the one of the best elaborated methods in geo-spatial
context (Brenning 2005), and requires the least presumptions to operate, the following
passages are to communicate some further details on that technique.

Depending on the number of classes within the dependent variable, two separate
cases of Logistic Regression could be distinguished, binomial and multinomial (Varmuza &
Filzmoser 2009). Since the most usual cases in landslide assessment come from the
analysis of binomial or binary dependants (Landslide Inventories), wherein landslides (=1)
and non-landslides (=0) are the only classes, this simpler variant of Logistic Regression is
going to be considered.

The principal difference of the Logistic Regression to the other regression methods is
transformation of dependant into a logit variable (a natural logarithm of the occurrence odds
of dependant variable, in this case the landslide occurrence odds). This implies fewer
constrains regarding data distribution, linearity between independent variables, same type of
data etc. In this way, the regression takes place on logit-transformed dependant variable,
unlike other regression schemes (Fig. 8). Given n Conditioning Factors, the regression is
performed as linear combination coordinates x; of instances x (as in any other multiple
regression) via linked linear function z (Eq. 20), and posterior probability is finally modeled as
a logistic function, which is basically a sigmoid function for landslide probability (Eq. 21), and
inverse sigmoid function for non-landslide probability (Eq. 22).

Z:bo +zbi D(i (20)
i=1
In the Equation 20. b, stands for the interception of the fitted regression model and b
for the regression coefficient (regression function slope) of the i"" independent variable x;.

& (21)

Prandslides =
' 1+e?

1
Pnon -landslides = z =1- Prandslides (22)
l+e

The calculated posterior probability of occurrence of both, landslide and non-
landslide, falls into 0—1 range and sums-up to 1, since posterior probabilities of landslide and
non-landslide instances are complement (Varmuza & Filzmoser 2009).
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Figure 8. An example of Logistic Regression classification. Two random Conditioning Factors are
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5.2.3

Machin

differen

n the axes, landslide instances are represented by circles and non-landslide by squares,
on hyper plane (presented as dashed line) is a regression line with (bg, b;) parameters -0.23

As indicated, the advantages are numerous:

0-1 (spatial) probability as a result (which is convenient for interpretation and
comparison with other probabilistic methods),

possible usage of mixed data types of independent variables (nominal and ordinal),

less stringent requirements regarding the data: normal

homogeneity of variance etc.

linearity, distribution,

Machine Learning Approach
e Learning had to be singled-out as a separate approach for at least three reasons.

The first one is that it represents an emerging field of computer science which studies
computer algorithms that improve automatically through experience (Mitchell 1997,
Kanevski et al. 2009, Witten et al. 2011). This learning concept is therefore different
than any of the mentioned modeling approaches, and empowers some additional
predictability in spatial domain (as exampled in the case studies section, Chapter 6).

The second is that it represents a mixture of so many different disciplines, which
makes it difficult to subcategorize Machine Learning under a more general approach.
It is defined as an interdisciplinary field, built on many different concepts, such as:
probability and statistics, artificial intelligence, information theory, as well as
philosophy, psychology, neurobiology and so forth (Mitchell 1997, Kanevski et al.
2009, Witten et al. 2011).

The third is that it represents the essence of this thesis research, and therefore it
deserves slightly higher hierarchical position than the other approaches. In fact, the
advanced methods in the title of this thesis are mostly regarding the methods that will
be presented hereinafter.

There is a host of different algorithms, which are all exploiting different capabilities for
t learning tasks, such as clustering, classification and regression. Herein, these are

going to be limited to the classification-related algorithms, among which some less prominent

algorith

ms are preferred. For instance, the better-known algorithm and one of the first that

had implemented artificial intelligence (based on neurobiological analogy), Artificial Neural
Networks (ANN), turned out to be less comfortable for the implementation, with more
parameters to model and with costly time consumption, than for example Decision Trees,
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which are additionally providing the practitioner with the insight in hierarchical structure of the
model, “lightening-up” the black-box learning concept.

5.2.3.1 (Supervised) Learning Problem Formulation

Before the particular techniques are scrutinized, it is necessary to pose a learning problem
and make the problematic more comprehensive. This is to be illustrated for the landslide
assessment framework, in order to make the later descriptions of different Machine Learning
algorithms more appealing.

The main objective is to exploit the possibility of automating the process of landslide
susceptibility mapping or landslide mapping, i.e. to make a plausible prediction of landslides
spatial distribution by using Machine Learning techniques. The desired automated procedure
assumes that after the initial acquisition of the necessary spatial data, an expert is presented
with a (possibly small) representative region (training region). Such scenario assumes a
supervised learning approach in which the expert performs mapping in the representative
region. The algorithm subsequently uses that expert map for training, i.e. learning from
instances of the expert map by linking his interpretation with a set of Conditioning Factors.
Finally, after learning the mapping rule proposed by the expert, the algorithm extrapolates
the rule in the rest of the area, and gives an automated prognosis of the spatial distribution of
landslides.

Figure 9. An example of a manual training-testing area split (33-67% proportion).

Firstly, it is necessary to assume that the input data are presented by 2D rasters of
appropriate Conditioning Factors (geological, morphometric, environmental) and the referent
Landslide Inventory map. The inventory is hypothetically necessary only for the training area
(the area that has been assessed by an expert), but it is usually provided for the remaining
area as a reference for evaluation of the model. The input rasters are organized in the way
that each grid element (pixel) represents a data instance at a certain point of the area.
Proposed approach leads to a classification task. The task is to place each pixel into an
appropriate landslide category using the Conditioning Factor values associated with that
pixel. The task applies only for the remaining area, usually called testing area (the area that
has not been assessed by an expert). Selecting the size of the training area is very delicate,
and requires particular strategies. An optimal approach is to build a sufficiently accurate
model with a smaller number of training examples, thus leading to a reduced engagement of
the expert. On the other hand, a practical value of a model in the landslide assessment
framework lies in the model's prediction power, which implies more meaningful training
sampling strategy. Therefore, it is desirable to have a training area that is physically
separated from the testing area (Fig. 9). However, some of the algorithms (such as k-NN)
require different sampling strategy, involving sparse and randomly sampled training
instances.
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The corresponding learning problem could be formulated as follows. Let P={x|xeR"}
be the set of all possible pixels extracted from the raster representation of a given area. Each
pixel is represented as an n-dimensional real vector x, where coordinate x; represents the
value of the i"" Conditioning Factor associated with the pixel x (each pixel is represented by
X={X1, Xa,...,Xn}). Further, let C={c,, c,,...c} be the set of | disjunctive, predefined landslide
classes (a multinomial case). A function f.:P - C is called a classification if for each xeP it
holds that f.(x)=c; whenever a pixel x belongs to the landslide susceptibility class c;. In
practice, for a given terrain, one has a limited set of g-labeled examples (X, ), xqeR”, cieC,;
g=1,...,0, j=1,...,I (where g is being a reasonably small amount of instances — training
instances) belonging to P,.=P—P4 (where P is a training set and Py testing set). The Machine
Learning approach tries to find a function f.’ which is a good approximation of a real,
unknown function f; using only the examples from the training set P4 and a specific learning
method.

*%kk

One common problem troubles all Machine Learning algorithms. It is primarily caused
by the characteristics of the training set and the classifier's generalization power (Mitchell
1997) and it is called the overfit, also referred to as random error or noise. It is the problem of
underperforming in the testing/validation set, while showing high performance in the training
(Fig. 10).

In other words, it is a paradox of reduced performance while having increased
complexity of the model or bigger amount of data to build the model with. The algorithm is
hence learning the noise as well, so its generalization is disputable (the learning becomes
too specialized and the algorithm does not generalize well enough). The one is thus trading-
off the model complexity for its fitness, i.e. the model’s variance against its bias.

A

mean error (&)

data feed

Figure 10. The overfit problem. Dashed line represents the training sample and bold line test sample.
The functions are showing evident rise of the erroneous returns in testing mode despite the rise in
data feed (amount of training/testing data or complexity of the model).

One way of dealing with the overfit is to optimize the generalization power of the
algorithm. Another is to generate training and testing splits which will have balanced class
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distributions, i.e. the sizes of all classes will remain proportional in both splits. The latter is
not always feasible in spatial modeling, due to the usual abundance of one class and scarcity
of another or several other classes (as in the case of landslide assessment, where non-
landslide class is much bigger than the landslide class). This is especially pronounced if the
adopted training/testing sampling strategy comes down to a physical, manual separation of
the training and testing area as mentioned before (Fig. 9). A technique which partially
prevents the overfit and involves specific optimization strategy during the training is the
Cross-Validation (Mitchell 1997, Kanevski et al. 2009). It is probably the most efficient
manner to deal with the overfit effect, and it is based on repetitive training and validation but
only over the training split. It can be k-fold, where k stands for the number of partitions of the
training split and therefore also represents the number of iterations. In the first run, one
partition is taken for validation while k—1 partitions are merged together for training. In every
subsequent iteration, a different split takes the validation role, while the remaining k-1 splits
take the training role, until all k iterations are finished (Fig. 9). In turn, the procedure yields a
result for one configuration/combination of the algorithm parameters. If one seeks the optimal
parameter combination, giving the best generalization power to the algorithm, the Cross-
Validation needs to be repeated for each parameter configuration. It is hence preferable that
the algorithm does not have too many parameters to optimize.

~————total number of training instances

Figure 11. A 4-fold Cross-Validation scheme. The rectangles schematize the training sample, wherein
white parts represent CV training, and gray parts CV validation splits.

5.2.3.2 k-Nearest Neighbor ( k-NN)

This is amongst the simplest algorithms (Mitchell 1997), which classifies pixel instance x
containing x; coordinates (containing an n-dimensional input space X={X1,X,...,Xn}|X€R",
where dimensions represent the values of the Conditioning Factors related to that particular
pixel) by class values c; of the k closest neighboring pixels x, surrounding x (c; is previously
assigned in the training set by a practitioner as f.(x;)). The nearest neighbors are defined in
terms of Euclidean distance d(x, x;), thus the classifier first calculates distances to k
neighbors for each x instance in the training set. Subsequently, a simple voting system
assigns ¢; class value (landslide class) to that particular pixel by class which predominates in
neighboring instances (Eg. 23) or it alternatively assigns its mean value if the data are ordinal
numeric (Eq. 24) (Fig. 12).

k
fc' ~ arg max Zf(d(x,xr),fc(xr)); O(x Ox,)Onominal data type (23)
i=1

k
PRACH

fc' ~ arg max Ile O(x Ox,)Oordinal data type (24)

Typically for k-NN there is no need for conventional training/testing procedures, f.' is
simply calculated for the remaining (testing) part of the dataset in the same way as in the
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training mode (Varmuza & Filzmoser 2009). To avoid even votes, the number of neighbors is
necessarily an odd number (k=1, 3, 5, 7...). Since it is more probable that closer neighbors
have a greater impact, it is further desirable to ponder each neighbor’'s proximity, thus
upgrading to weighted k-NN (Mitchell 1997). It allows the algorithm becoming global'®
(Sheppard’s method) but it requires sorting and weighting of distances per each pixel
element (and each Conditioning Factor assigned to it) in the training set, resulting in a
hardware-demanding and time-consuming procedure.

Having the classifier described, it becomes evident how biased it can become if all
(relevant and irrelevant) Conditioning Factors are being fed together to the algorithm,
because it will build (weighted or regular) k-NN relation per each, thus misleading the
classification. In other words, k-NN is extremely sensitive to Conditioning Factor’s relevance
to the landslide occurrence, which is why a very strict Attribute Selection needs to be
performed prior to the analysis. Alternatively, in the case of weighted k-NN, Euclidean
distance axis could be stretched so that different Conditioning Factors would have different
weights according to their relevance. Still, it does not solve the computational demands of
this algorithm, especially when there are mixed data types, which call for a double procedure
(due to the different distance calculations).

On the bright side, the algorithm is straightforward (the distances are the classification
criteria, so there is no true black-box model behind it) and it can originate from a very sparse
data, randomly sampled throughout the training set (which is sometimes convenient, but for
the landslide assessment concept and prediction of the spatial landslide distribution it is of
little relevance). It is also very convenient for experimenting, since only one parameter (the
number of neighbors k) needs to be optimized.

Figure 12. k-NN classification principle. Unclassified instance (?) is classified by the majority of
neighbors into landslide (circle) or non-landslide (square) instance. Note that for k=3 the instance is
classified as landslide, for k=4 it remains unclassified (votes are even 2:2) and for k=5 the instance is
classified as non-landslide.

5.2.3.3 Decision Tree C4.5

Decision Tree classifiers are the algorithms which resemble a tree structure from the root
downward (Fig. 13), where every set of branches originate from the common node and
extend to the further nodes and branches hierarchically. These eventually terminate in end-
nodes, called leafs of a Decision Tree.

¥ A Machine Learning algorithm is global when it allows all training instances to participate in

mapping function (in this case f.), otherwise it is local.
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C4.5 is a well-known univariate decision tree classifier (Quinlan 1993). In this
approach (and with respect to the landslide assessment framework), a pixel instance,
described with a set of n Conditioning Factor values is classified by testing the value of one
particular factor at each node, starting from the root of the tree. It then follows a certain path
in the tree structure depending on the tests in previous nodes and finally reaches one of the
leaf nodes labeled with a class c; (landslide/non-landslide in binomial j=2 case or accordingly
to the designated landslide classes in multinomial j=I cases). Each path leading from the root
to a certain leaf node (landslide class label) can be interpreted as a conjunction of tests
involving Conditioning Factors. Since there could be more leaf nodes with the same class
labels, one could interpret each class as a disjunction of conjunctions of constraints on the
Conditioning Factors values of instances x from the dataset (Xx={Xi, Xs,...,Xn}). The
interpretability of the derived model enables a domain practitioner to have better
understanding of the problem and in many cases could be preferable over functional models
such as SVM and ANN.
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Figure 13. An example of a simple tree structure on landslide assessment example depending on two
Conditioning Factors, elevation and slope (elevation is preferred over slope at the root node).

It is now left to briefly explain how the tree can be derived from the training data
(Xq:C), 0=1,...,9, where c; is one of | disjunctive classes (j=1,...,I). C4.5 deals both with
numerical and categorical attributes but for the sake of the simplicity it is assumed that all
Conditioning Factors are categorical (nominal data scale). The tree construction process
performs a greedy search in the space of all possible trees starting from the empty tree and
adding new nodes in order to increase the classification accuracy on the training set. A new
node (candidate Conditioning Factor test) is added below a particular branch if the instances
following the branch are partitioned after the test in such way that the distinction between the
classes becomes more evident. If the test on the Conditioning Factor F splits the instances in
subsets in which all elements have the same landslide class labels, a perfect attribute choice
is reached (those subsets become leaf nodes). On the other hand, if the instances are
distributed so that in each subset there has been equal number of elements belonging to
different landslide classes (leading to indecisiveness regarding that factor), then F would be
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the worst attribute choice. Hence, the root node should test against the most informative
Conditioning Factor concerning the whole training set. C4.5 uses Gain Ratio (GR) measure
(Quinlan 1993) to choose between the available Fs and is heavily dependent on the notion of
Entropy. Figure 14. explains the calculation of Gain Ratio.

Sout( F= V1) _
Sout(F= V2) Sout(F—Vn)

Figure 14. The illustration of the Gain Ratio on the decision tree node.

Let S, be the set of N instances for which the preceding test in the parent node
forwarded them to the current node. Let n; be the number of instances from S;, that belong to
class ¢, j=1,...,l. Entropy E(S;,) is defined as a measure of impurity (in respect to the class
label) of the set S;, as:

E(Sp) = - ~-log; < (25)
i=1

If all instances belong to the same class, then entropy is equal to zero. On the other
hand, if all classes are equally present, the entropy is maximal (log,l). In particular problem
setting, F denotes the candidate attribute of an instance x. Since it is assumed that F is
categorical and can take m different values vi,v,,...,vi, there are m branches leading from
the current node. Each S, (F=V;) represents the set of instances for which F takes the value
vi. The informative capacity of F concerning the classification into | predefined landslide
classes can be expressed by using the notion of Information Gain (1G):

IG(Sn F)=E(Sp)- D |S°“‘(NLV)|E(SM(F=v)). (26)

In Equation 26. |S,«(F=V)| represents the number of instances in the set Sy(F=v) and
E(Souw(F=V)) is the Entropy of that set calculated using Equation 25. Higher the IG, more
informative the F for the classification in the current node, and vice-versa (Mitchell 1997).

The main disadvantage of the IG measure is that it favors the factors with many
values (bigger m) over those with fewer (smaller m). This entails wide trees with many
branches starting from the corresponding nodes. If the tree is complex and has a lot of leaf
nodes, then it is expected that the model will overfit the data (it will learn the anomalies of the
training data and its generalization capacity, i.e. classification accuracy on unseen instances
will be decreased). In order to reduce the effect of overfitting C4.5 further normalizes IG by
the Entropy calculated with respect to the factor’s class values instead of landslide class
labels (Split Information — Sl) to obtain Gain Ratio (GR):
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vO{vy,...v,}

IG(Sin,F)

GR(Sn.F) = g g™ 5y

(28)

C4.5 uses GR to run a greedy search over all possible trees. If the factor is numerical
(this is the case for the most of them) C4.5 detects the candidate thresholds that separate
instances into different classes. Let pairs (F, ¢;) be (50, 0), (60, 1), (70, 1) (80, 1), (90, 0) and
(100, 0). C4.5 identifies two thresholds on the boundaries of different classes: F<55 and
F<85. F now becomes a binary attribute (true or false) and the same GR procedure is
applied to select among the two thresholds, when considering the introduction of this
attribute test into the growing tree.

Finally, C4.5 uses so-called post-pruning technique to reduce the size of the tree
(complexity of the model). After growing, the tree that classifies all training examples as well
as possible errors (overfitted model) is converted into a set of equivalent rules (e.g. IF Fi=v;
AND F,<v, AND ... THEN c) per each leaf node (a path from the root to a leaf). It then
prunes the rules by removing every condition that does not affect the estimated rule
accuracy, and then sorts the pruned rules by their estimated accuracy. In the operational
phase C4.5 uses sorted pruned rules for the classification of unseen instances (for testing
set).

C4.5 calculates observed estimates for rules by using the training set as a whole
(number of correctly classified instances/number of total instances per each leaf) and then
calculating the standard deviation assuming binomial distribution. For a given confidence
level, the lower bound estimate is taken as the measure of the rule accuracy. There are
many variants of pruning techniques but all of them can be compared with adjusting
parameter ¢ in SVM algorithm (as will be shown later), since they both trade-off the training
error versus the model complexity in order to increase the generalization power of the
induced classification model (Quinlan 1993, Mitchell 1997, Varmuza & Filzmoser 2009).

5.2.3.4 Support Vector Machines (SVM)

After some time of digesting of the theoretical background and realizing all the advantages
over conventional statistics or other Machine Learning systems, SVM-related improvements
in learning theory were acknowledged in many different fields of classification and regression
tasks, especially with complex and large datasets (Kanevski et al. 2009, Kecman 2005).
Conveniently, spatial modeling in Geo-sciences commonly faces the problem of non-linearity
and multi-dimensionality of input data, leaving ordinary statistic or probabilistic tools
struggling while featuring-out a pattern or rule that could lead input data to an interpretative
model. The potential of Machine Learning algorithms for solving such problems has only
recently been exploited (as presented in Chapter 4). Herein, SVM algorithm utilization in
classification task in respect to the landslide susceptibility assessment will be considered, but
first, it is necessary to elaborate the learning mechanism and its formulation.

SVM Machine Learning was developed under the Vapnik-Chervonenkis
generalization theory, with linear separating learning machines, extending to kernel-induced
feature space, and with respect to the optimization theory. The fact that SVM has a convex
optimization problem makes them quite unique and somewhat advantageous in comparison
to the other supervised learning systems (Cristiani & Shawe-Taylor 2000). In fact, the
learning problematic with SVM resembles classical statistic inference and ANN system (Fig.
15), yet with significant differences, concerning data distribution and optimization. SVM
approach does not require normally-distributed datasets, and does not use pre-defined
parameters (it is called non-parametric modeling due to the latter). Instead it tunes the
parameters to match the needed learning capacity in relation to the data complexity.
Conversely to ANNs and statistical or Fuzzy Systems, where systematical reducing of the

46



initial training error takes place until the estimated threshold is reached, SVM keep the
training error fixed and reduce the confidence intervals instead (Cristiani & Shawe-Taylor
2000, Kecman 2005). Moreover, SVM method provides novel principle for error treatment in
so-called, Structured Risk Minimization principle, which optimizes the algorithms
performance on the basis of learning space reduction toward the most desirable learning
capacity. In simple words, SVM procedure puts the learning capacity and desired accuracy in
balance (Burges 1998, Cristiani & Shawe-Taylor 2000).

hidden layer
(kernels)

Xo={X1,X2,...,Xn}

input layer

x+=[x,y,valuel]:

Cj={C1, Co,..., C/}

x2=[x,y,value):

ci[x,y,value]

output
class

Xn=[X,y,valuels

classifier

Figure 15. Architecture of SVM.

SVM network architecture (Fig. 15) is the same as in ANN RBF network design, in
fact SVM are a sub-branch of ANN with a single hidden layer for kernel function operations:
inputs are vector coordinates of a training pixel instance x.€P, (geological, morphometric and
environmental Conditioning Factors) and landslide class, i.e. Xq={X1, Xz,...,Xn}, fc(Xq), Which
are forwarded to the hidden layer nodes mapped by RBF kernel functions K(x,X,), and each
is assigned a non-zero weight w; (in the case the node contains Support Vectors). Every
node is solved for the weight vector w; and/or bias b by training on initial function f¢(x,) and
relates to the function f.'(xq)=c; which maps the initial function into the new instances xyeP;, (in
the testing set).

Originally, SVM is a linear binary classifier (instances could be classified to only one
of the two classes, e.g. landslide and non-landslide), but one can easily transform I-classes
problem (multinomial landslide classes) into a sequence of | (one-versus-all) or I(I-1)/2 (one-
versus-one) binary classification tasks, where using different voting schemes lead to a final
decision (Belousov et al. 2002). Given a binary training set (xq,c;), X(€R", cie{-1,1}, j=1,...,],
the basic variant of the SVM algorithm attempts to generate a separating hyper-plane in the
original space of n coordinates (x; parameters in vector x) between two distinct classes (Fig.
16). During the training phase the algorithm seeks for a hyper-plane which best separates
the samples of binary classes (classes 1 and -1). Let h;: wixq+b=1 and h.,: wix,+b=-1,
(W;,x4€R", beR) be possible hyper-planes such that majority of class 1 instances lie above h;
(Wixqtb>1) and majority of class -1 fall below h., (wixq+b<-1), whereas the elements
belonging to hy, h; are defined as Support Vectors (Fig. 16). Finding another hyper-plane h:
wiXq+tb=0 as the best separating (lying in the middle of h;, h.;), assumes calculating w; and b,
i.e. solving the nonlinear convex programming problem. The notion of the best separation
can be formulated as finding the maximum margin MA between the two classes. Since
MA=2|jwi|-1, maximizing the margin leads to the constrained optimization problem (Eq. 29).

1
mp g ~c e (29)
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Figure 16. A general binary classification example, separating landslide (circles) from non-landslide
instances (squares) in a simple 2D feature space (two Conditioning Factors/coordinates — X; VS. X,
define the space). Shaded points represent instances that were misclassified. Solid (bolded) instances
represent Support Vectors.

Despite of having some instances misclassified (Fig. 16) it is still possible to balance
between the incorrectly classified instances and the width of the separating margin. In this
context, the positive slack variables ¢ and the penalty parameter ¢ are introduced. The
slacks represent the distances of misclassified points to the initial hyper-plane, while
parameter ¢ models the penalty for misclassified training points, that trades-off the margin
size for the number of erroneous classifications (bigger the ¢ smaller the number of
misclassifications and smaller the margin). The goal is to find a hyper-plane that minimizes
the misclassification errors while maximizing the margin between the classes. This
optimization problem is usually solved in its dual form (dual space of Lagrange multipliers):

x g
w = Z_ a'qc
g=1

cz2a,=20

q%q " q , (31)
where w* is a linear combination of training examples for an optimal hyper-plane.

However, it can be shown that w* represents a linear combination of Support Vectors x4 for

which the corresponding a, Langrangian multipliers are non-zero values. Support Vectors for

which c>a;>0 condition holds, belong either to h; or h.;. Let x, and X, be two such Support

Vectors (c>a,,a,>0) for which c,=1 and c¢,=-1. Now b could be calculated from b*=-
0.5w*(x,+Xy), so that classification (decision) function finally becomes:

9
fo(Xq) =5gn D aic;(x k) +b’ (32)

i=1
In order to cope with non-linearity even further, one can propose the mapping of
instances to a so-called feature space of very high dimension: ¥:R"-R", n<<w, i.e. X -
Y(x). The basic idea behind this mapping into a high-dimensional space is to transform the
non-linear case into linear and then use the general algorithm, as already explained (Egs.
29-32). In such space, dot-product from Equation 32. is being transformed into ¥(x)[®(x,). A
certain class of functions for which K(x, xq)=%¥(x)[¥(x,) holds, are called kernels (Cristiani &
Shawe-Taylor 2000). They represent dot-products in some high dimensional dot-product
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spaces (feature spaces), and yet could be easily computed back into the original space.
Radial Basis Function (Eq. 33), also known as Gaussian kernel (Abe 2005), is one of such
functions commonly implemented with SVM?°.

K(x,xq)=exp(— y||x—xq||2j (33)

Now Equation 32. finally becomes:
[¢] 9

fo(Xq) = sgnZaiciK(x,xq)+ b" = sgnZaici exp(— y"x —xq"Z) +b" . (34)
i=1 i=1

After removing all training data that are not Support Vectors and retraining the
classifier by applying the function above, the same result would be obtained as in the case of
classifying with all available training instances x4 (Cristiani & Shawe-Taylor 2000). Thus,
ones defined, Support Vectors could replace the entire training set containing all necessary
information for the construction of the separating hyper-plane h.

5.2.4 Deterministic Approach

This is an entirely different approach, which employs deterministic, i.e. physical nature of the
landsliding phenomenon, and involves almost utterly different features to characterize
masses susceptible to landsliding. Even though it could be said that the regional scale under
GIS framework has remained in use, the deterministic modeling requires more localized
data, which are acquired on the field and subsequently generalized for wider areas with
presumably similar characteristics. Thus, instead of dealing with chiefly geological,
morphometric and environmental themes of an area as in previous approaches, analysis now
requires geotechnical features which are to determine mechanical properties of the masses
throughout the area. This nears the problematic of susceptibility to the engineering geological
framework, which dominates on local (site-specific) scales. The modeling itself is feasible
due to the significant deal of approximation that has to be introduced in order to keep the
regional character of the analysis and avoid the model complexity overload.

The GIS implementations of such kind are already well-known, and there will be some
comments on particular extension packages for a variety of GIS platforms later on (see
Chapter 5.5).

Deterministic analysis in regional GIS framework comes down to the simplest of the
cases of slope stability analyses — the infinite slope model, and the simplest Triggering
Factor involvement — shallow groundwater flow that is converging under stationary
conditions. Otherwise, the slope stability analyses can be very detailed and require very high
data sampling density, usually impossible to collect at regional scales. It can involve very
elaborate modeling based on Finite Elements or Finite Differences, not to mention how
complex the linked triggering model can become (profound expert knowledge on the
triggering type would be required, involving possibly earthquake modeling, hydrological-
meteorological modeling, hydrological-hydrogeological modeling, erosion modeling and so
forth). However, the simplest forms of slope analysis follow the Limit Equilibrium Method
(LEM), while the simplest groundwater flow model considers stationary flow under steady-
state conditions. The general principle of any LEM type of method implies the balance of the
driving and resisting forces acting upon a particular slip surface in the body of a slope. It
involves relatively simple static composition of these forces and their ratio, represented by
the Factor of Safety (Fs) or Stability Index (Sl). The latter is more common in the GIS practice
(Montgomery & Dietrich 1994, Pack et al. 2001) and it will hence be discussed in the
simplest, infinite slope scenario in the following passages.

2 In all of the implementations of SVM in this thesis, presented in detail in Chapter 6, Gaussian

kernel, containing only two parameters (c and y) for optimization has been used.
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Figure 17. The infinite slope model.

Deterministic model at hand is coupled. It involves LEM-based Stability Index model
and steady-state groundwater flow model. The amount of the approximations introduced by
combining these two models is substantial and affects the model’s applicability and
limitations, as will be discussed later on.

LEM-based Stability Index initially assumes the infinite slope (Fig. 17), where the slip
surface is parallel to the topographic slope. The consequence of the latter is enabling the
GIS application in the deterministic concept, because it puts surface topography in control of
the groundwater behavior, and it is needless to say how developed are the analysis of
surface topography in GIS and how valuable data can be extracted using GIS. The method
further assumes combined cohesion, and does not take into account reinforced and
mitigated scenarios.

A simple Coulomb-Mohr’s condition of failure along the slip surface (Eq. 35) is
adopted, as well as the principle of effective stresses:

T = Cgji + 0'50“ tg(psoil ’ (35)

where 71 is the shear strength of the soil along the slip surface, c is the combined
cohesion (relative dimensionless cohesion), 0’y is the effective stress of the soil (total stress
decreased by the pore pressure), and @, is the friction angle of the soil. The Factor of
Safety F is then built as a ratio between resisting and driving forces (Eq. 36).

_ forces resisting the failure _ F,
forces driving the failure  Fy

(36)

These forces could be composed by the geometry of the infinite slope (Fig. 17):

EF = Csoil * COSZ 6(Vsoil (D ~ DW) + (Vsoil —Yw )DW )tg(psoil - Csoil T COS 6(:I-_Wr Ir)tgqosoil (37)
s Vsoil SINOCOSO sin@ '

where ysoinw is the unit weight of soil/water, w,=D,,/D=h,/h, and r=y,/ys. is water to soil
weight ratio or relative wetness, and combined (dimensionless) cohesion
Csoi=(CroottCsoil)/ (NYsoit) . Stability Index is defined as spatial and temporal probability of F,
which will be discussed later-on.
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The second part of the deterministic model considers the trigger, which is hereby
defined as convergent groundwater flow, collected solely from the rainfall. Assumptions infer
the impervious bedrock, and porous soil mantle, so that the entire amount of precipitated
water percolates through the soil with no lateral losses, and no superficial run-off (the worst
case scenario). Furthermore, the subsurface flow parallels the topographic slope, and
steady-state conditions apply to the flow, while lateral discharge stands in equilibrium with
the steady-state recharge.

Given such assumptions, it is possible to define the flux at each point as Tsin8, where
T strands for the ground water transmissivity [m?/h], i.e. hydraulic conductivity times soil
thickness, and 6 stands for the slope angle. The assumptions further support formulation of
depth-integrated lateral discharge qs, [m?/h], by gsi=Ra, where a is a specific catchment
area that equals catchment area divided by the unit length of the slope (a=A/b), and R is a
steady-state recharge, i.e. its effective value which causes critical conditions (e.g. during the
most extreme month or week of the year, precipitation-wise). The relative wetness w, can be
thus defined as a minimal recharge to flux ratio (Eq. 38).

. Ra
= —1
w, mln(_l_ Sing ) (38)

Now meteorological (precipitation) and hydrogeological factors are combined through
w,, and range from 0 to 1. Equation 37. now becomes:

. Ra
Csoil +COSO(1- mm(T sinB 11})'[9(050"

F. = . 39
S sin@ (39)
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Figure 18. Stability Index in relation to stability classes in Area-Slope space (a=stable, b=lower than
average potential of instability, c=higher than average potential of instability, d=unstable).

51



An important detail is here regarding the input data, since parameters a and 6 are
extracted from the surface topography, while remaining cg, I, @sor, and R/T are the data that
need to be sampled or monitored. Thus, some uncertainty is introduced due to both,
measurement errors and errors of generalization over wider areas. The solution is to turn to
stochastic approach and to present a range of input variables, which presumably behave as
normally or even better, uniformly distributed data. The data will hence have the worst-case-
scenarios for the most unfavorable values, as well as the best-case-scenarios. If we assume
r to be a constant ratio (or at least, constant for a specific part of the area, defined by the
lithological units) the worst case would be when ¢, and @5, are the lowest, and R/T are the
highest. The Stability Index Sl is then computed as min(Fs) and all areas with such Fs greater
than 1 are unconditionally stable (at least regarding the precipitation-groundwater trigger)
and Sl=min(F;). If the min(Fs) is less than 1 than a possibility (non-temporal, spatial
probability) of a failure exists and Sl=p(Fs>1). The other extreme is the opposite situation or
the best case scenario, where if max(F) is less than 1, Sl=p(max(Fs)>1)=0. The rest of the
S| combinations are shown in Figure 18., where they are defined in the area-slope space (a,
6), so that appropriate classes could be defined. In general, the lower the index is, the lesser
the stability and vice-versa.

The limitations of the method are apparent. It requires only precipitation-induced
landslide mechanisms, developed only in mantled soil, such as eluvial and delluvial
Quaternary formations. It is typical for hummocky topography with well developed channeled
hollows, where sliding mechanism needs to be translational over significantly less permeable
bedrock. It further requires that certain points of the terrain have been previously defined as
unstable by the expert, in order to calibrate the output class scale (Fig. 18). For these
reasons the resulting classification is defined as the relative susceptibility/hazard because it
partly contains the temporal dimension, expressed through the meteorological data.

5.3 Model Evaluation Methods
This branch of methods is featuring the Objective 5 (see Chapter 2).

The quality of classification emerging from any of the presented approaches, could be simply
estimated as the relation between correctly and incorrectly classified landslide instances
(accuracy), but the problem of proper evaluation becomes more complex (Frattini, et al.
2010), and requires more sophisticated solutions. These are commonly based on the
confusion matrix or contingency table (Tab. 6), which introduces different types of
classification hits and errors. True Positives are the instances where the model and the
reference agree that landslide exists, True Negatives represent the instances where the
model comply with the reference on non-landslide instances, while misclassifications are
presented by False Positives (model claims landslides where they do not exist according to
the reference) and False Negatives (vice-versa). Confusion matrix is obtained from the
cross-tabulation of the model and the referent landslide map (in the case of the landslide
assessment framework).

Table 6. Confusion matrix and appropriate error measures.

Landslide Inventory

true false ROC space coordinates
g positive tp (true positive) fp (false positive) tp.ae=tp/(tp+fn)
8 negative fn (false negative) tn (true negative) fprae=fp/(fp+tn)
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5.3.1 Kappa Statistics

Herein, a parameter called kappa index (k-index) was proposed. It represents the measure of
agreement between compared entities, rather than the measure of classification performance
(Landis & Koch 1977). It turns quite convenient for comparison of the maps with the same
classes (Bonham-Carter 1994), as it commonly is the case in Machine Learning-based
classification experiments. The best way to compute k-index is to derive it from a confusion
matrix, an Ix| cross-tabulation table (I being the number of landslide classes) in which x;
represents the number of pixels from the actual classes c; that are paired with the c; classes
of the model.

szii _zxi+x+i
i i
T? _ZXHXH
i

In Equation 40. T represents the total number of tested pixels, while x;. and x.; are the
total numbers of observations in particular row and column of the confusion matrix,
respectively. The idea of k-index is to remove the effect of the random agreement between
the two experts (here between a referent Landslide Inventory and a classifier). Obtained
index ranges from -1 for the complete absence of agreement, to +1 for the absolute
agreement, while zero value suggest that the agreement is random. Based on (Landis &
Koch 1977, Fielding & Bell 1997) k-index values falling in 0.61-0.81 range are categorized as
substantial, and values higher than 0.81 are considered as nearly perfect.

K=

(40)

In the multinomial case (more than two classes) k-index can be performed per class,
thus specifying which class are matching better or poorer. It is usually called conditional
kappa k; and it follows a similar formulation as ordinary kappa (Eq. 41).

_ TXii ~ Xi+ X4

T xy) )

There are also some other formulations of k-index, where the accent is on
decomposing of the index into classes, or decomposing it to the histogram match and
location match as in Knisto @nd Kiocaiion (Multiplying these, the overall k-index is obtained). This
is an advanced idea in the domain of landslides (or any spatial-featured classification for that
matter, such as Land Cover mapping for example), because it gives better insight on the
actual matching of the model. In particular, Kcton introduces a factor which takes into
account the class sizes and treats the errors with bigger tolerance, while Ky, takes into
account the distribution of values within a class?. Ultimately, there is a fuzzy measure Ky
which introduces the correction based on a distance decay function, which furthers the
concept of higher tolerance for the particular error types. The classes can be even weighted
differently (the distance decay membership function can be adjusted arbitrarily), so that the
smaller classes get another decrease of misclassification penalty. It is essential that the
practitioner is experienced with the model and the system of evaluation, so that the slack in
tolerance that the model is being presented with is not abused (Hagen 2003).

5.3.2 Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) represents an evaluation metric that
depicts relative trade-offs between benefits and costs, i.e. True Positive rate (tpae O hit rate)

L For instance, if a model has correctly classified 10 landslide instances out of all 15 landslide

instances existing in the area, it should be preferred over the model which mapped 10 out of 30
instances correctly. This would not be seen with ordinary k-index, primarily because the size
(hence the influence) of the landslide class is usually up to 10 times smaller than non-landslide
class.
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and False Positive rate (fp,qe Or false alarm rate). These are the coordinates of a 2D plot
defined as a ROC space (Fig. 19). The ROC curves, given their contingency table
parameters (Tab. 6) at a given probability threshold intervals, are simply the performance
functions in that space (Fawcett 2006). It is important to highlight that the term probability can
refer to any 0-1 scoring scale. Accordingly, some models in this research represent spatial
probabilities while others represent just relative scoring scales, but their comparison is hence
plausible in ROC space. True probability would require a temporal dimension of the landslide
distribution. Due to the usage of ratios of contingency table elements (tp/fpate), indifferent to
the actual class distribution, it is possible to avoid the compatibility issues between differently
designed model scoring scales in ROC space. Other benefits that arise from within are that
approach can handle the unbalanced classes (e.g. it is often that non-landslide instances
predominate), and deal with cost-sensitive (fp.ae-S€nsitive) models. The latter is not
necessarily beneficial for landslide mapping, where False Negatives are even less desirable
than False Positives (favoring of safety — conservativeness).

The most common numeric parameter of evaluation in ROC space is Area Under
Curve (AUC). The higher the AUC (within the 0—1 span) the better the performance and vice-
versa. Additional characteristics of the ROC plot (e.g. random performance marker is the
diagonal, conservative performance marker is lower left sector and liberal performance
marker is the upper right sector of the plot) allow descriptive evaluation, useful when
choosing among the models with a similar AUC. There are some other measures, which
basically all emphasize some characteristics of the curve, but the AUC is conceptually the
most comprehensive and the most exploited one.

Some particular details need to be specified for different types of models (Fig. 19).
Apparently, ROC analysis requires class probabilities, while discrete classifiers models (such
as Decision Trees and SVM) do not offer any. Instead, their task is to match the original
classes that they were trained upon, thus giving no ranges based on probability. Only
additionally discrete classifiers can be supplemented with the quasi-probability descriptor, by
simply enacting probability iteratively, i.e. by using several model variants and averaging the
final model. The model variants can be generated by varying the classifier parameters, or
sampling splits. Otherwise, such discrete classifiers would not be represented by a curve in
ROC space, but by a triangle over the main diagonal. In this way some features, especially
qualitative features of the curve would remain unavailable for the analysis, thus slightly
concealing all details of the modeling performance. Other, probabilistic models, usually called
generative classifiers (such as Logistic Regression) do not suffer from such shortcoming
(even if they have quasi-probabilistic scoring scales).
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Figure 19. An example of a ROC curve for a generative/probabilistic classifier (solid line) and a
discrete classifier (dashed line). Note that the AUC is approximately 0.8 for both classifiers (shaded
area).
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5.4 Research Workflow

The research workflow depended on a particular modeling method. It is possible to
distinguish between slightly different courses of procedures, but the general scheme is
uniform (Fig. 20).
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Figure 20. A flowchart of the research. Dashed elements relate only to the advanced methods based
on Machine Learning protocol, while dotted elements apply only to conventional methods.

5.5 Data and Software Specifications for Different Methods

The data for the spatial analysis in landslide framework are very typical, nearly standard
(regarding the scale/resolution, unit area selection, data format), and involve different
attributes, which correspond to different Conditioning Factors that potentially affect the
landsliding process. The most of them are the miniature models of these factors, and will be
presented in detail in respective case studies (see Chapter 6).

Herein, some general comments on the software are going to be given, since the
most of the case studies used similar software combinations.

Primarily, the different GIS platforms have been used for generating the dataset and
some of the models, where simple geo-computation was sufficient to deliver a model. ArcGIS
Desktop 9 and 10 have been used in generation, geo-referencing, correcting, rescaling,
evaluating, converting and actual modeling, via different modules, such as Spatial Analyst for
example, but also some extension modules such as AHP. Simultaneously, some open-
source alternatives have been implemented for generating additional attributes unavailable in
the Spatial Analyst. These included SagaGIS (which has been used to generate compound
DEM-based attributes, because the bigger variety than in the ArcGIS packages is available
there) and MapWindow GIS (which served for placing a deterministic model SinMap 2).
Some of the DEM-based attributes have been generated in order to compare the differences
(due to the possible module differences) between ArcGIS-SagaGIS-MapWindowGIS. It
turned out that the ArcGIS offered the most stable solutions, which did not have problems in
data format conversions. For visualizations of all the data, the ArcGIS turned indispensible,
as the most compatible and the most user-friendly platform, but for simple web-map outputs
R package, plotGoogleMaps has been used (Kilibarda & Bajat 2012).
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Some patrticular extensions have been utilized for AHP-driven models, since there is
an open source extension for ArcGIS, while SinMap 2 refused to work properly in both
versions of ArcGIS (which is why the MapWindow GIS has been implemented). Both of these
could be done by combining MS Excel sheets, which turned convenient and stable in working
with substantial amount of data, while the outcomes could be easily converted back to the
.shp extension and introduced to GIS platforms. However, MS Excel (especially the older
versions) suffers from limited data capacity, which in consequence can lead to tiling of the
study area into smaller parts or downscaling of the dataset (Chapter 6). MS Excel has also
been used as a stable platform for communication between the GIS platform and Machine
Learning and Statistical software.

Some specific modeling (e.g. Land Cover attribute), which required Remote Sensing
software platforms, have been conducted in IDRISI Taiga and Erdasimagine 10. These
included modeling via supervised classification tasks and image ratioing, which are
presented with very powerful modules in both applications.

Statistical modeling has been done in either MS Excel or R software. The latter prove
to be much more powerful, giving ability to append specialized or custom packages For the
purpose of the research in this thesis R has been successfully implemented for generating
ROC plots, otherwise very demanding for implementation without particular ROC packages
in R. The MapComparisonKit, a standalone (ASCIl communicable) software package has
been used only for additional model performance measurements, such as kappa statistics,
although ArcGIS in combination with MS Excel has also been proved sufficient for cross-
tabulation-based measurements of the models performance (obtaining contingency tables).

Finally, Machine Learning has been implemented in R, via appropriate packages, but
also in MachineLearningOffice, particularly GeoSVM standalone package, and most
importantly, in Weka 3.7 software.

R turned out to be very resourceful with humerous packages dealing with different
types of classifiers, even kernel-based ones. The possibility of optimizing the
classifier parameters (based on trial-and-error) is supported by providing all the
necessary parameter adjustments and kernels selections. It is also at disposal of a
very powerful engine for graphic representations of any kind (multi-dimensional as
well). Significant drawbacks are the unfriendly, console-launched commands (with
negligible amount of GUI elements), which require experience and routine in
manipulation of the data, and not particularly good performance with large datasets
(with millions of instances and multiple layers). It results in a very costly process,
time-consumption-wise. For now, the only solution for the latter lies in multitasking,
which itself requires additional packages and a cluster of similar machines
(convenient for a classroom environment if available). R's recent merging with GIS
platform (R GIS initiative, achieved under SEXTANTE platform) could prove useful for
solving compatibility issues, which troubled the remaining two solutions (GeoSVM
and Weka).

GeoSVM turns to be rather small but powerful package. Its essential drawback is in
handling of large datasets. It has limited options for experiment design and
optimization of parameters, which comes down to only few combinations. The outputs
(and inputs) with their .dat extension, suffer from incompatibility with the GIS
platforms. It is specialized for SVM classifier, for which it is well equipped with all the
necessary adjustment options (including selection of a variety of kernels), but it does
not enable implementation of any other type of classifier desired in this research,
such as Logistic Regression and Decision Trees.

Finally, Weka seemed as the best choice, since it has been developed primarily for
the Machine Learning tasks. It is stable, even with large datasets, provides several
modes which in turn give the practitioner much better perspective and options for the
experiment design. In the Experimenter mode, it provides possibility to optimize
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parameters in as many combinations as desired. It also gives good perspective for
visualizing the data relations and examining the dataset. Further, it directly involves
different types of filtering and preprocessing of the data (including even the Attribute
Selection), and also provides built-in performance evaluation metrics (overall and
class-specific). It turned out to be the fastest among the tested software for the
chosen pilot areas. The major drawback is the compatibility, which again has to be
conducted in text or table editors (such as MS Excel), in order to receive the inputs
and communicate the results to a GIS platform.
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6 Case Studies

This chapter is featuring the Objectives 1 & 2, and indirectly all the others (see Chapter 2).

The proposed methodology has been implemented in three study areas, NW Slopes of
FruSska Gora Mountain (Serbia), Staréa Basin (Croatia) and Halenkovice Area (Czech
Republic). These areas are rather different in terms of geological and other conditions of the
ambient, but similar enough to be modeled by competitive techniques for landslide
susceptibility assessment. The most prominent qualifications for such context could be listed
as follows.

All of the case studies are focused on a specific type of landslides and triggering
mechanism. For instance, first case study (FruSska Gora Mountain, Serbia) is
dominated by deep-seated slides hosted in Tertiary formations, wherein the
landslides are primarily erosion-triggered, while in the second (Staréa Basin, Croatia)
they are predominantly shallow and triggered by the precipitation-groundwater
dynamics. The Czech case study on the other hand, has also erosion as a major
trigger, while the landslide typology is different and includes mostly translational
slides hosted in shallow deteriorated mantle of the complex and stratified flysch
formations.

The scales of the input data are concurrent and range from 1:50000 to 1:5000 (or 10—
30 m pixel size for raster input type), which is usually acknowledged as regional scale
(Fell et al. 2008). This allowed full implementation of GIS and thereupon, typical
themes of terrain attributes, such as those regarding ground surface morphology,
geological features, subsurface, hydrological and environmental features, as well as
some derived synthetic features.

In all of the studies a reliable landslide reference (Landslide Inventory) was at
disposal.

Even though the temporal dimension has not been included, it is important that some
of those time-dependent conditions, primarily climatic, are rather similar for all of the
study areas, since they all belong to the continental climatic realm. It would not seem
very meaningful to practice the same methodology if some of the studies were
belonging to the entirely different ambient.

Nevertheless, some of the case studies have been evidently more elaborated than
the others. This especially holds for the first pilot area on FruSka Gora Mountain (Serbia),
which has been thoroughly experimented by the entire gamut of the modeling techniques,
but there is another reason to it. It has not been addressed in similar context by previous
investigators, which is going to be discussed later. Some of the methods have been
abandoned in the following studies, and the focus has turned to specific details of particular
techniques (the most successful techniques and techniques unprecedented for that study
area). It practically came down to implementation of the Machine Learning techniques in the
remaining two case studies.
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6.1 FruSka Gora Mountain (Serbia)

The problematic of the landslide hazard in the context followed throughout this thesis was
practically unattended in this area in the past. There has been a host of practical
considerations, mainly small geotechnical projects and reports, tightly related to the landslide
problematic for various purposes, mainly site-specific ones, for construction design, rarely
studies at regional scales for urban and regional planning, or just some plenary researches
targeted at different geological aspects, thus just barely scratching the surface of the
landslide hazard and susceptibility problematic. Nevertheless, there was a national plan for
the nation-wide engineering-geological mapping in 1:100000 scale, by the end of the 20™
century. The sheets should have matched the existing geological map of the same scale, but
the idea was not realized to date. Such situation with data availability affected the initial stage
of this research, but the case study area turned resourceful after a compound study of a
multidisciplinary team (the author being included) from the Faculty of Mining and Geology
(University of Belgrade) in 2006. Segments of these data have been used for this research,
as will be presented shortly hereafter.

It is important to outline that this pilot study area has been researched for four years
and there have been different aspects of it elaborated and published for different occasions
(Marjanovi¢ 2009, Marjanovi¢ et al. 2009, Marjanovi¢ 2010a, Marjanovi¢ 2010b, Marjanovié¢
& Caha 2011, Marjanovi¢ et al. 2011a, Marjanovi¢ et al. 2011b, Marjanovi¢ et al. 2011c,
Marjanovi¢ 2012, Marjanovi¢ 2013).
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Figure 21. Geological setting of the study area (projection: Gauss Kriger — zone 7, Bessel 1841).
Standard geological symbols apply: Pz=Paleozoic schists; Se=serpentinite; M;=Miocene limestone
and marl; M,=Miocene sandstone, organic limestone and marl; Pl=Pliocene clay and marl; I=loess;
di=delluvium; a’=terrace sediments; al=alluvium.
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6.1.1 Setting

The study area encompasses NW slopes of the FruSka Gora Mountain, in the vicinity of Novi
Sad, Serbia (Fig. 21). The site (N 4509'20", E 19°32'34” — N 45°12'25", E 1937'46")

spreads over approximately 100 km? of hilly landscape, but with interesting dynamics and an
abundance of landslide occurrences.

From a wider point of view, stability is a very interesting issue along the river-banks of
the Danube. Nearly the entire stretch of its right river-bank in Serbia has been very
symptomatic for the landslides, due to the Danube’s dynamics and related undercutting
erosion of the river mainstream, which moves the banks southward. The Danube curves
sharply in NW Serbia (near Novi Sad) and from meridian switches to parallel strike, following
the major regional fault-lines such as Periadriatic Line. This causes characteristic dynamics
along the right bank, leaving many landslide hotspots, surrounding Novi Sad, as well as other
towns and cities BeSka, Kréedin, Zemun, Belgrade, Vin€a, Grocka, Smederevo etc. further
downstream. Numerous morphological imprints of fresh and dormant landslides, especially
large ones, are perceivable along the river-bank, where landslide scarps are dominating the
upper slope crests toward the local ridges linked to the near-shore river islands, which all
provides evidence for tracking landslide depletion and accumulation zones (Bogdanovi¢ &
Bugarski 1984).

Geological setting of the entire mountain follows a zonal compaosition. It is caused by
the complex E-W trended horst-anticline, shaping the core of the mountain. Traversing these
base structures are the NW-SE faults of younger origin, some of which are neo-tectonically
and seismically active. A typical succession (Pavlovié, et al. 2005) starts with Paleozoic
metamorphic rocks in the anticline base, encompassing the ground above 300 m and
underlying all younger formations. Triassic basal sediments (conglomerate and sandstone
gradually shifting toward limestone) imply localized subsidence in the relief at the time of the
basin formation. The closing of that basin during the Jurassic—Cretaceous left typical oceanic
crust evidence (ultramafic unit) as well as gulf limestone sequences. The Tertiary is chiefly
represented by marine sediments, gaining more carbonate components as the basin turned
more limnic during the late Neogene. The most widespread Quaternary unit is loess, which
covers the lower landscape toward the Danube on the north.

In geotechnical practice it is believed that the superficial dynamics of the ground
directly depends on the geological background, meaning that the rock behavior, under
agencies of different processes yields diverse geodynamic outcomes (Janjic 1962).
Geomorphological evidence supports these expectations for this relatively small study area
(Fig. 21), where slope stability can be generalized into several scenarios (Fig. 22). The
higher ground, chiefly composed of metamorphic rocks i.e. coated by the shallow mantle of
metamorphic origin, is mostly shaped by the fluvial and slope processes, where shallow
valleys and gullies are cut through the coated slopes all the way to the bedrock, forming a
dense drainage pattern. Since they are not too steep, mostly vegetated and not severely
tectonized, the dominating slope processes on the flanks of these valleys are screes, minor
rockfalls and minor shallow landslides (Fig. 22a). The central plateau (Fig. 21) is formed of
carbonate and clastic rocks and has insufficient thickness to develop karstification, so fluvial
forms predominate. However, the slope processes are better developed in Miocene-Pliocene
marlstone and clay, where deep-seated landslides (up to 10-20 m in depth) are being hosted
(Fig. 22b), particularly on the slopes steeper than 20°% The morphology of the lowest ground
that flattens northward is governed by the fluvial dynamics of the Danube. It is represented
by sequences of river terraces, inundation plains and the alluvial fans of smaller tributaries.
This is where the loess formations are facing the river in relatively steep cliffs. Despite of the
general stability of loess, landslides on the cliff faces are quite common along the riverbank.
The latter is caused by surges of groundwater that locally communicate through the bedrock
(Fig. 22c) keeping the loess units in unfavorable conditions (saturation and suffosion).
Moreover, loess overlays clay and marl units, that locally host the fossil landslides and seize
the loess slabs above them (Fig. 22d).
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Figure 22. Schematic models of instabilities present in the case study area: a) shallow landslide; b)
rotational landslide in Neogene clay; c¢) collapse of loess slabs (caused by the groundwater dynamic
relation with the river); d) relict landslide seizing loess slabs above. Legend shows 1=Paleozoic
schists; 2=marl and limestone; 3=sand and gravel; 4=clay; 5=sandy clay; 6=loess; 7=delluvium.

It seems apparent that the instabilities in proposed study area are generally driven by
geological, geo-morphometric, and environmental attributes (such as lithology, elevation,
slope angle, Land Cover and so forth) which was further elaborated in this study. The trigger
however, could be different, ranging from seismic activity along the nearby active fault zone,
through groundwater and superficial water dynamics (which change the pore-pressure
regime and according to the Terzaghi’'s principles, decreases the soil strength), to direct
southward fluvial erosion of the Danube, which not only undercuts the banks but lowers the
local erosion basis, causing all local streams in the watershed to intensify their vertical
erosion. Heavy rainfall, which is typical for the late-summer periods (August—September) in
the wider area (according to meteorological observatory in Novi Sad) also plays important
role as a potential trigger. The problem of the trigger requires temporal analysis which was
not directly involved in this research, due to the temporal data shortage, i.e. the shortage of
the landslide activity records (precise dating and rate of displacement).

6.1.2 Dataset

Within the framework of The Vojvodina Province governmental project on Geological
conditions of rational exploitation of the FruSka Gora Mountain area, completed in 2005, by
the multidisciplinary expert team from the Faculty of Mining and Geology (University of
Belgrade), a set of different thematic maps was generated for the entire Fruska Gora
Mountain area, including Geological, Geomorphological, Photogeological, Pedological,
Seismological and other maps. Thanks to the courtesy of the Faculty of Mining and Geology
scholars some of those resources have been used in this research.
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It has already been indicated that conventional techniques for this type of research
involve the use of an input dataset with important terrain attributes, called Conditioning
Factors, which are being selected according to their availability at selected regional scale,
and their significance for the problem at question. Although a majority of researchers use
various available data and measure their statistical dependence against landslide
occurrences prior to their implementation, it is suggested that the input attributes are chosen
more cautiously, due to their temporal and scale constrictions. In landslide susceptibility
analysis it is considered that constant variables (regarding the duration of the landsliding
process which is sometimes measured in decades) should be preferred, meaning that
attributes such as Land Use and Land Cover, climate data, pore-water pressure data and
other that have distinct annual or even diurnal variations, should be used with caution
(Ohlemacher 2007). Furthermore, the caution is necessary for preparing synthetic data as
well, especially interpolated data. For instance, a groundwater table map or soil mantle depth
are hypothetically possible to extract from the borehole data, if the sampling density turned
out to be good enough, so that some interpolation method (possibly advanced, e.g. based on
non-ordinary kriging) could be used to interpolate data over the area. In any case, the
interpolation implies switching from point-specific data to spatially distributed data, which
inevitably introduces uncertainty error. It is hence disputable whether such data are
contributing to the model or biasing it. Attribute Selection (see Chapter 5.1) is one way of
dealing with such problem, but it is also arguable whether it should be used, especially in
multivariate framework. In this study a Chi-Square and Information Gain ranking have been
implemented, mostly though just to demonstrate and highlight which are the most dominant
Conditioning Factors, and to prove their statistical independency to the Landslide Inventory,
and not to exclude any low-ranked factors. It has actually been shown that excluding these
factors have led to the poorer modeling performance, especially in Machine Learning case®.

The 2D raster thematic GIS layers, representing different Conditioning Factors and
Landslide Inventory, have been acquired from different resources, entailing different levels of
generalization and different scales. Subsequently, they have been compiled to an optimal 30
m cell resolution. Regarding the support problem, generalization to 30 m cells is plausible,
because the most critical data had reasonably small scale (such as geology with 1:50000)
and turned out to be too detailed for the research purpose. As a matter of fact, an additional
generalization (by aggregating similar classes) took place over such inputs, thus
compensating for the support problem (Dungan 2001). Assembling of the input dataset, has
been prepared by combining ArcGIS and SagaGIS packages (Bohner, et al. 2006) stored in
ESRI grid formats, and also in ascii format which was necessary for commuting with the
Machine Learning software (in absence of fully integrated ML modules in present GIS
platforms). The content of the input dataset was practically identical for all implemented
methods, apart from deterministic model, which required different input variables (as will be
specified later-on).

2. SVM and Decision Tree algorithms for instance, already include some sort of Attribute Selection

on their own, so no further exclusion by Attribute Selection is needed.
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6.1.2.1 Conditioning Factors

The dataset part regarding the Conditioning Factors thus included morphometric,
hydrological, geological and environmental Conditioning Factors and the Landslide Inventory.

6.1.2.1.1 Morphometric Data

Topographic data have been obtained from the standard topographic maps of Serbia at
1:25000 scale in Gauss-Kriger Projection (Zone 7, ellipsoid Bessel 1841, sheets Backa
Palanka 377-4-1 and 377-4-2), where contour lines generated from a conventional
photogrammetric restitution are given, with the equidistance of 10 m. For generation of the
Digital Elevation Model (DEM), these contour lines were first digitized, and then decomposed
to point data, extracted to DEM by TOPOtoRaster module, with 30 m cell resolution.
Subsequently, DEM has been rectified for the erroneous pits and picks and tested for the
consistency and accuracy by 10% split Cross-Validation of the source point data. Root Mean
Square error of the validation was in reasonable limits (RMS was lesser than 0.4) so the
DEM has been acknowledged. Even though the topographic maps with a given scale are
suitable for DEMs productions with denser resolutions (Carrara et al. 1997), a DEM
resolution of 30 m was chosen for two reasons: as a proper DEM resolution for regional
landslide modeling and as the adequate support grid size compatible with other data sources
used in this study, such as a geological map at 1:50000 scale, and 30 m Landsat imagery
(Dungan 2001). All DEM-related geo-morphometric and hydrological thematic maps kept the
same (30 m) resolution. The latter involved derivation of numerous morphometric parameters
(Wilson & Gallant 2000) listed as follows (Fig. 23a-f).

Elevation (F;) — a float (continual) raster (Fig. 23a), suggesting that the linear
increase in potential energy with altitude brings the higher susceptibility to the higher
ground. It actually represents a Digital Elevation Model (DEM) of the terrain,
described earlier.

Slope angle (F,) — a float raster (Fig. 23b) which is considered important for slope
stability because of the direct physical relation with the landslide phenomenology.
Greater angles (8) propose higher instability of the slopes and vice-versa, but with
restriction to a particular rock type (e.g. in solid rock, the slopes are expected to be
stable even with a steep slope angle, while slopes in clay do not need a steep angle
to host instability). From morphometric point of view, this factor is a firs-derivate-
based morphometric feature computed directly from the DEM by Degree Polynomial
(DP) slope algorithms, also called D8 algorithm, referring to a 3x3 window, where 8
pixels surround the central one and define its value (Olaya 2004).

Aspect (F3) — a float raster (Fig. 23c) which refers to the spatial exposure of the
ground element (its azimuth). It is also computed from DEM values by means of DP-
D8 algorithms and ranges from 0° to 360° (counter c lockwise), suggesting that
susceptibility to landslides rises from SW to NW quadrant, since the diurnal solar path
influences moisture in slopes and topsoil mantle thickness. Thus NW slopes are the
most inconvenient (with the highest moisture content and the thickest mantle detritus)
while SW are the least susceptible.

Slope length (F,) — a float raster (Fig. 23d) of morphometric length of the slopes, also
derived from DEM by means of DP-D8 algorithm. It suggests that longer slopes tend
to be more susceptible due to the higher possibility of hosting a retrogressive
(upslope) landslide development, as the most common form of landslide progression
on the slope.
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Figure 23. Various thematic inputs: a) elevation; b) slope angle; c) slope aspect; d) slope length;
e) plan curvature; f) profile curvature.

Plan curvature (Fs) — a float raster (Fig. 23e) calculated on the basis of second order
derivative from the elevation data (DEM), defining the convex/concave character of
the surface in the direction perpendicular to the contour lines. Positive values suggest
local relief depression (concavity); negative values represent positive (convex) forms,
while zero values are reserved for the flat ground. Plan curvature is considered
important as it reliably indicates convergence and divergence of slope surface in the
depletion zone (concave forms of the landslide crowns, tension cracks and
depressions, and also zones of the local water accumulation) and accumulation
zones (convex forms of the landslide foot and toe) (Ohlemacher 2007).

Profile curvature (Fs) — also a float raster (Fig. 23f), practically the same as a plan
curvature, different only in direction, which is here perpendicular to the contour lines
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(in downslope direction). It also indicates the subtle morphology of the slope and
reveal possible landslide elements, but also depicts the distribution of driving and
resisting stresses along the landslide motion direction (Ohlemacher 2007).

6.1.2.1.2 Hydrological Data

Hydrographic network has been digitized from basic Topographic maps at 1:25000 scale. It
has been upgraded by additional synthetic stream lines, computed by using morphometric
operations over DEM (Compound Module in SagaGlS) and representing mainly small,
higher-order tributaries. The vector of stream network has been used to generate the
distance from stream. Another purely hydrological feature is given as Topographic Wetness
Index (Wilson & Gallant 2000).
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Figure 24. The cross-section of the Danube’s tributary riverbed (solid line) in comparison to the
theoretical curve of erosion basis (dashed line). Note that the interception point separates vertical and
lateral erosion preference at approximately 200 m.

Distance from stream (F;) — is a float raster (Fig. 25a) computed from vectorized
stream network (by using Euclidean distance module in ArcGIS SpatialAnalyst). It
depicts the influence of linear erosion on the slope stability, since deformation and
failure processes develop regressively upslope under the vertical and lateral influence
of the linear erosion. In narrow upper sections of the valleys vertical erosion
dominates, steepening the slopes and destabilizing rock masses. On the other hand,
lower sections tend to develop lateral erosion, widening the valley bed, once again
pushing slopes off the balance. That critical point can be estimated by the analysis of
the local erosion basis, and for the average profiles of the northern mountain slopes it
rests at about 200 m (Fig. 24). In turn, combination of these two mechanisms erodes
the slopes, whereas lateral erosion (below 200 m) leaves more prominent effects. For
this reason, the factor F; has been weighted, so that the lower ground has stronger
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influence. Foregoing discussion suggests that areas closer to the stream lines are
more affected than remote ones, thus buffering out the landslide susceptibility toward
the ridges of local watersheds.

Topographic Wetness Index or TWI (Fg) — is another DP/D8 second order DEM-
based float raster (Fig. 25b), and represents a morphometric parameter which defines
the terrain retention (moisture distribution) in relation to the local topography,
pinpointing the areas of higher water contents. This parameter roughly expresses the
water retention distribution throughout the area, and due to the effective stress
decrease in saturated slopes, it maps the areas with higher TWI values as relatively
more prone to instabilities (Olaya 2004). It is a function of the local slope angle and
upslope contributing area and can be formulated in different ways (Eq. 42) depending
on the way a (upslope contributing area) is defined.
a

TWI =In— 42
ntge (42)

6.1.2.1.3 Geological Data

Geological data were obtained from the digital geological map at 1:50000 scale, which has
been compiled from a raw field geological map at 1:25000 and the Basic Geological map of
Serbia at 1:100000 scale. Since it is not formational but chronostratigraphic one, the map
was further simplified to meet the requirements of this case study?®. Therefore, the
generalization to a raster map with 30 m resolution was justifiable. The map was also used to
derive the synthetic data, based on Euclidean distance calculations (ArcGIS SpatialAnalyst
module). These included the buffer of geological structures and the buffer of
hydrogeologically significant borders (Fig. 25c-e).

Lithology (Fg) — a discrete (categorical) raster (Fig. 25c¢) of present rock types derived
after geological map as mentioned above. The map depicts 9 rock units, essentially
different in their physical-mechanical behavior, thus differently prone to instabilities,
i.e. (alluvium, terrace sediments, delluvium, loess, Pliocene clay and sand, Miocene
marlstone and sandstone, Miocene limestone, Serpentinite and Paleozoic schist). It is
common practice to range lithology (to reclassify it into different intervals) arbitrarily,
by assigning scores or weights to each of the lithological classes (the scores can
range from 0 to 1 for instance). However, in Machine Learning implementations (see
Chapters 6.1.3.4-7) lithology needed to be treated differently, in order to avoid
subjective quantification of categorical classes. The entire lithology factor has been
actually isolated into m different sub-attributes, so called dummy variables, giving m-
bit class codes for each unit (m=9). In each sub-attribute a binary reclassification
further applies, so that the given unit becomes class 1 and all remaining units
become class 0. For instance, a delluvium class is the 3" class of the lithology and it
is hence coded as a sub-attribute 001000000. Within the 001000000 sub-attribute
(new raster layer) instances corresponding to delluvium are assigned value 1 and all
the rest is 0. By such intervention each rock unit has been treated by the proposed
Machine Learning algorithm with no preference.

Distance from structures (Fip) — is a distance raster (Fig. 25d) which displays the
distance from the geological structures such as faults and joints, obtained from the

> The map was divided into chronostratigraphic units, thus separating units by different age. This

breaks the continuity of physically similar rock masses just because they are different in age,
although they might belong to the same metamorphic/magmatic/sedimentation cycle. Formational
map on the other hand follows the entire cycle of a rock mass creation, which in result keeps
physically similar rock masses within the same units. Adopted guideline that similar rock masses
express similar superficial dynamics better complies with formational map criteria, so the source
chronostratigraphic map had to suffer some simplification and generalization of original units.
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photogeological interpretation (See Chapter 6.1.2.5). Since faults and joints represent
the zones of weakest shear resistance (limited only to a residual shear resistance)
and also affected by the infiltrated water and fill material, it is logical to assume that
instabilities are more prone in the areas closer to these structures. In more
seismically active areas such parameter could be much more appreciated since the
shear resistance faces further effects, related to the fault dynamics.

Distance from hydrogeological boundaries (Fy;) — is another buffer raster (Fig. 25e)
which introduces the influence of geological boundaries defined by the change in
hydrogeological function of the adjacent rock units. This function could change
significantly as the porosity and permeability between two adjacent unit change. Any
abrupt downslope decrease in permeability causes higher water pressures at the
boundary, especially in characteristic structural disposition of the rock units. The
boundaries that were suspected for such mechanism had been mapped and digitized
and the appropriate buffer was created, suspecting that areas closer to the boundary
are more susceptible to landslides.

6.1.2.1.4 Environmental Data

Environmental information particularly regarded the vegetation cover, due to a possible
remediation that some vegetation types can provide for shallow landslidng (the influence of
root cohesion and moisture retention). In the Multi-spectral Satellite Image Processing
numerous spectral vegetation indices are proposed to estimate biomass and delineate
different types of vegetation apart from bare soil, rock, wetlands or artificial surfaces (Glenn
et al. 2008). After experimenting with several indices the Normalized Difference Vegetation
Index (NDVI) has been acknowledged. NDVI basically explores the chlorophyll spectra using
the multi-spectral (multi-band) Landsat TM image bands (Eq. 43).

_ NearInfraRed —Red

NDVI =
NearInfraRed + Red

(43)

It particularly exploits the abrupt chlorophyll absorption difference in red and near-
infra-red band (analogue to the chlorophyll’s spectral signature trend). The range of the index
falls from 1 to -1, wherein, vegetation has values close to 1, water bodies close to 0 and dry
areas close to -1 (Ravi 2002), making the NDVI easy for reclassification (required in the most
of the techniques, except for the ML-based ones). The raster has been created by combining
two Image Processing platforms, IDRISI Taiga and ERDASImagine 8, resulting in a 30 m
resolution raster map of vegetation cover (Fig. 25f).

Vegetation cover (Fy;) — is a discrete raster which separates heavily (value 1) and
sparsely vegetated areas (value -1). Former are stabilizing loose topsoil to a certain
extent, making it less susceptible than bare soil due to water retention and root
cohesion. This attribute is created by processing Landsat 7 TM bands from summer
2008 (LE71870292008175EDCO0 from USGS free on-line repository), via NDVI,
which has proved to be more representative in the selected scale than more
advanced biomass estimators, such as Enhanced Vegetation Index (EVI) (Glenn et
al. 2008).
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Figure 25. Various thematic inputs (continued): a) distance from stream; b) TWI; c) lithology
(1=Paleozoic schist, 2=serpentinite, 3=Miocene limestone/sandstone/marl, 4=Miocene marl/clay,
5=Pliocene clay, 6=loess, 7=delluvium, 8=river terrace, 9=alluvium); d) distance from structures; €)
distance from hydrogeological boundaries; f) NDVI.

6.1.2.2 Landslide Inventory

A photogeological map (1:50000) represents a coupled geomorphological and structural
map, that stresses the forms of the most current geological processes at play. It is compiled
by adopting basic geomorphological units and appending the heuristic (RS-based) structural
and stability interpretation. The latter was performed as an expert-based analysis of 30 m
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Landsat TM imagery (LE71870292008175EDCO00 from USGS free on-line repository**) and
auxiliary derivates (enhancements and processed images, i.e. various indices, Principal
Components, Color Composites etc), as well as orthorectified aerial photographs at 1:33000
scale. At the final stage of its compilation the map has been verified on the field, by practicing
conventional engineering-geological mapping methodology.

*k*k

Aforementioned verification methodology implies evidencing of the landslides, proposed by
the photogeological interpretation (by means of RS methodology, stereoscopy of the aerial
photographs in particular).

detail at c)

d)p

new pole

Figure 26. Augmented photo-documentation from the field investigation: a) reactivated landslide;
b) dormant landslide with secondary scars; c) tension cracks (left flank of a); d) object deformations
(photo by the author 2008-2012).

The first objective involved on-field check of the validity of the interpretation,
especially for the landslides that have been mapped with lower certainty. These pre-defined
locations have been checked by using conventional 1:25000 topographic maps and low-
accuracy navigation device (still sufficient for reambulation at the 1:50000 source scale), and
this type of field check had to be limited to the smaller landslides only, i.e. only those
observable on the field. Several small polygons have been removed from the inventory, since
being misinterpreted as landslides. Since the original interpretation had discerned landslides
by their activity stage (active and dormant) the objective of this additional survey was also to
find evidence which could support the activity estimation, as well as estimation of the
triggering mechanism, landslide depth and type (in order to conform to the adopted
classification system). Common indicators of the active sliding can be found in

4 LE71870292008175EDCOO0 is the image repository name code meaning: LE7=ETM+ sensor was

in operation, 187=path, 029=row, 2008=year, 175=day of the year (date of acquisition is hence 23
of June, 2008), EDC = Data held by EROS - Receiving station unknown, 00 = version 0.
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geomorphological, hydrogeological, botanical evidences, as well as in deformations of the
man-made structures. For instance, fresh scars, opened tension joints locally filled with
water, local pounds and hummocky topography are strong evidences of recent activities in
the depletion and accumulation zones (Fig. 26a-c, 27). Also, fresh fissures in the buildings or
paved roads, disarrangement of the fences and staircases (as most fragile constructions),
and tilted tall objects such as poles or trees are further supporting the activity assumption
(Fig. 26d, 27). Information from the members of local community are also appreciated,
especially for dating of the landslide events, estimating the water table levels in aquifers,
estimating the activity rate, estimating the trigger and assessing the damage produced by a
single or multiple events.
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Figure 27. Location of the photographs from Figure 26. (landslides are shaded polygons).

*k*k

Since the emphasis was on the stability analysis, only that part was extracted from the final
photogeological interpretation, otherwise rich in other thematic geological content (geological
structures and geomorphological processes). In this manner the Landslide Inventory raster
map at 30 m resolution was obtained. It reveals the stability of the landscape by
distinguishing two classes of landslides based on their activity stage, dormant and active
landslides (Fig. 28).

T
7392399
[] stable ground ] dormant landslides [l active landslides

Figure 28. Landslide Inventory.
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According to the adopted classification (Varnes 1984), landslides fell into the category
of rotational and translational earth slides, while other, minor occurrences of flows and falls
were not taken into consideration. The map depicted the distribution of classes into the
following categories: 3.6% active landslides, 5.6% dormant landslides and the remaining

90.8% conditionally stable ground (non-landslides).

Table 7. Raster thematic maps represented by thematic attributes of the input dataset.

source, short
Conditioning Factor scale/resolution description
elevation (F,) topo-maps, 1:25000 DEM of the terrain surface
slope angle (F») DEM, 30 m angle of the slope inclination
aspect (F3) DEM, 30 m exposition of the slope
slope length (F,) DEM, 30 m length of the slope
plan curvature (Fs) DEM, 30 m index of concavity parallel to the slope
profile curvature (Fg) DEM, 30 m index of concavity perpendicular to slope
distance from stream (F;) DEM, 30 m buffer of drainage network
TWI (Fg) DEM, 30 m ratio of contributing area a and tg(F,)
lithology* (Fo) geo-map, 1:50000 rock units
distance from structures (Fy) geo-map, 1:50000 buffer of structures

distance from h.g. boundary (F;;) geo-map, 1:50000

vegetation cover (F,) Landsat images, 30 m

buffer of boundaries between rock units

interpretation of vegetation, water bodies
and bare soil, based on NDVI

* nominal attribute

Table 8. General statistics of attribute layers.

maximum minimum  mean standard IG
Conditioning Factor value value value deviation  ranking
elevation (m) 523.19 79.83 241.64 94.61 1
slope angle (9 40.16 0.00 11.77 6.62 5
aspect (9 359.99 -1.00 173.26 116.47 10
slope length (m) 6456.41 0.00 103.77 152.19 11
plan curvature 3.3725 -4.0694 0.0085 0.0085 9
profile curvature 4.0607 -2.6968 0.0089 0.4060 8
distance from stream (m) 1225.60 0.00 319.59 224.89 6
TWI 22.49 7.56 11.51 2.83 4
lithology* * * * * 2
distance from structures (m) 1672.75 0.00 309.85 259.11 7
distance from h.g. boundary (m) 1465.09 0.00 306.32 295.45 12
vegetation cover 0.56 -0.75 0.17 0.21 3

* nominal attribute
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6.1.2.3 Data Summary

The descriptions of used input data, their spatial resolution and sources are given in Table 7.
The general statistics for chosen Conditioning Factors and IG ranking (Quinlan 1993) based
on overall terrain data are shown in Table 8. In Appendix 1, a dataset variant used in some
conventional methods is given. Note that all numeric inputs are ranged and nominal inputs
are quantified there.

6.1.2.4 Deterministic Geotechnical Data

Deterministic analysis was somewhat specific, since it required a different type of data, from
different resources. Apart from topographic data, i.e. DEM, these included physical-
mechanical rock parameters, such as (dimensionless) cohesion cy, friction angle @s,
volumetric weight vy, and recharge to soil transmissivity to precipitation ratio g/T. The most
of these parameters are normally obtained from the laboratory tests of samples and apply for
site-specific scaled investigations. Adopting and distributing these to regional scales is a very
disputable issue for a number of reasons. The most obvious one is the proper sampling
density which is unaffordable at regional scales, because each sample requires a borehole,
sampling, and laboratory tests for each geological unit along the borehole. Appropriate
sampling density and performing of a meaningful interpolation over the sampled values is
therefore practically impossible. Hence some generalization has to be introduced, but one
needs to be aware of the level of bias which is caused by generalization. Common practice
(Pack et al. 2001) is to adopt the average values of required parameters per each quasi-
homogeneous rock unit or to simply assign generally accepted values for a given rock mass
(Bell 2007). Perhaps, the most objective estimation is the one regarding the g/T ratio,
because it is obvious that the maximum precipitation is constant regardless to the rock units,
while transmissivity T could be relatively precisely estimated. For instance g/T log-ratio of
1000 means that the ground received three times as more water than it can transmit, which
is an extreme case and it is obviously more problematic for clayey, schistose or other
relatively impermeable rock than for the sandy or calcareous units.
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Figure 29. Different lithological domains (regions) of the area for determination of different
geotechnical parameters: 1=clayey-marly soil; 2=calcareous-sandy soil; 3=solid bedrock.

With all this being said, the case study area has been subdivided into several quasi-
homogeneous regions, by unifying rock units with similar consistency. It is obvious that
lithological classes (Fig. 21, 25c) have been aggregated into 3 regions (Fig. 29). The
according parameter values for these regions are given in Table 9. The most drastic
generalization would be if just one region with a single set of physical-mechanical
parameters would have been considered.

72



Finally, it is important to mention that such model and such data could not have been
implemented without a GIS platform and although the regional deterministic modeling is
disputable, it shows a certain potential, especially for the appropriate case studies (prevalent
shallow landsliding scenarios). GIS thus emerges as a very powerful tool which easily
administers such modeling procedures.

Table 9. Average parameters over different lithological domains (regions).

region 1 region 2 region 3
parameter (clayey/marly soil) (calcareous/sandy soils) (solid bedrock)
Csoil 0.1-0.5 0.1-0.3 0.3-0.6
Vsoil [KG/M3] 2100 2300 2500
Gsoil [ 10-25 15-35 25-45
T/q [log] 4000-5000 500-1000 6000—7000

6.1.3 Implementation, Results and Discussion

This particular (pilot) case study has had experienced all of the proposed modeling methods
(See Chapter 5), and herein, the implementation of particular methods will be given in
appropriate order.

6.1.3.1 Model-1a

The model was deployed by the AHP heuristics (see Chapter 5.2.1.2) by using the arbitrary
scores in 1-9 scale in pair-wise comparison matrix. These relational scores have been
obtained through the scoring interview with colleagues that were familiar with the
problematic. They have been scoring relations of proposed pairs of Conditioning Factors.
There were several different configurations of factors because different examinees preferred
different factor pairs, thus excluding factors and pairs which they could not confidently relate.
For instance some morphometric features have not been taken into consideration. One of the
initial elaborations is considering the following Conditioning Factors F;: lithology (Fg), slope
angle (F»), rainfall® (Fy3), erosion (distance from stream — F-), vegetation cover (reclassified
NDVI — Fy,), elevation (F;) and aspect (Fs) (Tab. 7).

Since there has been almost no contradiction, i.e. CR=0.04 (<10%) the eigenvector
values were derived from the comparison matrix (Tab. 10) and gave the final weights w; of
the corresponding factors F; (Tab. 11). The final distribution of weights is given in the last
column of Table 11., suggesting that lithology and slope angle have the strongest influence
on the process (with more than 20% in total score), unlike the elevation and aspect which
have less than 10% of influence.

® Rainfall is actually a triggering factor, which is in this particular case represented by the amount of

the weekly precipitation in the most extreme circumstances, i.e. summer storm months (the
average weekly precipitation for the most extreme week of August, the month with the highest
storm rates, has been used, and the data covered 1975-2000 period, by averaging and
interpolating the data from the Hydro-Meteorological Survey of Vojvodina in Novi Sad). Rainfall
variation turns insignificant for this relatively small study area (which has been approved by the
following data-driven models). Thus the factor has been used only in Model-1a and has been
abandoned since.
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Table 10. AHP comparison matrix of the first model variant.

> S c

8 vo T 5 E.0 3 5

° 25 = & >3 > o
F = % S o 23 T 8
lithology 1.00 1.00 3.00 2.00 4.00 6.00 9.00
slope angle 1.00 1.00 3.00 2.00 3.00 5.00 8.00
rainfall 0.33 0.33 1.00 2.00 2.00 5.00 4.00
erosion 0.50 0.50 0.50 1.00 3.00 3.00 4.00
vegetation cover 0.25 0.33 0.50 0.33 1.00 2.00 3.00
elevation 0.17 0.20 0.20 0.33 0.50 1.00 3.00
aspect 0.11 0.13 0.25 0.25 0.33 0.33 1.00
2= 3.36 3.49 8.45 7.91 13.83 22.33 32.00
Table 11. AHP weight derivation of the first model variant.
Fi lith. sl. rain. er. veg. alt. asp. Wi %
lith. 0.29 0.29 0.35 0.25 0.29 0.27 0.29 0.29 29
sl. 0.29 0.29 0.35 0.25 0.22 0.22 0.26 0.27 27
rain. 0.10 0.09 0.12 0.25 0.14 0.22 0.15 0.15 15
er. 0.15 0.14 0.06 0.13 0.22 0.13 0.13 0.14 14
veget. 0.07 0.09 0.06 0.04 0.07 0.09 0.07 0.08 8
alt. 0.05 0.06 0.02 0.04 0.04 0.04 0.05 0.05 5
asp. 0.03 0.03 0.03 0.03 0.02 0.01 0.02 0.02 2
Anax=7.33; CI=0.05; RI=1.32; CR=0.04 X=1100 100

Another variant of AHP model is worth mentioning, since it included some less
common Conditioning Factors, thus including the entire input dataset: elevation, slope angle,
aspect, slope length, profile curvature, planar curvature, distance from stream, TWI, lithology,
distance from structures, distance from hydrogeological boundary and vegetation cover, i.e.
F._1, in the respective order. By using a consistent criteria, with CR=0.09, the final weights of
the corresponding factors are obtained by the same procedures as described before (Tab.
12). The highest weights are once again assigned to lithology and slope angle (around 20%)
and the lowest for planar and profile curvatures and distance from structures (equal or less
than 2%).

The final AHP model (Model-1a) is defined as a combination of the two. By averaging
common and adding unique Conditioning Factors a continual raster model has been
generated and 0-1 normalized, to meet the quasi-probability range (Fig. 30). Visually, it
could be inferred that the model has revealed some unstable zones, but tends to
overestimate the probability of failure outside the existing landslides, while it underestimates
within the existing landslides.
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Table 12. Final AHP weights of the second model variant.

Fi Fs F Fs Fa Fs Fe Fs Fs Fo Fio Fu Fio
w; (%) 169 199 3.3 3.4 2.0 1.2 6.0 8.0 21.8 1.0 5.4 111

L I I 1 T R I R RV

Figure 30. Model-1a (AHP model) in continuous quasi-p scale (left) and in 5-leveled susceptibility
scale (right). Black contours represent actual landslides. Scale bar shows 0-1 quasi-probability range.

However, the quantitative estimations of the result awakens several issues, primarily
regarding which metrics fits best and more importantly, how to reclassify the model to make it
optimal for comparison against the available Landslide Inventory (Fig. 30, 31).

0.10

0.08

= d
o =
= >
1 1

information gain

0.02+

O 1 1 1 ) 1 1 1 I

1
0 2 4 6 8 10 12 14 16 18 20
# of susceptibility classes

Figure 31. Information Gain in function of humber of classes (solid line) and its polynomial trend —
entropy function (dashed line). Note that the highest IG and the steepest curvature of entropy function
falls between classes 4-9, whereas the inflection point falls around class 6.

The latter has been approached by a conventional fashion of classifying the landslide
susceptibility to 3-5 classes, i.e. low—high (Fell et al. 2008) as endorsed by the international
communities. Still, the problem of actual reclassification remains. Several typical proposals
could be made. Natural breaks (Jenkins breaks), which exploit the proportionality of data
distribution per each class, could be a plausible option. The data could be thus reclassified to
3-5 desired classes and compared to the Landslide Inventory which also contains 3-5
classes. However, such redistribution is not entirely justified, because the Landslide
Inventory classes (active landslide, dormant landslide and non-landslide) are not based on
the proportional distribution. Some justification could be proposed, and it involves the entropy
approach, by estimating Information Gain. The IG has been calculated for a wide range of
classes (number of classes ranged from 1 to 255 classes with the Natural breaks intervals)
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and it showed that 3-5 classes seem appropriate for expressing the landslide susceptibility
(Fig. 31), since the inflection point of the IG function is close to 5.

This is generally unappreciated task, since it is very difficult to find the optimal metrics
to express the model. For all spatially predictive models it is difficult to choose which metrics
suppresses their predictability the least, while penalizing them for misclassification. Model-1a
in particular had been penalized for overestimating, i.e. for exhibiting type 1 error (false
alarms), which is acceptable in the landslide susceptibility framework. It might not be
considered as a real error at all, because landslides might be absent at present, but could
easily develop in time, hence confirming the model and its predictability. A brief quantitative
report, regarding the adopted metrics (kappa and ROC measures) follows (Tab. 13). Some
additional kappa statistics has been calculated for better understanding of class performance
variations in relation to their population (Tab. 14).

Table 13. Model-1a performance metrics.

Model K-index AUC fPrate-0 Kiuzzy
Model 1a (AHP)  0.15 0.78 0.73 0.40

Table 14. Model-1a performance per class.

susceptibility class Very Low Low Moderate High Ver yHigh
Ki 0.34 0.51 0.28 0.32 0.35

The AUC of the AHP model (0.78) suggests a plausible result, which is not the case
for its k-index value (0.15) and also not directly evident from the map (Fig. 30). Thus ROC
performance (Fig. 32) rather goes in its favor. The performance curve is moderately right-
skewed, meaning that the model was not equally successful in discerning landslides from
non-landslides. Such trend usually entails more liberal estimation than it suppose to. AHP
tends to underestimate the landslides by claiming that there is low probability of occurrence
on an actual landslide site (type 2 error), which is an important drawback of the model.

ROC area =0.78:Sample size=100839
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Figure 32. ROC curve of the Model-1a.
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In conclusion, Model-1a is a plausible but not too confident way for landslide
susceptibility mapping in the study area. The subjectivity of the model is substantial, and
heavily depends on the expert’s familiarity with the area. It is quite simple, appropriate for the
GIS-based analysis on regional scales (independent AHP modules are already available in
many GIS platforms), with low computational demands and time-consumption, but requires a
significant amount of cooperation and advisement of other experts in the field. It could be
convenient for a preliminary regional assessment and planning.

6.1.3.2 Model-2a

This conditional probability-based model has been deployed by direct Weights of Evidence
technique, wherein positive, negative and zero weights have been considered. By excluding
the negative and zero weights the procedure has been further simplified. The former is a
measure which goes in favor of safety, since the stabilizing role of a factor is therein
neglected, while exclusion of near-zero weight is a standard procedure (factor is indifferent to
the dependent variable).

Conditioning Factors have herein been treated as independent variables, and the
most of them (all of those with ordinal data type) have had to be adjusted to meet the
requirements of the modeling technique®. It involved the reclassification of ordinal data
(elevation, slope angle, aspect, slope length, profile curvature, planar curvature, distance
from stream, TWI, distance from structures and distance from hydrogeological boundary) into
appropriate ranges of intervals, based on Natural breaks method. This is where the
subjectivity is being introduced to the model, because choosing the number of intervals and
ranging method is arbitrary and depends on the practitioner. It has been particularly difficult
to range and reclassify certain factors, such as slope angle and aspect, which have values
that are not straightforward in relation to landslides. For instance, NE aspect is adjacent to
SE, but has drastically higher susceptibility, while slopes higher than e.g. 30° rarely host
landslides, but gentle slopes below 5° are likewise rarely hosting them. Alternatively, the
model could have used a different unit area, for instance watershed units or some other
topographic discrete parameter, and to compute zonal statistics instead of point/pixel-based
statistics.
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Figure 33. Model-2a (CP model) in continuous quasi-p scale (left) and in 5-leveled susceptibility scale
(right). Black contours represent actual landslides, scale bar shows 0-1 quasi-probability range.

*® Nominal data such as lithology and vegetation cover did not need to be reclassified because their

classes are unique and predefined by the nature of the factor itself.
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Table 15. Model-2a performance metrics.

Model K-index AUC D rate-0
Model-2a (CP) 0.36 0.85 0.78
*tPrate Of the non-landslide class

Table 16. Model-2a performance per class.

susceptibility class Very Low Low Moderate High Ver  yHigh
Ki 0.48 0.69 0.33 0.57 0.62

The model (Fig. 33) has revealed similar, but somewhat better performance in
comparison to the Model-1a. The susceptibility model has been also first evaluated by AUC
metrics as a probabilistic one, and then reclassified in the same fashion and by the same
criteria as in Model-1a. The latter involved kappa-statistics-based evaluation, including also
the conditional k; per each of the five susceptibility classes (Very Low, Low, Moderate, High
and Very High). According to the performance parameters (Tab. 15, 16), VL and L classes
have been mapped better than the rest, but there is still slight overestimation in the VH class.
On the other hand, probabilistic (continual) model has mapped higher classes quite well, but
also slightly overestimates VH class. ROC curve (Fig. 34) shows similar trend as Model-1a
(Fig. 32) with liberal estimations of landslides, which also contributes to the safety but entails
conservative models. AUC is even higher (0.85) which does not surprise considering that the
element of subjectivity is present, but very subtle and very useful for the fine tuning of the
model.

ROC area =0.85;Sample size=100839
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Figure 34. ROC curve of Model-2a.

So far the 0-1 continual (probabilistic score) Model-2a has been discussed. When
subjected to the same low—high susceptibility reclassification scheme as in Model-1a, the
model also yields a visible improvement, where two most susceptible classes (H and VH)
comply with the active and dormant landslide classes of the inventory. The k-index of 0.36 is
fairly improved in comparison to Model-1a, but still entails overestimation of landslides (high
susceptibility classes).
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In conclusion, the model is producing relatively reliable prognosis, with slight
overestimations, while still being reasonably simple and GIS-integrated. Evident performance
improvement (Tab. 15, 16) indicates that the model is superior to Model-1a in both modes,
probabilistic and reclassified.

6.1.3.3 Model-3a

Fuzzy model is a further step toward performance improvement, because it is somewhat
similar to the statistical (objective) approach but allows fine tuning by introducing custom
fuzzy combinations. In other words, it thrives on benefits of both, statistical and heuristic
elements.

Model-3a suffers from the same limitation as Model-2a when it comes to data. It also
requires ranging and reclassification of all continual ordinal Conditioning Factors as
described for Model-2a (Appendix 1). Given the categorized (ranged) raster attributes and
the referent Landslide Inventory map, the memberships of each class in each factor have
been defined. Two parallel variants of the experiment were driven: Model-3a-CA used
Cosine Amplitude, while Model-3a-FR used Frequency Ratio®’ to obtain the memberships.
Both experiments had exactly the same course, thus the following manipulations took place
in each.

landslide susceptibility model

geo buffer topo hydro geo units land cover

/dist. from struct.\ / sl. ang. \ / dist. from str. \

Idist. from h. g. b I sl. leng. I twi \

plan. curv.

Figure 35. The structure of the fuzzy model. Nominal (categorical) data sources are shaded, and their
level 1 models are the weighted reclassifications of themselves.

In order to combine memberships by different operators a small intervention has been
undertaken to exclude too many extreme membership values (0 and 1) by replacing them
with close approximations (0.0001 and 0.9999)?. Two-leveled fuzzy combination based on a

2’ Cosine Amplitude and Frequency Ratio are both Conditional Probability-based estimators, very

similar to Weights of Evidence, except that they do not consider positive and negative weights, but
the overall density/frequency of ocurrences (landslides in this case).

% Extreme membership values are causing quick convergence of intermediate models in fuzzy

combinations.

79



Milo§ Marjanovi¢, PhD Thesis: Advanced methods for landslide assessment using GIS

priori knowledge of the phenomena has been proposed (Fig. 35). In this way, the pairs of
Conditioning Factors of similar origin were grouped together (e.g. topo sub-model included
all derivates of DEM). Continual susceptibility model with probability scores (0-1) was
obtained in 2-level fuzzy combination (Fig. 36). Reclassified susceptibility model has been
generated by ranging the continual values into five standard categories of relative
susceptibility as described for Model-1,2a. Only the highest susceptibility class (Very High)
was regarded for performance evaluation (AUC) against the referent Landslide Inventory
(Tab. 17). This was inspired by the fact that existing landslides should be marked as a
priority zone (preferably as a Very High susceptibility class).
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Figure 36. Model-3a-FR-g (fuzzy model) in continuous quasi-p scale (left) and in 5-leveled
susceptibility scale (right). Black contours represent actual landslides, scale bar shows 0-1 quasi-
probability range.

Table 17. Model-3a performance metrics.

Model AUC tPrate
Model-3a-CA-wa* (weighted average) 0.65 0.3-7
Model-3a-CA-g* (gamma operator, y=0.5) 0.70 0.53
Model-3a-FR-wa** (weighted average) 0.71 0.56
Model-3a-FR-g** (gamma operator, y=0.5) 0.82 0.58

*Cosine Amplitude memberships
*Erequency Ratio memberships

To remain consistent, the same type of the operator at both combination levels has
been kept. Initial results in both experiments gave preference to Fuzzy Gamma Operator
over the other, less subtle operators (see Chapter 5.2.2.2). Hence, the further model fitting
has been directed toward the optimization of fuzzy parameter y. Cases of y=0 (Fuzzy
Product) and y=1 (Fuzzy Sum) were already regarded and dismissed as unsuitable, because
of producing fast convergences and extremes. Several other choices within specified interval
(0.25, 0.5 and 0.75) have been tested instead. It turned out that the best performance (AUC)
was achieved by y=0.5, making it a parameter of choice for the final susceptibility model.
Finally, Model-3a-FR gave slightly better performance over Model-3a-CA, meaning that
Frequency Ratio could be preferred over Cosine Amplitude for assigning memberships.

In the reclassified model of Model-3a-FR-g the distribution of relative susceptibility
classes goes as follows: VL — 53%, L — 14%, M — 12%, H — 11%, and VH — 10%. Dominance
of the VL class characterizes terrain as mostly stable, while similarly as in the referent
inventory map, the most adverse zones occupy about 10% of the area. Furthermore, a
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majority of the actual landslide instances fall into the VH and H classes (37% and 23% of all
landslides, respectively), while M, L and VL classes occupy mostly non-landslide instances
(75% of non-landslide instances in total for all three classes).

The highest overall performance of continual model in Model-3a-FR-g (AUC=0.80)
could be acknowledged and model accepted as plausible, which is also supported visually,
since VH class corresponds very well with the spatial trends of the actual landslides (Fig. 36).
Apparent influence of intermediate layer GeoBuffer caused several outliers by
underestimating some landslide instances. A considerable drawback is relatively Iow tp;qe in
both experiments (Tab. 17) which is inconvenient for any hazard-related analysis, since the
model tends to underestimate actual landslide instances®. However, the actual performance
is somewhat better, since only VH class has been regarded for cross-tabulation. Thus, H or
even M class could be fair replacements for VH class, as they buffer-out around it, which
might reduce the number of False Negatives if included in cross-tabulation (increasing the
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Figure 37. ROC curve of Model-3a-FR-g.

The continual Model-a3-FR-g has a ROC curve area of 0.8 and it is left-skewed with a
sub-maximum approaching the peak maximum value, but more importantly its relative
probability thresholds range is concentrated around the lower left corner of the plot
(conservative model, strict for False Negative errors), which is an important preference for
the model, even though it is learned by a pure qualitative description of the curve (Fig. 37). It
is yet another fact that goes in favor of the model over the preceding ones.

In comparison to Model-1a and Model-2a (while still regarding only the VH class for
comparison) fuzzy approach turned practically as successful as statistical model (Model-2a
based on CP), but with more subjectivity involved in the modeling procedure (in ranging the
input intervals, but also in selecting the operators and numbers of combination levels). It
outperformed AHP model, not as much in the overall performance (AUC) as in considerably
higher tp.ae, granting a slight preference to the model.

Subjectivity in ranging input attributes was inevitable, due to incapability of the
approach to handle the continual numerical variables (in the stage of assigning
memberships). Another subjective intervention regarded proposing of the number of levels
for fuzzy combination, and grouping the attributes with similar origin to level 1. Further

29 Actually, the False Negative represents the most dangerous type of error, because it claims that

there is no landslide while the landslide actually exists.
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refinement of the assessment, leads to more elaborated techniques which surpass this issue
easily, yet with considerable computational effort and time consumption. To conclude, fuzzy
approach came up with a suitable model, while the modeling procedure remained simple,
semi-automated and re-operable in a GIS environment. The resulting map could suit
preliminary levels of risk or disaster management, landscape (regional) planning, route
selection, insurance management and so forth.

6.1.3.4 Model-4a

From this model on, the character of the landslide assessment in the FruSka Gora case study
becomes more predictive, as more sophisticated methods are being introduced. These allow
the model to be built on a smaller portion of the area and extended to the rest of it
(training/testing concept of Machine Learning techniques), while the input data remain more-
or-less the same.

However it is necessary to mention that the ordinal Conditioning Factors did not have
had to be retooled, only normalized, while ordinal data have had to be segregated (binarized)
to multiple binary inputs®*. Described protocols applied not only for Model-4a, but also for
Model-5a, Model-6a and Model-7a. For all these models also applies the fact that the
performance has been computed directly, because these classifiers, unlike the preceding
models, produce a discrete output which is already classified into target classes. In this case
the Landslide Inventory with three classes (active, dormant, non-landslide) has been used as
susceptibility reference (H, M and L, respectively).

Model-4a is actually a k-Nearest Neighbor (k-NN) based model. This is an
unsupervised, actually semi-supervised classifier, primarily intended for clustering and
pattern recognition. Otherwise, it is computationally extremely demanding as explained
before (see Chapter 5.2.3.2), which is the reason for several reductions in the k-NN
experiments.

Firstly, the usage of the entire dataset would not be too meaningful in this case. Since
k-NN is capable of recognizing and clustering spatially induced similarities throughout a
given spatial domain (2D geographical space of a map), the most of the additional attributes
could be discarded. Practically, the only information which is required is the spatial location
(geographical coordinates) and landslide class label (from the referent Landslide Inventory)
of the training instances. Secondly, the training area has had to be much smaller than usual,
and the sampling strategy has had to be based on random but uniform dispersion of the
instances. Only two sampling sizes have been considered, containing 1% and 5% of the
area, respectively*!. Reducing the training size is however one of the milestones of Machine
Learning in general, but finding an optimal training sample size requires less computationally
limiting environment. Even with such restrictions, the computational effort was significant. As
a final reduction step, the original algorithm has been supplemented with a more advanced
sorting function®, which partly suppressed the time consumption.

Further model optimization was limited for the same reason, which is why only
several alternatives of the number of NNs have taken place. After 5-fold Cross-Validation in
the training area, the optimal results have been achieved when the number of neighbors
equaled 3, although further rising of neighbors resulted in similar but slightly lower
performance. It could be speculated that such balance indicates the consistency of the

% |n addition, since the processing did not take place in a GIS environment, the data have had to be

filtered for no-data values, and the spatial reference have had to be temporarily removed.

1% equaled about 400 instances for training, and nearly 2000 in the 5% case.

82 Sorting here included ordering of the neighbors from the closest to the furthest ones. Faster sorting

resulted in a quicker finding of the 3 nearest neighbors and thus eased the calculation of their
weights, making the classification also quicker.
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chosen model (3-NN). The accuracy of the model in the bigger training sample equals just
around 57%, which is even lesser than in the smaller (1%) sample (Tab. 18).

Theoretically speaking, the spatial pattern recognition which is provided by the k-NN
algorithm could have led to a significant accuracy, but it is also apparent that sampling
strategy plays a crucial role. The method explores the closest environment of an instance,
which does not necessarily mean that it will yield results for any spatially correlated
phenomenon, not just landslide distribution. For these reasons the expectations were not too
optimistic, which has been proven right. The model rather served as a demonstration of the
sampling strategy and its effects on the modeling, which have proven valuable for some later
Machine Learning implementations.

Model 4a has proven that even sparse inputs (small portion of training data and
reduced dataset) could lead to some prediction. However, its robustness which have caused
numerous limitations have caused abandoning of this approach, with no further examination
of its performance, nor its visualization, and turning to more efficient techniques.

Table 18. Model-4a performance metrics.

Model accuracy (%)
3-NN (training sample=1%) 57.5
3-NN (training sample=5%) 56.5

6.1.3.5 Model-5a

Implementation of a Decision Three algorithm C4.5 had taken place in this model. For this
particular case study, the experimenting was not as detailed as in the next case study for
instance. The experiment design involved balanced and unbalanced training datasets®, and
it also included multiple classes of landslides for classification. Thus both, the predictive
power of the model and its capability of discerning among different landslide types have been
challenged.

As mentioned before, the experiment has not been too detailed, which has also
reflected the optimization of the modeling parameters. Practically, all default settings have
been adopted from the offered J48 (Weka software) implementation of C4.5 algorithm.
Confidence Level of C4.5 has been set to 0.25 and adopted, without introducing alternative
values. Minimum Number of Objects in Leaf has been also accepted from the default setting
and has been set to 2. This is obviously the softest choice, since it is natural that at least two
alternatives exist when conditioning instances of an attribute (Conditioning Factor).

Three variants of the experiment have been designed, making actually six different
results if one has in mind that each of the three has been run twice, once for the balanced
and once for the unbalanced training dataset. It is important to mention that the training area
has been selected by sampling instances randomly and uniformly throughout the area, which
means that the predictive modeling has not been the central objective of the Model-5a.
Instead, the principal objective was to handle the multi-class scenario and to challenge the
ability of recognizing different classes of landslides correctly. In order to avoid the overfit, a
10-fold Cross-Validation was chosen in the training/testing procedure. The only difference

%8 Balanced training set should contain an approximately equal proportion of all target classes, in this

case non-landslide, dormant landslide and active landslide. However, it is very common in
landslide assessment that the non-landslide class dominates over the other(s) especially if the
training areas are outlined as continuous spatial entities. An example of an unbalanced set for this
area would be 4% of active, 6% of dormant landslides and 90% of non-landslide instances within
the training area, while in the balanced set each category would occupy one third of the training
area.
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throughout the experimenting protocol was a successive decrease of the training sample
size, i.e. 15% of the total area, 10% of the total area and 5% of the total area (6156, 12313
and 18496 of instances out of 123134 total instances, respectively). Accordingly, the model
variants could be denoted as Model-5a-U/B-5-15%, where U/B stands for
unbalanced/balanced variant of the experiment and the percentage in the end designates the
training sample size.

The results were encouraging, as they reached decent performance in all
performance measures (Tab. 19, 20). As expected, better performance has been achieved in
the balanced experiments, especially regarding the fp.ae. The total variation of performance
is minute in all models (except for the fpue), Which might be an indicator of the models'
consistency and stability. False Positives, i.e. fne for non-landslide class are kept in
relatively low levels, particularly in the balanced variants of the model (which is their
additional quality). The model also successfully discerns between all three given classes
(active landslide, dormant landslide and non-landslide), suggesting that multi-class
environment does not confuse the algorithm, even after the pruning of the tree. However, it is
apparent from both, evaluation metrics and visual representation of the model (Fig. 38) that
there is a tendency to overestimation of both landslide classes, but this finding goes in favor
of the model in the landslide assessment framework. Obviously, the modeling performance
rises with the rise of the training sample size. The model thus approves of the sampling
strategy. On the other hand, such strategy is not practical for predictive modeling, because
the real situations would require continuous training domains rather than scattered.

In conclusion, the model seems to be very successful in predicting landslide
instances (with some overestimation), and for discerning among two different landslide types.
The best representative of all model variants would be Model-5a-B-10%, which has the
performance parameters close to the average of all models. In addition, the practical
implementation has not been too time-consuming, as Machine Learning algorithms usually
turn to be, but it is important to remind that there has not been any optimization prior to the
modeling. The model is a superior to the all preceding models thus far.

Figure 38. Model-5a-B-10%. Orange areas represent dormant landslides and equal moderate
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1).
Contours represent actual landslides.
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Table 19. Performance of Machine Learning models (unbalanced training set).

Model K-index AUC fPrateo
Model-7a-U-5% 0.57 0.79 0.4
Model-6a-U-5% 0.08 0.86 0.94
Model-5a-U-5% 0.42 0.76 0.56
Model-7a-U-10% 0.67 0.82 0.32
Model-6a-U-10% 0.08 0.86 0.94
Model-5a-U-10% 0.42 0.76 0.56
Model-7a-U-15% 0.73 0.84 0.32
Model-6a-U-15% 0.06 0.86 0.96
Model-5a-U-15% 0.54 0.80 0.43

Table 20. Performance of Machine Learning models (balanced training set).

Model K-index AUC fPrate-0 Kiuzzy
Model-7a-B-5% 0.38 0.85 0.11 -
Model-6a-B-5% 0.25 0.85 0.23 -
Model-5a-B-5% 0.28 0.82 0.18 -
Model-7a-B-10% 0.42 0.89 0.08 0.43
Model-6a-B-10% 0.25 0.85 0.24 0.36
Model-5a-B-10% 0.32 0.82 0.17 0.16
Model-7a-B-15% 0.43 0.90 0.06 -
Model-6a-B-15% 0.23 0.86 0.20 -
Model-5a-B-15% 0.34 0.85 0.16 -

average adopted models are shaded

6.1.3.6 Model-6a

Herein, the implementation of Logistic Regression model has been performed. It is sufficient
to say that the experimenting procedure has been exactly the same as in the previous model,
so that no further details are necessary to explain the experimenting procedure.

The model is obviously troubled with overestimation (Fig. 39). Nearly one third of the
total area is classified either as active or dormant landslide, which goes in favor of stability
but does not serve the model's actual purpose, since the model is intended to be used by
experts and planers as well as decision makers, who would like to have more room for
maneuvering, i.e. less restrictions caused by landslide prognosis. The figures also support
this view (Tab. 19, 20) where low k-index (as low as 0.06 for the unbalanced variants of the
model) in combination with very high fp.ae (up to 0.96) indicate that there is a lot of False
Positive type of error, i.e. overestimation. This particularly affects the unbalanced variant of
the model, while the balanced variants have considerably lower error rates, but still low k-
index. The AUC of their ROC curves are in the rank of the preceding models. Growing of the
training set size has little or no effect on this model, at least in the selected 5-10-15% range.
The model’s ability to successfully distinguish between two given types of landslides has
been obscured by the overestimating character of the prediction.
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For all these reasons the model could be characterized as plausible, but it did not
meet the expectations or top the performance of Model-6a. The model has proven to be very
sensitive to the sampling strategy regarding the class balance in the training sample, and
therefore inconsistent and unstable in this configuration with relatively small training set.

Figure 39. Model-6a-B-10%. Orange areas represent dormant landslides and equal moderate
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1).
Contours represent actual landslides.

6.1.3.7 Model-7a

This model implemented SVM algorithm and has initially given promising results, which is
why it has been elaborated in greater detail with different experimenting procedures. It is also
the reason why this SVM technique has been favored for the other case studies.

There were basically two different experimenting settings in respect of the spatial
distribution of training and test data. The first included a random training subset uniformly
distributed over the whole case study area, and it has been further separated into
unbalanced and balanced variant. The second involved adjacent train-test splits selected
manually. As in the most of the preceding models, a multinomial landslide classification also
applied. Hence, the model has been challenged for its predictability of landslides and the
ability to sub-classify different landslide types, but from a more practical aspect. Since
random uniform sampling of training instances is more targeted at satisfying the theoretical
conditions for designing the best sampling strategy, the second type of experiment has been
devoted to the practical aspects of having a genuine training sample as it is (with no
sampling strategy alternatives) and predicting the landslides to adjacent area. Such scenario
is but the simulation of the actual situation, where one part of the terrain might have the
Landslide Inventory coverage, while the other, possibly adjacent part seeks one.

Regarding the first experiment type, i.e. the two subtypes involving unbalanced and
balanced training sets, three different models were run. In each, a random training subset
had different training sample size, i.e. 5% (6156 instances), 10% (12313 instances) and 15%
(18496 instances) of the whole case study area available for training. Following the notation
from the preceding models, these two variants could be denoted as Model-7a-U/B-5-15%.
Accordingly, the second experiment type could wear a label Model-7a-33%.
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Figure 40. Model-7a-B-10%. Orange areas represent dormant landslides and equal moderate
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1).
Contours represent actual landslides.

In the unbalanced variants, the sampling instances were selected randomly, but
equally spread over the area, and they contained a referent class proportion similar to the
original landslide model (3.6% of active landslides, 5.6% of dormant landslides, and 90.8% of
non-landslide). In the balanced variants (Fig. 40, 41), the sampling was the same, but the
shares of all classes were equal (one third of all training instances). In fact, each training set
for Model-7a-B-5-15% was obtained from the corresponding Model-7a-U -5-15% set by
retaining all landslide points and selecting an equal number of stable points that are spatially
uniformly distributed over the whole area.
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Figure 41. Model-7a-B-10% in continuous quasi-p scale (left) and in 5-leveled susceptibility scale
(right). Black contours represent actual landslides, scale bar shows 0-1 quasi-probability range. Note
that the continuous scale variants are not predictive, but interpretative models of landslide
susceptibility, obtained by averaging iteratively generated interpretative models of Model-7a-B/U type.

In order to illustrate experimenting procedure, the course of the Model-7a-U-5%

experiment will be described, while the remaining experiments have completely analogous
procedures. The negative effects of randomization (poor estimate of the model variance)
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were minimized by creating 20 different random splits**, each containing 5% data points for
training and 95% for the testing set. It is obvious that these splits are spatially overlapping to
some degree, but full separation would not be feasible since some values of some
Conditioning Factors would appear only in the test set.

Since there is a lack of information in most related papers concerning the adjustment
of SVM learning parameters (Brenning 2005, Yilmaz 2009), a procedure of their estimation
was conducted. The parameter estimation focused on the penalty factor ¢ and Gaussian
kernel width y. Parameters ¢ and y took many different values (c ={1, 10, 100, 1000, 10000}
and y ={0.1, 0.5, 1, 2, 4}). For each combination of (c, y) a 10-fold Cross-Validation
procedure was performed on a particular training set and the evaluation measures (k-index
and AUC) were averaged and recorded for each combination of (c, y). The results showed
that in all 20 splits of the experiment, optimal ¢ and y were the same (100 and 4,
respectively). These values turned optimal for the Model-7a-U-10% and Model-7a-U-15%, as
well.

Given the optimal parameters, the SVM classifier was trained over the entire
particular training set and tested over the related test set. The evaluation measures included
k-index, AUC and the False Positives for non-landslide class (fprae0). The above procedure
was repeated 20 times for each train-test split and the final measures for the experiment
were averaged over all 20 splits. The same evaluation procedure was applied as in Model-5a
and Model-6a, so that they could be compared (Tab. 19, 20.).
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Figure 42. ROC curve of Model-7a-B-10%.

When the number of training points increases, the Model-7a and Model-5a improve
their performance on the k-index and AUC, while the Model-6a performance remains the
same, as noticed before. Concerning the k-index, the Model-7a significantly outperformed
other models, followed by the Model-5a and Model-6a in respective order (because of very
low k-index Model-6a is put behind despite better AUC). The Model-6a yielded the best AUC
(0.86) when compared to the other two methods, but the Model-7a came close after
increasing the size of the training set (0.84 nearly equals 0.86 of Model-6a). In addition to the
previous explanations of the Model-6a results, such a big discrepancy between the k-index
(even in Kr.2y) and the AUC can be explained by presence of multiple landslide classes and
difficulties to weight the average class probability (Fawcett 2006), while for discrete

% Instead of 20, Model-7a-U-10% had 10, while Model-7a-U-15% had 7 iterations, in order to achieve
a statistically meaningful procedure.
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classifiers such as those of Model-5a and Model-7a the problem comes down to the simple
averaging of individual binary cases (3 cases, one per each class).

As indicated before, the second type of the experiment was a practical simulation of
the landslide prediction, where approximately one third of the area has been used for training
and it was spatially separated as a meaningful entity from the rest of the area. The sampling
has been done manually, with particular precaution to include all classes of the nominal
Conditioning Factors (all binarized classes), Lithology (Fo) in particular. In turn, a meridian
separator, splitting the map to the west and east part, has given a fixed and continuous
training and testing area (Fig. 9, 43). It consisted of approximately 41000 of instances,
making it roughly one third of 123134 instances in total. Regarding the landslide distribution,
it resembled the proportions of the landslide distribution over the entire area, meaning that it
could be characterized as unbalanced training set. However, there has been no intervention
to balance the set, because it is intended that simulation turns as realistic as possible.

After the same experimenting procedure as in the other models, Model-7a-33% gave
relatively good results. Spatial trends of landslide bodies are being followed, while
differences in landslide typology have been successfully modeled (Fig. 43). Overestimation
of landslide instances is also apparent but there is not too much dispersion (spatial trends of
the landslide bodies are well traced), so potential post-processing (e.g. majority filtering)
would not give substantial improvements (up to a couple of percentages). Consequently, the
k-index values are low, while AUC of 0.71 is not as high as in Model-U/B-10-15% but still
represents a fair prediction. False Positive rate is supporting this stand, but k:,.,, indicates
that there is a considerable dissimilarity between the model and the inventory (Tab. 21).

Figure 43. Model-7a-33%. Orange areas represent dormant landslides and equal moderate
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1),
training area is shaded. Contours represent actual landslides.

Table 21. Model-7a-33% performance metrics.

Model K-index AUC fPrate-o Kiuzzy
Model-7a-33% 0.17 0.71 0.39 0.03

Finally, it is convenient to comment on the strengths and weaknesses of the SVM
model family, Model-7a. SVM does not need any feature selection technique as opposed to
some other methods such as Decision Trees. This fact enables richer data representation,
bigger number of inputs, and bigger variety of inputs. This aspect of the research is left to the
future work. In addition, since the solution for the SVM separating hyper-plane is found from
the convex quadratic programming optimization problem, it is guaranteed that the solution is
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globally®® optimal. Therefore, the SVM is a good replacement for Artificial Neural Networks
which are usually stuck at local optima and are very difficult to train. On the other hand, the
SVM does not output an interpretable model like Decision Trees, and hence could not be
rewritten in the form of expert rules, which usually limits their application to one case study at
a time, or retooling the input dataset if the study areas are extremely similar. When
compared to Logistic Regression, they are much more memory and time consuming during
the training phase, but that is probably not of great importance for the task of predictive
landslide mapping, outside the disaster management framework (where very quick but
plausible solutions are needed).

A small web-map created in the R environment, using “plotGoogleMap package” (see
Appendix 2) presenting the area and related result of Model-7¢c-40% is available at:

http://milosmarjanovic.pbworks.com/w/file/fetch/63738284/MyMapFruskaGora.htm.

6.1.3.8 Model-8a

Implementation of a simplified deterministic model has not placed the performance
expectations too high, for at least one reason. The case study area is actually dominated by
deep-seated and larger landslides, while the simplified LEM stability model theoretically
applies only for the smaller and shallower slides. The model has thus been only
demonstrated in a GIS environment, and unfortunately the results have met the expectations.

ROC area =0.54;Sample size=100839
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Figure 44. ROC curve of Model-8a.

Model-8a has been fed with the topographic data and geotechnical parameters as
indicated before (see Chapter 6.1.2.7). The implementation in a GIS environment has been
direct and relatively quick. There have been a lot of conveniences for customizing this
stochastic model. For instance, each of the geotechnical parameters could have been
regionalized, and both, upper and lower boundaries have been required. The sensitivity of
the model has also been regarded (by slightly varying the inputs in a series of experiments,
and calculating Sl per each) so that the average inversed S| was generated using the
average parameter intervals. Despite of laborious model fitting that has taken place, Model-
8a has not managed to perform beyond the level of random guess (AUC=0.5), while the
other performance indicators were nonetheless discouraging (Fig. 44).

Visually (Fig. 45), the model overestimates the landslides over the entire area,
making it impossible to speculate whether some trends have been caught or not. The model
could therefore be entirely discarded as unsuitable for a given study area.
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Figure 45. Model-8a in continuous quasi-p scale (left) and in 5-leveled susceptibility scale (right).
Black contours represent actual landslides, scale bar shows 0-1 quasi-probability range.
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6.2 Star¢a Basin (Croatia)

Regarding this study area, previous investigations of the landslide-related issues have
included various engineering-geological endeavors, predominantly medium-scaled mapping,
or large scale investigations related to the individual practice, reports for specific construction
projects and so forth, but unlike in the previous case study there have been valuable
exceptions.

Firstly, there have been some more detailed engineering-geological mapping projects
entailing several sheets of synthetic engineering-geological maps at 1:10000 scale for
Zagreb City and its surroundings, with a particular focus on mapping various landslide types
as defined in the international classification WP/WLI 1995. By the courtesy of the National
Institute for Geology and Geological Engineering of Croatia, the above mentioned repository
has been at disposal as a principal data resource in preparing the second case study of this
thesis. It was thus one of the main challenges of this case study to observe how proposed
methodology behaves with the finer-scaled data to exploit the upscale of the input data,
wherein the most of the data came with mentioned 1:10000 scale, while some have been
collected at even finer scale (1:5000).

Finally, one research published by Mihali¢ et al. 2008 should be particularly outlined,
since it mostly complies with the concept followed in this thesis. The authors approached the
landslide assessment by implementing bivariate statistical techniques over unique-condition-
defined unit areas and have retrieved a good correlation with the existing landslide records
and contributed the understanding of landsliding process in the Star€a Basin (Mihali¢ et al.
2008). However, they have proposed further enhancements, especially regarding the
modeling techniques, and one part of this research has been directed toward that common
goal (Marjanovic¢ et al. 2011b).

6.2.1 Setting

Staréa Basin encompasses 12.25 km? of a hilly landscape (up to 300 m in elevation)
stretching between N 4544'35” E 1544’15" — N 45 4705, E 1547'55", flattening in from
the east and giving way to the outskirts of the Samobor Mountains, which represent the
western border of the City of Zagreb, Croatia (Fig. 46).

Geotectonically, the basin is set on a verge of several major regional units, where
Pannonian, Alpine and Dinaric sub-units meet. Their spatial relations and boundaries are not
entirely defined, but it is most likely that the area is primarily shaped under the influence of
Pannonian basin development, i.e. Transdanubian unit and its sub-structures, Zagreb-
Cemplin lineament in particular (Dimitrijevi¢ 1997). Its NE-SW strike has been replicated in
trends of the local structures, primarily normal faults with SE vergence, i.e. relatively
subsided hanging walls toward SE. This gravitational faulting occurs along the edge of
Transdanubian unit and logically follows the graben of the Sava river valley, which dominates
the landscape. These older structures are traversed by younger, sub-vertical structures of
meridian strike. However, a large part of the area is covered with Quaternary sediments,
leaving the structures concealed, except in the higher grounds.

The basin is composed of the Upper Miocene and Plio-Quaternary clastites (Fig. 48f,
49). The landslides are mainly hosted in Pannonian marl and silt in the northern part, as well
as in Plio-Pleistocene coarse-grained sand. They are moderately compressible for the upper
Miocene units, but very sensitive to the groundwater variation (especially sand).
Inconveniently, due to the locally shallow water tables, the units are often saturated from half
a meter down from the ground level (Fig. 48e). These two units combined cover nearly 40%
of the area, making a suitable ground for development of slope instabilities, which are
particularly indicative on the flanks of gullies/valleys, even though these are sloping relatively
gently and their local erosion basis never exceeds more than 150 m of elevation difference
(maximal altitude is about 300 m and minimal around 150 m). Typical landslides are shallow,
hosted in marl and clay mantle which can locally become considerably thick, with enforced
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consequent character (upslope progression), but there are also landslides which are
transiting to deep-seated, and these are nested in marl units. There are various activity
stages to be witnessed, but most of the landslides are slow-moving, and in that regard, they
impose no threat for the population, apart from the material damage on buildings and
infrastructure.

5559235 55612%°
|

Starca basin

50706531

506853

250 - 300 200-250 [ 150-200 [ <150 m

Figure 46. Geographical setting of the study area (projection: Gauss Kriiger — zone 5, Bessel 1841).

Given the geomorphological and geological features, the main triggers of landslides
could be recognized in linear erosion and intensive rainfall connected with the groundwater
variations. It is probably the combination of the two which ministers both, the long-term and
short-term activation and reactivation cycles throughout the area. Apart from these,
urbanization of the area could be considered as one of the primary causal factors for
numerous shallow and relatively small landslides triggered by a combination of natural (e.g.
intense, short period rainfall) and man-made processes. Settlements are generally small, but
dense (Mala Gorica, FalaSéak, Molvice) while the population is agriculturally active, which
additionally destabilizes the slopes. On the other hand, there is a significant vegetation
cover, particularly forests in the central part, which suppress the spreading of the shallow
landslides. Indeed, these central parts are composed of a different type of sediments (Plio-
Pleistocene gravel and silts) which are less prone to landslides.
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Figure 47. Various Conditioning Factors: a) slope angle; b) slope length; c¢) downslope gradient; d)
aspect; e) profile curvature; f) plan curvature; g) convergence index; h) LS factor.
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Figure 48. Various Conditioning Factors (continued): a) channel base elevations; b) altitude above
channels; c) SPI; d) TWI; e) groundwater depth; f) lithology (1=silt, 2=sandy silt, 3=marl, 4=hard marl,
5=laminated marl, 6=gravel, 7=eluvial clay, 8=sand, 9=clay, 10=alluvium); g) distance from structures;
h) Land Cover (1=water body, 2=forest and semi-natural area, 3=artificial surface, 4=agricultural area).

95



6.2.2 Data

Resources for generating the input dataset of Star¢a Basin included: Landslide Inventory;
Digital Terrain Model — DTM; geological map; hydrogeological map; and a Land Cover map.
From the above mentioned resources, the input dataset was generated as an assembly of
Conditioning Factors and the Landslide Inventory. By advantages of GIS software platforms
(ArcGIS and SagaGlS) input data were processed, i.e. referenced and normalized (where
applicable) and stored in form of a raster image format so that every pixel (every center node
of the pixel to be more precise) represents one instance. Every attribute within the input
dataset contained 122513 instances, 10 m set apart from each other (10 m cell resolution).

6.2.2.1 Conditioning Factors

Landslide Conditioning Factors involved a variety of input layers, some being directly
digitized from the original thematic maps, others derived from additional spatial calculations
and modeling. In effect, 16 input raster layers, with the same 10 m cell resolution, were
available for further analysis. These could be divided into four thematic groups:
morphometric, hydrological/hydrogeological, geological and environmental. The factors that
turned more dominant or their type has not been included in the previous case study are
briefly described, while the others have been only listed, because the same analogy from the
previous case study (where all the types have been described in greater detail) applies
herein. Graphical representations of all Conditioning Factors are given in Figure 47—-48.

6.2.2.1.1 Morphometric Data

A high precision (1 m) terrain surface model has been generated by photogrammetric
technique, in the framework of the orthophoto mapping project of the Zagreb City area, at
1:5000 scale. Point-based terrain model, i.e. triangulated network model, has been
subsequently transformed to a Digital Terrain Model (DTM) by means of TIN-to-raster
conversion. After standard (hydrological) corrections, a rectified DTM has been obtained. A
host of morphometric parameters with proven relevance for landslide assessment (van
Westen et al. 2003) have been derived from the DTM:

slope angle,

slope length,

downslope gradient (a ratio of slope angle and elevation per point),
aspect,

profile curvature (terrain curvature in the steepest slope direction),
plan curvature (terrain curvature along the contour of the slope),
convergence index (slope angle convergence),

LS factor (a ratio of the slope length and the length standardized by the Universal Soil
Loss Equation — USLE),

channel base elevations (values calculated as a vertical difference between a real
DEM elevations and elevations of interpolated channel network, which provides the
information on how far off a local flow each cell lies by interpreting the higher
differences as more remote than lower ones, since in channel cells the factor’s value
is zero, while in non-channel cells the value is increasing with the distance),

altitude above channels (another standard morphometric terrain attribute, yet
sometimes important for determination of the relief energy based on potential energy
differences, i.e. height differences between each cell and its local erosion basis,
which is basically a DTM downshifted for the values of channel cells elevations).
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6.2.2.1.2 Hydrological/Hydrogeological Data

Hydrological data inputs have been derived also by morphometric calculations from DTM, but
in combination with the manually adjusted drainage network vector. These included:

Stream Power Index or SPI (a potential power of the flows given by a relation of the
local drainage area and local slope gradient),

Topographic Wetness Index or TWI (topographic water retention potential given by a
relation of upslope drainage area and slope gradient).

Hydrogeological information has been provided by a relatively dense piezometric
groundwater pressure sampling. Piezometric map has been generated by a simple
interpolation of the maximal piezometric pressure heads, measured in rainy period of 2004.
Herein, it has been labeled as:

groundwater depth (depths from the measurements of minimal water levels in wells,
interpolated by nearest-neighbor method, ranged by 4 classes with 0.5 m intervals,
i.e. 0-0.5, 0.5-1, 1-1.5 and >1.5 m).

6.2.2.1.3 Geological Data

Geological factors included layers derived from a geological map 1:5000, indicating the main
geological units in the area and approximately located faults (Mihali¢ et al. 2008). By
decompiling these from the original map the following factors have been acquired:

lithology (representing 10 rock units as categorical classes® as follows: eluvial clay
and silty clay with gravel (Quaternary), alluvial gravel with silty clay (Quaternary),
gravel with silty clay (Plio-Pleistocene), coarse-grained sand (Plio-Pleistocene), sandy
silt and silt (Pontian), marl with silt and calcareous siltstone (Pannonian), laminated
marl with calcareous sandstone (Sarmatian) and marl (Badenian); considering
relatively high proportion of clayey and marly units, lithological model suggests that
shallow to deep-seated landslides could be hosted throughout the study area (Fig.
48f),

distance from structures.

6.2.2.1.4 Environmental Data

Land Use map was prepared by direct visual interpretation of 1:5000 orthophoto according to
CORINE classification (Nestorov & Proti¢ 2009). The map was generalized into a 1%-level
CORINE map and labeled:

Land Cover (categorical attribute with 4 thematic classes®, including: agricultural
areas 30%, artificial surfaces 4%, forests and semi-natural areas 65%, water bodies
1%).

% In order to give equal preference to every class, categorical attributes have been broken into m

binary attributes, coding m different initial values (e.g. class 1 and 4 of lithology are coded as
1000000000 and 0001000000, respectively, while the same classes for Land Cover were 1000 and
0001).
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Figure 49. Geological map of the study area. Red lines represent faults.

6.2.2.2 Landslide Inventory

A detailed landslide map has been prepared through the systematic field survey (in the
period of March—April 2004) at 1:5000 scale (Fig. 50). Total mapped landslide area reached
only 0.87 km? (or 7.1% of the study area, which is statistically speaking, an undesirable
proportion), with the density of about 0.1 slope failures per km?. Landslide Inventory is
prepared in the form of a GIS database in which information on location, features and
abundance of 230 mapped landslides are archived (Mihali¢ et al. 2008). Main landslide
characteristics were described according to standard WP/WLI 1995 recommendations.
Landslides were classified as (shallow) slide type according to Cruden and Varnes
Classification (Varnes 1984), with age and state of activity determined according to the
morphological indicators.
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Active, suspended and reactivated landslides have had clearly recognizable fresh
scars, without any vegetation cover, because of the movement within the last few years (59
slides). Most of the landslides were inactive and they have been classified as: dormant
landslides (95 slides). These have had recognizable scars covered by vegetation during the
period of inactivity. Abandoned landslides (72 slides) are characterized by hummocky
surface topography and relicts of scars completely smoothed during the period of inactivity.
Stabilized landslides included slopes remediated by different engineering measures (4
slides). Relict landslides (40 slides) were difficult to recognize, because the only indicator of
their movement is typical roughly undulating slope morphology: concave depletion zone in
the upper part and convex accumulation zone in the lower part.

The size of the landslides varies from 270 m? to 25073 m?, but most of the landslides
range from 400 m? to 1600 m?. Regarding the activity style, there are single movements (150
slides) as well as complex, composite, successive and multiple movements (120 slides).
Parent-child relationships have been also defined during the mapping. The relict slides have
been excluded from the further analysis because of their mapping uncertainty.

For the purpose of this research, the Landslide Inventory has been used only in a
raster image form and has been somewhat simplified in order to enhance the statistical
representativeness of landslide vs. non-landslide categories. In this context, original landslide
classes (WP/MW.LI classification) have been unified (Fig. 50a) in a basic variant of the
inventory, and disaggregated on the basis of their activity stage in the second variant (Fig.
50b).
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Figure 50. Landslide Inventory: a) simplified; b) source inventory with all (activity-based) classes.

6.2.3 Implementation, Results and Discussion

It has been already indicated that particular modeling techniques, which generally comply
with the methodology followed in this research, have been already performed by other
researchers. Weight of Evidence model, analogue to the Model-2a (except for the way the
unit areas are defined) has been used for generation of a susceptibility map, containing three
relative susceptibility classes (Mihali¢ et al. 2008). The achievements of that model have
been assessed per class. High susceptibility class is for instance well correlated for
reactivated, suspended and inactive slides (88.2% accuracy), but poorly with relict slides
(34.6). Since the results of this study could be generally accepted, there was no need for
generating Model-1b, Model-2b and Model-3b, pairing Model-1a, Model-2a and Model-3a,
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respectively®®. In addition, Model-4b has been rejected as inconvenient for the reasons
explained for Model-4a, as well as Model-6b. Model-8b has been calculated and initially,
good performance was expected form, since the theoretical conditions have been met
(shallow landslides, hollow valleys, rainfall trigger). Unfortunately, after all the fitting and
adjusting the performance has not topped 0.5 AUC, which has already been labeled as
implausible in Model-8a. For this reason, the model will not be presented hereinafter. Thus,
all the attention has been driven toward Model-5b and Model-7b, involving advanced
Machine Learning techniques, C4.5 and SVM, respectively.

6.2.3.1 Model-5b

Since it has been proven suitable for susceptibility modeling in the previous case study, the
Decision Tree algorithm C4.5 has been more thoroughly optimized during the experimenting
procedure. The optimization has involved only Confidence Level parameter, while Minimum
Number of Objects in Leaf remained 2 by default, since it is the most desirable to explore this
most tolerant option. Confidence Level has been ranged in each of the sub-models of Model-
5b from 0.05 to 0.95. Thus, only several trials in which only one parameter has been
changing have been sufficient to optimize the model.

Experiment design was driven by the characteristics of the dataset, particularly the
unbalanced distribution of Landslide Inventory classes. Since non-landslide class turned
predominant over all landslide classes combined, the sampling strategy had been
accordingly tuned. Two different dataset cases were induced, hence two Model-5b variants,
labeled Model-5b-1 and Model-5b-2 are to be distinguished.

Model-5b-1 was trained on a generalized Landslide Inventory (Fig. 50a), containing
only non-landslide (c;) and landslide (c,) class. The training sample was unbalanced
(randomly selected and uniformly distributed samples) and contained 20% of the original
dataset or 24500 out of 122513 instances.

Model-5b-2 was trained only over landslide instances and did not include non-
landslide instances in the training nor testing. On the other hand it had multiple landslide
classes to train upon: dormant and abandoned (c,), stabilized (c,), and reactivated and
suspended (c3) landslides (only 10500 instances in total).

The first classifier was thus used to locate the landslides throughout the area, while
the second was used to discern between three different landslide sub-types.

Both of the models/classifiers underwent the identical experimenting protocol
discussed hereinafter. By varying the size of the training set in different experiments
additional variants have generated.

Model-5b-1/2-100%: training has been performed on the whole training set (24500
instances for Model-5b-1-100% and 10500 instances for Model-5b-2-100%). Training and
testing has been performed with no iteration (in a single run) by a 10-fold Cross-Validation
(10-CV). Model-5b-1-100% reached k-index of 0.52, and Model-5b-2-100% 0.82 (Tab. 22),
meaning that the model better discerns between the landslides sub-types than between
landslides and non-landslides.

Model-5b-1/2-20%: dataset has been randomly divided into 20%—-80% splits. Training
was performed on 20% of data (5000 instances Model-5b-1-20% and 2000 instances in
Model-5b-2-20%). In order to obtain statistically relevant results, five different 20%—-80%

% These models rely on a similar principle and use similarly preprocessed inputs (binarization of

nominal and normalization of numeric data, filtering, Attribute Selection), and in the previous case
study it has been shown that they tend to reach similar levels of performance. Furthermore, these
models are not predictive in their nature, since they just re-interpret the existing landslide
susceptibility, and therefore gave way to the advanced methods.
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splits have been generated and the median among the obtained k-index values was
considered as representative (Tab. 22). As expected, the performance dropped significantly,
especially in Model-5b-1-20%.

Model-5b-1/2-15%: seven 15%-85% splits have been generated (3800 instances in
Model-5b-1-15% and 1500 instances in Model-5b-2-15% for training). Otherwise, the
experiment is analogue to the previous one. Further decrease of average k-index is
noticeable (Tab. 22).

Model-5b-1/2-10%: ten 10%-90% splits have been generated (2500 instances in
Model-5b-1-10% and 1000 instances in Model-5b-2-10%) and processed as in the previous
experiments. The dropping trend continues as k-index values became rather temperate for
both models (Tab. 22).

Table 22. Performance evaluation of C4.5 and SVM classifiers by s-index.

Experiment Y=1 Y=2

X=5 X=7 X=5 X=7
Model-Xb-Y-100% 0.52 0.58 0.82 0.82
Model-Xb-Y-20% 0.38 0,47 0.63 0.65
Model-Xb-Y-15% 0.33 0.44 0.58 0.60
Model-Xb-Y-10% 0.31 0.40 0.48 0.55

Table 23. Information Gain (IG) ranking of the input layer attributes.

Conditioning Factor IG rank
lithology 0.06157 1
channel base elevations 0.04034 2
groundwater depth 0.02680 7
SPI 0.03038 4
aspect 0.02828 5
altitude above channels 0.03078 3
TWI 0.02789 6
Land Cover 0.02129 10
downslope gradient 0.02413

LS factor 0.02241 9
slope 0.02100 11
convergence index 0.01723 12
plan curvature 0.00800 14
distance from structures 0.00938 13
profile curvature 0.00605 15
slope length 0.00301 16

Viewing the experimenting results altogether, it could be inferred that the model is
rather sensitive to reduction of the training sample size. In all experiments the algorithms
exhibit better generalization of different landslide classes than landslides itself, meaning that
they are better in categorizing landslides than actually mapping them (concerning this
particular study area and chosen sampling strategy). Preliminary results suggest that it would
be interesting to impose the algorithms over adjacent areas using the same inputs. This
would be particularly interesting because these adjacent areas represent urbanized and
densely populated environments, which have very similar terrain properties. Given the same
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kind of Conditioning Factors as inputs, it could theoretically suggest to the experts which
types of landslides are present prior to the actual field mapping.

Since a classifier based on Information Gain values (C4.5) has been in operation, it is
suitable to present the ranking of the input features according to their IG value (Tab. 23).
Apparently, the most informative layers are lithology, channel base elevations, altitude above
channels, while surprisingly slope turned out mediocre to low, hand in hand with terrain
convergence index and Land Cover for instance. One possible way to explain this is
exaggeration of geological and to some extend hydrogeological influence on the landslide
occurrence, so that they obscure the effects of slope steepness and Land Cover.

6.2.3.2 Model-7b

Finally, the implementation of the SVM technique which has been anticipated with the
highest expectations has taken place. A more laborious experimenting has been undertaken,
on top of the scheme inherited from Model-5b. It regarded more thorough feature selection,
and a more realistic sampling strategy, which underpinned the predictive nature of the model.

Since the identical protocol has been in operation (similar optimization and same
sampling strategy), it is possible to distinguish the same model sub-types as in Model-5b. For
that reason, these variants are only to be listed and briefly commented hereafter.

Model-7b-1/2-100%: training and testing has been performed with no iteration (in a
single run) by a 10-fold Cross-Validation (10-CV). Model-7b-1-100% reached k-index of 0.58,
and Model-7b-2-100% 0.82 (Tab. 22). Thus, the model also better discerns between the
landslides types than among landslides and non-landslides.

Model-7b-1/2-20%: training was performed on 20% of data, and thus, five different
20%-80% splits were generated and the median among the obtained k-index values was
considered as representative (Tab. 22). The performance dropped significantly, especially in
Model-7b-1-20%.

Model-7b-1/2-15%: seven 15%-85% splits have been generated, and the rest of the
experiment is analogue to the previous one. Further decrease of average k-index is
noticeable (Tab. 22).

Model-7b-1/2-10%: ten 10%-90% splits have been generated and processed as
before. The dropping trend continues as k-index values became rather temperate for both
sub-models (Tab. 22).

It is evident (Tab. 22) that the SVM has been a slightly better choice for modeling,
given the same circumstances. Despite the slightly higher performance parameters than in
concurrent C4.5-based models, impression of insufficient precision in mapping landslides
remains. Instead, the SVM-based model is also showing considerably better use in
discerning among different landslide classes.

Finally, a supplementary experiment, generating the last model, labeled Model-7b-
40% has been performed. It has been preceded by a thorough Attribute Selection. The main
idea behind it was to implement leave-one-out technique to generate the optimal model.
Information Gain estimator has been employed (Tab. 23). In the optimization stage, there
has not been any significant decrease in performance after leaving last 5 Conditioning
Factors (convergence index, plan curvature, distance from structures, profile curvature and
slope length). It is here disputable whether the binarized factors, such as lithology and Land
Cover should have been observed as a whole or disaggregated into their binary sub-
features. In result, there was no significant computational time saving or performance
enhancement by introducing leave-one-out, which all brings one back to the discussion on
justification of the feature selection (see Chapter 5.1).

The training in Model-7b-40% has thus commenced with dimensionally reduced
(feature space-wise) training set, wherein approximately 40% of the total area has been split
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for training. The training has been based on a simplified inventory variant which aggregates
all landslide instances together (Fig. 50a). Once again, a cautious manual sampling had to
be done in order to define the training domain, so that each of the nominal class (in all of the
nominal inputs and the inventory) has been taken into account. This time the optimization
has been done by 5-fold CV wherein nine pairs of ¢, y combinations have been tested (Tab.
24). According to the performance parameters and time consumption, the optimal
combination was ¢=10 and y=10 (even though it was not the best, it turned out to be much
faster than the next beast choice).

Table 24. c, y parameter combinations for optimization.

(c,y) AUC K-index fNrate train/test time-elapsed [s]
11 0.57 0.21 0.00 158.55/10.94

10,1 0.62 0.33 0.01 198.49/10.56

100,1 0.68 0.46 0.02 435.26/10.06

1,0.1 0.50 0.02 0.00 148.87/10.59

10,0.1 0.53 0.10 0.00 159.95/10.13

100, 0.1 0.55 0.17 0.00 242.82/9.99

1,10 0.81 0.63 0.04 886.08/7.80

10,10 0.77 0.61 0.03 317.29/8.50

100,10 0.69 0.48 0.01 236.71/12.05

Subsequently, the algorithm has been applied to the remaining 60% of the area and
some interesting results have been achieved (Fig. 51). The trends of some landslides have
been well portrayed, but the general impression is that the model underestimates the
landslide instances. Performance parameters values are unambiguously underpinning such
impression (Tab. 25). Overall accuracy of 92.6% seems very promising, but it obscures the
actual successfulness of the model, which is better revealed by the other measurements,
broken down per classes. The ki, as a relatively novel parameter (for which no fitting had
taken place, only the defaults provided by the MCK package have been considered), seems
more appealing and slightly smoothens a rigorous indication given by the other parameters.

Table 25. Performance of the Model-7b-40%.

Model class AUC K index accuracy average Ky
landslide 0.54 0.21 24% 0.97
non-landslide 0.54 0.48 95% '

The prognosis is meaningful (following the logic of geomorphological or geological
entities of the terrain), but scarce and incomplete. The model is obviously overfitted since a
considerable discrepancy appears between training and testing performance. For instance,
average AUC drops from 0.77 to 0.54, which is considered as a poor performance (Fig. 52).
If it is for any consolation, the ROC curve is left-skewed, meaning that the output is
conservative (strict for False Negative type of error) and that there is some room for further
fitting. Also, it is apparent that fitting of the curve (red contour in Fig. 52) suggests better
fitting of the ROC curve. One of the reasons is probably the nature of the landslides in Staréa
basin, with their relatively small size, locally high density of occurrence and strongly exhibited
variation in activity. Generally, there have not been too many landslide instances to work with
despite slightly larger training area size (40% instead of usual 33%). In statistical terms the
sample was too small to give good results. Perhaps increasing of the resolution of the
dataset could improve the results. On the other hand, similar proportions of instances worked
well for the previous case study. In comparison to the previous investigation based on simple
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bivariate statistics (Mihali¢ et al. 2008), this research elaborates further details on
possibilities of handling the landslide Conditioning Factors and exploiting different aspects of
the model, thus contributing to the overall comprehension of the landslide phenomena in the
study area.

Figure 51. Model-7b-40% (predicted landslides are in red, while the actual ones are contoured; the
training area is shaded).
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Figure 52. ROC curve of Model-7b-40% (fitted ROC curve is given in red).

A small web-map, created in the R environment, using “plotGoogleMap package”
(Appendix 2) presenting the area and related result of Model-7c-40% is available at:

http://milosmarjanovic.pbworks.com/w/file/fetch/63741247/MyMapStarca.htm.
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6.3 Halenkovice Area (Czech Republic)

This last case study is actually a work in progress, which means that only preliminaries are to
be given hereinafter, as well as further notices and ideas. It is further important to emphasize
that the study site Halenkovice underwent a series of various landslide-related investigations
in the past decade. There has been a number of landslide mapping investigations regarding
the Western Carpathians in Moravia, particularly in districts of Zlin and Vsetin, thus
encompassing this relatively small study area near Halenkovice. The researchers of these
terrains coped with different aspects of landsliding process at regional scale, mainly including
engineering-geological mapping (defining the metrics, geometry, mechanisms and typologies
of the landslides) (Kircher et al. 2000, Panek et al. 2011a), but there were also several
susceptibility assessments attempts (Kianiéka & Capkova 2005, Klime$ 2008a,b, Klimes et
al. 2009, KlimeS & Novotny 2011) using Susceptibility Potential Index (SPI) as a final
assessment output, as well as estimations of the triggering events in relation to the landslide
occurrence (Bil & Muller 2008). These researchers acted independently or jointly, within the
national projects, such as slope deformations documenting and mapping, conducted by the
Czech Geological Survey (CGS) and completed in 2011°*". Such consistency in research
comes along with the acute and realistic motifs for landslide investigation, since a host of
slope failures has been recently witnessed in Moravian flysch Carpathians (Kircher et al.
2000, Bil & Miiller 2008, Klimes et al. 2009, Panek et al. 2011b). Multiple occurrences have
been recorded in 1997, 2006 and 2010, which are to be recalled as years with unusually
intensive precipitation. It is therefore objective to assume the dominant role of precipitation in
triggering of landslide events, but also a combination if precipitation and floods (Rybaf &
Novotny 2005). Another apparent reason for research consistency lays in a good cooperation
of geoinformatic and applied geo-science communities and appreciation of applied GIS in
academic circles (which is not entirely true for Serbian or Croatian communities), as well as
better financial support (primarily through independent projects).

Conveniently, some parts of the study area have been surveyed for over a decade
throughout the different projects of Department of Geoinformatics at Palacky University
Olomouc and diploma projects of its graduates, leaving some unpublished and unused
materials which have contributed to the research in this case study®®. Some related work (in
terms of landslide assessment), such as bivariate and multivariate statistical approaches, as
well as some basic deterministic modeling, have already been involved. It is herein
considered that the logical extension of these investigations lays in the application of the
most advanced Machine Learning techniques (SVM in particular), but the deterministic model
has also been revisited. The latter is additionally inspired by the character of landslides and
terrain features, which theoretically seem suitable for such approach.

¥ The project name (verbatim et literatim) “Creating an interactive slope stability and rock avalanches

risk map of Czech Republic”, in original: “VytvoFeni interaktivni mapy rizika poruSeni stability svaht
a skalniho ficeni v Ceské republice”, VaV SP/1cp/157/07. The subproject which was mostly
engaged with this goal was (verbatim et literatim), “Documenting and mapping of slope movement
in CZR”, in original “Dokumentace a mapovani svahovych pohybl v CR”, ISPROFIN &. 215124-1.

%8 By the courtesy of the Department of Geoinformatics from Olomouc all related repositories have

been made available for this research.
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Figure 53. Geographical location of the study area (map projection: Krovak, JTSK).

6.3.1 Setting

The study area (Fig. 53) is situated near Halenkovice village, in SE Moravia (Czech
Republic), occupying roughly 60 km? on Halenkovice Plateau, between Bohemian Massive
and Carpathians. The territory is located in the outer part of the Outer Western Carpathians
(Carpathian Foredeep) which are made of Mesozoic and Tertiary flysch formations, so-called
Flysch Carpathians, segmented locally by Paleogene basins or grabens which are spatially
linked and typically have marine and lacustrine evolution. In terms of tectonic regionalization,
the area belongs to the Ragajska nappe of the Magura flysch group, characterized by a very
complex nappe system, stretching NE-SW and verging toward NW. From NW to SE
propagates a composite graben of Morava River, linking smaller surrounding structures
(regional normal faults), hence traversing the Magura group perpendicularly (Kircher et al.
2000, Demek et al. 2012). Geological composition of Racanska unit includes the stratified
sandstone, alternating with conglomerate and inter-layered clay-slate. These differ in
thickness, hydrogeological function and mechanical characteristics, which enables different
types of instabilities to occur. The unit can be subdivided into Zlin, BeloveZ and Solai units
(Fig. 54, Tab. 26). Quaternary units are presented by fluvial sand, sandy gravel, loam and
clay, and locally it can be distinguished as eluvial and delluvial soil mantle, where the
landslides are usually hosted. The most typical are the instabilities in the rock slope faces,
but this particular area (where the soil mantle thickens significantly) is also susceptible to
shallow slides.
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Figure 54. Geological setting of the area (1=alluvium, 2=delluvium, 3=loess, 4=Zlin subunit,
5=BeloveZ subunit, 6=Solaf subunit, see Table 26).

According to the international landslide classification (Varnes 1984) predominant
types of the slope processes in these terrains are earth-slides, earth-flows and rock-falls
(Kircher et al. 2000, Bil & Muller 2008), wherein shallow landslides predominate over deep-
seated ones (Kircher et al. 2000). Displacements occur when the bodies of these shallow
landslides suffer abrupt changes in the pore pressure regime, which is chiefly triggered by a
heavy rainfall/snow thaw in combination with the undercutting linear erosion. These and
some other conditions enable slow shallow movements with annual reactivation dynamics.

The area is sparsely populated, thus the landslides do not pose major threat, as
perhaps some other hazardous phenomena, but Halenkovice village is partly surrounded by
potentially dangerous landslides, which can affect the infrastructure and cause primarily
material damage, due to the slow displacement rates.
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Table 26. List of lithological units of the study area.

#

Lithological unit Lithological composition

organogenic sediments
sandy-clay, sandy-loam, sand

sand and sandy-gravel of fluvial terraces, sandy-gravel of alluvial fans
(middle Pleistocene, Riss)

Alluvium

sandy-loam and loamy-sand of delluvial loess
sand and sandy-clay (fluvial/delluvial)
sandy-loam and loamy-sand
loamy-sediments with rocky fragments

Delluvium

loamy-loess

Loess
loess and loamy-loess

Magura flysch formation, Ra¢ajska nappe unit: siltstone and sandstone
(upper Eocene, lower Oligocene)

Magura flysch formation, Vsetin unit: alternating flysch with marly-
claystone and glauconitic sandstone (upper Eocene, lower Oligocene)

Zlin subunit

Magura flysch formation, Racajsk& nappe unit: alternating flysch with

Belovez subunit green-gray and red-brown claystone (upper Eocene, lower Oligocene)

Magura flysch formation, Lukov unit: alternating flysch with sandstone
and conglomerate (Paleocene)

Magura flysch formation, Ra€ajska nappe unit: non-segmented flysch
(Campagne - Paleocene)

Solan subunit

6.3.2 Data

A set of thematic attributes very similar to the one already used in the previous case studies
has been assembled from several sources:

topographic maps at 1:10000, sheets 25-31-22 and 25-33-02, and partly sheets 25-
31-23 and 25-33-03 from ZABAGED database (map server) — Cesky Ufad

v ve v

Zemémé¥iésky a Katastralni (CUZK) as vectorized contour lines,
orthophoto (5 m resolution) from CZUK,

v v

geological map at 1:50000, sheets 25-33 Uherské Hradisté and 25-31 Kroméfiz, from
1994, a repository of (CGS) and on-line web-service at
http://mapy.geology.cz/website/geoinfo/viewer2.htm, and recently (2012) added on-
line repository® for sheet Otrokovice at 1:25000, which covers a smaller part of the
study area, available at http://mapy.geology.cz/geocr_25/,

slope instability map at 1:10000 from 2011, sheets ZM10 25-31-23, ZM10 25-31-22,
ZM10 25-33-02 and ZM10 25-33-03, available at CGS online repository
http://mapy.geology.cz/svahove nestability/,

CGS Relational Database Management System (RDBMS) Oracle database
(authorized access only), containing detailed documentation on each mapped
landslide, including (ID number, map sheet number, region, GPS coordinates of the
scarp, author of the map, mapping date, type of deformation, landslide class,
dimensions — length/width, area, depth, slope angle, trigger, lithological composition,

39

Nation-wide geological mapping project of CGS at 1:25000 has commenced at 1999, and till
present several sheets are completed and released on-line for open usage.
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activity stage and class, remediation measures, Land Use, endangered objects,
degree of risk, comments, photo-documentation, miscellaneous).

As usual, the inputs derived from these sources can be divided into a Landslide
Inventory and a group of Conditioning Factors. Additionally, there is a group of deterministic
inputs, containing principal geotechnical parameters for a simplified deterministic modeling of
the landslide susceptibility. Most of the inputs have been processed in ArcGIS and SagaGIS
software.

6.3.2.1 Conditioning Factors

The group of these factors has subsumed morphometric, hydrologic, geological, and
environmental data. They have all been rasterized with 10 m cell resolution, which has
seemed optimal regarding the quality of the data and the support problem of mixed scales
(1:5000, 1:10000, 1:25000 and 1:50000), as well as the computational cost reduction (the
number of pixels/instances is reciprocal to the resolution). In turn, the total area has been
presented by total of 577931 instances (pixels), which could be already characterized as a
robust dataset, especially if one has in mind that these instances had 24 dimensions, i.e. 24
different Conditioning Factor attributes attached to it. Once assembled these inputs have
been preprocessed by some standard procedures (binarization of nominal, normalization of
ordinal data etc), and subsequently underwent two Attribute Selection procedures, based on
Information Gain and Gain Ratio, in order to rank the factors properly for the leave-one-out
Machine Learning scheme, which will be discussed later on. Similarly as in the previous case
study, there was no need to explain the acquisition and processing of the input data in detalil,
because these are very similar to procedures described in the first case study (see Chapter
6.1.2).

6.3.2.1.1 Morphometric Data

Terrain surface model (DEM) has been obtained from the vectorized contour lines at 1:10000
scale. During the process, not only the intermediate (basic) contour lines, but also
supplementary and depression contours, and individual spot heights have been included, in
order to reach a higher precision. Two methods were used, TOPOtoRaster and TINtoRaster,
and the latter turned out to be more reliable, as in both previous case studies. The following
morphometric parameters (Fig. 55, 56a-d) have been derived from DEM:

elevation,

slope angle,

downslope gradient (a ratio of slope angle and elevation per point),

aspect,

convergence index (slope angle convergence),

profile curvature (terrain curvature in the steepest slope direction),

plan curvature (terrain curvature along the contour of the slope),

LS factor (a ratio of the slope length and the length standardized by the USLE),

channel base elevations (values calculated as a vertical difference between real DEM
elevations and elevations of interpolated channel network),

altitude above channels (a DTM downshifted for the value of channel cells
elevations).
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6.3.2.1.2 Hydrologic Data

Using morphometric calculations from DTM in combination with the manually adjusted
drainage network vector, two factors (Fig. 56e) were derived:

Topographic Wetness Index or TWI (topographic water retention potential given by a
relation of upslope drainage unit area and slope gradient),

distance from stream (Euclidean buffer of drainage network).

6.3.2.1.3 Geological Data

Digitized (raster) geological map has been reclassified according to the units described in
Table 26., and lithology (Fig. 54) has been obtained. Subsequently, the raster with six
classes has been (binarized) disaggregated into six separate binary factors, similarly as in
the previous case studies. The factors represented the following:

lithology=1 is Alluvium,
lithology=2 is Delluvium,
lithology=3 is Loess,
lithology=4 is Zlin subunit,
lithology=5 is Belovez subunit,

lithology=6 is Solan subunit.

6.3.2.1.4 Environmental Data

Environmental influence has been featured by Land Cover, another nominal factor with
seven classes (Fig. 56f). Likewise, seven different binary factors have been derived, and
each represents one of the predefined Land Cover classes. The classes have been
interpreted by vectorizing the orthophoto (5 m resolution) and field survey of the area. The
classes are generally improvised classes of CORINE standard and can be listed as follows:

Land Cover=1 is water body,

Land Cover=2 is built-up area,

Land Cover=3 is sparsely forested areas,
Land Cover=4 is grasslands,

Land Cover=5 is orchards and gardens,
Land Cover=6 is arable land,

Land Cover=7 is forest.
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Figure 55. Various Conditioning Factors: a) slope angle; b) downslope gradient; c) aspect; d)
convergence index; e) profile curvature; f) plan curvature.
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Figure 56. Various Conditioning Factors (continued): a) LS factor; b) channel base elevations; c)
altitude above channels; d) TWI; e) distance from stream; f) Land Cover (1=water body, 2=Dbuilt-up
area, 3=sparse forest, 4=grassland, 5=forest).
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6.3.2.2 Landslide Inventory

The inventory has been originally digitized in multiple landslide classes discerning not only
among different activity stages of landslides, but also different mechanisms. Although
shallow earth-slides dominate throughout the area, several earth-flows are also present,
particularly in the northern part with the steeper slopes and narrower valley channels. Since
these two types have entirely different phenomenology (geometry, dynamics and
mechanism) it is logical to assume that different Conditioning Factors will have different roles
in both, which have led to two separate investigations. In the previous case studies only the
slide failure types have been elaborated, and proposed methodology required analogous
type of subject to model. In order to remain consistent with previous case studies, the flow
types have thus been excluded from the inventory, and only slide type of failure has
remained. Furthermore, the original activity classes of slide failures do not entirely match the
international (Varnes 1984) classification. They rather follow the local (nhational) classification
(Zaruba & Mencl 1987), although they could be approximated as: active, suspended and
dormant. For this reason, and in order to reduce the computational costs, the landslide
classes have been unified, so that the final inventory contained only landslide and non-
landslide instances (Fig. 57). The landslides vary in size from 100—10000 m? or locally even
bigger if regarded as composite slides. According to the most recent sheets of engineering-
geological maps, there are over 20 active slides bigger than 100 m* among the total of 125
mapped landslides in the study area.

[ active landsiide [ dormant landslide

Figure 57. Landslide Inventory.

*k%k

During the field reconnaissance and survey, standard observations and measurements have
been carried out (landslide morphology and metrics, depth estimation, tension cracks, object
deformations etc.). The survey has not been systematic and the data have been collected in
sequences in 2008-2012, because field revisits served only to ensure some particular
occurrences with accent on the training area (Fig. 58). Annual revisits allowed visual
monitoring of particular occurrences.
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Figure 58. Augmented photo-documentation from the field investigation: a) shallow landslide in the
outskirts of Halenkovice (photo by L. Marek 2009); b) detail of the landslide crown, showing the main
scarp and tension cracks filled with water (photo by L. Marek 2008); c) measuring of the heights of the
scarp cascades for depth estimation, where sliding depth equals ~2.5 times the scarp height above
the ground level (photo by L. Marek 2009); d) toe of a shallow landslide (photo by the author 2012).

*kk

6.3.2.3 Deterministic Geotechnical Data

Specific geotechnical parameters were required for the deterministic modeling, analogue to
the Model-8a. Since the area varies in lithological composition, the regionalization of the
parameters has been performed, even though such generalization is not entirely justified
from the geotechnical point of view. Basically, two regions were sufficient for this purpose
(and also limited by the availability of geotechnical laboratory records): flysch and non-flysch
units, i.e. flysch vs. Quaternary incoherent units. According to the internal CGS database and
sampling which has been carried out for the most prominent landslides (Krej¢i et al. 2008)
and some indirect consultations from the CGS researchers, these regions are generalized as
presented in Table 27. The model also required a standard DEM and a sample of existing
landslide instances (for calibrating the classification of SI). The same SinMap 2 GIS (via
MapWindow) package has been used as before.

Table 27. Average parameters over different lithological domains (regions).

parameter region 1 (flysch) region 2 (non-flysch)
Csoil 0-0.24 0-0.13

Vsoil [KG/M3] 2732 2100

®soit [1 19-20 9-13

T/q [log] 1000-3000 500-1000
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6.3.3 Implementation, Results and Discussion

Previous research of Halenkovice area have been already involving some basic modeling
techniques, such as bivariate, even multivariate, but based on different unit area and with
non-predictive approach. Therefore, the most of the basic techniques, seen in previous case
studies have been skipped, and modeling has thus been limited to the particular Machine
Learning and deterministic techniques.

Table 28. Attribute Selection and ranking.

# IG Ranking IG GR Ranking GR

1. elevation 0.0630 Land Cover=3 0.2075
2. Land Cover=3 0.0560 Geology =2 0.0290
3. channel base elevation 0.0481 Land Cover=6 0.0272
4. LS factor 0.0389 Land Cover=5 0.0235
5. elevation above channels 0.0389 lithology=6 0.0161
6. slope angle 0.0338 elevation 0.0158
7. Land Cover=6 0.0254 channel base elevation 0.0152
8. aspect 0.0246 Land Cover=4 0.0133
9. lithology=2 0.0195 Land Cover=1 0.0127
10. convergence index 0.0192 elevation above channels 0.0122
11. distance from stream 0.0132 LS factor 0.0116
12. plan curvature 0.0122 slope angle 0.0078
13. lithology=6 0.0105 Land Cover=7 0.0060
14. Land Cover=5 0.0092 aspect 0.0046
15.  profile curvature 0.0076 convergence index 0.0046
16. Land Cover=7 0.0059 distance from stream 0.0045
17.  TWwiI 0.0054 plan curvature 0.0039
18. Land Cover=4 0.0038 profile curvature 0.0031
19. lithology=4 0.0009 TWI 0.0026
20. lithology=1 0.0003 lithology=1 0.0009
21. lithology=5 0.0002 lithology=4 0.0009
22. Land Cover=2 0.0001 lithology=5 0.0007
23. Land Cover=1 0.0001 Land Cover=2 0.0006
24. lithology=3 0.0001 lithology=3 0.0003

6.3.3.1 Model-7c

The curiosity of this model in comparison to the previous case studies lies in leave-one-out
learning scheme, where only one, predictive experimenting protocol has been used. As
leave-one-out scheme implies, prior to the learning itself, Attribute Selection has had to take
place.

Herein, two filters have been used (Tab. 28), but the choice came down to the ranks
provided by the Information Gain, since it turned out to be more balanced (with lesser
extremes) than the Gain Ratio, and also provides more logical scenario. Given IG ranks have
been used as a criterion for the leave-one-out procedure, by eliminating one last-ranked
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factor iteratively, after each training cycle, until an obvious convergence of the model
performance metrics is achieved®.

Table 29. c, y parameter combinations for optimization.

(c,y) AUC K-index N, ate
11 0.72 0.56 0.01
10,1 0.78 0.65 0.01
100,1 0.73 0.60 0.01
1,10 0.62 0.33 0.01
10,10 0.69 0.43 0.01
100,10 0.70 0.51 0.01

Table 30. Performance of Model-7c-40% with c=50 and y=1 in leave-one-out learning scheme.

training set accuracy
initial 84.86%
-lithology=3 85.16%
-lithology=3-Land Cover (LC)=1 85.24%
-lithology=3-LC=1-LC=2 85.36%
-lithology=3-LC=1-LC=2-lithology=5 86.77%
-lithology=3-LC=1-LC=2-lithology=>5-lithology=1 86.89%
-lithology=3-LC=1-LC=2-lithology=>5-lithology=1-lithology=4 86.97%
-lithology=3-LC=1-LC=2-lithology=>5-lithology=21-lithology=4-LC=4 86.99%
-lithology=3-LC=1-LC=2-lithology=5-lithology=21-lithology=4-LC=4-TWI 87.01%

The experimenting protocol was based on the Model-7a-33% or Model-7b-40%
(predictive modeling scheme). The training split has again been sampled so that it included
all the necessary classes of nominal factors (lithology and Land Cover). This time, parallel
direction was more convenient then meridian for splitting the training and testing area
manually, because of the spatial propagation of the mention categorical inputs. Training area
occupied approximately 40% of the total area or 233037 instances. The model could thus be
conventionally labeled as Model-7c¢c-40%.

The optimization (over training area) of the Model-7¢c-40% was very extensive and
very time-consuming. It lasted for over 77 hours on conventional machine (i5 Intel Processor
on 3.3 GHz and 16 GB RAM of which 3 GB was available for Jawa emulation of Weka
software due to 64-bit OS). Similar pairs of ¢, y parameters as in Model-7b-40% have been
taken into consideration for training, which has been realized by a 10-fold Cross-Validation
technique. Combinations with y=0.1 have been excluded due to the poor performance which
has been witnessed in a prompt test of the software (Weka and R) over this data. Thus, the
parameters have been varied successively for one order of magnitude (Tab. 29). The values
of all three evaluators (AUC, k-index and fn.e) are rather balanced, but the optimal
parameter pair should belong to range c¢=10-100 and y=1-10. Some further adjustments
revealed that c=50 and y=1 gives the best results, and has been adopted as optimal.

%% |G unlike GR favors natural conditions over artificial influence, i.e. morphometric and geological

parameters over Land Cover classes. However there is some regularity between the ranks since
the most of the factors’ ranks do not vary that much. Exceptions are some Land Cover and
lithology classes.
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The experimenting procedure has been continued by training with adopted c, y over
the training area while using a leave-one-out protocol. In each iteration the lowest-ranked
Conditioning Factor has been removed from the training set and the according model built
over the testing area. Such procedure has been continued until the performance parameters
converged to a similar value (close to the highest performance), i.e. until the performance
parameters started to drop down. In this particular case, eight iterations, up to TWI as the
last of the removed factors, have been sufficient to reach a convergence (Tab. 30). Hence,
the last variant has been adopted as representative for Model-7c-40%.

Other performance parameters did not prove as convincing, since again fp/fnaes have
reached considerable shares (Tab. 31). This can be confirmed by confusion matrix and ROC
curve (Fig. 60), where False Positives predominate, with 26706 out of 322000 instances
misclassified. Visually however, the Model-7¢c-40% map (Fig. 59) nicely and logically
indicates the landslide trends, placing them along potentially unstable slopes of small and
deep valleys, along which the landslides (even earth-flows which are not considered in
analysis) have been recorded. It gets us back to the old discussion on how should such
predictive models be evaluated. It remains unrevealed issue whether a model has been
overfitted or it is just that the predictions reach beyond the present Landslide Inventory to
some nearer future state. It would take a landslide hazard analysis to further elaborate this
question. One possible solution for softening the performance error is K.y, but even more
advanced and customized schemes are required.

Table 31. Performance parameters of Model-7c-40%.

Model class AUC K-index accuracy average Ki,zy
landslide 0.57 0.11 15% 0.85
non-landslide 0.57 0.38 94% '

Figure 59. Model-7¢c-40% SVM landslide map (predicted landslides are in red, while actual ones are
contoured; the training area is shaded).

One additional very prompt experiment had been carried out. It involved the same set
only the roles of training and testing areas have been inversed. Accordingly, a Model-7¢c-60%
has been built over the remaining 40% of the area. The purpose of this test was to challenge
the training sample strategy and to establish whether the increase of training sample size
yields better results. There has been a very slight increase of performance
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(accuracy=88.07%, AUC=0.58, k-index=0.2) leading to a conclusion that inversion, i.e.
enlarging of the training area does not make a significant change.

A small web-map, created in the R environment, using “plotGoogleMap package”
(Appendix 2) presenting the area and related result of Model-7¢c-40% is available at:

http://milosmarjanovic.pbworks.com/w/file/fetch/63739326/MyMapHalenkovice.htm

In conclusion, the method turned out to be relatively accurate, as expected from the
experiences drawn from previous case studies, and it also tops the accuracies reached by
some other methods, such as bivariate and multivariate statistics. The model can be
characterized as underestimating in terms of landslide instances, but yet following logical
trends of landslide occurrence. Apart from that point, the experiment design was valid
(selection of the splits, optimization of the parameters, preprocessing of the inputs were
apparently correct) as shown in the inversed test in Model-7c-60%. A serious drawback of
the method is its time-consumption, as optimization alone lasts for several days, while the
model implementation on training area had required more than 4 hours. Another drawback is
the poor data compatibility of the modeling software and GIS platform, where CSV text files
had to be communicated throughout. Since the arrangement and preparation of such files at
some points had to be manual, the room for user error is introduced. For further notice, it
would be interesting to challenge the algorithm with multi-class (multinomial) scenario (e.g.
active, dormant, suspended, fossil, and other landslide classes could be specified and
related to the High-Low susceptibility scale). Also, the study is in its beginning and it might be
interesting to extend it methodologically and to compare the results. It is also intended to
perform some of the filtering techniques in the post-processing, because illogical errors (such
as pixel islands) are apparent and could be easily avoided in this manner.
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Figure 60. ROC curve of the Model-7¢c-40%.

6.3.3.2 Model 8-c

A deterministic model, which has been estimated suitable for a given case study, has been
generated in a GIS environment, using the available geotechnical and other data. The
procedure was exactly the same as for building Model-8a (and Model-8b) and it shall not be
repeated hereinafter. The only difference is that only two domains have been considered for
regionalization (generalization) of geotechnical data (see Chapter 6.3.2.3).
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Figure 61. SA plot for region 1 (flysch).

Although the data have been based on realistic, laboratory tested samples, some
fitting has been carried out, mostly regarding the different g/T conditions, because these
have the highest variances within a single region. For the final model, a classification scheme
which represents a result of a particular geotechnical parameter combination has been used
(Fig. 61). From the Figure 61. it is obvious that numerous landslide instances (red points on
the plot) have reached beyond stability limit (SI>1.0), which should not be the case
(landslides should have SI<1.0), but after fitting several combinations of available
geotechnical parameters and several g/T regimes, this combination seemed to be the most
representative for the model.

The model have had some issues with underestimation and overestimation of the
landslide instances, assuming that all instances with Sl less than 1.0 represent landslides
(the highest susceptibility class). They are logically located along the slope valleys (Fig. 62),
but in some valleys they are abundant and in others missing. The performance measurement
suggests that there are considerable misclassification errors of both fp and fn (very low k-
index values, while AUC is better balanced), but also a relatively good overall accuracy (Tab.
32).

In conclusion, the model does not seem too promising, but it is not to be
underestimated. The prognosis might be rather realistic, in fact it partly agrees with the
disputable prognosis made in Model-7¢c-40% and Model-7c-60%, suggesting that it could be
viable after all. Model-8c could hardly be accepted as a stand-alone model. The author
recognizes its potential use as an additional input factor for the Machine Learning-based
models, which will be exploited in the future work.
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Figure 62. Model-8c: a) Reclassified Model-8c by unifying all landslide instances where Sl<1 (actual
landslides are contoured); b) Original Model-8c (actual landslides are contoured, susceptibility classes
with SiI<1 are in red and orange tones.).

Table 32. Average performance parameters of Model-8c.

AUC K-index accuracy Kiuzzy
0.65 0.14 79.38% 0.62
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7 Main Achievements

Since the previous chapter has been rather voluminous and the information turned abundant
and very detailed, some esential achievements and their relation to the initial research
objectives are to be clarified in the following paragraphs. The objectives (structured as in
Chapter 2) have been complied by the following achievements:

1. Exploiting only low-cost data resources (available or open-source topographic,
geological, satellite imagery and other repositories) and open source software
packages.

In all of the case studies presented in Chapters 6.1-3.2, the data that have been
used were obtained for free. Topographic information, CORINE classification maps,
even geological maps, orthophotos and Landslide Inventories are freely available up
to a certain scale (1:50000). It is also the case of LANDSAT and other similar
multispectral images, which are sometimes available in several time series, but the
quality of these images might not always satisfy the requirements. These scales
turned sufficient for conducting proposed methodology and fulfilling the Objective 1 of
this thesis. In addition, open source solutions, such as SagaGIS, MapWindow, Weka,
R, MapComparisonKit and others, have been fully exploited in processing and
modeling of these data, which utterly rounds-up the Objective 1.

2. Inspecting of the phenomena from different case-studies, including similar, but
sufficiently different terrains (in order to compare the modeling results and test the
capabilities of proposed methodological solutions).

Selected case studies have been somewhat similar, but still different enough to
challenge the proposed methodology from different aspects. For instance, the first
and the second case studies are geologically similar, since their landslide
occurrences are mostly linked to Tertiary formations of similar type, while the triggers
are also somewhat similar (linear erosion dominates in the first case study, while
precipitation dominates in the second, but in total they are both tightly related to the
landslide occurrence in both study areas). Still, the typology of the landslides is
entirely different, since the first study area is typical for the deep-seated earth slides,
while in the second study area shallow earth slides and flows dominate. In that
respect the second case study better complies with the third case study area, but the
geological ambient is entirely different. Such diversity, turned out to be challenging for
proposed methods, which is why some techniques have better success than the
others. Therefore, it could be said that the Objective 2. has been appreciated
consistently throughout this thesis.

3. Standardizing the data acquisition regarding the data type, scale, preprocessing
procedures and so forth (in order to have fully comparable models from different
case-studies) using GIS.

Although the datasets did not contain exactly the same inputs, it is possible to
perceive some standard pattern. It implies that each case study must have had
several morphometric Conditioning Factors, and at least one hydrological, geological
and environmental Conditioning Factor. The only exception was with the deterministic
models, which required specific (geotechnical) data inputs that have had to be
arbitrarily adjusted within certain limits in order to suit the model. Furthermore, all of
the inputs (except the latter) underwent the same processing procedure, as
demanded by Machine Learning methods or other used methods, for that matter.
These procedures are clearly explained for all of the case studies (see Chapters 6.1—
3.2), which leads to a conclusion that the Objective 3 (see Chapter 2) has been fully
perceived throughout the thesis.
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4.

Implementing a variety of well-known modeling approaches, but also experimenting
with the state-of-the-art techniques, advanced methods and unprecedented solutions
for landslide assessment using GIS. Resulting models are to present transient relative
values over the area, pinpointing landslide-endangered zones and safe zones (which
shall be further elaborated).

The first, pilot case study has been the most extensively elaborated, since there has
been no similar investigation performed over this area before. Thus, the entire gamut
of proposed methods has been involved, while in the last two case studies, the
methods have been intentionally reduced to those which might have led to some new
discoveries, which would supplement the previous investigations, conducted by other
practitioners. In this sense, the fulfilling of the Objective 4 has been asserted.

Evaluating the results, i.e. the models performance in the most appropriate fashion,
obtaining qualitative and quantitative descriptors of the models performance using
GIS in combination with statistical tools.

The evaluation of the individual models in all of the case studies has been always
given by several performance parameters, such as accuracy, several types of k-
indices, different error rates, ROC curves and AUC, all based on contingency tables
(confusion matrices). Nevertheless, the evaluation of the modeling performance has
remained problematic, especially for the predictive models (generated by advanced,
Machine Learning methods), for a number of problems addressed in discussions that
followed every single model (Chapters 6.1-3.3). The most appropriate method for
model comparison (see Chapter 8) turned out to be the ROC curve, because it allows
gualitative and quantitative evaluation of the model. It needs to be mentioned that
some parameters such as Ky, for instance, seemed very promising, but have
remained relatively unexploited, mainly because they have not been widely accepted
in the community. Having such minor drawbacks in mind, it still could be inferred that
the most appropriate fashion for model evaluation has been followed, i.e. that
Objective 5 has been practically fulfilled.

Visualizing and publishing the results in the form of generic maps per each case-
study using GIS, and web-GIS and estimating their applicability.

Visualization of the most of the models has been given by separate maps (see
Chapters 6.1-3.3), while some of the insignificant results have not been visualized on
purpose. The most interesting models (Appendix 3), i.e. predictive models based on
Machine Learning techniques, have been additionally featured as interactive web-
maps, and made publically available (Appendix 2). Their applicability is left for
discussion of those who find them appealing or useful/useless for their particular
needs (planning, modeling, mapping, managing, etc.). Therefore, the final objective of
this thesis, the Objective 6, has also been completed.
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8 General Discussion

Before a final conclusion, it would be appropriate to re-discuss some of the issues and to
round-up general impressions driven from the author’s experiences related to the presented
research. It is also an opportunity to revisit the comparative analysis of presented modeling
methods.

Advanced models, based on Machine Learning techniques, have proven their
supremacy over more common approaches (heuristic, statistic etc.) for a number of reasons.

1.0-
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—— Model-2a
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—— Model-7a-B-10%
— Model-7a-33%
—— Model-7b-40%
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Figure 63. ROC curve comparison.

Firstly, they tend to perform much better in the case of interpretative models, i.e.
landslide susceptibility models, of course, when appropriate sampling strategy for
training/testing is set. Continual, 0-1 range false probability models are returned by using
intermediate models, created after each iteration, and averaging and normalizing them, not
directly as in the case of conventional models. In all of the case studies it turned out that they
easily outperformed conventional models (Fig. 63). Their ROC curves tend to reach the peak
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performance with relatively low probability thresholds (Fig. 63), meaning that they give more
conservative (safer) outputs. They have also shown a good generalization capacity when
challenged with multinomial tasks (several landslide classes to discern).

As for the second type of models, i.e. predictive models such as Model-7a-33%,
Model-7b-40% and Model-7¢-33% (Appendix 3), the comment is not as straightforward.
These are all predictive models in their nature, and since they are based on the
training/testing protocols, they perfectly simulate potential scenarios (e.g. the situations in
which an area does not have Landslide Inventory, but adjacent area does). Thus, simulated
models over the testing area represent the actual prediction of the landslide distribution over
that area. As previously mentioned, the outcomes are not so clear and the general comment
is therefore less meaningful. Some of them have been very successful and very applicable
(Model-7a-33%), while the others have been troubled with the overfit problem. Several
factors have been recognized as possible causes of the overfit. The training sample size and
the way the sample has been selected are crucial, because the overfit appears most likely
due to the overabundant non-landslide class. The algorithm (SVM, C4.5, Logistic Regression
etc.) learns too many wrong relations between non-landslide instances and the inputs,
tending to produce considerable amount of False Negative errors. The algorithms are further
challenged when switching from binary case (landslide vs. non-landslide) to multi-class case.
It is highly likely that the performance would drop even further in such cases, which is why it
is advisable to perform both binary and multinomial cases. Furthermore, one needs to
consider the processing capacity while searching for the optimal landslide population size. It
affects the number of instances and indirectly, the scale of the research. From the
experiences of the author, it is recommendable that the landslide instances occupy at least
10% of the instances, as long as the total number of instances is kept bellow 10° points,
since it has been shown that upscaling does not necessarily bring better modeling
performance. It is also noticed that the Attribute Selection have had minor influence in
preventing the overfit (as shown by various Chi-Square, IG and GR examples in this
research), so the key for avoiding the overfit remains with the inventory and the sampling
strategy of the training/testing split. In general, there are some improvements that might be
made to reduce the overfit directly (e.g. by limiting the non-landslide class by some additional
criteria, in order to make a more balanced training samples or by limiting to specific landslide
types if not in discrepancy with the aforementioned landslide class population size) or
indirectly, by improving the results through the postprocessing filtering.

For more details on the first case study on FruSka Gora Mountain (Serbia), the author
suggests the publications which address particular problems related to this research, ranging
from common to advanced models and evaluation metrics (Marjanovi¢ 2009, Marjanovi¢ et
al. 2009, Marjanovi¢ 2010a, Marjanovi¢ 2010b, Marjanovi¢ & Caha 2011, Marjanovi¢ et al.
2011a, Marjanovi¢ et al. 2011c, Marjanovi¢ 2013). The second case study, Star¢a Basin
(Croatia), is not as elaborate, but there are some significant references where one can find
particular details, which might not be presented in this thesis entirely (Marjanovi¢ et al.
2011b). Finally there is the last case study, Halenkovice area (Czech Republic), which is still
under research. Some reference has been already made (Marjanovi¢ 2012), but the final
results are prepared to be published in a special Springer Book Series on Computational
Approaches for Urban Environments (Geotechnologies and the Environment series) in 2013
(the author has been invited to contribute to the issue).
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9 Conclusions

This thesis rounds-off a detailed methodological proposal for mapping landslide susceptibility
in non-conventional ways, using some simple and advanced modeling methods. These have
been tailored by the according research motifs and objectives, which have been consistently
followed. The thesis is savored by three case studies on which the proposed methodology
has been fully employed, tested and discussed (Chapter 6.). It outputs a dozen of different
interpretable models, which have their drawbacks and benefits and different practical
relevance.

9.1 Benefits and Drawbacks

Presented models have an apparent linkage between their complexity and their GIS
integration possibilities. More complex models are naturally difficult to implement, while
simple ones are readily GIS supported, which could be their general benefit at present,
because data manipulation outside GIS requires either some manual data handling, either
some additional programming effort. Nonetheless it can become a root of some systematic
errors made during this kind of handling or while communicating external and GIS software.
In addition, complex models, such as Machine Learning-based ones are much more
demanding, computationally, i.e. time-wise, thus unsuitable when a quick prediction is
needed. Nowadays it is possible to follow-up the hardware technology for affordable price,
while software solutions are henceforth directed towards parallel and cloud computing, which
should maximize the performance and shortens the processing time. It draws one to a logical
conclusion that what are being the complex models at present would eventually become
easily deployed models, but then even more complex models will take over with new
demands and new challenges posed to the hardware and software solutions. In this
particular research it has been inferred that: MS Windows OS is not as computational-
friendly as it is user-friendly (unlike Linux for instance); ArcGIS is the most robust GIS
platform, but fails to follow up the module development as fast as its open source
counterparts; R is very customizable and very flexible, plus it is practically GIS-integrated,
but not too user-friendly and not so robust for handling large datasets like Weka does. In
brief, a combination of various solutions is still necessary, but holistic solutions are
perceivable and R is one solid example of it.

Another issue which has been indicative in the most of the models is the evaluation,
so it could be discussed as one of the drawbacks. It is hard to evaluate predictions in the
landslide susceptibility scenario (unlike in hazard or risk scenario where prognosis relates to
the specified time series) because only present (and past) landslides can be witnessed.
Future cannot be accounted for, but it is obvious that all False Positives are not necessarily
erroneous (having in mind that the spreading of landslide body follows a logical spatial trend)
and that the predictive nature of the model should not be suppressed by the strict
performance metrics. On the other hand, False Negatives should be strictly penalized,
because they represent unacceptable error in the landslide assessment framework. Some of
the performance measurements (e.g. Ku.zy) are smoothing the errors down by taking into
account the size of the particular landslide class. Since these classes are usually much
smaller in size than a non-landslide class, it could re-endorse the model which has been
underestimated. It is probably the most objective evaluation parameter thus far.

Furthermore, there is an important benefit from downscaling to be discussed. It has
been shown that too detailed data (such as data from the last two case studies) can make
some problems in predictive modeling. This particularly affects the Machine Learning-based
models, which tend to overfit on too detailed data. It is therefore necessary to find the optimal
scale (or resolution or level of detail) for a given dataset in order to reach the best possible
performance. It is usually recommended to adopt the scale of the inputs, but even more
usually these are not coming with the same level of detail. It is also noticed that in some case
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studies where the landslides are smaller the performance of all proposed models has
suffered an apparent decline. In this case, downscaling would be additional drawback of the
model. On the other hand, too much of upscaling would endanger the limits of computing
capacity of the hardware/software. Alternative solution would be the tilling of the area into
several sub-areas, but it is important to mention that some of the methods (Machine
Learning-based ones) would be affected and compromised by such solution. Experiences
drawn from this research suggest that the area with one million of points (pixels) is a fair
upper limit for the size of the area, while the lower limit could be 100000. These limits apply
only to the particular circumstances (particular hardware and software solutions).

Finally it is desirable to once again underline that high quality of input data can
guarantee a plausible result, even by using the simplest modeling solutions, while on the
other hand, no model, no matter how sophisticated cannot help if the input data are poor in
quality.

9.2 Applicability

Each kind of the presented models can find some purpose at some level of assessment, in a
wide gamut from preliminary to detailed research. Furthermore, a special case of
assessment, involving for instance detailed landslide mapping, can substantially benefit from
such models. Actually these models are not intended for replacing the conventional mapping,
but to supplement it and to be used in the preliminary stage of map development, i.e. in the
early stage of research planning. They are thus semi-products of landslide assessment, i.e.
intermediate models which are used by the experts to compile a final map. Most of the
models can successfully pinpoint the critical areas and guide the practitioners towards more
efficient mapping.

In practice, these kinds of models can easily find their purpose in regional, small
scale planning, urban planning, strategic planning, but also some preliminary insurance
analysis, planning of detailed research or sampling, updating the inventories, tracking
changes and so forth.

9.3 For Further Notice

The most of the advanced models in this research have shown that much more needs to be
done to achieve reliable semi-automated landslide mapping and landslide susceptibility
assessment. It particularly concerns SVM or DT-based Machine Learning models, which are
far from becoming operative and scrutinized in landslide assessment framework, for now.
There are several directions for further improvements and possibilities which unfold from the
experience gathered through this research.

First, there is a fundamentally different concept of defining the unit area, i.e.
alternating from pixel-based to areal-based approach. Two possibilities are commonly
imposed:

generating a Unigue Condition Area or UCA (quasi-homogeneous area) by
successively parsing of the input data classes (using for instance raster/vector
combine modules),

using slope or watershed units (generated by various morphometric modules) which
has been considered as the most logical in the landslide assessment framework
(Guzzetti et al. 2012, van Westen et al. 2006), because landslides are indeed
elements of slope configuration.

Since they are both area-based, they could allow creation of the additional synthetic
inputs, such as statistical parameters (variances, means, standard deviations, etc.) of other
inputs. This would offer the whole new source of relations between the landslide occurrence
and the input data. On the other hand, they tend to generalize just as any other choropleth
map, and may not be as suitable as smoothly distributed raster models. They are also both
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rather subjectively segmented, (especially UCA) since they depend on the ranging choices
made for the (ordinal, continuous) inputs.

Finding new resources of inputs is thus one of the milestones for further model
refinement. Expert-based, inputs could significantly contribute, especially if they are focusing
on geological or engineering-geological terrain features. For instance, inputting geological
domains as quasi-homogeneous areas in terms of stratification character (spatial and
sedimentological) has been proven useful in landslide assessment (Guzzetti et al. 2012).
Unfortunately, such inputs require additional engagement of the experts and resources which
can turn insurmountable problem (e.g. generating of geological quasi-homogeneous domains
require extensive RS and field techniques and qualified experts to generate it, although there
are some trends toward creating simple domains automatically). New inputs could be found
by changing the unit area definition, as explained above, but in addition, the inputs can
reflect the dependency of neighboring values, i.e. they can emphasize the actual critical
points or zones, which are the most indicative in the landslide scenario (landslide crown or
toe). Change of the slope morphology is one such example, wherein it is indicative that
sudden changes of slope angles are related to the landside occurrence. Principal
Components of input variables might be an effective way of emphasizing the changes in
trends of the input variable values. Finally, new inputs can be found as some intermediate
models, for instance simple AHP-based models or deterministic models can be fed as
additional inputs of the more advanced e.g. Machine Learning-based models. Multi-temporal
inputs are also desirable, but rarely available (historical repositories, especially on dating
slope displacements, aerial and satellite images in monitoring context, terrestrial monitoring
techniques, such as surveying, LIDAR and Radar scanning). They would enable upgrading
susceptibility assessment to a hazard or risk framework. Such integrated approach does
sound optimal, and with present development of RS systems it is realistic to expect that in
couple of decades from now it will be much easier to model landslide hazard and risk.

Another idea for more precise modeling is to include only the landslide source areas
as a reference, i.e. to discern between the source and accumulation areas of the landslide
body at inventory level, and to train the model only over the areas which have suffered the
conditions leading to failure. Accumulation areas do not necessarily face these same
conditions, particularly in cases of flows, which are linearly elongated and have relatively
long runout distances, hence conditions can change drastically. This would require upscaling
to at least 10 m resolution (1:5000-1:10000 scales) and appropriate pilot areas, with
relatively large and clearly discernable landslide bodies (preferably flows).

As for the most advanced techniques used in this research (SVM, DT, LR) it is
noticeable that multinomial tasks (multiple landslide classes) are not as unfeasible as it first
sounds. In fact, it turned out that these complex models perform better in the multinomial
than in binary (landslide vs. non-landslide) environment. Their generalization power is getting
fully exploited and one should not hesitate to challenge the technique if a reasonable
population of multiple landslide classes is present in the area (if some of the classes are
coming down to a single or a few examples the training would be statistically unleveled).

Another important challenge would be the using of classifier chains, by combining
different techniques and perhaps fuzzifying their combination. More robust and readily post-
processed models should be expected therein. It would lead to the fusion of discrete
classifiers such as SVM and probabilistic, generative classifiers, such as LR. In fact, there is
already a trend for fusing these two branches in Relevance Vector Machines (RVM), which
are based on SVM but with the probabilistic output (Tipping 2001).

All these comments are proposing the ideas for improvements of the susceptibility or
spatial landslide prediction. Assuming that at one point, the most optimal solution for
susceptibility framework will be reached, it would then be entirely new challenge to deal with
the hazard and risk frameworks, which is the author's remote objective, from the current
stand-point.
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Appendices

Appendix 1. Table of ranged Conditioning Factors and their fuzzy memberships for Model-3a.

Conditioning Factor (type, group) HER Hea x?
categories (X riical)
distance from structures (continual, geo-buffer) 1949.6
0-134 0.051 0.781 (27.9)
134-276 0.092 0.770

276-426 0.141 0.805

426-582 0.260 1

582-755 0.261 0.812

755-942 0.178 0.445

942-1159 0.024 0.077

1159-1418 0 0

1418-1758 0.262 0.197

1758-2305 m 1 0.568

distance from h.g. boundary (continual, geo-buffer) 306.3
0-94 0.275 1 (27.9)
94-218 0.038 0.630

218-342 0.107 0.499

342-458 0 0.372

458-589 0.040 0.295

589-726 0.484 0.429

726-878 0.579 0.313

878-1050 1 0.332

1050-1244 0.458 0.105

1244-1749 m 0.682 0

distance from stream (continual, hydro) 2381.6
0-94 0.550 0.643 (27.9)
94-212 0.900 1

212-324 0.780 0.809

324-432 0.453 0.431

432-543 0.346 0.305

543-660 0.218 0.165

660-797 0 0

797-966 0.024 0.002

966-1173 0.362 0.100

1173-1542 m 1 0.214

TWI (continual, hydro) 4947.6
7.5-9.3 0 0 (26.1)
9.3-10.3 0.172 0.261

10.3-11.4 0.696 1

11.4-12.8 1 0.955

12.8-14.3 0.811 0.575

14.3-16.2 0.821 0.442

16.2-18.3 0.781 0.320

18.3-20.8 0.506 0.176

20.8-22.5 0.131 0.079




aspect (categorical, topo)

1091.0

flat 0 0 (26.1)
N 0.594 0.701

NE 0.552 0.688

E 1 1

SE 0.889 0.490

S 0.278 0.140

SW 0.645 0.638

w 0.494 0.571

NW 0.414 0.433

elevation (continual, topo) 7515.7
78-102 0.660 0.619 (27.9)
102-138 1 1

138-173 0.828 0.838

173-209 0.530 0.499

209-248 0.158 0.147

248-287 0.141 0.118

287-329 0.018 0.013

329-376 0 0

376-426 0 0

426-540 m 0 0

slope angle (continual, topo) 44531
0-4.2 0.300 0.243 (18.5)
4.2-95 1 1

9.5-14.8 0.473 0.403

14.8-21.1 0.119 0.086

21.1-40.1° 0 0

slope length (continual, topo) 1346.8
0-60 0.435 1 (27.9)
60-181 0.591 0.964

181-353 0.937 0.960

353-602 1 0.667

602-981 0.650 0.261

981-1506 0.301 0.080

1506-2196 0.178 0.033

2196-3094 0.427 0.061

3094-4392 0.187 0.019

4392-6499 m 0 0

plan curvature (continual, topo) 989.4
concave 0 0 (18.5)
- 0.657 0.333

flat 1 1

- 0.626 0.419

convex 0.149 0.059

profile curvature (continual, topo) 1214.0
concave 0 0.009 (18.5)
- 0.414 0.287

flat 1 1

- 0.741 0.366

convex 0.081 0




lithology (categorical, geo-units)

8319.3

al' - Danube's inundation plane 0.100 0.099 (29.6)
al - aluvium 0.211

dl - delluvium cover 0.807 1

t - terrace sediments 1 0.785

| - loess 0.338 0.334

PI - clay 0.858 0.847

M - marlstone 0.133 0.083

M; - limestone, sandstone 0.469 0.880

Se - ultra-mafic rocks 0 0

J - limestone 0 0

Pz - schists 0.002 0.003

Land Cover (categorical, land cover) 6316.2
water 0 0 (16.2)
arable land 1 1

grass land 0.992 0.852

forest 0.132 0.168




Appendix 2. R code for plotGoogleMap package.

#

#Halenkovice landslides
#H

setwd("g:/PhD/tmp/_Halenkovice/Sesuv/PlotGM/")

getwd()

system("dir")

library(rgdal)
library(plotGoogleMaps)
#
study.area<-readOGR(".", "study_areal")

str(study.area@data)

projastring(study.area)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs")

training.area<-readOGR(".", "training_area")

#str(training.area)

str(training.area@data)

projastring(training.area)<-CRS("+proj=krovak +lat 0=49.5 +lon_0=24.83333333333333 +k=0.9999
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs")

resultl<-readOGR(".", "svm_result1")

str(resultl@data)

projastring(resultl)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999 +x_0=0
+y_0=0 +ellps=bessel +units=m +no_defs")

landslides<-readOGR(".", "Landslides U")

str(landslides@data)

projastring(landslides)<-CRS("+proj=krovak +lat 0=49.5 +lon_0=24.83333333333333 +k=0.9999
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs")

mapl=plotGoogleMaps(study.area,
zcol = "label",
add=T,
colPalette = 'black’,
strokeColor = 'black’,
strokeWeight = 5,
filename="MyMapHalenkovice.htm',
layerName='study area’,
mapTypeld = "TERRAIN")
map2=plotGoogleMaps(training.area,
zcol = "label",
add=T,
colPalette = "black",
strokeColor = 'black’,
strokeOpacity = 1,
strokeWeight = 3,
previousMap=mapl,
filename="MyMapHalenkovice.htm’,
layerName='training area/,
mapTypeld = "TERRAIN")
map3=plotGoogleMaps(resultl,
zcol = "label",
add=T,
strokeOpacity = 0,
strokeWeight = 0,
colPalette = "red",
previousMap=map2,



filename="MyMapHalenkovice.htm’,

layerName='SVM model’,

mapTypeld = "TERRAIN")
map4=plotGoogleMaps(landslides,

zcol = "label",

add=F,

colPalette = "orange",

strokeColor = 'orange’,

strokeOpacity = 1,

strokeWeight = 3,

previousMap=map3,

filename="MyMapHalenkovice.htm’,

layerName='"landslides (active & dormant)’,

mapTypeld = "TERRAIN")



Appendix 3. Maps of predictive models.
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Shrnuti

DisertaCni prace reSi pokrocilé metody predpovédi pudnich sesuvu, od teoretickych zakladl
po konkrétni praktické pfiklady ve tfech zajmovych Gzemich. Pfedmét vyzkumu pfedstavuje
velmi komplexni a heterogenni pfirodni fenomén, jehozZ kvantitativni prognézy se obyc€ejné
popisuji nachylnosti, nebezpe&im nebo rizikem. Autor klade duraz na nachylnost terénu
ke klouzani, tj. prostorovou pravdépodobnost vyskytu pudnich sesuvu. Tento pfistup vychazi
vétSinou z nedostatku vhodnych €asoprostorovych dat potfebnych pro analyzu nebezpedi
nebo rizika. Na druhou stranu maximalné vyuziva vSechna ostatni dostupné prostorovéa data,
v&etné geologickych, geomorfologickych, hydrologickych, hydrogeologickych a dalSich dat o
vlastnostech Zivotniho prostfedi, které jsou v praxi €asto ozna¢ovana jako podminéné faktory
podminujici pudni sesuvy.

Hlavni cile této disertace jsou:

1. pouziti dostupnych, bezplatnych dat a softwarovych produktu s cilem prokazat, ze
vyuzZivanim stavajicich dostupnych zdroju Ize provést hodnotnou analyzu pfedpovédi
pudnich sesuv,

2. testovani puvodni metodologie v nékolika zajmovych Gzemich (navzajem dostate¢né
podobnych, av3ak i dostateéné rozliSnych), aby bylo mozné objektivné diskutovat o
uspésnosti navrhované metodologie,

3. standardizace vstupnich dat z hlediska jejich objemu, typu, kvality a poméru, a jejich
pfed-zpracovani pomoci GIS,

4. pouziti fady metod modelovani nachylnosti k padnim sesuvum, od jednoduchych az
po pokrocilé, s cilem je objektivhé a podrobné porovnat,

5. pouZiti co nejrelevantnéjSich metod pro evaluaci modellu predpovédi sesuvl s cilem
co nejobjektivnéjSiho kvalitativniho a kvantitativniho porovnani téchto modelu,

6. vizualizace a publikovani vysledkl pouZzitim GIS a prostfedku webové kartografie.

Navrhovand metodologie zahrnuje Ffadu metod, které lIze rozdélit na metody
pfedzpracovani, modelovani nachylnosti a metod hodnoceni. Nejvétsi duraz byl kladen na
metody modelovani nachylnost k sesuvam pudy. Byly pouZity jak metody nejpopuléarnéjsi a
nejjednodussi, tak i nejpokrocilejSi a nejsloZitéjSi metody, a to:

heuristické (na zakladé subjektivni zkuSenosti autora, ktery se zabyva problematikou
sesuvu),

deterministické (na zakladé znamych fyzikalnich principu tykajicich se sesuvl pudy,
které jsou do zna¢né miry aproximovatelné),

statistické (na z&kladé statistické zavislosti na vlastnostech rtznych vlastnosti terénu
a sesuvu pudy),

metody strojového uceni (na zakladé logicky-matematicko-statistickych algoritmu,
které poloautomaticky nachézeji vztahy mezi vlastnostmi terénu a projevy pudnich
sesuvu).

K posledni skupiné patfi metody k-nejblizSi sousedstvi (nearest neighbor, k-NN),
logisticka regrese (LR), rozhodovaci stromy (Decision Trees, DT) a Support Vector Machines
(SVM), jejichz modely jsou pfedmétem disertacni prace.

Je potfeba zdUraznit, Ze autorem navrzena metodologie, ktera je stejnym nebo
podobnym zplUsobem pouzita ve vSech tfech zajmovych Uzemich a usilujici o standardizaci,
muZe byt aplikovana na zcela jind Uzemi, kterd spliuji urita kritéria a maji k dispozici
odpovidajici udaje. Navrh metodologie zaind od problematiky vybéru konkrétniho typu



(mechanismu) sesuvu, ktery je pfitomen ve vybranych Uzemich, dale pokrauje pies vybér
vstupnich dat osesuvech pudy, ktera slouzi jako podklad pro hodnoceni modelu. Po
definovani zakladnich kritérii metodika navrhuje pouZziti fady metod pro predzpracovani,
modelovani nachylnosti a/nebo predikci sesuvu, po kterém nasleduje pfedstaveni, evaluace
a srovnavani vysledku. Zavérem metodologie vrcholi v diskusi o vyhodach a nevyhodach
modelu a diskusi o0 nejvhodnéjSim modelu pro konkrétni G¢el pouZiti.

Vyzkum probihal ve tfech Gzemich a byl realizovan v obdobi &ty let diky podpore
GACR projektu Metody umélé inteligence v GIS (Methods of artificial intelligence in GIS)
(205/09/0793). Vyzkum zahrnoval sbér dat vybranych lokalit jeSté pfed pouZitim navrzené
metodiky. Tyto Udaje byly prostfednictvim GIS pfipraveny v souladu s poZadavky téchto
metod.

Prvni zajmové Uzemi zahrnuje severozapadni svahy pohofi FruSka Gora (Srbsko)
podél bfehu Dunaje s rozlohou cca 100 km? pfi éemZ asi 10 % Gzemi je ovlivnéno
sesuvnymi procesy. VétSinou jde o projevy hlubokych rotaénich a kompozi¢nich sesuvu
vyvinutych v neogennich pénvich. Vzhledem k velikosti tzemi a podrobnosti dostupnych
vstupnich dat byla pro analyzu zvolena 30metrové prostorové rozliseni a rastrovy format, coz
znamena, Ze za zakladni jednotku byl pixel o rozméru 30x30 m. Uzemi bylo reprezentovano
rastrovou vrstvou s 100 000 bunkami, které nesly informace o n-riznych tematickych
vlastnostech Uzemi, takZze kazdy pixel mohl byt povazovan za vektor o n soufadnicich. Ve
vstupnich datech jsou zahrnuty predevS§im popis pudnich sesuvu (ziskany terénnimi
metodami a metodami délkového pruzkumu Zemé, na kterém jsou oddéleny pouze pfipady
stejného typu, tj. hluboké sesuvy pudy typy earth slide podle pfijaté klasifikace a pro které
byly definované faze aktivity) a jim odpovidajici podminéné faktory:

sklon svahu, délka svahu, expozice, elevace, planarni (horizontélni) a profilové
(vertikalni) kfivost svahu, TWI a vzdéalenost od drenézni sité (ziskané z digitalniho
modelu reliéfu, ktery byl modelovan z topografické mapy v méfitku 1 : 25000 se
zakladnim intervalem vrstevnic 10 m),

litologické jednotky, vzdalenost od zlomu a vzdalenost od vyznamnych geologickych
hranic (vyzna¢enych na geologickych mapach v méfitku 1 : 50000),

vegetacni pokryv (ziskany z LANDSAT snimku s rozliSenim 30 m a zpracovany podle
vegetacénich indexu).

Pouzitim navrzené metodologie pro dany soubor vstupnich dat byly odvozeny razny
modely nachylnosti a pokroCilymi metodami byly sestaveny i modely prostorové predikce
sesuvld. UspéSnost modell je definovana nékolika parametry, z kterych je nejdilezit&jsim
ukazatelem ROC kfivka, protoZze umoznuje kvalitativné-kvantitativni hodnoceni modelu. Lze
konstatovat, Ze pouzitim pokro€ilych metod (LR, DT a SVM) jsou jednoznaéné nejvhodnéjsi
modely nachylnosti, které maiji relativné vysokou presnost, pfi které je negativni typ chyby
(false negative) minimalni. Nicméné& nékteré modely, napf. fuzzy model ziskany
vicevrstevnou fuzzy kombinaci, vykazuji urity potencial i pfes mirné nizSi pfesnost a
minimalni nezadouci chyby. Na druhé strané, prostorové predikce sesuvl u modell
zaloZzenych na LR, DT a SVM technikdm Ize hodnotit jako Uspé&sné, oproti deterministickému
modelu, ktery muZe byt zcela ignorovan a povazovan za nevhodny pro dané Uzemi.
Pokrocilé modely byly Uspésné pouZzity i v pfipadech s vice nez jednou kategorii sesuvy
(aktivni a ne€inngé).

Druhé zdjmové Uzemi se nachézi v povodi feky Stare¢ u Zahfebu (Chorvatsko),
rozloha kolem 15 km? s asi 10 % Uzemi ovlivnéného sesuvnymi procesy s tim, Ze
mechanizmus a typologie sesuvu jsou zcela odliSné. Jsou zde mélké sesuvy v terciarnich a
kvartérnich loZiscich, jejichZ hlavni hnaci silou je eroze v kombinaci se srazkami. Pouzit byl
soubor vstupnich dat podle vySe popsaného. Dale byla pouZita rastrova reprezentace o
rozliSeni 10 m (kvuli menSi rozloze zajmového Uzemi a menSim rozmérim sesuvl), takze
celé Uzemi bylo vyjadfeno rastrovou vrstvou s 100 000 bufikami. Byla pouZitd podobné
metodologie jako vySe, ale v o néco mensim objemu, protoZe nékteré podobné analyzy se



zakladnimi metodami uz na daném Uzemi probéhly. Proto byl diraz kladen na pokrogilé
metody, pfesnéji DT, resp. SVM techniky, a to pro jednu, resp. pét kategorii sesuvl
(definovanych na zakladé jejich aktivit). UvaZzovany byly také modely nachylnosti a predikce
obou technik. Vysledky ukézaly o néco slabsi uspéSnost v modelech nachylnosti a jesté
menSi v predikci samych sesuvy pudy. Zajimavé je, Ze lepSi hodnoceni vykazaly modely s
nékolika kategoriemi sesuvl nez jednoduSSi modely sjednou kategorii sesuvu. Tyto
vysledky jsou pravdépodobné zpusobeny nizkym prostorovym rozliSenim rastru, ale i samou
rozlohou zajmoveho Gzemi, pfitomnosti velké fady stejnych jeva (pét kategorii), které mély
za nasledek tzv. overfit, tj. Spatné nauc¢enou relaci v procesu trénovani algoritmu.

Posledni zajmové Gzemi je v okoli mésta Halenkovice ve Zlinském kraji (Ceska
republika) o rozloze pfiblizné 50 km® s mé&lkymi pGdnimi sesuvy vyvinutymi v terciarnich
flySich. V analyze byl pouzit soubor vstupnich dat podobny ve vySe popsaném textu,
prostorové rozliSeni gridu bylo 10 m, coZ vytvofilo rastrovou vrstvu o 500 000 burikach.
Duraz byl kladen na pouZziti pokroc€ilych metod, hlavné SVM techniky, a byl testovan i i
deterministicky model s ohledem na to, Ze zde vyskytujici se mélké sesuvy jsou teoreticky
vhodné pro takovy typ modelu. Modely zaloZzené na SVM technikach byly omezeny jen na
predikéni modely s tim rozdilem, Ze SVM model je omezeny dodate¢nym optimalizacnim
postupem leave-one-out, zatimco deterministicky model mél obé& varianty (nachylnosti a
predikce). SVM model Ize ohodnotit jako pramérny, ale stale vykazujici uréity potencial
v predikci. Deterministicky model je vtomto pfipadé nejednoznacny, protoZze nékteré Casti
terénu modeluje velmi dobfe, zatimco nékteré velmi Spatné, a to i po komplexni optimalizaci,
coz omezuje model jen na ur€ité geologické prostfedi v zajmovém Gzemi.

Nékteré z modell jsou prezentovany prostfednictvim nastroju internetového
mapovani a jsou k dispozici na adresach:

http://milosmarjanovic.pbworks.com/w/file/fetch/63738284/MyMapFruskaGora.htm

http://milosmarjanovic.pbworks.com/w/file/fetch/63741247/MyMapStarca.htm

http://milosmarjanovic.pbworks.com/w/file/fetch/63739326/MyMapHalenkovice.htm

Zavérem lze konstatovat, Ze vyty€ené cile disertani prace byly spinény, a Ze
navrhovana metodologie podala dobré vysledky — v pfipadech nékterych modeld méné
Uuspé€sné nez v jinych. Modely nachylnosti (zejména modely ziskané pouzitim pokrocilych
metod) mohou najit uplatnéni v ruznych aspektech planovani a projektovani v regionalnim
méritku, ale také pro regulaci ochrany, systémy v€asného varovani i pro pojiStovny. Zvlastni
pfinos maji predikéni modely, na jejichz zdokonalovani se stale muZe pracovat. Jejich
aplikace se muZe navézat na uplathovani modelu néchylnosti, zatimco predikéni modely
mohly Ize pouZit pro G€ely mapovani sesuvu a tvorbu jejich databazi v regionalnim méfitku.



