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1 Introduction 

In the world of growing needs for land urbanization and exploitation of resources, yet with 
raising concerns on unstable climate conditions, the matters of environmental safety come 
under the spotlight. As the world population condenses by over-settling existing areas or 
settling new unpopulated areas, bigger and bigger volumes of geological environment 
become disturbed, encountered biomass suffers drastic reduction, while microclimatic effects 
amplify (Turner & Shuster 1996, Maskrey et al. 2009), which all allows various influences to 
embark and jeopardize the subjected population. In such circumstances, natural hazards 
stand among the most threatening influences to the safety of human lives and property. 
Different natural hazards unfold with different scenarios, causing various disasters, but more 
dangerously, they tend to combine and chain-up their effects. Thus, they all superimpose, 
making their separate influences and outcomes indistinct, which leaves their authenticity 
unclear (Bell 1999). For instance, an earthquake near the coastline can generate a tsunami 
wave, and they both can then trigger landslides, cause subsidence, storms, or provoke 
technological and other types of hazards, and in turn, completely devastate an area (like in a 
tragic episode that stroke Japan in March of 2011). In the aftermath of such a scenario it is 
difficult to separate effect of each hazard individually. Holistic (general) approach to the 
natural hazard and risk is therefore the only reasonable solution, but for now, it is an initiative 
to strive toward rather than a feasible praxis (Lee & Jones 2004). In order to have at least 
some idea on the overall hazard and risk distribution, a global and regional view on the 
natural hazard is yet necessary, and it is traditionally interpreted by plain statistical analysis 
of the historical records (Alcántara-Ayala 2002). It is apparent that analysis of longer time 
intervals brings inconsistency in the data acquisition (awareness and attention to the 
phenomena has changed over time, as well as standards and methodology of the data 
acquisition), so the figures and percentages are only portraying the principle trends. In such 
quantification, the most common natural hazards include earthquakes, volcanoes, floods, 
storms and landslides/mass movements (Bell 1999). The latter, with their 5% share (Fig. 1) 
in the total tolls1 of natural disasters, are to be regarded hereinafter. 

Indisputably, the landslide hazard awareness reached considerable quota in recent 
years. It involves not just the general population, but the academic circles and political 
officials, as well. Google’s insight for search (covering 2004 – present time span) indicates 
considerable average ascent in interest for keywords such as landslide, debris flow, landslide 
hazard and susceptibility. The interest is particularly high right after the events that had 
caused considerable damage to society and that have been followed-up by media. 
Consequently, the interest is the highest in the affected areas (Fig. 2). These speculations 
are relative and disregard the influence of technological literacy and capability (availability of 
computer/internet configurations). The insight that one can track within the academic circles 
is by far more objective, and it is based on the publication activity records (Gokceoglu & 
Sezer 2009). Scientific and research teams have shown rising interest in the landslide-
related topics since the late ’80s. This abrupt and exponential (Gokceoglu & Sezer 2009) 
increase in activity has resulted in more than 150 scientific articles per year. Widening of the 
problematic, technological innovations and holistic approaches to the solution are promising 
prolific activity within research community in the future. Numbers of scholars per publication 
is also rising, presumably indicating the growth within the multidisciplinary teams that have 
been dealing with such matter. Records also show that researchers follow geographical 
distribution of the events (Nadim et al. 2006), meaning that they also mostly come from the 
areas affected by the landslides (Circum Pacific Region, mountainous regions in the Alps, 

                                                
1  According to some recent research results there has been nearly 90000 landslide casualties 

worldwide in the past decade (9000 per year), which is much more than 5% of global natural 
hazard toll. The research has been done by using Google News services (Petley 2012). 
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the Himalaya, and other volcanic and seismic areas worldwide). However, they show that the 
most of the researchers and the most significant researchers come from just a few countries: 
Italy, USA, Canada, UK, China, France, Japan and Spain (in the respective order) 
(Gokceoglu & Sezer 2009, Chacón et al. 2006, Petley 2012). The rest of the world is left with 
a few research teams and individuals to cope with the problematic. In such context, the 
problem is treated singlehandedly, and although it represents one of the most complex, 
versatile and the most wide-spread natural phenomena (Varnes 1984, Chacón et al. 2006, 
Gokceoglu & Sezer 2009, Guzzetti et al. 2012) and although the researchers’ curiosity has 
an exponential response thus far, the number of studies, contributions and researchers has 
yet to grow. Only then the problematic of the landslides and the hazard they produce will be 
fully understood. 

 
Figure 1.  Global (per continent) distribution of different hazard types. The incept to the right shows 
total hazard distributions per continent (after Alcántara-Ayala 2002). 

These global trends were thus the principal motifs for this research: inevitable need 
for broadening of the landslide hazard researchers pool, fact that landslides affect the society 
more frequently and more broadly than before, rising awareness to the problematic among 
the planner/decision-maker pools, availability of the advanced methodology and technology 
to remediate and monitor the landslides, opening funds for regional research projects. This 
study shows particular interest in the regional type of studies, due to their applicability on one 
hand, and scientific contribution on the other. It is further quite appreciable to work with such 
problematic in a Geographic Information System (GIS) environment, which allows various 
numerical, statistical or heuristic implementations to be conducted relatively easily. It was 
actually expected that the researchers will incline toward regional studies in nearer future, 
since such studies directly contribute to the landslide hazard mitigation (Gokceoglu & Sezer 
2009, Brenning 2012), especially if they represent systematical comparisons of multiple 
modeling approaches and techniques (Brenning 2005, Yilmaz 2009). It was also expected to 
have various combinations of slope stability modeling, monitoring and landslide hazard 
modeling, and development of the Early-Warning Systems. These prognoses turned quite 
reasonable if one looks at the contribution lists and contents of the most recent, major 
landslide forums, congresses and symposia, organized by the leading communities in the 
field (International Association for Engineering Geology – IAEG, International Consortium on 
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Landslides – ICL, International Society of Soil Mechanics and Geotechnical Engineering – 
ISSMGE, International Society of Rock Mechanics – ISRM). Finally, the researchers at 
present also experiment with the incorporation of the landslide hazard into a holistic hazard 
assessment, and will continue to strive toward that final goal in the future, but this matter 
brings about complexity and compatibility issues and requires simultaneous development of 
all natural hazard branches in analogue or similar frameworks. 

 
Figure 2.  People exposure to landslides (app. 2.2 million per year). Note that small island countries 
have high relative exposure, while in the absolute exposure Asian countries – India, Indonesia, China 
and others dominate (after Maskrey et al. 2009). 
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2 Objectives 

Resting on the abovementioned motifs, this research was shaped to meet the standardized 
requirements (Varnes 1984, WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky 2008, Gerath 
et al. 2010, Brenning 2012) in terms of methodology of data acquisition and manipulation, 
choices of the advanced modeling approaches for landslide assessment, as well as the 
model evaluation techniques, and finally, the visualization choices, all via GIS. These 
objectives could be structured as follows: 

1. Exploiting only low-cost data resources (available or open-source topographic, 
geological, satellite imagery and other repositories) and open source software 
packages. 

2. Inspecting of the phenomena from different case-studies, including similar, but 
sufficiently different terrains (in order to compare the modeling results and test the 
capabilities of proposed methodological solutions). 

3. Standardizing the data acquisition regarding the data type, scale, preprocessing 
procedures and so forth (in order to have fully comparable models from different 
case-studies) using GIS. 

4. Implementing a variety of well-known modeling approaches, but also experimenting 
with the state-of-the-art techniques, advanced methods and unprecedented solutions 
for landslide assessment using GIS. Resulting models are to present transient relative 
values over the area, pinpointing landslide-endangered zones and safe zones (which 
shall be further elaborated). 

5. Evaluating the results, i.e. the models performance in the most appropriate fashion, 
obtaining qualitative and quantitative descriptors of the models performance using 
GIS in combination with statistical tools. 

6. Visualizing and publishing the results in the form of generic maps per each case-
study using GIS, and web-GIS and estimating their applicability. 
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3 Theoretical Background 

In order to present the problematic of this thesis systematically, it is first necessary to define 
and communicate the basic theoretical background behind the landslide phenomenology, 
comprehension of qualitative landslide assessment, impact of available technology which is 
in service of landslide assessment and the way in which GIS is enrolled in it. 

 
Figure 3.  A simplified illustrative landslide classification after Varnes (after Lynn & Bobrowsky 2008). 
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3.1 Landslide Phenomenology – Definitions and Scope  
As in many cases of terminological disputes, landslide as a term has endured various 
interpretations, as the scientific disciplines that treat it changed and developed over time. It is 
also the matter of different conception of the term by different research-schools worldwide. In 
regard with the latter, landslide can express more specific or more general phenomenon. It 
seems logical that more general definitions broaden the phenomena, making it more 
complex to understand and offer solutions. Herein, such debates will not be of particular 
interest (although they are further influential to selection of the modeling techniques or 
modeling approaches for instance), since abundant information on that topic could be found 
elsewhere (Lee & Jones 2004, Chacón et al. 2006). Hereinafter, one of the broadest 
definitions and classifications endorsed by the leading communities and consortiums (Varnes 
1984) is adopted (Fig. 3). The following paragraphs define the main terms and principles of 
the landslide phenomenology rather informally, in order to introduce the main problematic of 
this research. 

 
Figure 4.  Landslide elements (after Lynn & Bobrowsky 2008). 

Landslides are downward movements of rock, debris or earth masses, usually 
developed along predefined planar discontinuities. These are called slip-surfaces (simple 
planar or higher order – complex surfaces), which propagate throughout the mass and 
clearly separate intact bedrock material from the moved material above. Other 
(morphological) elements of a landslide include crown and head, separated by a scarp; main 
body, channeled by flanks; foot, terminated by a toe; depletion zone capturing upper and 
accumulation zone capturing lower portions of a landslide (Fig. 4) Landslides can drastically 
vary in size and area, as well in some other measurements (Fig. 5). They can develop in 
natural or engineered/constructed slopes. Consequently, they have been studied in various 
scientific branches ranging from Geology and Geomorphology to Geological, Geotechnical 
and Civil Engineering, from a variety of aspects (Varnes 1984, Lee & Jones 2004, Bell 2007). 
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Figure 5.  Spans of different measures of landslides (after Guzzetti et al. 2012). Note how broad and 
variable the orders of measures are, making landslides very diverse and very complex phenomena. 

Slope stability rests on the equilibrium between the forces that act upon a slope. 
Displacement takes place when the resisting forces are succumbed by the driving forces, 
which in turn generates irreversible change to the slope. The former, resisting forces, are 
represented by shear strength and cohesion of the material, as well as friction along a slip 
surface, which all further depend on the nature and condition of the slope material (freshness 
– weathering degree; structural elements – presence of joints and fissures; heterogeneity – 
contrasts of water permeability or deformability; presence/absence of vegetation), as well as 
on the slope morphology/geometry (steepness, elevation, curvature etc.). Driving forces on 
the other hand, usually involve: increase of weight or shear stress (via water saturation, 
adding load and rearranging of the slope geometry), loss of support (via erosion and 
rearranging of the slope geometry) or dynamic influences. The features that influence driving 
and resisting forces and their balance are commonly called Conditioning Factors. In 
regional scales these are different geological, geomorphological and environmental 
properties of the ground. In other words, Conditioning Factors are providing the background 
of the landslide occurrence. Once the terms are reached, the process unfolds under the 
influence of different Triggering Factors or in their combination. The most typical Triggering 
Factors are: earthquake, volcanic eruption, intense rainfall, abrupt groundwater regime 
change, flood, rapid snowmelt, successive erosion and human intervention (Lee & Jones 
2004, Bell 2007). 

Landslide activity is another important parameter, which requires attention. Since 
landslides develop progressively and cyclically once they enter the process, it is important to 
estimate the state of their current activity in order to scale the future displacement rates. In 
particular, relative displacements are the highest during the initial activation, and decrease 
per each reactivation cycle, but the frequency of the events increases as a landslide 
progresses toward an active stage. Stage of the first failure is followed by the stage of 
reactivation, which are separated by suspended and dormant stages and this repeats per 
every cycle until the active stage is reached (Fig. 6). 
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Figure 6.  Landslide activity stages (after Leroueil et al. 1996). 

 

Table 1.  Updated Varnes landslide classification (after Hungr et al. 2012). 

type of movement rock soil 

fall 1* rock fall 2* boulder/debris/silt fall 

topple 3* rock block topple 5* gravel/sand/silt topple 
 4 rock flexural topple  

slide 6 rock rotational slide 11 clay/silt rotational slide 
 7* rock translational slide 12 clay/silt translational slide 
 8* wedge slide 13* gravel/sand/debris slide 
 9 rock compound slide 14 clay/silt compound slide 
 10* rock collapse  

spread 15 rock slope spread 16* sand/silt liquefaction spread 
  17* sensitive clay spread 

flow 18* rock avalanche 19 sand/silt/debris dry flow 
  20* sand/silt/debris flow slide 
  21* sensitive clay flow slide 
  22* debris flow 
  23* mud flow 
  24 debris flood 
  25* debris avalanche 
  26 earth flow 
  27 peat flow 

slope deformation 28 mountain slope deformation 30 soil slope deformation 
 29 rock slope deformation 31 soil creep 
  32 solifluction 
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Figure 7.  Schematic illustration of landslide types according to the updated Varnes landslide 
classification given in Table 1. (some of the examples are missing). Asterisks indicate high velocity 
movements.  Scale of the illustrations varies (after Hungr et al. 2012). 

Displacement mechanism can further define the landslide movement typology as 
follows: fall, topple, slide, flow, spread and composite (creeps are sometimes another 
separate category) (Fig. 3, 7). Together with the information on the type of the moved 
material it makes a basis for conventional classifications. Moreover, the landslide velocity, 
as another important landslide descriptor, is also governed by material type and movement 
mechanism, and can vary from extremely slow (mm per year in creep) through extremely 
rapid (m per second in debris flows). Displacement mechanisms have characteristic behavior 
which will not be described in detail herein, but can be found well elaborated in work of 
Varnes (1984), who basically founded the terminology that is later to be adopted by the 
international community (Turner & Shuster 1996). 

Described features represent the base for development of the modified Varnes 
classification (Hungr et al. 2012) (Tab. 1, Fig. 7). Thus, every landslide could be classified 
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in accordance with this system by combining principally material and movement type, 
complemented with the estimation of the activity state and velocity. However, there are 
exceptions, which make this system more complex (this is the reason behind which the local 
classifications are occasionally preferred), and encourage its further refinement, since it 
suffers from a certain simplification and subjectivity, just as any other classification system 
(Guzzetti et al. 2012). 

3.2 Susceptibility, Hazard and Risk – Definitions a nd Scope 
Hitherto, terms hazard and risk might have been used in their broader, intuitive meaning, 
spoken as of something that poses a danger that come from a certain natural phenomenon. 
Following paragraphs are dedicated to elaborate and articulate their meaning in the 
analytical, quantitative framework, which is consistent with the internationally approved 
terminology of Geo-Engineering communities. From this chapter on, their articulation will be 
used only as such. 

Landslide susceptibility (M) stands for the spatial distribution and magnitude 
estimation of landslides which exist or may potentially occur over an area. It could also be 
treated as a pure spatial probability of landslide occurrence (Fell et al. 2008). Landslide 
magnitude can be expressed by means of total area, volume or velocity (if applicable) of a 
landslide. Although it is intuitive that more susceptible slopes will be affected more frequently 
than less susceptible ones, susceptibility remains explicitly in a spatial frame, with no 
temporal component. Terms landslide potential, sensitivity, relative hazard, total landslide 
density and likely frequency partly match term landslide susceptibility, but have not been 
used in suffice (Lee & Jones 2004, Chacón et al. 2006). 

Landslide hazard (H) stands for a probability of damaging landslide occurrence over 
an area within a given time period (temporal probability – pt). It could be regarded as a 
temporal extension of susceptibility. It is sometimes confused with susceptibility, but it is 
sufficient to notice its temporal dimension to make a distinction. Actually, susceptibility could 
be regarded as a special case of hazard that has a single temporal perspective instead of a 
time series (Einstein 1988, Lee & Jones 2004). In a broader sense, hazard is founded on the 
estimates of the landslide magnitude (area or volume) and probability of its recurrence (Eq. 
1) (Fell 1994). 

tpMH ⋅=  (1) 

Element at Risk (ER) is any entity (any component of the terrain) which is potentially 
affected by a damaging phenomenon. It involves population, objects of personal property 
(real-estate and movables), engineering works and infrastructure, economic activities, public 
services and environmental valuables. While susceptibility and hazard analysis are not 
influenced by the choice of Element at Risk, Risk itself is, and could be separated in different 
categories according to the chosen element (Lee & Jones 2004, Fell et al. 2008).  

Vulnerability (V(ER)) is denoted as a degree of loss of an Element at Risk within the 
affected area. It could be also interpreted as a measure of exposure toward the hazard or 
potential to suffer damage. It can vary spatially, temporally and individually, hence according 
subtypes of vulnerability could be derived. For instance, hospitalized persons of a nursing 
home for the elderly which is directly facing a landslide would have greater total vulnerability 
than workers in a factory nearby, outside the landslide accumulation zone (temporal 
exposure of the workers is reduced to only several working hours per day, spatial 
vulnerability is reduced because the factory is not directly facing a landslide, workers are 
more agile and vital, so their individual capability to survive damaging event is greater, thus 
the individual vulnerability is smaller) (Fell 1994, Lee & Jones 2004, Fell et al. 2008). 

)(ERVHR ⋅=  (2) 
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Risk (R) is formulated (Eq. 2) as a measure of landslide occurrence probability and 
severity of its effects. Risk comprehension is somewhat difficult, due to the linguistic flexibility 
of the term itself (and intuitive similarities with terms susceptibility, hazard, vulnerability) and 
the fact that it resides in the future. It turns difficult to concept, especially to decision-makers 
who need to act upon risk estimations in advance, before disasters strike. As afore 
mentioned, several risk categories can be segregated, given a different Element at Risk, i.e. 
societal risk, individual risk, group risk, but also categories derived particularly for decision-
making, such as acceptable and tolerable risk (Fell 1994, Lee & Jones 2004). 

It is pertinent to accept this internationally approved terminology for quantitative risk 
assessment in order to avoid any misunderstandings. In this thesis, as well as in the author's 
preceding work (Marjanović 2009, Marjanović et al. 2009, Marjanović 2010a, Marjanović 
2010b, Marjanović & Caha 2011, Marjanović et al. 2011a, Marjanović et al. 2011b, 
Marjanović et al. 2011c, Marjanović 2012, Marjanović 2013), all terminology is in accordance 
with the appropriate conventions (WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky 2008, 
Gerath et al. 2010, Varnes 1984). Due to the nature of the subsumed research work, this 
thesis will mostly concentrate on susceptibility assessment, while the hazard and risk will be 
only speculated by their feasibility for further extensions of the research. 

3.3 Landslide Assessment Concepts, Principles and P roblematic 
Herein, assessment is treated in a more specific sense than its original meaning instructs. It 
stands for a systematic gathering of the available information, processing/modeling with that 
information and forming a judgment about it in a transient workflow (Lee & Jones 2004). 
Landslide assessment workflow unfolds through phases of initiation of research (where the 
objectives, level of detail, scale, assessment type and study area are defined), acquisition (of 
data and background information), analysis and modeling (of landslide 
susceptibility/hazard/risk), evaluation, recommending/advising and 
reporting/publishing/visualizing (Gerath et al. 2010). In all mentioned stages, aspects of this 
problematic differ from one case to another, depending on the choices in the assessment 
approach. It involves not only the choice of the principal modeling approach, but also choices 
of other sub-stages, primarily regarding data acquisition and analysis. Hence, the 
aforementioned stages need a short insight and discussion hereafter, but first, it is necessary 
to articulate the basic principles on which the landslide assessment is founded. 

The idea of landslide investigations and landslide assessment revolves around 
several principles and assumptions (Chacón et al. 2006, Guzzetti et al. 2012): 

- Slope failures do not occur randomly or by chance, but as a result of interplay of 
different conditions, governed by different physical processes and laws. 

- Landslides leave more-or-less distinct footprints (upon activation or after reasonable 
period of inactivity) that could be mapped in the field or remotely. 

- Same types of landslide movement may result in similar landslide footprints.  

- Principle of historical recurrence of landslides implies that the landslides are likely to 
reoccur on the same location, once activated in the past. 

- Principle of uniformitarianism (past and present are keys for the future) implies that 
the slope failures are more likely to occur under those conditions that have led to 
instability in the past or at present at other, environmentally similar locations. 

- Knowledge on landslides of some area can be generalized and expanded to other 
areas where similar conditions apply. 

- Implicitly, conditions that are not taken into account in the model do not change 
systematically in time or space (time/space invariant). 
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It is crucial to understand the limitations and conditions under which all these 
assumptions apply, and to single-out special cases and exceptions, to reach a common 
(standardized) level of resulting products: Landslide Inventory maps, landslide susceptibility 
maps, landslide hazard maps and eventually, landslide risk maps. These postulates are 
approved by conventions (Varnes 1984, WP/WLI 1995, Fell et al. 2008, Lynn & Bobrowsky 
2008, Gerath et al. 2010), as well is the concepts and methodology which are further to be 
described. This thesis, as well as the author's previous researches (Marjanović 2009, 
Marjanović et al. 2009, Marjanović 2010a, Marjanović 2010b, Marjanović & Caha 2011, 
Marjanović et al. 2011a, Marjanović et al. 2011b, Marjanović et al. 2011c, Marjanović 2012, 
Marjanović 2013) stand in accordance with the latter. 

3.3.1 Data Acquisition Issues in Landslide Assessme nt 
Data acquisition in the landslide assessment framework is usually classified in respect to the 
type of investigation, i.e. its methodology and technology (Lee & Jones 2004). One can 
easily separate among mining of the historical records, field mapping techniques, 
instrumental monitoring techniques and Remote Sensing techniques. Furthermore, one can 
speculate between old, conventional and new methods for data acquisition (Guzzetti et al. 
2012). These are all affected by the initial case study definition, i.e. required scale, level of 
detail, landslide size, mechanism type, configuration of the terrain, availability of the 
repositories, and they all bring about specific problematic, precision/accuracy issues, 
certainty issues and so forth. 

Common or conventional methods have been established for a long time and have 
been proven in practice, but yet suffer from specific limitations. 

Investigation of the historical records  is one of the necessary stages of any 
landslide-related endeavor. It includes not only familiarizing with the facts on the landslides 
over an area, but also facts on geology, geomorphology, climatology, seismicity, Land Use, 
history of disasters and so forth. It is also presumed that one needs to get familiar with 
features of the wider surroundings of a chosen area, in order to have a better perspective on 
regional and local conditions in action. Principal investigation of historical records includes 
analyses of historical topographic and geological repositories, where applicable. Surprisingly, 
newspaper and diary reports on disastrous events can also be very resourceful, especially 
for hazard analysis. They can contribute to the existing databases, but must be treated with 
caution and criticism in order to avoid misconceptions, and where applicable, to be confirmed 
by other plausible resources. Tracking in such, merely unsystematic context is much easier 
nowadays, in the era of digital information and global networking. In particular, there are a 
number of websites, web-services and blogs dedicated practically only to the “landslide 
journalism”, filtering-out all other, undesired journalistic contents (www.geoprac.net, 
www.geohazards.usgs.gov, www.landslideblog.org, and the most recent 
http://landsliderisk.wordpress.com) and there are also web tools such as RSS feeds and 
Google Alert and Google News for setting alarms for certain information in digital newspaper 
repositories.  

Field mapping , albeit geological, geomorphological or engineering-geological (with 
special aspect on the slope processes) is confined by the practitioner's observational field of 
view, perspective of view, which might be obscured by the urban or vegetation cover, or by 
more recent geomorphological entities (in the case of larger or older landslides). 
Interpretation of larger landslide sites is therefore rather difficult. The interpretational 
subjectivity is also present throughout the map design (estimation of the landslide shapes 
and spread and their compilation at different scales), which leaves final result somewhat 
uncertain. This is usually reduced to some extent by augmented borehole testing (core 
mapping, specimen sampling, groundwater level checking), laboratory testing, in-situ testing, 
geophysical probing and so forth, but it additionally affects the research budget. 
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Table 2.  Contemporary RS systems (after Guzzetti et al. 2012). 

satellite 

bands  

resolution [m] stereo mode 

revisiting time 

spectra # nadir off-nadir 

Landsat 7 pan 
r , g, b 
nir, swir, mwir 
tir 

1 
3 
3 
1 

15 
30 
30 
60 

- 16 - 

Terra (ASTER) gy, or 
nir, swir 
tir 

2 
6 
5 

15 
30 
90 

al 16 5 

SPOT 5 pan 
gy, or 
nir 
swir 

1 
2 
1 
1 

5 
10 

al/ac 26 5 

IRS pan 
gy, or 
nir 
swir 

1 
2 
1 
1 

5.8 
 
23 
70 

- 24 5 

ALOS pan 1 2.5 al 46 2 

RESOURCESAT 1 gy, or 
nir 

2 
1 

5.6 
5.6 

- 5  

CARTOSAT 1 pan 1 2.5 al 125 5 

FORMOSAT 2 pan 
r, g, b 
nir 

1 
3 
1 

2 
8 

- 1 1 

EROS A1 pan 1 1.8 al/ac 7 2.5 

IKONOS 2 pan 
r, g, b 
nir 

1 
3 
1 

1 
 
4 

al 3 1.5 

QickBird 2 pan 
r, g, b 
nir 

1 
3 
1 

0.6 
2.4 

al 3.5 1 

WorldView 1 p 1 0.5 al 5.4 1 

GeoEye 1-2 pan 
r, g, b 
nir 

1 
3 
1 

0.4 
1.6 

al 8.3 2.8 

R=red, G=green, B=blue, OR=orange-red, GY=green-yellow, nir=near-infrared, swir=short-wave-
infrared, mwir=mid-wave-infrared, tir=thermal-infrared, al=along-track, ac=across track 

 

Visual interpretation of aerial photographs  by using stereoscopic techniques and 
equipment is also a well-known conventional method, which overcomes synoptic issues, 
allowing the practitioner to observe much wider areas with better perspective. It is also 
affected by presence of vegetation or infrastructural and urban objects (especially for shallow 
landslides and debris flows). In contrast to field mapping, the analysis is relatively easily 
combined and compiled across different scales (with some georeferencing difficulties due to 
the spherical geometry of acquisition which needs further orthogonal re-projection), and 
seems independent of field conditions (apart from the final evaluation stage, which requires 
certain amount of field work and therefore depends on field conditions). As for the 
subjectivity, it is even more pronounced than in the field mapping techniques due to the 
individual visual perception capabilities. However, some standard criteria for landslide 
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recognition do exist2, thus uncertainty prevails only to some extent. Important benefit is 
possibility of analyzing different time series and scales (some countries have multiple records 
in different scales, from several periodic surveys, usually restricted in repositories for military 
purposes or other purposes in different national institutions). 

New methods for data acquisition primarily involve novel Remote Sensing (RS), field 
(in-situ) and surveying instrumentation technologies (Savvaidis 2003), complemented by 
according software and hardware development in order to support their full capability. 

Contemporary RS  came along with the advent of the high-tech satellite technologies 
and several Earth Observation programs. New opportunities have been introduced by 
widening perceptional capabilities with new sensors, focused at different parts of wide 
electro-magnetic spectrum (Tab. 2). Since unprecedented parts of the spectrum became 
available, new spectral features have been exploited. From the most recent perspective, the 
latter involve global coverage by multi-channeled sensors, i.e. multispectral and 
hyperspectral sensors for visible, but also infra-red and thermal spectral domains, as well as 
microwave sensors, with unparalleled spectral, temporal and spatial resolution. At airborne 
and terrestrial level, microwave and laser techniques appeared and brought unprecedented 
precision. These involved Light Detection and Ranging (LiDAR) and Side Aperture Radar 
(SAR) techniques, particularly interferometric (InSAR), differential interferometric (DInSAR) 
and polarimetric techniques (PolSAR), as well as Small Baseline (SB) and Permanent 
Scatter (PS) techniques (Ferretti et al. 2007). These approaches (LiDAR and InSAR in 
particular) have promoted surface-based monitoring, since systematic, high-resolution, on-
demand surveys became possible. This facilitated production of high resolution Digital 
Elevation Models (DEM), allowing near-real-time tracking of surface deformation, by imaging 
at desired temporal frequency (temporal resolution). Geophysical satellite/airborne systems 
also fall in this group, providing even more details on the geological and physical conditions 
of the terrain (by means of different gravimeters, accelerometers, magnetometers, gamma-
spectrometers and so forth). Further upgrades in RS technology can be expected principally 
due to the increase of the spatial and spectral resolution, conditionally temporal too, since 
many satellite programs today tend to satisfy the principle of data continuation (e.g. Landsat 
series) so that their data could be considered compatible with the missions that they have 
substituted. Benefits of using RS techniques in landslide assessment are multiple, including, 
but not limiting to: synoptic view, georeferenced data, lower expense of research, 
encouraged raster modeling approach, possibility of quantitative modeling method 
implementation (pixel and object-based classifications implementation, pixel and object-
based classifications through combination of advanced statistics and Machine Learning with 
GIS) and therefore reduced subjectivity in design, possibility for urgent response and Early-
Warning Systems for disastrous landslide events, even enabling on-screen visual 2-3D 
analysis, via special hardware/software configurations (Guzzetti et al. 2012). Special 
attention in the most recent technology is drawn by the unmanned vehicles and micro-
vehicles, which are capable of producing high-resolution imagery at extremely low cost. 
Limitations on the other hand, are mostly technical: unavailability of specific sensor at the site 
(particularly, pricey and rare airborne/terrestrial LiDAR and SAR data), relatively short 
operational history of RS programs (only several decades, through which the data are not 
entirely consistent in terms of resolution and other technical features), and therefore limited 
applicability for temporal (hazard) framework. It is probably the most advisable to combine 
novel RS techniques and conventional aerial photography in order to achieve the optimal 
acquisition. 

Field ( in-situ) instrumentation , often referred to as geotechnical instrumentation, 
has also undergone some technological improvement, primarily toward near-real-time and 

                                                
2 Criteria for geomorphological landslide signature exist and usually include: shape, size, tone, color, 

texture, pattern of shadows, pattern of objects, overall topography and setting. It is assumed that 
occurrence of landslides causes characteristic optical properties of mentioned elements. 
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real-time data acquisition and distribution, based on the advent of wireless and internet 
networking technology. In-situ measurements of displacements, carried out by standard 
inclinometers, tiltmeters, extensometers or electro-optical systems (such as Time Domain 
Reflectometry – TDR) with the highest precision (in mm), provides valuable information for 
the assessment of landslide activity. Moreover, it involved measuring of the physical 
parameters of the triggering event (rainfall amount/intensity/duration, earthquake magnitude, 
water table level/pore-water pressure etc. via pluviometers, seismometers and piezometers, 
respectively), working toward modeling of the trigger-landslide relation, which in combination 
with real-time data distribution eventually allowed development of Early-Warning Systems, 
crucial for the suppression and mitigation of the landslide risk. The major drawback is the 
equipment cost, together with the installation and maintenance requirements, and localized 
information, rarely transferable from one study area to another. 

Surveying  equipment has experienced improvements from several aspects including, 
faster acquisition time with sufficient precision, more precise optical-laser systems for 
distance measuring (which reimbursed field mapping precision), but mostly via Global 
Navigation Satellite System (GNSS) and synergy of Photogrammetric and high-resolution 
optical imaging (terrestrial, airborne and satellite). GNSS receivers tend to gain higher and 
higher precision, allowing very precise systematic surveys of chosen critical points of the 
terrain. In turn, the information on total 3D displacement of these points and possibility to 
model landslides at different scales are provided. Near-real-time, i.e. robotic total station 
surveys are rather experimental for now, but seem to meet the precision and efficiency 
requirements, and could be easily assembled alongside with the standard in-situ 
instrumentation. Less proficient mobile GNSS receivers are being regularly used as 
complementary equipment for field mapping, reimbursing for the subjectivity in the mapping 
process. They also complement the commercial digital cameras which enable better 
precision in photo-documentation of the landslide events. The only drawback of GNSS 
technology in such framework is its dependence on the terrain physiographic condition 
(configuration and setting, screening by vegetation cover and urban objects). On the other 
hand, reception of the satellite signal tends to increase with appearance of new missions 
(existing GPS and GLONAS systems are soon to be joined by GALILEO mission, which will 
bring more satellites in the GNSS constellation and accordingly, better reception on the 
ground). Photogrammetric survey advancements are simply related to the imaging (spatial) 
resolution of aerial and terrestrial sensors – higher the resolution, higher the precision. It also 
necessarily follows the advent of the associated software/hardware configurations. 
Nowadays, it is possible to use Photogrammetric technique to produce high precision DEMs, 
paralleling the quality of LiDAR-based or InSAR-based DEMs. Its principal limitation is the 
engagement of the practitioner, making it time-consuming and resource-intensive (Savvaidis 
2003, Guzzetti et al. 2012). 

It is probably the most advisable to combine as many of the acquisition techniques as 
possible and never to rely entirely on a single one. Those older, conventional methods, 
especially aerial photography interpretation, are not to be neglected among acquisition 
techniques, and should be cherished in the landslide assessment practice (Guzzetti et al. 
2012). Novel techniques, which are developing toward automatic (semi-supervised) landslide 
mapping, will hardly reach sufficient levels of certainty, since they face different, non-
compensable limitations unlike visual, expert-driven interpretation.  

3.3.2 Modeling Approach Issues in Landslide Assessm ent 
Once the data are chosen and structured, they need to be fed to a proper modeling method, 
where particular choices strongly influence the quality and type of the outcomes. Model's 
predictability is a feature which can be adopted as a criterion for distinction between two 
separate cases: temporally predictive and temporally non-predictive (spatial analysis) models 
(Brenning 2012), although in practical situations this distinction remains deficient, due to the 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

16 

tendency of obtaining more interpretable models (transition from predictive to non-predictive), 
thus mixing of the two. 

Predictive models are based on non-linear supervised classification problem upon 
spatial or temporal reference (Brenning 2005). In particular, predictive models can relate 
spatial conditions of an area with its past landslide occurrence, in turn localizing endangered 
zones in adjacent areas. Alternatively they can relate several generations of past 
occurrences within the same area and predict the future events. They both require that 
general principles and assumptions apply (see the postulates in Chapter 3.3) and also 
require certain structure and type of the data. It is for instance indispensible that analyzed 
areas contain thematic variables (Conditioning Factors), including geological, 
geomorphological or even geotechnical parameters on one hand, and reliable Landslide 
Inventory or multi-temporal inventory on the other. Even though the resulting model provides 
numerical, i.e. quantitative measure (usually probability of spatial/temporal occurrence), 
relative scoring is yet preferred due to the great deal of assumptions which trouble the 
quantitative way of expressing the landslide susceptibility/risk/hazard3. It is further advisable 
to treat a non-linear problem with non-linear techniques, even though the current practice 
has shown different, but this is probably due to the lack of cases with properly applied non-
linear techniques. Systematic comparative studies (Brenning 2005, Yilmaz 2009) hence give 
preference to linear or moderately non-linear techniques on behalf of both, their performance 
and their simplicity (in respect of time consumption and processing intensity). Implicitly, some 
advanced techniques, such as Machine Learning-based ones, turned less efficient than 
regression methods, discriminant analysis or even general additive modeling. This fact 
however, should not discourage experimenting with advanced techniques, on the contrary. 

In non-predictive approach the objective is realized through the spatial analyses of 
different thematic variables (Conditioning Factors), and chiefly involves determination of their 
total contribution to the landslide susceptibility/hazard/risk, by exploring the statistical relation 
between the factor and landslide occurrence (landslide presence/absence), but also the 
relation among themselves. They call for a simpler, i.e. less time/computation-demanding 
techniques, in order to be testable by statistical hypotheses. In turn, non-predictive approach 
comes up with quantified values of individual impact of each factor. Although these methods 
decrease the uncertainty by surpassing some of the assumptions that are commonly made in 
the predictive modeling, they tend to subject uncertainties through the data preparation, due 
to arbitrary/empirical rearrangement of the raw data (slicing/ranging continual data into 
intervals, transforming the data, quantifying non-numerical data and so forth). The most 
appreciated techniques involve multivariate statistical tools (e.g. different types of regression 
techniques), which fully explore statistical possibilities (to relate the Landslide Inventory with 
thematic variables, but also thematic variables among themselves), and different linear and 
non-linear tools (such as odds indexing, entropy scores, conditional probability weighting, 
and other general additive modeling techniques). Important benefit of this approach is its 
quantitative nature, which is relatively easily communicable to non-landslide experts, 
planners and decision-makers (Brenning 2012). 

One can alternatively discuss the modeling choice and brief the problematic which it 
brings, by accommodating a more conventional perspective. The most usual classification of 
methodological approaches sorts them into (i) heuristic/empirical or expert-driven, (ii) 
statistical and (iii) deterministic/physical. In respect to the preceding passages, only statistical 
methods qualify as predictive approach, but could also be enlisted among non-predictive, 
while the remaining two only qualify as non-predictive approaches. In brief, (i) use thematic 
data (variables such as geological, geomorphological, Land Use, infrastructure and so forth) 
and suffer from uncertainty related to the subjectivity of the practitioner in both, data 

                                                
3  Some assumptions are taken into account but some of the uncertainties usually remain 

unconsidered, and it is therefore disputable to measure susceptibility/hazard/risk in absolute 
quantitative scale. 
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preparation and modeling itself. Statistical modeling (ii) can suffer from uncertainty due to the 
data preparation, but the tendency of using advanced techniques, such as Machine Learning 
algorithms, might be helpful due to their capability of canceling-out these sources of 
uncertainty. Deterministic models (iii), regard only the simplest mechanisms (in regional 
scales) and introduce numerous assumptions into the modeling (Montgomery & Dietrich 
1994), thus their uncertainty is relatively high. In conclusion, it seems that statistical methods, 
especially the more advanced (predictive) ones turn out to be the most promising and least 
limited for the exploration, but they do not necessarily grant the optimal solution (Bonham-
Carter 1994). 

3.3.3 GIS Issues in Landslide Assessment 
Past few decades of landslide assessment had been witnessing paramount improvements in 
computer science and technology, eventually resulting in GIS. As GIS gained more attention 
in all spatially-featured disciplines, a prompt scientific evolution took place due to both, new 
possibilities for better data manipulation and more advanced modeling opportunities (Carrara 
& Pike 2008). This particularly applies to regional landslide studies, where geological, 
geomorphological and Land Use variables are preferred, unlike sight-specific studies where 
geotechnical parameters are required and sampled through a series of instrumental 
measurements and laboratory tests. 

A firm relation between a landslide occurrence and conditions which host it is 
accomplished through morphological features of the terrain surface. Thus, development of 
DEM through GIS and RS virtually led to the morphometric revolution by introducing new, 
unparalleled tools for surface features extraction and creation of novel thematic spatial 
layers, unachievable through conventional – analogue practice. Other geo-environmental 
features became available in digital format, and also came about as thematic layers in a GIS 
environment. Features within such layers, presented by point/line/polygon vectors or gridded 
in the case of raster formats, became analyzable, synthesizable, decomposable, combinable, 
scalable, in other words, fully spatially operable (Bonham-Carter 1994). However, with such 
great capabilities came even greater difficulty of suiting the data for a specific research. 
Using different data resources, types and scales brings about the data quality and 
compatibility issues, which are topics on their own, but will be regarded in approaching 
chapters and case studies (see Chapter 6.). 

Numerous modules onboard GIS platforms made majority of spatial modeling 
techniques available, including even complex, time/software/hardware-demanding 
techniques. These in particular include regression methods and Machine Learning 
algorithms. It is important to mention that raster format has made a major breakthrough for 
implementation of these advanced methods. 

Once properly prepared for the desired modeling concept4, raster formats allow bulk 
spatial information to become easily reproducible and directly accessible to different module 
demands, including filtering, sampling and calculating, while keeping the spatial reference 
consistent. Such flexibility put very demanding modules into play. To this end, strong efforts 
are made to aggregate more and more complex algorithms through GIS environment. 

Although the most critical GIS aspects in landslide assessment are presented above, 
it should be mentioned that GIS turned revolutionary for a number of other, more general 
innovations, valid for any spatial context, starting with the data structure. It allowed allocating 
each data input within a thematic layer, as well as its frequent editing/updating, networking 
and storing. It also allowed attributing practically unlimited amount of features to a single data 

                                                
4  Spatial/spectral/temporal resolution of the grid cell needs to be justified by the nature of a 

phenomenon, e.g. Landsat images are sufficient to monitor landslides bigger than 30 m in 
diameter, which leave visual imprints within the Landsat band spectra (VIS, NIR, SWIR, TIR), and 
do not change significantly over 16 days (repeat cycle of Lansat series). 
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input within each thematic layer, which had met even very demanding modeling 
requirements. The same applies to any thematic layer which is appended, while 
spatial/geometrical consistency among the layers remains persistent. The later is particularly 
important for working with time-series in hazard/risk assessment scenarios. This consistency 
is provided by georeferencing, i.e. attributing a particular geographical coordinate to each 
piece of information, making it always properly positioned in space, and therefore 
interoperable with other data and ready to subject to any desired spatial operation. GIS also 
became indispensible in terms of visualization of both, the input data and the resulting 
models. Once locally dense spatial information became much easier to visualize in 
multidimensional 2/3/4-D displays. In combination with web-GIS systems, global 
(GoogleEarth, BingMaps) or local GIS portals for different (usually administrative) purposes, 
landslide information became much better disseminated and visualized (Guzzetti et al. 2012). 

The most recent trends imply merging of Remote Sensing, (Geo)statistical and GIS 
platforms especially among the open-source communities (e.g. SagaGIS, GrassGIS, ILWIS, 
R, SEXTANTE, and many other platforms). This is beneficial for extending analytical power 
of a practitioner or assembling a cross-disciplinary team of practitioners to work under the 
same framework and achieve better communication, better interoperability and eventually 
better results. The downside of this increasing “user-friendliness” of GIS platforms is 
recognized in lack of criticism, particularly by neglecting the input data quality issues and 
focusing rather on the complexity of the data manipulation and model implementation 
(Carrara & Pike 2008). Data manipulation or modeling technique, however sophisticated, can 
never compensate for inadequate quality, scale or theme of the inputs, due to intrinsic error 
that is continually replicated within. On the other hand, data availability and open-source 
policies are one of the most significant issues in research budget design, and lack of 
affordable data could lead to the decreasing of assessment quality, but this is rather financial 
than scientific issue to discuss. 

3.3.4 Other Issues in Landslide Assessment 
Although a couple of preceding passages revealed the most critical concerns in landslide 
assessment framework, there is still suffice of other issues in landslide problematic, ranging 
from scientific, practical, technical, to social speculations. 

Uncertainty is definitely one of the major issues for plausibility of resulting landslide 
models. It can originate from the data, from the modeling procedure choice and from the 
environment (real-world conditions). The former two were partly discussed before (see 
Chapter 3.3.1 and 3.3.2), but some specific details are to be emphasized: 

Fuzziness and randomness are omnipresent in measured/imaged spatial data and 
contribute to the total uncertainty. Fuzziness is contributing by appending local imprecision, 
while randomness contributes by preventing regularity in patterns of distribution of data 
values. Both are especially pronounced in noised, biased or skewed data. In the case of non-
predictive modeling, these sources of uncertainty can be treated and taken into account 
through the probability theory. 

Incompleteness is nourished by oversimplification in the modeling stage. Landslide 
assessment has many assumptions (see the postulates in Chapter 3.3) and therefore it is 
highly affected with simplification (especially in deterministic modeling). One delicate issue 
within is the exclusion of conditionally unimportant data. There is a debate (van Westen et al. 
2006, Carrara & Pike 2008) on whether any data shall be excluded, even if biased. On the 
other hand, some data are not excluded on purpose, but due to the lack of resources for the 
corresponding phenomenon (e.g. involving parameters of the trigger, geotechnical 
parameters, weathering parameters, soil thickness or groundwater parameters might be 
critical for yielding a reliable model, but having them sampled at regional scales is inapt due 
to the intolerable costs and strong distributional variability) or it is simply unforeseen as a 
pertinent factor by mistake or insufficient knowledge. 
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Environmental or real-world uncertainty is highly unpredictable and includes 
consequential actions of administration, public or individuals (conscious or subconscious 
deeds that can deliberately drive even high quality predictions off the course), and which are 
impossible to account for. This applies in both directions, actions in the future, which are 
impossible to specify, and actions from the past (especially from a long time ago), which 
have remained unknown. Due to this dimension of uncertainty, the further away one is from 
the present moment higher is the difficulty to predict landsliding (Lee & Jones 2004). 

Quality check of data and results is another important issue, which troubles the 
production of reliable landslide susceptibility/hazard/risk maps. Data quality check is a 
necessary step, particularly due to the rising resourcefulness in contemporary researches 
(data from different scales, different spatial reference, different geometries, different 
precision and level of detail), but it is this plentitude of resources that limits possibility to 
standardize and objectify the quality check. Two basic quality check requirements should be 
met: appropriate strategy for model performance evaluation and actual valorization of the 
model (van Westen et al. 2006, Carrara & Pike 2008, Brenning 2012). It is hence 
recommendable to propose spatially-driven sampling strategy (which applies only for 
predictive models), for distinguishing training-testing-valorization sets within a model by a 
meaningful physical (spatial) splitting. For non-predictive models, the evaluation is intrinsic, 
governed by the statistical confidence intervals attached to the particular technique. Actual 
valorization of the model implies its confirmation through time, and particularly concerns 
hazard/risk models due to their temporal dimension. 

Most of the times practitioners are more concerned with their modeling choice, while 
attempting to design the best model to suite the universal circumstances, which is most likely 
futile, assuming that the best model is the most complex and robust one (Carrara & Pike 
2008, van Westen et al. 2006). Instead, the above mentioned result and data quality check 
might be an apt response to the particular problem posed before them. In some cases the 
Occam’s razor directly applies, so that the simplest solution – the simplest modeling method 
can provide optimal solution. It would provide the optimal balance between the quality and 
complexity of the model (Lee & Jones 2004, Brenning 2012). 

Another peculiarity due to the resourcefulness of the data comes along with the rising 
popularity of RS products in landslide assessment (aerial photographs, multi/hyperspectral 
satellite imagery, LiDAR and SAR products, i.e. DEMs, Principal Components, different 
indices such as ratios, vegetation indices, change detection indices and so forth). Usage of 
raw products is the easiest but irresponsible solution, since each one of them contains 
intrinsic noise, which foremost requires determination of its type, quantity and propagation. 
Subsequently, noise filtering is managed through image preprocessing, i.e. pansharpening, 
orthorectification, coregistration and radiometric correction, in this respective order (Mondini 
et al. 2011). Working with initial noise is qualified as a systematic error and will affect, 
perhaps even sabotage the model. Working with time series in the case of hazard 
assessment further perplexes the problematic by requiring pre-event and post-event noise 
filtering, as well as technical consistency in acquisition (images need to be taken in very 
similar conditions, such as view angle, altitude, mode of the sensor and also in compatible 
meteorological conditions). 

Temporally dependent assessment (hazard/risk) also suffers from the possible 
misdating of a landslide vs. trigger(s) records and it is therefore usually reduced to 
separation of pre/post-event observations. The latter introduces substantial temporal 
tolerance, during which pertinent changes among Conditioning Factors could have taken 
place (with the exception of geological setting and to some extent, geomorphological 
features, but with the emphasis on Land Use). Postulate of temporal/spatial invariant (see 
the postulates in Chapter 3.3) is therefore merely plausible (Brenning 2012). 

One important research hint infers distinction of the landslide assessment according 
to the landslide typology, because different landslide mechanisms, e.g. debris flows and 
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deep-seated slides, will exhibit completely different behaviors, but more importantly, will be 
induced under different circumstances in respect to the Conditioning Factors and Triggering 
Factors. For this reason alone, it is advised to assess only one landslide type at a time, and 
eventually combine these separate assessments later on (van Westen et al. 2006). It is 
further advisable to concentrate on characterization of the depletion areas, since they host 
the slope failure, while the accumulation zone is only the collateral result of the posterior 
downward movement, and its characterization does not lead to the real cause of the failure. 
Such division is rather difficult in regional studies, due to the size of the occurrences and 
spatial continuity of source and accumulation, but yet feasible in some cases (Guzzetti et al. 
1999). 

Difficulties also arise from purely technical causes, such as the lack of independent, 
long-lasting, institutionalized landslide agencies on national level, which would focus on all 
the aspects of landslide problematic, including their assessment and provide the research 
continuity. At present, individual projects at universities or institutes are treating this problem, 
but only during the project lifetime. At best, there are cases where multi-scaled and nation-
wide researches are involved, but most commonly landslide assessment is disconnected into 
separate case-studies, and focused on very specific project objectives, rather than revealing 
of the fundamental breakthroughs in landslide knowledge (van Westen et al. 2006, Carrara & 
Pike 2008). 
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4 Related Work 

It is rather difficult, if even feasible to systematically and chronologically summarize all 
published landslide assessment references. Some earlier attempts to systematize the 
landslide literature could be found (Aleotti & Chowdhury 1999, Chacón et al. 2006), but even 
these were focused on particular topics. Contemporary volumes of literature would be 
probably much more challenging to review, thus eventual systematization of such kind would 
probably end-up in even stronger secession of topics,  e.g. review of contributions in 
susceptibility/hazard mapping domain only, or in risk mapping only, only in GIS-based 
modeling or in input data evaluation or evaluation of the model. The following passages are 
therefore intended for reviewing only those critical contributions in landslide 
susceptibility/hazard mapping, which radicalized landslide assessment practice and 
pioneered advanced methods, particularly Machine Learning-based ones. Hereupon, the 
work which turned out to be the most inspiring for research design and the topic of this thesis 
are to be scrutinized in greater detail. 

Early works in the GIS-based landslide susceptibility assessment came along as the 
GIS software/hardware components became more available to practitioners, i.e. as the 
related field of computer science has emerged in 1970's (Brabb et al. 1972). Pioneering 
attempts involved simple solutions including heuristic and simple statistical non-predictive 
models, but these rapidly changed toward the implementation of more sophisticated 
mathematical and statistical models. Availability of digital formats of previously analog input 
data, such as topographic, geological and geomorphological maps, subordinately, Land Use, 
pedological, seismic maps and so forth, propelled implementation of statistical methods via 
GIS. One of the most productive groups, gathered around IRPI institute in Italy, with Guzzetti 
as the most cited author in entire landslide assessment literature (Gokceoglu & Sezer 2009), 
have contributed in domain of GIS-based statistical assessment approach since their early 
opus (Guzzetti et al. 1999, Guzzetti et al. 2000), but also kept perfecting their practice till 
present (Rossi et al. 2010, Brunetti et al. 2010, Guzzetti et al. 2012). Copious as it is, their 
work is difficult to present in detail, but several points are to be discussed hereafter. Their 
early practice regarded the basic capabilities of GIS-based landslide analyses, and more 
importantly, the choice and the manner of partitioning of the slope units, prior to the analyses 
(Carrara et al. 1991). These are being developed on the basis of geomorphological and 
watershed analyses and have been further improved (Carrara et al. 1999, Guzzetti et al. 
1999). Another important issue addressed in this early stage regarded the importance of 
Landslide Inventory (its certainty and quality), thereto speculating capabilities of producing 
multi-temporal inventories for hazard assessments (Malamud et al. 2004). Such thematic 
was recently revisited, and resulted in a very systematic perspective on inventory 
problematic (Guzzetti et al. 2012). Their practice sublimed in a series of articles and case 
studies where optimal techniques (according to their findings) have been practiced (Rossi et 
al. 2010). Numerous case studies from various aspects have been subjected to their 
practice, but the focus was on central Italy (Umbria region), where all of their breakthroughs 
were first experimented. Meanwhile, they have contributed toward the development of 
national landslide information system and Early-Warning System for rainfall-triggered 
landslides, which became the principal preoccupation of the group henceforward (Guzzetti et 
al. 2007, Guzzetti et al. 2008). Finally, some contributions regarding the state-of-the-art 
technology attract attention, principally involving various InSAR and integrated GNSS 
techniques (Guzzetti et al. 2009, Santangelo et al. 2010). In conclusion, the most relevant 
findings that relate to the topic of this thesis regard the sampling strategy, which suggests 1:2 
size ratio between the training and testing samples (Rossi et al. 2010). Despite of introducing 
the bias in the testing sample, such ratio ensures the robustness of the model, which has 
been acknowledged by the thesis author in his preceding work (Marjanović et al. 2011a,b). 
Another good example of the influence of this group is featured through the selection and 
manipulation of the input data (Guzzetti et al. 2006, Rossi et al. 2010). In particular, the 
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group has committed very exhaustive work on defining relevant data inputs, ranging from 
essential geological, geomorphological and environmental layers5, through their conceptual 
derivates6 and statistical/computational derivative variables7. Due to the different approach in 
appreciation of the base unit by the thesis author (the grid cell approach over slope unit 
approach has been preferred in this work), the input data strategies presented by the group 
could not be directly adopted in the thesis case studies, but they have been proven 
indispensible for any true hazard assessment and turned inspiring for the future work of the 
thesis author. The group has thoroughly implemented various landslide susceptibility 
modeling techniques by means of predictive modeling, and their experience is duly noted. 
Another very original finding on behalf of this group is the combination of the forecasts, i.e. 
the optimization of the multiple models by means of the ultimate supervised classification, 
which turns to be a very inspiring proposition for model post-processing, particularly when 
multiple modeling methods are in use (Rossi et al. 2010). Regardless to the introduced bias 
by domination of specific individual models in the final classification, and occasionally better 
performance of individual models over the post-processed one, higher certainty is achieved 
in post-processed models (because of the lower standard deviation rate) than in individual 
models (Rossi et al. 2010). Finally, the group suggested extensive qualitative/quantitative 
performance evaluation by always using several statistical descriptors (κ-index, ROC, 
bootstrapped error) and emphasizing the role of False Negative error in model's 
predictability, which is also adopted by the thesis author (Marjanović 2013). 

Another prominent group, gathered around Joint Technical Committee on Landslides 
and Engineered Slopes (JTC-1), has been experimenting over numerous case studies world-
wide, and has included different methodological aspects and has processed voluminous 
problematic in order to optimize susceptibility/hazard/risk assessment. Their long experience 
has sublimed in form of the guidelines for further researchers (Fell et al. 2008). Their range 
of interest goes from basic assessment, i.e. landslide zoning to advanced monitoring 
techniques, mitigation measures and management toward better Land Use planning. Yet, the 
accent was always on rainfall-induced landslides, involving rainfall in combination with 
groundwater interplay as a triggering mechanism for all slow moving (Cascini et al. 2010a) 
and flow-like landslides (Fell et al. 2007, Cascini et al. 2010b, Cascini et al. 2011), as well as 
for rockfalls (Corominas et al. 2005, Mavrouli et al. 2009), wherein the group has exhibited a 
significant amount of modeling. Particular attention has been directed and significant 
contribution for future researchers has been introduced in their work on the problematic of 
scale (Cascini 2008). Possibilities for differently-scaled landslide zoning were scrutinized, 
and involved the problems of different data sources and different modeling techniques at 
different scales. Their guidelines have since been adopted by the most of the researchers, 
including the thesis author (Marjanović et al. 2011a,b). Another authentic contribution that 
could be linked to the group is regarding the analysis of the landslide frequency, i.e. mostly 
rockfall frequency via dendrochronology (Corominas & Moya 2010), as a significant step in 
transition from susceptibility toward hazard assessment. The group in general, rather prefers 
deterministic approach in landslide modeling and concentrates on shallow and flow-like 
landslides. The latter involves a very complex geological environment, represented by 
unsaturated soils8, which entails further complexity in the laboratory experimenting stage 
(special conditions, longer experiments, special equipment). In compensation, 

                                                
5  Variables like lithological units, slope units – hydrogeological units, Land Use and so forth. 
6  Geological domains layer in particular, which are derived by combining geological maps and aerial 

photograph interpretation and relate the bedding attitude to the slope inclination. 
7  Various morphometric sub-variables, different buffers, means and standard deviation and other 

statistical descriptors of original variables. 
8  Acknowledging that the soil exists through all its phases: solid, liquid and air, instead of 

approximating to the solid and liquid only. 
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acquired/measured parameters tend to be more realistic, and therefore improve the 
reliability/certainty of their models (Sorbino et al. 2010). 

Deterministic approach in landslide assessment has been pioneered relatively early 
(Montgomery & Dietrich 1994) and there have been several succeeding developments 
involved. They all gradually perplexed the model and introduced more variables, by 
decreasing the number of approximations, but their reach in applicability has been disputed, 
i.e. limited to a very specific, homogeneous ambient and conditions, very rarely present in 
actual terrains. Recent attempts (Cotecchia et al. 2010) have been led by the experts in clay 
mechanics and slope stability, and proposed a very interesting, but complex solution, which 
combines regional variables with site-specific variables in a GIS database (specially 
designed to enclose both regional and site-specific data). The assessment is conducted by 
using different level of analysis (ranging from 1st level – preliminary heuristic analysis, 2nd 
level – limit equilibrium modeling to 3rd level – advanced numerical modeling by Finite 
Elements) in two stages: acquisition (identification of relevant pre-Conditioning Factors at 
regional scale – geological, geomorphological, environmental, but also at site-specific scale – 
geomechanical and hydraulic properties of the geological units) and selection (which entails 
defining of representativeness of particular sites). Throughout the first stage, different geo-
hydro-mechanical set-ups are determined across the entire area, as well as different 
landslide mechanisms, to be subsequently generalized as representative for that area of 
interest in the second stage of the research. Once detected representative, they are to 
become principal concern of the 2nd–3rd level analysis, through which their general trends 
and overall characteristics are then either confirmed and extended to a wider area (with 
similar setups), either denied (Cotecchia et al. 2010). Such approach has not been exploited 
in its full extent, and many additional case studies, with many different geological 
configurations are necessary for the future affirmation of the approach, or its definite 
abandoning. In conclusion, the deterministic approach, remains an open issue, and remains 
a promising foreground for future investigators, which is why it has been partly integrated in 
this thesis. 

Further fruitful ground for landslide assessment research turned out to be a 
combination of pure statistical and heuristic models. There have been several authors who 
have revisited the heuristic methods since the very first attempts at the very beginning of the 
GIS-based landslide assessment practice, as they combined/matched them together with 
statistical methods, claiming that heuristic touch introduces the necessary non-linearity into 
otherwise very ordered statistical models, i.e. they mirror the uncertainty imbedded in each 
thematic layer, and therefore yield better accuracy in resulting susceptibility or hazard maps 
(Ercanoglu et al. 2008). Komac is to be singled-out as the author who has gone the furthest 
distance in combining of the two, heuristic and statistic approaches. His PhD project and 
associated articles are to witness his efforts in refining their relation, even though his 
expertise extends beyond susceptibility/hazard/risk assessment scope, and relates to 
engineering geological mapping, development of national (Slovenian) geological information 
system, and some other fundamental geological applications, applied Remote Sensing and 
environmental applications (Komac 2003, Komac 2005). In his work landslide susceptibility is 
approached by several aspects, regarding acquisition and building of the Landslide 
Inventory, data preprocessing and feature selection, and finally, heuristic analysis, paralleled 
and compared by statistical analysis. As for the acquisition, the advanced image fusion9 
techniques are proposed for apparently, quite accurate landslide detection and successful 

                                                
9  Medium resolution satellite images are herein combined with the high-resolution orthorectified 

aerial photographs. Principal Components of satellite images are extracted and PCA fusion 
(replacing the first PC by high-resolution image) was performed. Subsequently, reverse PCA 
transforms components back to the original satellite bands and an improved band stack is 
obtained. Unsupervised classification over such stack, by RGB clustering method then takes-over, 
and finally gets transformed into CIE L*a*b* color model, producing numerous color composites. 
Generated classes from composites are then aggregated to only those related to landslides. 
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semi-automatic generation of the Landslide Inventory (Komac 2005) under given 
circumstances (conveniently the vegetation and urban cover were not abundant in his study 
areas). The author was also very dedicated to the input data pre-processing, by 
implementing laborious univariate statistics to rank each spatial data layer and determine its 
significance to the landslide occurrence. Even though it is not always supported due to their 
possible influence in the multivariate statistics stage (van Westen et al. 2006) the author 
turned to exclusion of insignificant variables to reduce computational cost. Further, 
multivariate statistics are typically involved in his practice, but what is exceptional is the 
parallel involvement of multivariate statistics in heuristic model, such as Analytical Hierarchy 
Process (AHP). More precisely, AHP matrix indices, obtained through the multivariate stage, 
are challenged against purely heuristically10 chosen indices in the AHP engine (in a GIS 
environment). According to the standard deviation, the maps coming from this model yield a 
higher accuracy and higher certainty, as indicated above. However, the author also turns to 
the calculation of hazard, but only by estimating the spatial probability, i.e. by reclassifying 
the generated susceptibility map, which is inconsistent with the hazard definition. Such 
choice is even more unusual if one learns that the repositories used in the research have 
relatively consistent temporal dimension (dated displacements), thus providing elements for 
multi-temporal approach via landsliding frequency, instead of speculating probability via 
standard deviation. The author further tends to evaluate the societal landslide risk over the 
area by overlaying population distribution and road infrastructure (as GIS layers) to the 
hazard maps, and qualitatively describes the proportions of endangered and risk-free areas 
(Komac 2006). Having in mind the aforementioned shortcomings of the hazard maps, these 
risk qualifications are also to be regarded with some reserve, but the author's authenticity 
and expertise in the susceptibility part is indisputable. As a paradigm in this thesis research 
the heuristic approach has been integrated and its applicability has been speculated, as well 
as in the author's previous work (Marjanović 2009, Marjanović et al. 2009, Marjanović 2010b, 
Marjanović & Caha 2011, Marjanović et al. 2011a, Marjanović 2013). 

Weather using ordinary Fuzzy Sets, or fuzzy measures, or even combining fuzzy with 
other statistical or classification approaches (Dempster-Shafer, k-Means, Neural Networks) 
the ultimate advantage of fuzzy approach is recognized in providing a substantial possibility 
for standardization of the analysis, since Fuzzy Logic procedure tends to be repeatable, 
adjustable and reliable (Jiang & Estman 2000). When it comes to the landslide assessment 
analysis in particular, a number of researchers have applied fuzzy approach to handle the 
embedded non-linearity. The Himalayan terrains were addressed in many investigations with 
Fuzzy Set Theory background, starting from standard Fuzzy Set approach (Chamaptiray et 
al. 2006, Kanungo et al. 2009, Srivastava et al. 2010),  through combinations of ANN-fuzzy 
(Kanungo et al. 2006) and risk-oriented fuzzy approach (Kanungo et al. 2008). Most of these 
studies agreed that plausible susceptibility models could be obtained by cautious application 
of fuzzy operators, with preference toward Cosine Amplitude method for obtaining 
memberships. Very similar conclusions with analogue methodology have been drawn in 
Iranian case studies (Tangestani 2004), and in Turkey (Ercanoglu & Gokceoglu 2006), China 
(Wang et al. 2009), and so forth. The latter is also interesting in respect of harmonizing 
expert-based and fuzzy-driven solutions, inferring that one does not exclude another, but 
supports it. Regmi with his research team (Regmi et al. 2010) has conducted one of the most 
consistent investigations, where many different fuzzy configurations were put to the test. 
Detailed elaboration of the choice of fuzzy operator type, optimal fitting of gamma operator 
as a method of preference, and some suggestions on handling multi-type landslide cases, 
can be found in that research. In addition, most of the researchers encourage the usage of 
the fuzzy method in other, similar (mountainous regions with flows and falls as dominant 
landslide types) or entirely different ambient, worldwide. The thesis author has been 

                                                
10  This means “not arbitrarily”, but by interviewing relevant experts through standardized 

questionnaires, as proposed by AHP methodology (Saaty 1980). 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

25 

practicing such methods under the influence of findings of aforementioned researchers 
(Marjanović & Caha 2011). 

Finally, the "advanced" methods used in landslide assessment are to be addressed 
hereafter. These are including the same methods termed "advanced" throughout this thesis 
and used in the thesis case studies, i.e. Multivariate Statistics and Machine Learning. 

New solutions for non-linear classification problem were recognized in Machine 
Learning techniques such as Logistic Regression, Decision Trees, Artificial Neural Networks 
(ANN) and Support Vector Machines (SVM). 

Logistic Regression has a longer tradition in natural hazard assessment, and 
landslide susceptibility is not an exception. It has been proven successful in numerous case 
studies, but lately it is being broadly challenged by other Machine Learning approaches. 
Logistic Regression has usually been involved in comparative case studies, but there are 
several contributions dedicated to Logistic Regression in greater detail (Falaschi et al. 2009, 
Bai et al. 2010). Their findings are confidently promoting the method as very reliable and very 
convenient in the landslide assessment framework. In extension, a very interesting approach 
has been proposed in a Southern Norway case study (Erener & Düzgün 2010), in which 
Geographically Weighted Regression variants have been utilized together with Global 
regression models (Logistic Regression and Spatial Regression). They have revealed that 
Geographical Weighting, i.e. incorporating spatial correlation structure in regression, aids 
global regression models and enhances their predicting performance. 

Decision Trees are often denoted as classification data mining algorithms that reveal 
complex relation between the elements (instances) in data structure. The advantage is that 
those algorithms are not true black-box models like ANN or SVM algorithms (Hwang et al. 
2009). Instead, obtained hierarchical relations are observable in the most of the cases. There 
were a few attempts to utilize Decision Tree algorithms within the landslide susceptibility 
framework. In the case study from the South Korea (Hwang et al. 2009) very extensive work 
has been applied to the national database of engineered slopes. All the abovementioned 
authors yet admit that the task turned distasteful, due to the imperfections and more 
importantly, the size of the database, but they were persistent in their goal to rule-out the 
most important attributes. Another coupled case study from Japan (Saito et al. 2009) 
encountered similar problem that was handled by automatic and manual filtering of the 
database for incomplete or unwanted content. The ranking of the database attributes was 
required prior to the implementation of the decision tree algorithm. The algorithm then 
examined how chosen attributes were related to the Landslide Inventory. Their potential is 
more related to the Expert Systems design since the most of the Decision Tree techniques 
give an insight into the particular conditions that are potentially correlated with landslide 
occurrences (decomposing the tree to a congregation of rules gives an insight into the 
attribute-landslide relationship). Both studies came to a similar conclusion that some 
important relations could be ruled-out (even though expected, as in the case of the seepage 
and precipitation relations to the landslide occurrence) but majority of relations remained too 
complex for interpretation. Both of the studies have resulted in a proper landslide 
susceptibility replication based on modeled rules with some 70% of accuracy. One 
comparative study (Brenning 2005), which will be addressed in greater detail later on, 
asserts that Decision Tree method copes with overoptimistic assessments due to the overfit 
of the input data (even if  the data are pre-processed and filtered), so the study preferred 
SVM and Logistic Regression models as alternatives to the Decision Tree. 

One of the most popular and most broadly used Machine Learning technique in the 
landslide assessment field is multi-layered feed-forward (neurons are processed from one 
layer to another) ANN with back-propagation learning algorithm (Lee et al. 2007). Among the 
numerous case studies some pioneering works as well as the comparative studies are here 
to be mentioned. Initially, the problem of multi-dimensionality and non-linearity of input data 
were solved by prediction of system’s behavior with ANN algorithms, rather than by its 
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complex and never complete mathematical or statistical model. This has been first 
experimented in the case studies in South Korea (Lee et al. 2004) where ANN procedure, 
trained over likelihood ratio result obtained fairly precise susceptibility models. Therein, 
overfitting had been addressed as a serious drawback and usage of independent testing 
area (not included in the training stage) was suggested as a precaution measure. As in the 
most of the other studies (Aleotti & Chowdhury 1999, Ermini et al. 2005, Kanungo et al. 
2006, Caniani et al. 2008, Nefeslioglu et al. 2008), the utmost advantages of the method 
included: no need for particular data distribution, mixing of ordinal and nominal data and the 
generalization power of the algorithm. The drawbacks were recognized in GIS integration 
issues, time-consuming data preparation (data normalization), sometimes very demanding 
fitting of the parameters of the Neural Network and associated optimization problems of the 
back-propagation learning algorithm, and durable evaluation period. In comparison to the 
other methods (Logistic Regression, cluster analysis, fuzzy approach etc.) in mentioned 
studies, ANN was characterized as significant and perspective technique in the landslide 
susceptibility and hazard evaluation. 

The practice of SVM in geo-spatial modeling has quite recent history. Pioneering the 
application in landslide susceptibility (Yao & Dai 2006, Yao et al. 2008) compared single-
class vs. two-class (binary) SVM in the Hong Kong area. The authors demonstrated how the 
latter provided better conditions for algorithm training and testing, since it is clearly favorable 
to know both, where landslides exist and where they do not. Naturally, this brings about 
whole another dimension to the problem, since geotechnical engineering practice turns more 
reliable in determining where landslides occur than where they are being absent. Another 
study (Yuan & Zhang 2006) regards only one aspect of the landslide phenomena, i.e. the 
debris flows, by comparing SVM and fuzzy approach. Since it outperformed fuzzy method in 
the testing mode, SVM method was considered appropriate and more convenient for this 
kind of assessment in the area of interest (Yunnan Province, China). In the framework of 
geotechnical engineering, but from another - deterministic modeling aspect, SVM was used 
to overcome the calculation difficulties of implicit expressions of Safety Index (and derived 
Factor of Safety) (Zhao et al. 2008). SVM was used to predict Factor of Safety in several 
scenarios, and proved effective for the slope reliability analysis. This aspect of SVM is 
certainly more interesting in site-specific scale, where deterministic slope stability models 
prevail over statistical or probabilistic methods. SVMs were also proven suitable for large 
scale geological studies involving 3D modeling of geological bodies from the drill core data 
samples (Smirnoff et al. 2008). Nevertheless, similar philosophy could equally hold true in 
the case of geotechnical 3D models, for advanced thematic interpolation, be it particular 
geological stratification, groundwater table or stress and strain distribution. Thus, as long as 
there are methods to measure and monitor parameters of subsurface conditions, SVM 
seems to be capable in retrieving proper interpretation after optimal training over measured 
data. The use of SVM in geotechnical engineering for the seismic liquefaction phenomena 
assessment (Goh & Goh 2007) presented another aspect of large scale geotechnical hazard, 
solved in similar fashion, but the authors were not satisfied with revealing only the potential 
of liquefaction, not knowing the internal relations of the input seismic parameters that had 
driven it, and they intend to particularize that problem in the future. Piling-up the individual 
case studies usually turns problematic, since the scholars point out to the specific merits or 
shortcomings (Carrara & Pike 2008). It is rather comparative researches that are illustrating 
true value of the method. Few contributions have been made in this sense. The first to 
mention concerned a case study from the Ecuadorian Andes (Brenning 2005) by employing 
Logistic Regression, Decision Trees and SVM. The author emphasized the necessity of 
thorough input data preparation, and pointed to the overoptimistic accuracy of the Machine 
Learning techniques, yet turning less efficient than Logistic Regression model. Finally, more 
recent comparative research appeared (Yilmaz 2009), giving a very complete perspective on 
the landslide assessment methodology. Various modeling methods have been considered 
and compared, including ANN and SVM Machine Learning. The study shows, that several 
methods turned very precise and efficient. However, it also underlines the GIS compatibility 
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issue as a serious drawback. Those last two studies gain gravity for their practical 
contribution, as the first ones to compare various approaches and to analyze their suitability. 
Subsequently, a host of researchers, including the thesis author, have been attracted by 
these findings, and encouraged to experiment with SVM on their own, albeit in typical 
landslide susceptibility framework (Yao et al. 2008, Marjanović et al. 2011a) or in more 
specific cases, involving particular landslide mechanisms (Xu et al. 2012a,b). Relevance 
Vector Machines (Tipping 2001) is another quite similar classifier and regression module, 
which surpasses the SVM drawbacks by introducing probability of classification, similarly as 
Logistic Regression does. Even though there have been attempts to apply RVM in 
classification and regression scenarios (Samui et al. 2011), the method seems to be 
unexploited, yet very promising for some future attempts. 
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5 Methods and Procedures  

This chapter is structured in several subsections which depict implementation of different 
methodologies at different stages of the research, i.e. feature selection methods, landslide 
assessment methods and model evaluation methods. In addition, some other specifications 
of the methodology are to be presented in the workflow. Details on the chosen software 
solutions are also discussed. 

Instead of a general style that could be found elsewhere, in various textbooks and 
articles, this chapter is explaining these different methods in the light of the GIS landslide 
assessment, using respective examples and descriptions, which brings the topic closer and 
with better comprehension. 

5.1 Attribute Selection Methods 
This branch of methods is featuring the Objective 3 (see Chapter 2). 

 

Attribute Selection, also referred to as Feature Selection and Variable Selection is a 
preprocessing11 tool that has been found to be useful in spatial modeling, particularly in 
classification tasks, where sophisticated classifiers come into play, but it also contributes to 
any type of spatial calculations (Varmuza & Filzmoser 2009, Witten et al. 2011). In the 
landslide assessment framework, as regarded in this thesis so far, the attributes are called 
Conditioning Factors, represented by various thematic inputs (i.e. thematic layers in a GIS 
environment), including geological, morphometric, hydrological and environmental 
parameters, as well as synthetic parameters derived by discretization, reclassification or 
performing statistical operations over original inputs. In turn, there could be so many 
attributes that further application of a particular landslide assessment method could be 
compromised. Attribute Selection usually leads to the reduction of the number of input 
variables, i.e. the reduction of the dimensionality of the input dataset (Varmuza & Filzmoser 
2009). 

There are a number of arguments to support this end, and they mostly underline the 
reduction of time and computational efforts as primary benefits of the Attribute Selection 
(Varmuza & Filzmoser 2009). What is even more pronounced is the case of the classifiers 
(i.e. implementation of the Machine Learning or regression tasks in landslide assessment), 
where another important benefit comes through better control of overfit, that can appear due 
to the shear abundance of input data. On the other hand, there are counter-arguments which 
claim that in any multivariate classification framework it is not particularly meaningful to 
exclude variables because of their internal relations. A variable might not be relevant for the 
landslide occurrence directly, but by affecting the other variables (van Westen et al. 2006). 
The ultimate true for Attribute Selection is thus in trial-and-error, as with any relatively novel 
and unexplored method. Sometimes it provides a better ground for further modeling, but 
sometimes it can compromise the results. Therefore, in this thesis the Attribute Selection has 
been performed in the preparatory stages of each case study, but only to justify the choice 
and to better portray the importance of different attributes, without exclusion of the particular 
ones (Tab. 3). The exception is the last case study, where Attribute Selection had been more 
engaged. 

                                                
11  Other preprocessing techniques have been implemented throughout the research but they have 

been regarded rather common and therefore excluded from the description. They involved different 
basic manipulations on input data, such as normalization of monotonous and dichotomous data, 
quantification of nominal data, integerization, transformation, scaling, and so forth. 
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There are numerous Attribute Selection schemes elaborated thus far, starting from 
univariate and bivariate (filtering), to more complex ones, such as Principal Components or 
even those which are implementing learning tasks (wrapping) prior to the classification itself. 
The latter is an example usually related with the Decision Trees and successive linear 
classifiers (such as SVM). Decision Trees are actually based on the internal Attribute 
Selection (which takes place during the initial process of populating the tree) through which 
some of the attributes might never satisfy the criteria and enter the tree. If it turns out that the 
tree had gave good results, then only those attributes approved through the tree building 
procedure could have been fed to a chosen model (e.g. model which is very sensitive to the 
relevance of each attribute, like k-NN), leading to the improved performance of the latter 
model. Also, some linear models (linear classifiers), which are very appropriate for iterative, 
sequential adjustment of the internal modeling parameters, may have integrated Attribute 
Selection within the classification process, by starting with all of the available attributes and 
eliminating the ones with the lowest rank in every consecutive iteration (leave-one-out12). The 
optimal assembly of the attributes will appear in the model that shows the best performance 
(Mitchell 1997, Witten et al. 2011). However, it has been mentioned that the purpose of 
Attribute Selection in this thesis is more formal than that (the third case study is an exception 
– see Chapter 6.3.3).and serves mostly to ensure and justify the choice of attributes 
proposed in the literature. 

In parlance of the latter, two statistical tests have been considered, each one with the 
emphasis on tracking the attributes with the weakest relation to the dependent variable 
(referent landslide classes). These are rather simple solutions and include bivariate 
descriptor – Chi-Square and entropy-based descriptor – Information Gain (IG). One ranking 
scheme based on these two methods is shown in Table 3. below, as a part of the second 
case study within this thesis (see Chapter 6.2). 

Table 3.  Attribute ranking for Starča Basin case study 

Conditioning Factor Chi-rank Chi-Square IG- rank IG 

lithology 1 11225.111 1 0.06157 

channel network base elevations 2 8546.6167 2 0.04034 

groundwater depth 3 5311.0166 7 0.02680 

Stream Power Index (SPI) 4 4626.1226 4 0.03038 
aspect 5 4469.4704 5 0.02828 

altitude above channels 6 4442.2272 3 0.03078 

Topographic Wetness Index(TWI) 7 4223.8196 6 0.02789 

Land Cover 8 3823.2823 10 0.02129 

downslope gradient 9 3401.1757 8 0.02413 

LS factor 7 3052.666 9 0.02241 
slope angle 11 2749.7677 11 0.02100 

convergence index 12 2441.8224 12 0.01723 

plan curvature 13 1298.7882 14 0.00800 

distance from structures 14 1255.0141 13 0.00938 

profile curvature 15 948.26960 15 0.00605 

slope length 16 940.12422 16 0.00600 

                                                
12  Leave-one-out technique considers iterative learning task. After each run the dimensionality (in this 

case the number of landslide Conditioning Factors) is reduced for one dimension (one factor) on 
the basis of model error or Feature Selection rank. Such reduced feature space then reenters the 
learning process until the optimal performance is achieved, i.e. in accordance with the Occam’s 
razor, until a sufficient performance is reached with the minimal feature space size (Mitchell 1997). 
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5.1.1 Chi-Square 
The Chi-Square is based on a cross-tabulation of dependant variable (Landslide Inventory in 
this case) with all of the independent variables (Conditioning Factor, i.e. geological, 
morphometric, hydrological, environmental or synthetic terrain attributes). Chi-Square 
statistic parameter –χ2 relates the apparent frequencies of the observed independent 
variable instances φo within the dependent variable classes (landslide classes), and 
expected frequencies of the observed independent variable φe, in the following fashion: 
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where l is the number of classes of a dependent variable, and n the number of the 
independent variable classes, i.e. l represents Landslide Inventory classes (landslide 
classes, such as active, dormant, abandoned landslides or simply, landslide and non-
landslide class), while n disclose the classes of a particular Conditioning Factor, since χ2 
needs to pair every single factor with the dependent variable separately. A given 
Conditioning Factor disapproves the hypothesis of being statistically independent from the 
Landslide Inventory classes only if it fails to exceed the critical χ2 threshold, defined by the 
level of confidence (in respect with the normal distribution) and degrees of freedom (defined 
by reduced product of l and n, i.e. (l-1)(n-1)). In effect, this method reveals the relation of an 
attribute and the referent Landslide Inventory, but the ranking among multiple attributes is 
rather relative (unless the sets are subjectively normalized), mostly due to the measurement 
scale and unit dependence of χ2 (Bonham-Carter 1994). 

5.1.2 Information Gain (IG) 
The second employed technique is Information Gain, defined as a reduction in entropy E(C) 
of a referent Landslide Inventory C (with l classes), due to the informational interference of a 
Conditioning Factor F (with n classes). Given the E(C) as a measure of homogeneity of C: 
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(where δi is a proportion of the ith class values within the entire set) and introducing m 
factor classes with values v1, v2,…vm, the Information Gain IG(F) partitions the entropy by a 
factor of weighted expected entropy E(F,v). 
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The latter comes as summed entropy of Cv subsets of C, matched with the factor’s 
class value v, and weighted by the subset proportion to C. 

This technique is integrated in the Decision Tree algorithm, and is going to be 
presented in greater detail in section 5.2.3.2. Here, it should be mentioned that unlike Chi-
Square statistic, this parameter allows preliminary ranking, since it disregards measure 
scales and units of Conditioning Factors (Mitchell 1997). 
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5.2 Landslide Assessment Methods 
This branch of methods is featuring the Objective 4 (see Chapter 2). 

 

Landslide assessment methods used in this thesis involved numerous techniques, structured 
in several different approaches: heuristic, statistic, Machine Learning and deterministic. 
Herein, these are to be presented in detail, with particular focus on the Machine Learning 
approach. 

5.2.1 Heuristic Approach 
Heuristic approach implies the experience-based solution to the problem. Using heuristics is 
rather controversial issue in the landslide assessment (Barredo et al. 2000, Ercanoglu et al. 
2008), but it is generally accepted that heuristics could and should be used for preliminary 
levels of research. It may be used for more detailed levels of research only when combined 
with more exact approaches. Even within the heuristic approach one can distinguish many 
different techniques, ranging from plain expert-opinion modeling through techniques that 
quantify the raw expert judgment to some extent and methods that include fuzzy/gray 
systems, pattern recognition etc. 

5.2.1.1 Plain Multi-Criteria Analysis 
Multi-Criteria Analysis (MCA) has not been originally developed for the spatial modeling 
problems, but rather for decision support with multiple choices, when there are 
disagreements between different parties that offer those choices. However, it has been 
successfully applied in the landslide assessment with the analogically proposed problem. 

In the most basic variant, the MCA comes down to the judgment of the importance of 
the multiple factors, which is the basic case in the landslide assessment framework. Herein, 
the choices are made on the arbitrarily assigned weights of importance of a Conditioning 
Factor, wi (i.e. its level of influence on the landslide susceptibility), by a shear expert’s 
judgment, or several experts’ judgments13. Thus, each particular factor (such as lithological 
unit, slope angle, aspect, elevation, drainage buffer, Land Use unit and so forth) is being 
weighted (Eq. 6) and simple addition of the weighted factors delivers a MCA model in the 
GIS environment. 
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In the case of multiple experts’ judgments, it is common that the weights vary 
significantly, so that averaged weights ẅi could come into play (Eq. 7). 
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Even though the pool of experts might be chosen cautiously (so that the experts meet 
all the requirements, i.e. that they are very familiar with the approach and with the study area 
at hand), it is important to stress that the method faces a very high level of subjectivity, 
arising from entirely arbitrary judgments. Still, the method can be substantially refined, while 
still carrying that precious touch of personal experience in particular landslide hazard 
problem. 

                                                
13  These judgments are usually delivered by filling in the prepared questionnaires, where the 

importance (weight) of each factor (litological unit, slope angle, aspect, elevation, drainage buffer, 
Land Use unit and so forth) is being scored on a custom predefined scale, usually 0–9, or 1-10. 
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5.2.1.2 Analytical Hierarchy Process 
Analytical Hierarchy Process (AHP) was also developed for decision making based on 
economic and management grounds (Saaty 1980), but turned out to be a proper way of 
quantifying expert’s judgment involved in the spatial analysis within GIS framework. In fact, it 
is now incorporated in a host of GIS platforms (commercial, like ArcGIS and open source, 
like SagaGIS for example) in the form of different modules, macros extensions or add-ins 
(Marinoni 2004). Another arising possibility is to combine the AHP quantitatively with some 
other technique (Komac 2005, 2006), e.g. bivariate statistics, Fuzzy Logic, cluster analysis, 
etc. 

AHP is a convenient procedure for raster-based modeling in a multi-criteria 
hierarchical configuration (Geniest & Rivest 1994, Ercanoglu et al. 2008) and has thus been 
equally applied in landslide assessment, as in any spatial modeling framework (Komac 2006, 
Ercanoglu et al. 2008). It is important to mention that the AHP implementation in spatial 
analysis is usually restricted to the first level AHP, since true AHP implies k-fold structure, 
where levels from the 1st through the k–1th involve criteria analyses, while the last kth level 
involves selection of the alternatives14. Herein, the procedure is going to be explained in 
detail and illustrated in such context. 

Prior to the obtaining of the true weights of the corresponding landslide factors (such 
as lithology, slope angle, aspect, elevation, Land Use and so forth), the procedure engages a 
gross estimation of each factor’s importance score, established by the expert(s) judgment 
(through a personal advisement with the scholars and engineers or formally through the 
questionnaires). If n is the number of Conditioning Factors, then the total number of 
comparisons that an expert needs to establish is n(n-1)/2, which makes this procedure 
comfortable for no more than a dozen of factors. 

The original technique (Saaty 1980) implies 9-leveled scoring scale15, but a different 
(arbitrary) range is also viable. The 9-leveled scoring system is then applied to a two-
dimensional n×n reciprocal matrix, also called the comparison matrix (Tab. 4), which is 
generated by pair-wising all of the factors across each other. Note that the scores are being 
transposed over the main diagonal of the matrix, so that the corresponding scores (1 through 
9) turn reciprocal (1 through 1/9) symmetrically over the main diagonal. 

To obtain the priority vector16 as a vector of weights (Tab. 5, shaded column), the 
procedure further requires a normalization of the comparison matrix and averaging of scores 
from comparison matrix (Tab. 4) by their row sums (Geniest & Rivest 1994, Saaty 2003). 
Priority vector will represent the utter distribution of the weights wi once the matrix turns 
consistent, i.e. when there is none or little contradiction in scoring. Since the vector is 
normalized, the weights sum should be 1 (100%). The procedure for shifting from 
inconsistent to near-consistent matrix is featured by versatile solutions, considered by 

                                                
14  In the landslide assessment, this would involve multi-leveled criteria analysis, where ith-level criteria 

set would be progressively singled-out for a Conditioning Factor that have turned the least 
important in the i–1th (previous level) criteria analysis. The alternatives would normally represent 
different landslide types. It could then be speculated which factors (lithological, morphometrical, 
environmental, hydrological etc.) would most strongly affect which landslide type (shallow landslide, 
debris flow, rockfall etc.). However, the knowledge and experience on the relations between a 
landslide type and Conditioning Factors is far from profound, which is why the spatial AHP analysis 
usually sticks with the 1-fold variant. 

15  Saaty's scale contains an array of {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 
where the following relations apply: 1 – equal importance (landslide-wise), 3 – weak dominance of 
the observed factor, 5 – strong dominance, 7 – demonstrated (witnessed) dominance, 9 – absolute 
dominance, 2,4,6,8 – tansitive scores. 

16  Computationally, the priority vector is very similar to the principal Eigen vector of the matrix. 
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different authors (Geniest & Rivest 1994, Laininen & Hämäläinen 2003, Saaty 2003). 
However, their results prove to be just a fraction different from the simplified technique. Thus, 
it is understandable to control the matrix consistency on the simplest basis, i.e. by Saaty’s 
consistency parameters CI, RI and CR (Consistency Index, Random Index and Consistency 
Ratio, respectively) using the following criterion: CR=(CI/RI)<0.1. By this manner, initial 
subjectivity of score distribution (Tab. 4) has been unbiased up to a certain level, leaving the 
refined scores depicting the final distribution of weights in the priority vector (Tab. 5, shaded 
columns). Finally, the priority vector or more appropriately, the normalized linear distribution 
of the weights can be defined as before (Eq. 6), where F corresponds to the Conditioning 
Factor, respective to their order of appearance in Table 4 (F1 = lithology, F2 = slope… F7 = 
aspect), and wi refers to the factor’s weight, which reflects its overall importance in the 
landslide susceptibility model. The model is then directly calculated by multiplying and adding 
the appropriate variables in a GIS environment. The weights in the model are simply the 
multipliers of the thematic GIS layers, as they multiply each pixel (its Digital Number – DN 
value) of each raster layer and then sum all (multiplied) layers together, yielding a final raster 
model – the raw model of landslide susceptibility. It depicts spatial distribution of the 
susceptible zones (revealing low susceptibility by low, and high susceptibility by high 
overalls) in a custom scale. The custom scale is inappropriate so normalization procedure is 
used to arrange the scale in a more common fashion, e.g. in 0–1 span or 0–100%. It is 
further possible to choose more appropriate cut-offs and qualify intervals arbitrarily, e.g. Low, 
Moderate, and High susceptibility. However, the arbitrary (re)classification of such kind is 
entirely another issue, beyond the AHP scope, and depends on the particular case at hand. 

Table 4.  An example of AHP comparison matrix. 

Fi F1 F2 . Fn 

F1 a11 a12 . a1n 

F2 a21 a22 . a2n 

. . . . . 

Fn an1 an2 . ann 

Σ  Σa1n Σa2n . Σann 
 

Table 5.  An example of AHP weights derivation. 

Fi F1 F2 . Fn wi % 

F1 a’11(=a11/Σa1n) a’12 . a’1n w1 (= Σa’n1/n) 100· w1 

F2 a’21 a’22 . a’2n w2 100· w2 

. . . . . . . 

Fn a’n1 a’n2 . a’nn wn 100· wn 

λmax=___; CI=___; RI=___; CR=___(CR<0.1); Σ=1 Σ=100 
 

5.2.2 Statistical Approach 
Unlike expert-based approach above (which relies on experience and knowledge on the 
process), or deterministic approach described later on (which starts with theoretical 
conditions of the Limit Equilibrium on the landslide-affected slope), statistical approach starts 
with the available data (Conditioning Factors). It relates the values, distributions, 
aggregations and other data features with the consequence, in this case, a landslide 
occurrence. It extracts that relation and brings about a more objective prognostic dimension 
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to the model, although the prognosis is not temporal, only spatial, as explained in Chapter 
3.3.2. 

There is a host of various techniques that are normally used in this context, and 
choosing the optimal one is rather based on trial-and-error. In addition, they tend to provide 
similar modeling performance, according to the results of this research. One can distinguish 
between bivariate statistics and Multivariate techniques which are principally different in one 
single postulate, regarding the independency between the Conditioning Factor and landslide 
occurrence. While bivariate techniques observe one factor at a time and correlate it to the 
landslide occurrence, relaying on its independence from the rest of the factors, Multivariate 
techniques correlate all the factors among themselves and factors with the landslide 
occurrence simultaneously (Bonham-Carter 1994).  

5.2.2.1 Conditional Probability 
In plain statistical terms, the primary goal of Conditional Probability is to increase the 
probability of predicting a variable, by having other variables at disposal to correlate against 
(Eq. 8). 
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C: 1–lth landslide units in the area 
F: 1–mth class unit of 1–nth factor in the area 
T: total number of units (pixels) in the area 
p(C,F): posterior (conditional) probability of landslide occurrence given the specific F 

In landslide assessment terms, the referent variable is landslide occurrence pattern 
and the variables that enter the correlation with the former are given as Conditioning Factors 
(lithological, morphometric, environmental etc.). Pattern of landslide occurrence has its own 
initial spatial probability, called prior probability. In bivariate context, the Conditioning Factors 
can be checked for correlation against the referent landslide pattern one at a time, yielding 
the posterior probability per each factor (spatial probability after the correlation). If the 
significant correlation is achieved, the posterior probability will be higher than prior spatial 
probability. Eventually, the posterior probabilities of all factors should be cumulated, giving 
the total increase of the probability, hence giving the model of spatial probability i.e. landslide 
susceptibility. There are a number of mechanisms for developing a Conditional Probability 
analysis, and they all involve different weighting measures, such as Likelihood Ratios, 
various Odds Ratios, Weights of Evidence, and so forth. Herein the latter shall be discussed 
in detail, while some of the ratios are also used and explained in the Fuzzy Logic section 
(see Chapter 5.2.2.2). 

Weights of Evidence is a log-linear Bayes rule-based technique. It enables the 
prediction of a posterior probability of landslide occurrence by using its prior probability and 
enhancing it by weights, which are dependent on Conditioning Factors i.e. by generating 
correlative positive W+ and negative W- weights of Conditioning Factors. Positive weights are 
differences between prior and posterior logits17 of a Conditioning Factor's class, given the 
presence of landslide occurrences. Negative weights are also prior/posterior logits 
differences, given the absence of landslides, i.e. given the presence of non-landslides. The 
simplest case is to assume a binary class type of landslide occurrence (landslide and non-
landslide classes), but multi-class types (non-landslide, dormant, active, fossil, suspended 
and other standard inventory classes) are also feasible, by simply extracting l-1 binary cases 

                                                
17  Logit of a given probability p is defined as: 
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(l being the number of landslide classes). What is important in this technique is that the 
weighting (extraction of the prior/posterior probabilities) in a GIS environment can be done by 
simple raster cross-tabulation (contingency table) of the Landslide Inventory on one side, and 
a classified Conditioning Factor on the other. From cross-tabulation matrix, the contingency 
portions of C∩F (overlap of landslide class and the given factor’s class), ¬C∩F (overlap of 
non-landslide class and the given factor’s class) and the other respective overlaps (C∩¬F – 
landslides out of class, ¬C∩¬F – non-landslides out of class) are easily extracted, and fed 
into equations (Eq. 9, 10). 
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Thus, each class in each factor is provided with a pair of weights that describe the 
intensity and the character (±) of its engagement with the landslide occurrence pattern. GIS 
environment eases the further operational effort toward the final spatial probability model. By 
assuming the conditional independence of all n Conditioning Factors (the prime postulate of 
bivariate statistics) the latter can be expressed as prior probability of landslides corrected by 
the sum of positive/negative weights of all mi Conditioning Factor's classes, depending on 
the presence or absence of landslides, respectively (Eq. 11). 
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Simple spatial calculation over a raster set of Conditioning Factors in respect to 
equation (Eq. 11) yields a final landslide susceptibility (raster) map (Bonham-Carter 1994). 

It is also feasible to calculate the certainty of every class of every factor18, and mask 
all data instances that are too uncertain or missing. 

Advantages of the technique certainly lies in objective, data-driven assessment, 
capability to operate with multiple inputs and multiple classes, ease of handling of missing or 
irrelevant data (by assigning zero or close-to-zero weights), to accompany the result with the 
certainty estimate and to make according exclusions where needed. 

On the other hand, shortcomings are not numerous. These mostly regard the 
conditional independency assumption (bivariate postulate), which disables the interrelation 
among the factors, and the contribution which it might bring to the model. Furthermore, it 
does not work with nominal Conditioning Factors, but requires quantification and 
normalization prior to the analysis, while another promising, but time-consuming and 
computationally-intensive alternative is to segregate such nominal Conditioning Factors into 
m binary cases. Also, the numeric Conditioning Factors with ordinal and dichotomous scales 
cannot keep continual values, but have to be reclassified and ranged by arbitrary intervals, 
which can be optimized only through the trial-and-error variations of the number of classes 
(m) and values of interval cut-offs. This turns very demanding with large number of such 
inputs, not to mention how it introduces considerable subjectivity in the procedure. Finally, 
the drawback is also high dependency on the proportion of independent variable’s classes, in 
this case, the number of landslide vs. non-landslide instances, since very few landslides will 
not provide as reliable model as some other, more sophisticated techniques. 

                                                
18 Certainty could be extracted from standard deviation σ of posterior probabilities by approximate 
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 Relative certainty is then calculated as W±/σ(W±), which is usually called "Studentization". 
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5.2.2.2 Fuzzy Logic  
Concepts of Fuzzy Logic have a long tradition in spatial analysis framework. The main 
purpose of Fuzzy Logic is to deal with vague information and with data that contain some 
kind of uncertainty (Zadeh 1965). When using the Fuzzy Set Theory or Fuzzy Logic in the 
landslide assessment, each class of each Conditioning Factor is given a value within 0–1 
interval, indicating its membership to the landslide occurrence. This concept is very helpful 
for categorization of data and for decision making in landslide management framework, 
because unlike Boolean Logic it produces valid results with specific degree of truth. That 
helps finding not only the perfect match for a given criteria (in this case the criteria is to 
discern landslide susceptibility zones, i.e. to point-out to highly susceptible areas), but also 
showing how much each of the possibilities meet the given criteria. At some specific 
situations, when modeling physical geographical crisp sets, Boolean Logic fails to provide 
good results because of the nature of the phenomena at hand. In such cases, Fuzzy Set 
Theory and Fuzzy Logic provide solutions for dealing with imprecise and vague data, which 
would be hard or even impossible to process by any other means. 

The most delicate part of the problem regards the fuzzy membership. Its value is 
determined by a membership function (Eq. 12), which stands for a function that maps all 
given elements to 0–1 interval of values: 

>0,1<  : →FµC , (12) 

where µC is a membership function (in this case of the landslide classes), F is a set of 
elements (in this case Conditioning Factors classes). Then for each instance value x (xϵF), 
µ(x) is a membership value of that instance (pixel of the grid) to the referent landslide set C 
(Zadeh 1965). There are a number of ways to express the membership, involving linear and 
non-linear functions. For purpose of this research, two common functions have been used for 
computing the membership values: Frequency Ratio and Cosine Amplitude. 

Frequency Ratio (FR) gives proportion of the landslide instances in the specific class 
for each of the Conditioning Factors. It can be described as a ratio of relative frequency of 
landslide instances in the particular class to the relative frequency of all landslide instances 
in the area (Eq. 13): 
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where #(Cj) is the number of landslide cells in the jth class of a Conditioning Factor, 
#(Fi) is the total number of instances of the ith class of factor F, #(C) is the total number of all 
landslide instances and #(T) is the total number of instances in the grid (total number of 
pixels). If the result is higher than 1 it shows higher density of landslide cells in the class than 
the dataset overall. Results lower than 1 point to the classes that have density of landslides 
lower than the dataset overall. To transform FR to membership values those outputs have to 
be normalized by dividing each FR by FRmax in the given group of classes. The membership 
values are then ordered into 0–1 interval (normalization). Higher this number is the higher is 
the influence of that particular class on the landslide occurrence. 

Another method for determining the membership values of factor’s classes to the set 
of landslide occurrence is Cosine Amplitude (CA) method (Eq. 14). 
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In this case, the membership value is calculated as a ratio between the number of 
landslide instances in the class and the square root of the class size (in number of instances) 
product with the total number of landslide instances in the area. Unlike FR the output values 
do not have to be normalized because they already fall into 0–1 interval. 
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Once the fuzzy memberships are determined, the issue of the combinations between 
the sets (sets of Conditioning Factors) remains. The latter is solved by involving different 
fuzzy operators and choosing the optimal, at one or multiple levels. The best-known 
operators are AND and OR, but both of them suffer from the problem of extremes, i.e. one of 
the combined sets are preferred and their influence is predominant. In case of the operator 
AND the factor with the minimal membership classes is the one that shapes the output, while 
in the case of OR operator it is the one with the maximal membership values. The Fuzzy 
Algebraic Product, Fuzzy Algebraic Sum, Gamma Operation and Weighted Average are 
proposed as more objective solutions (Bonham-Carter 1994). Herein are given some basic 
relations that apply for these, but first it is necessary to acknowledge Equation 15. for better 
notation purposes used later on: 
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where mi is the number of classes in ith Conditioning Factor and n is the number of 
Conditioning Factors, which then makes t a total number of all membership functions to be 
combined. The above means that a membership function is calculated for every class of 
every Conditioning Factor at hand. In the Fuzzy Algebraic Product and Fuzzy Algebraic Sum 
the memberships are defined as: 
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respectively, where µj(x) is the membership function of the instance x belonging to 
one of the m classes of the Conditioning Factor Fi. The Fuzzy Algebraic Product tends to 
produce output function lower or equal to the lowest function given, while the Fuzzy 
Algebraic Sum is complementary to the former, so it provides output function higher than all 
the inputs but never higher than 1. Regarding (Eq. 16–17) Gamma Operation can be defined 
by: 
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The exponent γ, which is a number from 0–1, allows optimization of the membership 
combination because it balances between µproduct and µsum. Setting γ to the extremes give 
either Fuzzy Algebraic Sum (γ=1) or Fuzzy Algebraic Product (γ=0). Weighted Average is 
defined as: 

∑

∑

=

=

⋅

=
t

j
j

t

j
jj

w

w

µw

µ

1

1

)(x
, (19) 

where wj is the weight of the jth membership function, indicating its importance to the 
result. Weight system in this equation allows more interaction of the practitioner, because it 
allows emphasis of certain classes by choosing their weights arbitrarily. 

5.2.2.3 Multivariate Regression Analysis 
In contrast to the conventional statistics, based on the bivariate Bayes approach, stands a 
group of Multivariate techniques, which are found to be very convenient in spatial analysis, 
and much more elaborated, for that matter. The principal advantage revolves around the fact 
that multiple factors are examined simultaneously, and that their interplay is allowed. As 
mentioned before, independent variables that are poorly correlated with the dependant 
variable are not necessarily useless, because they could be mutually correlated with other 
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independents (which are for example very well correlated with the dependant), and therefore 
influence the final posterior probability of the dependant. Regression methods turned out to 
be among the most favorable ones (Brenning 2005), although the majority of Machine 
Learning techniques and discriminant analysis could be also classified as Multivariate. 
Hence, the struggle for supremacy in such context is tight, but it should be emphasized that 
the general preference on the most favorable technique cannot be made, since every case is 
specific in its own way. The only acceptable approach is to pair together several different 
techniques, which are initially suspected as effective, and then make a choice toward the 
optimal one. 

Regression methods are numerous, and inconveniently, they all require some 
delicate presumptions that sometimes might not apply in reality (Süzen & Doyuran 2004). 
The crucial among these is the assumption on normal data distribution within all the 
variables, linear relationship between the independent variables (Conditioning Factors) and 
the preference of binary format of the dependent variable (i.e. Landslide Inventory is 
preferred to be structured by landslide vs. non-landslide classes, while multiclass Landslide 
Inventory poses a problem insurmountable for some of the regression methods, but for 
others, like ANN-regression and Logistic Regression it is not particularly difficult). Since 
Logistic Regression seems to be the one of the best elaborated methods in geo-spatial 
context (Brenning 2005), and requires the least presumptions to operate, the following 
passages are to communicate some further details on that technique. 

Depending on the number of classes within the dependent variable, two separate 
cases of Logistic Regression could be distinguished, binomial and multinomial (Varmuza & 
Filzmoser 2009). Since the most usual cases in landslide assessment come from the 
analysis of binomial or binary dependants (Landslide Inventories), wherein landslides (=1) 
and non-landslides (=0) are the only classes, this simpler variant of Logistic Regression is 
going to be considered. 

The principal difference of the Logistic Regression to the other regression methods is 
transformation of dependant into a logit variable (a natural logarithm of the occurrence odds 
of dependant variable, in this case the landslide occurrence odds). This implies fewer 
constrains regarding data distribution, linearity between independent variables, same type of 
data etc. In this way, the regression takes place on logit-transformed dependant variable, 
unlike other regression schemes (Fig. 8). Given n Conditioning Factors, the regression is 
performed as linear combination coordinates xi of instances x (as in any other multiple 
regression) via linked linear function z (Eq. 20), and posterior probability is finally modeled as 
a logistic function, which is basically a sigmoid function for landslide probability (Eq. 21), and 
inverse sigmoid function for non-landslide probability (Eq. 22). 
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In the Equation 20. b0 stands for the interception of the fitted regression model and bi 
for the regression coefficient (regression function slope) of the ith independent variable xi. 
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The calculated posterior probability of occurrence of both, landslide and non-
landslide, falls into 0–1 range and sums-up to 1, since posterior probabilities of landslide and 
non-landslide instances are complement (Varmuza & Filzmoser 2009). 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

39 

 
Figure 8. An example of Logistic Regression classification. Two random Conditioning Factors are 
given on the axes, landslide instances are represented by circles and non-landslide by squares, 
separation hyper plane (presented as dashed line) is a regression line with (b0, bi) parameters -0.23 
and 0.6. 

As indicated, the advantages are numerous: 

- 0–1 (spatial) probability as a result (which is convenient for interpretation and 
comparison with other probabilistic methods), 

- possible usage of mixed data types of independent variables (nominal and ordinal), 

- less stringent requirements regarding the data: linearity, normal distribution, 
homogeneity of variance etc. 

5.2.3 Machine Learning Approach 
Machine Learning had to be singled-out as a separate approach for at least three reasons. 

- The first one is that it represents an emerging field of computer science which studies 
computer algorithms that improve automatically through experience (Mitchell 1997, 
Kanevski et al. 2009, Witten et al. 2011). This learning concept is therefore different 
than any of the mentioned modeling approaches, and empowers some additional 
predictability in spatial domain (as exampled in the case studies section, Chapter 6). 

- The second is that it represents a mixture of so many different disciplines, which 
makes it difficult to subcategorize Machine Learning under a more general approach. 
It is defined as an interdisciplinary field, built on many different concepts, such as: 
probability and statistics, artificial intelligence, information theory, as well as 
philosophy, psychology, neurobiology and so forth (Mitchell 1997, Kanevski et al. 
2009, Witten et al. 2011). 

- The third is that it represents the essence of this thesis research, and therefore it 
deserves slightly higher hierarchical position than the other approaches. In fact, the 
advanced methods in the title of this thesis are mostly regarding the methods that will 
be presented hereinafter. 

There is a host of different algorithms, which are all exploiting different capabilities for 
different learning tasks, such as clustering, classification and regression. Herein, these are 
going to be limited to the classification-related algorithms, among which some less prominent 
algorithms are preferred. For instance, the better-known algorithm and one of the first that 
had implemented artificial intelligence (based on neurobiological analogy), Artificial Neural 
Networks (ANN), turned out to be less comfortable for the implementation, with more 
parameters to model and with costly time consumption, than for example Decision Trees, 
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which are additionally providing the practitioner with the insight in hierarchical structure of the 
model, “lightening-up” the black-box learning concept. 

5.2.3.1 (Supervised) Learning Problem Formulation 
Before the particular techniques are scrutinized, it is necessary to pose a learning problem 
and make the problematic more comprehensive. This is to be illustrated for the landslide 
assessment framework, in order to make the later descriptions of different Machine Learning 
algorithms more appealing. 

The main objective is to exploit the possibility of automating the process of landslide 
susceptibility mapping or landslide mapping, i.e. to make a plausible prediction of landslides 
spatial distribution by using Machine Learning techniques. The desired automated procedure 
assumes that after the initial acquisition of the necessary spatial data, an expert is presented 
with a (possibly small) representative region (training region). Such scenario assumes a 
supervised learning approach in which the expert performs mapping in the representative 
region. The algorithm subsequently uses that expert map for training, i.e. learning from 
instances of the expert map by linking his interpretation with a set of Conditioning Factors. 
Finally, after learning the mapping rule proposed by the expert, the algorithm extrapolates 
the rule in the rest of the area, and gives an automated prognosis of the spatial distribution of 
landslides. 

 
Figure 9.  An example of a manual training-testing area split (33-67% proportion). 

Firstly, it is necessary to assume that the input data are presented by 2D rasters of 
appropriate Conditioning Factors (geological, morphometric, environmental) and the referent 
Landslide Inventory map. The inventory is hypothetically necessary only for the training area 
(the area that has been assessed by an expert), but it is usually provided for the remaining 
area as a reference for evaluation of the model. The input rasters are organized in the way 
that each grid element (pixel) represents a data instance at a certain point of the area. 
Proposed approach leads to a classification task. The task is to place each pixel into an 
appropriate landslide category using the Conditioning Factor values associated with that 
pixel. The task applies only for the remaining area, usually called testing area (the area that 
has not been assessed by an expert). Selecting the size of the training area is very delicate, 
and requires particular strategies. An optimal approach is to build a sufficiently accurate 
model with a smaller number of training examples, thus leading to a reduced engagement of 
the expert. On the other hand, a practical value of a model in the landslide assessment 
framework lies in the model’s prediction power, which implies more meaningful training 
sampling strategy. Therefore, it is desirable to have a training area that is physically 
separated from the testing area (Fig. 9). However, some of the algorithms (such as k-NN) 
require different sampling strategy, involving sparse and randomly sampled training 
instances. 
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The corresponding learning problem could be formulated as follows. Let P={x|xϵRn} 
be the set of all possible pixels extracted from the raster representation of a given area. Each 
pixel is represented as an n-dimensional real vector x, where coordinate xi represents the 
value of the ith Conditioning Factor associated with the pixel x (each pixel is represented by 
x={x1, x2,…,xn}). Further, let C={c1, c2,…cl} be the set of l disjunctive, predefined landslide 
classes (a multinomial case). A function fc:P→C is called a classification if for each xϵP it 
holds that fc(x)=cj whenever a pixel x belongs to the landslide susceptibility class cj. In 
practice, for a given terrain, one has a limited set of g-labeled examples (xq, cj), xqϵR

n, cjϵC; 
q=1,…,g, j=1,…,l (where g is being a reasonably small amount of instances – training 
instances) belonging to Pq=P–Pd (where Pq is a training set and Pd testing set). The Machine 
Learning approach tries to find a function fc’ which is a good approximation of a real, 
unknown function fc using only the examples from the training set Pq and a specific learning 
method. 

*** 

One common problem troubles all Machine Learning algorithms. It is primarily caused 
by the characteristics of the training set and the classifier's generalization power (Mitchell 
1997) and it is called the overfit, also referred to as random error or noise. It is the problem of 
underperforming in the testing/validation set, while showing high performance in the training 
(Fig. 10). 

In other words, it is a paradox of reduced performance while having increased 
complexity of the model or bigger amount of data to build the model with. The algorithm is 
hence learning the noise as well, so its generalization is disputable (the learning becomes 
too specialized and the algorithm does not generalize well enough). The one is thus trading-
off the model complexity for its fitness, i.e. the model’s variance against its bias. 

 
Figure 10.  The overfit problem. Dashed line represents the training sample and bold line test sample. 
The functions are showing evident rise of the erroneous returns in testing mode despite the rise in 
data feed (amount of training/testing data or complexity of the model). 

One way of dealing with the overfit is to optimize the generalization power of the 
algorithm. Another is to generate training and testing splits which will have balanced class 
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distributions, i.e. the sizes of all classes will remain proportional in both splits. The latter is 
not always feasible in spatial modeling, due to the usual abundance of one class and scarcity 
of another or several other classes (as in the case of landslide assessment, where non-
landslide class is much bigger than the landslide class). This is especially pronounced if the 
adopted training/testing sampling strategy comes down to a physical, manual separation of 
the training and testing area as mentioned before (Fig. 9). A technique which partially 
prevents the overfit and involves specific optimization strategy during the training is the 
Cross-Validation (Mitchell 1997, Kanevski et al. 2009). It is probably the most efficient 
manner to deal with the overfit effect, and it is based on repetitive training and validation but 
only over the training split. It can be k-fold, where k stands for the number of partitions of the 
training split and therefore also represents the number of iterations. In the first run, one 
partition is taken for validation while k–1 partitions are merged together for training. In every 
subsequent iteration, a different split takes the validation role, while the remaining k–1 splits 
take the training role, until all k iterations are finished (Fig. 9). In turn, the procedure yields a 
result for one configuration/combination of the algorithm parameters. If one seeks the optimal 
parameter combination, giving the best generalization power to the algorithm, the Cross-
Validation needs to be repeated for each parameter configuration. It is hence preferable that 
the algorithm does not have too many parameters to optimize. 

 
Figure 11.  A 4-fold Cross-Validation scheme. The rectangles schematize the training sample, wherein 
white parts represent CV training, and gray parts CV validation splits. 

5.2.3.2 k-Nearest Neighbor ( k-NN) 
This is amongst the simplest algorithms (Mitchell 1997), which classifies pixel instance x 
containing xi coordinates (containing an n-dimensional input space x={x1,x2,…,xn}|xϵRn, 
where dimensions represent the values of the Conditioning Factors related to that particular 
pixel) by class values cj of the k closest neighboring pixels xr surrounding x (cj is previously 
assigned in the training set by a practitioner as fc(xr)). The nearest neighbors are defined in 
terms of Euclidean distance d(x, xr), thus the classifier first calculates distances to k 
neighbors for each x instance in the training set. Subsequently, a simple voting system 
assigns cj class value (landslide class) to that particular pixel by class which predominates in 
neighboring instances (Eq. 23) or it alternatively assigns its mean value if the data are ordinal 
numeric (Eq. 24) (Fig. 12). 
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Typically for k-NN there is no need for conventional training/testing procedures, fc’ is 
simply calculated for the remaining (testing) part of the dataset in the same way as in the 
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training mode (Varmuza & Filzmoser 2009). To avoid even votes, the number of neighbors is 
necessarily an odd number (k=1, 3, 5, 7…). Since it is more probable that closer neighbors 
have a greater impact, it is further desirable to ponder each neighbor’s proximity, thus 
upgrading to weighted k-NN (Mitchell 1997). It allows the algorithm becoming global19 
(Sheppard’s method) but it requires sorting and weighting of distances per each pixel 
element (and each Conditioning Factor assigned to it) in the training set, resulting in a 
hardware-demanding and time-consuming procedure. 

Having the classifier described, it becomes evident how biased it can become if all 
(relevant and irrelevant) Conditioning Factors are being fed together to the algorithm, 
because it will build (weighted or regular) k-NN relation per each, thus misleading the 
classification. In other words, k-NN is extremely sensitive to Conditioning Factor’s relevance 
to the landslide occurrence, which is why a very strict Attribute Selection needs to be 
performed prior to the analysis. Alternatively, in the case of weighted k-NN, Euclidean 
distance axis could be stretched so that different Conditioning Factors would have different 
weights according to their relevance. Still, it does not solve the computational demands of 
this algorithm, especially when there are mixed data types, which call for a double procedure 
(due to the different distance calculations). 

On the bright side, the algorithm is straightforward (the distances are the classification 
criteria, so there is no true black-box model behind it) and it can originate from a very sparse 
data, randomly sampled throughout the training set (which is sometimes convenient, but for 
the landslide assessment concept and prediction of the spatial landslide distribution it is of 
little relevance). It is also very convenient for experimenting, since only one parameter (the 
number of neighbors k) needs to be optimized. 

 
Figure 12.  k-NN classification principle. Unclassified instance (?) is classified by the majority of 
neighbors into landslide (circle) or non-landslide (square) instance. Note that for k=3 the instance is 
classified as landslide, for k=4 it remains unclassified (votes are even 2:2) and for k=5 the instance is 
classified as non-landslide. 

5.2.3.3 Decision Tree C4.5 
Decision Tree classifiers are the algorithms which resemble a tree structure from the root 
downward (Fig. 13), where every set of branches originate from the common node and 
extend to the further nodes and branches hierarchically. These eventually terminate in end-
nodes, called leafs of a Decision Tree. 

                                                
19  A Machine Learning algorithm is global when it allows all training instances to participate in 

mapping function (in this case fc
’), otherwise it is local. 
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C4.5 is a well-known univariate decision tree classifier (Quinlan 1993). In this 
approach (and with respect to the landslide assessment framework), a pixel instance, 
described with a set of n Conditioning Factor values is classified by testing the value of one 
particular factor at each node, starting from the root of the tree. It then follows a certain path 
in the tree structure depending on the tests in previous nodes and finally reaches one of the 
leaf nodes labeled with a class cj (landslide/non-landslide in binomial j=2 case or accordingly 
to the designated landslide classes in multinomial j=l cases). Each path leading from the root 
to a certain leaf node (landslide class label) can be interpreted as a conjunction of tests 
involving Conditioning Factors. Since there could be more leaf nodes with the same class 
labels, one could interpret each class as a disjunction of conjunctions of constraints on the 
Conditioning Factors values of instances x from the dataset (x={x1, x2,…,xn}). The 
interpretability of the derived model enables a domain practitioner to have better 
understanding of the problem and in many cases could be preferable over functional models 
such as SVM and ANN. 

 
Figure 13.  An example of a simple tree structure on landslide assessment example depending on two 
Conditioning Factors, elevation and slope (elevation is preferred over slope at the root node). 

It is now left to briefly explain how the tree can be derived from the training data 
(xq,cj), q=1,…,g, where cj is one of l disjunctive classes (j=1,…,l). C4.5 deals both with 
numerical and categorical attributes but for the sake of the simplicity it is assumed that all 
Conditioning Factors are categorical (nominal data scale). The tree construction process 
performs a greedy search in the space of all possible trees starting from the empty tree and 
adding new nodes in order to increase the classification accuracy on the training set. A new 
node (candidate Conditioning Factor test) is added below a particular branch if the instances 
following the branch are partitioned after the test in such way that the distinction between the 
classes becomes more evident. If the test on the Conditioning Factor F splits the instances in 
subsets in which all elements have the same landslide class labels, a perfect attribute choice 
is reached (those subsets become leaf nodes). On the other hand, if the instances are 
distributed so that in each subset there has been equal number of elements belonging to 
different landslide classes (leading to indecisiveness regarding that factor), then F would be 
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the worst attribute choice. Hence, the root node should test against the most informative 
Conditioning Factor concerning the whole training set. C4.5 uses Gain Ratio (GR) measure 
(Quinlan 1993) to choose between the available Fs and is heavily dependent on the notion of 
Entropy. Figure 14. explains the calculation of Gain Ratio. 

 
Figure 14.  The illustration of the Gain Ratio on the decision tree node. 

Let Sin be the set of N instances for which the preceding test in the parent node 
forwarded them to the current node. Let ni be the number of instances from Sin that belong to 
class cj, j=1,...,l. Entropy E(Sin) is defined as a measure of impurity (in respect to the class 
label) of the set Sin as: 
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If all instances belong to the same class, then entropy is equal to zero. On the other 
hand, if all classes are equally present, the entropy is maximal (log2l). In particular problem 
setting, F denotes the candidate attribute of an instance x. Since it is assumed that F is 
categorical and can take m different values v1,v2,…,vm, there are m branches leading from 
the current node. Each Sout(F=vi) represents the set of instances for which F takes the value 
vi. The informative capacity of F concerning the classification into l predefined landslide 
classes can be expressed by using the notion of Information Gain (IG): 
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In Equation 26. |Sout(F=v)| represents the number of instances in the set Sout(F=v) and 
E(Sout(F=v)) is the Entropy of that set calculated using Equation 25. Higher the IG, more 
informative the F for the classification in the current node, and vice-versa (Mitchell 1997). 

The main disadvantage of the IG measure is that it favors the factors with many 
values (bigger m) over those with fewer (smaller m). This entails wide trees with many 
branches starting from the corresponding nodes. If the tree is complex and has a lot of leaf 
nodes, then it is expected that the model will overfit the data (it will learn the anomalies of the 
training data and its generalization capacity, i.e. classification accuracy on unseen instances 
will be decreased). In order to reduce the effect of overfitting C4.5 further normalizes IG by 
the Entropy calculated with respect to the factor’s class values instead of landslide class 
labels (Split Information – SI) to obtain Gain Ratio (GR): 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

46 

∑
∈

==
−=

},...{
2

1

)(
log

)(
),(

nvvv

outout
in N

vFS

N

vFS
FSSI , (27) 

),(

),(
),(

FSSI

FSIG
FSGR

in

in
in = . (28) 

C4.5 uses GR to run a greedy search over all possible trees. If the factor is numerical 
(this is the case for the most of them) C4.5 detects the candidate thresholds that separate 
instances into different classes. Let pairs (F, cj) be (50, 0), (60, 1), (70, 1) (80, 1), (90, 0) and 
(100, 0). C4.5 identifies two thresholds on the boundaries of different classes: F<55 and 
F<85. F now becomes a binary attribute (true or false) and the same GR procedure is 
applied to select among the two thresholds, when considering the introduction of this 
attribute test into the growing tree. 

Finally, C4.5 uses so-called post-pruning technique to reduce the size of the tree 
(complexity of the model). After growing, the tree that classifies all training examples as well 
as possible errors (overfitted model) is converted into a set of equivalent rules (e.g. IF F1=v1 
AND F2<v2 AND … THEN cj) per each leaf node (a path from the root to a leaf). It then 
prunes the rules by removing every condition that does not affect the estimated rule 
accuracy, and then sorts the pruned rules by their estimated accuracy. In the operational 
phase C4.5 uses sorted pruned rules for the classification of unseen instances (for testing 
set). 

C4.5 calculates observed estimates for rules by using the training set as a whole 
(number of correctly classified instances/number of total instances per each leaf) and then 
calculating the standard deviation assuming binomial distribution. For a given confidence 
level, the lower bound estimate is taken as the measure of the rule accuracy. There are 
many variants of pruning techniques but all of them can be compared with adjusting 
parameter c in SVM algorithm (as will be shown later), since they both trade-off the training 
error versus the model complexity in order to increase the generalization power of the 
induced classification model (Quinlan 1993, Mitchell 1997, Varmuza & Filzmoser 2009). 

5.2.3.4 Support Vector Machines (SVM) 
After some time of digesting of the theoretical background and realizing all the advantages 
over conventional statistics or other Machine Learning systems, SVM-related improvements 
in learning theory were acknowledged in many different fields of classification and regression 
tasks, especially with complex and large datasets (Kanevski et al. 2009, Kecman 2005). 
Conveniently, spatial modeling in Geo-sciences commonly faces the problem of non-linearity 
and multi-dimensionality of input data, leaving ordinary statistic or probabilistic tools 
struggling while featuring-out a pattern or rule that could lead input data to an interpretative 
model. The potential of Machine Learning algorithms for solving such problems has only 
recently been exploited (as presented in Chapter 4). Herein, SVM algorithm utilization in 
classification task in respect to the landslide susceptibility assessment will be considered, but 
first, it is necessary to elaborate the learning mechanism and its formulation. 

SVM Machine Learning was developed under the Vapnik-Chervonenkis 
generalization theory, with linear separating learning machines, extending to kernel-induced 
feature space, and with respect to the optimization theory. The fact that SVM has a convex 
optimization problem makes them quite unique and somewhat advantageous in comparison 
to the other supervised learning systems (Cristiani & Shawe-Taylor 2000). In fact, the 
learning problematic with SVM resembles classical statistic inference and ANN system (Fig. 
15), yet with significant differences, concerning data distribution and optimization. SVM 
approach does not require normally-distributed datasets, and does not use pre-defined 
parameters (it is called non-parametric modeling due to the latter). Instead it tunes the 
parameters to match the needed learning capacity in relation to the data complexity. 
Conversely to ANNs and statistical or Fuzzy Systems, where systematical reducing of the 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

47 

initial training error takes place until the estimated threshold is reached, SVM keep the 
training error fixed and reduce the confidence intervals instead (Cristiani & Shawe-Taylor 
2000, Kecman 2005). Moreover, SVM method provides novel principle for error treatment in 
so-called, Structured Risk Minimization principle, which optimizes the algorithms 
performance on the basis of learning space reduction toward the most desirable learning 
capacity. In simple words, SVM procedure puts the learning capacity and desired accuracy in 
balance (Burges 1998, Cristiani & Shawe-Taylor 2000). 

 
Figure 15.  Architecture of SVM. 

SVM network architecture (Fig. 15) is the same as in ANN RBF network design, in 
fact SVM are a sub-branch of ANN with a single hidden layer for kernel function operations: 
inputs are vector coordinates of a training pixel instance xqϵPq (geological, morphometric and 
environmental Conditioning Factors) and landslide class, i.e. xq={x1, x2,…,xn}, fc(xq), which 
are forwarded to the hidden layer nodes mapped by RBF kernel functions K(x,xq), and each 
is assigned a non-zero weight w i (in the case the node contains Support Vectors). Every 
node is solved for the weight vector w i and/or bias b by training on initial function fc(xq) and 
relates to the function fc’(xq)=cj which maps the initial function into the new instances xpϵPp (in 
the testing set). 

Originally, SVM is a linear binary classifier (instances could be classified to only one 
of the two classes, e.g. landslide and non-landslide), but one can easily transform l-classes 
problem (multinomial landslide classes) into a sequence of l (one-versus-all) or l(l-1)/2 (one-
versus-one) binary classification tasks, where using different voting schemes lead to a final 
decision (Belousov et al. 2002). Given a binary training set (xq,cj), xqϵR

n, cjϵ{-1,1}, j=1,…,l, 
the basic variant of the SVM algorithm attempts to generate a separating hyper-plane in the 
original space of n coordinates (xi parameters in vector x) between two distinct classes (Fig. 
16). During the training phase the algorithm seeks for a hyper-plane which best separates 
the samples of binary classes (classes 1 and -1). Let h1: w ixq+b=1 and h-1: w ixq+b=-1, 
(w i,xqϵR

n, bϵR) be possible hyper-planes such that majority of class 1 instances lie above h1 
(w ixq+b>1) and majority of class -1 fall below h-1 (w ixq+b<-1), whereas the elements 
belonging to h1, h-1 are defined as Support Vectors (Fig. 16). Finding another hyper-plane h: 
w ixq+b=0 as the best separating (lying in the middle of h1, h-1), assumes calculating w i and b, 
i.e. solving the nonlinear convex programming problem. The notion of the best separation 
can be formulated as finding the maximum margin MA between the two classes. Since 
MA=2||w i||–1, maximizing the margin leads to the constrained optimization problem (Eq. 29). 
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Figure 16.  A general binary classification example, separating landslide (circles) from non-landslide 
instances (squares) in a simple 2D feature space (two Conditioning Factors/coordinates – x1 vs. x2 
define the space). Shaded points represent instances that were misclassified. Solid (bolded) instances 
represent Support Vectors. 

Despite of having some instances misclassified (Fig. 16) it is still possible to balance 
between the incorrectly classified instances and the width of the separating margin. In this 
context, the positive slack variables εi and the penalty parameter c are introduced. The 
slacks represent the distances of misclassified points to the initial hyper-plane, while 
parameter c models the penalty for misclassified training points, that trades-off the margin 
size for the number of erroneous classifications (bigger the c smaller the number of 
misclassifications and smaller the margin). The goal is to find a hyper-plane that minimizes 
the misclassification errors while maximizing the margin between the classes. This 
optimization problem is usually solved in its dual form (dual space of Lagrange multipliers): 
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where w* is a linear combination of training examples for an optimal hyper-plane. 
However, it can be shown that w* represents a linear combination of Support Vectors xq for 
which the corresponding αq Langrangian multipliers are non-zero values. Support Vectors for 
which c>αq>0 condition holds, belong either to h1 or h-1. Let xa and xb be two such Support 
Vectors (c>αa,αb>0) for which ca=1 and cb=-1. Now b could be calculated from b*=-
0.5w*(xa+xb), so that classification (decision) function finally becomes: 
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In order to cope with non-linearity even further, one can propose the mapping of 
instances to a so-called feature space of very high dimension: Ψ:Rn→Rω, n<<ω, i.e. x→ 
Ψ(x). The basic idea behind this mapping into a high-dimensional space is to transform the 
non-linear case into linear and then use the general algorithm, as already explained (Eqs. 
29-32). In such space, dot-product from Equation 32. is being transformed into Ψ(x)⋅⋅⋅⋅Ψ(xq). A 
certain class of functions for which K(x, xq)=Ψ(x)⋅⋅⋅⋅Ψ(xq) holds, are called kernels (Cristiani & 
Shawe-Taylor 2000). They represent dot-products in some high dimensional dot-product 
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spaces (feature spaces), and yet could be easily computed back into the original space. 
Radial Basis Function (Eq. 33), also known as Gaussian kernel (Abe 2005), is one of such 
functions commonly implemented with SVM20. 
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Now Equation 32. finally becomes: 
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After removing all training data that are not Support Vectors and retraining the 
classifier by applying the function above, the same result would be obtained as in the case of 
classifying with all available training instances xq (Cristiani & Shawe-Taylor 2000). Thus, 
ones defined, Support Vectors could replace the entire training set containing all necessary 
information for the construction of the separating hyper-plane h. 

5.2.4 Deterministic Approach 
This is an entirely different approach, which employs deterministic, i.e. physical nature of the 
landsliding phenomenon, and involves almost utterly different features to characterize 
masses susceptible to landsliding. Even though it could be said that the regional scale under 
GIS framework has remained in use, the deterministic modeling requires more localized 
data, which are acquired on the field and subsequently generalized for wider areas with 
presumably similar characteristics. Thus, instead of dealing with chiefly geological, 
morphometric and environmental themes of an area as in previous approaches, analysis now 
requires geotechnical features which are to determine mechanical properties of the masses 
throughout the area. This nears the problematic of susceptibility to the engineering geological 
framework, which dominates on local (site-specific) scales. The modeling itself is feasible 
due to the significant deal of approximation that has to be introduced in order to keep the 
regional character of the analysis and avoid the model complexity overload. 

The GIS implementations of such kind are already well-known, and there will be some 
comments on particular extension packages for a variety of GIS platforms later on (see 
Chapter 5.5). 

Deterministic analysis in regional GIS framework comes down to the simplest of the 
cases of slope stability analyses – the infinite slope model, and the simplest Triggering 
Factor involvement – shallow groundwater flow that is converging under stationary 
conditions. Otherwise, the slope stability analyses can be very detailed and require very high 
data sampling density, usually impossible to collect at regional scales. It can involve very 
elaborate modeling based on Finite Elements or Finite Differences, not to mention how 
complex the linked triggering model can become (profound expert knowledge on the 
triggering type would be required, involving possibly earthquake modeling, hydrological-
meteorological modeling, hydrological-hydrogeological modeling, erosion modeling and so 
forth). However, the simplest forms of slope analysis follow the Limit Equilibrium Method 
(LEM), while the simplest groundwater flow model considers stationary flow under steady-
state conditions. The general principle of any LEM type of method implies the balance of the 
driving and resisting forces acting upon a particular slip surface in the body of a slope. It 
involves relatively simple static composition of these forces and their ratio, represented by 
the Factor of Safety (Fs) or Stability Index (SI). The latter is more common in the GIS practice 
(Montgomery & Dietrich 1994, Pack et al. 2001) and it will hence be discussed in the 
simplest, infinite slope scenario in the following passages. 

                                                
20  In all of the implementations of SVM in this thesis, presented in detail in Chapter 6, Gaussian 

kernel, containing only two parameters (c and γ) for optimization has been used. 
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Figure 17.  The infinite slope model. 

Deterministic model at hand is coupled. It involves LEM-based Stability Index model 
and steady-state groundwater flow model. The amount of the approximations introduced by 
combining these two models is substantial and affects the model’s applicability and 
limitations, as will be discussed later on. 

LEM-based Stability Index initially assumes the infinite slope (Fig. 17), where the slip 
surface is parallel to the topographic slope. The consequence of the latter is enabling the 
GIS application in the deterministic concept, because it puts surface topography in control of 
the groundwater behavior, and it is needless to say how developed are the analysis of 
surface topography in GIS and how valuable data can be extracted using GIS. The method 
further assumes combined cohesion, and does not take into account reinforced and 
mitigated scenarios. 

A simple Coulomb-Mohr’s condition of failure along the slip surface (Eq. 35) is 
adopted, as well as the principle of effective stresses: 

soilsoilsoil φtgσcτ '+= , (35) 

where τ is the shear strength of the soil along the slip surface, c is the combined 
cohesion (relative dimensionless cohesion), σ’soil is the effective stress of the soil (total stress 
decreased by the pore pressure), and φsoil is the friction angle of the soil. The Factor of 
Safety Fs is then built as a ratio between resisting and driving forces (Eq. 36). 
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These forces could be composed by the geometry of the infinite slope (Fig. 17): 
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where γsoil/w is the unit weight of soil/water, wr=Dw/D=hw/h, and r=γw/γsoil is water to soil 
weight ratio or relative wetness, and combined (dimensionless) cohesion 
csoil=(croot+c’soil)/(hγsoil). Stability Index is defined as spatial and temporal probability of Fs, 
which will be discussed later-on. 
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The second part of the deterministic model considers the trigger, which is hereby 
defined as convergent groundwater flow, collected solely from the rainfall. Assumptions infer 
the impervious bedrock, and porous soil mantle, so that the entire amount of precipitated 
water percolates through the soil with no lateral losses, and no superficial run-off (the worst 
case scenario). Furthermore, the subsurface flow parallels the topographic slope, and 
steady-state conditions apply to the flow, while lateral discharge stands in equilibrium with 
the steady-state recharge. 

Given such assumptions, it is possible to define the flux at each point as Tsinθ, where 
T strands for the ground water transmissivity [m2/h], i.e. hydraulic conductivity times soil 
thickness, and θ stands for the slope angle. The assumptions further support formulation of 
depth-integrated lateral discharge qsoil [m2/h], by qsoil=Ra, where a is a specific catchment 
area that equals catchment area divided by the unit length of the slope (a=A/b), and R is a 
steady-state recharge, i.e. its effective value which causes critical conditions (e.g. during the 
most extreme month or week of the year, precipitation-wise). The relative wetness wr can be 
thus defined as a minimal recharge to flux ratio (Eq. 38). 
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Now meteorological (precipitation) and hydrogeological factors are combined through 
wr, and range from 0 to 1. Equation 37. now becomes: 
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Figure 18.  Stability Index in relation to stability classes in Area-Slope space (a=stable, b=lower than 
average potential of instability, c=higher than average potential of instability, d=unstable). 
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An important detail is here regarding the input data, since parameters a and θ are 
extracted from the surface topography, while remaining csoil, r, φsoil, and R/T are the data that 
need to be sampled or monitored. Thus, some uncertainty is introduced due to both, 
measurement errors and errors of generalization over wider areas. The solution is to turn to 
stochastic approach and to present a range of input variables, which presumably behave as 
normally or even better, uniformly distributed data. The data will hence have the worst-case-
scenarios for the most unfavorable values, as well as the best-case-scenarios. If we assume 
r to be a constant ratio (or at least, constant for a specific part of the area, defined by the 
lithological units) the worst case would be when csoil and φsoil are the lowest, and R/T are the 
highest. The Stability Index SI is then computed as min(Fs) and all areas with such Fs greater 
than 1 are unconditionally stable (at least regarding the precipitation-groundwater trigger) 
and SI=min(Fs). If the min(Fs) is less than 1 than a possibility (non-temporal, spatial 
probability) of a failure exists and SI=p(Fs>1). The other extreme is the opposite situation or 
the best case scenario, where if max(Fs) is less than 1, SI=p(max(Fs)>1)=0. The rest of the 
SI combinations are shown in Figure 18., where they are defined in the area-slope space (a, 
θ), so that appropriate classes could be defined. In general, the lower the index is, the lesser 
the stability and vice-versa. 

The limitations of the method are apparent. It requires only precipitation-induced 
landslide mechanisms, developed only in mantled soil, such as eluvial and delluvial 
Quaternary formations. It is typical for hummocky topography with well developed channeled 
hollows, where sliding mechanism needs to be translational over significantly less permeable 
bedrock. It further requires that certain points of the terrain have been previously defined as 
unstable by the expert, in order to calibrate the output class scale (Fig. 18). For these 
reasons the resulting classification is defined as the relative susceptibility/hazard because it 
partly contains the temporal dimension, expressed through the meteorological data. 

5.3 Model Evaluation Methods 
This branch of methods is featuring the Objective 5 (see Chapter 2). 

 

The quality of classification emerging from any of the presented approaches, could be simply 
estimated as the relation between correctly and incorrectly classified landslide instances 
(accuracy), but the problem of proper evaluation becomes more complex (Frattini, et al. 
2010), and requires more sophisticated solutions. These are commonly based on the 
confusion matrix or contingency table (Tab. 6), which introduces different types of 
classification hits and errors. True Positives are the instances where the model and the 
reference agree that landslide exists, True Negatives represent the instances where the 
model comply with the reference on non-landslide instances, while misclassifications are 
presented by False Positives (model claims landslides where they do not exist according to 
the reference) and False Negatives (vice-versa). Confusion matrix is obtained from the 
cross-tabulation of the model and the referent landslide map (in the case of the landslide 
assessment framework). 

Table 6.  Confusion matrix and appropriate error measures. 

 Landslide Inventory 

ROC space coordinates  true false 

m
od

el
 

positive tp (true positive) fp (false positive) tprate=tp/(tp+fn) 

negative fn (false negative) tn (true negative) fprate=fp/(fp+tn) 
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5.3.1 Kappa Statistics  
Herein, a parameter called kappa index (κ-index) was proposed. It represents the measure of 
agreement between compared entities, rather than the measure of classification performance 
(Landis & Koch 1977). It turns quite convenient for comparison of the maps with the same 
classes (Bonham-Carter 1994), as it commonly is the case in Machine Learning-based 
classification experiments. The best way to compute κ-index is to derive it from a confusion 
matrix, an l×l cross-tabulation table (l being the number of landslide classes) in which xii 
represents the number of pixels from the actual classes cj that are paired with the cj classes 
of the model. 
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In Equation 40. T represents the total number of tested pixels, while xi+ and x+i are the 
total numbers of observations in particular row and column of the confusion matrix, 
respectively. The idea of κ-index is to remove the effect of the random agreement between 
the two experts (here between a referent Landslide Inventory and a classifier). Obtained 
index ranges from -1 for the complete absence of agreement, to +1 for the absolute 
agreement, while zero value suggest that the agreement is random. Based on (Landis & 
Koch 1977, Fielding & Bell 1997) κ-index values falling in 0.61-0.81 range are categorized as 
substantial, and values higher than 0.81 are considered as nearly perfect. 

In the multinomial case (more than two classes) κ-index can be performed per class, 
thus specifying which class are matching better or poorer. It is usually called conditional 
kappa κi and it follows a similar formulation as ordinary kappa (Eq. 41). 
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There are also some other formulations of κ-index, where the accent is on 
decomposing of the index into classes, or decomposing it to the histogram match and 
location match as in κhisto and κlocation (multiplying these, the overall κ-index is obtained). This 
is an advanced idea in the domain of landslides (or any spatial-featured classification for that 
matter, such as Land Cover mapping for example), because it gives better insight on the 
actual matching of the model. In particular, κlocation introduces a factor which takes into 
account the class sizes and treats the errors with bigger tolerance, while κhisto takes into 
account the distribution of values within a class21. Ultimately, there is a fuzzy measure κfuzzy 
which introduces the correction based on a distance decay function, which furthers the 
concept of higher tolerance for the particular error types. The classes can be even weighted 
differently (the distance decay membership function can be adjusted arbitrarily), so that the 
smaller classes get another decrease of misclassification penalty. It is essential that the 
practitioner is experienced with the model and the system of evaluation, so that the slack in 
tolerance that the model is being presented with is not abused (Hagen 2003). 

5.3.2 Receiver Operating Characteristics (ROC) 
Receiver Operating Characteristics (ROC) represents an evaluation metric that 

depicts relative trade-offs between benefits and costs, i.e. True Positive rate (tprate or hit rate) 

                                                
21  For instance, if a model has correctly classified 10 landslide instances out of all 15 landslide 

instances existing in the area, it should be preferred over the model which mapped 10 out of 30 
instances correctly. This would not be seen with ordinary κ-index, primarily because the size 
(hence the influence) of the landslide class is usually up to 10 times smaller than non-landslide 
class. 
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and False Positive rate (fprate or false alarm rate). These are the coordinates of a 2D plot 
defined as a ROC space (Fig. 19). The ROC curves, given their contingency table 
parameters (Tab. 6) at a given probability threshold intervals, are simply the performance 
functions in that space (Fawcett 2006). It is important to highlight that the term probability can 
refer to any 0–1 scoring scale. Accordingly, some models in this research represent spatial 
probabilities while others represent just relative scoring scales, but their comparison is hence 
plausible in ROC space. True probability would require a temporal dimension of the landslide 
distribution. Due to the usage of ratios of contingency table elements (tp/fprate), indifferent to 
the actual class distribution, it is possible to avoid the compatibility issues between differently 
designed model scoring scales in ROC space. Other benefits that arise from within are that 
approach can handle the unbalanced classes (e.g. it is often that non-landslide instances 
predominate), and deal with cost-sensitive (fprate-sensitive) models. The latter is not 
necessarily beneficial for landslide mapping, where False Negatives are even less desirable 
than False Positives (favoring of safety – conservativeness). 

The most common numeric parameter of evaluation in ROC space is Area Under 
Curve (AUC). The higher the AUC (within the 0–1 span) the better the performance and vice-
versa. Additional characteristics of the ROC plot (e.g. random performance marker is the 
diagonal, conservative performance marker is lower left sector and liberal performance 
marker is the upper right sector of the plot) allow descriptive evaluation, useful when 
choosing among the models with a similar AUC. There are some other measures, which 
basically all emphasize some characteristics of the curve, but the AUC is conceptually the 
most comprehensive and the most exploited one. 

Some particular details need to be specified for different types of models (Fig. 19). 
Apparently, ROC analysis requires class probabilities, while discrete classifiers models (such 
as Decision Trees and SVM) do not offer any. Instead, their task is to match the original 
classes that they were trained upon, thus giving no ranges based on probability. Only 
additionally discrete classifiers can be supplemented with the quasi-probability descriptor, by 
simply enacting probability iteratively, i.e. by using several model variants and averaging the 
final model. The model variants can be generated by varying the classifier parameters, or 
sampling splits. Otherwise, such discrete classifiers would not be represented by a curve in 
ROC space, but by a triangle over the main diagonal. In this way some features, especially 
qualitative features of the curve would remain unavailable for the analysis, thus slightly 
concealing all details of the modeling performance. Other, probabilistic models, usually called 
generative classifiers (such as Logistic Regression) do not suffer from such shortcoming 
(even if they have quasi-probabilistic scoring scales). 

 
Figure 19.  An example of a ROC curve for a generative/probabilistic classifier (solid line) and a 
discrete classifier (dashed line). Note that the AUC is approximately 0.8 for both classifiers (shaded 
area). 
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5.4 Research Workflow 
The research workflow depended on a particular modeling method. It is possible to 
distinguish between slightly different courses of procedures, but the general scheme is 
uniform (Fig. 20). 

 
Figure 20.  A flowchart of the research. Dashed elements relate only to the advanced methods based 
on Machine Learning protocol, while dotted elements apply only to conventional methods. 

5.5 Data and Software Specifications for Different Methods 
The data for the spatial analysis in landslide framework are very typical, nearly standard 
(regarding the scale/resolution, unit area selection, data format), and involve different 
attributes, which correspond to different Conditioning Factors that potentially affect the 
landsliding process. The most of them are the miniature models of these factors, and will be 
presented in detail in respective case studies (see Chapter 6). 

Herein, some general comments on the software are going to be given, since the 
most of the case studies used similar software combinations. 

Primarily, the different GIS platforms have been used for generating the dataset and 
some of the models, where simple geo-computation was sufficient to deliver a model. ArcGIS 
Desktop 9 and 10 have been used in generation, geo-referencing, correcting, rescaling, 
evaluating, converting and actual modeling, via different modules, such as Spatial Analyst for 
example, but also some extension modules such as AHP. Simultaneously, some open-
source alternatives have been implemented for generating additional attributes unavailable in 
the Spatial Analyst. These included SagaGIS (which has been used to generate compound 
DEM-based attributes, because the bigger variety than in the ArcGIS packages is available 
there) and MapWindow GIS (which served for placing a deterministic model SinMap 2). 
Some of the DEM-based attributes have been generated in order to compare the differences 
(due to the possible module differences) between ArcGIS-SagaGIS-MapWindowGIS. It 
turned out that the ArcGIS offered the most stable solutions, which did not have problems in 
data format conversions. For visualizations of all the data, the ArcGIS turned indispensible, 
as the most compatible and the most user-friendly platform, but for simple web-map outputs 
R package, plotGoogleMaps has been used (Kilibarda & Bajat 2012). 
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Some particular extensions have been utilized for AHP-driven models, since there is 
an open source extension for ArcGIS, while SinMap 2 refused to work properly in both 
versions of ArcGIS (which is why the MapWindow GIS has been implemented). Both of these 
could be done by combining MS Excel sheets, which turned convenient and stable in working 
with substantial amount of data, while the outcomes could be easily converted back to the 
.shp extension and introduced to GIS platforms. However, MS Excel (especially the older 
versions) suffers from limited data capacity, which in consequence can lead to tiling of the 
study area into smaller parts or downscaling of the dataset (Chapter 6). MS Excel has also 
been used as a stable platform for communication between the GIS platform and Machine 
Learning and Statistical software. 

Some specific modeling (e.g. Land Cover attribute), which required Remote Sensing 
software platforms, have been conducted in IDRISI Taiga and ErdasImagine 10. These 
included modeling via supervised classification tasks and image ratioing, which are 
presented with very powerful modules in both applications. 

Statistical modeling has been done in either MS Excel or R software. The latter prove 
to be much more powerful, giving ability to append specialized or custom packages For the 
purpose of the research in this thesis R has been successfully implemented for generating 
ROC plots, otherwise very demanding for implementation without particular ROC packages 
in R. The MapComparisonKit, a standalone (ASCII communicable) software package has 
been used only for additional model performance measurements, such as kappa statistics, 
although ArcGIS in combination with MS Excel has also been proved sufficient for cross-
tabulation-based measurements of the models performance (obtaining contingency tables). 

Finally, Machine Learning has been implemented in R, via appropriate packages, but 
also in MachineLearningOffice, particularly GeoSVM standalone package, and most 
importantly, in Weka 3.7 software. 

- R turned out to be very resourceful with numerous packages dealing with different 
types of classifiers, even kernel-based ones. The possibility of optimizing the 
classifier parameters (based on trial-and-error) is supported by providing all the 
necessary parameter adjustments and kernels selections. It is also at disposal of a 
very powerful engine for graphic representations of any kind (multi-dimensional as 
well). Significant drawbacks are the unfriendly, console-launched commands (with 
negligible amount of GUI elements), which require experience and routine in 
manipulation of the data, and not particularly good performance with large datasets 
(with millions of instances and multiple layers). It results in a very costly process, 
time-consumption-wise. For now, the only solution for the latter lies in multitasking, 
which itself requires additional packages and a cluster of similar machines 
(convenient for a classroom environment if available). R’s recent merging with GIS 
platform (R GIS initiative, achieved under SEXTANTE platform) could prove useful for 
solving compatibility issues, which troubled the remaining two solutions (GeoSVM 
and Weka). 

- GeoSVM turns to be rather small but powerful package. Its essential drawback is in 
handling of large datasets. It has limited options for experiment design and 
optimization of parameters, which comes down to only few combinations. The outputs 
(and inputs) with their .dat extension, suffer from incompatibility with the GIS 
platforms. It is specialized for SVM classifier, for which it is well equipped with all the 
necessary adjustment options (including selection of a variety of kernels), but it does 
not enable implementation of any other type of classifier desired in this research, 
such as Logistic Regression and Decision Trees. 

- Finally, Weka seemed as the best choice, since it has been developed primarily for 
the Machine Learning tasks. It is stable, even with large datasets, provides several 
modes which in turn give the practitioner much better perspective and options for the 
experiment design. In the Experimenter mode, it provides possibility to optimize 
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parameters in as many combinations as desired. It also gives good perspective for 
visualizing the data relations and examining the dataset. Further, it directly involves 
different types of filtering and preprocessing of the data (including even the Attribute 
Selection), and also provides built-in performance evaluation metrics (overall and 
class-specific). It turned out to be the fastest among the tested software for the 
chosen pilot areas. The major drawback is the compatibility, which again has to be 
conducted in text or table editors (such as MS Excel), in order to receive the inputs 
and communicate the results to a GIS platform. 
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6 Case Studies 

This chapter is featuring the Objectives 1 & 2, and indirectly all the others (see Chapter 2). 

 

The proposed methodology has been implemented in three study areas, NW Slopes of 
Fruška Gora Mountain (Serbia), Starča Basin (Croatia) and Halenkovice Area (Czech 
Republic). These areas are rather different in terms of geological and other conditions of the 
ambient, but similar enough to be modeled by competitive techniques for landslide 
susceptibility assessment. The most prominent qualifications for such context could be listed 
as follows. 

- All of the case studies are focused on a specific type of landslides and triggering 
mechanism. For instance, first case study (Fruška Gora Mountain, Serbia) is 
dominated by deep-seated slides hosted in Tertiary formations, wherein the 
landslides are primarily erosion-triggered, while in the second (Starča Basin, Croatia) 
they are predominantly shallow and triggered by the precipitation-groundwater 
dynamics. The Czech case study on the other hand, has also erosion as a major 
trigger, while the landslide typology is different and includes mostly translational 
slides hosted in shallow deteriorated mantle of the complex and stratified flysch 
formations. 

- The scales of the input data are concurrent and range from 1:50000 to 1:5000 (or 10–
30 m pixel size for raster input type), which is usually acknowledged as regional scale 
(Fell et al. 2008). This allowed full implementation of GIS and thereupon, typical 
themes of terrain attributes, such as those regarding ground surface morphology, 
geological features, subsurface, hydrological and environmental features, as well as 
some derived synthetic features. 

- In all of the studies a reliable landslide reference (Landslide Inventory) was at 
disposal. 

- Even though the temporal dimension has not been included, it is important that some 
of those time-dependent conditions, primarily climatic, are rather similar for all of the 
study areas, since they all belong to the continental climatic realm. It would not seem 
very meaningful to practice the same methodology if some of the studies were 
belonging to the entirely different ambient. 

Nevertheless, some of the case studies have been evidently more elaborated than 
the others. This especially holds for the first pilot area on Fruška Gora Mountain (Serbia), 
which has been thoroughly experimented by the entire gamut of the modeling techniques, 
but there is another reason to it. It has not been addressed in similar context by previous 
investigators, which is going to be discussed later. Some of the methods have been 
abandoned in the following studies, and the focus has turned to specific details of particular 
techniques (the most successful techniques and techniques unprecedented for that study 
area). It practically came down to implementation of the Machine Learning techniques in the 
remaining two case studies. 
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6.1 Fruška Gora Mountain (Serbia) 
The problematic of the landslide hazard in the context followed throughout this thesis was 
practically unattended in this area in the past. There has been a host of practical 
considerations, mainly small geotechnical projects and reports, tightly related to the landslide 
problematic for various purposes, mainly site-specific ones, for construction design, rarely 
studies at regional scales for urban and regional planning, or just some plenary researches 
targeted at different geological aspects, thus just barely scratching the surface of the 
landslide hazard and susceptibility problematic. Nevertheless, there was a national plan for 
the nation-wide engineering-geological mapping in 1:100000 scale, by the end of the 20th 
century. The sheets should have matched the existing geological map of the same scale, but 
the idea was not realized to date. Such situation with data availability affected the initial stage 
of this research, but the case study area turned resourceful after a compound study of a 
multidisciplinary team (the author being included) from the Faculty of Mining and Geology 
(University of Belgrade) in 2006. Segments of these data have been used for this research, 
as will be presented shortly hereafter. 

It is important to outline that this pilot study area has been researched for four years 
and there have been different aspects of it elaborated and published for different occasions 
(Marjanović 2009, Marjanović et al. 2009, Marjanović 2010a, Marjanović 2010b, Marjanović 
& Caha 2011, Marjanović et al. 2011a, Marjanović et al. 2011b, Marjanović et al. 2011c, 
Marjanović 2012, Marjanović 2013). 

 
Figure 21.  Geological setting of the study area (projection: Gauss Krüger – zone 7, Bessel 1841). 
Standard geological symbols apply: Pz=Paleozoic schists; Se=serpentinite; M1=Miocene limestone 
and marl; M2=Miocene sandstone, organic limestone and marl; Pl=Pliocene clay and marl; l=loess; 
dl=delluvium; a’=terrace sediments; al=alluvium. 
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6.1.1 Setting 
The study area encompasses NW slopes of the Fruška Gora Mountain, in the vicinity of Novi 
Sad, Serbia (Fig. 21). The site (N 45°09’20”, E 19° 32’34” – N 45°12’25”, E 19°37’46”) 
spreads over approximately 100 km2 of hilly landscape, but with interesting dynamics and an 
abundance of landslide occurrences. 

From a wider point of view, stability is a very interesting issue along the river-banks of 
the Danube. Nearly the entire stretch of its right river-bank in Serbia has been very 
symptomatic for the landslides, due to the Danube’s dynamics and related undercutting 
erosion of the river mainstream, which moves the banks southward. The Danube curves 
sharply in NW Serbia (near Novi Sad) and from meridian switches to parallel strike, following 
the major regional fault-lines such as Periadriatic Line. This causes characteristic dynamics 
along the right bank, leaving many landslide hotspots, surrounding Novi Sad, as well as other 
towns and cities Beška, Krčedin, Zemun, Belgrade, Vinča, Grocka, Smederevo etc. further 
downstream. Numerous morphological imprints of fresh and dormant landslides, especially 
large ones, are perceivable along the river-bank, where landslide scarps are dominating the 
upper slope crests toward the local ridges linked to the near-shore river islands, which all 
provides evidence for tracking landslide depletion and accumulation zones (Bogdanović & 
Bugarski 1984). 

Geological setting of the entire mountain follows a zonal composition. It is caused by 
the complex E–W trended horst-anticline, shaping the core of the mountain. Traversing these 
base structures are the NW–SE faults of younger origin, some of which are neo-tectonically 
and seismically active. A typical succession (Pavlović, et al. 2005) starts with Paleozoic 
metamorphic rocks in the anticline base, encompassing the ground above 300 m and 
underlying all younger formations. Triassic basal sediments (conglomerate and sandstone 
gradually shifting toward limestone) imply localized subsidence in the relief at the time of the 
basin formation. The closing of that basin during the Jurassic–Cretaceous left typical oceanic 
crust evidence (ultramafic unit) as well as gulf limestone sequences. The Tertiary is chiefly 
represented by marine sediments, gaining more carbonate components as the basin turned 
more limnic during the late Neogene. The most widespread Quaternary unit is loess, which 
covers the lower landscape toward the Danube on the north. 

In geotechnical practice it is believed that the superficial dynamics of the ground 
directly depends on the geological background, meaning that the rock behavior, under 
agencies of different processes yields diverse geodynamic outcomes (Janjić 1962). 
Geomorphological evidence supports these expectations for this relatively small study area 
(Fig. 21), where slope stability can be generalized into several scenarios (Fig. 22). The 
higher ground, chiefly composed of metamorphic rocks i.e. coated by the shallow mantle of 
metamorphic origin, is mostly shaped by the fluvial and slope processes, where shallow 
valleys and gullies are cut through the coated slopes all the way to the bedrock, forming a 
dense drainage pattern. Since they are not too steep, mostly vegetated and not severely 
tectonized, the dominating slope processes on the flanks of these valleys are screes, minor 
rockfalls and minor shallow landslides (Fig. 22a). The central plateau (Fig. 21) is formed of 
carbonate and clastic rocks and has insufficient thickness to develop karstification, so fluvial 
forms predominate. However, the slope processes are better developed in Miocene-Pliocene 
marlstone and clay, where deep-seated landslides (up to 10–20 m in depth) are being hosted 
(Fig. 22b), particularly on the slopes steeper than 20°. The morphology of the lowest ground 
that flattens northward is governed by the fluvial dynamics of the Danube. It is represented 
by sequences of river terraces, inundation plains and the alluvial fans of smaller tributaries. 
This is where the loess formations are facing the river in relatively steep cliffs. Despite of the 
general stability of loess, landslides on the cliff faces are quite common along the riverbank. 
The latter is caused by surges of groundwater that locally communicate through the bedrock 
(Fig. 22c) keeping the loess units in unfavorable conditions (saturation and suffosion). 
Moreover, loess overlays clay and marl units, that locally host the fossil landslides and seize 
the loess slabs above them (Fig. 22d). 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

61 

 
Figure 22.  Schematic models of instabilities present in the case study area: a) shallow landslide; b) 
rotational landslide in Neogene clay; c) collapse of loess slabs (caused by the groundwater dynamic 
relation with the river); d) relict landslide seizing loess slabs above. Legend shows 1=Paleozoic 
schists; 2=marl and limestone; 3=sand and gravel; 4=clay; 5=sandy clay; 6=loess; 7=delluvium. 

It seems apparent that the instabilities in proposed study area are generally driven by 
geological, geo-morphometric, and environmental attributes (such as lithology, elevation, 
slope angle, Land Cover and so forth) which was further elaborated in this study. The trigger 
however, could be different, ranging from seismic activity along the nearby active fault zone, 
through groundwater and superficial water dynamics (which change the pore-pressure 
regime and according to the Terzaghi’s principles, decreases the soil strength), to direct 
southward fluvial erosion of the Danube, which not only undercuts the banks but lowers the 
local erosion basis, causing all local streams in the watershed to intensify their vertical 
erosion. Heavy rainfall, which is typical for the late-summer periods (August–September) in 
the wider area (according to meteorological observatory in Novi Sad) also plays important 
role as a potential trigger. The problem of the trigger requires temporal analysis which was 
not directly involved in this research, due to the temporal data shortage, i.e. the shortage of 
the landslide activity records (precise dating and rate of displacement). 

6.1.2 Dataset 
Within the framework of The Vojvodina Province governmental project on Geological 
conditions of rational exploitation of the Fruška Gora Mountain area, completed in 2005, by 
the multidisciplinary expert team from the Faculty of Mining and Geology (University of 
Belgrade), a set of different thematic maps was generated for the entire Fruška Gora 
Mountain area, including Geological, Geomorphological, Photogeological, Pedological, 
Seismological and other maps. Thanks to the courtesy of the Faculty of Mining and Geology 
scholars some of those resources have been used in this research. 
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It has already been indicated that conventional techniques for this type of research 
involve the use of an input dataset with important terrain attributes, called Conditioning 
Factors, which are being selected according to their availability at selected regional scale, 
and their significance for the problem at question. Although a majority of researchers use 
various available data and measure their statistical dependence against landslide 
occurrences prior to their implementation, it is suggested that the input attributes are chosen 
more cautiously, due to their temporal and scale constrictions. In landslide susceptibility 
analysis it is considered that constant variables (regarding the duration of the landsliding 
process which is sometimes measured in decades) should be preferred, meaning that 
attributes such as Land Use and Land Cover, climate data, pore-water pressure data and 
other that have distinct annual or even diurnal variations, should be used with caution 
(Ohlemacher 2007). Furthermore, the caution is necessary for preparing synthetic data as 
well, especially interpolated data. For instance, a groundwater table map or soil mantle depth 
are hypothetically possible to extract from the borehole data, if the sampling density turned 
out to be good enough, so that some interpolation method (possibly advanced, e.g. based on 
non-ordinary kriging) could be used to interpolate data over the area. In any case, the 
interpolation implies switching from point-specific data to spatially distributed data, which 
inevitably introduces uncertainty error. It is hence disputable whether such data are 
contributing to the model or biasing it. Attribute Selection (see Chapter 5.1) is one way of 
dealing with such problem, but it is also arguable whether it should be used, especially in 
multivariate framework. In this study a Chi-Square and Information Gain ranking have been 
implemented, mostly though just to demonstrate and highlight which are the most dominant 
Conditioning Factors, and to prove their statistical independency to the Landslide Inventory, 
and not to exclude any low-ranked factors. It has actually been shown that excluding these 
factors have led to the poorer modeling performance, especially in Machine Learning case22. 

The 2D raster thematic GIS layers, representing different Conditioning Factors and 
Landslide Inventory, have been acquired from different resources, entailing different levels of 
generalization and different scales. Subsequently, they have been compiled to an optimal 30 
m cell resolution. Regarding the support problem, generalization to 30 m cells is plausible, 
because the most critical data had reasonably small scale (such as geology with 1:50000) 
and turned out to be too detailed for the research purpose. As a matter of fact, an additional 
generalization (by aggregating similar classes) took place over such inputs, thus 
compensating for the support problem (Dungan 2001). Assembling of the input dataset, has 
been prepared by combining ArcGIS and SagaGIS packages (Böhner, et al. 2006) stored in 
ESRI grid formats, and also in ascii format which was necessary for commuting with the 
Machine Learning software (in absence of fully integrated ML modules in present GIS 
platforms). The content of the input dataset was practically identical for all implemented 
methods, apart from deterministic model, which required different input variables (as will be 
specified later-on). 

                                                
22  SVM and Decision Tree algorithms for instance, already include some sort of Attribute Selection 

on their own, so no further exclusion by Attribute Selection is needed. 
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6.1.2.1 Conditioning Factors 
The dataset part regarding the Conditioning Factors thus included morphometric, 
hydrological, geological and environmental Conditioning Factors and the Landslide Inventory. 

6.1.2.1.1 Morphometric Data 
Topographic data have been obtained from the standard topographic maps of Serbia at 
1:25000 scale in Gauss-Krüger Projection (Zone 7, ellipsoid Bessel 1841, sheets Bačka 
Palanka 377-4-1 and 377-4-2), where contour lines generated from a conventional 
photogrammetric restitution are given, with the equidistance of 10 m. For generation of the 
Digital Elevation Model (DEM), these contour lines were first digitized, and then decomposed 
to point data, extracted to DEM by TOPOtoRaster module, with 30 m cell resolution. 
Subsequently, DEM has been rectified for the erroneous pits and picks and tested for the 
consistency and accuracy by 10% split Cross-Validation of the source point data. Root Mean 
Square error of the validation was in reasonable limits (RMS was lesser than 0.4) so the 
DEM has been acknowledged. Even though the topographic maps with a given scale are 
suitable for DEMs productions with denser resolutions (Carrara et al. 1997), a DEM 
resolution of 30 m was chosen for two reasons: as a proper DEM resolution for regional 
landslide modeling and as the adequate support grid size compatible with other data sources 
used in this study, such as a geological map at 1:50000 scale, and 30 m Landsat imagery 
(Dungan 2001). All DEM-related geo-morphometric and hydrological thematic maps kept the 
same (30 m) resolution. The latter involved derivation of numerous morphometric parameters 
(Wilson & Gallant 2000) listed as follows (Fig. 23a-f). 

- Elevation (F1) – a float (continual) raster (Fig. 23a), suggesting that the linear 
increase in potential energy with altitude brings the higher susceptibility to the higher 
ground. It actually represents a Digital Elevation Model (DEM) of the terrain, 
described earlier. 

- Slope angle (F2) – a float raster (Fig. 23b) which is considered important for slope 
stability because of the direct physical relation with the landslide phenomenology. 
Greater angles (θ) propose higher instability of the slopes and vice-versa, but with 
restriction to a particular rock type (e.g. in solid rock, the slopes are expected to be 
stable even with a steep slope angle, while slopes in clay do not need a steep angle 
to host instability). From morphometric point of view, this factor is a firs-derivate-
based morphometric feature computed directly from the DEM by Degree Polynomial 
(DP) slope algorithms, also called D8 algorithm, referring to a 3×3 window, where 8 
pixels surround the central one and define its value (Olaya 2004). 

- Aspect (F3) – a float raster (Fig. 23c) which refers to the spatial exposure of the 
ground element (its azimuth). It is also computed from DEM values by means of DP-
D8 algorithms and ranges from 0° to 360° (counter c lockwise), suggesting that 
susceptibility to landslides rises from SW to NW quadrant, since the diurnal solar path 
influences moisture in slopes and topsoil mantle thickness. Thus NW slopes are the 
most inconvenient (with the highest moisture content and the thickest mantle detritus) 
while SW are the least susceptible. 

- Slope length (F4) – a float raster (Fig. 23d) of morphometric length of the slopes, also 
derived from DEM by means of DP-D8 algorithm. It suggests that longer slopes tend 
to be more susceptible due to the higher possibility of hosting a retrogressive 
(upslope) landslide development, as the most common form of landslide progression 
on the slope. 
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Figure 23.  Various thematic inputs: a) elevation; b) slope angle; c) slope aspect; d) slope length;  
e) plan curvature; f) profile curvature. 

- Plan curvature (F5) – a float raster (Fig. 23e) calculated on the basis of second order 
derivative from the elevation data (DEM), defining the convex/concave character of 
the surface in the direction perpendicular to the contour lines. Positive values suggest 
local relief depression (concavity); negative values represent positive (convex) forms, 
while zero values are reserved for the flat ground. Plan curvature is considered 
important as it reliably indicates convergence and divergence of slope surface in the 
depletion zone (concave forms of the landslide crowns, tension cracks and 
depressions, and also zones of the local water accumulation) and accumulation 
zones (convex forms of the landslide foot and toe) (Ohlemacher 2007). 

- Profile curvature (F6) – also a float raster (Fig. 23f), practically the same as a plan 
curvature, different only in direction, which is here perpendicular to the contour lines 
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(in downslope direction). It also indicates the subtle morphology of the slope and 
reveal possible landslide elements, but also depicts the distribution of driving and 
resisting stresses along the landslide motion direction (Ohlemacher 2007). 

6.1.2.1.2 Hydrological Data 
Hydrographic network has been digitized from basic Topographic maps at 1:25000 scale. It 
has been upgraded by additional synthetic stream lines, computed by using morphometric 
operations over DEM (Compound Module in SagaGIS) and representing mainly small, 
higher-order tributaries. The vector of stream network has been used to generate the 
distance from stream. Another purely hydrological feature is given as Topographic Wetness 
Index (Wilson & Gallant 2000). 

 
Figure 24.  The cross-section of the Danube’s tributary riverbed (solid line) in comparison to the 
theoretical curve of erosion basis (dashed line). Note that the interception point separates vertical and 
lateral erosion preference at approximately 200 m. 

- Distance from stream (F7) – is a float raster (Fig. 25a) computed from vectorized 
stream network (by using Euclidean distance module in ArcGIS SpatialAnalyst). It 
depicts the influence of linear erosion on the slope stability, since deformation and 
failure processes develop regressively upslope under the vertical and lateral influence 
of the linear erosion. In narrow upper sections of the valleys vertical erosion 
dominates, steepening the slopes and destabilizing rock masses. On the other hand, 
lower sections tend to develop lateral erosion, widening the valley bed, once again 
pushing slopes off the balance. That critical point can be estimated by the analysis of 
the local erosion basis, and for the average profiles of the northern mountain slopes it 
rests at about 200 m (Fig. 24). In turn, combination of these two mechanisms erodes 
the slopes, whereas lateral erosion (below 200 m) leaves more prominent effects. For 
this reason, the factor F7 has been weighted, so that the lower ground has stronger 
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influence. Foregoing discussion suggests that areas closer to the stream lines are 
more affected than remote ones, thus buffering out the landslide susceptibility toward 
the ridges of local watersheds. 

- Topographic Wetness Index or TWI (F8) – is another DP/D8 second order DEM-
based float raster (Fig. 25b), and represents a morphometric parameter which defines 
the terrain retention (moisture distribution) in relation to the local topography, 
pinpointing the areas of higher water contents. This parameter roughly expresses the 
water retention distribution throughout the area, and due to the effective stress 
decrease in saturated slopes, it maps the areas with higher TWI values as relatively 
more prone to instabilities (Olaya 2004). It is a function of the local slope angle and 
upslope contributing area and can be formulated in different ways (Eq. 42) depending 
on the way a (upslope contributing area) is defined. 

θtg
a

TWI ln=  (42) 

6.1.2.1.3 Geological Data 
Geological data were obtained from the digital geological map at 1:50000 scale, which has 
been compiled from a raw field geological map at 1:25000 and the Basic Geological map of 
Serbia at 1:100000 scale. Since it is not formational but chronostratigraphic one, the map 
was further simplified to meet the requirements of this case study23. Therefore, the 
generalization to a raster map with 30 m resolution was justifiable. The map was also used to 
derive the synthetic data, based on Euclidean distance calculations (ArcGIS SpatialAnalyst 
module). These included the buffer of geological structures and the buffer of 
hydrogeologically significant borders (Fig. 25c-e). 

- Lithology (F9) – a discrete (categorical) raster (Fig. 25c) of present rock types derived 
after geological map as mentioned above. The map depicts 9 rock units, essentially 
different in their physical-mechanical behavior, thus differently prone to instabilities, 
i.e. (alluvium, terrace sediments, delluvium, loess, Pliocene clay and sand, Miocene 
marlstone and sandstone, Miocene limestone, Serpentinite and Paleozoic schist). It is 
common practice to range lithology (to reclassify it into different intervals) arbitrarily, 
by assigning scores or weights to each of the lithological classes (the scores can 
range from 0 to 1 for instance). However, in Machine Learning implementations (see 
Chapters 6.1.3.4-7) lithology needed to be treated differently, in order to avoid 
subjective quantification of categorical classes. The entire lithology factor has been 
actually isolated into m different sub-attributes, so called dummy variables, giving m-
bit class codes for each unit (m=9). In each sub-attribute a binary reclassification 
further applies, so that the given unit becomes class 1 and all remaining units 
become class 0. For instance, a delluvium class is the 3rd class of the lithology and it 
is hence coded as a sub-attribute 001000000. Within the 001000000 sub-attribute 
(new raster layer) instances corresponding to delluvium are assigned value 1 and all 
the rest is 0. By such intervention each rock unit has been treated by the proposed 
Machine Learning algorithm with no preference. 

- Distance from structures (F10) – is a distance raster (Fig. 25d) which displays the 
distance from the geological structures such as faults and joints, obtained from the 

                                                
23  The map was divided into chronostratigraphic units, thus separating units by different age. This 

breaks the continuity of physically similar rock masses just because they are different in age, 
although they might belong to the same metamorphic/magmatic/sedimentation cycle. Formational 
map on the other hand follows the entire cycle of a rock mass creation, which in result keeps 
physically similar rock masses within the same units. Adopted guideline that similar rock masses 
express similar superficial dynamics better complies with formational map criteria, so the source 
chronostratigraphic map had to suffer some simplification and generalization of original units. 
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photogeological interpretation (See Chapter 6.1.2.5). Since faults and joints represent 
the zones of weakest shear resistance (limited only to a residual shear resistance) 
and also affected by the infiltrated water and fill material, it is logical to assume that 
instabilities are more prone in the areas closer to these structures. In more 
seismically active areas such parameter could be much more appreciated since the 
shear resistance faces further effects, related to the fault dynamics. 

- Distance from hydrogeological boundaries (F11) – is another buffer raster (Fig. 25e) 
which introduces the influence of geological boundaries defined by the change in 
hydrogeological function of the adjacent rock units. This function could change 
significantly as the porosity and permeability between two adjacent unit change. Any 
abrupt downslope decrease in permeability causes higher water pressures at the 
boundary, especially in characteristic structural disposition of the rock units. The 
boundaries that were suspected for such mechanism had been mapped and digitized 
and the appropriate buffer was created, suspecting that areas closer to the boundary 
are more susceptible to landslides. 

6.1.2.1.4 Environmental Data 
Environmental information particularly regarded the vegetation cover, due to a possible 
remediation that some vegetation types can provide for shallow landslidng (the influence of 
root cohesion and moisture retention). In the Multi-spectral Satellite Image Processing 
numerous spectral vegetation indices are proposed to estimate biomass and delineate 
different types of vegetation apart from bare soil, rock, wetlands or artificial surfaces (Glenn 
et al. 2008). After experimenting with several indices the Normalized Difference Vegetation 
Index (NDVI) has been acknowledged. NDVI basically explores the chlorophyll spectra using 
the multi-spectral (multi-band) Landsat TM image bands (Eq. 43). 

RededNearInfraR
RededNearInfraR

+
−=NDVI  (43) 

It particularly exploits the abrupt chlorophyll absorption difference in red and near-
infra-red band (analogue to the chlorophyll’s spectral signature trend). The range of the index 
falls from 1 to -1, wherein, vegetation has values close to 1, water bodies close to 0 and dry 
areas close to -1 (Ravi 2002), making the NDVI easy for reclassification (required in the most 
of the techniques, except for the ML-based ones). The raster has been created by combining 
two Image Processing platforms, IDRISI Taiga and ERDASImagine 8, resulting in a 30 m 
resolution raster map of vegetation cover (Fig. 25f). 

- Vegetation cover (F12) – is a discrete raster which separates heavily (value 1) and 
sparsely vegetated areas (value -1). Former are stabilizing loose topsoil to a certain 
extent, making it less susceptible than bare soil due to water retention and root 
cohesion. This attribute is created by processing Landsat 7 TM bands from summer 
2008 (LE71870292008175EDC00 from USGS free on-line repository), via NDVI, 
which has proved to be more representative in the selected scale than more 
advanced biomass estimators, such as Enhanced Vegetation Index (EVI) (Glenn et 
al. 2008). 
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Figure 25.  Various thematic inputs (continued): a) distance from stream; b) TWI; c) lithology 
(1=Paleozoic schist, 2=serpentinite, 3=Miocene limestone/sandstone/marl, 4=Miocene marl/clay, 
5=Pliocene clay, 6=loess, 7=delluvium, 8=river terrace, 9=alluvium); d) distance from structures; e) 
distance from hydrogeological boundaries; f) NDVI. 

6.1.2.2 Landslide Inventory 
A photogeological map (1:50000) represents a coupled geomorphological and structural 
map, that stresses the forms of the most current geological processes at play. It is compiled 
by adopting basic geomorphological units and appending the heuristic (RS-based) structural 
and stability interpretation. The latter was performed as an expert-based analysis of 30 m 
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Landsat TM imagery (LE71870292008175EDC00 from USGS free on-line repository24) and 
auxiliary derivates (enhancements and processed images, i.e. various indices, Principal 
Components, Color Composites etc), as well as orthorectified aerial photographs at 1:33000 
scale. At the final stage of its compilation the map has been verified on the field, by practicing 
conventional engineering-geological mapping methodology. 

*** 

Aforementioned verification methodology implies evidencing of the landslides, proposed by 
the photogeological interpretation (by means of RS methodology, stereoscopy of the aerial 
photographs in particular). 

 
Figure 26.  Augmented photo-documentation from the field investigation: a) reactivated landslide; 
b) dormant landslide with secondary scars; c) tension cracks (left flank of a); d) object deformations 
(photo by the author 2008-2012). 

The first objective involved on-field check of the validity of the interpretation, 
especially for the landslides that have been mapped with lower certainty. These pre-defined 
locations have been checked by using conventional 1:25000 topographic maps and low-
accuracy navigation device (still sufficient for reambulation at the 1:50000 source scale), and 
this type of field check had to be limited to the smaller landslides only, i.e. only those 
observable on the field. Several small polygons have been removed from the inventory, since 
being misinterpreted as landslides. Since the original interpretation had discerned landslides 
by their activity stage (active and dormant) the objective of this additional survey was also to 
find evidence which could support the activity estimation, as well as estimation of the 
triggering mechanism, landslide depth and type (in order to conform to the adopted 
classification system). Common indicators of the active sliding can be found in 

                                                
24  LE71870292008175EDC00 is the image repository name code meaning:  LE7=ETM+ sensor was 

in operation, 187=path, 029=row, 2008=year, 175=day of the year (date of acquisition is hence 23. 
of June, 2008), EDC = Data held by EROS - Receiving station unknown, 00 = version 0. 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

70 

geomorphological, hydrogeological, botanical evidences, as well as in deformations of the 
man-made structures. For instance, fresh scars, opened tension joints locally filled with 
water, local pounds and hummocky topography are strong evidences of recent activities in 
the depletion and accumulation zones (Fig. 26a-c, 27). Also, fresh fissures in the buildings or 
paved roads, disarrangement of the fences and staircases (as most fragile constructions), 
and tilted tall objects such as poles or trees are further supporting the activity assumption 
(Fig. 26d, 27). Information from the members of local community are also appreciated, 
especially for dating of the landslide events, estimating the water table levels in aquifers, 
estimating the activity rate, estimating the trigger and assessing the damage produced by a 
single or multiple events. 

 
Figure 27.  Location of the photographs from Figure 26. (landslides are shaded polygons). 

*** 

Since the emphasis was on the stability analysis, only that part was extracted from the final 
photogeological interpretation, otherwise rich in other thematic geological content (geological 
structures and geomorphological processes). In this manner the Landslide Inventory raster 
map at 30 m resolution was obtained. It reveals the stability of the landscape by 
distinguishing two classes of landslides based on their activity stage, dormant and active 
landslides (Fig. 28). 

 
Figure 28.  Landslide Inventory. 
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According to the adopted classification (Varnes 1984), landslides fell into the category 
of rotational and translational earth slides, while other, minor occurrences of flows and falls 
were not taken into consideration. The map depicted the distribution of classes into the 
following categories: 3.6% active landslides, 5.6% dormant landslides and the remaining 
90.8% conditionally stable ground (non-landslides). 

 

Table 7. Raster thematic maps represented by thematic attributes of the input dataset. 

 
Conditioning Factor 

source, 
scale/resolution 

short 
description 

elevation (F1) topo-maps, 1:25000 DEM of the terrain surface 

slope angle (F2) DEM, 30 m angle of the slope inclination 

aspect (F3) DEM, 30 m exposition of the slope  

slope length (F4) DEM, 30 m length of the slope 

plan curvature (F5) DEM, 30 m index of concavity parallel to the slope 

profile curvature (F6) DEM, 30 m index of concavity perpendicular to slope 

distance from stream (F7) DEM, 30 m buffer of drainage network 

TWI (F8) DEM, 30 m ratio of contributing area a and tg(F2) 

lithology* (F9) geo-map, 1:50000 rock units 

distance from structures (F10) geo-map, 1:50000 buffer of structures 

distance from h.g. boundary (F11) geo-map, 1:50000 buffer of boundaries between rock units 

vegetation cover (F12) Landsat images, 30 m interpretation of vegetation, water bodies 
and bare soil, based on NDVI  

* nominal attribute 

 

Table 8.  General statistics of attribute layers. 

 
Conditioning Factor 

maximum 
value 

minimum 
value 

mean 
value 

standard 
 deviation 

IG 
ranking 

elevation (m) 523.19 79.83 241.64 94.61 1 

slope angle (°) 40.16 0.00 11.77 6.62 5 

aspect (°) 359.99 -1.00 173.26 116.47 10 

slope length (m) 6456.41 0.00 103.77 152.19 11 

plan curvature 3.3725 -4.0694 0.0085 0.0085 9 

profile curvature  4.0607 -2.6968 0.0089 0.4060 8 

distance from stream (m) 1225.60 0.00 319.59 224.89 6 

TWI 22.49 7.56 11.51 2.83 4 

lithology* * * * * 2 

distance from structures (m) 1672.75 0.00 309.85 259.11 7 

distance from h.g. boundary (m) 1465.09 0.00 306.32 295.45 12 

vegetation cover 0.56 -0.75 0.17 0.21 3 

* nominal attribute 
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6.1.2.3 Data Summary 
The descriptions of used input data, their spatial resolution and sources are given in Table 7. 
The general statistics for chosen Conditioning Factors and IG ranking (Quinlan 1993) based 
on overall terrain data are shown in Table 8. In Appendix 1, a dataset variant used in some 
conventional methods is given. Note that all numeric inputs are ranged and nominal inputs 
are quantified there. 

6.1.2.4 Deterministic Geotechnical Data 
Deterministic analysis was somewhat specific, since it required a different type of data, from 
different resources. Apart from topographic data, i.e. DEM, these included physical-
mechanical rock parameters, such as (dimensionless) cohesion csoil, friction angle φsoil, 
volumetric weight γsoil, and recharge to soil transmissivity to precipitation ratio q/T. The most 
of these parameters are normally obtained from the laboratory tests of samples and apply for 
site-specific scaled investigations. Adopting and distributing these to regional scales is a very 
disputable issue for a number of reasons. The most obvious one is the proper sampling 
density which is unaffordable at regional scales, because each sample requires a borehole, 
sampling, and laboratory tests for each geological unit along the borehole. Appropriate 
sampling density and performing of a meaningful interpolation over the sampled values is 
therefore practically impossible. Hence some generalization has to be introduced, but one 
needs to be aware of the level of bias which is caused by generalization. Common practice 
(Pack et al. 2001) is to adopt the average values of required parameters per each quasi-
homogeneous rock unit or to simply assign generally accepted values for a given rock mass 
(Bell 2007). Perhaps, the most objective estimation is the one regarding the q/T ratio, 
because it is obvious that the maximum precipitation is constant regardless to the rock units, 
while transmissivity T could be relatively precisely estimated. For instance q/T log-ratio of 
1000 means that the ground received three times as more water than it can transmit, which 
is an extreme case and it is obviously more problematic for clayey, schistose or other 
relatively impermeable rock than for the sandy or calcareous units. 

 
Figure 29.  Different lithological domains (regions) of the area for determination of different 
geotechnical parameters: 1=clayey-marly soil; 2=calcareous-sandy soil; 3=solid bedrock. 

With all this being said, the case study area has been subdivided into several quasi-
homogeneous regions, by unifying rock units with similar consistency. It is obvious that 
lithological classes (Fig. 21, 25c) have been aggregated into 3 regions (Fig. 29). The 
according parameter values for these regions are given in Table 9. The most drastic 
generalization would be if just one region with a single set of physical-mechanical 
parameters would have been considered. 
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Finally, it is important to mention that such model and such data could not have been 
implemented without a GIS platform and although the regional deterministic modeling is 
disputable, it shows a certain potential, especially for the appropriate case studies (prevalent 
shallow landsliding scenarios). GIS thus emerges as a very powerful tool which easily 
administers such modeling procedures. 

Table 9.  Average parameters over different lithological domains (regions). 

parameter 
region 1 
(clayey/marly soil) 

region 2 
(calcareous/sandy soils) 

region 3 
(solid bedrock) 

csoil 0.1–0.5 0.1–0.3 0.3–0.6 

γsoil [kg/m3] 2100 2300 2500 

φsoil [°] 10–25 15–35 25–45 

T/q [log] 4000–5000 500–1000 6000–7000 
 

6.1.3 Implementation, Results and Discussion 
This particular (pilot) case study has had experienced all of the proposed modeling methods 
(See Chapter 5), and herein, the implementation of particular methods will be given in 
appropriate order. 

6.1.3.1 Model-1a 
The model was deployed by the AHP heuristics (see Chapter 5.2.1.2) by using the arbitrary 
scores in 1–9 scale in pair-wise comparison matrix. These relational scores have been 
obtained through the scoring interview with colleagues that were familiar with the 
problematic. They have been scoring relations of proposed pairs of Conditioning Factors. 
There were several different configurations of factors because different examinees preferred 
different factor pairs, thus excluding factors and pairs which they could not confidently relate. 
For instance some morphometric features have not been taken into consideration. One of the 
initial elaborations is considering the following Conditioning Factors Fi: lithology (F9), slope 
angle (F2), rainfall25 (F13), erosion (distance from stream – F7), vegetation cover (reclassified 
NDVI – F12), elevation (F1) and aspect (F3) (Tab. 7). 

Since there has been almost no contradiction, i.e. CR=0.04 (<10%) the eigenvector 
values were derived from the comparison matrix (Tab. 10) and gave the final weights wi of 
the corresponding factors Fi (Tab. 11). The final distribution of weights is given in the last 
column of Table 11., suggesting that lithology and slope angle have the strongest influence 
on the process (with more than 20% in total score), unlike the elevation and aspect which 
have less than 10% of influence. 

                                                
25  Rainfall is actually a triggering factor, which is in this particular case represented by the amount of 

the weekly precipitation in the most extreme circumstances, i.e. summer storm months (the 
average weekly precipitation for the most extreme week of August, the month with the highest 
storm rates, has been used, and the data covered 1975–2000 period, by averaging and 
interpolating the data from the Hydro-Meteorological Survey of Vojvodina in Novi Sad). Rainfall 
variation turns insignificant for this relatively small study area (which has been approved by the 
following data-driven models). Thus the factor has been used only in Model-1a and has been 
abandoned since. 
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Table 10.  AHP comparison matrix of the first model variant. 
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lithology 1.00 1.00 3.00 2.00 4.00 6.00 9.00 

slope angle 1.00 1.00 3.00 2.00 3.00 5.00 8.00 

rainfall 0.33 0.33 1.00 2.00 2.00 5.00 4.00 

erosion 0.50 0.50 0.50 1.00 3.00 3.00 4.00 

vegetation cover 0.25 0.33 0.50 0.33 1.00 2.00 3.00 

elevation 0.17 0.20 0.20 0.33 0.50 1.00 3.00 

aspect 0.11 0.13 0.25 0.25 0.33 0.33 1.00 

Σ = 3.36 3.49 8.45 7.91 13.83 22.33 32.00 
 

Table 11.  AHP weight derivation of the first model variant. 

Fi lith. sl. rain. er. veg. alt. asp. wi % 

lith. 0.29 0.29 0.35 0.25 0.29 0.27 0.29 0.29 29 

sl. 0.29 0.29 0.35 0.25 0.22 0.22 0.26 0.27 27 

rain. 0.10 0.09 0.12 0.25 0.14 0.22 0.15 0.15 15 

er. 0.15 0.14 0.06 0.13 0.22 0.13 0.13 0.14 14 

veget. 0.07 0.09 0.06 0.04 0.07 0.09 0.07 0.08 8 

alt. 0.05 0.06 0.02 0.04 0.04 0.04 0.05 0.05 5 

asp. 0.03 0.03 0.03 0.03 0.02 0.01 0.02 0.02 2 

λmax=7.33; CI=0.05; RI=1.32; CR=0.04    Σ = 1.00 100 

 

Another variant of AHP model is worth mentioning, since it included some less 
common Conditioning Factors, thus including the entire input dataset: elevation, slope angle, 
aspect, slope length, profile curvature, planar curvature, distance from stream, TWI, lithology, 
distance from structures, distance from hydrogeological boundary and vegetation cover, i.e. 
F1–12 in the respective order. By using a consistent criteria, with CR=0.09, the final weights of 
the corresponding factors are obtained by the same procedures as described before (Tab. 
12). The highest weights are once again assigned to lithology and slope angle (around 20%) 
and the lowest for planar and profile curvatures and distance from structures (equal or less 
than 2%). 

The final AHP model (Model-1a) is defined as a combination of the two. By averaging 
common and adding unique Conditioning Factors a continual raster model has been 
generated and 0–1 normalized, to meet the quasi-probability range (Fig. 30). Visually, it 
could be inferred that the model has revealed some unstable zones, but tends to 
overestimate the probability of failure outside the existing landslides, while it underestimates 
within the existing landslides. 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

75 

Table 12.  Final AHP weights of the second model variant. 

Fi F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

wi (%) 16.9 19.9 3.3 3.4 2.0 1.2 6.0 8.0 21.8 1.0 5.4 11.1 
 

 
Figure 30.  Model-1a (AHP model) in continuous quasi-p scale (left) and in 5-leveled susceptibility 
scale (right). Black contours represent actual landslides. Scale bar shows 0–1 quasi-probability range. 

However, the quantitative estimations of the result awakens several issues, primarily 
regarding which metrics fits best and more importantly, how to reclassify the model to make it 
optimal for comparison against the available Landslide Inventory (Fig. 30, 31). 

 
Figure 31.  Information Gain in function of number of classes (solid line) and its polynomial trend – 
entropy function (dashed line). Note that the highest IG and the steepest curvature of entropy function 
falls between classes 4–9, whereas the inflection point falls around class 6. 

The latter has been approached by a conventional fashion of classifying the landslide 
susceptibility to 3–5 classes, i.e. low–high (Fell et al. 2008) as endorsed by the international 
communities. Still, the problem of actual reclassification remains. Several typical proposals 
could be made. Natural breaks (Jenkins breaks), which exploit the proportionality of data 
distribution per each class, could be a plausible option. The data could be thus reclassified to 
3–5 desired classes and compared to the Landslide Inventory which also contains 3–5 
classes. However, such redistribution is not entirely justified, because the Landslide 
Inventory classes (active landslide, dormant landslide and non-landslide) are not based on 
the proportional distribution. Some justification could be proposed, and it involves the entropy 
approach, by estimating Information Gain. The IG has been calculated for a wide range of 
classes (number of classes ranged from 1 to 255 classes with the Natural breaks intervals) 
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and it showed that 3–5 classes seem appropriate for expressing the landslide susceptibility 
(Fig. 31), since the inflection point of the IG function is close to 5. 

This is generally unappreciated task, since it is very difficult to find the optimal metrics 
to express the model. For all spatially predictive models it is difficult to choose which metrics 
suppresses their predictability the least, while penalizing them for misclassification. Model-1a 
in particular had been penalized for overestimating, i.e. for exhibiting type 1 error (false 
alarms), which is acceptable in the landslide susceptibility framework. It might not be 
considered as a real error at all, because landslides might be absent at present, but could 
easily develop in time, hence confirming the model and its predictability. A brief quantitative 
report, regarding the adopted metrics (kappa and ROC measures) follows (Tab. 13). Some 
additional kappa statistics has been calculated for better understanding of class performance 
variations in relation to their population (Tab. 14). 

Table 13.  Model-1a performance metrics. 

Model κ-index AUC fprate-0 κfuzzy 

Model 1a (AHP) 0.15 0.78 0.73 0.40 

 

Table 14.  Model-1a performance per class. 

susceptibility class Very Low Low Moderate High Ver y High 

κi 0.34 0.51 0.28 0.32 0.35 

 

The AUC of the AHP model (0.78) suggests a plausible result, which is not the case 
for its κ-index value (0.15) and also not directly evident from the map (Fig. 30). Thus ROC 
performance (Fig. 32) rather goes in its favor. The performance curve is moderately right-
skewed, meaning that the model was not equally successful in discerning landslides from 
non-landslides. Such trend usually entails more liberal estimation than it suppose to. AHP 
tends to underestimate the landslides by claiming that there is low probability of occurrence 
on an actual landslide site (type 2 error), which is an important drawback of the model. 

 
Figure 32.  ROC curve of the Model-1a. 
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In conclusion, Model-1a is a plausible but not too confident way for landslide 
susceptibility mapping in the study area. The subjectivity of the model is substantial, and 
heavily depends on the expert’s familiarity with the area. It is quite simple, appropriate for the 
GIS-based analysis on regional scales (independent AHP modules are already available in 
many GIS platforms), with low computational demands and time-consumption, but requires a 
significant amount of cooperation and advisement of other experts in the field. It could be 
convenient for a preliminary regional assessment and planning. 

6.1.3.2 Model-2a 
This conditional probability-based model has been deployed by direct Weights of Evidence 
technique, wherein positive, negative and zero weights have been considered. By excluding 
the negative and zero weights the procedure has been further simplified. The former is a 
measure which goes in favor of safety, since the stabilizing role of a factor is therein 
neglected, while exclusion of near-zero weight is a standard procedure (factor is indifferent to 
the dependent variable). 

Conditioning Factors have herein been treated as independent variables, and the 
most of them (all of those with ordinal data type) have had to be adjusted to meet the 
requirements of the modeling technique26. It involved the reclassification of ordinal data 
(elevation, slope angle, aspect, slope length, profile curvature, planar curvature, distance 
from stream, TWI, distance from structures and distance from hydrogeological boundary) into 
appropriate ranges of intervals, based on Natural breaks method. This is where the 
subjectivity is being introduced to the model, because choosing the number of intervals and 
ranging method is arbitrary and depends on the practitioner. It has been particularly difficult 
to range and reclassify certain factors, such as slope angle and aspect, which have values 
that are not straightforward in relation to landslides. For instance, NE aspect is adjacent to 
SE, but has drastically higher susceptibility, while slopes higher than e.g. 30° rarely host 
landslides, but gentle slopes below 5° are likewise  rarely hosting them. Alternatively, the 
model could have used a different unit area, for instance watershed units or some other 
topographic discrete parameter, and to compute zonal statistics instead of point/pixel-based 
statistics. 

 
Figure 33.  Model-2a (CP model) in continuous quasi-p scale (left) and in 5-leveled susceptibility scale 
(right). Black contours represent actual landslides, scale bar shows 0–1 quasi-probability range. 

                                                
26  Nominal data such as lithology and vegetation cover did not need to be reclassified because their 

classes are unique and predefined by the nature of the factor itself. 
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Table 15.  Model-2a performance metrics. 

Model κ-index AUC fp*
rate-0

 

Model-2a (CP) 0.36 0.85 0.78 

*tprate of the non-landslide class 

Table 16.  Model-2a performance per class. 

susceptibility class Very Low Low Moderate High Ver y High 

κi 0.48 0.69 0.33 0.57 0.62 

 

The model (Fig. 33) has revealed similar, but somewhat better performance in 
comparison to the Model-1a. The susceptibility model has been also first evaluated by AUC 
metrics as a probabilistic one, and then reclassified in the same fashion and by the same 
criteria as in Model-1a. The latter involved kappa-statistics-based evaluation, including also 
the conditional κi per each of the five susceptibility classes (Very Low, Low, Moderate, High 
and Very High). According to the performance parameters (Tab. 15, 16), VL and L classes 
have been mapped better than the rest, but there is still slight overestimation in the VH class. 
On the other hand, probabilistic (continual) model has mapped higher classes quite well, but 
also slightly overestimates VH class. ROC curve (Fig. 34) shows similar trend as Model-1a 
(Fig. 32) with liberal estimations of landslides, which also contributes to the safety but entails 
conservative models. AUC is even higher (0.85) which does not surprise considering that the 
element of subjectivity is present, but very subtle and very useful for the fine tuning of the 
model. 

 
Figure 34.  ROC curve of Model-2a. 

So far the 0–1 continual (probabilistic score) Model-2a has been discussed. When 
subjected to the same low–high susceptibility reclassification scheme as in Model-1a, the 
model also yields a visible improvement, where two most susceptible classes (H and VH) 
comply with the active and dormant landslide classes of the inventory. The κ-index of 0.36 is 
fairly improved in comparison to Model-1a, but still entails overestimation of landslides (high 
susceptibility classes). 
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In conclusion, the model is producing relatively reliable prognosis, with slight 
overestimations, while still being reasonably simple and GIS-integrated. Evident performance 
improvement (Tab. 15, 16) indicates that the model is superior to Model-1a in both modes, 
probabilistic and reclassified. 

6.1.3.3 Model-3a 
Fuzzy model is a further step toward performance improvement, because it is somewhat 
similar to the statistical (objective) approach but allows fine tuning by introducing custom 
fuzzy combinations. In other words, it thrives on benefits of both, statistical and heuristic 
elements. 

Model-3a suffers from the same limitation as Model-2a when it comes to data. It also 
requires ranging and reclassification of all continual ordinal Conditioning Factors as 
described for Model-2a (Appendix 1). Given the categorized (ranged) raster attributes and 
the referent Landslide Inventory map, the memberships of each class in each factor have 
been defined. Two parallel variants of the experiment were driven: Model-3a-CA used 
Cosine Amplitude, while Model-3a-FR used Frequency Ratio27 to obtain the memberships. 
Both experiments had exactly the same course, thus the following manipulations took place 
in each. 

 
Figure 35.  The structure of the fuzzy model. Nominal (categorical) data sources are shaded, and their 
level 1 models are the weighted reclassifications of themselves. 

In order to combine memberships by different operators a small intervention has been 
undertaken to exclude too many extreme membership values (0 and 1) by replacing them 
with close approximations (0.0001 and 0.9999)28. Two-leveled fuzzy combination based on a 

                                                
27  Cosine Amplitude and Frequency Ratio are both Conditional Probability-based estimators, very 

similar to Weights of Evidence, except that they do not consider positive and negative weights, but 
the overall density/frequency of ocurrences (landslides in this case). 

28  Extreme membership values are causing quick convergence of intermediate models in fuzzy 
combinations. 
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priori knowledge of the phenomena has been proposed (Fig. 35). In this way, the pairs of 
Conditioning Factors of similar origin were grouped together (e.g. topo sub-model included 
all derivates of DEM). Continual susceptibility model with probability scores (0–1) was 
obtained in 2-level fuzzy combination (Fig. 36). Reclassified susceptibility model has been 
generated by ranging the continual values into five standard categories of relative 
susceptibility as described for Model-1,2a. Only the highest susceptibility class (Very High) 
was regarded for performance evaluation (AUC) against the referent Landslide Inventory 
(Tab. 17). This was inspired by the fact that existing landslides should be marked as a 
priority zone (preferably as a Very High susceptibility class). 

 
Figure 36.  Model-3a-FR-g (fuzzy model) in continuous quasi-p scale (left) and in 5-leveled 
susceptibility scale (right). Black contours represent actual landslides, scale bar shows 0–1 quasi-
probability range. 

Table 17.  Model-3a performance metrics. 

Model AUC tprate 

Model-3a-CA-wa* (weighted average) 0.65 0.37 

Model-3a-CA-g* (gamma operator, γ=0.5) 0.70 0.53 

Model-3a-FR-wa** (weighted average) 0.71 0.56 

Model-3a-FR-g** (gamma operator, γ=0.5) 0.82 0.58 

*Cosine Amplitude memberships 
**Frequency Ratio memberships 

To remain consistent, the same type of the operator at both combination levels has 
been kept. Initial results in both experiments gave preference to Fuzzy Gamma Operator 
over the other, less subtle operators (see Chapter 5.2.2.2). Hence, the further model fitting 
has been directed toward the optimization of fuzzy parameter γ. Cases of γ=0 (Fuzzy 
Product) and γ=1 (Fuzzy Sum) were already regarded and dismissed as unsuitable, because 
of producing fast convergences and extremes. Several other choices within specified interval 
(0.25, 0.5 and 0.75) have been tested instead. It turned out that the best performance (AUC) 
was achieved by γ=0.5, making it a parameter of choice for the final susceptibility model. 
Finally, Model-3a-FR gave slightly better performance over Model-3a-CA, meaning that 
Frequency Ratio could be preferred over Cosine Amplitude for assigning memberships. 

In the reclassified model of Model-3a-FR-g the distribution of relative susceptibility 
classes goes as follows: VL – 53%, L – 14%, M – 12%, H – 11%, and VH – 10%. Dominance 
of the VL class characterizes terrain as mostly stable, while similarly as in the referent 
inventory map, the most adverse zones occupy about 10% of the area. Furthermore, a 
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majority of the actual landslide instances fall into the VH and H classes (37% and 23% of all 
landslides, respectively), while M, L and VL classes occupy mostly non-landslide instances 
(75% of non-landslide instances in total for all three classes). 

The highest overall performance of continual model in Model-3a-FR-g (AUC=0.80) 
could be acknowledged and model accepted as plausible, which is also supported visually, 
since VH class corresponds very well with the spatial trends of the actual landslides (Fig. 36). 
Apparent influence of intermediate layer GeoBuffer caused several outliers by 
underestimating some landslide instances. A considerable drawback is relatively low tprate in 
both experiments (Tab. 17) which is inconvenient for any hazard-related analysis, since the 
model tends to underestimate actual landslide instances29. However, the actual performance 
is somewhat better, since only VH class has been regarded for cross-tabulation. Thus, H or 
even M class could be fair replacements for VH class, as they buffer-out around it, which 
might reduce the number of False Negatives if included in cross-tabulation (increasing the 
tprate). 

 
Figure 37.  ROC curve of Model-3a-FR-g. 

The continual Model-a3-FR-g has a ROC curve area of 0.8 and it is left-skewed with a 
sub-maximum approaching the peak maximum value, but more importantly its relative 
probability thresholds range is concentrated around the lower left corner of the plot 
(conservative model, strict for False Negative errors), which is an important preference for 
the model, even though it is learned by a pure qualitative description of the curve (Fig. 37). It 
is yet another fact that goes in favor of the model over the preceding ones. 

In comparison to Model-1a and Model-2a (while still regarding only the VH class for 
comparison) fuzzy approach turned practically as successful as statistical model (Model-2a 
based on CP), but with more subjectivity involved in the modeling procedure (in ranging the 
input intervals, but also in selecting the operators and numbers of combination levels). It 
outperformed AHP model, not as much in the overall performance (AUC) as in considerably 
higher tprate, granting a slight preference to the model. 

Subjectivity in ranging input attributes was inevitable, due to incapability of the 
approach to handle the continual numerical variables (in the stage of assigning 
memberships). Another subjective intervention regarded proposing of the number of levels 
for fuzzy combination, and grouping the attributes with similar origin to level 1. Further 

                                                
29  Actually, the False Negative represents the most dangerous type of error, because it claims that 

there is no landslide while the landslide actually exists. 
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refinement of the assessment, leads to more elaborated techniques which surpass this issue 
easily, yet with considerable computational effort and time consumption. To conclude, fuzzy 
approach came up with a suitable model, while the modeling procedure remained simple, 
semi-automated and re-operable in a GIS environment. The resulting map could suit 
preliminary levels of risk or disaster management, landscape (regional) planning, route 
selection, insurance management and so forth. 

6.1.3.4 Model-4a 
From this model on, the character of the landslide assessment in the Fruška Gora case study 
becomes more predictive, as more sophisticated methods are being introduced. These allow 
the model to be built on a smaller portion of the area and extended to the rest of it 
(training/testing concept of Machine Learning techniques), while the input data remain more-
or-less the same. 

However it is necessary to mention that the ordinal Conditioning Factors did not have 
had to be retooled, only normalized, while ordinal data have had to be segregated (binarized) 
to multiple binary inputs30. Described protocols applied not only for Model-4a, but also for 
Model-5a, Model-6a and Model-7a. For all these models also applies the fact that the 
performance has been computed directly, because these classifiers, unlike the preceding 
models, produce a discrete output which is already classified into target classes. In this case 
the Landslide Inventory with three classes (active, dormant, non-landslide) has been used as 
susceptibility reference (H, M and L, respectively). 

Model-4a is actually a k-Nearest Neighbor (k-NN) based model. This is an 
unsupervised, actually semi-supervised classifier, primarily intended for clustering and 
pattern recognition. Otherwise, it is computationally extremely demanding as explained 
before (see Chapter 5.2.3.2), which is the reason for several reductions in the k-NN 
experiments. 

Firstly, the usage of the entire dataset would not be too meaningful in this case. Since 
k-NN is capable of recognizing and clustering spatially induced similarities throughout a 
given spatial domain (2D geographical space of a map), the most of the additional attributes 
could be discarded. Practically, the only information which is required is the spatial location 
(geographical coordinates) and landslide class label (from the referent Landslide Inventory) 
of the training instances. Secondly, the training area has had to be much smaller than usual, 
and the sampling strategy has had to be based on random but uniform dispersion of the 
instances. Only two sampling sizes have been considered, containing 1% and 5% of the 
area, respectively31. Reducing the training size is however one of the milestones of Machine 
Learning in general, but finding an optimal training sample size requires less computationally 
limiting environment. Even with such restrictions, the computational effort was significant. As 
a final reduction step, the original algorithm has been supplemented with a more advanced 
sorting function32, which partly suppressed the time consumption. 

Further model optimization was limited for the same reason, which is why only 
several alternatives of the number of NNs have taken place. After 5-fold Cross-Validation in 
the training area, the optimal results have been achieved when the number of neighbors 
equaled 3, although further rising of neighbors resulted in similar but slightly lower 
performance. It could be speculated that such balance indicates the consistency of the 

                                                
30  In addition, since the processing did not take place in a GIS environment, the data have had to be 

filtered for no-data values, and the spatial reference have had to be temporarily removed. 
31  1% equaled about 400 instances for training, and nearly 2000 in the 5% case. 
32  Sorting here included ordering of the neighbors from the closest to the furthest ones. Faster sorting 

resulted in a quicker finding of the 3 nearest neighbors and thus eased the calculation of their 
weights, making the classification also quicker. 
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chosen model (3-NN). The accuracy of the model in the bigger training sample equals just 
around 57%, which is even lesser than in the smaller (1%) sample (Tab. 18). 

Theoretically speaking, the spatial pattern recognition which is provided by the k-NN 
algorithm could have led to a significant accuracy, but it is also apparent that sampling 
strategy plays a crucial role. The method explores the closest environment of an instance, 
which does not necessarily mean that it will yield results for any spatially correlated 
phenomenon, not just landslide distribution. For these reasons the expectations were not too 
optimistic, which has been proven right. The model rather served as a demonstration of the 
sampling strategy and its effects on the modeling, which have proven valuable for some later 
Machine Learning implementations. 

Model 4a has proven that even sparse inputs (small portion of training data and 
reduced dataset) could lead to some prediction. However, its robustness which have caused 
numerous limitations have caused abandoning of this approach, with no further examination 
of its performance, nor its visualization, and turning to more efficient techniques. 

Table 18.  Model-4a performance metrics. 

Model accuracy (%) 

3-NN (training sample=1%) 57.5 

3-NN (training sample=5%) 56.5 

6.1.3.5 Model-5a 
Implementation of a Decision Three algorithm C4.5 had taken place in this model. For this 
particular case study, the experimenting was not as detailed as in the next case study for 
instance. The experiment design involved balanced and unbalanced training datasets33, and 
it also included multiple classes of landslides for classification. Thus both, the predictive 
power of the model and its capability of discerning among different landslide types have been 
challenged. 

As mentioned before, the experiment has not been too detailed, which has also 
reflected the optimization of the modeling parameters. Practically, all default settings have 
been adopted from the offered J48 (Weka software) implementation of C4.5 algorithm. 
Confidence Level of C4.5 has been set to 0.25 and adopted, without introducing alternative 
values. Minimum Number of Objects in Leaf has been also accepted from the default setting 
and has been set to 2. This is obviously the softest choice, since it is natural that at least two 
alternatives exist when conditioning instances of an attribute (Conditioning Factor). 

Three variants of the experiment have been designed, making actually six different 
results if one has in mind that each of the three has been run twice, once for the balanced 
and once for the unbalanced training dataset. It is important to mention that the training area 
has been selected by sampling instances randomly and uniformly throughout the area, which 
means that the predictive modeling has not been the central objective of the Model-5a. 
Instead, the principal objective was to handle the multi-class scenario and to challenge the 
ability of recognizing different classes of landslides correctly. In order to avoid the overfit, a 
10-fold Cross-Validation was chosen in the training/testing procedure. The only difference 

                                                
33  Balanced training set should contain an approximately equal proportion of all target classes, in this 

case non-landslide, dormant landslide and active landslide. However, it is very common in 
landslide assessment that the non-landslide class dominates over the other(s) especially if the 
training areas are outlined as continuous spatial entities. An example of an unbalanced set for this 
area would be 4% of active, 6% of dormant landslides and 90% of non-landslide instances within 
the training area, while in the balanced set each category would occupy one third of the training 
area. 
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throughout the experimenting protocol was a successive decrease of the training sample 
size, i.e. 15% of the total area, 10% of the total area and 5% of the total area (6156, 12313 
and 18496 of instances out of 123134 total instances, respectively). Accordingly, the model 
variants could be denoted as Model-5a-U/B-5–15%, where U/B stands for 
unbalanced/balanced variant of the experiment and the percentage in the end designates the 
training sample size. 

The results were encouraging, as they reached decent performance in all 
performance measures (Tab. 19, 20). As expected, better performance has been achieved in 
the balanced experiments, especially regarding the fprate. The total variation of performance 
is minute in all models (except for the fprate), which might be an indicator of the models' 
consistency and stability. False Positives, i.e. fnrate for non-landslide class are kept in 
relatively low levels, particularly in the balanced variants of the model (which is their 
additional quality). The model also successfully discerns between all three given classes 
(active landslide, dormant landslide and non-landslide), suggesting that multi-class 
environment does not confuse the algorithm, even after the pruning of the tree. However, it is 
apparent from both, evaluation metrics and visual representation of the model (Fig. 38) that 
there is a tendency to overestimation of both landslide classes, but this finding goes in favor 
of the model in the landslide assessment framework. Obviously, the modeling performance 
rises with the rise of the training sample size. The model thus approves of the sampling 
strategy. On the other hand, such strategy is not practical for predictive modeling, because 
the real situations would require continuous training domains rather than scattered. 

In conclusion, the model seems to be very successful in predicting landslide 
instances (with some overestimation), and for discerning among two different landslide types. 
The best representative of all model variants would be Model-5a-B-10%, which has the 
performance parameters close to the average of all models. In addition, the practical 
implementation has not been too time-consuming, as Machine Learning algorithms usually 
turn to be, but it is important to remind that there has not been any optimization prior to the 
modeling. The model is a superior to the all preceding models thus far. 

 
Figure 38.  Model-5a-B-10%. Orange areas represent dormant landslides and equal moderate 
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1). 
Contours represent actual landslides. 
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Table 19.  Performance of Machine Learning models (unbalanced training set). 

Model κ-index AUC fprate-0 

Model-7a-U-5% 0.57 0.79 0.4 

Model-6a-U-5% 0.08 0.86 0.94 

Model-5a-U-5% 0.42 0.76 0.56 

Model-7a-U-10% 0.67 0.82 0.32 

Model-6a-U-10% 0.08 0.86 0.94 

Model-5a-U-10% 0.42 0.76 0.56 

Model-7a-U-15% 0.73 0.84 0.32 

Model-6a-U-15% 0.06 0.86 0.96 

Model-5a-U-15% 0.54 0.80 0.43 

 

Table 20.  Performance of Machine Learning models (balanced training set). 

Model κ-index AUC fprate-0 κfuzzy 

Model-7a-B-5% 0.38 0.85 0.11 - 

Model-6a-B-5% 0.25 0.85 0.23 - 

Model-5a-B-5% 0.28 0.82 0.18 - 

Model-7a-B-10% 0.42 0.89 0.08 0.43 

Model-6a-B-10% 0.25 0.85 0.24 0.36 

Model-5a-B-10% 0.32 0.82 0.17 0.16 

Model-7a-B-15% 0.43 0.90 0.06 - 

Model-6a-B-15% 0.23 0.86 0.20 - 

Model-5a-B-15% 0.34 0.85 0.16 - 
average adopted models are shaded 

 

6.1.3.6 Model-6a 
Herein, the implementation of Logistic Regression model has been performed. It is sufficient 
to say that the experimenting procedure has been exactly the same as in the previous model, 
so that no further details are necessary to explain the experimenting procedure. 

The model is obviously troubled with overestimation (Fig. 39). Nearly one third of the 
total area is classified either as active or dormant landslide, which goes in favor of stability 
but does not serve the model’s actual purpose, since the model is intended to be used by 
experts and planers as well as decision makers, who would like to have more room for 
maneuvering, i.e. less restrictions caused by landslide prognosis. The figures also support 
this view (Tab. 19, 20) where low κ-index (as low as 0.06 for the unbalanced variants of the 
model) in combination with very high fprate (up to 0.96) indicate that there is a lot of False 
Positive type of error, i.e. overestimation. This particularly affects the unbalanced variant of 
the model, while the balanced variants have considerably lower error rates, but still low κ-
index. The AUC of their ROC curves are in the rank of the preceding models. Growing of the 
training set size has little or no effect on this model, at least in the selected 5-10-15% range. 
The model’s ability to successfully distinguish between two given types of landslides has 
been obscured by the overestimating character of the prediction. 
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For all these reasons the model could be characterized as plausible, but it did not 
meet the expectations or top the performance of Model-6a. The model has proven to be very 
sensitive to the sampling strategy regarding the class balance in the training sample, and 
therefore inconsistent and unstable in this configuration with relatively small training set. 

 
Figure 39.  Model-6a-B-10%. Orange areas represent dormant landslides and equal moderate 
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1). 
Contours represent actual landslides. 

6.1.3.7 Model-7a 
This model implemented SVM algorithm and has initially given promising results, which is 
why it has been elaborated in greater detail with different experimenting procedures. It is also 
the reason why this SVM technique has been favored for the other case studies. 

There were basically two different experimenting settings in respect of the spatial 
distribution of training and test data. The first included a random training subset uniformly 
distributed over the whole case study area, and it has been further separated into 
unbalanced and balanced variant. The second involved adjacent train-test splits selected 
manually. As in the most of the preceding models, a multinomial landslide classification also 
applied. Hence, the model has been challenged for its predictability of landslides and the 
ability to sub-classify different landslide types, but from a more practical aspect. Since 
random uniform sampling of training instances is more targeted at satisfying the theoretical 
conditions for designing the best sampling strategy, the second type of experiment has been 
devoted to the practical aspects of having a genuine training sample as it is (with no 
sampling strategy alternatives) and predicting the landslides to adjacent area. Such scenario 
is but the simulation of the actual situation, where one part of the terrain might have the 
Landslide Inventory coverage, while the other, possibly adjacent part seeks one. 

Regarding the first experiment type, i.e. the two subtypes involving unbalanced and 
balanced training sets, three different models were run. In each, a random training subset 
had different training sample size, i.e. 5% (6156 instances), 10% (12313 instances) and 15% 
(18496 instances) of the whole case study area available for training. Following the notation 
from the preceding models, these two variants could be denoted as Model-7a-U/B-5–15%. 
Accordingly, the second experiment type could wear a label Model-7a-33%. 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

87 

 
Figure 40.  Model-7a-B-10%. Orange areas represent dormant landslides and equal moderate 
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1). 
Contours represent actual landslides. 

In the unbalanced variants, the sampling instances were selected randomly, but 
equally spread over the area, and they contained a referent class proportion similar to the 
original landslide model (3.6% of active landslides, 5.6% of dormant landslides, and 90.8% of 
non-landslide). In the balanced variants (Fig. 40, 41), the sampling was the same, but the 
shares of all classes were equal (one third of all training instances). In fact, each training set 
for Model-7a-B-5–15% was obtained from the corresponding Model-7a-U -5–15% set by 
retaining all landslide points and selecting an equal number of stable points that are spatially 
uniformly distributed over the whole area. 

 
Figure 41.  Model-7a-B-10% in continuous quasi-p scale (left) and in 5-leveled susceptibility scale 
(right). Black contours represent actual landslides, scale bar shows 0–1 quasi-probability range. Note 
that the continuous scale variants are not predictive, but interpretative models of landslide 
susceptibility, obtained by averaging iteratively generated interpretative models of Model-7a-B/U type. 

In order to illustrate experimenting procedure, the course of the Model-7a-U-5% 
experiment will be described, while the remaining experiments have completely analogous 
procedures. The negative effects of randomization (poor estimate of the model variance) 
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were minimized by creating 20 different random splits34, each containing 5% data points for 
training and 95% for the testing set. It is obvious that these splits are spatially overlapping to 
some degree, but full separation would not be feasible since some values of some 
Conditioning Factors would appear only in the test set. 

Since there is a lack of information in most related papers concerning the adjustment 
of SVM learning parameters (Brenning 2005, Yilmaz 2009), a procedure of their estimation 
was conducted. The parameter estimation focused on the penalty factor c and Gaussian 
kernel width γ. Parameters c and γ took many different values (c ={1, 10, 100, 1000, 10000} 
and γ ={0.1, 0.5, 1, 2, 4}). For each combination of (c, γ) a 10-fold Cross-Validation 
procedure was performed on a particular training set and the evaluation measures (κ-index 
and AUC) were averaged and recorded for each combination of (c, γ). The results showed 
that in all 20 splits of the experiment, optimal c and γ were the same (100 and 4, 
respectively). These values turned optimal for the Model-7a-U-10% and Model-7a-U-15%, as 
well. 

Given the optimal parameters, the SVM classifier was trained over the entire 
particular training set and tested over the related test set. The evaluation measures included 
κ-index, AUC and the False Positives for non-landslide class (fprate-0). The above procedure 
was repeated 20 times for each train-test split and the final measures for the experiment 
were averaged over all 20 splits. The same evaluation procedure was applied as in Model-5a 
and Model-6a, so that they could be compared (Tab. 19, 20.). 

 
Figure 42.  ROC curve of Model-7a-B-10%. 

When the number of training points increases, the Model-7a and Model-5a improve 
their performance on the κ-index and AUC, while the Model-6a performance remains the 
same, as noticed before. Concerning the κ-index, the Model-7a significantly outperformed 
other models, followed by the Model-5a and Model-6a in respective order (because of very 
low κ-index Model-6a is put behind despite better AUC). The Model-6a yielded the best AUC 
(0.86) when compared to the other two methods, but the Model-7a came close after 
increasing the size of the training set (0.84 nearly equals 0.86 of Model-6a). In addition to the 
previous explanations of the Model-6a results, such a big discrepancy between the κ-index 
(even in κfuzzy) and the AUC can be explained by presence of multiple landslide classes and 
difficulties to weight the average class probability (Fawcett 2006), while for discrete 

                                                
34  Instead of 20, Model-7a-U-10% had 10, while Model-7a-U-15% had 7 iterations, in order to achieve 

a statistically meaningful procedure. 
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classifiers such as those of Model-5a and Model-7a the problem comes down to the simple 
averaging of individual binary cases (3 cases, one per each class). 

As indicated before, the second type of the experiment was a practical simulation of 
the landslide prediction, where approximately one third of the area has been used for training 
and it was spatially separated as a meaningful entity from the rest of the area. The sampling 
has been done manually, with particular precaution to include all classes of the nominal 
Conditioning Factors (all binarized classes), Lithology (F9) in particular. In turn, a meridian 
separator, splitting the map to the west and east part, has given a fixed and continuous 
training and testing area (Fig. 9, 43). It consisted of approximately 41000 of instances, 
making it roughly one third of 123134 instances in total. Regarding the landslide distribution, 
it resembled the proportions of the landslide distribution over the entire area, meaning that it 
could be characterized as unbalanced training set. However, there has been no intervention 
to balance the set, because it is intended that simulation turns as realistic as possible. 

After the same experimenting procedure as in the other models, Model-7a-33% gave 
relatively good results. Spatial trends of landslide bodies are being followed, while 
differences in landslide typology have been successfully modeled (Fig. 43). Overestimation 
of landslide instances is also apparent but there is not too much dispersion (spatial trends of 
the landslide bodies are well traced), so potential post-processing (e.g. majority filtering) 
would not give substantial improvements (up to a couple of percentages). Consequently, the 
κ-index values are low, while AUC of 0.71 is not as high as in Model-U/B-10–15% but still 
represents a fair prediction. False Positive rate is supporting this stand, but κfuzzy indicates 
that there is a considerable dissimilarity between the model and the inventory (Tab. 21). 

 
Figure 43.  Model-7a-33%. Orange areas represent dormant landslides and equal moderate 
susceptibility (p=0.5), while red areas represent active landslides and equal high susceptibility (p=1), 
training area is shaded. Contours represent actual landslides. 

Table 21.  Model-7a-33% performance metrics. 

Model κ-index AUC fprate-0 κfuzzy 

Model-7a-33% 0.17 0.71 0.39 0.03 

 

Finally, it is convenient to comment on the strengths and weaknesses of the SVM 
model family, Model-7a. SVM does not need any feature selection technique as opposed to 
some other methods such as Decision Trees. This fact enables richer data representation, 
bigger number of inputs, and bigger variety of inputs. This aspect of the research is left to the 
future work. In addition, since the solution for the SVM separating hyper-plane is found from 
the convex quadratic programming optimization problem, it is guaranteed that the solution is 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

90 

globally19 optimal. Therefore, the SVM is a good replacement for Artificial Neural Networks 
which are usually stuck at local optima and are very difficult to train. On the other hand, the 
SVM does not output an interpretable model like Decision Trees, and hence could not be 
rewritten in the form of expert rules, which usually limits their application to one case study at 
a time, or retooling the input dataset if the study areas are extremely similar. When 
compared to Logistic Regression, they are much more memory and time consuming during 
the training phase, but that is probably not of great importance for the task of predictive 
landslide mapping, outside the disaster management framework (where very quick but 
plausible solutions are needed). 

A small web-map created in the R environment, using “plotGoogleMap package” (see 
Appendix 2) presenting the area and related result of Model-7c-40% is available at: 

http://milosmarjanovic.pbworks.com/w/file/fetch/63738284/MyMapFruskaGora.htm. 

6.1.3.8 Model-8a 
Implementation of a simplified deterministic model has not placed the performance 
expectations too high, for at least one reason. The case study area is actually dominated by 
deep-seated and larger landslides, while the simplified LEM stability model theoretically 
applies only for the smaller and shallower slides. The model has thus been only 
demonstrated in a GIS environment, and unfortunately the results have met the expectations. 

 
Figure 44.  ROC curve of Model-8a. 

Model-8a has been fed with the topographic data and geotechnical parameters as 
indicated before (see Chapter 6.1.2.7). The implementation in a GIS environment has been 
direct and relatively quick. There have been a lot of conveniences for customizing this 
stochastic model. For instance, each of the geotechnical parameters could have been 
regionalized, and both, upper and lower boundaries have been required. The sensitivity of 
the model has also been regarded (by slightly varying the inputs in a series of experiments, 
and calculating SI per each) so that the average inversed SI was generated using the 
average parameter intervals. Despite of laborious model fitting that has taken place, Model-
8a has not managed to perform beyond the level of random guess (AUC≈0.5), while the 
other performance indicators were nonetheless discouraging (Fig. 44). 

Visually (Fig. 45), the model overestimates the landslides over the entire area, 
making it impossible to speculate whether some trends have been caught or not. The model 
could therefore be entirely discarded as unsuitable for a given study area. 
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Figure 45.  Model-8a in continuous quasi-p scale (left) and in 5-leveled susceptibility scale (right). 
Black contours represent actual landslides, scale bar shows 0–1 quasi-probability range. 
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6.2 Starča Basin (Croatia)  
Regarding this study area, previous investigations of the landslide-related issues have 
included various engineering-geological endeavors, predominantly medium-scaled mapping, 
or large scale investigations related to the individual practice, reports for specific construction 
projects and so forth, but unlike in the previous case study there have been valuable 
exceptions. 

Firstly, there have been some more detailed engineering-geological mapping projects 
entailing several sheets of synthetic engineering-geological maps at 1:10000 scale for 
Zagreb City and its surroundings, with a particular focus on mapping various landslide types 
as defined in the international classification WP/WLI 1995. By the courtesy of the National 
Institute for Geology and Geological Engineering of Croatia, the above mentioned repository 
has been at disposal as a principal data resource in preparing the second case study of this 
thesis. It was thus one of the main challenges of this case study to observe how proposed 
methodology behaves with the finer-scaled data to exploit the upscale of the input data, 
wherein the most of the data came with mentioned 1:10000 scale, while some have been 
collected at even finer scale (1:5000). 

Finally, one research published by Mihalić et al. 2008 should be particularly outlined, 
since it mostly complies with the concept followed in this thesis. The authors approached the 
landslide assessment by implementing bivariate statistical techniques over unique-condition-
defined unit areas and have retrieved a good correlation with the existing landslide records 
and contributed the understanding of landsliding process in the Starča Basin (Mihalić et al. 
2008). However, they have proposed further enhancements, especially regarding the 
modeling techniques, and one part of this research has been directed toward that common 
goal (Marjanović et al. 2011b). 

6.2.1 Setting 
Starča Basin encompasses 12.25 km2 of a hilly landscape (up to 300 m in elevation) 
stretching between  N 45°44’35”, E 15°44’15” – N 45 °47’05”, E 15°47’55”, flattening in from 
the east and giving way to the outskirts of the Samobor Mountains, which represent the 
western border of the City of Zagreb, Croatia (Fig. 46). 

Geotectonically, the basin is set on a verge of several major regional units, where 
Pannonian, Alpine and Dinaric sub-units meet. Their spatial relations and boundaries are not 
entirely defined, but it is most likely that the area is primarily shaped under the influence of 
Pannonian basin development, i.e. Transdanubian unit and its sub-structures, Zagreb-
Cemplin lineament in particular (Dimitrijević 1997). Its NE–SW strike has been replicated in 
trends of the local structures, primarily normal faults with SE vergence, i.e. relatively 
subsided hanging walls toward SE. This gravitational faulting occurs along the edge of 
Transdanubian unit and logically follows the graben of the Sava river valley, which dominates 
the landscape. These older structures are traversed by younger, sub-vertical structures of 
meridian strike. However, a large part of the area is covered with Quaternary sediments, 
leaving the structures concealed, except in the higher grounds. 

The basin is composed of the Upper Miocene and Plio-Quaternary clastites (Fig. 48f, 
49). The landslides are mainly hosted in Pannonian marl and silt in the northern part, as well 
as in Plio-Pleistocene coarse-grained sand. They are moderately compressible for the upper 
Miocene units, but very sensitive to the groundwater variation (especially sand). 
Inconveniently, due to the locally shallow water tables, the units are often saturated from half 
a meter down from the ground level (Fig. 48e). These two units combined cover nearly 40% 
of the area, making a suitable ground for development of slope instabilities, which are 
particularly indicative on the flanks of gullies/valleys, even though these are sloping relatively 
gently and their local erosion basis never exceeds more than 150 m of elevation difference 
(maximal altitude is about 300 m and minimal around 150 m). Typical landslides are shallow, 
hosted in marl and clay mantle which can locally become considerably thick, with enforced 
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consequent character (upslope progression), but there are also landslides which are 
transiting to deep-seated, and these are nested in marl units. There are various activity 
stages to be witnessed, but most of the landslides are slow-moving, and in that regard, they 
impose no threat for the population, apart from the material damage on buildings and 
infrastructure. 

 
Figure 46.  Geographical setting of the study area (projection: Gauss Krüger – zone 5, Bessel 1841). 

Given the geomorphological and geological features, the main triggers of landslides 
could be recognized in linear erosion and intensive rainfall connected with the groundwater 
variations. It is probably the combination of the two which ministers both, the long-term and 
short-term activation and reactivation cycles throughout the area. Apart from these, 
urbanization of the area could be considered as one of the primary causal factors for 
numerous shallow and relatively small landslides triggered by a combination of natural (e.g. 
intense, short period rainfall) and man-made processes. Settlements are generally small, but 
dense (Mala Gorica, Falašćak, Molvice) while the population is agriculturally active, which 
additionally destabilizes the slopes. On the other hand, there is a significant vegetation 
cover, particularly forests in the central part, which suppress the spreading of the shallow 
landslides. Indeed, these central parts are composed of a different type of sediments (Plio-
Pleistocene gravel and silts) which are less prone to landslides. 
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Figure 47.  Various Conditioning Factors: a) slope angle; b) slope length; c) downslope gradient; d) 
aspect; e) profile curvature; f) plan curvature; g) convergence index; h) LS factor. 
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Figure 48.  Various Conditioning Factors (continued): a) channel base elevations; b) altitude above 
channels; c) SPI; d) TWI; e) groundwater depth; f) lithology (1=silt, 2=sandy silt, 3=marl, 4=hard marl, 
5=laminated marl, 6=gravel, 7=eluvial clay, 8=sand, 9=clay, 10=alluvium); g) distance from structures; 
h) Land Cover (1=water body, 2=forest and semi-natural area, 3=artificial surface, 4=agricultural area). 
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6.2.2 Data 
Resources for generating the input dataset of Starča Basin included: Landslide Inventory; 
Digital Terrain Model – DTM; geological map; hydrogeological map; and a Land Cover map. 
From the above mentioned resources, the input dataset was generated as an assembly of 
Conditioning Factors and the Landslide Inventory. By advantages of GIS software platforms 
(ArcGIS and SagaGIS) input data were processed, i.e. referenced and normalized (where 
applicable) and stored in form of a raster image format so that every pixel (every center node 
of the pixel to be more precise) represents one instance. Every attribute within the input 
dataset contained 122513 instances, 10 m set apart from each other (10 m cell resolution). 

6.2.2.1 Conditioning Factors 
Landslide Conditioning Factors involved a variety of input layers, some being directly 
digitized from the original thematic maps, others derived from additional spatial calculations 
and modeling. In effect, 16 input raster layers, with the same 10 m cell resolution, were 
available for further analysis. These could be divided into four thematic groups: 
morphometric, hydrological/hydrogeological, geological and environmental. The factors that 
turned more dominant or their type has not been included in the previous case study are 
briefly described, while the others have been only listed, because the same analogy from the 
previous case study (where all the types have been described in greater detail) applies 
herein. Graphical representations of all Conditioning Factors are given in Figure 47–48. 

6.2.2.1.1 Morphometric Data 
A high precision (±1 m) terrain surface model has been generated by photogrammetric 
technique, in the framework of the orthophoto mapping project of the Zagreb City area, at 
1:5000 scale. Point-based terrain model, i.e. triangulated network model, has been 
subsequently transformed to a Digital Terrain Model (DTM) by means of TIN-to-raster 
conversion. After standard (hydrological) corrections, a rectified DTM has been obtained. A 
host of morphometric parameters with proven relevance for landslide assessment (van 
Westen et al. 2003) have been derived from the DTM: 

- slope angle, 

- slope length, 

- downslope gradient (a ratio of slope angle and elevation per point), 

- aspect, 

- profile curvature (terrain curvature in the steepest slope direction), 

- plan curvature (terrain curvature along the contour of the slope), 

- convergence index (slope angle convergence), 

- LS factor (a ratio of the slope length and the length standardized by the Universal Soil 
Loss Equation – USLE), 

- channel base elevations (values calculated as a vertical difference between a real 
DEM elevations and elevations of interpolated channel network, which provides the 
information on how far off a local flow each cell lies by interpreting the higher 
differences as more remote than lower ones, since in channel cells the factor’s value 
is zero, while in non-channel cells the value is increasing with the distance), 

- altitude above channels (another standard morphometric terrain attribute, yet 
sometimes important for determination of the relief energy based on potential energy 
differences, i.e. height differences between each cell and its local erosion basis, 
which is basically a DTM downshifted for the values of channel cells elevations). 
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6.2.2.1.2 Hydrological/Hydrogeological Data  
Hydrological data inputs have been derived also by morphometric calculations from DTM, but 
in combination with the manually adjusted drainage network vector. These included: 

- Stream Power Index or SPI (a potential power of the flows given by a relation of the 
local drainage area and local slope gradient), 

- Topographic Wetness Index or TWI (topographic water retention potential given by a 
relation of upslope drainage area and slope gradient). 

Hydrogeological information has been provided by a relatively dense piezometric 
groundwater pressure sampling. Piezometric map has been generated by a simple 
interpolation of the maximal piezometric pressure heads, measured in rainy period of 2004. 
Herein, it has been labeled as: 

- groundwater depth (depths from the measurements of minimal water levels in wells, 
interpolated by nearest-neighbor method, ranged by 4 classes with 0.5 m intervals, 
i.e. 0–0.5, 0.5–1, 1–1.5 and >1.5 m). 

6.2.2.1.3 Geological Data  
Geological factors included layers derived from a geological map 1:5000, indicating the main 
geological units in the area and approximately located faults (Mihalić et al. 2008). By 
decompiling these from the original map the following factors have been acquired: 

- lithology (representing 10 rock units as categorical classes35 as follows: eluvial clay 
and silty clay with gravel (Quaternary), alluvial gravel with silty clay (Quaternary), 
gravel with silty clay (Plio-Pleistocene), coarse-grained sand (Plio-Pleistocene), sandy 
silt and silt (Pontian), marl with silt and calcareous siltstone (Pannonian), laminated 
marl with calcareous sandstone (Sarmatian) and marl (Badenian); considering 
relatively high proportion of clayey and marly units, lithological model suggests that 
shallow to deep-seated landslides could be hosted throughout the study area (Fig. 
48f), 

- distance from structures. 

6.2.2.1.4 Environmental Data  
Land Use map was prepared by direct visual interpretation of 1:5000 orthophoto according to 
CORINE classification (Nestorov & Protić 2009). The map was generalized into a 1st-level 
CORINE map and labeled: 

- Land Cover (categorical attribute with 4 thematic classes35, including: agricultural 
areas 30%, artificial surfaces 4%, forests and semi-natural areas 65%, water bodies 
1%). 

                                                
35  In order to give equal preference to every class, categorical attributes have been broken into m 

binary attributes, coding m different initial values (e.g. class 1 and 4 of lithology are coded as 
1000000000 and 0001000000, respectively, while the same classes for Land Cover were 1000 and 
0001). 
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Figure 49. Geological map of the study area. Red lines represent faults. 

6.2.2.2 Landslide Inventory  
A detailed landslide map has been prepared through the systematic field survey (in the 
period of March–April 2004) at 1:5000 scale (Fig. 50). Total mapped landslide area reached 
only 0.87 km2 (or 7.1% of the study area, which is statistically speaking, an undesirable 
proportion), with the density of about 0.1 slope failures per km2. Landslide Inventory is 
prepared in the form of a GIS database in which information on location, features and 
abundance of 230 mapped landslides are archived (Mihalić et al. 2008). Main landslide 
characteristics were described according to standard WP/WLI 1995 recommendations. 
Landslides were classified as (shallow) slide type according to Cruden and Varnes 
Classification (Varnes 1984), with age and state of activity determined according to the 
morphological indicators. 
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Active, suspended and reactivated landslides have had clearly recognizable fresh 
scars, without any vegetation cover, because of the movement within the last few years (59 
slides). Most of the landslides were inactive and they have been classified as: dormant 
landslides (95 slides). These have had recognizable scars covered by vegetation during the 
period of inactivity. Abandoned landslides (72 slides) are characterized by hummocky 
surface topography and relicts of scars completely smoothed during the period of inactivity. 
Stabilized landslides included slopes remediated by different engineering measures (4 
slides). Relict landslides (40 slides) were difficult to recognize, because the only indicator of 
their movement is typical roughly undulating slope morphology: concave depletion zone in 
the upper part and convex accumulation zone in the lower part. 

The size of the landslides varies from 270 m2 to 25073 m2, but most of the landslides 
range from 400 m2 to 1600 m2. Regarding the activity style, there are single movements (150 
slides) as well as complex, composite, successive and multiple movements (120 slides). 
Parent-child relationships have been also defined during the mapping. The relict slides have 
been excluded from the further analysis because of their mapping uncertainty. 

For the purpose of this research, the Landslide Inventory has been used only in a 
raster image form and has been somewhat simplified in order to enhance the statistical 
representativeness of landslide vs. non-landslide categories. In this context, original landslide 
classes (WP/WLI classification) have been unified (Fig. 50a) in a basic variant of the 
inventory, and disaggregated on the basis of their activity stage in the second variant (Fig. 
50b). 

 
Figure 50.  Landslide Inventory: a) simplified; b) source inventory with all (activity-based) classes. 

6.2.3 Implementation, Results and Discussion 
It has been already indicated that particular modeling techniques, which generally comply 
with the methodology followed in this research, have been already performed by other 
researchers. Weight of Evidence model, analogue to the Model-2a (except for the way the 
unit areas are defined) has been used for generation of a susceptibility map, containing three 
relative susceptibility classes (Mihalić et al. 2008). The achievements of that model have 
been assessed per class. High susceptibility class is for instance well correlated for 
reactivated, suspended and inactive slides (88.2% accuracy), but poorly with relict slides 
(34.6). Since the results of this study could be generally accepted, there was no need for 
generating Model-1b, Model-2b and Model-3b, pairing Model-1a, Model-2a and Model-3a, 
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respectively36. In addition, Model-4b has been rejected as inconvenient for the reasons 
explained for Model-4a, as well as Model-6b. Model-8b has been calculated and initially, 
good performance was expected form, since the theoretical conditions have been met 
(shallow landslides, hollow valleys, rainfall trigger). Unfortunately, after all the fitting and 
adjusting the performance has not topped 0.5 AUC, which has already been labeled as 
implausible in Model-8a. For this reason, the model will not be presented hereinafter. Thus, 
all the attention has been driven toward Model-5b and Model-7b, involving advanced 
Machine Learning techniques, C4.5 and SVM, respectively. 

6.2.3.1 Model-5b 
Since it has been proven suitable for susceptibility modeling in the previous case study, the 
Decision Tree algorithm C4.5 has been more thoroughly optimized during the experimenting 
procedure. The optimization has involved only Confidence Level parameter, while Minimum 
Number of Objects in Leaf remained 2 by default, since it is the most desirable to explore this 
most tolerant option. Confidence Level has been ranged in each of the sub-models of Model-
5b from 0.05 to 0.95. Thus, only several trials in which only one parameter has been 
changing have been sufficient to optimize the model. 

Experiment design was driven by the characteristics of the dataset, particularly the 
unbalanced distribution of Landslide Inventory classes. Since non-landslide class turned 
predominant over all landslide classes combined, the sampling strategy had been 
accordingly tuned. Two different dataset cases were induced, hence two Model-5b variants, 
labeled Model-5b-1 and Model-5b-2 are to be distinguished.  

Model-5b-1 was trained on a generalized Landslide Inventory (Fig. 50a), containing 
only non-landslide (c1) and landslide (c2) class. The training sample was unbalanced 
(randomly selected and uniformly distributed samples) and contained 20% of the original 
dataset or 24500 out of 122513 instances. 

Model-5b-2 was trained only over landslide instances and did not include non-
landslide instances in the training nor testing. On the other hand it had multiple landslide 
classes to train upon: dormant and abandoned (c1), stabilized (c2), and reactivated and 
suspended (c3) landslides (only 10500 instances in total). 

The first classifier was thus used to locate the landslides throughout the area, while 
the second was used to discern between three different landslide sub-types. 

Both of the models/classifiers underwent the identical experimenting protocol 
discussed hereinafter. By varying the size of the training set in different experiments 
additional variants have generated. 

Model-5b-1/2-100%: training has been performed on the whole training set (24500 
instances for Model-5b-1-100% and 10500 instances for Model-5b-2-100%). Training and 
testing has been performed with no iteration (in a single run) by a 10-fold Cross-Validation 
(10-CV). Model-5b-1-100% reached κ-index of 0.52, and Model-5b-2-100% 0.82 (Tab. 22), 
meaning that the model better discerns between the landslides sub-types than between 
landslides and non-landslides. 

Model-5b-1/2-20%: dataset has been randomly divided into 20%–80% splits. Training 
was performed on 20% of data (5000 instances Model-5b-1-20% and 2000 instances in 
Model-5b-2-20%). In order to obtain statistically relevant results, five different 20%–80% 

                                                
36  These models rely on a similar principle and use similarly preprocessed inputs (binarization of 

nominal and normalization of numeric data, filtering, Attribute Selection), and in the previous case 
study it has been shown that they tend to reach similar levels of performance. Furthermore, these 
models are not predictive in their nature, since they just re-interpret the existing landslide 
susceptibility, and therefore gave way to the advanced methods. 
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splits have been generated and the median among the obtained κ-index values was 
considered as representative (Tab. 22). As expected, the performance dropped significantly, 
especially in Model-5b-1-20%. 

Model-5b-1/2-15%: seven 15%–85% splits have been generated (3800 instances in 
Model-5b-1-15% and 1500 instances in Model-5b-2-15% for training). Otherwise, the 
experiment is analogue to the previous one. Further decrease of average κ-index is 
noticeable (Tab. 22). 

Model-5b-1/2-10%: ten 10%–90% splits have been generated (2500 instances in 
Model-5b-1-10% and 1000 instances in Model-5b-2-10%) and processed as in the previous 
experiments. The dropping trend continues as κ-index values became rather temperate for 
both models (Tab. 22). 

Table 22.  Performance evaluation of C4.5 and SVM classifiers by κ-index. 

Experiment Y=1 Y=2 

X=5 X=7 X=5 X=7 

Model-Xb-Y-100% 0.52 0.58 0.82 0.82 

Model-Xb-Y-20% 0.38 0,47 0.63 0.65 

Model-Xb-Y-15% 0.33 0.44 0.58 0.60 

Model-Xb-Y-10% 0.31 0.40 0.48 0.55 
 

Table 23.  Information Gain (IG) ranking of the input layer attributes. 

Conditioning Factor IG rank 

lithology 0.06157 1 

channel base elevations 0.04034 2 

groundwater depth 0.02680 7 

SPI 0.03038 4 

aspect 0.02828 5 

altitude above channels 0.03078 3 

TWI 0.02789 6 

Land Cover 0.02129 10 

downslope gradient 0.02413 8 

LS factor 0.02241 9 

slope 0.02100 11 

convergence index 0.01723 12 

plan curvature 0.00800 14 

distance from structures 0.00938 13 

profile curvature 0.00605 15 

slope length 0.00301 16 
 

Viewing the experimenting results altogether, it could be inferred that the model is 
rather sensitive to reduction of the training sample size. In all experiments the algorithms 
exhibit better generalization of different landslide classes than landslides itself, meaning that 
they are better in categorizing landslides than actually mapping them (concerning this 
particular study area and chosen sampling strategy). Preliminary results suggest that it would 
be interesting to impose the algorithms over adjacent areas using the same inputs. This 
would be particularly interesting because these adjacent areas represent urbanized and 
densely populated environments, which have very similar terrain properties. Given the same 
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kind of Conditioning Factors as inputs, it could theoretically suggest to the experts which 
types of landslides are present prior to the actual field mapping. 

Since a classifier based on Information Gain values (C4.5) has been in operation, it is 
suitable to present the ranking of the input features according to their IG value (Tab. 23). 
Apparently, the most informative layers are lithology, channel base elevations, altitude above 
channels, while surprisingly slope turned out mediocre to low, hand in hand with terrain 
convergence index and Land Cover for instance. One possible way to explain this is 
exaggeration of geological and to some extend hydrogeological influence on the landslide 
occurrence, so that they obscure the effects of slope steepness and Land Cover. 

6.2.3.2 Model-7b 
Finally, the implementation of the SVM technique which has been anticipated with the 
highest expectations has taken place. A more laborious experimenting has been undertaken, 
on top of the scheme inherited from Model-5b. It regarded more thorough feature selection, 
and a more realistic sampling strategy, which underpinned the predictive nature of the model. 

Since the identical protocol has been in operation (similar optimization and same 
sampling strategy), it is possible to distinguish the same model sub-types as in Model-5b. For 
that reason, these variants are only to be listed and briefly commented hereafter. 

Model-7b-1/2-100%: training and testing has been performed with no iteration (in a 
single run) by a 10-fold Cross-Validation (10-CV). Model-7b-1-100% reached κ-index of 0.58, 
and Model-7b-2-100% 0.82 (Tab. 22). Thus, the model also better discerns between the 
landslides types than among landslides and non-landslides. 

Model-7b-1/2-20%: training was performed on 20% of data, and thus, five different 
20%–80% splits were generated and the median among the obtained κ-index values was 
considered as representative (Tab. 22). The performance dropped significantly, especially in 
Model-7b-1-20%. 

Model-7b-1/2-15%: seven 15%–85% splits have been generated, and the rest of the 
experiment is analogue to the previous one. Further decrease of average κ-index is 
noticeable (Tab. 22). 

Model-7b-1/2-10%: ten 10%–90% splits have been generated and processed as 
before. The dropping trend continues as κ-index values became rather temperate for both 
sub-models (Tab. 22). 

It is evident (Tab. 22) that the SVM has been a slightly better choice for modeling, 
given the same circumstances. Despite the slightly higher performance parameters than in 
concurrent C4.5-based models, impression of insufficient precision in mapping landslides 
remains. Instead, the SVM-based model is also showing considerably better use in 
discerning among different landslide classes. 

Finally, a supplementary experiment, generating the last model, labeled Model-7b-
40% has been performed. It has been preceded by a thorough Attribute Selection. The main 
idea behind it was to implement leave-one-out technique to generate the optimal model. 
Information Gain estimator has been employed (Tab. 23). In the optimization stage, there 
has not been any significant decrease in performance after leaving last 5 Conditioning 
Factors (convergence index, plan curvature, distance from structures, profile curvature and 
slope length). It is here disputable whether the binarized factors, such as lithology and Land 
Cover should have been observed as a whole or disaggregated into their binary sub-
features. In result, there was no significant computational time saving or performance 
enhancement by introducing leave-one-out, which all brings one back to the discussion on 
justification of the feature selection (see Chapter 5.1). 

The training in Model-7b-40% has thus commenced with dimensionally reduced 
(feature space-wise) training set, wherein approximately 40% of the total area has been split 
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for training. The training has been based on a simplified inventory variant which aggregates 
all landslide instances together (Fig. 50a). Once again, a cautious manual sampling had to 
be done in order to define the training domain, so that each of the nominal class (in all of the 
nominal inputs and the inventory) has been taken into account. This time the optimization 
has been done by 5-fold CV wherein nine pairs of c, γ combinations have been tested (Tab. 
24). According to the performance parameters and time consumption, the optimal 
combination was c=10 and γ=10 (even though it was not the best, it turned out to be much 
faster than the next beast choice). 

Table 24.  c, γ parameter combinations for optimization. 

(c, γ) AUC κ-index  fnrate train/test time-elapsed [s] 

1,1  0.57 0.21 0.00 158.55/10.94 

10,1 0.62 0.33 0.01 198.49/10.56 

100,1 0.68 0.46 0.02 435.26/10.06 

1,0.1 0.50 0.02 0.00 148.87/10.59 

10,0.1  0.53 0.10 0.00 159.95/10.13 

100, 0.1  0.55 0.17 0.00 242.82/9.99 

1,10 0.81 0.63 0.04 886.08/7.80 

10,10 0.77 0.61 0.03 317.29/8.50 

100,10 0.69 0.48 0.01 236.71/12.05 
 

Subsequently, the algorithm has been applied to the remaining 60% of the area and 
some interesting results have been achieved (Fig. 51). The trends of some landslides have 
been well portrayed, but the general impression is that the model underestimates the 
landslide instances. Performance parameters values are unambiguously underpinning such 
impression (Tab. 25). Overall accuracy of 92.6% seems very promising, but it obscures the 
actual successfulness of the model, which is better revealed by the other measurements, 
broken down per classes. The κfuzzy as a relatively novel parameter (for which no fitting had 
taken place, only the defaults provided by the MCK package have been considered), seems 
more appealing and slightly smoothens a rigorous indication given by the other parameters. 

Table 25.  Performance of the Model-7b-40%. 

Model class AUC κ index  accuracy average κfuzzy 

landslide  0.54 0.21 24% 
0.97 

non-landslide 0.54 0.48 95% 
 

The prognosis is meaningful (following the logic of geomorphological or geological 
entities of the terrain), but scarce and incomplete. The model is obviously overfitted since a 
considerable discrepancy appears between training and testing performance. For instance, 
average AUC drops from 0.77 to 0.54, which is considered as a poor performance (Fig. 52). 
If it is for any consolation, the ROC curve is left-skewed, meaning that the output is 
conservative (strict for False Negative type of error) and that there is some room for further 
fitting. Also, it is apparent that fitting of the curve (red contour in Fig. 52) suggests better 
fitting of the ROC curve. One of the reasons is probably the nature of the landslides in Starča 
basin, with their relatively small size, locally high density of occurrence and strongly exhibited 
variation in activity. Generally, there have not been too many landslide instances to work with 
despite slightly larger training area size (40% instead of usual 33%). In statistical terms the 
sample was too small to give good results. Perhaps increasing of the resolution of the 
dataset could improve the results. On the other hand, similar proportions of instances worked 
well for the previous case study. In comparison to the previous investigation based on simple 
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bivariate statistics (Mihalić et al. 2008), this research elaborates further details on 
possibilities of handling the landslide Conditioning Factors and exploiting different aspects of 
the model, thus contributing to the overall comprehension of the landslide phenomena in the 
study area. 

 
Figure 51.  Model-7b-40% (predicted landslides are in red, while the actual ones are contoured; the 
training area is shaded). 

 
Figure 52.  ROC curve of Model-7b-40% (fitted ROC curve is given in red). 

A small web-map, created in the R environment, using “plotGoogleMap package” 
(Appendix 2) presenting the area and related result of Model-7c-40% is available at: 

http://milosmarjanovic.pbworks.com/w/file/fetch/63741247/MyMapStarca.htm. 
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6.3 Halenkovice Area (Czech Republic) 
This last case study is actually a work in progress, which means that only preliminaries are to 
be given hereinafter, as well as further notices and ideas. It is further important to emphasize 
that the study site Halenkovice underwent a series of various landslide-related investigations 
in the past decade. There has been a number of landslide mapping investigations regarding 
the Western Carpathians in Moravia, particularly in districts of Zlín and Vsetín, thus 
encompassing this relatively small study area near Halenkovice. The researchers of these 
terrains coped with different aspects of landsliding process at regional scale, mainly including 
engineering-geological mapping (defining the metrics, geometry, mechanisms and typologies 
of the landslides) (Kircher et al. 2000, Pánek et al. 2011a), but there were also several 
susceptibility assessments attempts (Kianička & Čapková 2005, Klimeš 2008a,b, Klimeš et 
al. 2009, Klimeš & Novotný 2011) using Susceptibility Potential Index (SPI) as a final 
assessment output, as well as estimations of the triggering events in relation to the landslide 
occurrence (Bíl & Müller 2008). These researchers acted independently or jointly, within the 
national projects, such as slope deformations documenting and mapping, conducted by the 
Czech Geological Survey (CGS) and completed in 201137. Such consistency in research 
comes along with the acute and realistic motifs for landslide investigation, since a host of 
slope failures has been recently witnessed in Moravian flysch Carpathians (Kircher et al. 
2000, Bíl & Müller 2008, Klimeš et al. 2009, Pánek et al. 2011b). Multiple occurrences have 
been recorded in 1997, 2006 and 2010, which are to be recalled as years with unusually 
intensive precipitation. It is therefore objective to assume the dominant role of precipitation in 
triggering of landslide events, but also a combination if precipitation and floods (Rybář & 
Novotný 2005). Another apparent reason for research consistency lays in a good cooperation 
of geoinformatic and applied geo-science communities and appreciation of applied GIS in 
academic circles (which is not entirely true for Serbian or Croatian communities), as well as 
better financial support (primarily through independent projects). 

Conveniently, some parts of the study area have been surveyed for over a decade 
throughout the different projects of Department of Geoinformatics at Palacký University 
Olomouc and diploma projects of its graduates, leaving some unpublished and unused 
materials which have contributed to the research in this case study38. Some related work (in 
terms of landslide assessment), such as bivariate and multivariate statistical approaches, as 
well as some basic deterministic modeling, have already been involved. It is herein 
considered that the logical extension of these investigations lays in the application of the 
most advanced Machine Learning techniques (SVM in particular), but the deterministic model 
has also been revisited. The latter is additionally inspired by the character of landslides and 
terrain features, which theoretically seem suitable for such approach. 

                                                
37  The project name (verbatim et literatim) “Creating an interactive slope stability and rock avalanches 

risk map of Czech Republic”, in original: “Vytvoření interaktivní mapy rizika porušení stability svahů 
a skalního řícení v České republice”, VaV SP/1cp/157/07. The subproject which was mostly 
engaged with this goal was (verbatim et literatim), “Documenting and mapping of slope movement 
in CZR”, in original “Dokumentace a mapování svahových pohybů v ČR”, ISPROFIN č. 215124-1. 

38  By the courtesy of the Department of Geoinformatics from Olomouc all related repositories have 
been made available for this research. 
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Figure 53.  Geographical location of the study area (map projection: Krovak, JTSK). 

6.3.1 Setting 
The study area (Fig. 53) is situated near Halenkovice village, in SE Moravia (Czech 
Republic), occupying roughly 60 km2 on Halenkovice Plateau, between Bohemian Massive 
and Carpathians. The territory is located in the outer part of the Outer Western Carpathians 
(Carpathian Foredeep) which are made of Mesozoic and Tertiary flysch formations, so-called 
Flysch Carpathians, segmented locally by Paleogene basins or grabens which are spatially 
linked and typically have marine and lacustrine evolution. In terms of tectonic regionalization, 
the area belongs to the Račajská nappe of the Magura flysch group, characterized by a very 
complex nappe system, stretching NE–SW and verging toward NW. From NW to SE 
propagates a composite graben of Morava River, linking smaller surrounding structures 
(regional normal faults), hence traversing the Magura group perpendicularly (Kircher et al. 
2000, Demek et al. 2012). Geological composition of Račanská unit includes the stratified 
sandstone, alternating with conglomerate and inter-layered clay-slate. These differ in 
thickness, hydrogeological function and mechanical characteristics, which enables different 
types of instabilities to occur. The unit can be subdivided into Zlín, Belovež and Solaň units 
(Fig. 54, Tab. 26). Quaternary units are presented by fluvial sand, sandy gravel, loam and 
clay, and locally it can be distinguished as eluvial and delluvial soil mantle, where the 
landslides are usually hosted. The most typical are the instabilities in the rock slope faces, 
but this particular area (where the soil mantle thickens significantly) is also susceptible to 
shallow slides. 
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Figure 54.  Geological setting of the area (1=alluvium, 2=delluvium, 3=loess, 4=Zlín subunit, 
5=Belovež subunit, 6=Solaň subunit, see Table 26). 

According to the international landslide classification (Varnes 1984) predominant 
types of the slope processes in these terrains are earth-slides, earth-flows and rock-falls 
(Kircher et al. 2000, Bíl & Müller 2008), wherein shallow landslides predominate over deep-
seated ones (Kircher et al. 2000).  Displacements occur when the bodies of these shallow 
landslides suffer abrupt changes in the pore pressure regime, which is chiefly triggered by a 
heavy rainfall/snow thaw in combination with the undercutting linear erosion. These and 
some other conditions enable slow shallow movements with annual reactivation dynamics. 

The area is sparsely populated, thus the landslides do not pose major threat, as 
perhaps some other hazardous phenomena, but Halenkovice village is partly surrounded by 
potentially dangerous landslides, which can affect the infrastructure and cause primarily 
material damage, due to the slow displacement rates. 
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Table 26.  List of lithological units of the study area. 

# Lithological unit Lithological composition 

1 Alluvium 

organogenic sediments 

sandy-clay, sandy-loam, sand 

sand and sandy-gravel of fluvial terraces, sandy-gravel of alluvial fans 
(middle Pleistocene, Riss)  

2 Delluvium 

sandy-loam and loamy-sand of delluvial loess 

sand and sandy-clay (fluvial/delluvial) 

sandy-loam and loamy-sand 

loamy-sediments with rocky fragments 

3 Loess 
loamy-loess 

loess and loamy-loess 

4 Zlín subunit 

Magura flysch formation, Račajská nappe unit: siltstone and sandstone 
(upper Eocene, lower Oligocene) 

Magura flysch formation, Vsetín unit: alternating flysch with marly-
claystone and glauconitic sandstone (upper Eocene, lower Oligocene) 

5 Belovež subunit 
Magura flysch formation, Račajská nappe unit: alternating flysch with 
green-gray and red-brown claystone  (upper Eocene, lower Oligocene) 

6 Solaň subunit 

Magura flysch formation, Lukov unit: alternating flysch with sandstone 
and conglomerate (Paleocene) 

Magura flysch formation, Račajská nappe unit: non-segmented flysch 
(Campagne - Paleocene) 

 

6.3.2 Data 
A set of thematic attributes very similar to the one already used in the previous case studies 
has been assembled from several sources: 

- topographic maps at 1:10000, sheets 25-31-22 and 25-33-02, and partly sheets 25-
31-23 and 25-33-03 from ZABAGED database (map server) – Český Úřad 
Zeměměřičský a Katastrální (ČUZK) as vectorized contour lines, 

- orthophoto (5 m resolution) from ČZUK, 

- geological map at 1:50000, sheets 25-33 Uherské Hradiště and 25-31 Kroměříž, from 
1994, a repository of (CGS) and on-line web-service at 
http://mapy.geology.cz/website/geoinfo/viewer2.htm, and recently (2012) added on-
line repository39 for sheet Otrokovice at 1:25000, which covers a smaller part of the 
study area, available at http://mapy.geology.cz/geocr_25/, 

- slope instability map at 1:10000 from 2011, sheets ZM10 25-31-23, ZM10 25-31-22, 
ZM10 25-33-02 and ZM10 25-33-03, available at CGS online repository 
http://mapy.geology.cz/svahove_nestability/, 

- CGS Relational Database Management System (RDBMS) Oracle database 
(authorized access only), containing detailed documentation on each mapped 
landslide, including (ID number, map sheet number, region, GPS coordinates of the 
scarp, author of the map, mapping date, type of deformation, landslide class, 
dimensions – length/width, area, depth, slope angle, trigger, lithological composition, 

                                                
39  Nation-wide geological mapping project of CGS at 1:25000 has commenced at 1999, and till 

present several sheets are completed and released on-line for open usage. 
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activity stage and class, remediation measures, Land Use, endangered objects, 
degree of risk, comments, photo-documentation, miscellaneous). 

As usual, the inputs derived from these sources can be divided into a Landslide 
Inventory and a group of Conditioning Factors. Additionally, there is a group of deterministic 
inputs, containing principal geotechnical parameters for a simplified deterministic modeling of 
the landslide susceptibility. Most of the inputs have been processed in ArcGIS and SagaGIS 
software. 

6.3.2.1 Conditioning Factors 
The group of these factors has subsumed morphometric, hydrologic, geological, and 
environmental data. They have all been rasterized with 10 m cell resolution, which has 
seemed optimal regarding the quality of the data and the support problem of mixed scales 
(1:5000, 1:10000, 1:25000 and 1:50000), as well as the computational cost reduction (the 
number of pixels/instances is reciprocal to the resolution). In turn, the total area has been 
presented by total of 577931 instances (pixels), which could be already characterized as a 
robust dataset, especially if one has in mind that these instances had 24 dimensions, i.e. 24 
different Conditioning Factor attributes attached to it. Once assembled these inputs have 
been preprocessed by some standard procedures (binarization of nominal, normalization of 
ordinal data etc), and subsequently underwent two Attribute Selection procedures, based on 
Information Gain and Gain Ratio, in order to rank the factors properly for the leave-one-out 
Machine Learning scheme, which will be discussed later on. Similarly as in the previous case 
study, there was no need to explain the acquisition and processing of the input data in detail, 
because these are very similar to procedures described in the first case study (see Chapter 
6.1.2). 

6.3.2.1.1 Morphometric Data 
Terrain surface model (DEM) has been obtained from the vectorized contour lines at 1:10000 
scale. During the process, not only the intermediate (basic) contour lines, but also 
supplementary and depression contours, and individual spot heights have been included, in 
order to reach a higher precision. Two methods were used, TOPOtoRaster and TINtoRaster, 
and the latter turned out to be more reliable, as in both previous case studies. The following 
morphometric parameters (Fig. 55, 56a-d) have been derived from DEM: 

- elevation, 

- slope angle, 

- downslope gradient (a ratio of slope angle and elevation per point), 

- aspect, 

- convergence index (slope angle convergence), 

- profile curvature (terrain curvature in the steepest slope direction), 

- plan curvature (terrain curvature along the contour of the slope), 

- LS factor (a ratio of the slope length and the length standardized by the USLE), 

- channel base elevations (values calculated as a vertical difference between real DEM 
elevations and elevations of interpolated channel network), 

- altitude above channels (a DTM downshifted for the value of channel cells 
elevations). 
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6.3.2.1.2 Hydrologic Data 
Using morphometric calculations from DTM in combination with the manually adjusted 
drainage network vector, two factors (Fig. 56e) were derived: 

- Topographic Wetness Index or TWI (topographic water retention potential given by a 
relation of upslope drainage unit area and slope gradient), 

- distance from stream (Euclidean buffer of drainage network). 

6.3.2.1.3 Geological Data 
Digitized (raster) geological map has been reclassified according to the units described in 
Table 26., and lithology (Fig. 54) has been obtained. Subsequently, the raster with six 
classes has been (binarized) disaggregated into six separate binary factors, similarly as in 
the previous case studies. The factors represented the following: 

- lithology=1 is Alluvium, 

- lithology=2 is Delluvium, 

- lithology=3 is Loess, 

- lithology=4 is Zlín subunit, 

- lithology=5 is Belovež subunit, 

- lithology=6 is Solaň subunit. 

6.3.2.1.4 Environmental Data 
Environmental influence has been featured by Land Cover, another nominal factor with 
seven classes (Fig. 56f). Likewise, seven different binary factors have been derived, and 
each represents one of the predefined Land Cover classes. The classes have been 
interpreted by vectorizing the orthophoto (5 m resolution) and field survey of the area. The 
classes are generally improvised classes of CORINE standard and can be listed as follows: 

- Land Cover=1 is water body, 

- Land Cover=2 is built-up area, 

- Land Cover=3 is sparsely forested areas, 

- Land Cover=4 is grasslands, 

- Land Cover=5 is orchards and gardens, 

- Land Cover=6 is arable land, 

- Land Cover=7 is forest. 
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Figure 55.  Various Conditioning Factors: a) slope angle; b) downslope gradient; c) aspect; d) 
convergence index; e) profile curvature; f) plan curvature. 
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Figure 56.  Various Conditioning Factors (continued): a) LS factor; b) channel base elevations; c) 
altitude above channels; d) TWI; e) distance from stream; f) Land Cover (1=water body, 2=built-up 
area, 3=sparse forest, 4=grassland, 5=forest). 
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6.3.2.2 Landslide Inventory 
The inventory has been originally digitized in multiple landslide classes discerning not only 
among different activity stages of landslides, but also different mechanisms. Although 
shallow earth-slides dominate throughout the area, several earth-flows are also present, 
particularly in the northern part with the steeper slopes and narrower valley channels. Since 
these two types have entirely different phenomenology (geometry, dynamics and 
mechanism) it is logical to assume that different Conditioning Factors will have different roles 
in both, which have led to two separate investigations. In the previous case studies only the 
slide failure types have been elaborated, and proposed methodology required analogous 
type of subject to model. In order to remain consistent with previous case studies, the flow 
types have thus been excluded from the inventory, and only slide type of failure has 
remained. Furthermore, the original activity classes of slide failures do not entirely match the 
international (Varnes 1984) classification. They rather follow the local (national) classification 
(Záruba & Mencl 1987), although they could be approximated as: active, suspended and 
dormant. For this reason, and in order to reduce the computational costs, the landslide 
classes have been unified, so that the final inventory contained only landslide and non-
landslide instances (Fig. 57). The landslides vary in size from 100–10000 m2 or locally even 
bigger if regarded as composite slides. According to the most recent sheets of engineering-
geological maps, there are over 20 active slides bigger than 100 m2 among the total of 125 
mapped landslides in the study area. 

 

Figure 57.  Landslide Inventory. 

*** 

During the field reconnaissance and survey, standard observations and measurements have 
been carried out (landslide morphology and metrics, depth estimation, tension cracks, object 
deformations etc.). The survey has not been systematic and the data have been collected in 
sequences in 2008–2012, because field revisits served only to ensure some particular 
occurrences with accent on the training area (Fig. 58). Annual revisits allowed visual 
monitoring of particular occurrences. 
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Figure 58.  Augmented photo-documentation from the field investigation: a) shallow landslide in the 
outskirts of Halenkovice (photo by L. Marek 2009); b) detail of the landslide crown, showing the main 
scarp and tension cracks filled with water (photo by L. Marek 2008); c) measuring of the heights of the 
scarp cascades for depth estimation, where sliding depth equals ~2.5 times the scarp height above 
the ground level (photo by L. Marek 2009); d) toe of a shallow landslide (photo by the author 2012). 

*** 

6.3.2.3 Deterministic Geotechnical Data 
Specific geotechnical parameters were required for the deterministic modeling, analogue to 
the Model-8a. Since the area varies in lithological composition, the regionalization of the 
parameters has been performed, even though such generalization is not entirely justified 
from the geotechnical point of view. Basically, two regions were sufficient for this purpose 
(and also limited by the availability of geotechnical laboratory records): flysch and non-flysch 
units, i.e. flysch vs. Quaternary incoherent units. According to the internal CGS database and 
sampling which has been carried out for the most prominent landslides (Krejčí et al. 2008) 
and some indirect consultations from the CGS researchers, these regions are generalized as 
presented in Table 27. The model also required a standard DEM and a sample of existing 
landslide instances (for calibrating the classification of SI). The same SinMap 2 GIS (via 
MapWindow) package has been used as before. 

Table 27.  Average parameters over different lithological domains (regions). 

parameter region 1 (flysch) region 2 (non-flysch) 

csoil 0–0.24 0–0.13 

γsoil [kg/m3] 2732 2100 

φsoil [°] 19–20 9–13 

T/q [log] 1000–3000 500–1000 
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6.3.3 Implementation, Results and Discussion 
Previous research of Halenkovice area have been already involving some basic modeling 
techniques, such as bivariate, even multivariate, but based on different unit area and with 
non-predictive approach. Therefore, the most of the basic techniques, seen in previous case 
studies have been skipped, and modeling has thus been limited to the particular Machine 
Learning and deterministic techniques. 

Table 28.  Attribute Selection and ranking. 

# IG Ranking IG GR Ranking GR 

1. elevation 0.0630 Land Cover=3 0.2075 

2. Land Cover=3 0.0560 Geology = 2 0.0290 

3. channel base elevation 0.0481 Land Cover=6 0.0272 

4. LS factor 0.0389 Land Cover=5 0.0235 

5. elevation above channels 0.0389 lithology=6 0.0161 

6. slope angle 0.0338 elevation 0.0158 

7. Land Cover=6 0.0254 channel base elevation 0.0152 

8. aspect 0.0246 Land Cover=4 0.0133 

9. lithology=2 0.0195 Land Cover=1 0.0127 

10. convergence index 0.0192 elevation above channels 0.0122 

11. distance from stream 0.0132 LS factor 0.0116 

12. plan curvature 0.0122 slope angle 0.0078 

13. lithology=6 0.0105 Land Cover=7 0.0060 

14. Land Cover=5 0.0092 aspect 0.0046 

15. profile curvature 0.0076 convergence index 0.0046 

16. Land Cover=7 0.0059 distance from stream 0.0045 

17. TWI 0.0054 plan curvature 0.0039 

18. Land Cover=4 0.0038 profile curvature 0.0031 

19. lithology=4 0.0009 TWI 0.0026 

20. lithology=1 0.0003 lithology=1 0.0009 

21. lithology=5 0.0002 lithology=4 0.0009 

22. Land Cover=2 0.0001 lithology=5 0.0007 

23. Land Cover=1 0.0001 Land Cover=2 0.0006 

24. lithology=3 0.0001 lithology=3 0.0003 
 

6.3.3.1 Model-7c 
The curiosity of this model in comparison to the previous case studies lies in leave-one-out 
learning scheme, where only one, predictive experimenting protocol has been used. As 
leave-one-out scheme implies, prior to the learning itself, Attribute Selection has had to take 
place. 

Herein, two filters have been used (Tab. 28), but the choice came down to the ranks 
provided by the Information Gain, since it turned out to be more balanced (with lesser 
extremes) than the Gain Ratio, and also provides more logical scenario. Given IG ranks have 
been used as a criterion for the leave-one-out procedure, by eliminating one last-ranked 
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factor iteratively, after each training cycle, until an obvious convergence of the model 
performance metrics is achieved40. 

Table 29.  c, γ parameter combinations for optimization. 

(c, γ) AUC κ-index  fnrate 

1,1  0.72 0.56 0.01 

10,1 0.78 0.65 0.01 

100,1 0.73 0.60 0.01 

1,10 0.62 0.33 0.01 

10,10  0.69 0.43 0.01 

100,10 0.70 0.51 0.01 
 

Table 30.  Performance of Model-7c-40% with c=50 and γ=1 in leave-one-out learning scheme. 

training set accuracy  

initial  84.86% 

-lithology=3 85.16% 

-lithology=3-Land Cover (LC)=1 85.24% 

-lithology=3-LC=1-LC=2 85.36% 

-lithology=3-LC=1-LC=2-lithology=5 86.77% 

-lithology=3-LC=1-LC=2-lithology=5-lithology=1 86.89% 

-lithology=3-LC=1-LC=2-lithology=5-lithology=1-lithology=4 86.97% 

-lithology=3-LC=1-LC=2-lithology=5-lithology=1-lithology=4-LC=4 86.99% 

-lithology=3-LC=1-LC=2-lithology=5-lithology=1-lithology=4-LC=4-TWI 87.01% 
 

The experimenting protocol was based on the Model-7a-33% or Model-7b-40% 
(predictive modeling scheme). The training split has again been sampled so that it included 
all the necessary classes of nominal factors (lithology and Land Cover). This time, parallel 
direction was more convenient then meridian for splitting the training and testing area 
manually, because of the spatial propagation of the mention categorical inputs. Training area 
occupied approximately 40% of the total area or 233037 instances. The model could thus be 
conventionally labeled as Model-7c-40%. 

The optimization (over training area) of the Model-7c-40% was very extensive and 
very time-consuming. It lasted for over 77 hours on conventional machine (i5 Intel Processor 
on 3.3 GHz and 16 GB RAM of which 3 GB was available for Jawa emulation of Weka 
software due to 64-bit OS). Similar pairs of c, γ parameters as in Model-7b-40% have been 
taken into consideration for training, which has been realized by a 10-fold Cross-Validation 
technique. Combinations with γ=0.1 have been excluded due to the poor performance which 
has been witnessed in a prompt test of the software (Weka and R) over this data. Thus, the 
parameters have been varied successively for one order of magnitude (Tab. 29). The values 
of all three evaluators (AUC, κ-index and fnrate) are rather balanced, but the optimal 
parameter pair should belong to range c=10–100 and γ=1–10. Some further adjustments 
revealed that c=50 and γ=1 gives the best results, and has been adopted as optimal. 

                                                
40  IG unlike GR favors natural conditions over artificial influence, i.e. morphometric and geological 

parameters over Land Cover classes. However there is some regularity between the ranks since 
the most of the factors’ ranks do not vary that much. Exceptions are some Land Cover and 
lithology classes. 
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The experimenting procedure has been continued by training with adopted c, γ over 
the training area while using a leave-one-out protocol. In each iteration the lowest-ranked 
Conditioning Factor has been removed from the training set and the according model built 
over the testing area. Such procedure has been continued until the performance parameters 
converged to a similar value (close to the highest performance), i.e. until the performance 
parameters started to drop down. In this particular case, eight iterations, up to TWI as the 
last of the removed factors, have been sufficient to reach a convergence (Tab. 30). Hence, 
the last variant has been adopted as representative for Model-7c-40%.  

Other performance parameters did not prove as convincing, since again fp/fnrates have 
reached considerable shares (Tab. 31). This can be confirmed by confusion matrix and ROC 
curve (Fig. 60), where False Positives predominate, with 26706 out of 322000 instances 
misclassified. Visually however, the Model-7c-40% map (Fig. 59) nicely and logically 
indicates the landslide trends, placing them along potentially unstable slopes of small and 
deep valleys, along which the landslides (even earth-flows which are not considered in 
analysis) have been recorded. It gets us back to the old discussion on how should such 
predictive models be evaluated. It remains unrevealed issue whether a model has been 
overfitted or it is just that the predictions reach beyond the present Landslide Inventory to 
some nearer future state. It would take a landslide hazard analysis to further elaborate this 
question. One possible solution for softening the performance error is κfuzzy, but even more 
advanced  and customized schemes are required. 

Table 31.  Performance parameters of Model-7c-40%. 

Model class AUC κ-index  accuracy average κfuzzy 

landslide  0.57 0.11 15% 
0.85 

non-landslide 0.57 0.38 94% 
 

 
Figure 59.  Model-7c-40% SVM landslide map (predicted landslides are in red, while actual ones are 
contoured; the training area is shaded). 

One additional very prompt experiment had been carried out. It involved the same set 
only the roles of training and testing areas have been inversed. Accordingly, a Model-7c-60% 
has been built over the remaining 40% of the area. The purpose of this test was to challenge 
the training sample strategy and to establish whether the increase of training sample size 
yields better results. There has been a very slight increase of performance 
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(accuracy=88.07%, AUC=0.58, κ-index=0.2) leading to a conclusion that inversion, i.e. 
enlarging of the training area does not make a significant change. 

A small web-map, created in the R environment, using “plotGoogleMap package” 
(Appendix 2) presenting the area and related result of Model-7c-40% is available at: 

http://milosmarjanovic.pbworks.com/w/file/fetch/63739326/MyMapHalenkovice.htm 

In conclusion, the method turned out to be relatively accurate, as expected from the 
experiences drawn from previous case studies, and it also tops the accuracies reached by 
some other methods, such as bivariate and multivariate statistics. The model can be 
characterized as underestimating in terms of landslide instances, but yet following logical 
trends of landslide occurrence. Apart from that point, the experiment design was valid 
(selection of the splits, optimization of the parameters, preprocessing of the inputs were 
apparently correct) as shown in the inversed test in Model-7c-60%. A serious drawback of 
the method is its time-consumption, as optimization alone lasts for several days, while the 
model implementation on training area had required more than 4 hours. Another drawback is 
the poor data compatibility of the modeling software and GIS platform, where CSV text files 
had to be communicated throughout. Since the arrangement and preparation of such files at 
some points had to be manual, the room for user error is introduced. For further notice, it 
would be interesting to challenge the algorithm with multi-class (multinomial) scenario (e.g. 
active, dormant, suspended, fossil, and other landslide classes could be specified and 
related to the High-Low susceptibility scale). Also, the study is in its beginning and it might be 
interesting to extend it methodologically and to compare the results. It is also intended to 
perform some of the filtering techniques in the post-processing, because illogical errors (such 
as pixel islands) are apparent and could be easily avoided in this manner. 

 
Figure 60.  ROC curve of the Model-7c-40%. 

6.3.3.2 Model 8-c 
A deterministic model, which has been estimated suitable for a given case study, has been 
generated in a GIS environment, using the available geotechnical and other data. The 
procedure was exactly the same as for building Model-8a (and Model-8b) and it shall not be 
repeated hereinafter. The only difference is that only two domains have been considered for 
regionalization (generalization) of geotechnical data (see Chapter 6.3.2.3). 
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Figure 61.  SA plot for region 1 (flysch). 

Although the data have been based on realistic, laboratory tested samples, some 
fitting has been carried out, mostly regarding the different q/T conditions, because these 
have the highest variances within a single region. For the final model, a classification scheme 
which represents a result of a particular geotechnical parameter combination has been used 
(Fig. 61). From the Figure 61. it is obvious that numerous landslide instances (red points on 
the plot) have reached beyond stability limit (SI>1.0), which should not be the case 
(landslides should have SI<1.0), but after fitting several combinations of available 
geotechnical parameters and several q/T regimes, this combination seemed to be the most 
representative for the model. 

The model have had some issues with underestimation and overestimation of the 
landslide instances, assuming that all instances with SI less than 1.0 represent landslides 
(the highest susceptibility class). They are logically located along the slope valleys (Fig. 62), 
but in some valleys they are abundant and in others missing. The performance measurement 
suggests that there are considerable misclassification errors of both fp and fn (very low κ-
index values, while AUC is better balanced), but also a relatively good overall accuracy (Tab. 
32). 

In conclusion, the model does not seem too promising, but it is not to be 
underestimated. The prognosis might be rather realistic, in fact it partly agrees with the 
disputable prognosis made in Model-7c-40% and Model-7c-60%, suggesting that it could be 
viable after all. Model-8c could hardly be accepted as a stand-alone model. The author 
recognizes its potential use as an additional input factor for the Machine Learning-based 
models, which will be exploited in the future work. 
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Figure 62.  Model-8c: a) Reclassified Model-8c by unifying all landslide instances where SI<1 (actual 
landslides are contoured); b) Original Model-8c (actual landslides are contoured, susceptibility classes 
with SI<1 are in red and orange tones.). 

Table 32.  Average performance parameters of Model-8c. 

AUC κ-index accuracy κfuzzy 

0.65 0.14 79.38% 0.62 
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7 Main Achievements 

Since the previous chapter has been rather voluminous and the information turned abundant 
and very detailed, some esential achievements and their relation to the initial research 
objectives are to be clarified in the following paragraphs. The objectives (structured as in 
Chapter 2) have been complied by the following achievements: 

1. Exploiting only low-cost data resources (available or open-source topographic, 
geological, satellite imagery and other repositories) and open source software 
packages. 

In all of the case studies presented in Chapters 6.1–3.2, the data that have been 
used were obtained for free. Topographic information, CORINE classification maps, 
even geological maps, orthophotos and Landslide Inventories are freely available up 
to a certain scale (1:50000). It is also the case of LANDSAT and other similar 
multispectral images, which are sometimes available in several time series, but the 
quality of these images might not always satisfy the requirements. These scales 
turned sufficient for conducting proposed methodology and fulfilling the Objective 1 of 
this thesis. In addition, open source solutions, such as SagaGIS, MapWindow, Weka, 
R, MapComparisonKit and others, have been fully exploited in processing and 
modeling of these data, which utterly rounds-up the Objective 1. 

2. Inspecting of the phenomena from different case-studies, including similar, but 
sufficiently different terrains (in order to compare the modeling results and test the 
capabilities of proposed methodological solutions). 

Selected case studies have been somewhat similar, but still different enough to 
challenge the proposed methodology from different aspects. For instance, the first 
and the second case studies are geologically similar, since their landslide 
occurrences are mostly linked to Tertiary formations of similar type, while the triggers 
are also somewhat similar (linear erosion dominates in the first case study, while 
precipitation dominates in the second, but in total they are both tightly related to the 
landslide occurrence in both study areas). Still, the typology of the landslides is 
entirely different, since the first study area is typical for the deep-seated earth slides, 
while in the second study area shallow earth slides and flows dominate. In that 
respect the second case study better complies with the third case study area, but the 
geological ambient is entirely different. Such diversity, turned out to be challenging for 
proposed methods, which is why some techniques have better success than the 
others. Therefore, it could be said that the Objective 2. has been appreciated 
consistently throughout this thesis. 

3. Standardizing the data acquisition regarding the data type, scale, preprocessing 
procedures and so forth (in order to have fully comparable models from different 
case-studies) using GIS. 

Although the datasets did not contain exactly the same inputs, it is possible to 
perceive some standard pattern. It implies that each case study must have had 
several morphometric Conditioning Factors, and at least one hydrological, geological 
and environmental Conditioning Factor. The only exception was with the deterministic 
models, which required specific (geotechnical) data inputs that have had to be 
arbitrarily adjusted within certain limits in order to suit the model. Furthermore, all of 
the inputs (except the latter) underwent the same processing procedure, as 
demanded by Machine Learning methods or other used methods, for that matter. 
These procedures are clearly explained for all of the case studies (see Chapters 6.1–
3.2), which leads to a conclusion that the Objective 3 (see Chapter 2) has been fully 
perceived throughout the thesis. 
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4. Implementing a variety of well-known modeling approaches, but also experimenting 
with the state-of-the-art techniques, advanced methods and unprecedented solutions 
for landslide assessment using GIS. Resulting models are to present transient relative 
values over the area, pinpointing landslide-endangered zones and safe zones (which 
shall be further elaborated). 

The first, pilot case study has been the most extensively elaborated, since there has 
been no similar investigation performed over this area before. Thus, the entire gamut 
of proposed methods has been involved, while in the last two case studies, the 
methods have been intentionally reduced to those which might have led to some new 
discoveries, which would supplement the previous investigations, conducted by other 
practitioners. In this sense, the fulfilling of the Objective 4 has been asserted. 

5. Evaluating the results, i.e. the models performance in the most appropriate fashion, 
obtaining qualitative and quantitative descriptors of the models performance using 
GIS in combination with statistical tools. 

The evaluation of the individual models in all of the case studies has been always 
given by several performance parameters, such as accuracy, several types of κ-
indices, different error rates, ROC curves and AUC, all based on contingency tables 
(confusion matrices). Nevertheless, the evaluation of the modeling performance has 
remained problematic, especially for the predictive models (generated by advanced, 
Machine Learning methods), for a number of problems addressed in discussions that 
followed every single model (Chapters 6.1–3.3). The most appropriate method for 
model comparison (see Chapter 8) turned out to be the ROC curve, because it allows 
qualitative and quantitative evaluation of the model. It needs to be mentioned that 
some parameters such as κfuzzy for instance, seemed very promising, but have 
remained relatively unexploited, mainly because they have not been widely accepted 
in the community. Having such minor drawbacks in mind, it still could be inferred that 
the most appropriate fashion for model evaluation has been followed, i.e. that 
Objective 5 has been practically fulfilled. 

6. Visualizing and publishing the results in the form of generic maps per each case-
study using GIS, and web-GIS and estimating their applicability. 

Visualization of the most of the models has been given by separate maps (see 
Chapters 6.1–3.3), while some of the insignificant results have not been visualized on 
purpose. The most interesting models (Appendix 3), i.e. predictive models based on 
Machine Learning techniques, have been additionally featured as interactive web-
maps, and made publically available (Appendix 2). Their applicability is left for 
discussion of those who find them appealing or useful/useless for their particular 
needs (planning, modeling, mapping, managing, etc.). Therefore, the final objective of 
this thesis, the Objective 6, has also been completed. 
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8 General Discussion 

Before a final conclusion, it would be appropriate to re-discuss some of the issues and to 
round-up general impressions driven from the author’s experiences related to the presented 
research. It is also an opportunity to revisit the comparative analysis of presented modeling 
methods. 

Advanced models, based on Machine Learning techniques, have proven their 
supremacy over more common approaches (heuristic, statistic etc.) for a number of reasons. 

 
Figure 63.  ROC curve comparison. 

Firstly, they tend to perform much better in the case of interpretative models, i.e. 
landslide susceptibility models, of course, when appropriate sampling strategy for 
training/testing is set. Continual, 0–1 range false probability models are returned by using 
intermediate models, created after each iteration, and averaging and normalizing them, not 
directly as in the case of conventional models. In all of the case studies it turned out that they 
easily outperformed conventional models (Fig. 63). Their ROC curves tend to reach the peak 



Miloš Marjanović, PhD Thesis: Advanced methods for landslide assessment using GIS 

124 

performance with relatively low probability thresholds (Fig. 63), meaning that they give more 
conservative (safer) outputs. They have also shown a good generalization capacity when 
challenged with multinomial tasks (several landslide classes to discern). 

As for the second type of models, i.e. predictive models such as Model-7a-33%, 
Model-7b-40% and Model-7c-33% (Appendix 3), the comment is not as straightforward. 
These are all predictive models in their nature, and since they are based on the 
training/testing protocols, they perfectly simulate potential scenarios (e.g. the situations in 
which an area does not have Landslide Inventory, but adjacent area does). Thus, simulated 
models over the testing area represent the actual prediction of the landslide distribution over 
that area. As previously mentioned, the outcomes are not so clear and the general comment 
is therefore less meaningful. Some of them have been very successful and very applicable 
(Model-7a-33%), while the others have been troubled with the overfit problem. Several 
factors have been recognized as possible causes of the overfit. The training sample size and 
the way the sample has been selected are crucial, because the overfit appears most likely 
due to the overabundant non-landslide class. The algorithm (SVM, C4.5, Logistic Regression 
etc.) learns too many wrong relations between non-landslide instances and the inputs, 
tending to produce considerable amount of False Negative errors. The algorithms are further 
challenged when switching from binary case (landslide vs. non-landslide) to multi-class case. 
It is highly likely that the performance would drop even further in such cases, which is why it 
is advisable to perform both binary and multinomial cases. Furthermore, one needs to 
consider the processing capacity while searching for the optimal landslide population size. It 
affects the number of instances and indirectly, the scale of the research. From the 
experiences of the author, it is recommendable that the landslide instances occupy at least 
10% of the instances, as long as the total number of instances is kept bellow 106 points, 
since it has been shown that upscaling does not necessarily bring better modeling 
performance. It is also noticed that the Attribute Selection have had minor influence in 
preventing the overfit (as shown by various Chi-Square, IG and GR examples in this 
research), so the key for avoiding the overfit remains with the inventory and the sampling 
strategy of the training/testing split. In general, there are some improvements that might be 
made to reduce the overfit directly (e.g. by limiting the non-landslide class by some additional 
criteria, in order to make a more balanced training samples or by limiting to specific landslide 
types if not in discrepancy with the aforementioned landslide class population size) or 
indirectly, by improving the results through the postprocessing filtering. 

For more details on the first case study on Fruška Gora Mountain (Serbia), the author 
suggests the publications which address particular problems related to this research, ranging 
from common to advanced models and evaluation metrics (Marjanović 2009, Marjanović et 
al. 2009, Marjanović 2010a, Marjanović 2010b, Marjanović & Caha 2011, Marjanović et al. 
2011a, Marjanović et al. 2011c, Marjanović 2013). The second case study, Starča Basin 
(Croatia), is not as elaborate, but there are some significant references where one can find 
particular details, which might not be presented in this thesis entirely (Marjanović et al. 
2011b). Finally there is the last case study, Halenkovice area (Czech Republic), which is still 
under research. Some reference has been already made (Marjanović 2012), but the final 
results are prepared to be published in a special Springer Book Series on Computational 
Approaches for Urban Environments (Geotechnologies and the Environment series) in 2013 
(the author has been invited to contribute to the issue). 
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9 Conclusions 

This thesis rounds-off a detailed methodological proposal for mapping landslide susceptibility 
in non-conventional ways, using some simple and advanced modeling methods. These have 
been tailored by the according research motifs and objectives, which have been consistently 
followed. The thesis is savored by three case studies on which the proposed methodology 
has been fully employed, tested and discussed (Chapter 6.). It outputs a dozen of different 
interpretable models, which have their drawbacks and benefits and different practical 
relevance. 

9.1 Benefits and Drawbacks 
Presented models have an apparent linkage between their complexity and their GIS 
integration possibilities. More complex models are naturally difficult to implement, while 
simple ones are readily GIS supported, which could be their general benefit at present, 
because data manipulation outside GIS requires either some manual data handling, either 
some additional programming effort. Nonetheless it can become a root of some systematic 
errors made during this kind of handling or while communicating external and GIS software. 
In addition, complex models, such as Machine Learning-based ones are much more 
demanding, computationally, i.e. time-wise, thus unsuitable when a quick prediction is 
needed. Nowadays it is possible to follow-up the hardware technology for affordable price, 
while software solutions are henceforth directed towards parallel and cloud computing, which 
should maximize the performance and shortens the processing time. It draws one to a logical 
conclusion that what are being the complex models at present would eventually become 
easily deployed models, but then even more complex models will take over with new 
demands and new challenges posed to the hardware and software solutions. In this 
particular research it has been inferred that: MS Windows OS is not as computational-
friendly as it is user-friendly (unlike Linux for instance); ArcGIS is the most robust GIS 
platform, but fails to follow up the module development as fast as its open source 
counterparts; R is very customizable and very flexible, plus it is practically GIS-integrated, 
but not too user-friendly and not so robust for handling large datasets like Weka does. In 
brief, a combination of various solutions is still necessary, but holistic solutions are 
perceivable and R is one solid example of it. 

Another issue which has been indicative in the most of the models is the evaluation, 
so it could be discussed as one of the drawbacks. It is hard to evaluate predictions in the 
landslide susceptibility scenario (unlike in hazard or risk scenario where prognosis relates to 
the specified time series) because only present (and past) landslides can be witnessed. 
Future cannot be accounted for, but it is obvious that all False Positives are not necessarily 
erroneous (having in mind that the spreading of landslide body follows a logical spatial trend) 
and that the predictive nature of the model should not be suppressed by the strict 
performance metrics. On the other hand, False Negatives should be strictly penalized, 
because they represent unacceptable error in the landslide assessment framework. Some of 
the performance measurements (e.g. κfuzzy) are smoothing the errors down by taking into 
account the size of the particular landslide class. Since these classes are usually much 
smaller in size than a non-landslide class, it could re-endorse the model which has been 
underestimated. It is probably the most objective evaluation parameter thus far. 

Furthermore, there is an important benefit from downscaling to be discussed. It has 
been shown that too detailed data (such as data from the last two case studies) can make 
some problems in predictive modeling. This particularly affects the Machine Learning-based 
models, which tend to overfit on too detailed data. It is therefore necessary to find the optimal 
scale (or resolution or level of detail) for a given dataset in order to reach the best possible 
performance. It is usually recommended to adopt the scale of the inputs, but even more 
usually these are not coming with the same level of detail. It is also noticed that in some case 
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studies where the landslides are smaller the performance of all proposed models has 
suffered an apparent decline. In this case, downscaling would be additional drawback of the 
model. On the other hand, too much of upscaling would endanger the limits of computing 
capacity of the hardware/software. Alternative solution would be the tilling of the area into 
several sub-areas, but it is important to mention that some of the methods (Machine 
Learning-based ones) would be affected and compromised by such solution. Experiences 
drawn from this research suggest that the area with one million of points (pixels) is a fair 
upper limit for the size of the area, while the lower limit could be 100000. These limits apply 
only to the particular circumstances (particular hardware and software solutions). 

Finally it is desirable to once again underline that high quality of input data can 
guarantee a plausible result, even by using the simplest modeling solutions, while on the 
other hand, no model, no matter how sophisticated cannot help if the input data are poor in 
quality. 

9.2 Applicability 
Each kind of the presented models can find some purpose at some level of assessment, in a 
wide gamut from preliminary to detailed research. Furthermore, a special case of 
assessment, involving for instance detailed landslide mapping, can substantially benefit from 
such models. Actually these models are not intended for replacing the conventional mapping, 
but to supplement it and to be used in the preliminary stage of map development, i.e. in the 
early stage of research planning. They are thus semi-products of landslide assessment, i.e. 
intermediate models which are used by the experts to compile a final map. Most of the 
models can successfully pinpoint the critical areas and guide the practitioners towards more 
efficient mapping. 

In practice, these kinds of models can easily find their purpose in regional, small 
scale planning, urban planning, strategic planning, but also some preliminary insurance 
analysis, planning of detailed research or sampling, updating the inventories, tracking 
changes and so forth.  

9.3 For Further Notice 
The most of the advanced models in this research have shown that much more needs to be 
done to achieve reliable semi-automated landslide mapping and landslide susceptibility 
assessment. It particularly concerns SVM or DT-based Machine Learning models, which are 
far from becoming operative and scrutinized in landslide assessment framework, for now. 
There are several directions for further improvements and possibilities which unfold from the 
experience gathered through this research. 

First, there is a fundamentally different concept of defining the unit area, i.e. 
alternating from pixel-based to areal-based approach. Two possibilities are commonly 
imposed: 

- generating a Unique Condition Area or UCA (quasi-homogeneous area) by 
successively parsing of the input data classes (using for instance raster/vector 
combine modules), 

- using slope or watershed units (generated by various morphometric modules) which 
has been considered as the most logical in the landslide assessment framework 
(Guzzetti et al. 2012, van Westen et al. 2006), because landslides are indeed 
elements of slope configuration. 

Since they are both area-based, they could allow creation of the additional synthetic 
inputs, such as statistical parameters (variances, means, standard deviations, etc.) of other 
inputs. This would offer the whole new source of relations between the landslide occurrence 
and the input data. On the other hand, they tend to generalize just as any other choropleth 
map, and may not be as suitable as smoothly distributed raster models. They are also both 
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rather subjectively segmented, (especially UCA) since they depend on the ranging choices 
made for the (ordinal, continuous) inputs. 

Finding new resources of inputs is thus one of the milestones for further model 
refinement. Expert-based, inputs could significantly contribute, especially if they are focusing 
on geological or engineering-geological terrain features. For instance, inputting geological 
domains as quasi-homogeneous areas in terms of stratification character (spatial and 
sedimentological) has been proven useful in landslide assessment (Guzzetti et al. 2012). 
Unfortunately, such inputs require additional engagement of the experts and resources which 
can turn insurmountable problem (e.g. generating of geological quasi-homogeneous domains 
require extensive RS and field techniques and qualified experts to generate it, although there 
are some trends toward creating simple domains automatically). New inputs could be found 
by changing the unit area definition, as explained above, but in addition, the inputs can 
reflect the dependency of neighboring values, i.e. they can emphasize the actual critical 
points or zones, which are the most indicative in the landslide scenario (landslide crown or 
toe). Change of the slope morphology is one such example, wherein it is indicative that 
sudden changes of slope angles are related to the landside occurrence. Principal 
Components of input variables might be an effective way of emphasizing the changes in 
trends of the input variable values. Finally, new inputs can be found as some intermediate 
models, for instance simple AHP-based models or deterministic models can be fed as 
additional inputs of the more advanced e.g. Machine Learning-based models. Multi-temporal 
inputs are also desirable, but rarely available (historical repositories, especially on dating 
slope displacements, aerial and satellite images in monitoring context, terrestrial monitoring 
techniques, such as surveying, LiDAR and Radar scanning). They would enable upgrading 
susceptibility assessment to a hazard or risk framework. Such integrated approach does 
sound optimal, and with present development of RS systems it is realistic to expect that in 
couple of decades from now it will be much easier to model landslide hazard and risk. 

Another idea for more precise modeling is to include only the landslide source areas 
as a reference, i.e. to discern between the source and accumulation areas of the landslide 
body at inventory level, and to train the model only over the areas which have suffered the 
conditions leading to failure. Accumulation areas do not necessarily face these same 
conditions, particularly in cases of flows, which are linearly elongated and have relatively 
long runout distances, hence conditions can change drastically. This would require upscaling 
to at least 10 m resolution (1:5000–1:10000 scales) and appropriate pilot areas, with 
relatively large and clearly discernable landslide bodies (preferably flows). 

As for the most advanced techniques used in this research (SVM, DT, LR) it is 
noticeable that multinomial tasks (multiple landslide classes) are not as unfeasible as it first 
sounds. In fact, it turned out that these complex models perform better in the multinomial 
than in binary (landslide vs. non-landslide) environment. Their generalization power is getting 
fully exploited and one should not hesitate to challenge the technique if a reasonable 
population of multiple landslide classes is present in the area (if some of the classes are 
coming down to a single or a few examples the training would be statistically unleveled). 

Another important challenge would be the using of classifier chains, by combining 
different techniques and perhaps fuzzifying their combination. More robust and readily post-
processed models should be expected therein. It would lead to the fusion of discrete 
classifiers such as SVM and probabilistic, generative classifiers, such as LR. In fact, there is 
already a trend for fusing these two branches in Relevance Vector Machines (RVM), which 
are based on SVM but with the probabilistic output (Tipping 2001). 

All these comments are proposing the ideas for improvements of the susceptibility or 
spatial landslide prediction. Assuming that at one point, the most optimal solution for 
susceptibility framework will be reached, it would then be entirely new challenge to deal with 
the hazard and risk frameworks, which is the author’s remote objective, from the current 
stand-point. 
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Appendices 

Appendix 1.  Table of ranged Conditioning Factors and their fuzzy memberships for Model-3a. 

Conditioning Factor (type, group) 
categories 

µFR µCA X2 
(X2

critical) 

distance from structures (continual, geo-buffer) 
0–134 

134–276 

276–426 

426–582 

582–755 

755–942 

942–1159 

1159–1418 

1418–1758 

1758–2305 m 

 
0.051 

0.092 

0.141 

0.260 

0.261 

0.178 

0.024 

0 

0.262 

1 

 
0.781 

0.770 

0.805 

1 

0.812 

0.445 

0.077 

0 

0.197 

0.568 

1949.6 

(27.9) 

distance from h.g. boundary (continual, geo-buffer) 
0–94 

94–218 

218–342 

342–458 

458–589 

589–726 

726–878 

878–1050 

1050–1244 

1244–1749 m 

 
0.275 

0.038 

0.107 

0 

0.040 

0.484 

0.579 

1 

0.458 

0.682 

 
1 

0.630 

0.499 

0.372 

0.295 

0.429 

0.313 

0.332 

0.105 

0 

306.3 

(27.9) 

distance from stream (continual, hydro) 
0–94 

94–212 

212–324 

324–432 

432–543 

543–660 

660–797 

797–966 

966–1173 

1173–1542 m 

 
0.550 

0.900 

0.780 

0.453 

0.346 

0.218 

0 

0.024 

0.362 

1 

 
0.643 

1 

0.809 

0.431 

0.305 

0.165 

0 

0.002 

0.100 

0.214 

2381.6 

(27.9) 

TWI (continual, hydro) 
7.5–9.3 

9.3–10.3 

10.3–11.4 

11.4–12.8 

12.8–14.3 

14.3–16.2 

16.2–18.3 

18.3–20.8 

20.8–22.5 

 
0 

0.172 

0.696 

1 

0.811 

0.821 

0.781 

0.506 

0.131 

 
0 

0.261 

1 

0.955 

0.575 

0.442 

0.320 

0.176 

0.079 

4947,6 

(26.1) 



aspect (categorical, topo) 
flat 

N 

NE 

E 

SE 

S 

SW 

W 

NW 

 
0 

0.594 

0.552 

1 

0.889 

0.278 

0.645 

0.494 

0.414 

 
0 

0.701 

0.688 

1 

0.490 

0.140 

0.638 

0.571 

0.433 

1091.0 

(26.1) 

elevation (continual, topo) 
78–102 

102–138 

138–173 

173–209 

209–248 

248–287 

287–329 

329–376 

376–426 

426–540 m 

 
0.660 

1 

0.828 

0.530 

0.158 

0.141 

0.018 

0 

0 

0 

 
0.619 

1 

0.838 

0.499 

0.147 

0.118 

0.013 

0 

0 

0 

7515.7 

(27.9) 

slope angle (continual, topo) 
0–4.2 

4.2–9.5 

9.5–14.8 

14.8–21.1 

21.1–40.1º 

 
0.300 

1 

0.473 

0.119 

0 

 
0.243 

1 

0.403 

0.086 

0 

4453.1 

(18.5) 

slope length (continual, topo) 
0–60 

60–181 

181–353 

353–602 

602–981 

981–1506 

1506–2196 

2196–3094 

3094–4392 

4392–6499 m 

 
0.435 

0.591 

0.937 

1 

0.650 

0.301 

0.178 

0.427 

0.187 

0 

 
1 

0.964 

0.960 

0.667 

0.261 

0.080 

0.033 

0.061 

0.019 

0 

1346.8 

(27.9) 

plan curvature (continual, topo) 
concave 

- 

flat 

- 

convex 

 
0 

0.657 

1 

0.626 

0.149 

 
0 

0.333 

1 

0.419 

0.059 

989.4 

(18.5) 

profile curvature (continual, topo) 
concave 

- 

flat 

- 

convex 

 
0 

0.414 

1 

0.741 

0.081 

 
0.009 

0.287 

1 

0.366 

0 

1214.0 

(18.5) 



lithology (categorical, geo-units) 
al' - Danube's inundation plane 

al - aluvium 

dl - delluvium cover 

t - terrace sediments 

l - loess 

Pl - clay 

M2 - marlstone 

M1 - limestone, sandstone 

Se - ultra-mafic rocks 

J - limestone 

Pz - schists 

 
0.100 

0.211 

0.807 

1 

0.338 

0.858 

0.133 

0.469 

0 

0 

0.002 

 
0.099 

 

1 

0.785 

0.334 

0.847 

0.083 

0.880 

0 

0 

0.003 

8319.3 

(29.6) 

Land Cover (categorical, land cover) 
water 

arable land 

grass land 

forest 

 
0 

1 

0.992 

0.132 

 
0 

1 

0.852 

0.168 

6316.2 

(16.2) 

 



Appendix 2.  R code for plotGoogleMap package. 

#-------------------------------------------------------------------------------------------------------------- 
#Halenkovice         landslides 
#-------------------------------------------------------------------------------------------------------------- 
setwd("g:/PhD/tmp/_Halenkovice/Sesuv/PlotGM/") 
getwd() 
system("dir") 
#-------------------------------------------------------------------------------------------------------------- 
library(rgdal) 
library(plotGoogleMaps) 
#-------------------------------------------------------------------------------------------------------------- 
study.area<-readOGR(".", "study_area1") 
str(study.area@data) 
proj4string(study.area)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999 
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs") 
 
training.area<-readOGR(".", "training_area") 
#str(training.area) 
str(training.area@data) 
proj4string(training.area)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999 
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs") 
 
result1<-readOGR(".", "svm_result1") 
str(result1@data) 
proj4string(result1)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999 +x_0=0 
+y_0=0 +ellps=bessel +units=m +no_defs") 
 
landslides<-readOGR(".", "Landslides U") 
str(landslides@data) 
proj4string(landslides)<-CRS("+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +k=0.9999 
+x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs") 
 
map1=plotGoogleMaps(study.area, 
  zcol = "label", 
  add=T, 
  colPalette = 'black', 
  strokeColor = 'black', 
  strokeWeight = 5, 
  filename='MyMapHalenkovice.htm', 
  layerName='study area', 
  mapTypeId = "TERRAIN") 
map2=plotGoogleMaps(training.area, 
  zcol = "label", 
  add=T, 
  colPalette = "black", 
  strokeColor = 'black', 
  strokeOpacity = 1,  
  strokeWeight = 3, 
  previousMap=map1, 
  filename='MyMapHalenkovice.htm', 
   layerName='training area', 
  mapTypeId = "TERRAIN") 
map3=plotGoogleMaps(result1, 
  zcol = "label", 
  add=T, 
  strokeOpacity = 0, 
  strokeWeight = 0, 
  colPalette = "red", 
  previousMap=map2,



  filename='MyMapHalenkovice.htm', 
  layerName='SVM model', 
  mapTypeId = "TERRAIN")                   
map4=plotGoogleMaps(landslides, 
  zcol = "label", 
  add=F, 
  colPalette = "orange", 
  strokeColor = 'orange', 
  strokeOpacity = 1,  
  strokeWeight = 3, 
  previousMap=map3, 
  filename='MyMapHalenkovice.htm', 
  layerName='landslides (active & dormant)', 
  mapTypeId = "TERRAIN") 



Appendix 3.  Maps of predictive models. 

 

 



 



Shrnutí 

Disertační práce řeší pokročilé metody předpovědí půdních sesuvů, od teoretických základů 
po konkrétní praktické příklady ve třech zájmových územích. Předmět výzkumu představuje 
velmi komplexní a heterogenní přírodní fenomén, jehož kvantitativní prognózy se obyčejně 
popisují náchylností, nebezpečím nebo rizikem. Autor klade důraz na náchylnost terénu 
ke klouzání, tj. prostorovou pravděpodobnost výskytu půdních sesuvů. Tento přistup vychází 
většinou z nedostatku vhodných časoprostorových dat potřebných pro analýzu nebezpečí 
nebo rizika. Na druhou stranu maximálně využívá všechna ostatní dostupná prostorová data, 
včetně geologických, geomorfologických, hydrologických, hydrogeologických a dalších dat o 
vlastnostech životního prostředí, která jsou v praxi často označována jako podmíněné faktory 
podmiňující půdní sesuvy. 

Hlavní cíle této disertace jsou: 

1. použití dostupných, bezplatných dat a softwarových produktů s cílem prokázat, že 
využíváním stávajících dostupných zdrojů lze provést hodnotnou analýzu předpovědi 
půdních sesuvů, 

2. testování původní metodologie v několika zájmových územích (navzájem dostatečně 
podobných, avšak i dostatečně rozlišných), aby bylo možné objektivně diskutovat o 
úspěšnosti navrhované metodologie,  

3. standardizace vstupních dat z hlediska jejich objemu, typu, kvality a poměru, a jejich 
před-zpracování pomocí GIS,  

4. použití řady metod modelování náchylnosti k půdním sesuvům, od jednoduchých až 
po pokročilé, s cílem je objektivně a podrobně porovnat, 

5. použití co nejrelevantnějších metod pro evaluací modelů předpovědi sesuvů s cílem 
co nejobjektivnějšího kvalitativního a kvantitativního porovnaní těchto modelů, 

6. vizualizace a publikování výsledků použitím GIS a prostředků webové kartografie. 

Navrhovaná metodologie zahrnuje řadu metod, které lze rozdělit na metody 
předzpracování, modelování náchylnosti a metod hodnocení. Největší důraz byl kladen na 
metody modelování náchylnost k sesuvům půdy. Byly použity jak metody nejpopulárnější a 
nejjednodušší, tak i nejpokročilejší a nejsložitější metody, a to: 

- heuristické (na základě subjektivní zkušenosti autora, který se zabývá problematikou 
sesuvů), 

- deterministické (na základě známých fyzikálních principů týkajících se sesuvů půdy, 
které jsou do značné míry aproximovatelné), 

- statistické (na základě statistické závislosti na vlastnostech různých vlastností terénu 
a sesuvů půdy), 

- metody strojového učení (na základě logicky-matematicko-statistických algoritmů, 
které poloautomatický nacházejí vztahy mezi vlastnostmi terénu a projevy půdních 
sesuvů). 

K poslední skupině patří metody k-nejbližší sousedství (nearest neighbor, k-NN), 
logistická regrese (LR), rozhodovací stromy (Decision Trees, DT) a Support Vector Machines 
(SVM), jejichž modely jsou předmětem disertační práce. 

Je potřeba zdůraznit, že autorem navržená metodologie, která je stejným nebo 
podobným způsobem použitá ve všech třech zájmových územích a usilující o standardizaci, 
může být aplikována na zcela jiná území, která splňují určitá kritéria a mají k dispozici 
odpovídající údaje. Návrh metodologie začíná od problematiky výběru konkrétního typů 



(mechanismu) sesuvu, který je přítomen ve vybraných územích, dále pokračuje přes výběr 
vstupních dat osesuvech půdy, která slouží jako podklad pro hodnocení modelu. Po 
definování základních kritérií metodika navrhuje použití řady metod pro předzpracování, 
modelování náchylnosti a/nebo predikci sesuvů, po kterém následuje představení, evaluace 
a srovnávaní výsledků. Závěrem metodologie vrcholí v diskusi o výhodách a nevýhodách 
modelu a diskusi o nejvhodnějším modelu pro konkrétní účel použití. 

Výzkum probíhal ve třech územích a byl realizován v období čtyř let díky podpoře 
GAČR projektu Metody umělé inteligence v GIS (Methods of artificial intelligence in GIS) 
(205/09/0793). Výzkum zahrnoval sběr dat vybraných lokalit ještě před použitím navržené 
metodiky. Tyto údaje byly prostřednictvím GIS připraveny v souladu s požadavky těchto 
metod. 

První zájmové území zahrnuje severozápadní svahy pohoří Fruška Gora (Srbsko) 
podél břehu Dunaje s rozlohou cca 100 km2, při čemž asi 10 % území je ovlivněno 
sesuvnými procesy. Většinou jde o projevy hlubokých rotačních a kompozičních sesuvů 
vyvinutých v neogenních pánvích. Vzhledem k velikosti území a podrobnosti dostupných 
vstupních dat byla pro analýzu zvolena 30metrové prostorové rozlišení a rastrový formát, což 
znamená, že za základní jednotku byl pixel o rozměru 30×30 m. Území bylo reprezentováno 
rastrovou vrstvou s 100 000 buňkami, které nesly informace o n-různých tematických 
vlastnostech území, takže každý pixel mohl být považován za vektor o n souřadnicích. Ve 
vstupních datech jsou zahrnuty především popis půdních sesuvů (získaný terénními 
metodami a metodami dálkového průzkumu Země, na kterém jsou odděleny pouze případy 
stejného typu, tj. hluboké sesuvy půdy typy earth slide podle přijaté klasifikace a pro které 
byly definované fáze aktivity) a jim odpovídající podmíněné faktory: 

- sklon svahu, délka svahu, expozice, elevace, planární (horizontální) a profilové 
(vertikální) křivost svahu, TWI a vzdálenost od drenážní sítě (získané z digitálního 
modelu reliéfu, který byl modelován z topografické mapy v měřítku 1 : 25000 se 
základním intervalem vrstevnic 10 m), 

- litologické jednotky, vzdálenost od zlomu a vzdálenost od významných geologických 
hranic (vyznačených na geologických mapách v měřítku 1 : 50000), 

- vegetační pokryv (získaný z LANDSAT snímků s rozlišením 30 m a zpracovaný podle 
vegetačních indexů).   

Použitím navržené metodologie pro daný soubor vstupních dat byly odvozeny různý 
modely náchylnosti a pokročilými metodami byly sestaveny i modely prostorové predikce 
sesuvů. Úspěšnost modelů je definovaná několika parametry, z kterých je nejdůležitějším 
ukazatelem ROC křivka, protože umožňuje kvalitativně-kvantitativní hodnocení modelu. Lze 
konstatovat, že použitím pokročilých metod (LR, DT a SVM) jsou jednoznačně nejvhodnější 
modely náchylnosti, které mají relativně vysokou přesnost, při které je negativní typ chyby 
(false negative) minimální. Nicméně některé modely, např. fuzzy model získaný 
vícevrstevnou fuzzy kombinací, vykazují určitý potenciál i přes mírně nižší přesnost a 
minimální nežádoucí chyby. Na druhé straně, prostorové predikce sesuvů u modelů 
založených na LR, DT a SVM technikám lze hodnotit jako úspěšné, oproti deterministickému 
modelu, který může být zcela ignorován a považován za nevhodný pro dané území. 
Pokročilé modely byly úspěšně použity i v případech s více než jednou kategorií sesuvy 
(aktivní a nečinné).  

Druhé zájmové území se nachází v povodí řeky Stareč u Záhřebu (Chorvatsko), 
rozloha kolem 15 km2 s asi 10 % území ovlivněného sesuvnými procesy s tím, že 
mechanizmus a typologie sesuvů jsou zcela odlišné. Jsou zde mělké sesuvy v terciárních a 
kvartérních ložiscích, jejichž hlavní hnací sílou je eroze v kombinaci se srážkami. Použit byl 
soubor vstupních dat podle výše popsaného. Dále byla použita rastrová reprezentace o 
rozlišení 10 m (kvůli menší rozloze zájmového území a menším rozměrům sesuvů), takže 
celé území bylo vyjádřeno rastrovou vrstvou s 100 000 buňkami. Byla použitá podobná 
metodologie jako výše, ale v o něco menším objemu, protože některé podobné analýzy se 



základními metodami už na daném území proběhly. Proto byl důraz kladen na pokročilé 
metody, přesněji DT, resp. SVM techniky, a to pro jednu, resp. pět kategorií sesuvů 
(definovaných na základě jejich aktivit). Uvažovány byly také modely náchylnosti a predikce 
obou technik. Výsledky ukázaly o něco slabší úspěšnost v modelech náchylnosti a ještě 
menší v predikci samých sesuvy půdy. Zajímavé je, že lepší hodnocení vykázaly modely s 
několika kategoriemi sesuvů než jednodušší modely s jednou kategorií sesuvu. Tyto 
výsledky jsou pravděpodobně způsobeny nízkým prostorovým rozlišením rastru, ale i samou 
rozlohou zájmového území, přítomností velké řady stejných jevů (pět kategorií), které měly 
za následek tzv. overfit, tj. špatné naučenou relaci v procesu trénování algoritmu.  

Poslední zájmové území je v okolí města Halenkovice ve Zlínském kraji (Česká 
republika) o rozloze přibližně 50 km2 s mělkými půdními sesuvy vyvinutými v terciárních 
flyších. V analýze byl použit soubor vstupních dat podobný ve výše popsaném textu, 
prostorové rozlišení gridu bylo 10 m, což vytvořilo rastrovou vrstvu o 500 000 buňkách. 
Důraz byl kladen na použití pokročilých metod, hlavně SVM techniky, a byl testován i i 
deterministický model s ohledem na to, že zde vyskytující se mělké sesuvy jsou teoreticky 
vhodné pro takový typ modelu. Modely založené na SVM technikách byly omezeny jen na 
predikční modely s tím rozdílem, že SVM model je omezený dodatečným optimalizačním 
postupem leave-one-out, zatímco deterministický model měl obě varianty (náchylnosti a 
predikce). SVM model lze ohodnotit jako průměrný, ale stále vykazující určitý potenciál 
v predikci. Deterministický model je v tomto případě nejednoznačný, protože některé části 
terénu modeluje velmi dobře, zatímco některé velmi špatně, a to i po komplexní optimalizaci, 
což omezuje model jen na určité geologické prostředí v zájmovém území.  

Některé z modelů jsou prezentovány prostřednictvím nástrojů internetového 
mapování a jsou k dispozici na adresách: 

http://milosmarjanovic.pbworks.com/w/file/fetch/63738284/MyMapFruskaGora.htm 

http://milosmarjanovic.pbworks.com/w/file/fetch/63741247/MyMapStarca.htm 

http://milosmarjanovic.pbworks.com/w/file/fetch/63739326/MyMapHalenkovice.htm 

Závěrem lze konstatovat, že vytýčené cíle disertační práce byly splněny, a že 
navrhovaná metodologie podala dobré výsledky – v případech některých modelů méně 
úspěšné než v jiných. Modely náchylnosti (zejména modely získané použitím pokročilých 
metod) mohou najít uplatnění v různých aspektech plánování a projektování v regionálním 
měřítku, ale také pro regulaci ochrany, systémy včasného varování i pro pojišťovny. Zvláštní 
přínos mají predikční modely, na jejichž zdokonalování se stále může pracovat. Jejich 
aplikace se může navázat na uplatňování modelu náchylnosti, zatímco predikční modely 
mohly lze použit pro účely mapování sesuvů a tvorbu jejich databází v regionálním měřítku. 

 


