
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

AUTOMATA IN INFINITE-STATE FORMAL VERIFICATION
AUTOMATY V NEKONEČNĚ STAVOVÉ FORMÁLNÍ VERIFIKACI

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR Ing. ONDŘEJ LENGÁL
AUTHOR

ŠKOLITEL prof. Ing. TOMÁŠ VOJNAR, Ph.D.
SUPERVISOR

ŠKOLITEL SPECIALISTA Mgr. LUKÁŠ HOLÍK, Ph.D.
CO-SUPERVISOR

BRNO 2015

Abstract

The work presented in this thesis focuses on finite state automata over finite words
and finite trees, and the use of such automata i n formal verification of infinite-state
systems. F i rs t , we focus on extensions of a previously introduced framework for verifi
cation of heap-manipulating programs—in part icular programs w i t h complex dynamic
data structures—based on tree automata. We propose several extensions to the frame
work, such as making it fully automated or extending it to consider ordering over data
values. Further, we also propose novel decision procedures for two logics that are often
used in formal verification: separation logic and weak monadic second order logic of
one successor. These decision procedures are based on a translation of the problem into
the domain of automata and subsequent manipulat ion i n the target domain. F ina l ly ,
we have also developed new approaches for efficient manipulat ion wi th tree automata,
mainly for testing language inclusion and for handling automata wi th large alphabets,
and implemented them in a l ibrary for general use. The developed algorithms are used
as the key technology to make the above mentioned techniques feasible i n practice.

Keywords

Antichains , binary decision diagrams, finite automata, heaps, language inclusion,
monadic logic, nondeterminism, regular tree model checking, second-order logic, sep
aration logic, shape analysis, s imulation, tree automata, formal verification.

i

Abstrakt

Tato p r á c e se zaměřu je na konečné automaty nad k o n e č n ý m i slovy a k o n e č n ý m i stromy,
a p o u ž i t í t ě ch to a u t o m a t ů př i fo rmáln í verifikaci nekonečně s tavových s y s t é m ů . P r á c e se
nejdř íve věnuje rozš í ření exis tuj íc ího p ř í s t u p u pro verifikaci p r o g r a m ů k t e r é manipu lu j í
s haldou (konk ré tně p r o g r a m ů s d y n a m i c k ý m i d a t o v ý m i strukturami) , j enž je založen
na s t r o m o v ý c h automatech. V prác i je n a v r ž e n o několik rozš í ření tohoto p ř í s t u p u , jako
n a p ř í k l a d jeho p l n á automatizace či jeho rozš í ření o podporu u s p o ř á d a n ý c h dat. V prác i
jsou p o p s á n y nové rozhodovac í procedury pro dvě logiky, k t e r é jsou čas to p o u ž í v á n y
ve formáln í verifikaci: pro s e p a r a č n í logiku a pro slabou monadickou d r u h o ř á d o v o u
logiku s nás l edn íkem. O b ě tyto rozhodovac í procedury jsou založeny na p ř e v o d u jejich
p r o b l é m u do a u t o m a t o v é d o m é n y a nás l edné manipulaci v t é t o cílové d o m é n ě . P o s l e d n í m
p ř í n o s e m t é t o p r á c e je vývoj nových a lg o r i tmů k efekt ivní manipulaci se s t r o m o v ý m i au

tomaty, s d ů r a z e m na t e s t o v á n í inkluze j a z y k ů t ě ch to a u t o m a t ů a manipulaci s automaty
s ve lkými abecedami, a implementace t ě ch to a lg o r i tmů v kn ihovně pro obecné použ i t í .
T y t o v y v i n u t é algoritmy jsou p o u ž i t y jako klíčová technologie, k t e r á u m o ž ň u j e použ i t í
výše u v e d e n ý c h technik v praxi .

Klíčová slova

Ant i ře t ězce , ana lýza tvaru, b i n á r n í rozhodovac í diagramy, d r u h o ř á d o v á logika, haldy,
j a zyková inkluze, konečný automat, m o n a d i c k á logika, nedeterminismus, r egu lá rn í stro

m o v ý model checking, s e p a r a č n í logika, simulace, s t r o m o v ý automat, fo rmáln í verifikace.

Citace

O n d ř e j Lengál , A u t o m a t a in InfiniteState Formal Verification, d i se r t ačn í práce , Brno ,
F I T V U T v B r n ě , 2015

i i

Automata in InfiniteState Formal
Verification

Prohlášení

Proh lašu j i , že jsem tuto d i se r t ačn í prác i vypracoval s a m o s t a t n ě pod v e d e n í m prof. Ing.
T o m á š e Vojnara , P h . D . a M g r . L u k á š e Holíka, P h . D . U v e d l jsem všechny l i t e r á rn í pra

meny a publikace, ze k te rých jsem čerpal .

O n d ř e j Lengá l
9. b ř e z n a 2015

© O n d ř e j Lengál , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

i i i

Acknowledgements

Firs t and foremost, I thank my supervisors Tomas Vojnar and Lukas Ho l ik for dragging
me kicking and screaming into the beautiful magical land of theoretical computer sci
ence and showing me what doing research is about. The adventure has been amazing,
their guidance essential, and fighting the beasts—the problems—dwelling i n this land
rewarding. Moreover, I am also grateful to them for introducing me to other knights
that fearlessly roam this realm and teaching me to appreciate their wisdom and cun
ning. I thank my co-authors, listed i n the alphabetical order: Parosh A z i z A b d u l l a ,
Constant in Enea, Tomas Fiedor, Bengt Jonsson, A d a m Rogalewicz, Mihae la Sighireanu,
Jiff Simacek, and Cong Q u y Tr inh . Further, I am grateful to the other past and present
members of the V e r i F I T research group for creating a friendly research environment.
I thank the people who hosted me at their insti tutions during the years: Parosh A z i z
A b d u l l a (Uppsala Univers i ty) , Yu-Fang Chen and Bow-Yaw Wang (Academia Sinica),
and Constant in Enea, Peter Habermehl , and Mihae la Sighireanu (L I A F A , Universite
Paris Diderot) . F r o m those not already mentioned above, I thank An thony Widja ja L i n
and members of the Div i s ion of Computer Systems of Uppsala Universi ty for interesting
discussions. I am thankful to my friends that live outside the realm, who helped me find
a sanctuary i n my times of need. I am also grateful to my family for support ing me and
lett ing me pursue my dreams.

The work presented in this thesis was supported by the Czech Ministry of Education,
Youth, and Sports (under the long-term institutional project MSM 0021630528 and the
project OC10009), the Czech Science Foundation (under the projects 202/13/31816P,
P103/10/0306, 102/09/H042, 13-31816P, and U-11384S), the EU/Czech ITJ^Innova-
tions Centre of Excellence project CZ.1.05/1.1.00/02.0010, the internal BUT FIT proj
ects FIT-S-12-1 and FIT-S-14-2486, and the action IC0901 of the COST association.

iv

Contents

1. Introduction 2
1.1. Formal Verification 2
1.2. Shape Analysis of Programs Man ipu la t ing Heap 3

1.2.1. Selected Problems in Shape Analysis 4
1.3. Goals of the Thesis 5
1.4. A n Overview of the Achieved Results 6
1.5. P l a n of the Thesis 8

2. Preliminaries 10
2.1. Graphs and Trees 10
2.2. Tree A u t o m a t a 10
2.3. Structured Labels 11

I. Forest Automata-Based Formal Verification of Programs 13

3. Shape Analysis with Forest A u t o m a t a 14
3.1. Forest A u t o m a t a 15
3.2. FA-based Shape Analys is 19
3.3. Discussion 21

4. Learning Boxes for Forest A u t o m a t a 23
4.1. Learning of Boxes 26

4.1.1. Kno t s of Graphs 26
4.1.2. Folding i n the Abs t rac t ion Loop 31

4.2. Abs t rac t ion 36
4.3. Exper imenta l Results 38
4.4. Conclusion 40

5. Forest Automata-Based Shape Analysis of Programs with D a t a 41
5.1. Forest A u t o m a t a w i t h D a t a Constraints 45
5.2. FA-based Shape Analys is w i t h D a t a 47

5.2.1. Constraint Saturat ion 49
5.2.2. Abst rac t Transformers 52
5.2.3. Normal isa t ion 58
5.2.4. Checking Language Inclusion 60

5.3. Boxes 63

v

5.4. Exper imenta l Results 65
5.4.1. Discussion 67

5.5. Conclusion 67

II. Using Automata for Deciding Logics 68

6. Composit ional Testing of Entailment for a Fragment of Separation
Logic 69
6.1. Separation Logic Fragment 71
6.2. Composi t ional Entai lment Checking 74

6.2.1. Overview of the Reduct ion Procedure 74
6.2.2. Normal isa t ion 78
6.2.3. Selection of Spat ia l A toms 80
6.2.4. Soundness and Completeness 82
6.2.5. Checking Entai lments between formulae and Predicate Atoms . . . 82

6.3. Representing S L Graphs as Trees 82
6.4. Tree A u t o m a t a Recognising Tree Encodings of S L Graphs 87

6.4.1. Basic A l g o r i t h m for N o n - E m p t y Lis t Segments 89
6.4.2. Ex tend ing the Basic A l g o r i t h m to Possibly E m p t y Nested Lis t

Segments 92
6.4.3. Tree A u t o m a t a for the Runn ing Example 93

6.5. Extensions 94
6.6. Completeness and Complex i ty 96
6.7. Implementation and Exper imenta l Results 97
6.8. Conclusion 100

7. Deciding W S 1 S Formulae Using Nested Antichains 101
7.1. W S 1 S 103
7.2. Preliminaries and F in i t e A u t o m a t a 103
7.3. Deciding W S 1 S w i t h Fin i te A u t o m a t a 105
7.4. Nested Antichain-based Approach for Al te rna t ing Quantifiers 106

7.4.1. Structure of the A l g o r i t h m 107
7.4.2. Comput ing Nf on Representatives of "I U ^ - s e t s 109

7.4.3. Comput ing Ff on Representatives of !7£ - se t s 112

7.4.4. Computa t ion of Ff and JV| on Symbolic Terms 115
?

7.4.5. Testing Im n Fm j= 0 on Symbolic Terms 116
7.4.6. Subsumption of Symbolic Terms 117

7.5. Exper imenta l Evalua t ion 118
7.6. Conclusion and Future Work 119

III. Efficient Techniques for Manipulation of Nondeterministic Tree

v i

Automata 121

8. Downward Inclusion Checking for Tree A u t o m a t a 122
8.1. Downward Inclusion Checking 124

8.1.1. Basic A l g o r i t h m for Downward Inclusion Checking 128
8.2. Optimisat ions of Downward Inclusion Checking 129

8.2.1. Opt imisa t ion wi th Ant ichains and Simulation-based P run ing . . . 130
8.2.2. Opt imisa t ion wi th Caching of Inclusion Pairs 132

8.3. Exper imenta l Results 134
8.4. Conclusion 135

9. Semi-symbolic Tree A u t o m a t a 137
9.1. B ina ry Decision Diagrams 137
9.2. Semi-Symbolic Representations of Tree A u t o m a t a 139

9.2.1. Bot tom-up Representation 139
9.2.2. Top-down Representation 140
9.2.3. Conversion Between Bot tom-up and Top-down Representations . . 140

9.3. Tree A u t o m a t a Algor i thms over Semi-Symbolic Encod ing 140
9.3.1. Removing Unreachable States 141
9.3.2. U n i o n 141
9.3.3. Intersection 142
9.3.4. Downward Simulat ion 142
9.3.5. Downward Inclusion Checking 146
9.3.6. Upward Inclusion Checking 146

9.4. A n M T B D D L ib ra ry 148
9.5. Exper imenta l Results 149
9.6. Conclusion 150

10. A n Efficient Tree A u t o m a t a L i b r a r y 152
10.1. Design of the L i b r a r y 153

10.1.1. Exp l i c i t Encod ing 154
10.2. Supported Operations 155

10.2.1. Downward and Upward Simulat ion 156
10.2.2. Simulation-based Size Reduct ion 156
10.2.3. Upward Inclusion 156
10.2.4. Comput ing Simulat ion over L T S 158

10.3. Exper imenta l Evalua t ion of V A T A 159
10.4. Conclus ion 159

11. Conclusions and Future Directions 161
11.1. A Summary of the Contr ibut ions 161
11.2. Further Directions 162
11.3. Publ icat ions Related to this Thesis 163

I

1. Introduction

Computer-based systems and technologies keep penetrating s t i l l deeper into human lives.
The importance of their uninterrupted and correct operation thus keeps growing. Today,
computer systems are widely used in the automotive industry (currently, there are over
30 microcontrollers i n an average car), aerospace industry, telecommunication, bank
sector, mil i tary, etc. A n incorrect behaviour of a computer system in some of these
environments may cause substantial loses of money, resources, or, i n the worst case,
even human lives. Even i n cases of programs that are not safety-critical, errors are often
the cause of a negative user experience, which can lead to frustration, and, i n an extreme
case, even to damage to hardware.

Verification is a process that checks whether a given system is correct w i th respect
to a provided specification. There are two main approaches to verification: the so-called
bug hunting and formal verification. Bug hunting methods focus on finding as many
errors as possible i n the verified system. Th i s approach includes testing of programs
using random inputs while observing their behaviour, dynamic analysis (extrapolation of
program's dynamic behaviour), some forms of static analysis (such as detection of errors
that match some patterns i n the source code), bounded model checking (systematic
search of the state space of the verified program to a l imi ted depth), etc. B u g hunting
methods usually cannot guarantee a program's correctness and often find only easily
reachable errors.

1.1. Formal Verification

Formal verification is, as opposed to bug-hunting, a technique that attempts to formally
prove that the verified system is error-free, i.e. formal verification can guarantee that if
it does not find an error, there are indeed no errors present i n the system. A l though the
formal verification problem is in general undecidable, there are currently various formal
verification methods that work well for a large range of classes of programs.

Several properties are often required from formal verification methods. Perhaps the
most important of these properties is soundness. A method is said to be sound i n
case it never pronounces a system error-free when the system contains a behaviour that
violates the specification. O n the other hand, a method is said to be complete if it
does not produce spurious counterexamples, i.e. counterexamples that i n fact can never
occur i n the real system. A desired property of formal verification algorithms is also
termination, i.e. that the algorithms always converge.

2

1.2. Shape Analysis of Programs Manipulating Heap

One part icular class of errors are the ones relating to memory safety i n programs that
use dynamic memory allocation, such as programs manipulat ing different flavours of
lists (e.g. s ing ly /doubly l inked, circular, w i th skip pointers) and trees (e.g. binary trees,
trees wi th root/parent pointers). The area that investigates techniques for dealing wi th
them is called shape analysis. Examples of the considered errors are inval id pointer
dereference (which may cause a corruption of data values or an abnormal terminat ion
of the program) or occurrence of garbage (which may cause the program to deplete the
memory available and even affect other programs running on the computer). Dynamic
memory is uti l ised (either directly or indirect ly v i a l ibrary calls) i n a vast por t ion of
currently produced software. A m o n g the most cr i t ica l applications that extensively use
dynamic memory are kernels of operating system (e.g. L inux) and various standard
libraries (e.g. the G N U C l ibrary g l i b c or the C + + standard l ibrary) .

Because programs manipulat ing heap are usually infinite-state, a sound analysis tech
nique needs to represent the heap symbolically, i.e. represent sets of heaps by different
means than enumerating a l l of their elements. Currently, there are several competing
approaches for symbolic heap representation. The first approach is based on the use of
formulae of various logics to describe sets of heap configurations. The logics used are
e.g. separation logic [Rey02, M T L T 1 0 , B C C + 0 7 , G V A 0 7 , C D N Q 1 2 a , C R N 0 7 , Y L B + 0 8 ,
C D O Y 0 9 , D P V 1 3 , C D N Q 1 2 b , L G Q C 1 4] , monadic second-order logic [MS01, J J S K 9 7 ,
M P Q 1 1 , MQ11] , or other [SRW02, Z K R 0 8 , BR06] . Another approach is based on the
use of automata. In this approach, elements of languages of the automata describe con
figurations of the heap [B H R V 0 6 , B B H + 1 1 , D E G 0 6] . The last approach that we w i l l
mention is based on graph grammars describing (sets of) heap graphs [HNR10, We i l2] .
The presented approaches differ in their degree of specialisation for a part icular class of
data structures, their efficiency, and their level of dependence on user assistance (such as
definition of loop invariants or inductive predicates for the considered data structures).

The works that bu i ld on separation logic, such as [B C C + 0 7 , Y L B + 0 8 , L G Q C 1 4] , are
among the more efficient ones, thanks to the support for local reasoning provided by the
separating conjunction (separating conjunction effectively decomposes the heap into dis
joint components so that each can be handled independently of the others, without the
need to consider a l l possible aliasings of their elements). However, most of the techniques
based on separation logic are either specialised for some part icular data structure—such
as s ing ly /doubly l inked l ists—and even a slight change i n the data structure can make
the technique unusable (as e.g. i n [BCC+07, Y L B + 0 8 , D P V 1 3]) , or they need the user
to provide inductive definitions of the used data structures. Moreover, when testing for
a fixpoint (which is done to detect whether a newly obtained symbolic representation is
subsumed by some already existing one), the analysis needs to check entailment of a pair
of separation logic formulae. Entai lment procedures have so far been either for consider
ably l imi ted classes of data structures (e.g. singly l inked lists), or quite ad-hoc, based on
folding/unfolding inductive predicates i n the formulae and t ry ing to obtain a syntactic
proof of the entailment. Obviously, this often came wi th no completeness guarantee.
On ly recently have there appeared more systematic approaches [IRS 13, IRV14].

3

The shape analysis techniques based on automata can address this issue by exploit ing
the generality of the automata-based representation. F in i te tree automata, for instance,
have been shown to provide a good balance between efficiency and abi l i ty to express
complex data structures. In particular, the so-called abstract regular tree model checking
(A R T M C) of heap-manipulating programs [BHRV12] uses a finite tree automaton to de
scribe a set of heaps positioned on a tree backbone (non-tree edges of the heap are repre
sented using regular "routing" expressions describing how the target can be reached from
the source using tree edges). Man ipu la t ion wi th the heap is represented using a finite tree
transducer and the set of reachable configurations is computed by iteratively applying
the transducer on the in i t i a l configuration, un t i l a fixpoint is reached. A t each step, the
obtained symbolic configuration is safely over-approximated using abstraction—which
collapses certain states of the automaton—and a fixpoint is detected by standard au
tomata language inclusion testing. The abstraction used is derived automatical ly during
the run of the analysis, using the so-called counterexample guided abstraction refinement
(C E G A R) technique, which uses spurious counterexamples to refine the abstraction.
This formalism is able to fully automatical ly verify even as complex data structures as
binary trees wi th l inked leaves, however, it suffers from the inefficiency of the monoli thic
encoding of the sets of heaps and the transi t ion relation.

Recently, a technique borrowing the best from the worlds of separation logic and
A R T M C emerged. This technique, introduced i n [H H R + 1 2] , is based on the so-called
forest automata, which are essentially tuples of tree automata where leaves of the trees
accepted by one of the tree automata can reference roots of the trees accepted by the
other tree automata (or by itself). Th is "non-monolithic" encoding gives a support for
local reasoning because heap manipula t ing operations are executed as simple operations
locally on a part icular tree automaton and not affecting the other tree automata i n the
forest automaton. E a c h root of a tree corresponds to a cut-point (a node wi th mult iple
incoming edges) i n the heap graph. Some data structures have an unbounded number of
cut-points, e.g. doubly l inked lists wherein every internal node is a cut-point. D a t a struc
tures of this k ind cannot be represented i n a finite way using this basic formalism; the
number of tree components of the forest automata in the analysis would keep growing.
The approach therefore uses hierarchical encoding, which uses special symbols—called
boxes—to encode sets of subgraphs that contain a cut-point. Boxes are, again, repre
sented using forest automata. The technique uses automata abstraction from A R T M C to
obtain a sound over-approximation of the set of reachable configurations and accelerate
obtaining a fixpoint of the analysis.

1.2.1. Selected Problems in Shape Analysis

One issue of the techniques described in the previous is that they often ignore the data
component of the represented data structure. Th is is not always feasible because several
data structures, such as binary search trees or skip lists, depend on the data stored
inside—in a binary search tree, for example, if a new value is inserted, the ordering
relation between the inserted value and the data stored i n the root of the tree determines
whether the new value is inserted into the left or the right subtree. Examples of works
also considering data stored in data structures are [M P Q 1 1 , M Q 1 1 , Q G S M 1 3] .

4

Another interesting problem emerging in the frameworks for shape analysis is the
problem of detecting whether the analysis of symbolic executions of a loop has reached
a fixpoint. A symbolic execution is an abstract execution of the program that uses the
symbolic representation of the program's memory (there may be a potential ly unbounded
number of them, the same as for real program executions). In this case, the fixpoint is
a closed representation of the set of reachable configurations of the heap, w i th closed
meaning that any new iterat ion over the body of the loop cannot add anything new to
the set. A fixpoint is detected by testing inclusion of the symbolical ly represented sets of
states before and after one more execution of the loop. The analyses based on separation
logic perform such a test by checking entailment of a pair of formulae describing the
heap configurations. O n the other hand, in the analyses based on automata, this test
corresponds to checking inclusion of languages of a pair of automata. A l so note that
both of these problems are general and used i n other settings, such as in deductive
verification when deducing whether a precondition of a statement and its semantics imply
its postcondit ion (for entailment), or testing containment of a pair of X M L schemas (for
tree automata language inclusion), among many others. These problems are theoretically
very hard wi th a discouraging worst case complexity, yet good heuristics can often solve
an average case i n reasonable time.

A n example of such a heuristic is the technique of the so-called antichains for checking
language inclusion of a pair of nondeterministic finite state automata (over finite words
or trees). The technique [W D H R 0 6 , D R 1 0 , B H H + 0 8 , ACH+10] avoids explicit deter-
minisat ion of the automata by performing an on-the-fly exploration of the state space.
Dur ing the exploration, it prunes parts of the state space using a subsumption relation
on sets of states of the original automaton (the simplest form of the relation, introduced
in [W D H R 0 6] , is simple set inclusion). A l t h o u g h language inclusion of a pair of nonde
terminist ic automata has a forbidding worst case complexi ty—it is a P S P A C E - c o m p l e t e
problem for finite word automata and, even worse, E X P T I M E - c o m p l e t e problem for
finite tree automata—the technique works well for many pract ical examples.

1.3. Goals of the Thesis

The main goal of this thesis is an improvement of current state of the art i n shape anal
ysis. This goal consists of the following three subgoals. The first subgoal is the devel
opment of extensions to the shape analysis technique proposed i n [H H R + 1 2] that would
extend its degree of automation and class of programs it can handle, w i th a particular
focus on data-dependent programs. The second subgoal is an extension and development
of new efficient algorithms for testing entailment and validi ty of selected logics that are
used i n shape analysis, in part icular separation logic and monadic second-order logic.
For both of the logics, there exist fragments for which there have been developed efficient
translations of decision problems i n the logics into finite (tree) automata; such fragments
are the part icular focus of our attention. For separation logic, we consider the fragment
where higher-order inductive predicates correspond to l inked lists of many different kinds
(singly and doubly linked, circular, nested, . . .) , and for monadic second-order logic, we

5

consider its weak fragment of one successor (the so-called weak monadic second-order
logic of 1 successor—WS1S). The th i rd subgoal of this thesis is development of tech
niques for efficient manipulat ion wi th finite tree automata, which underlie the previous
two subgoals. In particular, the emphasis is placed on the development of algorithms for
efficient testing of inclusion over nondeterministic tree automata, and on techniques for
manipulat ing tree automata w i t h large alphabets.

1.4. A n Overview of the Achieved Results

This section summarises the contributions to the part icular areas exposed i n the previous
section as goals of this thesis.

Fully Automated Shape Analysis with Forest Automata . The original paper on
forest automata-based shape analysis [HHR+12] relied on the user to provide together
w i t h the verified program also the needed boxes—i.e. the forest automata describing
subgraphs of the heap to be enclosed into higher-level symbols. The first contr ibution
of this thesis is the development of a fully automated method for discovering suitable
boxes direct ly during the run of the analysis. The proposed method is based on selecting
a suitable subgraph of the heap, isolating it as a box, and removing a cut-point by folding
the selected subgraph into a single hyper-edge that is labelled wi th the box descriptor.

The challenging part is identifying which subgraphs to fold. In general, these need to
be subgraphs that decrease the number of cut-points i n the heap. However, some more
complex conditions need to be met when the method is applied in the analysis. Fi rs t ly ,
the considered subgraph needs to be small enough so that the created box that represents
it is reusable and the widening operator can make a loop i n some tree automaton over
the box. Secondly, on the contrary to the previous point, the subgraph needs to be large
enough so that the box effectively helps to remove a cut-point from the heap graph. The
second condi t ion is needed because folding a finite number of input edges of a node w i t h
an unbounded in-degree into a box may be sometimes harmful and may even prevent
the algori thm to find a more suitable subgraph and terminate.

We developed an algori thm that searches the heap graph for basic subgraphs (called
knots) that match the part icular conditions. The search starts from the knots smallest
in the number of cut-points and proceeds to larger ones. D u r i n g the search, knots are
saturated i n order to avoid the problems of too smal l subgraphs mentioned earlier; on
the other hand, the algori thm keeps them as smal l as possible to allow the created
boxes to be reused. The procedure developed i n this contr ibut ion allowed us to fully
automatical ly verify programs wi th such complex dynamic data structures as various
flavours of s ing ly /doubly l inked (circular and/or nested) lists, trees, as well as skip lists
(after the addi t ion of data mentioned below).

Extending Forest A u t o m a t a with Support for Data . A further contr ibut ion of
this thesis is an extension of the forest automata-based framework w i t h a support of
programs w i t h ordered data. In this extension, forest automata are augmented w i t h

G

constraints that can relate values stored i n the nodes of the represented data structure.
There are two types of constraints: (i) local constraints, which are used i n tree automata
transitions and relate data values occurring in the parent node to data values occurring
in the subtrees of children nodes, and (ii) global constraints, which are used to relate two
tree automata wi th respect to the data values that occur i n the trees they can generate.
The addi t ion of constraints required further extension of the abstract transformers, which
need to introduce new constraints where impl ied by the performed operation, and remove
constraints that do not hold any more. Furthermore, to transform forest automata into
the canonical form to make testing language inclusion possible, we devised a saturation
procedure that traverses a forest automaton and infers new constraints from the existing
ones. Us ing this extension, we were able to fully automatical ly verify programs w i t h
binary search trees and a full implementat ion of a 3-level skip list [Pug90], which is, to
the best of our knowledge, the first t ime anyone has achieved this.

A Decision Procedure for Separation Logic with List Predicates. A further
contribution of this thesis is the development of a decision procedure for the problem of
testing entailment of a pair of formulae i n a fragment of separation logic. The consid
ered fragment supports a wide range of higher-order inductive predicates that describe
various flavours of singly and doubly l inked lists, including nested lists and skip lists.
The developed decision procedure is based on finding a homomorphism between the
symbolic heaps represented by the separation logic formulae, spl i t t ing the heaps into
subgraphs according to this homomorphism and component-wise translat ing the separa
t ion logic formulae describing the subgraphs into trees and tree automata and checking
membership of the trees i n the languages of the tree automata.

A n Antichain-based Technique for Deciding W S 1 S Formulae. A s the penul
timate contribution, we propose a decision procedure for the W S 1 S logic (the weak
monadic second-order logic of 1 successor). The decision procedure checks, for a W S 1 S
formula ip, whether ip is val id or not. The standard procedure is based on constructing
a finite automaton for ip, s tart ing by creating finite automata for the atoms of ip and
then going upwards alongside the syntax tree of ip and performing finite automata op
erations corresponding to the logical operators, eventually creating a finite automaton
representing ip, and checking whether its language is non-empty. The drawback of this
procedure is that each negation and quantifier alternation yields complementation of
an automaton, for which there is no known algori thm that avoids exponential explosion
in the number of states (because it includes determinisation of the automaton). The
exponential construction induced by complementation makes the procedure infeasible
for larger formulae. We propose a method that avoids explicit complementation of the
automata but exploits a technique that generalises the antichains principle used in algo
rithms for efficient testing of language inclusion over nondeterministic automata. Note
that the multiple-exponential worst case complexity is unavoidable, because the inher
ent theoretical complexity of the addressed problem is N O N E L E M E N T A R Y , i.e. it
cannot be solved by a fc-EXPTIME a lgori thm for any fixed k.

7

Efficient Algori thms for Nondeterministic Tree Automata . F ina l ly , i n order
to make the previously described contributions usable i n pract ical settings, they need
the support of an efficient implementat ion of operations for manipulat ing the underly
ing automata representation. T h e majori ty of the previously existing automata-based
techniques were based on the use of deterministic automata and suffered from the state
explosion that comes w i t h determinisation. The state explosion prevents the use of
deterministic automata for larger systems. To avoid the state explosion, we always use
nondeterministic automata and techniques that manipulate directly those. We never de-
terminise them, even for such operations as testing language inclusion (which is usually
done by determinising and complementing one of the automata and testing emptiness
of the intersection wi th the other automaton). Th is (and also other problems from the
wide area of applications of tree automata) poses the requirement for techniques that can
efficiently execute operations direct ly on nondeterministic tree automata. Concretely,
in addi t ion to standard automata operations, such as constructing a union or an inter
section of a pair of automata, there is also the requirement for efficient techniques for
testing language inclusion. A l though testing language inclusion of nondeterministic tree
automata has an extreme worst case complexity (being an E X P T I M E - c o m p l e t e prob
lem), using clever heuristics—which avoid explicit determinisation of a tree automaton
used by textbook algorithms causing an exponential state explosion—this can be done
efficiently i n many pract ical cases.

We propose a downward inclusion testing algori thm for nondeterministic tree au
tomata, which, i n contrast to already existing algorithms, traverses the automata top-
down rather than bottom-up. In addit ion, it uses antichains and the s imulat ion relation
to prune parts of the search space that are subsumed by the already explored ones. In our
experiments, this algori thm was i n the majori ty of cases the fastest a lgori thm for test
ing language inclusion over tree automata. We also developed efficient algorithms for
manipulat ing semi-symbolic representations of nondeterministic tree automata, which
can be advantageously used for tree automata w i t h large alphabets—such as those the
emerge in the proposed decision procedure for WS1S—also including algorithms for ef
ficient testing of inclusion or computat ion of s imulat ion relations. We implemented the
proposed algorithms i n the V A T A l ibrary, which has since been used by quite a few
researchers around the world, who have used it as an efficient underlying l ibrary for
handling nondeterministic automata for their own techniques.

1.5. P lan of the Thesis

Chapter 2 contains preliminaries on graphs, trees, and tree automata. Par t I contains
the following three chapters describing our contributions to the forest automata-based
shape analysis. Chapter 3 introduces forest automata. Chapter 4 describes the approach
taken to make the analysis based on forest automata fully automated using box learning.
Chapter 5 describes the extension of the forest automata framework to support reasoning
about heap-manipulating programs that depend on ordered data stored i n the heap.
Par t II is dedicated to the description of the decision procedures for two logics: separation

8

logic (Chapter 6) and W S 1 S (Chapter 7). F ina l ly , Par t III focuses on efficient techniques
for manipulat ion of nondeterministic tree automata. In particular, Chapter 8 describes
the proposed downward inclusion checking technique for nondeterministic tree automata,
Chapter 9 proposes a symbolic encoding of nondeterministic tree automata wi th large
alphabets, and Chapter 10 covers the design and implementat ion of an efficient tree
automata library. The last chapter, Chapter 11, concludes the thesis.

9

2. Preliminaries

This section formally introduces concepts that w i l l be used i n the rest of the thesis, i n
part icular graphs, trees, and tree automata.

2 .1 . Graphs and Trees

Given a word a = a\ ... an, where n > 1, we write ai to denote its i - th symbol a%. We
use the symbol e for the empty word. For a to ta l map / : A —>• B, we use dom(f) to
denote its domain A and img(f) to denote its image in I?.

A ranked alphabet is a (potentially infinite) set of symbols E associated w i t h a mapping
: E —• No that assigns ranks to symbols. A (directed, ordered, labelled) graph over
E is a to ta l map g : V —>• E x F * which assigns to every node u € V (1) a £a&d from
E , denoted as £g(v), and (2) a sequence of successors from V * , denoted as Sg(v), such
that #£g(v) = \Sg(v)\. We drop the subscript <? if no confusion may arise. Nodes v w i t h
S(v) = e are called leaves. For any v <E V such that 5(1;) = (a,vi • • • vn), we cal l the pair
v i-t (a,vi • • • vn) an edge of g. The in-degree of a node i n V is the overall number of its
occurrences i n g(v) across a l l nodes v £ V. The nodes of a graph g w i th an in-degree
larger than one are called joins of g.

A path from D to v' i n g is a sequence p = VQ, i\, v\,..., i n , v n where vo = v, vn = v',
and for each j such that 1 < j < n, Vj is the ij-th. successor of Vj-\. The path is empty
if n = 0. The pa th is acyclic if none of nodes i»o, • • • > vn appears twice i n i t . The nodes
vi,..., vn-\ are called the inner nodes of p. The length of p is defined as length(p) = n.
The path is a cycle i f vo = vn, and it is a simple cycle (or loop) i f it is a cycle and no
node except vo = vn appears twice in i t . A n acyclic path has defined the cost as the
sequence ii,..., in. We say that p is cheaper than another path p' iff the cost of p is
lexicographically smaller than that of p'. A node u is reachable/accessible from a node
v iff there is a path from v to u in g (including the case when the path is empty, i.e.
u = v). A node v that reaches a l l nodes of g is called the root of g. If such a node exists
in the graph g, we say that g is rooted (in v). A tree is a graph £ that has exactly one
root r and each of its nodes except r is a successor of at most one node v of t. We use
root{t) to denote the root of t and T s to denote the set of a l l trees over E .

2.2. Tree Automata

A (finite, nondeterministic) tree automaton (TA) is a quadruple A defined as A =
(Q, E , A , R) where Q is a finite set of states, E is a ranked alphabet, A is a finite set
of transitions, and R C Q is a set of root states. E a c h transi t ion is a tr iple of the

10

form (q,a, q\ • • • qn) where n > 0, q,qi, • • • ,qn G Q, a G E , and # a = n. We often
use interchangeably q —>• a(qi,..., (/n) and a(qi,..., 5«) —> q to denote (5, a, q\ • • • qn),
depending whether we wish to emphasise the downward or the upward direction of the
transit ion. In the special case where n = 0, we speak about the so-called leaf transitions.
We use Q# to denote the set of a l l tuples of states from Q w i th up to the max imum
arity that some symbol i n E has, i.e. i f n = m a x a e s #a , then Q# = Uo<i<n Q%-

For q G Q and a G E , we use downa(q) to denote the set of tuples accessible
from q over a i n the top-down manner; formally, downa(q) = {(qi, • • • ,qn) I Q —>
a (q i , q n) } . For a G E and (qi,...,qn) G Q # a , we denote by upa((qi,..., qn)) the
set of states accessible from (qi,... ,qn) over the symbol a in the bottom-up manner:
formally, upa((qi,..., qn)) = {q \ a(qi,..., qn) —>• (/}. We also extend these notions to
sets in the usual way, i.e. for a G E , P C Q , and 5 C Q * a , downa(P) = U P e P downa(p)
and u p a (S) = U (s i , . . . , s „) e s uPa(0»i> • • •, s n)) -

A run of „4, over a tree í over E is a mapping p : dom(t) —>• Q s.t. for each node
u G dom{t) where (/ = p(v), i f (/j = p(S(v)i) for 1 < i < then A has a transi t ion
(/ —>• £(v)(qi,..., We write t =4> p (/ to denote that p is a run of A over í s.t.
p{root{t)) = q. We use t =>• (/ to denote that t g for some run p. The language of
a state (/ is defined by L(q) = {t \ t =4> q}, and the language of .A is defined by =
{JqGR L(q). We extend the notion of a language to a tuple of states (qi,..., (/„) G Q n by
lett ing L((qi,..., (/„)) = L(<7i) x • • • x L(qn). The language of a set of n-tuples of sets of
states S C (2 ^) n is the union of languages of elements of S, the set L(S) = U s e s L(E).

Simulations. A downward simulation on a T A A = (Q, E , A , R) is a preorder relation
^ Q x Q such that i f (/ p and (/ —>• a ((/ i , . . . , (?„), then there are states pi,... ,pn

such that p —>• a (p i , . . . , p n) and % p i for each 1 < i < n. G iven a T A A =
(Q, E , A , i?) and a downward simulation an upward simulation <uC QxQ induced
by is a relation such that if q <u p and a (g i , . . . , qn) —>• g' w i th qi = q, I < i < n,
then there are states p i , . . . ,pn,p' such that a (p i , . . . , p n) —>• p ' where pi = p, q' <u p',
and gj -<D Pj for each j such that 1 < j 7̂ i < n.

2.3. Structured Labels

Sometimes, we w i l l work wi th alphabets where symbols, called structured labels, have an
inner structure. Let V be a ranked alphabet of sub-labels, ordered by a to ta l ordering
C r - We w i l l work wi th graphs over the alphabet 2 r where for every symbol ACT, its
arity is j^A = X^aeA # a - Let e = w 4 ({ ^ I , • • •: ^m}, v\ • • • vn) be an edge of a graph g
where n = X ^ i < j < m

 a n < ^ a i C r a2 C r • • • C r We decompose e into a sequence
of m sub-edges e (l) = w ->• (a i , u i • • -v#ai),... ,e(m) = v ->• (a m , w „ _ # a m + i • • - u n) . We
call e(i) = w —>• (aj, Ufe • • • vi) from the sequence the i - th sub-edge of e in g, for 1 < i < m .
We use SE(g) to denote the set of a l l sub-edges of g, and SE(g, v) for the subset of
SE(g) where v is the origin. . We say that a node v of a graph is isolated if it does not
appear wi th in any sub-edge, neither as an origin (i.e. £{v) = 0) nor as a target. A graph
g without isolated nodes is unambiguously determined by SE{g) and vice versa (due to
the to ta l ordering and since g has no isolated nodes).

11

A counterpart of the notion of sub-edges i n the context of transitions of T A s is the no
t ion of sub-terms, defined as follows: G iven a transi t ion 5 = q —> { a i , . . . , am}(qi,..., qn)
of a T A over the alphabet of structured labels 2 r , sub-terms of 5 are the terms 5(1) =
a i (q i , q # a i) , •••,S{m) = am(qn_#am+1, ...,qn) where 6(i), for 1 < i < m, is called
the i-th sub-term of 5.

12

Part I.

Forest Automata-Based Formal
Verification of Programs

13

3. Shape Analysis wi th Forest Automata

In this chapter, as the start ing point for our own work presented in Chapters 4 and 5, we
w i l l briefly describe the forest automata-based shape analysis framework for verification
of programs manipula t ing complex dynamic data structures, as introduced by Haber-
mehl et al in [HHR+12]. The main concept of the symbolic representation used i n the
framework is the so-called forest decomposition of a heap graph, which is performed as
follows: F i rs t , the cut-points of the graph are identified; a cut-point is a node that is
either referenced by a program variable or is a target of mult iple edges. Every cut-point
is then taken as the root of a (cut-point-free) tree component whose leaves are either
nodes w i t h no outgoing edges, or other cut-points. The heap graph is split into the tree
components. The tree components are then canonically ordered according to the order
in which their roots were visi ted i n a depth-first search (D F S) through the graph, when
starting from program variables. In the tree components, any leaf that corresponds to
a cut-point numbered wi th c during the D F S is changed into an explicit reference to
the cut-point number c, wr i t ten as c. See Figure 3.1 for an i l lustrat ion of the forest
decomposition of a heap graph.

To represent a set of (potentially infinite) heaps H = {hi, hi, • • • } w i t h the same
number n of cut-points, we decompose a l l heaps of H into forests and for every posit ion
1 < i < n, we then collect the i - th components of a l l forests into the set H[i] =
{hi[i], h,2[i], • • •}• The set H[i] can be represented using a tree automaton (T A) A[i] and
the whole set of heaps H can be represented by a tuple of T A s A[l], • • •, A[n], called
a forest automaton (F A) . (Note that the previous decomposition of a set of heaps can be
performed only in the case the set of forests FJJ of H is convex. Convexi ty of FJJ denotes
the fact that we can take any forest h[l],..., h[n] from FJJ, substitute h[j] w i th h'[j] for
any 1 < j < n and hi £ H, and the result w i l l s t i l l be a member FH- Non-convex sets
of forests are represented as unions of convex sets. Our analysis also guarantees that a l l
H[i] are regular tree languages.)

A n F A of the simple structure presented above cannot be used as a representation of
data structures that have an unbounded number of cut-points—such as doubly linked
lists (D L L s) or trees wi th parent pointers, where every internal node is a cut-point—and
the analysis would need an infinite number of F A s to represent a set of a l l instances of
these data structures. In order to be able to represent them using Unitary means, the
forest automata framework allows the use of the so-called boxes. Boxes are F A s that
are used as symbols of another, higher level F A . In this F A , they represent a (complex)
subgraph using a single symbol . Intuitively, the task of boxes is to decrease the in-degree
of cut-points i n a graph—when the in-degree of a node drops to one (and the node is
not referenced by a program variable), the node is no longer a cut-point and can be
represented by an ordinary state in a T A . In this way, it is possible to represent an

14

X

© next s~\
O

next
CD
a

1

x

1

0>

CD
a

CD
a

y

(a) A graph (b) Its forest representation

Figure 3.1.: A graph and its forest representation

over-approximation of a l l reachable configurations of a program using forest automata
wi th a bounded number of tree components. See Figure 3.2 for an example of a use of
a box in an encoding of a D L L .

Alongside the notion of F A s , [HHR+12] also proposed a shape analysis that uses F A s
and is based on the framework of abstract interpretation [CC77]. For each program line,
a set of forest automata is used to represent the set of memory configurations reachable
at a given line. The program is symbolical ly executed on this representation in such
a way that each program statement is mapped to an abstract transformer that simulates
execution of the statement on the symbolic representation (and also checks whether
an error has been encountered). The symbolic execution examines a l l branches of the
program unt i l no new symbolic states can be found on the branches and a fixpoint is
obtained (this is detected by testing language inclusion of F A s , see [HHR+12] for more
details). Because, as mentioned earlier, programs manipula t ing heap are usually infinite-
state, the widening operator is used to provide a sound over-approximation of the set of
reachable configurations. Th is operator is based on automata abstraction borrowed from
abstract regular tree model checking (A R T M C) . For a given forest automaton, abstraction
collapses some states of the T A s of the F A (for each T A separately), t ry ing to introduce
loops into the T A s to obtain T A s accepting an infinite (regular) tree language that over-
approximates the original one and, i n turn, a forest automaton representing an infinite
set of heaps, again over-approximating the original one.

Outline. Section 3.1 of this short chapter introduces the formalism of forest automata
and Section 3.2 describes the forest automata-based framework for shape analysis.

3 .1 . Forest Automata
Forests. Let E be a ranked alphabet disjoint from N, i.e. E n N = 0. A E-labelled
forest is a sequence of trees t\ • • -tn over the alphabet (E U { 1 , . . . , n }) where for a l l
1 < i < n, the arity of i is # i = 0. Leaves labelled by i G N are called root references.

15

(a) A D L L (b) Its hierarchical encoding

Figure 3.2.: A D L L and its hierarchical encoding

The forest t\ • • • tn represents the graph ®t\ • • • tn obtained by uni t ing the trees of
t\ • • • tn, assuming w.l .o.g. that their sets of nodes are disjoint, and interconnecting their
roots w i th the corresponding root references. Formally, ®t\ • • • tn contains an edge of
the form v i-> (a, v\ • • • vm) iff there is an edge v i-> (a, v[• • • v'm) of some tree U, for
1 < i < n, such that for a l l 1 < j < m, the following holds: i f v'j is a root reference wi th
£(v'A = k then Vj = root{tk), otherwise Vj = v',.

Graphs and forests with ports. We w i l l further work wi th graphs w i t h designated
input and output nodes. A n io-graph is a pair (g,(p), abbreviated as g<f,, where g is
a graph and <p G dom(g)+ a sequence of ports i n which (pi is the input port and 4>2 • • • <pu\
is a sequence of output ports such that the occurrence of ports i n (f> is unique. Por ts and
joins (i.e. nodes wi th mult iple incoming edges) of g are called cut-points of g<j,. We use
cps(g(p) to denote a l l cut-points of g^. We say that is accessible if it is rooted i n the
input port (pi. We sometimes abuse notat ion for graphs and use it also for io-graphs,
e.g. we may write dom(g(p) to denote dom(g).

A n io-forest is a pair / = (ti • • • tn, TT) such that n > 1 and TT G { 1 , . . . , n}+ is a sequence
of port indices, TTI is the input index, and 7T2 ... Tn^i is a sequence of output indices, w i th
no repetitions of indices in -jr. A n io-forest encodes the io-graph (g)/ where the ports of
(g>£i • • • tn are roots of the trees defined by TT, i.e. ®f = (<8>£i • • - tn, root(tni) • • • root(tnn)).

Forest automata. A forest automaton (FA) over the alphabet E is defined as a pair
F = (Ai • • • An, 7r) where n > 1, -4.1 • • • ^4ra is a sequence of tree automata over the
alphabet (S U { 1 , n }) , and ir € { 1 , . . . , n } + is a sequence of port indices as defined for
io-forests. The forest language of F is the set of io-forests Lf(F) = L(Ai) x • • • x L(An) x
{TT}, and the graph language of F is the set of io-graphs L(F) = {®h \ h G Lf(F)}.

Forest automata of a higher level. We let Ti be the set of a l l forest automata
over the alphabet of structured labels 2 r and cal l its elements forest automata over F of
level 1. For i > 1, we define Tj as the set of a l l forest automata over ranked alphabets
2 r u A where A C is any nonempty finite set of F A s of level i — We denote elements
of Ti as forest automata over T of level i. The rank j^F of an F A F i n these alphabets
is the number of its output port indices. W h e n used i n an F A F over 2 r u A , the forest
automata from A are called boxes of F. We write to denote U«>o ^ and assume
w.l.o.g. that is ordered by some to ta l ordering Cr„ •

16

A n F A F of a higher level over Y accepts graphs where forest automata of lower levels
appear as sub-labels. To define the semantics of F as a set of graphs over Y, we need the
following operation of sub-edge replacement where a sub-edge of a graph is substituted
by another graph. Intuitively, the sub-edge is removed, and its origin and targets are
identified wi th the input and output ports of the substituted graph respectively.

Formally, let g be a graph wi th an edge e G g and its i - th sub-edge e(i) = v\ —>
(a, V2 • • • vn). Let g'^ be an io-graph wi th \cf>\ = n. Assume w.l.o.g. that dom(g) n
dom(g'(p) = 0. The sub-edge e(i) can be replaced by g' provided that for a l l 1 < j < n it is
that £g(vj) r\£gi((pj) = 0, which means that the node Vj G dom(g) and the corresponding
port G dom(g'(p) do not have successors reachable over the same sub-label. If the
replacement can be done, the result, denoted ff[ff^/e(i)], is the graph gn i n the sequence
go,...,gn of graphs obtained as follows: The graph go is defined using sub-edges as
SE(go) = (SE(g) \ {e(i}}) U SE(g'), and for each 1 < j < n, the graph gj arises from
gj-i by (1) deriving a graph hj by replacing the origin of the sub-edges of the j-th
port of g'^ by Vj, (2) redirecting edges leading to 4>j to lead to Vj, i.e. replacing
al l occurrences of 4>j h i img(h)j by Vj, obtaining the graph h'j, and (3) removing <f>j.
Intuitively, we start by removing e(i) from g, proceed by adding g' to the graph and
then, one by one, reconnecting edges leading to and leaving the ports of g'^ w i th the
nodes incident w i t h e(i) i n g. Figure 3.3 shows the sub-edge replacement step including
the intermediate graphs.

If the symbol a of the sub-edge e(i) i n the previous paragraph is an F A and g'^ G L(a),
we say that h = g\g'^l'e(i)] is an unfolding of g, wri t ten g ~< h. Conversely, we say that
g arises from h by folding g'^ into e(i). Let -<* be the reflexive transitive closure of -<.
The Y-semantics of g is then the set of graphs g' over Y such that g -<* g', denoted
lg}r, or just [5] if no confusion may arise. For an F A F of a higher level over Y, we let

I f] = U , e L (F) (H x W) .

Canonicity. We cal l an io-forest / = (ti • • • tn, TT) minimal iff the roots of the trees
n are the cut-points of <8)/- A min ima l forest representation of a graph is unique

up to reordering of t\ • • -tn. Let the canonical ordering of cut-points of <g>/ be defined
by the cost of the cheapest paths leading from the input port to them. We say that /
is canonical iff it is min imal , ®f is accessible, and the trees wi th in t\ • • • tn are ordered
by the canonical ordering of their roots (which are cut-points of <8>/)- A canonical forest
is thus a unique representation of an accessible io-graph. We say that an F A respects
canonicity iff a l l forests from its forest language are canonical. (Note that we do not
consider canonical F A s , due to the reason that there would have to be some canonicity
restriction on the component T A s . A s for a set of nondeterministic T A s w i t h the same
language L, there is no known natural canonical T A accepting L , and even i f there were,
the cost of conversion to this T A might be too high.) Respecting canonicity makes it
possible to efficiently test F A language inclusion by testing T A language inclusion of the
respective components of a pair of F A s . Th is method is precise for F A s of level 1 and
sound (not always complete) for F A s of a higher level, see [HHR+12] for more details.

In practice, we keep automata i n the so called state uniform form, which simplifies
maintaining the canonicity respecting form (and it is also useful when abstracting and

17

Vl V2 V3

O [D L L l ' ^ [DLLl ' O

next

1 p r e v " ^

1) 5

Ul W2 ^3
O Ch=rO DLL

next

^ p r e v ' ^ 2

2) 90

Vl v2 v3

0 - n e X 9 W 0

V2 V3

4) h[

Vl v2 v3 Ul ^2 ^3

vi next ^2 ^3

prev | DLL |

7) h'2

vi next V2 V3

O O Q ^ O
prev | DLL |

92 = 9[9DLL/(VI ->• (D L L , i>2))]

Figure 3.3.: Steps taken i n the sub-edge replacement of an edge labelled by the D L L box

"folding", as discussed in Section 4.1.2). It is defined as follows. G iven a node v of
a tree t i n an io-forest, we define its span as the pair (a , V) where a G N* is the sequence
of labels of root references reachable from the node v ordered according to the cost of
the cheapest path to them, and V C N is the set of labels of references that occur more
than once i n the subtree of t rooted i n v. The state uniform form then requires that a l l
nodes of forests from Lf(F) that are labelled by the same state q i n some accepting run
of F have the same span, which we denote by span(q).

18

3.2. FA-based Shape Analysis

We now provide a high-level overview of the main loop of the shape analysis based on
forest automata. The analysis automatical ly discovers memory safety errors (such as
invalid dereferences of n u l l or undefined pointers, double frees, or memory leaks) and
provides an FA-represented over-approximation of the sets of heap configurations reach
able at each program line. The framework considers sequential non-recursive C programs
manipulat ing the heap. E a c h heap cell may have several pointer selectors and data se
lectors from some finite data domain (below, PSel denotes the set of pointer selectors,
DSel denotes the set of data selectors, and D denotes the data domain). A l though the
implementation of the approach in the Forester tool can handle l imi ted pointer ari th
metic and type casting, for the sake of s implic i ty we do not consider these features i n
the following description. The analysis can also provide as an output an FA-represented
over-approximation of the sets of heap configurations reachable at each program line.

Heap Representation

A single heap configuration is encoded as an io-graph gsi (we describe the input port sf
later i n the text) over the ranked alphabet of structured labels 2 r w i th sub-labels from the
ranked alphabet T = PSelU(DSelxH)) w i th the ranking function that assigns each pointer
selector 1 and each data selector 0. In this graph, an allocated memory cell is represented
by a node v, and its internal structure of selectors is given by a label £g(v) G 2 r . Values
of data selectors are stored directly i n the structured label of a node as sub-labels from
DSel x D , so e.g. a singly l inked list cell w i th the data value 42 and the successor node
x n e X t may be represented by a node x such that £g(x) = {next (x n e x t) , (data, 42)(e))}.
Selectors w i th undefined values are represented i n such a way that the corresponding
sub-labels are not i n £g(x). The nu l l value is modelled as the special node n u l l such
that ^ s (null) = 0. The input port sf represents a special node that contains the stack
frame of the analysed function, i.e. a structure where selectors correspond to variables
of the function.

In order to represent (infinite) sets of heap configurations, we use state uniform F A s
of a higher level to represent sets of canonical io-forests representing the heap configu
rations. The F A s used as boxes, i.e. symbols of F A s of a higher level, are provided by
the user.

Symbolic Execution

The verification procedure is based on abstract interpretation [CC77] w i th the abstract
domain consisting of sets of state uniform F A s (a single F A does not suffice as F A s are
in general not closed under union) representing sets of heap configurations at particular
program locations. The computat ion starts from the in i t i a l heap configuration given by
an F A for the io-graph gSf where g comprises two nodes: n u l l and sf where £g(sf) = 0
(i.e. the values of a l l local variables are undefined). The computat ion then executes
abstract transformers corresponding to program statements un t i l the sets of F A s held at
program locations stabilise. We note that abstract transformers corresponding to pointer

19

manipulat ing statements are the most precise transformers. For each operation op i n
the intermediate representation of the analysed program, the semantics of C implies
existence of a function / o p that, when applied to the io-graph gsi, gives the io-graph
/op(ffsf) representing the heap after executing op. Based on / o p , we define for each
operation op the corresponding abstract transformer r o p w i th the property that when
r o p is applied to the set of F A s <S, the result is the set of F A s S' = r o p (5) such that

U IF'} = {/o PG? Sf) I ffsf € m A F € S}. (3.1)
F'eS'

Execut ing the abstract transformer r o p over a set of F A s S is performed separately for
every F € S. In the first step, we perform materialisation dur ing which we unfold
(i.e. substitute by the corresponding F A) lower-level boxes unt i l the heap nodes being
accessed by the given operation are uncovered. T h e n we perform the actual update—
which amounts to manipulat ion of states i n the neighbourhood of a root state, which is
quite close to the corresponding manipulat ion of concrete heap graphs—as described i n
the following paragraph.

Let us fix the set of stack frame sub-edges S = SE(g, s f) . Pointer updates of the
form x := y, x := y - > s l , or x := n u l l replace the sub-edge s f —> (x, v x) in S w i th the
sub-edge s f —>• (x,v'x), where v x is obtained according to the type of the update:

(i) For the assignment x := y, v x is a node such that there is a sub-edge s f —> (y, v'x)
in S. In the case there is no such a sub-edge i n S, the sub-edge s f —>• (x, vx) is
removed from S and x is left undefined.

(ii) For the assignment x := y - > s l , v x is a node such that there is a node vy pointed
by y, i.e. s f —>• (y,vy) G S, where vy points to v x over s i , vy —>• (sl,v'x) G SE(g).
In case there is no sub-edge s f —>• (y,vy) in S or vy = n u l l , i.e. y is undefined
or n u l l respectively, the analysis reports an inval id memory access error. O n the
other hand, if such a sub-edge exists but there is no sub-edge s f —>• (y,vy), the
sub-edge s f —> (x, vx) is, again, removed from S and x is left undefined.

(iii) F ina l ly , for the assignment x := n u l l , v'x is the node n u l l .

Updates of the form x - > s l := y replace the sub-edge v x —>• (s i , z) w i th the sub-edge
wx —>• (s l , w y) , where s f —> (y,vy) G S (or remove w x —>• (s i , z) i f there is no sub-edge
s f —>• (y, vy) i n S). Note that i n the case that either x is undefined or w x is the n u l l node,
the analysis reports inval id memory access. Further, symbolic execution of the operation
m a l l o c (x) replaces the sub-edge s f —>• (x, z) w i th the sub-edge s f —>• (x,vnew), where
vnew is a newly created node, vnew g" dom(g), where £(vnew) = 0. The cal l f r ee(x)
removes the node w x such that s f —> (x, w x) G S from g, and also removes a l l sub-
edges v —>• (sel,vx) G SE(g), thus making al l selectors point ing to w x undefined. D a t a
updates x ->da ta := dnew replace the sub-edge w x —>• ((data, d 0 y) , e) G S w i th the sub-
edge vK —>• ((d a t a , d n e w) , e) , where w x is a node such that s f —>• (x, vx) is i n S. Dur ing
these operations, dereferences of n u l l and undefined selectors are detected, as well as
emergence of garbage (detected when f0p(gs±) is not accessible). Evalua t ing a guard on
an io-graph gsi amounts to a test of equality of nodes, or equality or inequality of data
fields of nodes.

20

Folding and abstraction. A s we have already discussed at the beginning of this
chapter, in order to be able to represent infinite sets of configurations of some data
structures (in part icular those wi th an unbounded number of cut-points), the analysis
needs to use the so-called boxes, which are F A s of a lower level. In the context of the work
that introduced forest automata-based shape analysis [HHR+12], the user is required to
provide as the input of the analysis a database of boxes; these boxes are then used by
the analysis for folding of subgraphs.

The folding is performed after an update of the symbolic execution is completed. It
takes the database of boxes and for every box, the procedure attempts to find in the
F A that represents the current abstract state a l l substructures matching the structure
of the box. Every such substructure is substituted by a sub-term labelled wi th the box
name. This is done repeatedly un t i l nothing more can be folded. The folding step is
followed by transformation of the F A into the canonicity respecting form.

A t junctions of program paths, the analysis computes unions of sets of F A s . A t
loop points (junctions at the beginning of a loop), the union is followed by widening.
The widening is performed by applying abstraction on each F A from the set of F A s
obtained at the loop point. The abstraction used is a modification of the abstraction
based on tree languages of a finite height—the so-called finite height abstraction—from
A R T M C [BHRV12] , which is applied independently on every component T A i n the F A .
The finite height abstraction is parameterised by a height k, and it collapses those states
of a T A whose tree languages of the height up-to k match.

3.3. Discussion

The results that were presented i n the original work on forest automata-based shape
analysis [H H R + 1 2] give evidence of the viabi l i ty of the approach, in the senses of both the
expressivity of the underlying formalism (forest automata can indeed represent various
s ingly /doubly l inked lists, skip lists, trees, and their (finitely nested) combinations) and
in the scalabili ty (thanks to the decomposition of the heap into a tuple of trees and
manipulat ing each of them independently).

The data structures that are unsupported by the forest automata-based analysis in the
proposed setting are either data structures that are not hierarchically structured (such as
general graphs) or hierarchical data structures w i th an unbounded level of nesting (such
as trees wi th l inked leaves or skip lists of an arbitrary level). Some of the hierarchical
data structures of an unbounded level of nesting could be represented by an extension
of the formalism that would allow an F A to recursively contain itself (recall that self-
reference is forbidden now); however, it is yet not clear how al l steps of an analysis
based on this extended formalism would be carried out. To give examples of other data
structures that the analysis cannot handle, let us mention data structures w i th complex
invariants (such as A V L trees, which rely on balancedness of a tree) or data structures
that perform suballocation of their assigned memory (such as the data structures used
in memory allocators).

21

One weak point of the presented analysis lies i n the need for the user to provide the
boxes for the substructures that the analysis might come upon during its run. A s we
strive for fully-automated analysis, the next chapter, Chapter 4, presents an approach
that addresses this issue and provides a way for the analysis to infer the boxes itself,
during its run. Moreover, Chapter 5 extends the formalism and augments the analysis
based on it by taking into account ordering relations between the data stored i n a data
structure. This extension allows us to verify programs wi th data structures where the
invariant depends on the ordering between the data values stored inside memory nodes,
which is the case for various sorting algorithms, binary search trees, or procedures for
manipulat ing skip lists.

22

4. Learning Boxes for Forest Automata

The work presented i n this chapter is an extension of the shape analysis based on forest
automata, as described i n Chapter 3. Reca l l that the described shape analysis relied
on the user to provide a suitable set of boxes (the subgraphs to be folded into au
tomata symbols). This means that the user needed to provide the analysis w i th a forest
automata-based description of those data structures used in the program that have an
unbounded number of cut-points. A s we strive for a push-button analysis—an analysis
that would run without user interaction, which, we believe and our cooperation wi th
industry partners confirms, is the only k ind of analysis that can work for large-scale
ever-evolving systems—such an approach is natural ly not feasible. To address this issue,
we propose an extension of the approach where the boxes are inferred automatical ly
during a run of the analysis using a technique that we cal l box learning.

The basic principle of box learning stems from the reason for which boxes were orig
inal ly introduced into F A s . In particular, F A s must have a separate component T A for
each node (called a join) that has mult iple incoming edges i n the represented graphs. If
the number of joins is unbounded (as e.g. in doubly l inked lists, abbreviated as D L L s be
low), unboundedly many component T A s are needed in flat F A s . However, when some of
the edges are hidden in a box (as e.g. the prev and next l inks of D L L s in Figure 4.1) and
replaced by a single box-labelled edge, a finite number of component T A s may suffice.
Therefore, the basic idea of our learning is to identify subgraphs of the FA-represented
graphs that contain at least one jo in , and when they are enclosed—or, as we say later
on, folded—into a box, the in-degree of the jo in decreases.

There are, of course, many ways to select the above mentioned subgraphs to be used
as boxes. To choose among them, we propose several cri teria that we found useful i n
a number of experiments. Most importantly, the boxes must be reusable i n order to
allow el iminat ing as many joins as possible. The general strategy here is to choose boxes
that are simple and small since these are more l ikely to correspond to graph patterns
that appear repeatedly i n typ ica l data structures. For instance, in the already mentioned
case of D L L s i n Figure 4.1, it is enough to use a box enclosing a single pair of next/prev
l inks. O n the other hand, as also discussed below, too simple boxes are sometimes not
useful either.

Further, we propose a way how box learning can be efficiently integrated into the main
analysis loop. In particular, we do not use the perhaps obvious approach of incrementally
bui lding a database of boxes whose instances would be sought i n the generated F A s . We
found this approach inefficient due to the costly operation of finding instances of different
boxes i n FA-represented graphs. Instead, we always t ry to identify which subgraphs of
the graphs represented by a given F A could be folded into a box, followed by looking into
the so-far buil t database of boxes whether such a box has already been introduced or not.

23

(a) A D L L (b) Its hierarchical encoding

Figure 4.1.: A D L L and its hierarchical encoding

Moreover, this approach has the advantage that it allows one to use simple language
inclusion checks for approximate box folding which substitutes a subgraph wi th a box
from the database that has a larger language, thus over-approximating the set of graphs
represented by a given F A . This approach sometimes greatly accelerates the computat ion.
Final ly , to further improve the efficiency, we interleave the process of box learning w i t h
the automata abstraction into a single iterative process. In addit ion, we propose an F A -
specific improvement of the basic automata abstraction which accelerates the abstraction
of an F A using components of other F A s . Intuitively, it lets the abstraction synthesise
an invariant faster by allowing it to combine information coming from different branches
of the symbolic computat ion.

We have prototyped the proposed techniques in Forester and evaluated it on a number
of challenging case studies. The results show that the obtained approach is bo th quite
general as well as efficient. For example, we were the first to fully-automatically analyse
programs wi th a data-independent modification of 2- and 3-level skip lists (a modification
where the shape invariant of a skip list does not rely on the fact that the list is ordered—
our extension to the standard data-dependent skip lists is described in Chapter 5).
O n the other hand, our implementat ion achieves performance comparable and sometimes
even better than that of Predator [DPV13] (a winner of mult iple heap analysis-related
awards in several years of the competi t ion on software verification S V - C O M P) on list
manipulat ing programs despite being able to handle much more general classes of heap
graphs.

Related work. F r o m the point of view of efficiency and degree of automation, the
main alternative to our approach are the methods that fully-automatically use separa
t ion logic w i t h inductive list predicates as implemented in Space Invader [YLB+08] or
S L A y e r [BCI11]. These approaches are, however, much less general than our approach
since they are restricted to programs over certain classes of l inked lists (and cannot han
dle even structures such as l inked lists w i t h data pointers point ing either inside the list
nodes or optionally outside of them, which we can easily handle as discussed later on).
A similar comparison applies to the Predator tool inspired by separation logic but using
purely graph-based algorithms [DPV13] . The work [LYP11] on overlaid data structures
mentions an extension of Space Invader to trees, but this extension is of a l imi ted gen
erality and requires some manual help.

24

In [GVA07], an approach for synthesising inductive predicates in separation logic is
proposed. This approach is shown to handle even tree-like structures wi th addit ional
pointers. One of these structures, namely, the so-called mcf trees implementing trees
whose nodes have an arbitrary number of successors l inked i n a D L L , is even more general
than what can i n principle be described by hierarchically nested F A s (to describe mcf
trees, recursively nested F A s or F A s based on hedge automata would be needed). O n the
other hand, the approach of [GVA07] seems quite dependent on exploi t ing the fact that
the encountered data structures are buil t i n a "nice" way conforming to the structure
of the predicate to be learnt (meaning e.g. that lists are buil t by adding elements at the
end only), which is close to providing an inductive definition of the data structure.

A novel technique based on the so-called second-order bi-abduct ion was presented
in [L G Q C 1 4] . Th is technique tries to infer the most general pre- and post-conditions
of functions, expressed in the form of higher-order inductive predicates of separation
logic, such that they imply that the analysed program is memory-safe. Fi rs t , pre- and
post-conditions that use unknown predicates (second-order variables) are inferred from
the code. Then, the analysis tries to synthesise the most general shape predicates for the
unknown predicates such that when the synthesised predicates substitute the unknown
predicates i n the pre- and post-conditions, the result is consistent. The issue of this
approach is that i n the analysed program is not memory safe, the analysis cannot give
a direct reason why it is so. Instead, the user w i l l just see that the inferred pre- and
post-conditions are t r iv i a l . Moreover, as in the previous work, this analysis also relies
on the way how the data structure is created.

The work [MTLT10] proposes an approach which uses separation logic for generating
numerical abstractions of heap manipula t ing programs allowing for checking both their
safety as well as termination. The described experiments include even verification of
programs wi th 2-level skip lists. However, the work s t i l l expects the user to manual ly
provide an inductive definition of skip lists i n advance. Likewise, the work [CRN07]
based on the so-called separating shape graphs reports on verification of programs w i t h
2-level skip lists, but it also requires the user to come up wi th summary edges to be
used for summarizing skip list segments, hence basically w i th an inductive definition of
skip lists. Compared to [M T L T 1 0 , C R N 0 7] , we d id not have to provide any manual aid
whatsoever to our technique when dealing w i t h 2-level as well as 3-level skip lists i n our
experiments.

Final ly , from the world of graph grammars, a concept of inferring graph grammar
rules for the heap abstraction proposed i n [HNR10] has recently appeared i n [Weil2].
However, the proposed technique can so far only handle much less general structures
than in our case.

Outline. The structure of this chapter is the following. Fi rs t , Section 4.1 describes
how we select the parts of the forest automata to be fold and how the very folding
is carried out. Then, in Section 4.2, we talk about the abstraction that is used i n
the analysis. Afterward, Section 4.3 reports on the experimental results and, finally,
Section 4.4 concludes the chapter.

25

4 . 1 . Learning of Boxes

Sets of graphs wi th an unbounded number of joins can only be described by F A s wi th the
help of boxes. In particular, boxes allow one to replace (multiple) incoming sub-edges
of a jo in by a single sub-edge, and hence lower the in-degree of the jo in . Decreasing the
in-degree to 1 turns the jo in into an ordinary node. W h e n a box is then used in a cycle
of an F A , it effectively generates an unbounded number of joins.

The boxes are introduced by the operation of folding of an F A F which transforms
F into an F A F' and a box B used i n F' such that \F~\ = \F'\. However, the graphs
in L(F') may contain less joins since some of them are hidden i n the box B, which
encodes a set of subgraphs containing a jo in and appearing repeatedly i n the graphs
of L{F). Before we explain folding, we give a characterisation of subgraphs of graphs
of L(F) which we want to fold into a box B. Our choice of the subgraphs to be folded
is a compromise between two high-level requirements. O n the one hand, the folded
subgraphs should contain incoming edges of joins and be as simple as possible in order
to be reusable. O n the other hand, the subgraphs should not be too smal l i n order
not to have to be subsequently folded wi th in other boxes (in the worst case, leading to
generation of unboundedly nested boxes). Ideally, the hierarchical s tructuring of boxes
should respect the natural hierarchical s tructuring of the data structures being handled
since i f this is not the case, unboundedly many boxes may again be needed.

4.1.1. Knots of Graphs

We use i = g Isl g' to denote a graph i such that SE{i) = SE(g) U SE(g'). A graph h is
a subgraph of a graph g iff SE{h) C SE(g). The border of h in g is the subset of the set
dom(h) of nodes of h that are incident w i th sub-edges i n SE(g) \ SE{h). A trace from
a node u to a node v i n a graph g is a set of sub-edges t = { e i , . . . , en} C SE(g) such
that n > 1, the sub-edge e\ is outgoing from u, the sub-edge en is entering v, the origin
of ei is one of the targets of e j _ i for a l l 1 < i < n, and no two sub-edges i n t have the
same origin. We cal l the origins of e 2 , . . . , en the inner nodes of the trace. A trace from
u to v is straight iff none of its inner nodes is a cut-point. A cycle is a trace from a
node v to v. A confluence of g<f, is either a cycle of g^ or it is the union of two disjoint
traces starting at a node u, called the base, and ending i n the node v, called the tip (for
a cycle, the base and the t ip coincide)—cf. Figure 4.2a.

Given an io-graph g^, the signature of a sub-graph h of g is the m i n i m u m subset sig{h)
of cps(g(j>) that (1) it contains cps(g(p) n dom(h) and (2) a l l nodes of h, except the nodes
of sig(h) themselves, are reachable by straight traces from sig(h). Intuitively, sig{h)
contains a l l cut-points of h plus the cut-points of g^ closest to h which lie outside of h
but which are needed so that a l l nodes of h are reachable from the signature. Consider
the example of the graph gu i n Figure 4.2b i n which cut-points are represented by • .
The signature of gu is the set {u, v}. The signature of the highlighted subgraph h is also
equal to {u, v}.

Given a set U C cps(g(p), a confluence of U is a confluence of g^ w i th the signature
in U. Intuitively, the confluence of a set of cut-points U is a confluence whose cut-points

26

A,
V

h

(c) Confluence of a set of cut-
points (a) Two types of confluences (b) Example of a closure

Figure 4.2.: Notions of confluence and closure

belong to U plus i n case the base is not a cut-point, then the closest cut-point from
which the base is reachable is also from U (cf. Figure 4.2c).

Final ly , for a set U C cps(g(p), we define the closure of U (denoted as cl(U)) as the
smallest subgraph h of g<f, such that (1) it contains a l l confluences of U and (2) for
every inner node v of a straight trace of h, it contains a l l straight traces from v to leaves
of g. The closure of the signature {u, v} of the graph gu in Figure 4.2b is the highlighted
subgraph h. Intuitively, Point 1 of the requirements on a closure includes into the closure
al l nodes and sub-edges that appear on straight traces between nodes of U apart from
those that do not lie on any confluence (such as node u i n Figure 4.2b). Note that nodes
x and y i n Figure 4.2b, which are leaves of gu, are not i n the closure as they are not
reachable from an inner node of any straight trace of h. The closure of a subgraph h of
g^ is the closure of its signature, and h is closed i f it equals its closure. In the following,
we sometimes use clsig(-) to denote cl(sig(-)).

Knots . For the rest of Section 4.1.1, let us fix an io-graph g^ £ L(F). We now
introduce the not ion of a knot which summarises the desired properties of a subgraph
k of g that is to be folded into a box. A knot k of g<f, w i t h weight n is a subgraph of g
where one of the following holds:

1. k is a confluence such that n = \sig(k)\,

2. k = k' IS) k" where k' and k" share a sub-edge and their m a x i m u m weight is n, or

3. k is the closure of a knot of the weight n.

The weight of k therefore corresponds to the m a x i m u m from the numbers of cut-points
of a l l confluences that were used to bu i ld up k. Note that it is possible that k may
be constructed using different sequences of operations wi th confluences of potential ly
different weights. To address this issue, we further define the complexity of a knot k as
the m i n i m u m weight over a l l possible constructions of k.

A n opt imal knot of complexity n is a max ima l knot of complexity n which has a (pos
sibly more than one) source, and at least one source is reachable from the input port of
gcf, by a trace that does not intersect w i t h sub-edges of the op t imal knot.

The following lemma states some properties of a closure of a knot.

27

L e m m a 4.1. Given knots k and k' of g<f, and their respective closures clsig(k) and
clsigik'), and sets of cut-points of g^ a and ß, the following properties hold:

a) SE(k) C SE(k') sig(k) C sig(k'),

b) a c ß cl(a) C d(/3) ;

cj union preserves signature: for a knot k' = k Ö k', it holds sig{k") = sig(k) U sig(k'),

d) closure preserves signature: sig(k) = sig(clsig(k)),

e) monotonicity: SE(k) C SE(k') =>• SE(clsig(k)) C SE{clsigik')),

f) idempotence: clsigik) = clsig{clsig{k)), and

g) extensivity: SE{k) C SE{clsig{k)).

Proof.

a) Suppose the contrary. T h e n it must hold that there is an isolated node i n
However, recall that we consider only accessible graphs that do not contain isolated
nodes.

b) This clearly holds because cl{f3) can be computed by computing cl(a) and then
adding more sub-edges.

c) We prove this by a simple observation that sig{k") contains a l l cut-points i n k
and k', and that a l l nodes of k" are accessible from sig{k) U sig(k'), in part icular
the nodes originating from k are accessible from sig{k) and the nodes originating
from k' are accessible from sig{k').

d) We first prove that sig{k) D sig{clsig{k)) and then prove sig{k) C sig{clsig{k)).

1) sig{k) D sig{clsig{k)): To prove this direction we first observe that due to
Point 1 of the definition of a closure, the cut-points on confluences of clsig(k) are
only those from sig{k). Second, it is easy to see that Point 2 adds no new cut-points
to the closure.

2) sig{k) C sig{clsig{k)): We prove this direction using induct ion on the structure
of k. For the base case when A; is a confluence (Point 1 of the definition of a knot) ,
from the definition of a closure, because closure contains a l l confluences of the set
of nodes, it follows that clsig{k) contains k, formally SE{k) C SE{clsig{k)). F rom
L e m m a 4.1a it follows that sig{k) C sig{clsig{k)).

For the case when k = k' tel k" for some knots k' and k" (Point 2), we introduce
the induct ion hypotheses sig{k') C sig{clsig{k')) and sig{k") C sig{clsig{k")).
Obviously, the following pair of inclusions holds:

s^(fc ') C sig{clsig{k')) U sig{clsig{k")),

sig{k") C sig{clsig{k')) U sig{clsig{k")),

28

and, therefore,

sig(k') U sig(k") C sig(clsig(k')) U sig(clsig(k")). (4-2)

Further, it is easy to see that sig(cl(ji)) U sig(cl('j2)) = sig{cl{^\) IS) 0/(72)), so we
obtain

sig{k') U sig{k") C sig(clsig(k') IS) clsig{k")). (4-3)

Next , from

fc'a'w it",
fc" a ' w

we obtain, using L e m m a 4.1a and L e m m a 4.1b that

(4.4)

s ^ (A /) C s^(A; ' Is) A;") clsig(k') C d s ^ (A / Is) fe") . .
«<7(fc") C ^ (j f e ' W fc") cfe*<7(/fe") C clsig(k' W fc") ' ('

F r o m this, it follows that

clsig(k') l*) clsig{k") C clsig(k' © A;"), (4-6)

which implies, again using L e m m a 4.1a, that

sig(clsig(k') IS) clsig{k")) C sig(clsig(k' l*) A;")). (4-7)

Combin ing Equations 4.3 and 4.7, we obtain the following inclusion:

s*0(/fe') U s*^(ife") C sig(clsig(k' U A;")). (4.8)

We infer that sig(k' is) A;") C sig(clsig(k' Is) A;")) and conclude wi th sig(k) C

sig(clsig(k)).

For the last case when A; = clsig(k') for a knot A/ (Point 3), we use the induct ion
hypothesis sig(k') C sig(clsig(k')). F r o m the induct ion hypothesis, L e m m a 4.1a
and L e m m a 4.1b, we conclude that sig(k') C sig(clsig(k')) sig(clsig(k')) C
sig(clsig(clsig(k'))). F r o m this, it follows that sig(k) C sig(clsig(k)).

e) Follows from L e m m a 4.1a and L e m m a 4.1b.

f) Follows from L e m m a 4.Id.

g) We prove this part using induct ion on the structure of A;. In the base case when A
is a confluence (Point 1 of the definition of a knot) , A: is a confluence of sig{k) and
w i l l therefore be contained in clsig(k), therefore SE(k) C SE(clsig(k)).

For the case when A; = A/ Is) A;" where A/ and A;" are knots (Point 2 of the definition
of a knot) , we use the induct ion hypotheses SE(k') C SE(clsig(k')) and SE{k") C
SE{clsig{k")). It holds that SE(k') C 5E(ife) and so SE{clsig{k')) C SE{clsig{k))
(Lemma 4.1e). Therefore, 5E(ife') C SE{clsig{k')) C SE(clsig(k)), so it holds

29

(a) A list with head pointers (b) A doubly linked list

Figure 4.3.: Kno t s i n graphs

that SE(k') C SE(clsig(k)). The same holds for k", therefore we conclude that
SE(k') U SE(k") C SE(clsig(k)).

If k is the closure of a knot k', k = clsig(k'), (Point 3) then L e m m a 4.If claims
that clsig(k') = clsig(clsig(k')) and so SE(k) = SE(clsig(k)), which proves the
lemma. •

Note that the properties 4.1e, 4.If, and 4.1g are the typica l properties of a standard
closure operator. L e m m a 4.2 implies that op t imal knots are uniquely identified by their
signatures, which is crucial for the folding algori thm presented later.

L e m m a 4.2. An optimal knot is closed.

Proof. Th is follows from L e m m a 4.1g and the maximal i ty of an opt imal knot. •

Next , we explain what is the motivat ion behind the notion of an op t imal knot:

Confluences. A s mentioned above, i n order to allow one to eliminate a jo in , a knot
must contain some jo in v together w i th at least one incoming sub-edge i n case the knot
is based on a loop and at least two sub-edges otherwise. Since g^ is accessible (meaning
that there do not exist any traces that cannot be extended to start from the same node),
the edge must belong to some confluence a of g^. If the folding operation does not fold
the entire a, then a new jo in is created on the border of the introduced box: one of its
incoming sub-edges is labelled by the box that replaces the folded knot, another one is
the last edge of one of the traces of a. Confluences are therefore the smallest subgraphs
that can be folded i n a meaningful way.

Unit ing knots. If two different confluences a and a' share an edge, then after fold
ing a , the resulting edge shares wi th a' two nodes (at least one being a target node),
and thus a' contains a jo in of g^. To eliminate this jo in too, bo th confluences must be
folded together. A similar reasoning may be repeated wi th knots i n general. Usefulness
of this rule may be i l lustrated by an example of the set of a l l singly l inked lists of an
unbounded length wi th head pointers. Wi thou t uni t ing, every list would generate a h i
erarchy of knots of the same depth as the length of the list, as i l lustrated in Figure 4.3a
for the list of length four. This is clearly impract ica l since the entire set of a l l lists of
an unbounded length could not be represented using finitely many boxes of this type.
Rule 2 unites a l l knots into one that contains the entire list, and the set of a l l such knots
can then be represented by a single F A (containing a loop accepting the inner nodes of
the lists).

30

Complexi ty of knots. The notion of complexity is introduced to l imi t the effect of
Rule 2 of the definition of a knot, i.e. the rule which unites knots that share a sub-edge,
and to hopefully make it follow the natural hierarchical s tructuring of data structures.
Consider, for instance, the case of singly l inked lists (SLLs) of cyclic doubly linked
lists (D L L s) . Reca l l that every node in a D L L is a cut-point. In this case, it is natural
to first fold the part icular segments of the D L L s (denoted as doubly l inked segments—
DLSs—below) , i.e. to introduce a box for a single pair of next and prev pointers.
Th is way, one effectively obtains S L L s of cyclic S L L s , where the latter are over the
D L S box and each contains a single cut-point at the point where the cycle connects.
Subsequently, one can fold the cyclic S L L s into a higher-level box. However, uni t ing
al l knots w i th a common sub-edge would create knots that contain entire cyclic D L L s
(requiring unboundedly many joins inside the box). The reason is that i n addi t ion to
the confluences corresponding to D L S s , there are confluences which traverse the entire
cyclic D L L s and that share sub-edges wi th a l l D L S s (this is i n part icular the case of
the two circular sequences consisting solely of next and prev pointers respectively).
To avoid the undesirable folding, we exploit the notion of complexity and fold graphs i n
successive rounds. In each round we fold a l l op t imal knots w i th the smallest complexity
(as described later in Section 4.1.2), which should correspond to the currently most
nested, not yet folded, sub-structures. In the previous example, the algori thm starts by
folding D L S s of complexity 2, because the complexity of the confluences i n cyclic D L L s
is given by the number of the D L S s they traverse.

Closure of knots. The closure is introduced for pract ical reasons. It allows one to
identify op t imal knots by their signatures, which is then used to simplify automata
constructions that implement folding on the level of F A s (cf. Section 4.1.2).

Root of an optimal knot. The requirement for an op t imal knot k to have a root
is to guarantee that if an io-graph g'^ containing a box B representing k is accessible,
then the io-graph g'^[k/B] emerging by subst i tut ing k for a sub-edge labelled wi th B is
accessible, and vice versa. It is also a necessary condit ion for the existence of a canonical
forest representation of the knot itself (since one needs to order the cut-points w.r.t . the
costs of the paths leading to them from the input port of the knot) .

4.1.2. Folding in the Abstraction Loop

In this section, we describe the operation of folding together w i th the main abstraction
loop of which folding is an integral part. The pseudo-code of the main abstraction loop is
shown i n A l g o r i t h m 4.1. The algori thm modifies a set of F A s unt i l it reaches a fixpoint.
Folding on line 5 is a sub-procedure of the algori thm which looks for substructures of
F A s that accept op t imal knots, and replaces these substructures by boxes that represent
the corresponding opt imal knots. The operation of folding is itself composed of four
consecutive steps: Identifying indices, Splitting, Constructing boxes, and Applying boxes.
The steps are described i n the following paragraphs.

31

A l g o r i t h m 4.1: Abs t rac t ion Loop

1 Unfold solitaire boxes:
2 repeat
3 Normalise:
4 Abstract:
5 Fold:
6 until fixpoint:

Unfolding of solitaire boxes. Folding is in practice applied on F A s that accept
part ia l ly folded graphs (only some of the op t imal knots are folded). This may lead the
algori thm to hierarchically fold data structures that are not hierarchical, causing the
symbolic execution not to terminate. For example, consider a program that creates
a D L L of an arbitrary length. Whenever a new D L S is attached, the folding algori thm
would enclose it into a box together w i th the t a i l which was folded previously. Th is would
lead to creation of a hierarchical structure of an unbounded depth (see Figure 4.3b),
which would cause the symbolic execution to never reach a fixpoint. Intuitively, this
is a si tuation when a repetit ion of subgraphs may be expressed by an automaton loop
that iterates a box, but it is instead misinterpreted as a recursive nesting of graphs.
This si tuation may happen when a newly created box contains another box that cannot
be iterated by a cycle i n an automaton (e.g. in Figure 4.3b there is always one occurrence
of a box encoding a shorter D L L fragment inside a higher-level box). Th is issue is
addressed in the presented algori thm by first unfolding a l l occurrences of boxes that
cannot be iterated by automata loops before folding is started.

Normalis ing. We define the index of a cut-point u G cps(g(p) as its posi t ion i n the
canonical ordering of cut-points of g^, and the index of a closed subgraph h of g<f, as
the set of indices of the cut-points in sig(h). The folding algori thm expects the input
F A F to satisfy the property that a l l io-graphs of L{F) have the same indices of closed
knots. The reason is that folding starts by identifying the index of an op t imal knot
of an arbitrary io-graph from L(F), and then it creates a box which accepts a l l closed
subgraphs of the io-graphs from g^ w i th the same index. We need a guarantee that
all these subgraphs are indeed opt imal knots. This guarantee can be achieved i f the
io-graphs from L(F) have equivalent interconnections of cut-points, as defined below.

We define the relation
0 0 ^ 2^ x 2^ between indices of closed knots of such that

N
iff there is a closed knot k of g^ w i th the index iV and a closed knot k1 w i th

the index N' such that k and k' have intersecting sets of sub-edges. We say that two
io-graphs g^ and g'^ are interconnection equivalent iff ^g^p — for every two cut-
points u G dom(g) and v G dom(g') w i th the same index, the sets of indices of cut-points
that are reachable from them by straight traces are the same (note the latter requirement
is more general than saying that u and v have the same indices of their spans). Notice
that the relation ~ is reflexive and therefore ^g^ — 1 g' implies that a knot k w i th the
index iV is in g^ iff a knot k' w i th the same index iV is i n g'^.

32

L e m m a 4.3. Given two interconnection equivalent io-graphs g<f, and g'^, N C N is the
index of an optimal knot in g^ iff it is the index of an optimal knot in g'^.

Proof. F i r s t , we prove that for two interconnection equivalent io-graphs g^ and g'^, the
index of a signature of a knot of complexity n of one of the io-graphs is also the index of
a signature of a knot of complexity n of the other io-graph. Let / be the index of a knot
k of g^ of complexity n. Accord ing to the inductive definition of a knot, k can be viewed
as a term tk that consists of literals (which correspond to confluences of g of complexity
at most n according to Point 1 of the definition), occurrences of the W binary operator
(Point 2) and occurrences of the cl o sig unary operator (Point 3), such that the weight
of k constructed i n this way is n. A n example of such a term may be the term

tk = clsig(a W clsig(b W (c W d))) (4.9)

where a, 6, c, and d are confluences.
Due to Lemmas 4 . Id and 4.1c, the signature of a knot k is the same as the signature of

the knot k' such that the term ty is a modification of tk where each union is preceded by
applying closure on its arguments. Note that k' really is a knot because making a closure
is allowed by Point 3 of the definition, and the application of each l*J operator in ty by
Point 2 is s t i l l justified since closure of a knot is extensive (according to L e m m a 4.1g, if
two knots share a sub-edge, their closures share the same sub-edge too). For the previous
example, we would obtain

ty = clsig(clsig(a) W clsig(clsig(b) W clsig(clsig(c) W clsig(d)))). (4.10)

Let k" be a subgraph of g'^ such that ty emerges from ty by substi tut ing each oc
currence of a confluence (literal) d i n ty by a knot c" of g'^ w i th the same index J of
its signature. F i r s t , we observe that k" is indeed a knot of complexity m < n (k" is
either a confluence wi th the index of its signature J , a union of two other knots w i t h
indices of their signatures being subsets of J , or the closure of a knot w i th the index of
its signature J) . Second, we refute the possibil i ty of m < n using contradiction.

Let us suppose that the statement m < n holds and consider the consequences. It must
then hold that c" is buil t by uni t ing confluences C" w i th numbers of cut-points smaller
than n along the way. Then, because g^ and g'^ are interconnection equivalent, it holds
that there needs to exist a set of knots C which have the same indices of signatures
as the confluences in C". However, this means that it is possible to construct d such
that its weight is at most m < n, which is a contradict ion to the assumption that the
complexity of d is n , and therefore m = n.

Next , we show that i f / is the index of an optimal knot k of complexity n i n g^, then it
is the index of an op t imal knot of the same complexity i n g'^ (and vice versa). F r o m the
above, we know that / is the index of a knot k' of complexity n i n g^. We may assume
that k! is closed.

For the maximal i ty condit ion of an opt imal knot, if k' is not a max ima l knot of
complexity n , then it can be united wi th another knot k" to obtain a bigger knot w i t h
the same complexity. However, because g^ and g'^ are interconnection equivalent, there

33

must exist a knot w i th the same index as k" in w i t h the complexity at most n that
intersects w i t h k. T h i s is a contradiction because k would not be max ima l i n this case.
Therefore, k' is maximal .

To prove the existence of a source of k' reachable from the input port, we use the
second point of the definition of interconnection equivalence, which says that cut-points
of g^ and g'^ w i th the same indices must reach by straight traces sets of cut-points w i th
the same indices. Th is means that i f i is the index of a source cut-point of g^ that
reaches a l l cut-points of k' and that is reachable from the input of g<f, by a trace that
does not traverse k, then i must also be the index of a source cut-point of g'^ such that
it reaches a l l cut-points of k' and is reachable from the input port of g'^ by a path that
does not traverse k'. B o t h k and k' thus have a source required by the definition of an
opt imal knot, which is reachable by a straight trace from the i - th cut-point. Th is means
that k' is also opt imal . •

Interconnection equivalence of a l l io-graphs i n the language of an F A F is achieved
by transforming F to the interconnection respecting form. Th is form requires that the
language of every T A of the F A consists of interconnection equivalent trees (when viewing
root references and roots as cut-points w i t h corresponding indices). The normalisat ion
step also includes a transformation into the state uniform and canonicity respecting
form.

Abstract ion. We use abstraction described i n Section 4.2 that preserves the canonicity
respecting form of T A s as well as their state uniformity. It may break interconnection
uniformity, i n which case it is followed by another round of normalisation. Abs t rac t ion
is included into each round of folding for the reason that it leads to learning more
general boxes. For instance, an F A encoding a cyclic list of one part icular length is first
abstracted into an F A encoding a set of cyclic lists of a l l lengths, and the entire set is
then folded into a single box.

Identifying indices. For every F A F entering this sub-procedure, we pick an arbitrary
io-graph g^ G L(F), find a l l its opt imal knots of the smallest possible complexity n , and
extract their indices. B y L e m m a 4.3 and since F is normalised, indices of the opt imal
knots are the same for a l l io-graphs i n L(F). For every found index, the following steps
fold a l l op t imal knots w i t h that index at once. O p t i m a l knots of complexity n do not
share sub-edges (they would be united otherwise), the order i n which they are folded is
therefore not important .

Splitting. For an F A F = (Ai • • • An, IT) and an index / of an op t imal knot found in the
previous step, spl i t t ing transforms F into a (set of) new FA(s) w i th the same language.
The nodes of the borders of / - indexed opt imal knots of io-graphs from L{F) become
roots of trees of io-forests accepted by the new FA(s) . Let s £ / be a posit ion in F such
that the s-indexed cut-points of io-graphs from L(F) reach a l l the other / - indexed cut-
points. The index s exists since an opt imal knot has a root. Due to the definition of the
closure, the border contains a l l / - indexed cut-points, w i th the possible exception of s.

34

Figure 4.4.: Creat ion of Fq and Bq from F®. The subtrees that contain references i,j £ J
are moved into Bq, and replaced by the .B^-labelled sub-term i n Fq.

The s-th cut-point may be replaced i n the border of the / - indexed opt imal knot by the
base e of the / - indexed confluence that is the first one reached from the s-th cut-point
v i a a straight path. We cal l e the entry. The entry e is a root of the op t imal knot, and
the s-th cut-point is the only / - indexed cut-point that might be outside the knot. If e
is indeed different from the s-th cut-point, then the s-th tree of forests accepted by F
must be split into two T A s i n the new F A : The subtree rooted at the entry is replaced
by a reference to a new tree. The new tree then equals the subtree of the original s-th
tree rooted at the entry.

The construction is carried out as follows. We find a l l states and al l of their transitions
that label entry nodes in accepting runs. We denote such states and transitions as entry
states and transitions. For every entry state q, we create a new F A Fq which is a copy
of F but w i th the s-th T A As split to a new s-th T A A's and a new (n + l) - t h T A An+i-
The T A A's is obtained from As by changing the entry transitions of q to accept just
a reference to the new (n + l) - t h root and by removing entry transitions of a l l other entry
states (the entry states are processed separately i n order to preserve possibly different
contexts of entry nodes accepted at different states). The new T A An+i is a copy of As

but w i t h the only accepting state being q. Note that the construction is justified since
due to state uniformity, each node that is accepted by an entry transi t ion and that does
not appear i n a run below a node that is also accepted by an entry transi t ion is an entry
node. In the result, the set J = (I\ {s}) U { n + 1} contains the positions of the trees of
forests of Fq rooted at the nodes of the borders of / - indexed opt imal knots.

Construct ing boxes. For every Fq and J being the result of spl i t t ing F according to
an index / , a box Bq is constructed from F^. We transform T A s of Fjj indexed by the
elements of J. The resulting T A s w i l l accept the original trees modified in such a way
that their roots are str ipped from the children that cannot reach a reference to J. To
tu rn these T A s into an F A accepting opt imal knots w i th the index / , it remains to order
the obtained T A s and define port indices. Roughly, the input index of the box w i l l be
the posi t ion j to which we place the modified (n + l) - t h T A of Fq (the one that accepts
trees rooted at the entry). The output indices are the positions of the T A s wi th indices
J\{j} i n F® which accept trees rooted at cut-points of the border of the op t imal knots.

A p p l y i n g boxes. Th is is the last step of folding. For every F®, J, and Bq which are
the result of spl i t t ing F according to an index / , we construct an F A Fq that accepts

35

graphs of F where knots enclosed i n Bq are substi tuted by a sub-edge wi th the label Bq.
It is created from F® by (1) leaving out the parts of root transitions of its T A s that
were taken into Bq, and (2) adding the sub-term Bq{r\,..., rm) to the sub-terms of root
transitions of the (n + l) - t h component of Fq (these are transitions used to accept the
roots of the op t imal knots enclosed i n Bq). The states r\,..., r m are fresh states that
accept root references to the appropriate elements of J (to connect the borders of knots
of Bq correctly to the graphs of Fq). The F A Fq now accepts graphs where op t imal knots
of graphs of L(F) w i t h the signature / are hidden inside Bq. Creat ion of Bq and of its
counterpart Fq from F® is i l lustrated in Figure 4.4 where G J .

Dur ing the analysis, the discovered boxes must be stored in a database and tested for
equivalence wi th the newly discovered ones since the alphabets of F A s would otherwise
grow wi th every operation of folding ad infinitum. Tha t is, every discovered box is given a
unique name, such as " D L L " for the box from Figure 3.2b, and whenever a semantically
equivalent box is folded, the newly created sub-term is labelled by that name. This
step offers an opportuni ty for introducing another form of acceleration of the symbolic
computat ion. Namely, when a box B is found by the procedure described above, and
another box B' w i t h a name N s.t. \B'\ C \B\ is already in the database, we associate
the name N w i th B instead of B' and restart the analysis (i.e. start the analysis from
the scratch, remembering just the updated database of boxes). If, on the other hand,
\B\ C \B'\, the folding is performed using the name N of B', thus over-approximating
the semantics of the folded F A . A s presented i n Section 4.3, this variant of the procedure,
called folding by inclusion, performs i n some difficult cases significantly better than the
former variant, called folding by equivalence.

4.2. Abstraction

The abstraction we use in our analysis is based on the general techniques described
in the framework of abstract regular (tree) model checking [BHRV12] . In this set
t ing, abstraction over-approximates the language of an automaton by collapsing some
of its states (i.e. merging them together, potential ly introducing new loops) according
to a given equivalence relation on the states of the automaton. We, in particular, bu i ld
on the finite height abstraction of T A s , which uses the equivalence of languages of a fi
nite height k, denoted as The equivalence is defined as q q' iff q and q' accept
trees wi th the same sets of prefixes of the height at most k (the prefix of height k of
a tree is a subgraph of the tree which contains a l l paths from the root of length at
most k). The equivalence is further refined to deal w i th various features special for
F A s . Namely, it has to work over tuples of T A s and cope w i t h the interconnection of
the T A s v i a root references, w i th the hierarchical structuring, and wi th the fact that we
use a set of F A s instead of a single F A to represent the abstract context at a particular
program location.

Refinements of F i r s t , i n order to mainta in the same basic shape of the heap
after abstraction (such that no cut-point would e.g. suddenly appear or disappear),

36

we refine by requiring that equivalent states must have the same spans (as defined i n
Section 3.1). W h e n applied on « 1 , which corresponds to equivalence of data types, this
refinement provided enough precision for most of the case studies presented later on,
w i t h the exception of the most difficult ones, namely programs wi th skip lists [Pug90].
To verify these programs, we needed to further refine the abstraction to dist inguish
automata states whenever trees from their languages encode tree components containing
a different number of unique paths to some root reference, but some of these paths are
hidden inside boxes. In particular, two states q, q' can be equivalent only if for every
io-graph from the graph language of the F A , for every two nodes u, v € dom(g(p)
accepted by q and q', respectively, i n an accepting run of the corresponding T A , the
following holds: For every w G cps(g(p), bo th u and v have the same number of outgoing
sub-edges (selectors) i n [g^J which start a trace i n fg^J leading to w. Accord ing to our
experiments, this refinement does not cost almost any performance, and hence we use it
by default.

Abstract ion for Sets of F A s . O u r analysis works wi th sets of F A s . We observed that
abstracting ind iv idua l F A s from a set of F A s i n isolation is sometimes slow since i n each
of the F A s , the abstraction widens some selector paths only, and it takes a while un t i l
an F A in which a l l possible selector paths are widened is obtained. For instance, when
analysing a program that creates binary trees, the symbolic analysis generates many
F A s before reaching a fixpoint, each of the F A s accepting a subset of binary trees w i t h
some of the branches restricted to a bounded length (e.g. trees wi th no right branches,
trees w i t h a single right branch of length one, two, etc.). In such cases, it helps when the
abstraction has an opportuni ty to combine information from several F A s . For instance,
consider an F A that encodes binary trees degenerated to an arbi trar i ly long left branch,
and another F A that encodes trees degenerated to right branches only. Abs t rac t ing these
F A s i n isolation has no effect. However, if the abstraction is allowed to collapse states
from both of these F A s , it can generate an F A accepting a l l possible branches.

Unfortunately, the natural solution to achieve the above, which is to unite F A s before
abstraction, introduces a much too coarse over-approximation, even before the abstrac
t ion itself is applied. Instead, we enrich the automata structure of an F A F by T A states
and transitions of another one, omit t ing introduct ion of new root states. W h i l e this does
not change the language of F, it allows the abstraction to combine the information from
both F A s . In particular, before abstracting an F A F = (Ai • • • An, TT) from a set S of
F A s , we pre-process it as follows.

(1) We pick F A s F' = (A'i • • • A'n,7r) G S that are compatible w i th F in that they have
the same number of T A s , the same port references, and for each 1 < i < n, the root
states of A\ have the same spans as the root states of A%.

(2) For a l l such F' and each 1 < i < n, we add transitions and states of A\ to Ai, but
we keep the original set of root states of Ai- Since we assume that the sets of states of
T A s of different F A s are disjoint, the language of Ai stays the same, but its structure is
enriched, which helps the abstraction to perform a coarser widening.

37

4.3. Experimental Results

We have implemented the above proposed techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. In the exper
iments, we compare two configurations of Forester, and we also compare the results of
Forester w i th those of Predator [DPV13] , which uses a graph-based memory represen
tat ion inspired by separation logic w i t h higher-order list predicates. We do not provide
a comparison wi th Space Invader [YLB+08] and S L A y e r [BCI11], based also on separa
t ion logic w i t h higher-order list predicates, since in our experiments they were always
outperformed by Predator.

In the experiments, we considered programs wi th various types of lists (singly and
doubly linked, cyclic, nested, w i th skip pointers), trees, and their combinations. In the
case of skip lists, we had to sl ightly modify the algorithms since their original versions
use an ordering on the data stored i n the nodes of the lists. Th is is done for the reason
to guarantee that the search window delimited on some level of skip pointers is not left
on any lower level of the skip pointers. In our modification, we avoided such a scenario
by adding an addi t ional explicit end-of-window pointer. In Chapter 5, we describe an
extension of the analysis that takes into consideration also the data fields i n the nodes
and the addi t ional pointer is not necessary. We checked the programs for memory safety
only, i.e. we d id not check other properties (such as that the result of a sorting procedure
is indeed a sorted permutat ion of the original).

Table 4.1 gives running times in seconds (the average of 10 executions) of the tools on
our case studies. "Basic" stands for Forester w i th the abstraction applied on ind iv idua l
F A s only and " S F A " stands for Forester w i th the abstraction for sets of F A s . The value
T I M E O U T means that the running t ime of the tool exceeded 30 minutes, and the value
E R R O R means that the tool reported a spurious error. The names of the examples i n
the table contain the name of the data structure manipulated in the program, which
is " S L L " for singly l inked lists, " D L L " for doubly l inked lists (the " C " prefix denotes
cyclic lists), "tree" for binary trees, "tree+parents" for binary trees wi th parent pointers.
Nested variants of S L L (D L L) are named as " S L L (D L L) of" and the type of the nested
structure. In particular, " S L L of 0/1 S L L s " stands for S L L of a nested S L L of length 0
or 1, and " S L L of 2 C D L L s " stands for S L L whose each node is a root of two C D L L s .
The "+head" flag stands for a list where each element points to the head of the list
and the subscript "L inux" denotes the implementat ion of lists used i n the L i n u x kernel,
which uses type casts and a restricted pointer arithmetic. The " D L L + s u b d a t a " stands
for a k ind of a D L L w i t h data pointers point ing either inside the list nodes or optionally
outside of them. For a "skip l is t" , the subscript denotes the number of skip pointers.
In the example "tree+stack", a randomly constructed tree is deleted using a stack,
and " D S W " stands for the Deutsch-Schorr-Waite tree traversal (the L inds t rom variant).
A l l experiments start w i t h a random creation and end wi th a disposal of the specified
structure; the indicated procedure (if any) is performed i n between. The experiments
were run on a machine wi th the Intel i7-2600 (3.40 G H z) C P U and 1 6 G i B of R A M .

The table further contains the column "boxes" where the value " X / Y " means that X
manually created boxes were provided to the analysis that d id not use learning while

38

Table 4.1.: Results of the experiments

Example basic S F A boxes Predator

S L L (delete) 0.03 0.04 0.04
S L L (bubblesort) 0.04 0.04 0.03
S L L (mergesort) 0.08 0.15 0.10
S L L (insertsort) 0.05 0.05 0.04
S L L (reverse) 0.03 0.03 0.03
S L L + h e a d 0.05 0.05 0.03
S L L of 0/1 S L L s 0.03 0.03 0.11

SLLLinux 0.03 0.03 0.03
S L L of C S L L s 2.07 0.73 3 / 4 0.12
D L L (reverse) 0.04 0.06 1 / 1 0.03
D L L (insert) 0.06 0.07 1 / 1 0.05
D L L (insertsort 1) 0.35 0.40 1 / 1 0.11
D L L (insertsort2) 0.11 0.12 1 / 1 0.05
D L L of C D L L s 5.67 1.25 8 / 7 0.22
D L L + s u b d a t a 0.06 0.09 - / 2 T I M E O U T
C D L L 0.03 0.03 1 / 1 0.03
S L L of 2CDLLsLmux 0.16 0.17 13 / 5 0.25
skip list 2 0.66 0.42 - / 3 T I M E O U T
skip lists T 9.14 - / 7 T I M E O U T
tree 0.14 0.14 E R R O R
tree+parents 0.18 0.21 2 / 2 T I M E O U T
tree+stack 0.09 0.08 E R R O R
tree (D S W) 1.74 0.40 E R R O R
tree of C S L L s 0.32 0.42 - / 4 E R R O R

Y boxes were learnt when the box learning procedure was enabled. The value "-" of X
means that we d id not run the given example wi th manual ly constructed boxes since their
construction was too tedious. If user-defined boxes are given to Forester i n advance, the
speedup is i n most cases negligible, w i th the exception of " D L L of C D L L s " and " S L L of
C S L L s " , where it is up to 7 times. In a majori ty of cases, the learnt boxes were the same
as the ones created manually. In some cases, such as " S L L of 2CDLLsLmux" , the learning
algori thm found a smaller set of more elaborate boxes than those provided manually.

In the experiments, we use folding by inclusion as defined i n Section 4.1.2. For simpler
cases, the performance matched the performance of folding by equivalence, but for the
more difficult examples it was considerably faster (such as for "skip list2" when the
t ime decreased from 3.82 s to 0.66 s), and only when it was used the analysis of "skip
lists" succeeded. Further, the implementat ion folds op t imal knots of the complexity
< 2, which is enough for the considered examples. F ina l ly , note that the performance of
Forester i n the considered experiments is indeed comparable wi th that of Predator even
though Forester can handle much more general data structures.

39

4.4. Conclusion

This chapter presented an extension of the shape analysis of [HHR+12], presented i n
Chapter 3. Unl ike the original analysis, the extension works fully automatically, without
the need of the user to provide any information. For that purpose, we have proposed
a technique of automatical ly learning F A s called boxes to be used as alphabet symbols i n
higher-level F A s when describing sets of complex heap graphs. We also proposed a way
how to efficiently integrate the learning wi th the main analysis algori thm. Fina l ly ,
we have proposed a significant improvement—both i n terms of generality as well as
efficiency—of the abstraction used i n the original framework.

A n implementat ion of the approach presented i n this chapter inside the Forester tool
allowed us to fully-automatically handle programs over quite complex heap structures,
including a data-independent modification of 2-level and 3-level skip lists, which—to
the best of our knowledge—we were the first to fully automatical ly verify (the recent
work of [LGQC14] , based on second-order bi-abduct ion in separation logic, is the only
other approach we are aware of that also succeeded). A t the same t ime, the efficiency
of the analysis is comparable wi th other state-of-the-art analysers even though they
handle less general classes of heap structures. In the next chapter, we introduce yet
another extension of the forest automata-based shape analysis, an extension that takes
into consideration relations among data values stored inside memory cells and, therefore,
allows verification of data structures that depend on data.

40

5. Forest Automat a-Based Shape
Analysis of Programs with Data

In the previous two chapters, we focused on shape analysis that used only pointer fields
of data structures and abstracted from non-pointer ones. Th is is in many cases sufficient,
however, there are also cases where it is necessary to track the data that are stored i n
data structures to be able to correctly verify their higher-level and shape invariants, or
even memory safety. Let us now give two examples of such data structures.

Fi rs t , consider a binary search tree (B S T) . One of the higher-level invariant of a B S T
is that for every node u, the data values of a l l nodes in the left subtree of u are less
than the data value stored i n u, and the data values of a l l nodes in the right subtree
of u are greater than the data value of u. The procedure that inserts a new data value
d into a B S T (given i n Figure 5.1) uses the variable x to descend the B S T and find
the posi t ion at which the node newNode w i th the new data value d should be inserted.
The procedure uses the relation between the new data value and the root of the tree to
determine whether d w i l l be stored i n the left or the right subtree (or not inserted at a l l
in the case it is equal to the data value of the root). Failure to track this relation may
cause the analysis to report a spurious counterexample for some operation that relies on
the higher-level invariant.

Second, the routines for manipula t ing a skip list [Pug90] rely on the property that the
data values of lists on a l l levels are always sorted. Consider, for example, that we are
inserting the value 7 into the 2-level skip list i n Figure 5.2. The procedure for inserting
starts i n the node labelled as head and first tries to find the insertion point at level 2
(i.e. the level that uses the n2 pointers) by testing whether the inserted value is greater
than the value in h e a d — t h e successor of head. In this case, it is not, so the procedure
descends to level 1 and, because this is the ground level, traverses the list over the n i
pointers and finds the exact posit ion where the new node w i l l be inserted. Because of
the sortedness property, we know that the new node cannot be inserted anywhere behind
the node h e a d — m 2 . Note that in this case, not only the sortedness property would be
lost when not treating the data, but even the shape invariant would be corrupted!

Automated verification techniques that a im for the verification of such data structures
need to handle both infinite sets of reachable heap configurations that have a form of
complex graphs and the different possible relationships between data values embedded
in such graphs. The few approaches that can automatical ly reason about data properties
are often l imi ted to specific classes of structures, mostly singly l inked lists (SLLs) , and/or
are not fully automated (as also discussed later).

In this chapter, we propose an extension of the forest automata-based shape analysis
that was described i n Chapter 3 and further augmented i n Chapter 4. O u r extension

41

0 Node *insert(Node *root, Data d)
1 {
2 Node* newNode = calloc(sizeof(Node));
3 newNode—>data = d;
4 i f (root == NULL) return newNode;
5 Node *x = root;
6 while (x—>data ! = newNode—>data)
7 {
s i f (x—>data < newNode—>data)
9 i f (x->right ^ NULL) x = x-Kright;
10 eise {
11 x—>right = newNode;
12 break;

}
14 eise
15 i f (x->left ^ NULL) x = x->left;
16 eise {
17 x—>left = newNode;
18 break;

}
20 }
21 i f (x—>data == newNode—>data) free (newNode) ;
22 x = NULL;
23 return root;
24 }

Figure 5.1.: A function that inserts a new node into a B S T and returns a pointer to its
root node

allows us to represent relationships between data elements stored inside heap structures.
A s a consequence, this method makes it possible to automatical ly verify programs that
depend on relationships between data, such as programs manipula t ing various search
trees, lists, and skip lists, and to also verify e.g. different sorting algorithms. Technically,
we express relationships between data elements associated wi th nodes of the heap graph
by two classes of constraints. Local data constraints are associated w i t h transitions of
tree automata and capture relationships between data of neighbouring nodes i n a tree
of the forest decomposition of a heap graph; they can be used e.g. to represent ordering
internal to some structure such as a binary search tree. Global data constraints are
associated w i t h states of T A s (even states of different T A s) and capture relationships
between data in distant parts of the heap. In order to obtain a powerful analysis based on
such extended forest automata, the entire analysis machinery must be also be extended,
including a need to develop mechanisms for propagating data constraints through F A s ,
to adapt the abstraction mechanisms of abstract regular tree model checking (A R T M C) ,
to develop a new inclusion check between extended F A s , and to define extended abstract
transformers.

42

n 2 n 2 n 2

—oo 8 9 +oo —oo
n i

3
n i

5
n i o n i

9
n i

11
n i

+oo

3 5 11

head t a i l

Figure 5.2.: A n example of a 2-level skip list

The presented approach has been implemented as a further extension of the Forester
tool . We have applied the tool to verification of data properties, notably sortedness, of
sequential programs wi th data structures, like various forms of singly and doubly linked
lists (D L L s) , possibly cyclic or shared, binary search trees (BSTs) , and even 2-level and
3-level skip lists. The verified programs include operations like insertion, deletion, or
reversal, and also bubble-sort and insert-sort bo th on S L L s and D L L s . The experiments
confirm that our approach is not only fully automated and rather general, but also quite
efficient, outperforming many previously known approaches even though they are not of
the same level of automation or generality. In the case of skip lists, our analysis is the
first fully-automated shape analysis which is able to handle fully-hedged skip l i s t s 1 .

Related W o r k . Verification of properties depending on the ordering of data stored
in S L L s was considered i n [BBH+11], which translates programs wi th S L L s to counter
automata. A subsequent analysis of these automata allows one to prove memory safety,
sortedness, and terminat ion for the original programs. The work is, however, strongly
l imited to S L L s . In the work presnted in this chapter, we get inspired by the way
that [B B H + 1 1] uses for dealing wi th ordering relations on data, but we significantly
redesign it to be able to track not only ordering between simple list segments but rather
general heap shapes described by F A s . In order to achieve this, in addi t ion to proposing
a suitable way of combining ordering relations w i t h F A s , we also had to significantly
modify many of the operations used over F A s .

In [A A C J09], another approach for verifying data-dependent properties of programs
w i t h lists was proposed. However, even this approach is strongly l imi ted to S L L s , and it
is also much less efficient than our current approach. In [A H H + 1 3] , concurrent programs
operating on S L L s are analysed using an adaptation of the transitive closure logic (see
e.g. [BR06]), which also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic linked
data structures was considered i n the context of the T V L A too l [LRS05] as well . Unl ike
our approach, [LRS05] assumes a fixed set of shape predicates and uses inductive logic
programming to learn predicates needed for t racking non-pointer data. The experiments
presented i n [LRS05] involve verification of sorting and stabil i ty properties of several
programs on S L L s (merging, reversal, bubble-sort, insert-sort) as well as insertion and
deletion in B S T s . We do not handle stability, but for the other properties, our approach

1 Note that in the experiments presented in Chapter 4, where we ignored the data stored in the nodes,
we had to modify the insertion procedure for a skip list by introducing an explicit end-of-window
pointer for every level of the skip list, so that the shape invariant did not depend on ordering relations.

43

is much faster. Moreover, for B S T s , we verify that a node is greater/smaller than a l l the
nodes in its left/right subtrees (not just than the immediate successors as i n [LRS05]).
Another work that combines the T V L A framework wi th reasoning on data is [BHT06] ,
which combines T V L A wi th predicate abstraction implemented in B L A S T . The approach
was experimentally run on several l is t -manipulat ing programs only.

A n approach based on separation logic extended wi th constraints on the data stored
inside dynamic l inked data structures and capable of handling size, ordering, as well
as bag properties was presented i n [CDNQ12b] . Us ing the approach, various programs
w i t h S L L s , D L L s , and also A V L trees and red-black trees were verified. The approach,
however, requires the user to manual ly provide inductive shape predicates as well as loop
invariants. Later , the need to provide loop invariants was avoided i n [QHL+13], but the
need to manual ly provide inductive shape predicates remains.

The work considered in [CR08] extends the previous work [CRN07] w i th data con
straints. The method s t i l l needs shape invariants extended wi th data to be provided
manually. The jo in and widening operations used on the shape level are extended w i t h
subsequent jo in and widening on the data level to cope wi th the data dur ing the analysis.

Another work that targets verification of programs wi th dynamic l inked data struc
tures, including properties depending on the data stored i n them, is [ZKR08] . It gen
erates verification conditions i n an undecidable fragment of higher-order logic and dis
charges them using decision procedures, first-order theorem proving, and interactive
theorem proving. To generate the verification conditions, loop invariants are needed.
These can either be provided manually, or sometimes synthesised semi-automatically
using the approach of [WKZ+07] . The latter approach was successfully applied to sev
eral programs wi th S L L s , D L L s , trees, trees w i t h parent pointers, and 2-level skip lists.
However, for some of them, the user s t i l l had to provide some of the needed abstraction
predicates. A further extension of this approach given in [WP10] increases the degree
of automation and synthesises the loop invariants automatical ly using counterexample
guided refinement.

Several works, including [BDES12] , define frameworks for reasoning about pre- and
post-conditions of programs wi th S L L s and data. Decidable fragments that can express
more complex properties on data than we consider are identified, but the approach
does not perform a fully automated verification, only checking of pre-post condit ion
pairs. Other approaches presenting various logical fragments for reasoning about heaps
and the data stored i n them together w i t h decision procedures of these fragments were
presented e.g. in [MN05, R B H C 0 7 , C L Q R 0 7 , LQ08] . None of these approaches has been
extended to a fully automatic verification method.

Outline. In Section 5.1, we present our extension to the forest automata formalism
that uses constraints to specify relationships between data, values. Then , in Section 5.2,
we describe the changes we made to the shape analysis algori thm that allow it to handle
programs that depend on ordered data. Section 5.3 shows how our procedure handles
boxes, used in order to allow processing of more complex data structures. Section 5.4
describes our implementat ion of the proposed ideas as well as the obtained experimental
results and Section 5.5 concludes the chapter.

44

5 .1 . Forest Automata with Data Constraints

This section presents several extensions to the basic definitions presented in Chapters 2
and 3 that w i l l be used throughout this chapter.

Graphs and Forests with Data . Let us fix a data domain D w i t h a total order ^
(in the following, we also use the symbols -<, >-, >z, and = w i t h the obvious meaning).
We extend the notion of a graph g : V —>• E x V* w i th a data labelling Xg that assigns
every node a value, formally, Xg : V —> (D U { T }) where T g" D is interpreted as
an undefined value. Note that data labellings extend to trees because a tree is only
a special case of a graph, i n part icular a graph wi th a single root. For the case of forests,
though, we need to make sure that the data labell ing of the root references are consistent
w i th the data labell ing of the respective roots.

We say that a forest t\ • • • tn is composable if Xtk(u) = Xt^rootitj)) where itk(u) = j
for any root reference u in any tree tk of the forest. A s a consequence, the operator ®
that composes forests into graphs is defined only for composable forests. The data
labell ing Xg> of the resulting graph g' = ®t\ • • • tn is then obtained s imply as the union of
data labellings of a l l trees from t\ • • • tn, restricted to the domain of g'. We w i l l use the
following notat ion to talk about relations of data values of nodes wi th in a forest. G iven
nodes u and v of trees t and t' of a forest respectively, and a relation ~ G ,=,>-,
we denote by u ~ r r v that Xt(u) ~ Xt/(v) and we denote by u ~ r a v that Xt(u) ~
Xf(w) for a l l non-root-reference nodes w i n the subtree of t' rooted at v, including the
node v itself. We cal l these two types of relationships root-root and root-all relations
respectively. The definition of io-graphs and io-forests w i th data is a straightforward
extension obtained by adding data labellings to the corresponding concepts introduced
in Section 3.1.

Tree A u t o m a t a with D a t a Constraints. For the use i n this chapter, we also extend
the notion of tree and forest automata to consider data. Because we focus on the
verification of programs that work wi th ordered data, when we represent sets of heap
graphs wi th forest automata, we do not remember exact values stored i n nodes of heap
graphs, but only the relations among them instead. Let us first start w i th the modified
definition of a tree automaton.

A tree automaton wi th data constraints (or s imply a tree automaton, T A) is a tuple
A = (Q , E , Ac, R = {qo}) where Q is a nonempty finite set of states, E is a ranked
alphabet, R C Q is a singleton set of root states containing the root state qo (we use
root(A) to denote the root state of A), and A c is a set of (constrained) transitions.
Each transi t ion is of the form q —>• a(q\,..., qn) : c where n > 0, q, q\,..., qn € Q, a € E ,
and c is a set of local constraints. Every local constraint is of the form 0 ~ r r i or 0 ~ r a i
where ~ G {-<, ^ , >-, >z, =} (with = viewed as syntactic sugar for a pair of constraints
that use •< and >z) and 1 < i < n.

Intuitively, a local constraint of the form 0 ~ r r i associated wi th a transi t ion of A of
the form q —>• a(q\,..., qn) states the following: For each tree t' accepted by A, the data
value of the root of the subtree t of t' that is accepted at state q is related by ~ wi th

45

the data value of the root of the i - th subtree of t accepted at state A local constraint
of the form 0 ~ r a i states that, i n addi t ion to the constraint imposed by 0 ~ r r i , the
relation ~ also holds between q and al l nodes in the i - th subtree of t.

Moreover, we also extend the not ion of a run of A. In the data setting, tree automata
accept trees wi th data. A run of A over a tree t w i t h data label l ing Xt is a mapping
p : dom{t) —>• Q such that

1. the root of t is mapped to the root state of A, p(root(t)) = qo (a simplification
that considers only accepting runs),

2. for each node v G dom{t) where q = p(v), if qi = p(S(v)i) for 1 < i < \S(v)\, then
A c has a transi t ion q —>• £(v)(qi,... ,q\s(v)\) '• c (the definition of a run of a T A
from Section 2.2), and

3. for each constraint 0 ~ r z i in c where x G { r , a } , it holds that v ~ r z S(v)i
(consistency of data constraints).

Note that for the sake of simplification, a l l runs start from the root state. We define the
language of A as L(A) = {t | there is a run of A over t}.

Example 5.1. BSTs, such as the tree labelled by root but without the variable x in
Figure 5.3a, are accepted by the TA A = ({qi, q±}, S , A c , {qi}) (we use q\ to denote
that qi is a root state), where A c contains the following transitions (we ignore the data
selector in the TA symbols):

qi ->• left ,r ight (gi ,g i) : 0 >- r a 1,0 ^ r a 2 qi -> l e f t , right(q 1 , q±) : 0 >- r a 1
qi ->• le f t , r igh t (q± ,q i) : 0 -< r a 2 qi ->• l e f t , r i g h t ^ _ L)

?± -»• -J-0

77ie local constraints of the transitions express that the data value in a node is always
greater than the data values of all nodes in its left subtree and less than the data values
of all nodes in its right subtree. •

Forest A u t o m a t a with D a t a Constraints. We also extend F A s wi th data con
straints. A forest automaton with data constraints (in this chapter, we w i l l s imply say
a forest automaton, F A) over S is a triple of the form F = (Ai • • • An, TT, tp) where:

• A\ • • • An, w i th n > 0, is a sequence of T A s over the alphabet S U { 1 , . . . , n} whose
sets of states Qi,..., Qn are pairwise disjoint,

• 7r is a sequence of port indices as defined i n Section 3.1, and

• (p is a set of global data constraints between the states of A\ • • • An, each having the
form q ~ r r q' or q ~ r a q' where q, q' G UILi Qi> a^ l e a s t one of q, q' is a root state
and ~ G { ^ , ^ , ^ , ^ , = } (with = again viewed as syntactic sugar). Intuitively,
q ~ n q' says that for any two nodes v and v' in a forest that are labelled i n
accepting runs of T A s by q and q' respectively, the data relation v ~ r z v' must
hold.

46

tl
root root

_L ± _L ± _L ±

(a) A graph (b) A forest decomposition

Figure 5.3.: Decomposi t ion of a graph into trees

A n io-forest (ti • • -£„,71"') w i th data is accepted by F i f there are runs pi,... ,pn such
that pi is a run of Ai over ti for every 1 < i < n, the port indices match, TT' = TT, and for
each global constraint of the form q ~ r z q' where x G { r , a}, q is a state of some .4« and
<j' is a state of some Aj, we have w ~ r z v' whenever pi{v) = q and Pj(v') = q'. The forest
language of F , denoted as Lf(F), is the set of io-forests accepted by F, and its graph
language is the set of io-graphs L(F) obtained by applying (g) on composable io-forests
accepted by F2.

Note that global constraints can imply some local ones, but they cannot in general be
replaced by local constraints only. Indeed, global constraints can relate states of different
automata as well as states that do not appear i n a single transi t ion and therefore relate
nodes that can be arbi trar i ly far from each other and unrelated by any sequence of local
constraints.

5.2. FA-based Shape Analysis with Data

The extension i n this chapter uses the analysis described in Section 3.2 w i t h several
modifications. F i r s t , we consider a single data selector, i.e. DSel = {data} . The data
labell ing of heaps is based on this selector i n such a way that for a node v from a heap
gSf, its data value Xgs±(v) is set to the value of the d a t a selector (or T i f undefined).

For the sake of brevity of the used examples, i n this chapter we w i l l represent program
states using the so-called abstract configurations. E a c h abstract configuration is a pair
(o~,F) where a maps every variable to _L, an index of a T A i n F, or to an undefined
value, and F is an F A representing a set of heaps (any such configuration can be easily
transformed into the form used in Section 3.2 by creating a stack frame node in F that
encodes a). We do not write port indices i n F A s from abstract configurations. Further
i n our examples, we w i l l not write the often used transi t ion q± —>• _L() that we consider
impl ic i t ly present i n a l l sets of transitions of T A s (in figures, we simplify the state to _L).

2 Note that from the definitions of languages of TAs and FAs, the effect of the ~ r a data constraint
(both local and global) is local to the TAs it is related to.

47

F = (Ai A2,<p)
<r(root) = 1, cr(x) = 2

r l e f t , r i g h t (qi, 2) : 0 >- r a 1, 0 -< r a 2

A : < g i ->• l e f t , r i g h t (g ± , g 2) : 0 -< r a 2

[g 2 -> left,right (g_L , g_L)
f ->• l e f t , r i g h t (g _ L , g 3) : 0 - < r a 2

2 ' 1 93 -> l e f t , r i g h t (g _ L , g _ L)

= f 9x >~ra ^ , ^ 3 ^ r a <?r, 1

^ 1 <?r >~ra 9 x , 9 l -<ra <?x, 92 -<ra <?x J

Figure 5.4.: A n example of an abstract configuration that is a possible representation of
the concrete configuration shown i n Figure 5.3b

Example 5.2. Figure 5.3a shows a possible heap of the program in Figure 5.1. Nodes
are shown as circles, labelled by their data values. Selectors are shown as edges. Each
selector points either to a node or to _L (denoting NULL). Some nodes are labelled by
a pointer variable that points to them. The node with data value 15 is a cut-point since
it is referenced by variable x. Figure 5.3b shows a tree decomposition of the graph into
two trees, one rooted at the node referenced by root, and the other rooted at the node
pointed by x. The r i g h t selector of the root node in the first tree points to root reference
2 (i denotes a reference to the i-th tree t%) to indicate that in the graph, it points to the
corresponding cut-point. •

Example 5.3. Figure 5.4 illustrates an abstract configuration {cr,F) that is a possible
representation of the concrete configuration shown in Figure 5.3b. •

The symbolic execution from Section 3.2 is modified for considering the data rela
tions i n the following way. Some of the considered operations require the so-called
constraint saturation. The saturation procedure transforms the F A s into the saturated
form, meaning that they expl ic i t ly include a l l (local and global) data constraints that
are consequences of the existing ones.

The automata abstraction used i n widening is modified by also taking into account the
data relations. In particular, for a pair of states q and q' that are to be merged according
to the abstraction procedure from Section 4.2, we further impose the requirement that
they occur in isomorphic global data constraints. Th is requirement means that q ~ r z V
occurs as a global constraint i f and only if q' ~r:r p occurs as a global constraint, for
any p and x, and it guarantees that the abstraction does indeed over-approximate (if
we merge a pair of states w i t h incompatible constraints, the language of the T A may
become empty).

In the following subsections, we provide more detai l on some of the major steps of
our analysis. Section 5.2.1 describes the constraint saturation procedure, Section 5.2.2
describes the modifications made to abstract transformers, Section 5.2.3 describes the
changes in the normalisation, and, finally, Section 5.2.4 describes our modified check for
inclusion.

'18

Table 5.1.: Rules for inferring global constraints from global constraints.

/ 1 1 II q ~rr q q q
j G - T R A N S

q (~ o ~)TX q
q ~ r r q

G - R E F L ; G - D U A L

q - a q q ~rr i
q ~ r r q L e a f (q1)

, G - S T R E

q ~ra q
q ~ r a q ^ q ~ r x 4 ^

-. G - W E A K I G - W E A K 2

q ~ r r q q ^ r x q
root(A) ~ra root(A') q' G Q(A')

— G - R O O T A L L

root (A) ~ r a q

• We assume that x G {r, a},

•
• Leaf [q') means that q' has only nullary outgoing transitions, and

• Q(A') is the set of states of the T A A'.

5.2.1. Constraint Saturation

In this section, we show the saturation rules that are used to deduce new data constraints
from already existing ones. The saturation rules are used in a fixpoint computat ion to
deduce both global and local constraints from global constraints, local constraints, or
their combinations.

Before the description of the saturation rules, we first introduce some notation. For
relations ~ and ~ ' on D , let ~ o IQQ the weakest relation from {^rsj —TXI^~TX•>

for x G {r , a}, such that for a l l ^1,^2,^3 G D , it holds that d\ ~ d<i A d<i ~ ' 0(3 = >
d1 (~ o ~ ') d 3 . We write ~ C ~ ' iff d ~ d! implies d ~'d', and we define ~ _ 1 by d ~ _ 1 d!
iff d' ~ d. We say that a constraint q ~'iy q' is a weakening of a constraint q ~ r z q' iff it
holds that ~ C ~ ' and, i n the case y is a (i.e. a root-al l constraint), it also holds that x
is a. The saturation rules that can be used are as follows.

Inferring global constraints from global constraints

The saturation rules for inferring new global constraints from already existing ones, as
shown in Table 5.1, are based on the following principles:

49

Table 5.2.: Rules for inferring local constraints from local constraints.

0 ~ r a i G c
L - R O O T R O O T

0 ~ r r J £ C

0 ~ rx i G c
L - W E A K

0 ~ r r i G C Leaf(%)
L - S T R E

0 ~ . TI i G c 0 ~ r a i G C

• We assume the transi t ion g —>• a(qi,..., ftj) : c and 1 < z < n,

• x G {r, a},

• — G {^, >r}, and

• Leaf (ft) is true iff g has only mil iary outgoing transitions.

1. properties of the ordering relations:

• G - T R A N S is based on transit ivity,

• G - R E F L is based on the reflexivity of ^ and >z, and

• G - D U A L is based on the duali ty of ~< and >~.

2. strengthening of existing data constraints:

• G - S T R E states that each global constraint q ~ r r q' where q' has nullary out
going transitions only can be strengthened to q -<ra q',

3. weakening of existing data constraints:

• G - W E A K 1 states that from q ~ r a q', we can infer a weaker constraint q ~ r r q',

• G - W E A K 2 gives a rule for inferring the weaker constraints q ^TX q' from
q -<TX q' and q yTX q' from q >-rx q' for any x G {r, a},

4. properties of the ra relation:

• G - R O O T A L L states for a pair of T A s A and A' of the given F A that i f q'
is a state of A', then a global constraint root (A) ~ r a root (A1) implies the
constraint root(^4) ~ r a q'.

Inferring local constraints from local constraints

The saturation rules (shown i n Table 5.2) that infer new local constraints from already
existing ones i n a transit ion q —>• a(q\,..., qn) '• c are, for 1 < i < n, based on the
following:

1. weakening the existing constraints: i f q —>• a(qi,..., qn) : c is a transit ion, then

• L - R O O T R O O T weakens a ~ r a relation to a ~ r r relation,

• L - W E A K infers the weaker constraints 0 ^TX i from 0 -<TX i and 0 yTX i from
0 >-rx i for any x G {r, a},

50

Table 5.3.: Rules for inferring local constraints from global constraints.

L - G - P R O P
0 ~ n i € C

Qi -> jQ Q ~ r x r o o i (^)
L - G - R E F

0 ~ r z i G C

• We assume the transi t ion q --> o (g i , . . . , g n) : c and 1 < i < n,

• x G {r, a}, and

• ffi —>• j () is the only outgoing transi t ion of qi.

2. strengthening of existing data constraints:

• L - S T R E is used for qi such that qi has only mi l iary outgoing transitions to
strengthen a constraint 0

i to the constraint 0 ^ r a i.

Inferring local constraints from global constraints

Inference of local constraints i n a transi t ion q —> a(qi,..., qn) : c from global constraints
is done, for 1 < i < n, using the rules shown in Table 5.3:

• L - G - P R O P propagates a global constraint q ~ r z qi for states used i n the same
transi t ion into a local constraint 0 ~ r z i ,

• L - G - R E F propagates a global constraint q ~ r z root(Aj) between a state q and the
root state of a T A Aj into a local constraint 0 ~ r a i between q and g« that accepts
a reference to the T A Aj.

Inferring global constraints from local constraints

Final ly , new global constraints can be inferred from existing ones by propagating them
over local constraints of transitions i n which the states of the global constraints occur.
Since a single state may be reached in several different ways, propagation of global con
straints through local constraints on a l l transitions arr iving to the given state must be
considered. If some of the ways how to get to the state does not allow the propagation,
it cannot be done. Moreover, since one propagation can enable another one, the propa
gation must be done iteratively un t i l the fixpoint is reached. The iterative propagation
must terminate since the number of constraints that can be used is finite. The propaga
t ion of constraints between states of a T A can be performed either downwards from the
root towards leaves or upwards from leaves towards the root as described below. Let p
be the root state of some T A A. For each state q of A, let $(g ,p) be the set of global
constraints between q and p. The data constraints are propagated in two directions:

Downward propagation. In the downward propagation, we simultaneously extend
the sets <&(q,p) to larger ones fy(q,p) starting from the root state qo of A and setting

51

^(QOiP) = $(QO>P) (i - e - n o constraints are added for this case). Then, for non-root
states g, we extend the set of constraints in fy(q,p) by traversing over the transitions of
A and adding constraints according to the following rules:

• We add the constraint q ((~ ') _ 1 o ~) r : r p, w i th x G {a, r}, if, for every occurrence
of q as qi i n any transit ion 5 = q' —>• a(qi,..., qn) : c, there is a local constraint
0 ~ r r i m c and a global constraint g' ~ r z p i n fy(q',p).

• We add the constraint p (~ o ~ ') r z g, w i th x G {a, r}, if, for every occurrence of q
as qi in any transi t ion 5 = q' —>• a (g i , . . . , g n) : c, there is a local constraint 0 i
in c and a global constraint p ~ r ? / g' i n fy(q',p) w i th y G {a, r}.

• We add the constraint p ~ r a q if, for every occurrence of q as g« i n any transi t ion
5 = q' —>• a (g i , . . . , g n) : c, it holds that p ~ r a g' is i n ^ (g ' , p) .

Intuitively, the first two cases use t ransi t ivi ty to propagate a constraint involving q' to
a constraint involving qf, the last case uses the semantics of p ~ r a q'.

U p w a r d propagation. The upward propagation can be defined analogously. Al ready
existing sets of constraints $ (g ,p) can be extended to sets ^ (g ,p) by traversing over the
transitions of A and adding constraints according to the following rules:

• We add the constraint p ~ r a q if there is the constraint p ~ r r q is in ^ (g ,p) , and
for every transi t ion 5 = q —>• a (g i , . . . , qn) : c it holds that p ~ r a qi G fy(qi,p) for
every 1 < i < n.

• We add the constraint g (~ ' o ~) r : r p, w i th x G {a, r}, i f there is no nullary
transi t ion going from q and for every transi t ion 5 = q —>• a (g i , . . . , g n) : c, there are
the constraints 0 ^ in c and ĝ ~ r z p i n ^(gj ,p) for some 1 < i < n.

• We add the constraint p (~ o(~ ')) r r g, w i th x G {a, i*}, if there is no nullary
transi t ion going from q and for every transi t ion 5 = q —>• a (g i , . . . , g n) : c, there are
the constraints 0 ^ in c and p ~ r z ĝ i n ^(gj ,p) for some 1 < i < n.

Proposit ion 5.1. The constraint saturation process always terminates.

Proof. Follows from the facts that the m a x i m u m number of constraints in an F A is finite
and that adding a new constraint is a monotone operation. •

5.2.2. Abstract Transformers

In this section, we present the abstract transformers corresponding to some of the op
erations on abstract configurations of the form {a, F) (also see Section 3.2 for the basic
description of abstract transformers). For s implic i ty of the presentation, we assume that
for a l l T A s Ai in F, (a) the root state of Ai does not appear on the right-hand side of
any transit ion, and (b) it occurs on the left-hand side of exactly one transi t ion. It is easy
to see that any T A can be transformed into this form, the transformation procedure,
called unwinding, is described i n the following.

52

Unwinding the Root State

In order to transform a T A A = (Q, E , A c , {qf}), from an F A F into the form where qf
does not appear on the right-hand side of any transi t ion and appears on the left-hand
side of exactly one t ransi t ion, we may perform the following sequence of actions:

1. create a copy q'j of qf, which replaces qf on the right-hand side of a l l transitions,

2. duplicate a l l transitions from qf to become transitions also from q'^ (while again
substi tut ing any occurrence of qf w i th q'f),

3. split A into several T A s , one for each transi t ion from the accepting state qf, cre
at ing several copies of the F A F that contains A, and

4. adapt the local and global constraints by dupl icat ing them whenever some state is
duplicated.

A n example of this transformation, which basically unfolds once a l l loops on qf, w i l l be
given in Example 5.4 below.

We now introduce some common notat ion and operations for the below presented
transformers. We use AAM and A r (y) to denote the T A pointed by variables x and
y, respectively, and qK and qy to denote the root states of these T A s . Let qy —>
a(qi,..., qi,..., qm) : c be the unique transi t ion from qy. Before describing the actual
update, let us first define how to split a T A .

Splitting a T A

The operation of splitting a T A A r (y) at the i - th posit ion, for 1 < i < m, is described
by the following sequence of operations:

1. F i r s t , a new T A Ak is appended to F such that Ak is a copy of A r (y) but w i th
as the root state.

2. Second, the root t ransi t ion i n Aaiy\ is changed to qy —>• a(q\,..., q^,..., qm) : d
where d is obtained from c by replacing any local constraint of the form 0 ~ r z i
by the global constraint qy ~ r z root(Ak), and the transi t ion q^ —>• k() is added to
Aa(y) (we assume cfe is a new state i n Aa(y\).

3. G l o b a l data constraints are adapted as follows: For each constraint q ~ r z p where
q is in Aa(y) such that q ^ qy, a new constraint q' ~ r z p is added, where q' is the
version of q i n Ak- Likewise, for each constraint q ~ r z p where p is i n A r (y) such
that p 7̂ qy, a new constraint q ~ r z p' is added (again, p' is the version of p in Ak)-
Final ly , for each constraint of the form p ~ r a qy, a new constraint p ~ r a root(Ak)
is added.

A n example of the spl i t t ing step is also given i n Example 5.4 below.

53

Description of Abstract Transformers

In what follows, we assume the existence of the sub-term qy —> sel(gj) i n the (single)
root t ransi t ion of A r (y) - Before performing the actual update, we check whether the
operation to be performed tries to dereference a pointer to _L or to an undefined value,
in which case we stop the analysis and report an error. Otherwise, we continue by
performing one of the following actions, depending on the part icular statement.

x := m a l l o c Q We extend F w i th a new T A Anew containing one state and one transi t ion
where a l l selector values are undefined and assign cr(x) to the index of A n e w in F.

x := y - > s e l If qi is a root reference (say, j), it is sufficient to change the value of cr(x)

to j . Otherwise, we split A r (y) at the i - th posit ion (creating Ak) and assign k to
a(x) .

y - > s e l := x If qi is a state, then we split A r (y) at the i - th posit ion. In both cases we
insert q n e w i n the i - th posit ion (instead of qi) i n the children states of the root
transi t ion of A r (y) (w e assume q n e w is a new state i n Aaiy\). We follow by adding
the transi t ion q n e w —>• cr(x)() into A r (y) - A n y local constraint in c of the form
0 ~ r : r i that concerns the removed root reference qi is then removed from c.

y - > d a t a := x - > d a t a F i rs t , we remove any local constraint that involves qy or a root
reference to A r (y) - Then, we add a new global constraint qy = r r qK, and we also
keep al l global constraints of the form q' ~r:r qy i f q' ~ r r qK is impl ied by the
constraints obtained after the update.

y - > d a t a ~ x - > d a t a (where ~ G {-<, >z}) F i r s t , we execute the saturation proce
dure i n order to infer the strongest constraints between qy and g x . Then , if there
exists a global constraint qy ~' qK that implies qy ~ qK (resp. its negation), we
return true (resp. false). Otherwise, we copy (a, F) into two abstract configura
tions: (a, Ftrue) for the true branch and (a, Ffaise) for the false branch. Moreover,
we extend FtrUe w i th the global constraint qy ~ g x and Ffaise w i th its negation.

x := y or x := NULL We simply update a accordingly.

f r e e (y) F i r s t , we split A r (y) at a l l j - t h positions, 1 < j < m, that appear i n its root
transit ion, then we remove A r (y) from F and set cr(y) to undefined. However, to
keep al l possible data constraints, before removing Aa(y), the saturation proce
dure is executed. After the action is done, every global constraint involving qy is
removed.

x = y Th is operation is evaluated s imply by checking whether cr(x) = cr(y). If cr(x) or
u(y) is undefined, we assume both possibilities.

After the update, we check that a l l T A s i n F are referenced, either by a variable or from
a root reference, otherwise we report an emergence of garbage.

54

Fa = (Aal,$)
cr(root) = l ,cr(x) = 1

A, a l

la
2a
3a
4a

Qi

91
qi

l , r (g i , g i)

l , r (g _ L , g i)

l , r (g i , g ±)

i,*(q±,q±)

0 > - r a l , 0 - < r a 2

0 -< r a 2

0 >- r a 1

a) A n example abstract configuration at line 9 of the program i n Figure 5.1. The
abstract configuration represents a set of B S T s (l , r abbreviates l e f t , r i g h t) .

o-(root) = 1, cr(x)

Abi

lb
2b
36
4b
5b
6b
7b
8b

qi
qi
qi

91
q[
q[
q[
q[

i,*(q±,q'i)
l , r (? i , 5 ±)
l , r (g ± , g ±)

l , r (g ± , g i)

l , r (g i , g ±)

l , r (g _ L , g _ L)

0>-ra l , 0 - < r a 2
0 ^ r a 2

0 > - r a 1

0>-ra l , 0 - < r a 2
0 ^ r a 2
0 > - r a 1

b) A n intermediate state of unwinding the root state of Aai

Figure 5.5.: A n example of unwinding the root state of a T A

E x a m p l e 5.4. We now present the computation of the abstract configuration that results
from executing the program statements which appear at line 9 of the program in Figure 5.1
when starting from the abstract configuration described in Figure 5.5a (for the sake of
brevity, we leave out the newNode variable and the corresponding TA from the example).
In order to compute this abstract configuration, a sequence of two statements consisting of
the test statement x - > r i g h t / NULL and the update statement x = x - > r i g h t is executed.
First, the test statement x - > r i g h t / NULL is executed in the following two steps:

1. As can be seen from the FA Fa from Figure 5.5a encoding BSTs, the root state
qi of Aai (the only TA of Fa) occurs as a child state in three transitions of Aa\,
and we will therefore perform unwinding of q\. We start by creating the state
q[, a copy of q\, and duplicate to q[the four transitions leaving from qi (the
resulting intermediate FA F\> can be seen in Figure 5.5b). Then, for each transition
t € {16, 26, 36,46} leaving from qi in Au, we create a copy of the intermediate FA

55

Fc = (Aic,®), (J (roo t) = 1,CT(X) = 1 Fd = (Aid, 0), cr(root) = 1, a(x) = 1

l c
2c
3c
4c
5c

91 0 >- r a 1,0 -i™ 2
0 >- r a 1,0 - < „ 2

ra
ra

l , r (g ± , g i) : 0 - < r a 2
l , r (g i , (7 j .) : 0 ^ r a l
l , r (g ± , g ±)

a) ^ -»• 1, r (g i , gi) : 0 >- r a 1, 0 -< r a 2 (16)

F e = <^4ie,0>, g (r o o t) = 1, a(x) = 1

.4 le

le
2e
3e
4e
5e

<Zi-> l , r (g i , g ±)

9 i -

9 i -

c) 9i

l , r (? ± , g i)
l , r (g i , g ±)
l , r (g ± , g ±)

> l , r (g i , g ±) : 0 ^ r a 1 (36)

0 >-ra 1
0 > - r a l . O - i r . 2

u ^ r a ^
0 >- r a 1

Aid

Id
2d
3d
M

5d

qi

b) 91

*) = (Aif,

l , r (g ± , g i) : 0 -< r a 2
• l , r (g i , g i) : 0 >- r a 1, 0 -< r a

l , r (g ± , g i) : 0 -< r a 2

l , r (9 i , 9 ±) : 0 > - r a l
l , r (9 ± , 9 ±)

+ l , r (g ± , g i) : 0 ^ r a 2 (26)

, cr(root) = l ,cr(x) = 1

l , r (g ± , g ±)

d) gi -»• l , r (g ± , g ±) (46)

Figure 5.6.: The results of unwinding the root state of Aai from Figure 5.5

56

A 19

A 2fl

l e f t r i g h t

= ^ 2 g , {91 ^ r a « 2 })

< r (r o o t) = 1, c r (x) = 2

A ,

Iff 9i -•»• l . r (« i,«2) 0 > - r a 1, 0 ^ r a
2

2ff 9 i - •>• l > r (« i > « i) 0 >~ra 1, 0 ^ r a 2

3ff 9 1 " * l , r (g ± , ^) O ^ r a 2

4ff 9 1 " * l , r (9 i , 9 ±) 0 > - r a
1

5ff 9 1 " * l,r(g_L,g_L)

6ff 9 2 " + 2()

Qg 92 " * l , r (g 2 , 9 2) 0 > - r a 1, 0 ^ r a
2

7g 92 -* l , r (? ± , 5 2) O ^ r a 2

8g 92 -* l , r (g 2 , 9 ±) 0 > - r a
1

9ff 92 -

Figure 5.7.: The F A obtained from Fc (Figure 5.6a) by spl i t t ing Aic at second posit ion

called Fc,Fd,Fe, and Ff respectively. From the obtained TA A\c, AM, A\e, and
A\f, we subsequently remove all transitions leaving from q\ other than t, resulting
in the four FAs in Figure 5.6.

2. The next step is to remove configurations where the root transition of the TA
pointed by x has q± at the the second position of the tuple of children states since
they do not pass the test x - > r i g h t ^ N U L L (they will be processed in the else
branch though). Due to this, the abstract configurations with the FAs Fe and Ff
are removed.

Second, the update statement x = x - > r i g h t is executed on the abstract configurations
shown in Figure 5.6a and Figure 5.6b. Here, we show the steps only for the abstract
configuration from Figure 5.6a, the other one could be computed in a similar manner.
The resulting abstract configuration is shown in Figure 5.7.

1. The first step is to compute the new FA resulting from splitting the root transition
l c of the TA Aic in the FA Fc in Figure 5.6a at the second position, yielding the
FA Fg. First, we create the TA A2g from A\c by copying it, renaming q[to q2,
and making the state q2 the root state (note that qi becomes top-down unreachable
in A2g, and so we discard it). Then, we copy A\c to A\g and change the root

57

transition l c of A\g by replacing the state q[at the second position of its tuple of
children states (corresponding to the selector right) by q^, and add (1) the leaf
transition q^ —> 2() and (2) the global constraint q\ -< r a qi-

2. The second step is to update the valuation a of both abstract configurations to
a := cr{x i-> 2} meaning that x will point to roots of BSTs accepted by A2g whereas
a (r o o t) is kept unchanged. •

5.2.3. Normalisation

Normal isa t ion transforms an F A F = (Ai • • • An, <p) into a canonicity respecting F A i n
three major steps:

1. F i r s t , we transform F into a form i n which roots of trees of accepted forests cor
respond to cut-points i n a uniform way. In particular, for a l l 1 < i < n and a l l
accepted forests t\ • • -tn, one of the following holds: (a) If the root of U is the
j - t h cut-point in the canonical ordering of an accepted forest, then it is the j - t h
cut-point i n the canonical ordering of a l l accepted forests, (b) Otherwise the root
of ti is not a cut-point of any of the accepted forests.

2. T h e n we merge T A s so that the roots of trees of accepted forests are cut-points
only, which is described in detail below.

3. F ina l ly , we reorder the T A s according to the canonical ordering of cut-points (which
are roots of the accepted trees).

Our procedure is an augmentation of that i n [HHR+12] used to normalise F A s wi th
out data constraints. The difference, which we describe below, is an update of data
constraints while performing Step 2.

In order to minimise a possible loss of information encoded by data constraints, Step 2
is preceded by saturation (Section 5.2.1). Then, for a l l 1 < i < n such that roots of trees
accepted by Ai = (QA, ^> ^-A, {<IA}) a r e n ° t cut-points of the graphs i n L(F) and such
that there is a T A B = (<5B,E, A g , {qs}) that contains a root reference to At, Step 2
performs the following. The T A Ai is removed from F, the data constraints between q&
and non-root states of F are removed from ip, and Ai is connected to B at the places where
B refers to i t . In detail , B is replaced by the T A {QA U QB, E , AA+B, {qs}) where A-A+B
is constructed from A.A U by modifying every transit ion q —>• a (q \ , . . . , q m) : c G A g
as follows:

1. we replace by qA a l l occurrences of qj among qi, • • • ,qm such that there is a transi
t ion qj —> i() i n A g (note that there w i l l be at most one such occurrence in a single
transit ion), and

2. for a l l 1 < k < m such that qt can reach the state qj by following top-down
a sequence of the original transitions of A g , the constraint 0
from c unless qk ~ r a qA € if or qk = q-{ and q ~ r a qA^f-

58

9h

A2h

lef t right

Fh = (AlhA2h, {qi -<ra 92j-)

cr(root) = 1,CJ(X) = _L

Aih

Fi = (Aii,Q)
a(root) = 1, (j(x)

An

1

lh 9i ~ 0>-ra 1, 0 ^ r a
2 l i 9i ~ + 1 r (9 i ,92) 0>-ra 1, 0 - < r a

2
2h 0 > - r a 1, 0 ^ r a

2 2i 9 i - + 1 r (9 i , 9 i) 0 > - r a 1, 0 - < r a
2

3h ->• l,r(g_L,gi) 0 -<ra 2 3/ 9 i ~ + 1 r (9 ± , 9 i) 0 -<ra 2
Ah * l , r (? i , 5 ±) 0 > - r a

1 4i + 1 r (9 i , 9 ±) 0 > - r a
1

5h + 1 r (9 ± , 9 ±)
6g 12- + 2() 6? 92 " + 1 r (92 ,92) 0>-ra 1, 0 - < r a

2
7/ 92 " + 1 r (9 ± , 9 2) 0 - < r a

2

92 " + 1 r(92, q±) 0 > - r a
1

Qh 92 -->• l , r (g 2 , 5 2) 0>-ra 1, 0 ^ r a
2 92 " + 1 *(q±,q±)

7h 92 ~ * l , r (? ± , 5 2) 0 - < r a
2

8h 02 ~ ->• l , r (g 2 , 9 ±) 0 > - r a
1

92 l,r(9_L,9_L)

a) A n abstract configuration
b) The abstract configuration from (a)

after normalisat ion

Figure 5.8.: A n example of running normalisat ion on the abstract configuration obtained
from the program i n Figure 5.1 after executing line 22

59

E x a m p l e 5.5. In this example, we show normalisation of the FA in a possible abstract
configuration after the execution of line 22 in the program in Figure 5.1. The abstract
configuration can be seen in Figure 5.8a. Because the roots of the trees accepted by the
TA Aih do not correspond to the cut-points of the graphs in L(Ffl), we join A\h and A2h
in the following way. First, the states and transitions of A2h ire copied to A\h and the
root state of A2h substitutes the reference 2 in the transition lh of A\h- Afterwards, the
TA A2h is removed together with the global data constraint q± -<ra qi from the FA. The
constraint 0 -< r a 2 is not removed from the root transition lh because q\ -<ra q^ was in
the set of global data constraints of F^ before normalisation and, therefore, 0 -< r a 2 will
still hold. The resulting FA Fi is shown in Figure 5.8b. •

5.2.4. C h e c k i n g L a n g u a g e Inc lus ion

In this section, we describe a reduction of checking language inclusion of F A s wi th data
constraints to checking language inclusion of F A s without data constraints, which can be
then done using the techniques of [HHR+12]. We note that "ordinary F A s " correspond
to F A s w i t h no global and no local data constraints, which were discussed i n Chapter 3.
The reduction encodes an F A wi th data constraints as an F A without data constraints
such that its language, when decoded i n a part icular way, is the same as the language
of the original automaton.

A n encoding of an F A F = (Ai • • • An,, TT, tp) w i th data constraints is an ordinary F A
FE = (A'i • • • A'n, ir, 0) where the data constraints are wr i t ten into symbols of transitions.
Tha t is, each transi t ion q —>• (a i , . . . , am)(qi,..., qm) : c of Ai is i n A\ replaced by the
transi t ion q —> ((a i , £\, g) • • • (a m , £m, g))(qi, • • •, qm) '• 0 where for 1 < j < m, £j is
the subset of c containing the local constraints involving j and g encodes the global
constraints involving q as follows: Let r be the root state of some Ak, for 1 < k < n,
that does not appear wi th in the tuple of children states of any transi t ion. Then for a
global constraint q ~ r z r or r ~ r z q, g contains 0 ~ r z k or k ~ r z 0 respectively. The
language of A\ thus consists of trees over the alphabet TE = T x C x C where C is the
set of constraints of the form j ~r:r k for 1 < j, k < n.

To show that testing inclusion of encoded F A s is a sound approximation of language
inclusion test of F A s wi th constraints, we need to establish a correspondence between
languages of the encoded F A s and languages of the original ones. For this, we define
a decoding of a forest t[• • • t'n from a language of an encoded F A over TE as the set of
forests t\ - • - tn over V such that t\- • - tn arises from t'x • • • t'n by (1) removing encoded
constraints from the symbols, and (2) choosing data labeling that satisfies the constraints
encoded wi th in the symbols of t'x • • -t'n. Formally, for a l l 1 < i < n, the set of nodes of
U, Vti, is assigned to equal the set of nodes of t\, Vt{, and for a l l a G T, u,v G V^, and
f , j C C , there is the sub-edge u —>• ((a ,£,g) ,v) in SE^'j) iff

(1) u (a,v) e SE(ti) and

(2) for a l l 1 < j < n: i f 0 ~ r z j £ £, then u ~ r z v (in U), and if 0 ~ r z j £ g, then
u ~ r z root(tj) (symmetrically for j ~ r : r 0).

60

Decoding of forests is natural ly lifted to io-forests. The notion of decoding allows us to
summarise the correspondence of languages of F A s and languages of their encodings as
follows.

L e m m a 5 .1. The set of io-forests accepted by an FA F is equal to the set of decodings
of io-forests accepted by FE.

Proof. Let F = (Ai • • • An,v, if) and FE = (A[• • • A'n, ir, 0). We first prove that every
io-forest (ti • • • tn, 7r) accepted by F is a decoding of some io-forest accepted by FE'. Let
pi,..., pn be the runs of Ai, • • •, An on t\,..., tn respectively. We w i l l construct runs
Pi,..., p'n of A'i, • • •, A'n on the io-forest • • • t'n, 7r) of which (h ••-tn, TT) is a decoding
of, such that for every pi, we w i l l construct the run p\. Let us first simplify the notat ion
by denoting pi, ti, p\, t\, Ai, and A\ by p, t, p', t', A, and A' respectively. The run p' is
constructed as follows. The nodes of t' are set to the nodes of t, Vt/ = Vt, and A# can be
chosen arbitrarily. For every v £ Vt such that v —> (a\,v\),..., v —> (a™, vm) G SE(t, v),
there is a transi t ion of A of the form 5 = q —>• (aj,..., a?p)(q\,..., qm) : c such that the
following conditions hold: p{v) = q, p{v\) = q\,..., p{vm) = qm, the local constraints i n
c are satisfied by v, v\,..., vm i n t, and also global constraints q ~ r z r, r ~ r z q G ip are
satisfied by v and pk(r) for k such that r is a state of Ak- The run p' then labels the
nodes v,v\,... ,vm using the transi t ion 5' = q —>• a(q\,..., qm) : 0 that is the encoding
of 5 (a = {{a\,l\,g),..., (am,£m, g)) where g contains encoded the part of ip involving
q and c = t\ U • • • Uim). The run p' is obviously a run of A'. The described construction
of p' defines a map / that assigns to every v,v\,... ,vm G Vt, where v\,... ,vm are the
children of v, a pair of transitions (5, 5') of A and A' respectively, where 5 and 8' are the
transitions used wi th in p and p' respectively to label the nodes v,v\,... ,vm.

Firs t , let us argue that t\ • • • tn is indeed a decoding of t'x - • -t'n. It is t r iv ia l ly satisfied
for a l l 1 < i < n that Vti = Vt{ and that every node has the same children in both
forests. In order to argue that data values i n t\ • • • tn satisfy the constraints encoded i n
^ • • • t'n as required by the definition of decoding, we let v G Vti be a node w i t h children
v 1 , . . . , v m such that f(v,v1, ...,vm) = (5, 5') where 5 = q ->• (a i , . . . , am)(q1, ...,qm):c
and 5' = q —> a(q\,..., qm) : 0 wi th a = ((ai,£i, g) • • • (am,£m, g)). T h e n the constraints
imposed on the data value of v w i th in t\ • • • tn by ip and those imposed by c due to the
use of 5 are the same as the constraints enforced on v due to a when t'x • • • t'n is decoded
into t\ •••tn. In detail , c contains a local constraint 0 ~ k iff £k contains 0 ~ k (by
the definition of encoding). Th is means that i n the run of A on t, it is required that
v ~ Vk, which is the same constraint as required by the decoding function. Further,
there is a global constraint of the form q ~ r G ip such that r is the root state of Ak (not
appearing wi th in any children tuple of its transitions) iff 0 ~ k G g (and analogically for
the symmetr ical cases). In the run of A, q ~ r enforces that v ~ u where u is the root
of tk- Not ice that u cannot be any other node than the root since r does not appear
wi th in the children tuple of any transi t ion of At- The constraint v ~ u is precisely what
is enforced due to 0 ~ k G g when decoding t'x • • • t'n.

Second, we prove that every decoding t\ • • -tn of an io-forest t'x • • • t'n G Lf(FE) is
accepted by F. We w i l l do that by showing that every n-tuple of runs p'x,...,p'n of
A'i, • • •, A'n on t\,... ,tn respectively also encodes runs of Ai, • • •, An on t\,..., tn re
spectively.

61

Recal l first that by the definition of a decoding, for each 1 < i < n, the trees U and
have the same sets of nodes and every node has the same tuple of children. To simplify
the notation, let t,p',t',A, and A' be denoted as U,p[, t[, Ai, and A\ respectively. Let
v G Vf and let v —>• (aj,,vi),... ,v —>• (a™,vm) G SE(t',v) where for a l l 1 < j < m,
a\, = (a,j, ij,g)- B y the definition of a decoding, v satisfies a l l constraints encoded wi th in
a = (aj,,..., a™). Since t' is accepted by A', there is a t ransi t ion of A' of the form 5' =
q —>• a(qi,..., g m) : 0 such that p'{v) = q, p'(v\) = qi,..., p'{vm) = qm. B y the definition
of encoding, 5' was created from a transi t ion 5 = q —>• (a i , . . . , a m) (g i , . . . , g m) : c of „4
where £iU • • • U£m = c and g encodes a l l global constraints involving g and a root state
r that does not appear wi th in a children tuple of any transit ion. These constraints are
precisely those encoded wi th in a and hence required to hold for v i n t\ • • • tn by decoding.
The run p' is thus indeed a run of A since for every i ; and its children v\,..., vm, there
is a t ransi t ion <5 which can be used according to the definition of a run. •

A direct consequence of L e m m a 5.1 is that i f L(Ff) C L(F§), then L (. F A) Q L(FB).
We can thus use the language inclusion checking procedure of [H H R + 1 2] for ordinary
F A s to safely approximate language inclusion of F A s wi th data constraints.

Th is language inclusion test is not complete, the above impl ica t ion does not hold i n the
opposite direction. There are two reasons for this. F i r s t , encoding translates a constraint
of FB that is s t r ic t ly weaker than a constraint of FA into two different and unrelated
labels. Th is may result i n the si tuation that even though L(FA) C L(FQ), language
inclusion of encodings of F A s does not hold due to the reason that the trees accepted are
labelled by different symbols. For instance, let FA = (AI,TT,0) where A\ contains only
two transitions 8\ = q —>• a(qj) : {0 ^ ; r r 1} and 5\ = qj —>• 1() : 0, and FB = (jBi,7t, 0)
where B\ also contains only two transitions 5B = r —>• a(qj) : 0 and 52

B = qj —>• 1() : 0. It
holds that L(FA) Q L(FB) (indeed, L(FA) = 0 due to the strict inequality on the root),
but L(F^) is incomparable wi th L(FB). The reason is that 5A and 5B are encoded as
transitions the symbols of which differ due to different data constraints. The fact that
the constraint 0 is weaker than the constraint of 0 ^ r r 1 plays no role. The second
source of incompleteness of the inclusion test is that decodings of some forests accepted
by F 4 and FB may be empty due to inconsistent data constraints. If the set of such
inconsistent forests of F^ is not included in that of FB , then L(F^) cannot be included
in L(Ffi), but the inclusion L(FA) Q L(FB) can s t i l l hold since the forests w i th empty
decodings do not contribute to L(FA) and L{FB) (in the sense of L e m m a 5.1).

We do not attempt to resolve the problem of inconsistent data constraints since it
does not seem to occur in practice, as witnessed by our experiments. O n the other
hand, the issue of incompatible encodings of related data constraints appears to be
of a pract ical consequence. We address it w i t h a quite simple transformation of F ^ :
We pump-up the T A s of F% by variants of their transitions which encode stronger data
constraints than originals and match the data constraints on transitions of F ^ . Since
we are adding transitions wi th stronger constraints than the existing ones, this does not
change the language of FB- For instance, i n our previous example, we add the transi t ion
r —>• a(qj) : {0 -< r r 1} to B\. This transit ion, when encoded, can then correspond to the
encoded version of the transi t ion q —>• a(qj) : {0 ^ ; r r 1} of A\ and the language inclusion
of the encodings w i l l hold.

62

Formally, we cal l a sequence a = ((a\,£i,g), • • • , (am,lm,g)} G (r s) m stronger than
a sequence j3 = ((ai, £[, g'), • • • , (am, £'m, g')) iff / \ g and for a l l 1 < i < m,
f\li A ^ i - Intuitively, a encodes the same sequence of symbols (a i , . . . , am) as /?
and stronger local and global data constraints than (3. We modify in such a way
that for each transi t ion r —> a(r\,..., rm) of F j 1 and each transi t ion of F^ of the form
q —>• P(qi,..., qm) where /? is stronger than c?, we add the transi t ion g —>• /3 (qi,..., qm).
The modified F A , denoted by F^+, accepts the same or more forests than F% (since its
T A s have more transitions), but the sets of decodings of the accepted forests are the same
(since the added transitions encode stronger constraints than the existing transitions).
The F A F§+ can thus be used wi th in language inclusion checking i n the place of F j \
Th is technique prevents the inclusion check to fail because of incompatible encodings of
data constraints. Its soundness is summarised by the following lemma.

L e m m a 5.2. Given two FAs FA and FB, L(Ff) C L(F§+) =^ L(FA) C L(FB).

Proof sketch. Since the transformation from F^ to F%+ adds only versions of existing
transitions encoding stronger constraints, the sets of decodings of forest of F^+ is the
same as the set of decodings of forests of F^. The statement then follows immediately
from L e m m a 5.1. •

We note that the same construction is used when checking language inclusion between
sets of F A s wi th data constraints in a combinat ion wi th the construction of [HHR+12]
for checking inclusion of sets of ordinary F A s .

5.3. Boxes

In this chapter, we have so far considered only "flat" F A s , i.e. F A s without boxes. The
extension of F A s by data constraints must, however, also be reflected wi th in treatment of
those. Part icular ly, i n order not to lose information stored wi th in data constraints, fold
ing and unfolding require calls of the saturation procedure. W h e n folding, saturation is
used to transform global constraints into local ones. Namely, global constraints between
the root state of the T A that is to become the input port of a box and the state of the T A
that is to become an output port of the box is transformed into a local constraint of the
newly introduced transi t ion that uses the box as a label . W h e n unfolding, saturation is
used to transform local constraints into global ones. Namely, local constraints between
the parent state of the t ransi t ion wi th the unfolded box and a chi ld state attached to
the unfolded box is transformed to a global constraint between the root states of the
T A s wi th in the box that correspond to its input and output ports.

Example 5.6. In this example we show how to unfold and fold boxes on a sample abstract
configuration of a program manipulating a 2-level skip list. A skip list is a linked list
sorted by keys. Each node is assigned a height, either 1 or 2, and one successor for every
level. For example, a node of level 2 has two next pointers, here called n i and n 2 ; where
n i points to the next node of level 1 andn2 points to the next node of level 2. Figure 5.2

63

(in)

A 2

(out)

B'.[

F s k l 2 = (Ai A 2 , (1,2), 0

A 1

la : H ~ ^,112^2,^) : 0 ^ r a 1
2a : Zl --> n i , n 2 fe,^)
3a : ri --> ni ,n 2 (r 2 ,g_L) : 0 -< r a 1
4a : T2 ~ -> n i , 112(52, 9-0 : 0 -< r a 1
5a : 92 " + 2()

-4 2

6a : £ i "

a) The 2-level skip list box s k l 2

-© s k l 2 © s k l 2 _ -© © -! 2

n 2

B2

n i

V = {*1 ^ r a Ul ,*2 ^ r a Ml}

d(head) = l , < r (t a i l) = 2

Bi
lb : ti -> s k l 2 (t 2)
26 : t 2 -> skl 2 (g2)
36 : aj -> 2()

#2

0 -<ra 1

46 : Mi -> n1,n2(q±,q±)

b) A heap containing a skip list with two segments

F' = {B'lB'iBl{l)^')

n 2 : - < r a

n 2

Hi

, . s k l 2 : _

= { t l -<ra M l , £2 -<ra « 1 , t l -< ra t 2 ,

-<ra U l , r 2 -<ra t 2 }

a (he ad) = l , c r (t a i l) = 2

S i '
l c : t i --> n i , n 2 (r 2 , g 3) : 0 -< r a 1,0 ^ „ 2
2c: h --> n 1,n 2(g 3-,g 3-) : 0 -< r a 1,0 ^ r a 2
3c : ri -> ni ,n 2 (r 2 ,g_i_): 0 -< r a 1

4c : r 2 -> n 1 , n 2 (a 3 , gj_): 0 -< r a 1
5c : 03 ->3()

6c : Mi -> Hi,n 2 (gj . ,g j .)

7c : *2 -> skl 2 (g2)
8c : (/a ^ 2()

0 ^ r a 1

c) Unfolding of the first occurrence of the s k l 2 box in (b)

Figure 5.9.: A n example of unfolding of a box representing a 2-level skip list segment.
We omit ted al l -<;rr constraints which are subsumed by -< r a constraints.

64

shows an example configuration of a 2-level skip list with integer keys (the nodes head
and t a i l with the keys —oo and +00 respectively are used as sentinels).

We can see from Figure 5.2 that each internal node of level 2 is a cut-point. In order
to be able to represent a skip list of any length, it is necessary to introduce a box that
effectively hides these cut-points. We use, in particular, the box s k l 2 from Figure 5.9a,
which represents all skip list segments between a pair of nodes of level 2. Figure 5.9b
shows an abstract configuration of a skip list with 3 nodes of level 2: the head node, the
tail node, and one regular node in between. The number of level 1 nodes (hidden inside
the two skl2 boxes) is arbitrary. Note that the single output port of skl2 contains an
automaton accepting e—this is because there are no transitions leading from the output
port of the box.

Figure 5.9c shows an unfolding of the first occurrence of the s k l 2 box in the FA.
Intuitively, the unfolding proceeded in the following steps:

1. As a preparatory step for replacing the use of s k l 2 on the transition lb by the
contents of the box represented by s k l 2 ; the TA B\ was split at the state t2 to
isolate the transition lb. This produced two auxiliary TAs B[and B'3 consisting
of the transitions {[l&i] t i —>• s k l ^ g) : {0 < r a 1}, [I&2] —̂ 3 () : 0} for B[and
{[2&i] t2 —> s k l 2 ((/ 2) : {0 < r a 1}, [262] q2

 — 2 () : 0} for B'2, with a newly introduced
cut-point 3.

2. Subsequently, the TA A\ corresponding to the input port of s k l 2 was inserted in
between t\ and q^ instead of the transition lb\ over s k l 2 ; yielding the TA B'{. (No
tice that if the transition lb\ led—via other symbols than s k l 2 — t o more targets
than just q%, the part of lb\ leading from t\ to such targets would be preserved
and merged with the root transitions of A\ •) On the other hand, the TA A2 cor
responding to the single output port of s k l 2 was merged with the transition 1b\
leading from t2. However, since A2 accepts e, the resulting transition 7c of B'^
remains the same as the original transition 2b. (The TA B2 was copied into the
TA B2' without any modification.)

3. The local data constraint from the transition 16 : i i —>• s k l 2 (t 2) : 0 < r a 1 was
transformed into the global data constraint t\ < r a t2 during the unfolding.

The subsequent saturation then also generated the local constraints 0 < r a 1 and 0 < r a 2

on the transitions lc and 2 c from t\ to q%, and the global constraints r2 < r a t2 and
r2 -<ra ui (these changes are emphasised by a bold typeface in Figure 5.9c).

The inverse operation of folding would transform the FA from Figure 5.9c, while using
the s k l 2 box, into the FA in Figure 5.9b. See Chapters 3 and 4 for more details on box
folding and unfolding. •

5.4. Experimental Results

We have implemented the above presented techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. We consid
ered programs dealing wi th S L L s , D L L s , B S T s , and skip lists. We verified the original

65

Table 5.4.: Results of the experiments

Example t ime [s] Example t ime [s]

S L L insert 0.06 S L 2 insert 9.65
S L L delete 0.08 SL2 delete 10.14
S L L reverse 0.07 SL3 insert 56.99
S L L bubblesort 0.13 SL3 delete 57.35
S L L insertsort 0.10
D L L insert 0.14 B S T insert 6.87
D L L delete 0.38 B S T delete 15.00
D L L reverse 0.16 B S T left rotate 7.35
D L L bubblesort 0.39 B S T right rotate 6.25
D L L insertsort 0.43

implementation of skip lists that uses the data ordering relation to detect the end of the
operated window (as opposed to the implementat ion handled i n the work presented i n
Chapter 4, which was modified to remove the dependency of the a lgori thm on sorted-
ness). A l though the examples are of a smaller size, they are very challenging as they
include complex manipulat ion wi th dynamic memory that may depend on data values
stored in memory cells.

Table 5.4 gives running times i n seconds (the average of 10 executions) of the exten
sion of Forester on our case studies. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is " S L L " for singly l inked
lists, " D L L " for doubly l inked lists, and " B S T " for binary search trees. " S L " stands for
skip lists where the subscript denotes their level (the to ta l number of nex t pointers i n
each cell). A l l experiments start w i th a random creation of an instance of the specified
structure and end wi th its disposal. The indicated procedure is performed i n between.
The "insert" procedure inserts a node into an ordered instance of the structure, at the
posit ion given by the data value of the node, "delete" removes the first node wi th a par
t icular data value, and "reverse" reverses the structure. "Bubblesort" and "insertsort"
perform the given sorting algori thm on an unordered instance of the list. "Left rotate"
and "right rotate" rotate the B S T in the specified direction. Before the disposal of the
data structure, we further check that it remained ordered after execution of the opera
t ion. The experiments were run on a machine wi th the Intel Core i5-480M @ 2 . 6 7 G H z
C P U and 5 G i B of R A M .

Compared wi th works [LRS05, W K Z + 0 7 , B B H + 1 1 , QHL+13] , which we consider the
closest to our approach, the running times show that our approach is significantly faster.
We, however, note that a precise comparison is not easy even wi th the mentioned works
since as discussed i n the related work paragraph, they can handle more complex prop
erties on data, but on the other hand, they are less automated or handle less general
classes of pointer structures.

66

5.4.1. D i scuss ion

In the above, we described evaluation of our approach on programs manipula t ing skip
lists of two and three levels. A natural question would be why we l imi t ourselves to two
and three levels and not consider skip lists of even higher or, which would be the best
case, of an arbi trary level.

Based on our experience, already going from 2-level to 3-level skip lists makes a huge
difference in difficulty, due to the occurrence of a combinatorial explosion i n the number
of shapes considered by our approach. In order to make handling of a 3-level skip list
feasible, we had to refine our finite height abstraction from a quite coarse one, which
was sufficient for the other considered data structures, to take into account the number
of unique paths from a state to a root reference (this step is described i n more detai l i n
Section 4.2 for the case without data relations). For the case of 4-level skip lists, this
ad-hoc abstraction refinement was not sufficient and our experiments d id not finish i n
reasonable t ime.

Moreover, in order to support skip lists w i th an arbi trary number of next selectors,
these would need to be stored i n a dynamic list, therefore making the data structure yet
more complex. Even more, the support of a data structure of an arbitrary level i n the
current technique would need to use recursive nesting of boxes, which is not supported.
A l lowing this would demand to rewrite the box learning algori thm to be able to find
such recursive boxes, and the operations for manipulat ing those, including the language
inclusion algori thm. These modifications are quite challenging and an interesting future
research direction.

5.5. Conclusion

In this chapter, we presented an extension of FA-based analysis of heap manipulat ing
programs wi th a support for reasoning about data stored i n dynamic memory. The result
ing method allows verification of pointer programs where the needed inductive invariants
combine complex shape properties w i t h constraints over stored data, such as sortedness.
The method is fully automatic, quite general, and its efficiency is comparable wi th other
state-of-the-art analyses even though they handle less general classes of programs, are
less automated, or both. We presented experimental results from verifying programs
dealing wi th variants of (ordered) lists and trees. To the best of our knowledge, our
method is the first one to cope fully automatical ly wi th a full C implementat ion of
a 3-level skip list.

67

Part II.

Using Automata for Deciding
Logics

(i.N

6. Compositional Testing of Entailment
for a Fragment of Separation Logic

Automat ic verification of programs manipulat ing dynamic l inked data structures is
highly challenging since it requires one to reason about complex program configura
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, i n order to scale to large programs, the use of such a for
mal ism wi th in program analysis should be highly efficient. In this context, separation
logic (SL) [IO01, Rey02], a formalism complementary to forest automata presented i n
Chapters 3-5, has emerged as one of the most promising formalisms, offering both high
expressiveness and scalability. The latter is due to its support of compositional reasoning
based on the separating conjunction * and the frame rule, which states that if a Hoare
triple {(p}P{tp} holds and P does not alter free variables i n a, then {(p*a}P{ip*a} holds
too. Therefore, when reasoning about P, one has to manipulate only specifications for
the heap region altered by P.

Usually, S L is used together w i th higher-order inductive definitions that describe the
data structures manipulated by the program. If we consider general inductive definitions,
then S L is undecidable [CYO01] . Various decidable fragments of S L have been introduced
in the literature [BCO05, IRS13, P W Z 1 3 , B F G P 1 4] by restricting the syntax of the
inductive definitions and the Boolean structure of the formulae.

In the work presented in this chapter, we focus on a fragment of S L wi th inductive
definitions that allows one to specify program configurations (heaps) containing finite
nestings of various kinds of l inked lists (acyclic or cyclic, singly or doubly l inked, skip
lists, etc.), which are common i n practice. Th is fragment contains formulae of the form
3X : LT A E where A is a set of variables, II is a conjunction of (dis)equalities, and
E is a set of spatial atoms connected by the separating conjunction. Spat ia l atoms
can be points-to atoms, which describe values of pointer fields of a given heap location,
or inductively defined predicates, which describe data structures of an unbounded size.
We propose a novel (semi-)decision procedure for checking the val idi ty of entailments
of the form ip =4> tp where ip may contain existential quantifiers and tp is a quantifier-
free formula. Such a decision procedure can be used i n Hoare-style reasoning to check
inductive invariants but also in program analysis frameworks to decide terminat ion of
fixpoint computations. A s usual, checking entailments of the form pi =4> V • tpj can
be soundly reduced to checking that for each i there exists j such that ipi =4> tpj.

The key insight of our decision procedure is an idea to use the semantics of the
separating conjunction in order to reduce the problem of checking ip =4> tp to the problem
of checking a set of simpler entailments where the right-hand side is an inductively-
defined predicate P(...). Th is reduction shows that the composit ionali ty principle holds

69

not only for deciding the val idi ty of Hoare triples but also for deciding the val idi ty of
entailments between two formulae. To infer (dis)equalities impl ied by spatial atoms, our
reduction to checking simpler entailments is based on Boolean unsatisfiability checking,
which is in c o - N P but can usually be checked efficiently by current S A T solvers.

Further, to check entailments ip =4> P{...) resulting from the above reduction, we
define a decision procedure based on the membership problem for tree automata (TAs) .
In particular, we reduce the entailment to testing membership of a tree derived from ip i n
the language of a T A A[P] derived from P{...). The tree encoding of ip preserves some
edges of the graph, called backbone edges, while others are re-directed to new nodes,
related to the original destination by special symbols. Roughly, such a symbol may
be a variable represented by the original destination, or it may show how to reach the
original destination using backbone edges only.

Our procedure is complete for formulae speaking about non-nested singly as well as
doubly l inked lists. Moreover, it runs in polynomia l t ime modulo an oracle for deciding
val idi ty of a Boolean formula. The procedure is incomplete for nested list structures due
to not considering a l l possible ways in which targets of inner pointer fields of nested list
predicates can be aliased. The construction can be easily extended to become complete
even i n such cases, but then it becomes exponential. However, even i n this case, it
is exponential in the size of the inductive predicates used, and not i n the size of the
formulae, which remains acceptable i n practice.

We implemented our decision procedure and tested it successfully on verification con
ditions obtained from programs using singly and doubly l inked nested lists as well as
skip lists. The results show that our procedure does not only have a theoretically fa
vorable complexity (for the given context), but it also behaves nicely i n practice, at
the same time offering the addi t ional benefit of composit ionali ty that can be exploited
wi th in larger verification frameworks caching the simpler entailment queries.

Related W o r k . Several decision procedures for fragments of S L have been introduced
in the literature [BCO05 , C Y O 0 1 , C H O + 1 1 , ESS13, IRS13, IRV14, P R 1 1 , P W Z 1 3 ,
B G P 1 2] . Some of these works [BCO05, C Y O 0 1 , C H O + 1 1 , PR11] consider a fragment
of S L that uses only a single predicate describing singly l inked lists, which is a much
more restricted setting than what is considered in this work. In particular, Cook et
al [CHO+11] prove that the satisfiabili ty/entailment problem can be solved in polyno
mia l t ime. Piskac et al [PWZ13] show that the Boolean closure of this fragment can
be translated to a decidable fragment of first-order logic, and i n this way they prove
that the satisfiabili ty/entailment problem can be decided i n N P / c o - N P . Furthermore,
they consider the problem of combining S L formulae w i t h constraints on data using
the Nelson-Oppen theory combinat ion framework. A d d i n g constraints on data to S L
formulae is considered also i n Q i u et al [QGSM13] .

A fragment of S L covering overlaid nested lists was considered by Enea et al [ESS 13].
Compared wi th i t , we currently do not consider overlaid lists, but we have enlarged the
set of inductively-defined predicates to allow nesting of cyclic lists and doubly l inked lists
(D L L s) . We also provide a novel and more efficient TA-based procedure for checking
simple entailments.

70

Brotherston et al [BGP12] define a generic automated theorem prover relying on
the not ion of cyclic proofs and instantiate it to prove entailments i n a fragment of S L
w i t h inductive definitions and disjunctions more general than what we consider here.
However, they do not provide a fragment for which completeness is guaranteed. Iosif et
al [IRS 13] also introduce a decidable fragment of S L that can describe more complex
data structures than those considered by the work presetned i n this chapter, including
e.g. trees wi th parent pointers or trees wi th l inked leaves. However, [IRS13] reduces
the entailment problem to M S O on graphs wi th a bounded tree width , resulting i n
a mult iply-exponential complexity.

The recent work [IRV14] considers a more restricted fragment than [IRS13] (incom
parable wi th ours). The work proposes a more practical , purely TA-based decision
procedure, which reduces the entailment problem to language inclusion on T A s , estab
lishing E X P T I M E - c o m p l e t e n e s s of the considered fragment. Our decision procedure
deals w i th the Boolean structure of S L formulae using S A T solvers, thus reducing the
entailment problem to the problem of entailment between a formula and an atom. Such
simpler entailments are then checked using a polynomia l semi-decision procedure based
on the membership problem for T A s . The approach of [IRV14] can deal w i th various
forms of trees and w i t h entailment of structures wi th skeletons based on different se
lectors (e.g. D L L s viewed from the beginning and D L L s viewed from the end). O n the
other hand, it currently cannot deal w i th structures of zero length and wi th some forms
of structure concatenation (such as concatenation of two D L L segments), which we can
handle.

Contr ibut ion . Overal l , the contr ibution of the work presented i n this chapter is
a novel (semi-)decision procedure for a r ich class of verification conditions wi th singly
as well as doubly l inked lists, nested lists, and skip lists. A s discussed i n more detail
in the previous paragraph, existing works that can efficiently deal w i th fragments of S L
capable of expressing verification conditions for programs handling complex dynamic
data structures are s t i l l rare. Indeed, we are not aware of any techniques that could
decide the class of verification conditions considered i n this work at the same level of
efficiency as our procedure. In particular, compared w i t h other approaches using T A s
[IRS 13, IRV14], our procedure is composit ional as it uses T A s recognising models of
predicates, not models of entire formulae. Moreover, our T A s recognise i n fact formulae
that entail a given predicate, reducing S L entailment to the membership problem for
T A s , not the more expensive inclusion problem as i n other works.

6 .1 . Separation Logic Fragment

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set of
logical variables, disjoint from Vars, ranged over using X, Y, Z. We assume that Vars
contains a variable n u l l . A l so , let ¥ be a set of fields.

71

We consider the fragment of separation logic whose syntax is given below:

x, y G Vars program variables / € F fields

X, Y G LVars logical variables P G P predicates

B G (Vars U LVars)* vectors of variables E, F ::= x | X

P ••••= (f,E) | p,p

II ::= E = F \ E ^ F \ II All pure formulae

E ::= emp | £71-> {p} | F (F , F , F) | E * E spatial formulae

(£> = 3 X : LT A E formulae

W. l .o .g . , we assume that existentially quantified logical variables have unique names.
The set of program variables used i n a formula <p is denoted by pv(<p). B y <p(E) (resp.
p(E)), we denote a formula (resp. a set of field-variable pairs) whose set of free variables
is E. G i v e n a formula p, pure(<p) denotes its pure part LT. We allow set operations to
be applied on vectors. Moreover, E ^ B is a shorthand for f\B £B*E ^ Bi.

The points-to atom E i-> { (/ j , F) } j £ x specifies that the heap contains a locat ion E
whose fi field points to F j , for a l l i. W. l .o .g . , we assume that each field fi appears at
most once i n a set of pairs p. The fragment is parameterised by a set P of inductively
defined predicates; intuit ively, F (F , F , B) describes a possibly empty nested list segment
delimited by its arguments, i.e. a l l the locations it represents are reachable from E and
allocated on the heap except the locations i n { F } U B.

Inductively defined predicates. We consider predicates defined as

F (F , F,B) =(E = F A emp) V

(F + {F} U B A 3Xtl : E (F , Xtl, B) * P(Xtl, F, B)) ^ ' '

where E is an existentially-quantified formula, called the matrix of P, of the form:

E (F , Xti, B) = 3~Z : E i-> {p({Xtl} U F) } * E ' where V C Z U F and

E ' ::= Q (Z , 17, F) | (3 1 + Q[Z, Y] \ E ' * E ' (6.2)

for Z G Z , L7 G Z U B U { F , X t l } , ? C B U { F , X t l } , and

0 1 + Q[Z, Y] = 3Z' : EQ(Z, Z', Y) * Q(Z', Z, Y) where E Q is the mat r ix of Q.

The formula E specifies the values of the fields defined in F (using the atom F i—>
{ p ({ X t l } U K) } , where the fields i n p are constants in F) and the (possibly cyclic) nested
list segments starting at the locations Z referenced by fields of F . We assume that E
contains a single points-to a tom i n order to simplify the presentation. Notice that the
matr ix of a predicate P does not contain applications of P. The macro (3 1 + Q[Z, Y] is
used to represent a non-empty cyclic (nested) list segment on Z whose shape is described
by the predicate Q.

72

We consider several restrictions on E which are defined using its Gaifman graph Gf [E].
The set of vertices of G/[E] is given by the set of free and existentially quantified variables
in E , i.e. {E,Xtl}UBUZ. The edges i n G/[E] represent spatial atoms: for every (f,X)
in p, G/[E] contains an edge from E to X labelled by / ; for every predicate Q(Z, U, Y),
G/[E] contains an edge from Z to U labelled by Q; and for every macro (3 1 + Q[Z, Y],
G/[E] contains a self-loop on Z labelled by Q.

The first restriction is that G/[E] contains no cycles other than self-loops buil t solely
of edges labelled by predicates. This ensures that the predicate is precise, i.e. for any
heap, there exists at most one sub-heap on which the predicate holds. Precise assertions
are very important for concurrent separation logic [GBC11] .

The second restriction requires that a l l the max ima l paths of G/[E] start in E and
end either i n a self-loop or in a node from BL){E, Xtl}. Th is restriction ensures that (a)
al l the heap locations i n the interpretation of a predicate are reachable from the head of
the list and that (b) only the locations represented by variables in F U B are dangling.
Moreover, for simplicity, we require that every vertex of G/[E] has at most one outgoing
edge labelled by a predicate.

For example, the predicates given i n Figure 6.1 describe singly l inked lists, lists of
acyclic lists, lists of cyclic lists, and skip lists w i th three levels.

We define the relation -<p on P by P i -<p P 2 iff -P2 appears i n the mat r ix of Pi.
The reflexive and transitive closure of -<p is denoted by -<p. For example, if P =
{ s k l i , skl2, skis}, then skl3 -<p skl2 and skl3 -<¥ s k l i .

Given a predicate P of the mat r ix E as in Equa t ion 6.2, let F h_ >.(P) denote the set of
fields / occurring i n a pair (f,X) of p. For example, F ^ n l l) = {s, h} and P M.(skl3) =
F ^ (s k l i) = {/3,/2,/i}- A l so , let F ^ (P) denote the union of F ^ (P ') for a l l P Ĵ> P'.
For example, P ^ (n l l) = {s,h, /}.

We assume that -< ¥ is a par t ia l order, i.e. there are no mutual ly recursive definitions
in P . Moreover, for simplicity, we assume that for any two predicates P i and P 2 which
are incomparable w.r.t. -<p, it holds that P M . (P i) n F h _ > . (P 2) = 0. Th is assumption avoids
predicates named differently but having exactly the same set of models.

S e m a n t i c s . Let Locs be a set of locations. A heap is a pair (S, H) where S : Vars U
LVars —> Locs maps variables to locations and H : Locs x F ^ Locs is a par t ia l function
that defines values of fields for some of the locations i n Locs. The domain of H is
denoted by dom(H) and the set of locations in the domain of H is denoted by ldom(H).
We say that a locat ion £ (resp. a variable E) is allocated i n the heap (S, H) or that
(S, H) allocates £ (resp. E) iff £ (resp. S(E)) belongs to ldom(H).

The set of heaps satisfying a formula ip is defined by the relation (S, H) \= p given i n
Figure 6.2. Note that a heap satisfying a predicate P(E, F, B) should not allocate any
variable i n F U B since these variables are considered not to be a part of its domain.
A heap satisfying this property is called well-formed w.r.t. the atom P(E, F, B). The set
of models of a formula ip is denoted by [</?]. G i v e n two formulae pi and p2, we say
that pi entails P2, denoted by pi P2, iff [<^il ^ [^2]- B y an abuse of notation,
pi E = F (resp. pi E 7^ F) denotes the fact that E and F are interpreted to the
same location (resp. different locations) i n a l l models of pi.

73

singly l inked lists:

ls(E, F) 4 lemp(E, F) V (E ± F A 3 A t l : E ^ { (/ , A t l) } * l s (A t l , F))

lists of acyclic lists:

n l l (F , F , 5) = lemp(E, F) V (F / {F, B} A 3Xtl, Z : E ^ { (a , A t l) , (/», Z) }

* l s (Z , S) * n l l (X t l , F , 5))

lists of cyclic lists:

n l c l (F , F) = lemp(E, F) V (F / F A 3 A t l , Z : £ H > {(a , A t l) , (/», Z)}

* (3 1 + ls[Z] * n l c l (A t l , F))

skip lists w i th three levels:

s k l 3 (F , F) = lemp(E, F) V (E + F A 3 A t l , Z i , Z 2 :

£ ? - > { (/ 3 , X t l) , (/ 2 , Z 2) , (/ i , Z i) } *

B k l i (Z i , Z 2) * s k l 2 (Z 2 , X t l) * s k l 3 (A t l , F))

s k l 2 (F , F) = temp(F, F) V (F / F A 3 A t l , Z i :

£ ; ^ { (/ 3 , n u l l) , (/ 2 , X t l) , (/ i , Z i) } *

B k l i (Z i , X t l) * s k l 2 (A t l , F))

s k l i (F , F) = temp(F, F) V (E / F A 3Xtl :

F ^ { (/ 3 , n u l l) , (/ 2 , n u l l) , (/ 1 , X t l) } * s k l 1 (X t l , F))

Figure 6.1.: Examples of inductive definitions (lemp(E, F) = E = F A emp).

6.2. Compositional Entailment Checking
We define a procedure for reducing the problem of checking the val idi ty of an entail
ment between two formulae to the problem of checking the val idi ty of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment
is a quantifier-free formula (which usually suffices for checking verification conditions i n
practice). The reduction can be extended to the general case, but it becomes incomplete.

6.2.1. O v e r v i e w of the R e d u c t i o n P r o c e d u r e

We consider the problem of deciding val idi ty of entailments ip-y =4> < 2̂ w i th < 2̂ quantifier-
free. We assume pv((p2) Q pv(ipi); otherwise, the entailment is t r iv ia l ly not val id.

The ma in steps of the reduction are given in A l g o r i t h m 6.1. The reduction starts by
a normalisat ion step (described i n Section 6.2.2), which adds to each of the two formulae

74

(S,H) \= E = F iff S(E) = S(F)

(S,H) \= E ^ F iff S(E) + S(F)

(S,H) \= p A tp iff {S, H)\=<p and (S, H) \= $

(S,H) \= emp iff dom(H) = 0
(S,H) iff dom(H) = {(S(E)Ji) | (fi,Ei) G {p}} and

for every pair (/«, Ei) G {p}, it holds that
H(S(E),fi) = S(Ei)

(S,H) \= S i * £2 iff there exist Hi,H2 s.t.
Idom(H) = ldom(Hi) l±l ldom(H2),
(S,H!) |= S i , and (S,H2) ^ S 2

(S,H) \=P(E,F,B) iff there exists A; € N s.t.
|= Pk(E,F,B) and

ldom(H) n U {5(5) | B G B }) = 0
(S,H) ^P°(E,F,B) iff (5, H) \= E = F A emp

(S,H) \= Pk+1(E,F,B) iff (S,H) ^ £ / { F } U B A
3Xtl : S(£7, X t l , S) * Pk(Xtl, F, B)

(S,H) ^3X:p iff 3£ G Locs s.t. (S L Y £],H) \= ip

Figure 6.2.: The |= relation (l±l denotes the disjoint union of sets and S[X <— £] denotes
the function S' such that S'(X) = £ and S'(Y) = S(Y) for any Y / X)

al l (dis-)equalities impl ied by spatial sub-formulae and removes a l l atoms P(E, F, B)
representing empty list segments, i.e. those where E = F occurs i n the pure part. The
normalisation of a formula outputs false iff the input formula is unsatisfiable.

In the second step, the procedure tests the entailment between the pure parts of the
normalised formulae. Th is can be done using any decision procedure for quantifier-free
formulae in the first-order theory wi th equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of ipV^ to
sub-formulae of p\. Intuitively, the sub-formula p\ \a2\ associated to an atom a2 of p2i
computed by s e l e c t , describes the region of a heap modelled by p\ that should sat
isfy a2. For predicate atoms a2 = P2(E, F, B), s e l e c t is called (in the second loop) only
if there exists a model of p\ where the heap region that should satisfy a2 is non-empty,
i.e. E = F does not occur i n <p™. In this case, s e l e c t does also check that for any model
of (fi, the sub-heap corresponding to the atoms i n <p\[a2] is well-formed w.r.t . a2 (see
Section 6.2.3). This is needed since a l l heaps described by a2 are well-formed.

Note that i n the well-formedness check above, one cannot speak about p\[a2] alone.
This is because without the rest of p™, Pi[a2] may have models which are not well-formed
w.r.t. a2 even i f the sub-heap corresponding to p\[a2] is well-formed for any model of
p\. For example, let p\ = ls(x,y) *ls(y,z) * z i-> {(/ , t)}, a2 = ls(x,z), and ^ l t 0 ^] =
ls(x,y) * ls(y, z). If we consider only models of (p™, the sub-heaps corresponding to
ip™[a2] are a l l well-formed w.r.t . a2, i.e. the locat ion bound to z is not allocated in these

75

A l g o r i t h m 6.1: Composi t ional entailment checking of <p\ =4> <p2 (-< is any total
order compatible w i t h -<p)

1 ip™ norm(<^i); ip% norm(<^2); / / normalisation
2 if (p™ = false then return true:
3 if (f2 = false then return false:
4 if pure(ipi) pure((f2) then return false ; / / pure parts

/ / shape parts
5 foreach points-to atom ai in ip% do / / points-to atoms

<£i[a2\ <— s e l e c t ^ ™ , 02):

if ^"[02] 7^ 0,2 then return false:

8 for P2 m a x ^ (P) downto m i n ^ (P) do / / predicate atoms
9 foreach 02 = Pi{E, F, B) in ipV^ s.t. pure(ip™) 7^ E = F do

10 ¥>i[a2] <~ s e l e c t ^ , a 2) ;
11 if v?™[a2] a 2 then return false:

12 return isMarked(<£>™):

sub-heaps. However, ip™[02] alone has lasso-shaped models where the locat ion bound to
z is allocated on the path between x and y.

Once (fi [02] is obtained, one needs to check that a l l sub-heaps modelled by p?[[02] are
also models of 02- For points-to atoms 02, this boils down to a syntactic identity (modulo
some renaming given by the equalities i n the pure part of p>i). For predicate atoms 02,

a special entailment operator =$-sh (defined in Section 6.2.5) is used. We cannot use the
usual entailment =4> since, as we have seen in the example above, ip™ [02] may have models
which are not sub-heaps of models of p>\. Thus, p>\ [02] =>sh «2 holds iff a l l models of
(^"[02], which are well-formed w.r.t. 02, are also models of 02.

If there exists an atom 02 of p>2 that is not entailed by the associated sub-formula,
then <pi =4> ip2 is not val id . B y the semantics of the separating conjunction, the sub-
formulae of ipi associated wi th two different atoms of p>2 must not share spatial atoms.
In order to avoid such a scenario, the spatial atoms obtained from each application of
select are marked and cannot be reused i n the future. Note that the mapping is buil t
by enumerating the atoms of pi^ i n a part icular order: first, the points-to atoms and
then the inductive predicates, i n a decreasing order w.r.t . -<$>. This is important for the
completeness of the procedure (see Section 6.2.3).

The procedure select is described i n Section 6.2.3. It returns emp if the construction
of the sub-formula of ip™ associated wi th the input a tom fails (this implies that also the
entailment <p\ =4> p>2 is not valid). If a l l entailments between formulae and atoms are
val id, then p>\ =4> p>2 holds provided that a l l spatial atoms of p>\ are marked (tested by
isMarked). In Section 6.2.5, we introduce a procedure for checking entailments between
a formula and a spatial atom.

76

Initially: ip\ =4> ip2

x n l l (z) ^ k l T V

After normalisation: norm(^i) =4> norm(?/>2)
s

x nll(z) V s k l ^ l

\ y 4 _«

* i e l ec t (V>i , s k l 2 (y , i))

\ ' ' s e l e c t (V > i , n l l (a ; , y, z))

Figure 6.3.: A n example of applying composit ional entailment checking. Points-to edges
are represented by simple lines, predicate edges by double lines, and dise-
quality edges by dotted lines. For readability, we omit some of the labell ing
w i t h existentially-quantified variables and some of the disequality edges i n
the normalised graphs.

G r a p h representations. Some of the sub-procedures mentioned in the previous work
on a graph representation of the input formulae, called SL graphs (which are different
from the Gaifman graphs of Section 6.1). Thus, a formula ip is represented by a directed
graph G[ip] where each node represents a max ima l set of variables equal w.r.t . the pure
part of (p, and each edge represents a disequality £ / F or a spatial atom. Every
node n is labelled by the set of variables Var(n) it represents; for every variable E,
Node(E) denotes the node n such that E £ Var(n). Next , (1) a disequality E ^ F is
represented by an undirected edge from Node(S) to Node(F), (2) a spatial a tom E i->

Ei),..., (fn, En)} is represented by n directed edges from Node(i?) to Node(£^j)
labelled by fi for each 1 < i < n, and (3) a spatial a tom P(E,F,B) is represented by
a directed edge from Node(S) to Node(i?) labelled by P(B). Edges are referred to as
disequality, points-to, or predicate edges, depending on the atom they represent. For
simplicity, we may say that the graph representation of a formula is s imply a formula.

77

/ \ [£ = F] A / \ -,[E = F]

F(H)± / \ [E,a] A / \ [E , a] © [E = F]

a=Bi-^{p}eS a=P(E,F,B)&H

F = = A
Ei,E2,E3

variables in ip

[E! = Ex] A = £ 2] [£ 2 = #i]) A

= E2] A [£?2 = E3}) = £3]

B , F variables in <p
a y^a' atoms in S

Figure 6.4.: Defini t ion of the components of BoolAbs[</?] (© denotes xor)

R u n n i n g e x a m p l e . In the following, we use as a running example the entailment
ipi ip2 between the following formulae:

V>i = 3 Y 1 ; Y2, Y3, Y 4 , Z 1 , Z 2 , Z 3 : x ^ z A Z 2 ^ z A x ^ {(a, Z 2) , (/», Z i) } *

Z 2 ' ^ {(a, y) , (h, Z3)} * l s (Z i , z) * l s (Z 3 , z) * l s (y , Y i) * (6.3)

s k l 2 (y , F 3) * l s (F i , Y2) * Y3 ^ {(f2,t), (/ 1 ; Y4)} * t ^ {(a, F 2) } *

l 4 ^ { (/ 2 , n u l l) , (/!,*)}

^2 = 2/ / t A n l l (x , y, z) * s k l 2 (y , {(a, y)} (6.4)

The graph representations of these formulae are drawn in the top part of Figure 6.3.

6.2.2. Normalisation

To infer the impl ic i t (dis-)equalities i n a formula, we adapt the Boolean abstraction
proposed i n [ESS13] for our logic. Therefore, given a formula ip, we define an equisat-
isfiable Boolean formula BoolAbs[</?] i n C N F over a set of Boolean variables containing
the Boolean variable [E = F] for every two variables E and F occuring i n p and the
Boolean variable [E, a] for every variable E and spatial a tom a of the form E i—>• {p} or
P(E, F, B) in ip. The variable [E = F] denotes the equality between E and F, while
[E, a] denotes the fact that the a tom a describes a heap where E is allocated.

G iven ip = 3X : I I A S , BoolAbsf^] = F(I I) A F (S) A F = A F , where the components of
BoolAbsfy], defined in Figure 6.4, intui t ively mean the following: -F(II) and F(T,) encode
the atoms of ip, F= encodes reflexivity, symmetry, and t ransi t ivi ty of equality, and F*
encodes the semantics of the separating conjunction.

78

For the formula ip\ in our running example (Equat ion 6.3), BoolAbs[V>i] is a conjunction
of several formulae including:

1. [y, s k l 2 (y , I3)] © [y = Y3], which encodes the atom s k l 2 (y , Y3),

2. [I3, F3 i-> { (/ 2 , t), (/1, y) }] and [£, 1i-> {(s, F 2) }] , encoding points-to atoms, of ipi,

3. ([£ = y] A [t, t i->- { (s , y 2) }]) =4> - i [y , s k l 2 (y , I3)] , which encodes the separating
conjunction between 11-> { (s , y 2) } and s k l 2 (y , y 3) ,

4. ([* = y 3] A [i , i 1—> {(a ,y 2)}]) - . [y 3,l3 -»• { (/ 2 , *) > (/i>*4)}], which encodes the
separating conjunction between t i-> {(s, y 2) } and Y3 i-> { (/ 2 , £) , (/ 1 , 14)}.

P r o p o s i t i o n 6 .1. Let ip be a formula. Then, BoolAbskp] is equisatisfiable with p>, and
for any variables E and F of ip, BoolAbs[<£>] [E = F] (resp. BoolAbs[<£>] ->[E = F\)
iff<p=> E = F (resp. p>^ E^F).

E x a m p l e 6 .1 . It holds that BoolAbs[V>i] =>• -\y = i\. This is a consequence of the
following propositional reasoning. From the encoding of the points-to atoms from 2, the
formula from 4, and modus tollens, we infer ->[t = Y3\. F= contains the formula

([t = y}A[y = Y3})^[t = Y3]. (6.5)

Because ->[t = Y3], when we apply modus tollens on the previous formula, we obtain the
formula

-.[* = y] V - . [y = y 3] . (6.6)

The xor in 1 is equivalent to the following formula:

([y, s k l 2 (y , Y3)} V [y = Y3}) A H y , s k l 2 (y , Y3)} V - [y = Y3}). (6.7)

Further, from [t, 11-> {(s, y 2) }] a^rf i/ie formula from 3, we infer that

^[t = y] V - [y , s k l 2 (y , y 3)] - (6.8)

[/s ing resolution on the clause in Equation 6.6 and the first clause of the formula in
Equation 6.7, we obtain

- [i = y] V [y , s k l 2 (y , y 3)] , (6.9)

and using resolution on the just obtained clause in Equation 6.9 and the clause in Equa
tion 6.8, we finally infer ->[t = y] . •

If BoolAbs[<£>] is unsatisfiable, then the output of norm(<^) is false. Otherwise, the
output of norm(<£>) is the formula p> obtained from p by (1) adding al l (dis-)equalities
E = F (resp. E j= F) such that [E = Fj (resp. ->[E = F]) is impl ied by BoolAbsf^]
and (2) removing a l l predicates P(E,F,B) such that E = F occurs i n the pure part,
creating formulae ip™ and ipV^- For example, the normalisations of ipi and ^2 are given
in the bo t tom part of Figure 6.3. Note that the I s atoms reachable from y are removed
because BoolAbs[V>i] [y = Y{\ and BoolAbs[V>i] [Y\ = y 2] , as justified i n the
following example.

79

Example 6.2. We show that B o o l A b s k / > i] [y = Y\\- We start with the observation
that contains the following formula:

([Y 3 = y] A [Y3,Y3 1 y {(f2,t),(h,YA)}]) - n [y , l s (y , y i)] . (6.10)

Because the encoding of the points-to [13,13 *->• {(f2,t), (/ 1 , Y 4) }] holds, this implies that

[Y3 = y]^^[y,ls(y,Y1)}. (6.11)

From F(T,), we have that [y, sk l 2 (y , I3)] © [y = Y3], from which we infer (with the help
of F= containing [y = I3] •£=>• [I3 = y]) that

- . [y 3 = y] [y , s k i 2 (y , y 3)] . (6.12)

Further, F* contains the following formula:

([y = y] A [y, s k l 2 (y , Y 3)]) - [y , l s (y , y)] , (6.13)

/ rom which, together with [y = y] from F= and Equation 6.12, we infer that

-^[Y3 = y}^^[y,ls(y,Y1)}. (6.14)

Resolution on the clauses in Equations 6.11 and 6.14 gives us ->[y, ls(y, Yi)], and from
the formula [y, l s (y , Yi)] © [y = Y\] contained in F(L) we finally deduce that [y = Y\\.
Similar reasoning can be applied to deduce that [Yi = Y2] is also implied by B o o l A b s k p] .

•
The following result is important for the completeness of the select procedure.

Proposit ion 6.2. Let norm(<̂) be the result of the normalisation of a formula (p. For
any two distinct nodes n and n' in the SL graph ofnorm(ip), there cannot exist two
disjoint sets of atoms A and A' in norm(cp) such that both A and A' represent paths
between n and n'.

If we assume, for the sake of contradiction, that norm(<̂) contains two such sets of
atoms, then, by the semantics of the separating conjunction, it needs to holds that one
of the paths is empty, so that ip E = F where E and F label n and n' respectively.
Therefore, norm(<̂) does not include a l l equalities impl ied by ip, which contradicts its
definition.

6.2.3. Selection of Spatial Atoms

Points-to atoms. Let p>\ = 3X : LTi A S i be a normalised formula. The procedure
select(<^i, E2 1—>• {P2}) outputs the sub-formula 3X : LTi AEi i-> {p{\ such that E\ = E2
occurs in LTi if it exists, or emp otherwise. The procedure select is called only if p\
is satisfiable and consequently, p>\ cannot contain two different atoms E\ i-> {pi} and
E[^ {p'i} such that E\ = E[= E2. A l so , i f there exists no such points-to atom, then
<Pi <P2 is not val id. Indeed, since (p2 does not contain existentially quantified variables,
a points-to atom i n (p2 could be entailed only by a points-to atom in ip\.

In the running example, select(i/>i, t i-> {(s,y)}) = 3 Y 2 : y = Y2 A . . . A t i-> {(s, Y 2) }
(we have omit ted some existential variables and pure atoms).

80

P r e d i c a t e a t o m s . G iven an atom a 2 = P2(E2, F2, B2), se lect{ip\ , a 2) builds a sub
graph G' of G[<^i], and then it checks whether the sub-heaps described by G' are well-
formed w.r.t. a 2 . If this is not true or if G' is empty, then it outputs emp. Otherwise, it
outputs the formula 3X : iTi A £ ' where £ ' consists of a l l atoms represented by edges of
the sub-graph G'. Let Dangl ing[a 2] = Node(F 2) U { N o d e (£) | B G B2}.

The sub-graph G' is defined as the union of a l l paths of G[<pi] that (1) consist of
edges labelled by fields i n F ^ (P 2) or predicates Q w i t h P 2 -<p Q, (2) start i n the node
labelled by E2, and (3) end either i n a node from Dangl ing[a 2] or in a cycle, i n which
case they must not traverse nodes i n Dang l ing [a 2] . The paths i n G' that end i n a node
from Dangl ing[o 2] must not traverse other nodes from Dang l ing [a 2] . Therefore, G'
does not contain edges that start i n a node from Dang l ing [a 2] . The instances of G' for
se lec t (i /> i ,n l l (a ; , y, z)) and select(i />i , s k l 2 (y , t)) are highlighted i n the bo t tom part
of Figure 6.3.

Next , the procedure s e l e c t checks that i n every model of tpi, the sub-heap described
by G' is well-formed w.r.t. a 2 . Intuitively, this means that a l l cycles in the sub-heap are
expl ici t ly described i n the inductive definition of P 2 . For example, i f ipi = ls(x,y) *
ls(y,z) and </?2 = a 2 = ls(x,z), then the graph G' corresponds to the entire formula
ipi and it may have lasso-shaped models (z may belong to the path between x and
y) that are not well-formed w.r.t . l s (x , z) (whose inductive definition describes only
acyclic heaps). Therefore, the procedure s e l e c t returns emp, which proves that the
entailment ipi =4> ip2 does not hold. For our running example, for any model of tpi, i n
the sub-heap modelled by the graph select(i />i , s k l 2 (y , t)) in Figure 6.3, t should not
be (1) interpreted as an allocated locat ion i n the list segment s k l 2 (y , I3) or (2) aliased
to one of nodes labelled by Y3 and I4 .

The well-formedness test is equivalent to the fact that for every variable V G { -F 2 }U.B 2

and every model of <p\, the interpretation of V is different from a l l allocated locations
in the sub-heap described by G'. This is i n tu rn equivalent to the fact that for every
variable V G { F 2 } U B2, the two following conditions hold:

1. For every predicate edge e included i n G' that does not end i n Node(F) , V is
allocated in a l l models of E 7̂ F A ((pi \ G') where E and F are variables labell ing
the source and the destination of e, respectively, and tpi \ G' is obtained from ipi
by deleting a l l spatial atoms represented by edges of G'.

2. For every variable V' labell ing the source of a points-to edge of G', (pi V 7̂ V'.

The first condit ion guarantees that V is not interpreted as an allocated locat ion i n
a list segment described by a predicate edge of G' (this t r iv ia l ly holds for predicate edges
ending i n Node(V)) . If V was not allocated i n some model (5, Hi) of E 7̂ F A ((pi \ G'),
then one could construct a model (S, H2) of G' where e would be interpreted to a non
empty list and <S'(V) would equal an allocated locat ion inside this list. Therefore, there
would exist a model of (pi, defined as the union of (5, Hi) and (S, H2), i n which the heap
region described by G' would not be well-formed w.r.t. a 2 .

For example, i n the graph select(V>i, s k l 2 (y , t)) i n Figure 6.3, t is not interpreted as
an allocated locat ion i n the list segment s k l 2 (y , I3) since t is allocated (due to the atom
t H> {(s,Y2)}) i n a l l models of y ^ I 3 A (tpi \ s e l e c t ^ i , s k l 2(y, t))).

81

To check that variables are allocated, we use the following property: given a formula
if = 3X : n A E , a variable V is allocated in every model of ip iff 3X : II A E * V i—>
{ (/) ^1) } is unsatisfiable. Here, we assume that / and V i are not used i n (p. Note that, by
Proposi t ion 6.1, unsatisfiability can be decided using the Boolean abstraction BoolAbs.

The second condit ion guarantees that V is different from al l allocated locations rep
resented by sources of points-to edges in G'. For the subgraph se l ec t (i /> i , n l l (a ; , y , z))
in Figure 6.3, the variable z must be different from al l existential variables labell ing
a node which is the source of a points-to edge. These disequalities appear expl ic i t ly i n
the formula. B y Proposi t ion 6.1, (pi =4> V ^ V can be again decided using the Boolean
abstraction of ip-y.

6.2.4. Soundness and Completeness

The following theorem states that the procedure given in A l g o r i t h m 6.1 is sound and
complete. The soundness is a direct consequence of the semantics. The completeness is
a consequence of Proposit ions 6.1 and 6.2. In particular, Propos i t ion 6.2 implies that
the sub-formula returned by se l ec t (<^ i , a 2) is the only one that can describe a heap
region satisfying a 2 .

T h e o r e m 6 .1 . Let (pi and <^2 be a pair of formulae such that <^2 is quantifier-free. Then,
it holds that (pi =4> < 2̂ iff the procedure in Algorithm 6.1 returns true.

6.2.5. Checking Entailments between formulae and Predicate Atoms

Given a formula ip and an atom P(E, F, B), we define a procedure for checking that
ip =^sh F (F , F , B), which works as follows: (1) G[tp] is transformed into a tree T[<p]
by spl i t t ing nodes that have mult iple incoming edges, (2) the inductive definition of
F (F , F , B) is used to define a T A A[P] such that T[<p] belongs to the language of
A[P] only i f ip F (F , F , B). Not ice that we do not require the reverse impl ica t ion
in order to keep the size of A[P] po lynomia l in the size of the inductive definition of
P. Thus, A[P] does not recognise the tree representations of a l l formulae ip such that
<P =^sh P(E, F , B). The transformation of graphs into trees is presented in Section 6.3
while the construction of the T A is introduced i n Section 6.4. In Section 6.6, we also
discuss how to obtain a complete method by generating a T A A[P] of an exponential
size.

6.3. Representing SL Graphs as Trees

We define a canonical representation of S L graphs i n the form of trees, which we use
for checking =^sh- In this representation, the disequality edges are ignored because they
have been dealt w i t h previously when checking entailment of pure parts.

We start by explaining the main concepts of the tree encoding using the generic
labelled graph in Figure 6.5a. We consider a graph G where a l l nodes are reachable from
a distinguished node called Root (this property is satisfied by a l l S L graphs returned

82

fa

Root
9i

fa
52 a l i a s t M

a l i a s t4-[/i/2]
a) A labelled graph G b) A tree representation of G

Figure 6.5.: The tree representation of a generic graph

by the s e l e c t procedure). To construct a tree representation of G, we start w i th its
spanning tree (highlighted using bold edges) and proceed wi th spl i t t ing any node wi th
at least two incoming edges, called a join node, into several copies, one for each incoming
edge not contained in the spanning tree. The obtained tree is given i n Figure 6.5b.

In order not to loose any information, the copies of nodes should be labelled wi th the
identity of the original node, which is kept i n the spanning tree. However, since the
representation does not use node identities, we label every original node wi th a repre
sentation of the path from Root to this node in the spanning tree, and we assign every
copied node a "routing" label describing how it can reach the original node in the span
ning tree. For example, if a node n has the label a l i a s t b i] > this denotes the fact that
n is a copy of some j o i n node, such that this jo in node is the lowest ancestor of n that
is reachable from Root by a path formed of a (non-empty) sequence of g\ edges i n the
spanning tree. Further, n labelled by a l i a s t4-[/i h] denotes roughly that (1) the original
node is reachable from Root by a path formed by a (non-empty) sequence of fa edges
followed by a (non-empty) sequence of fa edges, and (2) the original node can be reached
from n by going up i n the tree unt i l the first node that is labelled by a prefix of fa fa
and then down unt i l the first node labelled wi th fa fa. The exact definition of these
labels can be found later i n this section. In general, a label of the form a l i a s f [. . .] w i l l
be used when breaking loops while a label of the form a l i a s t4-[- • •] w m be used when
breaking parallel paths between nodes. Moreover, i f the original node is labelled by
a non-quantified variable, e.g. x, then we w i l l use a label of the form a l i a s [x]. This set of
labels is enough to obtain a tree representation from S L graphs that can entail a spatial
a tom from the considered fragment; for arbi trary graphs, this is not the case.

W h e n applying this construction to an S L graph, the most technical part consists of
defining the spanning tree. Based on the inductive definition of predicates, we consider
a to ta l order on fields -<F that is extended to sequences of fields, ^ F * i n a lexicographic
way. Then, the spanning tree is defined by the set of paths labelled by sequences of
fields that are m i n i m u m according to the order ^ F * •

Intuitively, the order -<f reflects the order i n which the unfolding of the inductive
definition of P is done: (1) Fields used i n the atom E H->• p of the mat r ix of P are
ordered before fields of any other predicate called by P. (2) Fields appearing in p and
going "one-step forward" (i.e. occurring i n a pair (/, Xti)) are ordered before fields going
"down" (i.e. occurring i n a pair (/ , Z) w i th Z € Z), which are ordered before fields going
to the "border" (i.e. occurring i n a pair (/, B) w i th B £ B).

83

A l g o r i t h m 6.2: Funct ion t o T r e e Q encoding S L graphs to trees

I n p u t : G : S L graph wi th a l l nodes reachable from the node of E,
P(E, F, B) : predicate atom

O u t p u t : A labelled tree that encodes G
/ / compute the spann ing t r e e

1 M := nodeMark ing (G , P, E, -<;p*):
/ / s p l i t nodes o f Vars

2 G' := s p l i t l a b e l l e d J o i n (G , M , E, {F} U B):
/ / s p l i t u n l a b e l l e d j o i n nodes

3 T := s p l i t J o i n (G ' , M) ;
/ / move l a b e l s from edges t o s r c nodes

4 T' := u p d a t e L a b e l s (T) ;

5 r e t u r n T";

Formally, given a predicate P w i t h the mat r ix £ as i n Equa t ion 6.2, we split the set
F h_ >.(P) i n three disjoint sets: (a) ¥^xtl(P) is the set of fields / occurring i n a pair
(f,Xti) of p, (b) ¥ g(P) the set of fields / occurring i n a pair (/ , Z) of p w i t h Z G Z,
and (c) ¥ g(P) the set of fields / occurring i n a pair (/ , B) of p w i th B G B. Then , we
assume that there exists a to ta l order -<p on fields such that for a l l P, Pi, Pi i n P:

V / i G I U x t l (P) , V / 2 G ¥^(P), V / 3 G F ^ (P) : / i ^ F / 2 /a and
(6.15)

(fi G F _ (P i) A f2 G F ^ (P 2) A / i ^ / 2 A P i ^ P P 2) / i ^ F / 2 -

For example, i f P = { n i l , I s } or P = { n l c l , I s } , then s ^ h -<¥ f; and i f P =
{ s k l 2 , s k l i } , then / 2 fi. The order ^p is extended to a lexicographic order ^p» over
sequences i n ¥*.

A n f-edge of an S L graph is a points-to edge labelled by / or a predicate edge labelled
by P(N) such that the m i n i m u m field i n F h_ >.(P) w.r.t . ^p is / .

Let G be an S L graph and P(E,F, B) an atom for which we want to prove that
G P(E, F, B). We assume that a l l nodes of G are reachable from the node Root
labelled by E, which is ensured when G is constructed by s e l e c t . The tree encoding of
G is computed by the procedure t o T r e e (G , P(E, F, B)) (given i n A l g o r i t h m 6.2) that
consists of four consecutive steps that are presented below.

N o d e m a r k i n g . F i rs t , t o T r e e computes a mapping M , called node marking, defining
the spanning tree of G. Intuitively, for each node n, M (n) is the sequence of fields
labell ing a path reaching n from Root that is m in ima l w.r.t . ^p*. Formally, let TT be a path
in G s tart ing in Root and consisting of the sequence of edges e i e 2 . . . en. The labelling
of it, denoted by L(7r) , is the sequence of fields fi / 2 . . . / „ such that for a l l i, ei is an
/j-edge. The marking of a node n in G is defined by

M (n) = Reduce (mm ^¥(¥^(P)) . L m i n (n)) , where (6.16)

Lmin(^) — m i n {^(TT) I - R o o i - ^ n } (6-17)

84

alias [y] s k l 2 f2
alias [t]

alias [t]
l s j { I s

alias [z] O O alias [z]

(a) Tree encodings for the selected subgraphs i n the bo t tom left part of Figure 6.3

K I > W . v w alias [y]
' " h i \ h

/ I f I /) /

aliast[s/i] O Oal iast[s / i]

(b) Tree encodings for graphs satisfying n l c l

* s k l 2

: / 2 , M : / 2 , í s k l o
O ^ O a l i a s f í]

0 ^ - 0 a l i a s [i]

"•.f2hM:f2h 0 alias \ . ; . / 2

(c) Tree encodings for graphs satisfying s k l 2

Figure 6.6.: Tree encodings.

where Reduce rewrites the sub-words of the form / + to / for any field / , and Root - ^ n
means that TT is a path from the node Root to the node n. For technical reasons, we add
the m i n i m u m field (w.r.t. -<f) i n F h_ >.(P) at the beginning of a l l M (n) .

Figures 6.6b-c depict two graphs and the markings of their nodes (for readability, we
omit the markings of the nodes labelled by y and t).

S p l i t t i n g j o i n n o d e s . The jo in nodes are split i n two consecutive steps, denoted as
s p l i t l a b e l l e d J o i n and s p l i t J o i n , depending on whether they are labelled by vari
ables i n {E, F} U B or not. In both cases, only the edges of the spanning tree are kept
in the tree, the other edges are redirected to fresh copies labelled by some alias [..].

For any jo in node n , the spanning tree edge is the /-edge (m, n) such that it holds
that Reduce(M(m)./) = M (n) , i.e. (m,n) is at the end of the m i n i m u m path leading
to n. (For Root, no incoming edge is i n the spanning tree.)

In s p l i t l a b e l l e d J o i n , a graph G' is obtained from G by replacing any edge (m,n)
such that n is labelled by some V G {E, F} U B and (m,n) is not i n the spanning tree
by an edge (m, n') w i th the same label, where n' is a fresh copy of n labelled by alias [V].
Moreover, for uniformity, a l l (even non-join) nodes labelled by a variable V G {F} U B

85

are labelled by a l i a s [V] i n G'. Figure 6.6a gives the output graph of s p l i t l a b e l l e d J o i n
on the S L graphs returned in our running example by select(?/>i, n l l (x , y, z)) and
select(V>i, s k l 2 (y , t)).

Subsequently, s p l i t Join builds from G' a tree by spl i t t ing unlabelled jo in nodes as
follows. Let n be a j o i n node and (m, n) an edge not in the spanning tree of G' (and G).
The edge (m, n) is replaced i n the tree by an edge (m, n') w i th the same edge label,
where n' is a fresh copy of n labelled by:

• a l i a s t [M(n)] i f m is reachable from n i n G' and al l predecessors of m i n G' (by a sim
ple path) marked by M (n) are also predecessors of n. Intuitively, this label is used
to break loops, and it refers to the closest predecessor of n' having the given mark
ing. The use of this labell ing is i l lustrated i n Figure 6.6b.

• a l i a s t i [M (n)] if there is a node p which is a predecessor of m such that a l l predeces
sors of m that have a unique successor marked by M (n) are also predecessors of p,
and n is the unique successor of p marked by M (n) . Intuitively, this transformation
is used to break mult iple paths between p and n as i l lustrated in Figure 6.6c. 1

If the relation between n and n' does not satisfy the constraints mentioned above, i.e.
the formula does not belong to the considered fragment, the result of s p l i t J o i n is an
error represented by the _L tree.

A t the end of these steps, we obtain a tree w i t h labels on edges (using fields / G F or
predicates Q(B)) and labels on nodes of the form a l i a s [..]; the root of the tree is labelled
by E.

U p d a t i n g the labels. In the last step, two transformations are done on the tree.
Fi rs t , the labels of predicate edges are changed i n order to replace each argument X
different from elements of the set {F}UB by the argument a l i a s t [M(n)] or a l i a s t i [M (n)] ,
which describes the posit ion of the node n labelled by X w.r.t . the node of G labelled
by E. In the case this is not possible, the algori thm returns _L.

F inal ly , as the generated trees w i l l be tested for membership i n the language of a T A
which accepts node-labelled trees only, the labels of edges are moved to the labels of
their source nodes and concatenated i n the order given by -<F (predicates i n the labels
are ordered according to the m i n i m u m field i n their matr ix) .

The following property ensures the soundness of the entailment procedure:

Proposit ion 6.3. Let P(E,F,B) be a predicate atom and G an SL graph. If the pro
cedure toTree(G, P(E, F, B)) returns _L ; then G & P(E, F, B).

l rTlie combination of up and down arrows in the label corresponds to the need of going up and then
down in the resulting tree—whereas in the previous case, it suffices to go up only.

86

Pi(B)
(1) qo h{qo),h{q\),h{q2
(2) <h a l i a s t l [/ i]
(3) a l i a s [S]

(4) qo h{<to),h{<ti),h{<b
(5) a l i a s [F]

(6) qo A(S)(<8>)
(7) qo

6.7.: ^ l [F i (F , F , F)]

6.4. Tree Automata Recognising Tree Encodings of SL
Graphs

Next , we proceed to the construction of tree automata A[P(E,F, B)] that recognise
tree encodings of S L graphs that entail atoms of the form F (F , F , B). We start w i t h
an intuit ive description on two typica l examples and give a full description of the T A
construction later. F i rs t , to simplify the exposition, we give a modified definition of tree
automata for the use in the rest of this chapter (cf. Chapter 2).

Tree automata. A (nondeterministic) tree automaton (T A) recognising tree encodings
of S L graphs is a tuple A = (Q, qo, A) where Q is a finite set of states, go G Q is the in i t i a l
state, and A is a finite set of transitions of the form (q, a\ • • • an, q\ • • • qn) or (q, a, e),
where n > 0, q, q\,..., qn G Q, ai is an S L graph edge label (we assume them to be
ordered w.r.t . the same ordering of fields as for tree encodings), and a is alias'[[m],
a l i a s til)™]) o r

 a l i a s W] f ° r a marking m and a variable V. We use q ai(qi),..., an(qn)
to denote (q, a\ • • • an, q\ • • • qn) and q a to denote (q, a, e). The set of trees L(A)
recognised by A, called the language of A, is defined i n the same way as i n Chapter 2.

Construct ion of A[P{E, F, B)\. The tree automaton A[P{E, F, B)] is constructed by
a procedure start ing from the inductive definition of P. If P does not ca l l other predi
cates, the T A simply recognises the tree encodings of the S L graphs that are obtained by
"concatenating" a sequence of Gaifman graphs representing the mat r ix S (F , Xtl, B) and
predicate edges P(E, Xtl, B). In these sequences, occurrences of the Gai fman graphs
representing the mat r ix and the predicate edges can be mixed i n an arbi trary order
and i n an arbi trary number. Intuitively, this corresponds to a par t ia l unfolding of the
predicate P i n which there appear concrete segments described by points-to edges as
well as (possibly multiple) segments described by predicate edges. Concatenat ing two
Gaifman graphs means that the node labelled by Xtl in the first graph is merged w i t h
the node labelled by F i n the other graph. We first i l lustrate this in the following exam
ples and give the formal algori thm later. The T A s for the running examples are given
in Section 6.4.3.

87

Figure 6.8.: A[ls(E,F)}

Consider a predicate P\(E, F, B) that does not invoke any other predicates and that
is defined using the matr ix E i = E i-> {(fi,Xtl), (f2, Xtl), (fs,B)}. The tree automa
ton A[P\(E, F, B)] for Pi(E, F, B) has transitions given in Figure 6.7. Transitions 1-3
recognise the tree encoding of the Gaifman graph of E i , assuming the following total
order on the fields: f\ -<F J2 -<¥ fz- Transi t ion 4 is used to dist inguish the "last" in
stance of this tree encoding, which ends i n the node labelled by a l i a s [F] accepted by
Transi t ion 5 . F inal ly , Transitions 6 and 7 recognise predicate edges labelled by P\{B).
A s i n the previous case, we distinguish the predicate edge that ends i n the node labelled
by a l i a s [F\.

Note that the T A given above exhibits the simple and generic skeleton of T A s accepting
tree encodings of list segments defined in our S L fragment: The in i t i a l state go is used
in a loop to traverse over an arbitrary number of folded (Transit ion 6) and unfolded
(Transit ion 1) occurrences of the list segments, and the state g3 is used to recognise the
end of the backbone (Transit ion 5) . The other states (here, q2) are used to accept alias
labels only. The same skeleton can be observed in the T A recognising tree encodings of
singly l inked lists, which is given in Figure 6.8.

W h e n P invokes other predicates, the automaton recognises tree encodings of concate
nations of more general S L graphs, obtained from G/[E] by replacing predicate edges
w i t h unfoldings of these predicates. O n the level of T A s , this operation corresponds to
a subst i tut ion of transitions labelled by predicates w i t h T A s for the nested predicates.
Dur ing this substi tution, a l i a s [..] labels occurring i n the T A for the nested predicate need
to be modified. Labels of the form a l i a s t [m] and a l i a s t ^ b ^] are adjusted by prefixing
m w i t h the marking of the source state of the transit ion. O n the contrary, labels of the
form a l i a s [V] are substi tuted by the marking of N o d e (F) w.r.t. the higher-level matr ix .

Let us consider a predicate P2(E, F) that calls P i and that has the mat r ix defined as
S 2 4 3Z : E H+ {(gi,Xtl),(g2,Z)}A 01+ Pi[Z,E\. The T A A[P2(E,F)} for P2(E,F)
consists of the following transitions:

(i ') ggo ^ 9 i (ggo), 92 (go) (2') ggo ^ 3 1 (5 5 1) , 5 2 (9 0)

transitions of A[P\(E, F, B)], where (3') ggi <^ a l i a s [F]

a l i a s [F] is substi tuted by a l i a s | [3 i 3 2] , (4 ') ggo P2(ggo)

a l i a s [B] by a l i a s t [5 i] , and (5 ') gg 0 ^ ^ 2 (9 9 1)

a l i a s t4-[/i] is substi tuted by a l i a s tl[gi 32 /1]

(Transit ion 1') and the transitions imported (after renaming of the respective labels) from
A[Pi(E, F, B)] describe trees obtained from the tree encoding of Gf[T,2] by replacing the

88

edge looping i n Z w i th a tree recognised by A[Pi(E,F,B)]. Accord ing to Gf[T,2], the
node marking of Z is g\ g2, and so the label a l i a s [F] shall be substituted by a l i a s t [< ? i 92],

and the mark ing a l i a s t4-[/i] shall be substituted by a l i a s "M-[<7i 92 fi]-
In the next sections, we describe our algori thm for construction of tree automata for

predicates. F i r s t , we start w i t h a description of the basic algori thm for constructing tree
automata accepting unfoldings of the predicate where every singly l inked list segment
(both top-level and nested) is non-empty. Then, we proceed wi th a description of an
extension of the algori thm for list segments that may be empty.

6.4.1. Basic Algorithm for Non-Empty List Segments

Consider the definition of the mat r ix of the predicate P(E, F, B) as given i n Section 6.1
repeated for the sake of convenience here:

P(E, F, B) = (E = F A emp) V

(E^{F}UB A 3Xtl : E(E, Xtl, B) * P(Xtl, F, B))

where £ is of the form:

E(E, Xti, B) = 3Z : E i-> {p({Xtl} U V)} * E ' where V C Z U B and

E ' ::= Q(Z, U, Y) \ 01+ Q[Z, Y] | £' * £'

for Z G Z, U G Z U B U {E, Xtl}, Y C B U {E, Xtl}, and

0 1 + Q[Z, Y] = 3Z' : EQ(Z, Z', Y) * Q(Z', Z, Y) where E Q is the mat r ix of Q.

The construction of the automaton A[P] is described i n the following. To ease its
presentation, let us suppose that the mat r ix of P is of the form Y,(E,Xti, B) = 3Z :
E ^ { (/ l j - ^ i)) • • • > (fn,Zn)} * £ ' . W. l . o .g . we further assume that fi ••• fn,
i.e. f\ is the m i n i m u m field in F h_ > .(P).

The construction uses the S L graph of the following formula, which represents two
unfoldings of the recursive definition of the predicate:

3Xtl : E(E, Xtl, B) * E (X t l , F, B). (6.18)

The unfolding is done twice i n order to capture a l l the markings (including the ones of
the nodes allocated inside the list segment) that may appear in tree encodings that shall
be recognised by A[P] • The graph G is obtained from the S L graph of the formula i n
Equa t ion 6.18 in such a way that the macro (3 1 + Q[Z, Y] is not expanded but translated
into a predicate edge from N o d e (Z) to N o d e (Z) labelled w i t h Q(Y).

Then, we get the tree encoding T[G] of G and check that it is not equal to _ L , otherwise
we abort the procedure. Notice that the variable Xti is existentially quantified i n the
formula, so T[G] does not use the aliasing relation a l i a s [Xti]- Instead, a node that is
a copy of the node labelled wi th Xti i n G needs to use either the relation a l i a s t [/ i]

or the relation a l i a s t i [/ i] , because the mark ing of N o d e (X t l) is f\. Reca l l also that
the nodes of G labelled by parameters or existentially quantified variables are pushed

89

directly in T[G]. So, we overload the notat ion Node(Z) to denote the node of T[G]
obtained from the node of G labelled by Z.

The construction starts w i th an empty automaton »4[P]. It calls the procedure
b u i l d T A C a l l , which adds states and transitions to A[P] to recognise tree encodings of
unfoldings of the atom P(E, F, B). Th is procedure is recursive, because it is called for a l l
atoms Q(U, V, W) inside the formula i n Equa t ion 6.18. The arguments of b u i l d T A C a l l
are: the predicate called, a mapping a of the formal parameters of the predicate to an
aliasing relation, the states go and q\ to be used for the source resp. the continuation
of the construction, and the marking mo of the state qo. The in i t i a l values of these
parameters are, i n order: P, {E i-> a l i a s [E],F i-> a l i a s [P] , P i-> a l i a s [B]}, fresh states
qo, q\, and f\. B y B i-> a l i a s [B] we denote the set of mappings {B i-> a l i a s [B] \ B G B}.
The state qo is marked as the root state of A[P].

The procedure b u i l d T A C a l l consists of the following four steps.

I . I m p o r t i n g t h e t r ee e n c o d i n g T [G] . In the first step, we construct the skeleton
of A[P] by taking 1~[G] and transforming it i n the following way:

(a) For each node u of T[G], we create a unique state q{u) i n »4[P], except for the nodes
Node(P) and Node(P) , for which we use the states go and gi respectively.

(b) If the node u is labelled i n T[G] w i th an aliasing relation r G { a l i a s [B] \ B G

B} U { a l i a s A [m] | A G {t)t4-}}> where m is a marking, we add the t ransi t ion

where (3(r, a, mo) changes r i n the following way: If r is of the form a l i a s [B] for any
B G B, the result is c(B). O n the other hand, when r is a relation a l i a s A [m] for
A G {t)t4-}> it is changed to a l i a s A[Reduce(mo .m)].

(c) If there is a predicate edge from u to v labelled wi th Q(Y), we add the transi t ion

where j3'(Y,a, mo) changes every Y i n Y according to the following rules:

• If Y is an argument of the function cal l , it is changed to o~(Y):

• if Y is an existentially quantified variable i n the formula in Equa t ion 6.18, m is
the marking of Node(P) , and the relation between Node(P) and Node(y) is
a l i a s A[m] for A G {T)T4-}> w e change Y to a l i a s A[Reduce(mo . m)];

• otherwise, we abort the procedure.

(d) If the node u is the source of points-to edges e\,...,ek labelled wi th the fields
h i , . . . ,hk respectively, assuming that h i -<w • • • -<v hk, and entering nodes v i , . . . ,Vk

in this order, we add the transi t ion

q(u) ^ P(r, a, m 0) (6.19)

q(u)^ Q((3'(Y,a,mo))(q(v)). (6.20)

q(u) ^hi(q(vi)),... hk(q(vk)). (6.21)

90

Note that this rule also creates the backbone transi t ion

g 0 ^ / i (g (N o d e (A t l))) , / 2 (g (Z 2)) , . . . , fn(q(Zn)). (6.22)

(e) If the ca l l to b u i l d T A C a l l is not nested, we add the transi t ion

gi ^ a{F). (6.23)

Observe that the created skeleton is able to accept precisely two unfoldings of the pred
icate P between E and F such that nested predicates are not unfolded.

I I . A c c e p t i n g n o n e m p t y l i s t s e g m e n t s . Next , we make A[P] accept an arbitrary
number of these unfoldings along the backbone field of the predicate. To do this, we take
the in i t i a l t ransi t ion from Equa t ion 6.22 and insert into A[P] the following transitions:

(a) a t ransi t ion that accepts exactly one unfolding:

qo ^fi(qi), f2(q(Z2)), • • •, Uq{Zn)). (6.24)

(b) a looping transi t ion that allows to insert arbi t rar i ly many unfoldings:

g (N o d e (A t l)) ^ / ^ (N o d e ^))) , f2(q(Z2)), fn(q(Zn)). (6.25)

I I I . I n t e r l e a v e w i t h p r e d i c a t e edges . We add transitions allowing an arbitrary
interleaving of folded and unfolded occurrences of the translated predicate P:

go ^ P (F H]) (g (N o d e (A t l))) (6.26)

g (N o d e (A t l)) ^P(B[a])(q(Node(Xtl))) (6.27)

g (N o d e (A t l)) ^P(B[a])(gi). (6.28)

I V . I n s e r t i n g t r e e a u t o m a t a o f n e s t e d p r e d i c a t e edges . For each transi t ion
inserted in A[P] of the form:

g(Node(i?)) ^ Q(F)(g(Node(S))) , (6.29)

w i t h Q / ? , we cal l recursively the procedure b u i l T A C a l l to insert into A[P] the
automaton for the cal l of the predicate Q w i t h the parameters (R, S, Y). The states
created by each cal l of b u i l T A C a l l are new. The procedure b u i l T A C a l l is called w i t h
the process identifier Q,

• the mapping {E i-> m, F i-> rs, B i-> r y } , where for any Z G {R, S} U Y:

- i f Z e {E, F} U B then r z is a(Z),

— if Z G Z (the set of existentially quantified variables i n P) then rz is
a l ias t i fw-z] where mz is the marking of Node(Z) i n T[G],

91

X\

X\

a; 2

h

X3

A
h

A
h

£4
h

a;5

a) The S L graph of a 3-level skip list

h

a; 2

h

h

fi

h

h

a l i a s t ^ / 3 / 2] [a l i a s U \ h \ \ ;a l ias t l [/ 3] I ; aliastl[/a]

b) The tree encoding of the graph i n (a)

XQ

Figure 6.9.: I l lustrat ion of the issue w i t h possibly empty nested list segments. The label
of the node accessible from £5 over f\ (labelled wi th aliasT4-[/s]) reflects the
fact that the second-level skip list from the node £4 to the node XQ is empty.

• the states g(Node(i?)) and g(Node(5)), and

• the marking Reduce(mo ,mj j) , where TJIR is the marking of Node(i?) in T[G\.

The following result states the correctness of the tree automata construction.

T h e o r e m 6.2. For any predicate atom P(E, F, B) and any SL graph G, if the tree gen
erated by t o T r e e (G , P(E, F, B)) is recognised by A[P(E, F, B)), then G P{E, F, B).

6.4.2. Extending the Basic Algorithm to Possibly Empty Nested List
Segments

This extension creates tree automata that can accept such unfoldings of the predicate
where nested list segments may be empty. The difficulties this creates are shown i n
Figure 6.9. The label of the node accessible from £5 over f\ (labelled wi th aliasT4-[/3])
reflects the fact that the second-level skip list from the node £4 to the node XQ is empty.
Therefore, when the automaton is traversing the segment between £4 and XQ, it needs to
remember that if the second level list segment leaving £4 is empty, the label at the end
of the first level list segment leaving £4 is not aliast4-[/3/2] but aliasT4-[/s]• Note that
the top-level list segment predicate is always non-empty; the case when it is empty is
dealt w i t h during the normalisat ion phase (see Section 6.2.2).

92

Suppose there are nested list segments Ri,..., Rn i n the matr ix T,(E, Xtl, B) of the
predicate P(E, F, B) (note that the predicate of some distinct Ri and Rj can be the
same, e.g. Ri = ls(S, T) and Rj = ls(U, V)). For every subset S of the set of nested list
segments, S C {Ri,... ,Rn}, we run the procedure i n Section 6.4.1 such that we first
modify T,(E, Xti,B) i n such a way that a l l nested list segments not i n S are substituted
by their ground case and obtain the automaton A . We then obtain the automaton
A[P(E, F, B)] by uni t ing a l l the automata retrieved i n the previous step together and
merging their in i t i a l states into one.

Formally, given the automata As = (Qs, g^, As) for a l l S C {R\,..., Rn} (supposing
their sets of states are pairwise disjoint) we create A[P(E, F, B)] = (Q,qo,A) in the
following way.

Q = {qo}U | J (QS\{q$}) (6.30)
SC{RU...,RN}

A = | J As[q0/q$] (6.31)
SC{RU...,RN}

where As [qo/q^] denotes the set of transitions As where every occurrence of q^ is
substituted wi th go. It is easy to observe that the number of automata As is 2 n ; the
construction is therefore exponential.

6.4.3. T r e e A u t o m a t a for the R u n n i n g E x a m p l e

This section lists tree automata for the predicates from Figure 6.1. The automaton
A[ls(E, F)] contains the following set of transitions (with go being the in i t i a l state):

qo f(qo) qo i s (go)
qo f(gi) qo is(gi)
qi a l i a s [F]

The automaton „4, [nl l (G, H, B)] contains the following set of transitions (with qq$ being
the in i t i a l state):

qqo ^ s(qq0), h(q0) qq0 ^ s(qqi), h(q0)
qqi ^ a l i a s [H] qq0 -->• nll(B)(qq0)
transitions of A[ls(E, B)] qqo nll(B)(qqi)

The automaton „4,[skli(.Kr, L)\ contains the following set of transitions (po is the in i t i a l
state):

Po h(p±),f2(p±), / i (po) Po ^ s k l i (p o)
Po ^ h(p±),f2(p±),fi(pi) Po s k l i (p i)
pi a l i a s [L] p± < -̂» a l i a s [N U L L]

93

The automaton „ 4 , [s k l 2 (M , N)] contains the following set of transitions {ppo is the in i t i a l
state):

PPo h(p±),hippo),/i(po) PPo s k l 2 (p p 0)
PPo ^ /3 (P±), /2 (ppi), fi ipo) PPo skl 2 {ppi)
transitions of A[skliiK, L)], where pp\ a l i a s [N]

a l i a s [L] is substituted by a l i a s t i L f e]

The automaton „4,[skl3(P, i?)] contains the following set of transitions {pppo is the in i t i a l
state):

PPPO ^ /3 (PPPO), h (.PPo), fi (po) PPPo ^ s k l 3 (pppo)

PPPo ^ /3 (PPPl) , /2 (PPo), fi (po) PPPo ^ s k l 3 (pppi)
transitions of . A [s k l 2 (M , iV)], where pppi ^ a l i a s [i?]

a l i a s [N] is substi tuted by a l ias t4- [/S]

a l i a s t i [/ 2] is substi tuted by aliasT4-[/3 h]

The automaton A[nlcl(S, T)] contains the following set of transitions (with qq$ being
the in i t i a l state):

qq0 ^ s(qq0), h(q0) qq0 ^ s(qqi), hiq0)

qqi ^ a l i a s [T] qq0 -->• n l c l (g g 0)

transitions of A[ls(E, F)], where qqo n l c l (g g i)

a l i a s [F] is substi tuted by alias~\[sh]

6.5. Extensions

The procedures presented above can be extended to a larger fragment of S L that uses
more general inductively defined predicates. In particular, they can be extended to cover
finite nestings of singly or doubly l inked lists. To describe doubly l inked segments, we
extend the definition of a predicate from Equa t ion 6.1 to the following:

A
(6.32)

Rdl(E, F,P,S,B) = {E = S AF = P A emp) V (E ^ S A F ^ P A

3Xtl : E(E, XTL, P, B) * RDL(XTL, F, E, S, B))

where E is an existentially-quantified mat r ix of the form:

E(E, X t i , P, B) = 3~Z : E i-> {p{{XTL, P} U V)} * E ' where V C Z U B and

S ' : : = Q(Z, U, Y) \ QDL(Z, U, ZP, ZS, Y) \

0 1 + Q[Z,Y] | 0 1 + QDI[Z,Y] | E ' * E '

for Z e Z; U, ZP, ZS G Z U B U {E, XTL, P}; F C B U {E, XTL, P},

0 1 + Q[Z, Y] 4 3 Z ' : Eq (Z, Z ' , F) * Q(Z', Z, Y)

where Eq is the mat r ix of Q, or

0 1 + Qdi[Z, Y) 4 3 Z ' , Z P : S Q (H (Z , Z ' , Z P , F) * Q ^ ' , Z P , Z, Z, Y)

where T,Qdl is the matr ix of Qdi-

94

p
11 : n
E M : n M : n M : n S

— o

p p p p

a) A n S L graph that entails dll(E, F, P, S)
E

alias [P] O O ^ k ^ O ^ k y ^ alias [5]
P P P

alias [E]0 O O a l i a s f N
alias | 2 N

b) The tree encoding of the graph from (a)

Figure 6.10.: Tree encodings for doubly l inked lists

In Equa t ion 6.32, P corresponds to the predecessor of E and S corresponds to the
successor of F. For instance, to describe D L L segments between two locations E and F,
one can use the predicate

d l l (£ , F, P, S) = (E = S A F = P A emp) v(E^SAF^PA

3Xtl : E ' y {(n, A t l) , (p, P)} * d l l (A t l , F, E, S)).
(6.33)

To describe a singly l inked list of cyclic doubly l inked lists, we may use the following
predicate:

n l c d l (F , F) = (E = F A emp) v (£ / F A (6.34)

3Xtl, Z : E ^ {(a, Xtl), (h, Z)}* 01+ d l l (Z) * n l c d l (A t l , F))

where (3 1 + d l l (Z) is a macro describing non-empty cyclic doubly l inked lists defined by

0 1 + d l l [Z] 4 3 Z i , Z2 : Z ^ {(n, Z i) , (p, Z 2) } * d l l (Z i , Z 2 , Z , Z) . (6.35)

Representing S L Graphs as Trees. The s p l i t J o i n operation from Section 6.3 is
extended wi th considering the following two more possible labellings: alias\2[a] and
aliastizastfa]- If n is a jo in node in a graph and (m,n) is an edge that is not i n its
spanning tree, then (m, n) is replaced by the edge (m, n') w i th the same edge label, such
that n' is a fresh copy of n labelled by (in addi t ion to the labellings from Section 6.3)

• al ias t 2 [M(n)] i f m is reachable from n , m further reaches n in the spanning tree
of the graph and in the spanning tree there is exactly one node marked wi th M (n)
between m and n. Intuitively, this label is needed to handle inner nodes of doubly
l inked lists, which have two incoming edges, one from their successor and one from
their predecessor (see Figure 6.10).

95

: shn

• s h A X M : s h

p n \pn) p

: shn M : s h n

a) A n S L graph that entails nlcdl(E, F)

O a l i a s t ^ f f l S t [s / i n] al iasUiast[s hn) — Q

a l i a s t [s / i] O

a l i a s t 2 [s / i n] 0 P » / \/>

a l i a s t [s 6] (J 0 O a l i a s t [s / i]

a l i a s t [s h]

b) The tree encoding of the graph from (a)

Figure 6.11.: Tree encodings for lists of nested cyclic doubly l inked lists

• a l i a s t i z a s t [M (n)] if there is a node p that is an ancestor of m (or it is m itself),
such that p is also an ancestor of n , and n has no non-alias successors w i th the
marking M (n) . Intuitively, the label is needed for a doubly l inked cyclic list to
allow referring to the predecessor of the head node of the list (see Figure 6.11).

6.6. Completeness and Complexity

In general, there exist S L graphs that entail P(E, F, B) whose tree encodings are not
recognised by A[P(E, F, B)] created using the algori thm from Section 6.4.1. The models
of these S L graphs are nested list segments where inner pointer fields specified by the
matr ix of P are aliased. For example, the T A for skl2 does not recognise the tree
encodings of S L graphs modelled by heaps where Xti and Z\ are interpreted to the
same location.

This issue is dealt w i t h by the algori thm presented i n Section 6.4.2. However, the
size of the T A created i n this way may become exponential i n the size of P (defined

96

Table 6.1.: Average running times for S P E N on the benchmarks from [PR11].

Bolognesa T i m e [ms] Spaguetti T i m e [ms] Clones T i m e [ms]

bo-10 352 sp-10 146 cl-01 316
bo-11 386 sp-11 156 cl-02 314
bo-12 385 sp-12 145 cl-03 335
bo-13 394 sp-13 153 cl-04 336
bo-14 483 sp-14 189 cl-05 321
bo-15 562 sp-15 258 cl-06 334
bo-16 424 sp-16 198 cl-07 351
bo-17 510 sp-17 254 cl-08 374
bo-18 503 sp-18 249 cl-09 407
bo-19 516 sp-19 252 cl-10 436
bo-20 522 sp-20 282

as the number of symbols in the matrices of a l l Q w i th P -<p Q), as the construction
considers a l l possible aliasing scenarios of targets of inner pointer fields permit ted by the
predicate.

For the verification conditions that we have encountered i n our experiments, the T A s
constructed using the former algori thm are precise enough i n the vast majori ty of the
cases. In particular, note that the T A s generated for non-nested predicates, such as
the predicates for I s and d l l , are precise. We have, however, implemented even the
latter a lgori thm (which is complete even for nested predicates) and evaluated that it
also provides good performance on pract ical examples (where the number of nestings is
given by the use i n real-world programs).

In conclusion, the overall complexity of the incomplete semi-decision procedure (where
aliases between variables i n the definition of a predicate are ignored) runs i n polynomial
t ime modulo an oracle for deciding val idi ty of a Boolean formula (needed i n the normal
isation part of the procedure). The complete decision procedure is exponential i n the
size of the predicates, which remains acceptable i n practice, rather than in the size of
the formulae.

6.7. Implementation and Experimental Results

We implemented our decision procedure in a solver called S P E N (SeParation logic E N -
tailment) . The too l takes as the input an entailment problem ipi =4> ip2 (including the
definition of the predicates used) encoded i n the S M T L I B 2 format. For non-valid entail
ments, S P E N prints the atom of <p2 which is not entailed by a sub-formula of <p\. The
tool is based on the M I N I S A T solver for deciding unsatisfiability of Boolean formulae and
the V A T A l ibrary (described i n Chapter 10) as the tree automata backend.

We applied S P E N to entailment problems that use various recursive predicates. F i r s t ,
we considered the benchmark provided i n [PR11], which uses only the I s predicate.

97

Table 6.2.: Runn ing S P E N on entailments between formulae and atoms.

<P2 <Pi T i m e [ms] Status
States/Trans,

of A[<p2]
Nodes/Edges

n i l
t c l
t c 2
t c 3

344
335
319

val id
val id

inval id
6/17

7/7
7/7
6/7

n l c l
t c l
t c 2
t c 3

318
316
317

val id
val id

inval id
6/15

10/9
7/7
6/6

s k l 3

t c l
t c 2
t c 3

334
349
326

val id
val id

inval id
80/193

7/7
8/8
6/6

d l l
t c l
t c 2
t c 3

358
324
322

val id
val id

inval id
9/16

7/7
7/7
5/5

It consists of three classes of entailment problems called Spaguetti, Bolognesa, and
Clones. The first two classes contain 110 problems each (split into 11 groups) generated
randomly according to the rules specified i n [PR11], whereas the last class contains 100
problems (split into 10 groups) obtained from the verification conditions generated by the
tool S M A L L F O O T [BCO06] . In a l l experiments 2 , S P E N finished i n less than 1 second w i t h
the deviat ion of running times ± 1 0 0 ms w.r.t . the ones reported for S E L O G E R [HIOP13] 3 ,
the most efficient tool for deciding entailments of S L formulae wi th singly l inked lists we
are aware of (average times for each group are given i n Table 6.1).

The T A for the predicate I s is quite small , and so the above experiments d id not eval
uate much the performance of our procedure for checking entailments between formulae
and atoms. For a more thorough evaluation, we further considered the experiments listed
in Table 6.2 (among which, s k l 3 required the extension of our approach to a full decision
procedure as discussed at the end of Section 6.4). The full benchmark is available wi th
our tool [ELSV14b] . The entailment problems are extracted from verification conditions
of operations like adding or deleting an element at the beginning, in the middle, or at
the end of various kinds of list segments (see Figure 6.12). Table 6.2 gives for each
example the running time, whether the entailment is val id or inval id, and the size of
the tree encoding and T A for ipi and (p2, respectively. We find the resulting times quite
encouraging.

Moreover, S P E N part icipated i n three divisions of the first competi t ion of separation
logic solvers S L - C O M P ' 1 4 [si-14]: divis ion F D E L e n t l containing problems wi th extended
acyclic lists, such as doubly l inked lists, nested lists, or skip lists (the results for this

2Our experiments were performed on a PC with an Intel Core 2 Duo @2.53GHz processor and 4GiB
DDR3 @ 1067MHz running a virtual machine with Fedora 20 (64-bit).

3The times reported for S E L O G E R in [HIOP13] were obtained on a PC with an Intel Core i5-2467M
@1.60GHz processor and 4GiB DDR3 @1066MHz under Windows 7 (64-bit).

98

tp2 = nll(x,y,z)

t c l = 1 4 {(s, u), (h, a)} * u i->- {(s, y) , (/i, &)} * l s (a , z) * l s (6 , z)

t c 2 = n l l (x , u, z) * it i->- {(s, u>), (/i, a)} * a i-> { (/ , 6)} * l s (6 , z) * nl l (u>, y, z)

t c 3 = n l l (x , u, z) * u i-> {(s, u>), (/i, a)} * a i-> { (/ , 6)} * 6 i-> { (/ , a)} *

<p2 = n l c l (x , y)

t c l = x H4 {(s, it), 0 , a)} * a 4 { (/ , 6)} * 6 4 { (/ , a)} * it 4 y), (h, c)} *

{(/, d)}*ls(d, c)

t c 2 = n l c l (x , u) * it i->- {(s, u), (/i, a)} * a i-> { (/ , 6)} * l s (6 , a) * n l c l (i ; , y)

t c 3 = n l c l (: r , u) * u i-> {(s, u), (/i, a)} * a i-> { (/ , y)} * n l c l (i ; , y)

V?2 = s k l 3 (x , y)

t c i = x 4 { (A , z) , (/ 2 , 2) , (/ 3 , z)} * z •->• { (/ i , y) . (/ 2 , y) , (/ 3 . y)}

t c 2 = s k l 3 (x , z) * m {(/ 3 ,^) , (/2 , z 2) (/ i , z i) } * s k l i (z i , z 2) * s k l 2 (z 2 , w j) *

s k l 3 (w , y)

t c 3 = X 4 (/ 2 , w) , (/ 3 , ^) } * ^ ^ { (/ l , z) , (f2,W2), (h,z)} *

s k l 2 (y j 2 , z) * s k l 3 (z , y)

tp2 = dll(x,y,z,v)

t c l = x >-> { (n , u) , (p,z)} * u 4 { (n , y) , (p,x)} * y 4 { (n , u) , (p , u) }

t c 2 = x i->- { (n , it), (p, z)} * d l l (i t , w, x, y) * y i-> { (n , u), (p, iu)

t c 3 = x i->- { (n , it), (p, z)} * d l l (i t , w, x, y) * y i-> { (n , w)}

Figure 6.12.: Defini t ion of formulae for in the experiments

division are i n Table 6.3a), and divisions sllOa_entl and sllOa_sat containing problems wi th
singly l inked lists (the results for these divisions are i n Table 6.3b). The tables contain for
each solver the number of problems for which the solver responded incorrectly (column
Errors) , the number of problems for which it responded correctly (column Solved), the
number of problems for which it d id not give an answer (column -iSolved), and the tota l
t ime of the solver in seconds (column Time) . S P E N won divis ion F D E L e n t l w i th a huge
difference, solving a l l problems i n less than a minute; further, notice that S P E N is the
only tool that correctly answered a l l problems in this divis ion. In addi t ion to this, S P E N

was also placed second in both divisions w i th singly l inked lists, where the first placed
was won by Aster ix , a solver specialised for this part icular data structure.

99

Table 6.3.: Results of S L - C O M P ' 1 4

a) Results for extended acyclic lists (FDELent l)
Solver Errors Solved -•Solved T ime

S P E N 0 43 0 0.61
C y c l i s t - S L 0 19 24 141.78
S L I D E 0 0 43 0.00
S L E E K - 0 6 1 31 11 43.65

b) Results for singly l inked lists

Solver
sllOa_entl sll0a_sat

Solver
Errors Solved -•Solved T i m e Errors Solved -•Solved T i m e

As te r ix 0 292 0 2.98 0 110 0 1.06
S P E N 0 292 0 7.58 0 110 0 3.27
S L E E K - 0 6 0 292 0 14.13 0 110 0 4.99
C y c l i s t - S L 0 55 237 11.78 55 55 0 0.55

6.8. Conclusion

This chapter presented a novel (semi-)decision procedure for a fragment of S L w i t h
inductive predicates describing various forms of lists (singly or doubly l inked, nested,
circular, w i t h skip l inks, etc.). The procedure is composit ional i n that it reduces the
given entailment query to a set of simpler queries between a formula and an atom.
For solving them, we proposed a novel reduction to testing membership of a tree derived
from the formula i n the language of a T A derived from a predicate. We implemented
the procedure, and our experiments show that it has not only a favourable theoretical
complexity, but also efficiently handles pract ical verification conditions. Moreover, when
compared wi th other tools for deciding separation logic formulae in the first competi t ion
of separation logic solvers S L - C O M P ' 1 4 [si-14], S P E N won the first place i n one d iv i
sion (being by several orders of magnitude faster and even more successful i n correctly
deciding the decision problems), and the second place in two divisions.

In the future, we plan to investigate extensions of our approach to formulae wi th a more
general Boolean structure or using more general inductive definitions. Concerning the
latter, we plan to investigate whether some ideas from [IRV14] could be used to extend
our decision procedure for entailments between formulae and atoms. F r o m a pract ical
point of view, apart from improving the implementat ion of our procedure, we p lan to
integrate it into a complete program analysis framework.

100

7. Deciding WS1S Formulae Using
Nested Antichains

Weak monadic second-order logic of one successor (WS1S) is a powerful, concise, and
decidable logic for describing regular properties of finite words. Despite its nonele-
mentary worst case complexity [Mey72], it has been shown useful in numerous appli
cations. Mos t of the successful applications were due to the tool M O N A [E K M 9 8] ,
which implements a finite automata-based decision procedure for W S 1 S and W S 2 S
(a generalisation of W S 1 S to finite binary trees). The authors of M O N A list a mul
ti tude of its diverse applications [KM01] , ranging from software and hardware verifica
t ion through controller synthesis to computat ional linguistics, and further on. A m o n g
more recent applications, verification of pointer programs and deciding related log
ics [M P Q 1 1 , M Q 1 1 , IRS13, C D N Q 1 2 a , Z K R 0 8] can be mentioned, as well as synthesis
from regular specifications [HJK10] . M O N A is s t i l l the standard tool and the most com
mon choice when it comes to deciding W S 1 S / W S 2 S . There are other related automata-
based tools that are more recent, such as jMose l [TWMS06] for the M 2 L (S t r) logic, and
other than automata-based approaches, such as [GK10]. They implement optimisations
that allow them to outperform M O N A on some benchmarks, however, none provides an
evidence of being consistently more efficient. Despite many optimisations implemented
in M O N A and the other tools, the worst case complexity of the problem sometimes
strikes back. Authors of methods using the translat ion of their problem to W S 1 S / W S 2 S
are then forced to either find workarounds to circumvent the complexity blowup, such
as i n [MQ11], or, often restricting the input of their approach, give up translating to
W S 1 S / W S 2 S altogether [W M K 1 1] .

The decision procedure of M O N A works wi th deterministic automata; it uses deter-
minisat ion extensively and relies on minimisa t ion of deterministic automata to suppress
the complexity blow-up. However, the worst case exponential complexity of determini-
sation often significantly harms the performance of the tool . Recent works on efficient
methods for handling nondeterministic automata suggest a way of al leviating this prob
lem, i n part icular works on efficient testing of language inclusion and universality of finite
automata [DR10, W D H R 0 6 , ACH+10] and size reduction [BGOO, ABH+08] based on
a s imulation relation. Hand l ing nondeterministic automata using these methods, while
avoiding determinisation, has been shown to provide great efficiency improvements i n
[B H H + 0 8] (abstract regular model checking) and also [H H R + 1 2] (shape analysis). In this
chapter, we present a work that makes a major step towards bui ld ing the entire decision
procedure of W S 1 S on nondeterministic automata using similar techniques. We propose
a generalisation of the antichain algorithms of [DR10] that addresses the main bottle
neck of the automata-based decision procedure for W S 1 S , which is also the source of its
nonelementary complexity: e l iminat ion of alternating quantifiers on the automata level.

101

More concretely, the automata-based decision procedure translates the input W S 1 S
formula into a finite word automaton such that its language represents exactly a l l mod
els of the formula. The automaton is buil t i n a bottom-up manner according to the
structure of the formula, start ing wi th predefined atomic automata for literals and ap
ply ing a corresponding automata operation for every logical connective and quantifier
(A, V , - i , 3) . The cause of the nonelementary complexity of the procedure can be ex
plained on an example formula of the form p' = 3 X m V X m _ i . . . V A ^ X i : po. The uni
versal quantifiers are first replaced by negation and existential quantification, which
results i n p = 3 A m - i 3 A m _ i . . . - 1 3 X 2 - 1 3 X 1 : PQ. The algori thm then builds a sequence
of automata for the sub-formulae po, p\,..., (pm-i, <p\n-\ of <p where for 0 < i < m,
p>\ = 3Xi+\ : pi, and pi+i = ^p\- Every automaton i n the sequence is created from
the previous one by applying the automata operations corresponding to negation or
el iminat ion of the existential quantifier, the latter of which may introduce nondetermin-
ism. Negation applied on a nondeterministic automaton may then yield an exponential
blowup: given an automaton for ip, the automaton for -ii/> is constructed by the classical
automata-theoretic construction consisting of determinisation by the subset construction
followed by swapping of the sets of final and non-final states. The subset construction
is exponential i n the worst case. The worst case complexity of the procedure run on
p is then a tower of exponentials w i th one level for every quantifier alternation i n p:
note that, i n general, we cannot do much better—this nonelementary complexity is an
inherent property of the problem.

M a i n ideas of our approach. O u r new algori thm for processing alternating quan
tifiers i n the prefix of a formula avoids the explicit determinisation of automata i n the
classical procedure and significantly reduces the state space explosion associated wi th i t .
It is based on a generalisation of the antichain principle used for deciding universality
and language inclusion of finite automata [W D H R 0 6 , A C H + 1 0] . It generalises the an
t ichain algorithms so that instead of being used to process only one level of the chain of
automata, it processes the whole chain of quantifications wi th i alternations on the fly.
Th i s leads to working wi th automata states that are sets of sets of sets . . . of states
of the automaton representing po of the nesting depth i (this corresponds to i levels of
subset construction being done on the fly). The algori thm uses nested symbolic terms to
represent sets of such automata states and a generalised version of antichain subsump-
t ion pruning which descends recursively down the structure of the terms while pruning
on a l l its levels.

Our nested antichain algori thm can be—in its current form—used only to process
a quantifier prefix of a formula, after which we return the answer to the val idi ty query,
but not an automaton representing a l l models of the input formula. Tha t is, we cannot
use the optimised algori thm for processing inner negations and alternating quantifiers
which are not a part of the quantifier prefix. However, despite this and the fact that our
implementation is far less mature than that of M O N A , our experimental results s t i l l show
significant improvements over its performance, especially in terms of generated state
space. We consider this a strong indicat ion that using techniques for nondeterministic

102

automata to decide W S 1 S (and WS/cS) is highly promising. There are many more
opportunities of improving the decision procedure based on nondeterministic automata,
by using techniques such as simulation relations or bis imulat ion up-to congruence [BP 13],
and applying them to process not only the quantifier prefix, but a l l logical connectives
of a formula. We consider the work presented i n this chapter to be the first step towards
a decision procedure for W S 1 S / W S & S w i t h an entirely different scalabili ty than the
current state of the art.

O u t l i n e . The structure of this chapter is as folows: We define the logic W S 1 S i n
Section 7.1. In Sections 7.2 and 7.3, we introduce finite word automata and describe the
classical decision procedure for W S 1 S based on finite word automata. In Section 7.4,
we introduce our method for dealing wi th alternating quantifiers. F ina l ly , we give an
experimental evaluation and conclude the chapter i n Sections 7.5 and 7.6.

7.1. WS1S

In this section we give an introduct ion into the weak monadic second-order logic of one
successor (WS1S) . We introduce only its m in ima l syntax here, for the full standard
syntax and a more thorough introduction, see Section 3.3 i n [C D G + 0 7] .

W S 1 S is a monadic second-order logic over the universe of discourse No- This means
that the logic allows second-order variables, usually denoted using upper-case letters
X, Y,..., that range over finite subsets of No, e.g. X = {0, 3,42}. A t o m i c formulae are
of the form (i) X C Y, (ii) S i n g (A) , (hi) X = {0}, and (iv) X = Y + l, where X and Y
are variables. The atomic formulae are interpreted in tu rn as (i) standard set inclusion,
(ii) the singleton predicate, (hi) A is a singleton containing 0, and (iv) X = {x} and
Y = {y} are singletons and x is the successor of y, i.e. x = y + 1. Formulae are buil t
from the atomic formulae using the logical connectives A , V , and the quantifier 3X
(for a second-order variable X).

Given a W S 1 S formula <p(X\,..., Xn) w i th free variables X\,..., Xn, the assignment
p = {X\ i-> Si,..., Xn i-> Sn}, where S\,..., Sn are finite subsets of No, satisfies p,
wri t ten as p \= p, if the formula holds when every variable Xi is replaced wi th its
corresponding value Si = p(Xi). We say that p is valid, denoted as |= p, if it is satisfied
by a l l assignments of its free variables to finite subsets of No- Observe the l imi ta t ion to
finite subsets of No (related to the adjective weak i n the name of the logic); a W S 1 S
formula can indeed only have finite models (although there may be infinitely many of
them).

7.2. Preliminaries and Finite Automata

For a set D and a set § C 2D we use 4-S to denote the downward closure of S, i.e. the
set 4-S = {R C D | 3S £ § : R C S}, and to denote the upward closure of S, i.e. the
set = {R C D | 3S € S : R 5 S}. The set S is i n both cases called the set of
generators of f § or 4-S respectively. A set S is downward closed if it equals its downward

103

closure, § = \.S, and upward closed if it equals to its upward closure, § = y S . The choice
operator] J (sometimes also called the unordered Cartesian product) is an operator that,
given a set of sets D = {D\,..., Dn}, returns the set of a l l sets {d\,..., dn} obtained by
taking one element di from every set Di. Formally,

n

] J D = { { d i , ...,dn}\ (d i , . . . ,dn) € J] A } (7.1)
i=l

where f] denotes the Cartesian product. Note that for a set D, \J{D} is the set of a l l
singleton subsets of D, i.e. Li{£>} = {{d} \ d G D}. Further note that i f any Di is the
empty set 0, the result is J j B = 0.

Let X be a set of variables. A symbol r over X is a mapping of a l l variables i n X to
either 0 or 1, e.g. r = {X\ i-> 0,^2 i-> 1} for X = { A ^ A ^ } . A n alphabet over X is the
set of a l l symbols over X , denoted as E x - For any X (even empty), we use 0 to denote
the symbol which maps a l l variables from X to 0, 0 G E x -

A (nondeterministic) finite (word) automaton (abbreviated as N F A i n the following)
over a set of variables X is a quadruple A = (Q, A , / , F) where Q is a finite set of states,
/ C Q is a set of initial states, F C Q is a set of final states, and A is a set of transitions
of the form (p,T,q) where p,q G Q and r G E x - We use p —> q G A to denote that
(P) r) Q) £ A - Note that for an N F A A over X = 0, A is a unary N F A wi th the alphabet
E x = {0}.

A run r of A over a word w = T\T2 • • • rn G E ^ from the state p G Q t o the state s e Q
is a sequence of states r = go<7i • • • Qn G (5 + such that qo = p, qn = s and for a l l 1 < i < n
there is a t ransi t ion — ^ % in A . If s G F , we say that r is an accepting run. We write
p s to denote that there exists a run from the state p to the state s over the word u>.
The language accepted by a state q is defined by L^(q) = {w \ q qf,qf G F } , while
the language of a set of states S C Q is defined as £ y l (5) = U<jeS AA(<?)- W h e n it is clear
which N F A „4, we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = L_A(I). We say that the state q accepts w and that the automaton A accepts
w to express that w G L^(q) and w G L(^4) respectively. We cal l a language L C E ^
universal iff L = E ^ .

For a set of states S C Q , we define

posi[A,r](5) = | J { t | s ^ > t G A } ,

pre[A,r](5) = (J { i | i ^ > s G A } , and

cpre[A,r](S) = {t | posi[A,r]({i}) C S}.

The complement of „4 is the automaton ^4c = (2®, Ac, {I},l{Q \ F}) where A c =

J P ^ > posi[A,r](P) P C Q } : this corresponds to the standard procedure that first

determinises A by the subset construction and then swaps its sets of final and non-final

states, and 1{Q \ F} is the set of a l l subsets of Q that do not contain a final state of A.

The language of Ac is the complement of the language of A, i.e. L(Ac) = L(A).

104

For a set of variables X and a variable X, the projection of X from X , denoted as
7T[x](X), is the set X \ {X}. For a symbol r , the projection of X from r , denoted
n\x](r), is obtained from r by restricting r to the domain 7T[x](X). For a transi t ion
relation A , the projection of X from A , denoted as 7T[x](A), is the transi t ion relation

(P — • 9 I V — A j .

7.3. Deciding WS1S with Finite Automata

The classical decision procedure for W S 1 S by B i i c h i [Biic59] (as described i n Section 3.3
of [C D G + 0 7]) is based on a logic-automata connection and decides val idi ty (satisfiability)
of a W S 1 S formula <p(Xi,..., Xn) by constructing the N F A Av over {Xi,..., Xn} which
recognises encodings of exactly the models of ip. The automaton is buil t i n a bottom-up
manner, according to the structure of ip, starting wi th predefined atomic automata for
literals and applying a corresponding automata operation for every logical connective
and quantifier (A, V , - i , 3) . Hence, for every sub-formula tp of ip, the procedure w i l l
compute the automaton A^ such that the language of A^, L(A1p), represents exactly a l l
models of ip, terminat ing w i t h the result A^.

The alphabet of Av consists of a l l symbols over the set X = {X\,..., Xn} of free

variables of ip (for a, b G {0,1} and X = {X\, X2}, we use ^I'-t ^° denote the symbol

{X\ i-> a, X2 i->- &}). A word w from the language of Av is a sequence of these symbols,

e.g. "J 1 ' e , v 1 ' ! ! ! , or "J 1 '?n!nn- We denote the i - th symbol of w as w\i], for i £ No-

A n assignment p : X —>• 2 N ° mapping free variables X of ip to subsets of No is encoded
into a word wp of symbols over X in the following way: wp contains 1 i n the j - t h posit ion
of the row for Xi iff j G Xi i n p. Formally, for every i G No and Xj G X , i f i G p(Xj),
then wp[i] maps Xj i-> 1. O n the other hand, i f i ^ p(Xj), then either u>p[i] maps

i—>• 0, or the length of ti) is smaller than or equal to i. Notice that there exist an
infinite number of encodings of p. The shortest one is ws

p of the length n + 1, where
n is the largest number appearing i n any of the sets that is assigned to a variable of
X in p, or — 1 when al l these sets are empty. The rest of the encodings are a l l those
corresponding to ws

p extended w i t h an arbi trary number of 0 symbols appended to its

end. For example, ^ : ° , ^ ^ ^ are a l l encodings of the assignment
A 2 :1 A 2 : 10 A 2 : 100 A 2 : 100 . . . 0

p = {X\ !->• 0, X2 i-> {0}}. For the soundness of the decision procedure, it is important
that Aip always accepts either a l l encodings of p or none of them.

The automata A^^ and A^y^ are constructed from the automata Av and A^ by
standard automata-theoretic union and intersection operations, preceded by the so-called
cylindrification which unifies the alphabets of Av and A^. Since these operations, as
well as the automata for the atomic formulae, are not the subject of the contr ibut ion
proposed i n the presented work, we refer the interested reader to [C D G + 0 7] for details.

The part of the procedure which is central for the work presented in this chapter
is processing negation and existential quantification; we w i l l therefore describe it i n
detail . The N F A A-«p is constructed as the complement of Au>. Then , a l l encodings

105

of the assignments that were accepted by Aw are rejected by A-up and vice versa. The
N F A A^x-.ip is obtained from the N F A Aw = (Q, A , / , F) by first projecting X from the
transi t ion relation A , y ielding the N F A AL = (Q, 7T[x](A), I, F). However, AL cannot
be direct ly used as ABX-.W- The reason is that AL may now be inconsistent i n accepting
some encodings of an assignment p while rejecting other encodings of p. For example,
suppose that Aw accepts the words "J1 "J1 "J1 : ^ ? ° " ' ° and we are computing

^ A 2 : UU1 A 2 : UU1U A 2 '• UU1U . .. U "

the N F A for 3 X 2 : ip. W h e n we remove the X 2 row from al l symbols, we obtain the N F A
AL that accepts the words xx •. 010, xx •. 0100, xx •. 0 1 0 0 . . . o, but does not accept the word
Xi : 0 i that encodes the same assignment (because ^ •?? ^ ^0^¥>) f ° r a n y v a m e s i n the
places of "?"s). A s a remedy for this si tuation, we need to modify A' to also accept the
rest of the encodings of p. Th i s is done by enlarging the set of final states of AL to also
contain a l l states that can reach a final state of AL by a sequence of 0 symbols. Formally,
ABX-.ip = (Q,7T[x](A),7, F^) is obtained from A'v = (Q, 7T[X](A),/, F) by computing F "
from F u s i n g the fixpoint computat ion F " = pZ. F U pre[7r [x](A),o](Z). Intuitively, the
least fixpoint denotes the set of states backward-reachable from F following transitions
of 7T[x](A) labelled by the symbol 0.

The procedure returns an automaton Av that accepts exactly a l l encodings of the
models of ip. Th is means that the language of Aw is (i) universal iff ip is val id, (ii) non-
universal iff ip is invalid, (iii) empty iff ip is unsatisfiable, and (iv) non-empty iff ip is
satisfiable. Notice that i n the part icular case of ground formulae (i.e. formulae without
free variables), the language of Aw is either L(AV) = {0}* i n the case p> is valid, or
L(Aip) = 0 i n the case p> is invalid.

7.4. Nested Antichain-based Approach for Alternating
Quantifiers

We now present our approach for dealing wi th alternating quantifiers in W S 1 S formulae.
We consider a ground formula ip of the form

p = -. 3 ^ 3 # 2 : < p 0 (X) (7.2)
V v '

where each Xi is a set of variables {Xa,..., Xj,}, 3Xi is an abbreviation for a non-empty
sequence 3Xa ... 3Xb of consecutive existential quantifications, and ipo is an arbitrary
formula called the matrix of p>. Note that the problem of checking val idi ty or satisfiability
of a formula wi th free variables can be easily reduced to this form.

The classical procedure presented i n Section 7.3 computes a sequence of automata
Ap0, A j A t , Awm where for a l l 0 < i < m - 1, <p\ = 3Xi+1 : <pi and p>i+i = -«p\.

The (pi's are the subformulae of p> shown i n Equa t ion 7.2. Since el iminat ing existential
quantification on the automata level introduces nondeterminism (due to the projection

106

on the transi t ion relation), every A t may be nondeterministic. The computat ion of
Aipi+1 then involves subset construction and becomes exponential. The worst case com
plexity of e l iminat ing the prefix is therefore the tower of exponentials of the height m.
Even though the construction may be optimised, e.g. by minimis ing every Awt (which
is implemented by M O N A) , the size of the generated automata can quickly become
intractable.

The ma in idea of our algori thm is inspired by the so-called antichain algorithms [DR10]
(a general description of the principles of antichain algorithms can be found in Chapter 8)
for testing language universality of an automaton A. In a nutshell, testing universality
of A is testing whether i n the complement A of A (which is created by determinisation
v i a subset construction, followed by swapping final and non-final states), an in i t i a l state
can reach a final state. The crucial idea of the antichain algorithms is based on the
following: (i) The search can be done on the fly while constructing A. (ii) The sets
of states that arise during the search are closed (upward or downward, depending on
the variant of the algorithm), (iii) The computat ion can be done symbolical ly on the
generators of these closed sets. It is enough to keep only the extreme generators of the
closed sets (maximal for downward closed, m in ima l for upward closed). The generators
that are not extreme (we say that they are subsumed) can be pruned away, which vastly
reduces the search space.

We notice that ind iv idua l steps of the a lgori thm for constructing Ay are very similar
to testing universality. Au toma ton Aipi arises by subset construction from A^t , and

to compute A j , it is necessary to compute the set of final states FJ. Those are states

backward reachable from the final states of Ayi v i a a subset of transitions of A j (those

labelled by symbols projected to 0 by 7Tj+i). T O compute F | , the antichain algorithms

could be actually taken off-the-shelf and run wi th A^t i n the role of the input A and

A j i n the role of A. However, this approach has the following two problems. Fi rs t , an-

t ichain algorithms do not produce the automaton A (here A^t), but only a symbolic

representation of a set of (backward) reachable states (here of F\). Since A t is the in -
put of the construction of Aipi+1, the construction of Ay could not continue. The other
problem is that the size of the input A j of the antichain algori thm is only l imi ted by

^i— 1
the tower of exponentials of the height i — 1, and this might be already far out of reach.

The ma in contr ibut ion of the work presented i n this chapter is an algori thm that
alleviates the two problems mentioned above. It is based on a novel way of performing
not only one, but a l l the 2m steps of the construction of Ay on the fly. It uses a nested
symbolic representation of sets of states and a form of nested subsumption pruning on
al l levels of their structure. Th is is achieved by a substantial refinement of the basic
ideas of antichain algorithms.

7.4.1. S t r u c t u r e of the A l g o r i t h m

Let us now start explaining our on-the-fly algori thm for handling quantifier alternation.
Fol lowing the construction of automata described i n Section 7.3, the structure of the

107

automata from the previous section, Au>0, A , A V m , can be described using
</>0 fm-l

the following recursive definition. We use 7Tj(C) for any mathematical structure C to
denote projection of a l l variables i n X\ U • • • U X{ from C.

Let AVO = (QQ, A o , IQ, FQ) be an N F A over X . Then, for each 0 < i < m, A j and
A!FI+1 are N F A s over 7Tj_|_i(X) that have from the construction the following structure:

Aj =(Qi,Al,Ii,Ff) where

Ajj = 7 r i + i (A j) and

^ = / x Z . F i U p r e [A f , o] (Z) .

= (Qi+i, A i + 1 , Fi+1) where

A i + i = {R - A post\4,T]{R)

Ii+i = {Ii}, and

F i + l =i{Qi\Fl}.

R e

We recall that A j direct ly corresponds to existential quantification of the variable X *

(cf. Section 7.3), and A<pi+1 directly corresponds to the complement of A t (cf. Sec

t ion 7.2).
A crucial observation behind our approach is that, because p is ground, Av is an N F A

over an empty set of variables, and, therefore, L(Alf) is either the empty set 0 or the
set {0}* (as described in Section 7.3). Therefore, we need to dist inguish between these
two cases only. To determine which of them holds, we do not need to expl ici t ly construct
the automaton A v . Instead, it suffices to check whether Av accepts the empty str ing e.
Th is is equivalent to checking existence of a state that is at the same t ime final and
in i t ia l , that is

^ p iff / m n F m / 0 . (7.3)

To compute Im from Io is straightforward (it equals { { . . . {{/o}} • • •}} nested m-times).
In the rest of the section, we w i l l describe how to compute Fm (its symbolic representa
tion), and how to test whether it intersects w i th Im.

The algori thm takes advantage of the fact that to represent final states, one can
use their complement, the set of non-final states. For 0 < i < m, we write iVj and
ivf to denote the sets of non-final states Qi \ Fi of A% and Qi \ F\ of A\ respectively.
The algori thm w i l l then instead of computing the sequence of automata AVo, A^t, . . . ,

A it , A<pm compute the sequence FQ, FQ, NI, i v f , . . . up to either Fm (if m is even) or

Nm (if m is odd), which suffices for testing the val idi ty of p. The algori thm starts w i th
FQ and uses the following recursive equations:

(i) Fi+1 =i{Nf}, (ii) F\ = pZ.FiUprelAioiZ),

(iii) Ni+1 = t L I { i ? f } , (iv) NJ =vZ.Nincpre[Alo\(Z).
(7.4)

Intuitively, Equations (i) and (ii) are directly from the definition of Ai and A\. Equa
t ion (iii) is a dual of Equa t ion (i): iVj+i contains a l l subsets of Qi that contain at least
one state from F\ (cf. the definition of the \J operator). F ina l ly , Equa t ion (iv) is a dual

108

of Equa t ion (ii): i n the £;-th i teration of the greatest fixpoint computat ion, the current
set of states Z w i l l contain a l l states that cannot reach an Fi state over 0 wi th in k steps.
In the next i teration, only those states of Z are kept such that a l l their O-successors are
in Z. Hence, the new value of Z is the set of states that cannot reach Fi over 0 i n k + 1
steps, and the computat ion stabilises w i t h the set of states that cannot reach Fi over 0
in any number of steps.

In the next two sections, we w i l l show that both of the above fixpoint computations
can be carried out symbolical ly on representatives of upward/downward closed sets. Par
ticularly, in Sections 7.4.2 and 7.4.3, we show how the fixpoints from Equations (ii) and
(iv) can be computed symbolically, using subsets of Qi-i as representatives (generators)
of upward/downward closed subsets of Qi. Section 7.4.4 explains how the above symbolic
fixpoint computations can be carried out using nested terms of depth i as a symbolic
representation of computed states of Qi. Section 7.4.5 shows how to test emptiness of
Im n Fm on the symbolic terms, and Section 7.4.6 describes the subsumption relation
used to minimise the symbolic te rm representation used wi th in computations of Equa
tions (ii) and (iv). Proofs of the lemmas can be found at the ends of the respective
sections.

7.4.2. Computing NJ on Representatives of jTJ'fc-sets

Comput ing NJ at each odd level of the hierarchy of automata is done by computing the
greatest fixpoint of the function from Equa t ion 7.4(iv):

We w i l l show that the whole fixpoint computat ion from Equa t ion 7.4(iv) can be carried
out symbolical ly on the representatives of Z. We w i l l explain that: (a) A l l intermediate
values of Z have the form tLT^-> ^ C Q j , so the sets 7Z can be used as their sym
bolic representatives, (b) cpre and n can be computed on such symbolic representation
efficiently.

Let us start w i th the computat ion of cpre[A\,T](Z) where r G 7Tj+i(X), assuming that
Z is of the form tLT^-> represented by 1Z = {Ri, • • •, Rn}- Observe that a set of symbolic
representatives 1Z stands for the intersection of denotations of ind iv idua l representatives,
formalised in the following lemma.

L e m m a 7.1. Let 1Z be a finite set of sets. Then, it holds that

Z can thus be wri t ten as the cpre-image cpre[A\,r](f\S) of the intersection of the
elements of a set S having the form tLK-Rj}> Rj £ 72.- Further, because cpre distributes
over n , we can compute the cpre-image of an intersection by computing intersection of
the cpre-images, i.e.

fNt(Z) = i V i n c p r e [A « , o] (Z) . (7.5)

(7.6)

(7.7)
SdS

109

B y the definition of Ajj (where Ajj = 7Tj+i(Aj)), cpre[A\,r}{S) can be computed using the
transi t ion relation A j for the price of further refining the intersection. In particular,

cpre[Al,r}(S) = P| cpre[Ai,uj](S). (7.8)
w ^ r + i (T)

Intuitively, cpre[A\,r}{S) contains states from which every transi t ion labelled by any sym
bol that is projected to r by 7Tj_|_i has its target in S. Us ing L e m m a 7.1 and Equat ions 7.7
and 7.8, we can write cpre[A\,T](Z) as

f] cprelAiMiS). (7.9)

SeS

To compute the ind iv idua l conjuncts cpre[Ai,u](S), we take advantage of the fact that
every S is in the special form tII{-Rj}> a n d that A , is, by its definition (obtained from
determinisation v i a subset construction), monotone w.r.t . D. Tha t is, if P P' G A j
for some P,P' G Qi, then for every R D P, there is R' D P' s.t. R —> R' G A j .
Due to monotonicity, the cpre [A* ,u>]-image of an upward closed set is also upward closed.
Moreover, we observe that it can be computed symbolical ly using pre on elements of
its generators. Part icular ly, for a set of singletons S = t\A{Rj}, w e get the following
lemma:

L e m m a 7.2. Let Rj C Q j - i and UJ be a symbol over 7Tj(X) / o r i > 0. T/ien

c p r e l A ^ K t l K ^ ' }) = t i l {pre[AUM{Rj)}- (7.10)

Intuitively, the sets w i th post-images above a singleton {p} G {{p} | p G -Rj} =

t l l l - R j } are those that contain at least one state q G Qi-i s.t. q —> p G A ? _ 1 . Using

L e m m a 7.2, cpre[AJS,-r](Z) can be rewrit ten as

P| m{prel4-iM(Rj)}- (7 . H)
Reiz

B y applying L e m m a 7.1, we get the final formula for cpre[AJS,-r] shown i n the lemma
below.

L e m m a 7 .3. Let 1Z C Qi and r be a symbol over 7Tj+i(X). Then

C pre[A» ,T] (tL [f t) = t i l {pre[AUM{Rj) I w G ^ (r) , i?,- G K). (7.12)

In order to compute fN$(Z), it remains to intersect cpre[A?,o](Z), computed using

i
L e m m a 7.3, w i th i V j . B y Equa t ion 7.4(iii), iVj equals t l l l - ^ f - i }) a n d > by L e m m a 7.1,
the intersection can be done symbolical ly as

fNf(Z) = t U ({ i f J U { p r e [A»_ 1 ,M(i ? j) | W G ^ (0) , ^ - G ft}). (7.13)

110

Final ly , note that a symbolic application of fN$ to Z = t i l 7 ^ - represented as the set 1Z
i

reduces to computing pre-images of the elements of 1Z, which are then put next to each
other, together w i th F | _ 1 . The computat ion starts from iVj = t L I I - ^ f - i }) represented
by { F | _ 1 } , and each of its steps, implemented by Equa t ion 7.13, preserves the form of
sets t L I ^ -) represented by 1Z.

Proofs of the Used Lemmas

L e m m a 7.4. Let X and y be sets of sets. Then it holds that

t U X n t L J Y = t L I (X U Y) . (7.14)

Proof. F r o m the definition of the] J operator, it holds that

t L J X = t { { x i , . . . , x n } | (x i , . . . , x n) G [] X } and

t I I Y = t { { y i , - - - , y m } | (y i , . . . , y m) e ! I Y } -
(7.15)

Notice that the intersection of a pair of upward closed sets given by their generators
can be constructed by taking a l l pairs of generators (X, Y), s.t. X is from] J X and Y is
from 1 J Y , and constructing the set X L)Y. It is easy to see that X U Y is a generator of
t L J X n t L J Y and that t l l X n t l J Y is generated by al l such pairs, i.e. that t l l X n t l I Y

is equal to

... ,xn} U { y i , . . . , y m } | (xi,..., xn) G , y m) G j 7 F } . (7.16)

We observe that this set can be also expressed as

t { { x i , . . . , x n , y i , . . . ,ym} | (xi,.. .,xn,yi, ...ym) G r j (^ U F) } (7.17)

or, to conclude the proof, as t U (^ U Y) . •

L e m m a 7 .1. Let 1Z be a finite set of sets. Then, it holds that

m n = n t l i W - (7-6)

Proof. Because intersection and union are both associative operations and 7Z is a finite
set 1Z = {Ri,..., Rn}-, this lemma is a simple consequence of L e m m a 7.4. •

L e m m a 7.2. Let Rj C Qi-i and UJ be a symbol over 7Tj(X) for i > 0. Then

cprelAirttfUiRj}) = t i l {pre[±UM{Rj)}- (7.10)

Proof. F i r s t , we show that the set cj3re[Ai,o;](tlJ{Fj}) is upward closed. Second, we show
that a l l elements of the set] J {pre[Al_l,ui](Rj)} are contained i n cpre[Ai,Lo](-[Y[{Rj}).
Final ly , we show that for every element T in the set q)re[Ai,u;](t lJ{Fj}) there is a smaller
element S i n the set] J {pre[A?_ 1,w](i?j)}.

I l l

1. P rov ing that cpre[Aj,a>](tU{-Rj}) ^ s upward closed: Consider a state S G Qi s.t.
S G cpre[Aj,a>](tU{-Rj})- F r o m the definition of cpre, it holds that

p o s i l A ^ K J S }) C t L H ^ ' } , (7.18)

and from the definition of A j , it holds that

post[AiM({S}) = {pos t [A«_ 1 ^] (5)} - (7 - 1 9)

For T D S, it clearly holds that

posi[A?_ 1,a;](r) D pos t [A«_ 1 ^](5) (7.20)

and, therefore, it also holds that

postlAirtdT}) = {postlAl.MiT)} C t L I { ^ } - (7.21)

Therefore, T G cpre[Aj,u>](tII{-Rj}) and the set cpre[Aj,u>](tII{-Rj}) is upward
closed.

2. P rov ing that for every element S from J J {pre[A?_ 1,w](i?j)} it holds that S is i n
cpre[Ai,u>}(\Y[{Rj}): F r o m the properties of] J , it holds that 5 = {s} is a single
ton. Because s G pre[A?_1,a;](i?j), there is a t ransi t ion s r G A ^ _ 1 for some
r G Since post[At

i_1,u](S) D { r} , it follows from the definition of A j that
post[Ai,oj]({S}) = {T} where T D { r} , and so T G t L K ^ j } and post[Ai,u]({S}) C
t L K - R j } - We use the definition of cpre to conclude that S G cpre[Aj,u>](tII{-Rj})•

3. P rov ing that for every T G cpre[Ai,w](t]J{i?j}) there exists some element S G
[] (pre[Af_ 1,o;](i?j)} such that S C T: F r o m T G c p r e l A ^ t l i l ^ j }) and the
definition of A j , we have that

p o s i l A ^ K J T }) = { P } C t l l { i 2 , - } (7-22)

for P s.t. post[Al_vuj}(T) = P. Since P G t L K ^ j } , there exists r e Rj D P and
t G T s.t. t r G A j _ 1 . Because t G pre[Aj_ 1,o;]({r}), we choose S = {t} and we
are done. •

7.4.3. C o m p u t i n g F\ o n Representat ives of 17^-sets

Similar ly as i n the previous section, computat ion of F\ at each even level of the automata
hierarchy is done by computing the least fixpoint of the function

fFt(Z) = FiUpre[Al,o}(Z). (7.23)
i

We w i l l show that the whole fixpoint computat ion from Equa t ion 7.4(h) can be again
carried out symbolically. We w i l l explain the following: (a) A l l intermediate values of

112

Z are of the form \,1Z, 1Z C Qiy so the sets 1Z can be used as their symbolic represen
tatives, (b) pre and U can be computed efficiently on such a symbolic representation.
The computat ion is a simpler analogy of the one i n Section 7.4.2.

We start w i th the computat ion of pre[A\,T]{Z) where r G 7Tj+i(X), assuming that Z is
of the form 11Z, represented by 1Z = {Ri, • • •, Rn}- A simple analogy to L e m m a 7.1 and
Equa t ion 7.7 of Section 7.4.2 is that the union of downward closed sets is a downward
closed set generated by the union of their generators, i.e. 11Z = \JR&TI-1{RJ} and that
pre distributes over union, i.e.

pre[Alr](\jTZ) = (J pre^rtdiRj}). (7.24)

A n analogy of Equa t ion 7.8 holds too:

pre[A\,r](S) = (J pre[AiM(S). (7.25)

Intuitively, pre[A\,T](S) contains states from which at least one t ransi t ion labelled by any
symbol that is projected to r by 7Tj_|_i leaves w i t h the target i n S. Us ing Equa t ion 7.25,
we can write pre[A\,r\{Z) as

| J prelAtMttiRj}). (7.26)

To compute the ind iv idua l disjuncts pre[Ai,u](],{Rj}), we take advantage of the fact
that every i{Rj} is downward closed, and that Aj is, by its definition (obtained from
determinisation by subset construction), monotone w.r.t. C . Tha t is, i f P P' G Aj
for some P,P' G Qi, then for every R C P, there is R' C P' s.t. R —-> R! G Aj.
Due to monotonicity, the pre[Ai,o;]-image of a downward closed set is downward closed.
Moreover, we observe that it can be computed symbolical ly using cpre on elements of its
generators. In particular, for a set],{Rj}, we get the following lemma, which is a dual
of L e m m a 7.2:

L e m m a 7.5. Let Rj C Qi-\ and UJ be a symbol over 7Tj(X) for i > 0. Then

pre[AiMU{Rj}) = HcprelAt^iRj)}- (7.27)

Intuitively, the sets w i th the post-images below the set Rj are those which do not
have an outgoing transi t ion leading outside Rj. The largest such set is cpre[At

i_1,u](Rj).
Using L e m m a 7.5, pre[A\,r}{Z) can be rewrit ten as

| J i{cpre[AUM{Rj)} (7.28)

which gives us the final formula for pre[A\,r] described in L e m m a 7.6.

113

L e m m a 7.6. Let 7Z C Qi and r be a symbol over 7Tj+i(X). Then

pre[Alr](in) = HcprelAl.MiRj) \ u G T T ^ T) , R3 G K}. (7.29)

In order to compute fp$(Z), it remains to unite pre[A?,o](Z), which is computed using
i

L e m m a 7.6, w i th F j . F r o m Equa t ion 7.4(i), F j equals | { A ^ | _ 1 } , so the union can be done
symbolical ly as

fFt(Z) =i({Nf_1} U {cpre^MiRj) | u> G 7 1 ^ (0) , ^ G ft}). (7.30)

Therefore, a symbolic applicat ion of / „ j to Z = \,1Z represented using the set 7Z reduces
i

to computing cpre-images of elements of 1Z, which are put next to each other, together
wi th i v | _ i - The computat ion starts from F j = | { A ? | _ 1 } , represented by {A^?_ 1 }, and each
of its steps, implemented by Equa t ion 7.30, preserves the form of sets 1TZ, represented
by 1Z.

Proofs of the Used Lemmas

L e m m a 7.5. Let Rj C Q j _ i and UJ be a symbol over 7Tj(X) / o r i > 0. T/ien

p r e l A . H U I ^ }) = | { c p r e [A t 1 H (^ ') } - (7.27)

Proof. F i r s t , we show that pre[A;,w](i{F,}) is downward closed. Second, we show that
S = cpre[At

i_1,uj}(Rj) is i n pre[Ai,u](],{Rj})- F ina l ly , we show that every element T i n
pre[Ai,u>}(\.{Rj}) is smaller than S.

1. P rov ing that pre[Ai,o;](4,{Fj}) is downward closed: Consider a state 5 ' G Qj s.t.
5 ' G pre[Ai,uj}(\.{Rj}). F r o m the definitions of pre and A j , it holds that

postlAirt({S'}) = {postlAt.MiS')} C K i J j - } , (7.31)

and, therefore,]30si[A?_1,a;](5/) G 4,{F,}. For T C S', it clearly holds that

postiAl^MiT) C p o s t [A « _ 1 H (5 ') (7.32)

and so it also holds that

poat [A i l W] ({r}) = { p o a t [A « _ 1 H (r) } C |{i2,-}. (7.33)

Therefore, T G pre[Aj,u>](4,{i?j}) and pre[Ai,J\(\.{Rj}) is downward closed.

2. P rov ing that 5 = cpre[At

i_1,ui](Rj) G pre[Aj,u>](4,{i?j}): F r o m the definition of cpre,
it holds that

poat[A_lJU](S) = S' C i i j - . (7.34)

Further, from the definition of A j , it holds that S S' G A j and, therefore,

S G pre[AiM{i{Rj})-

114

3. P rov ing that for every T G pre[Ai,u](],{Rj}) it holds that T C S: F r o m T G
pre[Ai,ui](\.{Rj}), we have that T P G A , for P C F j , and, from the definition of
A j , we have that P = posi[Aj_ 1,o;](r). F r o m P = posi[Aj_ 1 ^](T) and the definition
of cpre, it is easy to see that T C cpre[A?_ 1,w](P), and, moreover

P C ft,- =4> cpne[Aj_i,o;](P) C cpne[Aj_i,o;](i2,-). (7.35)

Therefore, we can conclude that T C cpre [A?^,^] (ft,-) = 5 . •

7.4.4. C o m p u t a t i o n of F"/ a n d iV? o n S y m b o l i c T e r m s

Sections 7.4.2 and 7.4.3 show how sets of states arising wi th in the fixpoint computations
from Equations 7.4(h) and 7.4(iv) can be represented symbolical ly using representatives
which are sets of states of the lower level. The sets of states of the lower level w i l l be
again represented symbolically. W h e n computing the fixpoint of level i, we w i l l work
wi th nested symbolic representation of states of depth i. Par t icular ly, sets of states of Qk,
0 < k < i, are represented by terms of level k where a term of level 0 is a subset of Qo,
a term of level 2j + 1, j > 0, is of the form tIJ{*i> • • • > tn} where t\,..., tn are terms of
level 2j, and a term of level 2j, j > 0, is of the form i { t \ , . . . , t n } where t\,..., tn are
terms of level 2j — 1.

The computat ion of cpre and fMt on a term of level 2j + 1 and computat ion of
i V2j + l

pre and / „ j on a term of level 2j then becomes a recursive procedure that descends v ia
the structure of the terms and produces again a term of level 2j + 1 or 2j respectively.
In the case of cpre and fMt called on a term of level 2j + 1, L e m m a 7.3 reduces the

i V2j + l
computat ion to a computat ion of pre on its sub-terms of level 2j, which is again reduced
by L e m m a 7.6 to a computat ion of cpre on terms of level 2j — 1, and so on un t i l the
bot tom level where the algori thm computes pre on the terms of level 0 (subsets of Qo).
The case of pre and f„t called on a term of level 2j is symmetrical .

%•
E x a m p l e . We w i l l demonstrate the run of our algori thm on the following abstract
example. Consider a ground W S 1 S formula ip = -3X^-3X2-''5Xi : po and an N F A
Ao = (Qo, A o , Io = {a}, Fo = {a, b}) that represents po- Reca l l that our method decides
val idi ty of p by computing symbolical ly the sequence of sets FQ , N\, ivf , F2, F\ , N3, each
of them represented using a symbolic term, and then checks i f I3 D A 3 7^ 0. In the
following paragraph, we w i l l show how such a sequence is computed and interleave the
description w i t h examples of possible intermediate results.

The fixpoint computat ion from Equa t ion 7.4(h) of the first set i n the sequence, F Q , is
an explicit computat ion of the set of states backward-reachable from F D v i a 0 transitions
of A Q . It is done using Equa t ion 7.23, yielding e.g. the term

t{F*} = FQ

i = {a,b, c}.

The fixpoint computat ion of from Equa t ion 7.4(iv) is done symbolically. It starts
from the set N\ represented using Equa t ion 7.4(iii) as the te rm t[Ni] = t l i { { a) b, c}} ,

115

and each of its iterations is carried out using Equa t ion 7.13. Equa t ion 7.13 transforms
the problem of computing cpre[Ai,a/]-image of a term into a computat ion of a series of
j3re[Af,,o;]-images of its sub-terms, which is carried out using Equa t ion 7.23 i n the same
way as when computing t[F$], ending wi th e.g. the term

t[N*] = tU{{a,b,c},{b,c},{c,d}}.

The term representing F2 is then t[F2] = l-{t[Nl]}, due to Equa t ion 7.4(i). The symbolic
fixpoint computat ion of F\ from Equa t ion 7.4(h) then starts from t[F2], i n our example

tm = I { t i l { { a , b, c}, {b, c}, {c, d}}} .

Its steps are computed using Equa t ion 7.30, which transforms the computat ion of the
image of pre[A\,u"] into computations of a series of cpre[A},<x/]-images of sub-terms. These
are i n tu rn transformed by L e m m a 7.3 into computations of pre[Aj,a;]-miages of sub-sub-
terms, subsets of Qo, i n our example yielding e.g. the term

t[Fl] = | { t U { { a , 6, c}, {b, c}, {c, d}}, t U { { 6 } , {d}}, t U { { a } , {c, d}}}.

Using Equa t ion 7.4(iv), the final term representing N$ is then

t[N3] = t l l j l { t L I { { a , b, c}, {b, c}, {c, d}}, t U { { 6 } , {<*}}> t l l { W , {c, 0 ! } } }

In the next section, we w i l l describe how we check whether haFs 7^ 0 using the computed
term t[N3}.

?
7.4.5. T e s t i n g Im n F m 7^ 0 o n S y m b o l i c T e r m s

Due to the special form of the set I m (every 7j, 1 < i < m, is the singleton set {7j_i},
cf. Section 7.4.1), the test I m n Fm 7^ 0 can be done efficiently over the symbolic terms
representing Fm. Because Im = {Im-i} is a singleton set, testing Im n Fm 7^ 0 is
equivalent to testing Im-i G -Fn- If is odd, our approach computes the symbolic
representation of iV m instead of Fm. Obviously, since Nm is the complement of Fm, it
holds that I m _ i G F m <̂ =̂ / m - i 0 Nm. O u r way of testing Im-i G F m on a symbolic
representation of the set Ym of level m is based on the following equations:

{x} G 1Y ^ 3F G Y : x G F (7.36)
{ x } G t L J Y VF G Y : x G F (7.37)

and for i = 0, I„ G t L J Y VF G Y : / 0 D F / 0. (7.38)

Given a symbolic term of level m representing a set X C Q m , testing emptiness of
Im H F m or 7m n iV m can be done over by a recursive procedure that descends along
the structure of t[x] using Equations 7.36 and 7.37, essentially generating an And-Or
tree, terminat ing the descent by the use of Equa t ion 7.38.

116

E x a m p l e . In the example of Section 7.4.4, we would test whether {{{{a}}}} H A 3 = 0
over t[N3}. T h i s is equivalent to testing whether I2 = {{{a}}} G A 3 . F r o m Equa t ion 7.37
we get that

I2eN3 ^ I1 = {{a}} G F\ (7.39)

because F\ is the denotation of the only sub-term t[F$] of t[N3]. Equa t ion 7.36 implies
that

h = {{a}}€F* ^ { a } € J V } v { a } € t I I { W , { d } } v { a } € t I I { { a } , { c , d } } . (7-40)

Each of the disjuncts could then be further reduced by Equa t ion 7.37 into a conjunction
of membership queries on the base level which would be solved by Equa t ion 7.38. Since
none of the disjuncts is satisfied, we conclude that I\ G" F\, SO I2 0 A 3 , imply ing that
I2 G F 3 and thus obtain the result |= (p.

7.4.6. S u b s u m p t i o n of S y m b o l i c T e r m s

Al though the use of symbolic terms instead of an explicit enumeration of sets of states
itself considerably reduces the searched space, an even greater degree of reduction can
be obtained using subsumption inside the symbolic representatives to reduce their size,
s imilar ly as i n the antichain algorithms [W D H R 0 6] . For any set of sets X containing
a pair of distinct elements Y, Z G X s.t. Y C Z, it holds that

l X = l (X \ y) and t l l X = t l I (X \ Z) . (7.41)

Therefore, i f X is used to represent the set J ,X, the element Y is subsumed by Z and can
be removed from X without changing its denotation. Likewise, i f X is used to represent
t I J X , the element Z is subsumed by Y and can be removed from X without changing
its denotation. We can thus simplify any symbolic term by pruning out its sub-terms
that represent elements subsumed by elements represented by other sub-terms, without
changing the denotation of the term.

Comput ing subsumption on terms can be done using the following two equations:

I X C 1 Y < ^ V A G X3Y" G Y : X C Y (7.42)

t U X Q t U Y < ^ VY" G Y3X G X : X C Y. (7.43)

Us ing Equations 7.42 and 7.43, testing subsumption of terms of level i reduces to testing
subsumption of terms of level i — 1. The procedure for testing subsumption of two
terms descends along the structure of the term, using Equations 7.42 and 7.43 on levels
greater than 0, and on level 0, where terms are subsets of Qo, it tests subsumption by
set inclusion.

E x a m p l e . In the example from Section 7.4.4, we can use the inclusion {6, c} C { a , 6, c}

and Equa t ion 7.41 to reduce t[Nf] = t L I { { a) °i c l) {°i c l) l c) d}} to the term

W = t I I { { 6 , c } , { c , d } } .

117

Table 7.1.: Results for pract ical examples

B e n c h m a r k
T i m e [s] S p a c e [states]

B e n c h m a r k
MONA dWiNA MONA dWiNA

r e v e r s e - b e f o r e - l o o p 0.01 0.01 179 47
i n s e r t - i n - l o o p 0.01 0.01 463 110
b u b b l e s o r t - e l s e 0.01 0.01 1285 271
r e v e r s e - i n - l o o p 0.02 0.02 1311 274
b u b b l e s o r t - i f - e l s e 0.02 0.23 4 260 1040
b u b b l e s o r t - i f - i f 0.12 1.14 8 390 2 065

Moreover, Equa t ion 7.43 implies that the term tJ_J{{&, c}, {c, <i}} is subsumed by the
term T !!{{&}> {d}}, a n d > therefore, we can reduce the te rm t[F$] to the term

t[Fli = i{tU{{b}, {d}}, t U { { a } , {c, d}}}.

7.5. Experimental Evaluation

We implemented a prototype of the approach presented i n this chapter in the tool
dWiNA [FHLV14] and evaluated it i n a benchmark of both pract ical and generated ex
amples. The tool uses the frontend of M O N A to parse input formulae and also for
the construction of the base automaton AVo, and further uses the semi-symbolic encod
ing of N F A s (represented as unary T A s) from the V A T A l ibrary, which is described i n
Chapters 9 and 10. The tool supports the following two modes of operation.

In mode I, we use M O N A to generate the deterministic automaton A^Q corresponding
to the matr ix of the formula p, translate it to V A T A and run our algori thm for handling
the prefix of p using V A T A . In mode II, we first translate the formula p into the formula
p' in prenex normal form (i.e. it consists of a quantifier prefix and a quantifier-free
matr ix) where the occurence of negation i n the matr ix is l imi ted to literals, and then
construct the nondeterministic automaton A w directly using V A T A .

Our experiments were performed on an Intel Core i7-4770@3.4 G H z processor w i th
32 G i B R A M . The pract ical formulae for our experiments that we report on here were
obtained from the shape analysis of [MQ11] and evaluated using mode I of our tool:
the results are shown in Table 7.1 (see [FHLV14] for addi t ional experimental results).
We measure the t ime of runs of the tools for processing only the prefix of the formulae.
We can observe that w.r.t . the speed, we get comparable results; in some cases dWiNA is
slower than M O N A , which we attribute to the fact that our prototype implementat ion
is, when compared wi th M O N A , quite immature. Regarding space, we compare the sum
of the number of states of a l l automata generated by M O N A when processing the prefix
of p w i t h the number of symbolic terms generated by dWiNA for processing the same.
We can observe a significant reduction in the generated state space. We also tr ied to

118

Table 7.2.: Results for generated formulae

k
T i m e [s] S p a c e [states]

k MONA dWiNA MONA dWiNA

1 0.11 0.01 10 718 39
2 0.20 0.01 25 517 44
3 0.57 0.01 60 924 50
4 1.79 0.02 145 765 58
5 4.98 0.02 349 314 70
6 oo 0.47 oo 90

run dWiNA on the modified formulae i n mode II but ran into the problem that we were
not able to construct the nondeterministic automaton for the quantifier-free mat r ix po
in reasonable time. This was because after transformation of ip into prenex normal form,
if <po contains many conjunctions, the sizes of the automata generated using intersection
grow too large (one of the reasons for this is that V A T A i n its current version does not
support efficient reduction of automata).

To better evaluate the scalabili ty of our approach, we created several parameterised
families of W S 1 S formulae. We start w i th basic formulae encoding interesting relations
among subsets of No, such as existence of certain transitive relations, singleton sets, or
intervals (their full definition can be found i n [FHLV14]) . F r o m these we algori thmically
create families of formulae wi th larger quantifier depth, regardless of the meaning of the
created formulae (though their semantics is s t i l l nontr ivial) . In Table 7.2, we give the
results for one of the families where the basic formula expresses existence of an ascending
chain of n sets ordered w.r.t. C (the value oo denotes a t imeout). The parameter k stands
for the number of alternations i n the prefix of the formulae:

3Y : - . 3 * 1 - ^3Xk,..., Xn : [\ (Xt C Y A Xt C Xi+1) Xi+1 C Y.
l<i<n

We ran the experiments i n mode II of dWiNA (the experiment i n mode I was not successful
due to a too costly conversion of a large base automaton from M O N A to V A T A) .

7.6. Conclusion and Future Work

We presented a new approach for dealing w i t h alternating quantifications w i th in the
automata-based decision procedure for W S 1 S . O u r approach is based on a generalisa
t ion of the idea of the so-called antichain algori thm for testing universality or language
inclusion of finite automata. O u r approach processes a prefix of the formula wi th an
arbitrary number of quantifier alternations on the fly using an efficient symbolic rep
resentation of the state space, enhanced wi th subsumption pruning. Our experimental
results are encouraging (our tool outperforms M O N A i n many cases) and show that the

119

direction started i n this work—using modern techniques for nondeterministic automata
in the context of deciding W S 1 S formulae—is promising.

A n interesting direction of further development seems to be l if t ing the symbolic
pre I cpre operators to a more general notion of terms that would allow one to work
w i t h general sub-formulae (which may include logical connectives and nested quanti
fiers). The algori thm could then be run over arbitrary formulae, without the need of the
transformation into the prenex form. This would open a way of adopting optimisations
used in other tools as well as syntactical optimisations of the input formula such as anti-
prenexing. Another way of improvement is using simulation-based techniques to reduce
the generated automata as well as to weaken the term-subsumption relation (an efficient
algori thm for computing simulat ion over BDD-represented automata is needed). We also
plan to extend the algorithms to WS/cS and tree-automata, and perhaps even further to
more general inductive structures.

120

Part III.

Efficient Techniques for
Manipulat ion of Nondeterministic

Tree Automata

121

8. Downward Inclusion Checking for
Tree Automata

The previous chapters of this thesis introduced several formal verification techniques
that rely on finite tree automata. Even before, there have been numerous other ap
plications of T A s , such as (abstract) regular tree model checking [A J M d 0 2 , B H R V 1 2] ,
verification of programs wi th complex dynamic data structures [BHRV06] , analysis of
network firewalls [B o u l l] , and implementat ion of decision procedures of logics such as
W S 2 S or M S O [KMS02] , which themselves have numerous applications (among the most
recent and promising ones, let us mention at least verification of programs manipulat ing
heap structures wi th data [MPQ11]) .

Recently, there has been notable progress i n the development of algorithms for effi
cient manipulat ion of nondeterministic finite tree automata (TAs) , more specifically, i n
solving the crucial problems of automata reduction [ABH+08] and of checking language
inclusion [TH03, B H H + 0 8 , A C H + 1 0] . A s shown e.g. in [BHH+08], replacing determin
istic automata by nondeterministic ones can—in combination w i t h the new methods for
handling T A s — l e a d to great efficiency gains. In the work presented i n this chapter, we
further advance the research on efficient algorithms for handling T A s by proposing a new
algori thm for inclusion checking that turns out to significantly outperform the existing
algorithms in most of our experiments.

U p w a r d inclusion checking. The classic textbook algori thm for checking inclu
sion L(As) Q L(AB) between two T A s As (Small) and AB (Big) first bottom-up
determinises AB, computes the complement automaton AB of AB (the states, called
macrostates, of which are sets of states of AB), and then checks language emptiness of
the product automaton accepting L(As) H L(AB)- This approach has been optimised i n
[TH03, B H H + 0 8 , ACH+10] by avoiding the construction of the whole product automaton
(which can be exponentially larger than AB and which is indeed extremely large in many
practical cases) by constructing its states and checking language emptiness on the fly.
The optimised algori thm is based on start ing from the leaf states of both automata and
maintaining a set of reachable pairs (qs, PB) where qs is a state of As and PB is a set
of states of AB- New pairs (qs, PB) are generated by taking a tuple of states qi, • • • ,qn

such that every qi appears in some reachable pair (qi,Pi) and qs is a bot tom-up post
of the tuple in As over some symbol a. The set PB is then obtained as the bottom-up
a-post i n AB of a l l tuples i n P i x • • • x Pn. In case qs is a root state and PB, on the other
hand, contains no root state, the algori thm terminates w i t h the answer L(As) % L(AB)
(this corresponds to finding a witness from the set L(As) H L(AB))- If no new pair can
be generated, the algori thm concludes that L(As) Q L(AB)-

122

The part icular opt imisat ion used in [TH03, B H H + 0 8 , A C H + 1 0] , called the antichain
principle, is based on removing from the set of reachable pairs those pairs (qs,PB) for
which there is already a reachable pair (qs, P'B) in the set, w i t h P'B C PB. The argument
why this pruning is correct is that P'B has a higher chance to generate a set of states that
contains no root state. O n the other hand, for every set of states reachable from P'B,
there w i l l be a corresponding larger (w.r.t. inclusion) set of states reachable from PB, so
if the set reachable from P'B contains a root state r , the set reachable from PB w i l l also
contain r . Th is can be even more opt imized by the approach of [ACH+10], which uses
the upward simulat ion relation to weaken the conditions for removing a pair from the
set of reachable states. The mentioned optimisations i n practice often prove or refute
inclusion by constructing a smal l part of the product automaton o n l y 1 . We denote these
algorithms as upward algorithms to reflect the direction i n which they traverse automata
As and AB-

The upward algorithms are sufficiently efficient in many pract ical cases. However,
they have two drawbacks: (i) W h e n generating the bottom-up post-image of a set S
of macrostates (which are sets of states of AB), a l l possible n-tuples of states from al l
possible products Si x . . . x Sn where Si £ S need to be enumerated 2 , (ii) Moreover,
these algorithms are known to be compatible w i th only upward simulations as a means
of their possible optimisat ion, which is a disadvantage since downward simulations are
often much richer and also cheaper to compute.

Downward inclusion checking. The alternative downward approach to checking T A
language inclusion was first proposed i n [HVP05] i n the context of subtyping of X M L
types. W i t h hindsight, we can consider it as an on-the-fly version of the algori thm for
constructing the difference automaton for a pair of T A s , proposed by Hosoya [Hos l l] .
The inclusion algori thm is not derivable from the textbook approach and has a more
complex structure wi th its own weak points; nevertheless, it does not suffer from the
two issues of the upward algori thm mentioned above. We generalise the algori thm of
[HVP05] for automata over alphabets w i th an arbitrary rank ([HVP05] considers rank
at most two), and, most importantly, we improve it significantly by using the antichain
principle, empowered by a use of the cheap and usually large downward simulation.
In this way, we obtain an algori thm which is complementary to and highly competitive
w i t h the upward algori thm as shown by our experimental results (in which the newly
proposed algori thm significantly dominates i n most of the considered cases).

1 The work of [TH03] does, in fact, not use the terminology of antichains despite implementing them in
a symbolic, BDD-based way. It specialises to binary tree automata only. A more general introduction
of antichains within a lattice-theoretic framework appeared in the context of finite word automata in
[WDHR06]. Subsequently, [BHH+08] generalised [WDHR06] for explicit upward inclusion checking
on TAs and experimentally advocated its use within the abstract regular tree model checking frame
work [BHH+08]. See also [DR10] for other combinations of antichains and simulations for finite word
automata.

2Note that this can be slightly optimised by a technique presented in Chapter 10.

123

O u t l i n e . The rest of this chapter is organised as follows. Section 8.1 describes our
basic downward inclusion checking algori thm, followed by Section 8.2 that contains a de
scription of its further optimisations. Section 8.3 presents experimental comparison of
the downward algorithms wi th the upward algorithms, and Section 8.4 concludes the
chapter.

8.1. Downward Inclusion Checking

Let us fix two tree automata As = (Qs, E , As, Rs) and AB = (QB, E , AB, RB) for
which we want to check whether the language inclusion L(As) Q L(AB) holds. If we t ry
to answer this query top-down and we proceed in a naive way, we immediately realise
that the fact that the top-down successors of part icular states are tuples of states leads
us to checking inclusion of the languages of tuples of states. Subsequently, the need to
compare the languages of each corresponding pair of states i n these tuples w i l l again
lead to comparing the languages of tuples of states, and hence, we end up comparing the
languages of tuples of tuples of states, and the need to deal w i th more and more nested
tuples of states never stops.

For instance, given a transi t ion q —>• a(p\,p2) i n As, transitions r —>• a(si,S2) and
r —>• a{t\,t2) in AB, and assuming that there are no further top-down transitions
from q and r , it holds that L(q) C L (r) if and only i f L ((p i , p 2)) C L ((s i , s 2)) U
L((t\, ^2))- Note that the union F ((s i , S2)) U L((£ i , £2)) cannot be computed component
wise, this is, L((si, S2)) U L((ti, £2)) / (F (s i) U F (£ i)) x (L(s2) U Lfa)). For instance,
provided L{s\) = F (s 2) = {&} and L[t\) = F (£ 2) = {c}, it holds that L ((s i , s 2)) U
L((t\, £2)) = {(b, b), (c, c)}, but the component-wise union is a larger set (L(s\) U L(t\)) x
(F (s 2) U F (£ 2)) = {(b, b), (b, c), (c, b), (c, c)}. Hence, we cannot s imply check whether
L(pi) C L(si) U L(ti) and L(p2) C F (s 2) U F (£ 2) to answer the original query, and we
have to proceed by checking inclusion on the obtained tuples of states. However, explor
ing the top-down transitions that lead from the states that appear i n these tuples w i l l
lead us to dealing w i t h tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first observed
in [HVP05] i n the context of X M L type checking, we can exploit the following property
of the Cartesian product of sets G, H C U for a universe U:

G x H = [G xU)n{U x H). (8.1)

Cont inuing in our example, this means that we can rewrite the expression

L (p i) x L(p2) C L((Sl, s2)) U L((t1,t2)) (8.2)

which is equivalent to

L (p i) x L(p2) C (L(a i) x L(s2)) U (L(h) x L(t2)) (8.3)

as the expression

L (p i) x L (p 2) C ((L(a i) x T s) n (T s x L (s 2))) U
((L (t i) x T E) n (T E x L (t 2))) .

(8.4)

124

This can further be rewritten, using the distr ibutive laws i n the (2 T e x T e , C) lattice, as

L (p i) x L(p2) C ((L(a i) x T s) U (L (t i) x T s)) n

((L (a i) x T s) U (T S x L (i 2))) n

((T s x L (a 2)) U x T s)) n

((T s x L (S 2)) U (T E x L (i 2))) .

It is easy to see that inclusion between a set and an intersection of several sets holds
exactly i f it holds for a l l components of the intersection. In our example, this means
that the inclusion from Equa t ion 8.5 holds if and only if the following formula is true:

L (p i) x L(p2) C ((L(a i) x T s) U x T s)) A

L (p i) x L (p 2) C x T s) U (T s x L(t2))) A

L (p i) x L (p 2) C ((T s x L (a 2)) U (L(t\) x T s)) A

L (p i) x L (p 2) C ((T s x L(s2)) U (T s x L (i 2))) .

Two things should be noted in the previous formula.

1. If we are computing the union of languages of a pair of tuples such that they have
I s at a l l indices other than some index i, we can compute it component-wise,
i.e. the inclusion test

L (p i) x L{p2) C ((L(a i) x T s) U x T s)) (8.7)

can be simplified to the test

L (p i) x L(pa) C (L (a i) U L (t x)) x T s . (8.8)

Because L (p 2) is always a subset of T s , the above clearly holds iff L(jp\) C L (a i) U

/ • (' i l -

2. If T s does not appear at the same positions as i n the inclusion

L (p i) x L (p 2) C ((L(a i) x T s) U (T s x L (t 2))) , (8.9)

it must hold that either

L (p i) C L (a i) or L(p2)QL(t2). (8.10)

Us ing the above observation and Equa t ion 8.6, we can finally rewrite the equation

L (p i) x L (p 2) C L ((a i , a 2)) U L((h,t2)) (8.11)

into the following formula, which does not contain languages of tuples but of single states
only:

L (p i) C L (a i) U L (t i) A

(L (p i) C L (a i) V %) C L (t 2)) A

(L (p i) C L (t x) V L(pa) C L (a 2)) A

^ (P 2) C L (a 2) U L (t 2) .

125

The above reasoning can be generalised to dealing w i t h transitions of any ari ty as
shown i n Theorem 8.1. In the theorem, we conveniently exploit the notion of choice
functions. G i v e n PB C QB and a G E , # a = n > 1, we denote by cf(PB, a) the set of
al l choice functions / that assign an index i, 1 < i < n, to a l l n-tuples (g i , . . . , qn) G Q g
such that there exists a state i n PB that can make a top-down transi t ion over a to
(g i , . . . ,qn); formally, cf{PB, a) = {f \ f : downa{PB) ->• { 1 , . . . , #a}} .

T h e o r e m 8 .1. Let As = (Qs, E , As, Rs) and AB = (<5s,E, A B , RB) be tree automata.
For sets Ps Q Qs and PB Q QB it holds that L(Ps) C L(PB) if and only ifVps G
P s , Va G E : if ps ->• a (n , . . . , r # a) ,

' o ! o « ; n a (P B) = {()} */ # a = 0,

then V / G c / (P B , a), 31 < i < # a : L (r ,) C (J L (^) i / # a > 0 .

u£downa(PB)
f(u)=i

Proof. For two sets P s C Qs, PB Q QB, it clearly holds that L(Ps) C L(PB) i f and only
if V p 5 G P 5 , V a G E :

P5 -> a (r i , . . . , r „) =>• L ((n , . . . , r „)) C [J L((m,...,un)). (8.13)
(«i,... ,un)edowna (PB)

For the case when # o = 0, the above formula collapses to

ps^a() => L (()) C | J L(()) . (8.14)

()&downA{PB)

Since downa{PB) Q {()} for # a = 0, the first part of the theorem is proven. We prove the
second part (when # a > 0) i n the following steps. Let us fix n = #a , u = (u\,..., un),
f = (n , . . . , rn). T h e n we can observe that the inclusion

L((ri,...,rn))C (J L((Ul,...,un)) (8.15)

u£downA(PB)

is equivalent to the inclusion

n n

]jL(n)c | J n L (^) ' (8- 1 6)
i=l uGdownA(PB) »=1

where n i L i ^* denotes the Cartesian product of a family of sets { S i , . . . , 5 n } . We can
further observe that for a universe U and a family of sets {Si,..., Sn} such that Si CU
for a l l 1 < i < n, it holds that

n n

l \ S i = f][Ui-1xSixUn-i]. (8.17)

126

Given the family of sets {L(u\),..., L(un)} and the decomposition from Equa t ion 8.17,
we can rewrite the formula from Equat ion 8.16 as

u£downa(PB) i=l
f] [Tt1 x L(Ui) x T ™ -]

i = l
5.18)

Since the power set lattice (2®B, C) is completely distr ibutive, we can exploit the fact
that for any doubly indexed set {XJ^ G 2®B \ j G J,k G Kj} it holds

u nx^=n u XJ,m 5.19)

where F is the set of a l l choice functions / choosing for each index j G J some index
f(j) G Kj. For our purpose, we introduce the set of choice functions:

cf(PB,a) = {/|/: downa(PB) - > { ! , . . . , n } } 5.20)

where every / assigns to every tuple from downa(PB) an index. Therefore, after applying
the distr ibutive law on Equa t ion 8.18, we obtain

« = 1 f&cf(PB,a)

| J x L („ / C B)) x T S - / (S

Medouina(Ps)
5.21)

Due to the fact that for a universe U, a set T CU m this universe, and an intersection
of a family of sets R C 2 W , it holds that

T C p| Si V 5 i G i2 : T C S i ,

we can simplify our case to

n

V / G c / (P B , a) : J] L (r .) C [j [t ^ " 1 X L (« / (B)) X

i=l uadowna(PB)

5.22)

(8.23)

Further, observe that for a fixed choice function / , we can use / to split the tuples from
downa(PB) into n sets, each of them containing tuples u that are assigned by / the same
index i = f(u). We can then rewrite the right-hand side of the previous inclusion query
to the following:

u£.downa(Pg)

5.24)

U U E4"
u£downa(PB)

f(u)=i

X L (l i j rpn-
1Y,

5.25)

127

u
i=l

T ^ x

u£.downa(Pg)
f(u)=i

x T™-1

It can be observed that for a universe U and two families of sets {Si,
{S[,..., S'n} such that Si, S[C £Y for a l l 1 < i < n, it holds that

n n

17 5* ̂ U x
 S'i x i f f 31 < i < n : 5 i C

1=1 1=1

We can now finally deduce that the formula

Mf eF:J[L(ri) C [J

i=l
U

u£downa(PB)
f(u)=i

x T™-1

is equivalent to the formula

Vf eF,3l<i<n:L(n) C (J L (^) ,

u£downa(PB)
f(u)=i

(8.26)

, S'n} and

(8.27)

3.28)

5.29)

which concludes the proof. •
8.1.1. Bas i c A l g o r i t h m for D o w n w a r d Inc lus ion C h e c k i n g

Next , we construct a basic algori thm for downward inclusion checking on tree automata
As = As, Rs) and AB = (Q s , S , A # , The algori thm is shown as Algo
r i thm 8.1. Its ma in idea relies on a recursive application of Theorem 8.1 i n function
expand 1. The function is given a pair

(PS,PB) G <2S x 2 Q s for which we want to
prove that L(pg) C L(PB)—initially, the function is called for every pair (g,g, FB) where
Is £ ^ s - The function enumerates a l l possible top-down transitions that A s can do
from ps (lines 3-8). For each such transit ion, the function either checks whether there
is some transi t ion ps —>• a() for ps £ PB if # a = 0 (line 5), or it starts enumerating
and recursively checking queries L(p's) C L(P'B) on which the result of L(ps) Q L(PQ)
depends according to Theorem 8.1 (lines 9-16).

The expand 1 function keeps track of which inclusion queries are currently being
evaluated i n the set workset (line 2). Encounter ing a query L(p's) C L(PB) w i th
(p'S,P'B) G workset means that the result of L(p's) C L(P'B) depends on the result
of L{p's) C L(P'B) itself. In this case, the function immediately successfully returns
because the result of the query then depends only on the other branches of the cal l tree.

128

A l g o r i t h m 8 .1: Downward inclusion

Input: T A s As = (Qs, E , A s , Rs), AB = (QB, E , AB, RB)
Output: true if L(As) Q L(AB), false otherwise

1 foreach qs € Rs do
2 | If -iexpandl(g,s, RB, 0) then return false;

3 return t r u e :

Funct ion expandl (ps , PB, workset)

II Ps £ Qs> PB^QB, and workset CQS x 2 Q s

1 if (PS,PB) £ workset then return t r u e ;

2 workset := workset U {(ps, - P B) } ;

3 foreach a £ £ do
if # a = 0 then

if downa(ps) 7^ 0 AdownA(PB) ~-
else

:= downA(PB);
foreach (n , . . . , r # a) G downa(ps) do

foreach / e { W { 1 , . . . , # a } } do
found := /afee;

foreach 1 < i < # a do

-5 := {q% | (gi , • • •, q#a) G W, / ((g i
if expandl(rj, 5, workset) then

found : = irwe;

break:

then return /afee ;

/ / P S -> • • • , r # a)

// Vf€cf(PB,a)

II 31 < i < # a

,g# a)) =*};
/ / i f L f o) C L (S)

if ^found then return false:

17 return t r u e ;

Using Theorem 8.1 and noting that A l g o r i t h m 8.1 necessarily terminates because a l l
its loops are bounded, and the recursion in function expand l is also bounded due to the
use of workset, it is not difficult to see that the following theorem holds.

Theorem 8.2. When applied on a pair of TAs As = (Qsi E , As, Rs) and AB =
(QB, E , AB, RB) s.t. QS^QB = 0, Algorithm 8.1 terminates and returns true if and
only ifL{As) C L{AB).

8.2. Optimisations of Downward Inclusion Checking

In this section, we propose several optimisations of the basic algori thm presented above
that, according to our experiments, often have a huge impact on the efficiency of the
algor i thm—making it in many cases the most efficient algori thm for checking inclusion

129

A l g o r i t h m 8.2: Downward inclusion (antichains + preorder)

Input: T A s As = (Qs, S , A g , Rs), AB = (QB, S , AB, RB),
preorder ^ C (QS L)QB)2

Output: true if L(As) Q L(AB), false otherwise
Data: NN := 0;

1 foreach qs £ Rs do
2 I if -iexpand2(gg, RB, 0) then return /a /se;
3 return true:

on tree automata that we are currently aware of. In general, the optimisations are based
on an original use of simulations and antichains i n a way suitable for the context of
downward inclusion checking.

In what follows, we assume that there is available a preorder •< C (QS^QB)2 compat
ible w i t h language inclusion, i.e. such that p -< q =>• L(p) C L(q), and we use P R
where P, R C (Qs U QB)2 to denote that Vp £ P3r £ R : p •< r. A n example of such
a preorder, which can be efficiently computed, is the max ima l downward simulat ion < B

(see [HS09]).

8.2.1. Optimisation with Antichains and Simulation-based Pruning

Firs t , we propose the following concrete optimisations of the downward checking of
L{ps) C L(PB):

a) If there exists a state pB £ PB such that ps PB, then the inclusion clearly holds
(from the assumption made about ^) , and no further checking is needed.

b) Next , it can be seen without any further computat ion that the inclusion does not hold
if there exists some (p's, P'B) such that p's < ps and PB P'B, and we have already
established that L(p's) % L(P'B). Indeed, we have L(PB) C L(P'B) 2 L(p's) C L(ps),
and therefore L(ps) % L(PB).

c) F ina l ly , we can stop evaluating the given inclusion query if there is some (p's, P'B) £
workset such that ps ^ p's and P'B PB. Indeed, this means that the result of
L(p's) C L (P ^) depends on the result of L(ps) C L (P B) . However, i f L (p ' s) C L (P ^)

holds, then also L(ps) C L(PB) holds because we have L(ps) C L(p's) C L(P'B) C
L(PB). O n the other hand, i f L(p's) C L(P'B) does not hold, the path between
(p' s, P ^) and (pg, P B) cannot be the only reason for that since a counterexample has
not been found on that path yet, and the chance of finding a counterexample is only
smaller from (ps,PB)-

The version of A l g o r i t h m 8.1 including a l l the above proposed optimisations is shown
as A l g o r i t h m 8.2 (the changes are highlighted i n the pseudocode). The optimisations can
be found i n the function expand2 that replaces the function expandl. In particular, line 2
implements opt imisat ion (a), line 1 opt imisat ion (b), and line 3 opt imisat ion (c). In order

130

Funct ion expand2(ps, PB, workset)

II PS G Qs, PBQQB, and workset C Q 5 x 2 ^

1 if 3(p ' s , P'B)eNN : p ' s <ps /\PB P b then return /alse ;
2 if 3p G P e '• Ps ^ P then return true ;
3 if 3(p ' s , P g) G workset : ps ^ p ' s A P g P B then return true ;
4 workset := workset U {(ps, P B) } ;

5 foreach a G E do
if # a = 0 then

if downa(ps) 7^ 0 A downA(PB) = 0 then return /afee ;
else

:= downA(PB);

foreach (n , . . . , r # a) G downa(ps) do
foreach / e { W { 1 , . . . , #a}} do

found := /afee;
foreach 1 < i < # a do

// PS -> • • • , r # a)
// Vf€cf(PB,a)

II 31 < i < # a
51 := fa | fa, •••,<?#«) G W, / (f a , . . . , q#a)) = i};
if expand2(rj, S, workset) then / / i f Lfa) C L (5)

found := true;
break ;

if J (r ' , H) e NN :r' ^ n A S i f then
|_ X X := (X X \ {(r ' , if) | fl" 5, n ± r'}) U {(r*, S)};

if ^found then return false:

21 return true;

to implement opt imisat ion (b), the a lgori thm maintains a new set X X . This set stores
pairs (PS,PB) for which it has already been shown that the inclusion L(ps) C L(PB)
does not hold.

A s a further optimisat ion, the set X X is maintained as an antichain w.r.t. the preorder
that compares the pairs stored i n X X such that the states from Qs on the left are
compared w.r.t . ^ , and the sets from 2®B on the right are compared w.r.t. (line 19).
Clearly, there is no need to store a pair (ps, PB) that is bigger i n the described sense
than some other pair (p's, P'B) since every t ime (ps, PB) can be used to prune the search,
(p's, P'B) can also be used.

Taking into account Theorem 8.2 and the above presented facts, it is not difficult to
see that the following holds.

Theorem 8.3. When applied on a pair of TAs As = (Q s , E , As, Rs) and AB =
(QB, E , AB, RB) s.t. Qs n QB = 0; Algorithm 8.2 terminates and returns true if and
only ifL(As) C L(AB)-

131

A l g o r i t h m 8.3: Downward inclusion (antichains + preorder + IN)

Input: T A s As = (Qs, S , A s , Rs), AB = (QB, S , AB, RB),
preorder ^ C (Qs L)QB)2

Output: true if L(As) Q L(AB), false otherwise
Data: NN : = 0; IN := 0;

1 foreach qs £ Rs do

2 I if expand2e((/5, RB, 0) = (false, _, _) then return false:
3 return true:

8.2.2. O p t i m i s a t i o n w i t h C a c h i n g of Inc lus ion Pa ir s

The algori thm from the previous section can be optimised even more. Reca l l that the
algori thm caches pairs for which the inclusion does not hold, i.e. pairs (PS,PB) such
that L(ps) % L(PB), i n the set NN (which is maintained as an antichain). A natural
question that arises is whether there is a similar option for pairs for which the inclusion
does hold, i.e. pairs (PS,PB) such that L(ps) C L(PB). Such an option indeed exists
and is presented i n the rest of this section.

Let us denote the set of the above-mentioned pairs for which the inclusion holds as IN.
Then, when checking the inclusion L(ps) C L(PB), when there is a pair (p's,P'B) £ IN
such that ps d p's and P'B PB, then we immediately know that the checked inclusion
holds because L(ps) C L(p's) C L(P'B) C L(PB).

The set IN can again be optimised as an antichain but w i th the opposite ordering
than NN. Th is means that there are no two pairs (ps, PB), (P'S, P'B) s u c n that ps d p's

and P'B PB in IN. It is easy to understand that a pair (ps,Ps) does not have to
be stored since whenever (ps, PB) can be used to prune the search, (p's, P'B) can also be
used.

However, adding new pairs to IN is not as straightforward as for NN. Assume that we
add a pair (ps, PB) to IN immediately when the function ca l l expand2(p5, PB, workset)
at line 15 of function expand2 returns true for some workset. Th is is not correct as
shown in the following example.

Suppose that when checking inclusion L(p's) C L(P'B), a test for inclusion L(ps) C
L(PB) where ps d p's and P'B PB is encountered somewhere deep i n the recursive
calls of expand2. A s stated previously, the inclusion L(ps) C L(PB) does not need to
be tested since i f L(p's) C L(P'B), then L(ps) C L(PB), and if L(p's) % L(P'B), then this
cannot be caused solely by L(ps) % L(PB). Hence, expand2(p5, PB, workset) returns
true, and the result of the query L(p's) C L(PB) w i l l be given by other branches of the
call tree generated for the L(p's) C L(P'B) query. However, i f we put the pair (PS,PB)
into IN and later proved that L(p's) % L(P'B), then the set IN would become invalid.

A solution to this issue is given i n A l g o r i t h m 8.3 (the changes from A l g o r i t h m 8.2 are
highlighted). The expand2e function is a modified version of expand2 that addit ional ly
returns a formula of the form /\Ant —>• f\ Con where Con (consequents) is a set of
inclusion queries that can be answered posit ively provided that the inclusion queries i n
Ant (antecedents) are a l l answered positively.

132

Funct ion expand2e(ps, PB, workset)

1 if 3(p's, P'B) eIN :ps ^ p's A P ^ PB then return (true, 0, 0) ;
2 if P'B) G A W : j / 5 <PS^PB ^ V 3 P b then return (/ o i s e ^ H
3 if 3p G P B • PS ^ P then return (true, 0, 0) :
4 if 3 (j / 5 , P ^) G workset : ps < p's A P B P B then
5 |_ return (true, {(p's, P'B)}, 0);
6 workset := workset U {(ps, P B) } ; ^4nt := 0; C o n := 0;
7 foreach a G S do

8
9

10
11
12
13
14
15
16
17
18
19
20

21
22

23

then return (false, 9, 0) ;

// PS -> a (r i , . . . , r # 0

II Vfecf(PB,a)

if # a = 0 then

if downa(ps) 7^ 0 A downa(PB)
else

:= downa(PB);
foreach (n , . . . , r # a) G downa(ps) do

foreach / e { W { 1 , . . . , #a}} do
found := /oise;
foreach 1 < i < j^a do / / 31 < i < # a

S ••= Ui | (gi , • • •, <7#a) G VF, / ((g i , . . . , g # a)) = i} ;
(x, A n i ' , Con') := expand2e(rj, 5, workset);
if x then / / i f L(n) C L (S)

found := true; ^4nt := ^4nt U A n t ' ;
Con := Con U Con ' ; break;

if J (r ' , P) G A W : r ' ^ n A 5 P then
|_ NN := (NN \ {(/, H) \ H ^ S , n ± r'}) U {(n, S)};

if ^found then return (false, 0,0) ;

24 Ant := A n t \ {(ps, PB)}; Con := C o n U {(ps, PB)};
25 if Ant = 0 then

26
27
28

29

foreach (x, Y) G Con do
if $(p's, P'B)eIN :x< p's A P'B Y then
[_ IN := (IN \ {(/, H) | Y P , r' ± x}) U {(x, Y) } ;

Con :=

30 return (true, Ant, Con):

W h e n the recursive cal l of expand2e(ps, PB, workset) is at the bo t tom of the cal l
tree and there is (p's, P'B) G workset such that ps •< p's and P'B PB (line 4), then,
according to the above, the formula returned from expand2e along wi th true could be
f\{L(p's) C L(P'B)} —>• f\{L(ps) C L (P B) } because L(ps) C L(PB) cannot be considered
guaranteed before L(p's) C L(P'B) is posit ively answered. This formula is, however,
simplified to /\{L(p's) C L (P ^) } —>• 0 since L(ps) C L(PB) can be forgotten as it is
weaker than L(p's) C L(P'B).

133

A si tuation similar to what we have just discussed arises when the recursive ca l l of
expand2e(p5, P B , workset) is at the bo t tom of the ca l l tree and there is (p'S,PB) G IN
such that ps d: p's a n d P'B PB (line 1). In this case, /\0 —> /\0 is returned (along
wi th true) since the val idi ty of L(p's) C L(P'B) has already been established. Next , if
the recursive cal l of expand2e(ps, PB, workset) is at the bo t tom of the ca l l tree and
there is p G PB such that ps d p (line 3), / \ 0 —> /\ 0 is again returned since for any
inclusion query L(p's) C L(P'B) such that p's ^ ps and PB P'B, it w i l l be the case
that there is p' G PB such that p ' s •< p' (and hence the computat ion w i l l be immediately
stopped without a need to use IN for this purpose). Final ly , when expand2e returns
false (line 2), it is accompanied by the formula / \ 0 —>• /\ 0, which, however, is ignored i n
this case and is returned just to make the result of expand2e have the same structure.

For inner nodes of the ca l l tree, this is, nodes that correspond to function calls
expand2e(p5, PB) that themselves cal l expand2e, a l l antecedents and consequents re
turned from successful nested calls are collected into sets Ant and Con. Then , the
condit ion L(p$) C L(PB) is removed from Ant (if it is there) and added to Con since
it has just been proved that L(p$) C L(PB) holds provided that the elements from
Ant \ {L(ps) C L (F e) } are later proved to also hold. W h e n the set Ant becomes empty,
yielding the formula / \ 0 —>• / \ Con, a l l elements of Con can be added to IN (while
respecting the antichain property of IN) and the set Con cleared.

Taking into account Theorem 8.3 and the above presented facts, it can be seen that
the following holds.

T h e o r e m 8.4. When applied on a pair of TAs As = (Qs,^, A$, Rs) and AB =
(QB,T,, AB,RB) s.t. Qs n QB = 0; Algorithm 8.3 terminates and returns true if and
only ifL{As) C L(AB)-

8.3. Experimental Results

We implemented A l g o r i t h m 8.1 (which we mark as down i n what follows), A l g o r i t h m 8.2
wi th the m a x i m u m downward simulation as the input preorder (marked as down+s), and
A l g o r i t h m 8.3 inside the V A T A l ibrary (about which we give further details in Chap
ter 10). We provide two configurations of A l g o r i t h m 8.3 that differ i n the input pre
order: The first of them uses identity (we mark this configuration as down-opt) , while
the other also uses the m a x i m u m downward simulat ion (marked as down-opt+s. In the
experiments, we evaluated the performance of the four algorithms wi th the a lgori thm for
upward inclusion checking using antichains from [BHH+08] (marked as up) and its mod
ification that uses the m a x i m u m upward simulation parameterised by identity (proposed
in [ACH+10] and marked as up+s below), which are provided in V A T A . The evaluation

?

was testing language inclusion L(A) C L{B) of almost 2 000 tree automata pairs of dif
ferent sizes (ranging from 50 to 1 000 states), including automata from the intermediate
steps of abstract regular tree model checking of the algori thm for rebalancing red-black
trees after insertion or deletion of a leaf node [B H H + 0 8] . The timeout was set to 30 s.

The results of the experiments are presented i n Table 8.1. The table compares the
methods according to the percentage of the cases i n which they were the fastest when

134

Table 8.1.: Results of the experiments (timeout 30 s)

A l g o r i t h m
A l l pairs L(A) % L(B) L(A) C L(B)

A l g o r i t h m
Winne r Timeouts Winne r Timeouts Winne r Timeouts

down 36.35 % 32.51% 39.85 % 26.01% 0.00% 90.80 %
down+s 4 .15% 18.27% 0.00% 20.31% 47.28% 0.00 %
down-opt 32.20% 32.51% 35.30% 26.01% 0.00% 90.80 %
down-opt+s 3.15% 18.27% 0.00% 20.31% 35.87% 0.00 %
up 24.14% 0.00% 24.84% 0.00% 16.85% 0.00 %
up+s 0.00 % 0.00% 0.00% 0.00% 0.00% 0.00 %

checking inclusion on the same automata pair, and also according to the percentage of
timeouts. The set of results i n the column labelled w i t h " A l l pairs" contains data for a l l
pairs.

We also checked the performance of the algorithms for cases when inclusion either
does or does not hold in order to explore the abi l i ty of the algorithms to either find
a counterexample i n the case when inclusion does not hold, or prove the inclusion i n
case it does. The results below "L(A) % L(B)" in the table are for the pairs A, B where
the inclusion does not hold, and the column under UL(A) C L(B)" reports on the cases
where the inclusion holds.

The results show that the overhead of computing upward s imulat ion is too high i n a l l
the cases that we have considered, causing upward inclusion checking using simulat ion
to be the slowest when the t ime for computing the s imulat ion used by the algori thm is
inc luded 3 . Next , it can be seen that for each of the remaining approaches there are cases
in which they w i n in a significant way. However, the downward approaches are clearly
dominat ing in significantly more of our test cases (with the only exception being the case
of smal l automata when the t ime of computing simulations is not included). O n the other
hand, it can be observed that for some part icular cases, the more complex structure of
the downward algorithms (which resembles an And-Or tree) causes an unmanageable
state explosion and the algorithms timeout (in contrast to the upward algorithms, which
always, though often slowly, terminate).

8.4. Conclusion

In this section, we proposed a new algori thm for checking language inclusion over non-
deterministic T A s (based on the one from [HVP05]) that traverses automata i n the
downward manner and uses both antichains and simulations to optimise its computat ion.
This a lgori thm is, according to our experimental results, mostly superior to the known
upward algorithms.

3Note that up+s was winning over up in the experiments of [ACH+10] even with the time for comput
ing simulation included, which seems to be caused by a much less efficient implementation of the
antichains in the original algorithm.

135

One of the interesting future research directions would be an extension of the tech
niques used i n the optimisations of the downward algori thm to the recently introduced
technique for testing language equivalence of nondeterministic hnite automata based on
the so-called bis imulat ion up-to congruence [BP 13]. Apa r t from that, it would be in
teresting to explore an efficient implementation of the data structure used for storing
the antichain, e.g. symbolical ly using some B D D - l i k e data structure, as e.g. in [TH03].
A n interesting problem here is how to efficiently encode antichains based not on the
subset inclusion but on a s imulat ion relation.

136

9. Semi-symbolic Tree Automata

Cer ta in important applications of T A s , such as formal verification of programs w i t h
complex dynamic data structures [BHRV12] or decision procedures of logics such as
WS/cS or M S O , require hnite (tree) automata wi th very large alphabets. For instance,
the automata manipulated by the decision procedure for W S 1 S i n Chapter 7 use an
alphabet of the size 2™ where n is the number of variables i n the considered formula.
Here, the common choice is to use the tree automata l ibrary of M O N A [KMS02] , which
is based on representing transitions of T A s symbolical ly using multi-terminal binary
decision diagrams (M T B D D s) . The encoding used by M O N A is, however, restricted to
deterministic automata only. Th is implies a necessity of immediate determinisation after
each operation over T A s that introduces nondeterminism and may, i n turn, easily lead
to a state space explosion. Despite the extensive engineering effort spent to optimise the
implementation of M O N A , the focus on deterministic automata significantly l imi ts its
applicabili ty.

A s a way to overcome this issue, i n this chapter, we propose a semi-symbolic represen
tat ion of nondeterministic T A s that generalises the one used by M O N A , and we develop
algorithms implementing the basic operations on T A s (such as computat ion of union,
intersection, etc.) as well as more involved algorithms for computing simulations and for
checking language inclusion (using simulations and antichains to optimise it) over the
proposed representation.

O u t l i n e . The structure of this chapter is the following. In Section 9.1, we give our
definitions of B D D s and M T B D D s . The two dual semi-symbolic encodings of T A s are
presented i n Section 9.2 and the algorithms for operations on T A s over these encodings
are described in Section 9.3. Section 9.4 describes our implementat ion of an M T B D D
library. Section 9.5 gives experimental results and, finally, Section 9.6 concludes the
chapter.

9.1. Binary Decision Diagrams

Let IB = {0,1} be the set of Boolean values. A Boolean function of arity k is a function
of the form / : B f c —> B . We extend the not ion of Boolean functions to an arbitrary
nonempty set S where a fc-ary Boolean function extended to the domain set S is a func
t ion of the form / : B f c —>• S.

A reduced ordered binary decision diagram (R O B D D) [Bry86] r over a set of n Boolean
variables connected directed acyclic graph wi th a single source node (de
noted as r.rooi) and at least one of the two sink nodes 0 and 1. We cal l internal the nodes

137

which are not sink nodes. A function Var assigns each internal node a Boolean variable
from the set X = { x i , . . . , xn}, ordered by the ordering x\ < x2 < • • • < xn. For every
internal node v there exists a pair of outgoing edges labelled low and high. We denote by
v.low a node w and by v.high a node z such that there exists a directed edge from v to
w labelled by low and a directed edge from v to z labelled by high respectively. For each
internal node v, it must hold that Var{v) < Var{v.low) and Var(v) < Var(v.high), and
also v.low Ý v.high. A node v represents an n-ary Boolean function \v\ : B " 4 B that
assigns to each assignment to the Boolean variables i n A a corresponding Boolean value
defined i n the following way (using x as an abbreviation for x\... xn):

[0] = A x . O ,

111 = A x . 1,
r _ _
I Xx .{v.low}(x) IÍXÍ = 0

{v I = < _ _ for Var{v) = Xi.
I A x . \v.high\(x) i f Xj = 1

For every pair of distinct nodes v and w, it further holds that they represent a different
function, i.e. {v} ^ {w}. We say that an R O B D D r represents the Boolean function [r |
defined as [r] = [[r.rooij. Dual ly , for a Boolean function / , we use (/) to denote the
(unique up to isomorphism) R O B D D representing / , i.e. / = 1(f)} and r =

We generalise the standard Apply operation for manipulat ion of Boolean functions
represented by R O B D D s i n the following way: let op1, op2, and op3 be i n tu rn arbitrary
unary, binary, and ternary Boolean functions. T h e n the functions Applyi, Apply^, and
Applys produce a new R O B D D that is defined for R O B D D s / , g, and h as follows:

Apply,i{f,op1) = (Xx. op1(lfj(x))),

Apply2(f,g,op2) = (Xx.op2(lf}(x),lg}(x))), (9.2)

Apply3(f,g,h, op3) = (Xx. o p 3 ([/] (x) , M (x) , [/ i](ž))>.

In practice, op1, op2, and op3 can be implemented as functions wi th side-effects.
The notion of R O B D D s is further generalised to multi-terminal binary decision di

agrams (M T B D D s) [CMZ+97]. M T B D D s are essentially the same data structures as
R O B D D s , the only difference being the fact that the set of sink nodes is not restricted
to two nodes. Instead, it can contain an arbitrary number of nodes labelled uniquely by
elements of an arbi trary domain set S. A l l standard notions for R O B D D s can natural ly
be extended to M T B D D s . A n M T B D D m then represents a Boolean function extended
to S, [m] : B " - > S . Further, the concept of shared MTBDDs is used. A shared M T B D D
s is an M T B D D wi th mult iple source nodes (or roots) that represents a mapping of every
element of the set of roots R to a function induced by the M T B D D corresponding to the
given root, [s | : R 4 (B n 4 S). We abuse notat ion and use / (r) for a shared M T B D D
/ and a root r G R to denote the M T B D D ([/] (r)) .

Apply operations for M T B D D s are extended i n such a way that the M T B D D s for
Apply2 and Applys may have different domain sets. Not only this, even the result of
the Apply operation may be over a different domain set than any of the parameters.
Formally, suppose a tr iple of M T B D D s : / (over a domain F), g (over a domain G),

138

{qi, • • • ,qn) q

0 {s,t,u} {u} {(u,u,u)}

a) bottom-up

Figure 9.1.: The (a) bot tom-up and (b) top-down semi-symbolic encodings of a transi t ion
relation. Paths i n the M T B D D correspond to symbols from E .

and h (over a domain H). Further, assume a domain K for the resulting M T B D D .
(Note that some of the considered domains may be identical.) Then , for opi : F —>• K,
op2 : (F x G) -> K, and op3 : (F x G x H) —> K, the results of Apply i (/', op J ,
Apply2(f, 9, op2), and Apply$(f, g, h, op3) are a l l M T B D D s over the domain K.

9.2. Semi-Symbolic Representations of Tree Automata
We next consider a natural , semi-symbolic, M T B D D - b a s e d encoding of nondeterministic
T A s , suitable for handling automata wi th huge alphabets. A shared M T B D D is used
to encode the transi t ion relation of a T A by connecting states wi th tuples of states i n
a part icular way, depending on the direction of the encoding.

We hx a tree automaton A = (Q A , R) for the rest of the section. We consider
both top-down and bottom-up representations of its t ransi t ion relation A , because some
operations on A are easier to do on the former representation while others are easier on
the latter. Moreover, we also provide an algori thm for translation between the considered
representations. We assume w.l.o.g. that the input alphabet E of A is represented i n
binary using n bits. Each bit i n the binary encoding of E is assigned a Boolean variable
from the set { x i , . . . , xn}. We can then use shared M T B D D s wi th a set of roots R and
a domain S for encoding various functions of the form R —>• (E —>• S) that we shall need.

9.2.1. B o t t o m - u p R e p r e s e n t a t i o n

Our bottom-up representation of the transi t ion relation A of A uses a shared M T B D D
Abu over E where the set of root nodes is and the domain of labels of sink nodes is 2^
(see Figure 9.1a). The shared M T B D D Abu then represents the following function [Ab u]]:

{Abuj : Q# -»• (E -»• 2Q),

lAbuj = A (qu ...,qp)a.{q\ a(qu ...,$,)-> q}.
(9.3)

139

A l g o r i t h m 9.1: Inversion of a shared M T B D D

Input: Shared M T B D D / such that [/] : # - > (B n -> 2 5)
Output: Shared M T B D D g such that {g\ : S ->• (B n ->• 2 H) and

r G [g](s,a) s G [/](r, a)
i 5 : = (A r x . 0) ; / / \g\ : S -)• (B n -)• 2 H)
2 foreach s G 5 swc/i i / i a i 3 r G i?, 3x G B n : s G [/] (r, a;) a o

3 foreach r G R such that f(r) / (Xx. 0) do
4 [_ #(s) := % f e (/ (r) , 9 (s) , (A I F . i f s G A then F U {r} else F)) :

5 return g\

It is easy to observe that the shared M T B D D Abu is a semi-symbolic representation
of A , i n part icular [A b u] ((g i , ...,qp),a)= upa((qi,qp)).

9.2.2. T o p - d o w n R e p r e s e n t a t i o n

Our top-down representation of the transi t ion relation A of A uses a shared M T B D D
Atd over S where the set of root nodes is Q, and the domain of labels of sink nodes
is 2Q* (see Figure 9.1b). The M T B D D Atd represents the following function \Atdf.

I A ' 1 : g ^ (S ^ 2 (3 #) ,

lAtd}= Xqa.{(q1,...,qp)\q^a(q1,...,qp)}.

Again , we can easily see that [A t d] (q , a) = downa(q).

9.2.3. C o n v e r s i o n B e t w e e n B o t t o m - u p a n d T o p - d o w n Representat ions

Sometimes it is necessary to convert between the bottom-up and top-down representa
t ion of a T A , for instance, when computing downward simulations (as explained later
in the text). The transformation can be done using the generic algori thm given i n
A l g o r i t h m 9.1. The algori thm converts a shared M T B D D / representing a function
[/] : R —> (B™ —>• 2s) over n Boolean variables to a shared M T B D D g that represents
the function \g\ : S -)• (B n -> 2R) such that r G |g](s ,a) < ^ s G [/] (r , a) . The al
gori thm first initialises g to map al l elements of S and a l l valuations of the Boolean
variables to the empty set. Then, for each element of s G S and r £ R and for each
valuation of the Boolean variables, which are impl i c i t ly traversed by the Apply2 function,
if s is in the sink node of f(r) for some valuation of the Boolean variables, r is added to
the sink node of g(s) for the same valuation of the Boolean variables.

9.3. Tree Automata Algorithms over Semi-Symbolic
Encoding

In this section, we propose algorithms for removing unreachable states, computing the
union, intersection, and (maximum) downward simulation, as well as algorithms for
upward and downward inclusion checking on the considered representation of T A s .

140

9.3.1. R e m o v i n g U n r e a c h a b l e States

A s the performance of many operations on automata depends on the size of the automa
ton (in the sense of the size of the state set and the size of the transi t ion table), it is
often desirable to remove both bottom-up and top-down unreachable states. Indeed,
such states are useless: bottom-up unreachable states cannot be used to generate a fi
nite tree and although top-down unreachable states can generate a finite tree, this tree
cannot be a subtree of any tree accepted by the automaton.

Removing both bottom-up unreachable states for the bottom-up representation and
top-down unreachable states for the top-down representation can be easily done by
a single traversal through the automaton. Nevertheless, sometimes, e.g. when checking
language inclusion of automata, it is useful to also remove states unreachable i n the
opposite direction.

The procedure for removing top-down unreachable states from a T A A = (Q, E , A , R)
represented bottom-up generates a directed graph (Q, E) where E contains the edge
(q, r) i f there is a t ransi t ion q —>• a(q\,..., qn) £ A such that r = g« for some 1 < i < n
and a £ E . W h e n the graph is created, the states that correspond to nodes that are
backward unreachable from the nodes corresponding to root states of A are removed
from the automaton i n a simple traversal.

Removing bottom-up unreachable states for the top-down semi-symbolic representa
t ion of A is more complex. F i rs t , A is traversed in the top-down manner while creating
a directed And-Or graph (Ay , A3, E) where A y = Q represents the And nodes of the
graph and A3 C Q* represents the Or nodes. The set of edges E contains the edge
(q, (qi,..., qn)) i f there exists the transi t ion q —>• a(qi,..., qn) £ A for some a £ E , and
the edge ((qi, • • •, qn), q) if % = q for some 1 < i < n. The algori thm starts by marking
the node labelled by () (which is an Or node) and proceeds by marking the nodes of
the graph using the following rules: an Or node nQ is marked if there exists a marked
node na such that (n 0 , na) £ E, and an And node na is marked i f a l l nodes n0 such
that (na,n0) £ E are marked. W h e n no new nodes can be marked, the states of A are
reduced to only those that correspond to the marked And nodes i n the graph.

9.3.2. U n i o n

A n algori thm for computing the union of a pair of T A s represented bottom-up follows
as A l g o r i t h m 9.2. The presented algori thm simply unites the sets of states Q\ and Q2,
and the sets of root states R\ and R2. We slightly abuse the notat ion and use A\u U A^"
to denote the union ([A ^ J U [A^]) of the considered shared M T B D D s . In order to
carry out the union operation on the leaf transitions of the automaton (denoted by ()),
a single Apply operation needs to be performed. The Apply operation is given the lambda
expression XX Y . X L)Y as the function to perform on the sink nodes of the M T B D D .
Correspondingly, when the Apply operation is evaluated, X and Y are mapped to the
sets of states that are the values of the corresponding sink nodes of the first and second
argument of the Apply operation, producing new sink nodes wi th the value of X U Y.

Performing the union on T A s represented top-down is more straightforward: A\j =
(Qi U Q2, E , A\d U Af, i ? i U R2), provided that QiC\Q2 = 0.

141

A l g o r i t h m 9.2: U n i o n of T A s represented bottom-up

Input: Ai = (Q i , E , A j " , i ? i) and A2 = (Q2, E , A | " , R2), Q1C\Q2 = %
Output: Au = (Qu, E , AbJ, Ru) s.t. L(Au) = L(Ai) U L (- 4 2)

1 A y " := A ^ u U A^;
2 A&»(()) : = % f e (A j u (()) , A ^ (()) , (A X r . l U F)) :
3 return A=(QiU Q2, E , A g * , Ri U F 2) ;

9.3.3. Intersect ion

A l g o r i t h m 9.3 performs intersection of a pair of T A s Aa = (Qa, E , Abu'a, Ra) and Ab =
(Qb,T,,Abu,b,Rb) that use the bottom-up representation. It constructs the intersection
of Aa and Ab by creating a product automaton An = (Qa x E , A ^ 1 , F a x F b) where

where a product state (g a , qb) is reachable if there exists a symbol g G E , states
9 i , . . . , q£ G Q a , and states g j , . . . , qb

n G Q b such that g(qf,..., q£) ->• g a G A f t " ' a and
• • •, g^) —>• g b G A f t " ' b , and, further, for a l l 1 < i < n , the product state (gf, g^) is

reachable (note that leaf states are t r iv ia l ly reachable).
The transitions in A ^ u basically run the two automata i n parallel such that An contains

only bottom-up reachable states and transitions. The algori thm detects reachable states
by start ing from leaf transitions of Aa and Ab, analysing a l l transitions over leaf symbols,
and collecting reachable product states into the set newStates. Then , un t i l newStates is
empty, a pair (qa,qb) is removed from newStates. For every such pair, we compute the
set of product states reachable from any pairs of tuples ((g f , . . . , g^), (qb,..., g^)) where
qa = qf a n d qb = q*i for some i, and at a l l positions j ^ i, it holds that (gf, qb) G Qn-
We add the product states of the computed set to newStates and continue wi th the next
i teration of the loop.

9.3.4. D o w n w a r d S i m u l a t i o n

We next give an algori thm for computing the m a x i m u m downward simulat ion relation
on the states of the T A A whose transi t ion relation is encoded using our semi-symbolic
representation. The algori thm is inspired by the algori thm of Hie et al [INY04] (which
is based on the same ideas as the algori thm of Henzinger et al [HHK95] , but is more
convenient for us because it uses only a single remove set) proposed for computing
simulations on finite (word) automata. For use i n the algori thm, we extend the notion
of downward simulat ion to tuples of states by defining (g i , . . . , g„) (n , . . . , rn) to
hold iff V I < i < n : g« -<D fi.

Our algori thm for computing downward simulations, shown as A l g o r i t h m 9.4, starts
w i t h a relation that grossly over-approximates of the m a x i m u m downward simulation.
The relation is then pruned in a loop, removing pairs that do not satisfy the simulat ion

f((qa

1,qb

1),...,(qa

n,qb

n))^(qa,qb)\f(qa

1,...

f(qb

1,...,qb

n)^qbeAbu>b,\/l<i<n:(q?.
(9.5)

142

A l g o r i t h m 9.3: Intersection of T A s represented bottom-up

(Qb,^,Abu>b,Rb)
L(Aa) n L(Ab)

Input: T A s Aa = (Qa, E , Abu>a, Ra) and Ab

Output: An = (Q n , S , A ^ , i 2 n) s.t. L (A i)
1 Q n := 0; #n := 0; newStates := 0;
2 A 6

n « : = (A ((z i , . . . , (z n)o.0);
3 Aft*(()) := ^pp/ j / 2 (A 6 u ' a (()) ,A 6 u ' b (()) , (isect newStates))
4 while 3 (g a , g b) G newStates do
5

6

7

8

9

10

11

12

newStates := newStates \ {(qa, qb)}]

if (qa,qb) G Qn then continue:

Q n := Q n U f t g 0 , ^) } ;

if qa G Ra A qb G Rb then i ? n := Rn U { (g a , <?b)} :

foreach (qf,..., q%) G Qa# such that 31 < i < n : q'

foreach {q\,..., qb) G Q b # suc/i i / i a i qb = q\ do

qf do

if V I < i < n : (qf, qb) G Qn then
A^((qf , q 1) , (C qb

n)) := ^%>(A 6 u> a((<tf,.. . , < £)) bu,ar

1 3 return „4r

Abu>b((q\,..

(Qn, E , A ^ 1 , i? r

, <?„)), (isect newStates)):

Funct ion isect(&newStates, u p a , up'')

1 productSet := upa x up b :
2 newStates := newStates U productSet:
3 return productSet:

condition, un t i l it stabilises and the m a x i m u m downward simulat ion is obtained. The
algori thm uses the following ma in data structures:

• For every q G Q, the set sim(q) C Q contains states that are considered to simu
late q at the current step of the computat ion. Its value is gradually pruned during
the computat ion. A t the end, sim encodes the m a x i m u m downward simulat ion
being computed.

• The set remove C Q# x Q# contains pairs ((qi,..., qn), (n> • • • > rn)) of tuples of
states added there when it is found out that for some i, it holds that qi -J^D r^.
The pairs are removed from the set and processed i n a fixpoint computat ion.

• F ina l ly , cnt is a shared M T B D D encoding the function lent} : Q# —>• (E —>• (Q —>
N)) that for each (qi, • • • ,qn) G a G E , and r e Q gives the value / i G N
denoting that r can make a top-down transi t ion to / i distinct tuples (r\,..., rn)
such that (qi,..., qn) •<£> (r\,..., rn) in the current approximation of sim.

The algori thm works in two phases. We assume that we start w i t h a T A whose
transi t ion relation is represented bottom-up. In the initialisation phase, the dual top-
down representation of the transi t ion relation is first computed (note that we can also

143

A l g o r i t h m 9.4: Compu t ing downward simulation on a semi-symbolic T A

Input: T A A = (Q, E , Abu, R)
Output: M a x i m u m downward simulat ion <D C Q2

1 Atd := invertMTBDD(A b u);
2 remove := 0:
3 initCnt := (A a . 0)
4 foreach g G Q do
5

6

7

8

9

10

11

12

13

14

// linitCntj : E -> (Q ->• N)
/ / i n i t i a l i s a t i o n l o o p

sim(q) := 0:
z ra iCn i := Apply 2{Atd(q), initCnt, (A A F . F U {(g, | X |) }) :
foreach r e Q do

isSim := true:
Apply 2(Atd(q),Atd(r), (A A F . if (A / 0 A F = 0) then i sS im := false)) :
if isSim then sim(q) := sim(q) U {r} :
else

foreach (g i , . . . , g „) G Q#, (n , . . . , r „) G Q # do
if 31 < i < n : qi = q A r« = r then
[_ remove := remove U { ((g i , • • • , g«) , (j i , • • • , r „)) } :

15 cnt := (A (g i , . . . , qn) a . 0) ; / / \cnt\ : Q* -»• (E -»• (Q -> N))
1 6 foreach (g i , . . . , g„) G do cnt((qi,..., g n)) := initCnt :
1 7 while 3 ((g i , g „) , (n , r n)) G remove do / / f ixpoint comp.
1 8 remove := remove \ { ((g i , • • • , g«) , (n , • • • ,^n))};
1 9 cnt((qu qn)) := ^ Z 2 / 5 (A 6 « ((r 1 ; . . . , rn)), A 6 « ((g 1 ; . . . , g n)) ,

cnt((qi,..., g n)) , (refine s im remove)):

20 return { (g , r) | g G Q, r G sim(g)}:

start w i th a top-down representation and compute the bottom-up representation since
both are needed in the algori thm). The three main data structures are then init ial ised
as follows:

• For each q G Q, the set sim(q) is ini t ial ised as the set of states that can make top-
down transitions over the same symbols as g, which is determined using the Apply
operation on line 9. Tha t is, when start ing the main computat ion loop on line 17,
the value of sim for each q G Q is sim(q) = {r \ Va G E : q —>• a (g i , . . . , qn) =>
r ->• a (n , . . . , r „) for some g i , . . . , g „ , n , . . . , r „ G Q } .

• The remove set is ini t ial ised to contain each pair of tuples of states ((g i , . . . , qn),
(r i , . . . , rn)) such that it holds that the relation (g i , . . . , qn) <n (n , . . . , rn) is
broken even for the in i t i a l approximation of -<D, i.e. for some posit ion 1 < i < n,
there is a pair (g«,rj) such that ri ^ sim(qi).

• To initialise the shared M T B D D cnt, the algori thm first constructs an auxi l iary
M T B D D initCnt representing a function \initCnt\ : E —>• (Q —> N). V i a the Apply

144

Funct ion refine(&sim, &remove, upaR, upaQ, cntaQ)

1 newCntaQ := cntaQ:
2 foreach s G upaR do

newCntaQ(s) := newCntaQ(s) — 1;
if newCntaQ(s) = 0 then

foreach p G wp a(5 : s £ sim(p) do
foreach (p i , . . . , p „) G Q # , (s i , . . . , s n) G Q* do

if 31 < i < n : pi = p A Si = s then
if V I < j < n : Sj G sim(pj) then
[_ remove := remove U { ((p i , • • • , p «) , (s i , • • • , %)) } ;

sim(p) := sim(p) \ {s}:

l i return newCntaQ:

operation on line 6, this M T B D D gradually collects for every symbol a G E the
set of pairs (g, /i) such that g can make a top-down transi t ion over the symbol a
to / i distinct tuples. Th is M T B D D is then copied to the shared M T B D D cnt for
each tuple of states (qi,..., g n) G Q * . This is justified by the fact that we start by
assuming that the s imulat ion relation is equal to Q x Q, which, for a symbol a G E
and a pair (q, h) G cnt((qi,..., qVi)), means that (qi,..., g n) can make a bottom-up
transi t ion over a to / i distinct states r G sim(q).

After that, the ma in computation phase proceeds by gradually restricting the in i
t i a l over-approximation of the m a x i m u m downward simulat ion being computed. A s we
have said, the remove set contains pairs ((qi, • • •,qn), (fi, • • •,rn)) for which it holds
that (qi,...,qn) cannot be simulated by (n , . . . , r „) , i.e. (qi,...,qn) iiD (n, • • •, rn).
W h e n such a pair is processed, the algori thm proceeds by decrementing the counter
{cnt}((qi,... ,qn),a,s) for each state s for which there exists a bottom-up transi t ion
over a symbol a G E such that a(r\,..., rn) —> s. The meaning is that s can make one
less top-down transi t ion over a to some (t\,..., tn) such that (qi, • • • ,qn) (h,... ,tn).
If [c n £] ((q i , . . . , qn), a, s) drops to zero, it means that s cannot make a top-down tran
sition over a to any such (ti,... ,tn). Th is means, for a l l p G Q such that p can make
a top-down transi t ion over a to (qi,..., qn), that s no longer simulates p, i.e. p -J^D S.
W h e n the s imulat ion relation between p and s breaks, the s imulat ion relation between
al l m-tuples (p i , . . . , p m) and (s i , . . . , sm) such that 31 < j < m : pj = p A Sj = s must
also be broken. A s a result, the pair ((p i , . . . , p m) , (s i , . . . , s m)) is put to the remove set
(unless the s imulat ion relation between some other states in the tuples has already been
broken before).

Correctness of the algori thm is summarised in the below theorem, which can be proven
analogically as correctness of the algori thm proposed i n [INY04], taking into account the
meaning of the above described M T B D D - b a s e d structures and the operations performed
on them.

145

Funct ion expandSymb(p5, PB, workset)

II PS £ Qs> PB^QB, and workset CQS x 2®B

1 if 3(p'g, P'B) G workset : ps rf: p's A P g PB then return true :
2 if 3(p' 5 , P'B) e NN : p's ^.ps APB P'B then return false ;
3 if 3p G PB '• PS ^ P then return true :
4 workset := workset U {(ps, P B) } ;

5 imp := (A a . 0) ; / / [imp] : S -)• 2^1
6 foreach £ P B do
7 |_ tmp:=Apply2(tmp,At

B

i(pB),{\XY.XUY)):

8 doesInclHold := true;
9 ^ppfo/2(A^(ps) , imp, (procDown doesInclHold workset)):

1 0 return doesInclHold:

Theorem 9.1. When applied on a TA A = (Q,T,, A, R) whose transition relation is
encoded semi-symbolically in the bottom-up way as Abu, Algorithm 9.4 terminates and
returns the maximum downward simulation on Q.

9.3.5. D o w n w a r d Inc lus ion C h e c k i n g

We now proceed to an algori thm for efficient downward inclusion checking on top-down
semi-symbolically represented T A s . The algori thm we propose for this purpose is de
rived from A l g o r i t h m 8.2 by plugging the expandSymb function instead of the expand2
function. It is based on the same basic principle as expand2, but it has to cope wi th the
symbolical ly encoded transi t ion relation. In particular, i n order to inspect whether, for
a pair (ps, PB) and a l l symbols a G S , the inclusion between each tuple from downa(ps)
and the set of tuples downa(Ps) holds, the doesInclHold parameter, ini t ial ised to true,
is passed to the Apply operation on line 9 of the expandSymb function. If the algori thm
finds out that the inclusion does not hold i n some execution of the procDown function
in the context of a single Apply, doesInclHold is assigned the false value, which is later
returned by expandSymb; otherwise, expandSymb returns the original value true. Note
that the optimisations of expand2 presented i n Section 8.2.2 (function expand2e) can
be easily adopted also to function expandSymb.

9.3.6. U p w a r d Inc lus ion C h e c k i n g

We next present an algori thm for upward inclusion checking on semi-symbolically en
coded T A s . We present a version that is not combined w i t h a use of simulat ion since the
experiments that we have done w i t h expl ic i t ly represented automata i n Chapter 8 were
not very favourable for upward inclusion checking combined wi th a use of simulation.
We note, however, that for the future, providing such an algori thm and testing it on
a broader set of experiments is s t i l l useful.

146

Funct ion procDown(&doesInclHold , hworkset, downaps, downaPß)

1 if () G downaps A () ^ downaPB then doesInclHold := false :
2 else
3 W : = downaPB\
4 foreach (n , . . . , r n) G downaps do 11 Ps ^ a (n , . . . , r „

5 foreach / € { W { 1 , . . . , n}} do / / V / G c / (P B , a)
6 found := /afee:
7 foreach 1 < i < n do

)

8 5 := I (g i , . . . , qn) G W, f ((q 1 } q n)) = i};
9 if expandSymb(rj, S, workset) then / / i f L(n) C L(S)

l i
10 0 found := true:

1 break:

13

12 if $(r', H) G A W :r' •< n AS H then
|_ X X := (X X \ {(/, H) I H ^ 5, n d r'}) U { (r i ; 5)}:

16

14

15

if -ifound then
doesInclHold := false:
return:

Our upward inclusion checking algori thm is based on the algori thm of Bouaj jani et
al [BHH+08]. The in tu i t ion behind this algori thm is that when checking inclusion of
languages of two automata As = (Qs> S, A ^ u , Rg) and AB = (QB, S , , RB), the
algori thm works wi th a set antichain C Q$ x 2®B such that (q,D) G antichain i f q accepts
some tree i n As, and D is the set of a l l states i n AB that accept the same tree. If it holds
that q G Rs and D C\ RB = 0, then As can accept a tree that AB cannot accept, and
therefore the inclusion L(As) C L(AB) does not hold. Also , when the algori thm reaches
a pair (q, E) such that D C E for some (g, D) G antichain, the pair (g, P) is dropped
and not added into antichain. This is justified by the fact that if a counterexample to
inclusion can be shown from (q,E), it can be found from (q,D) too (since the possible
moves oi AB from D are even more l imi ted than from E). Furthermore, when a pair
(q, F) is reached such that F C D for some (q, D) G antichain, then a l l pairs (q, D) w i th
F C D are removed from antichain and (q, F) is added i n their place. Hence, the set
antichain is indeed an antichain in the poset (Qs,idQs) x (2 ^ s , C) , i.e. for a given state
Qs £ there are no two sets G,H G 2 ^ s i n antichain such that G C H.

Our algori thm for upward inclusion checking is shown as A l g o r i t h m 9.5. In the algo
r i thm, the Apply operation on line 3 first collects into the sets antichain and notProcessed
the pairs (q, D) G Qs x 2 < ^ s consisting of states accessible through equilabelled leaf tran
sitions in As and AB- Then, un t i l the notProcessed set is empty or a counterexample
to inclusion is found, the algori thm removes a pair (q, D) from the set notProcessed and
processes i t . The processing consists of finding a tuple (q\,..., qn) G containing q
as some qi such that a l l other states of the tuple also appear i n the first posit ion of
some pair in antichain, and also finding al l tuples (s\,..., sn) G QB such that Si G D

147

A l g o r i t h m 9.5: Upward antichain-based inclusion for semi-symbolic T A s

(Qs,Z,Af,Rs) and AB (QB,X,A%,RB) Input: T A s A,s
Output: true if L(As) Q L(AB), false otherwise
notProcessed := 0:
antichain := 0:
Apply2(Ab

s

a(()), A ^ (()) , (c o l l e c t P r o d u c t s antichain notProcessed)) :
4 while 3(q,D) G notProcessed do
5

6

7

8

9

10

11

12

13

notProcessed := notProcessed \{(q,D)}:
if q G -R5 A .D n RB = 0 then return /afee :

foreach (5 1 , . . . , qn) G suc/i i / i a i 31 < i < n : qi q do
if V I < j < n : 3 i? j C QB '• (<ij: Rj) G antichain then

, s n) G suc/i t/iat Si E D do
imp := (A a . 0)
foreach (s i , . .

if V I < j < n : G .Rj then
|_ tmp := Apply2(tmp, A*%((Sl,..., sn)), (\ X Y

Apply'2(Ab

s

u((qi,qn)), tmp,
(c o l l e c t P r o d u c t s antichain notProcessed)):

14 return true:

XUY)):

Funct ion col lectProducts(&antichain, ¬Processed, ups, upB)

1 foreach q G up$ do
2 if $(q,E) G antichain such that E C upB then
3 antichain := (antichain \ {(q,F) \ upB C F}) U {(g, w^s)}:

4 notProcessed := (notProcessed \ {(q, F) \ upB C F}) U {(q, upB)}:

and a l l states Sj, for i ^ j, appear in the second posit ion of some pair from antichain.
The transi t ion relations of the said tuples are united by the Apply operation on line 12.
(Note that it is possible to optimise the computat ion of the set of tuples by a technique
similar to the one proposed i n Section 10.2.3 for expl ic i t ly represented TAs .) The Apply
operation on line 13 then collects the reachable pairs, and the loop continues.

9.4. A n M T B D D Library

Efficient algorithms over a symbolic representation of the transi t ion relation of a T A
require an efficient implementat ion of the underlying M T B D D library. O u r first imple
mentation of algorithms for handling semi-symbolically represented tree automata used
a customisation of the C U D D l ibrary [Soml l] for manipula t ing M T B D D s . The experi
ments i n [HLSV11] and profiling of the code showed that the overhead of the customised
l ibrary is too large. Moreover, the customisation of C U D D d id not provide an easy and
transparent way of manipula t ing M T B D D s . These two facts hinted that the implemen-

148

ta t ion of the algorithms would greatly benefit from a major redesign of the M T B D D
back-end. Therefore, we created our own generic implementation of M T B D D s w i t h
a clean and simple-to-use interface.

The new M T B D D l ibrary uses shared M T B D D s for every domain. In order to prevent
memory leaks, each node of the M T B D D contains a reference counter of other nodes
or variables point ing to i t . In case the counter reaches zero, the node is deleted from
the memory. Because of these implementat ion choices, copying an M T B D D can be
easily done by s imply copying the pointer to the root node of the copied M T B D D and
incrementing its reference counter.

There are two types of nodes of the M T B D D : internal nodes and leaf nodes. A leaf
node contains a value from the domain of the M T B D D , while an internal node contains
a variable name and pointers to the low and high children of the node. In addit ion,
nodes of both types also contain the aforementioned reference counter. The nodes are
manipulated using pointers to them only, and the dis t inct ion between a leaf node and an
internal node is done according to the least significant bit of the pointer (the compiler
aligns these data structures to addresses which are multiples of 4, this bit can therefore
be neglected and s imply masked out when accessing the value of a node pointer).

For our use, we implemented unary, binary, and ternary Apply operations. Further,
we also provide VoidApply operations, which are A p p l y operations that do not bu i ld
a new M T B D D but have a side-effect only. For operations that do not need to bu i ld new
M T B D D s but rather e.g. only collect data from the leaf nodes, using VoidApply saves
a considerable and unnecessary overhead. D u r i n g the execution of an Apply operation,
both internal and leaf nodes are cached i n hash tables.

The newly implemented M T B D D l ibrary does not support M T B D D reordering so far,
yet the l ibrary performs better when compared to our first implementat ion of a semi-
symbolic encoding that used customised C U D D (the speed-up was over 300 times for
upward inclusion checking and over 3 000 times for downward inclusion checking). Note
that for some applications, e.g. the decision procedure for the W S 1 S logic presented i n
Chapter 7, reordering is not really necessary, because a good variable ordering can be
chosen in advance, e.g. i n the part icular decision procedure, it can follow the order of
quantifiers i n the prefix of the decided formula.

9.5. Experimental Results

We implemented and evaluated the algorithms proposed i n this chapter inside the frame
work of the V A T A l ibrary, which is presented in more detai l i n Chapter 10. We focused
on an evaluation of the various language inclusion checking algorithms presented i n Sec
t ion 9.3. The row down gives results for our implementat ion of the downward algori thm,
A l g o r i t h m 8.2, w i th the function expandSymb from Section 9.3.5 plugged i n and the
identity relation used as the input preorder. The row down+s gives results for the same
algori thm wi th the only exception that the m a x i m u m downward simulat ion is used in
stead of the identity as the input preorder. The rows down-opt and down-opt+s are
based on A l g o r i t h m 8.2, the optimised version of the algori thm. Results of the upward

149

Table 9.1.: Results of the experiments (timeout 30 s)

A l g o r i t h m
A l l pairs L(A) % L(B) L{A) C L(B)

A l g o r i t h m
Winne r Timeouts Winne r Timeouts Winne r Timeouts

down 44.02 % 5.87% 45.03% 2.48% 19.74% 72.37%
down+s 0.00 % 77.93% 0.00% 80.03% 0.00% 36.84 %
down-opt 31.73% 5.87% 33.06% 2.48% 0.00% 72.37%
down-opt+s 0.00 % 78.00% 0.00% 80.09% 0.00% 36.84 %
up 24.25 % 22.26% 21.91% 23.39% 80.26% 0.00 %

inclusion checking algori thm (Algor i thm 9.5) are i n the table represented i n the row
labelled w i th up. For the algorithms that use simulation, the s imulat ion is computed
using A l g o r i t h m 9.4 and the t ime of computat ion of the s imulat ion relation is included
in the running t ime of the algori thm.

The table compares the methods according to the percentage of the cases i n which they
were the fastest when checking inclusion on the same automata pair, and also according
to the percentage of timeouts (the timeout was set to 30 s). The results for runs of the
inclusion checking algorithms on almost 2 000 pairs of T A s are i n the column labelled
w i t h " A l l pairs". We also checked the performance of the algorithms for cases when
inclusion either does or does not hold i n order to explore the abi l i ty of the algorithms
to either find a counterexample i n the case when inclusion does not hold, or prove the
inclusion i n case it does. The results below "L(A) % L(B)" in the table are for the
pairs A, B of the test set where the inclusion does not hold, and the column under
UL(A) C L(B)n reports on the cases where the inclusion holds.

The output of the experiments shows (again, cf. the results i n Chapter 8) the domina
t ion of the downward approach. It can be, however, noted that the downward simulat ion
d id not help much (in rows down+s and down-opt+s). Th is was caused by the overhead
of the computat ion of the simulation relation. O u r symbolic downward s imulat ion al
gor i thm is s t i l l immature when compared to the one used for the explicit encoding.
Despite this, we can observe that for the cases inclusion holds, the use of s imulat ion can
significantly decrease the number of timeouts.

9.6. Conclusion

This chapter presented a semi-symbolic M T B D D - b a s e d representation of nondetermin-
istic T A s generalising the one used by M O N A , together w i th important tree automata
algorithms working over this representation, most notably an algori thm for computing
downward simulations over T A s inspired by [INY04] and the downward language inclu
sion algori thm improved by simulations and antichains proposed in Chapter 8. We have
experimentally justified usefulness of the symbolic encoding for nondeterministic T A s
wi th large alphabets.

150

In the future, we wish to advance the algorithms presented i n this chapter even fur
ther. A part icular candidate would be the algori thm for computing the downward simu
lat ion relation on a semi-symbolically encoded automaton, which is s t i l l quite immature
when compared wi th current state-of-the-art algorithms for expl ic i t ly represented au
tomata [RT07, HS09]. Moreover, we plan to also explore other symbolic representations
of finite automata on both words and trees, and advanced algorithms on these repre
sentations. We are currently working on an algori thm for computing forward simulat ion
on fully-symbolically represented finite automata. The representation stores the entire
transi t ion function of the automaton i n a single B D D . Us ing this representation, we wish
to avoid the issue wi th storing the counters from the algori thm presented i n Section 9.3.4
inside an M T B D D , which is one of the main bottlenecks of the algori thm, due to the
counters being frequently accessed.

151

10. A n Efficient Tree Automata Library

The techniques presented in Chapters 3-7, as well as many other formal verification tech
niques, rely on an efficient underlying implementat ion of tree automata, and their success
can be hindered by a poor performance of a naive T A implementation. Some of these
techniques are: abstract regular tree model checking (A R T M C) [A J M d 0 2 , B H R V 1 2] ap
plied e.g. for verification of programs wi th complex dynamic data structures [BHRV06] ,
verification of programs handling dynamical ly l inked structures w i th data [MPQ11] , or
decision procedures for separation logic [IRV14].

Currently, there exist several available tree automata libraries; they are, however,
mostly wri t ten i n O C a m l (e.g. T i m b u k / T a m l [Gen03]) or Java (e.g. L E T H A L [CJH+09])
and they do not always use the most advanced algorithms known to date. Therefore,
they are not suitable for tasks that require the available processing power be util ised
as efficiently as possible. A n exception from these libraries is M O N A [KMS02] imple
menting decision procedures over W S 1 S / W S 2 S . M O N A contains a highly optimised T A
package wri t ten in C , but, alas, it supports only binary deterministic tree automata.
A t the same time, it turns out that determinisation is often a very significant bottleneck
of using T A s , and a lot of effort has therefore been invested into developing efficient algo
rithms for handling nondeterministic tree automata without a need to ever determinise
them (e.g. the techniques presented i n Chapters 8 and 9).

In order to allow researchers focus on developing verification techniques rather than
reimplementing and opt imising a T A package, we provide V A T A 1 , an easy-to-use open
source l ibrary for efficient manipulat ion of nondeterministic T A s . V A T A supports many of
the operations commonly used i n automata-based formal verification techniques over two
complementary encodings: explicit and semi-symbolic. The explicit encoding is suitable
for most applications that do not need to use alphabets w i th a large number of symbols.
O n the other hand, the semi-symbolic encoding (described in more detai l i n Chapter 9)
is suitable for applications that make use of such alphabets, e.g. the A R T M C - b a s e d
verification of programs wi th complex dynamic data structures [BHRV12] or decision
procedures of the M S O or WS/cS logics [KMS02] (cf. the procedure i n Chapter 7).

A t the present t ime, the ma in application of the structures and algorithms imple
mented i n V A T A for handling expl ic i t ly encoded T A s are the Forester tool for verifica
t ion of programs wi th complex dynamic data structures (see Chapters 3-5) and the tools
implementing TA-based decision procedures for separation logic: S P E N (see Chapter 6)
and S L I D E [IRV14]. The semi-symbolic encoding of T A s has been used i n our decision
procedure for W S 1 S i n Chapter 7 (where we use unary tree automata in the place of
finite automata).

xhttp://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

152

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Explicit

Core Operations

M T B D D Bottom-Up \ M T B D D Top-Down r
i <other>
L Core Operations Core Operations r ^
1 Core J Operations

Encoding^

Core Operation^
< > < Automata encodings

Parserl

ParserZ

Parsers

Serialiserl

Serialisers

Serialisers

Figure 10.1.: The architecture of the V A T A l ibrary

In this chapter, we give an overview of the algorithms available and mention various
interesting optimisations that we used when implementing them. Based on experimental
evidence, we argue that these optimisations are important for the performance of the
library.

O u t l i n e . The structure of this chapter is the following. In Section 10.1, we describe
the design of V A T A . Section 10.2 gives a description of the operations that we support.
In Section 10.3, we report on our experiments w i th the implementation. Section 10.4
briefly concludes the chapter.

10.1. Design of the Library

The l ibrary is designed i n a modular way (see Figure 10.1). The user can choose a module
encapsulating his preferred automata encoding and its corresponding operations. Various
encodings share the same general interface so it is easy to swap one encoding for another,
unless the user takes advantage of encoding-specific functions or operations.

Thanks to the modular design of the library, it is easy to provide an own encoding of
tree (or word) automata and effectively exploit the remaining parts of the infrastructure,
such as parsers and serialisers from/to different formats, the unit testing framework,
performance tests, etc.

The V A T A l ibrary is implemented i n C + + using the C + + 1 1 standard library. In order
to avoid expensive look-ups of entry points of v i r tua l methods i n the virtual-method table
of an object and to fully exploit compiler 's capabilities of code in l in ing and optimisat ion

153

of code according to static analysis, the l ibrary heavily exploits polymorphism using
C + + function templates instead of using v i r tua l methods for core functions. We believe
that this is one of the reasons why the performance of the optimised code (the -03 flag of
gcc) is up to 1 0 times better than the performance of the non-optimised code (the -00
flag of gcc).

10.1.1. E x p l i c i t E n c o d i n g

In the explicit representation of T A s used in V A T A , transitions are stored in the top-
down manner inside a hierarchical data structure similar to a hash table. More precisely,
the top-level lookup table maps states to transition clusters. E a c h such cluster is itself
a lookup table that maps alphabet symbols to a set of pointers to tuples of states. The
set of pointers to tuples of states is represented using a red-black tree. The tuples of
states are stored in a designated hash table to further reduce the required amount of
space (by not storing the same tuples of states mult iple times). A n example of the
encoding is depicted in Figure 1 0 . 2 .

In order to insert a t ransi t ion q —>• a(qi,..., qn) into the transi t ion table, one proceeds
using the following algorithm:

1. F i n d a transi t ion cluster that corresponds to the state q i n the top-level lookup
table. If such a cluster does not exist, create one.

2. In the given cluster, find a set of pointers to tuples of states reachable from q
over a. If the set does not exist, create one.

3 . Ob t a in the pointer to the tuple (qi,..., qn) from the tuple lookup table and insert
it into the found or created set of pointers.

If one ignores the worst case t ime complexity of the underlying data structures (which,
according to our experience, has usually a negligible real impact only), then inserting
a single transi t ion into the transi t ion table requires a constant number of steps. Yet the
representation provides a more efficient encoding than a pla in list of transitions because
some transitions share the space required to store the parent states (e.g. state q i n
the transi t ion q —>• a(qi,... ,qn))- Moreover, some transitions also share the alphabet
symbol and each tuple of states appearing in the set of transitions is stored only once.
Addi t ional ly , the encoding allows us to easily perform certain cr i t ical operations, such
as finding a set of transitions q —>• a(qi,..., qn) for a given state q. Th is is useful e.g.
during the el iminat ion of (top-down) unreachable states or for the downward inclusion
checking algori thm.

In some situations, one needs to manipulate many tree automata at the same time.
To give an example, i n the forest automata-based program analysis framework considered
in Chapters 3 and 5 , where (in theory) one needs to store one automaton representing the
content of a heap for each reachable state of the program. To improve the performance
of our l ibrary in such scenarios, we adapt the copy-on-write principle. Every t ime one
needs to create a copy of an automaton A to be subsequently modified, it is enough to
create a new automaton A' that obtains a pointer to the transi t ion table of A (which

1 5 4

0 ® © A u t o m a t a

a b
p

Qi Q2 Q3 Qi Q2 Top-level
* • *

Lookup Tables
<

-

\
\

u' -
\

I 1
I 1
I 1

V /
\ /
\ /

(Qi,Qi) (Qi,Q2) (02,02) () (93,^2)

Transi t ion Clusters

Sets of
Pointers to Tuples

Tuples of States

Figure 1 0 . 2 . : A n example of the V A T A ' S explicit encoding of transi t ion functions of three
automata A, B, C. In particular, one can see that A contains a transi t ion
qi —>• 0(01,02): it suffices to follow the corresponding arrows. Moreover,
B also contains the same transi t ion (and the corresponding part of the
transi t ion table is shared wi th A). F ina l ly , C shares its transitions w i th B.

requires constant t ime). Subsequently, as more transitions are inserted into A' (or ^4),

only the part of the shared transi t ion table that gets modified is copied (Figure 1 0 . 2 also
provides an i l lustrat ion of this feature).

10.2. Supported Operations

V A T A allows the user to choose one of three available encodings: explicit , semi-symbolic
top-down, and semi-symbolic bottom-up. Depending on the choice, certain T A opera
tions may or may not be available. Here we describe only operations for the explicit
encoding; the description of the operations for the two semi-symbolic encodings is pro
vided i n Chapter 9 . The supported operations for the explicit representation are the
following: union, intersection, e l iminat ion of (bottom-up, top-down) unreachable states,
inclusion checking (both upward and downward), computat ion of the m a x i m u m simu
lat ion relations (both upward and downward simulations), and language-preserving size
reduction based on the s imulat ion equivalence. In the case of testing language inclusion,
we provide several implementations of the operation, because, as observed in the exper
imental section of Chapter 8, the performance of different approaches varies on different
use cases.

1 5 5

Below, we do not discuss the relatively straightforward implementat ion of the basic
operations on T A s and we comment on the more advanced operations only, in part icu
lar on computing the (maximum) simulat ion relations and upward testing of language
inclusion (the used algorithms for downward inclusion testing are described in Chapter 8.

10.2.1. D o w n w a r d a n d U p w a r d S i m u l a t i o n

Computa t ion of the (maximum) downward and upward simulat ion relations for the ex
plicit representation of the T A s is in V A T A performed i n three steps. For the downward
simulation, the input T A is first translated into a labelled transi t ion system (LTS) using
the technique described in [ABH+08]. In the second step, the simulation relation for the
L T S is computed using an implementat ion of the state-of-the-art algorithms for com
put ing simulations on L T S ' s [RT07, HS09], w i th some further optimisations mentioned
in Section 10.2.4. F ina l ly , the result is projected back to the set of states of the original
automaton.

For the upward simulation, the steps are the same, w i th the exception of the translat ion
of a T A into an L T S , which is i n this case performed using the algori thm from [ABH+08].

10.2.2. S imula t ion-based Size R e d u c t i o n

In a typica l setting, one often wants to use a representation of tree automata that is
as smal l as possible in order to reduce the memory consumption and speed up opera
tions on the automata (especially the potential ly costly ones, such as inclusion testing).
To achieve that, the classical approach is to use determinisation and minimisat ion. How
ever, the min ima l deterministic tree automata can s t i l l be much bigger than the original
nondeterministic ones. Therefore, V A T A offers a possibil i ty to reduce the size of tree
automata without determinisation by their quotienting w.r.t . an equivalence relation—
currently, only the downward simulat ion equivalence is supported.

The procedure works as follows: first, the downward simulat ion relation •<£, is com
puted for the automaton. Then , the symmetric fragment of (which is an equiva
lence relation) is extracted, and each state appearing wi th in the transi t ion function is
replaced by a representative of the corresponding equivalence class. A further reduc
t ion is then based on the following observation: i f an automaton contains a transi t ion
q —>• a(qi,..., qn), any addi t ional t ransi t ion q —>• a (r i , . . . , r „) can be omit ted if ri -<D q%
for a l l 1 < i < n: such a transi t ion does not contribute to the language of the result (recall
that, for the downward simulation preorder •<£>, it holds that q -<D T =>• L(q) C L(r)).

10.2.3. U p w a r d Inc lus ion

The algori thm for upward inclusion testing using the explicit encodings of T A s of V A T A

(which was used i n the experiments of Chapter 8) is based on, as its name suggests,
upward traverse through the T A s . O u r top-down representation of the transi t ion relation
is therefore not very suitable here. We can, however, afford to bu i ld a temporary bot tom-
up encoding, since the overhead of a translat ion into this encoding is negligible compared
to the complexity of the subsequent operations.

156

The upward algori thm for language inclusion testing is based on the approach intro
duced in [BHH+08]. Here, the main principle used for checking whether L(A) C L(B)
is to search for a tree that is accepted by A and not by B (thus being a witness for
L(A) % L(B)). This is done by simultaneously traversing both A and B from their leaf
transitions while generating pairs (PA, Pg) G QA x 2®B where PA represents a state into
which A can get on some input tree and P g is the set of all states into which B can get
over the same tree. The inclusion then does clearly not hold iff it is possible to generate
a pair consisting of an accepting state of A and of exclusively non-accepting states of B.

The algori thm collects the so far generated pairs (p_4,Ps) i n a set called Visited.
Another set called Next is used to store the generated pairs whose successors are s t i l l to
be explored. One can then observe that whenever one can reach a counterexample to
inclusion from (p_4,Pg), one can also reach a counterexample from any (PA,PB C Pg)
as P g allows even less runs of B than P g . Us ing this observation, both mentioned
sets can be represented using antichains. In particular, one does not need to store and
further explore any two elements comparable w.r.t. (=, C) , i.e. by equality on the first
component and inclusion on the other component.

Clearly, the running t ime of the above algori thm strongly depends on the to ta l number
of pairs (PA, PJS) taken from Next for further processing. Indeed, this is one of the reasons
why the antichain-based optimisations helps. Accord ing to our experience, the number
of pairs that need to be processed can further be reduced when processing the pairs
stored in Next in a suitable order. Our experimental results have shown that we can
achieve a very good improvement by preferring those pairs (PA, PB) that have a smaller
(w.r.t. the size of the set) second component.

Yet another way that we found useful when improving the above algori thm is to
optimise the way the a lgori thm computes the successors of a pair from Next. The original
a lgori thm picks a pair (PA, P B) from Next and puts it into Visited. Then , it finds a l l
transitions of the form a(pA,i, • • • ,PA,n) —>• V in •A such that (pA,i> Ps,i) G Visited for a l l
1 < i < n and (PA,J,PB,J) = (PA, P B) f ° r some 1 < j < n. For each such transit ion,
it finds a l l transitions of the form a(q\,..., qn) —> q in B such that qi G PB,% for a l l
1 < i < n. Here, the process of finding the needed B transitions is especially costly.
In order to speed it up, we cache for each alphabet symbol a, each posit ion i, and each
set P B , J , the set of transitions {a(qi,..., qn) - ^ - g G A g : q% G PB,%\ at the first t ime it is
used in the computat ion of successors. Then, whenever we need to find a l l transitions
of the form a(q\,... ,qn) —>• q i n B such that qi G PB,% for a l l 1 < i < n, we find them
simply by intersecting the sets of transitions cached for each (Pg 5 j , i , a).

Next , we propose another modification of the algori thm that aims to improve the per
formance especially in those cases where finding a counterexample to inclusion requires
us to bu i ld representatives of trees wi th higher depths or i n the cases where the inclu
sion holds. Unl ike the original approach that moves only one pair from Next to Visited
at the beginning of each i teration of the ma in loop, we add the newly created pairs
(PA, PB) into Next and Visited at the same time (immediately after they are generated).
Our experiments showed that this allows Visited converge faster towards the fixpoint.

F ina l ly , yet another opt imisat ion of the algori thm presented in [B H H + 0 8] appeared
in [A C H + 1 0] . Th is opt imisat ion maintains the sets Visited and Next as antichains

157

w.r.t. (^[/ , ^jj)2- Hence, more pairs can be discarded from these sets. Moreover, for
pairs that cannot be discarded, one can at least reduce the sets on their r ight-hand side
by removing states that are simulated by some other state i n these sets (this is based
on the observation that any tree accepted from an upward-simulation-smaller state is
accepted from an upward-simulation-bigger state too). F ina l ly , one can also use upward
simulations between states of the two automata being compared. Then , one can discard
any pair (p_4, Pg) such that there is some ps £ Pg that upward-simulates PA because it
is then clear that no tree can be accepted from pjy that could not be accepted from pg.
A l l these optimisations are also available i n V A T A and can optional ly be used—they are
not used by default since the computat ion of the upward simulat ion can be quite costly
(as observed by the experimental results of Chapter 8 .

10.2.4. C o m p u t i n g S i m u l a t i o n over L T S

The explicit part of V A T A uses a highly optimised L T S simulat ion algori thm proposed
in [RT07] and further improved in [HS09]. The main idea of the a lgori thm is to start
w i th an over-approximation of the simulation preorder (a possible in i t i a l approximation
is the relation Q x Q), which is then iteratively pruned whenever it is discovered that
the s imulat ion relation cannot hold for certain pairs of states. For a better efficiency,
the algori thm represents the current approximation R of the simulation using a so-called
partition-relation pair. The par t i t ion splits the set of states into subsets (called blocks)
whose elements are equivalent w.r.t . R, and the relation R is lifted to these blocks.

In order to be able to deal w i th the part i t ion-relat ion pair efficiently, the algori thm
needs to record for each block a mat r ix of counters of size | (5 | |E | where, for the given
L T S , Q is the set of states and £ is the set of labels. The counters are used to count
how many transitions going from the given state v i a a given symbol a lead to states
in the given block (or blocks currently considered to be bigger w.r.t . the simulation).
Th is information is then used to optimise re-computation of the parti t ion-relation pair
when pruning the current approximation of the simulation relation being computed
(for details see e.g. [RT07]). Since the number of blocks can (and often does) reach the
number of states, the naive solution requires | (5 | 2 | E | counters i n the worst case. It turns
out that this is one of the main barriers which prevents the algori thm from scaling to
systems w i t h large alphabets and/or large sets of states.

Work ing towards a remedy for the above problem, one can observe that the mentioned
algori thm actually works i n several phases. A t the beginning, it creates an in i t i a l esti
mation of the parti t ion-relation pair, which typical ly contains large equivalence classes.
Then it initialises the counters for each element of the par t i t ion. F ina l ly , it starts the
iterative par t i t ion spl i t t ing. Dur ing this last phase, the counters are only decremented
or copied to the newly created blocks. Moreover, the spl i t t ing of some block is itself
triggered by decrementing some set of counters to 0. In practice, late phases of the iter
ation typical ly witness a lot of smal l equivalence classes having very sparsely populated
counters w i th 0 being the most abundant value.

2One says that P Q holds iff Vp G P 3q G Q : p Q- Note also that the upward simulation must
be parameterised by the identity in this case [ACH +10].

1 5 8

This suggests that one could use sparse matrices containing only the non-zero ele
ments. Unfortunately, according to our experience, this turns out to be the worst possi
ble solution which strongly degrades the performance. The reason is that the algori thm
accesses the counters very frequently (it either increments them by one or decrements
them by one), hence any data structure wi th non-constant t ime access causes the com
putat ion to stall . A somewhat better solution is to record the non-zero counters using
a hash table, but the memory requirements of such representation are not yet reasonable.

Instead, we are currently experimenting wi th storing the counters i n blocks, using
a copy-on-write approach and a zeroed-block deallocation. In short, we divide the matr ix
of counters into a list of blocks of some fixed size. Each block contains an addit ional
counter (a block-level counter) that sums up al l the elements wi th in the block. A s soon
as a block contains a single non-zero counter only, it can safely be deallocated—the
content of the non-zero counter is then recorded i n the block-level counter.

Our in i t i a l experiments show that, using the above approach, one can easily reduce the
memory consumption by the factor of 5 for very large instances of the problem compared
to the array-based representation used in [HS09]. The best value to be used as the size of
blocks of counters is s t i l l to be studied—after some in i t i a l experiments, we are currently
using blocks of size \ZJQJ-

In order to il lustrate the level of opt imisat ion that has been achieved in V A T A and that
can be exploited i n its applications (such as the Forester tool considered in Chapters 3 -
5), we compared its performance against T i m b u k and the prototype l ibrary considered
in [HLSV11] , which—despite its prototype status—already contained a quite efficient
T A implementation.

We compared the performance of the explicit encoding of V A T A w i th T i m b u k for union
and intersection of more than 3 000 pairs of T A s . O n average, V A T A was over 20 000
times faster on union and over 100 000 times faster on intersection. The comparison of
the implemented inclusion checking algorithms can be found i n Chapters 8 and 9.

10.4. Conclusion

In this chapter, we gave a description of V A T A , a new efficient and open-source nondeter-
minist ic tree automata library, which supports both explicit and semi-symbolic encoding
of the tree automata transi t ion function. U p to our knowledge, it is currently the most
efficient l ibrary for manipulat ing tree automata. Since its introduction, it has already
been used by a few researchers around the world as an efficient underlying l ibrary for
handling nondeterministic automata for their own techniques (such as for testing lan
guage inclusion of T A s i n the decision procedure for separation logic of [IRV14], or for the
computat ion of the simulation relation in algori thm for checking language equivalence
of nondeterministic finite automata of [BP 13]).

10.3. Experimental Evaluation of V A T A

159

file:///ZJQJ-

In the future, we wish to extend the l ibrary wi th more representations of automata
(e.g. w i t h a fully-symbolic representation) and support more operations, such as de-
terminisat ion (which, however, is generally desired to be avoided), or complementation
(which we so far do not know how to compute without first determinising the automa
ton).

160

11. Conclusions and Future Directions

Each of the main chapters contains detailed conclusions concerning the specific topic.
Here, we summarise once more the ma in points and discuss possible further research
directions.

11.1. A Summary of the Contributions

The main focus of this thesis was on improving the state of the art i n shape analysis.
Th is high-level goal was addressed by contributions i n the following three areas. In the
first area of forest automata-based shape analysis, we developed an extension of the
analysis proposed in [HHR+12] that allows it to run fully automatically, without user
intervention. The extension is based on learning boxes, i.e. lower-level forest automata
describing repeated substructures of the considered complex dynamic data structure,
which needed to be manually provided by the user in the original analysis. The boxes
are inferred automatical ly from the structure of the sets of heap graph that occur during
the run of the analysis. Moreover, we extended the analysis even further by considering
the relations between the data stored i n the heap cells. We trace ordering relations
between the data stored, which allows us to verify programs such as various sorting
algorithms (bubblesort and insertsort over lists), programs wi th binary search trees, or
programs wi th skip lists of two and three levels.

In the second area, which focused on the development of decision procedures for various
logics, we proposed the following two procedures: F i rs t , we proposed a decision procedure
for testing entailment i n a fragment of separation logic that contains various flavours of
lists that appear i n practice. The decision procedure is based on decomposing the whole
entailment query into several lower-level queries and deciding those by translat ing them
into the tree automata membership problem. Second, we proposed a decision procedure
for testing val idi ty of W S 1 S formulae. The decision procedure is based on transforming
the formula to be decided into the prenex normal form, constructing a finite automaton
for the mat r ix of the formula, and, finally, processing the prefix of the formula using
a technique that is a generalisation of the antichain principle from testing universality
and language inclusion of finite automata.

In the th i rd area focusing on finding new and improving existing techniques for manip
ulat ing nondeterministic tree automata, we contributed by the following results. We de
veloped a new technique for testing language inclusion that is based on a downward
traversal through the automaton. We further augmented the basic technique wi th the
use of antichains and simulations, and also proposed more advanced optimisations. A c
cording to our experiments, the technique performs often better than the so far used
upward inclusion checking, which is based on upward determinisation of the automaton.

161

Moreover, we also proposed a semi-symbolic encoding of nondeterministic tree automata
and developed algorithms for automata operations (including some more advanced like
computing the m a x i m u m downward simulation relation on the states of the automaton,
or checking language inclusion of a pair of automata) over this encoding. Our work i n
exploring efficient techniques for handling nondeterministic tree automata culminated
in the development of the V A T A library, where these techniques are implemented, and
which is, as far as we know, currently the most efficient l ibrary for manipula t ing nonde
terminist ic tree automata available.

11.2. Further Directions

There are many interesting directions of further work. In the area of automata-based
shape analysis, an interesting direction is to consider a more general notion than the cur
rently used formalism of forest automata. One option would be to remove the restriction
that the boxes cannot be recursive. Such a change would increase the expressive power
of forest automata, allowing them to express such data structures as trees wi th l inked
leaves or skip lists of an arbitrary height. O n the other hand, the box folding and learn
ing algorithms would need to be significantly re-designed. Another option would be to
adopt a different model, based e.g. on the encoding of inductive higher-order predicates
used i n the decision procedure for separation logic of Iosif et al [IRV14]. Yet another op
t ion, this one relating to the data-related component of the analysis, is extension of the
abstract data domain to more general relations than currently considered, or even cre
ating a generalised framework that would allow one to plug i n any abstract domain that
meets certain requirements. In any case, we wish to extend the forest automata-based
shape analysis w i th a counterexample-guided abstraction refinement (C E G A R) loop and
use predicate language abstraction on the forest automata instead of the coarse finite
height abstraction used now. We believe that the use of the more refined abstraction
should allow us to verify some data structures that we currently cannot handle due to
the abstraction used, such as red-black trees.

A further interesting future direction is the development of an approach that would
allow verification of memory allocators (such as the p t m a l l o c O allocator used i n the
g l i b c l ibrary) , which is a t ru ly challenging task due to the complex overlaid shape of
the used data structures. A more general representation would also be needed for the
verification of some concurrent programs wi th dynamic memory, e.g. lock-free imple
mentations of concurrent skip lists. In this setting, the invariant of the sequential skip
list, which we are currently able to infer, is broken i n this part icular lock-free concurrent
setting, and forest automata, as defined, cannot represent it (because the pointers i n the
structure overlap and do not create the nested hierarchy from the sequential algori thm,
we cannot fold the lower levels into boxes any more). Nevertheless, we plan to apply the
shape analysis to verification of concurrent programs, combining it e.g. w i th the ideas
of A b d u l l a et al [AHH+13].

Regarding our decision procedure for separation logic, in future, we wish to continue
w i t h extending its generality. In particular, we would like to weaken the l imitat ions

162

on the Boolean structure of the formulae, and, moreover, we would also like to explore
whether it is possible to combine it w i th the decision procedure from [IRV14], which
considers more general inductive definitions. For the decision procedure for W S 1 S , there
are several possibilities. We wish to extend the decision procedure to WS/cS for an
arbitrary k by the use of tree automata and, probably, an algori thm wi th a structure
similar to the structure of the algorithms for downward language inclusion testing of
nondeterministic tree automata that were presented i n this thesis. We also p lan to
generalise our notion of symbolic terms in the algori thm to reduce the number of states
of the automaton for the mat r ix of a formula. We believe that our proposed decision
procedure is only the start of a new research direction searching for techniques for
efficiently deciding WS/cS formulae, combining heuristics from both automata theory
and formal logic.

Even though the methods for manipula t ing nondeterministic finite tree (and word)
automata have seen a great advance i n the recent years, as shown by a recent algori thm
for testing equivalence and inclusion of nondeterministic finite word automata of Bonch i
and Pous [BP 13], there is s t i l l a space for improvement. We wish to generalise their
algori thm to testing inclusion of nondeterministic tree automata, both for the upward
and downward direction of traversal through the automata. We also wish to keep ex
ploring yet other possibilities for reducing the state space i n checking language inclusion
of nondeterministic finite and tree automata. Furthermore, one of our future goals is
to develop an efficient technique for reducing nondeterministic finite automata, bo th for
words and trees, going beyond the capabilities of the techniques based on the s imulat ion
equivalence. In the area of symbolic representation of finite word and tree automata, we
wish to explore different encodings, suitable for part icular needs, such as for the use i n
the decision procedures of various logics (e.g. WS/cS) or for the verification of hardware.

11.3. Publications Related to this Thesis

The results presented in this thesis were originally published in the following papers.
The automated approach for learning boxes in the forest automata-based shape analysis,
together w i th the refined technique for abstraction, appeared i n [HLR+13]. The data ex
tension of the forest automata-based shape analysis was published as [AHJ+13] (and later
extended in [AHJ+15]). The decision procedures for separation logic w i t h list predicates
was published i n [ELSV14a] , and the decision procedure for W S 1 S has been accepted to
appear as [FHLV15] . O u r algorithms for manipulat ing nondeterministic tree automata
were published i n [HLSV11] (the downward inclusion checking and the algorithms for the
semi-symbolic representation) and the description of our tree automata l ibrary appeared
in [LSV12].

163

Bibliography

[AACJ09] Parosh A z i z A b d u l l a , M u h s i n A t t o , Jonathan Cederberg, and R a n J i . A u

tomated analysis of datadependent programs wi th dynamic memory. In
Proc. ofATVA'09, volume 5799 of LNCS, pages 197212. Springer, 2009.

[ABH+08] Parosh A z i z A b d u l l a , A h m e d Bouaj jani , L u k á š Holík, L i s a K a a t i , and
T o m á š Vojnar . Comput ing simulations over tree automata: Efficient tech

niques for reducing tree automata. In Proc. of TACAS'08, volume 4963 of
LNCS, pages 93108. Springer, 2008.

[A C H + 1 0] Parosh A z i z A b d u l l a , YuFang Chen, L u k á š Holík, Richa rd M a y r , and
T o m á š Vojnar . W h e n simulat ion meets antichains (on checking language
inclusion of N F A s) . In Proc. of TACAS'10, volume 6015 of LNCS, pages
158174. Springer, 2010.

[AHH+13] Parosh A z i z A b d u l l a , Frederic Haziza , L u k á š Holík, Bengt Jonsson, and
A h m e d Rezine. A n integrated specification and verification technique for
highly concurrent data structures. In Proc. of TACAS'13, volume 7795 of
LNCS, pages 324338. Springer, 2013.

[AHJ+13] Parosh A z i z A b d u l l a , L u k á š Holík, Bengt Jonsson, O n d ř e j Lengál , Cong
Q u y Trinh , and T o m á š Vojnar . Verification of heap manipula t ing programs
w i t h ordered data by extended forest automata. In Proc. of ATVA'13,
volume 8172 of LNCS, pages 224239. Springer, 2013.

[AHJ+15] Parosh A z i z A b d u l l a , L u k á š Holík, Bengt Jonsson, O n d ř e j Lengál , Cong
Q u y Trinh , and T o m á š Vojnar . Verification of heap manipula t ing programs
w i t h ordered data by extended forest automata. ^4cia Informatica, 2015.
Accepted for publicat ion.

[AJMd02] Parosh A z i z A b d u l l a , Bengt Jonsson, P r i t h a Maha ta , and Jul ien d'Orso.
Regular tree model checking. In Proc. of CAV'02, volume 2404 of LNCS,
pages 555568. Springer, 2002.

[B B H + 1 1] A h m e d Bouaj jani , Marius Bozga, Peter Habermehl , R a d u Iosif, Pierre
Moro , and T o m á š Vojnar . Programs wi th lists are counter automata. For

mal Methods in System Design, 38(2):158192, 2011.

[B C C + 0 7] Josh Berdine, Cris t iano Calcagno, B y r o n Cook, Dino Distefano, Peter W .
O'Hearn , Thomas Wies , and Hongseok Yang . Shape analysis for composite

164

data structures. In Proc. of CAV'07, volume 4590 of LNCS, pages 178-192.
Springer, 2007.

[BCI11] Josh Berdine, B y r o n Cook, and Samin Ishtiaq. S L A Y E R : M e m o r y safety
for systems-level code. In Proc. of CAV'll, volume 6806 of LNCS, pages
178-183. Springer, 2011.

[BCO05] Josh Berdine, Cris t iano Calcagno, and Peter W . O 'Hearn . A decidable
fragment of separation logic. In Proc. of FSTTCS'04, volume 3328 of LNCS,
pages 97-109. Springer, 2005.

[BCO06] Josh Berdine, Cris t iano Calcagno, and Peter W . O 'Hearn . Smallfoot:
M o d u l a r automatic assertion checking wi th separation logic. In Proc. of
FMCO'05, volume 4111 of LNCS, pages 115-137. Springer, 2006.

[BDES12] A h m e d Bouaj jani , Cezara Drágo i , Constant in Enea, and Mihae la Sighire-
anu. Accurate invariant checking for programs manipula t ing lists and ar
rays w i th infinite data. In Proc. of ATVA '12, volume 7561 of LNCS, pages
167-182. Springer, 2012.

[BFGP14] James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro
Perez. A decision procedure for satisfiability in separation logic w i t h induc
tive predicates. In Proc. of CSL-LICS'U, pages 25:1-25:10. A C M , 2014.

[BG00] Doron Bus tan and O r n a Grumberg . Simulat ion based minimiza t ion . In
Proc. of CADE'00, volume 1831 of LNCS, pages 255-270. Springer, 2000.

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen.
A generic cyclic theorem prover. In Proc. of APLAS'12, volume 7705 of
LNCS, pages 350-367. Springer, 2012.

[B H H + 0 8] A h m e d Bouaj jani , Peter Habermehl , L u k á š Holík, Tayssir Toui l i , and
T o m á š Vojnar . Antichain-based universality and inclusion testing over non-
deterministic finite tree automata. In Proc. of CIAA'08, volume 5148 of
LNCS, pages 57-67. Springer, 2008.

[BHRV06] A h m e d Bouaj jani , Peter Habermehl , A d a m Rogalewicz, and T o m á š Vojnar .
Abst rac t regular tree model checking of complex dynamic data structures.
In Proc. of SAS'06, volume 4134 of LNCS, pages 52-70. Springer, 2006.

[BHRV12] A h m e d Bouaj jani , Peter Habermehl , A d a m Rogalewicz, and T o m á š Vojnar .
Abst rac t regular (tree) model checking. International Journal on Software
Tools for Technology Transfer, 14(2):167-191, 2012.

[BHT06] D i r k Beyer, Thomas A . Henzinger, and Gregory T h é o d u l o z . L a z y shape
analysis. In Proc. of CAV'06, volume 4144 of LNCS, pages 532-546.
Springer, 2006.

165

[Bou l l] Tony Bourdier . Tree automata based semantics of firewalls. In Proc. of
SAR-SSF11, pages 1-8. I E E E , 2011.

[BP13] F i l i p p o Bonchi and Damien Pous. Checking N F A equivalence w i t h bis im-
ulations up to congruence. In Proc. of POPL'13, pages 457-468. A C M ,
2013.

[BR06] Jesse B ingham and Zvonimir Rakamaric . A logic and decision procedure
for predicate abstraction of heap-manipulating programs. In Proc. of VM-
CAI'06, volume 3855 of LNCS, pages 207-221. Springer, 2006.

[Bry86] R a n d a l l E . Bryant . Graph-based algorithms for Boolean function manipu
lat ion. IEEE Trans. Computers, C-35:677-691, 1986.

[Biic59] Julius R icha rd B i i c h i . Weak second-order ari thmetic and finite automata.
Technical report, The Univers i ty of Michigan , 1959. Avai lable from h t t p :
/ / h d l . h a n d l e . n e t / 2 0 2 7 . 4 2 / 3 9 3 0 (May 2010).

[CC77] Pa t r ick Cousot and R a d h i a Cousot. Abst rac t interpretation: A unified lat
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proc. of POPL'll, pages 238-252. A C M , 1977.

[C D G + 0 7] Huber t Comon , M a x Dauchet, R e m i Gi l le ron , Chr is tof Loding , Florent
Jacquemard, Denis Lugiez, Sophie Tison, and M a r c Tommasi . Tree Au
tomata Techniques and Applications. 2007. released October 12th, 2007.

[CDNQ12a] Wei -Ngan C h i n , Cr i s t ina D a v i d , H u u H a i Nguyen, and Shengchao Q i n .
Au tomated verification of shape, size and bag properties v i a user-defined
predicates i n separation logic. Sci. Comput. Program., 77(9):1006-1036,
2012.

[CDNQ12b] Wei -Ngan C h i n , Cr i s t ina D a v i d , H u u H a i Nguyen, and Shengchao Q i n . A u
tomated verification of shape, size and bag properties v ia user-defined pred
icates in separation logic. Science of Computer Programming, 77(9): 1006-
1036, 2012.

[CDOY09] Cris t iano Calcagno, D ino Distefano, Peter W . O 'Hearn , and Hongseok
Yang . Composi t ional shape analysis by means of bi-abduction. In Proc. of
POPL'09, pages 289-300. A C M , 2009.

[C H O + l l] B y r o n Cook, Chr i s toph Haase, Joel Ouaknine, Ma t thew J . Parkinson, and
James Worre l l . Tractable reasoning in a fragment of separation logic. In
Proc. of CONCUR711, volume 6901 of LNCS, pages 235-249. Springer,
2011.

[C J H + 0 9] P h i l i p p Claves, Dorothea Jansen, Sezar Jarrous Hol t rup , M a r t i n M o h r ,
A n t o n Reis, M a r i a Schatz, and Irene Thesing. The L E T H A L library, 2009.
Avai lable from h t t p : / / l e t h a l . s o u r c e f o r g e . n e t / .

166

http://lethal.sourceforge.net/

[CLQR07] Shaunak Chatterjee, Shuvendu K . L a h i r i , Shaz Qadeer, and Zvonimir
Rakaramaric . A reachability predicate for analyzing low-level software. In
Proc. of TACAS'07, volume 4424 of LNCS, pages 19-33. Springer, 2007.

[CMZ+97] E d m u n d M . Clarke, Kenne th L . M c M i l l a n , X u d o n g Zhao, Masahiro Fuji ta ,
and Jerry C h i h Y u a n Yang . Spectral transforms for large Boolean functions
w i t h applications to technology mapping. FMSD, 10, 1997.

[CR08] B o r - Y u h E v a n Chang and Xav ie r R i v a l . Rela t ional inductive shape analysis.
In Proc. ofPOPL'08, pages 247-260. A C M , 2008.

[CRN07] B o r - Y u h E v a n Chang, Xav ie r R i v a l , and George C . Necula . Shape analysis
w i t h s t ructural invariant checkers. In Proc. of SAS'07, volume 4634 of
LNCS, pages 384-401. Springer, 2007.

[CYO01] Cris t iano Calcagno, Hongseok Yang , and Peter W . O 'Hearn . Computab i l i ty
and complexity results for a spatial assertion language for data structures.
In Proc. of FSTTCS'01, volume 2245 of LNCS, pages 108-119. Springer,
2001.

[DEG06] Jyot i rmoy V . Deshmukh, Ernest A l l e n Emerson, and Prateek G u p t a . A u t o
matic verification of parameterized data structures. In Proc. of TACAS'06,
volume 3920 of LNCS, pages 27-41. Springer, 2006.

[DPV13] K a m i l Dudka , Pe t r Peringer, and Tomas Vojnar . Byte-precise verification
of low-level list manipulat ion. In Proc. of SAS'13, volume 7935 of LNCS,
pages 215-237. Springer, 2013.

[DR10] Laurent Doyen and Jean-Frangois Rask in . An t i cha in algorithms for finite
automata. In Proc. of TACAS'10, volume 6015 of LNCS, pages 2-22.
Springer, 2010.

[EKM98] Jacob Elgaard , Ni l s K l a r l u n d , and Anders M0l ler . M O N A 1.x: new tech
niques for W S 1 S and W S 2 S . In Proc. of CAV'98, volume 1427 of LNCS,
pages 516-520. Springer, 1998.

[ELSV14a] Constant in Enea, Ondfej Lengal , Mihae la Sighireanu, and Tomas Vojnar .
Composi t ional entailment checking for a fragment of separation logic. In
Proc. of APLAS'U, volume 8858 of LNCS, pages 314-333. Springer, 2014.

[ELSV14b] Constant in Enea, Ondfej Lengal , Mihae la Sighireanu, and Tomas Vojnar .
S P E N , 2014. Avai lable from h t t p : / / w w w . l i a f a . u n i v - p a r i s - d i d e r o t . f r /
spen.

[ESS13] Constant in Enea, V l a d Saveluc, and Mihae la Sighireanu. Composi t ional
invariant checking for overlaid and nested l inked lists. In Proc. of ESOP'13,
volume 7792 of LNCS, pages 129-148. Springer, 2013.

167

http://www

[FHLV14] T o m á š Fiedor, L u k á š Holík, O n d ř e j Lengál , and T o m á š Vojnar . dWiNA,
2014. Avai lable from h t t p : / / w w w . f i t . v u t b r . c z / r e s e a r c h / g r o u p s / v e r i
f i t / t o o l s / d W i N A / .

[FHLV15] T o m á š Fiedor, L u k á š Holík, O n d ř e j Lengál , and T o m á š Vojnar . Nested
antichains for wsl s . In Proc. of TACAS'15, volume 9035 of LNCS, pages
658674. Springer, 2015.

[GBC11] Alexey Gotsman, Josh Berdine, and B y r o n Cook. Precision and the con

junct ion rule in concurrent separation logic. Electronic Notes in Theoretical
Computer Science, 276:171190, 2011.

[Gen03] Thomas Genet. T i m b u k / T a m l : A tree automata l ibrary, 2003. Avai lable
from h t t p : / / w w w . i r i s a . f r / l a n d e / g e n e t / t i m b u k .

[GK10] Tobias Ganzow and Lukasz Kaiser . New algori thm for weak monadic
secondorder logic on inductive structures. In Proc. of CSL'10, volume
6247 of LNCS, pages 366380. Springer, 2010.

[GVA07] Bole i Guo, N e i l Vachharajani , and D a v i d I. August . Shape analysis wi th
inductive recursion synthesis. In Proc. of PLDI'01, pages 256265. A C M ,
2007.

[HHK95] M o n i k a Rauch Henzinger, Thomas A . Henzinger, and Peter W . Kopke .
Comput ing simulations on finite and infinite graphs. In Proc. of FOCS'95,
pages 453462. I E E E , 1995.

[H H R + 1 2] Peter Habermehl , L u k á š Holík, A d a m Rogalewicz, J i ř í Simáček , and T o m á š
Vojnar . Forest automata for verification of heap manipulat ion. Formal
Methods in System Design, 41(1):83106, 2012.

[HIOP13] Chr is toph Haase, Samin Ishtiaq, Joel Ouaknine, and Mat thew J . Parkinson.
SeLoger: A tool for graphbased reasoning in separation logic. In Proc. of
CAV'13, volume 8044 of LNCS, pages 790795, 2013.

[HJK10] J a d Hamza , Barbara Jobstmann, and V i k t o r Kuncak . Synthesis for regular
specifications over unbounded domains. In Proc. of FMCAD'10, pages 101

109. I E E E , 2010.

[H L R + 1 3] L u k á š Holík, O n d ř e j Lengál , A d a m Rogalewicz, J i ř í Simáček , and T o m á š
Vojnar . Ful ly automated shape analysis based on forest automata. In Proc.
of CAV'13, volume 8044 of LNCS, pages 740755. Springer, 2013.

[HLŠV11] L u k á š Holík, O n d ř e j Lengál , J i ř í Simáček , and T o m á š Vojnar . Efficient
inclusion checking on explicit and semisymbolic tree automata. In Proc.
of ATVA'll, volume 6996 of LNCS, pages 243258. Springer, 2011.

168

http://www.fit.vutbr.cz/research/groups/veri
http://www.irisa.fr/lande/genet/timbuk

[HNR10] Jonathan Heinen, Thomas N o l l , and Stefan Rieger. Juggrnaut: G r a p h
grammar abstraction for unbounded heap structures. In Proc. of TTSS'09,
volume 266 of ENTCS, pages 93107. Elsevier, 2010.

[Hosl l] Haruo Hosoya. Foundations of XML Processing: The Tree Automata Ap

proach. Cambridge Universi ty Press, 2011.

[HS09] L u k á š Holík and J i ř í Simáček . Opt imiz ing an LTSs imula t ion algori thm.
In Proc. of MEMICS'09, pages 93101. Facul ty of Informatics M U , 2009.

[HVP05] Haruo Hosoya, J é r ó m e Voui l lon , and Benjamin C . Pierce. Regular expres

sion types for X M L . ACM Trans. Program. Lang. Syst., 27, 2005.

[INY04] L u c i a n Ilie, Gonzalo Navarro, and Sheng Y u . O n N F A reductions. In Theory
Is Forever, volume 3113 of LNCS, pages 112124. Springer, 2004.

[IO01] Samin Ishtiaq and Peter W . O'Hearn . B I as an assertion language for
mutable data structures. In Proc. of POPL'01, pages 1426. A C M , 2001.

[IRS 13] R a d u Iosif, A d a m Rogalewicz, and J i ř í Simáček . The tree w i d t h of separa

t ion logic wi th recursive definitions. In Proc. of CADE'13, volume 7898 of
LNCS, pages 2138. Springer, 2013.

[IRV14] R a d u Iosif, A d a m Rogalewicz, and T o m á š Vojnar . Deciding entailments
in inductive separation logic w i t h tree automata. In Proc. of ATVA'14,
volume 8837 of LNCS, pages 201218. Springer, 2014.

[JJSK97] Jakob L . Jensen, Michae l E . J0rgensen, Michae l I. Schwartzbach, and
Nils K l a r l u n d . Automat i c verification of pointer programs using monadic
secondorder logic. In Proc. of PLDF97, pages 226234. A C M , 1997.

[KM01] Ni l s K l a r l u n d and Anders M0ller . MONA Version 1.4 User Manual.
B R I C S , Department of Computer Science, Aarhus University, January
2001. Notes Series NS011. Avai lable from h t t p : / / w w w . b r i c s . d k / m o n a / .
Revis ion of B R I C S NS983.

[KMS02] Ni l s K l a r l u n d , Anders M0ller , and Michae l I. Schwartzbach. M O N A im

plementation secrets. International Journal of Foundations of Computer
Science, 13(4):571586, 2002.

[LGQC14] Quang L o c Le , Cris t i an Gherghina, Shengchao Q i n , and WeiNgan C h i n .
Shape analysis v i a secondorder biabduction. In Proc. of CAV'14, volume
8559 of LNCS, pages 5268. Springer, 2014.

[LQ08] Shuvendu K . L a h i r i and Shaz Qadeer. Back to the future: Revis i t ing precise
program verification using S M T solvers. In Proc. of POPL'08, pages 171

182. A C M , 2008.

169

http://www.brics.dk/mona/

[LRS05] Alexey Loginov, Thomas Reps, and M o o l y Sagiv. Abs t rac t ion refinement
v i a inductive learning. In Proc. of CAV'05, volume 3576 of LNCS, pages
519-533. Springer, 2005.

[LSV12] Ondfej Lengal , J i f i Simacek, and Tomas Vojnar . V A T A : A l ibrary for
efficient manipulat ion of non-deterministic tree automata. In Proc. of
TACAS'12, volume 7214 of LNCS, pages 79-94. Springer, 2012.

[LYP11] Oukseh Lee, Hongseok Yang , and Rasmus Petersen. P rogram analysis for
overlaid data structures. In Proc. of CAV'll, volume 6806 of LNCS, pages
592-608. Springer, 2011.

[Mey72] A lbe r t R . Meyer. Weak monadic second order theory of successor is not
elementary-recursive. In Rohi t Pa r ikh , editor, Proc. of Logic Colloquium—
Symposium on Logic Held at Boston, 1972-73, volume 453 of Lecture Notes
in Mathematics, pages 132-154. Springer, 1972.

[MN05] Scott M c P e a k and George C . Necula . D a t a structure specifications v i a local
equality axioms. In Proc. of CAV'05, volume 3576 of LNCS, pages 476-490.
Springer, 2005.

[MPQ11] Parthasarathy Madhusudan, Gennaro Parlato, and Xiaokang Q i u . Decid-
able logics combining heap structures and data. In Proc. of POPL'll, pages
611-622. A C M , 2011.

[MQ11] Parthasarathy Madhusudan and Xiaokang Q i u . Efficient decision proce
dures for heaps using S T R A N D . In Proc. ofSAS'll, volume 6887 of LNCS,
pages 43-59. Springer, 2011.

[MS01] Anders M0l le r and Michae l I. Schwartzbach. The pointer assertion logic
engine. In Proc. of PLDI'01, pages 221-231. A C M , 2001.

[MTLT10] Stephen M a g i l l , Ming-Hs ien Tsa i , Peter Lee, and Y i h - K u e n Tsay. A u t o
matic numeric abstractions for heap-manipulating programs. In Proc. of
POPL'10, pages 211-222. A C M , 2010.

[PR11] Juan Navarro Perez and A ndr ey Rybalchenko. Separation logic + superpo
sit ion calculus = heap theorem prover. In Proc. of PLDI'll, pages 556-566.
A C M , 2011.

[Pug90] W i l l i a m Pugh . Skip lists: a probabil ist ic alternative to balanced trees.
Commun. ACM, 33(6):668-676, June 1990.

[PWZ13] R u z i c a Piskac, Thomas Wies , and Damien Zufferey. Au toma t ing separation
logic using S M T . In Proc. of CAV'IS, volume 8044 of LNCS, pages 773-789.
Springer, 2013.

170

[QGSM13] Xiaokang Q i u , Pranav Garg , A n d r e i Stefanescu, and Parthasarathy M a d -
husudan. Na tu ra l proofs for structure, data, and separation. In Proc. of
PLDI'IS, pages 231-242. A C M , 2013.

[QHL+13] Shengchao Q i n , Guanhua He, Chenguang Luo , Wei -Ngan C h i n , and X i n
Chen. Loop invariant synthesis i n a combined abstract domain. Journal of
Symbolic Computation, 50:386-408, 2013.

[RBHC07] Zvonimir Rakamaric , Rober to Bruttomesso, A l a n J . H u , and Alessandro
C i m a t t i . Verifying heap-manipulating programs i n an S M T framework. In
Proc. of ATVA'07, volume 4762 of LNCS, pages 237-252. Springer, 2007.

[Rey02] John C . Reynolds. Separation logic: A logic for shared mutable data struc
tures. In Proc. ofLICS'02, pages 55-74. I E E E , 2002.

[RT07] Francesco Ranzato and Francesco Tapparo. A new efficient s imulat ion
equivalence algori thm. In Proc. of TICS'01, pages 171-180. I E E E , 2007.

[si-14] S L - C O M P ' 1 4 , 2014. Avai lable from h t t p : / / s m t c o m p . s o u r c e f o r g e . n e t /
2 0 1 4 / r e s u l t s - S L C 0 M P 2 . s h t m l .

[Somll] Fabio Somenzi. C U D D : C U decision diagram package release 2.4.2, 2011.
Avai lable from h t t p : / / v l s i . c o l o r a d o . e d u / ~ f a b i o / C U D D / .

[SRW02] M o o l y Sagiv, Thomas Reps, and Reinhard W i l h e l m . Parametr ic shape
analysis v i a 3-valued logic. TOPLAS, 24(3):217-298, 2002.

[TH03] A k i h i k o Tozawa and M a s a m i Hagiya . X M L schema containment checking
based on semi-implicit techniques. In Proc. of CIAA '03, volume 2759 of
LNCS, pages 213-225. Springer, 2003.

[TWMS06] Chr i s t i an Topnik, E v a W i l h e l m , T iz i ana Margar ia , and Bernhard Steffen.
jMose l : A stand-alone tool and j A B C plugin for M 2 L (S t r) . In Proc. of
SPIN'06, volume 3925 of LNCS, pages 293-298. Springer, 2006.

[WDHR06] M a r t i n De Wulf, Laurent Doyen, Thomas A . Henzinger, and Jean-Francois
Rask in . Ant ichains: A new algori thm for checking universality of finite au
tomata. In Proc. of CAV'06, volume 4144 of LNCS, pages 17-30. Springer,
2006.

[Weil2] Alexander D o m i n i k Weinert . Inferring Heap Abstraction Grammars.
R W T H Aachen, 2012. B S c . thesis.

[WKZ+07] Thomas. Wies , V i k t o r Kuncak , K a r e n Zee, Andreas Podelski , and M a r t i n
R ina rd . O n verifying complex properties using symbolic shape analysis. In
Proc. ofHAV'07, 2007.

171

http://smtcomp.sourceforge.net/
http://vlsi.colorado.edu/~fabio/CUDD/

[WMK11] Thomas Wies , Marco M u h i z , and V i k t o r Kuncak . A n efficient decision
procedure for imperative tree data structures. In Proc. of CADE'll, volume
6803 of LNCS, pages 476-491. Springer, 2011.

[WP10] Thomas Wies and Andreas Podelski . Counterexample-guided focus. In
Proc. ofPOPL'10, pages 249-260. A C M , 2010.

[Y L B + 0 8] Hongseok Yang , Oukseh Lee, Josh Berdine, Cr is t iano Calcagno, B y r o n
Cook, Dino Distefano, and Peter W . O 'Hearn . Scalable shape analysis for
systems code. In Proc. of CAV'08, volume 5123 of LNCS, pages 385-398.
Springer, 2008.

[ZKR08] K a r e n Zee, V i k t o r Kuncak , and M a r t i n C . R i n a r d . F u l l functional verifica
t ion of l inked data structures. In Proc. of PLDI'08, pages 349-361. A C M ,
2008.

172

