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Abstract 

The work presented in this thesis focuses on finite state automata over finite words 
and finite trees, and the use of such automata i n formal verification of infinite-state 
systems. F i rs t , we focus on extensions of a previously introduced framework for verifi
cation of heap-manipulating programs—in part icular programs w i t h complex dynamic 
data structures—based on tree automata. We propose several extensions to the frame
work, such as making it fully automated or extending it to consider ordering over data 
values. Further, we also propose novel decision procedures for two logics that are often 
used in formal verification: separation logic and weak monadic second order logic of 
one successor. These decision procedures are based on a translation of the problem into 
the domain of automata and subsequent manipulat ion i n the target domain. F ina l ly , 
we have also developed new approaches for efficient manipulat ion wi th tree automata, 
mainly for testing language inclusion and for handling automata wi th large alphabets, 
and implemented them in a l ibrary for general use. The developed algorithms are used 
as the key technology to make the above mentioned techniques feasible i n practice. 
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Abstrakt 

Tato p r á c e se zaměřu je na konečné automaty nad k o n e č n ý m i slovy a k o n e č n ý m i stromy, 
a p o u ž i t í t ě ch to a u t o m a t ů př i fo rmáln í verifikaci nekonečně s tavových s y s t é m ů . P r á c e se 
nejdř íve věnuje rozš í ření exis tuj íc ího p ř í s t u p u pro verifikaci p r o g r a m ů k t e r é manipu lu j í 
s haldou (konk ré tně p r o g r a m ů s d y n a m i c k ý m i d a t o v ý m i strukturami) , j enž je založen 
na s t r o m o v ý c h automatech. V prác i je n a v r ž e n o několik rozš í ření tohoto p ř í s t u p u , jako 
n a p ř í k l a d jeho p l n á automatizace či jeho rozš í ření o podporu u s p o ř á d a n ý c h dat. V prác i 
jsou p o p s á n y nové rozhodovac í procedury pro dvě logiky, k t e r é jsou čas to p o u ž í v á n y 
ve formáln í verifikaci: pro s e p a r a č n í logiku a pro slabou monadickou d r u h o ř á d o v o u 
logiku s nás l edn íkem. O b ě tyto rozhodovac í procedury jsou založeny na p ř e v o d u jejich 
p r o b l é m u do a u t o m a t o v é d o m é n y a nás l edné manipulaci v t é t o cílové d o m é n ě . P o s l e d n í m 
p ř í n o s e m t é t o p r á c e je vývoj nových a lg o r i tmů k efekt ivní manipulaci se s t r o m o v ý m i au

tomaty, s d ů r a z e m na t e s t o v á n í inkluze j a z y k ů t ě ch to a u t o m a t ů a manipulaci s automaty 
s ve lkými abecedami, a implementace t ě ch to a lg o r i tmů v kn ihovně pro obecné použ i t í . 
T y t o v y v i n u t é algoritmy jsou p o u ž i t y jako klíčová technologie, k t e r á u m o ž ň u j e použ i t í 
výše u v e d e n ý c h technik v praxi . 
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1. Introduction 

Computer-based systems and technologies keep penetrating s t i l l deeper into human lives. 
The importance of their uninterrupted and correct operation thus keeps growing. Today, 
computer systems are widely used in the automotive industry (currently, there are over 
30 microcontrollers i n an average car), aerospace industry, telecommunication, bank 
sector, mil i tary, etc. A n incorrect behaviour of a computer system in some of these 
environments may cause substantial loses of money, resources, or, i n the worst case, 
even human lives. Even i n cases of programs that are not safety-critical, errors are often 
the cause of a negative user experience, which can lead to frustration, and, i n an extreme 
case, even to damage to hardware. 

Verification is a process that checks whether a given system is correct w i th respect 
to a provided specification. There are two main approaches to verification: the so-called 
bug hunting and formal verification. Bug hunting methods focus on finding as many 
errors as possible i n the verified system. Th i s approach includes testing of programs 
using random inputs while observing their behaviour, dynamic analysis (extrapolation of 
program's dynamic behaviour), some forms of static analysis (such as detection of errors 
that match some patterns i n the source code), bounded model checking (systematic 
search of the state space of the verified program to a l imi ted depth), etc. B u g hunting 
methods usually cannot guarantee a program's correctness and often find only easily 
reachable errors. 

1.1. Formal Verification 

Formal verification is, as opposed to bug-hunting, a technique that attempts to formally 
prove that the verified system is error-free, i.e. formal verification can guarantee that if 
it does not find an error, there are indeed no errors present i n the system. A l though the 
formal verification problem is in general undecidable, there are currently various formal 
verification methods that work well for a large range of classes of programs. 

Several properties are often required from formal verification methods. Perhaps the 
most important of these properties is soundness. A method is said to be sound i n 
case it never pronounces a system error-free when the system contains a behaviour that 
violates the specification. O n the other hand, a method is said to be complete if it 
does not produce spurious counterexamples, i.e. counterexamples that i n fact can never 
occur i n the real system. A desired property of formal verification algorithms is also 
termination, i.e. that the algorithms always converge. 
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1.2. Shape Analysis of Programs Manipulating Heap 

One part icular class of errors are the ones relating to memory safety i n programs that 
use dynamic memory allocation, such as programs manipulat ing different flavours of 
lists (e.g. s ing ly /doubly l inked, circular, w i th skip pointers) and trees (e.g. binary trees, 
trees wi th root/parent pointers). The area that investigates techniques for dealing wi th 
them is called shape analysis. Examples of the considered errors are inval id pointer 
dereference (which may cause a corruption of data values or an abnormal terminat ion 
of the program) or occurrence of garbage (which may cause the program to deplete the 
memory available and even affect other programs running on the computer). Dynamic 
memory is uti l ised (either directly or indirect ly v i a l ibrary calls) i n a vast por t ion of 
currently produced software. A m o n g the most cr i t ica l applications that extensively use 
dynamic memory are kernels of operating system (e.g. L inux) and various standard 
libraries (e.g. the G N U C l ibrary g l i b c or the C + + standard l ibrary) . 

Because programs manipulat ing heap are usually infinite-state, a sound analysis tech
nique needs to represent the heap symbolically, i.e. represent sets of heaps by different 
means than enumerating a l l of their elements. Currently, there are several competing 
approaches for symbolic heap representation. The first approach is based on the use of 
formulae of various logics to describe sets of heap configurations. The logics used are 
e.g. separation logic [Rey02, M T L T 1 0 , B C C + 0 7 , G V A 0 7 , C D N Q 1 2 a , C R N 0 7 , Y L B + 0 8 , 
C D O Y 0 9 , D P V 1 3 , C D N Q 1 2 b , L G Q C 1 4 ] , monadic second-order logic [MS01, J J S K 9 7 , 
M P Q 1 1 , MQ11] , or other [SRW02, Z K R 0 8 , BR06] . Another approach is based on the 
use of automata. In this approach, elements of languages of the automata describe con
figurations of the heap [ B H R V 0 6 , B B H + 1 1 , D E G 0 6 ] . The last approach that we w i l l 
mention is based on graph grammars describing (sets of) heap graphs [HNR10, We i l2 ] . 
The presented approaches differ in their degree of specialisation for a part icular class of 
data structures, their efficiency, and their level of dependence on user assistance (such as 
definition of loop invariants or inductive predicates for the considered data structures). 

The works that bu i ld on separation logic, such as [ B C C + 0 7 , Y L B + 0 8 , L G Q C 1 4 ] , are 
among the more efficient ones, thanks to the support for local reasoning provided by the 
separating conjunction (separating conjunction effectively decomposes the heap into dis
joint components so that each can be handled independently of the others, without the 
need to consider a l l possible aliasings of their elements). However, most of the techniques 
based on separation logic are either specialised for some part icular data structure—such 
as s ing ly /doubly l inked l ists—and even a slight change i n the data structure can make 
the technique unusable (as e.g. i n [BCC+07, Y L B + 0 8 , D P V 1 3 ] ) , or they need the user 
to provide inductive definitions of the used data structures. Moreover, when testing for 
a fixpoint (which is done to detect whether a newly obtained symbolic representation is 
subsumed by some already existing one), the analysis needs to check entailment of a pair 
of separation logic formulae. Entai lment procedures have so far been either for consider
ably l imi ted classes of data structures (e.g. singly l inked lists), or quite ad-hoc, based on 
folding/unfolding inductive predicates i n the formulae and t ry ing to obtain a syntactic 
proof of the entailment. Obviously, this often came wi th no completeness guarantee. 
On ly recently have there appeared more systematic approaches [IRS 13, IRV14]. 
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The shape analysis techniques based on automata can address this issue by exploit ing 
the generality of the automata-based representation. F in i te tree automata, for instance, 
have been shown to provide a good balance between efficiency and abi l i ty to express 
complex data structures. In particular, the so-called abstract regular tree model checking 
( A R T M C ) of heap-manipulating programs [BHRV12] uses a finite tree automaton to de
scribe a set of heaps positioned on a tree backbone (non-tree edges of the heap are repre
sented using regular "routing" expressions describing how the target can be reached from 
the source using tree edges). Man ipu la t ion wi th the heap is represented using a finite tree 
transducer and the set of reachable configurations is computed by iteratively applying 
the transducer on the in i t i a l configuration, un t i l a fixpoint is reached. A t each step, the 
obtained symbolic configuration is safely over-approximated using abstraction—which 
collapses certain states of the automaton—and a fixpoint is detected by standard au
tomata language inclusion testing. The abstraction used is derived automatical ly during 
the run of the analysis, using the so-called counterexample guided abstraction refinement 
( C E G A R ) technique, which uses spurious counterexamples to refine the abstraction. 
This formalism is able to fully automatical ly verify even as complex data structures as 
binary trees wi th l inked leaves, however, it suffers from the inefficiency of the monoli thic 
encoding of the sets of heaps and the transi t ion relation. 

Recently, a technique borrowing the best from the worlds of separation logic and 
A R T M C emerged. This technique, introduced i n [ H H R + 1 2 ] , is based on the so-called 
forest automata, which are essentially tuples of tree automata where leaves of the trees 
accepted by one of the tree automata can reference roots of the trees accepted by the 
other tree automata (or by itself). Th is "non-monolithic" encoding gives a support for 
local reasoning because heap manipula t ing operations are executed as simple operations 
locally on a part icular tree automaton and not affecting the other tree automata i n the 
forest automaton. E a c h root of a tree corresponds to a cut-point (a node wi th mult iple 
incoming edges) i n the heap graph. Some data structures have an unbounded number of 
cut-points, e.g. doubly l inked lists wherein every internal node is a cut-point. D a t a struc
tures of this k ind cannot be represented i n a finite way using this basic formalism; the 
number of tree components of the forest automata in the analysis would keep growing. 
The approach therefore uses hierarchical encoding, which uses special symbols—called 
boxes—to encode sets of subgraphs that contain a cut-point. Boxes are, again, repre
sented using forest automata. The technique uses automata abstraction from A R T M C to 
obtain a sound over-approximation of the set of reachable configurations and accelerate 
obtaining a fixpoint of the analysis. 

1.2.1. Selected Problems in Shape Analysis 

One issue of the techniques described in the previous is that they often ignore the data 
component of the represented data structure. Th is is not always feasible because several 
data structures, such as binary search trees or skip lists, depend on the data stored 
inside—in a binary search tree, for example, if a new value is inserted, the ordering 
relation between the inserted value and the data stored i n the root of the tree determines 
whether the new value is inserted into the left or the right subtree. Examples of works 
also considering data stored in data structures are [ M P Q 1 1 , M Q 1 1 , Q G S M 1 3 ] . 
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Another interesting problem emerging in the frameworks for shape analysis is the 
problem of detecting whether the analysis of symbolic executions of a loop has reached 
a fixpoint. A symbolic execution is an abstract execution of the program that uses the 
symbolic representation of the program's memory (there may be a potential ly unbounded 
number of them, the same as for real program executions). In this case, the fixpoint is 
a closed representation of the set of reachable configurations of the heap, w i th closed 
meaning that any new iterat ion over the body of the loop cannot add anything new to 
the set. A fixpoint is detected by testing inclusion of the symbolical ly represented sets of 
states before and after one more execution of the loop. The analyses based on separation 
logic perform such a test by checking entailment of a pair of formulae describing the 
heap configurations. O n the other hand, in the analyses based on automata, this test 
corresponds to checking inclusion of languages of a pair of automata. A l so note that 
both of these problems are general and used i n other settings, such as in deductive 
verification when deducing whether a precondition of a statement and its semantics imply 
its postcondit ion (for entailment), or testing containment of a pair of X M L schemas (for 
tree automata language inclusion), among many others. These problems are theoretically 
very hard wi th a discouraging worst case complexity, yet good heuristics can often solve 
an average case i n reasonable time. 

A n example of such a heuristic is the technique of the so-called antichains for checking 
language inclusion of a pair of nondeterministic finite state automata (over finite words 
or trees). The technique [ W D H R 0 6 , D R 1 0 , B H H + 0 8 , ACH+10] avoids explicit deter-
minisat ion of the automata by performing an on-the-fly exploration of the state space. 
Dur ing the exploration, it prunes parts of the state space using a subsumption relation 
on sets of states of the original automaton (the simplest form of the relation, introduced 
in [ W D H R 0 6 ] , is simple set inclusion). A l t h o u g h language inclusion of a pair of nonde
terminist ic automata has a forbidding worst case complexi ty—it is a P S P A C E - c o m p l e t e 
problem for finite word automata and, even worse, E X P T I M E - c o m p l e t e problem for 
finite tree automata—the technique works well for many pract ical examples. 

1.3. Goals of the Thesis 

The main goal of this thesis is an improvement of current state of the art i n shape anal
ysis. This goal consists of the following three subgoals. The first subgoal is the devel
opment of extensions to the shape analysis technique proposed i n [ H H R + 1 2 ] that would 
extend its degree of automation and class of programs it can handle, w i th a particular 
focus on data-dependent programs. The second subgoal is an extension and development 
of new efficient algorithms for testing entailment and validi ty of selected logics that are 
used i n shape analysis, in part icular separation logic and monadic second-order logic. 
For both of the logics, there exist fragments for which there have been developed efficient 
translations of decision problems i n the logics into finite (tree) automata; such fragments 
are the part icular focus of our attention. For separation logic, we consider the fragment 
where higher-order inductive predicates correspond to l inked lists of many different kinds 
(singly and doubly linked, circular, nested, . . . ) , and for monadic second-order logic, we 
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consider its weak fragment of one successor (the so-called weak monadic second-order 
logic of 1 successor—WS1S). The th i rd subgoal of this thesis is development of tech
niques for efficient manipulat ion wi th finite tree automata, which underlie the previous 
two subgoals. In particular, the emphasis is placed on the development of algorithms for 
efficient testing of inclusion over nondeterministic tree automata, and on techniques for 
manipulat ing tree automata w i t h large alphabets. 

1.4. A n Overview of the Achieved Results 

This section summarises the contributions to the part icular areas exposed i n the previous 
section as goals of this thesis. 

Fully Automated Shape Analysis with Forest Automata . The original paper on 
forest automata-based shape analysis [HHR+12] relied on the user to provide together 
w i t h the verified program also the needed boxes—i.e. the forest automata describing 
subgraphs of the heap to be enclosed into higher-level symbols. The first contr ibution 
of this thesis is the development of a fully automated method for discovering suitable 
boxes direct ly during the run of the analysis. The proposed method is based on selecting 
a suitable subgraph of the heap, isolating it as a box, and removing a cut-point by folding 
the selected subgraph into a single hyper-edge that is labelled wi th the box descriptor. 

The challenging part is identifying which subgraphs to fold. In general, these need to 
be subgraphs that decrease the number of cut-points i n the heap. However, some more 
complex conditions need to be met when the method is applied in the analysis. Fi rs t ly , 
the considered subgraph needs to be small enough so that the created box that represents 
it is reusable and the widening operator can make a loop i n some tree automaton over 
the box. Secondly, on the contrary to the previous point, the subgraph needs to be large 
enough so that the box effectively helps to remove a cut-point from the heap graph. The 
second condi t ion is needed because folding a finite number of input edges of a node w i t h 
an unbounded in-degree into a box may be sometimes harmful and may even prevent 
the algori thm to find a more suitable subgraph and terminate. 

We developed an algori thm that searches the heap graph for basic subgraphs (called 
knots) that match the part icular conditions. The search starts from the knots smallest 
in the number of cut-points and proceeds to larger ones. D u r i n g the search, knots are 
saturated i n order to avoid the problems of too smal l subgraphs mentioned earlier; on 
the other hand, the algori thm keeps them as smal l as possible to allow the created 
boxes to be reused. The procedure developed i n this contr ibut ion allowed us to fully 
automatical ly verify programs wi th such complex dynamic data structures as various 
flavours of s ing ly /doubly l inked (circular and/or nested) lists, trees, as well as skip lists 
(after the addi t ion of data mentioned below). 

Extending Forest A u t o m a t a with Support for Data . A further contr ibut ion of 
this thesis is an extension of the forest automata-based framework w i t h a support of 
programs w i t h ordered data. In this extension, forest automata are augmented w i t h 
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constraints that can relate values stored i n the nodes of the represented data structure. 
There are two types of constraints: (i) local constraints, which are used i n tree automata 
transitions and relate data values occurring in the parent node to data values occurring 
in the subtrees of children nodes, and (ii) global constraints, which are used to relate two 
tree automata wi th respect to the data values that occur i n the trees they can generate. 
The addi t ion of constraints required further extension of the abstract transformers, which 
need to introduce new constraints where impl ied by the performed operation, and remove 
constraints that do not hold any more. Furthermore, to transform forest automata into 
the canonical form to make testing language inclusion possible, we devised a saturation 
procedure that traverses a forest automaton and infers new constraints from the existing 
ones. Us ing this extension, we were able to fully automatical ly verify programs w i t h 
binary search trees and a full implementat ion of a 3-level skip list [Pug90], which is, to 
the best of our knowledge, the first t ime anyone has achieved this. 

A Decision Procedure for Separation Logic with List Predicates. A further 
contribution of this thesis is the development of a decision procedure for the problem of 
testing entailment of a pair of formulae i n a fragment of separation logic. The consid
ered fragment supports a wide range of higher-order inductive predicates that describe 
various flavours of singly and doubly l inked lists, including nested lists and skip lists. 
The developed decision procedure is based on finding a homomorphism between the 
symbolic heaps represented by the separation logic formulae, spl i t t ing the heaps into 
subgraphs according to this homomorphism and component-wise translat ing the separa
t ion logic formulae describing the subgraphs into trees and tree automata and checking 
membership of the trees i n the languages of the tree automata. 

A n Antichain-based Technique for Deciding W S 1 S Formulae. A s the penul
timate contribution, we propose a decision procedure for the W S 1 S logic (the weak 
monadic second-order logic of 1 successor). The decision procedure checks, for a W S 1 S 
formula ip, whether ip is val id or not. The standard procedure is based on constructing 
a finite automaton for ip, s tart ing by creating finite automata for the atoms of ip and 
then going upwards alongside the syntax tree of ip and performing finite automata op
erations corresponding to the logical operators, eventually creating a finite automaton 
representing ip, and checking whether its language is non-empty. The drawback of this 
procedure is that each negation and quantifier alternation yields complementation of 
an automaton, for which there is no known algori thm that avoids exponential explosion 
in the number of states (because it includes determinisation of the automaton). The 
exponential construction induced by complementation makes the procedure infeasible 
for larger formulae. We propose a method that avoids explicit complementation of the 
automata but exploits a technique that generalises the antichains principle used in algo
rithms for efficient testing of language inclusion over nondeterministic automata. Note 
that the multiple-exponential worst case complexity is unavoidable, because the inher
ent theoretical complexity of the addressed problem is N O N E L E M E N T A R Y , i.e. it 
cannot be solved by a fc-EXPTIME a lgori thm for any fixed k. 
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Efficient Algori thms for Nondeterministic Tree Automata . F ina l ly , i n order 
to make the previously described contributions usable i n pract ical settings, they need 
the support of an efficient implementat ion of operations for manipulat ing the underly
ing automata representation. T h e majori ty of the previously existing automata-based 
techniques were based on the use of deterministic automata and suffered from the state 
explosion that comes w i t h determinisation. The state explosion prevents the use of 
deterministic automata for larger systems. To avoid the state explosion, we always use 
nondeterministic automata and techniques that manipulate directly those. We never de-
terminise them, even for such operations as testing language inclusion (which is usually 
done by determinising and complementing one of the automata and testing emptiness 
of the intersection wi th the other automaton). Th is (and also other problems from the 
wide area of applications of tree automata) poses the requirement for techniques that can 
efficiently execute operations direct ly on nondeterministic tree automata. Concretely, 
in addi t ion to standard automata operations, such as constructing a union or an inter
section of a pair of automata, there is also the requirement for efficient techniques for 
testing language inclusion. A l though testing language inclusion of nondeterministic tree 
automata has an extreme worst case complexity (being an E X P T I M E - c o m p l e t e prob
lem), using clever heuristics—which avoid explicit determinisation of a tree automaton 
used by textbook algorithms causing an exponential state explosion—this can be done 
efficiently i n many pract ical cases. 

We propose a downward inclusion testing algori thm for nondeterministic tree au
tomata, which, i n contrast to already existing algorithms, traverses the automata top-
down rather than bottom-up. In addit ion, it uses antichains and the s imulat ion relation 
to prune parts of the search space that are subsumed by the already explored ones. In our 
experiments, this algori thm was i n the majori ty of cases the fastest a lgori thm for test
ing language inclusion over tree automata. We also developed efficient algorithms for 
manipulat ing semi-symbolic representations of nondeterministic tree automata, which 
can be advantageously used for tree automata w i t h large alphabets—such as those the 
emerge in the proposed decision procedure for WS1S—also including algorithms for ef
ficient testing of inclusion or computat ion of s imulat ion relations. We implemented the 
proposed algorithms i n the V A T A l ibrary, which has since been used by quite a few 
researchers around the world, who have used it as an efficient underlying l ibrary for 
handling nondeterministic automata for their own techniques. 

1.5. P lan of the Thesis 

Chapter 2 contains preliminaries on graphs, trees, and tree automata. Par t I contains 
the following three chapters describing our contributions to the forest automata-based 
shape analysis. Chapter 3 introduces forest automata. Chapter 4 describes the approach 
taken to make the analysis based on forest automata fully automated using box learning. 
Chapter 5 describes the extension of the forest automata framework to support reasoning 
about heap-manipulating programs that depend on ordered data stored i n the heap. 
Par t II is dedicated to the description of the decision procedures for two logics: separation 
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logic (Chapter 6) and W S 1 S (Chapter 7). F ina l ly , Par t III focuses on efficient techniques 
for manipulat ion of nondeterministic tree automata. In particular, Chapter 8 describes 
the proposed downward inclusion checking technique for nondeterministic tree automata, 
Chapter 9 proposes a symbolic encoding of nondeterministic tree automata wi th large 
alphabets, and Chapter 10 covers the design and implementat ion of an efficient tree 
automata library. The last chapter, Chapter 11, concludes the thesis. 
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2. Preliminaries 

This section formally introduces concepts that w i l l be used i n the rest of the thesis, i n 
part icular graphs, trees, and tree automata. 

2 .1 . Graphs and Trees 

Given a word a = a\ ... an, where n > 1, we write ai to denote its i - th symbol a%. We 
use the symbol e for the empty word. For a to ta l map / : A —>• B, we use dom(f) to 
denote its domain A and img(f) to denote its image in I?. 

A ranked alphabet is a (potentially infinite) set of symbols E associated w i t h a mapping 
# : E —• No that assigns ranks to symbols. A (directed, ordered, labelled) graph over 
E is a to ta l map g : V —>• E x F * which assigns to every node u € V (1) a £a&d from 
E , denoted as £g(v), and (2) a sequence of successors from V * , denoted as Sg(v), such 
that #£g(v) = \Sg(v)\. We drop the subscript <? if no confusion may arise. Nodes v w i t h 
S(v) = e are called leaves. For any v <E V such that 5(1;) = (a,vi • • • vn), we cal l the pair 
v i-t (a,vi • • • vn) an edge of g. The in-degree of a node i n V is the overall number of its 
occurrences i n g(v) across a l l nodes v £ V. The nodes of a graph g w i th an in-degree 
larger than one are called joins of g. 

A path from D to v' i n g is a sequence p = VQ, i\, v\,..., i n , v n where vo = v, vn = v', 
and for each j such that 1 < j < n, Vj is the ij-th. successor of Vj-\. The path is empty 
if n = 0. The pa th is acyclic if none of nodes i»o, • • • > vn appears twice i n i t . The nodes 
vi,..., vn-\ are called the inner nodes of p. The length of p is defined as length(p) = n. 
The path is a cycle i f vo = vn, and it is a simple cycle (or loop) i f it is a cycle and no 
node except vo = vn appears twice in i t . A n acyclic path has defined the cost as the 
sequence ii,..., in. We say that p is cheaper than another path p' iff the cost of p is 
lexicographically smaller than that of p'. A node u is reachable/accessible from a node 
v iff there is a path from v to u in g (including the case when the path is empty, i.e. 
u = v). A node v that reaches a l l nodes of g is called the root of g. If such a node exists 
in the graph g, we say that g is rooted (in v). A tree is a graph £ that has exactly one 
root r and each of its nodes except r is a successor of at most one node v of t. We use 
root{t) to denote the root of t and T s to denote the set of a l l trees over E . 

2.2. Tree Automata 

A (finite, nondeterministic) tree automaton (TA) is a quadruple A defined as A = 
(Q, E , A , R) where Q is a finite set of states, E is a ranked alphabet, A is a finite set 
of transitions, and R C Q is a set of root states. E a c h transi t ion is a tr iple of the 
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form (q,a, q\ • • • qn) where n > 0, q,qi, • • • ,qn G Q, a G E , and # a = n. We often 
use interchangeably q —>• a(qi,..., (/n) and a(qi,..., 5«) —> q to denote (5, a, q\ • • • qn), 
depending whether we wish to emphasise the downward or the upward direction of the 
transit ion. In the special case where n = 0, we speak about the so-called leaf transitions. 
We use Q# to denote the set of a l l tuples of states from Q w i th up to the max imum 
arity that some symbol i n E has, i.e. i f n = m a x a e s #a , then Q# = Uo<i<n Q%-

For q G Q and a G E , we use downa(q) to denote the set of tuples accessible 
from q over a i n the top-down manner; formally, downa(q) = {(qi, • • • ,qn) I Q —> 
a ( q i , q n ) } . For a G E and (qi,...,qn) G Q # a , we denote by upa((qi,..., qn)) the 
set of states accessible from (qi,... ,qn) over the symbol a in the bottom-up manner: 
formally, upa((qi,..., qn)) = {q \ a(qi,..., qn) —>• (/}. We also extend these notions to 
sets in the usual way, i.e. for a G E , P C Q , and 5 C Q * a , downa(P) = U P e P downa(p) 
and u p a ( S ) = U ( s i , . . . , s „ ) e s uPa(0»i> • • •, s n ) ) -

A run of „4, over a tree í over E is a mapping p : dom(t) —>• Q s.t. for each node 
u G dom{t) where (/ = p(v), i f (/j = p(S(v)i) for 1 < i < then A has a transi t ion 
(/ —>• £(v)(qi,..., We write t =4> p (/ to denote that p is a run of A over í s.t. 
p{root{t)) = q. We use t =>• (/ to denote that t g for some run p. The language of 
a state (/ is defined by L(q) = {t \ t =4> q}, and the language of .A is defined by = 
{JqGR L(q). We extend the notion of a language to a tuple of states (qi,..., (/„) G Q n by 
lett ing L((qi,..., (/„)) = L(<7i) x • • • x L(qn). The language of a set of n-tuples of sets of 
states S C ( 2 ^ ) n is the union of languages of elements of S, the set L(S) = U s e s L(E). 

Simulations. A downward simulation on a T A A = (Q, E , A , R) is a preorder relation 
^ Q x Q such that i f (/ p and (/ —>• a ( ( / i , . . . , (?„), then there are states pi,... ,pn 

such that p —>• a ( p i , . . . , p n ) and % p i for each 1 < i < n. G iven a T A A = 
(Q, E , A , i?) and a downward simulation an upward simulation <uC QxQ induced 
by is a relation such that if q <u p and a ( g i , . . . , qn) —>• g' w i th qi = q, I < i < n, 
then there are states p i , . . . ,pn,p' such that a ( p i , . . . , p n ) —>• p ' where pi = p, q' <u p', 
and gj -<D Pj for each j such that 1 < j 7̂  i < n. 

2.3. Structured Labels 

Sometimes, we w i l l work wi th alphabets where symbols, called structured labels, have an 
inner structure. Let V be a ranked alphabet of sub-labels, ordered by a to ta l ordering 
C r - We w i l l work wi th graphs over the alphabet 2 r where for every symbol ACT, its 
arity is j^A = X^aeA # a - Let e = w 4 ( { ^ I , • • •: ^m}, v\ • • • vn) be an edge of a graph g 
where n = X ^ i < j < m

 a n < ^ a i C r a2 C r • • • C r We decompose e into a sequence 
of m sub-edges e ( l ) = w ->• ( a i , u i • • -v#ai),... ,e(m) = v ->• ( a m , w „ _ # a m + i • • - u n ) . We 
call e(i) = w —>• (aj, Ufe • • • vi) from the sequence the i - th sub-edge of e in g, for 1 < i < m . 
We use SE(g) to denote the set of a l l sub-edges of g, and SE(g, v) for the subset of 
SE(g) where v is the origin. . We say that a node v of a graph is isolated if it does not 
appear wi th in any sub-edge, neither as an origin (i.e. £{v) = 0) nor as a target. A graph 
g without isolated nodes is unambiguously determined by SE{g) and vice versa (due to 
the to ta l ordering and since g has no isolated nodes). 
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A counterpart of the notion of sub-edges i n the context of transitions of T A s is the no
t ion of sub-terms, defined as follows: G iven a transi t ion 5 = q —> { a i , . . . , am}(qi,..., qn) 
of a T A over the alphabet of structured labels 2 r , sub-terms of 5 are the terms 5(1) = 
a i ( q i , q # a i ) , •••,S{m) = am(qn_#am+1, ...,qn) where 6(i), for 1 < i < m, is called 
the i-th sub-term of 5. 
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Part I. 

Forest Automata-Based Formal 
Verification of Programs 
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3. Shape Analysis wi th Forest Automata 

In this chapter, as the start ing point for our own work presented in Chapters 4 and 5, we 
w i l l briefly describe the forest automata-based shape analysis framework for verification 
of programs manipula t ing complex dynamic data structures, as introduced by Haber-
mehl et al in [HHR+12]. The main concept of the symbolic representation used i n the 
framework is the so-called forest decomposition of a heap graph, which is performed as 
follows: F i rs t , the cut-points of the graph are identified; a cut-point is a node that is 
either referenced by a program variable or is a target of mult iple edges. Every cut-point 
is then taken as the root of a (cut-point-free) tree component whose leaves are either 
nodes w i t h no outgoing edges, or other cut-points. The heap graph is split into the tree 
components. The tree components are then canonically ordered according to the order 
in which their roots were visi ted i n a depth-first search ( D F S ) through the graph, when 
starting from program variables. In the tree components, any leaf that corresponds to 
a cut-point numbered wi th c during the D F S is changed into an explicit reference to 
the cut-point number c, wr i t ten as c. See Figure 3.1 for an i l lustrat ion of the forest 
decomposition of a heap graph. 

To represent a set of (potentially infinite) heaps H = {hi, hi, • • • } w i t h the same 
number n of cut-points, we decompose a l l heaps of H into forests and for every posit ion 
1 < i < n, we then collect the i - th components of a l l forests into the set H[i] = 
{hi[i], h,2[i], • • •}• The set H[i] can be represented using a tree automaton ( T A ) A[i] and 
the whole set of heaps H can be represented by a tuple of T A s A[l], • • •, A[n], called 
a forest automaton ( F A ) . (Note that the previous decomposition of a set of heaps can be 
performed only in the case the set of forests FJJ of H is convex. Convexi ty of FJJ denotes 
the fact that we can take any forest h[l],..., h[n] from FJJ, substitute h[j] w i th h'[j] for 
any 1 < j < n and hi £ H, and the result w i l l s t i l l be a member FH- Non-convex sets 
of forests are represented as unions of convex sets. Our analysis also guarantees that a l l 
H[i] are regular tree languages.) 

A n F A of the simple structure presented above cannot be used as a representation of 
data structures that have an unbounded number of cut-points—such as doubly linked 
lists ( D L L s ) or trees wi th parent pointers, where every internal node is a cut-point—and 
the analysis would need an infinite number of F A s to represent a set of a l l instances of 
these data structures. In order to be able to represent them using Unitary means, the 
forest automata framework allows the use of the so-called boxes. Boxes are F A s that 
are used as symbols of another, higher level F A . In this F A , they represent a (complex) 
subgraph using a single symbol . Intuitively, the task of boxes is to decrease the in-degree 
of cut-points i n a graph—when the in-degree of a node drops to one (and the node is 
not referenced by a program variable), the node is no longer a cut-point and can be 
represented by an ordinary state in a T A . In this way, it is possible to represent an 
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Figure 3.1.: A graph and its forest representation 

over-approximation of a l l reachable configurations of a program using forest automata 
wi th a bounded number of tree components. See Figure 3.2 for an example of a use of 
a box in an encoding of a D L L . 

Alongside the notion of F A s , [HHR+12] also proposed a shape analysis that uses F A s 
and is based on the framework of abstract interpretation [CC77]. For each program line, 
a set of forest automata is used to represent the set of memory configurations reachable 
at a given line. The program is symbolical ly executed on this representation in such 
a way that each program statement is mapped to an abstract transformer that simulates 
execution of the statement on the symbolic representation (and also checks whether 
an error has been encountered). The symbolic execution examines a l l branches of the 
program unt i l no new symbolic states can be found on the branches and a fixpoint is 
obtained (this is detected by testing language inclusion of F A s , see [HHR+12] for more 
details). Because, as mentioned earlier, programs manipula t ing heap are usually infinite-
state, the widening operator is used to provide a sound over-approximation of the set of 
reachable configurations. Th is operator is based on automata abstraction borrowed from 
abstract regular tree model checking ( A R T M C ) . For a given forest automaton, abstraction 
collapses some states of the T A s of the F A (for each T A separately), t ry ing to introduce 
loops into the T A s to obtain T A s accepting an infinite (regular) tree language that over-
approximates the original one and, i n turn, a forest automaton representing an infinite 
set of heaps, again over-approximating the original one. 

Outline. Section 3.1 of this short chapter introduces the formalism of forest automata 
and Section 3.2 describes the forest automata-based framework for shape analysis. 

3 .1 . Forest Automata 
Forests. Let E be a ranked alphabet disjoint from N, i.e. E n N = 0. A E-labelled 
forest is a sequence of trees t\ • • -tn over the alphabet ( E U { 1 , . . . , n } ) where for a l l 
1 < i < n, the arity of i is # i = 0. Leaves labelled by i G N are called root references. 
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(a) A D L L (b) Its hierarchical encoding 

Figure 3.2.: A D L L and its hierarchical encoding 

The forest t\ • • • tn represents the graph ®t\ • • • tn obtained by uni t ing the trees of 
t\ • • • tn, assuming w.l .o.g. that their sets of nodes are disjoint, and interconnecting their 
roots w i th the corresponding root references. Formally, ®t\ • • • tn contains an edge of 
the form v i-> (a, v\ • • • vm) iff there is an edge v i-> (a, v[ • • • v'm) of some tree U, for 
1 < i < n, such that for a l l 1 < j < m, the following holds: i f v'j is a root reference wi th 
£(v'A = k then Vj = root{tk), otherwise Vj = v',. 

Graphs and forests with ports. We w i l l further work wi th graphs w i t h designated 
input and output nodes. A n io-graph is a pair (g,(p), abbreviated as g<f,, where g is 
a graph and <p G dom(g)+ a sequence of ports i n which (pi is the input port and 4>2 • • • <pu\ 
is a sequence of output ports such that the occurrence of ports i n (f> is unique. Por ts and 
joins (i.e. nodes wi th mult iple incoming edges) of g are called cut-points of g<j,. We use 
cps(g(p) to denote a l l cut-points of g^. We say that is accessible if it is rooted i n the 
input port (pi. We sometimes abuse notat ion for graphs and use it also for io-graphs, 
e.g. we may write dom(g(p) to denote dom(g). 

A n io-forest is a pair / = (ti • • • tn, TT) such that n > 1 and TT G { 1 , . . . , n}+ is a sequence 
of port indices, TTI is the input index, and 7T2 ... Tn^i is a sequence of output indices, w i th 
no repetitions of indices in -jr. A n io-forest encodes the io-graph (g)/ where the ports of 
(g>£i • • • tn are roots of the trees defined by TT, i.e. ®f = (<8>£i • • - tn, root(tni) • • • root(tnn)). 

Forest automata. A forest automaton (FA) over the alphabet E is defined as a pair 
F = (Ai • • • An, 7r) where n > 1, -4.1 • • • ^4ra is a sequence of tree automata over the 
alphabet ( S U { 1 , n } ) , and ir € { 1 , . . . , n } + is a sequence of port indices as defined for 
io-forests. The forest language of F is the set of io-forests Lf(F) = L(Ai) x • • • x L(An) x 
{TT}, and the graph language of F is the set of io-graphs L(F) = {®h \ h G Lf(F)}. 

Forest automata of a higher level. We let Ti be the set of a l l forest automata 
over the alphabet of structured labels 2 r and cal l its elements forest automata over F of 
level 1. For i > 1, we define Tj as the set of a l l forest automata over ranked alphabets 
2 r u A where A C is any nonempty finite set of F A s of level i — We denote elements 
of Ti as forest automata over T of level i. The rank j^F of an F A F i n these alphabets 
is the number of its output port indices. W h e n used i n an F A F over 2 r u A , the forest 
automata from A are called boxes of F. We write to denote U«>o ^ and assume 
w.l.o.g. that is ordered by some to ta l ordering Cr„ • 
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A n F A F of a higher level over Y accepts graphs where forest automata of lower levels 
appear as sub-labels. To define the semantics of F as a set of graphs over Y, we need the 
following operation of sub-edge replacement where a sub-edge of a graph is substituted 
by another graph. Intuitively, the sub-edge is removed, and its origin and targets are 
identified wi th the input and output ports of the substituted graph respectively. 

Formally, let g be a graph wi th an edge e G g and its i - th sub-edge e(i) = v\ —> 
(a, V2 • • • vn). Let g'^ be an io-graph wi th \cf>\ = n. Assume w.l.o.g. that dom(g) n 
dom(g'(p) = 0. The sub-edge e(i) can be replaced by g' provided that for a l l 1 < j < n it is 
that £g(vj) r\£gi((pj) = 0, which means that the node Vj G dom(g) and the corresponding 
port G dom(g'(p) do not have successors reachable over the same sub-label. If the 
replacement can be done, the result, denoted ff[ff^/e(i)], is the graph gn i n the sequence 
go,...,gn of graphs obtained as follows: The graph go is defined using sub-edges as 
SE(go) = (SE(g) \ {e(i}}) U SE(g'), and for each 1 < j < n, the graph gj arises from 
gj-i by (1) deriving a graph hj by replacing the origin of the sub-edges of the j-th 
port of g'^ by Vj, (2) redirecting edges leading to 4>j to lead to Vj, i.e. replacing 
al l occurrences of 4>j h i img(h)j by Vj, obtaining the graph h'j, and (3) removing <f>j. 
Intuitively, we start by removing e(i) from g, proceed by adding g' to the graph and 
then, one by one, reconnecting edges leading to and leaving the ports of g'^ w i th the 
nodes incident w i t h e(i) i n g. Figure 3.3 shows the sub-edge replacement step including 
the intermediate graphs. 

If the symbol a of the sub-edge e(i) i n the previous paragraph is an F A and g'^ G L(a), 
we say that h = g\g'^l'e(i)] is an unfolding of g, wri t ten g ~< h. Conversely, we say that 
g arises from h by folding g'^ into e(i). Let -<* be the reflexive transitive closure of -<. 
The Y-semantics of g is then the set of graphs g' over Y such that g -<* g', denoted 
lg}r, or just [5] if no confusion may arise. For an F A F of a higher level over Y, we let 

I f ] = U , e L ( F ) ( H x W ) . 

Canonicity. We cal l an io-forest / = (ti • • • tn, TT) minimal iff the roots of the trees 
n are the cut-points of <8)/- A min ima l forest representation of a graph is unique 

up to reordering of t\ • • -tn. Let the canonical ordering of cut-points of <g>/ be defined 
by the cost of the cheapest paths leading from the input port to them. We say that / 
is canonical iff it is min imal , ®f is accessible, and the trees wi th in t\ • • • tn are ordered 
by the canonical ordering of their roots (which are cut-points of <8>/)- A canonical forest 
is thus a unique representation of an accessible io-graph. We say that an F A respects 
canonicity iff a l l forests from its forest language are canonical. (Note that we do not 
consider canonical F A s , due to the reason that there would have to be some canonicity 
restriction on the component T A s . A s for a set of nondeterministic T A s w i t h the same 
language L, there is no known natural canonical T A accepting L , and even i f there were, 
the cost of conversion to this T A might be too high.) Respecting canonicity makes it 
possible to efficiently test F A language inclusion by testing T A language inclusion of the 
respective components of a pair of F A s . Th is method is precise for F A s of level 1 and 
sound (not always complete) for F A s of a higher level, see [HHR+12] for more details. 

In practice, we keep automata i n the so called state uniform form, which simplifies 
maintaining the canonicity respecting form (and it is also useful when abstracting and 
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Figure 3.3.: Steps taken i n the sub-edge replacement of an edge labelled by the D L L box 

"folding", as discussed in Section 4.1.2). It is defined as follows. G iven a node v of 
a tree t i n an io-forest, we define its span as the pair (a , V ) where a G N* is the sequence 
of labels of root references reachable from the node v ordered according to the cost of 
the cheapest path to them, and V C N is the set of labels of references that occur more 
than once i n the subtree of t rooted i n v. The state uniform form then requires that a l l 
nodes of forests from Lf(F) that are labelled by the same state q i n some accepting run 
of F have the same span, which we denote by span(q). 
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3.2. FA-based Shape Analysis 

We now provide a high-level overview of the main loop of the shape analysis based on 
forest automata. The analysis automatical ly discovers memory safety errors (such as 
invalid dereferences of n u l l or undefined pointers, double frees, or memory leaks) and 
provides an FA-represented over-approximation of the sets of heap configurations reach
able at each program line. The framework considers sequential non-recursive C programs 
manipulat ing the heap. E a c h heap cell may have several pointer selectors and data se
lectors from some finite data domain (below, PSel denotes the set of pointer selectors, 
DSel denotes the set of data selectors, and D denotes the data domain). A l though the 
implementation of the approach in the Forester tool can handle l imi ted pointer ari th
metic and type casting, for the sake of s implic i ty we do not consider these features i n 
the following description. The analysis can also provide as an output an FA-represented 
over-approximation of the sets of heap configurations reachable at each program line. 

Heap Representation 

A single heap configuration is encoded as an io-graph gsi (we describe the input port sf 
later i n the text) over the ranked alphabet of structured labels 2 r w i th sub-labels from the 
ranked alphabet T = PSelU(DSelxH)) w i th the ranking function that assigns each pointer 
selector 1 and each data selector 0. In this graph, an allocated memory cell is represented 
by a node v, and its internal structure of selectors is given by a label £g(v) G 2 r . Values 
of data selectors are stored directly i n the structured label of a node as sub-labels from 
DSel x D , so e.g. a singly l inked list cell w i th the data value 42 and the successor node 
x n e X t may be represented by a node x such that £g(x) = {next (x n e x t ) , (data, 42)(e))}. 
Selectors w i th undefined values are represented i n such a way that the corresponding 
sub-labels are not i n £g(x). The nu l l value is modelled as the special node n u l l such 
that ^ s (null) = 0. The input port sf represents a special node that contains the stack 
frame of the analysed function, i.e. a structure where selectors correspond to variables 
of the function. 

In order to represent (infinite) sets of heap configurations, we use state uniform F A s 
of a higher level to represent sets of canonical io-forests representing the heap configu
rations. The F A s used as boxes, i.e. symbols of F A s of a higher level, are provided by 
the user. 

Symbolic Execution 

The verification procedure is based on abstract interpretation [CC77] w i th the abstract 
domain consisting of sets of state uniform F A s (a single F A does not suffice as F A s are 
in general not closed under union) representing sets of heap configurations at particular 
program locations. The computat ion starts from the in i t i a l heap configuration given by 
an F A for the io-graph gSf where g comprises two nodes: n u l l and sf where £g(sf) = 0 
(i.e. the values of a l l local variables are undefined). The computat ion then executes 
abstract transformers corresponding to program statements un t i l the sets of F A s held at 
program locations stabilise. We note that abstract transformers corresponding to pointer 
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manipulat ing statements are the most precise transformers. For each operation op i n 
the intermediate representation of the analysed program, the semantics of C implies 
existence of a function / o p that, when applied to the io-graph gsi, gives the io-graph 
/op(ffsf) representing the heap after executing op. Based on / o p , we define for each 
operation op the corresponding abstract transformer r o p w i th the property that when 
r o p is applied to the set of F A s <S, the result is the set of F A s S' = r o p ( 5 ) such that 

U IF'} = {/o PG? Sf) I ffsf € m A F € S}. (3.1) 
F'eS' 

Execut ing the abstract transformer r o p over a set of F A s S is performed separately for 
every F € S. In the first step, we perform materialisation dur ing which we unfold 
(i.e. substitute by the corresponding F A ) lower-level boxes unt i l the heap nodes being 
accessed by the given operation are uncovered. T h e n we perform the actual update— 
which amounts to manipulat ion of states i n the neighbourhood of a root state, which is 
quite close to the corresponding manipulat ion of concrete heap graphs—as described i n 
the following paragraph. 

Let us fix the set of stack frame sub-edges S = SE(g, s f ) . Pointer updates of the 
form x := y, x := y - > s l , or x := n u l l replace the sub-edge s f —> (x, v x ) in S w i th the 
sub-edge s f —>• (x,v'x), where v x is obtained according to the type of the update: 

(i) For the assignment x := y, v x is a node such that there is a sub-edge s f —> (y, v'x) 
in S. In the case there is no such a sub-edge i n S, the sub-edge s f —>• (x, vx) is 
removed from S and x is left undefined. 

(ii) For the assignment x := y - > s l , v x is a node such that there is a node vy pointed 
by y, i.e. s f —>• (y,vy) G S, where vy points to v x over s i , vy —>• (sl,v'x) G SE(g). 
In case there is no sub-edge s f —>• (y,vy) in S or vy = n u l l , i.e. y is undefined 
or n u l l respectively, the analysis reports an inval id memory access error. O n the 
other hand, if such a sub-edge exists but there is no sub-edge s f —>• (y,vy), the 
sub-edge s f —> (x, vx) is, again, removed from S and x is left undefined. 

(iii) F ina l ly , for the assignment x := n u l l , v'x is the node n u l l . 

Updates of the form x - > s l := y replace the sub-edge v x —>• ( s i , z) w i th the sub-edge 
wx —>• ( s l , w y ) , where s f —> (y,vy) G S (or remove w x —>• ( s i , z) i f there is no sub-edge 
s f —>• (y, vy) i n S). Note that i n the case that either x is undefined or w x is the n u l l node, 
the analysis reports inval id memory access. Further, symbolic execution of the operation 
m a l l o c ( x ) replaces the sub-edge s f —>• (x, z) w i th the sub-edge s f —>• (x,vnew), where 
vnew is a newly created node, vnew g" dom(g), where £(vnew) = 0. The cal l f r ee(x) 
removes the node w x such that s f —> (x, w x) G S from g, and also removes a l l sub-
edges v —>• (sel,vx) G SE(g), thus making al l selectors point ing to w x undefined. D a t a 
updates x ->da ta := dnew replace the sub-edge w x —>• ((data, d 0 y ) , e) G S w i th the sub-
edge vK —>• ( ( d a t a , d n e w ) , e ) , where w x is a node such that s f —>• (x, vx) is i n S. Dur ing 
these operations, dereferences of n u l l and undefined selectors are detected, as well as 
emergence of garbage (detected when f0p(gs±) is not accessible). Evalua t ing a guard on 
an io-graph gsi amounts to a test of equality of nodes, or equality or inequality of data 
fields of nodes. 
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Folding and abstraction. A s we have already discussed at the beginning of this 
chapter, in order to be able to represent infinite sets of configurations of some data 
structures (in part icular those wi th an unbounded number of cut-points), the analysis 
needs to use the so-called boxes, which are F A s of a lower level. In the context of the work 
that introduced forest automata-based shape analysis [HHR+12], the user is required to 
provide as the input of the analysis a database of boxes; these boxes are then used by 
the analysis for folding of subgraphs. 

The folding is performed after an update of the symbolic execution is completed. It 
takes the database of boxes and for every box, the procedure attempts to find in the 
F A that represents the current abstract state a l l substructures matching the structure 
of the box. Every such substructure is substituted by a sub-term labelled wi th the box 
name. This is done repeatedly un t i l nothing more can be folded. The folding step is 
followed by transformation of the F A into the canonicity respecting form. 

A t junctions of program paths, the analysis computes unions of sets of F A s . A t 
loop points (junctions at the beginning of a loop), the union is followed by widening. 
The widening is performed by applying abstraction on each F A from the set of F A s 
obtained at the loop point. The abstraction used is a modification of the abstraction 
based on tree languages of a finite height—the so-called finite height abstraction—from 
A R T M C [BHRV12] , which is applied independently on every component T A i n the F A . 
The finite height abstraction is parameterised by a height k, and it collapses those states 
of a T A whose tree languages of the height up-to k match. 

3.3. Discussion 

The results that were presented i n the original work on forest automata-based shape 
analysis [ H H R + 1 2 ] give evidence of the viabi l i ty of the approach, in the senses of both the 
expressivity of the underlying formalism (forest automata can indeed represent various 
s ingly /doubly l inked lists, skip lists, trees, and their (finitely nested) combinations) and 
in the scalabili ty (thanks to the decomposition of the heap into a tuple of trees and 
manipulat ing each of them independently). 

The data structures that are unsupported by the forest automata-based analysis in the 
proposed setting are either data structures that are not hierarchically structured (such as 
general graphs) or hierarchical data structures w i th an unbounded level of nesting (such 
as trees wi th l inked leaves or skip lists of an arbitrary level). Some of the hierarchical 
data structures of an unbounded level of nesting could be represented by an extension 
of the formalism that would allow an F A to recursively contain itself (recall that self-
reference is forbidden now); however, it is yet not clear how al l steps of an analysis 
based on this extended formalism would be carried out. To give examples of other data 
structures that the analysis cannot handle, let us mention data structures w i th complex 
invariants (such as A V L trees, which rely on balancedness of a tree) or data structures 
that perform suballocation of their assigned memory (such as the data structures used 
in memory allocators). 
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One weak point of the presented analysis lies i n the need for the user to provide the 
boxes for the substructures that the analysis might come upon during its run. A s we 
strive for fully-automated analysis, the next chapter, Chapter 4, presents an approach 
that addresses this issue and provides a way for the analysis to infer the boxes itself, 
during its run. Moreover, Chapter 5 extends the formalism and augments the analysis 
based on it by taking into account ordering relations between the data stored i n a data 
structure. This extension allows us to verify programs wi th data structures where the 
invariant depends on the ordering between the data values stored inside memory nodes, 
which is the case for various sorting algorithms, binary search trees, or procedures for 
manipulat ing skip lists. 
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4. Learning Boxes for Forest Automata 

The work presented i n this chapter is an extension of the shape analysis based on forest 
automata, as described i n Chapter 3. Reca l l that the described shape analysis relied 
on the user to provide a suitable set of boxes (the subgraphs to be folded into au
tomata symbols). This means that the user needed to provide the analysis w i th a forest 
automata-based description of those data structures used in the program that have an 
unbounded number of cut-points. A s we strive for a push-button analysis—an analysis 
that would run without user interaction, which, we believe and our cooperation wi th 
industry partners confirms, is the only k ind of analysis that can work for large-scale 
ever-evolving systems—such an approach is natural ly not feasible. To address this issue, 
we propose an extension of the approach where the boxes are inferred automatical ly 
during a run of the analysis using a technique that we cal l box learning. 

The basic principle of box learning stems from the reason for which boxes were orig
inal ly introduced into F A s . In particular, F A s must have a separate component T A for 
each node (called a join) that has mult iple incoming edges i n the represented graphs. If 
the number of joins is unbounded (as e.g. in doubly l inked lists, abbreviated as D L L s be
low), unboundedly many component T A s are needed in flat F A s . However, when some of 
the edges are hidden in a box (as e.g. the prev and next l inks of D L L s in Figure 4.1) and 
replaced by a single box-labelled edge, a finite number of component T A s may suffice. 
Therefore, the basic idea of our learning is to identify subgraphs of the FA-represented 
graphs that contain at least one jo in , and when they are enclosed—or, as we say later 
on, folded—into a box, the in-degree of the jo in decreases. 

There are, of course, many ways to select the above mentioned subgraphs to be used 
as boxes. To choose among them, we propose several cri teria that we found useful i n 
a number of experiments. Most importantly, the boxes must be reusable i n order to 
allow el iminat ing as many joins as possible. The general strategy here is to choose boxes 
that are simple and small since these are more l ikely to correspond to graph patterns 
that appear repeatedly i n typ ica l data structures. For instance, in the already mentioned 
case of D L L s i n Figure 4.1, it is enough to use a box enclosing a single pair of next/prev 
l inks. O n the other hand, as also discussed below, too simple boxes are sometimes not 
useful either. 

Further, we propose a way how box learning can be efficiently integrated into the main 
analysis loop. In particular, we do not use the perhaps obvious approach of incrementally 
bui lding a database of boxes whose instances would be sought i n the generated F A s . We 
found this approach inefficient due to the costly operation of finding instances of different 
boxes i n FA-represented graphs. Instead, we always t ry to identify which subgraphs of 
the graphs represented by a given F A could be folded into a box, followed by looking into 
the so-far buil t database of boxes whether such a box has already been introduced or not. 
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(a) A D L L (b) Its hierarchical encoding 

Figure 4.1.: A D L L and its hierarchical encoding 

Moreover, this approach has the advantage that it allows one to use simple language 
inclusion checks for approximate box folding which substitutes a subgraph wi th a box 
from the database that has a larger language, thus over-approximating the set of graphs 
represented by a given F A . This approach sometimes greatly accelerates the computat ion. 
Final ly , to further improve the efficiency, we interleave the process of box learning w i t h 
the automata abstraction into a single iterative process. In addit ion, we propose an F A -
specific improvement of the basic automata abstraction which accelerates the abstraction 
of an F A using components of other F A s . Intuitively, it lets the abstraction synthesise 
an invariant faster by allowing it to combine information coming from different branches 
of the symbolic computat ion. 

We have prototyped the proposed techniques in Forester and evaluated it on a number 
of challenging case studies. The results show that the obtained approach is bo th quite 
general as well as efficient. For example, we were the first to fully-automatically analyse 
programs wi th a data-independent modification of 2- and 3-level skip lists (a modification 
where the shape invariant of a skip list does not rely on the fact that the list is ordered— 
our extension to the standard data-dependent skip lists is described in Chapter 5). 
O n the other hand, our implementat ion achieves performance comparable and sometimes 
even better than that of Predator [DPV13] (a winner of mult iple heap analysis-related 
awards in several years of the competi t ion on software verification S V - C O M P ) on list 
manipulat ing programs despite being able to handle much more general classes of heap 
graphs. 

Related work. F r o m the point of view of efficiency and degree of automation, the 
main alternative to our approach are the methods that fully-automatically use separa
t ion logic w i t h inductive list predicates as implemented in Space Invader [YLB+08] or 
S L A y e r [BCI11]. These approaches are, however, much less general than our approach 
since they are restricted to programs over certain classes of l inked lists (and cannot han
dle even structures such as l inked lists w i t h data pointers point ing either inside the list 
nodes or optionally outside of them, which we can easily handle as discussed later on). 
A similar comparison applies to the Predator tool inspired by separation logic but using 
purely graph-based algorithms [DPV13] . The work [LYP11] on overlaid data structures 
mentions an extension of Space Invader to trees, but this extension is of a l imi ted gen
erality and requires some manual help. 
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In [GVA07], an approach for synthesising inductive predicates in separation logic is 
proposed. This approach is shown to handle even tree-like structures wi th addit ional 
pointers. One of these structures, namely, the so-called mcf trees implementing trees 
whose nodes have an arbitrary number of successors l inked i n a D L L , is even more general 
than what can i n principle be described by hierarchically nested F A s (to describe mcf 
trees, recursively nested F A s or F A s based on hedge automata would be needed). O n the 
other hand, the approach of [GVA07] seems quite dependent on exploi t ing the fact that 
the encountered data structures are buil t i n a "nice" way conforming to the structure 
of the predicate to be learnt (meaning e.g. that lists are buil t by adding elements at the 
end only), which is close to providing an inductive definition of the data structure. 

A novel technique based on the so-called second-order bi-abduct ion was presented 
in [ L G Q C 1 4 ] . Th is technique tries to infer the most general pre- and post-conditions 
of functions, expressed in the form of higher-order inductive predicates of separation 
logic, such that they imply that the analysed program is memory-safe. Fi rs t , pre- and 
post-conditions that use unknown predicates (second-order variables) are inferred from 
the code. Then, the analysis tries to synthesise the most general shape predicates for the 
unknown predicates such that when the synthesised predicates substitute the unknown 
predicates i n the pre- and post-conditions, the result is consistent. The issue of this 
approach is that i n the analysed program is not memory safe, the analysis cannot give 
a direct reason why it is so. Instead, the user w i l l just see that the inferred pre- and 
post-conditions are t r iv i a l . Moreover, as in the previous work, this analysis also relies 
on the way how the data structure is created. 

The work [MTLT10] proposes an approach which uses separation logic for generating 
numerical abstractions of heap manipula t ing programs allowing for checking both their 
safety as well as termination. The described experiments include even verification of 
programs wi th 2-level skip lists. However, the work s t i l l expects the user to manual ly 
provide an inductive definition of skip lists i n advance. Likewise, the work [CRN07] 
based on the so-called separating shape graphs reports on verification of programs w i t h 
2-level skip lists, but it also requires the user to come up wi th summary edges to be 
used for summarizing skip list segments, hence basically w i th an inductive definition of 
skip lists. Compared to [ M T L T 1 0 , C R N 0 7 ] , we d id not have to provide any manual aid 
whatsoever to our technique when dealing w i t h 2-level as well as 3-level skip lists i n our 
experiments. 

Final ly , from the world of graph grammars, a concept of inferring graph grammar 
rules for the heap abstraction proposed i n [HNR10] has recently appeared i n [Weil2]. 
However, the proposed technique can so far only handle much less general structures 
than in our case. 

Outline. The structure of this chapter is the following. Fi rs t , Section 4.1 describes 
how we select the parts of the forest automata to be fold and how the very folding 
is carried out. Then, in Section 4.2, we talk about the abstraction that is used i n 
the analysis. Afterward, Section 4.3 reports on the experimental results and, finally, 
Section 4.4 concludes the chapter. 
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4 . 1 . Learning of Boxes 

Sets of graphs wi th an unbounded number of joins can only be described by F A s wi th the 
help of boxes. In particular, boxes allow one to replace (multiple) incoming sub-edges 
of a jo in by a single sub-edge, and hence lower the in-degree of the jo in . Decreasing the 
in-degree to 1 turns the jo in into an ordinary node. W h e n a box is then used in a cycle 
of an F A , it effectively generates an unbounded number of joins. 

The boxes are introduced by the operation of folding of an F A F which transforms 
F into an F A F' and a box B used i n F' such that \F~\ = \F'\. However, the graphs 
in L(F') may contain less joins since some of them are hidden i n the box B, which 
encodes a set of subgraphs containing a jo in and appearing repeatedly i n the graphs 
of L{F). Before we explain folding, we give a characterisation of subgraphs of graphs 
of L(F) which we want to fold into a box B. Our choice of the subgraphs to be folded 
is a compromise between two high-level requirements. O n the one hand, the folded 
subgraphs should contain incoming edges of joins and be as simple as possible in order 
to be reusable. O n the other hand, the subgraphs should not be too smal l i n order 
not to have to be subsequently folded wi th in other boxes (in the worst case, leading to 
generation of unboundedly nested boxes). Ideally, the hierarchical s tructuring of boxes 
should respect the natural hierarchical s tructuring of the data structures being handled 
since i f this is not the case, unboundedly many boxes may again be needed. 

4.1.1. Knots of Graphs 

We use i = g Isl g' to denote a graph i such that SE{i) = SE(g) U SE(g'). A graph h is 
a subgraph of a graph g iff SE{h) C SE(g). The border of h in g is the subset of the set 
dom(h) of nodes of h that are incident w i th sub-edges i n SE(g) \ SE{h). A trace from 
a node u to a node v i n a graph g is a set of sub-edges t = { e i , . . . , en} C SE(g) such 
that n > 1, the sub-edge e\ is outgoing from u, the sub-edge en is entering v, the origin 
of ei is one of the targets of e j _ i for a l l 1 < i < n, and no two sub-edges i n t have the 
same origin. We cal l the origins of e 2 , . . . , en the inner nodes of the trace. A trace from 
u to v is straight iff none of its inner nodes is a cut-point. A cycle is a trace from a 
node v to v. A confluence of g<f, is either a cycle of g^ or it is the union of two disjoint 
traces starting at a node u, called the base, and ending i n the node v, called the tip (for 
a cycle, the base and the t ip coincide)—cf. Figure 4.2a. 

Given an io-graph g^, the signature of a sub-graph h of g is the m i n i m u m subset sig{h) 
of cps(g(j>) that (1) it contains cps(g(p) n dom(h) and (2) a l l nodes of h, except the nodes 
of sig(h) themselves, are reachable by straight traces from sig(h). Intuitively, sig{h) 
contains a l l cut-points of h plus the cut-points of g^ closest to h which lie outside of h 
but which are needed so that a l l nodes of h are reachable from the signature. Consider 
the example of the graph gu i n Figure 4.2b i n which cut-points are represented by • . 
The signature of gu is the set {u, v}. The signature of the highlighted subgraph h is also 
equal to {u, v}. 

Given a set U C cps(g(p), a confluence of U is a confluence of g^ w i th the signature 
in U. Intuitively, the confluence of a set of cut-points U is a confluence whose cut-points 
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Figure 4.2.: Notions of confluence and closure 

belong to U plus i n case the base is not a cut-point, then the closest cut-point from 
which the base is reachable is also from U (cf. Figure 4.2c). 

Final ly , for a set U C cps(g(p), we define the closure of U (denoted as cl(U)) as the 
smallest subgraph h of g<f, such that (1) it contains a l l confluences of U and (2) for 
every inner node v of a straight trace of h, it contains a l l straight traces from v to leaves 
of g. The closure of the signature {u, v} of the graph gu in Figure 4.2b is the highlighted 
subgraph h. Intuitively, Point 1 of the requirements on a closure includes into the closure 
al l nodes and sub-edges that appear on straight traces between nodes of U apart from 
those that do not lie on any confluence (such as node u i n Figure 4.2b). Note that nodes 
x and y i n Figure 4.2b, which are leaves of gu, are not i n the closure as they are not 
reachable from an inner node of any straight trace of h. The closure of a subgraph h of 
g^ is the closure of its signature, and h is closed i f it equals its closure. In the following, 
we sometimes use clsig(-) to denote cl(sig(-)). 

Knots . For the rest of Section 4.1.1, let us fix an io-graph g^ £ L(F). We now 
introduce the not ion of a knot which summarises the desired properties of a subgraph 
k of g that is to be folded into a box. A knot k of g<f, w i t h weight n is a subgraph of g 
where one of the following holds: 

1. k is a confluence such that n = \sig(k)\, 

2. k = k' IS) k" where k' and k" share a sub-edge and their m a x i m u m weight is n, or 

3. k is the closure of a knot of the weight n. 

The weight of k therefore corresponds to the m a x i m u m from the numbers of cut-points 
of a l l confluences that were used to bu i ld up k. Note that it is possible that k may 
be constructed using different sequences of operations wi th confluences of potential ly 
different weights. To address this issue, we further define the complexity of a knot k as 
the m i n i m u m weight over a l l possible constructions of k. 

A n opt imal knot of complexity n is a max ima l knot of complexity n which has a (pos
sibly more than one) source, and at least one source is reachable from the input port of 
gcf, by a trace that does not intersect w i t h sub-edges of the op t imal knot. 

The following lemma states some properties of a closure of a knot. 
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L e m m a 4.1. Given knots k and k' of g<f, and their respective closures clsig(k) and 
clsigik'), and sets of cut-points of g^ a and ß, the following properties hold: 

a) SE(k) C SE(k') sig(k) C sig(k'), 

b) a c ß cl(a) C d(/3) ; 

cj union preserves signature: for a knot k' = k Ö k', it holds sig{k") = sig(k) U sig(k'), 

d) closure preserves signature: sig(k) = sig(clsig(k)), 

e) monotonicity: SE(k) C SE(k') =>• SE(clsig(k)) C SE{clsigik')), 

f) idempotence: clsigik) = clsig{clsig{k)), and 

g) extensivity: SE{k) C SE{clsig{k)). 

Proof. 

a) Suppose the contrary. T h e n it must hold that there is an isolated node i n 
However, recall that we consider only accessible graphs that do not contain isolated 
nodes. 

b) This clearly holds because cl{f3) can be computed by computing cl(a) and then 
adding more sub-edges. 

c) We prove this by a simple observation that sig{k") contains a l l cut-points i n k 
and k', and that a l l nodes of k" are accessible from sig{k) U sig(k'), in part icular 
the nodes originating from k are accessible from sig{k) and the nodes originating 
from k' are accessible from sig{k'). 

d) We first prove that sig{k) D sig{clsig{k)) and then prove sig{k) C sig{clsig{k)). 

1) sig{k) D sig{clsig{k)): To prove this direction we first observe that due to 
Point 1 of the definition of a closure, the cut-points on confluences of clsig(k) are 
only those from sig{k). Second, it is easy to see that Point 2 adds no new cut-points 
to the closure. 

2) sig{k) C sig{clsig{k)): We prove this direction using induct ion on the structure 
of k. For the base case when A; is a confluence (Point 1 of the definition of a knot) , 
from the definition of a closure, because closure contains a l l confluences of the set 
of nodes, it follows that clsig{k) contains k, formally SE{k) C SE{clsig{k)). F rom 
L e m m a 4.1a it follows that sig{k) C sig{clsig{k)). 

For the case when k = k' tel k" for some knots k' and k" (Point 2), we introduce 
the induct ion hypotheses sig{k') C sig{clsig{k')) and sig{k") C sig{clsig{k")). 
Obviously, the following pair of inclusions holds: 

s^(fc ') C sig{clsig{k')) U sig{clsig{k")), 

sig{k") C sig{clsig{k')) U sig{clsig{k")), 
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and, therefore, 

sig(k') U sig(k") C sig(clsig(k')) U sig(clsig(k")). (4-2) 

Further, it is easy to see that sig(cl(ji)) U sig(cl('j2)) = sig{cl{^\) IS) 0/(72)), so we 
obtain 

sig{k') U sig{k") C sig(clsig(k') IS) clsig{k")). (4-3) 

Next , from 

fc'a'w it", 
fc" a ' w 

we obtain, using L e m m a 4.1a and L e m m a 4.1b that 

(4.4) 

s ^ ( A / ) C s^(A; ' Is) A;") clsig(k') C d s ^ ( A / Is) fe") . . 
«<7(fc") C ^ ( j f e ' W fc") cfe*<7(/fe") C clsig(k' W fc") ' ( ' 

F r o m this, it follows that 

clsig(k') l*) clsig{k") C clsig(k' © A;"), (4-6) 

which implies, again using L e m m a 4.1a, that 

sig(clsig(k') IS) clsig{k")) C sig(clsig(k' l*) A;")). (4-7) 

Combin ing Equations 4.3 and 4.7, we obtain the following inclusion: 

s*0(/fe') U s*^(ife") C sig(clsig(k' U A;")). (4.8) 

We infer that sig(k' is) A;") C sig(clsig(k' Is) A;")) and conclude wi th sig(k) C 

sig(clsig(k)). 

For the last case when A; = clsig(k') for a knot A/ (Point 3), we use the induct ion 
hypothesis sig(k') C sig(clsig(k')). F r o m the induct ion hypothesis, L e m m a 4.1a 
and L e m m a 4.1b, we conclude that sig(k') C sig(clsig(k')) sig(clsig(k')) C 
sig(clsig(clsig(k'))). F r o m this, it follows that sig(k) C sig(clsig(k)). 

e) Follows from L e m m a 4.1a and L e m m a 4.1b. 

f) Follows from L e m m a 4.Id. 

g) We prove this part using induct ion on the structure of A;. In the base case when A 
is a confluence (Point 1 of the definition of a knot) , A: is a confluence of sig{k) and 
w i l l therefore be contained in clsig(k), therefore SE(k) C SE(clsig(k)). 

For the case when A; = A/ Is) A;" where A/ and A;" are knots (Point 2 of the definition 
of a knot) , we use the induct ion hypotheses SE(k') C SE(clsig(k')) and SE{k") C 
SE{clsig{k")). It holds that SE(k') C 5E(ife) and so SE{clsig{k')) C SE{clsig{k)) 
(Lemma 4.1e). Therefore, 5E(ife') C SE{clsig{k')) C SE(clsig(k)), so it holds 
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(a) A list with head pointers (b) A doubly linked list 

Figure 4.3.: Kno t s i n graphs 

that SE(k') C SE(clsig(k)). The same holds for k", therefore we conclude that 
SE(k') U SE(k") C SE(clsig(k)). 

If k is the closure of a knot k', k = clsig(k'), (Point 3) then L e m m a 4.If claims 
that clsig(k') = clsig(clsig(k')) and so SE(k) = SE(clsig(k)), which proves the 
lemma. • 

Note that the properties 4.1e, 4.If, and 4.1g are the typica l properties of a standard 
closure operator. L e m m a 4.2 implies that op t imal knots are uniquely identified by their 
signatures, which is crucial for the folding algori thm presented later. 

L e m m a 4.2. An optimal knot is closed. 

Proof. Th is follows from L e m m a 4.1g and the maximal i ty of an opt imal knot. • 

Next , we explain what is the motivat ion behind the notion of an op t imal knot: 

Confluences. A s mentioned above, i n order to allow one to eliminate a jo in , a knot 
must contain some jo in v together w i th at least one incoming sub-edge i n case the knot 
is based on a loop and at least two sub-edges otherwise. Since g^ is accessible (meaning 
that there do not exist any traces that cannot be extended to start from the same node), 
the edge must belong to some confluence a of g^. If the folding operation does not fold 
the entire a, then a new jo in is created on the border of the introduced box: one of its 
incoming sub-edges is labelled by the box that replaces the folded knot, another one is 
the last edge of one of the traces of a. Confluences are therefore the smallest subgraphs 
that can be folded i n a meaningful way. 

Unit ing knots. If two different confluences a and a' share an edge, then after fold
ing a , the resulting edge shares wi th a' two nodes (at least one being a target node), 
and thus a' contains a jo in of g^. To eliminate this jo in too, bo th confluences must be 
folded together. A similar reasoning may be repeated wi th knots i n general. Usefulness 
of this rule may be i l lustrated by an example of the set of a l l singly l inked lists of an 
unbounded length wi th head pointers. Wi thou t uni t ing, every list would generate a h i 
erarchy of knots of the same depth as the length of the list, as i l lustrated in Figure 4.3a 
for the list of length four. This is clearly impract ica l since the entire set of a l l lists of 
an unbounded length could not be represented using finitely many boxes of this type. 
Rule 2 unites a l l knots into one that contains the entire list, and the set of a l l such knots 
can then be represented by a single F A (containing a loop accepting the inner nodes of 
the lists). 
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Complexi ty of knots. The notion of complexity is introduced to l imi t the effect of 
Rule 2 of the definition of a knot, i.e. the rule which unites knots that share a sub-edge, 
and to hopefully make it follow the natural hierarchical s tructuring of data structures. 
Consider, for instance, the case of singly l inked lists (SLLs) of cyclic doubly linked 
lists ( D L L s ) . Reca l l that every node in a D L L is a cut-point. In this case, it is natural 
to first fold the part icular segments of the D L L s (denoted as doubly l inked segments— 
DLSs—below) , i.e. to introduce a box for a single pair of next and prev pointers. 
Th is way, one effectively obtains S L L s of cyclic S L L s , where the latter are over the 
D L S box and each contains a single cut-point at the point where the cycle connects. 
Subsequently, one can fold the cyclic S L L s into a higher-level box. However, uni t ing 
al l knots w i th a common sub-edge would create knots that contain entire cyclic D L L s 
(requiring unboundedly many joins inside the box). The reason is that i n addi t ion to 
the confluences corresponding to D L S s , there are confluences which traverse the entire 
cyclic D L L s and that share sub-edges wi th a l l D L S s (this is i n part icular the case of 
the two circular sequences consisting solely of next and prev pointers respectively). 
To avoid the undesirable folding, we exploit the notion of complexity and fold graphs i n 
successive rounds. In each round we fold a l l op t imal knots w i th the smallest complexity 
(as described later in Section 4.1.2), which should correspond to the currently most 
nested, not yet folded, sub-structures. In the previous example, the algori thm starts by 
folding D L S s of complexity 2, because the complexity of the confluences i n cyclic D L L s 
is given by the number of the D L S s they traverse. 

Closure of knots. The closure is introduced for pract ical reasons. It allows one to 
identify op t imal knots by their signatures, which is then used to simplify automata 
constructions that implement folding on the level of F A s (cf. Section 4.1.2). 

Root of an optimal knot. The requirement for an op t imal knot k to have a root 
is to guarantee that if an io-graph g'^ containing a box B representing k is accessible, 
then the io-graph g'^[k/B] emerging by subst i tut ing k for a sub-edge labelled wi th B is 
accessible, and vice versa. It is also a necessary condit ion for the existence of a canonical 
forest representation of the knot itself (since one needs to order the cut-points w.r.t . the 
costs of the paths leading to them from the input port of the knot) . 

4.1.2. Folding in the Abstraction Loop 

In this section, we describe the operation of folding together w i th the main abstraction 
loop of which folding is an integral part. The pseudo-code of the main abstraction loop is 
shown i n A l g o r i t h m 4.1. The algori thm modifies a set of F A s unt i l it reaches a fixpoint. 
Folding on line 5 is a sub-procedure of the algori thm which looks for substructures of 
F A s that accept op t imal knots, and replaces these substructures by boxes that represent 
the corresponding opt imal knots. The operation of folding is itself composed of four 
consecutive steps: Identifying indices, Splitting, Constructing boxes, and Applying boxes. 
The steps are described i n the following paragraphs. 
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A l g o r i t h m 4.1: Abs t rac t ion Loop 

1 Unfold solitaire boxes: 
2 repeat 
3 Normalise: 
4 Abstract: 
5 Fold: 
6 until fixpoint: 

Unfolding of solitaire boxes. Folding is in practice applied on F A s that accept 
part ia l ly folded graphs (only some of the op t imal knots are folded). This may lead the 
algori thm to hierarchically fold data structures that are not hierarchical, causing the 
symbolic execution not to terminate. For example, consider a program that creates 
a D L L of an arbitrary length. Whenever a new D L S is attached, the folding algori thm 
would enclose it into a box together w i th the t a i l which was folded previously. Th is would 
lead to creation of a hierarchical structure of an unbounded depth (see Figure 4.3b), 
which would cause the symbolic execution to never reach a fixpoint. Intuitively, this 
is a si tuation when a repetit ion of subgraphs may be expressed by an automaton loop 
that iterates a box, but it is instead misinterpreted as a recursive nesting of graphs. 
This si tuation may happen when a newly created box contains another box that cannot 
be iterated by a cycle i n an automaton (e.g. in Figure 4.3b there is always one occurrence 
of a box encoding a shorter D L L fragment inside a higher-level box). Th is issue is 
addressed in the presented algori thm by first unfolding a l l occurrences of boxes that 
cannot be iterated by automata loops before folding is started. 

Normalis ing. We define the index of a cut-point u G cps(g(p) as its posi t ion i n the 
canonical ordering of cut-points of g^, and the index of a closed subgraph h of g<f, as 
the set of indices of the cut-points in sig(h). The folding algori thm expects the input 
F A F to satisfy the property that a l l io-graphs of L{F) have the same indices of closed 
knots. The reason is that folding starts by identifying the index of an op t imal knot 
of an arbitrary io-graph from L(F), and then it creates a box which accepts a l l closed 
subgraphs of the io-graphs from g^ w i th the same index. We need a guarantee that 
all these subgraphs are indeed opt imal knots. This guarantee can be achieved i f the 
io-graphs from L(F) have equivalent interconnections of cut-points, as defined below. 

We define the relation 
0 0 ^ 2^ x 2^ between indices of closed knots of such that 

N 
iff there is a closed knot k of g^ w i th the index iV and a closed knot k1 w i th 

the index N' such that k and k' have intersecting sets of sub-edges. We say that two 
io-graphs g^ and g'^ are interconnection equivalent iff ^g^p — for every two cut-
points u G dom(g) and v G dom(g') w i th the same index, the sets of indices of cut-points 
that are reachable from them by straight traces are the same (note the latter requirement 
is more general than saying that u and v have the same indices of their spans). Notice 
that the relation ~ is reflexive and therefore ^g^ — 1 g' implies that a knot k w i th the 
index iV is in g^ iff a knot k' w i th the same index iV is i n g'^. 
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L e m m a 4.3. Given two interconnection equivalent io-graphs g<f, and g'^, N C N is the 
index of an optimal knot in g^ iff it is the index of an optimal knot in g'^. 

Proof. F i r s t , we prove that for two interconnection equivalent io-graphs g^ and g'^, the 
index of a signature of a knot of complexity n of one of the io-graphs is also the index of 
a signature of a knot of complexity n of the other io-graph. Let / be the index of a knot 
k of g^ of complexity n. Accord ing to the inductive definition of a knot, k can be viewed 
as a term tk that consists of literals (which correspond to confluences of g of complexity 
at most n according to Point 1 of the definition), occurrences of the W binary operator 
(Point 2) and occurrences of the cl o sig unary operator (Point 3), such that the weight 
of k constructed i n this way is n. A n example of such a term may be the term 

tk = clsig(a W clsig(b W (c W d))) (4.9) 

where a, 6, c, and d are confluences. 
Due to Lemmas 4 . Id and 4.1c, the signature of a knot k is the same as the signature of 

the knot k' such that the term ty is a modification of tk where each union is preceded by 
applying closure on its arguments. Note that k' really is a knot because making a closure 
is allowed by Point 3 of the definition, and the application of each l*J operator in ty by 
Point 2 is s t i l l justified since closure of a knot is extensive (according to L e m m a 4.1g, if 
two knots share a sub-edge, their closures share the same sub-edge too). For the previous 
example, we would obtain 

ty = clsig(clsig(a) W clsig(clsig(b) W clsig(clsig(c) W clsig(d)))). (4.10) 

Let k" be a subgraph of g'^ such that ty emerges from ty by substi tut ing each oc
currence of a confluence (literal) d i n ty by a knot c" of g'^ w i th the same index J of 
its signature. F i r s t , we observe that k" is indeed a knot of complexity m < n (k" is 
either a confluence wi th the index of its signature J , a union of two other knots w i t h 
indices of their signatures being subsets of J , or the closure of a knot w i th the index of 
its signature J ) . Second, we refute the possibil i ty of m < n using contradiction. 

Let us suppose that the statement m < n holds and consider the consequences. It must 
then hold that c" is buil t by uni t ing confluences C" w i th numbers of cut-points smaller 
than n along the way. Then, because g^ and g'^ are interconnection equivalent, it holds 
that there needs to exist a set of knots C which have the same indices of signatures 
as the confluences in C". However, this means that it is possible to construct d such 
that its weight is at most m < n, which is a contradict ion to the assumption that the 
complexity of d is n , and therefore m = n. 

Next , we show that i f / is the index of an optimal knot k of complexity n i n g^, then it 
is the index of an op t imal knot of the same complexity i n g'^ (and vice versa). F r o m the 
above, we know that / is the index of a knot k' of complexity n i n g^. We may assume 
that k! is closed. 

For the maximal i ty condit ion of an opt imal knot, if k' is not a max ima l knot of 
complexity n , then it can be united wi th another knot k" to obtain a bigger knot w i t h 
the same complexity. However, because g^ and g'^ are interconnection equivalent, there 
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must exist a knot w i th the same index as k" in w i t h the complexity at most n that 
intersects w i t h k. T h i s is a contradiction because k would not be max ima l i n this case. 
Therefore, k' is maximal . 

To prove the existence of a source of k' reachable from the input port, we use the 
second point of the definition of interconnection equivalence, which says that cut-points 
of g^ and g'^ w i th the same indices must reach by straight traces sets of cut-points w i th 
the same indices. Th is means that i f i is the index of a source cut-point of g^ that 
reaches a l l cut-points of k' and that is reachable from the input of g<f, by a trace that 
does not traverse k, then i must also be the index of a source cut-point of g'^ such that 
it reaches a l l cut-points of k' and is reachable from the input port of g'^ by a path that 
does not traverse k'. B o t h k and k' thus have a source required by the definition of an 
opt imal knot, which is reachable by a straight trace from the i - th cut-point. Th is means 
that k' is also opt imal . • 

Interconnection equivalence of a l l io-graphs i n the language of an F A F is achieved 
by transforming F to the interconnection respecting form. Th is form requires that the 
language of every T A of the F A consists of interconnection equivalent trees (when viewing 
root references and roots as cut-points w i t h corresponding indices). The normalisat ion 
step also includes a transformation into the state uniform and canonicity respecting 
form. 

Abstract ion. We use abstraction described i n Section 4.2 that preserves the canonicity 
respecting form of T A s as well as their state uniformity. It may break interconnection 
uniformity, i n which case it is followed by another round of normalisation. Abs t rac t ion 
is included into each round of folding for the reason that it leads to learning more 
general boxes. For instance, an F A encoding a cyclic list of one part icular length is first 
abstracted into an F A encoding a set of cyclic lists of a l l lengths, and the entire set is 
then folded into a single box. 

Identifying indices. For every F A F entering this sub-procedure, we pick an arbitrary 
io-graph g^ G L(F), find a l l its opt imal knots of the smallest possible complexity n , and 
extract their indices. B y L e m m a 4.3 and since F is normalised, indices of the opt imal 
knots are the same for a l l io-graphs i n L(F). For every found index, the following steps 
fold a l l op t imal knots w i t h that index at once. O p t i m a l knots of complexity n do not 
share sub-edges (they would be united otherwise), the order i n which they are folded is 
therefore not important . 

Splitting. For an F A F = (Ai • • • An, IT) and an index / of an op t imal knot found in the 
previous step, spl i t t ing transforms F into a (set of) new FA(s ) w i th the same language. 
The nodes of the borders of / - indexed opt imal knots of io-graphs from L{F) become 
roots of trees of io-forests accepted by the new FA(s ) . Let s £ / be a posit ion in F such 
that the s-indexed cut-points of io-graphs from L(F) reach a l l the other / - indexed cut-
points. The index s exists since an opt imal knot has a root. Due to the definition of the 
closure, the border contains a l l / - indexed cut-points, w i th the possible exception of s. 
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Figure 4.4.: Creat ion of Fq and Bq from F®. The subtrees that contain references i,j £ J 
are moved into Bq, and replaced by the .B^-labelled sub-term i n Fq. 

The s-th cut-point may be replaced i n the border of the / - indexed opt imal knot by the 
base e of the / - indexed confluence that is the first one reached from the s-th cut-point 
v i a a straight path. We cal l e the entry. The entry e is a root of the op t imal knot, and 
the s-th cut-point is the only / - indexed cut-point that might be outside the knot. If e 
is indeed different from the s-th cut-point, then the s-th tree of forests accepted by F 
must be split into two T A s i n the new F A : The subtree rooted at the entry is replaced 
by a reference to a new tree. The new tree then equals the subtree of the original s-th 
tree rooted at the entry. 

The construction is carried out as follows. We find a l l states and al l of their transitions 
that label entry nodes in accepting runs. We denote such states and transitions as entry 
states and transitions. For every entry state q, we create a new F A Fq which is a copy 
of F but w i th the s-th T A As split to a new s-th T A A's and a new ( n + l ) - t h T A An+i-
The T A A's is obtained from As by changing the entry transitions of q to accept just 
a reference to the new ( n + l ) - t h root and by removing entry transitions of a l l other entry 
states (the entry states are processed separately i n order to preserve possibly different 
contexts of entry nodes accepted at different states). The new T A An+i is a copy of As 

but w i t h the only accepting state being q. Note that the construction is justified since 
due to state uniformity, each node that is accepted by an entry transi t ion and that does 
not appear i n a run below a node that is also accepted by an entry transi t ion is an entry 
node. In the result, the set J = (I\ {s}) U { n + 1} contains the positions of the trees of 
forests of Fq rooted at the nodes of the borders of / - indexed opt imal knots. 

Construct ing boxes. For every Fq and J being the result of spl i t t ing F according to 
an index / , a box Bq is constructed from F^. We transform T A s of Fjj indexed by the 
elements of J. The resulting T A s w i l l accept the original trees modified in such a way 
that their roots are str ipped from the children that cannot reach a reference to J. To 
tu rn these T A s into an F A accepting opt imal knots w i th the index / , it remains to order 
the obtained T A s and define port indices. Roughly, the input index of the box w i l l be 
the posi t ion j to which we place the modified ( n + l ) - t h T A of Fq (the one that accepts 
trees rooted at the entry). The output indices are the positions of the T A s wi th indices 
J\{j} i n F® which accept trees rooted at cut-points of the border of the op t imal knots. 

A p p l y i n g boxes. Th is is the last step of folding. For every F®, J, and Bq which are 
the result of spl i t t ing F according to an index / , we construct an F A Fq that accepts 
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graphs of F where knots enclosed i n Bq are substi tuted by a sub-edge wi th the label Bq. 
It is created from F® by (1) leaving out the parts of root transitions of its T A s that 
were taken into Bq, and (2) adding the sub-term Bq{r\,..., rm) to the sub-terms of root 
transitions of the (n + l ) - t h component of Fq (these are transitions used to accept the 
roots of the op t imal knots enclosed i n Bq). The states r\,..., r m are fresh states that 
accept root references to the appropriate elements of J (to connect the borders of knots 
of Bq correctly to the graphs of Fq). The F A Fq now accepts graphs where op t imal knots 
of graphs of L(F) w i t h the signature / are hidden inside Bq. Creat ion of Bq and of its 
counterpart Fq from F® is i l lustrated in Figure 4.4 where G J . 

Dur ing the analysis, the discovered boxes must be stored in a database and tested for 
equivalence wi th the newly discovered ones since the alphabets of F A s would otherwise 
grow wi th every operation of folding ad infinitum. Tha t is, every discovered box is given a 
unique name, such as " D L L " for the box from Figure 3.2b, and whenever a semantically 
equivalent box is folded, the newly created sub-term is labelled by that name. This 
step offers an opportuni ty for introducing another form of acceleration of the symbolic 
computat ion. Namely, when a box B is found by the procedure described above, and 
another box B' w i t h a name N s.t. \B'\ C \B\ is already in the database, we associate 
the name N w i th B instead of B' and restart the analysis (i.e. start the analysis from 
the scratch, remembering just the updated database of boxes). If, on the other hand, 
\B\ C \B'\, the folding is performed using the name N of B', thus over-approximating 
the semantics of the folded F A . A s presented i n Section 4.3, this variant of the procedure, 
called folding by inclusion, performs i n some difficult cases significantly better than the 
former variant, called folding by equivalence. 

4.2. Abstraction 

The abstraction we use in our analysis is based on the general techniques described 
in the framework of abstract regular (tree) model checking [BHRV12] . In this set
t ing, abstraction over-approximates the language of an automaton by collapsing some 
of its states (i.e. merging them together, potential ly introducing new loops) according 
to a given equivalence relation on the states of the automaton. We, in particular, bu i ld 
on the finite height abstraction of T A s , which uses the equivalence of languages of a fi
nite height k, denoted as The equivalence is defined as q q' iff q and q' accept 
trees wi th the same sets of prefixes of the height at most k (the prefix of height k of 
a tree is a subgraph of the tree which contains a l l paths from the root of length at 
most k). The equivalence is further refined to deal w i th various features special for 
F A s . Namely, it has to work over tuples of T A s and cope w i t h the interconnection of 
the T A s v i a root references, w i th the hierarchical structuring, and wi th the fact that we 
use a set of F A s instead of a single F A to represent the abstract context at a particular 
program location. 

Refinements of F i r s t , i n order to mainta in the same basic shape of the heap 
after abstraction (such that no cut-point would e.g. suddenly appear or disappear), 
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we refine by requiring that equivalent states must have the same spans (as defined i n 
Section 3.1). W h e n applied on « 1 , which corresponds to equivalence of data types, this 
refinement provided enough precision for most of the case studies presented later on, 
w i t h the exception of the most difficult ones, namely programs wi th skip lists [Pug90]. 
To verify these programs, we needed to further refine the abstraction to dist inguish 
automata states whenever trees from their languages encode tree components containing 
a different number of unique paths to some root reference, but some of these paths are 
hidden inside boxes. In particular, two states q, q' can be equivalent only if for every 
io-graph from the graph language of the F A , for every two nodes u, v € dom(g(p) 
accepted by q and q', respectively, i n an accepting run of the corresponding T A , the 
following holds: For every w G cps(g(p), bo th u and v have the same number of outgoing 
sub-edges (selectors) i n [g^J which start a trace i n fg^J leading to w. Accord ing to our 
experiments, this refinement does not cost almost any performance, and hence we use it 
by default. 

Abstract ion for Sets of F A s . O u r analysis works wi th sets of F A s . We observed that 
abstracting ind iv idua l F A s from a set of F A s i n isolation is sometimes slow since i n each 
of the F A s , the abstraction widens some selector paths only, and it takes a while un t i l 
an F A in which a l l possible selector paths are widened is obtained. For instance, when 
analysing a program that creates binary trees, the symbolic analysis generates many 
F A s before reaching a fixpoint, each of the F A s accepting a subset of binary trees w i t h 
some of the branches restricted to a bounded length (e.g. trees wi th no right branches, 
trees w i t h a single right branch of length one, two, etc.). In such cases, it helps when the 
abstraction has an opportuni ty to combine information from several F A s . For instance, 
consider an F A that encodes binary trees degenerated to an arbi trar i ly long left branch, 
and another F A that encodes trees degenerated to right branches only. Abs t rac t ing these 
F A s i n isolation has no effect. However, if the abstraction is allowed to collapse states 
from both of these F A s , it can generate an F A accepting a l l possible branches. 

Unfortunately, the natural solution to achieve the above, which is to unite F A s before 
abstraction, introduces a much too coarse over-approximation, even before the abstrac
t ion itself is applied. Instead, we enrich the automata structure of an F A F by T A states 
and transitions of another one, omit t ing introduct ion of new root states. W h i l e this does 
not change the language of F, it allows the abstraction to combine the information from 
both F A s . In particular, before abstracting an F A F = (Ai • • • An, TT) from a set S of 
F A s , we pre-process it as follows. 

(1) We pick F A s F' = (A'i • • • A'n,7r) G S that are compatible w i th F in that they have 
the same number of T A s , the same port references, and for each 1 < i < n, the root 
states of A\ have the same spans as the root states of A%. 

(2) For a l l such F' and each 1 < i < n, we add transitions and states of A\ to Ai, but 
we keep the original set of root states of Ai- Since we assume that the sets of states of 
T A s of different F A s are disjoint, the language of Ai stays the same, but its structure is 
enriched, which helps the abstraction to perform a coarser widening. 
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4.3. Experimental Results 

We have implemented the above proposed techniques as an extension of the Forester 
tool and tested their generality and efficiency on a number of case studies. In the exper
iments, we compare two configurations of Forester, and we also compare the results of 
Forester w i th those of Predator [DPV13] , which uses a graph-based memory represen
tat ion inspired by separation logic w i t h higher-order list predicates. We do not provide 
a comparison wi th Space Invader [YLB+08] and S L A y e r [BCI11], based also on separa
t ion logic w i t h higher-order list predicates, since in our experiments they were always 
outperformed by Predator. 

In the experiments, we considered programs wi th various types of lists (singly and 
doubly linked, cyclic, nested, w i th skip pointers), trees, and their combinations. In the 
case of skip lists, we had to sl ightly modify the algorithms since their original versions 
use an ordering on the data stored i n the nodes of the lists. Th is is done for the reason 
to guarantee that the search window delimited on some level of skip pointers is not left 
on any lower level of the skip pointers. In our modification, we avoided such a scenario 
by adding an addi t ional explicit end-of-window pointer. In Chapter 5, we describe an 
extension of the analysis that takes into consideration also the data fields i n the nodes 
and the addi t ional pointer is not necessary. We checked the programs for memory safety 
only, i.e. we d id not check other properties (such as that the result of a sorting procedure 
is indeed a sorted permutat ion of the original). 

Table 4.1 gives running times in seconds (the average of 10 executions) of the tools on 
our case studies. "Basic" stands for Forester w i th the abstraction applied on ind iv idua l 
F A s only and " S F A " stands for Forester w i th the abstraction for sets of F A s . The value 
T I M E O U T means that the running t ime of the tool exceeded 30 minutes, and the value 
E R R O R means that the tool reported a spurious error. The names of the examples i n 
the table contain the name of the data structure manipulated in the program, which 
is " S L L " for singly l inked lists, " D L L " for doubly l inked lists (the " C " prefix denotes 
cyclic lists), "tree" for binary trees, "tree+parents" for binary trees wi th parent pointers. 
Nested variants of S L L ( D L L ) are named as " S L L ( D L L ) of" and the type of the nested 
structure. In particular, " S L L of 0/1 S L L s " stands for S L L of a nested S L L of length 0 
or 1, and " S L L of 2 C D L L s " stands for S L L whose each node is a root of two C D L L s . 
The "+head" flag stands for a list where each element points to the head of the list 
and the subscript "L inux" denotes the implementat ion of lists used i n the L i n u x kernel, 
which uses type casts and a restricted pointer arithmetic. The " D L L + s u b d a t a " stands 
for a k ind of a D L L w i t h data pointers point ing either inside the list nodes or optionally 
outside of them. For a "skip l is t" , the subscript denotes the number of skip pointers. 
In the example "tree+stack", a randomly constructed tree is deleted using a stack, 
and " D S W " stands for the Deutsch-Schorr-Waite tree traversal (the L inds t rom variant). 
A l l experiments start w i t h a random creation and end wi th a disposal of the specified 
structure; the indicated procedure (if any) is performed i n between. The experiments 
were run on a machine wi th the Intel i7-2600 (3.40 G H z ) C P U and 1 6 G i B of R A M . 

The table further contains the column "boxes" where the value " X / Y " means that X 
manually created boxes were provided to the analysis that d id not use learning while 
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Table 4.1.: Results of the experiments 

Example basic S F A boxes Predator 

S L L (delete) 0.03 0.04 0.04 
S L L (bubblesort) 0.04 0.04 0.03 
S L L (mergesort) 0.08 0.15 0.10 
S L L (insertsort) 0.05 0.05 0.04 
S L L (reverse) 0.03 0.03 0.03 
S L L + h e a d 0.05 0.05 0.03 
S L L of 0/1 S L L s 0.03 0.03 0.11 

SLLLinux 0.03 0.03 0.03 
S L L of C S L L s 2.07 0.73 3 / 4 0.12 
D L L (reverse) 0.04 0.06 1 / 1 0.03 
D L L (insert) 0.06 0.07 1 / 1 0.05 
D L L (insertsort 1) 0.35 0.40 1 / 1 0.11 
D L L (insertsort2) 0.11 0.12 1 / 1 0.05 
D L L of C D L L s 5.67 1.25 8 / 7 0.22 
D L L + s u b d a t a 0.06 0.09 - / 2 T I M E O U T 
C D L L 0.03 0.03 1 / 1 0.03 
S L L of 2CDLLsLmux 0.16 0.17 13 / 5 0.25 
skip list 2 0.66 0.42 - / 3 T I M E O U T 
skip lists T 9.14 - / 7 T I M E O U T 
tree 0.14 0.14 E R R O R 
tree+parents 0.18 0.21 2 / 2 T I M E O U T 
tree+stack 0.09 0.08 E R R O R 
tree ( D S W ) 1.74 0.40 E R R O R 
tree of C S L L s 0.32 0.42 - / 4 E R R O R 

Y boxes were learnt when the box learning procedure was enabled. The value "-" of X 
means that we d id not run the given example wi th manual ly constructed boxes since their 
construction was too tedious. If user-defined boxes are given to Forester i n advance, the 
speedup is i n most cases negligible, w i th the exception of " D L L of C D L L s " and " S L L of 
C S L L s " , where it is up to 7 times. In a majori ty of cases, the learnt boxes were the same 
as the ones created manually. In some cases, such as " S L L of 2CDLLsLmux" , the learning 
algori thm found a smaller set of more elaborate boxes than those provided manually. 

In the experiments, we use folding by inclusion as defined i n Section 4.1.2. For simpler 
cases, the performance matched the performance of folding by equivalence, but for the 
more difficult examples it was considerably faster (such as for "skip list2" when the 
t ime decreased from 3.82 s to 0.66 s), and only when it was used the analysis of "skip 
lists" succeeded. Further, the implementat ion folds op t imal knots of the complexity 
< 2, which is enough for the considered examples. F ina l ly , note that the performance of 
Forester i n the considered experiments is indeed comparable wi th that of Predator even 
though Forester can handle much more general data structures. 
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4.4. Conclusion 

This chapter presented an extension of the shape analysis of [HHR+12], presented i n 
Chapter 3. Unl ike the original analysis, the extension works fully automatically, without 
the need of the user to provide any information. For that purpose, we have proposed 
a technique of automatical ly learning F A s called boxes to be used as alphabet symbols i n 
higher-level F A s when describing sets of complex heap graphs. We also proposed a way 
how to efficiently integrate the learning wi th the main analysis algori thm. Fina l ly , 
we have proposed a significant improvement—both i n terms of generality as well as 
efficiency—of the abstraction used i n the original framework. 

A n implementat ion of the approach presented i n this chapter inside the Forester tool 
allowed us to fully-automatically handle programs over quite complex heap structures, 
including a data-independent modification of 2-level and 3-level skip lists, which—to 
the best of our knowledge—we were the first to fully automatical ly verify (the recent 
work of [LGQC14] , based on second-order bi-abduct ion in separation logic, is the only 
other approach we are aware of that also succeeded). A t the same t ime, the efficiency 
of the analysis is comparable wi th other state-of-the-art analysers even though they 
handle less general classes of heap structures. In the next chapter, we introduce yet 
another extension of the forest automata-based shape analysis, an extension that takes 
into consideration relations among data values stored inside memory cells and, therefore, 
allows verification of data structures that depend on data. 
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5. Forest Automat a-Based Shape 
Analysis of Programs with Data 

In the previous two chapters, we focused on shape analysis that used only pointer fields 
of data structures and abstracted from non-pointer ones. Th is is in many cases sufficient, 
however, there are also cases where it is necessary to track the data that are stored i n 
data structures to be able to correctly verify their higher-level and shape invariants, or 
even memory safety. Let us now give two examples of such data structures. 

Fi rs t , consider a binary search tree ( B S T ) . One of the higher-level invariant of a B S T 
is that for every node u, the data values of a l l nodes in the left subtree of u are less 
than the data value stored i n u, and the data values of a l l nodes in the right subtree 
of u are greater than the data value of u. The procedure that inserts a new data value 
d into a B S T (given i n Figure 5.1) uses the variable x to descend the B S T and find 
the posi t ion at which the node newNode w i th the new data value d should be inserted. 
The procedure uses the relation between the new data value and the root of the tree to 
determine whether d w i l l be stored i n the left or the right subtree (or not inserted at a l l 
in the case it is equal to the data value of the root). Failure to track this relation may 
cause the analysis to report a spurious counterexample for some operation that relies on 
the higher-level invariant. 

Second, the routines for manipula t ing a skip list [Pug90] rely on the property that the 
data values of lists on a l l levels are always sorted. Consider, for example, that we are 
inserting the value 7 into the 2-level skip list i n Figure 5.2. The procedure for inserting 
starts i n the node labelled as head and first tries to find the insertion point at level 2 
(i.e. the level that uses the n2 pointers) by testing whether the inserted value is greater 
than the value in h e a d — t h e successor of head. In this case, it is not, so the procedure 
descends to level 1 and, because this is the ground level, traverses the list over the n i 
pointers and finds the exact posit ion where the new node w i l l be inserted. Because of 
the sortedness property, we know that the new node cannot be inserted anywhere behind 
the node h e a d — m 2 . Note that in this case, not only the sortedness property would be 
lost when not treating the data, but even the shape invariant would be corrupted! 

Automated verification techniques that a im for the verification of such data structures 
need to handle both infinite sets of reachable heap configurations that have a form of 
complex graphs and the different possible relationships between data values embedded 
in such graphs. The few approaches that can automatical ly reason about data properties 
are often l imi ted to specific classes of structures, mostly singly l inked lists (SLLs ) , and/or 
are not fully automated (as also discussed later). 

In this chapter, we propose an extension of the forest automata-based shape analysis 
that was described i n Chapter 3 and further augmented i n Chapter 4. O u r extension 
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0 Node *insert(Node *root, Data d) 
1 { 
2 Node* newNode = calloc(sizeof(Node)); 
3 newNode—>data = d; 
4 i f (root == NULL) return newNode; 
5 Node *x = root; 
6 while (x—>data ! = newNode—>data) 
7 { 
s i f (x—>data < newNode—>data) 
9 i f (x->right ^ NULL) x = x-Kright; 
10 eise { 
11 x—>right = newNode; 
12 break; 

} 
14 eise 
15 i f (x->left ^ NULL) x = x->left; 
16 eise { 
17 x—>left = newNode; 
18 break; 

} 
20 } 
21 i f (x—>data == newNode—>data) free (newNode) ; 
22 x = NULL; 
23 return root; 
24 } 

Figure 5.1.: A function that inserts a new node into a B S T and returns a pointer to its 
root node 

allows us to represent relationships between data elements stored inside heap structures. 
A s a consequence, this method makes it possible to automatical ly verify programs that 
depend on relationships between data, such as programs manipula t ing various search 
trees, lists, and skip lists, and to also verify e.g. different sorting algorithms. Technically, 
we express relationships between data elements associated wi th nodes of the heap graph 
by two classes of constraints. Local data constraints are associated w i t h transitions of 
tree automata and capture relationships between data of neighbouring nodes i n a tree 
of the forest decomposition of a heap graph; they can be used e.g. to represent ordering 
internal to some structure such as a binary search tree. Global data constraints are 
associated w i t h states of T A s (even states of different T A s ) and capture relationships 
between data in distant parts of the heap. In order to obtain a powerful analysis based on 
such extended forest automata, the entire analysis machinery must be also be extended, 
including a need to develop mechanisms for propagating data constraints through F A s , 
to adapt the abstraction mechanisms of abstract regular tree model checking ( A R T M C ) , 
to develop a new inclusion check between extended F A s , and to define extended abstract 
transformers. 
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Figure 5.2.: A n example of a 2-level skip list 

The presented approach has been implemented as a further extension of the Forester 
tool . We have applied the tool to verification of data properties, notably sortedness, of 
sequential programs wi th data structures, like various forms of singly and doubly linked 
lists ( D L L s ) , possibly cyclic or shared, binary search trees (BSTs ) , and even 2-level and 
3-level skip lists. The verified programs include operations like insertion, deletion, or 
reversal, and also bubble-sort and insert-sort bo th on S L L s and D L L s . The experiments 
confirm that our approach is not only fully automated and rather general, but also quite 
efficient, outperforming many previously known approaches even though they are not of 
the same level of automation or generality. In the case of skip lists, our analysis is the 
first fully-automated shape analysis which is able to handle fully-hedged skip l i s t s 1 . 

Related W o r k . Verification of properties depending on the ordering of data stored 
in S L L s was considered i n [BBH+11], which translates programs wi th S L L s to counter 
automata. A subsequent analysis of these automata allows one to prove memory safety, 
sortedness, and terminat ion for the original programs. The work is, however, strongly 
l imited to S L L s . In the work presnted in this chapter, we get inspired by the way 
that [ B B H + 1 1 ] uses for dealing wi th ordering relations on data, but we significantly 
redesign it to be able to track not only ordering between simple list segments but rather 
general heap shapes described by F A s . In order to achieve this, in addi t ion to proposing 
a suitable way of combining ordering relations w i t h F A s , we also had to significantly 
modify many of the operations used over F A s . 

In [ A A C J09], another approach for verifying data-dependent properties of programs 
w i t h lists was proposed. However, even this approach is strongly l imi ted to S L L s , and it 
is also much less efficient than our current approach. In [ A H H + 1 3 ] , concurrent programs 
operating on S L L s are analysed using an adaptation of the transitive closure logic (see 
e.g. [BR06]), which also tracks simple sortedness properties between data elements. 

Verification of properties of programs depending on the data stored in dynamic linked 
data structures was considered i n the context of the T V L A too l [LRS05] as well . Unl ike 
our approach, [LRS05] assumes a fixed set of shape predicates and uses inductive logic 
programming to learn predicates needed for t racking non-pointer data. The experiments 
presented i n [LRS05] involve verification of sorting and stabil i ty properties of several 
programs on S L L s (merging, reversal, bubble-sort, insert-sort) as well as insertion and 
deletion in B S T s . We do not handle stability, but for the other properties, our approach 

1 Note that in the experiments presented in Chapter 4, where we ignored the data stored in the nodes, 
we had to modify the insertion procedure for a skip list by introducing an explicit end-of-window 
pointer for every level of the skip list, so that the shape invariant did not depend on ordering relations. 
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is much faster. Moreover, for B S T s , we verify that a node is greater/smaller than a l l the 
nodes in its left/right subtrees (not just than the immediate successors as i n [LRS05]). 
Another work that combines the T V L A framework wi th reasoning on data is [BHT06] , 
which combines T V L A wi th predicate abstraction implemented in B L A S T . The approach 
was experimentally run on several l is t -manipulat ing programs only. 

A n approach based on separation logic extended wi th constraints on the data stored 
inside dynamic l inked data structures and capable of handling size, ordering, as well 
as bag properties was presented i n [CDNQ12b] . Us ing the approach, various programs 
w i t h S L L s , D L L s , and also A V L trees and red-black trees were verified. The approach, 
however, requires the user to manual ly provide inductive shape predicates as well as loop 
invariants. Later , the need to provide loop invariants was avoided i n [QHL+13], but the 
need to manual ly provide inductive shape predicates remains. 

The work considered in [CR08] extends the previous work [CRN07] w i th data con
straints. The method s t i l l needs shape invariants extended wi th data to be provided 
manually. The jo in and widening operations used on the shape level are extended w i t h 
subsequent jo in and widening on the data level to cope wi th the data dur ing the analysis. 

Another work that targets verification of programs wi th dynamic l inked data struc
tures, including properties depending on the data stored i n them, is [ZKR08] . It gen
erates verification conditions i n an undecidable fragment of higher-order logic and dis
charges them using decision procedures, first-order theorem proving, and interactive 
theorem proving. To generate the verification conditions, loop invariants are needed. 
These can either be provided manually, or sometimes synthesised semi-automatically 
using the approach of [WKZ+07] . The latter approach was successfully applied to sev
eral programs wi th S L L s , D L L s , trees, trees w i t h parent pointers, and 2-level skip lists. 
However, for some of them, the user s t i l l had to provide some of the needed abstraction 
predicates. A further extension of this approach given in [WP10] increases the degree 
of automation and synthesises the loop invariants automatical ly using counterexample 
guided refinement. 

Several works, including [BDES12] , define frameworks for reasoning about pre- and 
post-conditions of programs wi th S L L s and data. Decidable fragments that can express 
more complex properties on data than we consider are identified, but the approach 
does not perform a fully automated verification, only checking of pre-post condit ion 
pairs. Other approaches presenting various logical fragments for reasoning about heaps 
and the data stored i n them together w i t h decision procedures of these fragments were 
presented e.g. in [MN05, R B H C 0 7 , C L Q R 0 7 , LQ08] . None of these approaches has been 
extended to a fully automatic verification method. 

Outline. In Section 5.1, we present our extension to the forest automata formalism 
that uses constraints to specify relationships between data, values. Then , in Section 5.2, 
we describe the changes we made to the shape analysis algori thm that allow it to handle 
programs that depend on ordered data. Section 5.3 shows how our procedure handles 
boxes, used in order to allow processing of more complex data structures. Section 5.4 
describes our implementat ion of the proposed ideas as well as the obtained experimental 
results and Section 5.5 concludes the chapter. 
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5 .1 . Forest Automata with Data Constraints 

This section presents several extensions to the basic definitions presented in Chapters 2 
and 3 that w i l l be used throughout this chapter. 

Graphs and Forests with Data . Let us fix a data domain D w i t h a total order ^ 
(in the following, we also use the symbols -<, >-, >z, and = w i t h the obvious meaning). 
We extend the notion of a graph g : V —>• E x V* w i th a data labelling Xg that assigns 
every node a value, formally, Xg : V —> (D U { T } ) where T g" D is interpreted as 
an undefined value. Note that data labellings extend to trees because a tree is only 
a special case of a graph, i n part icular a graph wi th a single root. For the case of forests, 
though, we need to make sure that the data labell ing of the root references are consistent 
w i th the data labell ing of the respective roots. 

We say that a forest t\ • • • tn is composable if Xtk(u) = Xt^rootitj)) where itk(u) = j 
for any root reference u in any tree tk of the forest. A s a consequence, the operator ® 
that composes forests into graphs is defined only for composable forests. The data 
labell ing Xg> of the resulting graph g' = ®t\ • • • tn is then obtained s imply as the union of 
data labellings of a l l trees from t\ • • • tn, restricted to the domain of g'. We w i l l use the 
following notat ion to talk about relations of data values of nodes wi th in a forest. G iven 
nodes u and v of trees t and t' of a forest respectively, and a relation ~ G ,=,>-, 
we denote by u ~ r r v that Xt(u) ~ Xt/(v) and we denote by u ~ r a v that Xt(u) ~ 
Xf(w) for a l l non-root-reference nodes w i n the subtree of t' rooted at v, including the 
node v itself. We cal l these two types of relationships root-root and root-all relations 
respectively. The definition of io-graphs and io-forests w i th data is a straightforward 
extension obtained by adding data labellings to the corresponding concepts introduced 
in Section 3.1. 

Tree A u t o m a t a with D a t a Constraints. For the use i n this chapter, we also extend 
the notion of tree and forest automata to consider data. Because we focus on the 
verification of programs that work wi th ordered data, when we represent sets of heap 
graphs wi th forest automata, we do not remember exact values stored i n nodes of heap 
graphs, but only the relations among them instead. Let us first start w i th the modified 
definition of a tree automaton. 

A tree automaton wi th data constraints (or s imply a tree automaton, T A ) is a tuple 
A = ( Q , E , Ac, R = {qo}) where Q is a nonempty finite set of states, E is a ranked 
alphabet, R C Q is a singleton set of root states containing the root state qo (we use 
root(A) to denote the root state of A), and A c is a set of (constrained) transitions. 
Each transi t ion is of the form q —>• a(q\,..., qn) : c where n > 0, q, q\,..., qn € Q, a € E , 
and c is a set of local constraints. Every local constraint is of the form 0 ~ r r i or 0 ~ r a i 
where ~ G {-<, ^ , >-, >z, =} (with = viewed as syntactic sugar for a pair of constraints 
that use •< and >z) and 1 < i < n. 

Intuitively, a local constraint of the form 0 ~ r r i associated wi th a transi t ion of A of 
the form q —>• a(q\,..., qn) states the following: For each tree t' accepted by A, the data 
value of the root of the subtree t of t' that is accepted at state q is related by ~ wi th 
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the data value of the root of the i - th subtree of t accepted at state A local constraint 
of the form 0 ~ r a i states that, i n addi t ion to the constraint imposed by 0 ~ r r i , the 
relation ~ also holds between q and al l nodes in the i - th subtree of t. 

Moreover, we also extend the not ion of a run of A. In the data setting, tree automata 
accept trees wi th data. A run of A over a tree t w i t h data label l ing Xt is a mapping 
p : dom{t) —>• Q such that 

1. the root of t is mapped to the root state of A, p(root(t)) = qo (a simplification 
that considers only accepting runs), 

2. for each node v G dom{t) where q = p(v), if qi = p(S(v)i) for 1 < i < \S(v)\, then 
A c has a transi t ion q —>• £(v)(qi,... ,q\s(v)\) '• c (the definition of a run of a T A 
from Section 2.2), and 

3. for each constraint 0 ~ r z i in c where x G { r , a } , it holds that v ~ r z S(v)i 
(consistency of data constraints). 

Note that for the sake of simplification, a l l runs start from the root state. We define the 
language of A as L(A) = {t | there is a run of A over t}. 

Example 5.1. BSTs, such as the tree labelled by root but without the variable x in 
Figure 5.3a, are accepted by the TA A = ({qi, q±}, S , A c , {qi}) (we use q\ to denote 
that qi is a root state), where A c contains the following transitions (we ignore the data 
selector in the TA symbols): 

qi ->• left ,r ight (gi ,g i ) : 0 >- r a 1,0 ^ r a 2 qi -> l e f t , right(q 1 , q±) : 0 >- r a 1 
qi ->• le f t , r igh t (q± ,q i ) : 0 -< r a 2 qi ->• l e f t , r i g h t ^ _ L ) 

?± -»• -J-0 

77ie local constraints of the transitions express that the data value in a node is always 
greater than the data values of all nodes in its left subtree and less than the data values 
of all nodes in its right subtree. • 

Forest A u t o m a t a with D a t a Constraints. We also extend F A s wi th data con
straints. A forest automaton with data constraints (in this chapter, we w i l l s imply say 
a forest automaton, F A ) over S is a triple of the form F = (Ai • • • An, TT, tp) where: 

• A\ • • • An, w i th n > 0, is a sequence of T A s over the alphabet S U { 1 , . . . , n} whose 
sets of states Qi,..., Qn are pairwise disjoint, 

• 7r is a sequence of port indices as defined i n Section 3.1, and 

• (p is a set of global data constraints between the states of A\ • • • An, each having the 
form q ~ r r q' or q ~ r a q' where q, q' G UILi Qi> a^ l e a s t one of q, q' is a root state 
and ~ G { ^ , ^ , ^ , ^ , = } (with = again viewed as syntactic sugar). Intuitively, 
q ~ n q' says that for any two nodes v and v' in a forest that are labelled i n 
accepting runs of T A s by q and q' respectively, the data relation v ~ r z v' must 
hold. 

46 



tl 
root root 

_L ± _L ± _L ± 

(a) A graph (b) A forest decomposition 

Figure 5.3.: Decomposi t ion of a graph into trees 

A n io-forest (ti • • -£„,71"') w i th data is accepted by F i f there are runs pi,... ,pn such 
that pi is a run of Ai over ti for every 1 < i < n, the port indices match, TT' = TT, and for 
each global constraint of the form q ~ r z q' where x G { r , a}, q is a state of some .4« and 
<j' is a state of some Aj, we have w ~ r z v' whenever pi{v) = q and Pj(v') = q'. The forest 
language of F , denoted as Lf(F), is the set of io-forests accepted by F, and its graph 
language is the set of io-graphs L(F) obtained by applying (g) on composable io-forests 
accepted by F2. 

Note that global constraints can imply some local ones, but they cannot in general be 
replaced by local constraints only. Indeed, global constraints can relate states of different 
automata as well as states that do not appear i n a single transi t ion and therefore relate 
nodes that can be arbi trar i ly far from each other and unrelated by any sequence of local 
constraints. 

5.2. FA-based Shape Analysis with Data 

The extension i n this chapter uses the analysis described in Section 3.2 w i t h several 
modifications. F i r s t , we consider a single data selector, i.e. DSel = {data} . The data 
labell ing of heaps is based on this selector i n such a way that for a node v from a heap 
gSf, its data value Xgs±(v) is set to the value of the d a t a selector (or T i f undefined). 

For the sake of brevity of the used examples, i n this chapter we w i l l represent program 
states using the so-called abstract configurations. E a c h abstract configuration is a pair 
(o~,F) where a maps every variable to _L, an index of a T A i n F, or to an undefined 
value, and F is an F A representing a set of heaps (any such configuration can be easily 
transformed into the form used in Section 3.2 by creating a stack frame node in F that 
encodes a). We do not write port indices i n F A s from abstract configurations. Further 
i n our examples, we w i l l not write the often used transi t ion q± —>• _L() that we consider 
impl ic i t ly present i n a l l sets of transitions of T A s (in figures, we simplify the state to _L). 

2 Note that from the definitions of languages of TAs and FAs, the effect of the ~ r a data constraint 
(both local and global) is local to the TAs it is related to. 
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F = (Ai A2,<p) 
<r(root) = 1, cr(x) = 2 

r l e f t , r i g h t (qi, 2) : 0 >- r a 1, 0 -< r a 2 

A : < g i ->• l e f t , r i g h t ( g ± , g 2 ) : 0 -< r a 2 

[ g 2 -> left,right ( g_L , g_L) 
f ->• l e f t , r i g h t ( g _ L , g 3 ) : 0 - < r a 2 

2 ' 1 93 -> l e f t , r i g h t ( g _ L , g _ L ) 

= f 9x >~ra ^ , ^ 3 ^ r a <?r, 1 

^ 1 <?r >~ra 9 x , 9 l -<ra <?x, 92 -<ra <?x J 

Figure 5.4.: A n example of an abstract configuration that is a possible representation of 
the concrete configuration shown i n Figure 5.3b 

Example 5.2. Figure 5.3a shows a possible heap of the program in Figure 5.1. Nodes 
are shown as circles, labelled by their data values. Selectors are shown as edges. Each 
selector points either to a node or to _L (denoting NULL). Some nodes are labelled by 
a pointer variable that points to them. The node with data value 15 is a cut-point since 
it is referenced by variable x. Figure 5.3b shows a tree decomposition of the graph into 
two trees, one rooted at the node referenced by root, and the other rooted at the node 
pointed by x. The r i g h t selector of the root node in the first tree points to root reference 
2 (i denotes a reference to the i-th tree t%) to indicate that in the graph, it points to the 
corresponding cut-point. • 

Example 5.3. Figure 5.4 illustrates an abstract configuration {cr,F) that is a possible 
representation of the concrete configuration shown in Figure 5.3b. • 

The symbolic execution from Section 3.2 is modified for considering the data rela
tions i n the following way. Some of the considered operations require the so-called 
constraint saturation. The saturation procedure transforms the F A s into the saturated 
form, meaning that they expl ic i t ly include a l l (local and global) data constraints that 
are consequences of the existing ones. 

The automata abstraction used i n widening is modified by also taking into account the 
data relations. In particular, for a pair of states q and q' that are to be merged according 
to the abstraction procedure from Section 4.2, we further impose the requirement that 
they occur in isomorphic global data constraints. Th is requirement means that q ~ r z V 
occurs as a global constraint i f and only if q' ~r:r p occurs as a global constraint, for 
any p and x, and it guarantees that the abstraction does indeed over-approximate (if 
we merge a pair of states w i t h incompatible constraints, the language of the T A may 
become empty). 

In the following subsections, we provide more detai l on some of the major steps of 
our analysis. Section 5.2.1 describes the constraint saturation procedure, Section 5.2.2 
describes the modifications made to abstract transformers, Section 5.2.3 describes the 
changes in the normalisation, and, finally, Section 5.2.4 describes our modified check for 
inclusion. 
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Table 5.1.: Rules for inferring global constraints from global constraints. 

/ 1 1 II q ~rr q q q 
j G - T R A N S 

q (~ o ~ )TX q 
q ~ r r q 

G - R E F L ; G - D U A L 

q - a q q ~rr i 
q ~ r r q L e a f (q1) 

, G - S T R E 

q ~ra q 
q ~ r a q ^ q ~ r x 4 ^ 

-. G - W E A K I G - W E A K 2 

q ~ r r q q ^ r x q 
root(A) ~ra root(A') q' G Q(A') 

— G - R O O T A L L 

root (A) ~ r a q 

• We assume that x G {r, a}, 

• 
• Leaf [q') means that q' has only nullary outgoing transitions, and 

• Q(A') is the set of states of the T A A'. 

5.2.1. Constraint Saturation 

In this section, we show the saturation rules that are used to deduce new data constraints 
from already existing ones. The saturation rules are used in a fixpoint computat ion to 
deduce both global and local constraints from global constraints, local constraints, or 
their combinations. 

Before the description of the saturation rules, we first introduce some notation. For 
relations ~ and ~ ' on D , let ~ o IQQ the weakest relation from {^rsj —TXI^~TX•> 

for x G {r , a}, such that for a l l ^1,^2,^3 G D , it holds that d\ ~ d<i A d<i ~ ' 0(3 = > 
d1 (~ o ~ ' ) d 3 . We write ~ C ~ ' iff d ~ d! implies d ~'d', and we define ~ _ 1 by d ~ _ 1 d! 
iff d' ~ d. We say that a constraint q ~'iy q' is a weakening of a constraint q ~ r z q' iff it 
holds that ~ C ~ ' and, i n the case y is a (i.e. a root-al l constraint), it also holds that x 
is a. The saturation rules that can be used are as follows. 

Inferring global constraints from global constraints 

The saturation rules for inferring new global constraints from already existing ones, as 
shown in Table 5.1, are based on the following principles: 
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Table 5.2.: Rules for inferring local constraints from local constraints. 

0 ~ r a i G c 
L - R O O T R O O T 

0 ~ r r J £ C 

0 ~ rx i G c 
L - W E A K 

0 ~ r r i G C Leaf(%) 
L - S T R E 

0 ~ . TI i G c 0 ~ r a i G C 

• We assume the transi t ion g —>• a(qi,..., ftj) : c and 1 < z < n, 

• x G {r, a}, 

• — G {^, >r}, and 

• Leaf (ft) is true iff g has only mil iary outgoing transitions. 

1. properties of the ordering relations: 

• G - T R A N S is based on transit ivity, 

• G - R E F L is based on the reflexivity of ^ and >z, and 

• G - D U A L is based on the duali ty of ~< and >~. 

2. strengthening of existing data constraints: 

• G - S T R E states that each global constraint q ~ r r q' where q' has nullary out
going transitions only can be strengthened to q -<ra q', 

3. weakening of existing data constraints: 

• G - W E A K 1 states that from q ~ r a q', we can infer a weaker constraint q ~ r r q', 

• G - W E A K 2 gives a rule for inferring the weaker constraints q ^TX q' from 
q -<TX q' and q yTX q' from q >-rx q' for any x G {r, a}, 

4. properties of the ra relation: 

• G - R O O T A L L states for a pair of T A s A and A' of the given F A that i f q' 
is a state of A', then a global constraint root (A) ~ r a root (A1) implies the 
constraint root(^4) ~ r a q'. 

Inferring local constraints from local constraints 

The saturation rules (shown i n Table 5.2) that infer new local constraints from already 
existing ones i n a transit ion q —>• a(q\,..., qn) '• c are, for 1 < i < n, based on the 
following: 

1. weakening the existing constraints: i f q —>• a(qi,..., qn) : c is a transit ion, then 

• L - R O O T R O O T weakens a ~ r a relation to a ~ r r relation, 

• L - W E A K infers the weaker constraints 0 ^TX i from 0 -<TX i and 0 yTX i from 
0 >-rx i for any x G {r, a}, 
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Table 5.3.: Rules for inferring local constraints from global constraints. 

L - G - P R O P 
0 ~ n i € C 

Qi -> jQ Q ~ r x r o o i ( ^ ) 
L - G - R E F 

0 ~ r z i G C 

• We assume the transi t ion q --> o ( g i , . . . , g n ) : c and 1 < i < n, 

• x G {r, a}, and 

• ffi —>• j ( ) is the only outgoing transi t ion of qi. 

2. strengthening of existing data constraints: 

• L - S T R E is used for qi such that qi has only mi l iary outgoing transitions to 
strengthen a constraint 0 

i to the constraint 0 ^ r a i. 

Inferring local constraints from global constraints 

Inference of local constraints i n a transi t ion q —> a(qi,..., qn) : c from global constraints 
is done, for 1 < i < n, using the rules shown in Table 5.3: 

• L - G - P R O P propagates a global constraint q ~ r z qi for states used i n the same 
transi t ion into a local constraint 0 ~ r z i , 

• L - G - R E F propagates a global constraint q ~ r z root(Aj) between a state q and the 
root state of a T A Aj into a local constraint 0 ~ r a i between q and g« that accepts 
a reference to the T A Aj. 

Inferring global constraints from local constraints 

Final ly , new global constraints can be inferred from existing ones by propagating them 
over local constraints of transitions i n which the states of the global constraints occur. 
Since a single state may be reached in several different ways, propagation of global con
straints through local constraints on a l l transitions arr iving to the given state must be 
considered. If some of the ways how to get to the state does not allow the propagation, 
it cannot be done. Moreover, since one propagation can enable another one, the propa
gation must be done iteratively un t i l the fixpoint is reached. The iterative propagation 
must terminate since the number of constraints that can be used is finite. The propaga
t ion of constraints between states of a T A can be performed either downwards from the 
root towards leaves or upwards from leaves towards the root as described below. Let p 
be the root state of some T A A. For each state q of A, let $(g ,p) be the set of global 
constraints between q and p. The data constraints are propagated in two directions: 

Downward propagation. In the downward propagation, we simultaneously extend 
the sets <&(q,p) to larger ones fy(q,p) starting from the root state qo of A and setting 
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^(QOiP) = $(QO>P) ( i - e - n o constraints are added for this case). Then, for non-root 
states g, we extend the set of constraints in fy(q,p) by traversing over the transitions of 
A and adding constraints according to the following rules: 

• We add the constraint q ( ( ~ ' ) _ 1 o ~ ) r : r p, w i th x G {a, r}, if, for every occurrence 
of q as qi i n any transit ion 5 = q' —>• a(qi,..., qn) : c, there is a local constraint 
0 ~ r r i m c and a global constraint g' ~ r z p i n fy(q',p). 

• We add the constraint p (~ o ~ ' ) r z g, w i th x G {a, r}, if, for every occurrence of q 
as qi in any transi t ion 5 = q' —>• a ( g i , . . . , g n ) : c, there is a local constraint 0 i 
in c and a global constraint p ~ r ? / g' i n fy(q',p) w i th y G {a, r}. 

• We add the constraint p ~ r a q if, for every occurrence of q as g« i n any transi t ion 
5 = q' —>• a ( g i , . . . , g n ) : c, it holds that p ~ r a g' is i n ^ (g ' , p ) . 

Intuitively, the first two cases use t ransi t ivi ty to propagate a constraint involving q' to 
a constraint involving qf, the last case uses the semantics of p ~ r a q'. 

U p w a r d propagation. The upward propagation can be defined analogously. Al ready 
existing sets of constraints $ (g ,p) can be extended to sets ^ (g ,p ) by traversing over the 
transitions of A and adding constraints according to the following rules: 

• We add the constraint p ~ r a q if there is the constraint p ~ r r q is in ^ (g ,p ) , and 
for every transi t ion 5 = q —>• a ( g i , . . . , qn) : c it holds that p ~ r a qi G fy(qi,p) for 
every 1 < i < n. 

• We add the constraint g (~ ' o ~ ) r : r p, w i th x G {a, r}, i f there is no nullary 
transi t ion going from q and for every transi t ion 5 = q —>• a ( g i , . . . , g n ) : c, there are 
the constraints 0 ^ in c and ĝ  ~ r z p i n ^(gj ,p) for some 1 < i < n. 

• We add the constraint p (~ o( ~ ' ) ) r r g, w i th x G {a, i*}, if there is no nullary 
transi t ion going from q and for every transi t ion 5 = q —>• a ( g i , . . . , g n ) : c, there are 
the constraints 0 ^ in c and p ~ r z ĝ  i n ^(gj ,p) for some 1 < i < n. 

Proposit ion 5.1. The constraint saturation process always terminates. 

Proof. Follows from the facts that the m a x i m u m number of constraints in an F A is finite 
and that adding a new constraint is a monotone operation. • 

5.2.2. Abstract Transformers 

In this section, we present the abstract transformers corresponding to some of the op
erations on abstract configurations of the form {a, F) (also see Section 3.2 for the basic 
description of abstract transformers). For s implic i ty of the presentation, we assume that 
for a l l T A s Ai in F, (a) the root state of Ai does not appear on the right-hand side of 
any transit ion, and (b) it occurs on the left-hand side of exactly one transi t ion. It is easy 
to see that any T A can be transformed into this form, the transformation procedure, 
called unwinding, is described i n the following. 
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Unwinding the Root State 

In order to transform a T A A = (Q, E , A c , {qf}), from an F A F into the form where qf 
does not appear on the right-hand side of any transi t ion and appears on the left-hand 
side of exactly one t ransi t ion, we may perform the following sequence of actions: 

1. create a copy q'j of qf, which replaces qf on the right-hand side of a l l transitions, 

2. duplicate a l l transitions from qf to become transitions also from q'^ (while again 
substi tut ing any occurrence of qf w i th q'f), 

3. split A into several T A s , one for each transi t ion from the accepting state qf, cre
at ing several copies of the F A F that contains A, and 

4. adapt the local and global constraints by dupl icat ing them whenever some state is 
duplicated. 

A n example of this transformation, which basically unfolds once a l l loops on qf, w i l l be 
given in Example 5.4 below. 

We now introduce some common notat ion and operations for the below presented 
transformers. We use AAM and A r ( y ) to denote the T A pointed by variables x and 
y, respectively, and qK and qy to denote the root states of these T A s . Let qy —> 
a(qi,..., qi,..., qm) : c be the unique transi t ion from qy. Before describing the actual 
update, let us first define how to split a T A . 

Splitting a T A 

The operation of splitting a T A A r ( y ) at the i - th posit ion, for 1 < i < m, is described 
by the following sequence of operations: 

1. F i r s t , a new T A Ak is appended to F such that Ak is a copy of A r ( y ) but w i th 
as the root state. 

2. Second, the root t ransi t ion i n Aaiy\ is changed to qy —>• a(q\,..., q^,..., qm) : d 
where d is obtained from c by replacing any local constraint of the form 0 ~ r z i 
by the global constraint qy ~ r z root(Ak), and the transi t ion q^ —>• k() is added to 
Aa(y) (we assume cfe is a new state i n Aa(y\). 

3. G l o b a l data constraints are adapted as follows: For each constraint q ~ r z p where 
q is in Aa(y) such that q ^ qy, a new constraint q' ~ r z p is added, where q' is the 
version of q i n Ak- Likewise, for each constraint q ~ r z p where p is i n A r ( y ) such 
that p 7̂  qy, a new constraint q ~ r z p' is added (again, p' is the version of p in Ak)-
Final ly , for each constraint of the form p ~ r a qy, a new constraint p ~ r a root(Ak) 
is added. 

A n example of the spl i t t ing step is also given i n Example 5.4 below. 
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Description of Abstract Transformers 

In what follows, we assume the existence of the sub-term qy —> sel(gj) i n the (single) 
root t ransi t ion of A r ( y ) - Before performing the actual update, we check whether the 
operation to be performed tries to dereference a pointer to _L or to an undefined value, 
in which case we stop the analysis and report an error. Otherwise, we continue by 
performing one of the following actions, depending on the part icular statement. 

x := m a l l o c Q We extend F w i th a new T A Anew containing one state and one transi t ion 
where a l l selector values are undefined and assign cr(x) to the index of A n e w in F. 

x := y - > s e l If qi is a root reference (say, j), it is sufficient to change the value of cr(x) 

to j . Otherwise, we split A r ( y ) at the i - th posit ion (creating Ak) and assign k to 
a(x) . 

y - > s e l := x If qi is a state, then we split A r ( y ) at the i - th posit ion. In both cases we 
insert q n e w i n the i - th posit ion (instead of qi) i n the children states of the root 
transi t ion of A r ( y ) ( w e assume q n e w is a new state i n Aaiy\). We follow by adding 
the transi t ion q n e w —>• cr(x)() into A r ( y ) - A n y local constraint in c of the form 
0 ~ r : r i that concerns the removed root reference qi is then removed from c. 

y - > d a t a := x - > d a t a F i rs t , we remove any local constraint that involves qy or a root 
reference to A r ( y ) - Then, we add a new global constraint qy = r r qK, and we also 
keep al l global constraints of the form q' ~r:r qy i f q' ~ r r qK is impl ied by the 
constraints obtained after the update. 

y - > d a t a ~ x - > d a t a (where ~ G {-<, >z}) F i r s t , we execute the saturation proce
dure i n order to infer the strongest constraints between qy and g x . Then , if there 
exists a global constraint qy ~' qK that implies qy ~ qK (resp. its negation), we 
return true (resp. false). Otherwise, we copy (a, F) into two abstract configura
tions: (a, Ftrue) for the true branch and (a, Ffaise) for the false branch. Moreover, 
we extend FtrUe w i th the global constraint qy ~ g x and Ffaise w i th its negation. 

x := y or x := NULL We simply update a accordingly. 

f r e e ( y ) F i r s t , we split A r ( y ) at a l l j - t h positions, 1 < j < m, that appear i n its root 
transit ion, then we remove A r ( y ) from F and set cr(y) to undefined. However, to 
keep al l possible data constraints, before removing Aa(y), the saturation proce
dure is executed. After the action is done, every global constraint involving qy is 
removed. 

x = y Th is operation is evaluated s imply by checking whether cr(x) = cr(y). If cr(x) or 
u(y) is undefined, we assume both possibilities. 

After the update, we check that a l l T A s i n F are referenced, either by a variable or from 
a root reference, otherwise we report an emergence of garbage. 
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Fa = (Aal,$) 
cr(root) = l ,cr(x) = 1 

A, a l 

la 
2a 
3a 
4a 

Qi 

91 
qi 

l , r ( g i , g i ) 

l , r ( g _ L , g i ) 

l , r ( g i , g ± ) 

i,*(q±,q±) 

0 > - r a l , 0 - < r a 2 

0 -< r a 2 

0 >- r a 1 

a) A n example abstract configuration at line 9 of the program i n Figure 5.1. The 
abstract configuration represents a set of B S T s ( l , r abbreviates l e f t , r i g h t ) . 

o-(root) = 1, cr(x) 

Abi 

lb 
2b 
36 
4b 
5b 
6b 
7b 
8b 

qi 
qi 
qi 

91 
q[ 
q[ 
q[ 
q[ 

i,*(q±,q'i) 
l , r ( ? i , 5 ± ) 
l , r ( g ± , g ± ) 

l , r ( g ± , g i ) 

l , r ( g i , g ± ) 

l , r ( g _ L , g _ L ) 

0>-ra l , 0 - < r a 2 
0 ^ r a 2 

0 > - r a 1 

0>-ra l , 0 - < r a 2 
0 ^ r a 2 
0 > - r a 1 

b) A n intermediate state of unwinding the root state of Aai 

Figure 5.5.: A n example of unwinding the root state of a T A 

E x a m p l e 5.4. We now present the computation of the abstract configuration that results 
from executing the program statements which appear at line 9 of the program in Figure 5.1 
when starting from the abstract configuration described in Figure 5.5a (for the sake of 
brevity, we leave out the newNode variable and the corresponding TA from the example). 
In order to compute this abstract configuration, a sequence of two statements consisting of 
the test statement x - > r i g h t / NULL and the update statement x = x - > r i g h t is executed. 
First, the test statement x - > r i g h t / NULL is executed in the following two steps: 

1. As can be seen from the FA Fa from Figure 5.5a encoding BSTs, the root state 
qi of Aai (the only TA of Fa) occurs as a child state in three transitions of Aa\, 
and we will therefore perform unwinding of q\. We start by creating the state 
q[, a copy of q\, and duplicate to q[ the four transitions leaving from qi (the 
resulting intermediate FA F\> can be seen in Figure 5.5b). Then, for each transition 
t € {16, 26, 36,46} leaving from qi in Au, we create a copy of the intermediate FA 
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Fc = (Aic,®), (J ( roo t ) = 1,CT(X) = 1 Fd = (Aid, 0), cr(root) = 1, a(x) = 1 

l c 
2c 
3c 
4c 
5c 

91 0 >- r a 1,0 -i™ 2 
0 >- r a 1,0 - < „ 2 

ra 
ra 

l , r ( g ± , g i ) : 0 - < r a 2 
l , r (g i , (7 j . ) : 0 ^ r a l 
l , r ( g ± , g ± ) 

a) ^ -»• 1, r ( g i , gi) : 0 >- r a 1, 0 -< r a 2 (16) 

F e = <^4ie,0>, g ( r o o t ) = 1, a(x) = 1 

.4 le 

le 
2e 
3e 
4e 
5e 

<Zi-> l , r ( g i , g ± ) 

9 i -

9 i -

c) 9i 

l , r ( ? ± , g i ) 
l , r ( g i , g ± ) 
l , r ( g ± , g ± ) 

> l , r ( g i , g ± ) : 0 ^ r a 1 (36) 

0 >-ra 1 
0 > - r a l . O - i r . 2 

u ^ r a ^ 
0 >- r a 1 

Aid 

Id 
2d 
3d 
M 

5d 

qi 

b) 91 

*) = (Aif, 

l , r ( g ± , g i ) : 0 -< r a 2 
• l , r ( g i , g i ) : 0 >- r a 1, 0 -< r a 

l , r ( g ± , g i ) : 0 -< r a 2 

l , r ( 9 i , 9 ± ) : 0 > - r a l 
l , r ( 9 ± , 9 ± ) 

+ l , r ( g ± , g i ) : 0 ^ r a 2 (26) 

, cr(root) = l ,cr(x) = 1 

l , r ( g ± , g ± ) 

d) gi -»• l , r ( g ± , g ± ) (46) 

Figure 5.6.: The results of unwinding the root state of Aai from Figure 5.5 
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A 19 

A 2fl 

l e f t r i g h t 

= ^ 2 g , {91 ^ r a « 2 } ) 

< r ( r o o t ) = 1, c r ( x ) = 2 

A , 

Iff 9i -•»• l . r ( « i,«2) 0 > - r a 1, 0 ^ r a 
2 

2ff 9 i - •>• l > r ( « i > « i ) 0 >~ra 1, 0 ^ r a 2 

3ff 9 1 " * l , r ( g ± , ^ ) O ^ r a 2 

4ff 9 1 " * l , r ( 9 i , 9 ± ) 0 > - r a 
1 

5ff 9 1 " * l,r(g_L,g_L) 

6ff 9 2 " + 2() 

Qg 92 " * l , r ( g 2 , 9 2 ) 0 > - r a 1, 0 ^ r a 
2 

7g 92 -* l , r ( ? ± , 5 2 ) O ^ r a 2 

8g 92 -* l , r ( g 2 , 9 ± ) 0 > - r a 
1 

9ff 92 -

Figure 5.7.: The F A obtained from Fc (Figure 5.6a) by spl i t t ing Aic at second posit ion 

called Fc,Fd,Fe, and Ff respectively. From the obtained TA A\c, AM, A\e, and 
A\f, we subsequently remove all transitions leaving from q\ other than t, resulting 
in the four FAs in Figure 5.6. 

2. The next step is to remove configurations where the root transition of the TA 
pointed by x has q± at the the second position of the tuple of children states since 
they do not pass the test x - > r i g h t ^ N U L L (they will be processed in the else 
branch though). Due to this, the abstract configurations with the FAs Fe and Ff 
are removed. 

Second, the update statement x = x - > r i g h t is executed on the abstract configurations 
shown in Figure 5.6a and Figure 5.6b. Here, we show the steps only for the abstract 
configuration from Figure 5.6a, the other one could be computed in a similar manner. 
The resulting abstract configuration is shown in Figure 5.7. 

1. The first step is to compute the new FA resulting from splitting the root transition 
l c of the TA Aic in the FA Fc in Figure 5.6a at the second position, yielding the 
FA Fg. First, we create the TA A2g from A\c by copying it, renaming q[ to q2, 
and making the state q2 the root state (note that qi becomes top-down unreachable 
in A2g, and so we discard it). Then, we copy A\c to A\g and change the root 
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transition l c of A\g by replacing the state q[ at the second position of its tuple of 
children states (corresponding to the selector right) by q^, and add (1) the leaf 
transition q^ —> 2() and (2) the global constraint q\ -< r a qi-

2. The second step is to update the valuation a of both abstract configurations to 
a := cr{x i-> 2} meaning that x will point to roots of BSTs accepted by A2g whereas 
a ( r o o t ) is kept unchanged. • 

5.2.3. Normalisation 

Normal isa t ion transforms an F A F = (Ai • • • An, <p) into a canonicity respecting F A i n 
three major steps: 

1. F i r s t , we transform F into a form i n which roots of trees of accepted forests cor
respond to cut-points i n a uniform way. In particular, for a l l 1 < i < n and a l l 
accepted forests t\ • • -tn, one of the following holds: (a) If the root of U is the 
j - t h cut-point in the canonical ordering of an accepted forest, then it is the j - t h 
cut-point i n the canonical ordering of a l l accepted forests, (b) Otherwise the root 
of ti is not a cut-point of any of the accepted forests. 

2. T h e n we merge T A s so that the roots of trees of accepted forests are cut-points 
only, which is described in detail below. 

3. F ina l ly , we reorder the T A s according to the canonical ordering of cut-points (which 
are roots of the accepted trees). 

Our procedure is an augmentation of that i n [HHR+12] used to normalise F A s wi th
out data constraints. The difference, which we describe below, is an update of data 
constraints while performing Step 2. 

In order to minimise a possible loss of information encoded by data constraints, Step 2 
is preceded by saturation (Section 5.2.1). Then, for a l l 1 < i < n such that roots of trees 
accepted by Ai = (QA, ^> ^-A, {<IA}) a r e n ° t cut-points of the graphs i n L(F) and such 
that there is a T A B = (<5B,E, A g , {qs}) that contains a root reference to At, Step 2 
performs the following. The T A Ai is removed from F, the data constraints between q& 
and non-root states of F are removed from ip, and Ai is connected to B at the places where 
B refers to i t . In detail , B is replaced by the T A {QA U QB, E , AA+B, {qs}) where A-A+B 
is constructed from A.A U by modifying every transit ion q —>• a ( q \ , . . . , q m ) : c G A g 
as follows: 

1. we replace by qA a l l occurrences of qj among qi, • • • ,qm such that there is a transi
t ion qj —> i() i n A g (note that there w i l l be at most one such occurrence in a single 
transit ion), and 

2. for a l l 1 < k < m such that qt can reach the state qj by following top-down 
a sequence of the original transitions of A g , the constraint 0 
from c unless qk ~ r a qA € if or qk = q-{ and q ~ r a qA^f-
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9h 

A2h 

lef t right 

Fh = (AlhA2h, {qi -<ra 92j-) 

cr(root) = 1,CJ(X) = _L 

Aih 

Fi = (Aii,Q) 
a(root) = 1, (j(x) 

An 

1 

lh 9i ~ 0>-ra 1, 0 ^ r a 
2 l i 9i ~ + 1 r (9 i ,92) 0>-ra 1, 0 - < r a 

2 
2h 0 > - r a 1, 0 ^ r a 

2 2i 9 i - + 1 r ( 9 i , 9 i ) 0 > - r a 1, 0 - < r a 
2 

3h ->• l,r(g_L,gi) 0 -<ra 2 3/ 9 i ~ + 1 r ( 9 ± , 9 i ) 0 -<ra 2 
Ah * l , r ( ? i , 5 ± ) 0 > - r a 

1 4i + 1 r ( 9 i , 9 ± ) 0 > - r a 
1 

5h + 1 r ( 9 ± , 9 ± ) 
6g 12- + 2() 6? 92 " + 1 r (92 ,92) 0>-ra 1, 0 - < r a 

2 
7/ 92 " + 1 r ( 9 ± , 9 2 ) 0 - < r a 

2 

92 " + 1 r(92, q±) 0 > - r a 
1 

Qh 92 -->• l , r ( g 2 , 5 2 ) 0>-ra 1, 0 ^ r a 
2 92 " + 1 *(q±,q±) 

7h 92 ~ * l , r ( ? ± , 5 2 ) 0 - < r a 
2 

8h 02 ~ ->• l , r ( g 2 , 9 ± ) 0 > - r a 
1 

92 l,r(9_L,9_L) 

a) A n abstract configuration 
b) The abstract configuration from (a) 

after normalisat ion 

Figure 5.8.: A n example of running normalisat ion on the abstract configuration obtained 
from the program i n Figure 5.1 after executing line 22 
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E x a m p l e 5.5. In this example, we show normalisation of the FA in a possible abstract 
configuration after the execution of line 22 in the program in Figure 5.1. The abstract 
configuration can be seen in Figure 5.8a. Because the roots of the trees accepted by the 
TA Aih do not correspond to the cut-points of the graphs in L(Ffl), we join A\h and A2h 
in the following way. First, the states and transitions of A2h ire copied to A\h and the 
root state of A2h substitutes the reference 2 in the transition lh of A\h- Afterwards, the 
TA A2h is removed together with the global data constraint q± -<ra qi from the FA. The 
constraint 0 -< r a 2 is not removed from the root transition lh because q\ -<ra q^ was in 
the set of global data constraints of F^ before normalisation and, therefore, 0 -< r a 2 will 
still hold. The resulting FA Fi is shown in Figure 5.8b. • 

5.2.4. C h e c k i n g L a n g u a g e Inc lus ion 

In this section, we describe a reduction of checking language inclusion of F A s wi th data 
constraints to checking language inclusion of F A s without data constraints, which can be 
then done using the techniques of [HHR+12]. We note that "ordinary F A s " correspond 
to F A s w i t h no global and no local data constraints, which were discussed i n Chapter 3. 
The reduction encodes an F A wi th data constraints as an F A without data constraints 
such that its language, when decoded i n a part icular way, is the same as the language 
of the original automaton. 

A n encoding of an F A F = (Ai • • • An,, TT, tp) w i th data constraints is an ordinary F A 
FE = (A'i • • • A'n, ir, 0) where the data constraints are wr i t ten into symbols of transitions. 
Tha t is, each transi t ion q —>• ( a i , . . . , am)(qi,..., qm) : c of Ai is i n A\ replaced by the 
transi t ion q —> ( (a i , £\, g) • • • ( a m , £m, g))(qi, • • •, qm) '• 0 where for 1 < j < m, £j is 
the subset of c containing the local constraints involving j and g encodes the global 
constraints involving q as follows: Let r be the root state of some Ak, for 1 < k < n, 
that does not appear wi th in the tuple of children states of any transi t ion. Then for a 
global constraint q ~ r z r or r ~ r z q, g contains 0 ~ r z k or k ~ r z 0 respectively. The 
language of A\ thus consists of trees over the alphabet TE = T x C x C where C is the 
set of constraints of the form j ~r:r k for 1 < j, k < n. 

To show that testing inclusion of encoded F A s is a sound approximation of language 
inclusion test of F A s wi th constraints, we need to establish a correspondence between 
languages of the encoded F A s and languages of the original ones. For this, we define 
a decoding of a forest t[ • • • t'n from a language of an encoded F A over TE as the set of 
forests t\ - • - tn over V such that t\- • - tn arises from t'x • • • t'n by (1) removing encoded 
constraints from the symbols, and (2) choosing data labeling that satisfies the constraints 
encoded wi th in the symbols of t'x • • -t'n. Formally, for a l l 1 < i < n, the set of nodes of 
U, Vti, is assigned to equal the set of nodes of t\, Vt{, and for a l l a G T, u,v G V^, and 
f , j C C , there is the sub-edge u —>• ( (a ,£,g) ,v ) in SE^'j) iff 

(1) u (a,v) e SE(ti) and 

(2) for a l l 1 < j < n: i f 0 ~ r z j £ £, then u ~ r z v (in U), and if 0 ~ r z j £ g, then 
u ~ r z root(tj) (symmetrically for j ~ r : r 0). 
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Decoding of forests is natural ly lifted to io-forests. The notion of decoding allows us to 
summarise the correspondence of languages of F A s and languages of their encodings as 
follows. 

L e m m a 5 .1. The set of io-forests accepted by an FA F is equal to the set of decodings 
of io-forests accepted by FE. 

Proof. Let F = (Ai • • • An,v, if) and FE = (A[ • • • A'n, ir, 0). We first prove that every 
io-forest (ti • • • tn, 7r) accepted by F is a decoding of some io-forest accepted by FE'. Let 
pi,..., pn be the runs of Ai, • • •, An on t\,..., tn respectively. We w i l l construct runs 
Pi,..., p'n of A'i, • • •, A'n on the io-forest • • • t'n, 7r) of which (h ••-tn, TT) is a decoding 
of, such that for every pi, we w i l l construct the run p\. Let us first simplify the notat ion 
by denoting pi, ti, p\, t\, Ai, and A\ by p, t, p', t', A, and A' respectively. The run p' is 
constructed as follows. The nodes of t' are set to the nodes of t, Vt/ = Vt, and A# can be 
chosen arbitrarily. For every v £ Vt such that v —> (a\,v\),..., v —> (a™, vm) G SE(t, v), 
there is a transi t ion of A of the form 5 = q —>• (aj,..., a?p)(q\,..., qm) : c such that the 
following conditions hold: p{v) = q, p{v\) = q\,..., p{vm) = qm, the local constraints i n 
c are satisfied by v, v\,..., vm i n t, and also global constraints q ~ r z r, r ~ r z q G ip are 
satisfied by v and pk(r) for k such that r is a state of Ak- The run p' then labels the 
nodes v,v\,... ,vm using the transi t ion 5' = q —>• a(q\,..., qm) : 0 that is the encoding 
of 5 (a = {{a\,l\,g),..., (am,£m, g)) where g contains encoded the part of ip involving 
q and c = t\ U • • • Uim). The run p' is obviously a run of A'. The described construction 
of p' defines a map / that assigns to every v,v\,... ,vm G Vt, where v\,... ,vm are the 
children of v, a pair of transitions (5, 5') of A and A' respectively, where 5 and 8' are the 
transitions used wi th in p and p' respectively to label the nodes v,v\,... ,vm. 

Firs t , let us argue that t\ • • • tn is indeed a decoding of t'x - • -t'n. It is t r iv ia l ly satisfied 
for a l l 1 < i < n that Vti = Vt{ and that every node has the same children in both 
forests. In order to argue that data values i n t\ • • • tn satisfy the constraints encoded i n 
^ • • • t'n as required by the definition of decoding, we let v G Vti be a node w i t h children 
v 1 , . . . , v m such that f(v,v1, ...,vm) = (5, 5') where 5 = q ->• ( a i , . . . , am)(q1, ...,qm):c 
and 5' = q —> a(q\,..., qm) : 0 wi th a = ((ai,£i, g) • • • (am,£m, g)). T h e n the constraints 
imposed on the data value of v w i th in t\ • • • tn by ip and those imposed by c due to the 
use of 5 are the same as the constraints enforced on v due to a when t'x • • • t'n is decoded 
into t\ •••tn. In detail , c contains a local constraint 0 ~ k iff £k contains 0 ~ k (by 
the definition of encoding). Th is means that i n the run of A on t, it is required that 
v ~ Vk, which is the same constraint as required by the decoding function. Further, 
there is a global constraint of the form q ~ r G ip such that r is the root state of Ak (not 
appearing wi th in any children tuple of its transitions) iff 0 ~ k G g (and analogically for 
the symmetr ical cases). In the run of A, q ~ r enforces that v ~ u where u is the root 
of tk- Not ice that u cannot be any other node than the root since r does not appear 
wi th in the children tuple of any transi t ion of At- The constraint v ~ u is precisely what 
is enforced due to 0 ~ k G g when decoding t'x • • • t'n. 

Second, we prove that every decoding t\ • • -tn of an io-forest t'x • • • t'n G Lf(FE) is 
accepted by F. We w i l l do that by showing that every n-tuple of runs p'x,...,p'n of 
A'i, • • •, A'n on t\,... ,tn respectively also encodes runs of Ai, • • •, An on t\,..., tn re
spectively. 
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Recal l first that by the definition of a decoding, for each 1 < i < n, the trees U and 
have the same sets of nodes and every node has the same tuple of children. To simplify 
the notation, let t,p',t',A, and A' be denoted as U,p[, t[, Ai, and A\ respectively. Let 
v G Vf and let v —>• (aj,,vi),... ,v —>• (a™,vm) G SE(t',v) where for a l l 1 < j < m, 
a\, = (a,j, ij,g)- B y the definition of a decoding, v satisfies a l l constraints encoded wi th in 
a = (aj,,..., a™). Since t' is accepted by A', there is a t ransi t ion of A' of the form 5' = 
q —>• a(qi,..., g m ) : 0 such that p'{v) = q, p'(v\) = qi,..., p'{vm) = qm. B y the definition 
of encoding, 5' was created from a transi t ion 5 = q —>• ( a i , . . . , a m ) ( g i , . . . , g m ) : c of „4 
where £iU • • • U£m = c and g encodes a l l global constraints involving g and a root state 
r that does not appear wi th in a children tuple of any transit ion. These constraints are 
precisely those encoded wi th in a and hence required to hold for v i n t\ • • • tn by decoding. 
The run p' is thus indeed a run of A since for every i ; and its children v\,..., vm, there 
is a t ransi t ion <5 which can be used according to the definition of a run. • 

A direct consequence of L e m m a 5.1 is that i f L(Ff) C L(F§), then L ( . F A ) Q L(FB). 
We can thus use the language inclusion checking procedure of [ H H R + 1 2 ] for ordinary 
F A s to safely approximate language inclusion of F A s wi th data constraints. 

Th is language inclusion test is not complete, the above impl ica t ion does not hold i n the 
opposite direction. There are two reasons for this. F i r s t , encoding translates a constraint 
of FB that is s t r ic t ly weaker than a constraint of FA into two different and unrelated 
labels. Th is may result i n the si tuation that even though L(FA) C L(FQ), language 
inclusion of encodings of F A s does not hold due to the reason that the trees accepted are 
labelled by different symbols. For instance, let FA = (AI,TT,0) where A\ contains only 
two transitions 8\ = q —>• a(qj) : {0 ^ ; r r 1} and 5\ = qj —>• 1() : 0, and FB = (jBi,7t, 0) 
where B\ also contains only two transitions 5B = r —>• a(qj) : 0 and 52

B = qj —>• 1() : 0. It 
holds that L(FA) Q L(FB) (indeed, L(FA) = 0 due to the strict inequality on the root), 
but L(F^) is incomparable wi th L(FB). The reason is that 5A and 5B are encoded as 
transitions the symbols of which differ due to different data constraints. The fact that 
the constraint 0 is weaker than the constraint of 0 ^ r r 1 plays no role. The second 
source of incompleteness of the inclusion test is that decodings of some forests accepted 
by F 4 and FB may be empty due to inconsistent data constraints. If the set of such 
inconsistent forests of F^ is not included in that of FB , then L(F^) cannot be included 
in L(Ffi), but the inclusion L(FA) Q L(FB) can s t i l l hold since the forests w i th empty 
decodings do not contribute to L(FA) and L{FB) (in the sense of L e m m a 5.1). 

We do not attempt to resolve the problem of inconsistent data constraints since it 
does not seem to occur in practice, as witnessed by our experiments. O n the other 
hand, the issue of incompatible encodings of related data constraints appears to be 
of a pract ical consequence. We address it w i t h a quite simple transformation of F ^ : 
We pump-up the T A s of F% by variants of their transitions which encode stronger data 
constraints than originals and match the data constraints on transitions of F ^ . Since 
we are adding transitions wi th stronger constraints than the existing ones, this does not 
change the language of FB- For instance, i n our previous example, we add the transi t ion 
r —>• a(qj) : {0 -< r r 1} to B\. This transit ion, when encoded, can then correspond to the 
encoded version of the transi t ion q —>• a(qj) : {0 ^ ; r r 1} of A\ and the language inclusion 
of the encodings w i l l hold. 
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Formally, we cal l a sequence a = ((a\,£i,g), • • • , (am,lm,g)} G ( r s ) m stronger than 
a sequence j3 = ((ai, £[, g'), • • • , (am, £'m, g')) iff / \ g and for a l l 1 < i < m, 
f\li A ^ i - Intuitively, a encodes the same sequence of symbols ( a i , . . . , am) as /? 
and stronger local and global data constraints than (3. We modify in such a way 
that for each transi t ion r —> a(r\,..., rm) of F j 1 and each transi t ion of F^ of the form 
q —>• P(qi,..., qm) where /? is stronger than c?, we add the transi t ion g —>• /3 (qi,..., qm). 
The modified F A , denoted by F^+, accepts the same or more forests than F% (since its 
T A s have more transitions), but the sets of decodings of the accepted forests are the same 
(since the added transitions encode stronger constraints than the existing transitions). 
The F A F§+ can thus be used wi th in language inclusion checking i n the place of F j \ 
Th is technique prevents the inclusion check to fail because of incompatible encodings of 
data constraints. Its soundness is summarised by the following lemma. 

L e m m a 5.2. Given two FAs FA and FB, L(Ff) C L(F§+) =^ L(FA) C L(FB). 

Proof sketch. Since the transformation from F^ to F%+ adds only versions of existing 
transitions encoding stronger constraints, the sets of decodings of forest of F^+ is the 
same as the set of decodings of forests of F^. The statement then follows immediately 
from L e m m a 5.1. • 

We note that the same construction is used when checking language inclusion between 
sets of F A s wi th data constraints in a combinat ion wi th the construction of [HHR+12] 
for checking inclusion of sets of ordinary F A s . 

5.3. Boxes 

In this chapter, we have so far considered only "flat" F A s , i.e. F A s without boxes. The 
extension of F A s by data constraints must, however, also be reflected wi th in treatment of 
those. Part icular ly, i n order not to lose information stored wi th in data constraints, fold
ing and unfolding require calls of the saturation procedure. W h e n folding, saturation is 
used to transform global constraints into local ones. Namely, global constraints between 
the root state of the T A that is to become the input port of a box and the state of the T A 
that is to become an output port of the box is transformed into a local constraint of the 
newly introduced transi t ion that uses the box as a label . W h e n unfolding, saturation is 
used to transform local constraints into global ones. Namely, local constraints between 
the parent state of the t ransi t ion wi th the unfolded box and a chi ld state attached to 
the unfolded box is transformed to a global constraint between the root states of the 
T A s wi th in the box that correspond to its input and output ports. 

Example 5.6. In this example we show how to unfold and fold boxes on a sample abstract 
configuration of a program manipulating a 2-level skip list. A skip list is a linked list 
sorted by keys. Each node is assigned a height, either 1 or 2, and one successor for every 
level. For example, a node of level 2 has two next pointers, here called n i and n 2 ; where 
n i points to the next node of level 1 andn2 points to the next node of level 2. Figure 5.2 
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F s k l 2 = (Ai A 2 , (1,2), 0 

A 1 
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26 : t 2 -> skl 2 (g2) 
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46 : Mi -> n1,n2(q±,q±) 

b) A heap containing a skip list with two segments 
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Hi 
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= { t l -<ra M l , £2 -<ra « 1 , t l -< ra t 2 , 
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a (he ad) = l , c r ( t a i l ) = 2 

S i ' 
l c : t i --> n i , n 2 ( r 2 , g 3 ) : 0 -< r a 1,0 ^ „ 2 
2c: h --> n 1,n 2(g 3-,g 3-) : 0 -< r a 1,0 ^ r a 2 
3c : ri -> ni ,n 2 (r 2 ,g_i_): 0 -< r a 1 

4c : r 2 -> n 1 , n 2 ( a 3 , gj_): 0 -< r a 1 
5c : 03 ->3() 

6c : Mi -> Hi,n 2 (gj . ,g j . ) 

7c : *2 -> skl 2 (g2) 
8c : (/a ^ 2() 

0 ^ r a 1 

c) Unfolding of the first occurrence of the s k l 2 box in (b) 

Figure 5.9.: A n example of unfolding of a box representing a 2-level skip list segment. 
We omit ted al l -<;rr constraints which are subsumed by -< r a constraints. 
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shows an example configuration of a 2-level skip list with integer keys (the nodes head 
and t a i l with the keys —oo and +00 respectively are used as sentinels). 

We can see from Figure 5.2 that each internal node of level 2 is a cut-point. In order 
to be able to represent a skip list of any length, it is necessary to introduce a box that 
effectively hides these cut-points. We use, in particular, the box s k l 2 from Figure 5.9a, 
which represents all skip list segments between a pair of nodes of level 2. Figure 5.9b 
shows an abstract configuration of a skip list with 3 nodes of level 2: the head node, the 
tail node, and one regular node in between. The number of level 1 nodes (hidden inside 
the two skl2 boxes) is arbitrary. Note that the single output port of skl2 contains an 
automaton accepting e—this is because there are no transitions leading from the output 
port of the box. 

Figure 5.9c shows an unfolding of the first occurrence of the s k l 2 box in the FA. 
Intuitively, the unfolding proceeded in the following steps: 

1. As a preparatory step for replacing the use of s k l 2 on the transition lb by the 
contents of the box represented by s k l 2 ; the TA B\ was split at the state t2 to 
isolate the transition lb. This produced two auxiliary TAs B[ and B'3 consisting 
of the transitions {[l&i] t i —>• s k l ^ g ) : {0 < r a 1}, [I&2] —̂  3 ( ) : 0} for B[ and 
{[2&i] t2 —> s k l 2 ( ( / 2 ) : {0 < r a 1}, [262] q2

 — 2 ( ) : 0} for B'2, with a newly introduced 
cut-point 3. 

2. Subsequently, the TA A\ corresponding to the input port of s k l 2 was inserted in 
between t\ and q^ instead of the transition lb\ over s k l 2 ; yielding the TA B'{. (No
tice that if the transition lb\ led—via other symbols than s k l 2 — t o more targets 
than just q%, the part of lb\ leading from t\ to such targets would be preserved 
and merged with the root transitions of A\ •) On the other hand, the TA A2 cor
responding to the single output port of s k l 2 was merged with the transition 1b\ 
leading from t2. However, since A2 accepts e, the resulting transition 7c of B'^ 
remains the same as the original transition 2b. (The TA B2 was copied into the 
TA B2' without any modification.) 

3. The local data constraint from the transition 16 : i i —>• s k l 2 ( t 2 ) : 0 < r a 1 was 
transformed into the global data constraint t\ < r a t2 during the unfolding. 

The subsequent saturation then also generated the local constraints 0 < r a 1 and 0 < r a 2 

on the transitions lc and 2 c from t\ to q%, and the global constraints r2 < r a t2 and 
r2 -<ra ui (these changes are emphasised by a bold typeface in Figure 5.9c). 

The inverse operation of folding would transform the FA from Figure 5.9c, while using 
the s k l 2 box, into the FA in Figure 5.9b. See Chapters 3 and 4 for more details on box 
folding and unfolding. • 

5.4. Experimental Results 

We have implemented the above presented techniques as an extension of the Forester 
tool and tested their generality and efficiency on a number of case studies. We consid
ered programs dealing wi th S L L s , D L L s , B S T s , and skip lists. We verified the original 
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Table 5.4.: Results of the experiments 

Example t ime [s] Example t ime [s] 

S L L insert 0.06 S L 2 insert 9.65 
S L L delete 0.08 SL2 delete 10.14 
S L L reverse 0.07 SL3 insert 56.99 
S L L bubblesort 0.13 SL3 delete 57.35 
S L L insertsort 0.10 
D L L insert 0.14 B S T insert 6.87 
D L L delete 0.38 B S T delete 15.00 
D L L reverse 0.16 B S T left rotate 7.35 
D L L bubblesort 0.39 B S T right rotate 6.25 
D L L insertsort 0.43 

implementation of skip lists that uses the data ordering relation to detect the end of the 
operated window (as opposed to the implementat ion handled i n the work presented i n 
Chapter 4, which was modified to remove the dependency of the a lgori thm on sorted-
ness). A l though the examples are of a smaller size, they are very challenging as they 
include complex manipulat ion wi th dynamic memory that may depend on data values 
stored in memory cells. 

Table 5.4 gives running times i n seconds (the average of 10 executions) of the exten
sion of Forester on our case studies. The names of the examples in the table contain the 
name of the data structure manipulated in the program, which is " S L L " for singly l inked 
lists, " D L L " for doubly l inked lists, and " B S T " for binary search trees. " S L " stands for 
skip lists where the subscript denotes their level (the to ta l number of nex t pointers i n 
each cell). A l l experiments start w i th a random creation of an instance of the specified 
structure and end wi th its disposal. The indicated procedure is performed i n between. 
The "insert" procedure inserts a node into an ordered instance of the structure, at the 
posit ion given by the data value of the node, "delete" removes the first node wi th a par
t icular data value, and "reverse" reverses the structure. "Bubblesort" and "insertsort" 
perform the given sorting algori thm on an unordered instance of the list. "Left rotate" 
and "right rotate" rotate the B S T in the specified direction. Before the disposal of the 
data structure, we further check that it remained ordered after execution of the opera
t ion. The experiments were run on a machine wi th the Intel Core i5-480M @ 2 . 6 7 G H z 
C P U and 5 G i B of R A M . 

Compared wi th works [LRS05, W K Z + 0 7 , B B H + 1 1 , QHL+13] , which we consider the 
closest to our approach, the running times show that our approach is significantly faster. 
We, however, note that a precise comparison is not easy even wi th the mentioned works 
since as discussed i n the related work paragraph, they can handle more complex prop
erties on data, but on the other hand, they are less automated or handle less general 
classes of pointer structures. 
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5.4.1. D i scuss ion 

In the above, we described evaluation of our approach on programs manipula t ing skip 
lists of two and three levels. A natural question would be why we l imi t ourselves to two 
and three levels and not consider skip lists of even higher or, which would be the best 
case, of an arbi trary level. 

Based on our experience, already going from 2-level to 3-level skip lists makes a huge 
difference in difficulty, due to the occurrence of a combinatorial explosion i n the number 
of shapes considered by our approach. In order to make handling of a 3-level skip list 
feasible, we had to refine our finite height abstraction from a quite coarse one, which 
was sufficient for the other considered data structures, to take into account the number 
of unique paths from a state to a root reference (this step is described i n more detai l i n 
Section 4.2 for the case without data relations). For the case of 4-level skip lists, this 
ad-hoc abstraction refinement was not sufficient and our experiments d id not finish i n 
reasonable t ime. 

Moreover, in order to support skip lists w i th an arbi trary number of next selectors, 
these would need to be stored i n a dynamic list, therefore making the data structure yet 
more complex. Even more, the support of a data structure of an arbitrary level i n the 
current technique would need to use recursive nesting of boxes, which is not supported. 
A l lowing this would demand to rewrite the box learning algori thm to be able to find 
such recursive boxes, and the operations for manipulat ing those, including the language 
inclusion algori thm. These modifications are quite challenging and an interesting future 
research direction. 

5.5. Conclusion 

In this chapter, we presented an extension of FA-based analysis of heap manipulat ing 
programs wi th a support for reasoning about data stored i n dynamic memory. The result
ing method allows verification of pointer programs where the needed inductive invariants 
combine complex shape properties w i t h constraints over stored data, such as sortedness. 
The method is fully automatic, quite general, and its efficiency is comparable wi th other 
state-of-the-art analyses even though they handle less general classes of programs, are 
less automated, or both. We presented experimental results from verifying programs 
dealing wi th variants of (ordered) lists and trees. To the best of our knowledge, our 
method is the first one to cope fully automatical ly wi th a full C implementat ion of 
a 3-level skip list. 
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Part II. 

Using Automata for Deciding 
Logics 

(i.N 



6. Compositional Testing of Entailment 
for a Fragment of Separation Logic 

Automat ic verification of programs manipulat ing dynamic l inked data structures is 
highly challenging since it requires one to reason about complex program configura
tions having the form of graphs of an unbounded size. For that, a highly expressive 
formalism is needed. Moreover, i n order to scale to large programs, the use of such a for
mal ism wi th in program analysis should be highly efficient. In this context, separation 
logic (SL) [IO01, Rey02], a formalism complementary to forest automata presented i n 
Chapters 3-5, has emerged as one of the most promising formalisms, offering both high 
expressiveness and scalability. The latter is due to its support of compositional reasoning 
based on the separating conjunction * and the frame rule, which states that if a Hoare 
triple {(p}P{tp} holds and P does not alter free variables i n a, then {(p*a}P{ip*a} holds 
too. Therefore, when reasoning about P, one has to manipulate only specifications for 
the heap region altered by P. 

Usually, S L is used together w i th higher-order inductive definitions that describe the 
data structures manipulated by the program. If we consider general inductive definitions, 
then S L is undecidable [CYO01] . Various decidable fragments of S L have been introduced 
in the literature [BCO05, IRS13, P W Z 1 3 , B F G P 1 4 ] by restricting the syntax of the 
inductive definitions and the Boolean structure of the formulae. 

In the work presented in this chapter, we focus on a fragment of S L wi th inductive 
definitions that allows one to specify program configurations (heaps) containing finite 
nestings of various kinds of l inked lists (acyclic or cyclic, singly or doubly l inked, skip 
lists, etc.), which are common i n practice. Th is fragment contains formulae of the form 
3X : LT A E where A is a set of variables, II is a conjunction of (dis)equalities, and 
E is a set of spatial atoms connected by the separating conjunction. Spat ia l atoms 
can be points-to atoms, which describe values of pointer fields of a given heap location, 
or inductively defined predicates, which describe data structures of an unbounded size. 
We propose a novel (semi-)decision procedure for checking the val idi ty of entailments 
of the form ip =4> tp where ip may contain existential quantifiers and tp is a quantifier-
free formula. Such a decision procedure can be used i n Hoare-style reasoning to check 
inductive invariants but also in program analysis frameworks to decide terminat ion of 
fixpoint computations. A s usual, checking entailments of the form pi =4> V • tpj can 
be soundly reduced to checking that for each i there exists j such that ipi =4> tpj. 

The key insight of our decision procedure is an idea to use the semantics of the 
separating conjunction in order to reduce the problem of checking ip =4> tp to the problem 
of checking a set of simpler entailments where the right-hand side is an inductively-
defined predicate P(...). Th is reduction shows that the composit ionali ty principle holds 
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not only for deciding the val idi ty of Hoare triples but also for deciding the val idi ty of 
entailments between two formulae. To infer (dis)equalities impl ied by spatial atoms, our 
reduction to checking simpler entailments is based on Boolean unsatisfiability checking, 
which is in c o - N P but can usually be checked efficiently by current S A T solvers. 

Further, to check entailments ip =4> P{...) resulting from the above reduction, we 
define a decision procedure based on the membership problem for tree automata (TAs) . 
In particular, we reduce the entailment to testing membership of a tree derived from ip i n 
the language of a T A A[P] derived from P{...). The tree encoding of ip preserves some 
edges of the graph, called backbone edges, while others are re-directed to new nodes, 
related to the original destination by special symbols. Roughly, such a symbol may 
be a variable represented by the original destination, or it may show how to reach the 
original destination using backbone edges only. 

Our procedure is complete for formulae speaking about non-nested singly as well as 
doubly l inked lists. Moreover, it runs in polynomia l t ime modulo an oracle for deciding 
val idi ty of a Boolean formula. The procedure is incomplete for nested list structures due 
to not considering a l l possible ways in which targets of inner pointer fields of nested list 
predicates can be aliased. The construction can be easily extended to become complete 
even i n such cases, but then it becomes exponential. However, even i n this case, it 
is exponential in the size of the inductive predicates used, and not i n the size of the 
formulae, which remains acceptable i n practice. 

We implemented our decision procedure and tested it successfully on verification con
ditions obtained from programs using singly and doubly l inked nested lists as well as 
skip lists. The results show that our procedure does not only have a theoretically fa
vorable complexity (for the given context), but it also behaves nicely i n practice, at 
the same time offering the addi t ional benefit of composit ionali ty that can be exploited 
wi th in larger verification frameworks caching the simpler entailment queries. 

Related W o r k . Several decision procedures for fragments of S L have been introduced 
in the literature [BCO05 , C Y O 0 1 , C H O + 1 1 , ESS13, IRS13, IRV14, P R 1 1 , P W Z 1 3 , 
B G P 1 2 ] . Some of these works [BCO05, C Y O 0 1 , C H O + 1 1 , PR11] consider a fragment 
of S L that uses only a single predicate describing singly l inked lists, which is a much 
more restricted setting than what is considered in this work. In particular, Cook et 
al [CHO+11] prove that the satisfiabili ty/entailment problem can be solved in polyno
mia l t ime. Piskac et al [PWZ13] show that the Boolean closure of this fragment can 
be translated to a decidable fragment of first-order logic, and i n this way they prove 
that the satisfiabili ty/entailment problem can be decided i n N P / c o - N P . Furthermore, 
they consider the problem of combining S L formulae w i t h constraints on data using 
the Nelson-Oppen theory combinat ion framework. A d d i n g constraints on data to S L 
formulae is considered also i n Q i u et al [QGSM13] . 

A fragment of S L covering overlaid nested lists was considered by Enea et al [ESS 13]. 
Compared wi th i t , we currently do not consider overlaid lists, but we have enlarged the 
set of inductively-defined predicates to allow nesting of cyclic lists and doubly l inked lists 
( D L L s ) . We also provide a novel and more efficient TA-based procedure for checking 
simple entailments. 
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Brotherston et al [BGP12] define a generic automated theorem prover relying on 
the not ion of cyclic proofs and instantiate it to prove entailments i n a fragment of S L 
w i t h inductive definitions and disjunctions more general than what we consider here. 
However, they do not provide a fragment for which completeness is guaranteed. Iosif et 
al [IRS 13] also introduce a decidable fragment of S L that can describe more complex 
data structures than those considered by the work presetned i n this chapter, including 
e.g. trees wi th parent pointers or trees wi th l inked leaves. However, [IRS13] reduces 
the entailment problem to M S O on graphs wi th a bounded tree width , resulting i n 
a mult iply-exponential complexity. 

The recent work [IRV14] considers a more restricted fragment than [IRS13] (incom
parable wi th ours). The work proposes a more practical , purely TA-based decision 
procedure, which reduces the entailment problem to language inclusion on T A s , estab
lishing E X P T I M E - c o m p l e t e n e s s of the considered fragment. Our decision procedure 
deals w i th the Boolean structure of S L formulae using S A T solvers, thus reducing the 
entailment problem to the problem of entailment between a formula and an atom. Such 
simpler entailments are then checked using a polynomia l semi-decision procedure based 
on the membership problem for T A s . The approach of [IRV14] can deal w i th various 
forms of trees and w i t h entailment of structures wi th skeletons based on different se
lectors (e.g. D L L s viewed from the beginning and D L L s viewed from the end). O n the 
other hand, it currently cannot deal w i th structures of zero length and wi th some forms 
of structure concatenation (such as concatenation of two D L L segments), which we can 
handle. 

Contr ibut ion . Overal l , the contr ibution of the work presented i n this chapter is 
a novel (semi-)decision procedure for a r ich class of verification conditions wi th singly 
as well as doubly l inked lists, nested lists, and skip lists. A s discussed i n more detail 
in the previous paragraph, existing works that can efficiently deal w i th fragments of S L 
capable of expressing verification conditions for programs handling complex dynamic 
data structures are s t i l l rare. Indeed, we are not aware of any techniques that could 
decide the class of verification conditions considered i n this work at the same level of 
efficiency as our procedure. In particular, compared w i t h other approaches using T A s 
[IRS 13, IRV14], our procedure is composit ional as it uses T A s recognising models of 
predicates, not models of entire formulae. Moreover, our T A s recognise i n fact formulae 
that entail a given predicate, reducing S L entailment to the membership problem for 
T A s , not the more expensive inclusion problem as i n other works. 

6 .1 . Separation Logic Fragment 

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set of 
logical variables, disjoint from Vars, ranged over using X, Y, Z. We assume that Vars 
contains a variable n u l l . A l so , let ¥ be a set of fields. 
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We consider the fragment of separation logic whose syntax is given below: 

x, y G Vars program variables / € F fields 

X, Y G LVars logical variables P G P predicates 

B G ( Vars U LVars )* vectors of variables E, F ::= x | X 

P ••••= (f,E) | p,p 

II ::= E = F \ E ^ F \ II All pure formulae 

E ::= emp | £71-> {p} | F ( F , F , F ) | E * E spatial formulae 

(£> = 3 X : LT A E formulae 

W. l .o .g . , we assume that existentially quantified logical variables have unique names. 
The set of program variables used i n a formula <p is denoted by pv(<p). B y <p(E) (resp. 
p(E)), we denote a formula (resp. a set of field-variable pairs) whose set of free variables 
is E. G i v e n a formula p, pure(<p) denotes its pure part LT. We allow set operations to 
be applied on vectors. Moreover, E ^ B is a shorthand for f\B £B*E ^ Bi. 

The points-to atom E i-> { ( / j , F ) } j £ x specifies that the heap contains a locat ion E 
whose fi field points to F j , for a l l i. W. l .o .g . , we assume that each field fi appears at 
most once i n a set of pairs p. The fragment is parameterised by a set P of inductively 
defined predicates; intuit ively, F ( F , F , B) describes a possibly empty nested list segment 
delimited by its arguments, i.e. a l l the locations it represents are reachable from E and 
allocated on the heap except the locations i n { F } U B. 

Inductively defined predicates. We consider predicates defined as 

F ( F , F,B) =(E = F A emp) V 

( F + {F} U B A 3Xtl : E ( F , Xtl, B) * P(Xtl, F, B)) ^ ' ' 

where E is an existentially-quantified formula, called the matrix of P, of the form: 

E ( F , Xti, B) = 3~Z : E i-> {p({Xtl} U F ) } * E ' where V C Z U F and 

E ' ::= Q ( Z , 17, F ) | ( 3 1 + Q[Z, Y] \ E ' * E ' (6.2) 

for Z G Z , L7 G Z U B U { F , X t l } , ? C B U { F , X t l } , and 

0 1 + Q[Z, Y] = 3Z' : EQ(Z, Z', Y) * Q(Z', Z, Y) where E Q is the mat r ix of Q. 

The formula E specifies the values of the fields defined in F (using the atom F i—> 
{ p ( { X t l } U K ) } , where the fields i n p are constants in F) and the (possibly cyclic) nested 
list segments starting at the locations Z referenced by fields of F . We assume that E 
contains a single points-to a tom i n order to simplify the presentation. Notice that the 
matr ix of a predicate P does not contain applications of P. The macro ( 3 1 + Q[Z, Y] is 
used to represent a non-empty cyclic (nested) list segment on Z whose shape is described 
by the predicate Q. 
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We consider several restrictions on E which are defined using its Gaifman graph Gf [E]. 
The set of vertices of G/[E] is given by the set of free and existentially quantified variables 
in E , i.e. {E,Xtl}UBUZ. The edges i n G/[E] represent spatial atoms: for every (f,X) 
in p, G/[E] contains an edge from E to X labelled by / ; for every predicate Q(Z, U, Y), 
G/[E] contains an edge from Z to U labelled by Q; and for every macro ( 3 1 + Q[Z, Y], 
G/[E] contains a self-loop on Z labelled by Q. 

The first restriction is that G/[E] contains no cycles other than self-loops buil t solely 
of edges labelled by predicates. This ensures that the predicate is precise, i.e. for any 
heap, there exists at most one sub-heap on which the predicate holds. Precise assertions 
are very important for concurrent separation logic [GBC11] . 

The second restriction requires that a l l the max ima l paths of G/[E] start in E and 
end either i n a self-loop or in a node from BL){E, Xtl}. Th is restriction ensures that (a) 
al l the heap locations i n the interpretation of a predicate are reachable from the head of 
the list and that (b) only the locations represented by variables in F U B are dangling. 
Moreover, for simplicity, we require that every vertex of G/[E] has at most one outgoing 
edge labelled by a predicate. 

For example, the predicates given i n Figure 6.1 describe singly l inked lists, lists of 
acyclic lists, lists of cyclic lists, and skip lists w i th three levels. 

We define the relation -<p on P by P i -<p P 2 iff -P2 appears i n the mat r ix of Pi. 
The reflexive and transitive closure of -<p is denoted by -<p. For example, if P = 
{ s k l i , skl2, skis}, then skl3 -<p skl2 and skl3 -<¥ s k l i . 

Given a predicate P of the mat r ix E as in Equa t ion 6.2, let F h_ >.(P) denote the set of 
fields / occurring i n a pair (f,X) of p. For example, F ^ n l l ) = {s, h} and P M.(skl3) = 
F ^ ( s k l i ) = {/3,/2,/i}- A l so , let F ^ ( P ) denote the union of F ^ ( P ' ) for a l l P Ĵ> P'. 
For example, P ^ ( n l l ) = {s,h, /}. 

We assume that -< ¥ is a par t ia l order, i.e. there are no mutual ly recursive definitions 
in P . Moreover, for simplicity, we assume that for any two predicates P i and P 2 which 
are incomparable w.r.t. -<p, it holds that P M . ( P i ) n F h _ > . ( P 2 ) = 0. Th is assumption avoids 
predicates named differently but having exactly the same set of models. 

S e m a n t i c s . Let Locs be a set of locations. A heap is a pair (S, H) where S : Vars U 
LVars —> Locs maps variables to locations and H : Locs x F ^ Locs is a par t ia l function 
that defines values of fields for some of the locations i n Locs. The domain of H is 
denoted by dom(H) and the set of locations in the domain of H is denoted by ldom(H). 
We say that a locat ion £ (resp. a variable E) is allocated i n the heap (S, H) or that 
(S, H) allocates £ (resp. E) iff £ (resp. S(E)) belongs to ldom(H). 

The set of heaps satisfying a formula ip is defined by the relation (S, H) \= p given i n 
Figure 6.2. Note that a heap satisfying a predicate P(E, F, B) should not allocate any 
variable i n F U B since these variables are considered not to be a part of its domain. 
A heap satisfying this property is called well-formed w.r.t. the atom P(E, F, B). The set 
of models of a formula ip is denoted by [</?]. G i v e n two formulae pi and p2, we say 
that pi entails P2, denoted by pi P2, iff [<^il ^ [^2]- B y an abuse of notation, 
pi E = F (resp. pi E 7^ F) denotes the fact that E and F are interpreted to the 
same location (resp. different locations) i n a l l models of pi. 
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singly l inked lists: 

ls(E, F) 4 lemp(E, F) V (E ± F A 3 A t l : E ^ { ( / , A t l ) } * l s ( A t l , F ) ) 

lists of acyclic lists: 

n l l ( F , F , 5) = lemp(E, F ) V ( F / {F, B} A 3Xtl, Z : E ^ { ( a , A t l ) , (/», Z ) } 

* l s ( Z , S ) * n l l ( X t l , F , 5 ) ) 

lists of cyclic lists: 

n l c l ( F , F ) = lemp(E, F) V ( F / F A 3 A t l , Z : £ H > {(a , A t l ) , (/», Z )} 

* ( 3 1 + ls[Z] * n l c l ( A t l , F ) ) 

skip lists w i th three levels: 

s k l 3 ( F , F ) = lemp(E, F) V (E + F A 3 A t l , Z i , Z 2 : 

£ ? - > { ( / 3 , X t l ) , ( / 2 , Z 2 ) , ( / i , Z i ) } * 

B k l i ( Z i , Z 2 ) * s k l 2 ( Z 2 , X t l ) * s k l 3 ( A t l , F ) ) 

s k l 2 ( F , F ) = temp(F, F ) V ( F / F A 3 A t l , Z i : 

£ ; ^ { ( / 3 , n u l l ) , ( / 2 , X t l ) , ( / i , Z i ) } * 

B k l i ( Z i , X t l ) * s k l 2 ( A t l , F ) ) 

s k l i ( F , F ) = temp(F, F ) V (E / F A 3Xtl : 

F ^ { ( / 3 , n u l l ) , ( / 2 , n u l l ) , ( / 1 , X t l ) } * s k l 1 ( X t l , F ) ) 

Figure 6.1.: Examples of inductive definitions (lemp(E, F) = E = F A emp). 

6.2. Compositional Entailment Checking 
We define a procedure for reducing the problem of checking the val idi ty of an entail
ment between two formulae to the problem of checking the val idi ty of an entailment 
between a formula and an atom. We assume that the right-hand side of the entailment 
is a quantifier-free formula (which usually suffices for checking verification conditions i n 
practice). The reduction can be extended to the general case, but it becomes incomplete. 

6.2.1. O v e r v i e w of the R e d u c t i o n P r o c e d u r e 

We consider the problem of deciding val idi ty of entailments ip-y =4> < 2̂ w i th < 2̂ quantifier-
free. We assume pv((p2) Q pv(ipi); otherwise, the entailment is t r iv ia l ly not val id. 

The ma in steps of the reduction are given in A l g o r i t h m 6.1. The reduction starts by 
a normalisat ion step (described i n Section 6.2.2), which adds to each of the two formulae 
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(S,H) \= E = F iff S(E) = S(F) 

(S,H) \= E ^ F iff S(E) + S(F) 

(S,H) \= p A tp iff {S, H)\=<p and (S, H) \= $ 

(S,H) \= emp iff dom(H) = 0 
(S,H) iff dom(H) = {(S(E)Ji) | (fi,Ei) G {p}} and 

for every pair (/«, Ei) G {p}, it holds that 
H(S(E),fi) = S(Ei) 

(S,H) \= S i * £2 iff there exist Hi,H2 s.t. 
Idom(H) = ldom(Hi) l±l ldom(H2), 
(S,H!) |= S i , and (S,H2) ^ S 2 

(S,H) \=P(E,F,B) iff there exists A; € N s.t. 
|= Pk(E,F,B) and 

ldom(H) n U {5(5) | B G B } ) = 0 
(S,H) ^P°(E,F,B) iff (5, H) \= E = F A emp 

(S,H) \= Pk+1(E,F,B) iff (S,H) ^ £ / { F } U B A 
3Xtl : S(£7, X t l , S) * Pk(Xtl, F, B) 

(S,H) ^3X:p iff 3£ G Locs s.t. ( S L Y £],H) \= ip 

Figure 6.2.: The |= relation (l±l denotes the disjoint union of sets and S[X <— £] denotes 
the function S' such that S'(X) = £ and S'(Y) = S(Y) for any Y / X) 

al l (dis-)equalities impl ied by spatial sub-formulae and removes a l l atoms P(E, F, B) 
representing empty list segments, i.e. those where E = F occurs i n the pure part. The 
normalisation of a formula outputs false iff the input formula is unsatisfiable. 

In the second step, the procedure tests the entailment between the pure parts of the 
normalised formulae. Th is can be done using any decision procedure for quantifier-free 
formulae in the first-order theory wi th equality. 

For the spatial parts, the procedure builds a mapping from spatial atoms of ipV^ to 
sub-formulae of p\. Intuitively, the sub-formula p\ \a2\ associated to an atom a2 of p2i 
computed by s e l e c t , describes the region of a heap modelled by p\ that should sat
isfy a2. For predicate atoms a2 = P2(E, F, B), s e l e c t is called (in the second loop) only 
if there exists a model of p\ where the heap region that should satisfy a2 is non-empty, 
i.e. E = F does not occur i n <p™. In this case, s e l e c t does also check that for any model 
of (fi, the sub-heap corresponding to the atoms i n <p\[a2] is well-formed w.r.t . a2 (see 
Section 6.2.3). This is needed since a l l heaps described by a2 are well-formed. 

Note that i n the well-formedness check above, one cannot speak about p\[a2] alone. 
This is because without the rest of p™, Pi[a2] may have models which are not well-formed 
w.r.t. a2 even i f the sub-heap corresponding to p\[a2] is well-formed for any model of 
p\. For example, let p\ = ls(x,y) *ls(y,z) * z i-> {(/ , t)}, a2 = ls(x,z), and ^ l t 0 ^ ] = 
ls(x,y) * ls(y, z). If we consider only models of (p™, the sub-heaps corresponding to 
ip™[a2] are a l l well-formed w.r.t . a2, i.e. the locat ion bound to z is not allocated in these 
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A l g o r i t h m 6.1: Composi t ional entailment checking of <p\ =4> <p2 (-< is any total 
order compatible w i t h -<p) 

1 ip™ norm(<^i); ip% norm(<^2); / / normalisation 
2 if (p™ = false then return true: 
3 if (f2 = false then return false: 
4 if pure(ipi) pure((f2) then return false ; / / pure parts 

/ / shape parts 
5 foreach points-to atom ai in ip% do / / points-to atoms 

<£i[a2\ <— s e l e c t ^ ™ , 02): 

if ^"[02] 7^ 0,2 then return false: 

8 for P2 m a x ^ ( P ) downto m i n ^ ( P ) do / / predicate atoms 
9 foreach 02 = Pi{E, F, B) in ipV^ s.t. pure(ip™) 7^ E = F do 

10 ¥>i[a2] <~ s e l e c t ^ , a 2 ) ; 
11 if v?™[a2] a 2 then return false: 

12 return isMarked(<£>™): 

sub-heaps. However, ip™[02] alone has lasso-shaped models where the locat ion bound to 
z is allocated on the path between x and y. 

Once (fi [02] is obtained, one needs to check that a l l sub-heaps modelled by p?[ [02] are 
also models of 02- For points-to atoms 02, this boils down to a syntactic identity (modulo 
some renaming given by the equalities i n the pure part of p>i). For predicate atoms 02, 

a special entailment operator =$-sh (defined in Section 6.2.5) is used. We cannot use the 
usual entailment =4> since, as we have seen in the example above, ip™ [02] may have models 
which are not sub-heaps of models of p>\. Thus, p>\ [02] =>sh «2 holds iff a l l models of 
(^"[02], which are well-formed w.r.t. 02, are also models of 02. 

If there exists an atom 02 of p>2 that is not entailed by the associated sub-formula, 
then <pi =4> ip2 is not val id . B y the semantics of the separating conjunction, the sub-
formulae of ipi associated wi th two different atoms of p>2 must not share spatial atoms. 
In order to avoid such a scenario, the spatial atoms obtained from each application of 
select are marked and cannot be reused i n the future. Note that the mapping is buil t 
by enumerating the atoms of pi^ i n a part icular order: first, the points-to atoms and 
then the inductive predicates, i n a decreasing order w.r.t . -<$>. This is important for the 
completeness of the procedure (see Section 6.2.3). 

The procedure select is described i n Section 6.2.3. It returns emp if the construction 
of the sub-formula of ip™ associated wi th the input a tom fails (this implies that also the 
entailment <p\ =4> p>2 is not valid). If a l l entailments between formulae and atoms are 
val id, then p>\ =4> p>2 holds provided that a l l spatial atoms of p>\ are marked (tested by 
isMarked). In Section 6.2.5, we introduce a procedure for checking entailments between 
a formula and a spatial atom. 
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Initially: ip\ =4> ip2 

x n l l ( z ) ^ k l T V 

After normalisation: norm(^i ) =4> norm(?/>2) 
s 

x nll(z) V s k l ^ l 

\ y 4 _« 

* i e l ec t (V>i , s k l 2 ( y , i ) ) 

\ ' ' s e l e c t ( V > i , n l l ( a ; , y, z)) 

Figure 6.3.: A n example of applying composit ional entailment checking. Points-to edges 
are represented by simple lines, predicate edges by double lines, and dise-
quality edges by dotted lines. For readability, we omit some of the labell ing 
w i t h existentially-quantified variables and some of the disequality edges i n 
the normalised graphs. 

G r a p h representations. Some of the sub-procedures mentioned in the previous work 
on a graph representation of the input formulae, called SL graphs (which are different 
from the Gaifman graphs of Section 6.1). Thus, a formula ip is represented by a directed 
graph G[ip] where each node represents a max ima l set of variables equal w.r.t . the pure 
part of (p, and each edge represents a disequality £ / F or a spatial atom. Every 
node n is labelled by the set of variables Var(n) it represents; for every variable E, 
Node(E) denotes the node n such that E £ Var(n). Next , (1) a disequality E ^ F is 
represented by an undirected edge from Node(S) to Node(F), (2) a spatial a tom E i-> 

Ei),..., (fn, En)} is represented by n directed edges from Node(i?) to Node(£^j) 
labelled by fi for each 1 < i < n, and (3) a spatial a tom P(E,F,B) is represented by 
a directed edge from Node(S) to Node(i?) labelled by P(B). Edges are referred to as 
disequality, points-to, or predicate edges, depending on the atom they represent. For 
simplicity, we may say that the graph representation of a formula is s imply a formula. 
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/ \ [ £ = F ] A / \ -,[E = F] 

F(H)± / \ [E,a] A / \ [ E , a ] © [ E = F ] 

a=Bi-^{p}eS a=P(E,F,B)&H 

F = = A 
Ei,E2,E3 

variables in ip 

[E! = Ex] A = £ 2 ] [ £ 2 = #i]) A 

= E2] A [£?2 = E3}) = £3] 

B , F variables in <p 
a y^a' atoms in S 

Figure 6.4.: Defini t ion of the components of BoolAbs[</?] (© denotes xor) 

R u n n i n g e x a m p l e . In the following, we use as a running example the entailment 
ipi ip2 between the following formulae: 

V>i = 3 Y 1 ; Y2, Y3, Y 4 , Z 1 , Z 2 , Z 3 : x ^ z A Z 2 ^ z A x ^ {(a, Z 2 ) , (/», Z i ) } * 

Z 2 ' ^ {(a, y) , (h, Z3)} * l s ( Z i , z) * l s ( Z 3 , z) * l s ( y , Y i ) * (6.3) 

s k l 2 ( y , F 3 ) * l s ( F i , Y2) * Y3 ^ {(f2,t), ( / 1 ; Y4)} * t ^ {(a, F 2 ) } * 

l 4 ^ { ( / 2 , n u l l ) , (/!,*)} 

^2 = 2/ / t A n l l ( x , y, z) * s k l 2 ( y , {(a, y)} (6.4) 

The graph representations of these formulae are drawn in the top part of Figure 6.3. 

6.2.2. Normalisation 

To infer the impl ic i t (dis-)equalities i n a formula, we adapt the Boolean abstraction 
proposed i n [ESS13] for our logic. Therefore, given a formula ip, we define an equisat-
isfiable Boolean formula BoolAbs[</?] i n C N F over a set of Boolean variables containing 
the Boolean variable [E = F] for every two variables E and F occuring i n p and the 
Boolean variable [E, a] for every variable E and spatial a tom a of the form E i—>• {p} or 
P(E, F, B) in ip. The variable [E = F] denotes the equality between E and F, while 
[E, a] denotes the fact that the a tom a describes a heap where E is allocated. 

G iven ip = 3X : I I A S , BoolAbsf^] = F( I I ) A F ( S ) A F = A F , where the components of 
BoolAbsfy], defined in Figure 6.4, intui t ively mean the following: -F(II) and F(T,) encode 
the atoms of ip, F= encodes reflexivity, symmetry, and t ransi t ivi ty of equality, and F* 
encodes the semantics of the separating conjunction. 
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For the formula ip\ in our running example (Equat ion 6.3), BoolAbs[V>i] is a conjunction 
of several formulae including: 

1. [y, s k l 2 ( y , I3)] © [y = Y3], which encodes the atom s k l 2 ( y , Y3), 

2. [I3, F3 i-> { ( / 2 , t), (/1, y ) } ] and [£, 1i-> {(s, F 2 ) } ] , encoding points-to atoms, of ipi, 

3. ( [£ = y] A [t, t i->- { ( s , y 2 ) } ] ) =4> - i [y , s k l 2 ( y , I3)] , which encodes the separating 
conjunction between 11-> { ( s , y 2 ) } and s k l 2 ( y , y 3 ) , 

4. ([* = y 3 ] A [ i , i 1—> {(a ,y 2 )}] ) - . [ y 3,l3 -»• { ( / 2 , * ) > (/i>*4)}], which encodes the 
separating conjunction between t i-> {(s, y 2 ) } and Y3 i-> { ( / 2 , £ ) , ( / 1 , 14)}. 

P r o p o s i t i o n 6 .1. Let ip be a formula. Then, BoolAbskp] is equisatisfiable with p>, and 
for any variables E and F of ip, BoolAbs[<£>] [E = F] (resp. BoolAbs[<£>] ->[E = F\) 
iff<p=> E = F (resp. p>^ E^F). 

E x a m p l e 6 .1 . It holds that BoolAbs[V>i] =>• -\y = i\. This is a consequence of the 
following propositional reasoning. From the encoding of the points-to atoms from 2, the 
formula from 4, and modus tollens, we infer ->[t = Y3\. F= contains the formula 

([t = y}A[y = Y3})^[t = Y3]. (6.5) 

Because ->[t = Y3], when we apply modus tollens on the previous formula, we obtain the 
formula 

-.[* = y ] V - . [ y = y 3 ] . (6.6) 

The xor in 1 is equivalent to the following formula: 

([y, s k l 2 ( y , Y3)} V [y = Y3}) A H y , s k l 2 ( y , Y3)} V - [ y = Y3}). (6.7) 

Further, from [t, 11-> {(s, y 2 ) } ] a^rf i/ie formula from 3, we infer that 

^[t = y] V - [ y , s k l 2 ( y , y 3 ) ] - (6.8) 

[ /s ing resolution on the clause in Equation 6.6 and the first clause of the formula in 
Equation 6.7, we obtain 

- [ i = y ] V [ y , s k l 2 ( y , y 3 ) ] , (6.9) 

and using resolution on the just obtained clause in Equation 6.9 and the clause in Equa
tion 6.8, we finally infer ->[t = y] . • 

If BoolAbs[<£>] is unsatisfiable, then the output of norm(<^) is false. Otherwise, the 
output of norm(<£>) is the formula p> obtained from p by (1) adding al l (dis-)equalities 
E = F (resp. E j= F) such that [E = Fj (resp. ->[E = F]) is impl ied by BoolAbsf^] 
and (2) removing a l l predicates P(E,F,B) such that E = F occurs i n the pure part, 
creating formulae ip™ and ipV^- For example, the normalisations of ipi and ^2 are given 
in the bo t tom part of Figure 6.3. Note that the I s atoms reachable from y are removed 
because BoolAbs[V>i] [y = Y{\ and BoolAbs[V>i] [Y\ = y 2 ] , as justified i n the 
following example. 
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Example 6.2. We show that B o o l A b s k / > i ] [y = Y\\- We start with the observation 
that contains the following formula: 

([Y 3 = y] A [Y3,Y3 1 y {(f2,t),(h,YA)}]) - n [ y , l s ( y , y i ) ] . (6.10) 

Because the encoding of the points-to [13,13 *->• {(f2,t), ( / 1 , Y 4 ) } ] holds, this implies that 

[Y3 = y]^^[y,ls(y,Y1)}. (6.11) 

From F(T,), we have that [y, sk l 2 (y , I3)] © [y = Y3], from which we infer (with the help 
of F= containing [y = I3] •£=>• [I3 = y]) that 

- . [y 3 = y] [ y , s k i 2 ( y , y 3 ) ] . (6.12) 

Further, F* contains the following formula: 

([y = y] A [y, s k l 2 ( y , Y 3 )]) - [ y , l s (y , y ) ] , (6.13) 

/ rom which, together with [y = y] from F= and Equation 6.12, we infer that 

-^[Y3 = y}^^[y,ls(y,Y1)}. (6.14) 

Resolution on the clauses in Equations 6.11 and 6.14 gives us ->[y, ls(y, Yi)], and from 
the formula [y, l s (y , Yi)] © [y = Y\] contained in F(L) we finally deduce that [y = Y\\. 
Similar reasoning can be applied to deduce that [Yi = Y2] is also implied by B o o l A b s k p ] . 

• 
The following result is important for the completeness of the select procedure. 

Proposit ion 6.2. Let norm(<̂ ) be the result of the normalisation of a formula (p. For 
any two distinct nodes n and n' in the SL graph ofnorm(ip), there cannot exist two 
disjoint sets of atoms A and A' in norm(cp) such that both A and A' represent paths 
between n and n'. 

If we assume, for the sake of contradiction, that norm(<̂ ) contains two such sets of 
atoms, then, by the semantics of the separating conjunction, it needs to holds that one 
of the paths is empty, so that ip E = F where E and F label n and n' respectively. 
Therefore, norm(<̂ ) does not include a l l equalities impl ied by ip, which contradicts its 
definition. 

6.2.3. Selection of Spatial Atoms 

Points-to atoms. Let p>\ = 3X : LTi A S i be a normalised formula. The procedure 
select(<^i, E2 1—>• {P2}) outputs the sub-formula 3X : LTi AEi i-> {p{\ such that E\ = E2 
occurs in LTi if it exists, or emp otherwise. The procedure select is called only if p\ 
is satisfiable and consequently, p>\ cannot contain two different atoms E\ i-> {pi} and 
E[ ^ {p'i} such that E\ = E[ = E2. A l so , i f there exists no such points-to atom, then 
<Pi <P2 is not val id. Indeed, since (p2 does not contain existentially quantified variables, 
a points-to atom i n (p2 could be entailed only by a points-to atom in ip\. 

In the running example, select(i/>i, t i-> {(s,y)}) = 3 Y 2 : y = Y2 A . . . A t i-> {(s, Y 2 ) } 
(we have omit ted some existential variables and pure atoms). 
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P r e d i c a t e a t o m s . G iven an atom a 2 = P2(E2, F2, B2), se lect{ip\ , a 2 ) builds a sub
graph G' of G[<^i], and then it checks whether the sub-heaps described by G' are well-
formed w.r.t. a 2 . If this is not true or if G' is empty, then it outputs emp. Otherwise, it 
outputs the formula 3X : iTi A £ ' where £ ' consists of a l l atoms represented by edges of 
the sub-graph G'. Let Dangl ing[a 2 ] = Node(F 2 ) U { N o d e ( £ ) | B G B2}. 

The sub-graph G' is defined as the union of a l l paths of G[<pi] that (1) consist of 
edges labelled by fields i n F ^ ( P 2 ) or predicates Q w i t h P 2 -<p Q, (2) start i n the node 
labelled by E2, and (3) end either i n a node from Dangl ing[a 2 ] or in a cycle, i n which 
case they must not traverse nodes i n Dang l ing [a 2 ] . The paths i n G' that end i n a node 
from Dangl ing[o 2 ] must not traverse other nodes from Dang l ing [a 2 ] . Therefore, G' 
does not contain edges that start i n a node from Dang l ing [a 2 ] . The instances of G' for 
se lec t ( i /> i ,n l l (a ; , y, z)) and select( i />i , s k l 2 ( y , t)) are highlighted i n the bo t tom part 
of Figure 6.3. 

Next , the procedure s e l e c t checks that i n every model of tpi, the sub-heap described 
by G' is well-formed w.r.t. a 2 . Intuitively, this means that a l l cycles in the sub-heap are 
expl ici t ly described i n the inductive definition of P 2 . For example, i f ipi = ls(x,y) * 
ls(y,z) and </?2 = a 2 = ls(x,z), then the graph G' corresponds to the entire formula 
ipi and it may have lasso-shaped models (z may belong to the path between x and 
y) that are not well-formed w.r.t . l s ( x , z ) (whose inductive definition describes only 
acyclic heaps). Therefore, the procedure s e l e c t returns emp, which proves that the 
entailment ipi =4> ip2 does not hold. For our running example, for any model of tpi, i n 
the sub-heap modelled by the graph select( i />i , s k l 2 ( y , t)) in Figure 6.3, t should not 
be (1) interpreted as an allocated locat ion i n the list segment s k l 2 ( y , I3) or (2) aliased 
to one of nodes labelled by Y3 and I4 . 

The well-formedness test is equivalent to the fact that for every variable V G { -F 2 }U.B 2 

and every model of <p\, the interpretation of V is different from a l l allocated locations 
in the sub-heap described by G'. This is i n tu rn equivalent to the fact that for every 
variable V G { F 2 } U B2, the two following conditions hold: 

1. For every predicate edge e included i n G' that does not end i n Node(F) , V is 
allocated in a l l models of E 7̂  F A ((pi \ G') where E and F are variables labell ing 
the source and the destination of e, respectively, and tpi \ G' is obtained from ipi 
by deleting a l l spatial atoms represented by edges of G'. 

2. For every variable V' labell ing the source of a points-to edge of G', (pi V 7̂  V'. 

The first condit ion guarantees that V is not interpreted as an allocated locat ion i n 
a list segment described by a predicate edge of G' (this t r iv ia l ly holds for predicate edges 
ending i n Node(V)) . If V was not allocated i n some model (5, Hi) of E 7̂  F A ((pi \ G'), 
then one could construct a model (S, H2) of G' where e would be interpreted to a non
empty list and <S'(V) would equal an allocated locat ion inside this list. Therefore, there 
would exist a model of (pi, defined as the union of (5, Hi) and (S, H2), i n which the heap 
region described by G' would not be well-formed w.r.t. a 2 . 

For example, i n the graph select(V>i, s k l 2 ( y , t ) ) i n Figure 6.3, t is not interpreted as 
an allocated locat ion i n the list segment s k l 2 ( y , I3) since t is allocated (due to the atom 
t H> {(s,Y2)}) i n a l l models of y ^ I 3 A (tpi \ s e l e c t ^ i , s k l 2(y, t))). 
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To check that variables are allocated, we use the following property: given a formula 
if = 3X : n A E , a variable V is allocated in every model of ip iff 3X : II A E * V i—> 
{ ( / ) ^1) } is unsatisfiable. Here, we assume that / and V i are not used i n (p. Note that, by 
Proposi t ion 6.1, unsatisfiability can be decided using the Boolean abstraction BoolAbs. 

The second condit ion guarantees that V is different from al l allocated locations rep
resented by sources of points-to edges in G'. For the subgraph se l ec t ( i /> i , n l l ( a ; , y , z)) 
in Figure 6.3, the variable z must be different from al l existential variables labell ing 
a node which is the source of a points-to edge. These disequalities appear expl ic i t ly i n 
the formula. B y Proposi t ion 6.1, (pi =4> V ^ V can be again decided using the Boolean 
abstraction of ip-y. 

6.2.4. Soundness and Completeness 

The following theorem states that the procedure given in A l g o r i t h m 6.1 is sound and 
complete. The soundness is a direct consequence of the semantics. The completeness is 
a consequence of Proposit ions 6.1 and 6.2. In particular, Propos i t ion 6.2 implies that 
the sub-formula returned by se l ec t (<^ i , a 2 ) is the only one that can describe a heap 
region satisfying a 2 . 

T h e o r e m 6 .1 . Let (pi and <^2 be a pair of formulae such that <^2 is quantifier-free. Then, 
it holds that (pi =4> < 2̂ iff the procedure in Algorithm 6.1 returns true. 

6.2.5. Checking Entailments between formulae and Predicate Atoms 

Given a formula ip and an atom P(E, F, B), we define a procedure for checking that 
ip =^sh F ( F , F , B), which works as follows: (1) G[tp] is transformed into a tree T[<p] 
by spl i t t ing nodes that have mult iple incoming edges, (2) the inductive definition of 
F ( F , F , B) is used to define a T A A[P] such that T[<p] belongs to the language of 
A[P] only i f ip F ( F , F , B). Not ice that we do not require the reverse impl ica t ion 
in order to keep the size of A[P] po lynomia l in the size of the inductive definition of 
P. Thus, A[P] does not recognise the tree representations of a l l formulae ip such that 
<P =^sh P(E, F , B). The transformation of graphs into trees is presented in Section 6.3 
while the construction of the T A is introduced i n Section 6.4. In Section 6.6, we also 
discuss how to obtain a complete method by generating a T A A[P] of an exponential 
size. 

6.3. Representing SL Graphs as Trees 

We define a canonical representation of S L graphs i n the form of trees, which we use 
for checking =^sh- In this representation, the disequality edges are ignored because they 
have been dealt w i t h previously when checking entailment of pure parts. 

We start by explaining the main concepts of the tree encoding using the generic 
labelled graph in Figure 6.5a. We consider a graph G where a l l nodes are reachable from 
a distinguished node called Root (this property is satisfied by a l l S L graphs returned 
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fa 

Root 
9i 

fa 
52 a l i a s t M 

a l i a s t4-[/i/2] 
a) A labelled graph G b) A tree representation of G 

Figure 6.5.: The tree representation of a generic graph 

by the s e l e c t procedure). To construct a tree representation of G, we start w i th its 
spanning tree (highlighted using bold edges) and proceed wi th spl i t t ing any node wi th 
at least two incoming edges, called a join node, into several copies, one for each incoming 
edge not contained in the spanning tree. The obtained tree is given i n Figure 6.5b. 

In order not to loose any information, the copies of nodes should be labelled wi th the 
identity of the original node, which is kept i n the spanning tree. However, since the 
representation does not use node identities, we label every original node wi th a repre
sentation of the path from Root to this node in the spanning tree, and we assign every 
copied node a "routing" label describing how it can reach the original node in the span
ning tree. For example, if a node n has the label a l i a s t b i ] > this denotes the fact that 
n is a copy of some j o i n node, such that this jo in node is the lowest ancestor of n that 
is reachable from Root by a path formed of a (non-empty) sequence of g\ edges i n the 
spanning tree. Further, n labelled by a l i a s t4-[/i h] denotes roughly that (1) the original 
node is reachable from Root by a path formed by a (non-empty) sequence of fa edges 
followed by a (non-empty) sequence of fa edges, and (2) the original node can be reached 
from n by going up i n the tree unt i l the first node that is labelled by a prefix of fa fa 
and then down unt i l the first node labelled wi th fa fa. The exact definition of these 
labels can be found later i n this section. In general, a label of the form a l i a s f [ . . . ] w i l l 
be used when breaking loops while a label of the form a l i a s t4-[- • •] w m be used when 
breaking parallel paths between nodes. Moreover, i f the original node is labelled by 
a non-quantified variable, e.g. x, then we w i l l use a label of the form a l i a s [x]. This set of 
labels is enough to obtain a tree representation from S L graphs that can entail a spatial 
a tom from the considered fragment; for arbi trary graphs, this is not the case. 

W h e n applying this construction to an S L graph, the most technical part consists of 
defining the spanning tree. Based on the inductive definition of predicates, we consider 
a to ta l order on fields -<F that is extended to sequences of fields, ^ F * i n a lexicographic 
way. Then, the spanning tree is defined by the set of paths labelled by sequences of 
fields that are m i n i m u m according to the order ^ F * • 

Intuitively, the order -<f reflects the order i n which the unfolding of the inductive 
definition of P is done: (1) Fields used i n the atom E H->• p of the mat r ix of P are 
ordered before fields of any other predicate called by P. (2) Fields appearing in p and 
going "one-step forward" (i.e. occurring i n a pair (/, Xti)) are ordered before fields going 
"down" (i.e. occurring i n a pair (/ , Z) w i th Z € Z), which are ordered before fields going 
to the "border" (i.e. occurring i n a pair (/, B) w i th B £ B). 
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A l g o r i t h m 6.2: Funct ion t o T r e e Q encoding S L graphs to trees 

I n p u t : G : S L graph wi th a l l nodes reachable from the node of E, 
P(E, F, B) : predicate atom 

O u t p u t : A labelled tree that encodes G 
/ / compute the spann ing t r e e 

1 M := nodeMark ing (G , P, E, -<;p*): 
/ / s p l i t nodes o f Vars 

2 G' := s p l i t l a b e l l e d J o i n ( G , M , E, {F} U B): 
/ / s p l i t u n l a b e l l e d j o i n nodes 

3 T := s p l i t J o i n ( G ' , M ) ; 
/ / move l a b e l s from edges t o s r c nodes 

4 T' := u p d a t e L a b e l s ( T ) ; 

5 r e t u r n T"; 

Formally, given a predicate P w i t h the mat r ix £ as i n Equa t ion 6.2, we split the set 
F h_ >.(P) i n three disjoint sets: (a) ¥^xtl(P) is the set of fields / occurring i n a pair 
(f,Xti) of p, (b) ¥ g(P) the set of fields / occurring i n a pair (/ , Z) of p w i t h Z G Z, 
and (c) ¥ g(P) the set of fields / occurring i n a pair (/ , B) of p w i th B G B. Then , we 
assume that there exists a to ta l order -<p on fields such that for a l l P, Pi, Pi i n P: 

V / i G I U x t l ( P ) , V / 2 G ¥^(P), V / 3 G F ^ ( P ) : / i ^ F / 2 /a and 
(6.15) 

(fi G F _ ( P i ) A f2 G F ^ ( P 2 ) A / i ^ / 2 A P i ^ P P 2 ) / i ^ F / 2 -

For example, i f P = { n i l , I s } or P = { n l c l , I s } , then s ^ h -<¥ f; and i f P = 
{ s k l 2 , s k l i } , then / 2 fi. The order ^p is extended to a lexicographic order ^p» over 
sequences i n ¥*. 

A n f-edge of an S L graph is a points-to edge labelled by / or a predicate edge labelled 
by P(N) such that the m i n i m u m field i n F h_ >.(P) w.r.t . ^p is / . 

Let G be an S L graph and P(E,F, B) an atom for which we want to prove that 
G P(E, F, B). We assume that a l l nodes of G are reachable from the node Root 
labelled by E, which is ensured when G is constructed by s e l e c t . The tree encoding of 
G is computed by the procedure t o T r e e ( G , P(E, F, B)) (given i n A l g o r i t h m 6.2) that 
consists of four consecutive steps that are presented below. 

N o d e m a r k i n g . F i rs t , t o T r e e computes a mapping M , called node marking, defining 
the spanning tree of G. Intuitively, for each node n, M ( n ) is the sequence of fields 
labell ing a path reaching n from Root that is m in ima l w.r.t . ^p*. Formally, let TT be a path 
in G s tart ing in Root and consisting of the sequence of edges e i e 2 . . . en. The labelling 
of it, denoted by L(7r) , is the sequence of fields fi / 2 . . . / „ such that for a l l i, ei is an 
/j-edge. The marking of a node n in G is defined by 

M ( n ) = Reduce (mm ^¥(¥^(P)) . L m i n ( n ) ) , where (6.16) 

Lmin(^) — m i n {^(TT) I - R o o i - ^ n } (6-17) 
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alias [y] s k l 2 f2 
alias [t] 

alias [t] 
l s j { I s 

alias [z] O O alias [z] 

(a) Tree encodings for the selected subgraphs i n the bo t tom left part of Figure 6.3 

K I > W . v w alias [y] 
' " h i \ h 

/ I f I / ) / 

aliast[s/i] O Oal iast[s / i ] 

(b) Tree encodings for graphs satisfying n l c l 

* s k l 2 

: / 2 , M : / 2 , í s k l o 
O ^ O a l i a s f í ] 

0 ^ - 0 a l i a s [ i ] 

"•.f2hM:f2h 0 alias \ . ; . / 2 

(c) Tree encodings for graphs satisfying s k l 2 

Figure 6.6.: Tree encodings. 

where Reduce rewrites the sub-words of the form / + to / for any field / , and Root - ^ n 
means that TT is a path from the node Root to the node n. For technical reasons, we add 
the m i n i m u m field (w.r.t. -<f) i n F h_ >.(P) at the beginning of a l l M ( n ) . 

Figures 6.6b-c depict two graphs and the markings of their nodes (for readability, we 
omit the markings of the nodes labelled by y and t). 

S p l i t t i n g j o i n n o d e s . The jo in nodes are split i n two consecutive steps, denoted as 
s p l i t l a b e l l e d J o i n and s p l i t J o i n , depending on whether they are labelled by vari
ables i n {E, F} U B or not. In both cases, only the edges of the spanning tree are kept 
in the tree, the other edges are redirected to fresh copies labelled by some alias [..]. 

For any jo in node n , the spanning tree edge is the /-edge (m, n) such that it holds 
that Reduce(M(m)./) = M ( n ) , i.e. (m,n) is at the end of the m i n i m u m path leading 
to n. (For Root, no incoming edge is i n the spanning tree.) 

In s p l i t l a b e l l e d J o i n , a graph G' is obtained from G by replacing any edge (m,n) 
such that n is labelled by some V G {E, F} U B and (m,n) is not i n the spanning tree 
by an edge (m, n') w i th the same label, where n' is a fresh copy of n labelled by alias [V]. 
Moreover, for uniformity, a l l (even non-join) nodes labelled by a variable V G {F} U B 
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are labelled by a l i a s [V] i n G'. Figure 6.6a gives the output graph of s p l i t l a b e l l e d J o i n 
on the S L graphs returned in our running example by select(?/>i, n l l ( x , y, z)) and 
select(V>i, s k l 2 ( y , t)). 

Subsequently, s p l i t Join builds from G' a tree by spl i t t ing unlabelled jo in nodes as 
follows. Let n be a j o i n node and (m, n) an edge not in the spanning tree of G' (and G). 
The edge (m, n) is replaced i n the tree by an edge (m, n') w i th the same edge label, 
where n' is a fresh copy of n labelled by: 

• a l i a s t [M(n)] i f m is reachable from n i n G' and al l predecessors of m i n G' (by a sim
ple path) marked by M ( n ) are also predecessors of n. Intuitively, this label is used 
to break loops, and it refers to the closest predecessor of n' having the given mark
ing. The use of this labell ing is i l lustrated i n Figure 6.6b. 

• a l i a s t i [ M ( n ) ] if there is a node p which is a predecessor of m such that a l l predeces
sors of m that have a unique successor marked by M ( n ) are also predecessors of p, 
and n is the unique successor of p marked by M ( n ) . Intuitively, this transformation 
is used to break mult iple paths between p and n as i l lustrated in Figure 6.6c. 1 

If the relation between n and n' does not satisfy the constraints mentioned above, i.e. 
the formula does not belong to the considered fragment, the result of s p l i t J o i n is an 
error represented by the _L tree. 

A t the end of these steps, we obtain a tree w i t h labels on edges (using fields / G F or 
predicates Q(B)) and labels on nodes of the form a l i a s [..]; the root of the tree is labelled 
by E. 

U p d a t i n g the labels. In the last step, two transformations are done on the tree. 
Fi rs t , the labels of predicate edges are changed i n order to replace each argument X 
different from elements of the set {F}UB by the argument a l i a s t [M(n) ] or a l i a s t i [ M ( n ) ] , 
which describes the posit ion of the node n labelled by X w.r.t . the node of G labelled 
by E. In the case this is not possible, the algori thm returns _L. 

F inal ly , as the generated trees w i l l be tested for membership i n the language of a T A 
which accepts node-labelled trees only, the labels of edges are moved to the labels of 
their source nodes and concatenated i n the order given by -<F (predicates i n the labels 
are ordered according to the m i n i m u m field i n their matr ix) . 

The following property ensures the soundness of the entailment procedure: 

Proposit ion 6.3. Let P(E,F,B) be a predicate atom and G an SL graph. If the pro
cedure toTree(G, P(E, F, B)) returns _L ; then G & P(E, F, B). 

l rTlie combination of up and down arrows in the label corresponds to the need of going up and then 
down in the resulting tree—whereas in the previous case, it suffices to go up only. 

86 



Pi(B) 
(1) qo h{qo),h{q\),h{q2 
(2) <h a l i a s t l [ / i ] 
(3) a l i a s [S] 

(4) qo h{<to),h{<ti),h{<b 
(5) a l i a s [F] 

(6) qo A(S)(<8>) 
(7) qo 

6.7.: ^ l [ F i ( F , F , F ) ] 

6.4. Tree Automata Recognising Tree Encodings of SL 
Graphs 

Next , we proceed to the construction of tree automata A[P(E,F, B)] that recognise 
tree encodings of S L graphs that entail atoms of the form F ( F , F , B). We start w i t h 
an intuit ive description on two typica l examples and give a full description of the T A 
construction later. F i rs t , to simplify the exposition, we give a modified definition of tree 
automata for the use in the rest of this chapter (cf. Chapter 2). 

Tree automata. A (nondeterministic) tree automaton ( T A ) recognising tree encodings 
of S L graphs is a tuple A = (Q, qo, A ) where Q is a finite set of states, go G Q is the in i t i a l 
state, and A is a finite set of transitions of the form (q, a\ • • • an, q\ • • • qn) or (q, a, e), 
where n > 0, q, q\,..., qn G Q, ai is an S L graph edge label (we assume them to be 
ordered w.r.t . the same ordering of fields as for tree encodings), and a is alias'[[m], 
a l i a s til)™]) o r

 a l i a s W] f ° r a marking m and a variable V. We use q ai(qi),..., an(qn) 
to denote (q, a\ • • • an, q\ • • • qn) and q a to denote (q, a, e). The set of trees L(A) 
recognised by A, called the language of A, is defined i n the same way as i n Chapter 2. 

Construct ion of A[P{E, F, B)\. The tree automaton A[P{E, F, B)] is constructed by 
a procedure start ing from the inductive definition of P. If P does not ca l l other predi
cates, the T A simply recognises the tree encodings of the S L graphs that are obtained by 
"concatenating" a sequence of Gaifman graphs representing the mat r ix S ( F , Xtl, B) and 
predicate edges P(E, Xtl, B). In these sequences, occurrences of the Gai fman graphs 
representing the mat r ix and the predicate edges can be mixed i n an arbi trary order 
and i n an arbi trary number. Intuitively, this corresponds to a par t ia l unfolding of the 
predicate P i n which there appear concrete segments described by points-to edges as 
well as (possibly multiple) segments described by predicate edges. Concatenat ing two 
Gaifman graphs means that the node labelled by Xtl in the first graph is merged w i t h 
the node labelled by F i n the other graph. We first i l lustrate this in the following exam
ples and give the formal algori thm later. The T A s for the running examples are given 
in Section 6.4.3. 
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Figure 6.8.: A[ls(E,F)} 

Consider a predicate P\(E, F, B) that does not invoke any other predicates and that 
is defined using the matr ix E i = E i-> {(fi,Xtl), (f2, Xtl), (fs,B)}. The tree automa
ton A[P\(E, F, B)] for Pi(E, F, B) has transitions given in Figure 6.7. Transitions 1-3 
recognise the tree encoding of the Gaifman graph of E i , assuming the following total 
order on the fields: f\ -<F J2 -<¥ fz- Transi t ion 4 is used to dist inguish the "last" in 
stance of this tree encoding, which ends i n the node labelled by a l i a s [F] accepted by 
Transi t ion 5 . F inal ly , Transitions 6 and 7 recognise predicate edges labelled by P\{B). 
A s i n the previous case, we distinguish the predicate edge that ends i n the node labelled 
by a l i a s [F\. 

Note that the T A given above exhibits the simple and generic skeleton of T A s accepting 
tree encodings of list segments defined in our S L fragment: The in i t i a l state go is used 
in a loop to traverse over an arbitrary number of folded (Transit ion 6) and unfolded 
(Transit ion 1) occurrences of the list segments, and the state g3 is used to recognise the 
end of the backbone (Transit ion 5 ) . The other states (here, q2) are used to accept alias 
labels only. The same skeleton can be observed in the T A recognising tree encodings of 
singly l inked lists, which is given in Figure 6.8. 

W h e n P invokes other predicates, the automaton recognises tree encodings of concate
nations of more general S L graphs, obtained from G/[E] by replacing predicate edges 
w i t h unfoldings of these predicates. O n the level of T A s , this operation corresponds to 
a subst i tut ion of transitions labelled by predicates w i t h T A s for the nested predicates. 
Dur ing this substi tution, a l i a s [..] labels occurring i n the T A for the nested predicate need 
to be modified. Labels of the form a l i a s t [ m ] and a l i a s t ^ b ^ ] are adjusted by prefixing 
m w i t h the marking of the source state of the transit ion. O n the contrary, labels of the 
form a l i a s [V] are substi tuted by the marking of N o d e ( F ) w.r.t. the higher-level matr ix . 

Let us consider a predicate P2(E, F) that calls P i and that has the mat r ix defined as 
S 2 4 3Z : E H+ {(gi,Xtl),(g2,Z)}A 01+ Pi[Z,E\. The T A A[P2(E,F)} for P2(E,F) 
consists of the following transitions: 

( i ' ) ggo ^ 9 i (ggo), 92 (go) (2') ggo ^ 3 1 ( 5 5 1 ) , 5 2 ( 9 0 ) 

transitions of A[P\(E, F, B)], where (3') ggi <^ a l i a s [F] 

a l i a s [F] is substi tuted by a l i a s | [ 3 i 3 2 ] , (4 ' ) ggo P2(ggo) 

a l i a s [B] by a l i a s t [ 5 i ] , and (5 ' ) gg 0 ^ ^ 2 ( 9 9 1 ) 

a l i a s t4-[/i] is substi tuted by a l i a s tl[gi 32 /1 ] 

(Transit ion 1') and the transitions imported (after renaming of the respective labels) from 
A[Pi(E, F, B)] describe trees obtained from the tree encoding of Gf[T,2] by replacing the 
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edge looping i n Z w i th a tree recognised by A[Pi(E,F,B)]. Accord ing to Gf[T,2], the 
node marking of Z is g\ g2, and so the label a l i a s [F] shall be substituted by a l i a s t [ < ? i 92], 

and the mark ing a l i a s t4-[/i] shall be substituted by a l i a s "M-[<7i 92 fi]-
In the next sections, we describe our algori thm for construction of tree automata for 

predicates. F i r s t , we start w i t h a description of the basic algori thm for constructing tree 
automata accepting unfoldings of the predicate where every singly l inked list segment 
(both top-level and nested) is non-empty. Then, we proceed wi th a description of an 
extension of the algori thm for list segments that may be empty. 

6.4.1. Basic Algorithm for Non-Empty List Segments 

Consider the definition of the mat r ix of the predicate P(E, F, B) as given i n Section 6.1 
repeated for the sake of convenience here: 

P(E, F, B) = (E = F A emp) V 

(E^{F}UB A 3Xtl : E(E, Xtl, B) * P(Xtl, F, B)) 

where £ is of the form: 

E(E, Xti, B) = 3Z : E i-> {p({Xtl} U V)} * E ' where V C Z U B and 

E ' ::= Q(Z, U, Y) \ 01+ Q[Z, Y] | £' * £' 

for Z G Z, U G Z U B U {E, Xtl}, Y C B U {E, Xtl}, and 

0 1 + Q[Z, Y] = 3Z' : EQ(Z, Z', Y) * Q(Z', Z, Y) where E Q is the mat r ix of Q. 

The construction of the automaton A[P] is described i n the following. To ease its 
presentation, let us suppose that the mat r ix of P is of the form Y,(E,Xti, B) = 3Z : 
E ^ { ( / l j - ^ i ) ) • • • > (fn,Zn)} * £ ' . W. l . o .g . we further assume that fi ••• fn, 
i.e. f\ is the m i n i m u m field in F h_ > .(P). 

The construction uses the S L graph of the following formula, which represents two 
unfoldings of the recursive definition of the predicate: 

3Xtl : E(E, Xtl, B) * E ( X t l , F, B). (6.18) 

The unfolding is done twice i n order to capture a l l the markings (including the ones of 
the nodes allocated inside the list segment) that may appear in tree encodings that shall 
be recognised by A[P] • The graph G is obtained from the S L graph of the formula i n 
Equa t ion 6.18 in such a way that the macro ( 3 1 + Q[Z, Y] is not expanded but translated 
into a predicate edge from N o d e ( Z ) to N o d e ( Z ) labelled w i t h Q(Y). 

Then, we get the tree encoding T[G] of G and check that it is not equal to _ L , otherwise 
we abort the procedure. Notice that the variable Xti is existentially quantified i n the 
formula, so T[G] does not use the aliasing relation a l i a s [Xti]- Instead, a node that is 
a copy of the node labelled wi th Xti i n G needs to use either the relation a l i a s t [ / i ] 

or the relation a l i a s t i [ / i ] , because the mark ing of N o d e ( X t l ) is f\. Reca l l also that 
the nodes of G labelled by parameters or existentially quantified variables are pushed 
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directly in T[G]. So, we overload the notat ion Node(Z) to denote the node of T[G] 
obtained from the node of G labelled by Z. 

The construction starts w i th an empty automaton »4[P]. It calls the procedure 
b u i l d T A C a l l , which adds states and transitions to A[P] to recognise tree encodings of 
unfoldings of the atom P(E, F, B). Th is procedure is recursive, because it is called for a l l 
atoms Q(U, V, W) inside the formula i n Equa t ion 6.18. The arguments of b u i l d T A C a l l 
are: the predicate called, a mapping a of the formal parameters of the predicate to an 
aliasing relation, the states go and q\ to be used for the source resp. the continuation 
of the construction, and the marking mo of the state qo. The in i t i a l values of these 
parameters are, i n order: P, {E i-> a l i a s [E],F i-> a l i a s [ P ] , P i-> a l i a s [B]}, fresh states 
qo, q\, and f\. B y B i-> a l i a s [B] we denote the set of mappings {B i-> a l i a s [B] \ B G B}. 
The state qo is marked as the root state of A[P]. 

The procedure b u i l d T A C a l l consists of the following four steps. 

I . I m p o r t i n g t h e t r ee e n c o d i n g T [ G ] . In the first step, we construct the skeleton 
of A[P] by taking 1~[G] and transforming it i n the following way: 

(a) For each node u of T[G], we create a unique state q{u) i n »4[P], except for the nodes 
Node(P) and Node(P) , for which we use the states go and gi respectively. 

(b) If the node u is labelled i n T[G] w i th an aliasing relation r G { a l i a s [B] \ B G 

B} U { a l i a s A [ m ] | A G {t)t4-}}> where m is a marking, we add the t ransi t ion 

where (3(r, a, mo) changes r i n the following way: If r is of the form a l i a s [B] for any 
B G B, the result is c(B). O n the other hand, when r is a relation a l i a s A [ m ] for 
A G {t)t4-}> it is changed to a l i a s A[Reduce(mo .m)]. 

(c) If there is a predicate edge from u to v labelled wi th Q(Y), we add the transi t ion 

where j3'(Y,a, mo) changes every Y i n Y according to the following rules: 

• If Y is an argument of the function cal l , it is changed to o~(Y): 

• if Y is an existentially quantified variable i n the formula in Equa t ion 6.18, m is 
the marking of Node(P) , and the relation between Node(P) and Node(y) is 
a l i a s A[m] for A G {T)T4-}> w e change Y to a l i a s A[Reduce(mo . m)]; 

• otherwise, we abort the procedure. 

(d) If the node u is the source of points-to edges e\,...,ek labelled wi th the fields 
h i , . . . ,hk respectively, assuming that h i -<w • • • -<v hk, and entering nodes v i , . . . ,Vk 

in this order, we add the transi t ion 

q(u) ^ P(r, a, m 0 ) (6.19) 

q(u)^ Q((3'(Y,a,mo))(q(v)). (6.20) 

q(u) ^hi(q(vi)),... hk(q(vk)). (6.21) 
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Note that this rule also creates the backbone transi t ion 

g 0 ^ / i ( g ( N o d e ( A t l ) ) ) , / 2 ( g ( Z 2 ) ) , . . . , fn(q(Zn)). (6.22) 

(e) If the ca l l to b u i l d T A C a l l is not nested, we add the transi t ion 

gi ^ a{F). (6.23) 

Observe that the created skeleton is able to accept precisely two unfoldings of the pred
icate P between E and F such that nested predicates are not unfolded. 

I I . A c c e p t i n g n o n e m p t y l i s t s e g m e n t s . Next , we make A[P] accept an arbitrary 
number of these unfoldings along the backbone field of the predicate. To do this, we take 
the in i t i a l t ransi t ion from Equa t ion 6.22 and insert into A[P] the following transitions: 

(a) a t ransi t ion that accepts exactly one unfolding: 

qo ^fi(qi), f2(q(Z2)), • • •, Uq{Zn)). (6.24) 

(b) a looping transi t ion that allows to insert arbi t rar i ly many unfoldings: 

g ( N o d e ( A t l ) ) ^ / ^ ( N o d e ^ ) ) ) , f2(q(Z2)), fn(q(Zn)). (6.25) 

I I I . I n t e r l e a v e w i t h p r e d i c a t e edges . We add transitions allowing an arbitrary 
interleaving of folded and unfolded occurrences of the translated predicate P: 

go ^ P ( F H ] ) ( g ( N o d e ( A t l ) ) ) (6.26) 

g ( N o d e ( A t l ) ) ^P(B[a])(q(Node(Xtl))) (6.27) 

g ( N o d e ( A t l ) ) ^P(B[a])(gi). (6.28) 

I V . I n s e r t i n g t r e e a u t o m a t a o f n e s t e d p r e d i c a t e edges . For each transi t ion 
inserted in A[P] of the form: 

g(Node(i?)) ^ Q(F)(g(Node(S) ) ) , (6.29) 

w i t h Q / ? , we cal l recursively the procedure b u i l T A C a l l to insert into A[P] the 
automaton for the cal l of the predicate Q w i t h the parameters (R, S, Y). The states 
created by each cal l of b u i l T A C a l l are new. The procedure b u i l T A C a l l is called w i t h 
the process identifier Q, 

• the mapping {E i-> m, F i-> rs, B i-> r y } , where for any Z G {R, S} U Y: 

- i f Z e {E, F} U B then r z is a(Z), 

— if Z G Z (the set of existentially quantified variables i n P) then rz is 
a l ias t i fw-z] where mz is the marking of Node(Z) i n T[G], 
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a) The S L graph of a 3-level skip list 
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b) The tree encoding of the graph i n (a) 

XQ 

Figure 6.9.: I l lustrat ion of the issue w i t h possibly empty nested list segments. The label 
of the node accessible from £5 over f\ (labelled wi th aliasT4-[/s]) reflects the 
fact that the second-level skip list from the node £4 to the node XQ is empty. 

• the states g(Node(i?)) and g(Node(5)), and 

• the marking Reduce(mo ,mj j ) , where TJIR is the marking of Node(i?) in T[G\. 

The following result states the correctness of the tree automata construction. 

T h e o r e m 6.2. For any predicate atom P(E, F, B) and any SL graph G, if the tree gen
erated by t o T r e e ( G , P(E, F, B)) is recognised by A[P(E, F, B)), then G P{E, F, B). 

6.4.2. Extending the Basic Algorithm to Possibly Empty Nested List 
Segments 

This extension creates tree automata that can accept such unfoldings of the predicate 
where nested list segments may be empty. The difficulties this creates are shown i n 
Figure 6.9. The label of the node accessible from £5 over f\ (labelled wi th aliasT4-[/3]) 
reflects the fact that the second-level skip list from the node £4 to the node XQ is empty. 
Therefore, when the automaton is traversing the segment between £4 and XQ, it needs to 
remember that if the second level list segment leaving £4 is empty, the label at the end 
of the first level list segment leaving £4 is not aliast4-[/3/2] but aliasT4-[/s]• Note that 
the top-level list segment predicate is always non-empty; the case when it is empty is 
dealt w i t h during the normalisat ion phase (see Section 6.2.2). 
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Suppose there are nested list segments Ri,..., Rn i n the matr ix T,(E, Xtl, B) of the 
predicate P(E, F, B) (note that the predicate of some distinct Ri and Rj can be the 
same, e.g. Ri = ls(S, T) and Rj = ls(U, V)). For every subset S of the set of nested list 
segments, S C {Ri,... ,Rn}, we run the procedure i n Section 6.4.1 such that we first 
modify T,(E, Xti,B) i n such a way that a l l nested list segments not i n S are substituted 
by their ground case and obtain the automaton A . We then obtain the automaton 
A[P(E, F, B)] by uni t ing a l l the automata retrieved i n the previous step together and 
merging their in i t i a l states into one. 

Formally, given the automata As = (Qs, g^, As) for a l l S C {R\,..., Rn} (supposing 
their sets of states are pairwise disjoint) we create A[P(E, F, B)] = (Q,qo,A) in the 
following way. 

Q = {qo}U | J (QS\{q$}) (6.30) 
SC{RU...,RN} 

A = | J As[q0/q$] (6.31) 
SC{RU...,RN} 

where As [qo/q^] denotes the set of transitions As where every occurrence of q^ is 
substituted wi th go. It is easy to observe that the number of automata As is 2 n ; the 
construction is therefore exponential. 

6.4.3. T r e e A u t o m a t a for the R u n n i n g E x a m p l e 

This section lists tree automata for the predicates from Figure 6.1. The automaton 
A[ls(E, F)] contains the following set of transitions (with go being the in i t i a l state): 

qo f(qo) qo i s (go) 
qo f(gi) qo is(gi) 
qi a l i a s [F] 

The automaton „4, [nl l (G, H, B)] contains the following set of transitions (with qq$ being 
the in i t i a l state): 

qqo ^ s(qq0), h(q0) qq0 ^ s(qqi), h(q0) 
qqi ^ a l i a s [H] qq0 -->• nll(B)(qq0) 
transitions of A[ls(E, B)] qqo nll(B)(qqi) 

The automaton „4,[skli(.Kr, L)\ contains the following set of transitions (po is the in i t i a l 
state): 

Po h(p±),f2(p±), / i (po) Po ^ s k l i ( p o ) 
Po ^ h(p±),f2(p±),fi(pi) Po s k l i ( p i ) 
pi a l i a s [L] p± < -̂» a l i a s [ N U L L ] 
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The automaton „ 4 , [ s k l 2 ( M , N)] contains the following set of transitions {ppo is the in i t i a l 
state): 

PPo h(p±),hippo),/i(po) PPo s k l 2 ( p p 0 ) 
PPo ^ /3 (P±), /2 (ppi), fi ipo) PPo skl 2 {ppi) 
transitions of A[skliiK, L)], where pp\ a l i a s [N] 

a l i a s [L] is substituted by a l i a s t i L f e ] 

The automaton „4,[skl3(P, i?)] contains the following set of transitions {pppo is the in i t i a l 
state): 

PPPO ^ /3 (PPPO ), h (.PPo), fi (po) PPPo ^ s k l 3 (pppo) 

PPPo ^ /3 (PPPl) , /2 (PPo), fi (po) PPPo ^ s k l 3 (pppi) 
transitions of . A [ s k l 2 ( M , iV)], where pppi ^ a l i a s [i?] 

a l i a s [N] is substi tuted by a l ias t4- [ /S] 

a l i a s t i [ / 2 ] is substi tuted by aliasT4-[/3 h] 

The automaton A[nlcl(S, T)] contains the following set of transitions (with qq$ being 
the in i t i a l state): 

qq0 ^ s(qq0), h(q0) qq0 ^ s(qqi), hiq0) 

qqi ^ a l i a s [T] qq0 -->• n l c l ( g g 0 ) 

transitions of A[ls(E, F)], where qqo n l c l ( g g i ) 

a l i a s [F] is substi tuted by alias~\[sh] 

6.5. Extensions 

The procedures presented above can be extended to a larger fragment of S L that uses 
more general inductively defined predicates. In particular, they can be extended to cover 
finite nestings of singly or doubly l inked lists. To describe doubly l inked segments, we 
extend the definition of a predicate from Equa t ion 6.1 to the following: 

A 
(6.32) 

Rdl(E, F,P,S,B) = {E = S AF = P A emp) V ( E ^ S A F ^ P A 

3Xtl : E(E, XTL, P, B) * RDL(XTL, F, E, S, B)) 

where E is an existentially-quantified mat r ix of the form: 

E(E, X t i , P, B) = 3~Z : E i-> {p{{XTL, P} U V)} * E ' where V C Z U B and 

S ' : : = Q(Z, U, Y) \ QDL(Z, U, ZP, ZS, Y) \ 

0 1 + Q[Z,Y] | 0 1 + QDI[Z,Y] | E ' * E ' 

for Z e Z; U, ZP, ZS G Z U B U {E, XTL, P}; F C B U {E, XTL, P}, 

0 1 + Q[Z, Y] 4 3 Z ' : Eq (Z, Z ' , F ) * Q(Z', Z, Y) 

where Eq is the mat r ix of Q, or 

0 1 + Qdi[Z, Y) 4 3 Z ' , Z P : S Q ( H ( Z , Z ' , Z P , F ) * Q ^ ' , Z P , Z, Z, Y) 

where T,Qdl is the matr ix of Qdi-
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alias [P] O O ^ k ^ O ^ k y ^ alias [5] 
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alias [E]0 O O a l i a s f N 
alias | 2 N 

b) The tree encoding of the graph from (a) 

Figure 6.10.: Tree encodings for doubly l inked lists 

In Equa t ion 6.32, P corresponds to the predecessor of E and S corresponds to the 
successor of F. For instance, to describe D L L segments between two locations E and F, 
one can use the predicate 

d l l ( £ , F, P, S) = (E = S A F = P A emp) v(E^SAF^PA 

3Xtl : E ' y {(n, A t l ) , (p, P)} * d l l ( A t l , F, E, S)). 
(6.33) 

To describe a singly l inked list of cyclic doubly l inked lists, we may use the following 
predicate: 

n l c d l ( F , F) = (E = F A emp) v ( £ / F A (6.34) 

3Xtl, Z : E ^ {(a, Xtl), (h, Z)}* 01+ d l l ( Z ) * n l c d l ( A t l , F)) 

where ( 3 1 + d l l ( Z ) is a macro describing non-empty cyclic doubly l inked lists defined by 

0 1 + d l l [ Z ] 4 3 Z i , Z2 : Z ^ {(n, Z i ) , (p, Z 2 ) } * d l l ( Z i , Z 2 , Z , Z ) . (6.35) 

Representing S L Graphs as Trees. The s p l i t J o i n operation from Section 6.3 is 
extended wi th considering the following two more possible labellings: alias\2[a] and 
aliastizastfa]- If n is a jo in node in a graph and (m,n) is an edge that is not i n its 
spanning tree, then (m, n) is replaced by the edge (m, n') w i th the same edge label, such 
that n' is a fresh copy of n labelled by (in addi t ion to the labellings from Section 6.3) 

• al ias t 2 [M(n)] i f m is reachable from n , m further reaches n in the spanning tree 
of the graph and in the spanning tree there is exactly one node marked wi th M ( n ) 
between m and n. Intuitively, this label is needed to handle inner nodes of doubly 
l inked lists, which have two incoming edges, one from their successor and one from 
their predecessor (see Figure 6.10). 

95 



: shn 

• s h A X M : s h 

p n \pn) p 

: shn M : s h n 
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a l i a s t [ s / i ] O 

a l i a s t 2 [ s / i n ] 0 P » / \/> 

a l i a s t [ s 6 ] ( J 0 O a l i a s t [ s / i ] 

a l i a s t [s h] 

b) The tree encoding of the graph from (a) 

Figure 6.11.: Tree encodings for lists of nested cyclic doubly l inked lists 

• a l i a s t i z a s t [ M ( n ) ] if there is a node p that is an ancestor of m (or it is m itself), 
such that p is also an ancestor of n , and n has no non-alias successors w i th the 
marking M ( n ) . Intuitively, the label is needed for a doubly l inked cyclic list to 
allow referring to the predecessor of the head node of the list (see Figure 6.11). 

6.6. Completeness and Complexity 

In general, there exist S L graphs that entail P(E, F, B) whose tree encodings are not 
recognised by A[P(E, F, B)] created using the algori thm from Section 6.4.1. The models 
of these S L graphs are nested list segments where inner pointer fields specified by the 
matr ix of P are aliased. For example, the T A for skl2 does not recognise the tree 
encodings of S L graphs modelled by heaps where Xti and Z\ are interpreted to the 
same location. 

This issue is dealt w i t h by the algori thm presented i n Section 6.4.2. However, the 
size of the T A created i n this way may become exponential i n the size of P (defined 
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Table 6.1.: Average running times for S P E N on the benchmarks from [PR11]. 

Bolognesa T i m e [ms] Spaguetti T i m e [ms] Clones T i m e [ms] 

bo-10 352 sp-10 146 cl-01 316 
bo-11 386 sp-11 156 cl-02 314 
bo-12 385 sp-12 145 cl-03 335 
bo-13 394 sp-13 153 cl-04 336 
bo-14 483 sp-14 189 cl-05 321 
bo-15 562 sp-15 258 cl-06 334 
bo-16 424 sp-16 198 cl-07 351 
bo-17 510 sp-17 254 cl-08 374 
bo-18 503 sp-18 249 cl-09 407 
bo-19 516 sp-19 252 cl-10 436 
bo-20 522 sp-20 282 

as the number of symbols in the matrices of a l l Q w i th P -<p Q), as the construction 
considers a l l possible aliasing scenarios of targets of inner pointer fields permit ted by the 
predicate. 

For the verification conditions that we have encountered i n our experiments, the T A s 
constructed using the former algori thm are precise enough i n the vast majori ty of the 
cases. In particular, note that the T A s generated for non-nested predicates, such as 
the predicates for I s and d l l , are precise. We have, however, implemented even the 
latter a lgori thm (which is complete even for nested predicates) and evaluated that it 
also provides good performance on pract ical examples (where the number of nestings is 
given by the use i n real-world programs). 

In conclusion, the overall complexity of the incomplete semi-decision procedure (where 
aliases between variables i n the definition of a predicate are ignored) runs i n polynomial 
t ime modulo an oracle for deciding val idi ty of a Boolean formula (needed i n the normal
isation part of the procedure). The complete decision procedure is exponential i n the 
size of the predicates, which remains acceptable i n practice, rather than in the size of 
the formulae. 

6.7. Implementation and Experimental Results 

We implemented our decision procedure in a solver called S P E N (SeParation logic E N -
tailment) . The too l takes as the input an entailment problem ipi =4> ip2 ( including the 
definition of the predicates used) encoded i n the S M T L I B 2 format. For non-valid entail
ments, S P E N prints the atom of <p2 which is not entailed by a sub-formula of <p\. The 
tool is based on the M I N I S A T solver for deciding unsatisfiability of Boolean formulae and 
the V A T A l ibrary (described i n Chapter 10) as the tree automata backend. 

We applied S P E N to entailment problems that use various recursive predicates. F i r s t , 
we considered the benchmark provided i n [PR11], which uses only the I s predicate. 
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Table 6.2.: Runn ing S P E N on entailments between formulae and atoms. 

<P2 <Pi T i m e [ms] Status 
States/Trans, 

of A[<p2] 
Nodes/Edges 

n i l 
t c l 
t c 2 
t c 3 

344 
335 
319 

val id 
val id 

inval id 
6/17 

7/7 
7/7 
6/7 

n l c l 
t c l 
t c 2 
t c 3 

318 
316 
317 

val id 
val id 

inval id 
6/15 

10/9 
7/7 
6/6 

s k l 3 

t c l 
t c 2 
t c 3 

334 
349 
326 

val id 
val id 

inval id 
80/193 

7/7 
8/8 
6/6 

d l l 
t c l 
t c 2 
t c 3 

358 
324 
322 

val id 
val id 

inval id 
9/16 

7/7 
7/7 
5/5 

It consists of three classes of entailment problems called Spaguetti, Bolognesa, and 
Clones. The first two classes contain 110 problems each (split into 11 groups) generated 
randomly according to the rules specified i n [PR11], whereas the last class contains 100 
problems (split into 10 groups) obtained from the verification conditions generated by the 
tool S M A L L F O O T [BCO06] . In a l l experiments 2 , S P E N finished i n less than 1 second w i t h 
the deviat ion of running times ± 1 0 0 ms w.r.t . the ones reported for S E L O G E R [HIOP13] 3 , 
the most efficient tool for deciding entailments of S L formulae wi th singly l inked lists we 
are aware of (average times for each group are given i n Table 6.1). 

The T A for the predicate I s is quite small , and so the above experiments d id not eval
uate much the performance of our procedure for checking entailments between formulae 
and atoms. For a more thorough evaluation, we further considered the experiments listed 
in Table 6.2 (among which, s k l 3 required the extension of our approach to a full decision 
procedure as discussed at the end of Section 6.4). The full benchmark is available wi th 
our tool [ELSV14b] . The entailment problems are extracted from verification conditions 
of operations like adding or deleting an element at the beginning, in the middle, or at 
the end of various kinds of list segments (see Figure 6.12). Table 6.2 gives for each 
example the running time, whether the entailment is val id or inval id, and the size of 
the tree encoding and T A for ipi and (p2, respectively. We find the resulting times quite 
encouraging. 

Moreover, S P E N part icipated i n three divisions of the first competi t ion of separation 
logic solvers S L - C O M P ' 1 4 [si-14]: divis ion F D E L e n t l containing problems wi th extended 
acyclic lists, such as doubly l inked lists, nested lists, or skip lists (the results for this 

2Our experiments were performed on a PC with an Intel Core 2 Duo @2.53GHz processor and 4GiB 
DDR3 @ 1067MHz running a virtual machine with Fedora 20 (64-bit). 

3The times reported for S E L O G E R in [HIOP13] were obtained on a PC with an Intel Core i5-2467M 
@1.60GHz processor and 4GiB DDR3 @1066MHz under Windows 7 (64-bit). 
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tp2 = nll(x,y,z) 

t c l = 1 4 {(s, u), (h, a)} * u i->- {(s, y ) , (/i, &)} * l s ( a , z) * l s (6 , z) 

t c 2 = n l l ( x , u, z) * it i->- {(s, u>), (/i, a)} * a i-> { ( / , 6)} * l s (6 , z) * nl l (u>, y, z) 

t c 3 = n l l ( x , u, z) * u i-> {(s, u>), (/i, a)} * a i-> { ( / , 6)} * 6 i-> { ( / , a)} * 

<p2 = n l c l ( x , y ) 

t c l = x H4 {(s, it), 0 , a)} * a 4 { ( / , 6)} * 6 4 { ( / , a)} * it 4 y), (h, c)} * 

{(/, d)}*ls(d, c) 

t c 2 = n l c l ( x , u) * it i->- {(s, u), (/i, a)} * a i-> { ( / , 6)} * l s (6 , a) * n l c l ( i ; , y) 

t c 3 = n l c l ( : r , u) * u i-> {(s, u), (/i, a)} * a i-> { ( / , y)} * n l c l ( i ; , y) 

V?2 = s k l 3 ( x , y ) 

t c i = x 4 { ( A , z ) , ( / 2 , 2 ) , ( / 3 , z)} * z •->• { ( / i , y ) . ( / 2 , y ) , ( / 3 . y)} 

t c 2 = s k l 3 ( x , z ) * m {( / 3 ,^ ) , (/2 , z 2 ) ( / i , z i ) } * s k l i ( z i , z 2 ) * s k l 2 ( z 2 , w j ) * 

s k l 3 ( w , y ) 

t c 3 = X 4 ( / 2 , w ) , ( / 3 , ^ ) } * ^ ^ { ( / l , z ) , (f2,W2), (h,z)} * 

s k l 2 ( y j 2 , z ) * s k l 3 ( z , y ) 

tp2 = dll(x,y,z,v) 

t c l = x >-> { ( n , u ) , (p,z)} * u 4 { ( n , y ) , (p,x)} * y 4 { ( n , u ) , ( p , u ) } 

t c 2 = x i->- { ( n , it), (p, z)} * d l l ( i t , w, x, y) * y i-> { ( n , u), (p, iu) 

t c 3 = x i->- { ( n , it), (p, z)} * d l l ( i t , w, x, y) * y i-> { ( n , w)} 

Figure 6.12.: Defini t ion of formulae for in the experiments 

division are i n Table 6.3a), and divisions sllOa_entl and sllOa_sat containing problems wi th 
singly l inked lists (the results for these divisions are i n Table 6.3b). The tables contain for 
each solver the number of problems for which the solver responded incorrectly (column 
Errors) , the number of problems for which it responded correctly (column Solved), the 
number of problems for which it d id not give an answer (column -iSolved), and the tota l 
t ime of the solver in seconds (column Time) . S P E N won divis ion F D E L e n t l w i th a huge 
difference, solving a l l problems i n less than a minute; further, notice that S P E N is the 
only tool that correctly answered a l l problems in this divis ion. In addi t ion to this, S P E N 

was also placed second in both divisions w i th singly l inked lists, where the first placed 
was won by Aster ix , a solver specialised for this part icular data structure. 
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Table 6.3.: Results of S L - C O M P ' 1 4 

a) Results for extended acyclic lists (FDELent l ) 
Solver Errors Solved -•Solved T ime 

S P E N 0 43 0 0.61 
C y c l i s t - S L 0 19 24 141.78 
S L I D E 0 0 43 0.00 
S L E E K - 0 6 1 31 11 43.65 

b) Results for singly l inked lists 

Solver 
sllOa_entl sll0a_sat 

Solver 
Errors Solved -•Solved T i m e Errors Solved -•Solved T i m e 

As te r ix 0 292 0 2.98 0 110 0 1.06 
S P E N 0 292 0 7.58 0 110 0 3.27 
S L E E K - 0 6 0 292 0 14.13 0 110 0 4.99 
C y c l i s t - S L 0 55 237 11.78 55 55 0 0.55 

6.8. Conclusion 

This chapter presented a novel (semi-)decision procedure for a fragment of S L w i t h 
inductive predicates describing various forms of lists (singly or doubly l inked, nested, 
circular, w i t h skip l inks, etc.). The procedure is composit ional i n that it reduces the 
given entailment query to a set of simpler queries between a formula and an atom. 
For solving them, we proposed a novel reduction to testing membership of a tree derived 
from the formula i n the language of a T A derived from a predicate. We implemented 
the procedure, and our experiments show that it has not only a favourable theoretical 
complexity, but also efficiently handles pract ical verification conditions. Moreover, when 
compared wi th other tools for deciding separation logic formulae in the first competi t ion 
of separation logic solvers S L - C O M P ' 1 4 [si-14], S P E N won the first place i n one d iv i 
sion (being by several orders of magnitude faster and even more successful i n correctly 
deciding the decision problems), and the second place in two divisions. 

In the future, we plan to investigate extensions of our approach to formulae wi th a more 
general Boolean structure or using more general inductive definitions. Concerning the 
latter, we plan to investigate whether some ideas from [IRV14] could be used to extend 
our decision procedure for entailments between formulae and atoms. F r o m a pract ical 
point of view, apart from improving the implementat ion of our procedure, we p lan to 
integrate it into a complete program analysis framework. 

100 



7. Deciding WS1S Formulae Using 
Nested Antichains 

Weak monadic second-order logic of one successor (WS1S) is a powerful, concise, and 
decidable logic for describing regular properties of finite words. Despite its nonele-
mentary worst case complexity [Mey72], it has been shown useful in numerous appli
cations. Mos t of the successful applications were due to the tool M O N A [ E K M 9 8 ] , 
which implements a finite automata-based decision procedure for W S 1 S and W S 2 S 
(a generalisation of W S 1 S to finite binary trees). The authors of M O N A list a mul
ti tude of its diverse applications [KM01] , ranging from software and hardware verifica
t ion through controller synthesis to computat ional linguistics, and further on. A m o n g 
more recent applications, verification of pointer programs and deciding related log
ics [ M P Q 1 1 , M Q 1 1 , IRS13, C D N Q 1 2 a , Z K R 0 8 ] can be mentioned, as well as synthesis 
from regular specifications [HJK10] . M O N A is s t i l l the standard tool and the most com
mon choice when it comes to deciding W S 1 S / W S 2 S . There are other related automata-
based tools that are more recent, such as jMose l [TWMS06] for the M 2 L ( S t r ) logic, and 
other than automata-based approaches, such as [GK10]. They implement optimisations 
that allow them to outperform M O N A on some benchmarks, however, none provides an 
evidence of being consistently more efficient. Despite many optimisations implemented 
in M O N A and the other tools, the worst case complexity of the problem sometimes 
strikes back. Authors of methods using the translat ion of their problem to W S 1 S / W S 2 S 
are then forced to either find workarounds to circumvent the complexity blowup, such 
as i n [MQ11], or, often restricting the input of their approach, give up translating to 
W S 1 S / W S 2 S altogether [ W M K 1 1 ] . 

The decision procedure of M O N A works wi th deterministic automata; it uses deter-
minisat ion extensively and relies on minimisa t ion of deterministic automata to suppress 
the complexity blow-up. However, the worst case exponential complexity of determini-
sation often significantly harms the performance of the tool . Recent works on efficient 
methods for handling nondeterministic automata suggest a way of al leviating this prob
lem, i n part icular works on efficient testing of language inclusion and universality of finite 
automata [DR10, W D H R 0 6 , ACH+10] and size reduction [BGOO, ABH+08] based on 
a s imulation relation. Hand l ing nondeterministic automata using these methods, while 
avoiding determinisation, has been shown to provide great efficiency improvements i n 
[ B H H + 0 8 ] (abstract regular model checking) and also [ H H R + 1 2 ] (shape analysis). In this 
chapter, we present a work that makes a major step towards bui ld ing the entire decision 
procedure of W S 1 S on nondeterministic automata using similar techniques. We propose 
a generalisation of the antichain algorithms of [DR10] that addresses the main bottle
neck of the automata-based decision procedure for W S 1 S , which is also the source of its 
nonelementary complexity: e l iminat ion of alternating quantifiers on the automata level. 
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More concretely, the automata-based decision procedure translates the input W S 1 S 
formula into a finite word automaton such that its language represents exactly a l l mod
els of the formula. The automaton is buil t i n a bottom-up manner according to the 
structure of the formula, start ing wi th predefined atomic automata for literals and ap
ply ing a corresponding automata operation for every logical connective and quantifier 
(A, V , - i , 3 ) . The cause of the nonelementary complexity of the procedure can be ex
plained on an example formula of the form p' = 3 X m V X m _ i . . . V A ^ X i : po. The uni
versal quantifiers are first replaced by negation and existential quantification, which 
results i n p = 3 A m - i 3 A m _ i . . . - 1 3 X 2 - 1 3 X 1 : PQ. The algori thm then builds a sequence 
of automata for the sub-formulae po, p\,..., (pm-i, <p\n-\ of <p where for 0 < i < m, 
p>\ = 3Xi+\ : pi, and pi+i = ^p\- Every automaton i n the sequence is created from 
the previous one by applying the automata operations corresponding to negation or 
el iminat ion of the existential quantifier, the latter of which may introduce nondetermin-
ism. Negation applied on a nondeterministic automaton may then yield an exponential 
blowup: given an automaton for ip, the automaton for -ii/> is constructed by the classical 
automata-theoretic construction consisting of determinisation by the subset construction 
followed by swapping of the sets of final and non-final states. The subset construction 
is exponential i n the worst case. The worst case complexity of the procedure run on 
p is then a tower of exponentials w i th one level for every quantifier alternation i n p: 
note that, i n general, we cannot do much better—this nonelementary complexity is an 
inherent property of the problem. 

M a i n ideas of our approach. O u r new algori thm for processing alternating quan
tifiers i n the prefix of a formula avoids the explicit determinisation of automata i n the 
classical procedure and significantly reduces the state space explosion associated wi th i t . 
It is based on a generalisation of the antichain principle used for deciding universality 
and language inclusion of finite automata [ W D H R 0 6 , A C H + 1 0 ] . It generalises the an
t ichain algorithms so that instead of being used to process only one level of the chain of 
automata, it processes the whole chain of quantifications wi th i alternations on the fly. 
Th i s leads to working wi th automata states that are sets of sets of sets . . . of states 
of the automaton representing po of the nesting depth i (this corresponds to i levels of 
subset construction being done on the fly). The algori thm uses nested symbolic terms to 
represent sets of such automata states and a generalised version of antichain subsump-
t ion pruning which descends recursively down the structure of the terms while pruning 
on a l l its levels. 

Our nested antichain algori thm can be—in its current form—used only to process 
a quantifier prefix of a formula, after which we return the answer to the val idi ty query, 
but not an automaton representing a l l models of the input formula. Tha t is, we cannot 
use the optimised algori thm for processing inner negations and alternating quantifiers 
which are not a part of the quantifier prefix. However, despite this and the fact that our 
implementation is far less mature than that of M O N A , our experimental results s t i l l show 
significant improvements over its performance, especially in terms of generated state 
space. We consider this a strong indicat ion that using techniques for nondeterministic 

102 



automata to decide W S 1 S (and WS/cS) is highly promising. There are many more 
opportunities of improving the decision procedure based on nondeterministic automata, 
by using techniques such as simulation relations or bis imulat ion up-to congruence [BP 13], 
and applying them to process not only the quantifier prefix, but a l l logical connectives 
of a formula. We consider the work presented i n this chapter to be the first step towards 
a decision procedure for W S 1 S / W S & S w i t h an entirely different scalabili ty than the 
current state of the art. 

O u t l i n e . The structure of this chapter is as folows: We define the logic W S 1 S i n 
Section 7.1. In Sections 7.2 and 7.3, we introduce finite word automata and describe the 
classical decision procedure for W S 1 S based on finite word automata. In Section 7.4, 
we introduce our method for dealing wi th alternating quantifiers. F ina l ly , we give an 
experimental evaluation and conclude the chapter i n Sections 7.5 and 7.6. 

7.1. WS1S 

In this section we give an introduct ion into the weak monadic second-order logic of one 
successor (WS1S) . We introduce only its m in ima l syntax here, for the full standard 
syntax and a more thorough introduction, see Section 3.3 i n [ C D G + 0 7 ] . 

W S 1 S is a monadic second-order logic over the universe of discourse No- This means 
that the logic allows second-order variables, usually denoted using upper-case letters 
X, Y,..., that range over finite subsets of No, e.g. X = {0, 3,42}. A t o m i c formulae are 
of the form (i) X C Y, (ii) S i n g ( A ) , (hi) X = {0}, and (iv) X = Y + l, where X and Y 
are variables. The atomic formulae are interpreted in tu rn as (i) standard set inclusion, 
(ii) the singleton predicate, (hi) A is a singleton containing 0, and (iv) X = {x} and 
Y = {y} are singletons and x is the successor of y, i.e. x = y + 1. Formulae are buil t 
from the atomic formulae using the logical connectives A , V , and the quantifier 3X 
(for a second-order variable X). 

Given a W S 1 S formula <p(X\,..., Xn) w i th free variables X\,..., Xn, the assignment 
p = {X\ i-> Si,..., Xn i-> Sn}, where S\,..., Sn are finite subsets of No, satisfies p, 
wri t ten as p \= p, if the formula holds when every variable Xi is replaced wi th its 
corresponding value Si = p(Xi). We say that p is valid, denoted as |= p, if it is satisfied 
by a l l assignments of its free variables to finite subsets of No- Observe the l imi ta t ion to 
finite subsets of No (related to the adjective weak i n the name of the logic); a W S 1 S 
formula can indeed only have finite models (although there may be infinitely many of 
them). 

7.2. Preliminaries and Finite Automata 

For a set D and a set § C 2D we use 4-S to denote the downward closure of S, i.e. the 
set 4-S = {R C D | 3S £ § : R C S}, and to denote the upward closure of S, i.e. the 
set = {R C D | 3S € S : R 5 S}. The set S is i n both cases called the set of 
generators of f § or 4-S respectively. A set S is downward closed if it equals its downward 
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closure, § = \.S, and upward closed if it equals to its upward closure, § = y S . The choice 
operator ] J (sometimes also called the unordered Cartesian product) is an operator that, 
given a set of sets D = {D\,..., Dn}, returns the set of a l l sets {d\,..., dn} obtained by 
taking one element di from every set Di. Formally, 

n 

] J D = { { d i , ...,dn}\ ( d i , . . . ,dn) € J] A } (7.1) 
i=l 

where f ] denotes the Cartesian product. Note that for a set D, \J{D} is the set of a l l 
singleton subsets of D, i.e. Li{£>} = {{d} \ d G D}. Further note that i f any Di is the 
empty set 0, the result is J j B = 0. 

Let X be a set of variables. A symbol r over X is a mapping of a l l variables i n X to 
either 0 or 1, e.g. r = {X\ i-> 0,^2 i-> 1} for X = { A ^ A ^ } . A n alphabet over X is the 
set of a l l symbols over X , denoted as E x - For any X (even empty), we use 0 to denote 
the symbol which maps a l l variables from X to 0, 0 G E x -

A (nondeterministic) finite (word) automaton (abbreviated as N F A i n the following) 
over a set of variables X is a quadruple A = (Q, A , / , F) where Q is a finite set of states, 
/ C Q is a set of initial states, F C Q is a set of final states, and A is a set of transitions 
of the form (p,T,q) where p,q G Q and r G E x - We use p —> q G A to denote that 
(P) r ) Q) £ A - Note that for an N F A A over X = 0, A is a unary N F A wi th the alphabet 
E x = {0}. 

A run r of A over a word w = T\T2 • • • rn G E ^ from the state p G Q t o the state s e Q 
is a sequence of states r = go<7i • • • Qn G ( 5 + such that qo = p, qn = s and for a l l 1 < i < n 
there is a t ransi t ion — ^ % in A . If s G F , we say that r is an accepting run. We write 
p s to denote that there exists a run from the state p to the state s over the word u>. 
The language accepted by a state q is defined by L^(q) = {w \ q qf,qf G F } , while 
the language of a set of states S C Q is defined as £ y l ( 5 ) = U<jeS AA(<?)- W h e n it is clear 
which N F A „4, we refer to, we only write L(q) or L(S). The language of A is defined as 
L(A) = L_A(I). We say that the state q accepts w and that the automaton A accepts 
w to express that w G L^(q) and w G L(^4) respectively. We cal l a language L C E ^ 
universal iff L = E ^ . 

For a set of states S C Q , we define 

posi[A,r](5) = | J { t | s ^ > t G A } , 

pre[A,r](5) = ( J { i | i ^ > s G A } , and 

cpre[A,r](S) = {t | posi[A,r]({i}) C S}. 

The complement of „4 is the automaton ^4c = (2®, Ac, {I},l{Q \ F}) where A c = 

J P ^ > posi[A,r](P) P C Q } : this corresponds to the standard procedure that first 

determinises A by the subset construction and then swaps its sets of final and non-final 

states, and 1{Q \ F} is the set of a l l subsets of Q that do not contain a final state of A. 

The language of Ac is the complement of the language of A, i.e. L(Ac) = L(A). 
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For a set of variables X and a variable X, the projection of X from X , denoted as 
7T[x](X), is the set X \ {X}. For a symbol r , the projection of X from r , denoted 
n\x](r), is obtained from r by restricting r to the domain 7T[x](X). For a transi t ion 
relation A , the projection of X from A , denoted as 7T[x](A), is the transi t ion relation 

( P — • 9 I V — A j . 

7.3. Deciding WS1S with Finite Automata 

The classical decision procedure for W S 1 S by B i i c h i [Biic59] (as described i n Section 3.3 
of [ C D G + 0 7 ] ) is based on a logic-automata connection and decides val idi ty (satisfiability) 
of a W S 1 S formula <p(Xi,..., Xn) by constructing the N F A Av over {Xi,..., Xn} which 
recognises encodings of exactly the models of ip. The automaton is buil t i n a bottom-up 
manner, according to the structure of ip, starting wi th predefined atomic automata for 
literals and applying a corresponding automata operation for every logical connective 
and quantifier (A, V , - i , 3 ) . Hence, for every sub-formula tp of ip, the procedure w i l l 
compute the automaton A^ such that the language of A^, L(A1p), represents exactly a l l 
models of ip, terminat ing w i t h the result A^. 

The alphabet of Av consists of a l l symbols over the set X = {X\,..., Xn} of free 

variables of ip (for a, b G {0,1} and X = {X\, X2}, we use ^I'-t ^° denote the symbol 

{X\ i-> a, X2 i->- &}). A word w from the language of Av is a sequence of these symbols, 

e.g. "J 1 ' e , v 1 ' ! ! ! , or "J 1 '?n!nn- We denote the i - th symbol of w as w\i], for i £ No-

A n assignment p : X —>• 2 N ° mapping free variables X of ip to subsets of No is encoded 
into a word wp of symbols over X in the following way: wp contains 1 i n the j - t h posit ion 
of the row for Xi iff j G Xi i n p. Formally, for every i G No and Xj G X , i f i G p(Xj), 
then wp[i] maps Xj i-> 1. O n the other hand, i f i ^ p(Xj), then either u>p[i] maps 

i—>• 0, or the length of ti) is smaller than or equal to i. Notice that there exist an 
infinite number of encodings of p. The shortest one is ws

p of the length n + 1, where 
n is the largest number appearing i n any of the sets that is assigned to a variable of 
X in p, or — 1 when al l these sets are empty. The rest of the encodings are a l l those 
corresponding to ws

p extended w i t h an arbi trary number of 0 symbols appended to its 

end. For example, ^ : ° , ^ ^ ^ are a l l encodings of the assignment 
A 2 :1 A 2 : 10 A 2 : 100 A 2 : 100 . . . 0 

p = {X\ !->• 0, X2 i-> {0}}. For the soundness of the decision procedure, it is important 
that Aip always accepts either a l l encodings of p or none of them. 

The automata A^^ and A^y^ are constructed from the automata Av and A^ by 
standard automata-theoretic union and intersection operations, preceded by the so-called 
cylindrification which unifies the alphabets of Av and A^. Since these operations, as 
well as the automata for the atomic formulae, are not the subject of the contr ibut ion 
proposed i n the presented work, we refer the interested reader to [ C D G + 0 7 ] for details. 

The part of the procedure which is central for the work presented in this chapter 
is processing negation and existential quantification; we w i l l therefore describe it i n 
detail . The N F A A-«p is constructed as the complement of Au>. Then , a l l encodings 
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of the assignments that were accepted by Aw are rejected by A-up and vice versa. The 
N F A A^x-.ip is obtained from the N F A Aw = (Q, A , / , F ) by first projecting X from the 
transi t ion relation A , y ielding the N F A AL = (Q, 7T[x](A), I, F). However, AL cannot 
be direct ly used as ABX-.W- The reason is that AL may now be inconsistent i n accepting 
some encodings of an assignment p while rejecting other encodings of p. For example, 
suppose that Aw accepts the words "J1 "J1 "J1 : ^ ? ° " ' ° and we are computing 

^ A 2 : UU1 A 2 : UU1U A 2 '• UU1U . .. U " 

the N F A for 3 X 2 : ip. W h e n we remove the X 2 row from al l symbols, we obtain the N F A 
AL that accepts the words xx •. 010, xx •. 0100, xx •. 0 1 0 0 . . . o, but does not accept the word 
Xi : 0 i that encodes the same assignment (because ^ •?? ^ ^0^¥>) f ° r a n y v a m e s i n the 
places of "?"s). A s a remedy for this si tuation, we need to modify A' to also accept the 
rest of the encodings of p. Th i s is done by enlarging the set of final states of AL to also 
contain a l l states that can reach a final state of AL by a sequence of 0 symbols. Formally, 
ABX-.ip = (Q,7T[x](A),7, F^) is obtained from A'v = (Q, 7T[X](A),/, F) by computing F " 
from F u s i n g the fixpoint computat ion F " = pZ. F U pre[7r [ x ](A),o](Z). Intuitively, the 
least fixpoint denotes the set of states backward-reachable from F following transitions 
of 7T[x](A) labelled by the symbol 0. 

The procedure returns an automaton Av that accepts exactly a l l encodings of the 
models of ip. Th is means that the language of Aw is (i) universal iff ip is val id, (ii) non-
universal iff ip is invalid, (iii) empty iff ip is unsatisfiable, and (iv) non-empty iff ip is 
satisfiable. Notice that i n the part icular case of ground formulae (i.e. formulae without 
free variables), the language of Aw is either L(AV) = {0}* i n the case p> is valid, or 
L(Aip) = 0 i n the case p> is invalid. 

7.4. Nested Antichain-based Approach for Alternating 
Quantifiers 

We now present our approach for dealing wi th alternating quantifiers in W S 1 S formulae. 
We consider a ground formula ip of the form 

p = -. 3 ^ 3 # 2 : < p 0 ( X ) (7.2) 
V v ' 

where each Xi is a set of variables {Xa,..., Xj,}, 3Xi is an abbreviation for a non-empty 
sequence 3Xa ... 3Xb of consecutive existential quantifications, and ipo is an arbitrary 
formula called the matrix of p>. Note that the problem of checking val idi ty or satisfiability 
of a formula wi th free variables can be easily reduced to this form. 

The classical procedure presented i n Section 7.3 computes a sequence of automata 
Ap0, A j A t , Awm where for a l l 0 < i < m - 1, <p\ = 3Xi+1 : <pi and p>i+i = -«p\. 

The (pi's are the subformulae of p> shown i n Equa t ion 7.2. Since el iminat ing existential 
quantification on the automata level introduces nondeterminism (due to the projection 
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on the transi t ion relation), every A t may be nondeterministic. The computat ion of 
Aipi+1 then involves subset construction and becomes exponential. The worst case com
plexity of e l iminat ing the prefix is therefore the tower of exponentials of the height m. 
Even though the construction may be optimised, e.g. by minimis ing every Awt (which 
is implemented by M O N A ) , the size of the generated automata can quickly become 
intractable. 

The ma in idea of our algori thm is inspired by the so-called antichain algorithms [DR10] 
(a general description of the principles of antichain algorithms can be found in Chapter 8) 
for testing language universality of an automaton A. In a nutshell, testing universality 
of A is testing whether i n the complement A of A (which is created by determinisation 
v i a subset construction, followed by swapping final and non-final states), an in i t i a l state 
can reach a final state. The crucial idea of the antichain algorithms is based on the 
following: (i) The search can be done on the fly while constructing A. (ii) The sets 
of states that arise during the search are closed (upward or downward, depending on 
the variant of the algorithm), (iii) The computat ion can be done symbolical ly on the 
generators of these closed sets. It is enough to keep only the extreme generators of the 
closed sets (maximal for downward closed, m in ima l for upward closed). The generators 
that are not extreme (we say that they are subsumed) can be pruned away, which vastly 
reduces the search space. 

We notice that ind iv idua l steps of the a lgori thm for constructing Ay are very similar 
to testing universality. Au toma ton Aipi arises by subset construction from A^t , and 

to compute A j , it is necessary to compute the set of final states FJ. Those are states 

backward reachable from the final states of Ayi v i a a subset of transitions of A j (those 

labelled by symbols projected to 0 by 7Tj+i). T O compute F | , the antichain algorithms 

could be actually taken off-the-shelf and run wi th A^t i n the role of the input A and 

A j i n the role of A. However, this approach has the following two problems. Fi rs t , an-

t ichain algorithms do not produce the automaton A (here A^t), but only a symbolic 

representation of a set of (backward) reachable states (here of F\). Since A t is the in -
put of the construction of Aipi+1, the construction of Ay could not continue. The other 
problem is that the size of the input A j of the antichain algori thm is only l imi ted by 

^i— 1 
the tower of exponentials of the height i — 1, and this might be already far out of reach. 

The ma in contr ibut ion of the work presented i n this chapter is an algori thm that 
alleviates the two problems mentioned above. It is based on a novel way of performing 
not only one, but a l l the 2m steps of the construction of Ay on the fly. It uses a nested 
symbolic representation of sets of states and a form of nested subsumption pruning on 
al l levels of their structure. Th is is achieved by a substantial refinement of the basic 
ideas of antichain algorithms. 

7.4.1. S t r u c t u r e of the A l g o r i t h m 

Let us now start explaining our on-the-fly algori thm for handling quantifier alternation. 
Fol lowing the construction of automata described i n Section 7.3, the structure of the 
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automata from the previous section, Au>0, A , A V m , can be described using 
</>0 fm-l 

the following recursive definition. We use 7Tj(C) for any mathematical structure C to 
denote projection of a l l variables i n X\ U • • • U X{ from C. 

Let AVO = (QQ, A o , IQ, FQ) be an N F A over X . Then, for each 0 < i < m, A j and 
A!FI+1 are N F A s over 7Tj_|_i(X) that have from the construction the following structure: 

Aj =(Qi,Al,Ii,Ff) where 

Ajj = 7 r i + i ( A j ) and 

^ = / x Z . F i U p r e [ A f , o ] ( Z ) . 

= (Qi+i, A i + 1 , Fi+1) where 

A i + i = {R - A post\4,T]{R) 

Ii+i = {Ii}, and 

F i + l =i{Qi\Fl}. 

R e 

We recall that A j direct ly corresponds to existential quantification of the variable X * 

(cf. Section 7.3), and A<pi+1 directly corresponds to the complement of A t (cf. Sec

t ion 7.2). 
A crucial observation behind our approach is that, because p is ground, Av is an N F A 

over an empty set of variables, and, therefore, L(Alf) is either the empty set 0 or the 
set {0}* (as described in Section 7.3). Therefore, we need to dist inguish between these 
two cases only. To determine which of them holds, we do not need to expl ici t ly construct 
the automaton A v . Instead, it suffices to check whether Av accepts the empty str ing e. 
Th is is equivalent to checking existence of a state that is at the same t ime final and 
in i t ia l , that is 

^ p iff / m n F m / 0 . (7.3) 

To compute Im from Io is straightforward (it equals { { . . . {{/o}} • • •}} nested m-times). 
In the rest of the section, we w i l l describe how to compute Fm (its symbolic representa
tion), and how to test whether it intersects w i th Im. 

The algori thm takes advantage of the fact that to represent final states, one can 
use their complement, the set of non-final states. For 0 < i < m, we write iVj and 
ivf to denote the sets of non-final states Qi \ Fi of A% and Qi \ F\ of A\ respectively. 
The algori thm w i l l then instead of computing the sequence of automata AVo, A^t, . . . , 

A it , A<pm compute the sequence FQ, FQ, NI, i v f , . . . up to either Fm (if m is even) or 

Nm (if m is odd), which suffices for testing the val idi ty of p. The algori thm starts w i th 
FQ and uses the following recursive equations: 

(i) Fi+1 =i{Nf}, (ii) F\ = pZ.FiUprelAioiZ), 

(iii) Ni+1 = t L I { i ? f } , (iv) NJ =vZ.Nincpre[Alo\(Z). 
(7.4) 

Intuitively, Equations (i) and (ii) are directly from the definition of Ai and A\. Equa
t ion (iii) is a dual of Equa t ion (i): iVj+i contains a l l subsets of Qi that contain at least 
one state from F\ (cf. the definition of the \J operator). F ina l ly , Equa t ion (iv) is a dual 
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of Equa t ion (ii): i n the £;-th i teration of the greatest fixpoint computat ion, the current 
set of states Z w i l l contain a l l states that cannot reach an Fi state over 0 wi th in k steps. 
In the next i teration, only those states of Z are kept such that a l l their O-successors are 
in Z. Hence, the new value of Z is the set of states that cannot reach Fi over 0 i n k + 1 
steps, and the computat ion stabilises w i t h the set of states that cannot reach Fi over 0 
in any number of steps. 

In the next two sections, we w i l l show that both of the above fixpoint computations 
can be carried out symbolical ly on representatives of upward/downward closed sets. Par
ticularly, in Sections 7.4.2 and 7.4.3, we show how the fixpoints from Equations (ii) and 
(iv) can be computed symbolically, using subsets of Qi-i as representatives (generators) 
of upward/downward closed subsets of Qi. Section 7.4.4 explains how the above symbolic 
fixpoint computations can be carried out using nested terms of depth i as a symbolic 
representation of computed states of Qi. Section 7.4.5 shows how to test emptiness of 
Im n Fm on the symbolic terms, and Section 7.4.6 describes the subsumption relation 
used to minimise the symbolic te rm representation used wi th in computations of Equa
tions (ii) and (iv). Proofs of the lemmas can be found at the ends of the respective 
sections. 

7.4.2. Computing NJ on Representatives of jTJ'fc-sets 

Comput ing NJ at each odd level of the hierarchy of automata is done by computing the 
greatest fixpoint of the function from Equa t ion 7.4(iv): 

We w i l l show that the whole fixpoint computat ion from Equa t ion 7.4(iv) can be carried 
out symbolical ly on the representatives of Z. We w i l l explain that: (a) A l l intermediate 
values of Z have the form tLT^-> ^ C Q j , so the sets 7Z can be used as their sym
bolic representatives, (b) cpre and n can be computed on such symbolic representation 
efficiently. 

Let us start w i th the computat ion of cpre[A\,T](Z) where r G 7Tj+i(X), assuming that 
Z is of the form tLT^-> represented by 1Z = {Ri, • • •, Rn}- Observe that a set of symbolic 
representatives 1Z stands for the intersection of denotations of ind iv idua l representatives, 
formalised in the following lemma. 

L e m m a 7.1. Let 1Z be a finite set of sets. Then, it holds that 

Z can thus be wri t ten as the cpre-image cpre[A\,r](f\S) of the intersection of the 
elements of a set S having the form tLK-Rj}> Rj £ 72.- Further, because cpre distributes 
over n , we can compute the cpre-image of an intersection by computing intersection of 
the cpre-images, i.e. 

fNt(Z) = i V i n c p r e [ A « , o ] ( Z ) . (7.5) 

(7.6) 

(7.7) 
SdS 
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B y the definition of Ajj (where Ajj = 7Tj+i(Aj)), cpre[A\,r}{S) can be computed using the 
transi t ion relation A j for the price of further refining the intersection. In particular, 

cpre[Al,r}(S) = P| cpre[Ai,uj](S). (7.8) 
w ^ r + i ( T ) 

Intuitively, cpre[A\,r}{S) contains states from which every transi t ion labelled by any sym
bol that is projected to r by 7Tj_|_i has its target in S. Us ing L e m m a 7.1 and Equat ions 7.7 
and 7.8, we can write cpre[A\,T](Z) as 

f] cprelAiMiS). (7.9) 

SeS 

To compute the ind iv idua l conjuncts cpre[Ai,u](S), we take advantage of the fact that 
every S is in the special form tII{-Rj}> a n d that A , is, by its definition (obtained from 
determinisation v i a subset construction), monotone w.r.t . D. Tha t is, if P P' G A j 
for some P,P' G Qi, then for every R D P, there is R' D P' s.t. R —> R' G A j . 
Due to monotonicity, the cpre [A* ,u>]-image of an upward closed set is also upward closed. 
Moreover, we observe that it can be computed symbolical ly using pre on elements of 
its generators. Part icular ly, for a set of singletons S = t\A{Rj}, w e get the following 
lemma: 

L e m m a 7.2. Let Rj C Q j - i and UJ be a symbol over 7Tj(X) / o r i > 0. T/ien 

c p r e l A ^ K t l K ^ ' } ) = t i l {pre[AUM{Rj)}- (7.10) 

Intuitively, the sets w i th post-images above a singleton {p} G {{p} | p G -Rj} = 

t l l l - R j } are those that contain at least one state q G Qi-i s.t. q —> p G A ? _ 1 . Using 

L e m m a 7.2, cpre[AJS,-r](Z) can be rewrit ten as 

P| m{prel4-iM(Rj)}- ( 7 . H ) 
Reiz 

B y applying L e m m a 7.1, we get the final formula for cpre[AJS,-r] shown i n the lemma 
below. 

L e m m a 7 .3. Let 1Z C Qi and r be a symbol over 7Tj+i(X). Then 

C pre[A» ,T] ( tL [ f t ) = t i l {pre[AUM{Rj) I w G ^ ( r ) , i?,- G K). (7.12) 

In order to compute fN$(Z), it remains to intersect cpre[A?,o](Z), computed using 

i 
L e m m a 7.3, w i th i V j . B y Equa t ion 7.4(iii), iVj equals t l l l - ^ f - i } ) a n d > by L e m m a 7.1, 
the intersection can be done symbolical ly as 

fNf(Z) = t U ( { i f J U { p r e [ A»_ 1 ,M( i ? j ) | W G ^ ( 0 ) , ^ - G ft}). (7.13) 

110 



Final ly , note that a symbolic application of fN$ to Z = t i l 7 ^ - represented as the set 1Z 
i 

reduces to computing pre-images of the elements of 1Z, which are then put next to each 
other, together w i th F | _ 1 . The computat ion starts from iVj = t L I I - ^ f - i } ) represented 
by { F | _ 1 } , and each of its steps, implemented by Equa t ion 7.13, preserves the form of 
sets t L I ^ - ) represented by 1Z. 

Proofs of the Used Lemmas 

L e m m a 7.4. Let X and y be sets of sets. Then it holds that 

t U X n t L J Y = t L I ( X U Y ) . (7.14) 

Proof. F r o m the definition of the ] J operator, it holds that 

t L J X = t { { x i , . . . , x n } | ( x i , . . . , x n ) G [ ] X } and 

t I I Y = t { { y i , - - - , y m } | ( y i , . . . , y m ) e ! I Y } -
(7.15) 

Notice that the intersection of a pair of upward closed sets given by their generators 
can be constructed by taking a l l pairs of generators (X, Y), s.t. X is from ] J X and Y is 
from 1 J Y , and constructing the set X L)Y. It is easy to see that X U Y is a generator of 
t L J X n t L J Y and that t l l X n t l J Y is generated by al l such pairs, i.e. that t l l X n t l I Y 

is equal to 

... ,xn} U { y i , . . . , y m } | (xi,..., xn) G , y m ) G j 7 F } . (7.16) 

We observe that this set can be also expressed as 

t { { x i , . . . , x n , y i , . . . ,ym} | (xi,.. .,xn,yi, ...ym) G r j ( ^ U F ) } (7.17) 

or, to conclude the proof, as t U ( ^ U Y ) . • 

L e m m a 7 .1. Let 1Z be a finite set of sets. Then, it holds that 

m n = n t l i W - (7-6) 

Proof. Because intersection and union are both associative operations and 7Z is a finite 
set 1Z = {Ri,..., Rn}-, this lemma is a simple consequence of L e m m a 7.4. • 

L e m m a 7.2. Let Rj C Qi-i and UJ be a symbol over 7Tj(X) for i > 0. Then 

cprelAirttfUiRj}) = t i l {pre[±UM{Rj)}- (7.10) 

Proof. F i r s t , we show that the set cj3re[Ai,o;](tlJ{Fj}) is upward closed. Second, we show 
that a l l elements of the set ] J {pre[Al_l,ui](Rj)} are contained i n cpre[Ai,Lo](-[Y[{Rj}). 
Final ly , we show that for every element T in the set q)re[Ai,u;]( t lJ{Fj}) there is a smaller 
element S i n the set ] J {pre[A?_ 1,w](i?j)}. 
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1. P rov ing that cpre[Aj,a>](tU{-Rj}) ^ s upward closed: Consider a state S G Qi s.t. 
S G cpre[Aj,a>](tU{-Rj})- F r o m the definition of cpre, it holds that 

p o s i l A ^ K J S } ) C t L H ^ ' } , (7.18) 

and from the definition of A j , it holds that 

post[AiM({S}) = {pos t [A«_ 1 ^] (5 )} - ( 7 - 1 9 ) 

For T D S, it clearly holds that 

posi[A?_ 1,a;](r) D pos t [A«_ 1 ^](5) (7.20) 

and, therefore, it also holds that 

postlAirtdT}) = {postlAl.MiT)} C t L I { ^ } - (7.21) 

Therefore, T G cpre[Aj,u>](tII{-Rj}) and the set cpre[Aj,u>](tII{-Rj}) is upward 
closed. 

2. P rov ing that for every element S from J J {pre[A?_ 1,w](i?j)} it holds that S is i n 
cpre[Ai,u>}(\Y[{Rj}): F r o m the properties of ] J , it holds that 5 = {s} is a single
ton. Because s G pre[A?_1,a;](i?j), there is a t ransi t ion s r G A ^ _ 1 for some 
r G Since post[At

i_1,u](S) D { r} , it follows from the definition of A j that 
post[Ai,oj]({S}) = {T} where T D { r} , and so T G t L K ^ j } and post[Ai,u]({S}) C 
t L K - R j } - We use the definition of cpre to conclude that S G cpre[Aj,u>](tII{-Rj})• 

3. P rov ing that for every T G cpre[Ai,w](t]J{i?j}) there exists some element S G 
[ ] (pre[Af_ 1,o;](i?j)} such that S C T: F r o m T G c p r e l A ^ t l i l ^ j } ) and the 
definition of A j , we have that 

p o s i l A ^ K J T } ) = { P } C t l l { i 2 , - } (7-22) 

for P s.t. post[Al_vuj}(T) = P. Since P G t L K ^ j } , there exists r e Rj D P and 
t G T s.t. t r G A j _ 1 . Because t G pre[Aj_ 1,o;]({r}), we choose S = {t} and we 
are done. • 

7.4.3. C o m p u t i n g F\ o n Representat ives of 17^-sets 

Similar ly as i n the previous section, computat ion of F\ at each even level of the automata 
hierarchy is done by computing the least fixpoint of the function 

fFt(Z) = FiUpre[Al,o}(Z). (7.23) 
i 

We w i l l show that the whole fixpoint computat ion from Equa t ion 7.4(h) can be again 
carried out symbolically. We w i l l explain the following: (a) A l l intermediate values of 
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Z are of the form \,1Z, 1Z C Qiy so the sets 1Z can be used as their symbolic represen
tatives, (b) pre and U can be computed efficiently on such a symbolic representation. 
The computat ion is a simpler analogy of the one i n Section 7.4.2. 

We start w i th the computat ion of pre[A\,T]{Z) where r G 7Tj+i(X), assuming that Z is 
of the form 11Z, represented by 1Z = {Ri, • • •, Rn}- A simple analogy to L e m m a 7.1 and 
Equa t ion 7.7 of Section 7.4.2 is that the union of downward closed sets is a downward 
closed set generated by the union of their generators, i.e. 11Z = \JR&TI-1{RJ} and that 
pre distributes over union, i.e. 

pre[Alr](\jTZ) = ( J pre^rtdiRj}). (7.24) 

A n analogy of Equa t ion 7.8 holds too: 

pre[A\,r](S) = ( J pre[AiM(S). (7.25) 

Intuitively, pre[A\,T](S) contains states from which at least one t ransi t ion labelled by any 
symbol that is projected to r by 7Tj_|_i leaves w i t h the target i n S. Us ing Equa t ion 7.25, 
we can write pre[A\,r\{Z) as 

| J prelAtMttiRj}). (7.26) 

To compute the ind iv idua l disjuncts pre[Ai,u](],{Rj}), we take advantage of the fact 
that every i{Rj} is downward closed, and that Aj is, by its definition (obtained from 
determinisation by subset construction), monotone w.r.t. C . Tha t is, i f P P' G Aj 
for some P,P' G Qi, then for every R C P, there is R' C P' s.t. R —-> R! G Aj. 
Due to monotonicity, the pre[Ai,o;]-image of a downward closed set is downward closed. 
Moreover, we observe that it can be computed symbolical ly using cpre on elements of its 
generators. In particular, for a set ],{Rj}, we get the following lemma, which is a dual 
of L e m m a 7.2: 

L e m m a 7.5. Let Rj C Qi-\ and UJ be a symbol over 7Tj(X) for i > 0. Then 

pre[AiMU{Rj}) = HcprelAt^iRj)}- (7.27) 

Intuitively, the sets w i th the post-images below the set Rj are those which do not 
have an outgoing transi t ion leading outside Rj. The largest such set is cpre[At

i_1,u](Rj). 
Using L e m m a 7.5, pre[A\,r}{Z) can be rewrit ten as 

| J i{cpre[AUM{Rj)} (7.28) 

which gives us the final formula for pre[A\,r] described in L e m m a 7.6. 
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L e m m a 7.6. Let 7Z C Qi and r be a symbol over 7Tj+i(X). Then 

pre[Alr](in) = HcprelAl.MiRj) \ u G T T ^ T ) , R3 G K}. (7.29) 

In order to compute fp$(Z), it remains to unite pre[A?,o](Z), which is computed using 
i 

L e m m a 7.6, w i th F j . F r o m Equa t ion 7.4(i), F j equals | { A ^ | _ 1 } , so the union can be done 
symbolical ly as 

fFt(Z) =i({Nf_1} U {cpre^MiRj) | u> G 7 1 ^ ( 0 ) , ^ G ft}). (7.30) 

Therefore, a symbolic applicat ion of / „ j to Z = \,1Z represented using the set 7Z reduces 
i 

to computing cpre-images of elements of 1Z, which are put next to each other, together 
wi th i v | _ i - The computat ion starts from F j = | { A ? | _ 1 } , represented by {A^?_ 1 }, and each 
of its steps, implemented by Equa t ion 7.30, preserves the form of sets 1TZ, represented 
by 1Z. 

Proofs of the Used Lemmas 

L e m m a 7.5. Let Rj C Q j _ i and UJ be a symbol over 7Tj(X) / o r i > 0. T/ien 

p r e l A . H U I ^ } ) = | { c p r e [ A t 1 H ( ^ ' ) } - (7.27) 

Proof. F i r s t , we show that pre[A;,w](i{F,}) is downward closed. Second, we show that 
S = cpre[At

i_1,uj}(Rj) is i n pre[Ai,u](],{Rj})- F ina l ly , we show that every element T i n 
pre[Ai,u>}(\.{Rj}) is smaller than S. 

1. P rov ing that pre[Ai,o;](4,{Fj}) is downward closed: Consider a state 5 ' G Qj s.t. 
5 ' G pre[Ai,uj}(\.{Rj}). F r o m the definitions of pre and A j , it holds that 

postlAirt({S'}) = {postlAt.MiS')} C K i J j - } , (7.31) 

and, therefore, ]30si[A?_1,a;](5/) G 4,{F,}. For T C S', it clearly holds that 

postiAl^MiT) C p o s t [ A « _ 1 H ( 5 ' ) (7.32) 

and so it also holds that 

poat [A i l W ] ({r}) = { p o a t [ A « _ 1 H ( r ) } C |{i2,-}. (7.33) 

Therefore, T G pre[Aj,u>](4,{i?j}) and pre[Ai,J\(\.{Rj}) is downward closed. 

2. P rov ing that 5 = cpre[At

i_1,ui](Rj) G pre[Aj,u>](4,{i?j}): F r o m the definition of cpre, 
it holds that 

poat[A\_lJU](S) = S' C i i j - . (7.34) 

Further, from the definition of A j , it holds that S S' G A j and, therefore, 

S G pre[AiM{i{Rj})-

114 



3. P rov ing that for every T G pre[Ai,u](],{Rj}) it holds that T C S: F r o m T G 
pre[Ai,ui](\.{Rj}), we have that T P G A , for P C F j , and, from the definition of 
A j , we have that P = posi[Aj_ 1,o;](r). F r o m P = posi[Aj_ 1 ^](T) and the definition 
of cpre, it is easy to see that T C cpre[A?_ 1,w](P), and, moreover 

P C ft,- =4> cpne[Aj_i,o;](P) C cpne[Aj_i,o;](i2,-). (7.35) 

Therefore, we can conclude that T C cpre [A?^,^] (ft,-) = 5 . • 

7.4.4. C o m p u t a t i o n of F"/ a n d iV? o n S y m b o l i c T e r m s 

Sections 7.4.2 and 7.4.3 show how sets of states arising wi th in the fixpoint computations 
from Equations 7.4(h) and 7.4(iv) can be represented symbolical ly using representatives 
which are sets of states of the lower level. The sets of states of the lower level w i l l be 
again represented symbolically. W h e n computing the fixpoint of level i, we w i l l work 
wi th nested symbolic representation of states of depth i. Par t icular ly, sets of states of Qk, 
0 < k < i, are represented by terms of level k where a term of level 0 is a subset of Qo, 
a term of level 2j + 1, j > 0, is of the form tIJ{*i> • • • > tn} where t\,..., tn are terms of 
level 2j, and a term of level 2j, j > 0, is of the form i { t \ , . . . , t n } where t\,..., tn are 
terms of level 2j — 1. 

The computat ion of cpre and fMt on a term of level 2j + 1 and computat ion of 
i V2j + l 

pre and / „ j on a term of level 2j then becomes a recursive procedure that descends v ia 
the structure of the terms and produces again a term of level 2j + 1 or 2j respectively. 
In the case of cpre and fMt called on a term of level 2j + 1, L e m m a 7.3 reduces the 

i V2j + l 
computat ion to a computat ion of pre on its sub-terms of level 2j, which is again reduced 
by L e m m a 7.6 to a computat ion of cpre on terms of level 2j — 1, and so on un t i l the 
bot tom level where the algori thm computes pre on the terms of level 0 (subsets of Qo). 
The case of pre and f„t called on a term of level 2j is symmetrical . 

%• 
E x a m p l e . We w i l l demonstrate the run of our algori thm on the following abstract 
example. Consider a ground W S 1 S formula ip = -3X^-3X2-''5Xi : po and an N F A 
Ao = (Qo, A o , Io = {a}, Fo = {a, b}) that represents po- Reca l l that our method decides 
val idi ty of p by computing symbolical ly the sequence of sets FQ , N\, ivf , F2, F\ , N3, each 
of them represented using a symbolic term, and then checks i f I3 D A 3 7^ 0. In the 
following paragraph, we w i l l show how such a sequence is computed and interleave the 
description w i t h examples of possible intermediate results. 

The fixpoint computat ion from Equa t ion 7.4(h) of the first set i n the sequence, F Q , is 
an explicit computat ion of the set of states backward-reachable from F D v i a 0 transitions 
of A Q . It is done using Equa t ion 7.23, yielding e.g. the term 

t{F*} = FQ

i = {a,b, c}. 

The fixpoint computat ion of from Equa t ion 7.4(iv) is done symbolically. It starts 
from the set N\ represented using Equa t ion 7.4(iii) as the te rm t[Ni] = t l i { { a ) b, c}} , 
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and each of its iterations is carried out using Equa t ion 7.13. Equa t ion 7.13 transforms 
the problem of computing cpre[Ai,a/]-image of a term into a computat ion of a series of 
j3re[Af,,o;]-images of its sub-terms, which is carried out using Equa t ion 7.23 i n the same 
way as when computing t[F$], ending wi th e.g. the term 

t[N*] = tU{{a,b,c},{b,c},{c,d}}. 

The term representing F2 is then t[F2] = l-{t[Nl]}, due to Equa t ion 7.4(i). The symbolic 
fixpoint computat ion of F\ from Equa t ion 7.4(h) then starts from t[F2], i n our example 

tm = I { t i l { { a , b, c}, {b, c}, {c, d}}} . 

Its steps are computed using Equa t ion 7.30, which transforms the computat ion of the 
image of pre[A\,u"] into computations of a series of cpre[A},<x/]-images of sub-terms. These 
are i n tu rn transformed by L e m m a 7.3 into computations of pre[Aj,a;]-miages of sub-sub-
terms, subsets of Qo, i n our example yielding e.g. the term 

t[Fl] = | { t U { { a , 6, c}, {b, c}, {c, d}}, t U { { 6 } , {d}}, t U { { a } , {c, d}}}. 

Using Equa t ion 7.4(iv), the final term representing N$ is then 

t[N3] = t l l j l { t L I { { a , b, c}, {b, c}, {c, d}}, t U { { 6 } , {<*}}> t l l { W , {c, 0 ! } } } 

In the next section, we w i l l describe how we check whether haFs 7^ 0 using the computed 
term t[N3}. 

? 
7.4.5. T e s t i n g Im n F m 7^ 0 o n S y m b o l i c T e r m s 

Due to the special form of the set I m (every 7j, 1 < i < m, is the singleton set {7j_i}, 
cf. Section 7.4.1), the test I m n Fm 7^ 0 can be done efficiently over the symbolic terms 
representing Fm. Because Im = {Im-i} is a singleton set, testing Im n Fm 7^ 0 is 
equivalent to testing Im-i G -Fn- If is odd, our approach computes the symbolic 
representation of iV m instead of Fm. Obviously, since Nm is the complement of Fm, it 
holds that I m _ i G F m <̂ =̂  / m - i 0 Nm. O u r way of testing Im-i G F m on a symbolic 
representation of the set Ym of level m is based on the following equations: 

{x} G 1Y ^ 3F G Y : x G F (7.36) 
{ x } G t L J Y VF G Y : x G F (7.37) 

and for i = 0, I„ G t L J Y VF G Y : / 0 D F / 0. (7.38) 

Given a symbolic term of level m representing a set X C Q m , testing emptiness of 
Im H F m or 7m n iV m can be done over by a recursive procedure that descends along 
the structure of t[x] using Equations 7.36 and 7.37, essentially generating an And-Or 
tree, terminat ing the descent by the use of Equa t ion 7.38. 
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E x a m p l e . In the example of Section 7.4.4, we would test whether {{{{a}}}} H A 3 = 0 
over t[N3}. T h i s is equivalent to testing whether I2 = {{{a}}} G A 3 . F r o m Equa t ion 7.37 
we get that 

I2eN3 ^ I1 = {{a}} G F\ (7.39) 

because F\ is the denotation of the only sub-term t[F$] of t[N3]. Equa t ion 7.36 implies 
that 

h = {{a}}€F* ^ { a } € J V } v { a } € t I I { W , { d } } v { a } € t I I { { a } , { c , d } } . (7-40) 

Each of the disjuncts could then be further reduced by Equa t ion 7.37 into a conjunction 
of membership queries on the base level which would be solved by Equa t ion 7.38. Since 
none of the disjuncts is satisfied, we conclude that I\ G" F\, SO I2 0 A 3 , imply ing that 
I2 G F 3 and thus obtain the result |= (p. 

7.4.6. S u b s u m p t i o n of S y m b o l i c T e r m s 

Al though the use of symbolic terms instead of an explicit enumeration of sets of states 
itself considerably reduces the searched space, an even greater degree of reduction can 
be obtained using subsumption inside the symbolic representatives to reduce their size, 
s imilar ly as i n the antichain algorithms [ W D H R 0 6 ] . For any set of sets X containing 
a pair of distinct elements Y, Z G X s.t. Y C Z, it holds that 

l X = l ( X \ y ) and t l l X = t l I ( X \ Z ) . (7.41) 

Therefore, i f X is used to represent the set J ,X, the element Y is subsumed by Z and can 
be removed from X without changing its denotation. Likewise, i f X is used to represent 
t I J X , the element Z is subsumed by Y and can be removed from X without changing 
its denotation. We can thus simplify any symbolic term by pruning out its sub-terms 
that represent elements subsumed by elements represented by other sub-terms, without 
changing the denotation of the term. 

Comput ing subsumption on terms can be done using the following two equations: 

I X C 1 Y < ^ V A G X3Y" G Y : X C Y (7.42) 

t U X Q t U Y < ^ VY" G Y3X G X : X C Y. (7.43) 

Us ing Equations 7.42 and 7.43, testing subsumption of terms of level i reduces to testing 
subsumption of terms of level i — 1. The procedure for testing subsumption of two 
terms descends along the structure of the term, using Equations 7.42 and 7.43 on levels 
greater than 0, and on level 0, where terms are subsets of Qo, it tests subsumption by 
set inclusion. 

E x a m p l e . In the example from Section 7.4.4, we can use the inclusion {6, c} C { a , 6, c} 

and Equa t ion 7.41 to reduce t[Nf] = t L I { { a ) °i c l ) {°i c l ) l c ) d}} to the term 

W = t I I { { 6 , c } , { c , d } } . 
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Table 7.1.: Results for pract ical examples 

B e n c h m a r k 
T i m e [s] S p a c e [states] 

B e n c h m a r k 
MONA dWiNA MONA dWiNA 

r e v e r s e - b e f o r e - l o o p 0.01 0.01 179 47 
i n s e r t - i n - l o o p 0.01 0.01 463 110 
b u b b l e s o r t - e l s e 0.01 0.01 1285 271 
r e v e r s e - i n - l o o p 0.02 0.02 1311 274 
b u b b l e s o r t - i f - e l s e 0.02 0.23 4 260 1040 
b u b b l e s o r t - i f - i f 0.12 1.14 8 390 2 065 

Moreover, Equa t ion 7.43 implies that the term tJ_J{{&, c}, {c, <i}} is subsumed by the 
term T !!{{&}> {d}}, a n d > therefore, we can reduce the te rm t[F$] to the term 

t[Fli = i{tU{{b}, {d}}, t U { { a } , {c, d}}}. 

7.5. Experimental Evaluation 

We implemented a prototype of the approach presented i n this chapter in the tool 
dWiNA [FHLV14] and evaluated it i n a benchmark of both pract ical and generated ex
amples. The tool uses the frontend of M O N A to parse input formulae and also for 
the construction of the base automaton AVo, and further uses the semi-symbolic encod
ing of N F A s (represented as unary T A s ) from the V A T A l ibrary, which is described i n 
Chapters 9 and 10. The tool supports the following two modes of operation. 

In mode I, we use M O N A to generate the deterministic automaton A^Q corresponding 
to the matr ix of the formula p, translate it to V A T A and run our algori thm for handling 
the prefix of p using V A T A . In mode II, we first translate the formula p into the formula 
p' in prenex normal form (i.e. it consists of a quantifier prefix and a quantifier-free 
matr ix) where the occurence of negation i n the matr ix is l imi ted to literals, and then 
construct the nondeterministic automaton A w directly using V A T A . 

Our experiments were performed on an Intel Core i7-4770@3.4 G H z processor w i th 
32 G i B R A M . The pract ical formulae for our experiments that we report on here were 
obtained from the shape analysis of [MQ11] and evaluated using mode I of our tool: 
the results are shown in Table 7.1 (see [FHLV14] for addi t ional experimental results). 
We measure the t ime of runs of the tools for processing only the prefix of the formulae. 
We can observe that w.r.t . the speed, we get comparable results; in some cases dWiNA is 
slower than M O N A , which we attribute to the fact that our prototype implementat ion 
is, when compared wi th M O N A , quite immature. Regarding space, we compare the sum 
of the number of states of a l l automata generated by M O N A when processing the prefix 
of p w i t h the number of symbolic terms generated by dWiNA for processing the same. 
We can observe a significant reduction in the generated state space. We also tr ied to 
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Table 7.2.: Results for generated formulae 

k 
T i m e [s] S p a c e [states] 

k MONA dWiNA MONA dWiNA 

1 0.11 0.01 10 718 39 
2 0.20 0.01 25 517 44 
3 0.57 0.01 60 924 50 
4 1.79 0.02 145 765 58 
5 4.98 0.02 349 314 70 
6 oo 0.47 oo 90 

run dWiNA on the modified formulae i n mode II but ran into the problem that we were 
not able to construct the nondeterministic automaton for the quantifier-free mat r ix po 
in reasonable time. This was because after transformation of ip into prenex normal form, 
if <po contains many conjunctions, the sizes of the automata generated using intersection 
grow too large (one of the reasons for this is that V A T A i n its current version does not 
support efficient reduction of automata). 

To better evaluate the scalabili ty of our approach, we created several parameterised 
families of W S 1 S formulae. We start w i th basic formulae encoding interesting relations 
among subsets of No, such as existence of certain transitive relations, singleton sets, or 
intervals (their full definition can be found i n [FHLV14]) . F r o m these we algori thmically 
create families of formulae wi th larger quantifier depth, regardless of the meaning of the 
created formulae (though their semantics is s t i l l nontr ivial) . In Table 7.2, we give the 
results for one of the families where the basic formula expresses existence of an ascending 
chain of n sets ordered w.r.t. C (the value oo denotes a t imeout). The parameter k stands 
for the number of alternations i n the prefix of the formulae: 

3Y : - . 3 * 1 - . . . . ^3Xk,..., Xn : [\ (Xt C Y A Xt C Xi+1) Xi+1 C Y. 
l<i<n 

We ran the experiments i n mode II of dWiNA (the experiment i n mode I was not successful 
due to a too costly conversion of a large base automaton from M O N A to V A T A ) . 

7.6. Conclusion and Future Work 

We presented a new approach for dealing w i t h alternating quantifications w i th in the 
automata-based decision procedure for W S 1 S . O u r approach is based on a generalisa
t ion of the idea of the so-called antichain algori thm for testing universality or language 
inclusion of finite automata. O u r approach processes a prefix of the formula wi th an 
arbitrary number of quantifier alternations on the fly using an efficient symbolic rep
resentation of the state space, enhanced wi th subsumption pruning. Our experimental 
results are encouraging (our tool outperforms M O N A i n many cases) and show that the 
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direction started i n this work—using modern techniques for nondeterministic automata 
in the context of deciding W S 1 S formulae—is promising. 

A n interesting direction of further development seems to be l if t ing the symbolic 
pre I cpre operators to a more general notion of terms that would allow one to work 
w i t h general sub-formulae (which may include logical connectives and nested quanti
fiers). The algori thm could then be run over arbitrary formulae, without the need of the 
transformation into the prenex form. This would open a way of adopting optimisations 
used in other tools as well as syntactical optimisations of the input formula such as anti-
prenexing. Another way of improvement is using simulation-based techniques to reduce 
the generated automata as well as to weaken the term-subsumption relation (an efficient 
algori thm for computing simulat ion over BDD-represented automata is needed). We also 
plan to extend the algorithms to WS/cS and tree-automata, and perhaps even further to 
more general inductive structures. 
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Part III. 

Efficient Techniques for 
Manipulat ion of Nondeterministic 

Tree Automata 
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8. Downward Inclusion Checking for 
Tree Automata 

The previous chapters of this thesis introduced several formal verification techniques 
that rely on finite tree automata. Even before, there have been numerous other ap
plications of T A s , such as (abstract) regular tree model checking [ A J M d 0 2 , B H R V 1 2 ] , 
verification of programs wi th complex dynamic data structures [BHRV06] , analysis of 
network firewalls [ B o u l l ] , and implementat ion of decision procedures of logics such as 
W S 2 S or M S O [KMS02] , which themselves have numerous applications (among the most 
recent and promising ones, let us mention at least verification of programs manipulat ing 
heap structures wi th data [MPQ11]) . 

Recently, there has been notable progress i n the development of algorithms for effi
cient manipulat ion of nondeterministic finite tree automata (TAs) , more specifically, i n 
solving the crucial problems of automata reduction [ABH+08] and of checking language 
inclusion [TH03, B H H + 0 8 , A C H + 1 0 ] . A s shown e.g. in [BHH+08], replacing determin
istic automata by nondeterministic ones can—in combination w i t h the new methods for 
handling T A s — l e a d to great efficiency gains. In the work presented i n this chapter, we 
further advance the research on efficient algorithms for handling T A s by proposing a new 
algori thm for inclusion checking that turns out to significantly outperform the existing 
algorithms in most of our experiments. 

U p w a r d inclusion checking. The classic textbook algori thm for checking inclu
sion L(As) Q L(AB) between two T A s As (Small) and AB (Big) first bottom-up 
determinises AB, computes the complement automaton AB of AB (the states, called 
macrostates, of which are sets of states of AB), and then checks language emptiness of 
the product automaton accepting L(As) H L(AB)- This approach has been optimised i n 
[TH03, B H H + 0 8 , ACH+10] by avoiding the construction of the whole product automaton 
(which can be exponentially larger than AB and which is indeed extremely large in many 
practical cases) by constructing its states and checking language emptiness on the fly. 
The optimised algori thm is based on start ing from the leaf states of both automata and 
maintaining a set of reachable pairs (qs, PB) where qs is a state of As and PB is a set 
of states of AB- New pairs (qs, PB) are generated by taking a tuple of states qi, • • • ,qn 

such that every qi appears in some reachable pair (qi,Pi) and qs is a bot tom-up post 
of the tuple in As over some symbol a. The set PB is then obtained as the bottom-up 
a-post i n AB of a l l tuples i n P i x • • • x Pn. In case qs is a root state and PB, on the other 
hand, contains no root state, the algori thm terminates w i t h the answer L(As) % L(AB) 
(this corresponds to finding a witness from the set L(As) H L(AB))- If no new pair can 
be generated, the algori thm concludes that L(As) Q L(AB)-
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The part icular opt imisat ion used in [TH03, B H H + 0 8 , A C H + 1 0 ] , called the antichain 
principle, is based on removing from the set of reachable pairs those pairs (qs,PB) for 
which there is already a reachable pair (qs, P'B) in the set, w i t h P'B C PB. The argument 
why this pruning is correct is that P'B has a higher chance to generate a set of states that 
contains no root state. O n the other hand, for every set of states reachable from P'B, 
there w i l l be a corresponding larger (w.r.t. inclusion) set of states reachable from PB, so 
if the set reachable from P'B contains a root state r , the set reachable from PB w i l l also 
contain r . Th is can be even more opt imized by the approach of [ACH+10], which uses 
the upward simulat ion relation to weaken the conditions for removing a pair from the 
set of reachable states. The mentioned optimisations i n practice often prove or refute 
inclusion by constructing a smal l part of the product automaton o n l y 1 . We denote these 
algorithms as upward algorithms to reflect the direction i n which they traverse automata 
As and AB-

The upward algorithms are sufficiently efficient in many pract ical cases. However, 
they have two drawbacks: (i) W h e n generating the bottom-up post-image of a set S 
of macrostates (which are sets of states of AB), a l l possible n-tuples of states from al l 
possible products Si x . . . x Sn where Si £ S need to be enumerated 2 , (ii) Moreover, 
these algorithms are known to be compatible w i th only upward simulations as a means 
of their possible optimisat ion, which is a disadvantage since downward simulations are 
often much richer and also cheaper to compute. 

Downward inclusion checking. The alternative downward approach to checking T A 
language inclusion was first proposed i n [HVP05] i n the context of subtyping of X M L 
types. W i t h hindsight, we can consider it as an on-the-fly version of the algori thm for 
constructing the difference automaton for a pair of T A s , proposed by Hosoya [Hos l l ] . 
The inclusion algori thm is not derivable from the textbook approach and has a more 
complex structure wi th its own weak points; nevertheless, it does not suffer from the 
two issues of the upward algori thm mentioned above. We generalise the algori thm of 
[HVP05] for automata over alphabets w i th an arbitrary rank ([HVP05] considers rank 
at most two), and, most importantly, we improve it significantly by using the antichain 
principle, empowered by a use of the cheap and usually large downward simulation. 
In this way, we obtain an algori thm which is complementary to and highly competitive 
w i t h the upward algori thm as shown by our experimental results (in which the newly 
proposed algori thm significantly dominates i n most of the considered cases). 

1 The work of [TH03] does, in fact, not use the terminology of antichains despite implementing them in 
a symbolic, BDD-based way. It specialises to binary tree automata only. A more general introduction 
of antichains within a lattice-theoretic framework appeared in the context of finite word automata in 
[WDHR06]. Subsequently, [BHH+08] generalised [WDHR06] for explicit upward inclusion checking 
on TAs and experimentally advocated its use within the abstract regular tree model checking frame
work [BHH+08]. See also [DR10] for other combinations of antichains and simulations for finite word 
automata. 

2Note that this can be slightly optimised by a technique presented in Chapter 10. 
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O u t l i n e . The rest of this chapter is organised as follows. Section 8.1 describes our 
basic downward inclusion checking algori thm, followed by Section 8.2 that contains a de
scription of its further optimisations. Section 8.3 presents experimental comparison of 
the downward algorithms wi th the upward algorithms, and Section 8.4 concludes the 
chapter. 

8.1. Downward Inclusion Checking 

Let us fix two tree automata As = (Qs, E , As, Rs) and AB = (QB, E , AB, RB) for 
which we want to check whether the language inclusion L(As) Q L(AB) holds. If we t ry 
to answer this query top-down and we proceed in a naive way, we immediately realise 
that the fact that the top-down successors of part icular states are tuples of states leads 
us to checking inclusion of the languages of tuples of states. Subsequently, the need to 
compare the languages of each corresponding pair of states i n these tuples w i l l again 
lead to comparing the languages of tuples of states, and hence, we end up comparing the 
languages of tuples of tuples of states, and the need to deal w i th more and more nested 
tuples of states never stops. 

For instance, given a transi t ion q —>• a(p\,p2) i n As, transitions r —>• a(si,S2) and 
r —>• a{t\,t2) in AB, and assuming that there are no further top-down transitions 
from q and r , it holds that L(q) C L ( r ) if and only i f L ( ( p i , p 2 ) ) C L ( ( s i , s 2 ) ) U 
L((t\, ^2))- Note that the union F ( ( s i , S2)) U L( (£ i , £2)) cannot be computed component
wise, this is, L((si, S2)) U L((ti, £2)) / ( F ( s i ) U F ( £ i ) ) x (L(s2) U Lfa)). For instance, 
provided L{s\) = F ( s 2 ) = {&} and L[t\) = F ( £ 2 ) = {c}, it holds that L ( ( s i , s 2 ) ) U 
L((t\, £2)) = {(b, b), (c, c)}, but the component-wise union is a larger set (L(s\) U L(t\)) x 
( F ( s 2 ) U F ( £ 2 ) ) = {(b, b), (b, c), (c, b), (c, c)}. Hence, we cannot s imply check whether 
L(pi) C L(si) U L(ti) and L(p2) C F ( s 2 ) U F ( £ 2 ) to answer the original query, and we 
have to proceed by checking inclusion on the obtained tuples of states. However, explor
ing the top-down transitions that lead from the states that appear i n these tuples w i l l 
lead us to dealing w i t h tuples of tuples of states, etc. 

Fortunately, there is a way out of the above trap. In particular, as first observed 
in [HVP05] i n the context of X M L type checking, we can exploit the following property 
of the Cartesian product of sets G, H C U for a universe U: 

G x H = [G xU)n{U x H). (8.1) 

Cont inuing in our example, this means that we can rewrite the expression 

L ( p i ) x L(p2) C L((Sl, s2)) U L((t1,t2)) (8.2) 

which is equivalent to 

L ( p i ) x L(p2) C (L(a i ) x L(s2)) U (L(h) x L(t2)) (8.3) 

as the expression 

L ( p i ) x L ( p 2 ) C ( (L(a i ) x T s ) n ( T s x L ( s 2 ) ) ) U 
( ( L ( t i ) x T E ) n ( T E x L ( t 2 ) ) ) . 

(8.4) 
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This can further be rewritten, using the distr ibutive laws i n the ( 2 T e x T e , C ) lattice, as 

L ( p i ) x L(p2) C ( (L(a i ) x T s ) U ( L ( t i ) x T s ) ) n 

( ( L ( a i ) x T s ) U ( T S x L ( i 2 ) ) ) n 

( ( T s x L ( a 2 ) ) U x T s ) ) n 

( ( T s x L ( S 2 ) ) U ( T E x L ( i 2 ) ) ) . 

It is easy to see that inclusion between a set and an intersection of several sets holds 
exactly i f it holds for a l l components of the intersection. In our example, this means 
that the inclusion from Equa t ion 8.5 holds if and only if the following formula is true: 

L ( p i ) x L(p2) C ( (L(a i ) x T s ) U x T s ) ) A 

L ( p i ) x L ( p 2 ) C x T s ) U ( T s x L(t2))) A 

L ( p i ) x L ( p 2 ) C ( ( T s x L ( a 2 ) ) U (L(t\) x T s ) ) A 

L ( p i ) x L ( p 2 ) C ( ( T s x L(s2)) U ( T s x L ( i 2 ) ) ) . 

Two things should be noted in the previous formula. 

1. If we are computing the union of languages of a pair of tuples such that they have 
I s at a l l indices other than some index i, we can compute it component-wise, 
i.e. the inclusion test 

L ( p i ) x L{p2) C ( (L(a i ) x T s ) U x T s ) ) (8.7) 

can be simplified to the test 

L ( p i ) x L(pa) C ( L ( a i ) U L ( t x ) ) x T s . (8.8) 

Because L ( p 2 ) is always a subset of T s , the above clearly holds iff L(jp\) C L ( a i ) U 

/ • ( ' i l -

2. If T s does not appear at the same positions as i n the inclusion 

L ( p i ) x L ( p 2 ) C ( (L(a i ) x T s ) U ( T s x L ( t 2 ) ) ) , (8.9) 

it must hold that either 

L ( p i ) C L ( a i ) or L(p2)QL(t2). (8.10) 

Us ing the above observation and Equa t ion 8.6, we can finally rewrite the equation 

L ( p i ) x L ( p 2 ) C L ( ( a i , a 2 ) ) U L((h,t2)) (8.11) 

into the following formula, which does not contain languages of tuples but of single states 
only: 

L ( p i ) C L ( a i ) U L ( t i ) A 

( L ( p i ) C L ( a i ) V % ) C L ( t 2 ) ) A 

( L ( p i ) C L ( t x ) V L(pa) C L ( a 2 ) ) A 

^ ( P 2 ) C L ( a 2 ) U L ( t 2 ) . 
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The above reasoning can be generalised to dealing w i t h transitions of any ari ty as 
shown i n Theorem 8.1. In the theorem, we conveniently exploit the notion of choice 
functions. G i v e n PB C QB and a G E , # a = n > 1, we denote by cf(PB, a) the set of 
al l choice functions / that assign an index i, 1 < i < n, to a l l n-tuples ( g i , . . . , qn) G Q g 
such that there exists a state i n PB that can make a top-down transi t ion over a to 
( g i , . . . ,qn); formally, cf{PB, a) = {f \ f : downa{PB) ->• { 1 , . . . , #a}} . 

T h e o r e m 8 .1. Let As = (Qs, E , As, Rs) and AB = (<5s,E, A B , RB) be tree automata. 
For sets Ps Q Qs and PB Q QB it holds that L(Ps) C L(PB) if and only ifVps G 
P s , Va G E : if ps ->• a ( n , . . . , r # a ) , 

' o ! o « ; n a ( P B ) = {()} */ # a = 0, 

then V / G c / ( P B , a), 31 < i < # a : L ( r , ) C ( J L ( ^ ) i / # a > 0 . 

u£downa(PB) 
f(u)=i 

Proof. For two sets P s C Qs, PB Q QB, it clearly holds that L(Ps) C L(PB) i f and only 
if V p 5 G P 5 , V a G E : 

P5 -> a ( r i , . . . , r „ ) =>• L ( ( n , . . . , r „ ) ) C [ J L((m,...,un)). (8.13) 
(«i,... ,un)edowna (PB ) 

For the case when # o = 0, the above formula collapses to 

ps^a() => L ( ( ) ) C | J L( ( ) ) . (8.14) 

()&downA{PB) 

Since downa{PB) Q {()} for # a = 0, the first part of the theorem is proven. We prove the 
second part (when # a > 0) i n the following steps. Let us fix n = #a , u = (u\,..., un), 
f = ( n , . . . , rn). T h e n we can observe that the inclusion 

L((ri,...,rn))C ( J L((Ul,...,un)) (8.15) 

u£downA(PB) 

is equivalent to the inclusion 

n n 

]jL(n)c | J n L ( ^ ) ' ( 8- 1 6) 
i=l uGdownA(PB) »=1 

where n i L i ^* denotes the Cartesian product of a family of sets { S i , . . . , 5 n } . We can 
further observe that for a universe U and a family of sets {Si,..., Sn} such that Si CU 
for a l l 1 < i < n, it holds that 

n n 

l \ S i = f][Ui-1xSixUn-i]. (8.17) 
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Given the family of sets {L(u\),..., L(un)} and the decomposition from Equa t ion 8.17, 
we can rewrite the formula from Equat ion 8.16 as 

u£downa(PB) i=l 
f ] [Tt1 x L(Ui) x T ™ - ] 

i = l 
5.18) 

Since the power set lattice (2®B, C ) is completely distr ibutive, we can exploit the fact 
that for any doubly indexed set {XJ^ G 2®B \ j G J,k G Kj} it holds 

u nx^=n u XJ,m 5.19) 

where F is the set of a l l choice functions / choosing for each index j G J some index 
f(j) G Kj. For our purpose, we introduce the set of choice functions: 

cf(PB,a) = {/|/: downa(PB) - > { ! , . . . , n } } 5.20) 

where every / assigns to every tuple from downa(PB) an index. Therefore, after applying 
the distr ibutive law on Equa t ion 8.18, we obtain 

« = 1 f&cf(PB,a) 

| J x L ( „ / C B ) ) x T S - / ( S 

Medouina(Ps) 
5.21) 

Due to the fact that for a universe U, a set T CU m this universe, and an intersection 
of a family of sets R C 2 W , it holds that 

T C p| Si V 5 i G i2 : T C S i , 

we can simplify our case to 

n 

V / G c / ( P B , a) : J ] L ( r . ) C [j [ t ^ " 1 X L ( « / ( B ) ) X 

i=l uadowna(PB) 

5.22) 

(8.23) 

Further, observe that for a fixed choice function / , we can use / to split the tuples from 
downa(PB) into n sets, each of them containing tuples u that are assigned by / the same 
index i = f(u). We can then rewrite the right-hand side of the previous inclusion query 
to the following: 

u£.downa(Pg) 

5.24) 

U U E4" 
u£downa(PB) 

f(u)=i 

X L ( l i j rpn-
1Y, 

5.25) 
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u 
i=l 

T ^ x 

u£.downa(Pg) 
f(u)=i 

x T™-1 

It can be observed that for a universe U and two families of sets {Si, 
{S[,..., S'n} such that Si, S[ C £Y for a l l 1 < i < n, it holds that 

n n 

17 5* ̂  U x
 S'i x i f f 31 < i < n : 5 i C 

1=1 1=1 

We can now finally deduce that the formula 

Mf eF:J[L(ri) C [J 

i=l 
U 

u£downa(PB) 
f(u)=i 

x T™-1 

is equivalent to the formula 

Vf eF,3l<i<n:L(n) C ( J L ( ^ ) , 

u£downa(PB) 
f(u)=i 

(8.26) 

, S'n} and 

(8.27) 

3.28) 

5.29) 

which concludes the proof. • 
8.1.1. Bas i c A l g o r i t h m for D o w n w a r d Inc lus ion C h e c k i n g 

Next , we construct a basic algori thm for downward inclusion checking on tree automata 
As = As, Rs) and AB = ( Q s , S , A # , The algori thm is shown as Algo
r i thm 8.1. Its ma in idea relies on a recursive application of Theorem 8.1 i n function 
expand 1. The function is given a pair 

(PS,PB) G <2S x 2 Q s for which we want to 
prove that L(pg) C L(PB)—initially, the function is called for every pair (g,g, FB) where 
Is £ ^ s - The function enumerates a l l possible top-down transitions that A s can do 
from ps (lines 3-8). For each such transit ion, the function either checks whether there 
is some transi t ion ps —>• a() for ps £ PB if # a = 0 (line 5), or it starts enumerating 
and recursively checking queries L(p's) C L(P'B) on which the result of L(ps) Q L(PQ) 
depends according to Theorem 8.1 (lines 9-16). 

The expand 1 function keeps track of which inclusion queries are currently being 
evaluated i n the set workset (line 2). Encounter ing a query L(p's) C L(PB) w i th 
(p'S,P'B) G workset means that the result of L(p's) C L(P'B) depends on the result 
of L{p's) C L(P'B) itself. In this case, the function immediately successfully returns 
because the result of the query then depends only on the other branches of the cal l tree. 

128 



A l g o r i t h m 8 .1: Downward inclusion 

Input: T A s As = (Qs, E , A s , Rs), AB = (QB, E , AB, RB) 
Output: true if L(As) Q L(AB), false otherwise 

1 foreach qs € Rs do 
2 | If -iexpandl(g,s, RB, 0) then return false; 

3 return t r u e : 

Funct ion expandl (ps , PB, workset) 

II Ps £ Qs> PB^QB, and workset CQS x 2 Q s 

1 if (PS,PB) £ workset then return t r u e ; 

2 workset := workset U {(ps, - P B ) } ; 

3 foreach a £ £ do 
if # a = 0 then 

if downa(ps) 7^ 0 AdownA(PB) ~-
else 

:= downA(PB); 
foreach ( n , . . . , r # a ) G downa(ps) do 

foreach / e { W { 1 , . . . , # a } } do 
found := /afee; 

foreach 1 < i < # a do 

-5 := {q% | (gi , • • •, q#a) G W, / ( ( g i 
if expandl(rj, 5, workset) then 

found : = irwe; 

break: 

then return /afee ; 

/ / P S -> • • • , r # a ) 

// Vf€cf(PB,a) 

II 31 < i < # a 

,g# a)) =*}; 
/ / i f L f o ) C L ( S ) 

if ^found then return false: 

17 return t r u e ; 

Using Theorem 8.1 and noting that A l g o r i t h m 8.1 necessarily terminates because a l l 
its loops are bounded, and the recursion in function expand l is also bounded due to the 
use of workset, it is not difficult to see that the following theorem holds. 

Theorem 8.2. When applied on a pair of TAs As = (Qsi E , As, Rs) and AB = 
(QB, E , AB, RB) s.t. QS^QB = 0, Algorithm 8.1 terminates and returns true if and 
only ifL{As) C L{AB). 

8.2. Optimisations of Downward Inclusion Checking 

In this section, we propose several optimisations of the basic algori thm presented above 
that, according to our experiments, often have a huge impact on the efficiency of the 
algor i thm—making it in many cases the most efficient algori thm for checking inclusion 
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A l g o r i t h m 8.2: Downward inclusion (antichains + preorder) 

Input: T A s As = (Qs, S , A g , Rs), AB = (QB, S , AB, RB), 
preorder ^ C (QS L)QB)2 

Output: true if L(As) Q L(AB), false otherwise 
Data: NN := 0; 

1 foreach qs £ Rs do 
2 I if -iexpand2(gg, RB, 0) then return /a /se; 
3 return true: 

on tree automata that we are currently aware of. In general, the optimisations are based 
on an original use of simulations and antichains i n a way suitable for the context of 
downward inclusion checking. 

In what follows, we assume that there is available a preorder •< C (QS^QB)2 compat
ible w i t h language inclusion, i.e. such that p -< q =>• L(p) C L(q), and we use P R 
where P, R C (Qs U QB)2 to denote that Vp £ P3r £ R : p •< r. A n example of such 
a preorder, which can be efficiently computed, is the max ima l downward simulat ion < B 

(see [HS09]). 

8.2.1. Optimisation with Antichains and Simulation-based Pruning 

Firs t , we propose the following concrete optimisations of the downward checking of 
L{ps) C L(PB): 

a) If there exists a state pB £ PB such that ps PB, then the inclusion clearly holds 
(from the assumption made about ^ ) , and no further checking is needed. 

b) Next , it can be seen without any further computat ion that the inclusion does not hold 
if there exists some (p's, P'B) such that p's < ps and PB P'B, and we have already 
established that L(p's) % L(P'B). Indeed, we have L(PB) C L(P'B) 2 L(p's) C L(ps), 
and therefore L(ps) % L(PB). 

c) F ina l ly , we can stop evaluating the given inclusion query if there is some (p's, P'B) £ 
workset such that ps ^ p's and P'B PB. Indeed, this means that the result of 
L(p's) C L ( P ^ ) depends on the result of L(ps) C L ( P B ) . However, i f L ( p ' s ) C L ( P ^ ) 

holds, then also L(ps) C L(PB) holds because we have L(ps) C L(p's) C L(P'B) C 
L(PB). O n the other hand, i f L(p's) C L(P'B) does not hold, the path between 
(p' s, P ^ ) and (pg, P B ) cannot be the only reason for that since a counterexample has 
not been found on that path yet, and the chance of finding a counterexample is only 
smaller from (ps,PB)-

The version of A l g o r i t h m 8.1 including a l l the above proposed optimisations is shown 
as A l g o r i t h m 8.2 (the changes are highlighted i n the pseudocode). The optimisations can 
be found i n the function expand2 that replaces the function expandl. In particular, line 2 
implements opt imisat ion (a), line 1 opt imisat ion (b), and line 3 opt imisat ion (c). In order 

130 



Funct ion expand2(ps, PB, workset) 

II PS G Qs, PBQQB, and workset C Q 5 x 2 ^ 

1 if 3(p ' s , P'B)eNN : p ' s <ps /\PB P b then return /alse ; 
2 if 3p G P e '• Ps ^ P then return true ; 
3 if 3(p ' s , P g ) G workset : ps ^ p ' s A P g P B then return true ; 
4 workset := workset U {(ps, P B ) } ; 

5 foreach a G E do 
if # a = 0 then 

if downa(ps) 7^ 0 A downA(PB) = 0 then return /afee ; 
else 

:= downA(PB); 

foreach ( n , . . . , r # a ) G downa(ps) do 
foreach / e { W { 1 , . . . , #a}} do 

found := /afee; 
foreach 1 < i < # a do 

// PS -> • • • , r # a ) 
// Vf€cf(PB,a) 

II 31 < i < # a 
51 := fa | fa, •••,<?#«) G W, / ( f a , . . . , q#a)) = i}; 
if expand2(rj, S, workset) then / / i f Lfa ) C L ( 5 ) 

found := true; 
break ; 

if J ( r ' , H) e NN :r' ^ n A S i f then 
|_ X X := ( X X \ {(r ' , if) | fl" 5, n ± r'}) U {(r*, S)}; 

if ^found then return false: 

21 return true; 

to implement opt imisat ion (b), the a lgori thm maintains a new set X X . This set stores 
pairs (PS,PB) for which it has already been shown that the inclusion L(ps) C L(PB) 
does not hold. 

A s a further optimisat ion, the set X X is maintained as an antichain w.r.t. the preorder 
that compares the pairs stored i n X X such that the states from Qs on the left are 
compared w.r.t . ^ , and the sets from 2®B on the right are compared w.r.t. (line 19). 
Clearly, there is no need to store a pair (ps, PB) that is bigger i n the described sense 
than some other pair (p's, P'B) since every t ime (ps, PB) can be used to prune the search, 
(p's, P'B) can also be used. 

Taking into account Theorem 8.2 and the above presented facts, it is not difficult to 
see that the following holds. 

Theorem 8.3. When applied on a pair of TAs As = ( Q s , E , As, Rs) and AB = 
(QB, E , AB, RB) s.t. Qs n QB = 0; Algorithm 8.2 terminates and returns true if and 
only ifL(As) C L(AB)-
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A l g o r i t h m 8.3: Downward inclusion (antichains + preorder + IN) 

Input: T A s As = (Qs, S , A s , Rs), AB = (QB, S , AB, RB), 
preorder ^ C (Qs L)QB)2 

Output: true if L(As) Q L(AB), false otherwise 
Data: NN : = 0; IN := 0; 

1 foreach qs £ Rs do 

2 I if expand2e((/5, RB, 0) = (false, _, _) then return false: 
3 return true: 

8.2.2. O p t i m i s a t i o n w i t h C a c h i n g of Inc lus ion Pa ir s 

The algori thm from the previous section can be optimised even more. Reca l l that the 
algori thm caches pairs for which the inclusion does not hold, i.e. pairs (PS,PB) such 
that L(ps) % L(PB), i n the set NN (which is maintained as an antichain). A natural 
question that arises is whether there is a similar option for pairs for which the inclusion 
does hold, i.e. pairs (PS,PB) such that L(ps) C L(PB). Such an option indeed exists 
and is presented i n the rest of this section. 

Let us denote the set of the above-mentioned pairs for which the inclusion holds as IN. 
Then, when checking the inclusion L(ps) C L(PB), when there is a pair (p's,P'B) £ IN 
such that ps d p's and P'B PB, then we immediately know that the checked inclusion 
holds because L(ps) C L(p's) C L(P'B) C L(PB). 

The set IN can again be optimised as an antichain but w i th the opposite ordering 
than NN. Th is means that there are no two pairs (ps, PB), (P'S, P'B) s u c n that ps d p's 

and P'B PB in IN. It is easy to understand that a pair (ps,Ps) does not have to 
be stored since whenever (ps, PB) can be used to prune the search, (p's, P'B) can also be 
used. 

However, adding new pairs to IN is not as straightforward as for NN. Assume that we 
add a pair (ps, PB) to IN immediately when the function ca l l expand2(p5, PB, workset) 
at line 15 of function expand2 returns true for some workset. Th is is not correct as 
shown in the following example. 

Suppose that when checking inclusion L(p's) C L(P'B), a test for inclusion L(ps) C 
L(PB) where ps d p's and P'B PB is encountered somewhere deep i n the recursive 
calls of expand2. A s stated previously, the inclusion L(ps) C L(PB) does not need to 
be tested since i f L(p's) C L(P'B), then L(ps) C L(PB), and if L(p's) % L(P'B), then this 
cannot be caused solely by L(ps) % L(PB). Hence, expand2(p5, PB, workset) returns 
true, and the result of the query L(p's) C L(PB) w i l l be given by other branches of the 
call tree generated for the L(p's) C L(P'B) query. However, i f we put the pair (PS,PB) 
into IN and later proved that L(p's) % L(P'B), then the set IN would become invalid. 

A solution to this issue is given i n A l g o r i t h m 8.3 (the changes from A l g o r i t h m 8.2 are 
highlighted). The expand2e function is a modified version of expand2 that addit ional ly 
returns a formula of the form /\Ant —>• f\ Con where Con (consequents) is a set of 
inclusion queries that can be answered posit ively provided that the inclusion queries i n 
Ant (antecedents) are a l l answered positively. 
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Funct ion expand2e(ps, PB, workset) 

1 if 3(p's, P'B) eIN :ps ^ p's A P ^ PB then return (true, 0, 0) ; 
2 if P'B) G A W : j / 5 <PS^PB ^ V 3 P b then return ( / o i s e ^ H 
3 if 3p G P B • PS ^ P then return (true, 0, 0) : 
4 if 3 ( j / 5 , P ^ ) G workset : ps < p's A P B P B then 
5 |_ return (true, {(p's, P'B)}, 0); 
6 workset := workset U {(ps, P B ) } ; ^4nt := 0; C o n := 0; 
7 foreach a G S do 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 

23 

then return (false, 9, 0) ; 

// PS -> a ( r i , . . . , r # 0 

II Vfecf(PB,a) 

if # a = 0 then 

if downa(ps) 7^ 0 A downa(PB) 
else 

:= downa(PB); 
foreach ( n , . . . , r # a ) G downa(ps) do 

foreach / e { W { 1 , . . . , #a}} do 
found := /oise; 
foreach 1 < i < j^a do / / 31 < i < # a 

S ••= Ui | (gi , • • •, <7#a) G VF, / ( ( g i , . . . , g # a ) ) = i} ; 
(x, A n i ' , Con') := expand2e(rj, 5, workset); 
if x then / / i f L(n) C L ( S ) 

found := true; ^4nt := ^4nt U A n t ' ; 
Con := Con U Con ' ; break; 

if J ( r ' , P ) G A W : r ' ^ n A 5 P then 
|_ NN := (NN \ {(/, H) \ H ^ S , n ± r'}) U {(n, S)}; 

if ^found then return (false, 0,0) ; 

24 Ant := A n t \ {(ps, PB)}; Con := C o n U {(ps, PB)}; 
25 if Ant = 0 then 

26 
27 
28 

29 

foreach (x, Y) G Con do 
if $(p's, P'B)eIN :x< p's A P'B Y then 
[_ IN := (IN \ {(/, H) | Y P , r' ± x}) U {(x, Y ) } ; 

Con := 

30 return (true, Ant, Con): 

W h e n the recursive cal l of expand2e(ps, PB, workset) is at the bo t tom of the cal l 
tree and there is (p's, P'B) G workset such that ps •< p's and P'B PB (line 4), then, 
according to the above, the formula returned from expand2e along wi th true could be 
f\{L(p's) C L(P'B)} —>• f\{L(ps) C L ( P B ) } because L(ps) C L(PB) cannot be considered 
guaranteed before L(p's) C L(P'B) is posit ively answered. This formula is, however, 
simplified to /\{L(p's) C L ( P ^ ) } —>• 0 since L(ps) C L(PB) can be forgotten as it is 
weaker than L(p's) C L(P'B). 
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A si tuation similar to what we have just discussed arises when the recursive ca l l of 
expand2e(p5, P B , workset) is at the bo t tom of the ca l l tree and there is (p'S,PB) G IN 
such that ps d: p's a n d P'B PB (line 1). In this case, /\0 —> /\0 is returned (along 
wi th true) since the val idi ty of L(p's) C L(P'B) has already been established. Next , if 
the recursive cal l of expand2e(ps, PB, workset) is at the bo t tom of the ca l l tree and 
there is p G PB such that ps d p (line 3), / \ 0 —> /\ 0 is again returned since for any 
inclusion query L(p's) C L(P'B) such that p's ^ ps and PB P'B, it w i l l be the case 
that there is p' G PB such that p ' s •< p' (and hence the computat ion w i l l be immediately 
stopped without a need to use IN for this purpose). Final ly , when expand2e returns 
false (line 2), it is accompanied by the formula / \ 0 —>• /\ 0, which, however, is ignored i n 
this case and is returned just to make the result of expand2e have the same structure. 

For inner nodes of the ca l l tree, this is, nodes that correspond to function calls 
expand2e(p5, PB) that themselves cal l expand2e, a l l antecedents and consequents re
turned from successful nested calls are collected into sets Ant and Con. Then , the 
condit ion L(p$) C L(PB) is removed from Ant (if it is there) and added to Con since 
it has just been proved that L(p$) C L(PB) holds provided that the elements from 
Ant \ {L(ps) C L ( F e ) } are later proved to also hold. W h e n the set Ant becomes empty, 
yielding the formula / \ 0 —>• / \ Con, a l l elements of Con can be added to IN (while 
respecting the antichain property of IN) and the set Con cleared. 

Taking into account Theorem 8.3 and the above presented facts, it can be seen that 
the following holds. 

T h e o r e m 8.4. When applied on a pair of TAs As = (Qs,^, A$, Rs) and AB = 
(QB,T,, AB,RB) s.t. Qs n QB = 0; Algorithm 8.3 terminates and returns true if and 
only ifL{As) C L(AB)-

8.3. Experimental Results 

We implemented A l g o r i t h m 8.1 (which we mark as down i n what follows), A l g o r i t h m 8.2 
wi th the m a x i m u m downward simulation as the input preorder (marked as down+s), and 
A l g o r i t h m 8.3 inside the V A T A l ibrary (about which we give further details in Chap
ter 10). We provide two configurations of A l g o r i t h m 8.3 that differ i n the input pre
order: The first of them uses identity (we mark this configuration as down-opt) , while 
the other also uses the m a x i m u m downward simulat ion (marked as down-opt+s. In the 
experiments, we evaluated the performance of the four algorithms wi th the a lgori thm for 
upward inclusion checking using antichains from [BHH+08] (marked as up) and its mod
ification that uses the m a x i m u m upward simulation parameterised by identity (proposed 
in [ACH+10] and marked as up+s below), which are provided in V A T A . The evaluation 

? 

was testing language inclusion L(A) C L{B) of almost 2 000 tree automata pairs of dif
ferent sizes (ranging from 50 to 1 000 states), including automata from the intermediate 
steps of abstract regular tree model checking of the algori thm for rebalancing red-black 
trees after insertion or deletion of a leaf node [ B H H + 0 8 ] . The timeout was set to 30 s. 

The results of the experiments are presented i n Table 8.1. The table compares the 
methods according to the percentage of the cases i n which they were the fastest when 
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Table 8.1.: Results of the experiments (timeout 30 s) 

A l g o r i t h m 
A l l pairs L(A) % L(B) L(A) C L(B) 

A l g o r i t h m 
Winne r Timeouts Winne r Timeouts Winne r Timeouts 

down 36.35 % 32.51% 39.85 % 26.01% 0.00% 90.80 % 
down+s 4 .15% 18.27% 0.00% 20.31% 47.28% 0.00 % 
down-opt 32.20% 32.51% 35.30% 26.01% 0.00% 90.80 % 
down-opt+s 3.15% 18.27% 0.00% 20.31% 35.87% 0.00 % 
up 24.14% 0.00% 24.84% 0.00% 16.85% 0.00 % 
up+s 0.00 % 0.00% 0.00% 0.00% 0.00% 0.00 % 

checking inclusion on the same automata pair, and also according to the percentage of 
timeouts. The set of results i n the column labelled w i t h " A l l pairs" contains data for a l l 
pairs. 

We also checked the performance of the algorithms for cases when inclusion either 
does or does not hold in order to explore the abi l i ty of the algorithms to either find 
a counterexample i n the case when inclusion does not hold, or prove the inclusion i n 
case it does. The results below "L(A) % L(B)" in the table are for the pairs A, B where 
the inclusion does not hold, and the column under UL(A) C L(B)" reports on the cases 
where the inclusion holds. 

The results show that the overhead of computing upward s imulat ion is too high i n a l l 
the cases that we have considered, causing upward inclusion checking using simulat ion 
to be the slowest when the t ime for computing the s imulat ion used by the algori thm is 
inc luded 3 . Next , it can be seen that for each of the remaining approaches there are cases 
in which they w i n in a significant way. However, the downward approaches are clearly 
dominat ing in significantly more of our test cases (with the only exception being the case 
of smal l automata when the t ime of computing simulations is not included). O n the other 
hand, it can be observed that for some part icular cases, the more complex structure of 
the downward algorithms (which resembles an And-Or tree) causes an unmanageable 
state explosion and the algorithms timeout (in contrast to the upward algorithms, which 
always, though often slowly, terminate). 

8.4. Conclusion 

In this section, we proposed a new algori thm for checking language inclusion over non-
deterministic T A s (based on the one from [HVP05]) that traverses automata i n the 
downward manner and uses both antichains and simulations to optimise its computat ion. 
This a lgori thm is, according to our experimental results, mostly superior to the known 
upward algorithms. 

3Note that up+s was winning over up in the experiments of [ACH+10] even with the time for comput
ing simulation included, which seems to be caused by a much less efficient implementation of the 
antichains in the original algorithm. 
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One of the interesting future research directions would be an extension of the tech
niques used i n the optimisations of the downward algori thm to the recently introduced 
technique for testing language equivalence of nondeterministic hnite automata based on 
the so-called bis imulat ion up-to congruence [BP 13]. Apa r t from that, it would be in 
teresting to explore an efficient implementation of the data structure used for storing 
the antichain, e.g. symbolical ly using some B D D - l i k e data structure, as e.g. in [TH03]. 
A n interesting problem here is how to efficiently encode antichains based not on the 
subset inclusion but on a s imulat ion relation. 
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9. Semi-symbolic Tree Automata 

Cer ta in important applications of T A s , such as formal verification of programs w i t h 
complex dynamic data structures [BHRV12] or decision procedures of logics such as 
WS/cS or M S O , require hnite (tree) automata wi th very large alphabets. For instance, 
the automata manipulated by the decision procedure for W S 1 S i n Chapter 7 use an 
alphabet of the size 2™ where n is the number of variables i n the considered formula. 
Here, the common choice is to use the tree automata l ibrary of M O N A [KMS02] , which 
is based on representing transitions of T A s symbolical ly using multi-terminal binary 
decision diagrams ( M T B D D s ) . The encoding used by M O N A is, however, restricted to 
deterministic automata only. Th is implies a necessity of immediate determinisation after 
each operation over T A s that introduces nondeterminism and may, i n turn, easily lead 
to a state space explosion. Despite the extensive engineering effort spent to optimise the 
implementation of M O N A , the focus on deterministic automata significantly l imi ts its 
applicabili ty. 

A s a way to overcome this issue, i n this chapter, we propose a semi-symbolic represen
tat ion of nondeterministic T A s that generalises the one used by M O N A , and we develop 
algorithms implementing the basic operations on T A s (such as computat ion of union, 
intersection, etc.) as well as more involved algorithms for computing simulations and for 
checking language inclusion (using simulations and antichains to optimise it) over the 
proposed representation. 

O u t l i n e . The structure of this chapter is the following. In Section 9.1, we give our 
definitions of B D D s and M T B D D s . The two dual semi-symbolic encodings of T A s are 
presented i n Section 9.2 and the algorithms for operations on T A s over these encodings 
are described in Section 9.3. Section 9.4 describes our implementat ion of an M T B D D 
library. Section 9.5 gives experimental results and, finally, Section 9.6 concludes the 
chapter. 

9.1. Binary Decision Diagrams 

Let IB = {0,1} be the set of Boolean values. A Boolean function of arity k is a function 
of the form / : B f c —> B . We extend the not ion of Boolean functions to an arbitrary 
nonempty set S where a fc-ary Boolean function extended to the domain set S is a func
t ion of the form / : B f c —>• S. 

A reduced ordered binary decision diagram ( R O B D D ) [Bry86] r over a set of n Boolean 
variables connected directed acyclic graph wi th a single source node (de
noted as r.rooi) and at least one of the two sink nodes 0 and 1. We cal l internal the nodes 
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which are not sink nodes. A function Var assigns each internal node a Boolean variable 
from the set X = { x i , . . . , xn}, ordered by the ordering x\ < x2 < • • • < xn. For every 
internal node v there exists a pair of outgoing edges labelled low and high. We denote by 
v.low a node w and by v.high a node z such that there exists a directed edge from v to 
w labelled by low and a directed edge from v to z labelled by high respectively. For each 
internal node v, it must hold that Var{v) < Var{v.low) and Var(v) < Var(v.high), and 
also v.low Ý v.high. A node v represents an n-ary Boolean function \v\ : B " 4 B that 
assigns to each assignment to the Boolean variables i n A a corresponding Boolean value 
defined i n the following way (using x as an abbreviation for x\... xn): 

[0] = A x . O , 

111 = A x . 1, 
r _ _ 
I Xx .{v.low}(x) IÍXÍ = 0 

{v I = < _ _ for Var{v) = Xi. 
I A x . \v.high\(x) i f Xj = 1 

For every pair of distinct nodes v and w, it further holds that they represent a different 
function, i.e. {v} ^ {w}. We say that an R O B D D r represents the Boolean function [ r | 
defined as [r] = [[r.rooij. Dual ly , for a Boolean function / , we use (/) to denote the 
(unique up to isomorphism) R O B D D representing / , i.e. / = 1(f)} and r = 

We generalise the standard Apply operation for manipulat ion of Boolean functions 
represented by R O B D D s i n the following way: let op1, op2, and op3 be i n tu rn arbitrary 
unary, binary, and ternary Boolean functions. T h e n the functions Applyi, Apply^, and 
Applys produce a new R O B D D that is defined for R O B D D s / , g, and h as follows: 

Apply,i{f,op1) = (Xx. op1(lfj(x))), 

Apply2(f,g,op2) = (Xx.op2(lf}(x),lg}(x))), (9.2) 

Apply3(f,g,h, op3) = (Xx. o p 3 ( [ / ] ( x ) , M ( x ) , [ / i ](ž))>. 

In practice, op1, op2, and op3 can be implemented as functions wi th side-effects. 
The notion of R O B D D s is further generalised to multi-terminal binary decision di

agrams ( M T B D D s ) [CMZ+97]. M T B D D s are essentially the same data structures as 
R O B D D s , the only difference being the fact that the set of sink nodes is not restricted 
to two nodes. Instead, it can contain an arbitrary number of nodes labelled uniquely by 
elements of an arbi trary domain set S. A l l standard notions for R O B D D s can natural ly 
be extended to M T B D D s . A n M T B D D m then represents a Boolean function extended 
to S, [m] : B " - > S . Further, the concept of shared MTBDDs is used. A shared M T B D D 
s is an M T B D D wi th mult iple source nodes (or roots) that represents a mapping of every 
element of the set of roots R to a function induced by the M T B D D corresponding to the 
given root, [s | : R 4 ( B n 4 S). We abuse notat ion and use / ( r ) for a shared M T B D D 
/ and a root r G R to denote the M T B D D ( [ / ] ( r ) ) . 

Apply operations for M T B D D s are extended i n such a way that the M T B D D s for 
Apply2 and Applys may have different domain sets. Not only this, even the result of 
the Apply operation may be over a different domain set than any of the parameters. 
Formally, suppose a tr iple of M T B D D s : / (over a domain F), g (over a domain G), 
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{qi, • • • ,qn) q 

0 {s,t,u} {u} {(u,u,u)} 

a) bottom-up 

Figure 9.1.: The (a) bot tom-up and (b) top-down semi-symbolic encodings of a transi t ion 
relation. Paths i n the M T B D D correspond to symbols from E . 

and h (over a domain H). Further, assume a domain K for the resulting M T B D D . 
(Note that some of the considered domains may be identical.) Then , for opi : F —>• K, 
op2 : (F x G) -> K, and op3 : (F x G x H) —> K, the results of Apply i (/', op J , 
Apply2(f, 9, op2), and Apply$(f, g, h, op3) are a l l M T B D D s over the domain K. 

9.2. Semi-Symbolic Representations of Tree Automata 
We next consider a natural , semi-symbolic, M T B D D - b a s e d encoding of nondeterministic 
T A s , suitable for handling automata wi th huge alphabets. A shared M T B D D is used 
to encode the transi t ion relation of a T A by connecting states wi th tuples of states i n 
a part icular way, depending on the direction of the encoding. 

We hx a tree automaton A = ( Q A , R) for the rest of the section. We consider 
both top-down and bottom-up representations of its t ransi t ion relation A , because some 
operations on A are easier to do on the former representation while others are easier on 
the latter. Moreover, we also provide an algori thm for translation between the considered 
representations. We assume w.l.o.g. that the input alphabet E of A is represented i n 
binary using n bits. Each bit i n the binary encoding of E is assigned a Boolean variable 
from the set { x i , . . . , xn}. We can then use shared M T B D D s wi th a set of roots R and 
a domain S for encoding various functions of the form R —>• (E —>• S) that we shall need. 

9.2.1. B o t t o m - u p R e p r e s e n t a t i o n 

Our bottom-up representation of the transi t ion relation A of A uses a shared M T B D D 
Abu over E where the set of root nodes is and the domain of labels of sink nodes is 2^ 
(see Figure 9.1a). The shared M T B D D Abu then represents the following function [Ab u]]: 

{Abuj : Q# -»• ( E -»• 2Q), 

lAbuj = A (qu ...,qp)a.{q\ a(qu ...,$,)-> q}. 
(9.3) 
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A l g o r i t h m 9.1: Inversion of a shared M T B D D 

Input: Shared M T B D D / such that [ / ] : # - > ( B n -> 2 5 ) 
Output: Shared M T B D D g such that {g\ : S ->• ( B n ->• 2 H ) and 

r G [g](s,a) s G [/](r, a) 
i 5 : = ( A r x . 0 ) ; / / \g\ : S -)• ( B n -)• 2 H ) 
2 foreach s G 5 swc/i i / i a i 3 r G i?, 3x G B n : s G [/] (r, a;) a o 

3 foreach r G R such that f(r) / (Xx. 0) do 
4 [_ #(s) := % f e ( / ( r ) , 9 ( s ) , ( A I F . i f s G A then F U {r} else F ) ) : 

5 return g\ 

It is easy to observe that the shared M T B D D Abu is a semi-symbolic representation 
of A , i n part icular [ A b u ] ( ( g i , ...,qp),a)= upa((qi,qp)). 

9.2.2. T o p - d o w n R e p r e s e n t a t i o n 

Our top-down representation of the transi t ion relation A of A uses a shared M T B D D 
Atd over S where the set of root nodes is Q, and the domain of labels of sink nodes 
is 2Q* (see Figure 9.1b). The M T B D D Atd represents the following function \Atdf. 

I A ' 1 : g ^ ( S ^ 2 ( 3 # ) , 

lAtd}= Xqa.{(q1,...,qp)\q^a(q1,...,qp)}. 

Again , we can easily see that [ A t d ] ( q , a) = downa(q). 

9.2.3. C o n v e r s i o n B e t w e e n B o t t o m - u p a n d T o p - d o w n Representat ions 

Sometimes it is necessary to convert between the bottom-up and top-down representa
t ion of a T A , for instance, when computing downward simulations (as explained later 
in the text). The transformation can be done using the generic algori thm given i n 
A l g o r i t h m 9.1. The algori thm converts a shared M T B D D / representing a function 
[/] : R —> (B™ —>• 2s) over n Boolean variables to a shared M T B D D g that represents 
the function \g\ : S -)• ( B n -> 2R) such that r G |g](s ,a) < ^ s G [ / ] ( r , a ) . The al
gori thm first initialises g to map al l elements of S and a l l valuations of the Boolean 
variables to the empty set. Then, for each element of s G S and r £ R and for each 
valuation of the Boolean variables, which are impl i c i t ly traversed by the Apply2 function, 
if s is in the sink node of f(r) for some valuation of the Boolean variables, r is added to 
the sink node of g(s) for the same valuation of the Boolean variables. 

9.3. Tree Automata Algorithms over Semi-Symbolic 
Encoding 

In this section, we propose algorithms for removing unreachable states, computing the 
union, intersection, and (maximum) downward simulation, as well as algorithms for 
upward and downward inclusion checking on the considered representation of T A s . 
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9.3.1. R e m o v i n g U n r e a c h a b l e States 

A s the performance of many operations on automata depends on the size of the automa
ton ( in the sense of the size of the state set and the size of the transi t ion table), it is 
often desirable to remove both bottom-up and top-down unreachable states. Indeed, 
such states are useless: bottom-up unreachable states cannot be used to generate a fi
nite tree and although top-down unreachable states can generate a finite tree, this tree 
cannot be a subtree of any tree accepted by the automaton. 

Removing both bottom-up unreachable states for the bottom-up representation and 
top-down unreachable states for the top-down representation can be easily done by 
a single traversal through the automaton. Nevertheless, sometimes, e.g. when checking 
language inclusion of automata, it is useful to also remove states unreachable i n the 
opposite direction. 

The procedure for removing top-down unreachable states from a T A A = (Q, E , A , R) 
represented bottom-up generates a directed graph (Q, E) where E contains the edge 
(q, r) i f there is a t ransi t ion q —>• a(q\,..., qn) £ A such that r = g« for some 1 < i < n 
and a £ E . W h e n the graph is created, the states that correspond to nodes that are 
backward unreachable from the nodes corresponding to root states of A are removed 
from the automaton i n a simple traversal. 

Removing bottom-up unreachable states for the top-down semi-symbolic representa
t ion of A is more complex. F i rs t , A is traversed in the top-down manner while creating 
a directed And-Or graph (Ay , A3, E) where A y = Q represents the And nodes of the 
graph and A3 C Q* represents the Or nodes. The set of edges E contains the edge 
(q, (qi,..., qn)) i f there exists the transi t ion q —>• a(qi,..., qn) £ A for some a £ E , and 
the edge ((qi, • • •, qn), q) if % = q for some 1 < i < n. The algori thm starts by marking 
the node labelled by () (which is an Or node) and proceeds by marking the nodes of 
the graph using the following rules: an Or node nQ is marked if there exists a marked 
node na such that ( n 0 , na) £ E, and an And node na is marked i f a l l nodes n0 such 
that (na,n0) £ E are marked. W h e n no new nodes can be marked, the states of A are 
reduced to only those that correspond to the marked And nodes i n the graph. 

9.3.2. U n i o n 

A n algori thm for computing the union of a pair of T A s represented bottom-up follows 
as A l g o r i t h m 9.2. The presented algori thm simply unites the sets of states Q\ and Q2, 
and the sets of root states R\ and R2. We slightly abuse the notat ion and use A\u U A^" 
to denote the union ( [ A ^ J U [A^]) of the considered shared M T B D D s . In order to 
carry out the union operation on the leaf transitions of the automaton (denoted by ()), 
a single Apply operation needs to be performed. The Apply operation is given the lambda 
expression XX Y . X L)Y as the function to perform on the sink nodes of the M T B D D . 
Correspondingly, when the Apply operation is evaluated, X and Y are mapped to the 
sets of states that are the values of the corresponding sink nodes of the first and second 
argument of the Apply operation, producing new sink nodes wi th the value of X U Y. 

Performing the union on T A s represented top-down is more straightforward: A\j = 
(Qi U Q2, E , A\d U Af, i ? i U R2), provided that QiC\Q2 = 0. 
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A l g o r i t h m 9.2: U n i o n of T A s represented bottom-up 

Input: Ai = ( Q i , E , A j " , i ? i ) and A2 = (Q2, E , A | " , R2), Q1C\Q2 = % 
Output: Au = (Qu, E , AbJ, Ru) s.t. L(Au) = L(Ai) U L ( - 4 2 ) 

1 A y " := A ^ u U A^; 
2 A&»(()) : = % f e ( A j u ( ( ) ) , A ^ ( ( ) ) , ( A X r . l U F ) ) : 
3 return A=(QiU Q2, E , A g * , Ri U F 2 ) ; 

9.3.3. Intersect ion 

A l g o r i t h m 9.3 performs intersection of a pair of T A s Aa = (Qa, E , Abu'a, Ra) and Ab = 
(Qb,T,,Abu,b,Rb) that use the bottom-up representation. It constructs the intersection 
of Aa and Ab by creating a product automaton An = (Qa x E , A ^ 1 , F a x F b ) where 

where a product state (g a , qb) is reachable if there exists a symbol g G E , states 
9 i , . . . , q£ G Q a , and states g j , . . . , qb

n G Q b such that g(qf,..., q£) ->• g a G A f t " ' a and 
• • •, g^) —>• g b G A f t " ' b , and, further, for a l l 1 < i < n , the product state (gf, g^) is 

reachable (note that leaf states are t r iv ia l ly reachable). 
The transitions in A ^ u basically run the two automata i n parallel such that An contains 

only bottom-up reachable states and transitions. The algori thm detects reachable states 
by start ing from leaf transitions of Aa and Ab, analysing a l l transitions over leaf symbols, 
and collecting reachable product states into the set newStates. Then , un t i l newStates is 
empty, a pair (qa,qb) is removed from newStates. For every such pair, we compute the 
set of product states reachable from any pairs of tuples ( ( g f , . . . , g^), (qb,..., g^)) where 
qa = qf a n d qb = q*i for some i, and at a l l positions j ^ i, it holds that (gf, qb) G Qn-
We add the product states of the computed set to newStates and continue wi th the next 
i teration of the loop. 

9.3.4. D o w n w a r d S i m u l a t i o n 

We next give an algori thm for computing the m a x i m u m downward simulat ion relation 
on the states of the T A A whose transi t ion relation is encoded using our semi-symbolic 
representation. The algori thm is inspired by the algori thm of Hie et al [INY04] (which 
is based on the same ideas as the algori thm of Henzinger et al [HHK95] , but is more 
convenient for us because it uses only a single remove set) proposed for computing 
simulations on finite (word) automata. For use i n the algori thm, we extend the notion 
of downward simulat ion to tuples of states by defining ( g i , . . . , g„) ( n , . . . , rn) to 
hold iff V I < i < n : g« -<D fi. 

Our algori thm for computing downward simulations, shown as A l g o r i t h m 9.4, starts 
w i t h a relation that grossly over-approximates of the m a x i m u m downward simulation. 
The relation is then pruned in a loop, removing pairs that do not satisfy the simulat ion 

f((qa

1,qb

1),...,(qa

n,qb

n))^(qa,qb)\f(qa

1,... 

f(qb

1,...,qb

n)^qbeAbu>b,\/l<i<n:(q?. 
(9.5) 
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A l g o r i t h m 9.3: Intersection of T A s represented bottom-up 

(Qb,^,Abu>b,Rb) 
L(Aa) n L(Ab) 

Input: T A s Aa = (Qa, E , Abu>a, Ra) and Ab 

Output: An = ( Q n , S , A ^ , i 2 n ) s.t. L ( A i ) 
1 Q n := 0; #n := 0; newStates := 0; 
2 A 6

n « : = (A ( (z i , . . . , (z n )o.0); 
3 Aft*(()) := ^pp/ j / 2 (A 6 u ' a ( ( ) ) ,A 6 u ' b ( ( ) ) , ( isect newStates)) 
4 while 3 (g a , g b) G newStates do 
5 

6 

7 

8 

9 

10 

11 

12 

newStates := newStates \ {(qa, qb)}] 

if (qa,qb) G Qn then continue: 

Q n := Q n U f t g 0 , ^ ) } ; 

if qa G Ra A qb G Rb then i ? n := Rn U { ( g a , <?b)} : 

foreach (qf,..., q%) G Qa# such that 31 < i < n : q' 

foreach {q\,..., qb) G Q b # suc/i i / i a i qb = q\ do 

qf do 

if V I < i < n : (qf, qb) G Qn then 
A^((qf , q 1 ) , ( C qb

n)) := ^%>(A 6 u> a((<tf,.. . , < £ ) ) bu,ar 

1 3 return „4r 

Abu>b((q\,.. 

(Qn, E , A ^ 1 , i? r 

, <?„)), (isect newStates)): 

Funct ion isect(&newStates, u p a , up'') 

1 productSet := upa x up b : 
2 newStates := newStates U productSet: 
3 return productSet: 

condition, un t i l it stabilises and the m a x i m u m downward simulat ion is obtained. The 
algori thm uses the following ma in data structures: 

• For every q G Q, the set sim(q) C Q contains states that are considered to simu
late q at the current step of the computat ion. Its value is gradually pruned during 
the computat ion. A t the end, sim encodes the m a x i m u m downward simulat ion 
being computed. 

• The set remove C Q# x Q# contains pairs ((qi,..., qn), (n> • • • > rn)) of tuples of 
states added there when it is found out that for some i, it holds that qi -J^D r^. 
The pairs are removed from the set and processed i n a fixpoint computat ion. 

• F ina l ly , cnt is a shared M T B D D encoding the function lent} : Q# —>• ( E —>• (Q —> 
N)) that for each (qi, • • • ,qn) G a G E , and r e Q gives the value / i G N 
denoting that r can make a top-down transi t ion to / i distinct tuples (r\,..., rn) 
such that (qi,..., qn) •<£> (r\,..., rn) in the current approximation of sim. 

The algori thm works in two phases. We assume that we start w i t h a T A whose 
transi t ion relation is represented bottom-up. In the initialisation phase, the dual top-
down representation of the transi t ion relation is first computed (note that we can also 
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A l g o r i t h m 9.4: Compu t ing downward simulation on a semi-symbolic T A 

Input: T A A = (Q, E , Abu, R) 
Output: M a x i m u m downward simulat ion <D C Q2 

1 Atd := invertMTBDD(A b u); 
2 remove := 0: 
3 initCnt := (A a . 0) 
4 foreach g G Q do 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

// linitCntj : E -> (Q ->• N) 
/ / i n i t i a l i s a t i o n l o o p 

sim(q) := 0: 
z ra iCn i := Apply 2{Atd(q), initCnt, (A A F . F U {(g, | X | ) } ) : 
foreach r e Q do 

isSim := true: 
Apply 2(Atd(q),Atd(r), (A A F . if ( A / 0 A F = 0) then i sS im := false)) : 
if isSim then sim(q) := sim(q) U {r} : 
else 

foreach ( g i , . . . , g „ ) G Q#, ( n , . . . , r „ ) G Q # do 
if 31 < i < n : qi = q A r« = r then 
[_ remove := remove U { ( (g i , • • • , g« ) , ( j i , • • • , r „ ) ) } : 

15 cnt := (A ( g i , . . . , qn) a . 0) ; / / \cnt\ : Q* -»• ( E -»• (Q -> N)) 
1 6 foreach ( g i , . . . , g„) G do cnt((qi,..., g n )) := initCnt : 
1 7 while 3 ( ( g i , g „ ) , ( n , r n ) ) G remove do / / f ixpoint comp. 
1 8 remove := remove \ { ( (g i , • • • , g« ) , ( n , • • • ,^n))}; 
1 9 cnt((qu qn)) := ^ Z 2 / 5 ( A 6 « ( ( r 1 ; . . . , rn)), A 6 « ( ( g 1 ; . . . , g n ) ) , 

cnt((qi,..., g n ) ) , (refine s im remove)): 

20 return { (g , r ) | g G Q, r G sim(g)}: 

start w i th a top-down representation and compute the bottom-up representation since 
both are needed in the algori thm). The three main data structures are then init ial ised 
as follows: 

• For each q G Q, the set sim(q) is ini t ial ised as the set of states that can make top-
down transitions over the same symbols as g, which is determined using the Apply 
operation on line 9. Tha t is, when start ing the main computat ion loop on line 17, 
the value of sim for each q G Q is sim(q) = {r \ Va G E : q —>• a ( g i , . . . , qn) => 
r ->• a ( n , . . . , r „ ) for some g i , . . . , g „ , n , . . . , r „ G Q } . 

• The remove set is ini t ial ised to contain each pair of tuples of states ( ( g i , . . . , qn), 
( r i , . . . , rn)) such that it holds that the relation ( g i , . . . , qn) <n ( n , . . . , rn) is 
broken even for the in i t i a l approximation of -<D, i.e. for some posit ion 1 < i < n, 
there is a pair (g«,rj) such that ri ^ sim(qi). 

• To initialise the shared M T B D D cnt, the algori thm first constructs an auxi l iary 
M T B D D initCnt representing a function \initCnt\ : E —>• (Q —> N). V i a the Apply 
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Funct ion refine(&sim, &remove, upaR, upaQ, cntaQ) 

1 newCntaQ := cntaQ: 
2 foreach s G upaR do 

newCntaQ(s) := newCntaQ(s) — 1; 
if newCntaQ(s) = 0 then 

foreach p G wp a(5 : s £ sim(p) do 
foreach ( p i , . . . , p „ ) G Q # , ( s i , . . . , s n ) G Q* do 

if 31 < i < n : pi = p A Si = s then 
if V I < j < n : Sj G sim(pj) then 
[_ remove := remove U { ( ( p i , • • • , p « ) , ( s i , • • • , % ) ) } ; 

sim(p) := sim(p) \ {s}: 

l i return newCntaQ: 

operation on line 6, this M T B D D gradually collects for every symbol a G E the 
set of pairs (g, /i) such that g can make a top-down transi t ion over the symbol a 
to / i distinct tuples. Th is M T B D D is then copied to the shared M T B D D cnt for 
each tuple of states (qi,..., g n ) G Q * . This is justified by the fact that we start by 
assuming that the s imulat ion relation is equal to Q x Q, which, for a symbol a G E 
and a pair (q, h) G cnt((qi,..., qVi)), means that (qi,..., g n ) can make a bottom-up 
transi t ion over a to / i distinct states r G sim(q). 

After that, the ma in computation phase proceeds by gradually restricting the in i 
t i a l over-approximation of the m a x i m u m downward simulat ion being computed. A s we 
have said, the remove set contains pairs ((qi, • • •,qn), (fi, • • •,rn)) for which it holds 
that (qi,...,qn) cannot be simulated by ( n , . . . , r „ ) , i.e. (qi,...,qn) iiD (n, • • •, rn). 
W h e n such a pair is processed, the algori thm proceeds by decrementing the counter 
{cnt}((qi,... ,qn),a,s) for each state s for which there exists a bottom-up transi t ion 
over a symbol a G E such that a(r\,..., rn) —> s. The meaning is that s can make one 
less top-down transi t ion over a to some (t\,..., tn) such that (qi, • • • ,qn) (h,... ,tn). 
If [ c n £ ] ( ( q i , . . . , qn), a, s) drops to zero, it means that s cannot make a top-down tran
sition over a to any such (ti,... ,tn). Th is means, for a l l p G Q such that p can make 
a top-down transi t ion over a to (qi,..., qn), that s no longer simulates p, i.e. p -J^D S. 
W h e n the s imulat ion relation between p and s breaks, the s imulat ion relation between 
al l m-tuples ( p i , . . . , p m ) and ( s i , . . . , sm) such that 31 < j < m : pj = p A Sj = s must 
also be broken. A s a result, the pair ( ( p i , . . . , p m ) , ( s i , . . . , s m ) ) is put to the remove set 
(unless the s imulat ion relation between some other states in the tuples has already been 
broken before). 

Correctness of the algori thm is summarised in the below theorem, which can be proven 
analogically as correctness of the algori thm proposed i n [INY04], taking into account the 
meaning of the above described M T B D D - b a s e d structures and the operations performed 
on them. 
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Funct ion expandSymb(p5, PB, workset) 

II PS £ Qs> PB^QB, and workset CQS x 2®B 

1 if 3(p'g, P'B) G workset : ps rf: p's A P g PB then return true : 
2 if 3(p' 5 , P'B) e NN : p's ^.ps APB P'B then return false ; 
3 if 3p G PB '• PS ^ P then return true : 
4 workset := workset U {(ps, P B ) } ; 

5 imp := (A a . 0) ; / / [ imp] : S -)• 2^1 
6 foreach £ P B do 
7 |_ tmp:=Apply2(tmp,At

B

i(pB),{\XY.XUY)): 

8 doesInclHold := true; 
9 ^ppfo/2(A^(ps) , imp, (procDown doesInclHold workset)): 

1 0 return doesInclHold: 

Theorem 9.1. When applied on a TA A = (Q,T,, A, R) whose transition relation is 
encoded semi-symbolically in the bottom-up way as Abu, Algorithm 9.4 terminates and 
returns the maximum downward simulation on Q. 

9.3.5. D o w n w a r d Inc lus ion C h e c k i n g 

We now proceed to an algori thm for efficient downward inclusion checking on top-down 
semi-symbolically represented T A s . The algori thm we propose for this purpose is de
rived from A l g o r i t h m 8.2 by plugging the expandSymb function instead of the expand2 
function. It is based on the same basic principle as expand2, but it has to cope wi th the 
symbolical ly encoded transi t ion relation. In particular, i n order to inspect whether, for 
a pair (ps, PB) and a l l symbols a G S , the inclusion between each tuple from downa(ps) 
and the set of tuples downa(Ps) holds, the doesInclHold parameter, ini t ial ised to true, 
is passed to the Apply operation on line 9 of the expandSymb function. If the algori thm 
finds out that the inclusion does not hold i n some execution of the procDown function 
in the context of a single Apply, doesInclHold is assigned the false value, which is later 
returned by expandSymb; otherwise, expandSymb returns the original value true. Note 
that the optimisations of expand2 presented i n Section 8.2.2 (function expand2e) can 
be easily adopted also to function expandSymb. 

9.3.6. U p w a r d Inc lus ion C h e c k i n g 

We next present an algori thm for upward inclusion checking on semi-symbolically en
coded T A s . We present a version that is not combined w i t h a use of simulat ion since the 
experiments that we have done w i t h expl ic i t ly represented automata i n Chapter 8 were 
not very favourable for upward inclusion checking combined wi th a use of simulation. 
We note, however, that for the future, providing such an algori thm and testing it on 
a broader set of experiments is s t i l l useful. 
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Funct ion procDown(&doesInclHold , hworkset, downaps, downaPß) 

1 if () G downaps A () ^ downaPB then doesInclHold := false : 
2 else 
3 W : = downaPB\ 
4 foreach ( n , . . . , r n ) G downaps do 11 Ps ^ a ( n , . . . , r „ 

5 foreach / € { W { 1 , . . . , n}} do / / V / G c / ( P B , a) 
6 found := /afee: 
7 foreach 1 < i < n do 

) 

8 5 := I ( g i , . . . , qn) G W, f ( ( q 1 } q n ) ) = i}; 
9 if expandSymb(rj, S, workset) then / / i f L(n) C L(S) 

l i 
10 0 found := true: 

1 break: 

13 

12 if $(r', H) G A W :r' •< n AS H then 
|_ X X := ( X X \ {(/, H) I H ^ 5, n d r'}) U { (r i ; 5)}: 

16 

14 

15 

if -ifound then 
doesInclHold := false: 
return: 

Our upward inclusion checking algori thm is based on the algori thm of Bouaj jani et 
al [BHH+08]. The in tu i t ion behind this algori thm is that when checking inclusion of 
languages of two automata As = (Qs> S, A ^ u , Rg) and AB = (QB, S , , RB), the 
algori thm works wi th a set antichain C Q$ x 2®B such that (q,D) G antichain i f q accepts 
some tree i n As, and D is the set of a l l states i n AB that accept the same tree. If it holds 
that q G Rs and D C\ RB = 0, then As can accept a tree that AB cannot accept, and 
therefore the inclusion L(As) C L(AB) does not hold. Also , when the algori thm reaches 
a pair (q, E) such that D C E for some (g, D) G antichain, the pair (g, P ) is dropped 
and not added into antichain. This is justified by the fact that if a counterexample to 
inclusion can be shown from (q,E), it can be found from (q,D) too (since the possible 
moves oi AB from D are even more l imi ted than from E). Furthermore, when a pair 
(q, F) is reached such that F C D for some (q, D) G antichain, then a l l pairs (q, D) w i th 
F C D are removed from antichain and (q, F) is added i n their place. Hence, the set 
antichain is indeed an antichain in the poset (Qs,idQs) x ( 2 ^ s , C ) , i.e. for a given state 
Qs £ there are no two sets G,H G 2 ^ s i n antichain such that G C H. 

Our algori thm for upward inclusion checking is shown as A l g o r i t h m 9.5. In the algo
r i thm, the Apply operation on line 3 first collects into the sets antichain and notProcessed 
the pairs (q, D) G Qs x 2 < ^ s consisting of states accessible through equilabelled leaf tran
sitions in As and AB- Then, un t i l the notProcessed set is empty or a counterexample 
to inclusion is found, the algori thm removes a pair (q, D) from the set notProcessed and 
processes i t . The processing consists of finding a tuple (q\,..., qn) G containing q 
as some qi such that a l l other states of the tuple also appear i n the first posit ion of 
some pair in antichain, and also finding al l tuples (s\,..., sn) G QB such that Si G D 

147 



A l g o r i t h m 9.5: Upward antichain-based inclusion for semi-symbolic T A s 

(Qs,Z,Af,Rs) and AB (QB,X,A%,RB) Input: T A s A,s 
Output: true if L(As) Q L(AB), false otherwise 
notProcessed := 0: 
antichain := 0: 
Apply2(Ab

s

a(()), A ^ ( ( ) ) , ( c o l l e c t P r o d u c t s antichain notProcessed)) : 
4 while 3(q,D) G notProcessed do 
5 

6 

7 

8 

9 

10 

11 

12 

13 

notProcessed := notProcessed \{(q,D)}: 
if q G -R5 A .D n RB = 0 then return /afee : 

foreach ( 5 1 , . . . , qn) G suc/i i / i a i 31 < i < n : qi q do 
if V I < j < n : 3 i? j C QB '• (<ij: Rj) G antichain then 

, s n ) G suc/i t/iat Si E D do 
imp := (A a . 0) 
foreach (s i , . . 

if V I < j < n : G .Rj then 
|_ tmp := Apply2(tmp, A*%((Sl,..., sn)), (\ X Y 

Apply'2(Ab

s

u((qi,qn)), tmp, 
( c o l l e c t P r o d u c t s antichain notProcessed)): 

14 return true: 

XUY)): 

Funct ion col lectProducts(&antichain, &notProcessed, ups, upB) 

1 foreach q G up$ do 
2 if $(q,E) G antichain such that E C upB then 
3 antichain := (antichain \ {(q,F) \ upB C F}) U {(g, w^s)}: 

4 notProcessed := (notProcessed \ {(q, F) \ upB C F}) U {(q, upB)}: 

and a l l states Sj, for i ^ j, appear in the second posit ion of some pair from antichain. 
The transi t ion relations of the said tuples are united by the Apply operation on line 12. 
(Note that it is possible to optimise the computat ion of the set of tuples by a technique 
similar to the one proposed i n Section 10.2.3 for expl ic i t ly represented TAs . ) The Apply 
operation on line 13 then collects the reachable pairs, and the loop continues. 

9.4. A n M T B D D Library 

Efficient algorithms over a symbolic representation of the transi t ion relation of a T A 
require an efficient implementat ion of the underlying M T B D D library. O u r first imple
mentation of algorithms for handling semi-symbolically represented tree automata used 
a customisation of the C U D D l ibrary [Soml l ] for manipula t ing M T B D D s . The experi
ments i n [HLSV11] and profiling of the code showed that the overhead of the customised 
l ibrary is too large. Moreover, the customisation of C U D D d id not provide an easy and 
transparent way of manipula t ing M T B D D s . These two facts hinted that the implemen-
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ta t ion of the algorithms would greatly benefit from a major redesign of the M T B D D 
back-end. Therefore, we created our own generic implementation of M T B D D s w i t h 
a clean and simple-to-use interface. 

The new M T B D D l ibrary uses shared M T B D D s for every domain. In order to prevent 
memory leaks, each node of the M T B D D contains a reference counter of other nodes 
or variables point ing to i t . In case the counter reaches zero, the node is deleted from 
the memory. Because of these implementat ion choices, copying an M T B D D can be 
easily done by s imply copying the pointer to the root node of the copied M T B D D and 
incrementing its reference counter. 

There are two types of nodes of the M T B D D : internal nodes and leaf nodes. A leaf 
node contains a value from the domain of the M T B D D , while an internal node contains 
a variable name and pointers to the low and high children of the node. In addit ion, 
nodes of both types also contain the aforementioned reference counter. The nodes are 
manipulated using pointers to them only, and the dis t inct ion between a leaf node and an 
internal node is done according to the least significant bit of the pointer (the compiler 
aligns these data structures to addresses which are multiples of 4, this bit can therefore 
be neglected and s imply masked out when accessing the value of a node pointer). 

For our use, we implemented unary, binary, and ternary Apply operations. Further, 
we also provide VoidApply operations, which are A p p l y operations that do not bu i ld 
a new M T B D D but have a side-effect only. For operations that do not need to bu i ld new 
M T B D D s but rather e.g. only collect data from the leaf nodes, using VoidApply saves 
a considerable and unnecessary overhead. D u r i n g the execution of an Apply operation, 
both internal and leaf nodes are cached i n hash tables. 

The newly implemented M T B D D l ibrary does not support M T B D D reordering so far, 
yet the l ibrary performs better when compared to our first implementat ion of a semi-
symbolic encoding that used customised C U D D (the speed-up was over 300 times for 
upward inclusion checking and over 3 000 times for downward inclusion checking). Note 
that for some applications, e.g. the decision procedure for the W S 1 S logic presented i n 
Chapter 7, reordering is not really necessary, because a good variable ordering can be 
chosen in advance, e.g. i n the part icular decision procedure, it can follow the order of 
quantifiers i n the prefix of the decided formula. 

9.5. Experimental Results 

We implemented and evaluated the algorithms proposed i n this chapter inside the frame
work of the V A T A l ibrary, which is presented in more detai l i n Chapter 10. We focused 
on an evaluation of the various language inclusion checking algorithms presented i n Sec
t ion 9.3. The row down gives results for our implementat ion of the downward algori thm, 
A l g o r i t h m 8.2, w i th the function expandSymb from Section 9.3.5 plugged i n and the 
identity relation used as the input preorder. The row down+s gives results for the same 
algori thm wi th the only exception that the m a x i m u m downward simulat ion is used in
stead of the identity as the input preorder. The rows down-opt and down-opt+s are 
based on A l g o r i t h m 8.2, the optimised version of the algori thm. Results of the upward 
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Table 9.1.: Results of the experiments (timeout 30 s) 

A l g o r i t h m 
A l l pairs L(A) % L(B) L{A) C L(B) 

A l g o r i t h m 
Winne r Timeouts Winne r Timeouts Winne r Timeouts 

down 44.02 % 5.87% 45.03% 2.48% 19.74% 72.37% 
down+s 0.00 % 77.93% 0.00% 80.03% 0.00% 36.84 % 
down-opt 31.73% 5.87% 33.06% 2.48% 0.00% 72.37% 
down-opt+s 0.00 % 78.00% 0.00% 80.09% 0.00% 36.84 % 
up 24.25 % 22.26% 21.91% 23.39% 80.26% 0.00 % 

inclusion checking algori thm (Algor i thm 9.5) are i n the table represented i n the row 
labelled w i th up. For the algorithms that use simulation, the s imulat ion is computed 
using A l g o r i t h m 9.4 and the t ime of computat ion of the s imulat ion relation is included 
in the running t ime of the algori thm. 

The table compares the methods according to the percentage of the cases i n which they 
were the fastest when checking inclusion on the same automata pair, and also according 
to the percentage of timeouts (the timeout was set to 30 s). The results for runs of the 
inclusion checking algorithms on almost 2 000 pairs of T A s are i n the column labelled 
w i t h " A l l pairs". We also checked the performance of the algorithms for cases when 
inclusion either does or does not hold i n order to explore the abi l i ty of the algorithms 
to either find a counterexample i n the case when inclusion does not hold, or prove the 
inclusion i n case it does. The results below "L(A) % L(B)" in the table are for the 
pairs A, B of the test set where the inclusion does not hold, and the column under 
UL(A) C L(B)n reports on the cases where the inclusion holds. 

The output of the experiments shows (again, cf. the results i n Chapter 8) the domina
t ion of the downward approach. It can be, however, noted that the downward simulat ion 
d id not help much (in rows down+s and down-opt+s). Th is was caused by the overhead 
of the computat ion of the simulation relation. O u r symbolic downward s imulat ion al
gor i thm is s t i l l immature when compared to the one used for the explicit encoding. 
Despite this, we can observe that for the cases inclusion holds, the use of s imulat ion can 
significantly decrease the number of timeouts. 

9.6. Conclusion 

This chapter presented a semi-symbolic M T B D D - b a s e d representation of nondetermin-
istic T A s generalising the one used by M O N A , together w i th important tree automata 
algorithms working over this representation, most notably an algori thm for computing 
downward simulations over T A s inspired by [INY04] and the downward language inclu
sion algori thm improved by simulations and antichains proposed in Chapter 8. We have 
experimentally justified usefulness of the symbolic encoding for nondeterministic T A s 
wi th large alphabets. 
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In the future, we wish to advance the algorithms presented i n this chapter even fur
ther. A part icular candidate would be the algori thm for computing the downward simu
lat ion relation on a semi-symbolically encoded automaton, which is s t i l l quite immature 
when compared wi th current state-of-the-art algorithms for expl ic i t ly represented au
tomata [RT07, HS09]. Moreover, we plan to also explore other symbolic representations 
of finite automata on both words and trees, and advanced algorithms on these repre
sentations. We are currently working on an algori thm for computing forward simulat ion 
on fully-symbolically represented finite automata. The representation stores the entire 
transi t ion function of the automaton i n a single B D D . Us ing this representation, we wish 
to avoid the issue wi th storing the counters from the algori thm presented i n Section 9.3.4 
inside an M T B D D , which is one of the main bottlenecks of the algori thm, due to the 
counters being frequently accessed. 
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10. A n Efficient Tree Automata Library 

The techniques presented in Chapters 3-7, as well as many other formal verification tech
niques, rely on an efficient underlying implementat ion of tree automata, and their success 
can be hindered by a poor performance of a naive T A implementation. Some of these 
techniques are: abstract regular tree model checking ( A R T M C ) [ A J M d 0 2 , B H R V 1 2 ] ap
plied e.g. for verification of programs wi th complex dynamic data structures [BHRV06] , 
verification of programs handling dynamical ly l inked structures w i th data [MPQ11] , or 
decision procedures for separation logic [IRV14]. 

Currently, there exist several available tree automata libraries; they are, however, 
mostly wri t ten i n O C a m l (e.g. T i m b u k / T a m l [Gen03]) or Java (e.g. L E T H A L [CJH+09]) 
and they do not always use the most advanced algorithms known to date. Therefore, 
they are not suitable for tasks that require the available processing power be util ised 
as efficiently as possible. A n exception from these libraries is M O N A [KMS02] imple
menting decision procedures over W S 1 S / W S 2 S . M O N A contains a highly optimised T A 
package wri t ten in C , but, alas, it supports only binary deterministic tree automata. 
A t the same time, it turns out that determinisation is often a very significant bottleneck 
of using T A s , and a lot of effort has therefore been invested into developing efficient algo
rithms for handling nondeterministic tree automata without a need to ever determinise 
them (e.g. the techniques presented i n Chapters 8 and 9). 

In order to allow researchers focus on developing verification techniques rather than 
reimplementing and opt imising a T A package, we provide V A T A 1 , an easy-to-use open 
source l ibrary for efficient manipulat ion of nondeterministic T A s . V A T A supports many of 
the operations commonly used i n automata-based formal verification techniques over two 
complementary encodings: explicit and semi-symbolic. The explicit encoding is suitable 
for most applications that do not need to use alphabets w i th a large number of symbols. 
O n the other hand, the semi-symbolic encoding (described in more detai l i n Chapter 9) 
is suitable for applications that make use of such alphabets, e.g. the A R T M C - b a s e d 
verification of programs wi th complex dynamic data structures [BHRV12] or decision 
procedures of the M S O or WS/cS logics [KMS02] (cf. the procedure i n Chapter 7). 

A t the present t ime, the ma in application of the structures and algorithms imple
mented i n V A T A for handling expl ic i t ly encoded T A s are the Forester tool for verifica
t ion of programs wi th complex dynamic data structures (see Chapters 3-5) and the tools 
implementing TA-based decision procedures for separation logic: S P E N (see Chapter 6) 
and S L I D E [IRV14]. The semi-symbolic encoding of T A s has been used i n our decision 
procedure for W S 1 S i n Chapter 7 (where we use unary tree automata in the place of 
finite automata). 

xhttp://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/ 
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Figure 10.1.: The architecture of the V A T A l ibrary 

In this chapter, we give an overview of the algorithms available and mention various 
interesting optimisations that we used when implementing them. Based on experimental 
evidence, we argue that these optimisations are important for the performance of the 
library. 

O u t l i n e . The structure of this chapter is the following. In Section 10.1, we describe 
the design of V A T A . Section 10.2 gives a description of the operations that we support. 
In Section 10.3, we report on our experiments w i th the implementation. Section 10.4 
briefly concludes the chapter. 

10.1. Design of the Library 

The l ibrary is designed i n a modular way (see Figure 10.1). The user can choose a module 
encapsulating his preferred automata encoding and its corresponding operations. Various 
encodings share the same general interface so it is easy to swap one encoding for another, 
unless the user takes advantage of encoding-specific functions or operations. 

Thanks to the modular design of the library, it is easy to provide an own encoding of 
tree (or word) automata and effectively exploit the remaining parts of the infrastructure, 
such as parsers and serialisers from/to different formats, the unit testing framework, 
performance tests, etc. 

The V A T A l ibrary is implemented i n C + + using the C + + 1 1 standard library. In order 
to avoid expensive look-ups of entry points of v i r tua l methods i n the virtual-method table 
of an object and to fully exploit compiler 's capabilities of code in l in ing and optimisat ion 
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of code according to static analysis, the l ibrary heavily exploits polymorphism using 
C + + function templates instead of using v i r tua l methods for core functions. We believe 
that this is one of the reasons why the performance of the optimised code (the -03 flag of 
gcc) is up to 1 0 times better than the performance of the non-optimised code (the -00 
flag of gcc). 

10.1.1. E x p l i c i t E n c o d i n g 

In the explicit representation of T A s used in V A T A , transitions are stored in the top-
down manner inside a hierarchical data structure similar to a hash table. More precisely, 
the top-level lookup table maps states to transition clusters. E a c h such cluster is itself 
a lookup table that maps alphabet symbols to a set of pointers to tuples of states. The 
set of pointers to tuples of states is represented using a red-black tree. The tuples of 
states are stored in a designated hash table to further reduce the required amount of 
space (by not storing the same tuples of states mult iple times). A n example of the 
encoding is depicted in Figure 1 0 . 2 . 

In order to insert a t ransi t ion q —>• a(qi,..., qn) into the transi t ion table, one proceeds 
using the following algorithm: 

1. F i n d a transi t ion cluster that corresponds to the state q i n the top-level lookup 
table. If such a cluster does not exist, create one. 

2. In the given cluster, find a set of pointers to tuples of states reachable from q 
over a. If the set does not exist, create one. 

3 . Ob t a in the pointer to the tuple (qi,..., qn) from the tuple lookup table and insert 
it into the found or created set of pointers. 

If one ignores the worst case t ime complexity of the underlying data structures (which, 
according to our experience, has usually a negligible real impact only), then inserting 
a single transi t ion into the transi t ion table requires a constant number of steps. Yet the 
representation provides a more efficient encoding than a pla in list of transitions because 
some transitions share the space required to store the parent states (e.g. state q i n 
the transi t ion q —>• a(qi,... ,qn))- Moreover, some transitions also share the alphabet 
symbol and each tuple of states appearing in the set of transitions is stored only once. 
Addi t ional ly , the encoding allows us to easily perform certain cr i t ical operations, such 
as finding a set of transitions q —>• a(qi,..., qn) for a given state q. Th is is useful e.g. 
during the el iminat ion of (top-down) unreachable states or for the downward inclusion 
checking algori thm. 

In some situations, one needs to manipulate many tree automata at the same time. 
To give an example, i n the forest automata-based program analysis framework considered 
in Chapters 3 and 5 , where (in theory) one needs to store one automaton representing the 
content of a heap for each reachable state of the program. To improve the performance 
of our l ibrary in such scenarios, we adapt the copy-on-write principle. Every t ime one 
needs to create a copy of an automaton A to be subsequently modified, it is enough to 
create a new automaton A' that obtains a pointer to the transi t ion table of A (which 
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Figure 1 0 . 2 . : A n example of the V A T A ' S explicit encoding of transi t ion functions of three 
automata A, B, C. In particular, one can see that A contains a transi t ion 
qi —>• 0(01,02): it suffices to follow the corresponding arrows. Moreover, 
B also contains the same transi t ion (and the corresponding part of the 
transi t ion table is shared wi th A). F ina l ly , C shares its transitions w i th B. 

requires constant t ime). Subsequently, as more transitions are inserted into A' (or ^4), 

only the part of the shared transi t ion table that gets modified is copied (Figure 1 0 . 2 also 
provides an i l lustrat ion of this feature). 

10.2. Supported Operations 

V A T A allows the user to choose one of three available encodings: explicit , semi-symbolic 
top-down, and semi-symbolic bottom-up. Depending on the choice, certain T A opera
tions may or may not be available. Here we describe only operations for the explicit 
encoding; the description of the operations for the two semi-symbolic encodings is pro
vided i n Chapter 9 . The supported operations for the explicit representation are the 
following: union, intersection, e l iminat ion of (bottom-up, top-down) unreachable states, 
inclusion checking (both upward and downward), computat ion of the m a x i m u m simu
lat ion relations (both upward and downward simulations), and language-preserving size 
reduction based on the s imulat ion equivalence. In the case of testing language inclusion, 
we provide several implementations of the operation, because, as observed in the exper
imental section of Chapter 8, the performance of different approaches varies on different 
use cases. 
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Below, we do not discuss the relatively straightforward implementat ion of the basic 
operations on T A s and we comment on the more advanced operations only, in part icu
lar on computing the (maximum) simulat ion relations and upward testing of language 
inclusion (the used algorithms for downward inclusion testing are described in Chapter 8. 

10.2.1. D o w n w a r d a n d U p w a r d S i m u l a t i o n 

Computa t ion of the (maximum) downward and upward simulat ion relations for the ex
plicit representation of the T A s is in V A T A performed i n three steps. For the downward 
simulation, the input T A is first translated into a labelled transi t ion system (LTS) using 
the technique described in [ABH+08]. In the second step, the simulation relation for the 
L T S is computed using an implementat ion of the state-of-the-art algorithms for com
put ing simulations on L T S ' s [RT07, HS09], w i th some further optimisations mentioned 
in Section 10.2.4. F ina l ly , the result is projected back to the set of states of the original 
automaton. 

For the upward simulation, the steps are the same, w i th the exception of the translat ion 
of a T A into an L T S , which is i n this case performed using the algori thm from [ABH+08]. 

10.2.2. S imula t ion-based Size R e d u c t i o n 

In a typica l setting, one often wants to use a representation of tree automata that is 
as smal l as possible in order to reduce the memory consumption and speed up opera
tions on the automata (especially the potential ly costly ones, such as inclusion testing). 
To achieve that, the classical approach is to use determinisation and minimisat ion. How
ever, the min ima l deterministic tree automata can s t i l l be much bigger than the original 
nondeterministic ones. Therefore, V A T A offers a possibil i ty to reduce the size of tree 
automata without determinisation by their quotienting w.r.t . an equivalence relation— 
currently, only the downward simulat ion equivalence is supported. 

The procedure works as follows: first, the downward simulat ion relation •<£, is com
puted for the automaton. Then , the symmetric fragment of (which is an equiva
lence relation) is extracted, and each state appearing wi th in the transi t ion function is 
replaced by a representative of the corresponding equivalence class. A further reduc
t ion is then based on the following observation: i f an automaton contains a transi t ion 
q —>• a(qi,..., qn), any addi t ional t ransi t ion q —>• a ( r i , . . . , r „ ) can be omit ted if ri -<D q% 
for a l l 1 < i < n: such a transi t ion does not contribute to the language of the result (recall 
that, for the downward simulation preorder •<£>, it holds that q -<D T =>• L(q) C L(r)). 

10.2.3. U p w a r d Inc lus ion 

The algori thm for upward inclusion testing using the explicit encodings of T A s of V A T A 

(which was used i n the experiments of Chapter 8) is based on, as its name suggests, 
upward traverse through the T A s . O u r top-down representation of the transi t ion relation 
is therefore not very suitable here. We can, however, afford to bu i ld a temporary bot tom-
up encoding, since the overhead of a translat ion into this encoding is negligible compared 
to the complexity of the subsequent operations. 
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The upward algori thm for language inclusion testing is based on the approach intro
duced in [BHH+08]. Here, the main principle used for checking whether L(A) C L(B) 
is to search for a tree that is accepted by A and not by B (thus being a witness for 
L(A) % L(B)). This is done by simultaneously traversing both A and B from their leaf 
transitions while generating pairs (PA, Pg) G QA x 2®B where PA represents a state into 
which A can get on some input tree and P g is the set of all states into which B can get 
over the same tree. The inclusion then does clearly not hold iff it is possible to generate 
a pair consisting of an accepting state of A and of exclusively non-accepting states of B. 

The algori thm collects the so far generated pairs (p_4,Ps) i n a set called Visited. 
Another set called Next is used to store the generated pairs whose successors are s t i l l to 
be explored. One can then observe that whenever one can reach a counterexample to 
inclusion from (p_4,Pg), one can also reach a counterexample from any (PA,PB C Pg) 
as P g allows even less runs of B than P g . Us ing this observation, both mentioned 
sets can be represented using antichains. In particular, one does not need to store and 
further explore any two elements comparable w.r.t. (=, C ) , i.e. by equality on the first 
component and inclusion on the other component. 

Clearly, the running t ime of the above algori thm strongly depends on the to ta l number 
of pairs (PA, PJS) taken from Next for further processing. Indeed, this is one of the reasons 
why the antichain-based optimisations helps. Accord ing to our experience, the number 
of pairs that need to be processed can further be reduced when processing the pairs 
stored in Next in a suitable order. Our experimental results have shown that we can 
achieve a very good improvement by preferring those pairs (PA, PB) that have a smaller 
(w.r.t. the size of the set) second component. 

Yet another way that we found useful when improving the above algori thm is to 
optimise the way the a lgori thm computes the successors of a pair from Next. The original 
a lgori thm picks a pair (PA, P B ) from Next and puts it into Visited. Then , it finds a l l 
transitions of the form a(pA,i, • • • ,PA,n) —>• V in •A such that (pA,i> Ps,i) G Visited for a l l 
1 < i < n and (PA,J,PB,J) = (PA, P B ) f ° r some 1 < j < n. For each such transit ion, 
it finds a l l transitions of the form a(q\,..., qn) —> q in B such that qi G PB,% for a l l 
1 < i < n. Here, the process of finding the needed B transitions is especially costly. 
In order to speed it up, we cache for each alphabet symbol a, each posit ion i, and each 
set P B , J , the set of transitions {a(qi,..., qn) - ^ - g G A g : q% G PB,%\ at the first t ime it is 
used in the computat ion of successors. Then, whenever we need to find a l l transitions 
of the form a(q\,... ,qn) —>• q i n B such that qi G PB,% for a l l 1 < i < n, we find them 
simply by intersecting the sets of transitions cached for each (Pg 5 j , i , a). 

Next , we propose another modification of the algori thm that aims to improve the per
formance especially in those cases where finding a counterexample to inclusion requires 
us to bu i ld representatives of trees wi th higher depths or i n the cases where the inclu
sion holds. Unl ike the original approach that moves only one pair from Next to Visited 
at the beginning of each i teration of the ma in loop, we add the newly created pairs 
(PA, PB) into Next and Visited at the same time (immediately after they are generated). 
Our experiments showed that this allows Visited converge faster towards the fixpoint. 

F ina l ly , yet another opt imisat ion of the algori thm presented in [ B H H + 0 8 ] appeared 
in [ A C H + 1 0 ] . Th is opt imisat ion maintains the sets Visited and Next as antichains 
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w.r.t. (^[/ , ^jj)2- Hence, more pairs can be discarded from these sets. Moreover, for 
pairs that cannot be discarded, one can at least reduce the sets on their r ight-hand side 
by removing states that are simulated by some other state i n these sets (this is based 
on the observation that any tree accepted from an upward-simulation-smaller state is 
accepted from an upward-simulation-bigger state too). F ina l ly , one can also use upward 
simulations between states of the two automata being compared. Then , one can discard 
any pair (p_4, Pg) such that there is some ps £ Pg that upward-simulates PA because it 
is then clear that no tree can be accepted from pjy that could not be accepted from pg. 
A l l these optimisations are also available i n V A T A and can optional ly be used—they are 
not used by default since the computat ion of the upward simulat ion can be quite costly 
(as observed by the experimental results of Chapter 8 . 

10.2.4. C o m p u t i n g S i m u l a t i o n over L T S 

The explicit part of V A T A uses a highly optimised L T S simulat ion algori thm proposed 
in [RT07] and further improved in [HS09]. The main idea of the a lgori thm is to start 
w i th an over-approximation of the simulation preorder (a possible in i t i a l approximation 
is the relation Q x Q), which is then iteratively pruned whenever it is discovered that 
the s imulat ion relation cannot hold for certain pairs of states. For a better efficiency, 
the algori thm represents the current approximation R of the simulation using a so-called 
partition-relation pair. The par t i t ion splits the set of states into subsets (called blocks) 
whose elements are equivalent w.r.t . R, and the relation R is lifted to these blocks. 

In order to be able to deal w i th the part i t ion-relat ion pair efficiently, the algori thm 
needs to record for each block a mat r ix of counters of size | (5 | |E | where, for the given 
L T S , Q is the set of states and £ is the set of labels. The counters are used to count 
how many transitions going from the given state v i a a given symbol a lead to states 
in the given block (or blocks currently considered to be bigger w.r.t . the simulation). 
Th is information is then used to optimise re-computation of the parti t ion-relation pair 
when pruning the current approximation of the simulation relation being computed 
(for details see e.g. [RT07]). Since the number of blocks can (and often does) reach the 
number of states, the naive solution requires | ( 5 | 2 | E | counters i n the worst case. It turns 
out that this is one of the main barriers which prevents the algori thm from scaling to 
systems w i t h large alphabets and/or large sets of states. 

Work ing towards a remedy for the above problem, one can observe that the mentioned 
algori thm actually works i n several phases. A t the beginning, it creates an in i t i a l esti
mation of the parti t ion-relation pair, which typical ly contains large equivalence classes. 
Then it initialises the counters for each element of the par t i t ion. F ina l ly , it starts the 
iterative par t i t ion spl i t t ing. Dur ing this last phase, the counters are only decremented 
or copied to the newly created blocks. Moreover, the spl i t t ing of some block is itself 
triggered by decrementing some set of counters to 0. In practice, late phases of the iter
ation typical ly witness a lot of smal l equivalence classes having very sparsely populated 
counters w i th 0 being the most abundant value. 

2One says that P Q holds iff Vp G P 3q G Q : p Q- Note also that the upward simulation must 
be parameterised by the identity in this case [ACH +10]. 
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This suggests that one could use sparse matrices containing only the non-zero ele
ments. Unfortunately, according to our experience, this turns out to be the worst possi
ble solution which strongly degrades the performance. The reason is that the algori thm 
accesses the counters very frequently (it either increments them by one or decrements 
them by one), hence any data structure wi th non-constant t ime access causes the com
putat ion to stall . A somewhat better solution is to record the non-zero counters using 
a hash table, but the memory requirements of such representation are not yet reasonable. 

Instead, we are currently experimenting wi th storing the counters i n blocks, using 
a copy-on-write approach and a zeroed-block deallocation. In short, we divide the matr ix 
of counters into a list of blocks of some fixed size. Each block contains an addit ional 
counter (a block-level counter) that sums up al l the elements wi th in the block. A s soon 
as a block contains a single non-zero counter only, it can safely be deallocated—the 
content of the non-zero counter is then recorded i n the block-level counter. 

Our in i t i a l experiments show that, using the above approach, one can easily reduce the 
memory consumption by the factor of 5 for very large instances of the problem compared 
to the array-based representation used in [HS09]. The best value to be used as the size of 
blocks of counters is s t i l l to be studied—after some in i t i a l experiments, we are currently 
using blocks of size \ZJQJ-

In order to il lustrate the level of opt imisat ion that has been achieved in V A T A and that 
can be exploited i n its applications (such as the Forester tool considered in Chapters 3 -
5), we compared its performance against T i m b u k and the prototype l ibrary considered 
in [HLSV11] , which—despite its prototype status—already contained a quite efficient 
T A implementation. 

We compared the performance of the explicit encoding of V A T A w i th T i m b u k for union 
and intersection of more than 3 000 pairs of T A s . O n average, V A T A was over 20 000 
times faster on union and over 100 000 times faster on intersection. The comparison of 
the implemented inclusion checking algorithms can be found i n Chapters 8 and 9. 

10.4. Conclusion 

In this chapter, we gave a description of V A T A , a new efficient and open-source nondeter-
minist ic tree automata library, which supports both explicit and semi-symbolic encoding 
of the tree automata transi t ion function. U p to our knowledge, it is currently the most 
efficient l ibrary for manipulat ing tree automata. Since its introduction, it has already 
been used by a few researchers around the world as an efficient underlying l ibrary for 
handling nondeterministic automata for their own techniques (such as for testing lan
guage inclusion of T A s i n the decision procedure for separation logic of [IRV14], or for the 
computat ion of the simulation relation in algori thm for checking language equivalence 
of nondeterministic finite automata of [BP 13]). 

10.3. Experimental Evaluation of V A T A 
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In the future, we wish to extend the l ibrary wi th more representations of automata 
(e.g. w i t h a fully-symbolic representation) and support more operations, such as de-
terminisat ion (which, however, is generally desired to be avoided), or complementation 
(which we so far do not know how to compute without first determinising the automa
ton). 
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11. Conclusions and Future Directions 

Each of the main chapters contains detailed conclusions concerning the specific topic. 
Here, we summarise once more the ma in points and discuss possible further research 
directions. 

11.1. A Summary of the Contributions 

The main focus of this thesis was on improving the state of the art i n shape analysis. 
Th is high-level goal was addressed by contributions i n the following three areas. In the 
first area of forest automata-based shape analysis, we developed an extension of the 
analysis proposed in [HHR+12] that allows it to run fully automatically, without user 
intervention. The extension is based on learning boxes, i.e. lower-level forest automata 
describing repeated substructures of the considered complex dynamic data structure, 
which needed to be manually provided by the user in the original analysis. The boxes 
are inferred automatical ly from the structure of the sets of heap graph that occur during 
the run of the analysis. Moreover, we extended the analysis even further by considering 
the relations between the data stored i n the heap cells. We trace ordering relations 
between the data stored, which allows us to verify programs such as various sorting 
algorithms (bubblesort and insertsort over lists), programs wi th binary search trees, or 
programs wi th skip lists of two and three levels. 

In the second area, which focused on the development of decision procedures for various 
logics, we proposed the following two procedures: F i rs t , we proposed a decision procedure 
for testing entailment i n a fragment of separation logic that contains various flavours of 
lists that appear i n practice. The decision procedure is based on decomposing the whole 
entailment query into several lower-level queries and deciding those by translat ing them 
into the tree automata membership problem. Second, we proposed a decision procedure 
for testing val idi ty of W S 1 S formulae. The decision procedure is based on transforming 
the formula to be decided into the prenex normal form, constructing a finite automaton 
for the mat r ix of the formula, and, finally, processing the prefix of the formula using 
a technique that is a generalisation of the antichain principle from testing universality 
and language inclusion of finite automata. 

In the th i rd area focusing on finding new and improving existing techniques for manip
ulat ing nondeterministic tree automata, we contributed by the following results. We de
veloped a new technique for testing language inclusion that is based on a downward 
traversal through the automaton. We further augmented the basic technique wi th the 
use of antichains and simulations, and also proposed more advanced optimisations. A c 
cording to our experiments, the technique performs often better than the so far used 
upward inclusion checking, which is based on upward determinisation of the automaton. 
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Moreover, we also proposed a semi-symbolic encoding of nondeterministic tree automata 
and developed algorithms for automata operations (including some more advanced like 
computing the m a x i m u m downward simulation relation on the states of the automaton, 
or checking language inclusion of a pair of automata) over this encoding. Our work i n 
exploring efficient techniques for handling nondeterministic tree automata culminated 
in the development of the V A T A library, where these techniques are implemented, and 
which is, as far as we know, currently the most efficient l ibrary for manipula t ing nonde
terminist ic tree automata available. 

11.2. Further Directions 

There are many interesting directions of further work. In the area of automata-based 
shape analysis, an interesting direction is to consider a more general notion than the cur
rently used formalism of forest automata. One option would be to remove the restriction 
that the boxes cannot be recursive. Such a change would increase the expressive power 
of forest automata, allowing them to express such data structures as trees wi th l inked 
leaves or skip lists of an arbitrary height. O n the other hand, the box folding and learn
ing algorithms would need to be significantly re-designed. Another option would be to 
adopt a different model, based e.g. on the encoding of inductive higher-order predicates 
used i n the decision procedure for separation logic of Iosif et al [IRV14]. Yet another op
t ion, this one relating to the data-related component of the analysis, is extension of the 
abstract data domain to more general relations than currently considered, or even cre
ating a generalised framework that would allow one to plug i n any abstract domain that 
meets certain requirements. In any case, we wish to extend the forest automata-based 
shape analysis w i th a counterexample-guided abstraction refinement ( C E G A R ) loop and 
use predicate language abstraction on the forest automata instead of the coarse finite 
height abstraction used now. We believe that the use of the more refined abstraction 
should allow us to verify some data structures that we currently cannot handle due to 
the abstraction used, such as red-black trees. 

A further interesting future direction is the development of an approach that would 
allow verification of memory allocators (such as the p t m a l l o c O allocator used i n the 
g l i b c l ibrary) , which is a t ru ly challenging task due to the complex overlaid shape of 
the used data structures. A more general representation would also be needed for the 
verification of some concurrent programs wi th dynamic memory, e.g. lock-free imple
mentations of concurrent skip lists. In this setting, the invariant of the sequential skip 
list, which we are currently able to infer, is broken i n this part icular lock-free concurrent 
setting, and forest automata, as defined, cannot represent it (because the pointers i n the 
structure overlap and do not create the nested hierarchy from the sequential algori thm, 
we cannot fold the lower levels into boxes any more). Nevertheless, we plan to apply the 
shape analysis to verification of concurrent programs, combining it e.g. w i th the ideas 
of A b d u l l a et al [AHH+13]. 

Regarding our decision procedure for separation logic, in future, we wish to continue 
w i t h extending its generality. In particular, we would like to weaken the l imitat ions 
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on the Boolean structure of the formulae, and, moreover, we would also like to explore 
whether it is possible to combine it w i th the decision procedure from [IRV14], which 
considers more general inductive definitions. For the decision procedure for W S 1 S , there 
are several possibilities. We wish to extend the decision procedure to WS/cS for an 
arbitrary k by the use of tree automata and, probably, an algori thm wi th a structure 
similar to the structure of the algorithms for downward language inclusion testing of 
nondeterministic tree automata that were presented i n this thesis. We also p lan to 
generalise our notion of symbolic terms in the algori thm to reduce the number of states 
of the automaton for the mat r ix of a formula. We believe that our proposed decision 
procedure is only the start of a new research direction searching for techniques for 
efficiently deciding WS/cS formulae, combining heuristics from both automata theory 
and formal logic. 

Even though the methods for manipula t ing nondeterministic finite tree (and word) 
automata have seen a great advance i n the recent years, as shown by a recent algori thm 
for testing equivalence and inclusion of nondeterministic finite word automata of Bonch i 
and Pous [BP 13], there is s t i l l a space for improvement. We wish to generalise their 
algori thm to testing inclusion of nondeterministic tree automata, both for the upward 
and downward direction of traversal through the automata. We also wish to keep ex
ploring yet other possibilities for reducing the state space i n checking language inclusion 
of nondeterministic finite and tree automata. Furthermore, one of our future goals is 
to develop an efficient technique for reducing nondeterministic finite automata, bo th for 
words and trees, going beyond the capabilities of the techniques based on the s imulat ion 
equivalence. In the area of symbolic representation of finite word and tree automata, we 
wish to explore different encodings, suitable for part icular needs, such as for the use i n 
the decision procedures of various logics (e.g. WS/cS) or for the verification of hardware. 

11.3. Publications Related to this Thesis 

The results presented in this thesis were originally published in the following papers. 
The automated approach for learning boxes in the forest automata-based shape analysis, 
together w i th the refined technique for abstraction, appeared i n [HLR+13]. The data ex
tension of the forest automata-based shape analysis was published as [AHJ+13] (and later 
extended in [AHJ+15]). The decision procedures for separation logic w i t h list predicates 
was published i n [ELSV14a] , and the decision procedure for W S 1 S has been accepted to 
appear as [FHLV15] . O u r algorithms for manipulat ing nondeterministic tree automata 
were published i n [HLSV11] (the downward inclusion checking and the algorithms for the 
semi-symbolic representation) and the description of our tree automata l ibrary appeared 
in [LSV12]. 
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