
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R S Y S T E M S

HW/SW CO-DESIGN FOR THE XILINX
ZYNQ PLATFORM

DIPLOMOVÁ PRÁCE
MASTER THESIS

AUTOR PRÁCE Bc. JAN VIKTORIN
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R S Y S T E M S

HW/SW CO-DESIGN NA PLATFORMĚ XILINX ZYNQ
HW/SW CO-DESIGN FOR THE XILINX Z Y N Q PLATFORM

DIPLOMOVÁ PRÁCE
MASTER THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Bc. JAN VIKTORIN

Ing. PAVOL KORČEK

BRNO 2013

Abstrakt

Tato práce se zabývá možnostmi pro H W / S W codesign na platformě Xi l inx Zynq. Na
základě studia rozhraní mezi částmi Processing System (A R M Cortex-A9 MPCore) a
Programmable Logic (FPGA) je navržen abstraktní a univerzální přístup k vývoji aplikací,
které jsou akcelerovány v programovatelném hardwaru na tomto čipu a běží nad operačním
systémem Linux. V praktické části je pro tyto účely navržen framework určený pro Zynq,
ale také pro jiné obdobné platformy. Žádný takový framework není v současné době
k dispozici.

Abstract

This work describes a novel approach of H W / S W codesign on the Xi l inx Zynq and similar
platforms. It deals with interconnections between the Processing System (A R M Cortex-
AO MPCore) and the Programmable Logic (F P G A) to find an abstract and universal
way to develop applications that are partially offloaded into the programmable hardware
and that run in the Linux operating system. For that purpose a framework for H W / S W
codesign on the Zynq and similar platforms is designed. No such framework is currently
available.

Klíčová slova

Zynq, Linux, F P G A , A X I , SoC, H W / S W Codesign

Keywords

Zynq, Linux, F P G A , A X I , SoC, H W / S W Codesign

Citation

Jan Viktorin, H W / S W Co-design for the Xil inx Zynq Platform, diplomová práce, Brno.
FIT V U T v Brně, 2013.

H W / S W Co-design for the Xilinx Zynq Platform

Declaration

I confirm that the work presented in this thesis is my own. Where information has been
derived from other sources, I confirm that this has been indicated in the document.

Jan Viktorin
Brno, 22. 5. 2013

Acknowledgment

I would like to thank Pavol Korček for reviewing my thesis. I am happy to have such a sup
portive supervisor. This work was supported by the project Modern Tools for Detection
and Mitigation of Cyber Criminality on the New Generation Internet.

© J a n Viktorin, 2013.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informa
čních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents
1 Introduction 1

2 Designing embedded systems 2

2.1 Operating systems in embedded systems 2
2.2 System-on-Chip architectures 2
2.3 AMBA AXI architecture 3
2.4 Reconfigurable System-on-Chip 7

3 Xilinx Zynq 10

3.1 Boot procedure 11

3.2 Processing System 12
3.3 Programmable Logic 16
3.4 Designing a PL accelerator 19

4 The Linux Kernel 21

4.1 Linux module 21
4.2 Linux device drivers 21
4.3 Device tree 22
4.4 Writing character drivers 23
4.5 Memory allocations 24
4.6 Handling DMA capable devices 26
4.7 Interrupt handling 28
4.8 Linux based operating system 30

5 RSoC Framework 34

5.1 Concepts and goals 34
5.2 RSoC Framework Overview 34
5.3 Reusable components 37
5.4 Infrastructure 42
5.5 Integration 44
5.6 Portability 53

6 Designing with RSoC Bridge 55

6.1 Generic example 55
6.2 Dynamic reconfigurable accelerator 56

7 Conclusion 58

Bibliography 60

Appendix 63

Figures
2.1 The read architecture of A X I 3
2.2 The write architecture of A X I 3
2.3 Example of routing packets among two masters and four slaves 7
2.4 Comparison of a SoC and a Reconfigurable SoC 8
3.1 The Zynq architecture composed of the PS and the P L 10
3.2 Snoop Control Unit 13
3.3 O C M interfaces schematic 14
3.4 The three D D R Controller parts 15
3.5 General-Purpose ports' connections (simplified) 17
3.6 High-Performance ports' connections (simplified) 18
3.7 Hardware accelerator for the Zynq 20
4.1 The model of device related structures inside the Linux Kernel 21
4.2 The representation of a character device inside the Linux Kernel 23
5.1 RSoC Accelerator (accelerating) interface 35
5.2 RSoC Accelerator (adapting) interface 36
5.3 RSoC Bridge interface (dashed lines mark generic parts) 36
5.4 Component A X I 1-to-N schematic 37
5.5 Component A X I N-to-1 schematic 38
5.6 Component A X I Remap with a mapping specification as an example 39
5.7 Component A X I Lite Endpoint serving n registers (each 32 bits wide) 39
5.8 Start of Frame (left) and Capture (right) components' schematics 40
5.9 Arbiter component schematics 40

5.10 Request-Acknowledger component schematics 41
5.11 Change Detector component schematics 41
5.12 Address Rebase component schematics 41
5.13 RSoC Bridge Generic architecture (dashed lines mark generic parts) 43
5.14 Slave Bus generator internals (dashed lines mark generic parts) 43
5.15 F IFO Interface component schematics 44
5.16 Simple D M A Interface component schematics 46
5.17 Scatter Gather D M A Interface component schematics 47
5.18 Descriptor used by the Xi l inx A X I D M A IP core 47
5.19 Central D M A Interface component schematics 48
5.20 Address space of the RSoC Info component 49
5.21 Simplified algorithm performed by each S D M A wr i t e () operation 50
5.22 Simplified algorithm performed by each S D M A read() operation 52
5.23 The state machine used by the read buffer (left) and write buffer (right) 52
5.24 Migration from one architecture to another 54
6.1 Generic architecture used for testing purposes 55
6.2 Partial Dynamic Reconfiguration with RSoC Bridge 56

Glossary

ASIC. Application-Specific Integrated Circuit. Implements an application specific func
tion.

ASSP. Application-Specific Standard Product. Implements a specific function for wide
market.

CPIO. File format used to archive files.

D M A . Direct Memory Access enables a hardware unit to access the memory without
C P U intervention.

DSP. Digital Signal Processor is a processor optimized for digital signal processing.

F P G A . Field-Programmable Gate Array is an integrated circuit configured by a cus
tomer designer after manufacturing.

G P U . Graphics Processing Unit. It is a specialized electronic circuit designed to accel
erate graphical computations.

GZIP. Data compressor.

H D L . Hardware Description Language. Examples are: Verilog, V H D L .

H M A C . Keyed-hash Message Authentication Code. It is used to verify the data in
tegrity and authentication of a message.

IP core. Intelectual Property core is a reusable unit of logic.

ISA. Industry Standard Architecture is a computer bus standard for I B M P C .

J T A G . Joint Test Action Group is a standard used for testing PCBs .

M M C , N A N D , N O R . Mul t i Media Card is a flash memory card standard based on
N A N D and N O R technologies.

MPCore . Multicore processing system.

P D U . Protocol Data Unit.

Quad-SPI. Serial Peripheral Bus extended to use four data wires.

SD, SDIO. Secure Digital is a non-volatile memory card format. SDIO extends SD to
cover I /O functions.

S M C . Static Memory Controller.

V H D L . V H S I C Hardware Description Language.

1 Introduction

The market of computing systems is led by the embedded systems. The embedded systems
drive the mobile phones and smartphones, tablets, little USB sticks, set-top boxes, network
routers, washing machines, thermostats, cars, planes and many other machines. People
usually do not consider them to be computing systems, they do not think about them.
What is important (and maybe interesting at the same time), there are usually very
different requirements among such systems.

Some systems are time-critical and must be fault tolerant, others can fail occasionally and
are allowed to respond with some latency. Just compare a unit that controls the amount
of fuel that is coming to the engine of a car and a T V set-top box. The car unit must
never fail or provide a fast recovering from a failure. There must not be delays between
using the car accelerator and the increase of fuel coming to the engine. A set-top box can
fail, can delay some operations, but it must be able to decode high-quality video real-time.

In the context of embedded systems there are many application specific devices. Each of
them are optimized either for speed, low power consumption, high throughput of data and
others. These devices are usually ASIC chips—hardwired in the sillicon and providing
only a small amount of functions. But it is very common to integrate some of them into a
single component that is called System-on-Chip (SoC). A SoC consists of a processor and
some peripherals, and accelerators integrated tightly together using a bus system. This
reduces the power consumption, the price of the chip and the shorter wires provides faster
connections.

This work considers a new possible approach to designing SoC. It is an integration of a
processor and an F P G A on a single chip. The processor provides the architecture that
executes an application or an operating system (OS). The F P G A logic allows developers to
accelerate the software part, to bring a non-standard or previously not supported interface
to the SoC, fix bugs in the hardware part and other possibilities. In fact it is not a new
idea and it has already been implemented, but today a new generation of such devices
is coming to the market. The first one is the Xi l inx Zynq, and the others, for example
Altera Cyclone V, are coming soon.

1

2 Designing embedded systems

A n embedded system is conventionally denned as a piece of computer hardware running
software designed to perform a specific task. Examples of such systems might be T V
set-top boxes, smartcards, routers, etc. However, the distinction between an embedded
system and a general purpose (personal) computer is becoming increasingly blurred. The
mobile phones might perform just the basic task, making phone calls, but modern smart-
phones can run a complex operating system and a rich set of applications installed by the
users. [12, p. 1-4]

2.1 Operating systems in embedded systems

Embedded systems can contain very simple 8-bit microcontrollers or some of the more
complex 32 or 64-bit processors, such as the A R M family. [12, p. 1-4] Applications built
on the more powerful processors can benefit from running an operating system (OS). A n
operating system serves two main purposes in the area of embedded systems:

1. it provides an abstraction layer for software to be less dependent on hardware, which
makes the development of applications that sit on top of the OS easier, and

2. manages the various system hardware and software resources to ensure the entire
system operates efficiently and reliably. [3, p. 383]

Every OS consists at least of a kernel. The kernel contains the main functionality of the
OS, specifically the following features:

• process management,

• memory management, and

• input/output system management.

2.2 System-on-Chip architectures

A System-on-Chip (SoC) is an integrated circuit that implements most or all of the func
tions of a complete electronic system. The most fundamental characteristic of a SoC is its
complexity. However, a memory chip, for example, may have a large amount of transistors,
but its regular structure makes it a component and not a system. Many SoCs contain ana
log and mixed-signal circuitry for input/output (I/O). Although some high-performance
I /O applications require a separate analog interface chip that serves as a companion to a
digital SoC. The system may contain limited amount of memory, one or more instruction-
set processors, specialized logic, busses, and other digital functions. The architecture of
the system is generally tailored to the application rather than being a general-purpose
chip. [6, p. 2] Systems will almost always have additional peripherals—typically includ
ing U A R T s , interrupt controllers, timers, GPIO controllers, but also potentially quite
complex blocks such as DSPs, GPUs , or D M A controllers. [12, p. 1-4]

2

Many product categories (cell phones, telecommunications and networking, digital tele
visions, etc.) do not use general-purpose computer architectures because such machines
are not cost-effective or because they would not provide the necessary performance. At
the high-end, general-purpose machines cannot keep up with the data rates for high-
end video and networking. They also have difficulty providing reliable real-time perfor
mance. [6, p. 2]

The performance of the SoC design heavily depends upon the efncency of its bus struc
ture. IP cores, the components of SoCs, are designed with many different interfaces
and communication protocols. Integration of such cores in a SoC often requires inser
tion of suboptimal glue logic. To avoid this problem, standard on-chip bus structures
were developed. There are several public specifications of bus architectures from leading
manufacturers, e. g. CoreConnect from I B M , A B M A from A R M , Wishbone from Silicore
Corporation, and others. [18]

2.3 A M B A A X I architecture

The A M B A A X I [8] is a point-to-point protocol (or better to say a family of protocols)
developed by A R M suitable for high-bandwidth and low-latency SoC designs. Recently,
it has been adopted by F P G A manufacturers such as Xi l inx [22, p. 5] and Altera [7] as a
common bus system for their soft IP cores. It also integrates better with A R M processors.

The A X I protocol is burst-based with five independent transaction channels: read address,
read data, write address, write data and write response. The figures 2.1 and 2.2 show how
the read and write transactions use the channels.

Read address channel

Address
and control

Master • Slave
interface

Read data channel
interface

Read Read Read Read
data data data data

Figure 2.1: The read architecture of AXI . [8, p. 22]

A master interface initiates a transaction by specifying a source/target address of the
transaction. Simultaneously the master specifies the size of the transaction, information
about caching, privileges, QoS, or atomicity properties. There are optional user signals
available.

After the transaction is initiated, another phase occurs. If it is a read transaction the slave
now starts to send data to the master. In case of a write transaction the master starts
to send data to the slave. When the master finishes, the slave returns a response that

Master
interface

Write address channel

Address
and control

Write data channel

Write
data

Write
data

Write
data

Write
data

Write response channel

Write
response

Slave
interface

Figure 2.2: The write architecture of AXI. [8, p. 22]

allows the master to learn whether the write transaction succeeded or failed. Note that
each phase uses a different independent physical channel. Each channel uses handshake
signals TVALID and TREADY.

Such a design enables to use pipelining because there is no fixed relationship between
the channels. This makes possible to trade-off between cycles of latency and maximum
frequency of operation.

2.3.1 A X I 4 protocol

The A X I 4 is a follower of the A X I 3 protocol. The differences are described later in the
section 2.3.2 Differences between AXI3 and AXI4. It is desirable to describe it in more
detail because the A X I 4 protocol is going to be widely used in the F P G A computing.

As it was mentioned there are five groups of signals: read address, read data, write address,
write data and write response. There is another group the global signals which consists of
ACLK and ARESETn signals. A l l signals are sampled on the rising edge of the ACLK signal.
The ARESETn is a global reset signal with active low level.

The read address and write address are different only in names. The table 2.1 describes all
signals briefly Substitute the letter x for R when considering the read address signals and
for W when considering the write address signals. The unspecified widths are configurable
(useful especially for F P G A s) . A l l signals have a prefix that determines the channel they
belong to (e.g. A means address, AW means write address, B means write response).

A l l of the five interfaces use the handshake process based on the VALID and READY signals.
The handshake process is described in detail in [8, p. 37-43]. The data (address or control)
are transferred from source to destination when both VALID (by source) and READY (by
destination) are asserted and the rising edge of ACLK occurs. There is an important restric
tion to avoid loops, the source must never wait until the READY signal is asserted. Instead

4

Read/ write address Write data/Write response Read date
Name Source Width Name Source Width Name Source Width
AxID Master - WID Master - RID Slave -

AxADDR Master - WDATA Master - RDATA Slave -
AxLEN Master 8 WSTRB Master - RRESP Slave 2
AxSIZE Master 3 WLAST Master 1 RLAST Slave 1
AxBURST Master 2 WUSER Master - RUSER Slave -
AxLOCK Master 2 WVALID Master 1 RVALID Slave 1
AxCACHE Master 4 WREADY Slave 1 RREADY Master 1
AxPROT Master 3
AxQOS Master 4 BID Slave -

AxREGION Master 4 BRESP Slave 2
AxUSER Master - BUSER Slave -
AxVALID Master 1 BVALID Slave 1
AxREADY Slave 1 BREADY Master 1

Table 2.1: Signals of the five signal interfaces of the AXI4 protocol

whenever the source has data available it must assert the VALID signal independently on
the destination. Once the VALID is asserted by the source it must remain asserted until
the data transfer occurs.

Both data channels pass data in longer sequences—bursts. The last data transfer in
the burst is marked by the appropriate LAST signal asserted. Each burst transaction is
configurable during the address phase. The AxLEN signal specifies number of beats the
transaction has (the limit is 256) and the AxSIZE defines the number of bytes transferred
in one beat. A burst of only 1 data beat is possible. Note that the data stream must be of
the length specified by the AxLEN and AxSIZE signals, see the restriction in [8, p. 44]. The
AxBURST specifies how the slave modifies the address during the burst. The commonly
implemented values are FIXED (the address is the some for every beat, useful for accessing
a FIFO) and INCR (the address is incremented for each beat to access a sequential
memory). The write data channel can provide STRB signal. It represents a bitmask that
marks which bytes of the corresponding DATA signal are valid (it is a kind of byte-enable
signal). [8, p. 49]

The Xi l inx defines its own supported subset of A X I that is available to the Xil inx F P G A
IPs. The subset is described in [22].

2.3.2 Differences between A X I 3 and A X I 4

There are currently two versions of the A X I protocol: A X I 3 and AXI4 . There are some
minor differences between them. The A X I 4 protocol changes the A X I 3 protocol in the
following ways, it

• defines an additional A X I 4 slave write response dependency, [8, p. 42-43]

• extends the signal AxLEN from 4 bits to 8 bits, [8, p. 44]

5

• modifies the semantics of the bit AxCACHE[l] and this modification affects the bits
AxCACHE[3:2] and memory types definitions as well, [8, p. 59-70, 72-73]

• removes support for write interleaving with different AWID values, [8, p. 79-81]

• has different transaction ordering model, [8, p. 83-88]

• intruduces a concept of single-copy atomicity, [8, p. 90-96]

• removes the support of locking transactions, [8, p. 96]

• adds QoS (Quality of Service) signaling, [8, p. 98]

• adds multiple regions to provide multiple logical interfaces, [8, p. 99]

• adds user-defined signals. [8, p. 100]

The A X I 3 protocol is currently used on various chips (e. g. Xi l inx Zynq). The newer AXI4
protocol is designed with backward compatibility in mind. The A X I 3 and A X I 4 devices
can cooperate without changes if they satisfy few conditions. See the [8, p. 28-34] for
details.

2.3.3 AXI4-Li te protocol

The AXI4-Lite [8, p. 122-127] is a limited version of the A X I 4 protocol. It is intended for
simplier interfaces with the register-style access. Such a communication does not need
the full functionality of A X I and so it is possible to save resources on the chip for other
logic.

Every AXI4-Lite burst transaction is of size 1 while using the full width of the data
bus with no support of the extended attributes for caching, buffering and atomicity.
The protocol is designed for interoperability with the standard A X I 4 protocol without
modifications. There is just one case where a modification is required—the connection
AXI4 to AXI4-Lite, because AXI4-Lite does not support out-of-order transactions.

2.3.4 AXI4-Stream protocol

The AXI4-Stream protocol is a simplex—one way—bus (a link) from a master to a slave.
There is no way for the slave to respond. It can stop the data flow just by the handshake
signals. In fact, a subset of AXI4-Stream is used in the write and read data channels
of the A X I 4 protocol. The details are explained in [9]. Note that Xi l inx defines its own
subset of the AXI4-Stream protocol in [22].

A l l signals except of TVALID and TREADY are optional. There are predefined default values
of the signals when any signal is missing. The list of signals used by the AXI4-Stream
protocol can be find in the table 2.2. The n represents a number of bytes per data transfer.

The signal TKEEP represents a mask of valid bytes in the TDATA signal. The zero bits of
the signal marks bytes that can be removed from the stream. It is possible to perform
a transfer where the TKEEP signal contains only zeros (unless there is the TLAST signal
asserted). The IP cores are not required to be able to process the zero bytes. [9, p. 8]

6

Name Source W i d t h
TVALID Master 1
TREADY Slave 1
TDATA Master 8n
TSTRB Master n
TKEEP Master n
TLAST Master 1
TID Master -

TDEST Master -
TUSER Master -

Table 2.2: Signals of the AXI4-Stream protocol

The signal TSTRB is a mask that describes whether the associated byte is a data byte
(one) or a position byte (zero). A data byte is a normal valid data byte. A position byte
indicates a relative position of data bytes within the stream. The data asociated with
position bytes is not valid. [9, p. 8]

The pairs of values of TKEEP and TSTRB have associated semantics:

• TKEEP(i) = 1 A TSTRB(i) = 1: the i-th byte is valid and must be transmitted.

• TKEEP(i) = 1 A TSTRB(i) =0 : the i-th byte indicates relative position.

• TKEEP(i) = 0 A TSTRB(i) =0 : the i-th byte can be removed from the stream.

• TKEEP(i) = 0 A TSTRB(i) = 1: represents a forbidden combination. [9, p. 9]

It is desirable to group bytes into structures called packets for more efficient processing.
A packet is a similar concept to an A X I 4 burst. The signal TLAST can be used by the
destination to indicate a packet boundary. The protocol does not provide any explicit
signaling of the start of a packet.

The signals TID and TDEST provide an identification of a packet transmitted over the
stream. This is useful when a unit supports packet interleaving during the transfer. Any
processing stage of an AXI-Stream can modify those values. The TID identifies the source
of a packet on the link. The signal TDEST provides coarse routing information for the data
stream. [9, p. 2-10] A routing unit can use the TDEST signal to deliver a packet to the the
corresponding slave.

TID = 0 Router
y

/ ~ ~ s / s/ / s
/ N

y

Master 0
TDEST = 2

Router
y

/ ~ ~ s / s/ / s
/ N

y

• TDEST = 2
Router

y
/ ~ ~ s / s/ / s

/ N
y Master 1

TDEST = 2
Router

y
/ ~ ~ s / s/ / s

/ N
y

• Master 1
TDEST = 0

•
Slave 0

Slave 1

Slave 2

TID = 1 Slave 3

Figure 2.3: Example of routing packets among two masters and four slaves.

7

2.4 Reconfigurable Syst em-on-Chip

As it was mentioned the System-on-Chip is a widely used type of device in the world of
embedded systems. Such a device contains a processor that is running the main applica
tion and uses the application specific hardware to accelerate it or to interface with other
external systems and peripherals. Because both the processor and the application specific
hardware units are located on a single chip it saves the area, and possibly wires, on a
P C B and enables to make the target system smaller. At the same time the integration
reduces the power consumption and connections among processor and application specific
hardware are shorter.

This work studies a family of SoC devices where the application specific hardware is
reconfigurable. The term Reconfigurable System-on-Chip (RSoC) denotes this type of
chips. Companies call their products of this kind as

• System-on-Chip Field-Programmable Gate Array (SoC F P G A) 1 ,

• SoC FPGA with a Hard Processor System2, or

• All Programmable SoC3.

A n RSoC architecture consists of two parts. They are referred as Processing System
(PS) and Programmable Logic (PL) in this text. This notation comes from the Xilinx's
documentation of the Zynq platform (see [28, p. 23]). The PS contains a processor with
basic peripherals and the P L represents the reconfigurable part of the chip.

System-on-Chip Reconfigurable System-on-Chip

Processor Peripherals G P U
1 1

1
Memory
controller

Application specific
hardware

Processor Peripherals
I

Memor 7
fer

Reconfigurable logic |

!! .in rn run rn run fit run 1
Figure 2.4: Comparison of a SoC and a Reconfigurable SoC.

The figure 2.4 summarizes the differences between both the classical SoC and the RSoC.
The SoC provides high computation performance for application specific tasks (there are
accelerators available), moderate performance for common and less common operations
(computed by the processor). The SoCs for smartphones and other multimedia devices
usually have a G P U to enable full H D 1080p video 4.

1 www.actel.com/fpga/SmartFusion2/
2 www.altera.com/devices/fpga/cyclone-v-fpgas
3 www.x i l i nx . com/con ten t /x i l i nx / en /p roduc t s / s i l i con -dev ices / soc / zynq-7000 .h tml
4 www.nvidia .com/object / tegra-4-processor .html, www.ti.com/product/omap4430,

www.qualcomm.co.in/products/snapdragon, www.broadcom.com/products/Cellular
/Mobile-Multimedia-Processors/BCM2763

8

http://www.actel.com/fpga/SmartFusion2/
http://www.altera.com/devices/fpga/cyclone-v-fpgas
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html
http://www.nvidia.com/object/tegra-4-processor.html
http://www.ti.com/product/omap4430
http://www.qualcomm.co.in/products/snapdragon
http://www.broadcom.com/products/Cellular

The SoC devices are fabricated as ASIC chips. Once the chip is fabricated there is no
way to modify its internals. For a different application that has other requirements, the
used SoC must be exchanged for another. That leads to redesign of all the P C B because
the chips are usually not pin compatible.

The RSoC offers great flexibility A single chip can be used for different types of applica
tions and if the P C B is general enough, redesign is not required. A n already existing and
working design can be reused by different configuration of the reconfigurable logic. Such
a device provides high computation performance for application specific tasks and mod
erate performance for other common and less common operations. But if needed, the less
common operations can be accelerated as well to provide the same level of performance
as the critical parts of the application. The advantage of RSoC is the time to market.
The time to design and test the application is lower and the developer can immediately
see the hardware working. Because the system can be reconfigured after deployment a
later bugfixes are also possible.

2.4.1 Potential of Reconfigurable System-on-Chip

The dynamically reconfigurable systems, such as F P G A or RSoC, offer many approaches
to design embedded systems and computer systems in general. A great number of possible
architectures have been developed and explored already by the industrial and scientific
community. The leading reconfigurable platform are F P G A s . We can find many different
F P G A devices on the market. They integrate the basic hardware logic such as Look
up Tables (LUTs), multiplexors and registers, but the modern F P G A s contain also fast
memories, DSP units, and some of them also contain a processor. The RSoC is just a
different point of view on the F P G A platform. The main difference is in the role of the
processor part (the PS) in the system. For RSoC the processor is the most essential unit
that runs the application and the F P G A is an additional component. [4, p. 3]

Reusing the area. The F P G A platforms provide a possibility of partial dynamic
reconfiguration that enables use of one area of the chip for different tasks in time. This
makes it possible to create smaller devices and to accomodate the software to choose
the task to be computed in the hardware during runtime. The RSoC seems to be a
perspective platform for such a type of computing. One of interesting scientific projects
that implements this idea is B O R P H , the Berkeley Operating system for Reprogrammable
Hardware.

B O R P H provides kernel support for F P G A applications by extending a standard Linux op
erating system. It establishes the notion of hardware process for executing user F P G A ap
plications. Users therefore compile and execute hardware designs on F P G A resources the
same way they run software programs on conventional processor-based systems. B O R P H
offers run-time general file system support to hardware processes as if they were soft
ware. The unified file interface allows hardware and software processes to communicate
via standard U N I X file pipes. Furthermore, a virtual file system is built to allow access
to memories and registers defined in the F P G A , providing communication links between
hardware and software. [20, p. 2]

9

3 Xil inx Zynq

The Xi l inx Zynq-7000 family is a System-on-Chip architecture that integrates a dual-core
A R M Cortex-A9 MPCore based Processing System (PS) and Xi l inx Programmable Logic
(i. e. F P G A) in single device, built on 28 nm process technology. The A R M Cortex-A9
MPCore CPUs are the heart of the PS which also includes On-Chip Memory (OCM),
external memory interfaces and a set of I /O peripherals. The Zynq offers the flexibility
and scalability of an F P G A , while providing performance, power, and ease of use typically
associated with ASIC and ASSPs. [28, p. 23]

The idea behind the Zynq is not new. There are F P G A s (e. g. the Xil inx Virtex-5 se
ries [26]) that contain a PS part (usually a PowerPC processor) as an optional IP hard
wired on the chip together with local memories (BlockRAMs), DSP blocks, A D converters,
etc. The processor could be used for several complex tasks that would be difficult or costly
to implement in the F P G A logic, consider for example D M A or T C P / I P communication.
Such tasks require traversing through various data structures located in different loca
tions of memory (linked lists, binary trees) or managing a complex state machines. But
for some time critical applications these processors could be too slow. [5, p. 15]

However, the Zynq platform is different from the older approaches. The PS is considered
to be the essential part of the chip and so it is possible to see Zynq as just a kind of an
A R M SoC with an optional F P G A fabric. This approach is noticeable especially in the
boot procedure (described in 3.1 Boot procedure).

Z &
_• —J
—: <d
— -Q
-: E
=: S
- 2

= 1

Events

ACP

GPs

HPs

—I" r l i i i

Processing System

Cortex-A9

L1

Cortex-A9

L1

s c u

O C M L2

Peripherals

I
~ ~ ~~~ DDR Memory Controller

r r l " i t r l " i t r t i t r l " i t r l " i t r l " i t r l " i t r Ti
Figure 3.1: The Zynq architecture composed of the PS and the PL.

10

In the figure 3.1 there is a system view of the Zynq platform. You can see the processor
cores with peripherals integrated inside the PS. There are controller peripherals of different
types:

• connection of external memories: N O R , S R A M , N A N D , SD, SDIO, M M C ;

• general communication interfaces: U S B , U A R T , SPI, Dual Quad SPI, I 2 C , GPIO;

• the network interfaces: Gigabit Ethernet, C A N ;

• and some other miscellaneous ones intended especially for debugging.

There are several external pins available exclusively to the PS, others that are available
exclusively to the P L and several that can be shared between both of them.

3.1 Boot procedure

The booting of Zynq is done at least in two stages. When booting a Linux operating
system a third stage is used. The Processing System boots first and then it may choose to
setup the Programmable Logic. The system can work without completely without that.
This was not possible with the previous F P G A centric devices.

3.1.1 Stage 0

The initial device startup is controlled by the zero booting stage (stage 0). The A R M
C P U 0 starts executing non-modifiable code located in the B o o t R O M memory after power-
on reset. For the security reasons, the C P U is always the first device out of reset among
all master modules within the PS. The purpose of the stage 0 is to load and execute the
stage 1. There are three different PS configurations for this stage:

1. secure master mode,

2. non-secure master mode, and

3. non-secure slave mode via J T A G . [28, p. 140]

In either master mode the boot is done from one of the four supported master sources:
N A N D , N O R , Quad-SPI, or SD. [28, p. 143]

The stage 0 supports multi-boot, the capability to fall-back to a golden stage 1 image.
The fall-back and golden images must be either both encrypted by the same key or both
non-encrypted.

The secure master mode. The stage 0 loads a stage 1 executable image from the
selected external source into the O C M . The image is decrypted by AES-256 algorithm and
verified by H M A C SHA-256 during this process. Because the A E S and H M A C engines
reside in the P L part of the chip, the P L is required to be powered for the initial boot
sequence (the stage 0 verifies that the P L has power before the decryption starts). After
that, the stage 1 is executed. [28, p. 144-146, 171-172, 639-640]

If the device has been booted in the secure mode, the security policy block in the PS
monitors the system status. When a conflicting status is detected a security lockdown

11

is triggered. In a security lockdown the O C M and all system caches are cleared, the P L
is reset and the PS enters a lockdown mode. The only way to continue is a power-on
reset. [28, p. 643]

The non-secure master mode. The stage 0 loads a stage 1 executable image from
the selected external source into the O C M . The P L is not required to be powered on at
this stage. Then the stage 1 is executed. [28, p. 170]

The non-secure slave mode. In this mode, the PS is a slave to the J T A G port. The
PL ' s external J T A G pins are used, the P L is required to be powered up. The secure
images are not allowed in this mode. [28, p. 172]

3.1.2 P L configuration

Unless the J T A G is used for booting, the P L must always be configured using the P C A P
interface. Users are free to configure the P L at any time. It can be done either at PS boot
or later. The P L must be powered on before it can be configured. The P L executes its
power-on reset sequenece to clear all the PL ' s configuration S R A M cells. This procedure
can be monitored by the PS. To configure the P L by a bitstream, the clear must be
finished. After the P L has been configured, it can be reconfigured using either the P C A P
or I C A P interfaces. To perform a secure configuration of the P L , the PS must have booted
securely. The A E S and H M A C engines can only be enabled by the stage 0. [28, p. 174-176]

3.1.3 Stage 1

The first stage bootloader (FSBL) is loaded from an external source by the stage 0 and
executed. It is a user defined stage. It can load a bitstream into the P L , load another
software, or start other processing. [28, p. 140]

3.2 Processing System

The Processing System is based on the dual-core A R M Cortex-A9 MPCore capable of
asymmetrical or symmetrical multiprocessing configurations. Beside the CPUs , the M P
Core contains a Snoop Control Unit (SCU) that assures coherency within the cluster, a set
of private peripherals (timers and watchdogs), and an interrupt controller. [28, p. 28], [13]

3.2.1 A R M Cortex-A9

A R M Cortex-A9 is a 32-bit RISC processor with Hardward Load/Store architecture. It
provides sixteen 32-bit visible registers with mode-based register banking. As an extension
a N E O N (implementation of the SIMD instruction set) and V F P (Vector-Floating-Point
Architecture supporting single and double-precision arithmetic) technologies are included
in the Zynq platform. The processor supports both the big-endian and little-endian data
access. [12, p. 2-8], [28, p. 28]

12

The A R M Cortex-A9 cores conform to the A R M A R M v 7 - A architecture where the v7
refers to version 7 of the architecture, while A indicates the architecture profile that
describes Application processors. [12, p. viii]

There are three profiles defined by A R M :
1. A—the Application profile defines an architecture aimed at high-performance proces

sors, supporting virtual memory system using a Memory Management Unit (MMU)
and therefore capable of running complex operating systems. Support of the A R M
and Thumb instruction sets is provided.

2. R—the Real-time profile defines an architecture aimed at systems that need deter
ministic timing and low interrupt latency and which do not need support for a virtual
memory system and M M U , but instead use a simpler memory protection unit (MPU) .

3. M—the Microcontroller profile defines an architecture aimed at low cost and low
performance systems, where low-latency interrupt processing is vital. It uses a dif
ferent exception handling model to the other profiles and supports only a variant of
the Thumb instruction set. [12, p. 2-3]

The Cortex-A9 supports the following instruction sets:
• A R M . The standard 32-bit instruction set. [11, p. Al-3]

• Thumb. 16 or 32-bit instructions with a subset functionality of the A R M instruction
set. It provides significantly improved code density, at a cost of some reduction in
performance. [11, p. Al-3]

• Thumb2. A n extension of the 16-bit Thumb instruction set to include 32-bit in
structions. [11, p. Al-3]

• Jazelle. It is the Java bytecode execution extension. [11, p. Al-6]

• ThumbEE. A variant of the Thumb instruction set that is designed as a target for
dynamically generated code. [11, p. Al-6]

3.2.2 Snoop Control Unit

The S C U is an interconnection among the Cortex-A9 cores, the Accelerator Coherency
Port (ACP) , and the memory system. It maintains the data cache coherency between the
cores' L I memories and serves the L2 memory access. There is no support for coherency
of the instruction cache. The S C U allows to route memory-mapped access to one of its
A X I master ports using the filtering capabilities. [13, p. 2-2, 2-13]

Note that the L I caches for both Cortex-A9 cores are managed by the SCU.

The MPCore supports the M E S I cache coherency protocol. In a correctly configured
system, every cache line is dynamically marked with one of the following states:

• Modified—the data is present only in the current cache and it is dirty (not up to
date with the next memory level).

• Exclusive—the data is present only in the current cache and it is clean (up to date
with the next memory level).

13

L1 Cache L1 Cache

Snoop Control Unit A C P

L2 Cache

Figure 3.2: Snoop Control Unit.

• Shared—the data is present in one or more other core's caches and it is up to date.

• Invalid—the data is invalid. [10]

3.2.3 Event Interface

The cores provide an event interface that can be used for simple communication between
a core and an external agent placed in the SoC. It is intended to be used in conjunction
with the A C P . Any core can issue the WFE or SEV instruction. The agent can detect the
execution of a SEV instruction by reading the EVENTO pin or wake up a core executing
a WFE instruction by asserting the EVENTI pin. The interface allows to implement a
semaphore. [13, p. 2-23]

3.2.4 O n - C h i p Memory and D D R Memory Controller

The main memory of the Zynq is divided between two parts: the On-Chip Memory and
the D D R Memory. Both memories are accessible from either the PS and the P L . The
On-Chip Memory is needed for the boot procedure (see 3.1 Boot procedure).

C P U s axlacp

[so]
Snoop

Control Unit

| MO |

DDR

AXLHP

All other Masters
Via Central
nterconnect

[so] Lsil
On-chip RAM

256 kB

Figure 3.3: OCM interfaces schematic. [28, p. 619]

14

On-Chip Memory. The On-Chip Memory contains 256KB of R A M and 128KB of
R O M (BootROM). It supports two 64-bit A X I slave interface ports, one is dedicated for
C P U / A C P access and the other is shared by all other bus masters within the PS and the
P L . The B o o t R O M is used exclusively by the boot process and is not visible to the user.
The entire memory can be divided into 64 4 K B blocks, and assigned security attributes
independently (the TrustZone feature). The access into the O C M can be restricted by the
Snoop Control Unit of the C P U . The access latency for C P U / A C P reads to the O C M is
at least 23 cycles. [28, p. 617-618]

D D R Memory Controller. The D D R Controller available on the Zynq chip supports
DDR2, DDR3 and L P D D R 2 devices. There are four (duplex) 64-bit synchronous A X I
interfaces available to serve multiple masters simultaneously. One port is dedicated to
the L2 cache (for C P U cores and A C P port), two ports are dedicated to the A X I High-
Performance ports (described in 3.3.2 High-Performance ports) and the fourth port is
shared by all other masters in the system. [28, p. 240]

The controller arbitrates requests from the eight simplex ports (four reads and four writes).
The arbitration is based on a combination of

• how long the request has been waiting,

• the urgency of the request, and

• if the request is within the same page as the previous one. [28, p. 240]

CPUs
and ACP

Other Bus
Masters

AXI_
HP{2,3}

AXI_
HP{1,0}

I SO I I SI I I S2 I I S3 I

DDR Interface •AXI 3 Port Arbiter
* Seperate Read/Write Requests

1
DDR Core 'Transaction Scheduler and Queues

* Programmable Algorithms

\
DDR PHY * DDR2, LPDDR2, DDR3

ě

APB

— r i r -
Configuration

Registers

Device Boundary

16 or 32-bit V

DDR DRAM Memory Device(s)

Figure 3.4: The three DDR Controller parts. [28, p. 242]

15

The controller is divided into three parts (as shown in the figure 3.4). The first part—
D D R Interface—performs the arbitration. The D D R Core optimizes data bandwidth and
latency by transaction scheduling and re-ordering. [28, p. 240-242]

Note that the maximum total memory density is 1 G B . [28, p. 244]

3.2.5 D M A Controller

The D M A C is integrated in the Processing System and uses a 64-bit A X I master interface.
It is intended to perform D M A data transfers among system memories and peripherals
without the processor intervention. The source and destination can be almost anywhere
in the system. The memory map for the D M A C includes D D R , O C M , linear addressed
Quad-SPI memory, S M C memory, and P L peripherals attached to the Master General
Purpose A X I Interface. [28, p. 200]

The transfers are controlled by the D M A instruction execution engine. A program code
for the D M A C is written by software into a region of system memory that is accessed
by the controller. The controller can run up to eight channels—threads running on the
D M A C ' s execution engine. [28, p. 200]

Each thread has its own program counter. A simple program for a thread may look this
way:

1 DMAMOV CCR, SB2 SS32 SAI DB2 DS32 DAF
2 DMAMOV SAR, 0x1000
3 DMAMOV DAR, 0x4000
4 DMALP 16
5 DMALD
6 DMAST
7 DMALPEND
8 DMAEND

The line 1 configures:
• A R L E N = 2, A R S I Z E = 32, A R B U R S T = INCR, and

• A W L E N = 2, AWSIZE = 32, A W B U R S T = F I X E D .

Lines 2 and 3 set the source and destination address. The D M A transfer is performed by
lines 4-7. The instruction DMALP defines a cycle that will loop 16 times. Each iteration
performs a read burst (DMALD) from the source address and write burst (DMAST) to the
destination address. In other words, the program would move 16 • (2 • 32) B = 1024 B
in 16 bursts from addresses 0x1000 up to 0x1400 to the fixed address 0x4000. There are
instructions that can use the Event Interface described in 3.2.3 Event Interface.

The D M A C exposes four request interfaces to the P L . This enables the P L logic to manage
the flow of up to four D M A channels. [28, p. 201]

The estimated throughput of the D M A C is 600 M B / s . [28, p. 544]

Note that those peripherals are capable of bus mastering (i. e. perform D M A on their own):
The Gigabit Ethernet Controller, SD/SDIO Peripheral Controller, USB Controller, and
Device Configuration Interface.

16

3.3 Programmable Logic

The Programmable Logic is based on the 7 series Xi l inx F P G A s . There are two families
available:
1. Artix-7: a low cost and low power F P G A . It is shipped with the Zynq-7010 and

Zynq-7020.

2. Kintex-7: a price-performance optimized F P G A . It is shipped with the Zynq-7030
and Zynq-7045.

Depending on the version, the P L offers 17,000-218,000 6-inputs look-up tables (LUT) ,
60-545 Block R A M memories with capacity of 36 K b , 80-900 DSP slices, PCIe interface
(just the Kintex-7), multi-gigabit transceivers and others. See the [21] and [27] for details.

P S - P L interfaces. There are five types of interfaces between the PS and the P L
available in the Zynq:
1. Interrupts,

2. Event Interface,

3. General Purpose ports (GP),

4. High Performance ports (HP),

5. A C P . [28, p. 36-37, 53]

Each of them can be used for different types of communication.

3.3.1 General Purpose ports

DDR Controller PS Peripherals

DMAC

L2 Memory

£
J

Central Interconnect

i i i i
M_GP0 M_GP1 S_GP0 S_GP1

1 ' 1 f

OCM

i Custom Hardware

Programmable Logic

Figure 3.5: General-Purpose ports' connections (simplified). [28, p. 545]

The General Purpose (GP) ports consist of four 32-bit A M B A A X I 3 ports—two slaves
and two masters. The slaves allow devices to map into the PS address space. The
masters can be used to access other peripherals, the memory, and O C M . These interfaces

17

are connected directly into the PS internal interconnect, without any additional buffering.
The performance is constrained by the ports of the internal interconnect. These interfaces
are not intended to achieve high performance. [28, p. 135]

The estimated throughput of each G P interface is 600MB/s . [28, p. 544]

The master G P interfaces can be used by the D M A Controller that resides in the PS. It
offers a moderate levels of throughput with little P L logic resource usage. [28, p. 545]

3.3.2 High-Performance ports

There are four 64-bit master High-Performance (HP) A M B A A X I 3 ports available in
the P L (also referenced as A F I — A X I FIFO Interface) that are connected into the main
memory of the PS and into the O C M . The ports can be configured as 32 or 64-bit data
wide master interfaces. Each port includes two FIFO buffers for read and write traffic.
The P L could dynamically change the priority of the individual read and write requests.
The FIFO levels can be used as a look-ahead to determine if data can be read or written
without direct access to the A X I handshake signals. [28, p. 125-129]

When configured in the 32-bit wide mode, the user can control internal upsizing of the
transactions. If a particular AxCACHE(l) = 1, the upsizing is done to make better use of
the 64-bit bus available bandwidth. Only bursts multiplies of 2, incremental burst read
commands, aligned to 64-bit boundaries are upsized. [28, p. 130-131]

The FIFOs are capable of multi-threaded out-of-order command processing and data
beats interleaving. The D D R Controller guarantees that all read commands are completed
continuously. However, it take advantage of re-ordering of read and write commands to
perform internal optimizations. Therefore, sometimes the read and write commands can
be completed in different order from which they were issued. [28, p. 132]

The estimated throughput of each H P interface is l , 2 G B / s . [28, p. 544]

Programmable Logic
HPO

Programmable Logic On-Chip
Memory HP1
On-Chip
Memory

Custom ! HP2 Memory Interconnect Custom ! Memory Interconnect
Hardware !

HP3 • —• DDR Controller

Figure 3.6: High-Performance ports' connections (simplified). [28, p. 127]

3.3.3 Accelerator Coherency Port

The A C P is a 64-bit A M B A A X I 3 slave interface on the S C U (see figure 3.2). It provides
cache-coherent access point directly from the P L to the processor subsystem. A range
of P L masters can use the A C P to access the caches and the memory exactly the way
the A R M cores do to simplify software, increase overall system performance, or improve
power consumption. The A C P provides cache-coherent access while any memory local

18

to the P L are non-coherent with the A R M (because it would not be managed by the
SCU). [28, p.98-99], [13, p.2-20]

The A C P interface can make following types of requests:

• A C P coherent read request—when ARUSER(O) = 1 A ARCACHE(l) = 1.

• A C P non-coherent read request—when ARUSER(O) = 0 A ARCACHE(l) = 0.

• A C P coherent write request—when AWUSER(O) = 1 A AWCACHE(l) = 1.

• A C P non-coherent write request—when AWUSER(O) = OAAWCACHE(l) = 0. [13, p. 2-20]

For maximum performance of the A C P transfers the following burst configurations are
recommended.

• A wrapped burst of four doublewords (AxLEN = 3 A AxSIZE = 3) with 64-bit aligned
address, and all byte strobes set.

• A n incremental burst of four doublewords with the first address corresponding to the
start of a cache line, and all byte strobes set. [13, p. 2-21]

Accesses that do not match this format cannot benefit from the S C U optimizations, and
have significantly lower performance.

A C P provides a low latency path between the PS and the accelerators implemented in
the P L when compared with a legacy cache flushing and loading scheme. A n acceleration
can be done by the following steps:

1. The C P U prepares input data for accelerator.

2. The C P U sends a message to the accelerator through a General Purpose port or by
an event.

3. The accelerator retrieves the data via the A C P , performs the appropriate compu
tation, and returns the result back via A C P . The comunication is done by a D M A
engine. When a cache hit occur, the access latency is small.

4. The accelerator notifies the C P U that the computation is complete by an interrupt
or an event. [28, p. 99-100]

3.3.4 D M A C Interface

As it was mentioned earlier in section 3.2.5 DMA Controller, the Programmable Logic is
able to request D M A transactions. For that purpose there are four pairs of AXI-Streams,
which can be associated with up to four channels of the D M A C . The D M A C must be
programmed in the standard way. The instruction DMAWFP instructs a D M A C thread to
wait until the specified peripheral requests for that D M A channel. The P L interface can
request a D M A by using the DMA_DR interface and accept acknowledges via the DMA_DA
interface.

19

3.4 Designing a PL accelerator

To implement an accelerator that offloads a computation into the Programmable Logic
an application specific hardware unit is needed. To achieve high throughput a High-
Performance Port or the Accelerator Coherency Port is utilized to connect the hardware
unit to the system. To handle such a port the hardware unit needs to be a bus master
because there is no central D M A unit available for those ports.

The software must provide a memory area to the accelerator to interchange the input and
output data of the computation. The addresses and sizes are written into the accelerator
to be able to perform the computation. Finally the software can see the result in memory.
For this purpose, an operating system driver must be implemented.

3.4.1 Hardware accelerator design

The hardware accelerator is composed of two parts: AXI4 Bus Master and Accelerator
Engine. Both parts are connected by AXI4-Streams that are not difficult to handle by
the engine. The A X I 4 Bus Master needs to be configurable by the driver in the oper
ating system. For the Accelerator Engine the configuration is optional (depends on the
application).

Master GPO Slave HPO/ACP 1
AXI4 Bus Master

Accelerator

Engine

Figure 3.7: Hardware accelerator for the Zynq.

20

4 The Linux Kernel

The Linux Kernel is an open source operating system kernel. It supports a great number
of computer architectures, including A R M . These two factors make it a good choice as
a kernel for operating systems running on various embedded systems. When designing
an application divided between H W and SW, developers may need to extend the used
kernel to be able to communicate with the hardware part of the application. This chapter
describes the most essential knowledge needed to extend the Linux Kernel.

4.1 Linux module

The Linux Kernel supports dynamic insertion and removal of code at runtime. Related
subroutines, data, and entry and exit points are grouped together in a single binary image,
a loadable kernel object, called a module. Support for modules allows systems to have
only a minimal base kernel image, with optional features and drivers supplied via loadable,
separate objects. Modules enable loading of new drivers on demand in response to the
hot plugging of new devices. [2, p. 338]

When developing a device driver a module is always the most essential part of it. When
the module's entry point is executed (after it is loaded into the running system) it registers
a new device driver to the kernel and provides information about supported devices. The
kernel is then free to use the driver if an appropriate device is connected.

4.2 Linux device drivers

The figure 4.1 shows the (simplified) model of structures used to represent a computer
system in the Linux Kernel. Each physical device is represented by the corresponding
s t ruc t device and has associated a number of other entities.

parent bus_type

kobject

device device
device_node of node device_node

driver

device_driver

Figure 4.1: The model of device related structures inside the Linux Kernel.

The kernel needs to know how a device can be accessed. Each computer system is com
posed of various bus systems like PCI , U S B , etc. to which the devices are connected.

21

Usually there is a bridge—either integrated inside the SoC or in the form of an external
chip placed on the PCB—that serves as an intermediator to access such device. The
way of accessing devices over a specific bus system is covered by an instance the s t ruc t
bus_type that every device in the system must be associated with. The Linux Kernel
provides predefined instances of the s t ruc t bus_type for each bus system it can use. For
example: usb_bus_type, pci_bus_type, spi_bus_type, i2c_bus_type, and others. For de
vices that are connected directly to the C P U , and this is often the case of System-on-Chip
architectures, a special bus system exists—platf orm_bus_type.

When a device is detected by the Linux Kernel core the information about the device
is used to select a driver that will take care of it. This operation is called probing.
Each device driver (represented by s t ruc t dev ice .dr iver) defines a probe function. Its
purpose is to assure that the kernel selected the correct driver and to initialize the driver
instance's internals.

The way of acquiring information about devices varies among different computer architec
tures. The A R M architecture and few others utilize a device tree that describes the static
structure of the computer system. This particularly incorporates bus controllers (PCI,
USB, etc.), available CPUs , and memory. The Linux Kernel requires a set of minimal
information about the system to be able to boot. The other kernel code (device drivers)
are free to access the nodes of the device tree when probing for a device. Each device
is associated to an appropriate node of the device tree (if it is specified there) by the
of_node in the s t ruc t device.

At the heart of the device model there is the kobject, short for kernel object, which is
represented by s t ruc t kobject . It is similar to the Object class in object-oriented
languages such as C # or Java. It provides basic facilities, such as reference counting, a
name, and a parent pointer, enabling the creation of a hierarchy of objects. The sysfs,
a virtual user-space filesystem, is a representation of the kobject hierarchy inside the
kernel. [2, p. 349-350]

4.3 Device tree

The Open Firmware Device Tree, or simply device tree, is a data structure and language
for describing the topology of hardware at runtime. When using a device tree the OS does
not need to hard code details of the underlying machine (this enables building of A R M
multi-platform kernels). [16], [14]

The device tree originates in the Open Firmware [19] specification as a part of the data
passing method to a client program (OS). Open Firmware is used on PowerPC and S P A R C
platforms. The infrastructure implemented for that purpose was generalized to be usable
by all architectures. Currently, six mainlined architectures have some level of device tree
support (x86, A R M , MicroBlaze, PowerPC, MIPS, and S P A R C) .

When booting a system, the bootloader passes a device tree binary to the kernel. The
binary is a data structure suitable to be read by the OS. It can be created by a device
tree compiler from a human-readable specification. Such a compiler is a standard part of
the Linux Kernel build system. [16]

22

First, the kernel uses data in the device tree to identify the specific machine. The A R M
architecture benefits from this approach because there are lots of different ARM-based
System-on-Chip architectures. Each of them may have specifics the kernel needs to know.
For that purpose, the compatible property in the root node of the device tree is used.
The compatible property contains a sorted list of strings starting with the exact name of
the machine and followed by an optional list of compatible boards (sorted form the most
compatible to the least). [16]

In similar manner, the compatible property is used to identify hardware devices in the
underlying computer system. The kernel matches the property with strings included
in the device drivers. The device tree describes topology of the system, i . e. how are
the devices connected to the processor. The nodes that are directly connected to the
processor bus are identified as platform devices. For those devices, the kernel allocates
and registers a s t ruc t p l a t f orm_device instance (a specialization of s t ruc t device)
that may get bound to a s t ruc t p l a t f orm.driver instance (a specialization of s t ruc t
dev ice .d r ive r) . [16]

4.4 Writing character drivers

In Linux, as with all Unix systems, devices are classified into one of three types:

• block devices,

• character devices,

• network devices.

The block devices are addressable in device-specified chunks called blocks and generally
support seeking, the random access of data. Examples of block devices include hard drives,
Blue-ray discs, and memory devices such as flash. Block devices are accessed via a special
file called a block device node and generally mounted as a filesystem (the special files are
not accessed directly but through the virtual filesystem of the kernel). [2, p. 337]

The character devices are generally not addressable, providing access to data only as a
stream, generally of characters (bytes). Examples of character devices include keyboards,
mice, and printers. Character devices are accessed via a special file called a character de
vice node. Unlike with block devices, applications interact with character devices directly
through their device node. [2, p. 337]

The network devices are out of the scope of this work.

cdev

file_operations

Figure 4.2: The representation of a character device inside the Linux Kernel.

2;-!

A character device is represented by s t ruc t cdev in the kernel. As shown in the figure 4.2,
an instance of s t ruc t cdev has an associated kobject to be manageable by the kernel, an
identification represented by the dev_t data type and an ops member that is an instance
of the s t ruc t f i l e .operations.

Device node. Each character device is related to its device node, a special file in the
filesystem, through a pair of numbers: major and minor. These numbers are stored in the
dev member of every s t ruc t cdev instance. To access a character (or block) device from
user space, the corresponding device node is a hint for kernel to select the right driver to
handle the operations the user wants to perform. The major identifies the driver and the
minor points to one specific instance of the driver. The available majors can be obtained
by

$ cat /p roc /devices

on any Linux station. A device node can be created using the mknod program

$ mknod /dev/mydevice c 254 0

where the letter 'c' denotes a character device, the number 254 is its major and the last
value 0 is its minor. The current Linux systems provide tools to create the required device
nodes automatically (using devtmpfs and daemons like udev) when a device is plugged
into the system but only if the driver supports that. To check the major and minor of a
special file, one may call e. g.

$ Is -1 / d e v / t t y l
crw—w 1 root t t y 4, 1 May 9 14:01 / d e v / t t y l .

Here the letter 'c' (at the beginning) denotes a character device and the two numbers 4,
1 are the major and minor.

In previous versions of the Linux Kernel (prior to the release 2.6.0) the majors were
associated to the drivers statically. The file Documentation/devices . t x t provides a list
of assigned majors for common drivers. New major numbers are no longer being assigned.
The Linux Kernel provides functions to allocate them dynamically at runtime. This
effectively simplifies development of new device drivers for Linux. [15]

Operations. The s t ruc t f i l e . ope ra t i ons defines a set of functions (operations) that
can be performed on a character device. Implementation of a character device requires
definition of at least a subset of those functions. The most notable are:

• open—requests to prepare the device driver for service,

• release—notifies that the user does not want to use the device anymore,

• write—writes a data piece into the device,

• read—reads a data piece from the device, and

• mmap—enables to map an address space of the driver (can be used to access the
hardware device directly or for sharing a single buffer between kernel and userspace)
into the address space of the user space program.

24

4.5 Memory allocations

The kernel uses various types of addresses a driver may need to handle. Each of them is
related to the physical memory in some way:

• Physical addresses are the addresses the C P U use to access the system memory.

• User virtual addresses are regular addresses seen by the user-space programs.
Each process has its own virtual address space. The kernel handles the translation
into the physical addresses.

• Bus addresses are used between peripheral busses and memory. Often, they are
the same as the physical addresses. Some architectures can provide an I /O memory
management (IOMMU) that remaps addresses between a bus and main memory. In
such configuration of an I O M M U must be done before setting up D M A
operations.

• Kernel logical addresses represent the normal address space of the kernel. These
addresses map some portion of main memory and are often treated as if they were
physical addresses. On most architectures, logical addresses and their associated
physical addresses differ only by a constant offset. These type of addresses are re
turned from kmallocO allocation function.

• Kernel virtual addersses are similar to logical addresses, they represent a mapping
from a kernel-space address to a physical address. A l l logical addresses are kernel
virtual addresses, but many kernel virtual addresses are not logical addresses. The
vmallocO returns a virtual address. [1, p. 413-414]

Page allocation. The kernel has several ways for memory allocation. The lowest level
mechanism has the memory page size granularity. It allows to allocate 2 o r d e r contiguous
physical pages. The caller can be given either pointer to the list of allocated struct page
(structure representing a physical page) instances or the kernel logical address. The core
function of this mechanism is alloc_pages(gfp_mask, order). The gfp_mask specifies
how is the kernel supposed to allocate the requested memory. There are many different
modifiers of this type, the most common are:

• GFP.KERNEL—represents a normal allocation and might block. Such an allocation
can be performed only in the process context when it is safe to sleep (i. e. not when
handling an interrupt).

• GFP.ATOMIC—such an allocation is of a high priority and must not sleep. This one is
suitable to be used in interrupt context.

• GFP_DMA—requests to perform the allocation from Z0NE_DMA. It is usually combined
with other flags. [2, p. 235, 239, 241]

Because of hardware limitations, the kernel cannot treat all pages as identical. Some
pages cannot be used for certain tasks (e.g. D M A by ISA peripherals). To overcome
this limitation, the kernel divides pages into zones. The zones do not have any physical
relevance but are simply logical groupings used by the kernel to keep track of pages. The
kernel defines four primary memory zones:

25

• ZONE_DMA—This zone contains pages that can undergo D M A .

• Z0NE_DMA32—Similar to Z0NE_DMA, but those pages are accessible only by 32-bit de
vices.

• Z0NE_N0RMAL—The normal, regularly mapped, pages.

• ZONE_HIGHMEM—The so called "high memory" represents pages that are not perma
nently mapped into the kernel's address space. [2, p. 233-234]

Byte-sized physically contiguous allocation. A higher level approach for memory
allocation is done by function kmalloc (size, gfp_mask). This is the preferred interface
in the kernel. The function returns a pointer to a memory region that is at least size
bytes long. Note that the low-level allocations are page based. The call is similar to the
mallocO function used in the user-space. [2, p. 238]

Virtually contiguous allocation. The physically contiguous memory area is needed
especially when accessing a hardware device (e.g. D M A transfers). For other purposes
the virtually contiguous memory can be sufficient. That means the memory seems to be
contiguous but there is no guarantee that they are actually contiguous in physical R A M .
Such allocations can be done by the function vmalloc (size). The kernel code preferres
kmalloc () over vmalloc () for performance reasons. [2, p. 244]

Slab layer. The slab allocator provides an efficient way of handling allocations for
frequently allocated and deallocated data structures using a cache. The cache is divided
into slabs, one or more physical contiguous pages. Each slab contains a number of objects
which are data structures being cached. This strategy reduces fragmentation of memory
and allows other optimizations. Interestingly, the kmalloc () is built on top of the slab
layer. The interface of the slab allocator is out of the scope of this work. [2, p. 245-246]

Deallocating memory. Every allocation method has its counterpart to release the
allocated memory. Unlike the user-space programs, whose memory space is managed by
the kernel, a memory leak (a missing deallocation) or double deallocation of one memory
chunk can result in serious problems of all the system. For the mentioned interfaces,
the matching deallocation functions are: __free_pages(page, order), kfree(ptr) and
vfree(addr). [2, p. 237, 238, 245]

4.6 Handling D M A capable devices

The Linux Kernel provides a common A P I for performing D M A operations. The A P I is
accessible through the linux/dma-mapping.h header file. Any device (by means of the
struct device) can be D M A capable if its hardware counterpart (a D M A controller)
provides such functionality. In fact, no additional setup is necessary to make a device
usable by the means of the A P I . To be more accurate, the kernel documentation states
that for correct operation, the device driver must interrogate the kernel in the probe
routine to see if the D M A controller on the machine can properly support the D M A
addressing limitation the controller has. [17]

26

Query for support. To query the kernel whether the device is usable on the current
machine, the driver calls dma_set_mask(device, mask). The device represents the in
stance of struct device and the mask is a bit mask describing which bits of an address
the controller supports. If the query returns zero, the device can perform D M A prop
erly. Otherwise performing D M A will result in undefined behaviour. More masks can
be queried this way, however, the most specific one must be the last. By default, the
kernel assumes that the controller can address the full 32-bits address space. For coherent
mappings, a similar call dma_set_coherent_mask() is provided. [17]

DMA'able memory. The memory that can be used for D M A can be obtained from
various sources. Every physically contiguous cacheline-aligned memory can be used for
D M A transfers. This means that memory obtained by the kernel allocators is DMA'able
with the exception of vmallocO call, where it is necessary to walk the corresponding
page tables to obtain the physical addresses. [17]

D M A mappings. The Linux Kernel uses the dynamic D M A mapping. That is a
combination of allocating a D M A buffer and generating address for that buffer that is
accessible by the device. This includes configuration of I O M M U (if the platform contains
one) or using of a bounce buffer. Bounce buffers are created when a driver attempts
to perform D M A on an address that is not reachable by the peripheral device. This
necessarily slows the process down because the data must be copied to and from the bounce
buffer. D M A mappings must also address the issue of cache coherency. Any changes to
memory in the C P U caches must be flushed out before a transaction occurs. [1, p. 445]

A D M A mapping can be of one of two types: a coherent DMA mapping or a streaming
DMA mapping. The latter one provides a buffer that is simultaneously available to both
the C P U and the target peripheral. As a result, coherent mappings must live in a cache-
coherent memory. Such a mapping can be expensive to set up and use. The former one,
the streaming D M A mapping, is more under the control of its user who must explicitly
set up the mapping for a single operation. [1, p. 446], [17]

The kernel developers recommend use of the streaming mapping over coherent mappings
whenever possible. On some platforms, this kind of mapping can be optimized in ways
that are not available to coherent mappings. The coherent mappings, which have a long
lifetime, can monopolize the mapping registers (when using scatter-gather lists) for a long
time, although they are not being used all the time. [1, p. 446], [17]

Coherent D M A mapping. Such a mapping is set up by calling to the function
dma_alloc_coherent(). This function handles both the allocation and the mapping of
the buffer. The function returns two addresses, the virtual kernel address for the driver
and the associated bus address suitable to be used by the D M A controller. When the
buffer is no longer needed, it should be released by dma_free_coherent(). The driver
can now access the D M A buffer as usual. Another approach is possible for small coherent
D M A mappings. The kernel contains a concept of DMA pools, a mechanism to manage
a pool of small buffers of predefined size per a pool. It is implemented on top of the slab
layer. [1, p. 446-448], [17]

27

Streaming D M A mapping. This type of mapping can be used with any DMA'able
memory that was already allocated. To setup a streaming mapping the kernel needs to
know the direction of the following D M A transaction, i . e. memory-to-device or device-
to-memory. For that purpose, the following constants are denned: DMA_TO_DEVICE and
DMA_FROM_DEVICE.

A mapping is set up by calling to dma_map_single () which maps a single buffer for
a D M A transfer. The function returns the corresponding bus address suitable to be
used by the D M A controller. Here a bounce buffer can be created by the D M A subsys
tem if necessary. After the D M A transfer is complete, the mapping can be deleted by
dma_unmap_single(). [1, p. 448-449], [17]

For the Scatter-Gather DMA transfers another approach can be used. This type of D M A
transfers is not represented by a single address and size, but it uses a list of entries
referred as a scatter-gather list or only a scatter list. It contains entries describing the
individual buffers available for the D M A transfer. A scatter list is mapped by the function
dma_map_sg(). The implementation can merge several entries into one which can help
when a D M A controller has a limited number of scatter-gather entries or cannot do
scatter-gather D M A . After the mapping is done, the caller is intended to walk over the
(possibly modified) scatter list and setup the pairs (address, size) into the hardware (this
is a device specific operation). After the D M A transfer is finished, the scatter list should
be unmapped by dma_unmap_sg(). [1, p.450-451], [17]

A call to unmap expects the same arguments that were passed to the corresponding
map operation. On many platforms, the dma_unmap_single () does nothing. There
fore, keeping track of the arguments can waste space. For such a purpose, there are
macros to provide a portable way for defining the storage of the needed arguments:
DEFINE_DMA_UNMAP_ADDR and DEFINE_DMA_UNMAP_LEN; and the corresponding accessors:
dma_unmap_addr_set and dma_unmap_len_set. On the platforms, where unmap call does
nothing, the macros are denned to be empty. [17]

Background of the D M A mappings. Each platform should provide an implemen
tation of function get_dma_ops (device). This is an internal A P I of the kernel. The call
returns a pointer to struct dma_map_ops that defines a set of D M A mapping operations.
Most architectures provide a predefined instances of that structure and returns a general
one as default. However, each platform can implement a logic to determine which in
stance of struct dma_map_ops to provide. On the A R M architecture, every instance of
struct device can hold a pointer to an instance of struct dma_map_ops that overrides
the default one. This approach can be used for different requirements or possibilities of
various D M A controllers.

To take advantage of the Accelerator Coherency Port a non-default set of operations can
be used. For that purpose there is an undocumented ARM-specific set of D M A operations
arm_coherent_dma_ops inside the kernel. More information about this topic can found in
the Git history of the Linux Kernel mainline 5.

5 The related commits are: v3.6-5693-gca41cc9, v3.6-1916-g7368a5d, v3.6-1915-g038ee8e,
v3.6-1914-g4e770b2.

28

4.7 Interrupt handling

The kernel can be interrupted at any time to process interrupts from peripherals. Different
devices can be associated with different interrupts by means of a unique value associated
with each interrupt. This enables the operating system to differentiate between inter
rupts and to know which hardware device caused which interrupt. In turn, the operating
system can service each interrupt with its corresponding handler. The interrupt values
are often called interrupt request (IRQ) lines. Each IRQ line is assigned a numeric value.
Depending on the platform, some IRQs can be fixed and others assigned dynamically at
runtime. [2, p. 113-116]

The response to a specific interrupt is called an interrupt handler or interrupt service
routine (ISR). In Linux, an interrupt handler is defined as a C function with the following
prototype:

i rqre turn_t i rq_handler (in t i r q , v o i d *data).

It is imperative that the handler runs quickly, to resume execution of the interrupted code
as soon as possible. The primary goal of the handler is to acknowledge the interrupt's
receipt to the hardware. The interrupt handler is executed in a special context called
interrupt context. The code executing in this context is unable to block. As a result,
calls to kernel functions that may sleep or block leads to undefined behaviour of the
system. [2, p. 114-115]

Defe r r ing work . Sometimes, an interrupt handler needs to perform a large amount of
work. For such a purpose the interrupt handling is in general divided into two parts: top
halves and bottom halves. A top half is the interrupt handler itself. It is expected to run
immediately upon receipt of the interrupt and performs only the time-critical work. The
rest of the execution is deferred until the bottom half. In the Linux Kernel, a bottom
half can be implemented as a softirq, a tasklet, or a work queue. The first approach is
reserved for the most timing-critical and important bottom-half processing. Currently
only two subsystems of the kernel—networking and block devices—directly use softirqs.
The preferred way is to use the tasklets. [2, p. 136,142]

Tasklets . Tasklets are built on top of softirqs. The kernel guarantees that only one
tasklet of a given type runs at the same time. Note that tasklets cannot sleep. The
interrupt handler schedules a tasklet by calling tasklet_schedule (t a s k l e t) . A tasklet is
represented by an instance of s t ruc t t a sk le t_s t ruc t and a C function with the following
prototype:

v o i d tasklet_handler(data) . [2, p. 142-145]

W o r k queues. When a bottom half needs to sleep during its execution, the third
approach must be used. A work queue executes in the context of a kernel thread. The
kernel manages a default set of so called worker threads that handles the deferred work
from multiple locations. A driver can use either a default thread or create its own thread
to perform the work. A performance-critical work might benefit from the former approach.
A work executed by a work queue is represented by an instance of s t ruc t work.struct

29

and a C function with the prototype:

v o i d work_handler (void *data).

A work can be scheduled by calling schedule_work(work). [2, p. 149-153]

The interrupt handling is a complex topic and cannot be covered in this text in detail.
For more information, please, refer to the literature [2], [1].

4.8 Linux based operating system

To build an operating system based on the Linux Kernel for an embedded system, one
needs to complete the following steps:

1. Obtain a toolchain containg the needed cross-compilers, linkers and basic libraries.
This can be generally done in two ways: get a prebuilt binary toolchain or download
the source code and build it. The G N U toolchain is mandatory to compile the Linux
Kernel.

2. Compile the Linux Kernel with the obtained cross-compiler. This step needs to
configure the kernel in a way that is specific for the target platform. For every
supported architecture, a default configuration is provided by the kernel in the
arch/$ARCH/conf igs directory (the $ARCH states for the target architecture). For
the Zynq architecture, the setup can be

$ make ARCH=arm xi l inx_zynq_defconfig .

3. Prepare an image of the root filesystem suitable for the target platform. This step
includes building of the application software and libraries by the cross-compiler and
creation of the so called "init scripts" (when using the System V) and basic configu
ration files.

4. Compile a Linux-aware bootloader for the target platform. For this purpose the U -
Boot bootloader is usually used. It provides support for various platforms and it
can boot from many standard sources. The most important is its ability to boot the
Linux Kernel.

A l l these steps can be very complex and can fail easily. It is also undesirable to do all
the steps manually by hand. In the world of personal computers the Linux systems are
prebuild by an organization to form a distribution consisting of the kernel, the bootloader,
and the root filesystem (usually installed on a hard disk). The embedded systems are
application specific and for them it is likely to be composed of as few applications and
files as possible.

For that purpose a meta-distributions can be found on the Internet. A meta-distribution
is a system that can build all the necessary parts of the operating system and lets its user
to select what exactly to include inside. One of such meta-distributions is Buildroot 6 . It

6 h t t p : / / b u i l d r o o t . o r g /

30

http://buildroot.org/

provides a configuration system kconfig7 that enables to select various parameters of the
target system. It can build or obtain a G N U toolchain for the target platform, build the
Linux Kernel, and pack the selected user-space libraries and applications into a filesystem
image. The usage of such a system simplifies the development significantly.

4.8.1 Das U-Boot

Das U-Boot8 is the official name of the U-Boot bootloader intended for booting Linux
Kernel in embedded systems. It provides a rich set of drivers for various peripherals, a
runtime shell for service purposes and enables to boot from different sources like T F T P ,
SD memory card, and many others. This brings one disadvantage, the compiled U-Boot
binary is quite big (few hundreds K B) for embedded systems. The size of the binary
determines it to work as a second or third stage bootloader because it usually cannot fit
into on-chip memories.

The bootloader provides an interactive shell that enables to customize the booting process
without recompilation. Moreover, it is possible to create scripts to automate various
booting scenarios while testing. In fact, the default booting sequence, the U-Boot executes
automatically, is just a script hard coded into the binary. Booting from SD card with
FAT filesystem is performed by the following steps:

1 > mmcinfo
2 > f a t l o a d nunc 0 ${kernel_addr} ulmage
3 > f a t l o a d mmc 0 ${rootfs_addr} u r o o t f s . c p i o . g z
4. > f a t l o a d mmc 0 ${dtb_addr} zynq-zed.dtb
5 > bootm ${kernel_addr} ${rootfs_addr} ${dtb_addr}

On line 1, the SD card driver is initialized. Lines 2-4 loads three files into memory at
addresses specified by environment variables of U-Boot. The variables can be set by
setenv command, e.g.:

> setenv kernel_addr 0x1000000

The addresses must be chosen carefully to avoid overwriting of the loaded images by the
bootm command. On line 5, the booting starts. The command bootm accepts address of
the kernel in memory, then the address of the initial filesystem (can be omitted), and the
last entry is address of the device tree binary in memory. U-Boot then reads the headers
at the beginning of the loaded files ulmage and urootf s. c p i o . gz files to gather metadata
useful for further processing. A l l three structures are moved to different locations and
then the kernel is executed. The target location of the kernel is read from the U-Boot
header, the location of the ramdisk is determined automatically while considering the
environment variable i n i t r d J i i g h .

The U-Boot header for u r o o t f s . c p i o . g z (and also for custom scripts) can be created
using mkimage command distributed with U-Boot. To create the uroot . cp io . gz file from
r o o t . c p i o . g z for an A R M C P U , one may call

$ mkimage -A arm -T ramdisk -C gz ip - d r o o t . c p i o . g z u r o o t . c p i o . g z
7 h t tps : / /www.kernel .org /doc/Documenta t ion/kbui ld /kconf ig- language . tx t
8 h t tp : / /www.denx.de/wiki /U-Boot

31

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.denx.de/wiki/U-Boot

A script is packed in similar way:

$ mkimage -A arm -T s c r i p t -C none - d s c r i p t . t x t u s c r i p t . b i n

It can be executed by U-Boot on target platfrom by the source command after it is
loaded into memory.

1 > f a t l o a d nunc 0 0x4000 u s c r i p t . b i n
2 > source 0x4000

4.8.2 Buildroot on Zynq

For the purpose of this work a Linux operating system has been created using the Bui l
droot meta-distribution. The used Linux Kernel xilinx-vl4-5 comes from Xilinx's Linux
repository 9. This version contains code that is not in the mainline but provides sup
port for Xi l inx peripherals' drivers and other support for the Zynq platform. The used
board was Zedboard 1 0 which contains the Zynq-7020. The kernel xilinx-vl4-5 contains
device-tree support for this board.

The important configuration entries for Buildroot are:

01 BR2_arm=y
02 BR2_cortex_a9=y
03
04 BR2_T00LCHAIN_EXTERNAL=y
05 BR2_T00LCHAIN_EXTERNAL_C0DES0URCERY_ARM201203=y
06
07 BR2_LINUX_KERNEL_CUST0M_GIT=y
08 BR2_LINUX_KERNEL_CUST0M_GIT_REP0_URL="git: / /github.com/Xilinx/linux-xlnx.
09 BR2_LINUX_KERNEL_CUST0M_GIT_VERSI0N="xilinx-vl4.5"
10 BR2_LINUX_KERNEL_DEFC0NFIG="xilinx_zynq"
11 BR2_LINUX_KERNEL_DTS_SUPP0RT=y
12 BR2_LINUX_KERNEL_INTREE_DTS_NAME="zynq-zed"
13 BR2_LINUX_KERNEL_UIMAGE_L0ADADDR="0x8000"
u
15 BR2_TARGET_R00TFS_CPI0=y
16 BR2_TARGET_R00TFS_CPI0_GZIP=y
17 BR2_TARGET_GENERIC_GETTY_P0RT="ttyPSO"
18 BR2_R00TFS_DEVICE_CREATI0N_DYNAMIC_MDEV=y

Lines 1-5 select to compile for the A R M Cortex-A9 and define the toolchain. A prebuild
binary toolchain CodeSourcery Lite would be used.

Lines 7-9 instructs Buildroot to download the Xi l inx kernel from the specified Git repos
itory On line 10, the kernel configuration is selected to be

arch/arm/ c onf igs / x i linx_zynq_def c onf i g

h t t p s : / / g i t h u b . o r g / X i l i n x / l i n u x - x l n x . g i t
h t tp : / / zedboard .o rg

?,2

https://github.org/Xilinx/linux-xlnx.git
http://zedboard.org

and uses the version xilinx-vl4-5. Lines 11-12 select the source for device tree blob
generation

arch/arm/boot /d ts /zynq-zed.d ts .

The Linux Kernel build system creates automatically a kernel image with prepended U -
Boot header. The used kernel version (since 3.7) builds multi-platform relocatable images
for A R M (disassembling of the image shows that it is compiled with base OxcOOOOOOO,
however, the addresses are updated on startup by the kernel itself). The kernel should be
able to boot on various A R M processors. Line 13 specifies where should U-Boot place the
kernel in memory. The kernel relocates itself when booting to match this base address.
This information is placed into the U-Boot header.

Configuration of the filesystem follows on lines 15-18. The filesystem generated by Build-
root would be in the CPIO format, i . e. a ramdisk, compressed by the GZIP algorithm. The
default service console uses USB U A R T . It is represented by the /dev/t tyPSO character
device in the kernel. The /dev directory would be managed by the system automatically.

After the configuration step is done (using the listed entries and $ make menuconf ig) the
operating system can be build by calling $ make. The results are located in the directory
output/images (relative to the root of Buildroot source code). For Zynq, the following
files are to be copied to an SD card:

• ulmage—the Linux Kernel prepared for booting by U-Boot,

• u root fs .cp io .gz—the root file system (note that Buildroot cannot prepend the U -
Boot headers in current version, so it must be done manually by calling to mkimage),

• zynq-zed.dtb—the device tree binary.

The created operating system can be booted on the board now.

It is possible to compile U-Boot for the Zedboard using the following Buildroot configu
ration entries:

1 BR2_TARGET_UB00T=y
2 BR2_TARGET_UB00T_B0ARDNAME="zynq_zed"
3 BR2_TARGET_UB00T_CUST0M_GIT=y
4 BR2_TARGET_UB00T_CUST0M_GIT_REP0_URL="git://github.com/Xilinx/u-boot-xlnx.
5 BR2_TARGET_UB00T_CUST0M_GIT_VERSI0N="xilinx-vl4.5"

However, the precompiled U-Boot distributed with Zedboard is suitable as well.

5 RSoC Framework

This work introduces a framework that consists of a set of hardware components and
software drivers and provides a consistent extendable system for designing applications.

To design a system on a Reconfigurable System-on-Chip (RSoC) architecture the designer
needs to implement the hardware adapter, connect it to the processor and write an ap
propriate software driver. However, most custom hardware adapters can be accessed in a
generic way by means of data streams into the adapter and back into the software. For
that purpose, a software driver and a hardware controller can be written just once to
simplify the development of the application specific parts.

5.1 Concepts and goals

There are three general areas that the framework should cover. These are based on what
a developer needs during the development of an application divided between hardware
and software:

• Providing reusable components is a common and good practice used for develop
ment to simplify very common tasks like interfacing with complex bus systems, and
solving simple but error prone problems.

• Infrastructure generation simplifies interconnection of adapters and accelerators
with the Processing System. The bus systems consist of hundreds of wires that must
be connected correctly. Automation is a desirable solution in this area.

• Integration of the hardware and software together is the essential goal of this work.
It is possible to build software drivers and hardware controllers that can talk to each
other and provide well defined interfaces to user specific hardware and software. De
velopers can take advantage of possibility to easily select and use a specific (DMA)
controller for a particular hardware accelerator to trade-off between resources con
sumption and throughput.

5.2 RSoC Framework Overview

The main idea of the provided framework is to hide specifics of the target platform and
enable the application code to use simple data streams between software and hardware
parts. Applications use the standard system calls of the operating system—especially
wr i te , read—to send/receive data to/from the accelerator. The accelerators are con
nected to the software through a couple of simplex streams (one for each direction). The
communication protocol defines a P D U called a frame. Both the software and hardware
parts exchange frames among each other. The accelerator does not have to be aware of
the particular implementation that ensures data moving between the Processing System
and the Programmable Logic. The same applies to software. The framework inserts the

34

RSoC Bridge layer in between. The layer consists of hardware controllers and software
drivers.

Frame. Each frame contains a very short header that is four bytes long. The header
contains the size of the frame's payload. This rule limits the frame size to 4 G B . If longer
frames are required, the future versions of the framework would extend the header.

RSoC Accelerator. The RSoC Framework defines an accelerator as an interface. In
fact, one accelerator can use more RSoC Accelerator interface instances when needed.
Each accelerator can have as many other interfaces that are not related to the framework
as necessary. And there is a last point to mention, the term accelerator in the context
of the framework does not necessarily mean a hardware unit that accelerates a function
but it can be any kind of hardware unit. The most significant not-accelerating hardware
units are adapters that helps to interface with another (external) system.

A n RSoC Accelerator consists of four interfaces:

1. configuration bus (optional),

2. input data stream (for modes Read-Only and Read-Write),

3. output data stream (for modes Write-Only and Read-Write),

4. information vector.

The information vector (32 B long) helps to identify what accelerator is connected at the
position. Currently, its structure is application dependent, but the last byte must be zero.
In the future versions of the framework it will be standardized.

If the configuration bus is enabled, an address space range can be provided to the ac
celerator. Its base address is computed by the framework. The accelerator sees all bus
transactions starting at address zero.

RSoC Accelerator to accelerate things. The purpose of the RSoC Accelerator
interface is to increase throughput of a part of a software application. Such a unit performs
a computation on an input data stream while generating an output data stream. The unit
can require a configuration before the processing (load a cryptographic key, setup decision
tables, etc.).

Configuration
RSoC Accelerator

(acceleration)

Stream in

Stream out

Figure 5.1: RSoC Accelerator (accelerating) interface.

The Configuration interface is the A X I 4 bus (either AXI4-Ful l or AXI4-Lite) . It enables
access to the accelerator's custom address space. The AXI4-Lite variant can save resources
on the chip. The Stream in and Stream out interfaces are the AXI4-Stream busses with

35

extended semantics. The streams consist of signals TDATA, TKEEP, TVALID, TREADY, TLAST,
and TUSER.

The first data transfer (the first data beat) carries the frame size in the TUSER signal.
Semantics of the TUSER in all other beats is not defined and can be used for any other
purposes. Care must be taken when an AXI-Stream upsizer or downsizer is inside the
data path because it may discard some TUSER values. However, the first TUSER value is
always delivered. The usual width of the TUSER signal is 16 to 32 bits. There is one
exception when the TUSER signal can be omitted. That is when the receiving accelerator
does not need to know the frame size in advance.

RSoC Accelerator as an interface adapter. As it was mentioned the RSoC Frame
work recognizes the interface of an accelerator. The real purpose of the hardware unit
hidden behind that interface can be an adaptation of the application to a particular
physical interface that is not provided by the hardwired Processing System.

Configuration
RSoC Accelerator —

(adaptation)

1
Stream in

" • Stream out

Custom bus interface

Figure 5.2: RSoC Accelerator (adapting) interface.

The interface of an adapter required by the RSoC Framework is exactly the same as for
an accelerator. The adapter is expected to have another custom bus interface that is not
under control of the framework.

RSoC Bridge. The infrastructure part of the system is implemented by the RSoC
Bridge component. The component connects the RSoC Accelerator compatible units to
the Processing System of the platform. It ensures that data coming from the software will
be delivered to the accelerator and the data going out of the accelerator will be delivered
to the software. The counterpart of the RSoC Bridge is a driver inside the operating
system that provides similar services to the software part.

The number of slots for accelerators and Processing System interfaces is configurable and
limited by the available resources on the chip.

RSoC Drivers. The framework needs to provide an interface for the userspace applica
tions. For such purpose a communication protocol must be defined. The system is based
on the Linux Kernel and that brings the first part of the software interface: character
devices. Each accelerator is represented by one character device. To match the RSoC

36

Processing System

1

T •
1

RSoC Bridge

I t i t i t i t
ACCO ACC1 ACC2 ACC3

t 1
Figure 5.3: RSoC Bridge interface (dashed lines mark generic parts).

Accelerator interface the communication is based on frames. The frame header is part of
the data stream. The driver expects the first four bytes to contain the frame size.

5.3 Reusable components

The first part of the RSoC Framework are components that are used by the framework
itself, however, a designer can benefit of them when implementing hardware accelerators.
Each component solves one particular issue related to the hardware designing but also
simplifies design in the V H D L language. Some of the units are as simple as few inter
connected wires while others contain automatons and other sequential and combinatorial
logic. The components are grouped into few categories: A X I components, AXI-Stream
components, general purpose components, and function packages.

Because the components can be optimized for different target platforms or another more
efficient implementation can be provided by a third party, it is convenient to describe
the components from the interface point of view. The RSoC Framework provides basic
implementations (usually called custom) of all the components.

5.3.1 A X I components

The main infrastructure provided by the RSoC Framework uses three types of components:
A X I 1-to-N, A X I N-to-1, and A X I Remap. The A X I 1-to-N provides interconnections
between a one master device and N slave devices and the A X I N-to-1 interconnects N
master devices and one slave device. The A X I Remap unit creates fixed interconnects
among channels. Another unit required by the infrastructure is an endpoint of the AXI4-
Lite bus. The communication is transformed there from the A X I 4 channels into a register
access logic.

A X I 1-to-N. The main purpose of the unit is to divide address space occupied by
the slave devices. The component routes requests coming from the one master device.

37

Master J
0x0010000
0x00100FF

0x0010100
0x00101FF

! 0x0011000
! 0x001 OFFF

0x0020000
0x0020FFF

I
Slave 0 Sla /e 1

I
Slave 2 Sla \/e 3

Figure 5.4: Component AXI 1-to-N schematic.

The routing is done using an address (coming from the master when requesting a new
transaction) and address space description given during the hardware synthesis phase (so
it is hardwired inside the component). Different implementations of this component can
have various requirements and limitations and provide various features. There at least
two basic parameters to consider:

1. what A X I protocol to route, and

2. what is the address space layout.

The implementation can support any of the three A X I protocols: AXI4 , AXI4-Lite and
AXI3 . The address space layout is generated out of the component (it can be either
hardwired or generated from another specification) and it must meet requirements of the
implementation. The address space layout generation is defined in the Platform Package
(see 5.3.4 Function packages) so it is possible to change the generating algorithm based
on the selected implementation of the component.

A X I N-to-1. The component enables the sharing of one A X I bus by many master
devices. Its purpose is to arbitrate which master can communicate. The provided cus
tom implementation is based on the arbiter component (see figure 5.9) that provides a
simple round-robin decision logic. Another arbiter can be provided. The only important
configuration is the A X I protocol as described for A X I 1-to-N.

Master 0 Master 1 Master 2 Master 3

I L I I
Arbitration (eg. round-robin)

Slave

Figure 5.5: Component AXI N-to-1 schematic.
A X I Remap. The component is a set of wires (without a real logic) that interconnects a
list of incoming A X I 4 channels with the list of outgoing A X I 4 channels. The main purpose

38

is to simplify V H D L coding (to overcome limitations of the language) and to increase
readability. The component is given an array of numbers representing a mapping from
the incoming busses to the outgoing busses and it connects the specfied pairs together.

Source 0 Source 1 Source 2 Source 3

1 4 4 4
Source 0 Dest 2
Source 1 "~ Dest 0
Source 2 Dest 3
Source 3 Dest 1

i i i r
Dest 0 Dest 1 Dest 2 Dest 3

Figure 5.6: Component AXI Remap with a mapping specification as an example.

A X I Lite Endpoint. The AXI4-Lite interface implementation is time consuming and
error prone because it needs to process five almost independent channels to access few
registers of a component. The component converts the AXI4-Lite bus into two channels,
the first one for reading registers and the second one for writing registers.

AW

W

B

AR

-f—*~ write_req(n:0)

• write_ack

• write_data(31:0)

*~ write_be(3:0)

-f—• read_req(n:0)

• read ack

read_data(n * 32 -1:0)

Figure 5.7: Component AXI Lite Endpoint serving n registers (each 32 bits wide).

5.3.2 AXI-Stream components

AXI-Stream busses are the basic building blocks of the processing using the RSoC Frame
work. It is desirable to have components that implements some general operations on the
streams.

AXI-Stream FIFO. A queue (FIFO) is one of the most fundamental components
for the hardware development. Its purpose is to buffer a piece of data or to divide

39

asynchronous hardware blocks. The RSoC Framework delivers an implementation based
on the OpenCores G H 1 1 V H D L library.

AXI-Stream Start of Frame. The AXI-Stream data is usually transferred on the
frame basis as described in 2.3.4 AXI4-Stream protocol. The protocol does not provide
any signalization to detect the beginning of a frame. For that purpose a simple automaton
recognizing the first data transfer after the T L A S T high signal can be constructed. Such
a data transfer is marked as Start of Frame and it is the output of the component.

AXI-Stream Capture. The component captures data at a given fixed offset from the
begining of each frame. The captured data is delivered through a stream to be processed
by an external logic.

OFFSET

T VALID
TREADY

TLAST
SOF Detection SOF

S_CAPTURE

S_TVALID
S T L A S T

S TREADY

Capture Capture Capture Capture
MTDATA

MTVALID

M TREADY

Figure 5.8: Start of Frame (left) and Capture (right) components' schematics.

AXI-Stream Discard. The component removes a frame out of the input stream when
requested. Every frame that passes through the AXI-Stream Discard unit is first blocked
until a command to discard or transmit the frame is received from an external logic.

5.3.3 General purpose components

General issues are solved by this group of components. It contains the essential units
like Generic Multiplexor and Onehot Decoder, however, there are other general tasks the
framework needs to solve.

SLAVE_REQ T
Arbiter

^ T logjn) n

REQ INDEX ACK

Figure 5.9: Arbiter component schematics.

h t tp : / /opencores. org/pro j ec t , gh_vhdl_library

40

Round-Robin Arbiter. The framework provides a generic arbitration unit with the de
fault implementation using the round-robin algorithm with time complexity 0(n), where
n is the number of possible requests coming at once. The component only selects the win
ner of the arbitration. Other logic (e. g. acknowledgement of the requesting components)
is to be solved separately because it can diverse for different tasks.

Request-Acknowledger. The component contains logic that is required when serving
requests on a bus. As such it can be used as acknowledgement generator for the arbiter
component. The framework uses the component when dealing with A X I Lite Endpoint
(see the figure 5.7). The default implementation provides a register level that delays the
acknowledgement by one clock to improve timing. The number of requests can be quite
high when serving a large address space with a lot of registers and that leads to long
combinatorial paths.

R E Q A C K

Ai L
Request-Acknowledger

Figure 5.10: Request-Acknowledger component schematics.

Change Detector. This component is intended to be used for interrupt generation.
It monitors a bit vector (SIG) and while its value differs from a predefined default value
(IDLE) the component generates a high value—an interrupt to a processor (EVENT).

SIG EVENT

"1 L
Change Detector IDLE

Figure 5.11: Change Detector component schematics.

Address Rebase. In some cases it is desirable to change a base of an address coming
over an address bus. This component handles this task by inserting an adder into the
address data path. Both the original and new base address must be specified before
synthesis.

41

IN ADDR

1
Address Rebase

0xc00046b4
(base 0: OxcOOOOOOO)

rebase

(base^ 0xa8000000)
0xa80046b4 O U T A D D R

Figure 5.12: Address Rebase component schematics.

5.3.4 Function packages

The framework contains four function packages:

• misc_pkg—with general purpose functions and data type definitions (log2, max, min,
to_s t r ing , and_vector, or_vector, apply_be 1 2 , and others).

• plat_pkg—platform dependent functions and definitions (e. g. definition of address
data type),

• axi_pkg—AXI related definitions,

• rsoc_pkg—RSoC Framework specific definitions.

The most notable is the plat_pkg. It defines data types that can depend on target
platform. The most important data type is address. The default implementation (for
Zynq) provides 32-bit addressing. The package defines function compute_next_base used
to compute address space layout of the RSoC Bridge component. Its implementation is
related to the A X I 1-to-N component, it must be aware of possibilities and limitations of
the A X I 1-to-N architecture (e.g. granularity of addressing).

5.4 Infrastructure

The main part of the infrastructure is the RSoC Bridge as it was described in 5.2 RSoC
Framework Overview. Its main purpose is to provide bus systems connecting accelerators
and the selected Processing System interfaces. The implementation delivered with the
framework—RSoC Bridge Generic—has a unified structure and it is implemented in pure
V H D L .

RSoC Bridge Generic. The component consists of several parts that are used as
generators of lower level logic. The bus infrastructure is generated by the Slave Bus
generator and Master Bus generator as described in the following text. Each accelerator
has an associated controller that ensures the transaction delivery to and from the software
part. The current implementation provides two types of controllers: FIFO Interface and

Apply Byte-Enable when writing into a register.

42

Simple DMA Interface. Controllers are generated in the FIFO IF Array and SDMA IF
Array structures. Some controllers are able to generate interrupts. The interrupt lines
are connected out through the Interrupt Mapper as specified by its configuration. In some
cases the A X I lines need to be reordered (remapped) for the implementation purposes to
assure the correct interconnections. This task is done by the Remap components as it
was described earlier in the text.

I • • • • f A A A A
I • • • • I • • • •

~ | i i i i I i i i I • • • • • I I I I I
Slave Bus Master Bus

AXI Remap CTL AXI Remap IF

I
FIFO IF Array

Interrupt
Mapper

SDMA IF Array

i t if r?
AXI-Stream Remap

: A : A : A

Figure 5.13: RSoC Bridge Generic architecture (dashed lines mark generic parts).

5.4.1 Slave Bus

The infrastructure needs a bus system to configure its internal units and to configure
the accelerators. Such a bus system is generated by the Slave Bus. It generates an
array of A X I 1-to-N components to connect the external masters to either accelerators
and accelerators' controllers. The core generates one instance of the RSoC Info unit
that delivers information about the address space layout to the operating system. The
generator builds the address space layout during synthesis based on the information about
address space of each particular accelerator and its controller.

5.4.2 Master Bus

The Master Bus connects internal bus master units, and the accelerators' controllers, to
the Processing System. It generates an array of A X I N-to-1 components. The architecture
enables sharing of data channels among many accelerators' controllers. This approach is

43

Master 0 Master 1
I

Master 2
I

AXI 1-to-N

RSoC Info

AXI 1-to-N

w .
AXI 1-tO-N

t t t
Slave 0 Slave 1 Slave 2

t t t t t

Figure 5.14: Slave Bus generator internals (dashed lines mark generic parts).

t t
Slave N

useful on platforms where there is very limited number of such channels between the P L
and the PS. In general, it makes possible to include more accelerators in the design then
the number of physical PS to P L channels.

5.5 Integration

The third goal of the framework is integration of the Processing System and the Pro
grammable Logic. For that purpose there are hardware components intended for com
munication with software drivers. These pairs allows the complexity of communication
between an accelerator and a software application to be hidden. There are two types of
controllers supported, however, other two types are designed for the future extension of
the framework.

5.5.1 Interface components (controllers)

Each controller is expected to provide an address space accessible from the Processing
System. The first 32 B is reserved for information about the associated accelerator. The
address space starting at offset 0x20 is controller specific.

FIFO Interface. The controller brings a simple way to communicate with an RSoC
Accelerator in the design. Its main purpose is to save resources of the F P G A and to
provide an easy way to debug an accelerator. Each data transaction is generated by
accessing registers of the controller. This leads to very slow throughput, however, it is
not the goal. The secondary purpose is to serve as a low-latency interface on platforms
that has a support for it. The low-latency tasks are usually not data extensive and thus
the throughput should not be an issue as well. It can be useful for accelerators with very
short inputs and long outputs (or vice-versa) where a combination of the FIFO Interface
and a D M A Interface can be used to handle the corresponding data streams.

44

S CFG

I
AXI Lite Endpoint

1 t
T t

M AXIS S AXIS

F igu re 5.15: FIFO Interface component schematics.

The controller's address space consists of four registers: STATUS, DATA, KEEP, and USER.
There is an obvious correspondence with the AXI-Stream simplex bus as described in
2.3.4 AXI4-Stream protocol.

Simple D M A Interface. The second currently supported controller provides the Direct
Memory Access capabilities. The controller exposes the register STATUS and four sets of
other registers to the software driver. The controller manages D M A operations in both
directions: memory-device and device-memory. For each direction there are two register
sets called request and response. The former one is used to request a D M A transaction
in the particular direction and the latter one returns status information about finished
transactions.

When moving data into an accelerator, the s-request registers are used to setup the trans
action. The driver must set the triple (address, size, id) to the corresponding registers
REQ_SADDR, REQ_SSIZE, and REQ_SID. After the transaction is finished the s-response reg
isters provide a pair (status, id) in the registers RES_SSTATUS and RES_SID.

For the opposite direction, the d-request registers are used to setup the transaction. The
driver must set the triple (address, size, id) to the corresponding registers REQ_DADDR,
REQ_DSIZE, and REQ_DID. After the transaction is finished the d-response registers provide
a triple (status, size, id) in the registers RES_DSTATUS, RES_DSIZE, and RES_DID.

The RES_xSTATUS vectors provide information about the result of a transaction. The
RES_xSTATUS(l : 0) bits match semantics of the BRESP/RRESP signal of the A M B A A X I
protocol. The bit RES_DSTATUS(16) is set when a transaction device-memory has been
truncated and therefore, the result is incomplete. Other bits are reserved for future use.

Each transaction is identified by an ID. It is an arbitrary number the driver selects (the
process ID is suitable for this purpose). The ID can be used to match the related request
and response. However, in the current implementation both the requests and responses
are strongly ordered using a queue and thus the ID is of less importance.

The Simple D M A controller has several disadvantages. First, the C P U must configure
each particular transaction which brings an unnecessary overhead into the communication
process. The second notable problem is a necessity of using contiguous memory blocks.

4r,

There is no way how to specify more memory addresses in one request. However, the
purpose of this controller is to save resources on the chip while providing fast processing
of short data chunks up to about 8 K B . The memory limit of one transaction is given
by the state of the system. If it is possible to allocate a long contiguous memory block
then it is possible to use the controller for longer transactions as well. The third problem
this controller brings is that the software driver does not know the size of receiving data
chunk in advance. This can lead to situations when a data chunk is truncated to fill the
allocated memory block. When a data chunk is truncated during a D M A transaction the
16th bit of the RES_DSTATUS register is set to one.

EVENT S_CFG M MEM

S D M A C o n t r o l

Write
Req/Res

Read
Req/Res

S D M A E n g i n e

M_AXIS S_AXIS

Figure 5.16: Simple DMA Interface component schematics.

The figure 5.16 shows the implementation of the S D M A Interface controller. It is divided
internally into two sub components. The S D M A Control handles the address space access
from the software and translates it into request and response streams connected into an
S D M A Engine. The S D M A Engine is platform specific. The implementation for Xi l inx
Zynq is done using the A X I DataMover unit [24]. This approach makes the transaction
engine independent on the software interface and that enables to have only one software
driver for every S D M A Interface implementation.

Scatter-Gather D M A Interface. To solve the disadvantages of the Simple D M A
Interface an advanced D M A unit can be used. It is known as a Scatter-Gather D M A .
Such a device is given a list of descriptors that provide information about available memory
chunks. The descriptors are initialized by the software driver and the address of the first
one is written into the D M A controller. The controller then autonomously manages the
descriptors and moves data between memory and a connected device. When the device
starts to produce data the D M A engine selects the available memory blocks, writes the
data there, and marks those blocks as used. The software driver is notified by an interrupt
to check the descriptors and process the prepared data. When the data is processed the
driver marks those blocks as free for reuse by the D M A system.

Such a device is to be integrated into the RSoC Framework to provide more powerful
D M A to the accelerators. The designer would have an option to select which D M A

46

engine is better for a particular task. The Scatter-Gather D M A engine is more complex
and consumes a lot more area on the chip. The second problem is that various engines
of this kind can use different format of memory descriptors and that makes it nearly
impossible to have a single software driver to handle them all.

S CFG

M MEM

1
M_DESC

•

Scatter Gather

DMA Interface

1 I

-EVENT

S AXIS M AXIS

Figure 5.17: Scatter Gather DMA Interface component schematics.

For Xi l inx platforms, the Xil inx A X I D M A IP core [25] can be used as the main D M A
engine. The figure 5.18 shows the format of a buffer descriptor used by the IP core. Each
field is 4 B long:

• N X T D E S C is a pointer to the next descriptor,

• 4 bytes are reserved for future extension of the pointer to 64 bits,

• B U F F A D D R represents address of the associated buffer,

• 12 B are reserved for future extensions, it can extend the buffer address to 64 bits if
needed,

• C O N T R O L and S T A T U S holds information about the buffer size, frame bound
aries and provides error reporting,

• APPO—4 are 5 application-specific fields.

NXTDESC 4 B BUFFADDR 12 B CONTROL STATUS APPO-4

Figure 5.18: Descriptor used by the Xilinx AXI DMA IP core.

The IP core provides all the five interfaces shown in the figure 5.17 and adds three more:
the control stream to start a D M A transaction (can be triggered e. g. when a frame comes
from an accelerator) and two status streams, the first informs about finished device-to-
memory transactions and the other informs about finished memory-to-device transactions.
To implement the Scatter-Gather D M A engine for Zynq only some glue logic is needed:
extraction of the frame size from the incoming data stream (from accelerator), insertion of
the frame size into the outgoing data stream (into the accelerator), and proper handling
of control and status streams the engine uses.

47

Central D M A Interface. Some platforms, and Zynq is the case, can provide a D M A
engine (hardwired in the Processing System part or as a soft core, see [23]) that provides
general D M A transactions among different slave components. Such a unit can be used
to save resources in the Programmable Logic. If a hard IP of this kind is available, the
saved in the logic can be significant. But also a soft central D M A can save logic because
only one such engine is needed. This would influence the throughput of such components.
The RSoC Framework can take advantage of it by implementing another type of interface
controller.

DMA CTRLO

M DMA

i
Central DMA

S DMAO I DMA CTRL1

Central DMA

Interface 0

T f

S DMA1 I
Central DMA

Interface 1

T f
S AXISO M AXISO S AXIS1 M AXIS1

Figure 5.19: Central DMA Interface component schematics.

The figure 5.19 shows two such interface controllers connected to one central D M A engine.
The engine can be either part of the Processing System or of the Programmable Logic
as a soft core. In the second case, the port M_DMA would be connected to a slave A X I
interface. In Zynq such a slave interface could be a High-Performance port or A C P . It is
obvious that this approach opens another interesting feature. The accelerators connected
through such a system can communicate to each other. At the moment, the accelerators
lack an addressing mechanism to enable such a feature. However, the AXI-Stream protocol
defines signal TDEST that may be utilized for this purpose.

The Central D M A Interface must be addressable by the Central D M A . The D M A transfers
can be issued using the fixed burst transfers to map a memory address range to a single
address of the controller. The Central D M A Interface then maps each A X I 4 burst to the
corresponding AXI-Stream connected to an accelerator.

5.5.2 Runtime components discovery

The software driver must be able to discover all accelerators and their associated con
trollers when probing. For this purpose a component RSoC Info has been implemented.

48

The component's address space contains descriptors of memory regions accessible via the
RSoC Bridge. The RSoC Info component's address space starts by four registers:

• NEG—is read-write register that negates the written value. The software driver can
use the register to verify the RSoC Info component at the given address is alive.

• VERSION—contains version of the RSoC Framework, i . e. 0x00000001 for the current
version, where the lower two bytes (0x0001) represents the minor version number and
the higer two bytes (0x0000) represents the major version number. The version of
the current RSoC Framework is 0.1.

• REGIONS—contains the number of available regions.

• REGION-OFF—is an offset to the first descriptor from the beginning of the RSoC
Info component's address space. This enables future extensions of the address space
with backward compatibility.

Each region descriptor consists of three 4 B long entries and is padded to be 16 B long:

• BASE(i)—the absolute base address of the i-th memory region,

• SIZE(i)—the size of the i-th memory region, and

• INFO{i)—metadata describing what can be find in the i-th region.

NEG VERSION REGIONS REGIONOFF INFOO BASEO SIZEO PADDING

Figure 5.20: Address space of the RSoC Info component.

Each such descriptor defines one addressable component in the system. The first regions
describe the accelerators' address spaces and the following ones provides metadata about
the controllers. The number of accelerators (and number of controllers) N can be counted
as

A r R E G I O N S

Every i-th accelerator corresponds to the (i + iV)-th controller.

The RSoC Info component is automatically generated inside the Slave Bus of the RSoC
Bridge Generic. In the Zynq platform, the component can be connected any of the two
Master General Purpose ports. The base address to access RSoC Info is the address
assigned to the RSoC Bridge on the configured A X I port. There is always exactly one
such unit per bridge.

5.5.3 Generic software drivers

A software driver is needed to integrate the hardware soft components connected to the
RSoC Bridge. Its purpose is to detect the RSoC Bridge from the device tree provided
during the boot of Linux. The device tree provides the base address of the RSoC Info
component and enables the driver to initialize the right drivers for each accelerator and
its controller.

49

The first version of the driver is represented by a platform driver. The driver walks
through the regions gathered from the RSoC Info component. For each known region it
instantiates s t ruc t r s o c . i f . Such a structure represents any of the supported controllers.
The instance is initialized by a setup routine specific to the corresponding controller. The
driver passes a preallocated device identification (major and minor).

Driver sdma-if. The driver handles one S D M A Interface controller. A write setups a
new D M A transaction into the controller and a read setups a new D M A transaction from
the controller.

write(int fd, void *buf, size_t len)

1) extract frame size
I

2) alloc dma buffer

3) copy payload into buffer

5)

6) wait for completion

10) return copied
I

11) *write(more)

12) copy into buffer

8) | return copied

Figure 5.21: Simplified algorithm performed by each SDMA write () operation.

The figure 5.21 summarizes the steps of the implementation of S D M A wr i t e () operation.
The steps are discribed in detail:

1. The frame size is extracted from the first four bytes of the passed user data buffer.
If the caller passes less then four bytes in the first call to wr i t e (), the driver returns
-EINVAL error code.

2. A contiguous memory block is preallocated to fit the frame that is to be written. The
block is managed inside an instance of s t ruc t rsoc_buf. The structure simplifies
working with the buffer and associates the buffer to the callers Process ID (PID).
The following writes by the same process would continue to fill the buffer until it is
full.

50

3. The frame can be transferred when all its contents were passed to the driver, i . e.
when the buffer is full.

4. The D M A is started. This comprises mapping of the buffer by the Linux D M A A P I
and writing the registers of the corresponding S D M A Interface controller. The PID
is used as the ID of the transfer.

5. The driver now waits for completion of the D M A transfer. A kind of semaphore is
used for this purpose. When the D M A transfer is done an interrupt is issued and
handled by the driver. The interrupt routine reads the result of the transfer. Then
it updates the buffer indentified by ID of the result. Finally it wakes up the process
blocked by waiting for completion.

6. After the driver is awaken, it checks the result of the D M A transaction.

7. If the transaction was successful, it returns the number of bytes written by the last
wr i t e () call.

8. If the transaction was not successful, the driver returns -EIO error code.

9. If the buffer is not full, no D M A transaction is started yet. Instead the driver returns
to the process expecting that more data will come later. It returns the number of
bytes passed with last wr i t e () call.

10. The process writes another part of the frame.

11. The driver copies the given data into the buffer and tries to start the D M A transfer
if the buffer is full.

The figure 5.22 summarizes the steps of the implementation of S D M A read() operation.
The steps are discribed in detail:

1. The frame size hint is extracted from the first four bytes of the passed user data
buffer. The driver expects the size hint to preallocate buffer of enough size. If the
caller passes less then four bytes in the first call to read() , the driver returns -EINVAL
error code.

2. The driver preallocates a buffer for the incoming D M A transaction of the size specified
by the hint. The buffer is managed inside an instance of s t ruc t rsoc_buf. The
instance associates the buffer to the callers Process ID (PID). The following reads by
the same process would continue to read from the buffer until it is empty.

3. The D M A is started. This comprises mapping of the buffer by the Linux D M A
A P I and writing the registers of the corresponding S D M A Interface controller. The
current P ID is used as the ID of the transfer.

4. The driver waits for completion of the D M A transfer. A kind of semaphore is used
for this purpose. When the D M A transfer is done an interrupt is issued and handled
by the driver. The interrupt routine reads the result of the transfer and updates
the corresponding buffer. Finally it wakes up the process blocked by the waiting for
completion.

5. The driver is awaken and checks the result of the transaction.

51

6. The transaction was successful. It writes the size of the transfer into the first four
bytes of the user buffer.

7. The driver copies as much data as possible from the D M A buffer into the user buffer.

8. The D M A buffer is checked for available data.

9. If the D M A buffer is empty, the driver returns to the user process and passes the size
of copied data. If it returns for the first time, it must add 4 for the frame header.

10. If the buffer is not empty the driver returns the number of copied data (plus 4 for
the first return). It expects the process to call the read() again.

11. The process calls another read() to retreive the rest of the buffer.

12. If the D M A was not successful, the error code -EIO is returned.

read(int fd, void *buf, size_t len)

1) extract frame size hint

2)

3)

alloc dma buffer

start dma

4) wait for completion

5)

6)

return failure

7) [copy from buffer

8)

9) return copied 10) return copied
I

11) *read(more)

Figure 5.22: Simplified algorithm performed by each SDMA readO operation.

To simplify the implementation of both the read and write algorithms, each instance of
s t ruc t rsoc.buf has an associated Process ID (only one read and one write buffer is
permitted per process) and a state machine as shown in the figure 5.23.

52

write()
P R E P A R E

(I D L E) ^ _ _ ^ ^ D Q N E] Q D L E ^ (P R O G R E S S]

len(user buffer) + 4
< len(dma buffer) always

F I N I S H E D

interrupt

'empty

Figure 5.23: The state machine used by the read buffer (left) and write buffer (right).

5.6 Portability
The portability of the RSoC Framework hardware part can be seen at those levels:

1. the implementation language portability,

2. the component implementation portability, and

3. the system architecture portability.

5.6.1 H D L language

The language used to implement the RSoC Framework hardware components is V H D L .
The V H D L is a language with rich set of features and constructs but only a subset of
the language can be used to design hardware components. This fact is well-known and
accepted by the hardware designers. This leads to another issue: some constructs are
not well supported by the synthesis tools and when they are used for synthesis-time
computations (not for the real synthesis) the tools can fail to proceed.

The V H D L has several limitations that are usually solved by using an external language
(TCL, Python, etc.). This makes the whole system less portable and for that reason it
was refused to be used for component and infrastructure parts of the RSoC Framework.
As a result any synthesis or simulation system supporting V H D L at the neccessary level
can be used to compile and integrate the RSoC Framework.

Using only the basic V H D L leads to pure code that is difficult to read and review. For a
system equipped with complex interconnections this can be seen as an important problem.
As the implementation advances the system is more difficult to extend and at some point
it starts to be unmaintainable. The RSoC Bridge Generic component is a complex system
that is difficult to describe using just the basic V H D L constructs. It uses several "not so
frequently used" constructs that still pass the synthesis tools provided by Xil inx. Other
synthesis tools were not tested yet.

5.6.2 System architecture portability

In the context of portability the greatest value of using the RSoC Framework is that an
already working application on one RSoC architecture can be migrated to another one

53

without any or few changes in the application code. The configuration of the framework
is hidden from the application specific parts and the impact of a migration can be seen
more on the behavioral level. The application moved to a different chip can be slower be
cause the new chip provides lower throughput between the PS and the P L , or, more likely,
faster because of a more powerful interconnections are available. Another important pa
rameter of an architecture can be the possibility of real-time processing where guaranteed
low-latency communication channels are required. The RSoC Framework does not differ
entiate between low-latency or high-speed channels and so an application can be easily
accomodated and improved by a migration.

The figure 5.24 shows a migration of an application, composed of accelerated software
services, to another platform. The only important changes can be found on the boundary
of the PS and P L (consider the same OS) and those changes are completely under control
of the RSoC Framework. The second platform (on the right) provides only one high-speed
channel that impacts the throughput among services and accelerators.

Service 0 Service 1 Service 2

RSoC Driver

Processing System

Programmable Logic

RSoC Bridge

Accelerator 0 Accelerator 1

Service 0 Service 1 Service 2

r Vim
RSoC Driver

RSoC Bridge

Accelerator 0 Accelerator 1

Figure 5.24: Migration from one architecture to another.

54

6 Designing with RSoC Bridge

In this chapter a few examples of using the RSoC Framework introduced in this work are
shown.

6.1 Generic example

For testing purposes, the RSoC Framework contains the so called Loopback Accelerator
unit. It emulates a working accelerator in the Programmable Logic. It copies data from
the input to the output port. It provides two registers over the configuration port to read
how many frames and data beats were seen by the unit.

The testing architecture is shown in the figure 6.1. It represents a general use case for
such a system. The RSoC Bridge is connected to the Zynq Processing System (using
a wrapper Processing System 7 by Xilinx) and provides connections for four Loopback
Accelerators.

Processing System 7

i
M GPO

i i
r i

L i
S HPO

i
S ACP

r
RSoC Bridge

Loop 0 L*- Loop 1 Loop 2 Loop 3

Figure 6.1: Generic architecture used for testing purposes.

The accelerators Loop 0 and Loop 1 are connected using the F IFO Interface, the Loop 2
is connected using S D M A Interface via the port H P 0, and the Loop 3 is connected using
S D M A Interface via the port A C P .

The architecture was synthesized for chip xc7z020-l clg484 (i.e. Zynq 7020). It consumes
7,220 L U T s (13 % of the chip) and 7,271 Flip-Flip registers (6 % of the chip) while
the RSoC Bridge itself is estimated 1 3 by the X S T compiler to be 8,407 L U T s and 6,853
Flip-Flops in this configuration. The table 6.1 shows estimated resources of the selected
components used inside the RSoC Bridge.

The measured throughput of the S D M A Interface with non-coherent access is 20 M B / s
(measured with 1 M B long frames) and decreases with the growing size of frame. It was not
possible to allocate kernel buffers for frames of size greater then 5 M B . The throughput is

Phases following the synthesis (Map and Place & Route) shrink the consumed resources.

55

Component L U T s Flip-Flops Frequency Notes
sdma-if 2,821 1,588 287 MHz
fifo-if 418 182 465 MHz
axi-lite-endpoint 384 117 364 MHz
axi-lton 213 122 373 MHz n = 4
axi-ntol 211 218 538 MHz n = 4

Table 6.1: Resources of components provided by the RSoC Framework

limited because the driver copies data from userspace into the kernel buffer without using
the D M A . A zero-copy approach, using the memory mapping capabilities of the kernel,
can improve the throughput by avoiding the unnecessary copies.

6.2 Dynamic reconfigurable accelerator

The RSoC Framework is designed with dynamic partial reconfiguration in mind (however,
it is not supported yet). In the future versions, an accelerator could be a loadable entity
at runtime.

Bitstream
Storage Encryption

Accelerator

R S o C Driver

reconf_req reconf_ack

reconf done m
R S o C Bridge t i l 1 1 1 Bitstream

Reconfigurable

Area 0

Reconfigurable

Area 1

Figure 6.2: Partial Dynamic Reconfiguration with RSoC Bridge.

Consider an application with variable load. If there is no or a little work to do, all
the computations can be done by the Processing System only. The PS itself can take
advantage of C P U sleep states to save energy. However, when the load grows up the
system can detect it and select a hardware module to be downloaded into a prefined area

56

in the P L . The software application will be able to detect a new hardware accelerator
and start using it. This increases the power consumption, however, the system is able to
service the great amount of requests coming into the system. When the load drops the
accelerator can be removed from the P L and the system can run low power again.

To enable such a scenario, the framework must be notified that a partial reconfiguration is
about to occur (reconf _req, reconf _ack) and prepare the bus systems for it (e. g. pause
all transactions, this behaviour is platform dependent). After the reconfiguration finishes
(reconf _done) a new accelerator can be detected and registered by the operating system.
For the OS, this operation may look like hot-plug of a USB stick. The new accelerator is
recognized by its information vector.

57

7 Conclusion

The Xi l inx Zynq has been described with respect to the available interfaces between the
Processing System (P S) — A R M cores—and the Programmable Logic (P L) — F P G A — o n
the chip. The interfaces are important part when considering the H W / S W codesign
methodology. There are two types of high-speed channels available to the Programmable
Logic that allows to access the main memory of the system (the memory is shared by
both the PS and P L) . One of those channels is the Accelerator Coherency Port that
ensures coherency among the L I and the L2 caches. This can simplify and speed up the
software when dealing with hardware because it does not need to flush the caches for
D M A transfers.

Developing applications for such a platform, while considering both hardware and software
design, requires knowledge about both the hardware technologies and operating system's
(Linux in this case) internals. When accelerating a software part of an application in
hardware, two components are always required: a software driver (especially for systems
with an operating system) and a hardware controller that performs D M A transfers. It
is possible to have a generic driver and a corresponding hardware controller to integrate
various types of accelerators or adapters into the system. This simplifies the development
and improves the time-to-market factor. However, when developing more complex hard
ware support, the complexity of interconnections inside such a system increases together
with the required resources. The performance of the system becomes less predictable.
Therefore, various types of D M A controllers with different characteristics may be needed.
The easier is to change one controller for another the more configurations can be tested
to find the best one.

In this work the RSoC Framework suitable for H W / S W codesign has been introduced
and prototyped. It covers three areas:

1. It provides reusable hardware components to accelerate the hardware development
and support portability of the system.

2. The RSoC Bridge component provides generation of infrastructure, an internal bus
system that connects the user hardware accelerators to the Processing System via
the selected controllers with only limited effort of the developer.

3. The controllers together with generic software drivers enables integration of the hard
ware system into an application (a new one or an existing one).

The Xi l inx Zynq is not the only device consisting of a Processing System and a Pro
grammable Logic and so a more general group of devices have been covered. The Re-
configurable System-on-Chip (RSoC) platforms extends the well-known class of devices
denoted as System-on-Chip. Because the RSoC platforms group is growing rapidly the
concepts described in this work are generalized to be applicable to various such systems.
Once an application is developed using the RSoC Framework, it is possible to migrate to

58

another chip with just minor or no changes to the whole application because the specifics
of the platform are hidden by this framework.

The framework is intended to support the partial dynamic reconfiguration of the con
nected accelerators in the future. This can open new possibilities to H W / S W codesign
of applications. Dividing computations between hardware and software can be done at
runtime on demand. This can improve power consumption and reduce the required area
on the chip while providing the high throughput of the system.

59

Bibliography

[1] Corbet, J.—Rubini, A.—Kroah-Hartman, G . Linux Device Drivers. Third edition.
O'Reilly Media, February 2005. U R L : h t t p : / / l w n . n e t / K e r n e l / L D D 3 / . ISBN: 0-
596-00590-3.

[2] Love, R. Linux Kernel Development. Third edition. Pearson Education: 2010. ISBN:
978-0-672-32946-3.

[3] Noergaard, T. Embedded Systems Architecture. Elsevier, 2005. ISBN: 0-7506-7792-9.

[4] Platzner, Marco at al. Dynamically Reconfigurable Systems. Springer, 2010. ISBN:
978-90-481-3484-7.

[5] SLABÝ, Jiří. Rapid Data Transfers on COMBO Platform. 2008. Thesis. Masaryk
university, Faculty of Informatics. Advisor Pavel Celeda.
U R L : h t t p : / / i s . m u n i . c z / t h / 9 8 7 3 4 / f i _ m / .

[6] Wolf, W. Multiprocessor Systems-on-Chips. Elsevier, 2005. ISBN: 0-12385-251-X.

[7] Altera. Arria V Device Handbook: Hard Processor System Technical Reference Man
ual [online]. Volume 3. November 2012. Chapter 5, H P S - F P G A A X I Bridges. U R L :
h t tp : //www. a l t e r a . com/ l i t e ra ture /hb /a r r ia -v /av_54005. pdf (May 2013).

[8] A R M . AMBA AXI and ACE Protocol Specification: AXIS, AXI4, and AXI-4Lite,
ACE and ACE-Lite [online]. 2011. 306 p.
U R L : ht tps: / /s i lver .arm.com/download/download. tm?pv=l 198016 (May 2013).

[9] A R M . AMBA 4 AXI4-Stream Protocol [online]. 2010. 42 p.
U R L : https://silver.arm.com/download/download.tm?pv=1074010 (May 2013).

[10] A R M . Application Note 228: Implementing DMA on ARM SMP Systems [online].
August 2009. 15 p. U R L : h t tp : / / infocenter .a rm.com/help / topic /com.arm.doc
.dai0228a/DAI228A_DMA_on_SMP_systems.pdf (May 2013).

[11] A R M . ARM Architecture Reference Manual: ARMvlA and ARM-vlR edition [on
line]. December 2011. 2158 p. U R L : ht tps: / /s i lver .arm.com/download/down-
load.tm?pv=1299246 (May 2013).

[12] A R M . Cortex-A Series: Programmer's Guide [online]. June 2012. 451 p.
U R L : https://silver.arm.com/download/download.tm?pv=1296010 (May 2013).

[13] A R M . Cortex-A9 MPCore: Technical Reference Manual [online]. June 2012. 124 p.
U R L : h t tp : / / infocenter .arm.com/help/ topic /com.arm.doc.ddi0407i /DDI040-
7I_cortex_a9_mpcore_r4pl_trm.pdf (May 2013).

[14] Corbet, J . Supporting multi-platform ARM kernels [online]. LWN.net. May 2012.
U R L : h t t p : / / l w n . n e t / A r t i c l e s / 4 9 6 4 0 0 / (May 2013).

60

http://lwn.net/Kernel/LDD3/
http://is.muni.cz/th/98734/fi_m/
https://silver.arm.com/download/download.tm?pv=l
https://silver.arm.com/download/download.tm?pv=1074010
http://infocenter.arm.com/help/topic/com.arm.doc
https://silver.arm.com/download/down-
https://silver.arm.com/download/download.tm?pv=1296010
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407i/DDI040-
http://LWN.net
http://lwn.net/Articles/496400/

[15] Corbet, J . The cdev interface [online]. LWN.net. August 2006.
U R L : h t t p : / / l w n . n e t / A r t i c l e s / 1 9 5 8 0 5 / (May 2013).

[16] Likely, Grant. Linux and the Device Tree [online]. November 2012.
U R L : h t t p s : / / g i t . k e r n e l . o r g / c g i t / l i n u x / k e r n e l / g i t / t o r v a l d s / l i n u x . g i t /
t ree/Documentat ion/devicetree/usage-model . txt (May 2013).

[17] Miller, D.—Henderson, R.—Jelinek, J . Dynamic DMA mapping Guide [online].
February 2013. U R L : h t t p s : / / g i t . k e r n e l . o r g / c g i t / l i n u x / k e r n e l / g i t /
torvalds/ l inux.gi t / t ree/Documentat ion/DMA-API-HOWTO.txt (May 2013).

[18] Mit ic , M.—Stojcev, M . An Overview of On-Chip Buses [online]. December 2006.
U R L : http:/ /www.doiserbia.nb.rs/ img/doi/0353-3670/2006/0353-367006034-
05M.pdf (May 2013).

[19] Open Firmware Working Group. Open Firmware Home Page [online]. May 2005.
U R L : http://www.openfirmware.org/1275/home.html (May 2013).

[20] So, Hayden Kwok-Hay and Brodersen, Robert W. BORPH: An Operating System for
FPGA-Based Reconfigurable Computers [online]. E E C S Department, University of
California, Berkeley. Jul 2007. U R L : ht tp: / /www.eecs .berkeley.edu/Pubs/
TechRpts/2007/EECS-2007-92.html (May 2013). UCB/EECS-2007-92.

[21] Xil inx. 7 Series FPGAs Overview [online]. 2012. 16 p. DS180.
U R L : h t t p : //www. x i l i n x . com/support/documentation/data_sheets/dsl80
_7Series_0verview.pdf (May 2013).

[22] Xil inx. AXI Reference Guide [online]. 2012. 132 p. UG761.
U R L : h t t p : / / w w w . x i l i n x . com/support/documentation/ip_documentation/ug76
l_axi_reference_guide.pdf (May 2013).

[23] Xil inx. LogiCORE IP AXI Central Direct Memory Access (v3.00.a) [online]. March
2011. DS792. U R L : ht tp: / /www.xil inx.com/support /documentat ion/ ip_docu-
mentation/axi_cdma/v3_03_a/pg034_axi_cdma.pdf (May 2013).

[24] Xil inx. LogiCORE IP AXI DataMover vS.OOa [online]. October 2012. PG022. U R L :
h t tp : //www. x i l i n x . com/support/document at ion/ip_documentation/
axi_datamover/v3_00_a/pg022_axi_datamover .pdf (May 2013).

[25] Xil inx. LogiCORE IP AXI DMA (vS.OOa) [online]. March 2011. DS781.
U R L : h t t p : //www. x i l i n x . c om/supp or t / document at i on / ip .document at i o n /
axi_dma/v3_00_a/axi_dma_ds781.pdf (May 2013).

[26] Xil inx. Virtex-5 Family Overview [online]. Fabruary 2009. 13 p. DS100.
U R L : h t t p : //www. x i l i n x . com/support/documentation/data_sheets/dslOO. pdf
(May 2013).

[27] Xil inx. XA Zynq-7000 All Programmable SoC Overview [online]. 2012. 25 p. DS188.
U R L : h t t p : //www. x i l i n x . com/support/documentation/data_sheets/dsl90
-Zynq-7000-0verview.pdf (May 2013).

61

http://LWN.net
http://lwn.net/Articles/195805/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
https://git.kernel.org/cgit/linux/kernel/git/
http://www.doiserbia.nb.rs/img/doi/0353-3670/2006/0353-367006034-
http://www.openfirmware.org/1275/home.html
http://www.eecs.berkeley.edu/Pubs/
http://www.xilinx
http://www.xilinx.com/support/documentation/ip_docu-

[28] Xil inx. Zynq-7000 All Programmable SoC: Technical Reference Manual [online].
2012. 1707 p. UG585. U R L : h t tp : / /www.xi l inx .com/suppor t /documenta t ion/
user_guidesug/585-Zynq-7000-TRM.pdf (May 2013).

(12

http://www.xilinx.com/support/documentation/

Appendix

The C D contains the following directories:

• r s o c - f ramework: sources of the RSoC Framework (both H W and SW) and testing
application testio.

• bu i ld roo t : support for Zedboard, RSoC Framework and testio for the Buildroot.

• t e s t -des ign : E D K project of the design specified in 6.1 Generic example.

• binary: prebuild binaries of the design and the operating system.

The necesary steps to test the system:

1. Copy the files from b i n a r y / directory to the original Zedboard SD card (a working
U-Boot is already there).

2. Power on the board and stop the autoboot.

3. Boot using the provided script:

> mmcinfo; f a t l o a d nunc 0 0x4000000 uboo t - s t a r tup .b in ; source 0x4000000

4. Login as default and switch to root by calling su.

5. Execute

$ mount /dev/mmcblkOpl /mnt
$ mknod /dev/xdevcfg c 259 0
$ cat /mn t / sys t em.b i t . b in > /dev/xdevcfg
$ insmod / l i b / m o d u l e s / 3 . 8 . 0 - x i l i n x / e x t r a / r s o c _ b r i d g e _ d r v . k o
$ mknod /dev/ tes tO c 248 0
$ mknod / d e v / t e s t l c 248 1
$ mknod /dev / tes t2 c 248 2
$ mknod /dev / tes t3 c 248 3
$ dd if=/dev/urandom bs=32 count=l | t e s t i o 32 1 /dev/ tes tO I wc -c
$ dd if=/dev/urandom bs=32 count=l | t e s t i o 32 1 / d e v / t e s t l | wc -c
$ dd if=/dev/urandom bs=32 count=l | t e s t i o 32 1 /dev / tes t2 | wc -c
$ dd if=/dev/urandom bs=32 count=l | t e s t i o 32 1 /dev / tes t3 I wc -c

6. Each call to testio should print 32, the number of bytes sent through the system.

63

