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Abstract 
This diploma thesis deals with automatic English pronunciation assessment and error detec­
tion based on the Dynamic Time Warping (DTW) algorithm. It focuses on the improvement 
of an existing pronunciation training application and it proposes three areas of improve­
ment: user interface, algorithm and corrective feedback. After various methods used for 
pronunciation assessment are discussed in the first part, the new design is introduced, the 
proposed system is described and three sets of experiments are performed. The experi­
ments focus on phoneme-level error detection, syllable-level primary stress error detection 
and word-level intonation assessment and they are designed to be able to provide corrective 
feedback to the user. The last part of the thesis describes how all three areas of improvement 
were tested. 

Abstrakt 
Tato diplomová práce pojednává o využití algoritmu Dynamic Time Warping (DTW) pro 
automatické hodnocení výslovnosti anglického jazyka. Práce se zaměřuje na vylepšení již 
existující aplikace pro výuku výslovnosti, a to ve třech oblastech: uživatelské rozhraní, 
samotný algoritmus a korektivní zpětná vazba uživateli. První část se věnuje přehledu tech­
nik používaných v této oblasti, následně je představen nový design uživatelského rozhraní, 
popsán navržený systém a experimenty. Experimenty se zaměřují na problematiku de­
tekce chyb na úrovni fonémů, na detekci chyb v primárním důrazu na úrovni slabik a na 
hodnocení intonace na úrovni slov. Všechny použité metody jsou navrženy tak, aby posky­
tovaly korektivní zpětnou vazbu uživateli. V poslední části je popsáno, jak byly všechny tři 
vylepšené oblasti aplikace otestovány. 

Keywords 
speech recognition, pronunciation assessment, pronunciation error detection, pronunciation 
training, foreign language learning, dynamic time warping, stress error detection, intonation 
assessment 
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Rozšířený abstrakt 
S rostoucím rozvojem počítačových technologií se násobí příležitosti k jejich praktickému 
využití. Světová globalizace způsobuje vysokou poptávku po efektivní výuce cizích jazyků 
a právě zde se otevírá prostor pro využití řečových technologií k vytvoření alternativního 
způsobu výuky jazyků: levnějšího, potenciálně přesnějšího a dostupného prakticky kdykoli 
a odkudkoli. V posledních desetiletích se na trhu objevilo mnoho aplikací pro výuku jazyků, 
ale co stále zůstává ve svých počátcích, je oblast výuky správné výslovnosti. 

Výuka výslovnosti je komplexní téma, které zahrnuje porozumění problematice zpra­
cování řeči, zvládnutí problému rozpoznání výslovnostních chyb a dobrou aplikaci pedagog­
ických přístupů. Zejména přesné rozpoznání výslovnostních chyb, jak fonetických, tak na 
úrovni prozódie, je největší výzvou aktuálního výzkumu v této oblasti. 

Cílem této práce je vylepšit dodanou webovou aplikaci pro výuku výslovnosti. Většina 
přístupů pro detekci chyb ve výslovnosti využívá metod založených na systémech automat­
ického zpracování řeči (ASR - Automatic Speech Recognition), které využívají komplexních 
modelů řeči a vyžadují trénování na velkém množství řeči nativních i nenativních řečníků. 
Dodaná aplikace ovšem pracuje na jiném principu a využívá algoritmu Dynamic Time 
Warping (DTW). 

DTW pracuje se dvěma nahrávkami řeči, s referenční promluvou a s promluvou stu­
denta, a zarovnává jejich jednotlivé řečové segmenty (slova, fonémy) na sebe. Pro hod­
nocení kvality výslovnosti algoritmus využívá skóre akustické podobnosti dvou segmentů. 
Jeho výhodou je jednoduchost a rychlost, nenáročnost na data, a možnost nasazení i na 
mobilní zařízení, na kterých by ASR systém běžet nemohl, a to bez nutnosti implementace 
klient-server architektury. Nevýhodou DTW je zejména jeho neschopnost zachytit celou 
variabilitu správných výslovností. 

Dodaná aplikace byla vylepšena ve třech směrech: bylo vytvořeno zcela nové uživatelské 
rozhraní, byl vylepšen a rozšířen algoritmus pro hodnocení výslovnosti a jako poslední byl 
navržen a implementován způsob korektivní zpětné vazby uživateli, který poskytuje zpětnou 
vazbu potřebnou k tomu, aby se uživatel mohl z chyb učit. 

Co se týče samotného algoritmu hodnocení výslovnosti, byly v rámci práce provedeny tři 
sety experimentů: detekce vložení a vypuštění fonémů, detekce chyb v primárním důrazu a 
detekce intonačních chyb. Detekce vložení a vypuštění jednotlivých fonémů ve slovech byla 
navržena jako detekce určitých vzorů ve výsledné cestě DTW matice, ale přesnost takového 
algoritmu se ukázala být velmi nízká. Hlavní důvod, proč nelze fonémové chyby jen za 
pomocí DTW algoritmu detekovat, je, že DTW provádí deformace referenční i studentovy 
nahrávky tak, aby se na sebe za jakýchkoli okolností zarovnaly. Takové deformace způsobují 
v mnohých případech nepřesná zarovnání fonémů na sebe, a to zejména pokud se v daném 
místě nachází nějaká výslovnostní chyba. Cím více výslovnostních chyb, tím méně přesné 
zarovnání fonémů na sebe, a tím méně pravděpodobné, že algoritmus chyby detekuje. 

V případě detekce primárního důrazu ve slovech bylo z algoritmu DTW využito pouze 
finální zarovnání řečových segmentů. To bylo využito pro zarovnání energií extrahovaných 
z obou nahrávek a energie jednotlivých slabik byly porovnávány vzhledem k celému slovu. 
Takovým způsobem bylo docíleno poměrně slušné přesnosti detekce chyb v primárním 
důrazu. Podmínkou funkčnosti takového algoritmu je předem provedená segmentace refer­
enčních nahrávek na slabiky (ta byla v této práci dodána vedoucím). Navržený algoritmus 
lze dále zlepšit přidáním základního tónu do příznaků použitých k detekci. Podle odborných 
zdrojů je totiž důraz ve větě charakterizován nejen zvýšenou energií, ale také právě zák­
ladním tónem, případně i prodlouženou délkou zdůrazněných fonémů. V takovém případě 
by již detekce primárního důrazu vyžadovala kombinaci více příznaků, a pravděpodobně 



by pak bylo vhodnější použít pro detekci některý algoritmus strojového učení, který ovšem 
vyžaduje trénování na větším množství dat. 

Hodnocení intonace ve větě bylo provedeno podobným způsobem jako hodnocení důrazu. 
Cílem tohoto experimentu bylo zjistit, zda intonaci lze vůbec nějakým způsobem za pomocí 
DTW zarovnání hodnotit. Jako příznak pro detekci byl zvolen základní tón (FO). Hod­
nocení intonace bylo založeno na tzv. intonačních vzorech používaných v lingvistice, jako 
například intonace stoupavá nebo klesavá. Tyto vzory byly pro každé slovo v referenční i 
testovací promluvě určeny pomocí jednoduchého klasifikačního algoritmu a dvojice vzorů 
porovnány mezi sebou. Takto bylo možné zjistit, kde student udělal chybu v intonaci 
oproti referenční nahrávce, kterou měl napodobit. Hodnocení intonace lze tedy provést 
pouze na základě nějaké referenční intonace, nikoli globálně. Přesnost navrženého algo­
ritmu se ukázala jako ucházející a celkově může být řečeno, že hodnotit intonaci z DTW 
zarovnání a za pomocí základního tónu lze. Jednoznačným návrhem pro zlepšení tohoto 
algoritmu je zdokonalit oblast klasifikace intonačních vzorů ze segmentů křivky základního 
tónu. Navržený algoritmus je založen pouze na jednoduchých rozhodovacích pravidlech, 
které berou v potaz tvar křivky základního tónu, její sklon či celkovou změnu výšky tónu v 
rámci slova. Lepší klasifikace by zcela jistě mohlo být docíleno natrénováním samostatného 
klasifikátoru intonačních vzorů na určitém množství anotovaných dat pomocí některého z 
algoritmů strojového učení. 

Algoritmus implementovaný do výsledné aplikace pak obsahuje pouze oblast detekce 
chyb správné fonetické výslovnosti na úrovni slov a detekci chyb v důraze na úrovni slabik. 
Implementace hodnocení intonace byla mimo rozsah této práce. Algoritmus byl navržen tak, 
aby nad ním bylo možné postavit mechanismus korektivní zpětné vazby. Ten byl navržen 
jako seznam chybných slov, ve kterém každé slovo obsahuje i popis konkrétní chyby a 
možnost porovnat si referenční výslovnost se svou vlastní. 

Všechny tři vylepšené oblasti aplikace byly otestované. Uživatelské rozhraní i korektivní 
zpětná vazba byly uživateli hodnoceny velice pozitivně. Na druhou stranu, z testování 
samotného algoritmu expertem na výuku anglického jazyka vyplynulo, že jeho přesnost 
není dostatečně vysoká. 

Budoucím směřováním by mohla být právě snaha o další vylepšení hodnotícího al­
goritmu. Z provedených experimentů se zdá, že algoritmus DTW se dá poměrně slušně 
použít pro hodnocení prozódie řeči (důrazu a intonace). Ovšem ukázalo se, že pro detekci 
výslovnostních chyb na úrovni fonému DTW není vhodný. Proto by výsledné aplikaci ne­
jvíce prospělo, kdyby byl DTW algoritmus nahrazen algoritmem založeným na tradičním 
ASR systému. 

Tento text obsahuje stručný úvod do technologií rozpoznání řeči v kapitole 2. Kapitola 
3 pak obsahuje přehled existujících přístupů pro hodnocení výslovnosti. V kapitole 4 je 
popsána dodaná aplikace a redesign jejího uživatelského rozhraní. Sběr dat je popsán 
v kapitole 5. Dále text pokračuje kapitolou 6, která se zabývá vylepšeními hodnotícího 
algoritmu. Návrh a implementace korektivní zpětné vazby je uvedena v kapitole 7 a poslední 
kapitola 8 popisuje, jak byla aplikace otestována. 
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Chapter 1 

Introduction 

Increasing globalization contributes to a greater demand for effective foreign language learn­
ing methods. Even though learning from human teachers is still considered to be the most 
effective and the most reliable, computer technology is slowly being incorporated into for­
eign language learning, too. 

As opportunities and development in the field of computer science and technology con­
tinue to grow, speech technology can be utilized to create a more accessible and cheaper 
solution for language learning. In the last two decades, there has truly been a great in­
terest in utilizing speech technology in the field of foreign language learning and recently, 
computer-assisted pronunciation training in particular has received considerable attention. 
There is plenty of existing research in this area and a number of commercial applications as 
well. However, correctly assessing pronunciation quality and detecting pronunciation errors 
is often a challenging task even for a human teacher. Therefore, computers are no excep­
tion and there are still numerous opportunities for improvement in this area, especially in 
providing corrective feedback to the student. 

The main goal of this thesis is to improve an existing pronunciation training application 
provided by supervisor, so that it is able to give a useful corrective feedback for the English 
language learner. The pronunciation assessment algorithm used in this application is based 
on the Dynamic Time Warping (DTW) algorithm. 

Originally, the DTW algorithm is used for automatic alignment of two utterances. As 
far as segmentation of the reference utterance to words and phonemes is provided, the 
algorithm can be also used to obtain segmentation to words and phonemes of the student's 
utterance. Then, acoustic similarity of the pairs of utterances can be computed on top 
of the alignment. However, the original algorithm itself is unable to provide any detailed 
information necessary to give the student a meaningful feedback so that the student can 
learn effectively. The aim of this work is to change that. 

This work deals with three areas of improvement of the original application: user in­
terface, algorithm and corrective feedback. Regarding algorithm improvements, three sub-
problems are explored in this work: prosodic error detection, stress error detection and 
intonation assessment. 

Firstly, Chapter 2 gives a brief overview of the speech recognition technology. Then 
the text continues with a description of its application in foreign language pronunciation 
training in Chapter 3, where particular methods used for assessment and error detection, 
including the above-mentioned DTW method, are explained. 

The second part of this thesis deals with the actual improvements of the application. 
Chapter 4 describes the original application in detail and discusses how the user interface 
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was redesigned. Furthermore, Chapter 5 describes how data from native and non-native 
English speakers was collected using the application. In Chapter 6, improvements of the 
pronunciation assessment algorithm are discussed. Finally, in Chapter 7, design of the new 
corrective feedback is described, and Chapter 8 describes how the application was tested. 
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Chapter 2 

Speech Recognition 

Speech recognition is the process of translating spoken speech into words and sentences using 
computers. The process is performed by automatic speech recognition (ASR) systems and 
an overview of the speech technology will be provided in this chapter, because most of the 
existing research concerning automatic pronunciation assessment is based on ASR. 

This chapter describes how automatic speech recognition systems and their components 
work. Before this chapter dives into the details of speech recognition systems, it gives a 
brief overview of how speech is produced in human vocal tract and how specific types of 
speech sounds are formulated. 

2.1 About Speech 

In order to understand speech recognition technologies and o be able to utilize them suc­
cessfully for the purposes of foreign language learning systems, it is important to know 
where human speech originates and how different sounds are pronounced. This section is 
mainly based on information from [21] and explained from the point of view of the English 
language. 

On a physical level, speech is a continuous signal (except for pauses) but on a psycho­
logical level, speech is perceived by humans as made up of discrete sounds. However, it 
is only because of their language knowledge that people are able to divide the continuous 
speech signal into discrete units. 

The production of speech is air-driven, completely dependent on the stream of air that 
goes through the vocal cords, the pharynx and out of the mouth or nose. Different sounds 
are created by obstructing the air stream in different ways. 

Vocal cords change the sound from voiceless (for instance s, f or p) when they are 
completely open to voiced (such as z, v or r) when they are closed and vibrate. 

If the air from the lungs is allowed to enter the nasal tract at the soft palate (velum), 
the sounds pronounced are called nasal, such as the first sounds of the words such as meal 
or Neal. This means that if a person has a cold, accuracy of computer speech algorithms is 
negatively affected because of the person's distorted articulation of nasal sounds. 

If the air is not allowed to go to the nasal tract, the resulting speech sounds are called 
oral. Most English sounds are oral. Air passing through the oral tract can be altered by 
the tongue, teeth and lips. Their various positions result in different speech sounds. 
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>phagus 

5. post alveolar vocal folds 
6- palatal (cords) 
7. velar 
8. glottal 

Figure 2.1: Vocal tract and places of articulation. Source: [21]. 

2.1.1 Types of Speech Sounds 

Phonetics studies the two groups of speech sounds: consonants and vowels. Articulator]) 
•phonetics focuses on the physical process of human speech production and divides the parts 
of speech-producing anatomy into active articulators (vocal cords, soft palate and lips) and 
passive articulators (teeth, alveolar ridge, hard palate and velum). The whole human vocal 
tract is displayed in Figure 2.1. 

Consonants 

Consonants are defined as sounds that are produced when articulators touch or come close 
to each other. For instance, b, s or r. The particular sound of a consonant is determined 
by three factors: the place of articulation (the place where the obstruction is placed), 
the manner of articulation (how articulators are positioned and whether they are active 
or passive during the obstruction) and voicing. Voicing refers to the state of the vocal 
cords; when they are separated, a voiceless consonant is produced, whereas when they are 
together, a voiced consonant is produced. 

Based on these factors, there £1X6 cl lot of consonant types, such fricative, a stop, a 
dental consonant and others. Al l types are summarized in Appendix B. 
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Vowels 

Vowels are sounds that are produced when articulators do not block the airstream. Vowels 
in English include a, e, i, o, u and sometimes y. These sounds resonate in the vocal tract 
and tongue and lips are used to alter the shape of the vocal tract so that it produces 
different sounds. Vowels are classified by the position of the tongue and the lips. 

Based on tongue height (i.e. its distance from the roof of the mouth), we can distinguish 
high, high-mid, mid, low-mid and low vowels. Tongue backness (i.e. distance of the 
tongue from the teeth) allows us to discriminate front, central and back vowels. 

When pronouncing vowels, lips may be either rounded or unrounded. 
Diphthongs are sounds that begin with one vowel and gradually change into another 

one (bite, bout, boil). 

2.1.2 Prosody 

Intonation, stress, length and pitch are all prosodic features of speech. In some cases, their 
use changes meaning, in other cases they are used to convey emotional or other information. 
Intonation is the overall pitch contour of a sentence or phrase. For instance, some questions 
may have a rising intonation. 

Syllables in English have a primary stress (the largest stress in a word) and a secondary 
stress (the second largest stress in a word). Stress is significant on the level of individual 
phrases (a lighthouse keeper vs a light housekeeper) as well as on the sentence level. 

While vowel length is distinctive in some languages, it is not the case in English. The 
same applies for the relative pitch on a syllable. In tone languages, pitch may change the 
meaning of a word, but not in English. 

These speech properties have to be taken into account in speech recognition systems to 
make speech recognition effective. Incorrect intonation or stress in the English language 
can be an indicator of a pronunciation error. Therefore, it might be meaningful to try to 
detect such errors using automatic pronunciation assessment algorithms. 

2.1.3 Acoustic Phonetic Features 

Acoustic phonetic features are the physical properties of sound waves of speech studied by 
acoustic phonetics, such as wave frequency or amplitude. Frequency determines the pitch 
of the sound in hertz (Hz) and amplitude determines the sound intensity in decibels (dB). 
Intensity of human speech ranges from whispering at 30 dB to loud shouting at 80 dB. 

Frequencies are one of the most important features used to differentiate between certain 
sounds. The reason for that is that each vowel contains certain frequency bands that are 
much higher in energy than other frequency bands in the spectrum. These significant 
frequency bands are called formants and are different for each vowel type. The first 
formant (Fl) of a sound is the lowest frequency band that is significantly high in energy or 
amplitudes. There are formants called F2, F3 and higher but usually only the first two or 
three are significant for speech recognition. 

Formants can be detected from the sound by spectrographic analysis. The result is 
a spectrogram, a graph with time on the x-axis and frequencies on the y-axis, and the 
amplitude or energy is represented by a colour scale (the darker the colour, the higher the 
amplitude). Example of a spectrogram and formants can be seen in Figure 2.2. 
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Figure 2.2: Example of a spectrogram and formants. Source: [22]. 

2.1.4 Phonology 

In the context of languages, a phoneme is a basic unit in the sound system of a language. 
Each word can be transcribed to a sequence of phonemes. Even though one phoneme 
describes one sound, it may also sound slightly different based on the context (its two 
surrounding phonemes). Also, one phoneme may have different alternative pronunciations 
(allophones) that do not create a meaningful change in the word. However, two allophones 
in one language can represent different phonemes in another language. This is exactly the 
point where native language phonology affects the types of pronunciation errors made by a 
learner of a second language. Certain sounds in the native language of the learner might be 
perceived as the same phoneme, whereas in the target language, they create a significant 
change. A similar issue may arise with sounds of the target language that do not exist in 
the learner's native language. 

The following section describes the basic components and functionality of an ASR sys­
tem. 

2.2 Automatic Speech Recognition Systems 
The goal of an ASR system is to find the sequence of words that most likely corresponds 
to the input speech signal. This section is mainly based on [3]. 

Speech signal w 

Feature Extraction 
Features 

Acoustic Model Recognizer 
W = (wj w2,.. 

Feature Extraction Acoustic Model Recognizer 

Language Model 
Pronunciation 

Dictionary 

Figure 2.3: Main components of an ASR system. 
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2.2.1 Feature Extraction 

The first step of the speech recognition process is feature extraction. After the input speech 
signal is preprocessed in order to decrease the influence of background noise, different 
distortions etc., features are extracted from the speech signal. Resulting features are later 
used in the rest of the speech recognition process. 

Features are extracted from short time intervals (frames) of the signal using windowing. 
Usually, the window length is 10-25ms [3]. There is a wide range of features, such as MFCC 
(Mel Frequency Cepstrum Coefficients), LPC (Linear Predictive Coefficients), filter-bank 
coefficients, or bottleneck features and others. Basically, MFCCs are suitable for ASR 
systems based on H M M - G M M (Hidden Markov Models with Gaussian Mixture Models) 
acoustic models, and filter-banks are more suitable for acoustic models that utilize neural 
networks. Bottleneck (BN) features are extracted from one hidden layer of a multi-layer 
perceptron neural network trained to predict monophone states. BN features compress 
useful information, such as phoneme classes, while suppressing noise, speaker ID and other 
information. Bottleneck features are used in this work and the corresponding bottleneck 
feature extraction process is displayed in Figure 2.4. 

bottleneck 
layer 

audio framing feature features 
framing extraction 

NN |-| 

n 0 
0 

0 o 

bottlenecks 

Figure 2.4: Schema of bottleneck feature extraction. 

2.2.2 Acoustic Model 

Once features are extracted, they are used to determine what the uttered sound to which 
they correspond was. Acoustic model is used to model individual monophones or triphones. 
A monophone is a sound of a phoneme independent on the context of the phoneme. Tri-
phone, on the other hand, is a context-dependent sound. For example, sound a in the word 
candle will constitute a different triphone than in the word handle because its surrounding 
phonemes are different. 

Acoustic model is trained using the same features that are extracted from the input 
speech signal. It outputs probabilities for each monophone or triphone that the input 
feature vector corresponds to the model. 

Mostly, acoustic model would be created using HMMs but neural networks can be used, 
as well. In the following section, functionality of HMM-based acoustic models will be 
described. 
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Hidden Markov Models 

H M M can be understood as a finite state machine with states and transitions between them 
that emit output symbols (phonemes). The H M M basically tries to find the sequence of 
transitions between states that most likely generate the sequence of phones Y = (yl, y2,...) 
that the speaker has uttered. 

A H M M is defined by: [3] 

1. A set of states. Usually one or three states per monophone/triphone are used. 

2. Transition probabilities for all combination of states that are linked with a transition. 
They are determined in the H M M training phase. 

3. A probability density function describing an output symbol for each transition. A 
probability density function determines the probability P{yi\t) of the current input 
yi being emitted at transition t. Probability density functions can be modelled by 
GMMs or neural networks and are trained on the ASR features. 

The reason why HMMs are called „hidden" is that the actual sequence of states is 
unknown. The only known information are the a posteriori probabilities. 

The output of the acoustic model at each time unit is the probability P(yt, st\st-i) of 
each possible transition from (an unknown) state st-i- These probabilities are inputs to 
the recognizer, which decides on the final sequence of phonemes and words. [3] 

Language Model 

A language model is specific for each language and it provides some a priori knowledge 
about the language, such as the words most frequently used together. It provides a wider 
context that can significantly improve speech recognition. 

Language models often use N-grams, i.e. sequences of N — 1 preceding words which can 
be used to estimate the probability of a word uii. The value of N is usually between one 
and three. [3] 

Thus, if the acoustic model, for some reason, is not able to recognize one word within 
a sentence, the language model can compensate for that by providing probabilities based 
on the previous recognized word, so that the word can be inferred based on the knowledge 
from the language model. 

Pronunciation Dictionary 

Pronunciation dictionary defines how each word of the language is transcribed to a sequence 
of phonemes. There may be alternative pronunciations of the same word so the dictionary 
may contain more correct pronunciations for a single word. 

2.2.3 Recognizer 

The recognizer is the last piece of an ASR system. Its task is to decide on the final output 
sequence of words W = (wl, w2,...) using a sequence of probabilities from the acoustic 
model, and knowledge from the language model and pronunciation dictionary. 

Probabilities from the acoustic model are stored and when all observations are processed, 
the best path (the one that has the highest probability) is found using a search algorithm. 
The final path corresponds to the most likely sequence of phonemes and words that fit the 
input speech signal. [3] 
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Chapter 3 

Automatic Pronunciation 
Assessment and Error Detection 

This chapter deals with the application of speech recognition technology in automatic for­
eign language learning and pronunciation training. It begins with explaining the current 
opportunities and challenges in automated foreign language learning, continues with an 
overview of methods used for automated pronunciation scoring and error detection, and 
finally, gives a detailed description of the method used within this work. 

3.1 Types of Pronunciation Errors 

Learners of foreign languages make pronunciation errors for two main reasons: either they 
are unaware of the correct pronunciation, or their attempt to pronounce the utterance 
correctly is influenced by their native language (LI) phonology. Native language transfer 
means that there may be sounds in the foreign language (L2) that do not exist in the 
learner's LI , or there may be two sounds that are perceived as different in L2 but are not 
distinguished in the learner's LI . [11] 

However, the concept of pronunciation error, is rather difficult to define, as there is not a 
clear definition of right or wrong pronunciation. Thus, instead of quantifying pronunciation, 
a scale ranging from unintelligible speech to native-sounding speech is used. Does the 
utterance sound almost native-like, or does it sound strongly nonnative? [31] 

There are two types of pronunciation errors: phonemic (or segmental) and prosodic. 
Nevertheless, all errors are closely linked. Pronunciation is an important part of foreign 
language learning, as it is vital for the learner to sound intelligible in order to be understood. 

3.1.1 Phonemic Errors 

Phonemic errors occur in relation to specific phonemes. There are three main types of 
phonemic errors that may be distinguished, namely: 

• Phoneme substitution. The learner substitutes the correct phoneme for a different 
one. 

• Phoneme deletion. The learner completely omits a phoneme from the utterance. 

• Phoneme insertion. The learner inserts an extra phoneme in between two others. 
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Yet another case of a phonemic error is called „phoneme mispronunciation". This error 
takes place when the correct phoneme is more or less pronounced, but it sounds differently 
enough that it is possible to tell that the speaker has an accent. [31] 

Logically, correct pronunciation from the phonemic point of view is the basics of lan­
guage learning and it is necessary to sound intelligible. However, phonemic correctness 
alone is not enough to master pronunciation of a language. 

3.1.2 Prosodic Errors 

Prosodic errors are usually measured on the sentence or phrase level. These errors are made 
in elements such as stress, rhythm, duration, timing, pauses or intonation. [31] 

As stated in [1], prosody even has equal or greater effect than phonemic correctness on 
the speaker's comprehensibility. Teaching only the correct phonemic pronunciation does 
not significantly improve comprehensibility [9], while teaching prosody does [6]. 

Stress 

There are two levels of stress: pitch accent (or sentential stress) and lexical stress [19]. 
Pitch accent concerns the correct placement of stress on the most prominent syllable 

within a sentence. It is characterized by an increase in pitch followed by fall in pitch [25]. It 
is usually influenced by a wide range of factors, such as type of sentence, emotional status 
of the speaker, context, or the speaker's intention. Therefore, pitch accent is very difficult 
to assess automatically, which is why most of the following information will be related to 
lexical stress. 

Lexical stress, focuses on stressing the correct syllable within a word according to 
word stress patterns that are defined in dictionaries. It is characterized as an increase in 
duration and energy but not in pitch [25]. 

English has a stress-timed rhythm. That means that unstressed syllables between 
consecutive stressed syllables are reduced (their pronunciation changes), in contrast with 
syllable-timed rhythm, where stressed syllables have a longer duration but there is no vowel 
reduction (for example, French or Italian). [18] 

Lexical stress patterns in English are not predictable. In other words, there are various 
stress patterns that differ for each word. Many other languages have predictable stress 
patterns (for example every first syllable of a word is stressed), but this is not the case in 
English. For example, while the word citizen has primary stress on the first syllable, rela­
tionship has primary stress on the second syllable, plus its last syllable carries a secondary 
stress. [17] 

There are three levels of stress a syllable can have: primary, secondary and non-
stressed [14]. Primary stressed syllables carry the major pitch change and there is only one 
primary stressed syllable in each tonal group (phrase). Usually, primary stressed syllables 
are found in words that carry some important information. Secondary stressed syllables 
are also stressed but less than primary stressed syllables. Finally, non-stressed syllables do 
not bear any stress at all. In English, every word has one or more stressed syllables but not 
all of them are realized phonetically [18]. For example, function words such as prepositions 
or articles are usually not stressed within a sentence. 

According to [14], stressed syllables in English are characterized by power level, pitch, 
duration add vowel quality. Researchers in [17] agree but do not mention vowel quality. 
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Because vowels are longer than consonants, they carry most of the information related 
to stress [26]. Consequently, since vowel sounds can be changed depending on whether the 
vowel is stressed or not, stress errors can cause lower comprehensibility. 

Stress errors that cause the greatest issues in comprehensibility are errors in primary 
stress. The learner may misplace the primary stress from one syllable to another and in 
some cases, the error may even change the very meaning of the word. 

Intonation 

Intonation is strongly related to the fundamental frequency in speech. Fundamental fre­
quency is basically the frequency of vocal cords. 

Intonation is used to convey emotional meaning, express attitude, communicate inten­
tions and it helps the listener recognize grammatical structures of a sentence. It may even 
act as marker of personal or social identity (mother, lover, doctor, lawyer, ...). Very often, 
intonation may suggest exactly the opposite meaning than the words used by the speaker. 
[2] 

In linguistics, a number of sentence intonation patterns exists for the English language. 
There are two categories of intonation patterns: falling tones and non-falling tones. Among 
falling tones we can find high fall (HF), low fall (LF), rise-fall tones; the non-falling 
tones comprise high rise (HR), low rise (LR), mid-level and fall-rise tones. In English, 
there is basically no rule for which sentence type has which intonation pattern, though some 
generalizations exist. A fall is typical for statements, exclamations, wh- questions, yes-no 
questions or commands. A fall-rise typically appears in statements and commands including 
polite corrections, partial statements or warnings. A rise usually occurs in encouraging 
statements, wh- questions, commands, yes-no questions or interjections, for instance. [29] 

Wrong intonation patterns can distinguish a native speaker from a non-native speaker. 
However, if a speaker misapplies an intonation pattern, then, instead of noticing an error, 
it is more likely that their audience will understand the utterance differently than what the 
speaker's intention was [5]. 

3.2 Computer-Assisted Pronunciation Training 

There are many existing pronunciation training computer programs. In the past, they 
often did not provide corrective feedback to indicate specific weaknesses (i.e. concerning 
the place of the error and advice on what should have been done differently), which means 
this software could only aid the assessment of pronunciation, not fully replace a human 
rater. If a student uses such software, much of the pronunciation learning task is left for 
them and that is called self-assessment of pronunciation. 

However, a study on the reliability of self-assessment of pronunciation conducted in [7] 
confirms that self-assessment is not a reliable method of assessing pronunciation. In the 
majority of cases, L2 learners need of a teacher's help in identifying inaccurate sounds. 
Thus, it is possible to conclude that pronunciation teaching software without a reliable, 
specific and detailed assessment of the student's pronunciation will not be effective. 

In other words, Computer-Assisted Pronunciation Training (CAPT) software that has a 
reliable method of assessing the student's pronunciation and is able to give a specific feed­
back, can significantly improve independent foreign language pronunciation learning. Until 
then, pronunciation training programs will leave most of the space for self-assessment to be 
done by the independent learner, which, again, is not effective in teaching pronunciation. 
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Nowadays, CAPT applications that provide corrective feedback to the user already 
exist. For instance, Elsa Speak (https://elsaspeak.com) or SpeechAce (https://www. 
speechace.com/), to name a few. 

3.2.1 Advantages 

Traditional methods of foreign language learning require the teacher's full attention devoted 
to a student, especially when it comes to pronunciation training. What a student needs the 
most in learning pronunciation, is an immediate feedback and correction. Computer-based 
pronunciation training (CAPT) programs that can reliably detect specific errors and provide 
meaningful corrective feedback have the potential to offer a much cheaper alternative to a 
human teacher. Moreover, CAPT programs can be accessible at any time and potentially 
at any place [11]. However, the necessary requirement for such a system to prove successful 
is its ability to accurately identify the exact errors within words [30]. 

3.2.2 Challenges 

Today, the main challenge in CAPT systems is how to achieve accuracy high enough so that 
the feedback is not misleading to the student in any way, so that the system can be trusted 
and perceived as reliable [8]. This issue is particularly challenging for those sounds that 
are often substituted by LI sounds or mispronounced. Moreover, false positives (telling the 
student there was an error where there was none) may be harmful to the student's learning 
process. 

There are two terms which are not to be confused with each other: pronunciation scor­
ing and pronunciation error detection. Pronunciation scoring concerns rating a sentence, 
phrase, word or a phoneme, according to how well it was pronounced. It can be used for 
assessing pronunciation fluency, for example. 

Pronunciation error detection, when combined with a corrective feedback, can be more 
useful to the student, because it deals with detecting specific errors at the phoneme level. 
On the other hand, it is much more difficult than pronunciation scoring, because the shorter 
the unit, the greater the variability of the pronunciation assessment [31]. The challenge here 
is, how to detect such errors precisely. 

There are, of course, many other challenges in automated pronunciation error detection. 
Ideally, it is desired for the CAPT system to be independent of the learner's LI (L l -
independence), to be text-independent (able to work with unconstrained speech), to be able 
to detect both phonemic and prosodic errors, and to be capable of providing meaningful 
corrective feedback. [31] 

There is a lot of existing research on specific sub-problems of pronunciation error de­
tection but, as mentioned in [31], "a successful system will require a combination of many 
different techniques". 

An overview of existing methods used for pronunciation error detection is provided in 
the next section. 

3.3 Methods 

Research on automated pronunciation error detection and pronunciation scoring started in 
the 1990's [31]. Although it slowed down at the beginning of the 21st century, research 
interest was renewed a couple of years later. Most of the work primarily dealt with specific 
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sub-problems of the pronunciation error detection task but some of them tried to combine 
several approaches to build more robust solutions. 

3.3.1 Classification of Methods 

In general, the approaches to automatic error detection in pronunciation learning can be 
classified into several categories. There are Ll-dependent and Ll-independent ap­
proaches. Then, we may distinguish text-dependent and text-independent approaches. 
Finally, we differentiate likelihood-based methods and classifier-based methods. 

Ll-dependent vs Ll-independent Approaches 

In order to minimize the commercial implementation challenges, it is preferable to have an 
Ll-independent solution. However, Ll-dependent systems tend to achieve higher accuracy. 
Ll-dependent solutions are designed to address the most common errors for the specific 
L1-L2 combination. [8] 

Text-dependent vs Text-independent Approaches 

Text-dependent solutions are bound to a specific learning material. For instance, letting the 
student exercise their pronunciation only within a limited number of sentences or words. 
Text-independent solutions are able to work with unconstrained speech and would be de­
sirable, for example, for conversational learning systems. Not much research has been done 
in the latter approach. 

Likelihood-based vs Classifier-based Approaches 

Likelihood-based approaches have been used since the 1990's and methods that fall into this 
category include the HMM-based log-likelihood posterior score, which has become a stan­
dard in pronunciation scoring, and is based on the GOP (Goodness of Pronunciation) score. 
The advantage of these methods is that they are easy to compute and Ll-independent. 
However, they are not capable of identifying the type of error that has occurred. 

Classifier-based approaches, on the other hand, are able to do so, using classifiers trained 
on specific pairs of phonemes (correct-incorrect) that represent corresponding error types. 
[31] 

3.3.2 Pronunciation Metrics 

There are many metrics that can be used to measure pronunciation. Metrics for measuring 
phonemic elements include, for example: [31] 

• Phone-level log-likelihood scores or GOP 

• Acoustic-phonetic features 

• Spectral features (formants) 

• Phoneme or vowel durations 

Metrics for prosodic elements (intonation, stress, fluency..) may include: [31] 

• Distances between stressed and unstressed syllables 
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• Energy (power) within a word 

• FO contours (pitch) 

• Rate of speech (words per minute) and articulation rate (phonemes per second) 

• Measures of silence: mean pause time, silences per second, mean long silence duration 

• Mean phoneme duration 

3.3.3 Log-Posterior Probability Score 

This score is computed for each phone segment and it is based on the acoustic model of 
the ASR system. If the score of a particular phone segment falls below a predetermined 
threshold, the phone is marked as mispronounced. 

This score is based on the original GOP (Goodness of Pronunciation) algorithm, as 
defined in [30]. The GOP score was used as a standard method for a long time. Later, this 
type of score was further improved using new technologies, such as neural networks. 

In order to compute the score, the canonical transcription (the expected content of the 
utterance, for example the phone-level transcription of a sentence that the learner should 
read) has to be known, as well as the previously obtained phonetic segmentation of the 
speaker's utterance. The segmentation can be generated by force aligning the student's 
speech against the canonical transcription. 

First, for each frame yt of the segment corresponding to a canonical phone qi, the 
posterior probability P(qi\yt) is computed as follows: 

P{m\yt) = P t e l ^ t e ) (3.1) 
J2f=iP(vt\Qj)P(Qj) 

It represents the probability density of the frame yt using the model of the qi phone. In 
other words, the probability that the frame yt actually belongs to the canonical phone qi. 
The conditional phone distributions p(yt\qi) can be modelled by Gaussian Mixture Models 
(GMMs), or neural networks trained with native speech. P{qi) is the prior probability of 
the phone qi, which can be determined using frequency analysis, and M represents the 
number of phone models present in the H M M . 

The posterior score for the phone segment qi is then defined as the average of the 
logarithm of the segment's posterior probability: 

P^) = T. Y, l09p(li\vt) (3-2) 
t=ti0 

Where di is the duration of the phone qi and £JO is the first frame of this phone segment. 
Sources: [11], [10]. 

The Original Definition of the GOP Score 

This is the original definition of the GOP (Goodness of Pronunciation) score from [30]: 

GOP{p) = \log(P(p\0^))\/d 
(3.3) p(0^\p)P{p) 

Id 
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Acoustic model is used to determine the likelihood p(0^\q) that an acoustic segment 
Q(I) corresponds to phone q (Q is the set of all phone models in the acoustic model). 
P(p\0&)) is the posterior probability that the segment uttered by the speaker corre­
sponds to the phone p. P(p) is the prior probability of the phone p, given by the language 
model of the ASR system. And finally, d is the number of frames in the segment . 

Assuming that all phones in Q are equally likely and that the sum can be approximated 
by its maximum, the equation 3.3 can be simplified to the following: 

GOP(p) log(- p(0&>\p) 
Id (3.4) 

"maxq(zQp(0^\q) 

If the GOP score is above a predefined threshold, it is rejected as a mispronunciation 

Adjustments 

Some approaches used different thresholds for each phoneme and found that with this 
adjustment, the pronunciation error detection has improved ([30], [11]). Researchers in [30] 
explain that the reason for this is that some phonemes tend to have lower log-likelihoods 
than others, which in turn means that a higher threshold needs to be used for them. 

In some cases, researchers decided to increase the detection accuracy by modelling the 
conditional phone distributions p(yt\qi) by two models for each phone, one trained with the 
correct pronunciation, the other trained with an incorrect pronunciation ([11], [30]). 

The approach described in [10] uses the score to rate the whole sentences. 
Other researchers found out that HMMs are not powerful enough to distinguish be­

tween very similar sounds and decided to use classifiers to differentiate particular pairs of 
phonemes corresponding to specific pronunciation errors instead. [24] 

Finally, this type of score can only be used to detect phonemic errors, so methods that 
want to deal with prosodic errors have to extend this approach by other speech features. 

Some of these approaches will be described in the following subsections. 

3.3.4 Extending the Recognition Network with Models of Incorrect Pro­
nunciation 

Acoustic phoneme models may be extended by models trained on incorrect pronunciation. 
That way, there will be two models for each phone; one trained with the correct, native­
like, pronunciation, the other trained with mispronounced phonemes. In order to train the 
models of mispronounced speech, a phonetically transcribed database of nonnative speech 
is needed. 

To detect a mispronunciation, the log-likelihood (LLR) score is computed for each 
phone qi, using both pronunciation models, Ac (correct) and A M (mispronounced). [11] 

LLR{qi) = ^J2t = toto+d-l[logp(yt\qi,\M) - logp(yt\qi, Xc)] (3.5) 

The score is normalized by the phone segment length in frames (d). Mispronunciation 
is detected when the score is above a predefined threshold. When thresholds are specific 
for each phone, it leads to error detection improvement, same as in the posterior score. 

Research in [30] suggests that modelling each phone by two models improves the detec­
tion of those errors that are affected by the phonology of the learner's LI . That includes 
especially substitutions of LI sounds for sounds of the target language that do not exist in 
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the LI . Incorporating models of LI phonemes into the recognition network increases the 
accuracy of detecting such errors. 

3.3.5 Features for Prosodic Error Detection 

ASR-based scores described above can detect phonemic errors. Their advantage is that 
they are easy to obtain from the ASR system and can be calculated in a similar manner 
for each phone. However, it is not possible to use them to detect prosodic errors. 

In order to detect prosodic errors, more general speech features have to be used. These 
suprasegmental features include pitch, duration or intensity (energy) and more. In this 
section, some of them are explained. Some of these features can also be used for improving 
the phonemic error detection. 

Energy 

All energy features are derived from the basic signal power (energy), that is defined in the 
following manner: 

£ = 5 > ( n ) | 2 , (3.6) 
n 

where x{n) is a signal frame. 
Existing work on prosodic error detection uses raw energy, log energy or root mean 

square (RMS) energy 1 , defined as: 

RMSE = 

An example of a feature derived from the energy feature is rate of rise (ROR). ROR 
is the main feature of a method introduced in [28] and can be used to detect bursts (abrupt 
rises) of energy within segments. The research in [24] suggests that this measure can be 
used to discriminate plosives from fricatives, along with the zero-crossing rate measure 
that is defined as the number of times the signal crosses the x-axis. 

The ROR measure is based on the RMS energy and is computed using a 24 ms window 
that is shifted over the acoustic speech signal every 1 ms. For each window, the window 
energy is measured by computing the logarithm of the log RMS energy over the window. 

Pitch 

The pitch of a signal may be described by fundamental frequency (FO), which is the 
frequency of vocal cords. There is a number of methods for FO extraction, such as the 
autocorrelation pitch detector of the cepstral FO detection approach [33] but details of 
these methods are outside of the scope of this thesis. FO contours are in Hertz (Hz). Final 
FO contours can be used to assess stress or intonation. 

Duration Scores 

Duration of various segments of speech (phonemes, syllables) may also be measured. 
x

https: //musicinformationretrieval. com/energy .html, accessed 2020-01-22. 
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To compute the segment duration score defined in [10], duration of all phone segments 
in a sentence is first obtained from the alignments and then it is normalized by the rate of 
speech (ROS). Finally, log-probability of the normalized duration is computed, which uses 
discrete duration distribution of the particular phone. That has to be trained on native 
speech. 

D = ±J2i
 = lNl°9\P(f(di)\qi)} (3.8) 

iV is the number of phones in the segment we want to measure the score for. di is the 
segment duration in frames and f(d{) = di * ROS. ROS is the average number of phones 
per time unit. 

There can be other types of duration scores, for examples durations of the three hidden 
states of a triphone, or durations normalized for the articulation rate. [8] 

Timing Scores 

In English, stressed syllables are usually lengthened and others shortened. To measure 
rhythm and stress, some measures of timing can be used. The timing scores defined in [10] 
use a measure called syllabic period, which is defined as the time between the centres of 
vowels, normalized on rate of speech (ROS). The score is then defined as the average of the 
log-likelihoods of the normalized syllabic periods over a sentence and it is calculated using 
a discrete distribution of syllabic periods trained on native speech. 

TTflS 
En = 20 x logw{ —) (3.9) 

y u v0.00002' y ' 
ROR is defined as the derivative of energy En: 

RORn = E n (3.10) 

3.3.6 Classifier-Based Methods 

Classifier-based approaches to pronunciation error detection combine several features to­
gether, in order to build more robust and accurate solutions. In classifier-based methods, 
ASR-based features are usually combined with some of the suprasegmental features men­
tioned earlier. Apparently, ASR-based scores seem necessary to be a part of the final 
algorithm, because using the other suprasegmental features alone does not lead to sufficient 
accuracy. The most significant characteristic of classifier-based approaches is that they are 
able to provide corrective feedback to the user, instead of only detecting the error. 

In [10], neural networks and classification/regression trees are trained on a transcribed 
nonnative database in order to predict pronunciation scores a human rater would give. This 
approach only deals with pronunciation scoring, not with pronunciation error detection. 

Research described in [8] trained a different SVM (Support Vector Machines) model for 
each phone in order to discriminate between specific phoneme pairs. 

Finally, in [24], algorithms aimed at discriminating specific phones from each other are 
introduced. There is a decision tree based on acoustic-phonetic features, and the LDA 
(Linear Discriminant Analysis) algorithm, which assigns weights to all features to find the 
linear combination that best discriminates the phone classes. 
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3.3.7 Stress Error Detection 

This section contains an overview of existing approaches to stress error detection. 
As already mentioned in section 3.1, stressed syllables are best characterized by energy, 

pitch and duration. According to [23], the fundamental energy (FO) is not as reliable 
correlate as energy or duration but still, fundamental energy significantly improves detection 
accuracy. Most of the existing work takes FO into account. 

Approach in [14] uses two-stage recognition using HMMs trained on FO, energy and the 
MFCC features. In the first stage, the presence of stress in syllables is detected. In the 
second step, stress level is identified for stressed syllables. 

In [17], machine learning algorithms are used to assess lexical stress patterns and detect 
lexical stress errors. They use acoustic features such as FO, log value of amplitude and 
normalized duration. 

Researchers in [26] use FO, FO slope, RMS energy and duration to detect syllable stress 
errors using a Bayes classifier. In [19], lexical stress and pitch accent detection method 
using Deep Neural Networks (DNNs) is suggested. 

Most approaches use HMMs, NNs or other machine learning algorithms to detect stress 
errors. However, there is one approach ([2]) that takes into account the DTW algorithm. 
This approach uses log energy features and directly compares them using correlation be­
tween the test and reference energy curves. This is done on top of phoneme alignments 
from the DTW algorithm. Since this work utilizes DTW, too, and is built using lightweight 
technologies, a similar approach will be used here. 

3.3.8 Intonation Error Detection 

There is not much existing research on intonation error detection. Instead of robust intona­
tion assessment which would require complex contextual information such as the speaker's 
emotional state or language nuances in meaning, existing approaches rather focus on com­
paring the student's intonation with a reference intonation pattern. 

Research in [16] suggests intonation assessment on the syllable and sentence level. Their 
approach is based on classifying syllable pitch contours into 5 pitch types: low-high (LH), 
HL, LHL, HLH and „no equivalent". The pitch intonation pattern on the sentence level 
is assessed using the mean pitch value for each syllable. Before FO contour is used for 
classification, it is smoothed using a median filter. They conclude that pitch movement on 
the sentence level plays a more significant role in perceived intonational quality than on the 
syllable level. 

The second existing approach to intonation assessment is based on aligning the reference 
and student utterances using the DTW algorithm and then comparing the aligned FO 
contours frame-by-frame [2]. FO contours are normalized and smoothed using a median 
filter and the comparison is done using correlation, with respect to 4 intonation patterns: 
high rise (HR), high fall (HF), low rise (LR) and low fall (LF). The aim of the approach 
is to decide whether two compared utterances were produced with the same falling-rising 
intonation pattern on the sentence level. 

From the above-mentioned approaches, it seems reasonable to perform intonation as­
sessment based on comparing the student's speech to a reference utterance produced with 
an expected intonation pattern. That way, it should be possible to detect intonation errors 
based on intonation pattern types used in linguistics. 
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3.4 Dynamic Time Warping ( D T W ) 

The last section discussed different methods that are used for pronunciation assessment 
and error detection. Most of the methods, however, are ASR-dependent, which means 
that if they are practically implemented in a real application, they always need the whole 
ASR system to run in the background, which can be disadvantageous for mobile or web 
applications that are desired to be fast and lightweight. Unlike similar work in [12], which 
focuses on ASR-based error detection, the aim of this work is to develop an algorithm for 
foreign language pronunciation training purposes that would both fulfil the requirements 
for speed and lightweight design and still remain accurate enough. The core algorithm used 
in this work is the the Dynamic Time Warping (DTW) method and this work will explore 
how it can be utilized for the purposes of pronunciation error detection in English. 

The DTW method was created in the 1960's and its main function is to adjust the 
length of the speaker's utterance and its phonemes to the length of the template it is being 
compared with. [21] 

This algorithm basically aligns a sound signal with another sound signal. It aligns the 
lengths of two utterances and minimizes the influence of different lengths of phonemes and 
words and different speech rates on speech recognition. Generally speaking, it is a distortion 
algorithm that compresses and stretches parts of the utterance to force a match. However, 
its disadvantage is that if words of a speaker's utterance are compressed or stretched enough, 
they can fit the reference template, even if the actual words are different. [21] 

3.4.1 Algorithm Description 

The algorithm, as described in [4] and [15], is based on dynamic programming and its main 
objective in speech recognition is to successfully match words or phonemes in two time 
series despite wide variations in timing. 

Suppose we have two time series X, the reference, and Y, the speaker's utterance. 

n 

Figure 3.1: Example of two aligned time series. Source: [15]. 

X = (x1,x2, ...,£„) (3.11) 

y = (yi,V2,-,ym) (3.12) 

Where n and m are the series lengths. 
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To align the two series, an n x m distance matrix S is constructed. Each point 
corresponds to the distance between elements Xi and yj. There are many possible distance 
measures but the most frequently used is the Euclidean distance, so the matrix is defined 
as follows: 

5(i,j) = ( X i - y j ) 2 (3.13) 

In addition to the distance matrix, a cumulative distance matrix 7 is created as 
well. The elements of the cumulative distance matrix are defined as a sum of the current 
distance and the minimum of cumulative distances of the surrounding elements, as described 
in equation 3.14 and illustrated in Figure 3.2. 

= S(i,j) +min(j(i - - l,j - l),l{i,j - 1)) (3.14) 

/ 
— • 

i-1J / f i j 

i-1,j-1 

1 i n 

Figure 3.2: Cumulative distance matrix step pattern. (Illustration of Equation 3.14.) 

The task of DTW is to find a warping path W, which aligns X and Y so that the 
distance between them is minimized. 

W = (wi,W2, —,Wk) (3.15) 

The time warping problem is formally defined as: 

p 
DTW(X, Y) = minw(Y^ S(wk)) (3.16) 

fe=i 
Each element wa of the path corresponds to one element of a cumulative matrix and the 

optimal path can be found by backtracking the complete cumulative matrix and choosing 
points with the lowest cumulative distances. The score of fit of a path is the path's length. 
When there is no timing difference between the two time series, the warping path is equal 
to the diagonal line i = j. An example of a warping path can be seen in Figure 3.3. 

There are some constraints placed on the path in order to limit the search space: [4] 

1. Boundary conditions. The starting and ending points of the path have to be 
w\ = (1,1) and Wk = (m, n), or an offset can be used. 
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0 5 10 15 2 0 25 30 

Figure 3.3: Example of a warping path. Source: [15]. 

2. Monotonicity. The path points have to be time-ordered. Given Wk = (hj) and 
Wk-i = (i',f), then i' < i and f < j. 

3. Continuity. The steps in the grid are restricted to neighbouring elements, including 
diagonally adjacent elements. Given Wk = and Wk-i = then i — i' < 1 
and j — f < 1. 

4. Warping window. Allowable points of the path must fall within a warping window 
of width w: \i — j\ < w 

5. Slope constraint. Allowable paths can be constrained by limiting the allowable 
slope of the path. 

The output of the DTW algorithm is the alignment of the student phonemes/words to 
the reference phonemes/words: I{k) = iR(k),is(k), 1 < k < K, where in{k) and isik) are 
frame indexes of the aligned utterances [2]. It is basically a forced match of two utterances. 

3.4.2 Advantages and Disadvantages 

The aim of this work is to improve an existing pronunciation training application provided 
by supervisor. The application uses DTW as the pronunciation assessment algorithm. As 
DTW works on the principle of comparing the student's speech to the one and only one 
reference recording, it will obviously never be able to catch the whole variety of correct 
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pronunciations that exist. However, the final product could potentially be used by teachers 
to teach a particular way of pronunciation of their choice, for example, British English, or 
even to teach pronunciation, including the rhythm and stress, of a poem, for instance. 

The advantages of DTW are that the algorithm is trivial, ASR-independent, extremely 
lightweight and fast. Therefore, it will be easy to run solely on the client (such as a mobile 
device or a web browswer), without the need of a client-server architecture. Also, this 
method only needs little data to work and it is not dependent on a large database of perfect 
speech. What is more, to change the desired pronunciation to teach, it is enough just to 
replace the reference recording with a different one. 

The disadvantages are that the accuracy will most likely be lower than the accuracy of 
ASR-based methods described earlier in this chapter and that, due to the distortion nature 
of the method, if the student says a sentence that is completely off from what was required 
from them, the algorithm might still be able to distort their speech to the extent that it will 
fit the reference recording, even though it would obviously be perceived as incorrect by a 
human. Our assumption is, however, that the speaker will strive for a correct pronunciation 
and will not deliberately feed the algorithm with unconstrained speech. Finally, as already 
mentioned, it might happen that the speaker pronounces one of the words using a different 
correct pronunciation than is actually present in the reference recording, and yet his correct 
pronunciation will be rejected because it is different than that particular realization of the 
word in the reference recording. 

Even though the DTW method has a number of disadvantages, the advantages hold a 
lot of potential. This thesis will explore the potential of DTW to be the base algorithm 
for a more sophisticated pronunciation assessment and error detection algorithm. Most 
importantly, the DTW algorithm by itself obviously does not provide any feedback on the 
specific pronunciation errors. Therefore, the main task of this work will be to adjust the 
algorithm so that it also able to provide corrective feedback to the user. 

The next chapter describes the application provided by supervisor and how it was 
redesigned. 
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Chapter 4 

Redesign of the Original 
Applicat ion 

As already mentioned at the end of the previous chapter, this work deals with the improve­
ment of an existing pronunciation training application. The application was provided by 
supervisor and contains an implementation of the DTW algorithm. This chapter will talk 
about the original application in detail and describe how the application was redesigned 
both conceptually and regarding the user interface. 

4.1 Original Application 
The original application is a JavaScript web application implemented as a j Query module 
that can be inserted into a website. The aim of the original application is to teach English 
pronunciation from educational videos. Its main component is a video player that stops 
after certain sentences in the video and asks the user to repeat them using a simple user 
interface with a microphone button. After the sentence is recorded by the user, the user 
is shown a feedback in the form of a similarity score in percentages. The second part of 
the feedback is that words with a high score are coloured in green, whereas words with low 
score are coloured in red. The user can also replay his own voice and compare it to the 
reference recording. The user interface can be seen in Figure 4.2. 

Figure 4.1 displays the overall design of the original application. It contains the simple 
DTW implementation, bottleneck feature extraction and voice recording functionality. 

user 
BN features 

user recording > extract BN features 

reference 
BN features 

calculate DTW show score 

upload files 

Figure 4.1: Original application design. 
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Click the microphone to record your speech. 

But I don't want to go. So what can I say? 

Figure 4.2: The old application UI. 

4.1.1 Reference Data 

The application requires a set of reference recordings and their segmentation to words and 
phonemes. This segmentation was prepared in advance using a pronunciation dictionary 
and an acoustic model of an ASR system. Thanks to the reference segmentation, the DTW 
algorithm will be able to segment the user speech to the corresponding words and phonemes. 

4.1.2 Bottleneck Feature Extraction 

The original system contains a neural network (NN) that is used to extract the bottleneck 
(BN) features from the recordings. 

Bottleneck features are generated by a multi-layer perceptron (MLP) that is trained to 
predict phonemes [13]. The bottleneck neural network has multiple hidden layers, typically 
three. One of the hidden layers called the bottleneck layer has a significantly lower number 
of hidden units, compared to the other layers. The network creates a bottleneck of infor­
mation in the bottleneck layer that provides features of low dimensionality [32]. Bottleneck 
features are direct outputs of the BN layer. Inputs for the BN network are melbank features 
extracted from speech. 

BN features are a good representation of phonemic and prosodic information in the 
audio and have lower information redundancy than other features. 

The neural network used in this work has three hidden layers. The third one is the 
bottleneck layer. The net is trained on native English speech to predict phonemes. The 
extracted BN features are inputs for the DTW algorithm. 

In real time, bottleneck features are extracted only from user recordings. BN features 
of the reference recordings are prepared in advance to speed up the algorithm. 
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4.1.3 D T W 

The original application contains an implementation of the DTW algorithm. Inputs for the 
algorithm are bottleneck feature vectors and its output is a similarity score described in 
the next section. 

As already described in the previous chapter, the DTW algorithm takes the features 
extracted from the reference and user recordings and finds an alignment between them 
so that the acoustic similarity of the two recordings is as high as possible. The original 
application only takes into account the words, not the phonemes. Therefore, acoustic 
similarity is computed on the word level and the algorithm does not provide any information 
about what kind of pronunciation error has been made. 

4.1.4 Similarity Score 

The original application uses a simple similarity score of the reference and user's utterances. 
This score is displayed to the user in percentages as a very simple feedback. The similarity 
score is computed both globally (for the whole utterance) and for each word k. The acoustic 
similarity score is computed as follows, using the resulting DTW warping path: 

scorek = 1 — (cumulativeDistancek) / warpingPathLengthk, (4-1) 

where the word's cumulative distance is computed as the difference of the cumulative 
distances at the end of the word and at the beginning of the word. 

The final score determines the acoustic similarity of the given pair of words: the reference 
and the user's. 

All the following work described in this thesis is based on this application and utilizes, 
modifies and improves the existing functionality. 

4.2 New Application 

This work deals with three areas of improvement of the original application: user interface, 
algorithm and corrective feedback. This section will describe the first area: the complete 
redesign of the application's frontend. 

4.2.1 User Interface 

Not only was the user interface remade, but conceptually, the application was redesigned 
from a video player to a pronunciation training session that includes a number of pronunci­
ation exercises. In each exercise, the user is asked to pronounce a single sentence. There are 
three possible exercise modes (the exercise mode can be set up in the module parameters): 

1. Read mode. User is shown a sentence and is prompted to read it. 

2. Repeat mode. User listens to a reference recording (plain audio) and is asked to 
repeat it. 

3. Repeat with subtitles mode. User can see the sentence in text and can hear the 
reference audio at the same time. Then the user is asked to repeat the sentence. 

At the end of each exercise, the user is shown the acoustic similarity score in percentages. 
Plus, if the exercise is in the read or repeat with subtitles mode, each word of the sentence 
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is coloured according to its similarity score. If the score is too low, the word is coloured in 
red, if the score is high enough, the word is coloured in green. 

The user can also skip or repeat an exercise, listen to their own recorded voice and 
replay the reference recording. By hovering over a reference word, they can hear the word's 
reference pronunciation and by clicking on the word, the can hear their own pronunciation. 
This way, the user can compare their pronunciation with the reference one. Figure 4.3 
shows the resulting user interface. 

Listen and repeat the following recording: 

4')) But that has never happened. 

Next> 

4 4 % 

Figure 4.3: The new application UI (repeat with subtitles mode). 

At the end of the pronunciation session, the user is given an overall score computed as 
the average of all exercise scores. 

4.2.2 Customizability 

The jQuery module is customizable through module parameters. The application can be 
run both on one and on a list of recordings. There are three possible exercise modes to 
choose from. Segments can be picked from a file randomly or sequentially. Al l parameters 
are summarized in Appendix C. 

4.2.3 Reference Data 

The new application requires the same data as the original application: reference record­
ings, reference segmentation and bottleneck features extracted from the reference audio in 
advance. The big advantage of this application is that if the reference segmentation to 
words and phonemes is provided, almost any kind of audio data can be used within the 
application. 

In this phase, both the pronunciation assessment algorithm and the style of corrective 
feedback to the user stayed the same as in the original application. Before any other 
improvements of the application were made, the application was used to collect data from 
a variety of native and nonnative English speakers. 

The following chapter (Chapter 5) describes the particular dataset of reference record­
ings that was used for the data collection, how the data was collected, and it summarizes 
some findings from the data. 

28 



Chapter 5 

Data Collection 

Along with the original application, a dataset of reference British English recordings was 
provided by supervisor, including reference segmentation to words and phonemes, and bot­
tleneck features extracted in advance. This data was ready to use with the redesigned 
application and therefore, it was used as reference data for collecting a dataset of user 
recordings from native and non-native English speakers. 

The aim of the data collection was to obtain a set of user utterances of the reference 
sentences, that would contain real pronunciation errors. Such data could then be annotated 
on phoneme-level errors and errors of stress and of intonation. The annotated data could 
be used for additional improvements of the pronunciation assessment algorithm. 

Even though the data was successfully collected, it turned out to be unsuitable for 
the purposes of algorithm improvements. Unfortunately, many of the recordings were low-
quality, incomprehensible or with a lot of background noise. Pronunciation errors in the 
recordings were often not clearly distinguishable and therefore not suitable as testing data 
for building a pronunciation error detection algorithm. Due to the low quality of many of 
the recordings and due to the lack of time needed to annotate such data, data annotation 
was eventually not done. 

Instead, a small set of user recordings from one Czech female student was created, anno­
tated by hand and used for building and testing the algorithm. Reason for not using some 
of the existing datasets, such as ISLE (Interactive Spoken Language Education) [20], is that 
it would be necessary to format them into the format required by the application, generate 
the segmentation and extract the features. This was already prepared by supervisor in the 
dataset of British English recordings. Also, the existing datasets only contain annotations 
of phoneme-level errors, whereas this work also focuses on prosodic errors, such as errors 
of stress and intonation. 

This chapter describes the reference dataset provided by supervisor and how it was used 
to collect the data using the redesigned application. Next, it describes the collected dataset 
and what knowledge can be inferred from it. 

5.1 Reference Dataset Description 

The dataset of reference recordings provided by supervisor consists of over 400 recordings 
randomly chosen from YouTube educational videos. The dataset contains a wide range 
of learning material with varying quality, content and speaker style. For the purposes 
of creating a suitable set of reference sentences for data collection, a subset of reference 
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recordings was picked from this dataset. As it was desired for the reference speech to be as 
clear as possible, the following criteria were determined for selecting suitable data: 

• British English 

• no background music or noise 

• adult voice 

• clear speech 

• meaningful, short and clearly separated sentences 

• as few names and complicated words as possible 

• as few filler words and interjections as possible 

6 recordings were chosen for the application. 4 of them fulfils all of the selected criteria, 
one contains loud background music and one contains a child's voice. 

5.2 Data Collection 

A narrow selection of 7 particular sentences from the 6 recordings was chosen to be displayed 
to every single participant of the data collection. Each of these 7 sentences was presented in 
all three modes to the user: as a plain text sentence, as an audio, and as an audio with text. 
In addition to this small selection of sentences, another sample of 21 sentences randomly 
chosen from the 6 recordings were presented to each user (in a random mode, too). Thus, 
there were 28 distinct sentences shown to one user and a total of 42 pronunciation exercises. 

In each exercise, the user either read the sentence or listened to the recording and then 
read or repeated it. Then the application displayed the simple acoustic similarity score 
of the user's pronunciation based on the DTW algorithm. Each recorded utterance was 
automatically uploaded to a server, along with the score and user data. User data collected 
by the application was: age, gender, whether or not the user is a native English speaker, 
native language and level of English according to the Common European Framework of 
Reference for Languages (CEFR). 

Data from approximately 875 people from different countries all around the world has 
been collected, which makes it over 37000 recordings. The number of participants is only 
approximate because user identifiers were not collected. One recording session contained 
42 exercises with the possibility to either skip an exercise or to repeat an exercise. That 
is why the numbers of recordings per person differ. The majority of the participants were 
from India, and there were native English speakers from the United Kingdom and America, 
as well as nonnative speakers from Czech Republic, Germany, Hungary, Malaysia, Japan, 
Greece, France or African countries. Details are summarized in table 5.1. 

5.3 Data Analysis 

The collected data was analysed for score differences by certain data attributes to find out 
whether anything interesting can be inferred from the data. As expected, scores of native 
English speakers seem to be significantly higher than scores of non-native English speakers, 
as can be seen in Figure 5.1. 
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Table 5.1: Number of recordings obtained of people with different native languages. 

Native language # of recordings Approx. # of people 
Urdu 26987 630 
Pashto 5577 125 
English 906 20 
Arabic 888 20 
Punjabi 545 12 
Czech 531 11 
Persian 430 10 
Hindi 128 3 
Greek 98 2 
Nepali 89 2 
Slovak 85 2 
German 75 2 
Irish 61 1 
Sindhi 57 1 
Telugu 55 1 
Hungarian 49 1 
Chinese 44 1 
Japanese 40 1 
Basque 3 1 
Other 1093 25 
Unknown 202 4 
Total 37943 875 

Native English speakers Non-nat ive English speakers 

i tems = 753 
mean = 0.68 
median = 0.72 

items = 37190 
mean = 0.49 
median = 0.50 

0.0 0.2 0.4 0.6 0.8 1.0 
score 

TTTTTTTTfTT IM 
0.0 0.2 0.4 0.6 0.8 1.0 

score 

(a) (b) 

Figure 5.1: Histogram of scores from native (a) and non-native (b) English speakers. 
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Figure 5.2: Histogram of scores from read mode (a), repeat mode (b) and repeat with 
subtitles mode (c). 

When scores were compared across the three different exercise modes, the resulting 
histograms in Figure 5.2 suggest that when participants are presented an exercise in the 
read mode, their scores tend to be slightly worse than in the repeat with subtitles mode, 
in which the scores were the best out of all three modes. It makes sense that if a user 
hears the correct pronunciation first, they are more likely to actually repeat the correct 
pronunciation. Reading exercises seem to be generally slightly more difficult for the users. 

Histograms of scores from exercises where the reference voice was a child's voice or where 
there was a lot of background noise were compared with the rest of the recordings (see Figure 
5.3). The comparison does not tell much about whether child voice or background noise 
have a direct influence on the score. Even though it would make sense if they had, more 
data and/or analysis would be needed to make any conclusions. 

Not much difference in scores was observed between different CEFR levels of English, 
too. When comparing particular languages, some of the indian languages, such as Urdu 
or Punjabi seemed to have a significantly higher number of zero scores than, for example 
Czech. Figure 5.4 shows the difference between Punjabi and Czech. More context would 
be needed in order to make any general conclusions from the data, however. 
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Figure 5.3: Histogram of scores from recordings with a child voice (a), a lot of background 
noise (b) and clear speech (c). 
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Figure 5.4: Histogram of scores from Punjabi speakers (a) and Czech speakers (b). 
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Chapter 6 

Improvements of the Pronunciation 
Assessment Algor i thm 

After the user interface was redesigned and data was collected, improved pronunciation 
assessment algorithms based on the original DTW implementation were designed. The new 
algorithms were designed with the goal for the methods to be both accurate enough in 
pronunciation error detection, and able to output the specific pronunciation errors so that 
the user can be given a corrective feedback. A set of experiments were performed to test the 
designed methods. This chapter describes the new design of the pronunciation assessment 
system and then, it discusses the experiments and their results. 

6.1 Design 

The original pronunciation assessment system, that was described in Chapter 4, contains 
only bottleneck feature extraction and the DTW algorithm. The original output of the 
system was a similarity score of the two utterances in percentages. The original system was 
extended and new components were added. 

Figure 6.1 shows the design of the new pronunciation error detection system. Stress 
error detection and intonation error detection blocks, along with feature extraction, were 
added to the system. Moreover, the DTW algorithm was slightly modified to give specific 
phoneme-level information about pronunciation errors. 

6.1.1 D T W Modification 

In this thesis, the original implementation of the DTW algorithm is adjusted so that it is 
able to provide more meaningful results and corrective feedback to the user, rather than 
simply a single number (similarity score) for each word and sentence. 

First, the algorithm was modified to work not only on the word level but also on 
the phoneme level. The new algorithm takes into account acoustic similarities of specific 
phonemes. Second, phonemic error detection method was designed. The method was 
designed to detect phoneme insertions and phoneme deletions solely from the DTW warping 
path. 
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Figure 6.1: Design of the new pronunciation error detection system. 

6.1.2 Energy Extraction and Stress Error Detection 

The goal of stress detection in this work is to detect any primary stress errors and provide 
specific feedback to the user about where the error has occurred exactly and advice on how 
to correct it. It is designed to work on the syllable level. 

Energy features used in the stress error detection method are extracted from the signal 
in the following manner: log energy is computed for each frame of the input signal. The 
resulting energy contours are compared for each pair of syllables in the reference and user's 
word. Primary stress is detected for each word and based on the comparison, stress errors 
are marked by the algorithm. 

6.1.3 FO Extraction and Intonation Error Detection 

Intonation error detection is designed in a similar manner as stress error detection. First, the 
fundamental frequency (FO) in Hertz is estimated, and then intonation fluency is assessed 
on the word level. Because FO extraction is performed outside of the designed system, 
using a Kaldi pitch extractor, this component of the system will not be a part of the final 
application. The goal of the intonation assessment experiments is to find out whether 
intonation assessment on top of the DTW algorithm is possible or not. 

6.2 Experiments 

In this section, improvements of the original algorithm are described in detail. Because 
pronunciation error detection is usually done using ASR-based algorithms, it is also dis­
cussed whether or not the designed methods based on the DTW algorithm without an ASR 
system could be used for pronunciation error detection and providing meaningful corrective 
feedback to the user. 

Three areas have been explored during this phase of the work. Firstly, detection of 
particular phonemic errors in terms of phoneme insertions and phoneme deletions. Secondly, 
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detection of stress errors, in terms of primary stress correctness on the syllable level. And 
finally, experimental detection of intonation errors on the word level. 

The experiments were evaluated in terms of whether the detection methods are ac­
curate enough and whether they have the potential to provide the user with a specific 
corrective feedback that will help them learn. 

6.2.1 Evaluation of Experiments 

The following experiments were performed on a small set of reference recordings taken 
from the dataset of recordings from You Tube videos described in Chapter 5. As already 
explained, the non-native dataset collected during this project and described in Chapter 5 
could unfortunately not be used to evaluate the experiments. For that reason, the following 
experiments were performed on a small set of test utterances with purposefully created 
pronunciation errors. These recordings come from one female speaker of Czech nationality 
and were manually annotated on the word, syllable and phoneme level. There were 154 
recordings in total, 31 contained purposefully created phoneme deletion errors, other 31 
contained phoneme insertion errors, 40 contained primary stress errors and the last 52 
contained intonation errors. 

The designed algorithms where evaluated in terms of true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN). True positive rate (TPR) and false 
positive rate (FPR) were computed for each experiment. The following equations were 
used 1 : 

TP 
TPR = (6.1) 

TP + FN
 V

 ' 

FP 
FPR = ——— (6.2) 

FP+TN
 V

 ' 

TP + TN 
ACC = ^ (a 

TP + TN + FP + FN
 Y

 ' ' 

6.2.2 Detection of Phonemic Errors 

The DTW algorithm itself outputs an alignment of the student and reference utterances. 
That is, for each phoneme and/or word in the reference utterance, it finds the corresponding 
segment in the student's speech. It will always try to match the two audios, and in order 
for them to match, it will perform two types of distortion transformations along the way: 
it will stretch some parts of the utterances or it will shrink them. 

Ideally, it should map all frames of a correctly pronounced phoneme on the whole 
reference phoneme, and pronunciation errors should be mapped only on the phonemes 
where the mistake has occurred. The assumption is that the similarity score of the correctly 
pronounced phonemes will be maximized, whereas the score of the errors will be minimized. 
If this assumption is correct, it should be possible to detect phone insertions and deletions 
solely from the DTW warping path. When there is a phone insertion error, all frames of the 
preceding and following phonemes should ideally be mapped on the reference phonemes, 
and all frames of the extra phoneme should be mapped on zero frames in the reference 
recording. The process should word in the opposite manner for phone deletion errors: 

x
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namely, all frames of the reference phoneme should be mapped on zero frames in the 
student's recording, where the deletion error has occurred. 

Figure 6.2 shows the two types of patterns that should ideally reflect the corresponding 
phoneme errors. The following subsections describe the algorithms used for their detection, 
and their evaluation. 

Reference: Reference: 
R E P L Y R E L Y 

Figure 6.2: Illustration of the ideal warping path patterns for deletion errors (left) and 
insertion errors (right). 

Phoneme substitution errors should be determined by the similarity score alone, given 
a specific threshold, so they will not be further discussed here. 

Phoneme Deletions 

The basic idea is that when a deletion error occurs, a large number of frames belonging 
to one reference phoneme are mapped on a very small number of frames of the student's 
utterance. In addition, logically, the deleted reference phoneme should be given a very low 
similarity score. Based on this characteristic and after the analysis of a number of warping 
paths for deletion errors, the resulting decision rules were established and used in Algorithm 
6.1. 

This algorithm was run on 31 short recordings containing deletion errors, which were 
recorded solely for this purpose. There were 1054 phonemes in total and out of these, 53 
phonemes contained deletion errors. Table 6.1 summarizes the results. In can be seen that 
only a small part of the errors is actually detected and moreover, the number of false alarms 
is high. The true positive rate is not more than 22.6% and the false positive rate is quite 
high (3.9%). 

Upon closer examination, the results revealed that the deletion of vowels is easier than 
the deletion of consonants because vowels are mostly much longer than consonants. Also, 
many errors were not detected at all because of the inaccurate segmentation to phonemes 
in the reference recording. Additionally, DTW often takes last frames of the phoneme 
before the deleted phoneme and first frames of the phoneme after it and aligns them to the 
deleted phoneme in the reference recording. So, not only is the detection more difficult, 
but similarity scores of the neighbouring phonemes are affected as well. 
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horizontalLines = extractHorizontalLines(warpingPath) 

for line in horizontalLines: 

refPhoneme, exaPhoneme = getCorrespondingPhonemes(line) 

if len(line) >= 0.95 * len(refPhoneme) 

mark as mistake 

elif len(line) >= 0.5 * len(refPhoneme) 

if len(exaPhoneme) <= 1: 

mark as mistake 

elif len(exaPhoneme) <= 4: 

if exaPhoneme.score <= 0.4: 

mark as mistake 

else: 

mark as OK 

else: 

mark as OK 

else: 

mark as OK 

Algorithm 6.1: Phoneme Deletions Detection Algorithm 

Table 6.1: Results of the phoneme deletions detection algorithm. 
Total errors 53 
Total phonemes 1054 
True positives (TP) 12 
False positives (FP) 39 
False negatives (FN) 41 
True negatives (TN) 962 
TP rate 22.6% 
FP rate 3.9% 

Phoneme Insertions 

Detecting phoneme insertion errors is similar to detecting phoneme deletions. In phoneme 
insertion errors, frames of the inserted phoneme in a student's speech are mapped on a 
very small number of frames in the reference recording. The difference is that the length of 
the path belonging to the inserted phoneme or phonemes is unknown. Because of that, the 
average phoneme length of the student speech was computed, and it has been empirically 
determined that the path length has to be at least the average phoneme length. In addition, 
the vertical line has to start at the beginning of a phoneme or end at its end, with the 
tolerance of one frame. And finally, the ratio of frames in the student and the reference 
speech within the line must be at least 2:1. The final algorithm is described in Algorithm 
6.2. 

The algorithm was run on 31 recordings with insertion errors. These recordings were 
different from recordings used to evaluate the deletion error detection. There were 32 
phoneme insertion errors in total. Table 6.2 shows that the algorithm was able to correctly 
detect only about one third of the errors (true positives). While the false positive rate 
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verticalLines = extractVerticalLines(warpingPath) 

for line in verticalLines: 

refPhoneme, exaPhoneme = getCorrespondingPhonemes(line) 

if len(line) >= 0.98 * avgExaPhonemeLength: 

if lineStartsAtPhonemeStart(line, refPhoneme, exaPhoneme) or 

lineEndsAtPhonemeEnddine, refPhoneme, exaPhoneme): 

if phonemeLengthRatio > 2: 

mark as mistake 

else: 

mark as OK 

Algorithm 6.2: Phoneme Insertions Detection Algorithm 

stayed as low as 0.7%, which is desirable, the true positive rate was only 31.2%. Even 
though this result is better than the result of deletion errors detection, it is still insufficient 
for the purposes of practical implementation. 

Qualitative analysis of the results showed that this algorithm works better if a larger 
number of phonemes is inserted by the student. However, oftentimes the results are affected 
by inaccurate segmentation of the phonemes in the reference recording (this segmentation 
was provided by supervisor and created automatically using an ASR system). It was also 
affected by not accurate enough phoneme alignment done by the DTW algorithm, as men­
tioned in the evaluation of the deletions detection algorithm. 

Table 6.2: Results of the phoneme insertions detection algorithm. 

Total errors 32 
Total phonemes 1054 
True positives (TP) 10 
False positives (FP) 7 
False negatives (FN) 22 
True negatives (TN) 1015 
TP rate 31.2% 
FP rate 0.7% 

Conclusions 

From the results of the phoneme error detection experiments, it can be concluded that 
neither of the two methods can be successfully used in phoneme error detection. While it 
might be possible to slightly increase the low accuracy of the methods by further improving 
the algorithms or by using more advanced algorithms such as machine learning, the main 
drawback of the methods is that they are heavily dependent on the results of the DTW 
algorithm. Since the main goal of DTW is to match two utterances in any possible way, it 
will distort the contents of the utterances. Based on the experiments, using such distorted 
data for the purposes of accurate phoneme error detection does not and cannot lead to 
successful results. 
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6.2.3 Detection of Stress Errors 

Let's assume stress errors can be detected from a pair of reference and student utterances 
with the help of the final DTW alignments. Based on [2], stress is defined as a combination 
of loudness (energy), pitch and duration. Energy is the primary feature of stress and it is 
extremely easy to extract from audio. Adding pitch would be outside of the scope of this 
thesis, so energy was used as the only feature in this experiment. The assumption is that 
energy itself is enough to detect stress errors with a satisfactory accuracy. 

Method 

The detection method is based on comparing energy feature vectors extracted from the 
reference and student speech. First, energy is extracted from the audio in a form of log 
energy for each frame, and it is normalized into a fixed range between 0 and 1. After that, 
energy feature vectors are aligned according to the final DTW alignment. In English, stress 
is syllable-based [17], so data was first annotated in terms of segmentation to syllables. 
Each word has primary, secondary and non-stressed syllables. In this experiment, only 
primary stress is taken into account. 

For each syllable, normalized energy vectors belonging to that syllable are compared 
between the reference and student utterances. For this step, the following three methods 
were tested: 

(i) Correlation. 

(ii) Euclidean distance of root mean square energies. 

(iii) Simple detection of a syllable with the maximum energy peak within a word. 

Correlation did not provide good results because it is dependent on segmentation ac­
curacy. Once the start time of a speech unit was slightly shifted, correlation results were 
negatively affected. Root mean square energies gave less accurate results with decreasing 
size of the speech unit. For instance, on the phoneme level, it was significantly inaccurate 
in relation to phonemes at the beginning of a word because they usually contained both 
very low and very high energy values. Instead of emphasizing the high values, the approach 
averaged the values so primary stress was almost never correctly detected if located at the 
first phoneme. 

Surprisingly enough, best results were obtained using the third and simplest method. 
For each word, the syllable corresponding to the highest energy peak within the word was 
found and marked as primary stress. Primary stress of reference and student speech was 
compared and, if different, marked as a stress error. This approach had a true positive 
rate as high as 82.3% when tested on 40 recordings with stress errors, created just for this 
purpose. False positive rate was 5.3%. Such results look promising. 

In order for this algorithm to be used in real applications, the user's point of view was 
also considered. For the user, the less false positives, the better, because they will trust the 
application more. True negatives do not play such a great role here. It is worse to tell the 
user there was an error while there was none, than to be silent about some of their actual 
errors. It was found out that only 62% of the feedback did not contain any false positives. 
This rate was called user friendliness. 38% of the feedback the user would receive from 
such algorithm would contain false positives. This means that in 38% of cases the student 
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extractEnergy() 

normalizeEnergy() 

for word in utterance: 

for syllable in word: 

primaryStress, secondaryStress = detectStress() 

if primaryStress.ref - secondaryStress.ref < THRES or 

primaryStress.exa - secondaryStress.exa < THRES: 

mark as OK 

continue 

if primaryStress.ref.syllable != primaryStress.exa.syllable: 

mark as mistake 

else: 

mark as OK 

Algorithm 6.3: Primary Stress Error Detection 

would be told they made a mistake somewhere in the sentence although they did not. For 
that reason, it was further explored how the algorithm can be improved. 

For a pronunciation error detection algorithm, it is better to decrease the number of 
false positives as much as possible, even if that means that the number of true positives 
would decrease as well (the algorithm would leave some pronunciation errors undetected). 
This will increase the credibility of the algorithm and provide for better user experience. 

Table 6.3: Reasons for inaccurate stress detection in the no threshold method. 

Reason Number of recordings 
Secondary stress has a higher energy 13 
Inaccurate DTW alignment 6 
Other 8 

After qualitative analysis of the results, it was found that most false positive and false 
negative results were caused by the fact that sometimes secondary stress in a word has 
a slightly higher energy than the word's primary stress. The reason for this reality is 
that stress is not determined just by energy but also by pitch and duration. Since it was 
impossible to add pitch into the detection process, detection of secondary stress was added 
into the method. If the primary and secondary stress were too close to each other, the word 
was automatically marked as correct in terms of stress. A threshold was set up to determine 
how close the values can be. Summary of the final method is described in Algorithm 6.3. 
Table 6.4 displays the above-discussed results. Even though the overall accuracy (ACC) of 
the detection is quite high (over 80%), the TPR and FPR values are much more significant 
factors to consider before making any conclusions. In our case, the most important measures 
are the number of pronunciation errors actually detected by the algorithm and the number 
of false alarms determined by the algorithm. 

Figure 6.3 displays the ROC curve of the stress detection algorithm, depending on the 
threshold, and Figure 6.3 show how user friendliness changes with different thresholds. 
0.02, 0.06 and 0.08 seem to be meaningful values of the threshold. 0.02 has a high true 
positive rate while 70% of feedbacks are relevant to the user. This setting catches most of 
the pronunciation errors but gives many false alarms, too. The „user friendliness" in case 
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Figure 6.3: ROC curve for the stress detection algorithm, according to the threshold pa­
rameter. 
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Figure 6.4: Dependency of user friendliness on the threshold for stress error detection. 
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of value 0.06 is even higher, while the true positive rate is still somewhat good. The value 
of 0.08 has the lowest false positive rate, which means that algorithm with this setting will 
be likely to provide a very small number of false positives, i.e. it will be most likely not to 
tell the user there has been a mistake while there was none. 

Table 6.4: Results of the stress detection method with and without threshold. 

No threshold T = 0.02 T = 0.06 T = 0.08 
Total errors 96 96 96 96 
Total syllables 475 475 475 475 
True positives (TP) 79 60 44 34 
False positives (FP) 35 28 16 8 
False negatives (FN) 17 36 52 62 
True negatives (TN) 344 351 363 371 
TP rate (TPR) 82.3% 62.5% 45.8% 35.4% 
FP rate (FPR) 5.3% 4.2% 2.4% 1.2% 
Accuracy (ACC) 89.1% 86.5% 85.7% 85.3% 
% of feedbacks without FP 62% 70% 80% 90% 
% of feedbacks with FP 38% 30% 20% 10% 

Conclusions 

Based on the experiments discussed above, detection of primary stress errors based on 
energy features and DTW alignment is possible and gives good results. The best results were 
achieved using the simple energy peak detection method in combination with a threshold 
that allows modifications of the user-friendliness of the algorithm. The algorithm could be 
further improved by adding pitch (F0 contour) into the feature array. 

6.2.4 Detection of Intonation Errors 

In addition to previous experiments, an extra one was performed. The goal of this exper­
iment was to find out whether intonation errors can be detected using simple algorithms 
and with the help of DTW alignments only. 

Intonation is usually assessed using the pitch (F0) contour of the utterance. F0 contours 
were extracted from both reference and test utterances using a Kaldi pitch extractor that 
is not a part of the designed system. Intonation was assessed with regard to five different 
intonation patterns, based on intonation patterns used in linguistics [29]. The following 
intonation patterns were taken into account: rise (R), fall (F), rise-fall (RF), fall-rise (FR) 
and constant (C). 

Instead of assessing intonation globally on the sentence level, each word was considered 
separately. It would be possible to assess intonation on the syllable level, too, but words are 
more meaningful in terms of providing feedback to the user. Moreover, more resources would 
be needed to annotate test data on the syllable level. Even though intonation assessment 
on the syllable level would be easier in terms of classification into intonation patterns (one 
syllable equals one intonation pattern), word-level assessment made it possible to create and 
annotate testing data in a reasonable time and without the need of an expert annotator. 
The disadvantage of assessing intonation on the word level, on the other hand, is that a 
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single word may contain a combination of intonation patterns, such as fall-rise-fall-rise so 
it is more difficult for classification. 

The approach taken for this experiment is similar to approaches in [16] and [2]. First, 
pitch contours are smoothed using Hamming smoothing window as defined in [27] and 
then, FO contour of each word is classified into one of the intonation pattern classes using 
several classification rules, as summarized in Algorithm 6.4. Finally, intonation patterns 
of the reference and test utterances are compared and intonation errors are determined. 
An intonation error occurs if intonation patterns that are being compared fall within the 
following set of pairs: (R, F), (R, C), (F, C), (RF, C), (RF, C), (RF, F), (FR, F), (FR, RF). 

The overall intonation pattern of a word is determined by extracting local minima and 
maxima of the pitch curve, ignoring those that are too close to each other, and using the 
rest for classification. If only two points are left, the slope of the line between them is 
taken into account, as well as the pitch change throughout the word. The parameters will 
distinguish between a C, R and F. Given that three points are left, the same parameters 
are used to determine a FR or RF. Unfortunately, using such a simple algorithm makes 
it impossible to take into account more complicated intonation patterns, but it still serves 
well as a proof of concept that such algorithm can work in practice if modified accordingly. 

smoothFOContours() 

for word in utterance: 

points = filterRelevant(extractLocalMinimaMaximaO) 

i f len(points) == 2: 

i f slope(points) < SLOPE_THRES and FODiff(points) < DELTA_F0: 

return IP_CONSTANT 

eli f slope(points) > 0: return IP_RISE 

el i f slope(points) < 0: return IP_FALL 

el i f len(points) == 3: 

i f FODiff1(points) > DELTA_F0 or FODiff2(points) < -DELTA_F0: 

return IP_RISEFALL 

el i f FODiff1(points) < -DELTA_F0 or FODiff2(points) > DELTA_F0: 

return IP_FALLRISE 

else: return IP_C0NSTANT 

else: return IPJJNKNOWN 

Algorithm 6.4: Intonation Error Detection 

The algorithm was evaluated on a set of 52 recordings with intonation errors that were 
annotated on the word level. Each word annotation contained information about whether 
or not the word contains an intonation error in comparison with the reference utterance. 

Parameters SLOPETHRES and DELTAFO have been set to 1.5 and 60 respec­
tively. Such setting proved to give the best results: FPR is 19% and TPR is 70.4% (see 
Table 6.5). It can be seen that the FPR is quite high. The reason for that may be that 
the algorithm is more accurate than a human rater in some cases. Also, the reason for 
detection errors definitely is the classification algorithm itself. Logically, a set of simple 
rules will probably not be enough for accurate classification. For that reason, it would be 
better to train a machine learning classifier solely on the intonation pattern classification 
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from pitch contours. Also, it might help increase the accuracy if data are annotated by an 
expert. 

To sum up, detection of intonation errors based on direct comparison between a refer­
ence and test utterances using the DTW alignment works, but there is a lot of room for 
improvement regarding the intonation pattern classification algorithm itself. 

Table 6.5: Results of the intonation error detection algorithm. 

Total errors 81 
Total words 239 
True positives (TP) 57 
False positives (FP) 30 
False negatives (FN) 24 
True negatives (TN) 128 
TP rate 70.4% 
FP rate 19% 

6.2.5 Summary of Results 

A number of experiments with the DTW algorithm was discussed in this chapter. It was 
found that due to the distortion character of DTW, accurately detecting phoneme-level 
errors, such as phoneme deletions and phoneme insertions solely from the warping path is 
not possible. The reason for that is that the primary goal of DTW is to lengthen or shorten 
two utterances to any possible extent so that they match. Results of DTW will most 
likely always contain inaccuracies, so it is not possible to accurately detect phoneme-level 
pronunciation errors from them. 

Results of stress error detection experiments, on the other hand, look more promising. 
Given energy features, the algorithm reached 82.3% true positive rate. With an additional 
threshold, it is possible to further decrease the number of false alarms (correct pronuncia­
tions classified as pronunciation errors), which are most harmful to the user. Along with 
false positives, true positives decrease, too. The threshold enables us to find balance be­
tween high TP rate and low FP rate. Stress detection could be further improved by adding 
pitch into the feature array. 

The same applies for intonation error detection based on direct comparison between the 
reference and test utterances. Given F0 contours, it is possible to classify contours into 
intonation patterns and draw conclusions about the correctness or incorrectness of intona­
tion based on comparison between the two patterns. The algorithm could be significantly 
improved by changing the classification rules to a classifier trained using a machine learning 
algorithm. In this case, the algorithm was not so much affected by alignment errors from 
the DTW algorithm. 

To sum up, the smaller the unit, the less accurate any detection performed on top of the 
DTW algorithm. Phoneme-level errors are very difficult to detect because of the distortion 
characteristic of DTW. Syllable-level and word-level pronunciation errors can be fairly well 
detected using algorithms that use DTW only to align the utterances. By improving the 
simple detection algorithms described in this chapter, the accuracy could rise even further. 
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6.3 Implementation 
Not all of the above-mentioned methods were implemented into the application. The final 
pronunciation assessment algorithm consists of only two parts: the improved word-level 
acoustic similarity assessment that takes into account the acoustic similarities of particu­
lar phonemes, and energy error detection on the syllable level. Due to its low accuracy, 
phoneme insertion and deletion detection was not implemented. As already explained, as­
sessing intonation would require the application to be able to extract FO contours, which 
was outside of the scope of this thesis. The overall design of the final application can be 
seen in Figure 6.5. 

reference 
energy 

user 

extract energy evaluate stress extract energy evaluate stress 

user recording extract BN features 

user 
BN features 

reference 
BN features 

1 
calculate DTW show feedback 

upload files 

Figure 6.5: New application design. 

In acoustic similarity assessment, similarity score is derived from the warping path 
of the DTW algorithm the same way as in the original application, as described in section 
4.1.4. However, the similarity score is computed on the phoneme level. Then, each word 
is analysed and marked as either correctly pronounced or mispronounced. A number of 
parameters have been set that help determine whether the word is going to be marked as 
mispronounced: 

1. There is at least one phoneme with a similarity score lower than 10%. OR 

2. There are at least 2 phonemes with a similarity score lower than 20%. OR 

3. The overall similarity score of a word is less than 30%. 

Stress error detection is more straightforward. The stress error detection algorithm 
marks all syllables where primary stress differs from the reference recording. That means 
that both the missing stress and the extra stress are marked by the algorithm. Therefore, 
each stress error consists of two parts: the incorrectly stressed syllable and the syllable that 
should have been stressed instead. This setting allows the application to colour the former 
in red and underline the latter. The threshold of the stress detection algorithm has been 
set to 0.06 (for more information see Table 6.4). 
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6.3.1 Reference Data Requirements 

In order to speed up the algorithm as much as possible, energy features of the reference 
recordings have to be provided beforehand, the same as BN features. For each recording, 
that may contain several sentences, there has to be one energy feature file and one BN 
feature file. This is a complete list of the data that has to be provided for each reference 
recording: 

• A WAV file with the reference voice. 

• A bottleneck feature file. 

• An energy feature file. 

• An X M L file containing segmentation of the recording. This has to be prepared 
ahead (by an ASR system) and has to contain segmentation to segments (one segment 
is usually one or a few short sentences), words, syllables and phonemes. For this thesis, 
all segmentation files were provided by supervisor. 

This chapter described improvements made to the original pronunciation assessment 
algorithm. In the application, outputs of the improved method are displayed to the user 
in the form of a corrective feedback. The following chapter describes how the corrective 
feedback was designed. 
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Chapter 7 

Corrective Feedback 

Corrective feedback is the third and last area of improvement of the original application. 
It is probably the most important part of the application from the user point of view 
because it is not a perfect algorithm what helps the user learn but a smart computer-to-
human communication. Of course, it would be impossible to present a meaningful corrective 
feedback to the user without having a good error detection algorithm, but a great detection 
algorithm without any feedback at all would be literally useless to the user. 

Given the algorithms described in the previous chapter, the goal is to present their 
outputs in the application's frontend in a simple and clear way that will help the user 
learn. In this chapter, the design of the corrective feedback is discussed. 

7.1 Algor i thm Outputs 

As already mentioned, the improved error detection algorithms were designed with regard 
to the corrective feedback. The output of the acoustic similarity assessment consists of 
information about whether or not each word has been pronounced correctly. Then, the 
stress error detection algorithm provides information about primary stress correctness for 
each syllable of each word. That means that each syllable is assigned one of the following 
three classes: correct primary stress, missing primary stress or extra primary stress. 

7.2 Displaying Specific Errors 

The new feedback is more sophisticated than the feedback in the original application. In 
addition to colouring the correctly pronounced words in green and incorrectly pronounced 
words in red, more specific feedback is provided. Given the algorithm outputs, the correc­
tive feedback was designed as a list of erroneous words. For each word, there is a written 
explanation of what exactly the error was, and there are buttons enabling the user to 
compare the word's reference pronunciation with their own. Apart from the written expla­
nation, stress errors are also displayed visually. Syllables that should have been stressed 
and were not are underlined, and syllables that were incorrectly stressed by the user (they 
contain an extra primary stress) are coloured in red. Theoretically, if phoneme-level error 
detection was possible, this kind of corrective feedback would be able to display erroneous 
phonemes in a similar manner as it displays stress errors. Similarity score in percentages 
was completely removed from the application. An example of a list of specific mistakes is 
displayed in Figure 7.1. 
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Listen and repeat the following recording: 

HO) Start by identifying the jobs you want to assign. 

Very good! There might be mistakes in these words: 
identifying This word sounds mispronounced. (Reference 4ty ) {My voice 4ty ) 

want This word sounds mispronounced. (Reference 4$ ) ( M y v o i c e d ) 

assign Stress more t h e under l ined syllable,, not the red one. (Reference 4$ ) ( M y voice4% ) 

Figure 7.1: Application UI showing a list of pronunciation errors. 

7.3 Global Feedback 
In addition to directly displaying the outputs of the detection algorithms, each sentence 
is also evaluated globally. In fact, the list of mistakes is showed to the user only if there 
are 1-4 erroneous words in the sentence. If the sentence has been pronounced correctly 
(there was no mistake), the user is shown an encouraging message and may continue to the 
next exercise. On the other hand, if there are more than 4 mistakes, the whole sentence is 
marked as unintelligible and the user has to repeat the exercise in order to proceed. 

Overall, the user can repeat an exercise anytime by clicking on the microphone button 
again. When the user is shown a list of mistakes and their descriptions, they can learn 
from them and try again. However, if they do not wish to repeat the exercise, they may 
still proceed to the next exercise, even though the algorithm has detected errors in the 
utterance. The reason for allowing the user to continue and not forcing them to repeat the 
exercise until their pronunciation is perfect is that in some cases, the algorithm is simply 
not right. Also, from the teaching point of view, it would not make sense to expect the 
student to be able to correct all their mistakes immediately. This is also the reason why 
the user is allowed to proceed after their pronunciation was evaluated as unintelligible three 
times. Figures 7.2 and 7.3 show how the corrective feedback looks like in case of a correctly 
pronounced sentence and an unintelligible sentence. 
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Listen and repeat the following recording: 

|>)) But I don't want to go. So what can I say? 

H')) My voice Next > 

Great! © 

Figure 7.2: UI showing feedback on a correctly pronounced sentence. 

Listen and repeat the following recording: 

It means you've got to wear a suit. 

# i My voice 

Hmmm... That doesn't sound right. Please try again © 

Figure 7.3: UI showing feedback on an unintelligible sentence. 
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Chapter 8 

Testing 

All three areas of improvement discussed in this thesis were tested. First, user testing was 
performed to find out how users interact with the UI. Second, the similarity assessment and 
stress error detection algorithms were tested by an expert on teaching the English language 
in order to obtain accuracy on real data. And finally, corrective feedback was evaluated on 
users to be able to conclude whether or not it meets its goal to help users learn. 

8.1 User Interface Testing 

User testing was performed in an early stage of the work - during the collection of the 
non-native speaker dataset. In this stage, new user interface was already implemented, 
but contained the old style of corrective feedback. The new corrective feedback was not 
yet developed. For that reason, the user testing did not include testing of the corrective 
feedback UI section. 

User testing was performed on 8 users and it was found that overall, users interacted 
with the application fairly smoothly. Thanks to the testing, a number of design issues were 
discovered, and the corresponding parts of the new UI were redesigned. 

Initially, some people did not know what to do at all, even though it was stated in 
the instructions at the top of the page. Therefore, the colour of the instruction text was 
changed from grey to black and letter spacing was increased, so that the instructions stand 
out more and attract the attention of the user better. 

Secondly, 4 people out of 8 were confused about how to stop the recording and they 
did not realise that they have to click on the microphone button for a second time to end 
the recording. However, most of them were able to learn this behaviour after a couple of 
exercises, thanks to the help message that was displayed at the bottom, saying „Click the 
microphone when you finish your speech". 

Furthermore, the third design issue that was discovered during testing, was that some 
users were confused about the meaning of black-coloured words in the feedback. The mean­
ing of green words (correct pronunciation) and red words (definitely mispronounced) was 
well understood, though. The black colour was a part of the original application's feedback. 
It used three colours: green for correct pronunciation, red for very bad pronunciation and 
black for a somewhat good pronunciation. Based on this finding, the word colouring was 
redesigned to use only two colours: green and red. 

Finally, almost none of the 8 users clicked on the underlined words in the sentence even 
though the indicator in the form of underline was supposed to tell users that they can click 
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on the words. This feature would replay the user's pronunciation of the word. Additionally, 
on hover, the word's reference pronunciation would be replayed. This is one of the reasons 
why the final improved corrective feedback contains separate buttons for replaying and 
comparing the pronunciations for each erroneous word directly in the list of mistakes. 

In addition, 21 people were asked about how easy to use the application was. Figure 
8.1 shows that the feedback was mostly very positive. 

How easy to use was the application? Did you know what to do? 

21 responses 

It tt 

I was 

It was very confusing and I 
didn't know... 

0 5 10 15 20 

Figure 8.1: Most people stated that the application was easy to use. 

8.2 Algor i thm Testing 
Because testing on the real data that was obtained from native and non-native English 
speakers earlier in the project was not possible, another means of testing had to be per­
formed. For that reason, a separate evaluation tool was developed that enabled an English 
language expert to test the pronunciation evaluation algorithm on different pronunciation 
errors. The tool is displayed in Figure 8.2. Thanks to the expert, information about the 
real accuracy of the pronunciation evaluation algorithms was obtained, using the evaluation 
tool. 

8.2.1 Expert Testing 

The expert's task was to feed the application with utterances containing different pronunci­
ation errors. This was possible because the expert was very familiar with the types of errors 
students make and knew how to create them. After the expert was shown the algorithm's 
result in the form of corrective feedback, they could correct the algorithm by simply click­
ing on the particular words. If they thought the algorithm has made a mistake, they could 
correct it by clicking on the particular red word and it would change colour to green, and 
the other way around. Sentences were evaluated on the word level. There was an attempt 
to evaluate the stress detection algorithm on the syllable level, too, using a checkbox which 
the expert was supposed to check in case the detailed feedback about the place or stress 
error was not correct. Unfortunately, the expert did not use the checkbox at all, so it was 
not possible to evaluate the algorithm on the syllable level. 
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Listen and repeat the following recording. THEN, PLEASE, CORRECT THE ALGORITHM: 

*>) cooperation and a good old-fashioned work ethic. 

Phonemic errors (green=correct, red=error). Click on a red/green word to mark it as correct/a mistake, 

4» Myvoice cooperation and a good old-fashioned flffffft ethic. 

Stress errors (green-correct, red-error). Click on a red/green word to mark it as correct/a mistake, 

4» Myvoice cooperation and a good IS!BB^H?lBTSfFt work ethic. 

Submit&Again C 

Submits Next > 

Well done overall, but there might be mistakes in these words: 

Reference c o o p e r a t i o n This wo rd sounds m i sp ronounced , 

g o o d This wo rd sounds m i sp ronounced . (Reference 

O l d - f a s h i o n e d This wo rd sounds m i sp ronounced . (Reference 

w o r k This wo rd sounds m i sp ronounced . (Reference 

e t h i c Put m o r e stress on the under l ined syl lable. (Reference 

I I ' I Myv-

Q C h e c k if incor rec t 

Figure 8.2: Expert tool used to evaluate the algorithm by experts. 

75 sentences were evaluated on the word level using the evaluation tool. Table 8.1 shows 
detailed results of this evaluation. The accuracy on real data is, of course, lower than the 
results of experiments in Chapter 6. True positive rate of the stress detection algorithm did 
not exceed 24.7% (FPR was 5.3%) and the acoustic similarity pronunciation assessment 
had true positive rate not exceeding 37.1% (FPR was 2.8%). The table also shows the 
overall accuracy of the algorithms, but for assessing the results, TPR and FPR values are 
much more relevant. 

Table 8.1: Results of expert testing on the word level. 

Similarity Stress Together 
Total errors 97 73 -
Total words 932 932 -
True positives (TP) 36 18 -
False positives (FP) 44 24 -
False negatives (FN) 61 55 -
True negatives (TN) 791 835 -
TP rate (TPR) 37.1% 24.7% -
FP rate (FPR) 5.3% 2.8% -
Accuracy (ACC) 88.73% 91.52% -
Sentences total 75 75 75 
Feedbacks with FP 26 19 37 
% of feedbacks without FP 65.33% 74.67% 50.67% 
% of feedbacks with FP 34.67% 25.33% 49.33% 

About 65% of feedback of similarity assessments alone did not contain any FP values. 
It was about 74% in case of error detection alone. When combined, however, only 50% of 
all feedback shown to the user did not contain any misleading information, which is quite 
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low. Ideally, the user should trust the assessment system, but if in 50% of cases they are 
given a feedback that contains a false alarm, will they trust such application? 

8.2.2 User Testing 

Feedback from real users on their perception of the algorithm's accuracy was also collected. 
This is a qualitative feedback obtained from 21 users using a questionnaire. From the 
graph in Figure 8.3, it can be seen that most users perceived that the algorithm catches 
their pronunciation mistakes fairly well. 76.2% of users rated the ability of the algorithm 
to detect pronunciation mistakes by number 4 or 5 on a 5-point scale. 23.8% of users rated 
the algorithm with a point 3. 

How well did the app catch any pronunciation mistakes you made? 

21 responses 

10 (47.6%) 

• (28 6 
5 (23.8%) 

0 (0%) 0 (0%) 

Figure 8.3: Graph showing the users' evaluation of the application's ability to detect errors. 

How frequently did the app incorrectly rate your correct pronunciation as a 
mistake? (Example: you are asked to pronounce "I like sports". You do it and 
you are confident that your pronunciation is correct. But the application 
tells you that you made a mistake in the word "sports".) 

21 responses 

0 Almost never 
0 Sometimes 

0 Quite often 
0 I saw false alarms all the time! 

Figure 8.4: Graph showing that most users noticed the application sometimes gives false 
alarms. 
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On the other hand, 85.7% of users stated that the application displayed false alarms, 
as seen in Figure 8.4. Only 14.3% of users said they did not notice any false alarms. 

8.3 Corrective Feedback Testing 
The usefulness of the new corrective feedback was tested on 21 users using a questionnaire. 
The users were presented with the new application and were asked to test it. Then, they 
were presented with the older version of the application used for data collection. The older 
version used similarity score in percentag 6S ctS cl feedback instead of the list of mistakes. 
The users were asked to rate the helpfulness of both approaches and to compare the two 
styles of corrective feedback. 

The vast majority (81%) of users rated the new corrective feedback as more useful than 
the old one (see Figure 8.5). Only 19% of participants did not think the new feedback was 
more useful. Figures 8.6 and 8.7 show how users rated the old and the new feedback on a 
10-point scale. 

Compare the first application with the old version you just saw. Which one 
is better? 

21 responses 

# The new one (with list of 
mistakes) is much more useful 

# The old one (with percentages) 
is much more useful 

They are both equally useful 

0 I don't know 

Figure 8.5: Most users found the new corrective feedback to be more useful than the old 
one. 

According to Figure 8.8, users found the list of the specific words to be the most useful 
part of the corrective feedback. However, both the written explanation of the mistake and 
the buttons for pronunciation comparison were also rated as useful by the users. 

In addition to user testing, the British English language expert who helped evaluate the 
algorithm also provided her opinion on the corrective feedback. She said the new corrective 
feedback was a big improvement compared to the previous one. She especially appreciated 
the list of specific pronunciation errors and the more detailed description of what exactly 
was wrong. 

8.4 Conclusions 

Based on the testing summarized above, it seems that while the user interface and corrective 
feedback were well-accepted by users, there is a lot of room for improvement regarding the 
error detection algorithm. While the algorithm does work to certain extent and the feedback 
on its accuracy is rather positive than negative, it would be desirable for the true positive 
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How helpful was the old feedback (scoring your pronunciation in 
percentages)? 

21 responses 

6 5 (23.8%) 

1 2 3 4 5 6 7 8 9 10 

Figure 8.6: Ratings of the old corrective feedback. (1 = not useful, 10 = extremely useful) 

Figure 8.7: Ratings of the new corrective feedback. (1 = not useful, 10 = extremely useful) 
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Which parts of the new corrective feedback did you find useful? 

21 responses 

The list of the specific 
words in which... 

The description of the 
mistake (e.g. "T... 

Buttons for comparing the 
correct pronu... 

0 5 10 15 20 

Figure 8.8: The list of specific words seems to be the most useful part of the correcie 
feedback. 

rate to be higher and for the false positive rate to be lower. Based on the testing, the 
number of false alarms seems to be too high. 

My suggestion is to improve the stress error detection algorithm by adding pitch into 
the feature array and by using some machine learning method. For assessing prosody, DTW 
seems to be a sufficient solution. However, regarding the similarity assessment method, I 
would suggest to replace the DTW algorithm with an ASR-based approach to phoneme-level 
pronunciation error detection. DTW seems to be able to provide only approximate results 
on pronunciation correctness, while efficient pronunciation teaching requires the algorithm 
to be able to detect specific errors accurately. 

The user interface could be further improved by redesigning the microphone button so 
that recording it is more intuitive. Also, it might be worth changing the indicator in the 
form of an underline below words to something else due to the fact that users rarely used 
the feature. 

And finally, if the algorithm was improved to be able to detect phoneme-level errors, cor­
rective feedback could be extended to cover phoneme deletions, insertions and substitutions 
as well, which might be extremely helpful to the user. 
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Chapter 9 

Conclusion 

In this thesis, automatic pronunciation assessment and error detection techniques were 
discussed, and improvements of an English pronunciation training web application provided 
by supervisor were presented. The application was improved in three areas. 

First, user interface was redesigned from a video player to a set of pronunciation exer­
cises. It was tested on users and overall, the new user interface was very well accepted by 
users. In addition, the redesigned application was used to collect data from more than 800 
native and non-native English speakers. 

Second, the pronunciation assessment algorithm based on DTW was improved. The 
pronunciation assessment method in the original application consisted of the basic DTW 
algorithm and an acoustic similarity score. In this work, three areas of algorithm improve­
ment were considered and corresponding experiments were performed: phoneme-level error 
detection, stress error detection and intonation assessment. Al l methods were designed with 
the goal to have an accurate error detection system that would be able to output specific 
errors that could be presented to the user in the form of a corrective feedback. 

It was found that while stress and intonation assessment worked fairly well, it was very 
difficult to detect phoneme-level errors using DTW only. While using DTW for prosodic 
assessment might be sufficient, it seems that for accurate phoneme-level error detection, it 
is better to use ASR-based methods that provide more lexical and language-related infor­
mation for phoneme recognition. This could be the greatest improvement of the application 
for the future. Regarding stress error detection, it could be further improved by adding 
pitch to the feature array. Intonation assessment could work better if more sophisticated 
algorithms, such as machine learning algorithms for intonation pattern classification, are 
utilized. 

The final application contains word-level assessment of pronunciation and syllable-level 
stress error detection. Testing of the algorithms by an English language expert confirmed 
that there is still a room for improvement. 

The third and last area of improvement is the corrective feedback. The corrective 
feedback presents to the user the results of pronunciation assessment and it is designed 
as a list of specific mistakes and their descriptions. It was tested on users and it was 
found that in comparison with the old corrective feedback, which used percentages only, 
the new feedback was rated by users as much more useful. The application's ability to 
communicate specific words where error has been made was most appreciated part of the 
corrective feedback. 

To sum up, in this work, the application was improved in all three areas. User feedback 
on the user interface and the corrective feedback was very positive. However, even though 
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it was improved, the pronunciation assessment algorithm turned out to be still not accurate 
enough. The biggest improvement of the application for the future would be in the area of 
the algorithm. 
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Appendix A 

Content of the Storage Med ium 

This is the list of content on the storage medium enclosed to this thesis: 

• Text and source files of this document 

• Source code of the improved application 

• Source code of the expert evaluation tool 

• Source code of all experiments performed in this work 

• Example subset of the collected dataset 

• README.txt 

The README.txt file contains a more detailed explanation of what is included.s 
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Appendix B 

Consonant Types 

Consonants can be classified into types based on their place of articulation and manner of 
articulation. 

There are 8 places of articulation in the English language and all of them are displayed 
in Figure 2.1. Each place of articulation determines a consonant type. 

1. Bilabial consonants are created when the two lips momentarily come together and 
obstruct the stream of air. Examples: p, b, m. 

2. Labio-dental consonants are produced when the lower lip is raised toward the upper 
teeth (/, v). 

3. Dental consonants are created by obstructing the air stream using the tongue tip 
and the teeth (th). 

4. Alveolar consonants. The front of the tongue is raised toward the alveolar ridge 
(behind the upper front teeth). Examples: t, d, n, s, z, I... 

5. Post alveolar consonants. Created by moving the tongue toward the post-alveolar 
part of the hard palate (sh, English r). 

6. Palatal consonants. Obstruction is made in the palatal area and the examples are 
the initial sounds of year, church, judge or hue. 

7. Velar consonants. Obstruction is at the soft palate (k, "hard c" in coat, "hard g" in 
goat). 

8. Glottal consonants. Obstruction is at the vocal cords (h in hat, and sounds like "uh", 
"oh"). 

There are 7 manners of articulation, each representing one consonant type. 

1. Stop consonants (stops). There is a momentary but complete blockage of the air 
stream (initial sounds of ball, doll, second sounds of spill, still). 

2. Aspiration. The stop is held so long that air pressure is built up behind the ob­
struction and then released {pill, till). 

3. Nasal stop. Air is blocked in the mouth but allowed to flow out the nose (final 
sounds of beam, bean, bing). 
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4. Fricative. Produced when two articulators are very close to each other but not 
touching and they cause turbulence (/, v, th, s, z, sh, h). 

5. Approximant. Two articulators are close to each other but not close enough to 
cause turbulence (y in yet, w in wet, r in red). 

6. Affricate. This is the combination of the he alveolar stop t and the palatal fricative 
sh (beginnings of chump, jump). This characteristic implies an interesting fact: white 
shoes said together without a pause sound almost the same as why choose. 

7. Flap. Flap is produced when the tongue taps against the alveolar ridge. Occurs in 
American English as the middle consonants of rider, writer, latter, ladder. 
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Appendix C 

Module Parameters 

Table C . l describes all customizable parameters of the final JavaScript application (jQuery 
module). The module can be included into a HTML website. 

Table C . l : Overview of module parameters. 

Parameter Description 

recordingJsonpUrl the JSONp URL to load recording data from 
uploadUrl URL for uploading recorded segments 
width glplayer element width; if 0 then 100% 
height glplayer element height; if 0 then 100% 
autoStart if true, audio starts playing without user's inter­

action 
mode exercise mode: 'read' 'repeat' 'repeatWith-

Subtitles' 
randomModes if true, modes will be picked randomly for each 

segment 
selectionStrategy selection of segments from recordings: 'sequen­

tial' 'random' 'datacollection 
speakScoreCalibration 1 - very hard, 2 - hard, 3 - medium, 4 - easy, 5 

- very easy 
syllables true if recording files contain segmentations to 

syllables 
showHints if true, instruction bubbles will be shown to the 

user 
multipleRecordings true if more files with recordings will be used 
recordingJsonpUrlArray array of URLs to load recording data from (if 

multipleRecordings is set) 
segmentsFromEachRecording number of segments taken from each recording 

data; if 0, all we be taken 
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