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a b s t r a c t

Viewshed analysis is a GIS tool commonly used in a number of research and practical spatial analyses.
Input data and their spatial uncertainty are important aspects affecting analysis reliability. Given that
inappropriately selected input geodata can produce imprecise visibility models and as a result cause
incorrect spatial decisions, quantifying the effect of this uncertainty on resulting visibility models is
important for the models' subsequent use. The objective of our study was to evaluate the suitability of
digital surface models with varying levels of detail (a LiDAR-based model and models based upon vector
data at differing scales) for simple (binary) viewshed analysis of wind turbines (three wind parks each
containing 3e6 turbines). Visibility models based upon this input data were compared with actual
visibility from 150 control points at random locations. The study results confirmed the prediction that
the viewshed model based on more precise input data corresponded more closely to reality. Moreover,
our study is the first to demonstrate that only the number of false positives (where the model predicts
that an object is visible while in reality it is not) depended on input data precision, while input data did
not affect the false negatives. In addition, all vector-based models had far more false positives than false
negatives, while the opposite was true for the LiDAR-based model.

When we considered the same number of modeled and actually visible wind turbines as a model's
matching of reality, there were matches at 83.6e93.7% of control points (95% confidence interval) for the
LiDAR-based model. For models based upon vector maps of various scales, the intervals were 68.4e82.2%
(1:10,000), 59.1e74.2% (1:25,000), and 48.1e63.9% (1:500,000). We recorded false positives in 6 cases
with the LiDAR-based model and 26, 39, and 59 cases, respectively, for vector-based models.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Viewshed analysis is a GIS tool in standard use for more than
two decades (e.g., Fisher, 1992; Nagy, 1994; Sansoni, 1996) to
perform numerous scientific and practical tasks. Such analyses
enable detection of surfaces that are or are not visible from one or
more observation locations, and, inasmuch as visibility is sym-
metrical, identification of surfaces from which certain objects on
the Earth's surface are visible. The wide range of possibilities for its
use include, for example, planning telecommunications tower
placement (De Floriani, Marzano, & Puppo, 1994); constructing
military structures (Smith & Cochrane, 2011), observation towers,
and tourist routes (Chamberlain & Meitner, 2013; Lu, Zhang, Lv, &
Klou�cek), lagner@fzp.czu.cz
Fan, 2008); selecting sites for new photovoltaic power plants
(Fernandez-Jimenez et al., 2015); applications in archaeological
research (e.g., Paliou, 2011) and landscape planning (De Montis &
Caschili, 2012); and tagging landscape photographs in combina-
tionwith volunteer geographic information (Brabyn &Mark, 2011).
Throughout the time that visibility analyses have been used, their
limitations and inaccuracies have been discussed. Fisher (1992)
noted two mistaken assumptions in visibility analysis: first, that
the input digital elevation model is accurate, and second, that
viewsheds constitute a Boolean phenomenon. This author (Fisher,
1992, 1993, 1994, 1995, 1996) as well as a number of later studies
(e.g., Chamberlain&Meitner, 2013; Fernandez-Jimenez et al., 2015;
Ogburn, 2006) dealt with the possibilities and algorithms of fuzzy
viewshed modeling and visual magnitude, the result of which is a
raster giving the probability of visibility or degree of visibility,
respectively, and not merely binary visible/nonvisible values. Such
algorithms enable incorporation of the studied object's distance
from the observer, the observation's solid angle, perspective, and so
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forth. Recent studies have suggested further procedures for indi-
vidualizing the viewshed that take into account such aspects as
solid angle, defined by Domingo-Santos, de Villar�an, Rapp-Arrar�as,
and de Provens (2011) as the surface area of the observer's retina
covered by a given object, and the vertical dimension of terrain,
which combines the slope of the visible surface, difference in
elevation between the observer and the visible terrain, and relative
aspect of the terrain in relation to the observer into a new Vertical
Visibility Index (Nutsford, Reitsma, Pearson,& Kingham, 2015). One
field with particularly apparent efforts to bring visibility analyses
closer to reality and human perception is that of assessing the vi-
sual impact of wind turbines (WTs). Here, in addition to the
aforementioned improvements in GIS algorithms and creation of
specialized software (Manchado et al., 2013), we encounter a
number of other evaluation techniques. These include verbal
questionnaires, photo-based questionnaires, questionnaires based
on computer simulation, and questionnaires completed while
viewing actual landscapes (for a review of these methods' use, see
Molnarova et al., 2012). Research designed in this way (e.g.,
Betakova, Vojar, & Sklenicka, 2015; Bishop & Miller, 2007) conveys
information on distances from the observer at which WTs have the
greatest visual impact, frequently in combination with such other
parameters as the number of WTs, rotor movement, and the
landscape's scenic beauty. These results provide a solid foundation
for planning studies focused on GIS viewshed analysis quality and
selecting specific parameters (landscape character, number of WTs
in the study area, viewshed distance, and so on).

Based on the number of articles published, we can state that the
study of those phenomena affecting visibility in terms of humans'
subjective perception and improvements to GIS viewshed algo-
rithms constitute a rather frequent topic of research (e.g., Bishop &
Miller, 2007; De Montis & Caschili, 2012; Domingo-Santos et al.,
2011; Germino, Reiners, Blasko, McLeod, & Bastian, 2001; Kim,
Rana, & Wise, 2004; Manchado et al., 2013). Very few papers,
however, have dealt with the effect of the spatial precision of input
geodata on the reliability of results from visibility analyses, even
though some authors had previously noted a potential effect
(Fisher,1992; Huss& Pumar,1997) and input geodata's influence on
the results of spatial analyses has been demonstrated many times
in other fields. For example, a potentially analogous situation can be
seen in ecology, where geodata's spatial uncertainty is an estab-
lished concept and its effect on analytical results is a known fact
(for review see, e.g., Barry & Elith, 2006; Moudrý & �Símov�a, 2012).
In the case of visibility modeling, the accuracy of the resulting
model, whether based on a basic viewshed algorithm or its more
advanced variants, potentially depends on the precision of the
input digital surface model (DSM), which combines the accuracy of
a digital terrain model with the correct elevation and spatial
determination of objects within the model, particularly vegetation
and structures. Examples of rare studies dealing with input data
precisionwere presented by Lake, Lovett, Bateman, and Day (2000)
and Sander and Manson (2007), who focused upon modeling
structures as vertical obstacles to visibility. In order to create a DSM,
data at differing spatial scales are generally used and are based
upon both remote sensing and ground mapping. Probably the most
precise inputs are LiDAR-based surface models (see Castro, García-
Espona, & Iglesias, 2015; Lake et al., 2000; Murgoitio, Shrestha,
Glenn, & Spaete, 2014). At the same time, LiDAR data is also the
most expensive as well as the most demanding in terms of pro-
cessing the original point cloud into a raster or triangulated surface
(a triangulated irregular network). Moreover, it frequently is un-
available for a given study location. A question thus arises as to the
degree to which LiDAR-based surfaces can be replaced within vis-
ibility analysis by surfaces created through such approaches as
using contour lines with elevation values and objects with expertly
assigned height, such as polygons of forests boundaries and
structure footprints, as well as a question as to the effect that the
scale of the data used has on the reliability of visibility analysis.

Evaluating whether a viewshedmodel has identified visibility in
accordance with reality, and therefore whether the tested algo-
rithm and/or input data used are appropriate for the modeling
purpose, requires comparison with a control model, a control
simulation, or a control dataset. Various methods are used for
model verification, including to compare the visible area with a
reference visibility model (Lake et al., 2000; Sander & Manson,
2007), photographic documentation, or 3D visualization
(Germino et al., 2001; Maloy& Dean, 2001). A rarely used approach
is direct comparison of modeled visibility with actual visibility in
the field using visual control from predefined locations, as seen in
the work of Meek, Goulding, and Priestnall (2013). Even though
other authors have used direct determination of visibility in the
field (Lang, Opaluch, & Sfinarolakis, 2014), they did not use it to
compare a model with reality, but rather as the primary method to
determine visibility. This was due presumably to their having
insufficiently accurate input data for the purpose of their study.
Maloy and Dean (2001) used viewpoints to obtain comparison
photographs and not for direct visibility control.

The visual impact of WTs is a frequently discussed topic in
connection with visibility analyses. Given that, to the best of our
knowledge, the effect of input data on the reliability of such ana-
lyses has not been resolved, we directed our attention to this issue.
The objectives of our study were to evaluate the suitability of DSMs
with various levels of detail (a LiDAR-based DSM and DSMs based
on vector data at differing scales) for simple binary visibility ana-
lyses of WTs at three wind parks and to quantify the extent to
which visibility models based on these inputs matched reality. We
focused on both the overall extent to which the visibility models
matched actual visibility in the field and the structure of those
errors occurring, i.e., the occurrence of false positives (where the
model predicts that an object is visible while in reality it is not) and
false negatives (where the model predicts that an object is not
visible while in reality it is). We hypothesized that (i) the extent to
which a digital visibility model matched reality would depend on
the detail of input DSMs, with more-detailed DSMs recording
higher match rates, and (ii) the probability of false positives and
false negatives would not be equal in visibility models based upon
surface models differing in precision.

2. Material and methods

2.1. Study area and input data

The study analyzed the visibility of WTs in the north of the
Czech Republic (50�560 N, 15�080 E). The study area covering
300 km2 is characterized by a wide range of elevations
(200e1120 m a.s.l.) and closely related substantial heterogeneity of
land cover. Homogenous spruce monocultures predominate at
higher elevations and the percentage of forest stands diminishes
with decreasing elevation in favor of agriculturally cultivated areas.
The selected area therefore combines several landscape types
which differ in terms of their conditions for visibility analysis.
Within this broader study area, the evaluation focused on visibility
in the surroundings of WTs at three wind parks, defined as a buffer
with a radius of 5 km around eachWT (see Fig.1). These parts of the
study area are characterized by undulating terrain with elevation
varying between 211 and 723 m a.s.l. (see Fig. 2). Mean elevations
and their standard deviations within individual wind parks are as
follow: (1) 266 ± 36, (2) 436 ± 79, (3) 421 ± 50). Wind parks with
more than oneWT (3e6 per park) and the evaluation distancewere
selected in view of the findings by Betakova et al. (2015).



Fig. 1. Study area: 5 km buffers around WTs, north Czech Republic.
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The study area also has available geodata that differ not only by
the method of their acquisition but also in scale and accuracy. Thus,
they represent a cross section of products available in the Czech
Republic potentially usable for visibility analysis (see Table 1 for
Fig. 2. Character of terrain within the study area. Focal statistics box describes terrain he
details). We used four input datasets, which can be divided into two
categories: LiDAR-based and vector-based. The most modern and
most accurate is the 1st Generation LiDAR-based DSM of the Czech
Republic (LSM), acquired progressively across the entire Czech
terogeneity as standard deviation of elevation within 100 � 100 m moving window.



Table 1
Description of input datasets.

Acronym
within study

Czech
acronym

Scale Year of last
update

Elevation
accuracy

Planimetric
accuracy

Contour
interval

Data description

LiDAR-based
dataset

LSM DMP 1G Density of elevation
point cloud
is 1e2 point/m2

2010 0.4e0.7 m 0.4e0.7 m No contour Digital surface model represented by elevation
point cloud from data acquired by aerial LiDAR
covering part of the Czech Republic

Vector-based
datasets

Map10 ZABAGED 1:10,000 2011 0.7e5 m 0.5e1 m 1 m
2 m
5 ma

Small-scale vector database covering the
entire Czech Republic

Map25 DMU 25 1:25,000 1998 5e10 m 0.5e20 m 5 m Medium-scale vector database covering the
entire Czech Republic

Map500 ArcCR 500 1:500,000 2014 25e50 m up to 200 m 50 m Large-scale vector database covering the
entire Czech Republic

a The interval depends on the character of the terrain.
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Republic using airborne laser scanning. Vector-based datasets,
within which we include standard, commonly used vector topo-
graphic maps, were represented within the study at various scales.
Small-scale datasets are represented by a basic national map at a
scale of 1:10,000 (Map10). Medium-scale datasets are represented
by a vector topographical map called Digital Model of Area
1:25,000 (Map25). Large-scale datasets are represented by a vector
geodatabase of the Czech Republic at a scale of 1:500,000
(Map500). In all vector-based datasets, elevation is displayed by
contour lines and topography by polygons representing the foot-
prints of individual objects on the ground.
2.2. GIS data processing

All GIS analyses were conducted using ArcGIS 10.2 software
(ESRI, CA, USA). Inasmuch as it already has been known for nearly
two decades (see, e.g., Dean, 1997) that use of DSMs yields more
accurate results for the viewsheds than does use of DTMs, we
created four DSMs as inputs for visibility analyses based on input
geodata. For vector-based datasets, the DSMs were always calcu-
lated as a sum of rasters comprising the terrain (a digital terrain
model [DTM]) and objects on the terrain (a digital object model
[DOM]). For details, see Table 2. DTMs were calculated by inter-
polating contour lines using the Topo to Raster method. To create
DOMs, we added the estimated elevation of objects on the ground
to individual polygons representing said objects and rasterized the
polygons. Inasmuch as the study area contains only rural structures
mainly comprising houses, we selected the height of 8 m for
structures. We assigned the height of 20 m to forest stands as an
estimate of the dominant height of forest stands in the area based
on data from forest management. Where other woody vegetation
types, such as young forests and orchards, were distinguished in
the datasets' attributes, we assigned them the height of 5 m, which
on the basis of our experience is a typical average height for these
features in the study area. The DSM from the LSM was created by
resampling the triangulated irregular network supplied by the
State Administration of Land Surveying and Cadastre into a regular
raster. All DSMs were created at 5 m resolution.

We assigned the height of hubs (center of blade rotation) to
Table 2
Creation of four digital surface models (DSMs) from input datasets.

DSM DTM e source elevation d

LiDAR-based surface model ¼ elevation point cloud
Vector-based surface model, 1:10,000 ¼ MAP10 (contour lines)
Vector-based surface model, 1:25,000 ¼ MAP25 (contour lines)
Vector-based surface model, 1:500,000 ¼ MAP500 (contour lines)
points representing individual WTs according to the wind parks'
technical documentation at 40e95 m (OFFSETA parameter) and
observer height at 1.8 m (OFFSETB parameter). The Observer Points
tool was employed for all visibility analyses. This tool identifies how
many and which analyzed objects are visible from each raster
location, and so the resulting rasters' pixel values include the
number of WTs visible from a given location. Each wind park was
analyzed independently and the resulting layers were clipped by
the 5 km buffer zones. As it is reasonable to assume that observers
in the forest or among structures cannot see anything, we set the
value for all forests and built-up zones to zero. The final visibility
analysis output is four digital visibility models: a) a LiDAR-based
visibility model, b) a vector-based visibility model at 1:10,000, c)
a vector-based visibility model at 1:25,000, and d) a vector-based
visibility model at 1:500,000 (see Fig. 3 for an example).
2.3. Field data collection

The aim of the field data collection and subsequent analysis was
to evaluate and compare how digital visibility models matched
actual visibility in the field. Prior to the fieldwork, we designated 50
random control points for each wind park (i.e., 150 in total). To
avoid spatial autocorrelation of visibility conditions, the minimum
distance between control points was set at 200 m. Due to minimal
visibility from forest and built-up zones, points were generated
only in open areas. At the random control points, the visibility of
WT hubs was examined by human eye. Field data were collected in
April 2014 under constant meteorological conditions. The weather
was clear to partly cloudy, temperatures ranged around 15 �C, and
wind speeds were under 5 m/s. A portable GPS receiver (Oregon
450t, Garmin) was used to navigate to the coordinates of individual
points.
2.4. Statistical analysis and evaluation of visibility models'
reliability

To evaluate the accuracy of individual digital visibility models,
we used as input data the values acquired by comparing visibility
modeled at each control point and visibility determined at those
ata DOM e source planimetric data

elevation point cloud
þ Map10: forest (20 m), orchard (5 m), built-up area (8 m)
þ Map25: forest (20 m), orchard (5 m), built-up area (8 m)
þ MAP500: forest (20 m), built-up area (8 m)



Fig. 3. Example of digital visibility models created from different DSMs (5 km buffer): (a) LiDAR-based visibility model, (b) vector-based visibility model at 1:10,000, (c) vector-
based visibility model at 1:25,000, (d) vector-based visibility model at 1:500,000.
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points by field examination. We predicted that the LSM-based
model would best correspond to reality, followed (in order) by
the models based on MAP10, MAP25, and MAP500. We worked in
two ways with the research hypothesis that the rate-modeled
visibility's match of reality would depend on input DSM preci-
sion. First (Section 3.1.), we focused on differences in the number of
WTs visible at each control point in the model and in reality. We
tested whether these differences between datasets were significant
always for two “neighboring” datasets, that is to say for the LSM-
based model with the MAP10-based model, the MAP10-based
model with the MAP25-based model, and the MAP25-based
model with the MAP500-based model. As the distribution of the
tested values apparently differed from the normal distribution, we
used the nonparametric Wilcoxon one-tail paired test. To
compensate for multiple comparisons, we adjusted the significance
level for the three tests from p < 0.05 to p < 0.0167 using Bonferroni
correction.

The second way of comparing visibility models simulated situ-
ations when the absolute difference between modeled counts and
actually visible counts of objects is not important for a landscape
planning task and it is only important whether or not the model
agrees with reality in a given way. These binary true and false
values were defined in twoways. The first (Analysis 2a, Section 3.2.)
worked with absolute accuracy, i.e., for the value to be true the
same number ofWTsmust be visible from the control point as were
given by the model. In the second case (Analysis 2b, Section 3.3.),
the true value was defined less strictly, simulating such cases as
when the visibility of even one WT would be considered as
decreasing landscape beauty. For the value to be true, it was
therefore enough for the model to determine that some (one or
more) WTs were visible from the given location and for some
actually to be seen or, alternatively, for no WTs to be visible in both
themodel and reality. In both cases, we used a test for homogeneity
with a binomial distribution to test whether the probability of
success (i.e., achieving a value of true) was identical for visibility
models based on various datasets. We compared each set with all
others using Holm's p-value adjustment method to compensate for
multiple comparisons. All statistical analyses were done using R
software (R Development Core Team., 2015).
For both definitions of the model's matching reality, we evalu-

ated the character of errors, which is to say whether the studied
datasets resulted in more false positives (a model overestimating
visibility) or false negatives (a model underestimating visibility).
For evaluation in accordancewith Analysis 2a, we took into account
the numbers of visible WTs. Cases where themodel predicted more
WTs than were seen in reality were considered false positives, and
vice versa. According to error definition 2b, false positives occurred
when the model predicted that at least one WT would be visible
when none were visible in reality. Differences among datasets in
terms of the representation of false positiveswere tested identically
as were the total number of errors (test for homogeneity with a
binomial distribution, Holm's p-value adjustment method).

3. Results

3.1. Analysis 1 e difference in the number of visible WTs

A comparison as to the number of visible WTs by which a model
based on a given dataset differed from reality confirmed the pre-
diction that visibility models created based on more-detailed input
data correspond more closely to actual visibility. The model based
on the LSM provided more reliable results than did the model ac-
quired based on vector data at the most-detailed scale tested (i.e.,
MAP10, at a very strong significance level [p < 0.0001]). Pairs of
models based on vector data at neighboring scales (i.e., MAP10 vs.
MAP25 and MAP25 vs. MAP500) can be differentiated at a level of
significance an order of magnitude weaker, although still very
strong (p < 0.001). According to this comparison, the most precise
visibility model was the one created from the LSM. Vector-based
models' reliability was in accordance with the scale of the input
data and the tested datasets yielded significantly different results.

3.2. Analysis 2a e model matches reality only when the number of
visible WTs is the same in the model and in reality

As seen in Table 3, the number of true values (i.e., the number of



Table 4
Mutual comparison of reliability of visibility models according to match definition
2a (p-value of the test for homogeneity with a binomial distribution, Holm's p-value
adjustment). Significant values are in bold.

LSM MAP10 MAP25

MAP10 0.0129
MAP25 <0.0001 0.1507
MAP500 <0.00000001 0.0027 0.1507
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control points at which the model agreed with reality according to
definition 2a) diminished with decreasing precision of input data.
In the case of the LSM-based model, there was disagreement at
11.3% of control points, while the model based on MAP500 dis-
agreed in almost half of cases (44%). A similar trend results from
mutual comparison of the reliability of models based on individual
datasets using the test for homogeneity with a binomial distribu-
tion. The LSM-based model displayed significantly better results
than did all vector-based models (the significance of the difference
strengthened with decreasing vector dataset precision, see Table 4)
and MAP10 was significantly better than was MAP500. For neigh-
boring vector datasets, however, it cannot be said that the MAP10-
based model provided results significantly different from those of
the MAP25-based model; similarly, the reliability of the MAP25-
based model did not differ significantly from that of the MAP500-
based model.

3.3. Analysis 2b emodel matches reality if at least one WT is visible
in the model and in reality or none are visible in the model and in
reality

The numbers of control points at which the model agreed with
reality according to definition 2b are given in Table 5. The number
of true values recorded follows the same trend as in the previous
case, as a more-detailed input data scale corresponded to increased
matching between modeled visibility and actual visibility. The
LSM-based model failed to match reality at only 3.3% of control
points, whereas theMAP500-basedmodel disagreed in almost one-
third of cases (28%). As seen in Table 6, mutual comparison of model
reliability shows that some model pairs were not significantly
different. For match definition 2b, where the model agrees with
reality in more cases than it does for the stricter match definition
2a, the LSM-based model was not significantly more accurate than
was the MAP10-based model. The MAP10-based model, however,
yielded better results than did the models created using MAP25
and MAP500. We can therefore say that for this very loose defini-
tion of matching between reality and model it is apparently
possible to replace LiDAR-based data with vector data at a similar
scale (1:10,000). There nevertheless was still a clear trend that
visibility analysis using more-detailed data provided more reliable
results.

3.4. Character of errors

For both cases of model error definition (false values according
to 2a and 2b), it is apparent at first sight that the number of false
negatives recorded did not depend on input data precision (see
Table 7). Regardless of howwe defined true and false values for this
study, the datasets used differed in the extent to which they
overestimated visibility (false positives), with visibility over-
estimated more by models based on less-detailed data. All vector-
based models, in addition, had more false positives than false
negatives, while the opposite was true for the LSM-based model.
The occurrence of false positives in individual models mostly
differed significantly between neighboring models, although, as in
Table 3
Relative reliability of visibility models as the number and percentage of cases where the
number of control points n ¼ 150.

Digital visibility model True False

LiDAR-based visibility model 133 17
Vector-based visibility model, 1:10,000 113 37
Vector-based visibility model, 1:25,000 100 50
Vector-based visibility model, 1:500,000 84 66
the evaluation of the total number of true and false values, there
were cases where differences in the reliability of models versus
neighboring datasets were not significant (see Table 8 for p-values).
4. Discussion

The results indicate that the reliability of visibility models
depended on the scale (level of detail) of input data. This trend was
particularly clear when we calculated how the number of objects
modeled as visible differed from the number actually visible (Sec-
tion 3.1.). In controlling at 150 random points, the visibility models
created based on the tested datasets differed with very strong
significance. Therefore, if the purpose is to carry out a GIS viewshed
analysis in such a manner as to minimize the difference between
the number of objects visible in the model and in reality, then it is
possible unequivocally to recommend using the most precise input
data possible. Visual impact of WTs provides a good example of
when large differences in modeled and actual numbers could be
important, because, as demonstrated by Betakova et al. (2015),
human perceptions of WTs depend on the number of objects seen.
In the cases of some evaluation purposes for which GIS viewsheds
are modeled, however, it may be more important to achieve a
different type of match betweenmodel and reality. In our study, we
worked with a scenario wherein the purpose of the analysis was
not to minimize the difference in numbers, but rather to achieve
the best possible match between the number of visible WTs in the
model and in reality (2a), which is to say for the model to predict
the correct number of visible objects. In contrast, the second sce-
nario (2b) simulated a situation wherein matching numbers would
not matter and the visibility of a single tall structure from the given
locationwould be unacceptable (e.g., for aWT) or sufficient (e.g., for
a radio mast). In both scenarios, therefore, match (true) and
disagreement (false) between the model and reality were defined
as binary. Such evaluation is more forgiving (in the case of Analysis
2b versus 2a) of model imprecision. In certain cases, therefore, the
difference between neighboring datasets was not significant (e.g.,
based on the evaluation used in Analysis 2b, a LiDAR-based model
can be replaced with a small-scale vector-based model without
losing precision). However, the results still clearly indicate a trend
that a more precise input surface model leads to a more reliable
visibility model. Moreover, it is possible that significant differences
between neighboring datasets would have been achieved by
increasing the number of control points (i.e., by boosting the test's
power). Therefore, the percentage of cases in which the model
matched reality may be more interesting than is the significance of
model matched reality. Match definition 2a (the number of visible WTs must agree),

Relative accuracy (%) 95% Confidence interval

88.7 83.6e93.7
75.3 68.4e82.2
66.7 59.1e74.2
56.0 48.1e63.9



Table 5
Relative reliability of visibility models as the number and percentage of cases where the model matched reality. Match definition 2b, number of control points n ¼ 150.

Digital viewshed model True False Relative accuracy (%) 95% confidence interval

LiDAR-based visibility model 145 5 96.7 93.8e99.5
Vector-based visibility model, 1:10,000 138 12 92.0 87.7e96.3
Vector-based visibility model, 1:25,000 121 29 80.7 74.3e87.0
Vector-based visibility model, 1:500,000 108 42 72.0 64.8e79.2

Table 6
Comparison of reliability of visibility models according to match definition 2b (p-
value of the test for homogeneity with a binomial distribution, Holm's p-value
adjustment). Significant values are in bold.

LSM MAP10 MAP25

LSM
MAP10 0.2062
MAP25 <0.001 0.0215
MAP500 <0.00000001 <0.00001 0.2062
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the differences. Tables 3 and 5 indicate that this relative accuracy
depended on both the dataset used and the specific definition of a
match between the model and reality, although the trend was
identical for both match definitions used. When selecting input
data for GIS viewshed analysis, therefore, it is necessary to take into
account not only the scale but also the purpose of the analysis and
the relative accuracy that suffices for the given purpose in land-
scape planning or other field. This study together with papers by
other authors (e.g., Berry, Fitzell, & Kidner, 2005; Maloy & Dean,
2001) can provide guidance as to the degree of accuracy that can
be achieved in a given case. Nevertheless, specific accuracy values
can, of course, differ under the effect of such factors as the
configuration of the area of interest.

In terms of the distribution and structure of errors of individual
models, vector-based models tended to overestimate, to generate
false positives (i.e., to predict that an object is visible from more
locations than it is in reality). In contrast, the LiDAR-based model
predominantly generated false negatives, which is in accordance
with the results of Meek et al. (2013). The occurrence of false
negatives (i.e., predicting that a WT is not visible when it is visible
in reality) was more or less identical for all models, whereas the
number of false positives increased with decreasing input data
detail (see Table 7). The dependence of the occurrence of false
positives on input precision can be explained by a situation that
models based on less-detailed datasets overestimate the extent of
the total visible area (see Fig. 3). As suggested byMeek et al. (2013),
who reported that a visibility model based on a LiDAR-based DSM
originally contained predominantly false negatives but that the
opposite situation was true after trees were removed, over-
estimation of visible area may be caused by inaccurate capture of
objects on the ground in coarser-scale data, which causes fewer
obstacles to visibility. The same effect may be caused by inaccurate
capture of the terrain where the DTM is smother and models only
large terrain obstacles. As visible area increases, however, non-
visible area within the study area diminishes and so the
Table 7
Structure (number of cases) of false positives and false negatives inmodels based on indiv
reality. 2b false positive: the model predicts at least one WT to be visible while in realit

Digital viewshed model False negative (2a) F

LiDAR-based visibility model 11 5
Vector-based visibility model, 1:10,000 11 2
Vector-based visibility model, 1:25,000 11 5
Vector-based visibility model, 1:500,000 7 4
independence of the number of false negatives on data accuracy
remains surprising in this explanation.

Based on the structure of errors, it can be said that, looking at
model accuracy in terms of areas from which a tall structure is not
visible, the models display no essential differences. In such ana-
lyses, LiDAR-based models can be replaced by vector-based models
or a detailed vector-based model by a less-detailed one. Therefore,
if for landscape planning purposes we are searching for suitable
locations to place a tall structure (e.g., a WT) with the requirement
that the structure have the least visibility possible, then it is not a
serious mistake to use a large-scale model and place the structure
in a location designated as nonvisible. However, we must take into
account that using models based on less-detailed data may lead us
to overlook potentially suitable locations or not find any suitable
locations. In contrast, if a visibility analysis is used that focuses on
visible areas based on less precise vector-based models, then visi-
bility is substantially overestimated. This can affect preventive
assessment of structure placement in relation to its visibility as well
as scenic beauty, where a structure is evaluated as visible from a
location with a high aesthetic value and so as having a negative
effect even though it would not be visible in reality. Another
example of inaccurate modeling of visible areas having an eco-
nomic impact is the placement of radio masts.

A number of studies mention LiDAR as a theoretically suitable
data source for modeling visibility (e.g., Lake et al., 2000; Sander &
Manson, 2007) and attention is currently dedicated to quantifying
the accuracy of LiDAR-based visibility models (Castro et al., 2015;
Murgoitio et al., 2014). In general, we can say that our study
confirmed the prediction that LiDAR-based datasets are the most
suitable input data for visibility analyses in terms of accuracy and
that their accuracy exceeds that of vector-based datasets commonly
used in practice. This view is supported in particular by Analysis 1. If
LiDAR data is not available for the study area, it is best to use DSMs
created using vector data at the most-detailed scale possible. In
contrast to vector-based models, the accuracy of LiDAR-based
models does not depend primarily on input data scale but rather
on the density of the elevation point cloud and the resolution of the
DSM created from it (Castro et al., 2015; Murgoitio et al., 2014). The
provider of the data product used in this study stated a point cloud
density greater than 1 point/m2 and the resolution of the DSM
created was 5 m. The precision of our LiDAR-based model (88.7%)
matches that of the model created by Berry et al. (2005) with a
resolution of 1 m (88.5%). It is probable that if we were to decrease
the pixel size of the DSM we would obtain an even more accurate
visibility model, although this would increase computation time
demands.
idual datasets. 2a false positive: themodel predicts moreWTs to be visible than are in
y none are visible.

alse negative (2b) False positive (2a) False positive (2b)

6 0
26 10
39 24
59 38



Table 8
Mutual comparison as to occurrence of false positives in models based on individual
datasets. 2a false positive: the model predicts more WTs to be visible than are in
reality. 2b false positive: the model predicts at least one WT to be visible while in
reality none are visible. p-values, test for homogeneity with a binomial distribution,
Holm's p-value adjustment. Significant values are in bold.

LSM MAP10 MAP25

2a false positive
MAP10 0.011
MAP25 <0.000001 0.036
MAP500 <0.0000000001 <0.00001 0.064
2b false positive
MAP10 0.001
MAP25 <0.0000001 0.093
MAP500 <0.0000000001 0.00017 0.039

T. Klou�cek et al. / Applied Geography 64 (2015) 46e54 53
The study was conducted in a study area with undulating relief
where elevation ranged between 211 and 723 m a.s.l. It is possible
that results could be slightly different in flat areas or in mountains
with more dramatic relief. It might logically be assumed that
merely slightly undulating landforms will require more detailed
data to describe all elevation subtleties, while less detailed datasets
could be sufficient for visibility in the mountains. To the best of our
knowledge, however, such assumption has not yet been definitively
proven and its testing would require systematically selecting a set
of sample study areas varying in elevation range from flat land to
mountains.
5. Conclusions

The results of our study confirmed the prediction that the reli-
ability of GIS visibility analyses depends on the input data's level of
detail. This dependence was demonstrated through the example of
assessing the visibility of tall structures, specifically WTs. Consid-
ering the difference between the number of WTs visible from
random control points as predicted by GIS visibility models and the
number that are visible in reality, the most suitable data input is
unequivocally a LiDAR-based DSM. The suitability of visibility
models for which the input was surface models created using
vector data (contour lines, woody vegetation, and buildings) can be
ranked according to input data scale. A similar trend can be
observed in the case of the binary evaluation of match and
disagreement between modeled visibility and reality, although in
certain cases the differences between individual datasets were not
unequivocal and depended on how the model's match with reality
was specifically defined.

In terms of the reliability of visibility models, none of the input
datasets tested differed in the number of recorded false negatives
(i.e., cases where the model underestimated WT visibility as
compared to reality). Differences consisted in the numbers of false
positives (i.e., overestimation of modeled visibility as compared to
reality). For both definitions of true and false values, the LiDAR-
based model provided the best results. All models based on vec-
tor data significantly overestimated visibility compared to the
LiDAR-based model, and this overestimation was greater for data
from less-detailed scales.

In conclusion, we can state that (i) as predicted, more-detailed
input data led to more reliable visibility analysis results; (ii) the
vector-based models used had more false positives, while the
LiDAR-based model had more false negatives; (iii) only the number
of false positives depended on input data precision, while the
occurrence of false negatives was similar for all datasets used; and
(iv) the trends determined are therefore valid also for various
definitions of the models' matching of reality. Our conclusions are
valid for analyses at a detailed evaluation scale.
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