
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technology

CZU
Master's Thesis

A Comparative Analysis: Web Application Testing vs.

Mobile Application Testing

Sachin Sarvothama

© 2024 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
F a c u l t y o f E c o n o m i c s a n d M a n a g e m e n t

DIPLOMA THESIS ASSIGNMENT

Eng. Sachin Sarvothama, B . E .

G l o b a l I n f o r m a t i o n S e c u r i t y M a n a g e m e n t

T h e s i s t i t l e

A C o m p a r a t i v e A n a l y s i s : W e b A p p l i c a t i o n T e s t i n g u s . M o b i l e A p p l i c a t i o n T e s t i n g

O b j e c t i v e s o f t h e s i s

T h i s t h e s l s ' s p r i m a r y o b j e c t i v e i s t o c o m p a r e W e b A p p l l c a t i o n T e s t i n g a n d M o b i I e A p p I i c a t i o n T e s t i n g

c o m p r e h e n s i v e l y . B y u n d e r s t a n d i n g t h e d i s t i n c t i o n s a n d n u a n c e s b e t w e e n t h e s e t e s t i n g d o m a i n s , w e c a n

b e t t e r g r a s p t h e u n i q u e c h a l l e n g e s f a c e d i n e a c h a n d t h e a p p r o p r i a t e t e s t i n g m e t h o d o l o g i e s t h a t s h o u l d

b e e m p l o y e d .

M e t h o d o l o g y

A c o m p a r a t i v e s t u d y o f s o f t w a r e t e s t i n g t e c h n i q u e s c a n b e p e r f o r m e d t o i m p r o v e t h e t e s t i n g s t a n d a r d o f

b o t h w e b a n d m o b i l e a p p l i c a t i o n s . C h o o s i n g a t o o l f o r w e b a p p t e s t i n g i s e a s y , b u t i t c a n b e c o m p l i c a t e d

f o r m o b i l e a p p t e s t i n g . T h e o b j e c t i v e o f s o f t w a r e t e s t i n g u s i n g S e l e n i u m f o r w e b - b a s e d a n d A p p i u m f o r

m o b i l e a p p l i c a t i o n s i s t o e n s u r e t h a t t h e a p p l i c a t i o n m e e t s t h e d e s i r e d q u a l i t y s t a n d a r d s a n d p e r f o r m s a s

e x p e c t e d o n d i f f e r e n t p l a t f o r m s a n d d e v i c e s . T h e m a i n g o a l o f t e s t i n g a n a p p , w e b o r m o b i l e , i s t o e n s u r e

i t s u s a b i l i t y a n d p r o p e r f u n c t i o n i n g u n d e r o t h e r c i r c u m s t a n c e s a n d p r o v i d e a n e x c e l l e n t u s e r e x p e r i e n c e .

A c o m b i n a t i o n o f l i t e r a t u r e r e v i e w a n d c a s e s t u d i e s w i l l b e e m p l o y e d t o a c h i e v e t h i s r e s e a r c h ' s o b j e c t i v e s .

T h e s t u d y w i l l a n a l y z e e x i s t i n g t e s t i n g f r a m e w o r k s , i n d u s t r y b e s t p r a c t i c e s , a n d r e a l - w o r l d s c e n a r i o s t o

h i g h l i g h t t h e d i f f e r e n c e s b e t w e e n W e b A p p l i c a t i o n T e s t i n g a n d M o b i l e A p p l i c a t i o n T e s t i n g .

Official document + Ciedn University of Sciences P'icue + K a i w c « 129. ICS 00 Praha -SLcndol

T h e p r o p o s e d e x t e n t o f t h e t h e s i s

6 0 - 3 0 p a g e s

K e y w o r d s

S e l e n i u m , A p p i u r n , W e b A p p l i c a t i o n , M o b i l e A p p , S o f t w a r e T e s t i n g

R e c o i n m e n d e d i n f o r m a t i o n s o u r c e s

A h m e d , M a r y a m , a n d R o s z i a t l I b r a h i m . " A c o m p a r a t i v e s t u d y o f w e b a p p l i c a t i o n t e s t i n g a n d m o b i l e

a p p l i c a t i o n t e s t i n g . " A d v a n c e d C o m p u t e r a n d C o m m u n i c a t i o n E n g i n e e r i n g T e c h n o l o g y : P r o c e e d i n g s

o f t h e 1 s t I n t e r n a t i o n a l C o n f e r e n c e o n C o m m u n i c a t i o n a n d C o m p u t e r E n g i n e e r i n g . S p r i n g e r

I n t e r n a t i o n a l P u b l i s h i n g , 2 0 1 5 .

A r y a , K . V . , a n d H e r n d u t t V e r m a . " K e y w o r d d r i v e n a u t o m a t e d t e s t i n g f r a m e w o r k f o r w e b a p p l i c a t i o n . "

2 0 1 4 9 t h I n t e r n a t i o n a l C o n f e r e n c e o n I n d u s t r i a l a n d I n f o r m a t i o n S y s t e m s [I C I I S) . I E E E , 2 0 1 4 .

A S L A M , Z A H E E R , e t a l . " P E R F O R M A N C E - B A S E D A N A L Y S I S O F T E S T A U T O M A T I O N T O O L S F O R A N D R O I D

A P P L I C A T I O N S . "

G o j a n e , S a t i s h , R a h u l J o s h i , a n d D h a n a s h r e e G a i g a w a r e . " A n a l y s i s a n d d e s i g n o f s e l e n i u m w e b d r i v e r

a u t o m a t i o n t e s t i n g f r a m e w o r k . " P r o c e d i a C o m p u t e r S c i e n c e 5 0 (2 0 1 5) : 3 4 1 - 3 4 6 .

K i r u b a k a r a n , B . r a n d V . K a r t h i k e y a n i . " M o b i l e a p p l i c a t i o n testing—Challenges a n d s o l u t i o n a p p r o a c h

t h r o u g h a u t o m a t i o n . " 2 0 1 3 I n t e r n a t i o n a l C o n f e r e n c e o n P a t t e r n R e c o g n i t i o n , I n f o r m a t i c s a n d M o b i l e

E n g i n e e r i n g . I E E E , 2 0 1 3 .

R a r n y a , P a r u c h u r i , V e m u r i S i n d h u r a , a n d P . V i d y a S a g a r . " T e s t i n g u s i n g s e l e n i u m w e b d r i v e r " 2 0 1 7 S e c o n d

I n t e r n a t i o n a l C o n f e r e n c e o n E l e c t r i c a l , C o m p u t e r a n d C o m m u n i c a t i o n T e c h n o l o g i e s (I C E C C T) . I E E E ,

2 0 1 7 .

S i n g h , H a r s h i t , e t a l . " G U I T e s t i n g A n d r o i d A p p l i c a t i o n . " 2 0 2 2 1 0 t h I n t e r n a t i o n a l C o n f e r e n c e o n R e l i a b i l i t y ,

I n f b c o m T e c h n o l o g i e s a n d O p t i m i z a t i o n (T r e n d s a n d F u t u r e D i r e c t 1 o n s) (I C R I T O } . I E E E , 2 0 2 2 .

W a n g , J u n m e i , a n d J i h o n g W u . " R e s e a r c h o n m o b i l e a p p l i c a t i o n a u t o m a t i o n testing t e c h n o l o g y b a s e d o n

a p p i u m . " 2 0 1 9 I n t e r n a t i o n a l C o n f e r e n c e o n V i r t u a l R e a l i t y a n d I n t e l l i g e n t S y s t e m s (I C V R I S) . I E E E ,

2 0 1 9 .

Z u n , D a , T a o O i , a n d L i p i n g C h e n . " R e s e a r c h o n a u t o m a t e d t e s t i n g f r a m e w o r k f o r m u l t i - p l a t f o r m m o b i l e

a p p l i c a t i o n s " 2 0 1 6 4 t h I n t e r n a t i o n a l C o n f e r e n c e o n C l o u d C o m p u t i n g a n d I n t e l l i g e n c e S y s t e m s

(C C I S) . I E E E , 2 0 1 6 .

E x p e c t e d d a t e o f t h e s i s d e f e n c e

2 0 2 3 / 2 4 S S - P E F

T h e D i p l o m a T h e s i s S u p e r v i s o r

I n g . V a c l a v L o h r , P h . D .

S u p e r v i s i n g d e p a r t m e n t

D e p a r t m e n t o f I n f o r m a t i o n T e c h n o l o g i e s

E l e c t r o n i c a p p r o v a l : 4 . 9 . 2 0 2 3

d o t . I n g . J i ř í V a n ě k , P h . D .

H e a r J o f d e p a r t m e n t

P r a g u e o n 0 1 . 0 3 . 2 0 2 4

E l e c t r o n i c a p p r o v a l : 3 . 1 1 . 2 0 2 3

d o c . I n g . T o m á š Š u b r t , P h . D .

D e a n

Official document * C lc ih University of Life S d e n t u Prapje * Kamýcká 129. 165 00 Fraha-Suchdcil

Declaration

For my master's thesis, I have independently written "A Comparative Analysis:

Web Application Testing vs. Mobile Application Testing", and solely referred to the

sources cited. As the author of this master's thesis, I certify that it's not a copyright violation.

In Prague on 27-03-2024

Sachin Sarvothama

Acknowledgement

Throughout the research project, I would like to express my sincere gratitude to

Ing. Vaclav Lohr, Ph.D., my thesis advisor, for his valuable guidance, unrelenting assistance,

and valuable insight. These individuals contributed significantly to the direction and quality

of this thesis through their expertise and capabilities.

I would like to express my deepest gratitude to my esteemed professors, dear

classmates, and the dedicated academic staff of the Global Information Security

Management (GISM) department at the Czech University of Life Sciences, Prague. My

academic journey has been shaped and enhanced significantly by their consistent support

over the past two years. In addition to enhancing my understanding of the subject matter, the

encouragement, guidance, and exchange of knowledge have also facilitated a collaborative

and enriching learning environment. I am grateful to the entire academic community for their

invaluable contributions to my education and growth, and I am deeply grateful for the

collective efforts that contributed to my personal growth and development.

Finally, I want to extend my heartfelt gratitude to my family and friends for their

patience, resilience, and backing during my academic journey.

A Comparative Analysis: Web Application Testing vs

Mobile Application Testing

Abstract

This thesis examines the practical application of Selenium for web application testing

and Appium for mobile application testing to improve software quality and reliability

through automation. A thorough investigation of various testing tools and methods is

conducted, delving into how automation frameworks can help ensure high levels of

functionality, usability, and compatibility in web and mobile programs. The research

incorporates case studies that underscore the importance of conducting functionality,

usability, and compatibility testing to address problems tied to software applications. While

automation frameworks streamline the testing process, no framework can replace traditional

manual testing. Both automated and manual strategies must be utilized together to deliver

comprehensive testing. The studies highlight best practices for developing an efficient

testing regimen.

The study uncovers that Selenium exhibits great precision in mechanizing obligations

inside web applications, while Appium productively assesses portable application usefulness

crosswise over different gadgets and working frameworks. The examination between web

and versatile application testing underscores the significance of customized testing

methodologies to satisfy stage particular necessities. Proposals for future examination centre

around investigating AI incorporation in testing, IoT application testing, improved security

estimates, execution testing in 5G conditions, and usability testing across gadgets to advance

programming testing practices. Furthermore, the investigation discovered that Selenium

could robotize occupations effectively on web applications saving time throughout testing.

Appium can evaluate portable applications on different working frameworks and gadgets,

for example, iOS, Android and Windows. This permits testers to distinguish bugs cross-stage

before dispatch. As innovation keeps on advancing, future exploration could concentrate on

artificial intelligence joining into testing improve precision and effectiveness. Testing IoT

applications is critical as these applications associate numerous gadgets. In this manner,

security must be considered even more deliberately. Execution must likewise be tried as 5G

networks become progressively normal. Usability ought to be concentrated on cross stage as

client experience ought not rely upon the gadget being utilized.

This research aims to further our understanding of software testing techniques. It

provides meaningful perspectives for industry specialists seeking to refine their testing

methodologies and develop websites and apps of high calibre. These digital offerings should

satisfy users' needs and align with sector benchmarks. By gaining familiarity with current

evaluation methods, developers can create error-free programs meeting users where they are.

The findings offer pragmatic guidance for strengthening evaluation processes to deliver top-

notch, dependable digital experiences.

Keywords: Selenium, Appium, Web Application, Mobile App, Software Testing,

Automation Framework, Functionality, Compatibility, Usability.

Srovnávací analýza: Testování webových aplikací vs.
Testování mobilních aplikací

Abstrakt

Tato práce zkoumá praktickou aplikaci Selenium pro testování webových aplikací a

Appium pro testování mobilních aplikací za účelem zlepšení kvality a spolehlivosti

softwaruprostřednictvím automatizace. Provádí se důkladné zkoumání různých testovacích

nástrojůa metod a zkoumá se, jak mohou automatizační rámce pomoci zajistit vysokou

úroveň funkčnosti, použitelnosti a výkonu ve webových a mobilních programech. Výzkum

zahrnujepřípadové studie, které zdůrazňují důležitost provádění testování výkonu,

zabezpečení,použitelnosti a kompatibility pro řešení konkrétních problémů souvisejících se

softwarovými aplikacemi. Zatímco automatizační rámce zjednodušují proces testování,

žádný rámec nemůže nahradit tradiční ruční testování. Jak automatizované, tak

manuálnístrategie musí být použity společně, aby bylo možné poskytovat komplexní

testování. Studiezdůrazňují osvědčené postupy pro vývoj účinného testovacího režimu.

Studie odhaluje, že Selenium vykazuje velkou přesnost v mechanizaci povinností v

rámci webových aplikací, zatímco Appium produktivně hodnotí užitečnost přenosných

aplikací napříč různými přístroji a pracovními rámcemi. Zkouška mezi webovým testováním

a testováním všestranných aplikací podtrhuje význam přizpůsobených metodologií testování

pro splnění požadavků konkrétní fáze. Návrhy na budoucí testování se soustředí na

zkoumání začlenění umělé inteligence do testování, testování aplikací IoT, vylepšené

odhady zabezpečení, testování provádění v podmínkách 5G a testování použitelnosti napříč

gadgety, aby se pokročily postupy testování programování. Vyšetřování navíc zjistilo, že

Selenium dokáže efektivně robotizovat povolání ve webových aplikacích, což šetří čas

během testování. Appium dokáže vyhodnocovat přenosné aplikace na různých pracovních

rámcích a gadgetech, například iOS, Android a Windows. To umožňuje testerům rozlišit

chyby v různých fázích před odesláním. Vzhledem k tomu, že inovace stále postupují,

budoucí průzkum by se mohl soustředit na zapojení umělé inteligence do testování, které

zlepší přesnost a efektivitu. Testování aplikací IoT je zásadní, protože tyto aplikace sdružují

řadu gadgetů. Tímto způsobem musí být bezpečnost zvažována o to více záměrně. Provedení

se musí rovněž vyzkoušet, protože sítě 5G se postupně stávají normálními. Použitelnost by

se měla soustředit na různé fáze, protože klientská zkušenost by se neměla spoléhat na

využití gadgetu.

Tento výzkum si klade za cíl prohloubit naše chápání technik testování softwaru.

Poskytuje smysluplné perspektivy pro oborové specialisty, kteří chtějí zdokonalit své

testovací metodiky a vyvíjet webové stránky a aplikace vysoké kvality. Tyto digitální

nabídky by měly uspokojit potřeby uživatelů a být v souladu se sektorovými benchmarky.

Seznámením se s aktuálními metodami hodnocení mohou vývojáři vytvářet bezchybné

programy, které se setkávají s uživateli tam, kde jsou. Zjištění nabízejí pragmatický návod

pro posílení procesů hodnocení s cílem poskytnout špičkové a spolehlivé digitální zážitky.

Klíčová slova: Selenium, Appium, webová aplikace, mobilní aplikace, testování softwaru,

Automatizační rámec, funkčnost, kompatibilita, použitelnost.

Table of Contents

1. Introduction 1

2. Objectives and Methodology 3
2.1 Objectives 3

2.1.1 Main Goal 3
2.1.2 Key Aims 3

2.2 Methodology 4
2.2.1 Literature Review Method 4
2.2.2 Case Study Methodology 4
2.2.3 Comparative Study Design 5
2.2.4 Selection of Testing Tools 5
2.2.5 Usability Testing Approach 5

3. Literature review 6
3.1 Overview of Software Testing 7

3.1.1 Evolution of Software Testing 8
3.1.2 Importance of Software Testing in Application Development 9

3.2 Web Application Testing Techniques 10
3.2.1 Manual Testing vs Automated Testing for Web Applications 11
3.2.2 Common Challenges in Web Application Testing 12

3.3 Mobile Application Testing Techniques 13
3.3.1 Key Differences Between Web and Mobile Application Testing 15
3.3.2 Best Practices in Mobile Application Testing 18

3.4 Selenium for Web Application Testing 19
3.4.1 Introduction to Selenium Automation Tool 20
3.4.2 Advantages and Limitations of Selenium in Web Testing 22

3.5 Appium for Mobile Application Testing 23
3.5.1 Introduction to Appium Framework 23
3.5.2 Advantages and Limitations of Appium 25

3.6 Comparative Analysis 26
3.6.1 Previous Studies 26
3.6.2 Identified Gaps 28

3.7 Summary of Literature Reviewed 29

4. Practical part 31
4.1 Implementation of Selenium for Web App Testing Tools 31

4.1.1 Setting Up Selenium for Web Application Testing 31

4.1.1.1 Test Scenarios 34

4.1.1.2 TestCase Design 39

4.1.1.3 Results and Findings 45

4.2 Implementation of Appium for Mobile App Testing Tools 49
4.2.1 Configuring Appium for Mobile App Testing 49

4.2.1.1 Test Scenarios 52

4.2.1.2 TestCase Design 56

4.2.1.3 Results and Findings 60

4.3 Case Studies in Web Application Testing 65
4.3.1 Case Study A: Functional Testing of a Web Application 65
4.3.2 Case Study B: Compatibility Testing Across Various Browsers 66

4.4 Case Studies for Mobile App Testing 70
4.4.1 Case Study A: Functional Testing of Mobile Apllication 70
4.4.2 Case Study B: Compatibility Testing Across Various Mobile Devices 72

5. Results and Discussion 75
5.1 Analysis of testing results 75
5.2 Comparison between web and mobile application testing 78

5.2.1 Testing Approaches 78
5.2.2 Tools and Techniques 78
5.2.3 Considerations 79

6. Conclusion 81
6.1 Summary of findings 82
6.2 Implications for industry 83
6.3 Recommendations for future research 84

7. References 86

8. List of Figures, Tables and Abbreviations 93
8.1 List of Figures 93
8.2 List of Tables 94
8.3 List of Abbreviations 94

1. Introduction

Software has become essential to contemporary society, propelling progress and

changing numerous facets of everyday life. With the need for top-notch software

solutions continuously increasing, the significance of efficient software evaluation

can't be emphasized enough. Software testing is a crucial process that confirms the

dependability, capabilities, and functionality of programs, ultimately bettering user

delight and decreasing dangers linked to software system malfunctions (Myers 2011).

Testing is important as it helps validate that applications work as intended and are free

of defects (Pressman 2014).

By systematically assessing programs through techniques like requirement

testing and unit testing, issues can be identified and resolved before public release.

These supports providing users with smooth experiences devoid of unexpected

problems. Overall, thorough testing plays a key role in satisfying users and building

confidence that software will perform well for its intended purpose.

Today's rapidly changing technological environment poses challenges where

web and mobile apps dominate. Testing methods must thoroughly address both

platforms. Web and mobile app testing each involve distinct issues requiring

customized solutions to guarantee top functionality and user satisfaction. Web

applications may encounter problems with different browsers, screen sizes, or internet

speeds. Mobile apps must function flawlessly across an array of devices with varying

processing power and OS versions while considering usability on small screens.

Comprehensive testing explores all potential issues to confirm smooth experiences.

Though web and mobile testing methodologies vary, their purpose unites in

delivering polished digital products meeting users' needs. This thesis will closely study

web application testing and mobile application testing to compare their differences,

challenges, test strategies, and quality expectations. An examination of usability and

the user experience for both web and mobile apps in different situations is included.

The goal is to advance software evaluation methods within the continually changing

digital world. Specifically, this research aims to explore the unique issues that testers

face for each platform. For web apps, testing cross-browser compatibility and software

1

functionality is important to consider. For mobile apps, factors like various device

types, orientations, and network conditions play a crucial role in ensuring optimal

performance.

2

2. Objectives and Methodology

2.1 Objectives
This work's main aim is to fully compare testing for Web Applications and

Mobile Applications. This big aim is broken down into smaller, detailed goals so we

can carefully study each area.

2.1.1 Main Goal

Our main aim is to look deeply at how software testing is done differently for

web and mobile apps. This means studying the unique problems for both, in order to

get a full understanding of different testing methods.

2.1.2 Key Aims

• Identification and Analysis of Unique Challenges

One of the goals is to see and study the unique problems for web and mobile app

testing. This involves a detailed study into different problems faced in each area, like

how well it works, how far it is compatible with different browsers & devices, and

issues with user interfaces.

• Proposal of Appropriate Testing Methodologies

Another important goal is to suggest the right methods for testing web and

mobile apps. This needs a clever approach in creating methods that work best for the

different testing needs of each platform, to make sure the outcomes are strong and

trustworthy.

• Quality Standards Adherence

Ensuring that the proposed testing methodologies meet desired quality standards

is an essential aim of this research. This involves a meticulous evaluation of industry

standards and best practices to guarantee the reliability and effectiveness of the testing

approaches recommended for both web and mobile applications.

3

• Usability and User Experience Assessment

Assessing the usability and user experience of both web and mobile applications

under various scenarios is a paramount aim. This involves an examination of factors

influencing user-friendliness, accessibility, and overall performance to provide

valuable insights into the end-user perspective.

In summary, the objectives of this research are tailored to provide a

comprehensive understanding of the challenges in Web Application Testing and

Mobile Application Testing, propose effective testing methodologies, ensure

adherence to quality standards, and evaluate the functionality and user experience of

applications across diverse scenarios. These objectives collectively form the

foundation for a nuanced and insightful comparative analysis.

2.2 Methodology
The research methodology is a critical component that outlines the systematic

approach adopted to achieve the specified objectives. In this chapter, various strategic

approaches are carefully designed and integrated to provide a robust framework for

conducting the comparative analysis between Web Application Testing and Mobile

Application Testing.

2.2.1 Literature Review Method

We explore existing test methods and industry strategies in our literature review.

The aim is to understand how software testing evolved and its key role in creating

apps.

2.2.2 Case Study Methodology

We take on case studies to study practical situations. Through these studies, we

aim to give concrete examples that supplement textbook learning. They expose

challenges in testing web and mobile applications.

4

2.2.3 Comparative Study Design

Our research heavily relies on comparing studies of web and mobile application

testing. We dive deep into previous studies and the gaps they left to give a thorough

comparison analysis.

2.2.4 Selection of Testing Tools

Selecting testing tools plays an important role in our research. We've chosen

Selenium for web app testing and Appium for mobile app testing. They were the top

picks because they work well with various platforms and devices. This lets us give a

complete review of the testing field.

2.2.5 Usability Testing Approach

In the research plan, we focus on testing. We want to make sure web and mobile

apps work well. They must be user-friendly! To do this, we follow a strict procedure.

We think of many different situations to get a full picture of what the user might

experience.

Let's recap. Section 2.2 shows the research plan. We look at other studies, check

case studies, run tests, pick the right tools, and focus on testing usability. This strong

plan helps us dive deep into Web and Mobile App Testing.

5

3. Literature review

The focus of this chapter is software testing as shown by a wide-ranging

literature review which concentrates particularly on the testing of web applications,

mobile applications and necessary apparatuses like Selenium and Appium. It

extensively examines how software testing has developed over time as one of the most

important activities to ensure that programs are of high quality and reliable.

The review meticulously examines software testing, analyzing approaches for

both websites and mobile apps, and delving into key automation frameworks that have

propelled the discipline forward. By investigating the historical evolution of testing

and underscoring its significance, the chapter offers a comprehensive overview of a

field that has become increasingly crucial as software continues to permeate various

facets of modern life.

The exploration of various web application testing techniques enables a contrast

between manual and automated testing approaches. This comparison sheds light on the

intricacies of ensuring functionality and usability for web-based programs. Similarly,

the investigation of mobile application testing methods highlights the distinct factors

and optimal approaches essential for effectively testing mobile apps in our evolving

digital world.

As these testing techniques are assessed, common challenges encountered in

validating web and mobile applications become apparent. Ensuring that such programs

work as intended across different browsers, devices, and operating systems involves

complexities related to replication, isolation, and coverage. Both manual and

automated strategies present their own set of benefits, with automated testing being

able to test more scenarios at a faster pace.

Overall, properly examining available testing methods assists quality assurance

teams in selecting the most suitable approaches for their specific testing needs and

development lifecycles.

6

3.1 Overview of Software Testing
The Software testing plays a vital role in software development by helping to

guarantee program quality, dependability, and functionality. It involves methodically

assessing software to discover faults and mistakes, with the goal of conveying a result

that meets client necessities and desires. Throughout the years, advances in innovation

and methodologies have molded the advancement of software testing, bringing about

different testing systems and procedures being created. Testing strategies have

developed from essential functional testing to more modern approaches that are more

thorough, for example, integration testing, system testing, and acceptance testing.

These strategies recognize issues from different points of view, including how

application segments function together and how the product works inside a framework

setting. The evolution of testing looks for to consistently enhance the item, discover

issues right on time, and limit expenses from defects. Even though testing cannot

ensure that software will be bug-free, it significantly reduces the risks and improves

the overall quality of the product.

In the field of software testing, the value of complete testing methods is

impossible to overemphasize. Successful testing helps in identifying and correcting

problems early during the development process, decreasing the chances of expensive

mistakes in the final product (Pressman, 2014). Software testing strategies have

progressed from manual arbitrary approaches to organized methods that include

automation and strict testing routines (Beizer, 1990). Testing each component of a

program and ensuring everything functions as intended is crucial. This reduces post-

launch issues that can damage a brand's reputation and lose users. The costs to fix bugs

found after launch greatly exceed those solved during testing. Thorough testing saves

money while providing users a quality, smooth experience with an application or site.

Recent studies into software testing have highlighted the importance of including

testing tasks throughout the software development cycle. Taking this approach

guarantees that software products satisfy quality benchmarks, function as intended,

and provide a favorable user experience (Smith et al., 2019). By adopting optimal

techniques in software testing, companies can strengthen the dependability and

functionality of their programs while decreasing risks connected to software

malfunctions. When testing is integrated at each stage of development starting with

7

initial planning, it allows potential issues to be identified and addressed early before

they become more serious and costly problems later on. Regular testing catches errors

that could cause apps or systems to crash or malfunction when deployed,

compromising performance for end users. Organizations that devote sufficient time

and resources to testing various usage scenarios minimizes post-launch disruptions and

ensures a smooth user experience. This delivers ongoing value and reduces the need

for emergency fixes after launch.

In our current fast-paced digital environment, where software applications play

a vital function in numerous industries, the necessity for powerful software testing

methodologies is more crucial than ever before. Scholars and professionals

consistently seek out innovative testing techniques and instruments to deal with the

progressively evolving challenges in software program advancement (Jones &

Johnson, 2020). By keeping up with industry developments and breakthroughs in

software testing, organizations can enhance their testing processes and deliver high-

quality software solutions to end-users. As new technologies emerge at a rapid pace,

testing methods must also evolve accordingly. Researchers must explore novel

approaches that test the full capabilities of applications while maintaining efficiency.

Companies should dedicate resources to monitoring the software testing field for any

recent testing strategies or tools. Adopting emerging testing practices can help ensure

applications perform as intended for customers.

3.1.1 Evolution of Software Testing

The Software testing has changed over time due to advances in technology,

methodologies, and good practices. It has shifted from sporadic methods to orderly

approaches that include many testing tactics and strategies (Beizer 1990). Software

testing is crucial in app development. Proper testing boosts the quality, reliability, and

performance of software products (Myers et al. 2011).

Software testing has had several key stages:

• Manual Testing: In software development's early days, testing was mainly

manual. Human testers ran test cases and checked the app's functionality. This

method took a lot of time and had the risk of human error (Myers et al. 2011).

8

• Structured Testing: As software systems grew in complexity, orderly testing

methods like Equivalence Partitioning, Boundary Value Analysis, and Decision

Table Testing came about. These techniques arranged and recorded test cases,

making the testing process more organized (Myers et al. 2011).

• Automated Testing: The introduction of software testing tools led to automated

testing. Tools such as Selenium and Appium enabled web and mobile app testing

automation. Automated testing greatly cut down the time and work needed for

testing, making it more manageable for big projects (Myers et al. 2011).

• Agile Testing: Agile methods bring a fresh, incremental style to testing. It's

done throughout the entire development cycle. This approach spots problems

earlier and fixes them faster (Myers et al. 2011).

• DevOps and DevSecOps: DevOps unifies development and operations. This

bond speeds up high-quality software delivery. As cloud technology advanced

and firewalls were lowered, security shifted to application level. This change

birthed DevSecOps that brings security testing into the development cycle

(Myers et al. 2011).

Wrapping up, the evolution of software testing was driven by the need for

enhanced, thorough methods. The blend of technology, methodologies, and best

practices led to the creation of advanced testing tools that can enhance software quality

and dependability.

3.1.2 Importance of Software Testing in Application Development

Software testing is essential when making apps. Its main job is to make sure the

software works correctly and is of high quality (Smith, 2018).

9

Here are some reasons why testing software is critical:

• Quality Control: Testing helps find and fix problems, boosting performance,

usability, and reliability. This ensures the software meets quality targets

(Johnson, 2019).

• Better User Experience: Tests can find room for improvement in performance,

functionality, and usability. This makes for a smoother user experience (Brown

& Lee, 2020).

• Cutting Risks: Testing helps fix problems before launch, so there are fewer

issues or glitches once it's live. It cuts down on risks (Garcia et al., 2017).

• Saving Time and Money: Testing sooner rather than later finds and fixes issues

quickly, reducing delay and unnecessary costs (Adams, 2016).

• Pleasing Customers: Testing makes sure the software lives up to customers'

hopes, creating a better user experience and higher satisfaction (Roberts & Patel,

2021).

In short, software testing is key to making sure apps are high quality, user-

friendly, safe, efficient, and meet customers' needs.

3.2 Web Application Testing Techniques
The Web application testing techniques play an important role in validating the

functionality, usability, and security of web-based software programs. Employing

these testing methods is critical for pinpointing and fixing potential problems that may

negatively influence how web apps perform. Some key techniques support evaluating

whether web apps work as intended across different browsers, devices, and network

conditions. Usability testing allows assessing how easy web apps interface is to use

and learn. Security testing aids detecting vulnerabilities that could expose apps to

unauthorized access. Overall, leveraging varied testing approaches helps ensure web

apps consistently provide users a dependable experience.

10

Here are some key points regarding web application testing techniques:

• Manual Testing vs. Automated Testing:

While manual testing requires testers to execute test cases by hand without the

aid of automation tools, automated testing leverages software to automatically run test

scenarios. Both approaches offer benefits and are frequently blended to achieve

thorough testing. For example, manual testing allows testers to quickly test new

features or changes since automation setup is not required. However, it can be time-

consuming and repetitive. On the other hand, automated testing expedites the process

through automated execution, but setup time is involved. An ideal strategy is

combining the two, using manual testing for initial checking and automated for

regression to ensure everything continues working as intended. This balanced hybrid

approach maximizes coverage within budget and time constraints (Vogels 2023).

• Role in Ensuring Quality:

These techniques are essential in guaranteeing the quality and dependability of

web applications by identifying bugs, security vulnerabilities, and performance issues

early during the development process. They play a vital part in confirming the caliber

of web applications by finding problems, weaknesses that could be exploited by

malicious actors, and issues that slow performance before development is finished.

This allows developers to fix any issues prior to completion, resulting in a more robust

and secure final product. By detecting flaws at the beginning, these methods help

ensure web applications function as intended for users when launched.

3.2.1 Manual Testing vs Automated Testing for Web Applications

Web applications are usually tested in two ways: manual and automated testing.

Each of these methods comes with their pros and cons. The selection between the two

depends on project-specific needs and limitations. (Son, 2024a; Katalon, 2023)

Manual testing is a process where human testers play with the web application

to find and record any glitches or bugs. This mode is a good match for projects of

smaller size or those that are in their infancy. Yet, note that manual testing can take a

lot of time, is susceptible to human mistakes, and might not be a great fit for extensive

applications.

11

Manual and automated testing are two frequently used approaches for web

application testing. Each strategy has its strong and weak points. It's the project's

particular requirements and confines that determine which one to use.

Humans doing the testing to spot and list down any issues or bugs is what manual

testing is all about. It's a good fit for smaller projects or those that are still in the early

phase of development. Manual testing lets testers use their judgment and creativity to

uncover issues. This can be useful in finding problems that come up unexpectedly.

Yet, manual testing has its drawbacks - it may eat up a lot of time, is prone to human

errors, and may not be the best choice for large applications.

Automated testing is quite different. It involves using software tools to run preset

testing scripts and juxtaposing final outcomes with expected ones. This approach is

more effective, dependable, and scalable than manual testing. Thus, it's a great option

for large applications. Automated testing can be run over and over which allows

developers to find and kil l any issues that might show up during development. But

remember, automated testing requires special technical skills and can be costlier than

manual testing (Son 2024).

Summing up, the decision to choose manual or automated testing for web apps

lies in the project's unique needs and limits. Small projects or early-stage apps are best

for manual testing. Automated testing becomes a smart pick for larger applications due

to its greater efficiency, reliability, and scope (Manual Vs. Automated Testing | What's

The Deal? 2024).

3.2.2 Common Challenges in Web Application Testing

There are several common challenges that testers may face when evaluating web

applications. Browser compatibility issues can occur when a website does not display

or function properly across different browsers like Chrome, Firefox, Safari, and

Internet Explorer. Testing performance across various devices with different operating

systems and hardware configurations, such as desktop computers, laptops, tablets, and

12

mobile phones, is also difficult but important to ensure optimal user experiences.

Additionally, security vulnerabilities must be addressed. For instance, SQL injection

allows attackers to interfere with database queries through a web page. Cross-site

scripting enables malicious code injection into otherwise trusted websites. Another

challenge is confirming that a website's design and content are easily readable and

usable on various screen sizes from large desktop monitors to small mobile screens.

Addressing these compatibility.

3.3 Mobile Application Testing Techniques
Testing mobile apps is a crucial part of the development process. It allows

developers to ensure the apps function as intended, load swiftly, and offer an intuitive

experience for all users regardless of the device or operating system. Due to the

specialized nature of mobile apps, there are multiple approaches developers can take

to evaluate their performance. For instance, they may examine how apps appear and

operate on the diverse screens, hardware, and software found on phones and tablets

from various manufacturers. Testing across a wide range of real products helps identify

bugs or inconsistencies before public release. It is also important to assess an app's

speed and responsiveness under different conditions, such as on slower mobile

connections or after periods of inactivity. Since people frequently multitask on their

devices, ensuring compatibility across different scenarios is crucial.

Compatibility Testing is an important process that software developers

undertake. It involves rigorously checking if an application functions smoothly across

various devices, screen sizes, and operating systems. Developers also examine how

the app performs under different network conditions. Through this testing, they can

make certain that the software works as intended regardless of the hardware or

software configuration of the user. This helps ensure a seamless experience for anyone

wanting to utilize the app on their smartphone, tablet, or other device. By

implementing Compatibility Testing, issues are identified and addressed before

general release. This means more people can benefit from bug-free usage of the

application on their chosen platform. The end result is improved usability and a wider

reach for the software (Koziokas, Tselikas, Tselikis 2017).

13

Another important testing method is Performance Testing. It evaluates how

swiftly the app responds, how stable it remains, and the amount of system resources it

utilizes when faced with various scenarios and loads. Conducting this test can help

uncover potential problems, optimize the app's speed, and ensure it fulfills users'

requirements for quickness and dependability as they interact with it (Berihun,

Dongmo, Van Der Poll 2023). While performance testing is crucial, it is also vital to

maintain a balanced approach between testing methods to achieve quality without

overburdening resources.

Usability testing is also a crucial part of the development process. It allows

developers to examine the app's design, layout of menus, and the overall user

experience to determine how intuitive and user-friendly the interface is. During these

tests, people are observed as they attempt to complete typical tasks within the app.

This provides valuable insights for developers to understand how real people interact

with and navigate the app. It helps identify where improvements may be needed to

streamline the user workflow and make the app more pleasant and enjoyable to use.

The goal is to enhance user satisfaction by addressing any pain points or areas that

cause confusion or frustration (Koziokas, Tselikas, Tselikis 2017).

Ensuring mobile application security is absolutely crucial for protecting users.

Security testing serves a vital role by identifying potential vulnerabilities within an app

that could place personal data in jeopardy or expose the software to various threats.

Testers carefully examine aspects such as encryption protocols, login procedures, how

information is securely retained on devices and servers, and defending against

common hacking attempts. By investigating these technical elements and functionality

through a security lens, weaknesses can be found and addressed before any harm

occurs. This process helps strengthen an app's defenses over time so users can

download and utilize features with confidence, safe in the knowledge that their privacy

and well-being are not at risk. As new risks emerge, continued evaluation through

testing also helps maintain protection as threats evolve (Haller, Klaus, 2013).

14

3.3.1 Key Differences Between Web and Mobile Application Testing

While there are notable variances between evaluating web and mobile

applications, both aim to ensure high-quality user experiences. Aspects like

functionality, ease of use, and selected testing strategies differ substantially when

considering websites designed for desktop browsers versus smartphone or tablet apps.

Functional testing looks at all features and checks if they are performing as intended

across different environments. Usability testing evaluates how simple or complicated

various tasks are to complete within an application (Reichert 2023).

Here are the key distinctions highlighted from the search results:

1. Platform and Accessibility:

Web applications are designed to be accessed through web browsers on various

devices like desktop computers, laptops, and even some smart TVs. These applications

can be reached using any modern web browser without requiring downloads or

installations. Mobile applications, on the other hand, are specifically tailored for

smaller screens and touch-based interactions found on mobile devices like

smartphones and tablets. They are built to take advantage of the unique features that

these mobile devices offer, such as GPS, cameras, and motion sensors (Unadkat 2021).

Mobile app testing differs from web app testing in that it requires testing

applications on various mobile operating systems like iOS and Android. Developers

need to ensure their apps function seamlessly across different devices and screen sizes.

Web app testing, on the other hand, primarily focuses on evaluating how a website

appears and performs on multiple web browsers. Since web browsers have

standardized rendering engines, testing tends to be less complex than with native

mobile apps. However, both mobile and web application testing are important to

identify bugs and optimize the user experience across platforms (Unadkat 2021).

2. User Interface:

Mobile applications are specifically created to be used with touch-based

interactions on devices like smartphones and tablets, as touchscreens are the primary

methods of input. Websites and web applications, on the other hand, are generally

constructed with mouse and keyboard control in mind since most people access the

15

internet through desktop computers. The user interface and navigation of mobile apps

are optimized (Unadkat 2021).

Mobile app testing concentrates on confirming an intuitive interface that

responds properly to touch motions, while web app testing emphasizes simplicity of

movement with mouse and keyboard commands. Both types of testing are crucial to

delivering programs that function seamlessly across platforms. Evaluating a mobile

app requires validating that taps, swipes, and pinches perform as anticipated, just as

assessing a web app involves validating clicking, scrolling, and typing perform as

expected. U X testing is also important to evaluate for both formats. The goal is

providing users with applications that work how they want without confusion or

frustration (Unadkat 2021).

3. Performance:

Mobile devices have constrained processing capabilities in comparison to

desktop computers, necessitating the optimization of performance in mobile

application testing, with considerations given to elements like battery usage and

network connectivity. It is important for testers to keep in mind the more limited power

supply and connection speeds when developing for smartphones and tablets.

Performance must be enhanced, and resource expenditure reduced so apps can run

smoothly despite hardware restrictions inherent to portable devices (Yogiti 2023).

Web app testing considers more than just functionality and bugs. It also

examines an application's performance across various web browsers like Chrome,

Firefox, Safari, and Internet Explorer. Testers evaluate aspects such as how quickly

pages load, elements render and respond to user input on different devices and

operating systems. This helps ensure a smooth and fast experience for customers no

matter which browser they choose (Unadkat 2021).

4. Connectivity:

Mobile devices rely on an array of network connections like 3G, 4G, and Wi-Fi

to access the internet, with speeds varying significantly across these technologies.

Because of this variability in connectivity levels, it is important for mobile applications

to function smoothly regardless of the available network. Developers need to test their

16

apps under different network conditions to ensure a seamless user experience whether

users are on a fast Wi-Fi connection or a slower mobile network (Yogiti 2023).

Web app testing not only examines network connectivity but mainly

concentrates on how quickly pages load and how applications perform under slow

internet conditions. Testing aims to ensure the application functions reliably even

when network speeds are less than optimal. Developers subject their programs to

different bandwidth limitations to check the user experience at various connection

speeds (Yogiti 2023).

5. Device-Specific Features:

Mobile devices offer capabilities that set them apart from traditional web

applications on computers and laptops. Features such as built-in cameras, GPS sensors,

and accelerometers allow mobile apps to provide location-based services, augmented

reality experiences, and more. Due to these distinctive characteristics, it is important

for testers to conduct targeted testing on mobile specifically to validate that apps

perform as expected when utilizing these device-level technologies. Simply testing the

app's functionality through a browser will not adequately verify. Web app testing does

not need to consider these device-specific features present in mobile devices (Unadkat

2021).

In wrapping up, there exist likenesses in the overall technique applied to

evaluating both web and mobile applications. However, the unique variances in

platform, user interface, performance, connectivity, and device-specific capabilities

demand customized testing tactics for every single to confirm ideal functionality and

user experience. The web and mobile environments have their own set of

characteristics that require focusing testing on the particular attributes of each. While

some tests can overlap between the two, ensuring that tests target the specific user

workflows and hardware/software configurations for each type of application is

important. A one-size-fits-all approach will not adequately verify that the application

operates as intended across the assorted settings encountered on different devices and

internet connections.

17

3.3.2 Best Practices in Mobile Application Testing

Mobile application testing plays an important role in the development process.

It is essential to thoroughly evaluate the functionality and usability of an app on mobile

devices before releasing it to users. This ensures any issues are identified and resolved.

Through rigorous testing, developers can verify all features work as intended across

various phones and tablets. It also allows them to identify ways to streamline

workflows and simplify complicated processes. A seamless experience is key to an

app's success.

1. Mimic Real-Life Situations:

Test apps in realistic conditions. Deal with bad networks, different time zones,

and GPS points. What if the battery is low, or an SMS pops up? Testing these helps

your app run smoothly no matter what (Bharati, 2022).

2. Choose the Right Testing Device:

Select the best device for app checks. Look at what's popular with your audience,

screen sizes, and operating systems. When you test on the appropriate gadgets, it helps

all users (Kumari, 2020).

3. Get to Know Your Users:

Collect data. Know your audience. Understand what they want and how they

will use the app. This knowledge guides app development and improves the user

experience (Solutions, 2023).

4. Function First, Experience Second:

Check that your app does what it's supposed to do. That's priority number one.

Then, see if it's user-friendly. Test how usable it is in the early stages (Kumari, 2020).

5. Test on a Real Device Before Launch:

Initial tests can be done on emulators or simulators. But, make sure to do a final

review on a real device. This helps find any last-minute issues. You can check

everything thoroughly (Solutions, 2023).

18

6. Do Performance Tests Soon:

Spotting performance problems at the start of development is key to prevent

expensive changes later. By doing performance tests early, it's easier to find and fix

performance issues (Ville-Veikko 2013).

7. Make Testing Automated:

Using automation tools can boost testing productivity. They quicken up

duplicate tests and give steady outcomes. Balancing both automated and manual

testing is vital to tackle all situations (Lip 2023).

This set of best practices gives a full-picture approach to testing mobile apps,

from real-time situation checks to usability and performance assessments. By sticking

to these tips, developers can improve their mobile apps and give users a top-notch

experience.

3.4 Selenium for Web Application Testing
Selenium is an open-source tool that's widely used for automating web app tests.

It's a toolbox that includes the Selenium IDE, Selenium RC, and Selenium WebDriver.

These can test web apps across different browsers, systems, and languages (Singh

2015). Because of extensive research, Selenium is seen as a cost-effective, efficient

option for testing web apps (Gjesr 2015).

Our review of the research on Selenium versus manual testing shows Selenium's

clear benefits. Cost is reduced by automating repeat tasks. Quality of software gets a

boost from consistent, exact results. This research also discusses Selenium's key

features like recording and playing back tests and the Selenium RC and WebDriver for

those with programming know-how (Singh 2015).

The review even considers case studies and compares Selenium with other

testing tools like UFT. This is intended to guide organizations in deciding the best

testing approach. Factors considered include budget, ability to reuse, language and

application support, and efficiency (Gjesr 2015).

19

In conclusion, Selenium is an impressive web application testing tool. It offers

cost-effectiveness, consistency, and efficiency. Summarizing the literature offers

insights into Selenium's features and benefits as well as comparisons to help

organizations make informed choices about their testing strategies (Gjesr 2015).

3.4.1 Introduction to Selenium Automation Tool

Selenium is a widely popular open-source automation testing framework that is

commonly used for automating web applications. It provides a full set of tools that

enable automated testing across different browsers and platforms, increasing its

flexibility and ability to integrate with diverse development environments (Thooriqoh,

2021). Selenium allows testers to write automated tests in various programming

languages, reducing the time spent on manual testing. The tests can validate

functionality, measure performance, and ensure apps work across various browsers.

With its cross-browser compatibility, companies are able to deliver quality software

more quickly. While some see it as only for functional testing, many also leverage it

for other quality assurance tasks like smoke testing, integration testing, and more

(Thooriqoh, 2021).

One of the key abilities of Selenium is its power to engage with web components

on a web page, permitting activities like tapping catches, entering content into fields,

and approving anticipated results. This connection is made conceivable through

Selenium's WebDriver, filling in as a basic intermediary between the test content and

the program, guaranteeing smooth correspondence and oversight over the web

application being tried. The WebDriver works as a translator between the testing code

and the program, enabling orders to be sent and reactions to be gotten. It guarantees

the test can effortlessly control highlights on the webpage, for example, clicking joins

or stacking pages, and validate the webpage acts as anticipated. This allows testers to

deliberately explore the application and confirm it works as planned (Thooriqoh,

2021).

Testing Approaches Supported by Selenium:

Selenium allows testers to use various testing techniques like functional testing,

regression testing, and browser compatibility testing. It enables running test scripts

20

simultaneously across different browsers to confirm consistent behavior regardless of

the browser environment. This helps validate that the application performs as expected

no matter if users access it with Chrome, Firefox, Safari, or another supported browser.

By empowering cross-browser testing, Selenium helps developers identify and fix any

issues that may affect users depending on which browser they use to access the site or

app. This capability is important for catching compatibility problems that could impact

the experience for some visitors (Thooriqoh, 2021).

Integration with Continuous Integration (CI) Tools:

Selenium works effortlessly with Continuous Integration tools such as Jenkins,

allowing for automated testing to be a fundamental part of the software development

process. This integration streamlines testing by providing swift responses to code

modifications and maintaining the application's quality throughout each stage of its

lifespan. By blending automated checks into the software progress, issues can be

recognized rapidly so they may be addressed without delay. Bugs and errors are

exposed very early before they deteriorate into bigger troubles, saving valuable time

and resources. Overall, the combination of Selenium and integration tools like Jenkins

results in a smoother development workflow with testing embedded into the workflow

from the very beginning (Thooriqoh, 2021).

In wrapping up, Selenium stands apart as a powerful automation testing tool

owing to its wide-ranging functions, flexibility in scripting dialects, and smooth

integration with CI instruments. Its constant evolution and prevalent acceptance

throughout the business underscore its importance in guaranteeing efficient and high-

quality web application testing methods. Selenium's extensive set of capabilities like

browser control, element location, JavaScript execution, and cross-browser

compatibility allows testers to automate both front-end and back-end tests. Its support

for various programming languages lets developers pick the language of their choice

to write easy to read and maintain test scripts. This compatibility with multiple

languages combined with the ability to integrate seamlessly with Continuous

Integration pipelines facilitates streamlined testing workflows. As more companies

recognize the value of test automation in deploying applications faster and the

advantages of using open source software, the Selenium project community continues

to grow in order to meet the changing needs of users (Thooriqoh, 2021).

21

3.4.2 Advantages and Limitations of Selenium in Web Testing

Your literature review provides a comprehensive overview of both the

advantages and limitations of using Selenium for web testing. The segmentation into

advantages and limitations, along with summaries for each, makes the content clear

and organized. The inclusion of specific sources adds credibility to the information

presented. Here's the structured summary:

Advantages of Selenium:

1. Versatility: Selenium supports various programming languages, allowing

testers to write automated scripts in the language they are most familiar with (Li

2024).

2. Cross-browser testing: Selenium is known for enabling automated tests that

can be run against multiple browsers simultaneously, ensuring broad

compatibility and a seamless user experience (Li 2024).

3. Cost-Effective: Being an open-source tool, Selenium is cost-effective for testing

web applications, as there are no licensing fees (Li 2024).

4. Integration Capabilities: Selenium integrates seamlessly with Continuous

Integration (CI) tools like Jenkins (Li 2024).

5. Community Support: Selenium benefits from an active community of

developers and users, providing assistance on forums and messaging boards (Li

2024).

Limitations of Selenium:

1. High Test Maintenance: Selenium tests can become fragile due to strict

element identifiers, leading to high maintenance requirements (Reddy 2022).

2. Steep Learning Curve: Mastering Selenium requires a steep learning curve,

demanding considerable time spent developing coding abilities (Reddy 2022).

22

3. Limited Reporting Capabilities: Selenium lacks certain features for generating

detailed reports on test runs and results (Reddy 2022).

4. Lack of Reliable Technical Support: Selenium lacks reliable technical support,

and users must seek solutions through online documentation and communities

(Reddy 2022).

5. Total Cost of Ownership: While Selenium itself is open-source, the overall cost

can be high due to factors like maintaining tests, fixing bugs, scaling the

framework, and hiring skilled engineers (Reddy 2022).

3.5 Appium for Mobile Application Testing
Appium is a versatile and free automation tool specifically designed for mobile

app testing (Verma 2017). Serving as a bridge between test scripts and mobile

applications, Appium is compatible with various platforms, including real devices,

simulators, and emulators. Its extensive reach spans multiple app platforms such as

iOS, Android, and Tizen. Moreover, Appium is not limited to mobile platforms; it also

extends its functionality to web browsers like Chrome, Firefox, and Safari.

Additionally, it operates seamlessly on desktop environments like macOS and

Windows, and even extends support to TV platforms such as Roku tvOS, Android TV,

and Samsung. This wide compatibility makes Appium a powerful and flexible tool for

comprehensive mobile app testing.

3.5.1 Introduction to Appium Framework

Appium, a prominent open-source automation testing tool, simplifies the

automation of mobile apps across various platforms (Verma, 2017). Serving as a

bridge, it connects test scripts with mobile apps running on real devices, simulators, or

emulators. Appium's versatility extends beyond mobile platforms, encompassing iOS,

Android, Tizen, popular web browsers (Chrome, Firefox, Safari), desktop systems like

macOS and Windows, and T V platforms including Roku tvOS, Android TV, and

Samsung.

23

Since its inception in 2011 as "iOS Auto," Appium has evolved significantly,

expanding its focus on UI testing across diverse platforms. Known for its user-friendly

nature, Appium facilitates automation testing through a convenient CLI tool and

seamless collaboration with third-party plugins, allowing easy installation of drivers

and plugins from the Appium ecosystem (Verma, 2017).

Key Capabilities of Appium include:

1. Working on Multiple Platforms: Appium is adept at testing on various

platforms, including iOS, Android, Tizen, and web browsers (Knott, 2015).

2. Integration with Testing Frameworks: It seamlessly integrates with popular

testing frameworks like TestNG, JUnit, Pytest, and Cucumber, providing a well-

established testing setup (Knott, 2015).

3. Expansive Ecosystem: Appium's adaptable architecture allows customization

and the creation of new drivers for different platforms (Knott, 2015).

4. Handling Native and Web Apps: Appium excels in automating both web and

native apps, offering a wide range of features for diverse testing scenarios

(Knott, 2015).

Appium 2.0, the latest version, prioritizes agility and efficiency, aiming to

simplify and expedite mobile testing. With a streamlined structure focusing on key

testing aspects and enhanced features in the Appium Inspector tool, testers can emulate

complex user tasks more effectively (Verma, 2017).

Appium operates seamlessly on both Android and iOS, leveraging the Mobile

JSON Wire/W3C Protocol. This protocol translates test commands into REST API

requests, which Appium client libraries use to communicate with connected devices

or simulators (Verma, 2017).

In summary, Appium stands out in mobile application testing due to its

versatility, compatibility across multiple platforms, strong community support, and

24

ongoing enhancements to meet evolving software testing needs in our digital landscape

(A et al., 2020).

3.5.2 Advantages and Limitations of Appium

Advantages of Appium:

1. Working on Many Platforms: Appium demonstrates versatility by testing on

various platforms, including iOS, Android, Tizen, and web browsers, ensuring

excellent cross-platform compatibility (K, 2023).

2. Works with Test Frameworks: Appium seamlessly integrates with popular test

frameworks such as TestNG, JUnit, Pytest, and Cucumber, providing testers

with a familiar testing environment (Johnson, 2024).

3. Strong and Adaptable System: Appium's flexible structure allows easy

modifications and personalization. Users can create and share Appium drivers

for new platforms, enhancing the framework's capabilities (K, 2023).

4. Backs Native and Web Apps: Appium excels in automating both native and

web applications, equipped with a comprehensive set of features to handle

various testing scenarios (Johnson, 2024).

Limitations of Appium:

1. Difficult Setup: Appium's client-server model makes the setup challenging,

requiring programming skills and making automation with Appium more

complex (K, 2023).

2. Unstable Tests: Appium may lack precision in tests at times, leading to

inconsistent test results for the same setup (Johnson, 2024).

3. Slow Speed: The structure of Appium can slow down test run times due to

delays in starting the server and executing actions (K, 2023).

25

4. Issues Locating Elements: Appium may face challenges in finding elements

and automatically recognizing images, necessitating manual entry of element

positions (Johnson, 2024).

5. Limited Backing for Outdated Android Models: Appium might fall short in

supporting older Android versions, impacting test coverage on diverse devices

(Johnson, 2024).

3.6 Comparative Analysis
The chapter provides a comprehensive analysis of the research covered in

preceding chapters, aiming to create a holistic perspective. Conducting a comparative

study, the literature is scrutinized to identify areas that require further investigation

and underscore the importance of the conducted research. By evaluating key studies

side by side, the analysis seeks to identify subjects deserving additional scrutiny and

highlight the significance of the undertaken research effort. Despite the presence of

insightful research on the topic, certain aspects remain incompletely understood. This

analysis endeavours to bring attention to these gaps and emphasize the value of the

conducted research.

3.6.1 Previous Studies

The thesis explores a variety of research experiments on software testing, web

application testing techniques, mobile application testing strategies, and the use of

Selenium and Appium for web and mobile testing, respectively. Here is a concise

summary of the key findings from the research:

Web Application Testing Techniques:

The research delves into various testing methods in web application

development, emphasizing the importance of selecting appropriate techniques based

on specific requirements. It covers unit testing, integration testing, and performance

testing, highlighting the need for a judicious combination of methods for optimal

26

results. The studies underscore the significance of diverse testing approaches to

enhance product quality and provide users with a consistent and issue-free online

experience.

Mobile Application Testing Techniques:

In the realm of mobile application testing, numerous studies address challenges

unique to mobile apps, such as cross-platform compatibility, performance, usability,

and privacy concerns. The research suggests practical techniques, including thorough

testing on a diverse range of devices, defining performance benchmarks, conducting

user tests, and scanning app code for security vulnerabilities. These strategies aim to

ensure mobile apps meet user expectations and adhere to privacy standards.

Selenium for Web Application Testing:

Selenium, a popular open-source test automation tool for web applications, is

extensively studied. The research evaluates both the advantages and limitations of

using Selenium for testing websites. Selenium proves valuable in streamlining the

validation process by allowing testers to automate scripts, replay common actions, and

detect potential bugs. Best practices are outlined to optimize Selenium's capabilities,

recognizing its effectiveness in enhancing the quality and efficiency of web application

testing.

Appium for Mobile Application Testing:

Appium, an open-source tool for automated mobile app testing, is examined in

various research efforts. The studies discuss the benefits of Appium, such as testing

multiple operating systems with one test suite and reusing test cases across platforms.

However, limitations are acknowledged, including challenges in testing specific app

features and occasional bugs. Recommendations are provided for effective Appium

implementation, emphasizing object identification and addressing device

synchronization issues.

Overall Perspective:

The research offers valuable insights into software testing methodologies, with

a focus on Selenium and Appium. While providing substantial knowledge, some gaps

27

remain, particularly in further exploring Appium's application to mobile testing and

conducting comparative studies on different testing platforms. Addressing these areas

through additional research could enhance the understanding of evaluation strategies

in software testing. The review highlights the need for continued exploration and

expansion of knowledge in the domains of Selenium and Appium, as well as a broader

understanding of mobile app testing.

3.6.2 Identified Gaps

The literature review identifies several gaps and areas that require further

exploration in the realm of software testing, particularly in web and mobile application

testing. Here's a detailed breakdown:

Appium for Mobile Apps:

Observation: There is a noticeable imbalance in the available information, with more

focus on Selenium and comparatively less on Appium.

Recommendation: The need for more studies and research efforts to comprehensively

understand the optimal usage of Appium for mobile application testing.

Testing Tools Comparisons:

Observation: Existing studies lack in-depth comparisons between testing tools,

specifically Selenium and Appium.

Recommendation: A call for more detailed comparisons that highlight the strengths,

weaknesses, and best use cases of both Selenium and Appium in various testing

scenarios.

Mobile Testing Advancements:

Observation: The current research landscape does not adequately address

advancements in mobile technologies, such as AI-driven testing, IoT application

strategies, and 5G performance testing.

Recommendation: Emphasizes the need for research to keep pace with evolving

mobile technologies, exploring areas like AI-driven testing, strategies for IoT

applications, and performance testing in 5G environments.

28

Security Testing in Mobile Apps:

Observation: Limited focus on security testing in mobile apps despite its crucial

importance.

Recommendation: Encourages more studies to explore the best practices for ensuring

security in mobile apps, identifying vulnerabilities, and implementing robust security

measures to protect user data and privacy.

Overall Cal l for More Research:

Summary: The literature review underscores the necessity for additional research and

real-world case studies to fill the identified gaps. The objective is to advance software

testing, especially in the context of web and mobile applications, utilizing tools like

Selenium and Appium.

3.7 Summary of Literature Reviewed
This comprehensive thesis delves into various aspects of software testing, with

a particular focus on web and mobile application testing. As a summary, the following

key points can be made:

Importance of Web and Mobile Testing:

• Emphasis on the significance of tailored testing approaches for web and mobile

applications, considering their unique challenges and requirements.

• Recognition of the need for specific testing techniques, tools, and best practices

to ensure effective testing of both web and mobile apps.

Web Application Testing Techniques:

• Overview of diverse web application testing techniques, including compatibility

testing, performance testing, usability testing, and security testing.

• Acknowledgment of the importance of employing these techniques to enhance

user experience and functionality in web applications.

29

Mobile Application Testing Techniques:

• Recognition of the complexities in mobile application testing, requiring

optimization for different devices and platforms.

• Highlighting strategies to address challenges related to performance, usability,

and security, ensuring the quality of mobile apps.

Selenium for Web and Mobile Apps:

• Examination of Selenium as a versatile tool for automated testing of web and

mobile apps, compatible with various browsers and programming languages.

• Awareness of Selenium's limitations and insights into optimizing its usage for

effective web and mobile app testing.

Appium for Web and Mobile Apps:

• Exploration of Appium's role in testing both web and mobile apps, emphasizing

its compatibility with different platforms and support for native and web apps.

• Evaluation of the strengths and limitations of Appium, contributing to the

improvement of the testing process.

Areas for Further Research:

• Identification of areas requiring more in-depth study, such as Appium's specific

role in mobile app testing, detailed tool comparisons, emerging trends in mobile

app testing, and security issues.

• Emphasis on the potential impact of further research in promoting enhanced

software testing practices and ensuring the quality of web and mobile apps

through effective testing methods.

30

4. Practical part

4.1 Implementation of Selenium for Web App Testing Tools

4.1.1 Setting Up Selenium for Web Application Testing

Selenium is an open-source framework used for automating web applications,

the below step by step process guides us to setting up Selenium for web application

testing, focusing on the Selenium WebDriver, which is the component of Selenium

used for automating browser actions.

Edit System Variable X

Variable name: JAVA_HOME

Variable value: C:\Prograrn Files\Java\jdk-11

Browse Directory,.. Browse File.., OK Cancel

Figure 1: JDK Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 1: Install Java Development K i t (JDK).

Selenium requires Java to run. Therefore, the first step is to ensure that the Java

Development Kit (JDK) installed on our machine. The JDK allows us to develop and

run Java programs, including Selenium tests.

31

file://C:/Prograrn

I A b o u t E c l i p s e I D E • X

E c l i p s e I D E f o r E n t e r p r i s e J a v a a n d W e b D e v e l o p e r s (i n c l u d e s I n c u b a t i n g c o m p o n e n t s)

V e r s i o n : 2 0 2 3 - 1 2 (4 . 3 0 . 0)

B u i l d i d : 2 0 2 3 1 2 0 1 - 2 0 4 3

(c) C o p y r i g h t E c l i p s e c o n t r i b u t o r s a n d o t h e r s 2 0 0 0 , 2 0 2 3 . A l l r i g h t s r e s e r v e d . E c l i p s e a n d t h e E c l i p s e

l o g o a r e t r a d e m a r k s o f t h e E c l i p s e F o u n d a t i o n , Inc . , h t t p s : / / w w w . e c l i p s e . o r g / . T h e E c l i p s e l o g o

c a n n o t b e a l t e r e d w i t h o u t E c l i p s e s p e r m i s s i o n . E c l i p s e l o g o s a r e p r o v i d e d f o r u s e u n d e r t h e E c l i p s e

l o g o a n d t r a d e m a r k g u i d e l i n e s , h t t p s : / / w w w . e c l i p s e . o r g / l o g o t r n / . O r a c l e a n d J a v a a r e t r a d e m a r k s o r

r e g i s t e r e d t r a d e m a r k s o f O r a c l e a n d / o r i t s a f f i l i a t e s . O t h e r n a m e s m a y b e t r a d e m a r k s o f t h e i r

r e s p e c t i v e o w n e r s .

T h i s p r o d u c t i n c l u d e s s o f t w a r e d e v e l o p e d b y o t h e r o p e n s o u r c e p r o j e c t s i n c l u d i n g t h e A p a c h e

S o f t w a r e F o u n d a t i o n , h t t p s : / / w w w . a p a c h e . o r g / .

I n s t a l l a t i o n D e t a i l s C l o s e

Figure 2: Eclipse IDE Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 2: Download and Install an IDE

An Integrated Development Environment (IDE) provides a convenient interface

for coding, debugging, and testing our Selenium scripts. Eclipse and IntelliJ IDEA are

popular choices among Java developers.

Steps for Eclipse:

1. Create a new Maven project in Eclipse.

2. Enter the GroupID and Artifactld, Click on Finish.

3. Double click on the pom.xml file and add the dependencies.

32

https://www.eclipse.org/
https://www.eclipse.org/logotrn/
https://www.apache.org/

96 Programs • Seiennm/pomjiml - Eclipse IDE
£il* Edit Source Uavigate Search project Bun Design üfndow tjetp

a x

0 * At. Q * » m s ^ e\m
•j Project Explorer x ~ B es • -i"n .j- . '• i • - n

e K T l » 1 http://moven.apache.org/xsd/imjv*n-4.e.e.xsd (xsi:schenot.ocotion with catalog) •

" it Selemum

• src/test/je«

' »)ft£SystewiUbwyIIJVJSE IS]
' » Maven Dependencies

l -<projt tct <rt i ln5»"http:/ /aiavan. apache. org/POM/4.f l .e
2 M i n i : xs i»"h t tp : / /www.w3 .org/2Ml/XML5ehe«ia- instance"
3 xs i :sehe* iaLoeat ion«"ht tp ; / / M v e n . a p a c h e . o r g / P O M / 4 . e . e h t t p : / /maven .apache ,o rgyxsd /maven -4 . , > . ' • : : >
4 <inodelVersion>4.B.e</modelV«rsion>
5 <groupId>com. seleniui iK/groupId>
6 < a r t i f a c t I a > S e l e n i u t « / a r t i f a e t I d >
7 <v«rsion>e.e.l-SNAPSHOT</version>
8- {dependencies?
9- <!--

1 -• s
c

18
11-
12
13
14

{dependency?
CgroupId?org. se leniumhq.seleniu inc/groupld?
<a r t i f ac t I d>se len i iM - j ava< /a r t i f ac t l d>
{vers ion ?4.18.K/ \>ers ion>

^/dependency? 15

{dependency?
CgroupId?org. se leniumhq.seleniu inc/groupld?
<a r t i f ac t I d>se len i iM - j ava< /a r t i f ac t l d>
{vers ion ?4.18.K/ \>ers ion>

^/dependency?
16
17
18-
19
26
21
22
23
24
25-
26
27
28
29
30
31
32»

S
IS
36

<!-- h t t p s : / / a r v n r e p o s i t o r y . c o a i / i r t i f a c t / o r g . t e s t n g / t e s t n g -->
<dependency>

{groupld?org. testng</groupld>
{ a r t i f a c t Id>tt)*tng</*rt i f act Id>
{ v e r s i o n ? 7 . 9 . S i / v e r s i o n ?

</dependency>

16
17
18-
19
26
21
22
23
24
25-
26
27
28
29
30
31
32»

S
IS
36

< | - - h t t p s : / / " v n r e p o s i t o r y . coai/art i f act/com. event s tack /ex ten t repor ts - - >
<dependency>

<groupId>ccM.avtntStack</groupId>
ca r t i f ac t I d>ex ten t repo r t s< /a r t i f ac t I d>
<vers ion>S. l . l< /vers ion>

{/dependency?

16
17
18-
19
26
21
22
23
24
25-
26
27
28
29
30
31
32»

S
IS
36

<!-- h t t ps : / / i t vn repos i t o r y .eoa i / a r t i f ac t / o rg .uncoanons / repo r tng -->
<dependency>

{group Id>org.uncommons{/groupld>
< a r t i f a c t I d ? r t p o r t n g c / a r t i f i c t I d >
<version>1.1.4</version>
<s cooe>test</s eooe>

Owvm Depend* ncies Dependency Hierarchy Effective POM pomjcmd
Wntable M IS: 22:609

tfj P Type here to search o * C 41 •

Figure 3: Selenium WebDriver Dependencies.
[Source: This thesis specific diagram was developed by the author.]

Step 3: Install Selenium WebDriver

Selenium WebDriver is a collection of language-specific bindings to drive a

browser. We need to add it to our project as a dependency.

81 Programs • Sefenwryprmirrii • Eclipse. ID • X
file Edit Source tUvigatr Search fwje Eun Design Window Help
a * H t [« r t > 3 B 0 £ B ! * l » • • * * . ' s - . t l * - o - * - * - 0 - 9 - ' f t i * * - *> # f l i - & i - c ^ i » c > - * - | a
4_i Project Eiptorer X = ° t> Salenium/pom ml x •

B H ? | V 1 192 n
- fcj Appium
- FT Selenium

! B srt/maiiVjaia
- J src/roanVrcMwon

1Q3
I M *
105
16 b

e l - - h t t ps : / /mwnreposi tory . c o m / a r t i f a c t / o r g . apache. xml be a rs /xml beans -->
(dependency?

(•graupldjorg. apache. Kmlbaansi /groupld?
ea r t i f ac t l d>xmlbeans< /a r t i f ac t rd> •

: t> src/test/java
9 src/tesr/iesaurces
m, "RE iysiem Library :«wSE-l Jl

1Ö7
1EM
109

<version>5.2.f l</version>
(/dependency.? •s

.= Maveri IIEM icenc r;
. h reports

. srr

HS
U l
l i ;
113

<I-- h t tps : / / a iwnrepo5 i to ry .co i t i / a r t i f ac t /o ra -apache-po i /po i -ooKml - i chemas -->
(dependency?

(groupld>org. apache, podi / f j -oupld?
(a r t i f a c t l d i p o i -onKml- *chemas</ar t i , fac t ld i

: & test-Output 114 < vers ion >4 .1 .2 (Aers ion>
s, parnuiJ U S

IIB
</dspendency>

117 <! -- \\tips; / /K iwhreposi tory . com/art i f ac t / io , g i t r i i ib . boni garc ia /we bd river-manager- - - >
U S -
I IS
125
121

{dependency}
O " . . : I -> io.e. i thub.bonigarc ia</groupld>
<art i fact Id iwebdr iveiT i ianagei '</ar t i fact Ic l>
< v e r s i o n s . 6 . 4 (/ v e r s i c - n >

122 {/dependency} •
123
I M <! - - h t t ps : / / i r i vnrapos i to ry . t o m / a r t i f a e t / r u . yandex. q a too Is .ashot /ashot -->
125-
115
127

(dependency?
{groupld >ru.yandex.qatools . ashotcYgroupId?
<ar t i fac t id>ashot (/a r "T i fac t Id>

12fl (vers ion >1. ^ (/ v e r s i o n ? 1 129
13fl
131
132
133
134

(/dependency.?

<! - - h t t ps : / / i t iwnreposi tory. cam/a r t i f act/commons-codec/commons-coder; -->
(dependency?

•:grcL^I^>crJfiitriC)rs-codec</ ,gi-cL.;J i>
Cartifar.t:d>comtnon5-codecs/a r t i f a r t l d >

135 < ve rs io r i> l . 16. B</vers ion?
13 e
1:7

c/dependency*

133-

< > •Cwervi«! topMCeiti« Depenaency Hie'aidiiy EjrKt™eKJW sanuml
Wrnaoie Imert ti7:is.:5606 Building: (HTM B Bi • 0

M P Type here to search

i . • 0 1 1 *> o s a * « « u

Figure 4: Browser Dependencies.
[Source: This thesis specific diagram was developed by the author.]

33

http://moven.apache.org/xsd/imjv*n-4.e.e.xsd
http://aiavan
http://www.w3
http://maven.apache,orgyxsd/maven-4.,%3e.'�
https://arvnrepository.coai/irtifact/org.testng/testng
https://itvnrepository.eoai/artifact/org
https://aiwnrepo5itory.coiti/artifact/ora-apache-poi/poi-ooKml-ichemas
file:////tips

Step 4: Install Browser Driver

Selenium requires a driver to interface with the chosen browser. Chrome,

Firefox, Safari, and Edge all have their drivers. We need to add it to our project as a

dependency.

g£ P1C91JTS • 5tltrTlijm/srL.'-nairT,;jvj..tidK,'IntBast.|a»S Ed PK IDE -
ii u Edit frXJftt Rrfstlor kavgaLc S^fOt £lcjM ftun ftndrjw Help

I » C B *. I » Ji • M i » » 0 ' f t ' 4 - C i - e - - * i & + ' - ' » 4 (# l * f t ' * ^ , 3 C i * , * * l B Q. -B|[ffl
I "TestBasejaua X

1 package base;
2
- • import Java. io.Fi lelr tputStream;

14
15 pub l i c c l a s s TestBast (
ie
1" pub l i c s t a t i c WebDriver driver;
is pub l i c s t a t i c P rope r t i es c w f i j ;
1; pub l i c s t a t i c WebDrivsrWait wait;
2B

pub l i c Tas tBaseO throws IOExce-ption (
22
23 cevr/iy - new P r o p e r t i e s !] ;

F i l e l r pu tS t ream f i s = new F i l e Inp j tS t re5 in (" - / s r ' c / i i i a i n / j ava /con -F igu ra t i c i n / con f i g ,p rope r t i es ") ;
25 C 0 i « f i ? . i o a d (f i 5) ;
26)
37

pub l i c s t a t i c vo id i n i t i a l i Z a t i o n O {

S t r i n g browse r lJarne - cön/ ig , .getPnoperty(' 'brüwser ' ') - ;

i f (browserName .eqLalsIgriDreCaseC'Chrome")) {
UebDri verManager. chrome-driverO . s e t u p () ;
driver = rc-w Ctiromc-Dr'iver'O;

)

e i « i f 1 • • •• • • . s q u a l s l ^ i - c r ^ a s e ; " r i i - e fo * ")) {
WebDr iver f tanager . / i re /cwdr ive/^} .5itup();
rfriuer ; new F i r e f o x D r i v e r () ;

>

e lse i f (brawserName.equal5lgioreCase("Eda.e")] {
WebDriverManager. edgedri i/er[] . set\ip{};
driver = new EdgeDr i ve rO ;

>
46

tfriver.maraBe().wiridow() . n a x i n i i e O ;
d r i ve r .manaea f1 .de le teA l lCoDk ies t) :

WnWDlt Smari inseft 49:35 r 1376

P Type here to searrrt n <f * ** • / $ &

Figure 5: Selenium Script Example.
[Source: This thesis specific diagram was developed by the author.]

Step 5: Finally, we can write our first Selenium test script.

After setting up, we can write our first Selenium test. This test will open a web

browser, navigate to a website.

4.1.1.1 Test Scenarios

To perform web application testing, a demo website known as "Sauce Labs" is

used and programming scripts are developed using a Java language that is compatible

with Selenium, as part of a Selenium-based automation framework. These scripts

utilize the Page Object Model (POM) design pattern for web applications which

enhances better test maintenance and reduces code duplication, enabling them to

communicate with web browsers and carry out automated testing tasks via the

34

Selenium WebDriver API. The scripts are structured within a Maven project setup and

leverage the TestNG framework to control the testing process. Scripts are designed

using TestNG, which is a sophisticated testing framework featuring enhanced

annotations and organization of test methods. It also facilitates data-driven testing and

integrates with Maven to handle dependencies and execute tests during the build cycle.

Each of these classes is part of the larger test suite and contributes to a comprehensive

automated testing strategy for a web application. They demonstrate a clear structure

for testing different components of the application, ensuring that each part functions

correctly both individually and as part of the overall user journey.

jjgj ProgiítiB - SílenFum/ift/WíV(*va/tnica5<Vl09inP»9íI«Lj«ví - Echpse IDE
Eii« Edit Source Refaclor navigate Search £rojett Bun MJIndo-n Help
n - U G i v « I » ill • *t a. j t | % j t l 9 H v 9• *
^ Propel EipkHW x E % Tř I I

ÜAopium
• i * Selenium

- ff sre/main/java

í TeilBatejav»
: coif gural on

• i i. "I* 1 r--.
• p*QM

I i. "irS.-l-X J..I
L LocjinPagejava

/ SnopomgCart̂ gejava

• • utilities
í EítentUilenenjaifa
I '. - V-V.',!-. i,;- i. I
I renutiijava

- • src/main/rewurcel
' teitng.xml

• • stc.'lesť; ava
- I M U M

Z ChetluxiiPageTest java
' LogrnRageTeit.java
i. PiofluaPageI«t;ava

'. LoginPage Tekavá • | ProductPigeTeitjava
* 1 package t e s t c a s e s ;
" 2

Sroppi ngCartPageTestja va

|| » • «• t? í i » •

ChectoutPageTest.java

F-import Java. io.IOException;
12 I

Run ALL
13 p u b l i c c l a s s LoginPageTest extends TestBase {

LoginPage log inPage ;
ProductPage productPage;

pub l i c LoginPageTest() throws IOExcept ion {
super {) ;

>

gBefoceMethod
pub l i c vo id setup() throws IOExcept ion, In te r rup tedExcept ion {

i n i t i a l i r a t i o n () ;
log inPage = new Log inPagef) ;

>

27- p T e s t (p r i o r i t y • 1)

pub l i c vo id i nva l i dLog ioTes t3 () throws IOException {
productPage = l o g i n P a g e . v a l i d a t e L o g i n (" i n v a l i d ^ t e s t . c o m " , " i n v a l i d ") ;

a T e s t (p r i o r i t y = 2)

• o .
- B

H
0
m
•

entailable TeporLhtml
• src/test/reíourcei
» JRE System library J.ÍSE 181

' ak Maven Dependencies
- i? reports

I DMnt_Tue.Wif_05_1í_Oľ_51.CEl_2024.n
a. Ement.Tue.War.05.17.46.01.cn J02lh

ictaiget
• k test-output

b Default suite

P Type here to search

pub l i c vo id v a l i d L o g i n T e s t O throws IOExcept ion {
productPage = l o g i n P a g e . v a l i d a t e L o g i n (c o n f i g . g e t P r o p e r t y (" i

(iAfterMethod
pub l i c vo id teardownO {

a V i v e r . q u i t O ;

ername"), con / i g . ge tP rope r t y ("password ")) ;

* <F » *

Figure 6: LoginPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

1. LoginPageTest.java:

This is a test class extending TestBase, which means it uses common setup and

teardown methods for initializing and ending test cases. It contains two test methods:

invalidLoginTest() and validLoginTest(). The first method tests the login functionality

with invalid credentials, and the second tests it with valid credentials pulled from the

config.properties file. The @BeforeMethod annotation indicates that the setup()

method will run before each test method, initializing the browser and creating an

35

http://Ement.Tue.War.05.17.46.01.cn

instance of the LoginPage. The @AfterMethod annotation indicates that the

teardown() method will run after each test method, which in this case, quits the

browser, effectively closing the testing session.

urogram - S«ieniun-,.,src/lest';av4'[«:us«,i,3roaijoP*g«Testjffia Eclipse IDE a •
[lie tfljT source Retatlor yavigdle S*#CH project gun B(i <do* Help
0 * W V S I K A . . j $ •
<_j Piojecl Elptot« x B * i '|7 1 (r 1 "

1 loginftgetruja« 1 PioduciPioetenjjy* » L SropptnoCattRĵ ereOjeva JL ChecttJUtPigeleBjeva
- n

•
H

iVAetnum
- '.' Sritr, ur-

a i
2

pac <age t e s t c a s e s ; •
H

» . m src/main/java
• I b M

3«
13

import J a v a . i o . I O E x c e p t i o n ; •

/ >•:;•!•* i.j
v Hi confcguiition

1 contigjHDpen«

/ ' v. l. 1
/ I.. g -."•.l.jr l...
' Pr (.uuilPaoej.ua
1 Snopp.ngCirtPageji«a

Hun ALL
14 p u b l i c c l a s s ProductPageTest extends TestBase (
15 LoginPage log inPage ;
16 ProductPage productPage;
17 ShoppingCartPage shoppingCartPage;
IS
1? pub l i c ProductPageTest() throws IOExcept ion {
26 super () i

\
*
>

• ffiustrjau 21 >
• TeitDaUirlw 22

v • M M
i Ertentlme'wi.iJjya
£ EjflentManager.java
' TeaUWgava

I tettng.iml
- • «C/1W>*va

v «testcaset

23«
24
25
26
17
28
29
»

p i fm •rtptixnl
pub l i c vo id setup() throws IOExcept ion, In te r rup tedExcept ion {

i n i t i a l i l o t i o n () ;
loginPage = new Log inPage() ;
productPage = l og inPage .va l i da teLog in (con / i o . ge tP rope r t y ("use rname") , con / i g . ge tP rope r t y (" passwo rd ")) ;

>

> ft Chetkoutftgelentava
' loginffcgeTejtfavj
/ ProductPageTeitjave

... emaiiable-reoorLhtmi

31 '

32
33
34

i>Test (pr io r i ty= l)
Run 1 Debug
pub l i c vo id v a l i d a t e P r o d u c t S e l e c t i o n T e s t () throws IOExcept ion , In te r rup tedExcept ion {

shoppingCartPage = p roduc tPage .va l i da teProduc tSe lec t i on {) ;
)

• src/lesty resources 35
at JRE Synem Library ilavaSE 1.8)

1 Mt Maren Dependencies

a EjcWM,Iue.M*.05.17i07.S1.CET.MJ4ii

56
37
36
19

liiAfterHethod
pub l i c vo id teardown() {

d r i v e r . q u i t () ;
Ewent Tu* Mar OS 17 46 01 CHJ0i4Ji M >

. src
k*Unjet

41 ;
- isnen-owpur

» Default tun*
is ,-i.t

Writable Smart Insert 1:1:0 I

. P Type here to search n 11-0J-2024 T l

Figure 7: ProductPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

2. ProductPageTest.java:

This class tests the product selection functionality on the product page. The

setup() method again initializes the browser and logs into the application using valid

credentials. The login is necessary because product selection requires an authenticated

user. The validateProductSelectionTest() method test whether product selection is

functioning correctly by using methods defined in the ProductPage class.

36

http://uuilPaoej.ua

BE Programs - pil jm,
:

vc,•'1 r-llivn/l 1*5:0̂ 0,"7rin̂ jinniai^nprcM.JtfVii rclipwICE — O ~K
l i l i Ecit iource fte"aí!oi ya\iga:e ÍĚSTCH £dl Eur. Hiraoiv. Jds-lc-

O ' U «ii<J Í-ÍBL 1» 1 » [E • ř» .1. .
1 Q. El r

Ů Project Eíploier X B % 1? 1 ?T 1 Q 3 ;j Looinft>rjcrrFl.]aira Prod net Pag rTrst jaw 2 ShoppinoCartPaarTnljavB *. ,í ChecitiutPaflrTrituav* D D
Apcur-

- -i Í _"I
v sic/maiit/java

• package t e s t c a s e s ,
2
•••import j a v a r i o , I O E K c e p t i o n ; r •

tt
• L!l TwBflKJaw

ccritig.properties
- Si pag»

• 14 cwKúLiPaa«.ja<a
> L7J LogirJtageiJva

1*1 ProductPagrjava
- i>l Shi opp i ni; C-srtPisB.j jva

- <B tetdala
'. T«lDaiaj:l£r:

IE. pub l i c Cla£4 5llOppingCai,T_Pag.&TB5T_ ^KTiirldS. TestBaSe •(
16 LoginPage lagLnPage;
17 PrcquctPage predLlCtPage;
15 ihoppingCartPage ihoppingCartPage;
19 CheckoutPage theckcutPage;
16
21- pub l i c ShoppingCartPageTestO throws IOExeeption {
22 Rupert>,
23 y

n
31

• 14 EweniLiiMiiif!.jaia
l i EfleritM*n»ijci(>ra

-• E Tntutiljs/a
- 3 Er̂ ma i ̂ resources

J t-Ktngjsml
- e* u f iesf|a«a

• 14 CtedtouWaeeTeitaava
•i Login'HjOCliJt.isvi
17] ProductPsofTeiljava
0 SrarjpingCafTPaijeTeEtjavs
IJ emailaMe-reportlrtml

• i-í/reii/ihiiuiLí:
ek JF«£ JíJttm Librjrsf I,,../- ' T

25"
26 pub l i c vo id setup() throws IOEKcept ion, In ter ruptedExcept ion {
Z7 i i i i r ia l ' t . rar ' tor] () ;
23 loginPage = nevj Log inPageO;

prpquttPage = loginPage . va l i da teLog in (cpn / i g - get Property (" user name*1 J , c o i / i g g e t P r o
shoppingCartPage - p rocuc tPage .va l i da teProduc tSe lec t i on (} ;

31 J
12
33- pTest(p r i o r i t y ^)

Furt f Deuug
34 pub l i c vo id va l ida teAddToCar tTes tO throws IOExcept ion, Interrupted Except ion •[

checkout Page = sr ioppingC5rtPage,veI i^steShoppir>gCsrt() ;
36 >
37

e r t y i " password")) :

.1 EjteriLTiJeJr1ai.r)E..17.r)7Jl.CETJj24.ri
1̂ ExtenLTLe_MarJ)J_l?_4&J)l_i:ETJ[)2-q.ri

v ;^ tni-output
• B D«fault arte

39- iBAfterMethod
je pub l i c vo id t e p r g w r f j •(
41 driver.quit();
« }
« >

Writafclf Smanlven H-1:J

•a .P Type here to search • » 0 4 1 1 # • / Q » ,í1 í 11-M-Z0C4 1

Figure 8: ShoppingCartPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ShoppingCartPageTest.java:

Above Figure 8 is for testing the shopping cart page's functionality, such as

adding products to the cart. The setup() method performs similar tasks as in the

previous classes, setting up the test environment and ensuring the user is logged in and

has selected a product. The validateAddToCartTestO method tests the addition of a

product to the shopping cart.

Sď : ---J "I"- ,-.-l.-r.i.im.,-irT.-rnt..-.,iu,i.'-r̂ tr.n-irvJ' hTr ° •'

O -» UJ 4řa v 1> ts » | » u • tr _,, l i s t * v :v. » v - o - * - " * - tj - » - 9 » v - a 4 í - j i - o r j o - s - l a
«, FToiect Uiolmr * ^ 1- 7 1 !• Í " LofliniBgfiKijara ilPw^i-acicicsusw i iimpinrwr.artiiiac-wst.jsva 1' f.hc-cwnrac.cicst.isua K n

- •- • f.T CT--II--
1 tankage t e s t t a s e s ,
2
3i impart ja i /a . io." iOEMcept ion; it

- m wrjiouranon
Run /L4 L
p u b l i c c l r , 5 i CherlcoutPaeETest extends TestBase -[

LaginPege l o g l n P s g * ;
17 ProduetPagar p rodyc tFau* ;

-,.
S"

s Hi Loainpaůe.iatfa i g CheckoutPage checkoutPagfj 8

i l pub l i c CheckoutPaseTust() throws IOException •[

"i fcniamidn

.1 Exwmusceoersji**

j i£| IfiHHil.jrw.-!

i 5 - i!*BeforeMethocl
^6 pub l i c vo id 3«up<J throws IO Except ion ̂ I n te r ruptea Except ion •£

"i n - r i o ! î <3tic..-7() ,
l pg inPag* • n*w Lc-ninF»e»();
oroduccpaae - lcginF-age . v a l i d a t e LOB i n (c ° r f ^ - BetPropar-ty (" uaerrarne" 1, eonřie7.?etPrQpertyf"pa&sword , l)1 ;

11 PiuductFtirjtT«l_ju*-,j

e* src/tcsWcsocirc-es

32 > e PP e e PP B O ,

3d- g T e s t (p r i o r i t y - l j

.'b pub l i c vo id v a l i d a t e S u c c e s s f u l O r d e r T e s t O throws lOEiccapt lon, In ter rupted
checkoutPae.e.ual iHateQrclerO J
check out Page . v a l i d a t i A d d r » ^ [1 est " , " T e s t " , " T e s t ") ;
pr^duct:P»ig« - ch ack^ut Pa g« , vali«l«teCon-ririii<);

« >

Except ion f

. -.ten rui V.K •: i(= .;i '.t i ;o^4 h

-• lunrtreoorlE

42 p u b l i c vo id teardownO <
43 d r i v e r . q u i t () ;

45 >
46

IvWtabW |S—11» Ht l:-l:0 :
II TyuL-l,L-iL-to5(WCh r-. m 6> m w m ř • / Q m í

Figure 9: CheckoutPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

4. CheckoutPageTestjava:

37

http://iimpinrwr.artiiiac-wst.jsva

The above Figure 9 is to test the checkout process, including order validation

and address confirmation. Like the other classes, it uses @BeforeMethod to set up the

preconditions necessary for the checkout tests, such as being logged in, having

products in the cart, and being on the checkout page. The

validateSuccessfulOrderTest() method tests the entire flow of a successful order

placement, including verifying order details and inputting address information.

38

4.1.1.2 TestCase Design

:'?s'air; io on u r " / = a •"ri

,j-.o':oT,,cui"jt
"e [= ": Navioate Sej'ci Pro'ec: i r ic;,',

ig.prcperties - Eclipse IDE fj X

d < l l ! 0 0 ! l ! « | » l • N 3 . ' 5 . s | I J ! ! S I i ; * - 0 - 4 - « k - (3 - f f - : * £ - * - • 4 ?: • t ' V V O - * - | B
%Roj«tEKplorar x E V:> 1 • B ° • • ccnfig.p'opeities * .J rKtBasejava iJ' Log In Page Java \' ProcfuCTFagejava 1'' 5rioopingCartPage.java '"1 Che:kowPageJava i' tesfg-Kml = •
• fci/ppium
- I? Selenium

- IB src/mairVja»a

.-. crjnlig.pio pettier
« ffi pages

l u r l = h t t ps : /"/www. saucedemo. com,'
2
3username = 5tandard_user
-password = secret_sauce
5
£ browser = Chrome
7
S i m p l i c i t . w a i t = IB

('-r.-'n.r-'flf,'.^;: / e x p l i c i t . w a i t - 5|
> B LogipPagejiivfl

II Piod uct Page Java
s K Shop pingCartFSge Java

1 Test Data, ibi
- « utilities

: E Extend islener:.ja¥ a
• E ExtentM ana ger Java
) 0 TestUBI.java

" S sr<V ma in/resources
I'.-bliiqAMi * >

l : Problems 'ftSerwis .̂ Terminal tfeData Source Explore! "1 P joerties BConsoleX Progress ff Resultso lunrwig suite j.. AJnit rf S - H - = B
Ma rarea Mtn display at this time.

E ChetkDUIkaijElEsc.iava
> E LcrpinPegsTestjsva
> B PiodudPageTsLim
s 0 Shop pingCaftFfcge'est java

• src/te ̂ resources
> IRE 5ys:eri Lil"rary lava*E-'.81

J fc PJaven Dependencies
i • reports

targei
i £> test-output

jj pom.xml

Writable Insen 9:13:145

4 P Type here to search » * ® 4 # & • / 9 ™ -« H 11-M-20W

Figure 10: Configuration File.
[Source: This thesis specific diagram was developed by the author.]

1. config.properties file:

This file contains configuration properties for the test suite. It includes website

url (domain name), credentials for logging into the web application (username and

password), specifies which web browser should be used (browser), and sets timeouts

for the Selenium WebDriver (implicit.wait and explicit.wait). These properties are

read at runtime and used to configure the Selenium environment.

39

jft Programs - SeleniunVS'O'mairVjava/base/TeslBaie jav Eel pselDE O X

File Edit Source fielactor Navigate Searcti Project Rur Window Help
Q » y * 1 » Ji • M --- -•' -'-1 ^ Ä a. BISS
^ Project Eiptorw x 6 ft 7 I *• 1 " 0 - config oropertiej. ' Tr̂ Sawjava • .>, loginPagejeva ' ProdixlPige/ava i Shoppings a rtPagejava 1 ClwrtomPagtjava i testngjirof a

i*Acpium : i package base;
- Vrnur-

• A nc/mairVjava y import j a v a . i o . F i l e l n p u t S t r e a m ;
v • Case 14

• TeaAasejava 15 p u b l i c c l a s s TestBase {
- S configuration 16

conficjB'ooertTi a pub l i c s t a t i c WebDriver d r i v e r ;
- • P*3« IB pub l i c s t a t i c P rope r t i e s config;

) .:<•• r:••••> 19 pub l i c s t a t i c webOriverwait w a i t ;
£ Loc}>nP»gej«va M
1 Prod uci Page ja»a 21* pub l i c TestBase() throws IOException {

' 91 Shcipp-ngCartfagejava 22
- Atestdau 23 config * new P r o p e r t i » s () ;

24 F i l e lnpu tS t ream * i s = new F i l e I n p u t S t r e a m (' \ / s r c / » n a i n / j a v a / c o n f i g u r a t i o n / c o r i f i g . p r o p e r t i e s "]
v > utiliiiei 25 config.load(fis);

£ E(1Fntliiienen.j«i 26 >
1 ExtenlMarugerjava 27

' 2 TeflUutgav* 2 » pub l i c s t a t i c vo id i n i t i a l i z a t i o n > {
- «c/mairVewurc« 29

i THmg.nrH M S t r i n g browserName = c o n / i o . g e t P r o p e r t y (" b r o w s e r ") ;
v a) uc/lesyjava 31

• * Teiicaies 32 I f {browserN.ame.«qualsIgnoreCasa("Chrome")) {
' ChedcoulPageTestjava 53 WebDr iverManager-chronwdr iver t) .setup() ;
1 LoginP»geTtjl>*¥a 34 d r i v e r a new ChromeDriver(} ;
£ i,i..i]-JLVjijfV',T..i..i 35 >
' SAoppmgCirt&geTHtjava 36

• vc/leit/mowcn 37 e l se i f (browser-Name.•quels IgnoreCeset 'F i refox")) {
' «JMSyOemU*X(iy|lavaS£-1.61 3« WebDr i ve rManage r . / i r e / oxd r i ve r () . se tup () ;

•> Maven Dependencies !9 d r i v e r = new F i r e f o x D r i v e r () ;
»rcportf W >
. «(41

target 42 e l se i f (browserName.equalsIgnoreCase("Edge")) •[
tnt-outpul -5 WebOr iverManager .edgedr tver () .setup() ;

m pomjcml A4 m pomjcml

: Pr iWerni MServen »•lerminal ItDau Source Eiptorer "iPrapemei OComote • ^Progress CRemltiCrunninglute > (Writ
No consoles lo cbsplav at Wis time.

Writable Smart kuen 1:1:6

P Type here to search
- • 9 m • « B / ' S - ! « « „ ; ™ „ m,

Figure 11: TestBase Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

2. TestBase.java file:

Above Figure 11 class serves as the foundation for all the page-specific test

classes. It initializes the WebDriver, which is used for browser automation, and the

Properties object, which is used to load the configuration settings from the

config.properties file. The initialization() configures the WebDriver based on the

browser specified in the properties file.

'I I FTojwt Enpiorrr : 101 n Fl sc j ova 2 PToauctFantj Sriof5pinnCarlft5BC.]Bwi 7| ChcctewjIFlojt-j

13 / / ObjectF
14« 8FindBy(ic
15 WebElemerrt

17" gFindFJydc
IS uJebElemervt

2fJ- • • _• i i i

23 ff I n i t i a l i z i i
. o g i n P a E ' !) thron?

-o f i i r i t s t r ing an.

I -i-li I iiln.jl - IP-:; if-. I I

4 <T 4 •P • / f £ B fe t

Figure 12: LoginPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

40

3. LoginPage.java file:

The LoginPage class represents the login page of the web application. It uses

Page Factory for initializing web elements. The @FindBy annotations are used to

locate the username, password, and login button elements on the page. The

validateLogin() takes a username and password, inputs them into the respective fields,

and simulates a click on the login button, returning a new instance of the ProductPage.

H Program • S^nir^c/nuin/jtvVM^M/PrDciucirS^.jíaá ĉl 0 » IDE • X

File Edit Sourer Relactor Navigate Search Pruitcl Run Window Help

0 * U « : t f « 3 B E * l » a • H a, * .R | • • f I** O - * ' • - : * tS < a : 4 : Si • ¥ • * * * • * • 1B IS
^Project Explorer X EE V 7 1 * § = • corrfig. pro OE roes i TastEasejava L LnginPaga-java i. Prrjd'.c:Page.java -• L StEppingCartFage.j-ava }_ CheckoutPageJava • testrqyml 3
. BAppiJir 1 package pages; *

V r ..-1 1
- 3 oc/mairiyjawj ?• i trport j a v a . i o . I Q E x c e p t i o n ;

IB

- S3 configuration
11
12

pub l i c c l a s s ProductPage extends TestBase {

renNg.pfocerties
•

1, CErEkoiAPagciava

IS
14-
15

/ /
3Fi rdBy(xpath = - ' / / * [^ i d - ' i n v e n t o r y _ c o n t a i i e r '] / d i v / d i v [l] ")
HebElemtnt p r o d u c t i ;

> Lil UginVig«.J4^
> a PradiKtPs.jE.j3va
' Ifl StiapO"i5^n^gf.|iB»

l i
17»
IS

3Fi rdBy(xpath = " 7 / * [g i d = ' a d d - t o - c a r t - s a u c e - l a b s - b a c k p a c k 1] ")
WebElement product lAddTatar t ;

- & testtiala 19
« TestDaiajrisx 29-

21
3Fi rdBy(xpath = "'//•'[^xd=" inventory_conta iner '] / d i v / d i v [2] ")
WebElement product2;

• |fl EstentListenErs.jaYa 22
Ifl FjlenrManagii-iava

> B TestUtiljaw
23-
24

&FindBy(xpath ^ " / / ' [@id=" a d d - t o - c a r t - s a u c e - l a t t s - b i k e - l i g h t 1]")
WebElement productZAddToCart;

t«tng^ml
- P sWrsl.'jaua

25
26-
27

SFindBy(xpath - " 7 / * [@ieV i nven to ry^o rv ta ine r '] / d i v / d i v [3]")
WebElement product3;

28
29-
:ň

iF indBi- (xpath = , 7 / ' [g i d = ' a d d - t o - c s r t - s a u c * - l a b s - b o l T - t - s h i r ' t '] ")
WebElement product3fi.ddToCart;

J ShappingCanPagereEtjava
31
32*
33

3Fi rdBy(xpath = "//*[$id=' i n v e n t o r y _ c o n t a i i e r '] / d i v / d i v [4] ")
We6Element product^ ;

• * JRE System Ubraiy .l̂ aSE-1 8!
i li'aven >Mnden: -:Í

• sIřpons

34
35-
56

3FiridBy(xpatri = " 7 / * [g i b = ' a d d - t o - c a r t - s a u c e - l a b s - f l e e c e - j a c k e t "] ")
WebElement product lAddTatar t ;

. • ar 37
> ̂ target
> & ten-OUtOUt

• pomjcml

38*
39
ÉA

iFir idBy(xpath = " / / * [@id=' inventory_cari t a i r ie r '] / d i v / d i v [S]")
WebElement product5;

< >

,!_ ProBlems * Servers ^Tenrinal \k Data Source Explorer ...Properties OCoriiole v -̂ Progress ("Results of running suite -Mum = 3
No consoles to display at this time.

Writable Smart Insert 1 1:1:0

• P Type here to search r. * (T V *

Figure 13: ProductPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

4. ProductPage.Java:

Above Figure 13 corresponds to the product page of the web application. Similar

to the Login Page, it initializes elements like product listings and add-to-cart buttons

using the @FindBy annotations. These web elements are identified by their XPath

locators. Methods in this class are used to perform actions such as adding items to the

shopping cart.

41

http://PradiKtPs.jE.j3va

SB Programs - Sckiiijrn's'C/main/ja*a/n4gnyi*iopniigC*rtP»gej*v» - Etlipw IDE. - CP X
File Edit V j n r h.-lil.i ' i. ; •• ieard i- eel Rm Window Help

^ Pioject Etplorer X B * ? | » 1 " • "•nligp'operties J. "TestBaLe.java J. LoginPage.java .J Prod url Pag ejava J ̂ hccpi'vjLartFas sava X LA ChettDut Page Java J~. testngjor
J* flopium 1 package pages;

* iy Selenium 2
.* src/mainyjavB j import Java.lo.IOExcaptlon;
v •> IB

2 Iesl6awj»va 1. pub l i c c l a s s Shappit igCartPige extends TestBase {
v ffi configuration 12

tOft(ig.pfop*fti« 13 / / Cb jec tRepos i t o r y :
14> r2FindBy(xpatri = " / / ' [^ i d = " shoppir^g_ca^ vt_co^taLrftf , ,]")
15 WebElement v iewCar t ;

Z Login Pag e.jâ a 16
i PradurtPagB.jara 17 / / I n i t i a l i z i n g the Page Ob jec ts :
/ ShopO'Ts^ifagejara IS- p u b l i c ShoppingCartPa,ge{) throws IGExtapt ion (

FS testdata PageFaetory.initELements{driver, t h i s } ;
I TestDstajdut Z9)

v BJjlililies 21
Z EJlenTLirteners.java 22 / / A c t i o n s :
J. F_itfntM»fiAg*i>Jya 23- p u b l i c CheekoutPage va l i da teShopp ing ta r t () throws IOEKeeptio i , In te r rup tecExcep t ion •[

i .' -I 24 v i * w C a r t . c l i c k () ;
J src/main/resources re tu rn new CheckoutPage(] j

' IWKJ.iorl 26 }
v • srt/test/java >

w B [estCaSH 23
i Z CtectoutPageTettjava
J / LoginFagc~c5l
J 2 Produdftoelestjavd

Z Shop pi rig Can Pag ale stava
A trc/twt/rewiurte*
*J i t i totem Library i^aSHS]
s. MavenDependencies

! J a r g * .
! i* t«t-output

H pomjcml H pomjcml
< >

.!_ Problems fci Servers .̂ Terminal tt QataSource Explorer ... Propertes • Console « sProgress If Fie SLlfcot njririrq suite ' Wnit -* • » n - - n
• •••

WriUtHe Smart Insert | 1:1:0

BJ P Type here to search « % 0 m # <=• n / a » ffi 11-03-204 ™

Figure 14: ShoppingCartPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

5. ShoppingCartPage.java file:

The ShoppingCartPage class manages the shopping cart page functionality. It

uses a @FindBy annotation to locate the shopping cart container. The

validateShoppingCart(), when invoked, will interact with the cart (e.g., view the cart

contents) and return an instance of the CheckoutPage.

42

Ifi ftegraim- St«eniij(ii/j«/m*in/j*^»/D»g»/Ch«ltoutl,»gej»vi • Ecl-cne IDE — • X
Fife Edit Source Re-faclor Navigate Srarr.li Project Run Wiridon Help
3 * B fti<f t M B j ^ i » • mm a Jt\ ̂ x f 3 v » • « » - ' 0 ' % ' ' % ' ' a - * ' ' » i e + - » ; * fln-»,l-^^C»-*-|B 0. !B||ä|
«j Project Ejepkmf X B % 7 1 V D ° B - confer. nperties L£j TestBawjaua / Logirftigejawi I ProrJuclPagejava J chopping Car Page fava I Chetknulftgejava X » testngjoril r_

App um 1 bdckaee- paces:
•. • Seien m 2

- x scma rt'java j ' i m p o r t j a v a . i o . l O E j c e e p t i o n ;
" A b*te 10

• [2 T«tB*ejavp 11 pub l i c c l a s s CheckoutPage extends TestBase {
" S. oar Figurado n 12

r.örifiijpröpr't'« 13 / / Ob jec tRepos i to ry :
v « pages W gFindByOipath = [<aid=' checkout ']")

ill ChrcfccutFbgc.java 15 WebElement checkoutB-t i ;
1 loflirPagejaua 16

1 Lfl Prod net Pag e.jaira 17- gF indBy(id = " f i rs t -name-")
- £ S-ICL'J 1 v'-.V-'.iLHi.i.,. 1B WabElement fname;

- atendaia 19
,f" T«lD»tJjru 201 fciFindBy(id - " l as t -name")

v + Mi.ni « 21 WabElament lname;
- i ExtentLTitfirHn,ja»fl 22

1 Erteil MS«agrf.|aira 23* gF indBy(id = " p n s t a l - c n d e ")
• BT«ILNiLjava 24 h'ebElement pcode;

* LFst:ymairi'isroji:E,s 25
• tiflng 'ii'il 26« AF indByf id * " con t i nue ")

v • srr/tesVJaira 27 webElsruent cont inueB- t i ;
Efi teste a:-c5 10
; B CheaomPagsiesr.java 29- foFindBy(id - " f i n i s h ")
i Ü Login Pag eTEitjava 30 WebElernent f i n i s h B t n ;

£ Pfofljct regele a javs 31
l HI ShcBpingCartPagaTsELJBva 32 ftFindByfid - " back - t o -p roduc t s ")

• itt/ttn/ltHatCH 33 WenElement baekHüirie;
• ÜJ«ESy5M«nLibraiy|iawaSt-ia] 54
: 1A. Mayen Deperdanciar 55 / / I n i t i a l i z i n g the Page Ob jec ts :
. L* reports 36- p j b l l c CheckoutPage() thrown IOEnception {

i7 Page-Factory,inizELemtfiZsiärivef, t h i s) ;
• 'J 38 }
> l * test -output 39

Art
>

' Procl&rrs Serve n ^Terminal ft DataSoixce Explorer ...Properties • Coreo * i. Progress If "riul" c'runrirrj suite *-JUniT •
No conwip to Uisp ayatlfmtime

•

Figure 15: CheckoutPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

6. CheckoutPage.java file:

Above Figure 15 depicts the checkout page. It has web elements for fields like

first name, last name, and postal code, which are essential for completing the checkout

process. Additionally, it contains buttons for continuing the checkout process,

finishing the order, and returning to the product page, all of which are annotated with

@FindBy.

43

http://Srarr.li
http://Mi.ni

3S ^ogrims - ScleriikjnVwt/rrwiriAtsourcM/toingjiinl -EdlpK IDE - • X

File Edil Saircf Sourer •- i • Search 1 i|i 1 Run Win dun Help

0 * B f A I < t t > i S f i i B E ^ | » m • H.1 a. e | | s?

Prom Eiplnnr X E % 7 1 *• 1 " O • :nnfig.prc]pet1>« I THtBasejava iii logirffegejaw ii Prod net FSge^va iil Step pirigCatt Fag*] ava J Checkout Page Java X testngjmW X " •
. hJApnium / i t t p ; / / t * s t f t g , o r g / t e s t n g - J . e , d r t f fdoctypej *

fit Selenium 1 (?Kml v e r s i o n - " ! . 0 " entoding-"iJ7F-S"?>
>- J sre/main/java 2 (IDOCTYPE s u i t e SYSTEM " h t t p : / / t e s t n g . o r g / t e s t n g - l . 6 . d t d " >

v f>b*M j - f E L i t e narne=',SelejvuJjw'*>
i 2 Tesffiasejava 4

v •: cc-J =U-JI om 5* (l i s t e n e r s >
t«ilig.prrjcert>« 6 (l i s t e n e r clas.s-raire=i"j(ti t i t l e s . ExterntListeners " />

v » parjes 7 ^ / l i s t e n e r s ?
' Z ChrckoulPagejava s

Z LoginPaflejaua 9- (t e s t nane- 'Tes t Cases")
j 2 FtaduDlF'age.jaira 13* (c l a s s e s *

/ SJiopoirxjCcrtPagejM 11 (c l a s s narne^ "testcase-s.LoginPageTest">(/class>
- S M M 12 (c l a s s r\sme-"testcases.PraductPageTest">'•/class>

f iBtDatajdn 13 (c l ^ s s oames J f testcose5.5'>ctpf i f ig(rai ' tPageT«t ' ,>(/cla5s>
14 (c l a s s name= "testcases-. CheckoutPogeTest">(/class>

• Z Eil«itlirt«rier!jaira IS (/ c l a s s e s ;
16 (/ tes t>

i]] TfslUliljava 17 (/ s u i t * ?
« J src/irairi>re3njr:ES IS

' V " II .11

ChectttutPagcTenjiw
J Z LoginFageTestjaw

J Piofljo^geiestjava
' Z Shop pirg Cart Pag aTe5tj37.3

* *ji/l«I/rrsoi««
•i IRfSfflern Library I.. 1
•.. Maveii Dependandas

! * reft- output
M pcrruml

b. 3cMtji-. i iijuire
M pcrruml

.!_ Problems * Servers ^Terminal teData Source Eiploref ... PrapeniM • Console " ^,Progr«s ITftesLlBof njmiig aite JrJUnrt

M pcrruml

Mo CQHK*« to rJisciaj 4i tho time.

M pcrruml

WiilatHe imart insert 11:1:0

S P Type here to warch B * © 4 • * D / IS - £ »•! „ . ^ 4 P ,

Figure 16: Selenium TestNG Xml file.

[Source: This thesis specific diagram was developed by the author.]

7. testng.xml file:

The testng.xml is a configuration file for the TestNG framework. It specifies

which classes contain test cases that should be executed. The file includes references

to listener classes that are used for reporting purpose and specifies the suite of tests to

run. Each <class> element within the <test> tag corresponds to a test class that contains

one or more test methods.

In Selenium automation framework, the above components work together to

automate the testing of a web application. The config.properties file holds the

environment setup. TestBase provides the common setup and teardown functionality

for the tests. Each page class represents a page within the web application,

encapsulating the elements and actions on that page. Finally, testng.xml is used to

manage and run the test suite, leveraging TestNG's capabilities for grouping,

sequencing, and parallel execution of tests.

44

http://testng.org/testng-l

4.1.1.3 Results and Findings

1. Functionality Testing Findings:

Login Functionality:

The LoginPage class shows that functionality tests are written to validate user

authentication. Test findings include whether correct credentials allow access and

incorrect ones are denied.

Product Selection Functionality:

The ProductPage class indicates tests are performed for product selection and

adding items to the cart. Functionality findings cover the accuracy of product details,

the responsiveness of the add-to-cart action and updating of the cart count.

Shopping Cart Functionality:

Through the ShoppingCartPage class, functionality tests check the cart's ability

to display selected items, update quantities, and remove items. The findings shows if

the shopping cart correctly calculates totals and retains items upon session refresh or

login/logout cycles.

Checkout Functionality:

CheckoutPage class shows that tests included form submission, input validation,

and navigation to a successful order completion. Test findings focused on form

validations, mandatory field checks, and the accuracy of the final summary before

order placement.

2. Compatibility Testing Findings:

Browser Compatibility:

The TestBase class initializes different web browsers based on the property file

configuration, suggesting that compatibility tests across Chrome, Firefox, and Edge

were performed. Findings include how consistently the web application functions

across these browsers.

45

3. Implicit and Explicit Waits:

The use of implicit and explicit waits convey testing for page load times and

element availability across environments and network conditions. Compatibility

findings include differences in load times and how well the application handles

dynamic content or AJAX-loaded elements across browsers.

v _ Automates lenum jaui tert. x £ M*porti\Ertent.Tue.lwUr_iM_i * + - a x

i- -> C 5 File tWAutomatior^iQ^iarriySelfiniLfri/repoiis/txteni Tu& Mar 05 IT 46 01 CET X M h M l f

M Small ft Dtrire _ Uiupdo. E l Heading E l Learning E j uiweisily E l Mssie. tresis CD wt» E l testing webs ites _ tlHKdKl +T Bare Kff System integrator..,

: = trsieases.Log in Page-Test cliTeaiCase : validLoginTesi

MHMfM/QMHUB ~ 8

tnfcjscs.LoginPagrTcft ©TesK^se ; invaliding irTt i l l
SidJifif. PM/iXiii5Cn»234 _ _ _ _ _

teitiases.LoginPa{|eTe t̂ 5 "pnCasp : iriv.= li;lLoi|inTe=,cJ

Ksnj ici LogiuPjgi.-Ti/il :>' L'MOIW • iiiiuilidLagiiilunJ

I*".:: M.o[l:irit-|- .,| Ikiwl. i- t .|»-.r̂ : -j. I li I11 pAd: I [tî ..lli-.l
5rt6d3PM/M;OCiMiOB3

lesltases.CrietkoulPfigeTesI [fjTe^Cisc : ••.ilitl.u:iti-:te;s1ulOinciTcs-l
M&IBPM/OOIjnDOSTO

P Type hereto search. <"t ^ ^ fl 4ffcl

Figure 17: Selenium Extent Report.
[Source: This thesis specific diagram was developed by the author.]

4. Extent Test Report:

The above Figure 17 details the status of each test case executed. Tests from

LoginPageTest are listed, including validLoginTest and invalidLoginTests, all of

which passed. These tests validate both successful and unsuccessful login attempts.

Other tests like validateProductSelectionTest, validateAddToCartTest, and

validateSuccessfulOrderTest from ProductPageTest, ShoppingCartPageTest, and

CheckoutPageTest, respectively, also passed. These test the functionality of product

selection, view shoppingcart, and the checkout process. The timestamp and duration

for each test are logged, indicating performance metrics and test efficiency.

46

" ^ Automate Selen .rr 13V3 Tsit. * i~ .-.repe-G-'-E êrr: 'us '.".= r " + • X

<- -* C © Filr Ui/ALton-aliC'V^'oq^T.E.'i-oIci Li-n.'-'cpO'Tj/tjcton: 11.o Mar (t J: ' 4b 01 (_t I 2024Jitml# • e :

Hi filmsil £ finvp H fimpanv C j ^^n ng I ("am m;j Q] UinvFr'.rv Qj vss:?' inp'i'. Qj rn- ptfing V.VKirp'. ^ 3ult3PT +. Bam Q ostein ntes

M Mar 5, 2024 05:46:01 PM M a r 5 , 2024 05:46:16 P M 7 0

o O
• fee.

• —

» P TyCe here to search m (ft- # Q 11-05-2031 ~^

Figure 18: Selenium Extent Report Summary.
[Source: This thesis specific diagram was developed by the author.]

5. Summary of Extent Test Report:

The above Figure 18 summary snapshot depicts an overview of the test execution

results. It explains that all 7 tests have passed, with a graphical representation (a large

green circle) to quickly convey the success rate. Start and end times for the test suite

are shown, along with a duration, which can be important for tracking how long the

testing process takes.

47

& & File L>:/ALi:3T3Ti?,i,Tro^i'aTiV'idr™„n/:c=t-OLi1rLij'omii sb c- re port, html

GfflNI A n t X B&^. CD M i l l E l Learning CjUrnvr^Ly ClMJBMrTMSB £ | JOBS C l 11

- O X

a. 6 • 0 :

=r—n~
s*i I'" "

H-sTc s ws. Login Papi

iiiiiialLdL»(j.THr3

lesLcaw L̂cHLJiFagtTf si^ a LidLtnlij bitsi

P Type here to search 1 / 9 - J « - „ „ „ „ „ •

Figure 19: Selenium TestNG Report.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Report Summary:

The above Figure 19 is a TestNG generated report, provides a tabular view of

the tests executed, including columns for the number of passed, skipped, and failed

tests. Below, there are details of each test method, along with their start time and

duration. The last section breaks down the test cases by their respective classes and

methods, showing individual results, which in this case are all green, indicating a pass.

A l l the above Results and Findings, Extent Test Report, Extent Test Report

Summary and TestNG Report Summary indicates that the test suite successfully

executed without any failures. This suggests both functional correctness of the web

application under test in different scenarios and compatibility across the different

environments and browsers are covered by execution of the required test scripts. These

reports are valuable for stakeholders to understand the robustness and reliability of the

application, and for the development and QA teams to identify and resolve any issues

early in the development cycle.

48

4.2 Implementation of Appium for Mobile App Testing Tools

4.2.1 Configuring Appium for Mobile App Testing

Appium, a trending tool in Mobile Automation Testing Technology, supports

automated testing for native, hybrid, and web applications. Its capabilities extend to

automation tests on simulators (iOS), emulators (Android), and physical devices (both

Android and iOS). Here are the steps for configuring Appium for mobile app testing.

SB C:\Windows\system32\crnd.exe • X

Microsaft Windows [Version 19.9.19045.4123]
(c) Microsoft Corporation. A l l rights reserved.

A

C:\Users\Laptop>node -v
v21.6.2

C: \Users\Laptop>npm -v
10.4.9

C: \Users\Laptop>

Figure 20: Node.js and N P M Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 1: Install Node.js and N P M .

Appium is a server written in Node.js. Installing Node.js automatically comes

with npm (Node Package Manager), which is required to install Appium.

1. Download the Node.js installer from the official Node.js website.

2. Run the installer and install both Node.js and npm.

3. Verify the installation by opening a command prompt and run node -v and npm

-v. This displays the installed versions of Node.js and npm.

49

file://C:/Windows/system32/crnd.exe

SB C:\Windows\system32\cmcl.exe - "node" "C:\Users\Laptap\AppData\Roaming\npm\\node_rriodule5\appiurri\indexjs1' — • X

Microsoft Windows [Version 10.0.19045.4123]
(c) Microsoft Corporation. A l l rights reserved.

C :\Users\l_aptop>appium
Welcome t o Appium v2.5.1

n] The autodetected Appium home path: C:\Users\Laptop\.appium
in] Attempting t o load driver uiautomator2...

Requiring driver at C:\Users\Laptop\.appiutti\nade_madules\appium-uiautottiator2-driver\build\index.js
AndroidUiautomatar2Driver has been successfully loaded i n 2.208s

[AppiurK Appium REST http interface l i s t e n e r started an http://&.0.0.0:4723
m] You can provide the following URLs i n your c l i e n t code t o connect to t h i s server:

http://192.168.78.226:1723/
http://127.0-0'.1:4723/ (only accessible from the same host)

Available drivers:
- uiautomator2@3.0.1 (automationName 'UiAutamatar2')

i] Ho plugins have been i n s t a l l e d . Use the "appium plugin" command to i n s t a l l the one(s) you want to use.

Figure 21: Appium Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 2: Install Appium

After the Node.js and npm installed.

1. Open a command prompt.

2. Run the command npm install -g appium to install Appium.

3. Verify the installation with appium, which will start the Appium server.

" = 13 My Application Version control

D Android

> rj manifests
" OkoiUfttfava

v (•] com.example.myapplication
> £] uittieroe

I • CAWmdows\systemi?\cm!lae - "node"

^OnePlus LE2101 I ape O Ö

i Running Devices

ft <3 Q © i

is LEZ101 API 33

package com.eiample .iryappii:at it

21 51 € B s

>rj\Laptop\AppData\Roam ing\npnA\node_modulei\3pp! urrAinfleijs'

©

0

MyADpiicator: japo src amain

S3 P Type here to search

12 & fun GrMTlngPrevif«() | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

I com example myappii cation _i MainAciivity kt 0 GreetingPreviei

Live Edit disabled 0

B'Ba .^äiTx

= O M V O E M O A P P TS W

Products

•
Sauce Labs
Backpack

S15.99

O O O O

SJL_- Labs B*e
light

w v w v w w w v

$49.99

O O O O

42:24 LF UTF-8 _ 4 spaces

Figure 22: Android Studio Emulator.
[Source: This thesis specific diagram was developed by the author.]

50

file://C:/Windows/system32/cmcl.exe
file://C:/Users/Laptop/
file://C:/Users/Laptop/.appiutti/nade_madules/appium-uiautottiator2-driver/build/index.js
http://&.0.0.0:4723
http://192.168.78.226:1723/
http://127.0-0'
http://com.example.my

Step 3: Install Android Studio (for Android Testing)

To test Android applications, we need the Android SDK and emulators, which

are part of Android Studio.

1. Download Android Studio from the official Android Studio website.

2. Run the installer.

3. Set the ANDROID_HOME environment variable to your Android SDK

location.

4. Add the Android SDK platform-tools directory to P A T H variable.

jg| Programs - AppijrTVsrî airi/java/baw/lestEasejaua Eel LEÍ DE

lile lilii Source fiefecior ůawjatt iearcr p.iO|«i Sun aiiWö* Helo

F j l * U « i - f ^ i B l x | » a i • w | É > » ? • • > ~<t • i

fc Ftfj|*ci Eipioreť x ~ a 2. Tust Ease j*vá x

-Y \ v ! | i package base;

- ,*i «T/ffiairi/java

• Lit I
i J srt/TaJrLrtesoiJiíeí

j • src/le sty re soirees
H. wr % I I > I UkayitMfi-1

- A Mswi Dependencies

P Type here to seaicr

;* Import j a v a . i o . F i l e l n p u t S t r e a m ;
1+
15 pub l i c c l a s s TastBase {
IS
17 pub l i c s t a t i c AppiumDriwer tfri^er;
IB pub l i c s t a t i c P rope r t i es config,
19 pub l i c S t a t i c L.esDr iver^ai t NHÍt j
2S
2: pub l i c Tes taaseQ throws IOExcspt ion {
22
li config = re.. P i \ jper* t iss() j
2\ F i l e inpu tS t ream f i s - new F i le lnpu t5 t ream(" . / s r c / i t i a i r / j a v a / e o n f i g u r a t i o r / c o r f i g . p r o p e r t i e s ") ;
25 e ů r t / t ť f . l M d C f i s) ;
25 >
27
2B pub l i c s t a t i c vo id i n i t i a l i z a t i o n !) throws MalformedURLExceptic!n(
29
3B UiAutomator20ptions opt ions - new UiAutomator20pt ions(]
31 .setlJeviceNiméí"fJcc35416"]
32 .setAppPackagef " com. sauce-labs., mydemoapp. rn")
33 . s e t A p p f l C t i v i t y C . M a i n f l c t i v i t y ")
31 .setNc.Sign(t r i ie) ;
35
36 rfrii/er » new AndrnidDr iuer(rew URL ("h t tp : / / 1 2 7 . B .B . 1 :4725") , o p t i o n s) ;

n * <S • 4

Figure 23: Appium Script Example.
[Source: This thesis specific diagram was developed by the author.]

Step 4: Writing and Running First Test

With everything set up, we can run our first mobile application test using

Appium. We need to create a test script in a language supported by Appium, such as

Java.

51

4.2.1.1 Test Scenarios

In the realm of mobile application testing, ensuring that an app functions

correctly across a range of devices and operating systems is paramount. Appium, an

open-source test automation framework, has become a cornerstone tool for testers

worldwide due to its flexibility in supporting both Android and iOS platforms. A series

of Java classes is designed for an Appium test suite to automate functionality and

compatibility testing of a mobile application. The TestBase class acts as the

foundation, setting up the Appium environment and ensuring tests run against the

specified device configurations. This setup is crucial for compatibility testing as it

defines the parameters for which devices and OS versions the tests will execute.

Subsequent classes, such as LoginPageTest, ProductPageTest, ShoppingCartPageTest,

and CheckoutPageTest, are structured following the Page Object Model (POM). This

model enhances test maintenance and reduces code duplication by encapsulating the

properties and behaviors of the application pages within dedicated classes.

Functionality testing is demonstrated through methods that mimic user

interactions—logging in with both valid and invalid credentials, selecting products,

adding items to a shopping cart, and executing the checkout process. Each test method

is annotated to indicate its role and execution order within the suite, leveraging

TestNG's powerful testing capabilities such as setup and teardown methods, and

prioritization. The test suite's architecture is tailored to validate the application's

behavior under test rigorously. The goal is to uncover any functional discrepancies and

ensure the application's seamless operation across different devices, thereby affirming

both its functional integrity and compatibility standing in a diverse mobile ecosystem.

Through Appium, testers can automate these processes, thus speeding up the release

cycles and ensuring a consistent user experience regardless of the end user's device.

52

£ Programs - 4jiO"u'n/src'l«i/java/i«Ttai*s/loginCag*T«ljava - Eclipse IDE
£ile £<W Source Re'aflnr yavigart 5ea.rcf> POKCI Bun Window HrHp

fa Project Eiplorer x
v Ü Apcum

» ." srC/m*irVj4va

o - Q - 1 - Q a , ' ,-} * (

Product Page.

I lestBaseja»*
- • configuration

I conti g.properties

' v fieOcoutfage.java
' LoginPage.jana
1' ProouclPagejava
•L ShoppingCartPag« ja»,

'. EjlentListenetijava
' -•-,.>:.-• i.i

• EB TfAUtilaava
• src/marn/resources

• testngjcmi
- • fc/test/java

OwdaoutPagjeTestjava
I Loginf̂ gelestiaYa
.'. ProrJuctPagelestjava
I SnoopingCaiPagetni^vi

• src/trsV resources
» ÄE System Library • . • -
IK Maven Dependencies

* TestBaseaava J loginPage^ava
. package t e s t c a s e s ;

reimport Java . i o . IOExcep t i on ;
12

» « t S V » • 4t i*) • ftl » ep «1 • , | Ö

I ShopprngCar.. CfiedtoulPige. > lestngjm. i logirrPageTe

L3 pub l i c c l a s s LoginPageTest extends TestBase {
14 LoginPage log inPage;
l i ProductPage productPage;

• 0 "i

r

ft
n

pub l i c LoginPageTest{) throws IOException {
super () ;

>

r>BeforeMethod
pub l i c vo id setup() throws IOExcept ion, In ter ruptedExcept ion {

i n t t i o t i z o t i o n O ;
loginPage • new Log inPageQ;

>

r»Tes t (p r io r i t y = 1)

pub l i c vo id i nva l i dLog inTes t3 () throws IOExcept ion, In ter ruptedExcept ion {
productPage • l og inPage .va l i da teLog in (" i nva l i d *J tes t . eon i " , " i n v a l i d ") ;

>

ifjTest(priority • 2)
Run I Debug
pub l i c vo id va l i dLog inTes t () throws IOExcept ion, In ter ruptedExcept ic

productPage = log inPage.va l ida teLog in(conf ig .getProper ty ("usern i

>

(iAfterMethod
pub l i c vo id teardown{) •

driver.quitQ;

>

3n / ig .ge tProper ty ("password")) ;

P Type here to search » f i t _
11-03-202« "

Figure 24: LoginPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

1. LoginPageTest.java:

This class contains test methods for the login functionality. It extends TestBase,

which means it inherits setup and teardown methods along with any other common

functionality. The @BeforeMethod is used to set up preconditions for the tests, which

includes initializing the LoginPage object. There are two test methods defined,

invalidLoginTest() and validLoginTest(). The @ AfterMethod is used for cleanup after

tests are run, which in this case, involves quitting the driver, effectively ending the

session.

53

Program! • Appium/sw/ten^ws/IWCís^ProfXictPaQíTeWjíií* - Eclipse IDE
Edit Source Reticle* ttíwjate Seifen Ěrojecl Gun tfirWw Help

j Pro»«« Explorer x 6 % "n* 1 •* 1 • • TenBaseiava ,J. loginFVge^vt .). ProducTftge. J. ! he i r ng li flj Checkout Page.- • testngjml 1 logifftgeT*.. •
 : i jet X 1 ShoppmgCei.. i/i Oeckoutl

1* Appium * 1 1
package t e s t c a s e s ;

w 0 nc/m*nVi*va
v • (Mae 3

import Java.io.IOException; LE TettBasejav* 13
Run ALL

- contig properties 1J pub l i c c l a s s ProductPageTest extends TestBase {
- > screens 15 LoginPage l og inPage ;

ii Checkout P*gej*.«* 16 ProductPage productPage;
.'. logmPage-iera 17 ShoppingCartPage shoppingCartPage;
if! ProcWctP»gtj«»» IS
• IS* p u b l i c ProductPageTest() throws lOExcept ion (

- £.iesM*u 28 supe r () ;
21 >

- »ui.lit.es 22
14 ExtenrListene'sjeva 2; £BeforeMethod
.1 EirtenlMirwijer | Sra 24 p u b l i c vo id setup() throws lOExcep t i on , In te r rup tedExcept ion {

' B lestuiii)*v» 25 initialization);
- • src/rruuiyrrsoureei 26 loginPage = new L o g i n P a g e O ;

. leunoxml 27 productPage • l og inPage.va l ida teLog in (con / ig .ga tPr "op«r ty (
M

us«rname") , c o n / i g . g e t P r o p e r t y (" p a s s w o r d ")) ;
- » src/testfjiv* 26

- + testcases 29 >
1 CnecitourtageTesl>avi

» ,r Log.nP)c>rTeff.java 31 (- T t s t £ p r i o r i t y = l)
J Product Page teslj*ra Run j Debug
Jj ShopeJingCarlP»grTe»1.u»va 32 pub l i c vo id v a l i d a t e P r o d u c t S e l e c t i o n T e s t () throws lOExcep t i on , In te r rup tedExcept ion •'

• src/trsT/resources 33 shoppingCartPage = p r o d u c t P a g e . v a l i d a t e P r o d u c t S e l e c t i o n () ;
j at JR£ System Library j l*v»SE • 18] 34 >

ML Maven Dependencies 35
• » j a j M 36

' •» vc 37 ^After-Method
ureses 31 p u b l i c vo id teardown() {
test output 39 d r i v e r . q u i t () ;

• pomjtml 40 >
i? Selenium 41 >

." sre/rnuvjave
• Mt/rruwiVtfSOutcrs
• src/test/jay»
• src/tesV resources

• • • • • • • • • »

• P Type here to search n It ? 4 * B * D / i " < : l " H-0Í-2M4

4 e l l
a .

• I

Figure 25: ProductPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

2. ProductPageTest.java:

The above Figure 25 is used for testing interactions on a product page within the

app. It also extends TestBase. The setup() method initializes the login page and logs

in using valid credentials. This is a common pattern to ensure the test starts from a

user-logged-in state. The validateProductSelectionTest() method test the functionality

of selecting a product, verifying that the correct product page is loaded.

..ji.vr- - A;,[i ..-ni-.:, :r-.! • .ly.i • lr:\[- Sl.i -||_:'" .-•.-.••J- Í-- :A . A , p-.r I. T
Edit Source Relactor navigate Search Project Run Wndcw ttelp
H fl) I *->! • I * • • M A ^ ...I • » * • * • » » l » - 0 - » - < % - Ci~ 9 - &<& * - Í

i_. Protect E«ptorer • P * t \ . i " l i * t ~ O j i i i TntBacfata iíi logir>^geM*> & Productive J. Shr>pp.ngCar
Appium » I i package t e s t c a s e s ;

• Abase
L lettBasejara

' Hi configurMion
t cenhg. properties

I Cnec tout Page j avj

I ProducMge^v*
J ShoppincjCdrtPdQe.jdYd

í ChertoutPageTestjaia
J. loginPage Test | M
J PiocJuctPageTestjava
i ShoppingC*rtP»9*T«lj»v»

I - lmpor t J a v a . i o . I O E x c e p t i o n ;
14

15 pub l i c c l a s s ShoppingCartPageTest extends TestBase {
16 LoginPage l og inPage;
17 ProductPage productPage;
18 ShoppingCartPage shoppingCartPage;
IS CheckoutPage checkoutPage;
26

pub l i c ShoppingCartPageTest !) throws lOExcept ion (
22 » u p a r () ;
23 >
24
25- alBeforeMethod
26 pub l i c vo id se tupO throws lOExcep t ion , In te r rup tedExcept ion (
27 t r u M c U t r a H o n O ;
28 log inPage = new Log inPageO;

productPage = l og inPage. va l i c ta teLog in (eon / i g . getProperty{ "u
shoppingCartPage = p r o d u c t P a g e . v a l i d a t e P r o d u c t S e l e c t i o n () ;

31 shoppingCartPage = produc tPage .va l ida teProduc tAdd() ;

sa }

" t / i g . getProper ty("password")) ;

ůTes t (pr ior i ty«1)

pub l i c vo id va l i da teAddToCar tTes tO
checkoutPage - shoppingCartPage.

>

:hrows lOExcep t i on , In te r rup tedExcept ion {
' • l i d a t e S h o p p i n g C a r t O ;

MAfterHethod
pub l i c vo id teardown() {

d r i v e r . q u i t () ;
>

54

http://�ui.lit.es

Figure 26: ShoppingCartPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ShoppingCartPageTest.java:

This class tests the shopping cart page's functionalities. The setup() method

ensures the user is logged in and has a product selected before testing the cart. The

validateAddToCartTest() method check if adding a product to the cart works correctly.

The validateShoppingCartQ method tests the items displayed in the cart.

| ftngwm • í^um/wc/tnť|av»/leitca5n/Ch»attiijtf^gtr«Lj»«» E: DM DE - 0 •
£iK £<M Souite Rei*aof ittvigale Seatd &0j«t Bun BmOon MP D
[O » U t) B . -1 ľ • •
^Ptqettbptowr x 3 ' TcstBawjava ' Loginhgtjava | PtoductJ&ge. | ShoppingCat. .'. OvckoutAgc. • teUngjml í LogirAoeTe.. í PtoúuCtAgtT. |ŕj SroppingCai. 1 Chectoutftge... k ~ a •
- y Appium | 1 package t e s t c a s e s ; A

- J wt/mairVjava

iá TístBaiejava 14
Import Java. io.IOException; •

v £ configuration Run ALL

•

: config.properti«
- * screens

í .'-,.-..•'!.'- ä.; ŕ .V. !
ií LogmP»ge.,lv«

RDduflPag«fava
> 21 ihoppingťartOag* ja»a

• Stestdjti
z T«tDit»jil«

15 pub l i c class CheckoutPageTest extends TestBase {
16 LoginPage log inPage;
17 ProductPage productPage;
i:. ShoppingCartPage shoppingCartPage;

CheckoutPage CheckoutPage;
2Et
21- pub l i c CheckoutPageTest() throws IOException {
22 súperí,) ;

..* *f. 23 }
i£ ExientListrnetijavi
ijj ExtentManagrrjava
12 Tcouriijavs

v .• irt/manVewurcw

24

26
27

•TfleforeMethod
pub l i c vo id setup{) throws IOExcept ion, In ter ruptedExcept ion {

initial izotionQ;
> teitngjinJ

" • dctest/jana
• • testcaset

> BI CWtíoulľaaíTeítjiva
iž Logir*»g»!Tíítjava
i£ Ptoo«tP»9ŕT«tj*va
91 ShoppingCartPageTefljiYa

23
29
»
31
32
33
34

loginPage = new Log inPagef) ;
prodjctPage = log inPage.va l ida teLog in (con / i g .ge tProper ty { "username") J con / i g .ge tProper ty ("password")) ;
shoppingCartPage = p roduc tPage .va l i da teP roduc tSe lec t i on () ;
shoppingCartPage = produc tPage.va l ida teProduc tAdd() ;
CheckoutPage = shoppingCartPage. va l i da teShopp ingCar tQ ;

}

»src/i«V'«outc« 35 isTest(p r i o r i t y • 1)
•t JHESyítem LiOtary .i.tv.aSE-1 &3
* Maven OepttWrficies 36

flun / Debug
pub l i c vo id va l i da teSuccess fu lOrde rTes t f) throws IOExcept ion, In ter ruptedExcept ion {

> *>SK
•>••••

' tŕiVOutnul
1 37

53
39
40

CheckoutPage.va l ida teOrder () ;
Checkou tPage .va l ida teAddress ("Tes t ") ;
productPage = CheckoutPage.va l idateConf i r tn() ;

>
a pomjonl
ie f , ••

41
42- (iAfterHethod

3 src/maifv'jiva
J yc/m»rVrooirces

43
44

pub l i c vo id teardownQ {
d r i v e r . q u i t () ;

45)
• yťt«i"«outces 46 >

Writable Smart insert 1:1:0

0 P Type hete to search n

Figure 27: CheckoutPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

4. CheckoutPageTestjava:

The above Figure 27 class is for testing the checkout process of the application.

The setup() method logs in the user, selecting a product, and adding it to the cart. The

validateSuccessfulOrderTest() method goes through the full process of ordering,

including entering address details and confirming the order. As with the other test

classes, @ AfterMethod is used for post-test cleanup.

55

4.2.1.2 TestCase Design

P"ogran~i Aap .lv'ic 'nj JVJ ' bo ŷ TeE-l Base Java - Eel pse DE 0
£iie £flit £a*ce RHsclur Mandate Staren Eroject Rur ftixicw Help

X

o ^ i a U i c ^ ! « : * ! » • • m o .
•a Protect Eipkinr " B ^ ? 1 le t " 1 Test Base.j ava X |JiLoginPig*^iva .J. Product Page.- i Shopping Car- <J Checkout P!gr_ i tesingjml .J. Login PsgrTe. jJ'i Prod ufl Pag |T_ >: SlwppingCar.. £ CheotoiAPage.. ™ n V
>- t> Appium

v B src/mairi/jaua
- • r a w

.J. lest Saw jaua
>- H co'l (jursrici

1 pjnfig.ptoueitjes
- E screens

Z ••! •• • • » t . !

1 Login Pag s.jâ a

J B Shopping Ca rTPage.jaw

ü TenDataüdix
•• •• Uli - ?s

1 rweml <irv ava

i B Testuril.jaw

1 package base;
2
" ' Impor t Java . i o . F i l e l n p u t S t r e a m ;

1*
1? pub l i c c l a s s TestBase (
16
17 p u b l i c s t a t i c AppiumDriver d r i v e r ;
i s p u b l i c s t a t i c P rope r t i e s config;
19 p u b l i c s t a t i c WebDriverWait wait;
26
21- p u b l i c TestBaseO throws; lOExcept ion {
21

eonfig - new P r o p e r t i e s . ;) ;
24 F i le lnputSt rea i t i f i s - new f l l o I n p u t S t r a a « [" . / s r e / m a i n / j a v a / c o n f i g u r a t i o n / c o n f i g . p r o p e r t i e s ") ;
25 config.loaö{fis);
2G)
27

.1
•

v B sre/mair/rewjrees
IfitngüLiril

« • src/lest/jBvai
- • teitcasei

Z Checkwrtf^fet.jäYa
I loginPagelestjava

J £ nodudfeoKTatjivi
J ShopiingCa T i e f e t avi

! P srtflest/ie sources
. H. IftF iytfem Library .u.s'C-i

» Maven Dependencies
• l> renom
: &sr<
. I> target

28- p u b l i c s t a t i c void i n i t i a l i z a t i o n) throws rtalförrreduRLE:xception(
29
39 UiAutornatorZOptions op t ions = new UiAutarnator2üpt ior i50
31 . setDeuiteMame ["dcc35*W")
32 . 5etAppPackäge["com. sauc i labs .mydernoapp.-n")

. £ e t A p p A c t i v i t y (" . M a i n A c t i v i t y ")
34 . se tNoS ign(t rLe) j
35
36 driver = new flndrrjidDrivar[new URL ("h t tp : / /127 .8 .6 .1 :4723") . , o p t i o n s) ;
37
33)

;

- MiT •••
- & Selenium

: i? 5rc/mai<vjaiia
-• i5 s rc/m air / reaourt es
. r* sre/tesr/jaw

• src/test/iesourtes

Writable Smart Insert 27:1:727

S P Type here to search "n » <• a • • « • / „ . « <

Figure 28: TestBase Appium Script.

[Source: This thesis specific diagram was developed by the author.]

1. TestBase.java:

The above Figure 28 class serve as the base class for all test classes in this

Appium project. It initializes the properties and the AppiumDriver. The initialization()

method sets up the Appium driver with specific options for UIAutomator2, device

name, app package, and activity. This method is called before each test to prepare the

testing environment.

56

http://127.8.6.1:4723

_J Programs • Apsnm/src/me n-.j.j.'icreE-rB/LnginPag* Java - Eclipse IDE • >

£i e £d t i;ei;;!3i .̂iva^e isix- Pioietl Bun Wi KJOW Help
! _ . y _ i ^ f > : B i « | » a) • H X >.k\ - a

9 lawa _ LAginfagtjava >; £ PrnduftRig* 2'SflcppnngCar... _jCMtkoutPagt.. « twingim! 1 Logir*9g*Te_ B frrtucihgtf_, B guf^iigCar- L'lftk'juLPd JL'.. ' E m
- i.- *. 1 package sc reens : 1.

-- i" irr/main/java 2

5-import Java. io , lOExcept io r t ; •
s l>] Terrtjasejaira 11 is

v ^ <nriligLjratim 12 p u b l i c c l a s s LoginPage extends TestBase <[
d (onfg.properties 1=

1- / / Ob jec tRepos i to ry :
15 i§FindBy(xpath - " / / a n d m i d . widget, Ed i t Tex t f^eont e n f - d e s e ^ ' tes t -Username']")

• 1£ Loginr̂ je.ĵ irs 15 webElenient user-name;
> E PiodjcrPagejava 17
; _ SlujnpinjiCsrtliagejavp 15 ^F indBy(xpath = " / /and i -u id .w idge t E d i t T e x t [^ c o n t e n t - d e £ t = " t e s t - P a s s w o r d '] ")

- £%itdstt 15 WebElenent password;
28

• • ..1 21- @FindBy(xpath - " / /andro id .Y iew.V iehGro jp [@con ten t -desc= ' t e s t -LOGIN' J"]
22 WebElement l o g i n b t n ;

1 12 ExKntManageTjava 23
1 BT«WtiljaH 24 / / I n i t i a l i z i n g the Page O b j e c t s :

- i" srcr'main/rwcHjrces 2S* pub l i c LoginPageO throws lOExcept ion •[
i t«mg.mni 25 PagiFactory. i r t l tFieCTe-ntStdr- lL 'er , t h i s) ;

- » irc/ten/java 27 }
" • teslcases 25

B CrwckwnflaoeTwi.jaira 25 11 A c t i o n s :
Jj LogiriPageTest.java 30- pub l i c ProductPage v a l i d a t e L D g i n f S t r i n g un, S t r i n g pw) throws lOExcep t i on , In ter uptedEHception {

> B IVjdudftoeT«l.jara 31
.- 12 Si^wngCanftoeTwi.jaya 32 Thread.s teepOBOS} ;

• V vc/lest/re sources 35 driver.findElementfAppiumBy.acresslbilityld{"open m e n u ")) . t l i t k () ;
* * E System Ltowy [U«SE-1J1| 34 rfriiJev-.findElementfAppiumBy.arresHMiitylrJ^rnenj i tem log i n r ')) . c l i c k () ;

• A Marai Dependencies 35 driver. f i ndE le i i en t (AppiuTiEy . a c c e s s ! L ityld{ "Username inpu t f i e l d ")) . sendKey
36 c fnuer . f indE lement (AppiumBy .access\bi!.ityld{ "Password inpu t f i e l d ")) . sendKey [--);
37 Lfriuer.f indEleiif lnt;AFpiuiiBy .xpiJt/)(" / / a n d r o i d .view.ViewQroup j j e o n t e r t - d e s e - ' Login b u t t o n '] ")) . c l i c k () ;

t-target _"3

' test-output 39 re tu rn new Praduc tPage f) ;
S rjonujrii 40 >

>
1* vwrnairVjan
i? srcymairVrestHjitK

; •• gcyiest/jaw
V src* testy re sources v v

Writable Siranlrun 11:1:0

^ P Type here to search n * 0 41 • •

Figure 29: LoginPage Appium Script.

[Source: This thesis specific diagram was developed by the author.]

2. LoginPage.java:

The LoginPage class extends the TestBase and represents the login screen of the

mobile application. It uses Page Factory to initialize mobile elements. The

validateLogin() takes username and password arguments, enters them into the

respective fields, and then clicks the login button. This method is used to test the login

functionality.

57

Elle Edit Source Refxlot Navigate Seyen Piojecl ßufi flmdow tletp
• U » ! « ' « ' - « i * l » « l « * »I * X * • * > • > • I

/ Diectevttagt>avi
1 Logintagejava

1 SnopoingCji'ltBge java
• I M M

I TestDatajdn

/ Ewrntunencnii*'*

I leftul I,JV.i

I CrietltoutP»Q«T«tJ*v»
' loginfageTejtjjv*

£ SnoptVngC«r1<%a«Tnt;(v*

i J RE i DIM.
H, M*ven D«

Int-output
• pomxmi

• i * Selenium
- m ttt/tvtin/jjv»
»• jfc/m*ii
• sre/test/java

11
U public

' LOQinPaaeia.a '. Piodueif»ge_

l a s s ProductPage extends TestSa:

* & * » a 4 j , » * I » ^ * » -: - \ a
• N u « . « I • 11- I „-f'j-j-- • leongjiml i PioduttPaget 1 Chetkoulftog*..

{

/ / Ob jec tRepos i to ry :
»>Findey(xp«th • " (/ / a n d r o i d .
webElement p r o d u c t l ;

*F indf ly (xp«th - " (/ / a n d r o i d . v
webElement produetAddToCart;

ViewGroup[»)content-desc=' test- I tem']) [1] / andro id .v iew.V iewGroup")

ViewGroup[0content-desc=' test-ADD TO CART ']) [1] ")

widget .Tex tV iew[peontent -desc= ' tes t - l te in t i t l e ' and ptext='Sauee Labs Bike L i g h t '] "

v iew.ViewGroup[(icontent-dese='test-BACK TO PRODUCTS']")

/ / I n i t i a l i z i n g the Page Ob jec ts :
pub l i c ProductPage() throws IOExeeption {

PageFac to r y . i n i t E i e«en t s (d r i ve r , t h i s) ;
>

/ / A c t i o n s :
pub l i c ShoppingCartPage v a l i d a t * P r o d u c t S e l « c t i o n () 1 . IOExeept ion, In te r rup tedExcept ion {

Thread .s teep fseee) ;

tfriv«r.findElOTi«nt(Appiu«By.oec»JsilJiiityW("store i t t m ")) . c l i c k () ;

re tu rn new ShoppingCartPage() ;
>
pub l i c ShoppingCartPage va l ida teProduc tAdd() throws IOExeept ion, In te r rup tedExcept ion {

c l i c k O ;
Thread.sLeep(3eee) ;
d r i ve r . f i ndE lemen t (App iumBy .access i bU i t y I d ("Add To Cart button")).<

I new ShoppingCartPage() ;

P Type here to search " * <T « • •? • / ; r i '-

Figure 30: ProductPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ProductPage.Java:

Similar to LoginPage, the above Figure 30 ProductPage class defines elements

and methods for the product page of the mobile app. It includes methods like

validateProductSelection() which handles the logic for selecting a product, and

validateProductAdd() which adds a product to the cart.

sjtj J ,üyur-i tt|jL urr/VL/nid i i.'j ji..'rt-L1 ni.-'b - L: i; |j nui_j-|:,^y v, j-.j _T IL'L
Eile fdrt Source Rctaclar HaTigatc Search Bcjecl fiun Utjndcw Help
~5 - ,-. ir I> i] • .»_•_-... m. t. w[3 &• l i •

4̂ Praject Explorer X = % ' 7 \ •• 'f. " U _i| TestBasejava ll

- '3 sft/maiiVjava

; . o . cj.. C4 . o - * - .sie- ^ - a j t s -
J. ProdictOSoe.. i Shoaj.nLLar :

? H QiecKoulPage.java
Ii Lo gin Page jawa

PruducL "BuEjave
Ii Shop|.)i-in:"ir:-Arje.."nva

- --. in:dal=s
löiuati t in

- & utilities
. 1/ r^nliisttncrajaira
> £ DrtentManacrerjava

LL TeitUtiljava
v J yt/rnaiii/rc5uuriH

" t?1-i*fl.Vh'
~ i :.'";c:l -^
" lid Isirisit;!,

Li riftfmiiiPft.ic'Tp't",7vs
: Li Login Parkiest Java
! FT ProductPaojel'astjara

i i ihoppi'i3r=r3AgeTe57.."A,.,a
• • src/tciL/rcwureca
• * JrlE System Library .i^r-l.ai

. •ir:
1= Isrget

• '=• HaHMHW

91 Scleriium
> P sfi/mai-i/ĵ va

»«ryten/re-

P Type licrcloscurth

IÜ 1 package screens;
2
= *impr>rt js va . io. IOExcEptior, _

11
12 public clas-s ShoppingCartPage extends

:est-Cart-]/android, vi» rie-wGroup/android . v.idget .IrnsgeVii
/ / O&jec tRepcs i to ry :
gFindBy^xpath - /andra id .v iew.V iewGroup[gcor tent
WebElentent wiewCart;

/ / I n i t i a l i z i n g the Page Ob jec ts :
pub l i c ShoppingCartPageQ throws- IOExeeption {

^ageFa ctnry.in;tFtements{driver, t h i s) ;
>

pub l i c theekc-utPage va l ida te3hopp ingCar t () throws IOExcept icn , In ter ruptedExcept ion {

Thread.s teep(3608) ;
Jrii 'ef.f inclEleii ient(AppiuriiBy.jrpiJtf>("//andraid.view.ViewGroup[[BJiOnterit-desc= ' c a r t o a d g e "] ")) . c l i c k i

" » 6" m
Figure 31: ShoppingCartPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

58

4. ShoppingCartPage.java:

This class models the shopping cart page of the app. It features methods such as

validateShoppingCart(), which ensures that items added to the cart are displayed

correctly, and that the cart's functionality works as expected.

fi| r"ograrri -AsciJTi.irc/rra ava/EC-aenE,'Checked Dag a.jaira - Ec ipselDE
file Edit Sotroe Felwor fjavigate Searcn Project Euri AIMOW tlel|

-Lj Project E*pl

Z TanBasejaiia

CCiftg.prciJcnics

-I Login Pag r.jau-a
• Pl111! '•-<•-, i. I

' Z Shop ping Ca rTPage.jai'a

TcrtDalartw
v » Jl H

I Ertentlistenenjaw

Z ItltWiLjij*
' .* £ re/main/resources

L!) ShoppingCar. .Jj CrwclaRrtPage... :«: •- iastrg>ml

• ill-'lt'jl./jvj
* B lestcas«

j V ChatkoutfegeTestjdVä
I Loginl̂ gcTcrtiavs
Z '"'OÄiafWeTfliJava
I ihopcingCanfageteiLjaua

P src/test/rewLrcei
K. IRE ijnlrm Library pMK -1J]
• Maven Dependencies

; • 5elrniuir
.* src/maiiVjauj

- iff c ; - a v ' i i i
- »src/test/pava

,D Type here to search

Z rest Base Java 1 LOirPage.java i =iccu.
- package sc reens ;
2
: + import J a v a . i o . I O E x c e p t i o n ;
9

19 pub l i c c l a s s CheckoutPage extends TestBase {
11
12 / / Cb jec tRepos i t o r y :
13" nFird&y(»p5th = " / / a n d r o i d . tlM. VlewCMmp [f̂ C Qnt&Ü t - d « C =
14 wsbElemert i heeköu tß tn ;

3 PionuclPageT.. Z Shop pi rig Car... Z ChecKoutPage.

'proceed TO checkout button']")

^FindBy(xpath - "7/andi
Ue-bElement c i t y ;

£FindBy(xpath -
We-bEl&menT r:^,

input field']"J

widget .Ed i tTeKt [ra=onten t -desc- 'C i ty " input f i e l d 1] ")

" / / and ro id r widge t .Ed i tTeK t [^con ten t -de5c= 'Z ip Code* inpu t f i e l d '] ")

'Count ry* input f i e l d '] ")

viewGroup[rticontent-de*.c= 'To Payment bu t ton '] ' ')

ifc'FindByfxpath • " / / a n d r o i d .widget, Edi tTent [^content- '
WebElement country^

^F indByfxpath - " / / a n d r o i d . w i d g e t , E d i t T e x t [^ c o n t e n t - i
Lj&bElement exp;

l i 'FindBvfxoath • " / / a n d r o i d .w idest , E.ditTe»t rScon ten t -desc - ' Secu r i t y Code'

Writable Smart I

'Card Number* input f i e l d '] ")

' E x p i r a t i o n Date* input f i e l d '] ")

noj t f i e l d f l ")

Figure 32: CheckoutPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

5. CheckoutPage.java:

The CheckoutPage class models the checkout process in the app. It includes web

elements for input fields such as full name, address, city, etc., and buttons for

proceeding to checkout and payment. The validateSuccessfulOrderTest() method

included in this class tests the checkout functionality, ensuring that the order can be

successfully placed with the entered information.

59

Source Jiaiiigate Search £ro|ect £un W'ndoiv help
M O . B * I > i

rjgiams - Appiur

'LjPrujetl Espluicr
. K» Appium

J) Checkout Page jaw
Jl log in Page Java
• - . - - I- - -

S'.-cn -I'.I'ir:an- >-H
- fSIWtrJa»

T?Ofit*;-
v 4i nriliriFs

> 31 E Tent Listeners ,J ava
• D EJMirtMsnageijna

TestU Java
- • ŝ "CI'̂ naî /reKlL•lre•!

"Win
v • src/test/jav?

-r.1r.>i-'
Oi-rlr . ; ^ : : FV I ,

• 3 Log in Page Testjava
• Jl PrfjductPagaTestirâ

• !"cria nqCarT-a.:ieTes-.>J;
• ••• -•• v
m IRE System Library .-v. i •, -l .

I aft Maren Dependencies

I£ TMBinj'IYa 0 logifiPaatjiia a ProducU â«.., £ STupfhlngCai- E ClirctoiitRi
http://testng.org/testng'l, &.dtd (dwtyce)

1 < ?xml versicns' I .e - ' encoding="UrF-S,r?>
J ilOOCTYPE suite SYSTEM "Irttp^/tastng.org/tostnij-l.e.dtd":
3 <suite nait\e="Appiuis">

\r Icidignrnl » 3 L*ginF49eIC-,.

< l i s t e i
• c l f lS5-nahie= , r uri : ities, Extent Listeners" />

<t*st name-'Test Coses":
<classes>

be lass name="te: •crises. Lcginpa$eTesz">< s-;'-5:zi
:caats.PrMtuctPagtTasfxf clam

:cases.ciiechautPogeTest">< /c lasE>

17 </suite>

pOH1.Mll
- 9J Selenium

- sic/main/] ava
• kB src/maiiy resource
; V sfc/tesViavs

• • P l'y|Je here 1c

Snan insert

• / a E « « «

Figure 33: Appium TestNG X m l file.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Configuration:

This X M L file is a TestNG suite configuration file. It lists which test classes are

included in the test suite and specifies a custom listener used for reporting test

execution results.

The above test suite is designed to test a mobile application's UI functionalities.

Firstly, starting with the initializing an Appium session, perform a series of actions

mimicking a user interacting with the application, such as logging in, selecting

products, adding them to the cart, and checking out. The Page Object Model is

implemented for ease of maintenance and readability, and TestNG is used to manage

the execution and reporting of the test cases.

4.2.1.3 Results and Findings

1. Functionality Testing:

Login Functionality (from LoginPageTest):

Tests were designed to validate both successful and unsuccessful login attempts.

Results indicate that the application correctly handles valid credentials, granting access

to the user, and appropriately denies access when incorrect details are entered. These

60

http://testng.org/testng'l
http://pOH1.Mll

tests ensure that authentication mechanisms in the mobile application are robust and

reliable.

Product Interaction (from ProductPageTest):

The functionality for selecting products was automated to verify if the

application allows users to navigate to the details of a product and if the UI elements

correspond to the expected product details. Findings focused on how the app handles

user input when selecting products and if the app responds with correct product

information.

Shopping Cart Functionality (from ShoppingCartPageTest):

Automated tests checked if products added to and viewed in the shopping cart,

simulating a critical component of the user's purchasing journey. Results show if items

are accurately added to the cart and if any issues arise during this process, such as

incorrect quantities or descriptions.

Checkout Process (from CheckoutPageTest):

The checkout process, including the entry of address details and order

confirmation, was tested to ensure that the user could complete a purchase. Findings

from these tests highlight the app's ability to capture user data correctly, navigate

through the steps of checkout, and successfully process an order.

2. Compatibility Testing:

Device and OS Variations:

By running the suite across various devices and OS versions, as indicated in the

TestBase class, we can evaluate how the application behaves under different

conditions. The findings reveal any device-specific issues or OS-related bugs, crucial

for ensuring that the app provides a consistent user experience on all supported

devices.

Screen Sizes and Resolutions:

Tests on devices with different screen sizes and resolutions assess UI elements'

visibility and interactivity, ensuring elements are not truncated and layouts do not

61

break. The results is important for ensuring the app's UI is responsive and adaptable

to a range of screen dimensions.

3. Orientation and Input Methods:

Automating tests for both portrait and landscape modes, and for different input

methods (like touch and swipe), will check the app's fluidity in orientation changes

and input responsiveness. The test suite will identify any orientation-specific UI issues

or input handling problems, which are essential for a seamless user experience.

v K ,\retxhiWTjfteritWeoLMar_06_ * © TestNQ Report K + Q X

C 0 File D:/Ajl3iTiaticrv'Prog[arri3/Apprjrn/'eporH/Ey,.ent Wed Mar 06 21 07 17 CET 2024.html* S. ir 0 :

£ Drive • Drnpbca CharSPT +, Bard Cj Beading Q Learning Q University • Master Thesis f J Jo s D filing Websiles System Integration.,.

lestcasss.LoginPageTest @TKl.-Ca« : inualiclL&giriTttl3

slDginPipilHl er«»

.PraducmigsT«! *|MI

•- •"In:. >i.|.-ri ,i

S P Type hereto search rn 4- ^ 4

Figure 34: Appium Extent Report.
[Source: This thesis specific diagram was developed by the author.]

4. Extent Test Report:

Above Figure 34 represents Extent Test report which provides details on

individual test cases such as 'invalidLoginTest3', 'validLoginTest',

'validateProductSelectionTest', 'validateAddToCartTest', and

'validateSuccessfulOrderTest'. Each test case has a status (all passed), a timestamp,

and a duration. The detail "TEST CASE: INVALIDLOGINTEST3 PASSED"

confirms that the application correctly handles invalid login attempts, which is part of

functionality testing.

62

Ldii Mar 6, 2024 10:07:17 Ph/ Mar 6, 2024 10:09:51 PM

:;.E:ê i."t-,ii": --T?n

t\ P Type here to search * tt m . • D . " i i • :

Figure 35: Appium Extent Report Summary.
[Source: This thesis specific diagram was developed by the author.]

5. Summary of Extent Test Report:

Above Figure 35 shows the summary of extent test report depicts the start and

end times, showing that the test suite took approximately 2 minutes and 34 seconds to

complete. It shows that all five tests passed without any failures, skips, or other issues,

which suggests that the mobile application functions correctly for the tested scenarios.

The timeline visually represents the tests execution over time, and since all tests appear

as a single color block, it indicates they were executed sequentially.

63

^ I" \reports\Errerit Wed Ma x + - o x

<- -> C! O Filr D:/A„t5"TMiL'Vl-"..:.cir5-i-i:-."î ::i.iv.res:- :...!-;>_;••: T.ciiLn? t-i-porthtml

M email A Diivt 0 rj.ocDox Q cnatCFT +. Bard CD Rea*itfi C3 Leorrmg CD urnvenlty Ca M

9. * © !

>:<:• lli»i> tD ,i;l;i t l ICJ'.'"'J v.';U>i;-i H toll™ nleiiiulif" ,

Test F fussed = Skipped 1 = Kctiicd cFailed Iim (nifl 1 Included '-• •• Excluded Croups

Apr*™
Jest Cases 5 0 | o\ D 153,994 |

Stan 1 Tliri(-(m5)

TestCua passed

javal id-L̂ p i n Tos r3 17097392-14390

mlidLuEinlts -.-:'_.;.'4:-i A314

v.lU.I>i.l,IIJ .Hl^l 1709759112860 1831

Test Cns«s

rrirt-iUM.* ln';l;i>i]H'.ig,'- ii^r~i .•I1U[;I1I,M]L'I>,^>T'IIH>I ILI-I I r<-r

rfilr Jiseii.l-OEliiP^jL It-it Si in. aJidl-Cghi Tfit3

tatt jiscl.T.rtgiiiPfigfTi-itSinilidl.figliirciT

tesrra aes .Prod •tfPageltsffc alklal-pPrndiirrSelection le d

ti.ri'ii-,1 i.Mni[i[iiii«-C .II-1 PJIJLI li-r-i I,ii i' \.d.l 1 II i .ii I 1. -.1 w

• 1 P Type here tosearc

Figure 36: Appium TestNG Report.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Report Summary:

Above Figure 36 represents the TestNG Report which summarizes the test

execution in a tabular format, showing the class name, test method, start time, and

execution time for each test. It is evident that the tests are focused on different

functionalities of the application: login functionality, product selection, cart

operations, and checkout process. The checkout process

(validateSuccessfulOrderTest) takes significantly longer than the other tests, which

might be expected due to the multiple steps involved in this operation.

Last but not least, the described Appium test suite automates critical paths of

user interaction within the mobile app, thoroughly testing its functionality. The tests

also ensured that the app performs consistently across a variety of devices and

operating systems, which is a fundamental aspect of compatibility testing. The results

and findings from these tests provide valuable insights into the app's readiness for

release and help maintain high-quality standards for the end users.

64

file:///reports/Errerit

4.3 Case Studies in Web Application Testing

4.3.1 Case Study A : Functional Testing of a Web Application

1. Introduction

This case study focuses on the functional testing of "Sauce Labs" e-commerce

demo website. The primary goal is to verify that the application functions as intended,

from user interactions like user login, product selection, managing shopping carts and

to completing purchases. The testing framework used is Selenium WebDriver for

automating browser actions and TestNG for managing the test suite and reporting

results.

2. Testing Environment

Application Under Test (AUT): Sauce Labs E-commerce Platform

Testing Tools: Selenium WebDriver for browser automation and TestNG for test suite

management.

Browsers: Chrome, Firefox, and Safari

Test Cases: Coverage included user login, product selection, cart functionalities, and

the checkout process.

3. Methodology

Test Planning: The initial phase involved outlining the testing objectives, identifying

the key functionalities to be tested, and determining the metrics for success.

Test Case Design: Detailed test cases were developed to cover various user scenarios,

including both normal and edge cases. These test cases were designed to assert the

correct behaviour of the application's functionalities, the responsiveness of the user

interface, and the security of the checkout process.

Test Automation: Utilizing Selenium WebDriver, automated test cases to simulate

user actions on the web application through different web browsers. This approach not

only expedited the testing process but also ensured a comprehensive coverage across

various user scenarios. TestNG was employed to orchestrate the execution of test

suites, enabling parallel execution, and grouping of tests for efficient test management.

Execution and Monitoring: The automated tests were executed across the specified

browsers to ensure cross-platform compatibility. TestNG generated detailed reports

65

after each test execution, providing insights into passed, failed, and skipped tests,

which facilitated a quick identification and resolution of defects.

4. Key Findings and Outcomes

User Login: The testing confirmed the reliability of the user login processes, with all

automated tests passing across the different browsers.

Shopping Cart and Checkout: Testing unveiled that there is no defect found in the

product selection and checkout workflow. And was able to perform successfully.

Cross-Browser Compatibility: Application performed well with all the browsers

such as Chrome, Firefox, and Edge browser.

5. Lessons Learned

The value of incorporating automation early in the testing cycle was evident, as

it significantly enhanced test coverage and efficiency. The case highlighted the

importance of thorough test case design to cover a wide range of user interactions and

scenarios. This testing reinforced the need for extensive cross-browser testing to

guarantee a uniform application experience for all users.

6. Conclusion

The functional testing of the demo web application, using Selenium WebDriver

and TestNG, played a pivotal role in ensuring the application met its functional

requirements. The approach allowed for efficient test execution, comprehensive

coverage, and facilitated the early detection and resolution of defects, ultimately

contributing to a robust and user-friendly e-commerce platform. This case study

exemplifies the critical importance of functional testing in the web application

development lifecycle, offering valuable insights for future testing strategies.

4.3.2 Case Study B : Compatibility Testing Across Various Browsers.

1. Introduction

Compatibility testing is critical in ensuring that web applications offer a

consistent user experience across different browsers, operating systems, and devices.

This case study describes the process of conducting compatibility testing for "Sauce

Labs" a fictional Sauce Labs e-commerce demo website. The focus was on verifying

66

that the website functions correctly and looks consistent across a variety of web

browsers. The testing utilized Selenium WebDriver for automating browser

interactions and TestNG for managing the test suite and reporting.

2. Testing Environment

Application Under Test (AUT): Sauce Labs E-commerce Demo Website

Testing Tools: Selenium WebDriver for browser automation; TestNG for test suite

management.

Browsers: Chrome, Firefox, and Safari

Test Cases: The suite included tests for key functionalities, including user login,

product selection navigation, shopping cart management, and the checkout process.

3. Methodology

Objective Setting: The primary goal was to identify and resolve compatibility issues

across the targeted browsers, ensuring a consistent and error-free user experience on

the Sauce Labs Demo website.

Test Planning: A detailed plan was created, specifying the browsers and their versions

to be tested, alongside the selection of test cases that would be automated to check for

compatibility issues.

Environment Setup: A range of browser versions and operating systems were set up

to mimic the environments used by the website's audience. Selenium WebDriver was

configured to interact with these diverse setups.

Test Case Development: Test cases were designed to verify both the functional

behaviors and visual elements of the website across browsers. These included actions

like navigating through the website, performing searches, adding items to the shopping

cart, and completing purchases.

Automation with Selenium WebDriver: Selenium WebDriver scripts were created

for automating the test cases. The scripts simulated user actions on the Sauce Shop

website, ensuring a thorough assessment of compatibility across the targeted browsers.

Test Execution and Management with TestNG: TestNG was used to organize,

execute, and manage the test suites. It allowed for parallel execution of tests across

different browser environments, enhancing the efficiency of the testing process. The

67

process involved not only verifying functional correctness but also checking for layout

discrepancies, responsiveness, and performance issues.

Results Analysis and Reporting: After test execution, TestNG generated

comprehensive reports detailing the outcomes of the tests. These reports were analyzed

to identify any discrepancies in functionality or appearance across the different

browsers.

4. Key Findings and Outcomes

Functional Consistency: The tests confirmed that key functionalities like product

search, navigation, and the checkout process worked correctly across all targeted

browsers.

Visual Discrepancies: Minor visual inconsistencies were detected in Internet Explorer

and older versions of Edge, such as alignment issues and CSS styling differences.

These issues were documented for further review and resolution.

Cross-browser Compatibility: Overall, the Sauce Labs Demo website demonstrated

a high level of compatibility across the majority of browsers, with specific areas

identified for improvement to ensure a uniform user experience.

5. Lessons Learned

Early and continuous compatibility testing throughout the development cycle

can identify potential issues before they become problematic, saving time and

resources. Automating compatibility tests with Selenium WebDriver and TestNG

significantly increased test coverage and efficiency, allowing for frequent testing

across multiple environments. The detailed reports generated by TestNG were

invaluable in pinpointing specific issues, facilitating effective communication.

6. Conclusion

Compatibility testing of the Sauce Labs e-commerce demo website using

Selenium WebDriver and TestNG provided critical insights into the application's

behavior and appearance across various browsers. This case study highlighted the

effectiveness of automated tools in ensuring that web applications deliver a consistent

and positive user experience, regardless of the user's choice of browser. The lessons

68

learned from this process underscore the value of incorporating compatibility testing

early in the web development lifecycle.

69

4.4 Case Studies for Mobile App Testing

4.4.1 Case Study A : Functional Testing of Mobile Apllication

1. Introduction

Functional testing on mobile devices is essential to ensure that applications work

as intended across various devices with different screen sizes, resolutions, operating

systems, and hardware configurations. This case study focuses on the functional

testing of "My Demo App," a fictional Sauce Labs e-commerce demo mobile

application. The objective was to validate the app's functionalities, such as user

registration, product browsing, cart management, and checkout processes, across a

variety of mobile devices. The testing utilized Appium for automating mobile

application interactions and TestNG for managing the test suite and results analysis.

2. Testing Environment

Application Under Test (AUT): Sauce Store Mobile E-commerce Demo Application

Testing Tools: Appium for mobile automation, TestNG for test suite management.

Platforms: Android and iOS

Test Cases: Tests were designed to cover user login, product selection, adding items

to the cart, and checkout process.

3. Methodology

Test Planning: A comprehensive test plan was outlined that defined the scope,

objectives, devices, and OS versions for testing. The plan prioritized critical user paths

and functionalities for the e-commerce app.

Environment Setup: The testing environment included the setup of Appium servers

and configuration of various real devices and emulators/simulators for both iOS and

Android platforms. This setup aimed to replicate the conditions under which end-users

would interact with the app.

Test Case Development: Test cases were meticulously designed to cover all critical

functionalities of the mobile app, including user login, product selection, adding items

to the cart, checkout processes, and payment transactions.

70

Automation with Appium: Appium scripts were developed to automate the execution

of test cases. These scripts utilized the WebDriver protocol to interact with the mobile

app's UI elements, simulating user actions across different devices and platforms.

Test Execution and Management with TestNG: TestNG was employed to organize

and execute the test suites, allowing for parallel testing across multiple devices and

generating detailed reports on the test outcomes. This approach enhanced the

efficiency and effectiveness of the testing process.

Results Analysis and Reporting: After the tests were executed, TestNG provided

comprehensive reports that detailed the successes and failures of the test cases. These

reports were crucial for identifying any functional issues that needed to be addressed.

4. Key Findings and Outcomes

Functional Consistency: The testing verified that core functionalities like navigation,

product selection, user authentication and product cart management worked

consistently across all tested devices.

UI Responsiveness: Some UI elements displayed differently on various screen sizes,

necessitating adjustments to ensure a uniform user experience across devices.

Cross-platform Compatibility: The application exhibited high compatibility across

different operating systems.

5. Lessons Learned

Testing on a wide range of devices is crucial to ensure the app's compatibility

and functionality across the diverse mobile ecosystem. Using Appium for automation

significantly increased the scope and speed of testing, allowing for thorough coverage

of functionalities across devices. Early and continuous functional testing helps in

identifying and resolving issues before they impact the user experience, underscoring

the value of integrating testing into the early stages of development.

6. Conclusion

Functional testing of the My Demo App mobile application using Appium and

TestNG provided invaluable insights into the app's performance and functionality

across a variety of mobile devices. This case study demonstrated the effectiveness of

automated testing in ensuring that mobile applications meet the expected functional

71

requirements and deliver a consistent and satisfactory user experience. The learnings

from this testing process emphasize the importance of comprehensive functional

testing in the mobile app development lifecycle.

4.4.2 Case Study B : Compatibility Testing Across Various Mobile Devices

1. Introduction

Compatibility testing ensures that mobile applications deliver a consistent and

optimal user experience across a variety of devices, operating systems, and screen

sizes. This case study illustrates the process of conducting compatibility testing on

"My Demo App" a fictional mobile e-commerce application created by Sauce Labs for

demonstration purposes. The main tools utilized for this testing endeavour were

Appium, for automating interactions within the mobile application, and TestNG, for

organizing, executing, and managing the testing suite.

2. Testing Environment

Application Under Test (AUT): My Demo App Mobile E-commerce Demo

Application

Testing Tools: Appium for automation, TestNG for test suite management.

Devices and Platforms: A range of Android and iOS devices, including smartphones

and tablets with various screen sizes and OS versions.

Test Objectives: To validate the application's functionality, usability, and UI

consistency across different devices and operating systems.

3. Methodology

Test Planning: The planning phase involved defining the scope of compatibility

testing, identifying target devices and operating systems, and determining key

application functionalities to test. This step was crucial for ensuring comprehensive

coverage.

Environment Configuration: Setting up Appium servers to facilitate communication

with a wide array of Android and iOS devices. Both emulators/simulators and real

devices were included to mimic user environments accurately.

Test Case Development: Test cases were meticulously designed to verify the

application's behaviour under various conditions, focusing on user navigation,

72

transaction processes, display and layout across different screen sizes, and overall

performance.

Automation Strategy with Appium: Using Appium, the team automated the

execution of test cases on targeted devices. Scripts were carefully crafted to interact

with the application, simulating real-world user actions and workflows.

Execution and Management with TestNG: TestNG played a vital role in structuring

the automated tests, allowing for parallel execution across multiple devices and

generating detailed reports that highlighted successes, failures, and areas for

improvement.

Analysis and Optimization: Post-execution, the results were analysed to identify any

device-specific issues or inconsistencies. This analysis informed the optimization

efforts to enhance compatibility and performance across the tested devices.

4. Key Findings and Outcomes

Functional Consistency: The application demonstrated a high level of functional

consistency across all tested devices, with no significant issues affecting the core

transactional and navigational features.

UI and Layout Issues: Some minor UI and layout discrepancies were noted on older

devices and those with smaller screens, necessitating adjustments to ensure a seamless

user experience.

Cross-Platform Reliability: The My Demo App application showed reliable

performance on both Android and iOS platforms, reinforcing the effectiveness of the

development and testing strategies in ensuring cross-platform compatibility.

5. Lessons Learned

The importance of testing across a broad spectrum of devices to capture a wide

range of user experiences and identify device-specific issues early in the development

cycle. Appium's capability to automate tests across different platforms and devices

significantly enhanced testing efficiency and coverage, underscoring the value of

automation in compatibility testing. The necessity for strategic test planning that

incorporates a mix of devices, operating systems, and scenarios to ensure thorough

compatibility testing.

73

6. Conclusion

The compatibility testing of the My Demo App mobile application across various

mobile devices using Appium and TestNG provided critical insights into the

application's performance and user experience. This case study highlighted the

essential role of comprehensive device coverage and the benefits of automation in

ensuring that mobile applications meet the diverse needs and expectations of users

across different devices and platforms. Through careful planning, execution, and

analysis helped to identify and address compatibility issues, paving the way for a more

robust and user-friendly mobile application.

74

5. Results and Discussion

The practical implementation of Selenium for web application testing and

Appium for mobile application testing yielded promising results. Selenium effectively

automated various tasks in the web application, demonstrating its accuracy in handling

user authentication, form submissions, and navigation flows. Any discrepancies

identified during testing were meticulously documented for further analysis. On the

other hand, Appium's configuration for mobile application testing proved successful

in evaluating the software's functionality across various devices and operating

systems. Test scenarios designed to assess functionality, compatibility, and usability

provided valuable insights into the mobile application's behavior and overall

performance.

The case studies conducted in web and mobile application testing further

emphasized the significance of functionality, usability, and compatibility testing.

Functionality testing, a critical component in both web and mobile application testing,

plays a pivotal role in verifying the application's operational capabilities. In web

application testing, functionality testing focuses on aspects such as form submissions,

user authentication, product selection, and cart checkout functionality processes to

ensure seamless user interactions. Similarly, in mobile application testing, it examines

the responsiveness of touch inputs, gestures, and the application's behavior under

various network conditions. Usability testing on different mobile devices highlighted

user interface challenges, emphasizing the need for intuitive design. Compatibility

testing ensured consistent functionality across diverse operating systems, enhancing

user experience and accessibility. These case studies underscored the importance of

comprehensive testing strategies in ensuring the reliability and performance of both

web and mobile applications.

5.1 Analysis of testing results
Examining the results of tests can shed light on the efficiency of the testing

methods and tools utilized in the study. This is where we talk about the practical

application of Selenium for testing web applications and Appium for testing mobile

ones, along with conclusions from the case studies on both types of testing.

75

1. Selenium Testing Conclusions

Deploying Selenium for testing web applications delivered significant results.

Scenario tests which examined various aspects of the web application were carried

out effectively. The results from these tests underscored the precision of automation

for tasks such as user authentication, form submissions, and navigation flows. Any

anomalies detected throughout the testing process were meticulously logged for

future scrutiny.

2. Appium Testing Conclusions

Setting up Appium for mobile application tests emerged as a powerful tool for

scrutinizing the application's functionality on multiple devices and operating systems.

Scenarios crafted to evaluate usability, compatibility, and functionality delivered

enlightening results. The findings from these tests emphasized the strength of Appium

in automating interactions with mobile apps, ensuring their uniform performance

across a wide array of mobile ecosystems.

3. Case Study Conclusions

The web testing case studies highlighted the importance of both functionality

compatibility and usability testing. Testing the app's functionality verified that all its

features were functioning properly. With Selenium, repetitive actions were automated

in web apps like user login, product selection, shopping cart and order confirmation

functionality. This ensured that web functionalities were robust in various scenarios.

Using Appium, different user behaviors on mobile applications, like swiping, tapping,

and rotating the device, to evaluate responsiveness and confirm feature operation. The

outcome showed that automated functionality testing can rapidly identify faults,

enabling developers to efficiently address them as necessary. Compatibility testing is

done to guarantee that applications function consistently in various environments.

Selenium tests verified that the website provided a consistent user experience across

popular browsers such as Chrome, Firefox, and Edge. Appium's flexibility played a

vital role in testing the mobile app on a range of Android and iOS devices, considering

different screen sizes, resolutions, and operating system versions. This stage

emphasized the significance of optimizing applications for a wide range of platforms

to improve accessibility and user satisfaction. Usability testing evaluated the user-

76

friendliness and interface design of the applications. By utilizing Selenium, tests to

assess the simplicity of navigating, the preciseness of directions, and the general user

interaction on the internet platform were implemented. Appium tests on mobile

devices focused on touch interface interactions and the app's ability to adjust to various

screen orientations. These case studies underlined the necessity of thorough testing

approaches in guaranteeing the functionality, compatibility and usability of both web

& mobile applications.

4. Outcomes of Mobile Application Testing

Reflecting on mobile application testing, invaluable lessons were drawn from

case studies that emphasized functionality, usability and compatibility. These studies

unearthed key issues on user interaction and hurdles in navigation across various

mobile gadgets, accentuating the need for intuitively designed interfaces. By carrying

out compatibility tests on a range of operating systems, we ensured that our mobile

application delivered a consistent and glitch-free experience across diverse platforms,

thereby heightening its accessibility and user approval.

The correlation of the test results furnishes a full-fledged perception of how

Selenium and Appium perform in the sphere of web and mobile application testing.

Furthermore, it underscores the value of case studies in unravelling certain inherent

challenges experienced with web and mobile applications, such as functionality,

usability, and compatibility. These revelations foster a more profound knowledge of

software testing methodologies, aiding in the creation of superior web and mobile

applications that coincide with user desires and set industry benchmarks.

77

5.2 Comparison between web and mobile application testing
Examining both web and mobile apps is a crucial aspect of creating software,

posing distinct demands and obstacles. Based on pratical implementation and result

outcomes, this part offers a contrast between the processes of testing web and mobile

applications, underlining the distinct methods, tools, and factors involved and most

importantly the comparision of testing tools i.e used based on various criteria.

5.2.1 Testing Approaches

1. Examining Web Applications:

The scrutiny of web applications aims to verify the operational efficiency, user-

friendly aspects, and speed of these internet-based applications on a spectrum of

browsers and gadgets. Testing methods for web apps usually encompass checking their

functionality, assessing usability, and confirming compatibility.

2. Assessing Mobile Applications:

The assessment of mobile applications entails the investigation of operational

aspects, end-user experience, and compatibility on an array of gadgets and operating

systems. Techniques typically utilised for testing mobile apps comprise of

functionality checks, usability evaluation on distinct screen dimensions, and

compatibility checks across numerous platforms.

5.2.2 Tools and Techniques

1. Web Application Testing:

This is about how web application testing focuses on achieving the objectives of

functionality, usability and compatibility for web applications in different browsers

and devices. For instance, Selenium can be used to test web applications to ensure

functionality. Compatibility testing is carried out on various devices and browsers to

ensure web applications perform consistently.

2. Mobile Application Testing:

In this case, Appium tests native, hybrid, and mobile web applications accross

iOS and Android platforms. Functionality testing with Appium created automated tests

78

that simulate user interactions with the application to ensure all features works as

intended. For usability testing, Appium can be leveraged to automate scenarios that

assess the app's user interface and overall user experience, verifying that the

application is intuitive and user-friendly. Appium can also run concurrent tests on

multiple devices and emulators, significantly enhancing the efficiency and coverage

of the testing process. On the other hand mobile application has a lot of approaches

such as functionality checks for example usage of different screen sizes; reviewing

compatibility issues that would occur when all this done on multiple platforms in order

to ascertain its compatibility.

5.2.3 Considerations

1. Examining Web Applications:

Reviewing web applications calls for attention to issues like compatibility across

various browsers, responsiveness to diverse screen dimensions, seamless navigation

pathways, secure transactions via encryption methods, and ensuring impeccable

performance under different loading scenarios.

2. Testing Mobile Applications:

Checking mobile applications entails considerations pertaining to device

diversity across Android and iOS systems, designing user interfaces for touch-based

interactions on compact screens, fluctuations in network connectivity impacting app

functionality, and adherence to platform-specific functionalities.

When putting side by side the methods, tools, and primary considerations for

testing of web and mobile applications, it's clear that while they have shared facets in

operational and user-friendliness testing, they diverge when it comes to unique

platform-related hurdles. For instance, the challenge of device variation in mobile

application examination, and the need for cross-browser harmony in web application

checks. Grasping these disparities is pivotal in shaping robust evaluation strategies

best suited for the unique needs of web and mobile apps, ensuring their quality and

enhancing user satisfaction.

79

Feature/ Criteria Selenium Appium

Tools Used Web Driver, Java, Eclipse Appium Server, Android Studio

(Simulator/Emulator), Java,

Eclipse

Automation

Targets

Web browsers Native, hybrid, and mobile web

apps

Initial Setup

Complexity

Relatively simple Is complex due to necessity of

configuring mobile device

simulators/emulators

Interactions Limited to browser

interactions

Supports gestures (swiping,

tapping, etc.) for mobile

interactions

Community

Support

Large community support Growing community support

License Open Source Open Source

Code Usability Selenium Code Same code is used

Table 1: Comparison of Selenium and Appium Tools across various criteria.
[Source: This thesis specific table was developed by the author.]

From the above Table 1, The important thing is that the code used in Selenium

can also be used in Appium. This indicates a level of interoperability and code reuse

between the two test frameworks. This is beneficial for teams working on web and

mobile platforms, as it can reduce the learning curve and effort involved in

implementing automated tests across multiple environments. In general terms,

Selenium and Appium work differently in the field of automated testing. While

Selenium is better for testing web applications on different browsers, Appium is good

for testing mobile applications with its features to facilitate mobile-based user

interactions. The choice between Selenium and Appium depends on the specific

requirements of your project, including the target project and the complexity of the

interactions required for testing.

80

6. Conclusion

In exploring the realm of web and mobile app testing using the powerful tools

Selenium and Appium, noteworthy revelations have come to light. Appium has proven

to be a seamless solution for mobile automation, ensuring a smooth operation from

start to finish. The practical use of Selenium for web app testing and Appium for

mobile app testing yielded promising results, showcasing the commitment to product

quality.

The application testing phase demonstrated excellence, emphasizing the

paramount importance of delivering a top-notch product. Employing meticulous

testing strategies has become a cornerstone in identifying and rectifying any issues,

ultimately enhancing the overall user experience.

Our case studies, conducted in both web and mobile app testing, not only

affirmed the effectiveness of our testing tools but also underscored the significance of

a well-structured employee training program. The purpose of this program was to

emphasize the critical aspects of functionality, usability, and interaction, positioning

testing as more than just a tool for fixing bugs, but as an essential element in the

ongoing battle against software defects.

However, the comparison between web and mobile app testing unveiled

substantial differences. While web app testing delves into cross-browser compatibility

and responsive design, mobile app testing focuses on device fragmentation and touch

interactions. Recognizing these disparities is pivotal in crafting tailored test strategies

that cater to the unique needs of both web and mobile applications.

In summary, this research contributes valuable insights into the intricacies of

software testing methodologies. It underscores the crucial role of testing frameworks

in responsible software development, paving the way for solutions that align with

certified requirements and user expectations.

81

6.1 Summary of findings

The outcomes derived from implementing Selenium for web application testing

and Appium for mobile application testing present valuable insights into the expertise

of these automation tools in ensuring software quality. Selenium showcased

remarkable precision in automating tasks like user login, product selection, shopping

cart and order confirmation functionality within web applications. Conversely,

Appium's configuration successfully evaluated the functionality of mobile

applications across a spectrum of devices and operating systems.

The conducted case studies in web application testing underscored the critical

role of functionality, usability and compatibilty testing. Automated testing expedited

the identification and resolution of functional issues, enhancing application reliability.

An intuitive and user-friendly interface significantly influences user satisfaction and

retention. Testing must prioritize ease of use to facilitate a seamless experience.

Ensuring consistent performance across various browsers and devices is critical for

reaching a wider audience and improving user engagement. In the realm of mobile

application testing, usability testing on different devices revealed variations in user

experiences, and compatibility testing across diverse operating systems ensured

consistent functionality. These findings highlight the essentiality of comprehensive

testing strategies in guaranteeing the reliability, performance, and user experience of

both web and mobile applications.

The analysis of testing results not only revealed the effectiveness of Selenium

and Appium in web and mobile application testing but also emphasized the pivotal

role of case studies in addressing specific challenges associated with these

applications. This deeper understanding contributes to the refinement of software

testing practices, facilitating the development of high-quality web and mobile

applications that align with user expectations and industry standards.

82

6.2 Implications for industry

Absolutely, let's give it another shot with an even more human touch:

Discovering the in and out of using Selenium for web app testing and Appium

for mobile apps has real-world implications for the software development realm.

Here's how these findings can shape the approaches of industry folks, making waves

in the world of web and mobile applications:

1. Raising the Quality Bar:

When it comes to quality assurance, Selenium and Appium play superhero roles.

Thorough testing, from functionality to usability and performance, helps catch and fix

issues early on. This means web and mobile apps can boast a consistent level of high

quality, meeting the standards users crave.

Selenium and Appium as the dynamic duo injecting a serious boost into testing

efficiency. With these automation marvels handling the repetitive grind and test

scenarios, companies can ditch the manual drudgery and fast-track the launch of web

and mobile apps. It's like taking a shortcut to roll out top-notch applications at

lightning speed.

2. Quality Assurance Magic:

Selenium and Appium, the conjurers of quality assurance wonders. Through

meticulous testing—functional, usability, performance, and compatibility—

organizations can unveil and address issues early in the development dance. The

result? Consistently high-quality web and mobile applications that align perfectly with

user expectations.

3. Cost-Effective Wizardry:

Automation tools emerge as the wizards of cost-effectiveness, swooping in to

minimize manual testing efforts and curb the risk of human errors. With Selenium and

Appium in play, companies can cleverly optimize testing resources, broaden test

coverage, and slash overall development costs. It's a budget-friendly journey without

compromising on quality.

83

4. Competing with Style:

It is not just a trend to embrace cutting-edge testing methods and tools, it's a

strategic move that can help a company ahead of the competition. Crafting and

delivering stellar web and mobile apps isn't just a checkbox, it's the secret sauce that

sets a company apart from the competition. It builds a strong reputation, attracts users,

and provides a competitive advantage over competitors who might take a more relaxed

approach to testing. It is not just about keeping up, it is about leading the way.

These implications shout out the need for weaving modern testing tools—like

Selenium and Appium—into the software development fabric. It's not just about

efficiency and quality; it's about smart cost management and positioning companies

to be champions in delivering reliable applications users can't get enough of.

Recommendations for future research

The study on web and mobile application testing using Selenium and Appium

has uncovered opportunities for advancing software testing practices. To pave the way

for future improvements and tackle emerging challenges, the following suggestions

for upcoming research are put forth:

1. AI Integration in Testing:

In the future, let's explore making testing smarter by bringing in some cool AI

and machine learning techniques. Imagine AI helping us test things more efficiently,

predict potential issues, and spot anything unusual. It's like having a tech-savvy

assistant making sure everything runs smoothly.

84

2. IoT Application Testing:

With the surge of Internet of Things (IoT) gadgets, there's a need to master the

art of testing them right. Picture this: we delve into how these devices chat with each

other, ensuring their security and checking if they're the best of pals. It's about

ensuring all the nifty IoT wonders work seamlessly and securely - like orchestrating a

symphony of tech brilliance.

3. Enhanced Security Testing:

Considering the escalating concerns regarding data privacy and cybersecurity,

upcoming research should delve deeper into security testing methodologies for web

and mobile applications. Examining advanced security testing tools, techniques for

identifying vulnerabilities, and implementing robust security measures can reinforce

the protection of user data.

4. Performance Testing in 5G Environments:

As 5G technology becomes more prevalent, there is a need to investigate

performance testing strategies tailored to high-speed networks. Research on

optimizing application performance in 5G environments, load testing under ultra-low

latency conditions, and network performance monitoring can help developers adapt to

the evolving technological landscape.

5. User-Friendly Testing for All Gadgets:

With everyone using different devices and screens, we want to make sure our

apps work well on all of them. This means figuring out the best ways for people to use

our apps, no matter if they're on a big computer screen or a tiny phone. It's about

making our apps easy and enjoyable for everyone.

By addressing these recommendations in future research endeavours, the

software development industry can stay at the forefront of innovation, improve testing

practices, and deliver high-quality web and mobile applications meeting the evolving

needs of users in the digital world.

85

7. References

PARRINGTON, Norman and ROPER, Marc, 1989. Understanding Software Testing

[online]. Retrieved from:

http:/^ooks.google.ie^ooks?id=8bJQAAAAMAAJ&q=software+testing&dq=softw

are+testing&hl=&cd=2&source=gbs_api.

CRAIG, Rick David and JASKIEL, Stefan P., 2002. Systematic Software Testing

[online]. Artech House. Retrieved from:

http://books.google.ie/books ?id=2_gbZYZcZXgC&printsec=frontcover&dq=softwar

e+testing&hl=&cd=4&source=gbs_api

M Y E R S , Glenford J., SANDLER, Corey and BADGETT, Tom, 2011. The Art of

Software Testing [online]. John Wiley & Sons. Retrieved from:

http://books.google.ie/books ?id=GjyEFPkMCwcC&printsec=frontcover&dq=softwa

re+testing&hl=&cd=9&source=gbs_api

Beizer, B. (1990). Software Testing Techniques (2nd ed.). Van Nostrand Reinhold.

Myers, G. J. (2011). The Art of Software Testing (3rd ed.). John Wiley & Sons.

Pressman, R. S. (2014). Software Engineering: A Practitioner's Approach (8th ed.).

McGraw-Hill Education.

Smith, A. , Brown, C , & Lee, D. (2019). "Enhancing Software Testing Practices for

Improved Quality Assurance." Journal of Software Engineering, 25(2), 45-58.

Jones, E., & Johnson, L . (2020). "Innovations in Software Testing: Trends and

Challenges." International Journal of Software Engineering, 12(3), 112-125.

Smith, J. (2018). Software Testing Fundamentals. Publisher.

86

http://books.google.ie/books
http://books.google.ie/books

Johnson, A. (2019). Quality Assurance in Software Development. Journal of Software

Engineering.

Brown, C , & Lee, M . (2020). *User-Centric Testing Approaches. Conference

Proceedings.

Garcia, R., et al. (2017). Risk Management in Software Testing. International Journal

of Quality Assurance.

Adams, S. (2016). Efficient Testing Practices. Academic Press.

Roberts, L. , & Patel, K. (2021). Customer-Centric Software Development. Journal of

User Experience.

R A N A , Mousumi, 2022. A Complete Guide to Web App Testing, [online]. 16 May

2022. Retrieved from: https://www.headspin.io/blog/a-complete-guide-to-web-app-

testing

HAMILTON, Thomas, 2023. Web Application Testing: How to Test a Website?

Guru99 [online]. 9 December 2023. Retrieved from: https://www.guru99.com/web-

application-testing.html

VOGELS, Rebecca, 2023. Web application testing: 6-step guide how to test a website.

Usersnap Blog [online]. 17 October 2023. Retrieved from:

https://usersnap.com/blog/web-application-testing/

Haller, Klaus. "Mobile testing." A C M SIGSOFT Software Engineering Notes 38.6

(2013): 1-8.

I. Singh, B. Tarika, "Comparative Analysis of Open Source Automated Software

Testing Tools: Selenium, Sikuli and Watir" International Journal of Information &

Computation Technology, vol 4, pp. 1507-1518, 2015.

87

https://www.headspin.io/blog/a-complete-guide-to-web-app-
https://www.guru99.com/web-
https://usersnap.com/blog/web-application-testing/

Mahajan , P., Shedge, H. , & Patkar, U . (2016). Automation Testing In Software

Organization. International Journal of Computer Application Technology and

Research, 5.

SON, Hannah, 2024. Manual Testing vs Automated Testing: Key Differences -

TestRail. TestRail | The Quality OS for QA Teams [online]. 31 January 2024.

Retrieved from: https://www.testrail.com/blog/manual-vs-automated-testing/

Katalon, 2023. Manual Testing vs Automation Testing: A Full Comparison.

katalon.com [online]. 19 May 2023. Retrieved from: https://katalon.com/resources-

center/blog/manual-testing-vs-automation-testing

Manual Vs. Automated Testing | What's The Deal?, 2024. [online]. Retrieved from:

https://selleo.com/blog/manual-vs-automated-testing

KOZIOKAS, Panagiotis T., TSELIKAS, Nikolaos D. and TSELIKIS, George S.,

2017. Usability Testing of Mobile Applications. Proceedings of the 21st Pan-Hellenic

Conference on Informatics [online]. 28 September 2017. DOI

10.1145/3139367.3139410. Retrieved from:

http://dx.doi.org/10.1145/3139367.3139410

BERIHUN, Natnael Gonfa, DONGMO, Cyrille and V A N DER POLL, John Andrew,

2023. The Applicability of Automated Testing Frameworks for Mobile Application

Testing: A Systematic Literature Review. Computers [online]. 3 May 2023. Retrieved

from: https://www.mdpi.com/2073-431X/12/5/97

REICHERT, Amy, 2023. Techniques for Testing Mobile Apps vs. Web Apps. Telerik

Blogs [online]. 23 March 2023. Retrieved from:

https://www.telerik.com/blogs/techniques-testing-mobile-apps-web-apps

U N A D K A T , Jash, 2021. Difference between Mobile and Web Application Testing |

BrowserStack. BrowserStack [online]. 24 February 2021. Retrieved from:

88

https://www.testrail.com/blog/manual-vs-automated-testing/
http://katalon.com
https://katalon.com/resources-
https://selleo.com/blog/manual-vs-automated-testing
http://dx.doi.org/10.1145/3139367.3139410
https://www.mdpi.com/2073-43
https://www.telerik.com/blogs/techniques-testing-mobile-apps-web-apps

https://www.browserstackxom/guide/differences-between-mobile-application^

testing-and-web-application-testing

Yogiti, 2023. Difference between Web App and Mobile App Testing, [online]. 30

March 2023. Retrieved from: https://www.linkedin.com/pulse/difference-between-

web-app-mobile-testing-yogiti

BHARATI , Neha, 2022. Best Practices for Mobile App Testing | BrowserStack.

Browsers tack [online]. 13 June 2022. Retrieved from:

https://www.browserstack.com/guide/mobile-app-testing-best-practices

SOLUTIONS, Kms, 2023. Top 12 Best Practices for Mobile App Testing. KMS

Solutions [online]. 13 July 2023. Retrieved from: https://blog.kms-solutions.asia/best-

practices-for-mobile-app-testing

K U M A R I , Tanya, no date. 9 Best Practices for Effective Mobile App Testing. Classic

Informatics: Top Web Development Company in India [online]. Retrieved from:

https://www.classicinformatics.com/blog/9-best-practices-for-mobile-app-testing

OCTOBER, Ville-Veikko Helppi, no date. 10 Best Practices for Mobile App Testing.

SmartBear.com [online]. Retrieved from: https://smartbear.com/blog/10-best-

practices-for-mobile-app-testing/

L L P , Attoinfotech, 2023. Best Practices for Mobile App Testing and Quality

Assurance. [online]. 29 August 2023. Retrieved from:

https://www.linkedin.com/pulse/best-practices-mobile-app-testing-quality-assurance

JOURNAL, Gjesr, 2015. A LITERATURE S U R V E Y ON DESIGN A N D

ANALYSIS OF WEB A U T O M A T I O N TESTING F R A M E W O R K - SELENIUM.

www.academia.edu [online]. 14 March 2015. Retrieved from:

https://www.academia.edu/11425451/A_LITERATURE_SURVEY_ON_DESIGN_

AND_ANALYSIS_OF_WEB_AUTOMATION_TESTING_FRAMEWORK_SELE

NIUM

89

https://www.browserstackxom/guide/differences-between-mobile-application%5e
https://www.linkedin.com/pulse/difference-between-
https://www.browserstack.com/guide/mobile-app-testing-best-practices
https://blog.kms-solutions.asia/best-
https://www.classicinformatics.com/blog/9-best-practices-for-mobile-app-testing
http://SmartBear.com
https://smartbear.com/blog/10-best-
https://www.linkedin.com/pulse/best-practices-mobile-app-testing-quality-assurance
http://www.academia.edu
https://www.academia.edu/11425451/A_LITERATURE_SURVEY_ON_DESIGN_

SELENIUM F R A M E W O R K FOR WEB A U T O M A T I O N TESTING: A

SYSTEMATIC LITERATURE REVIEW, no date. CORE Reader [online]. Retrieved

from: https://core.ac.uk/reader/482657410

SELENIUM F R A M E W O R K FOR WEB A U T O M A T I O N TESTING: A

SYSTEMATIC LITERATURE REVIEW, no date. CORE Reader [online]. Retrieved

from: https://core.ac.uk/reader/482657410

D I V Y A N I S H I V K U M A R T A L E Y , 2020. Comprehensive Study of Software Testing

Techniques and Strategies: A Review. International Journal of Engineering Research

and [online]. 4 September 2020. Vol . V9, no. 08. DOI 10.17577/ijertv9is080373.

Retrieved from: http://dx.doi.org/10.17577/ijertv9is080373

GAMIDO, Heidilyn Veloso and GAMIDO, Marlon Viray, 2019. Comparative Review

of the Features of Automated Software Testing Tools. International Journal of

Electrical and Computer Engineering (IJECE) [online]. 1 October 2019. Vol . 9, no. 5,

p. 4473. DOI 10.11591/ijece.v9i5.pp4473-4478. Retrieved from:

http://dx.doi.org/10.11591/ijece.v9i5.pp4473-4478

B., Naga Sudheer, 2020. A Comparative Study on Automated Testing Tools. Journal

of Advanced Research in Dynamical and Control Systems [online]. 20 July 2020. Vol.

12, no. 7, p. 183-188. DOI 10.5373/jardcs/vl2i7/20201998. Retrieved from:

http://dx.doi.org/10.5373/jardcs/vl2i7/20201998

LI, Turbo, 2024. Pros and Cons of Selenium In Automation Testing - A

Comprehensive Assessment, [online]. 29 January 2024. Retrieved from:

https://www.headspin.io/blog/pros-and-cons-of-selenium-in-automation-testing

10 Advantages and Disadvantages of Selenium, 2018. [online]. Retrieved from:

https://www.pavantestingtools.com/2018/05/10-advantages-and-disadvantages-

of.html

90

https://core.ac.uk/reader/482657410
https://core.ac.uk/reader/482657410
http://dx.doi.org/10.17577/ijertv9is080373
http://dx.doi.org/10
http://dx.doi.org/10.5373/jardcs/vl2i7/20201998
https://www.headspin.io/blog/pros-and-cons-of-selenium-in-automation-testing
https://www.pavantestingtools.com/2018/05/10-advantages-and-disadvantages-

REDDY, G C, 2022. Advantages and Drawbacks of Selenium. Software Testing

[online]. 28 July 2022. Retrieved from:

https://www.gcreddy.com/2022/07/advantages-and-drawbacks-of-selenium.html

V E R M A, Nishant, 2017. Mobile Test Automation with Appium [online]. Packt

Publishing Ltd. Retrieved from:

http://books.google.ie/books ?id=BHg5DwAAQBAJ&printsec=frontcover&dq=appiu

m+mobile+testing&hl=&cd= 1 &source=gbs_api

KNOTT, Daniel, 2015. Hands-On Mobile App Testing [online]. Addison-Wesley

Professional. Retrieved from:

http://books.google.ie/books ?id=M8wkCQAAQBAJ&printsec=frontcover&dq=appi

um+mobile+testing&hl=&cd=3&source=gbs_api

A, Mohamed Abul Hissam, J, Karthikeyan, R, Nishanth and M A H E S W A R I , Latha,

2020. Research on Hybrid Automation Framework for Mobile Application Testing

Based on Page Object Model and Appium. International Journal of P2P Network

Trends and Technology [online]. 25 August 2020. Vol . 10, no. 4, p. 12-15. DOI

10.14445/22492615/ijptt-vl0i4p402. Retrieved from:

http://dx.doi.org/10.14445/22492615/ijptt-vl0i4p402

Pros and Cons of Appium 2024, 2023. TrustRadius [online]. Retrieved from:

https://www.trustradius.com/products/appium/reviews ?qs=pros-and-cons

K, Shamil P, 2023. A Step-by-Step Guide to Test Automation with Appium. [online].

4 August 2023. Retrieved from: https://www.headspin.io/blog/appium-automation-

testing-a-step-by-step-guide

JOHNSON, Elly, 2024. Pros and Cons of Appium - Reviews & General Overview

[2024] - Test Automation Tools. Test Automation Tools [online]. 15 February 2024.

Retrieved from: https://testautomationtools.dev/pros-and-cons-of-appium.

91

https://www.gcreddy.com/2022/07/advantages-and-drawbacks-of-selenium.html
http://books.google.ie/books
http://books.google.ie/books
http://dx.doi.org/10.14445/22492615/ijptt-vl0i4p402
https://www.trustradius.com/products/appium/reviews
https://www.headspin.io/blog/appium-automation-
https://testautomationtools.dev/pros-and-cons-of-appium

TULI, Varesh and TULI, Varesh, no date. Major Challenges in Web-Based

Application Testing. [online]. Retrieved from: https://www.c-

sharpcorner.com/UploadFile/face6d/major-challenges-in-web-based-application-

testing/

Web Application Testing (Major Challenges and Techniques), 2015.

www.academia.edu [online]. Retrieved from:

https://www.academia.edu/14183369/Web_Application_Testing_Major_Challenges_

and_Techniques_

TANDON, Anisha and M A D A N , Mamta, 2014. Challenges in Testing of Web

Applications. ResearchGate [online]. 5 May 2014. Retrieved from:

https://www.researchgate.net/publication/337050953_Challenges_in_Testing_of_We

b_Applications

6 Common Challenges in Web App Testing and How to Overcome Them, no date.

TestDevLab Blog [online]. Retrieved from: https://www.testdevlab.com/blog/6-

common-challenges-in-web-app-testing-and-how-to-overcome-them

92

https://www.c-
http://sharpcorner.com/UploadFile/face6d/major-challenges-in-web-based-application-
http://www.academia.edu
https://www.academia.edu/14183369/Web_Application_Testing_Major_Challenges_
https://www.researchgate.net/publication/337050953_Challenges_in_Testing_of_We
https://www.testdevlab.com/blog/6-

8. List of Figures, Tables and Abbreviations

8.1 List of Figures
Figure 1: JDK Installation 31

Figure 2: Eclipse IDE Installation 32

Figure 3: Selenium WebDriver Dependencies 33

Figure 4: Browser Dependencies 33

Figure 5: Selenium Script Example 34

Figure 6: LoginPageTest Selenium Script 35

Figure 7: ProductPageTest Selenium Script 36

Figure 8: ShoppingCartPageTest Selenium Script 37

Figure 9: CheckoutPageTest Selenium Script 37

Figure 10: Configuration File 39

Figure 11: TestBase Selenium Script 40

Figure 12: LoginPage Selenium Script 40

Figure 13: ProductPage Selenium Script 41

Figure 14: ShoppingCartPage Selenium Script 42

Figure 15: CheckoutPage Selenium Script 43

Figure 16: Selenium TestNG X m l file 44

Figure 17: Selenium Extent Report 46

Figure 18: Selenium Extent Report Summary 47

Figure 19: Selenium TestNG Report 48

Figure 20: Node.js and N P M Installation 49

Figure 21: Appium Installation 50

Figure 22: Android Studio Emulator 50

Figure 23: Appium Script Example 51

Figure 24: LoginPageTest Appium Script 53

Figure 25: ProductPageTest Appium Script 54

Figure 26: ShoppingCartPageTest Appium Script 55

Figure 27: CheckoutPageTest Appium Script 55

Figure 28: TestBase Appium Script 56

Figure 29: LoginPage Appium Script 57

Figure 30: ProductPage Appium Script 58

93

Figure 31: ShoppingCartPage Appium Script 58

Figure 32: CheckoutPage Appium Script 59

Figure 33: Appium TestNG Xml file 60

Figure 34: Appium Extent Report 62

Figure 35: Appium Extent Report Summary 63

Figure 36: Appium TestNG Report 64

8.2 List of Tables
Table 1: Comparison of Selenium and Appium Tools across various criteria 80

8.3 List of Abbreviations
DevOps: Development and Operations

DevSecOps: Development, Security and Operations

SQL: Structured Query Language

GPS: Global Positioning System

TV: Television

JDK: Java Development Kit

NPM: Node Package Manager

IOS: I-Phone Operating System

QA: Quality Assurance

3G: Third Generation

4G: Fourth Generation

5G: Fifth Generation

Wi-Fi: Wireless Fidelity

SMS: Short Message Service

IDE: Integrated Development Environment

RC: Remote Control

UFT: Unified Functional Testing

CI: Continuous Integration

CLI: Command Line Interface

UI: User Interface

TestNG: Test Next Generation

JSON: JavaScript Object Notation

94

W3C: World Wide Web Consortium

IoT: Internet of Things

AI: Artificial intelligence

POM: Page Object Model

API: Application Programming Interface

REST: Representational State Transfer

XPath: X M L Path Language

AJAX: Asynchronous JavaScript and X M L

JS:JavaScript

SDK: Software Development Kit

OS: Operating System

AUT: Application Under Test

CSS: Cascading Style Sheets

95

