Czech University of Life Sciences Prague
Faculty of Economics and Management

Department of Information Technology

Master’s Thesis

A Comparative Analysis: Web Application Testing vs.
Mobile Application Testing

Sachin Sarvothama

© 2024 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Eng. Sachin Sarvothama, B.E.

Global Information Security Management

Thesis title

A Comparative Analysis: Web Application Testing vs. Mohile Application Testing

Ohjectives of thesis

This thesis's primary objective is to compare Web Application Testing and Mobile Application Testing
comprehensively. By understanding the distinctions and nuances between these testing domains, we can
better grasp the unique challenges faced in each and the appropriate testing methodologies that should
be employed.

Methodology

A comparative study of software testing techniques can be performed to improve the testing standard of
both web and mohile applications. Choosing a tool for web app testing is easy, but it can be complicated
for mobile app testing. The objective of software testing using Selenium for web-based and Appium for
maobile applications is to ensure that the application meets the desired quality standards and performs as
expected on different platforms and devices. The main goal of testing an app, web or mobile, is to ensure
its usability and proper functioning under other circumstances and provide an excellent user experience.

A combination of literature review and case studies will be employed to achieve this research’s objectives.
The study will analyze existing testing frameworks, industry best practices, and real-world scenarios to
highlight the differences between Web Application Testing and Mobile Application Testing.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
60— 80 pages

Keywords
Selenium, Appium, Web Application, Maobile App, Software Testing

Recommended information sources

Ahmed, Maryam, and Rosziati Ibrahim. "A comparative study of web application testing and maobile
application testing.” Advanced Computer and Communication Engineering Technology: Proceedings
of the 1st International Conference on Communication and Computer Engineering. Springer
International Publishing, 2015.

Arya, K.\, and Hemdutt Verma. "Keyword driven automated testing framework for web application.”
2014 9th International Conference on Industrial and Information Systems (ICIS). IEEE, 2014.

ASLAM, ZAHEER, et al. "PERFORMANCE-BASED ANALYSIS OF TEST AUTOMATION TOOLS FOR ANDROID
APPLICATIONS

Gojare, Satish, Rahul Joshi, and Dhanashree Gaigaware. "Analysis and design of selenium webdriver
automation testing framework.” Procedia Computer Science 50 (2015): 341-346.

Kirubakaran, B., and V. Karthikeyani. “Maobile application testing—Challenges and solution approach
through automation.” 2013 International Conference on Pattern Recognition, Informatics and Mobile
Engineering. IEEE, 2013.

Ramya, Paruchuri, Vemuri Sindhura, and P. Vidya Sagar. "Testing using selenium web driver” 2017 Second
International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE,
2017.

singh, Harshit, et al. "GUI Testing Android Application.” 2022 10th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE, 2022.

Wang, Junmei, and lihong Wu. "Research on mobile application automation testing technology based on
appium.” 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). |IEEE,
2019.

Zun, Da, Tao Qi, and Liping Chen. "Research on automated testing framewaork for multi-platform mobile
applications.” 2016 4th International Conference on Cloud Computing and Intelligence Systems
(CCIS). IEEE, 2016.

Expected date of thesis defence
2023/24 55— PEF

The Diploma Thesis Supervisor
Ing. Vaclav Lohr, Ph.D.

Supervising department

Department of Information Technologies

Electronic approval: 4. 9. 2023 Electronic approval: 3. 11. 2023
doc. Ing. Jifi Vanék, Ph.D. doc. Ing. Tomas Subrt, Ph.D.
Head of department Dean

Prague on 01. 03. 2024

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

Declaration

For my master’s thesis, I have independently written "A Comparative Analysis:
Web Application Testing vs. Mobile Application Testing", and solely referred to the

sources cited. As the author of this master’s thesis, I certify that it’s not a copyright violation.

In Prague on 27-03-2024 Q(,\'\ in. Q
’___________/

Sachin Sarvothama

Acknowledgement

Throughout the research project, I would like to express my sincere gratitude to
Ing. Viaclav Lohr, Ph.D., my thesis advisor, for his valuable guidance, unrelenting assistance,
and valuable insight. These individuals contributed significantly to the direction and quality

of this thesis through their expertise and capabilities.

I would like to express my deepest gratitude to my esteemed professors, dear
classmates, and the dedicated academic staff of the Global Information Security
Management (GISM) department at the Czech University of Life Sciences, Prague. My
academic journey has been shaped and enhanced significantly by their consistent support
over the past two years. In addition to enhancing my understanding of the subject matter, the
encouragement, guidance, and exchange of knowledge have also facilitated a collaborative
and enriching learning environment. I am grateful to the entire academic community for their
invaluable contributions to my education and growth, and I am deeply grateful for the

collective efforts that contributed to my personal growth and development.

Finally, I want to extend my heartfelt gratitude to my family and friends for their

patience, resilience, and backing during my academic journey.

A Comparative Analysis: Web Application Testing vs.
Mobile Application Testing

Abstract

This thesis examines the practical application of Selenium for web application testing
and Appium for mobile application testing to improve software quality and reliability
through automation. A thorough investigation of various testing tools and methods is
conducted, delving into how automation frameworks can help ensure high levels of
functionality, usability, and compatibility in web and mobile programs. The research
incorporates case studies that underscore the importance of conducting functionality,
usability, and compatibility testing to address problems tied to software applications. While
automation frameworks streamline the testing process, no framework can replace traditional
manual testing. Both automated and manual strategies must be utilized together to deliver
comprehensive testing. The studies highlight best practices for developing an efficient

testing regimen.

The study uncovers that Selenium exhibits great precision in mechanizing obligations
inside web applications, while Appium productively assesses portable application usefulness
crosswise over different gadgets and working frameworks. The examination between web
and versatile application testing underscores the significance of customized testing
methodologies to satisfy stage particular necessities. Proposals for future examination centre
around investigating Al incorporation in testing, [oT application testing, improved security
estimates, execution testing in 5G conditions, and usability testing across gadgets to advance
programming testing practices. Furthermore, the investigation discovered that Selenium
could robotize occupations effectively on web applications saving time throughout testing.
Appium can evaluate portable applications on different working frameworks and gadgets,
for example, i0S, Android and Windows. This permits testers to distinguish bugs cross-stage
before dispatch. As innovation keeps on advancing, future exploration could concentrate on
artificial intelligence joining into testing improve precision and effectiveness. Testing IoT
applications is critical as these applications associate numerous gadgets. In this manner,

security must be considered even more deliberately. Execution must likewise be tried as 5G

networks become progressively normal. Usability ought to be concentrated on cross stage as

client experience ought not rely upon the gadget being utilized.

This research aims to further our understanding of software testing techniques. It
provides meaningful perspectives for industry specialists seeking to refine their testing
methodologies and develop websites and apps of high calibre. These digital offerings should
satisfy users’ needs and align with sector benchmarks. By gaining familiarity with current
evaluation methods, developers can create error-free programs meeting users where they are.
The findings offer pragmatic guidance for strengthening evaluation processes to deliver top-

notch, dependable digital experiences.

Keywords: Selenium, Appium, Web Application, Mobile App, Software Testing,

Automation Framework, Functionality, Compatibility, Usability.

Srovnavaci analyza: Testovani webovych aplikaci vs.
Testovani mobilnich aplikaci

Abstrakt

Tato prace zkouma praktickou aplikaci Selenium pro testovani webovych aplikaci a
Appium pro testovani mobilnich aplikaci za ucelem zlepseni kvality a spolehlivosti
softwaruprostfednictvim automatizace. Provadi se dikladné zkoumani rtiznych testovacich
nastrojia metod a zkouma se, jak mohou automatizacni ramce pomoci zajistit vysokou
uroven funkénosti, pouzitelnosti a vykonu ve webovych a mobilnich programech. Vyzkum
zahrnujeptipadové studie, které zduraziuji dualezitost provadéni testovani vykonu,
zabezpeCeni,pouzitelnosti a kompatibility pro feSeni konkrétnich problému souvisejicich se
softwarovymi aplikacemi. Zatimco automatizacni ramce zjednodusuji proces testovani,
zadny ramec nemize nahradit tradiCni ruCni testovani. Jak automatizované, tak
manualnistrategie musi byt pouzity spole¢né, aby bylo mozné poskytovat komplexni

testovani. Studiezdiraziiuji osvédCené postupy pro vyvoj acinného testovaciho rezimu.

Studie odhaluje, ze Selenium vykazuje velkou pfesnost v mechanizaci povinnosti v
ramci webovych aplikaci, zatimco Appium produktivné hodnoti uziteCnost prenosnych
aplikaci napfic riznymi pfistroji a pracovnimi ramcemi. Zkouska mezi webovym testovanim
a testovanim vsestrannych aplikaci podtrhuje vyznam pfizpisobenych metodologii testovani
pro splnéni pozadavkl konkrétni faze. Navrhy na budouci testovani se soustfedi na
zkoumani zaclenéni umeélé inteligence do testovani, testovani aplikaci IoT, vylepSené
odhady zabezpeceni, testovani provadéni v podminkéach 5G a testovani pouzitelnosti napfic
gadgety, aby se pokrocily postupy testovani programovani. VySetfovani navic zjistilo, ze
Selenium dokaze efektivné robotizovat povolani ve webovych aplikacich, coz Setfi Cas
béhem testovani. Appium dokaze vyhodnocovat prenosné aplikace na riznych pracovnich
ramcich a gadgetech, napfiklad i0S, Android a Windows. To umoziiuje testerim rozlisit
chyby v ruznych fazich pred odeslanim. Vzhledem k tomu, Ze inovace stale postupuji,
budouci prizkum by se mohl soustiedit na zapojeni umélé inteligence do testovani, které
zlepsi presnost a efektivitu. Testovani aplikaci IoT je zasadni, protoze tyto aplikace sdruzuji
fadu gadgetd. Timto zplisobem musi byt bezpecnost zvazovana o to vice zamérné. Provedeni

se musi rovnéz vyzkouset, protoze sité 5G se postupné stavaji normalnimi. Pouzitelnost by

se méla soustfedit na rizné faze, protoze klientska zkusSenost by se neméla spoléhat na

vyuziti gadgetu.

Tento vyzkum si klade za cil prohloubit nase chapani technik testovani softwaru.
Poskytuje smysluplné perspektivy pro oborové specialisty, ktefi chtéji zdokonalit své
testovaci metodiky a vyvijet webové stranky a aplikace vysoké kvality. Tyto digitdlni
nabidky by mély uspokojit potieby uzivatelti a byt v souladu se sektorovymi benchmarky.
Seznamenim se s aktualnimi metodami hodnoceni mohou vyvojafi vytvaret bezchybné
programy, které se setkavaji s uzivateli tam, kde jsou. Zjisténi nabizeji pragmaticky navod

pro posileni procest hodnoceni s cilem poskytnout §pickové a spolehlivé digitalni zazitky.

Kli¢ova slova: Selenium, Appium, webova aplikace, mobilni aplikace, testovani softwaru,

Automatizacni ramec, funk¢nost, kompatibilita, pouzitelnost.

Table of Contents

1. Introduction 1
2. Objectives and Methodology w3
2.1 ODBJECHIVES. cuvetiieeiieie ettt ettt et 3
2.1.1 Main GO@l....ceveeeieeiieeeee et s 3

2. 1.2 K@Y ATIMIS .uteiiiiiieiietiie ettt sttt b e st 3

2.2 MethOdOIOZYeoeuiiiiiiiiieeiie ettt e 4
2.2.1 Literature Review Method..........coccvieiiiiiiiiiiiiiniiiiiiiccnnie e 4
2.2.2 Case Study MethodOlOZYccccoviiiiiiiiiiiiiiiie i 4
2.2.3 Comparative Study Design........ccoooviiiiiiiiiiiiii s 5
2.2.4 Selection of Testing TOOLSccueiviiirieiieiiiiiiiie e 5
2.2.5 Usability Testing APProachi........cccccccevuiiiiiiiiiiiiiiniiie i 5

3. Literature review 6
3.1 Overview of Software TeStINGccceceeriiriiiiiiiiiiiiiiieie e 7
3.1.1 Evolution of SOftware TeSting.........cccevueevuiiiiiiiiiiiiiiie et 8
3.1.2 Importance of Software Testing in Application Development......................... 9

3.2 Web Application Testing Techniques.............cccoeieiiiiiiiieninenes 10
3.2.1 Manual Testing vs Automated Testing for Web Applications....................... 11
3.2.2 Common Challenges in Web Application Testingccocoevveiiiiniiieninnnenn 12

3.3 Mobile Application Testing Techniquesccccoveviiiiiiiiiiiiiieniee 13
3.3.1 Key Differences Between Web and Mobile Application Testing 15
3.3.2 Best Practices in Mobile Application Testingcccocevvvrviiviiiiieiieniieniinnnns 18

3.4 Selenium for Web Application TeSting.........cccevvviiiiiiiiiiiiinniiiniiecie e, 19
3.4.1 Introduction to Selenium Automation ToOlccccoeviiiiiiiiiiiiniii, 20
3.4.2 Advantages and Limitations of Selenium in Web Testing..........c..c.ccceevenene. 22

3.5 Appium for Mobile Application TeStiNG..........ccovueriiiiiniinieninieieeiecce 23
3.5.1 Introduction to Appium Framework..........ccccooiiiiiiiniiniiiiiiiiece 23
3.5.2 Advantages and Limitations of APpiumL..........ccccovuiiiiiniiiiiiiiiiicienienee 25

3.6 Comparative ANALYSISccueevieuiiiiiiiiiiiiiii et 26
3.6.1 Previous STUAIES ...vveevveeieeieieiieiie ettt ea e s ean s 26
3.6.2 TAENtified GAPS ...veeveveeeieieeiieiciieiieee ettt 28

3.7 Summary of Literature Reviewedcccocoviiiiiiiiiniiii e 29
4. Practical PArt...c..cccciecnssensecssnncsnnssanssnssssesssesssncssssesssessasssssssssssssssssassssssssssssssssasses 31
4.1 Implementation of Selenium for Web App Testing ToOIS..........cocvnvivinieenenee. 31
4.1.1 Setting Up Selenium for Web Application Testing..........ccevvveveeinienencnenee 31
4.1.1.1 TSt SCENATIOS ..vvvenieeeeiiieeeiieeeieee ettt ee st eesae e sae e sae e saae s e stae s e ssae e e ssaeeesseens 34

4.1.1.2 TeStCase DESIZNcceviiieiiiiiiiiiiie ittt 39

4.1.1.3 Results and FIndingsc.ccceeeeeieiieiniiniiiiii e 45

4.2 Implementation of Appium for Mobile App Testing ToOIS.........ccocveirieiennnee. 49
4.2.1 Configuring Appium for Mobile App Testingccoooveieinieninininiininn 49
4.2.1.1 TSt SCENATIOS ..vveerieeeeuieieeiieeeieee ettt ee st eestae e saae e sate e etae e stae s e ssae s e ssaeeesaeens 52
4.2.1.2 TeStCase DESIZNccooviiiiiiiiiiiiiieiiiie it 56
4.2.1.3 Results and FINdingsc.ccceoerreeiiieiiiiiiiiiiiiic e 60

4.3 Case Studies in Web Application Testing.........ccceevuriuiiiiiiniienieniieiiiiniieniiens 65
4.3.1 Case Study A: Functional Testing of a Web Applicationccccenveienens 65
4.3.2 Case Study B: Compatibility Testing Across Various Browsers. 66

4.4 Case Studies for Mobile App TeStiNgccc.cccveviiiiiiiiiiiiiiiiieniieeie e 70
4.4.1 Case Study A: Functional Testing of Mobile Apllication.............cccccovveiennens 70
4.4.2 Case Study B: Compatibility Testing Across Various Mobile Devices......... 72

5. Results and DiSCUSSION.....ccuceerseecssnnssesserssareesanessacssssesssecsassssnssssssssssssasssssssssssssssssasses 75
5.1 Analysis Of tesSting reSultscccooivuiiiiiiiiiiii e 75
5.2 Comparison between web and mobile application teSting...........ccocovveieeniennns 78
5.2.1 Testing APPIrOACHEScovveieiiiiiiiiiiiiiii ittt 78
5.2.2 Tools and TeChNIQUES.........cccueeiiririiiiiiiiiiii et 78
5.2.3 CONSIAETAIONSevveeeiieieietie ettt eaa e e eae s s e sees 79

6. CONCIUSION .cuvvicrnrissrisssncssanssressaneesansssnesssnssasssacsssnessssssasessasssssssssssssssssasssssssssssssssssassss 81
6.1 Summary of findiNgScccoceeiiiiiiniiiiiiiiiii 82
6.2 Implications for iNAUSHIYccccoiiiiiiiiiiiii e 83
6.3 Recommendations for future researchccccoeviiiiiiiii 84
7. References 86
8. List of Figures, Tables and Abbreviations 93
8.1 LSt Of FIGUIES ..eeetietiiiiieeieeiie ettt 93
8.2 LiSt Of TADIES....couiieieieeiieeie ettt e 94

8.3 LISt Of ADDIEVIATIONS . .uuueeeeeeeeereeeeeeeeeeeeeetatieseeeeeeeerrarasaeaeeesessssnsnnseseeeesesennnns 94

1. Introduction

Software has become essential to contemporary society, propelling progress and
changing numerous facets of everyday life. With the need for top-notch software
solutions continuously increasing, the significance of efficient software evaluation
can’t be emphasized enough. Software testing is a crucial process that confirms the
dependability, capabilities, and functionality of programs, ultimately bettering user
delight and decreasing dangers linked to software system malfunctions (Myers 2011).
Testing is important as it helps validate that applications work as intended and are free

of defects (Pressman 2014).

By systematically assessing programs through techniques like requirement
testing and unit testing, issues can be identified and resolved before public release.
These supports providing users with smooth experiences devoid of unexpected
problems. Overall, thorough testing plays a key role in satisfying users and building

confidence that software will perform well for its intended purpose.

Today’s rapidly changing technological environment poses challenges where
web and mobile apps dominate. Testing methods must thoroughly address both
platforms. Web and mobile app testing each involve distinct issues requiring
customized solutions to guarantee top functionality and user satisfaction. Web
applications may encounter problems with different browsers, screen sizes, or internet
speeds. Mobile apps must function flawlessly across an array of devices with varying
processing power and OS versions while considering usability on small screens.

Comprehensive testing explores all potential issues to confirm smooth experiences.

Though web and mobile testing methodologies vary, their purpose unites in
delivering polished digital products meeting users’ needs. This thesis will closely study
web application testing and mobile application testing to compare their differences,
challenges, test strategies, and quality expectations. An examination of usability and
the user experience for both web and mobile apps in different situations is included.
The goal is to advance software evaluation methods within the continually changing
digital world. Specifically, this research aims to explore the unique issues that testers

face for each platform. For web apps, testing cross-browser compatibility and software

functionality is important to consider. For mobile apps, factors like various device
types, orientations, and network conditions play a crucial role in ensuring optimal

performance.

2. Objectives and Methodology

2.1 Objectives

This work’s main aim is to fully compare testing for Web Applications and
Mobile Applications. This big aim is broken down into smaller, detailed goals so we

can carefully study each area.

2.1.1 Main Goal

Our main aim is to look deeply at how software testing is done differently for
web and mobile apps. This means studying the unique problems for both, in order to

get a full understanding of different testing methods.

2.1.2 Key Aims

° Identification and Analysis of Unique Challenges

One of the goals is to see and study the unique problems for web and mobile app
testing. This involves a detailed study into different problems faced in each area, like
how well it works, how far it is compatible with different browsers & devices, and

issues with user interfaces.

° Proposal of Appropriate Testing Methodologies

Another important goal is to suggest the right methods for testing web and
mobile apps. This needs a clever approach in creating methods that work best for the
different testing needs of each platform, to make sure the outcomes are strong and

trustworthy.

° Quality Standards Adherence

Ensuring that the proposed testing methodologies meet desired quality standards
is an essential aim of this research. This involves a meticulous evaluation of industry
standards and best practices to guarantee the reliability and effectiveness of the testing

approaches recommended for both web and mobile applications.

2.2

° Usability and User Experience Assessment

Assessing the usability and user experience of both web and mobile applications
under various scenarios is a paramount aim. This involves an examination of factors
influencing user-friendliness, accessibility, and overall performance to provide

valuable insights into the end-user perspective.

In summary, the objectives of this research are tailored to provide a
comprehensive understanding of the challenges in Web Application Testing and
Mobile Application Testing, propose effective testing methodologies, ensure
adherence to quality standards, and evaluate the functionality and user experience of
applications across diverse scenarios. These objectives collectively form the

foundation for a nuanced and insightful comparative analysis.

Methodology

The research methodology is a critical component that outlines the systematic
approach adopted to achieve the specified objectives. In this chapter, various strategic
approaches are carefully designed and integrated to provide a robust framework for
conducting the comparative analysis between Web Application Testing and Mobile

Application Testing.

2.2.1 Literature Review Method

We explore existing test methods and industry strategies in our literature review.

The aim is to understand how software testing evolved and its key role in creating

apps.

2.2.2 Case Study Methodology

We take on case studies to study practical situations. Through these studies, we
aim to give concrete examples that supplement textbook learning. They expose

challenges in testing web and mobile applications.

2.2.3 Comparative Study Design

Our research heavily relies on comparing studies of web and mobile application
testing. We dive deep into previous studies and the gaps they left to give a thorough

comparison analysis.

2.2.4 Selection of Testing Tools

Selecting testing tools plays an important role in our research. We’ve chosen
Selenium for web app testing and Appium for mobile app testing. They were the top
picks because they work well with various platforms and devices. This lets us give a

complete review of the testing field.

2.2.5 Usability Testing Approach

In the research plan, we focus on testing. We want to make sure web and mobile
apps work well. They must be user-friendly! To do this, we follow a strict procedure.
We think of many different situations to get a full picture of what the user might

experience.

Let’s recap. Section 2.2 shows the research plan. We look at other studies, check
case studies, run tests, pick the right tools, and focus on testing usability. This strong

plan helps us dive deep into Web and Mobile App Testing.

3. Literature review

The focus of this chapter is software testing as shown by a wide-ranging
literature review which concentrates particularly on the testing of web applications,
mobile applications and necessary apparatuses like Selenium and Appium. It
extensively examines how software testing has developed over time as one of the most

important activities to ensure that programs are of high quality and reliable.

The review meticulously examines software testing, analyzing approaches for
both websites and mobile apps, and delving into key automation frameworks that have
propelled the discipline forward. By investigating the historical evolution of testing
and underscoring its significance, the chapter offers a comprehensive overview of a
field that has become increasingly crucial as software continues to permeate various

facets of modern life.

The exploration of various web application testing techniques enables a contrast
between manual and automated testing approaches. This comparison sheds light on the
intricacies of ensuring functionality and usability for web-based programs. Similarly,
the investigation of mobile application testing methods highlights the distinct factors
and optimal approaches essential for effectively testing mobile apps in our evolving

digital world.

As these testing techniques are assessed, common challenges encountered in
validating web and mobile applications become apparent. Ensuring that such programs
work as intended across different browsers, devices, and operating systems involves
complexities related to replication, isolation, and coverage. Both manual and
automated strategies present their own set of benefits, with automated testing being

able to test more scenarios at a faster pace.

Overall, properly examining available testing methods assists quality assurance
teams in selecting the most suitable approaches for their specific testing needs and

development lifecycles.

3.1 Overview of Software Testing

The Software testing plays a vital role in software development by helping to
guarantee program quality, dependability, and functionality. It involves methodically
assessing software to discover faults and mistakes, with the goal of conveying a result
that meets client necessities and desires. Throughout the years, advances in innovation
and methodologies have molded the advancement of software testing, bringing about
different testing systems and procedures being created. Testing strategies have
developed from essential functional testing to more modern approaches that are more
thorough, for example, integration testing, system testing, and acceptance testing.
These strategies recognize issues from different points of view, including how
application segments function together and how the product works inside a framework
setting. The evolution of testing looks for to consistently enhance the item, discover
issues right on time, and limit expenses from defects. Even though testing cannot
ensure that software will be bug-free, it significantly reduces the risks and improves

the overall quality of the product.

In the field of software testing, the value of complete testing methods is
impossible to overemphasize. Successful testing helps in identifying and correcting
problems early during the development process, decreasing the chances of expensive
mistakes in the final product (Pressman, 2014). Software testing strategies have
progressed from manual arbitrary approaches to organized methods that include
automation and strict testing routines (Beizer, 1990). Testing each component of a
program and ensuring everything functions as intended is crucial. This reduces post-
launch issues that can damage a brand’s reputation and lose users. The costs to fix bugs
found after launch greatly exceed those solved during testing. Thorough testing saves

money while providing users a quality, smooth experience with an application or site.

Recent studies into software testing have highlighted the importance of including
testing tasks throughout the software development cycle. Taking this approach
guarantees that software products satisfy quality benchmarks, function as intended,
and provide a favorable user experience (Smith et al., 2019). By adopting optimal
techniques in software testing, companies can strengthen the dependability and
functionality of their programs while decreasing risks connected to software

malfunctions. When testing is integrated at each stage of development starting with

initial planning, it allows potential issues to be identified and addressed early before
they become more serious and costly problems later on. Regular testing catches errors
that could cause apps or systems to crash or malfunction when deployed,
compromising performance for end users. Organizations that devote sufficient time
and resources to testing various usage scenarios minimizes post-launch disruptions and
ensures a smooth user experience. This delivers ongoing value and reduces the need

for emergency fixes after launch.

In our current fast-paced digital environment, where software applications play
a vital function in numerous industries, the necessity for powerful software testing
methodologies is more crucial than ever before. Scholars and professionals
consistently seek out innovative testing techniques and instruments to deal with the
progressively evolving challenges in software program advancement (Jones &
Johnson, 2020). By keeping up with industry developments and breakthroughs in
software testing, organizations can enhance their testing processes and deliver high-
quality software solutions to end-users. As new technologies emerge at a rapid pace,
testing methods must also evolve accordingly. Researchers must explore novel
approaches that test the full capabilities of applications while maintaining efficiency.
Companies should dedicate resources to monitoring the software testing field for any
recent testing strategies or tools. Adopting emerging testing practices can help ensure

applications perform as intended for customers.

3.1.1 Evolution of Software Testing

The Software testing has changed over time due to advances in technology,
methodologies, and good practices. It has shifted from sporadic methods to orderly
approaches that include many testing tactics and strategies (Beizer 1990). Software
testing is crucial in app development. Proper testing boosts the quality, reliability, and

performance of software products (Myers et al. 2011).

Software testing has had several key stages:

o Manual Testing: In software development’s early days, testing was mainly
manual. Human testers ran test cases and checked the app’s functionality. This

method took a lot of time and had the risk of human error (Myers et al. 2011).

o Structured Testing: As software systems grew in complexity, orderly testing
methods like Equivalence Partitioning, Boundary Value Analysis, and Decision
Table Testing came about. These techniques arranged and recorded test cases,

making the testing process more organized (Myers et al. 2011).

. Automated Testing: The introduction of software testing tools led to automated
testing. Tools such as Selenium and Appium enabled web and mobile app testing
automation. Automated testing greatly cut down the time and work needed for

testing, making it more manageable for big projects (Myers et al. 2011).

. Agile Testing: Agile methods bring a fresh, incremental style to testing. It’s
done throughout the entire development cycle. This approach spots problems

earlier and fixes them faster (Myers et al. 2011).

. DevOps and DevSecOps: DevOps unifies development and operations. This
bond speeds up high-quality software delivery. As cloud technology advanced
and firewalls were lowered, security shifted to application level. This change
birthed DevSecOps that brings security testing into the development cycle
(Myers et al. 2011).

Wrapping up, the evolution of software testing was driven by the need for
enhanced, thorough methods. The blend of technology, methodologies, and best
practices led to the creation of advanced testing tools that can enhance software quality

and dependability.

3.1.2 Importance of Software Testing in Application Development

Software testing is essential when making apps. Its main job is to make sure the

software works correctly and is of high quality (Smith, 2018).

3.2

Here are some reasons why testing software is critical:

. Quality Control: Testing helps find and fix problems, boosting performance,
usability, and reliability. This ensures the software meets quality targets
(Johnson, 2019).

. Better User Experience: Tests can find room for improvement in performance,
functionality, and usability. This makes for a smoother user experience (Brown
& Lee, 2020).

. Cutting Risks: Testing helps fix problems before launch, so there are fewer
issues or glitches once it’s live. It cuts down on risks (Garcia et al., 2017).

° Saving Time and Money: Testing sooner rather than later finds and fixes issues
quickly, reducing delay and unnecessary costs (Adams, 2016).

. Pleasing Customers: Testing makes sure the software lives up to customers’
hopes, creating a better user experience and higher satisfaction (Roberts & Patel,

2021).

In short, software testing is key to making sure apps are high quality, user-

friendly, safe, efficient, and meet customers’ needs.

Web Application Testing Techniques

The Web application testing techniques play an important role in validating the
functionality, usability, and security of web-based software programs. Employing
these testing methods is critical for pinpointing and fixing potential problems that may
negatively influence how web apps perform. Some key techniques support evaluating
whether web apps work as intended across different browsers, devices, and network
conditions. Usability testing allows assessing how easy web apps interface is to use
and learn. Security testing aids detecting vulnerabilities that could expose apps to
unauthorized access. Overall, leveraging varied testing approaches helps ensure web

apps consistently provide users a dependable experience.

10

Here are some key points regarding web application testing techniques:

. Manual Testing vs. Automated Testing:

While manual testing requires testers to execute test cases by hand without the
aid of automation tools, automated testing leverages software to automatically run test
scenarios. Both approaches offer benefits and are frequently blended to achieve
thorough testing. For example, manual testing allows testers to quickly test new
features or changes since automation setup is not required. However, it can be time-
consuming and repetitive. On the other hand, automated testing expedites the process
through automated execution, but setup time is involved. An ideal strategy is
combining the two, using manual testing for initial checking and automated for
regression to ensure everything continues working as intended. This balanced hybrid

approach maximizes coverage within budget and time constraints (Vogels 2023).

° Role in Ensuring Quality:

These techniques are essential in guaranteeing the quality and dependability of
web applications by identifying bugs, security vulnerabilities, and performance issues
early during the development process. They play a vital part in confirming the caliber
of web applications by finding problems, weaknesses that could be exploited by
malicious actors, and issues that slow performance before development is finished.
This allows developers to fix any issues prior to completion, resulting in a more robust
and secure final product. By detecting flaws at the beginning, these methods help

ensure web applications function as intended for users when launched.

3.2.1 Manual Testing vs Automated Testing for Web Applications

Web applications are usually tested in two ways: manual and automated testing.
Each of these methods comes with their pros and cons. The selection between the two

depends on project-specific needs and limitations. (Son, 2024a; Katalon, 2023)

Manual testing is a process where human testers play with the web application
to find and record any glitches or bugs. This mode is a good match for projects of
smaller size or those that are in their infancy. Yet, note that manual testing can take a
lot of time, is susceptible to human mistakes, and might not be a great fit for extensive

applications.

11

Manual and automated testing are two frequently used approaches for web
application testing. Each strategy has its strong and weak points. It’s the project’s

particular requirements and confines that determine which one to use.

Humans doing the testing to spot and list down any issues or bugs is what manual
testing is all about. It’s a good fit for smaller projects or those that are still in the early
phase of development. Manual testing lets testers use their judgment and creativity to
uncover issues. This can be useful in finding problems that come up unexpectedly.
Yet, manual testing has its drawbacks - it may eat up a lot of time, is prone to human

errors, and may not be the best choice for large applications.

Automated testing is quite different. It involves using software tools to run preset
testing scripts and juxtaposing final outcomes with expected ones. This approach is
more effective, dependable, and scalable than manual testing. Thus, it’s a great option
for large applications. Automated testing can be run over and over which allows
developers to find and kill any issues that might show up during development. But
remember, automated testing requires special technical skills and can be costlier than

manual testing (Son 2024).

Summing up, the decision to choose manual or automated testing for web apps
lies in the project’s unique needs and limits. Small projects or early-stage apps are best
for manual testing. Automated testing becomes a smart pick for larger applications due
to its greater efficiency, reliability, and scope (Manual Vs. Automated Testing | What’s
The Deal? 2024).

3.2.2 Common Challenges in Web Application Testing

There are several common challenges that testers may face when evaluating web
applications. Browser compatibility issues can occur when a website does not display
or function properly across different browsers like Chrome, Firefox, Safari, and
Internet Explorer. Testing performance across various devices with different operating

systems and hardware configurations, such as desktop computers, laptops, tablets, and

12

3.3

mobile phones, is also difficult but important to ensure optimal user experiences.
Additionally, security vulnerabilities must be addressed. For instance, SQL injection
allows attackers to interfere with database queries through a web page. Cross-site
scripting enables malicious code injection into otherwise trusted websites. Another
challenge is confirming that a website’s design and content are easily readable and
usable on various screen sizes from large desktop monitors to small mobile screens.

Addressing these compatibility.

Mobile Application Testing Techniques

Testing mobile apps is a crucial part of the development process. It allows
developers to ensure the apps function as intended, load swiftly, and offer an intuitive
experience for all users regardless of the device or operating system. Due to the
specialized nature of mobile apps, there are multiple approaches developers can take
to evaluate their performance. For instance, they may examine how apps appear and
operate on the diverse screens, hardware, and software found on phones and tablets
from various manufacturers. Testing across a wide range of real products helps identify
bugs or inconsistencies before public release. It is also important to assess an app’s
speed and responsiveness under different conditions, such as on slower mobile
connections or after periods of inactivity. Since people frequently multitask on their

devices, ensuring compatibility across different scenarios is crucial.

Compatibility Testing is an important process that software developers
undertake. It involves rigorously checking if an application functions smoothly across
various devices, screen sizes, and operating systems. Developers also examine how
the app performs under different network conditions. Through this testing, they can
make certain that the software works as intended regardless of the hardware or
software configuration of the user. This helps ensure a seamless experience for anyone
wanting to utilize the app on their smartphone, tablet, or other device. By
implementing Compatibility Testing, issues are identified and addressed before
general release. This means more people can benefit from bug-free usage of the
application on their chosen platform. The end result is improved usability and a wider

reach for the software (Koziokas, Tselikas, Tselikis 2017).

13

Another important testing method is Performance Testing. It evaluates how
swiftly the app responds, how stable it remains, and the amount of system resources it
utilizes when faced with various scenarios and loads. Conducting this test can help
uncover potential problems, optimize the app’s speed, and ensure it fulfills users’
requirements for quickness and dependability as they interact with it (Berihun,
Dongmo, Van Der Poll 2023). While performance testing is crucial, it is also vital to
maintain a balanced approach between testing methods to achieve quality without

overburdening resources.

Usability testing is also a crucial part of the development process. It allows
developers to examine the app’s design, layout of menus, and the overall user
experience to determine how intuitive and user-friendly the interface is. During these
tests, people are observed as they attempt to complete typical tasks within the app.
This provides valuable insights for developers to understand how real people interact
with and navigate the app. It helps identify where improvements may be needed to
streamline the user workflow and make the app more pleasant and enjoyable to use.
The goal is to enhance user satisfaction by addressing any pain points or areas that

cause confusion or frustration (Koziokas, Tselikas, Tselikis 2017).

Ensuring mobile application security is absolutely crucial for protecting users.
Security testing serves a vital role by identifying potential vulnerabilities within an app
that could place personal data in jeopardy or expose the software to various threats.
Testers carefully examine aspects such as encryption protocols, login procedures, how
information is securely retained on devices and servers, and defending against
common hacking attempts. By investigating these technical elements and functionality
through a security lens, weaknesses can be found and addressed before any harm
occurs. This process helps strengthen an app’s defenses over time so users can
download and utilize features with confidence, safe in the knowledge that their privacy
and well-being are not at risk. As new risks emerge, continued evaluation through

testing also helps maintain protection as threats evolve (Haller, Klaus, 2013).

14

3.3.1 Key Differences Between Web and Mobile Application Testing

While there are notable variances between evaluating web and mobile
applications, both aim to ensure high-quality user experiences. Aspects like
functionality, ease of use, and selected testing strategies differ substantially when
considering websites designed for desktop browsers versus smartphone or tablet apps.
Functional testing looks at all features and checks if they are performing as intended
across different environments. Usability testing evaluates how simple or complicated

various tasks are to complete within an application (Reichert 2023).
Here are the key distinctions highlighted from the search results:

1. Platform and Accessibility:

Web applications are designed to be accessed through web browsers on various
devices like desktop computers, laptops, and even some smart TVs. These applications
can be reached using any modern web browser without requiring downloads or
installations. Mobile applications, on the other hand, are specifically tailored for
smaller screens and touch-based interactions found on mobile devices like
smartphones and tablets. They are built to take advantage of the unique features that

these mobile devices offer, such as GPS, cameras, and motion sensors (Unadkat 2021).

Mobile app testing differs from web app testing in that it requires testing
applications on various mobile operating systems like iOS and Android. Developers
need to ensure their apps function seamlessly across different devices and screen sizes.
Web app testing, on the other hand, primarily focuses on evaluating how a website
appears and performs on multiple web browsers. Since web browsers have
standardized rendering engines, testing tends to be less complex than with native
mobile apps. However, both mobile and web application testing are important to

identify bugs and optimize the user experience across platforms (Unadkat 2021).

2. User Interface:

Mobile applications are specifically created to be used with touch-based
interactions on devices like smartphones and tablets, as touchscreens are the primary
methods of input. Websites and web applications, on the other hand, are generally

constructed with mouse and keyboard control in mind since most people access the

15

internet through desktop computers. The user interface and navigation of mobile apps

are optimized (Unadkat 2021).

Mobile app testing concentrates on confirming an intuitive interface that
responds properly to touch motions, while web app testing emphasizes simplicity of
movement with mouse and keyboard commands. Both types of testing are crucial to
delivering programs that function seamlessly across platforms. Evaluating a mobile
app requires validating that taps, swipes, and pinches perform as anticipated, just as
assessing a web app involves validating clicking, scrolling, and typing perform as
expected. UX testing is also important to evaluate for both formats. The goal is
providing users with applications that work how they want without confusion or

frustration (Unadkat 2021).

3. Performance:

Mobile devices have constrained processing capabilities in comparison to
desktop computers, necessitating the optimization of performance in mobile
application testing, with considerations given to elements like battery usage and
network connectivity. It is important for testers to keep in mind the more limited power
supply and connection speeds when developing for smartphones and tablets.
Performance must be enhanced, and resource expenditure reduced so apps can run

smoothly despite hardware restrictions inherent to portable devices (Yogiti 2023).

Web app testing considers more than just functionality and bugs. It also
examines an application’s performance across various web browsers like Chrome,
Firefox, Safari, and Internet Explorer. Testers evaluate aspects such as how quickly
pages load, elements render and respond to user input on different devices and
operating systems. This helps ensure a smooth and fast experience for customers no

matter which browser they choose (Unadkat 2021).

4. Connectivity:

Mobile devices rely on an array of network connections like 3G, 4G, and Wi-Fi
to access the internet, with speeds varying significantly across these technologies.
Because of this variability in connectivity levels, it is important for mobile applications

to function smoothly regardless of the available network. Developers need to test their

16

apps under different network conditions to ensure a seamless user experience whether

users are on a fast Wi-Fi connection or a slower mobile network (Yogiti 2023).

Web app testing not only examines network connectivity but mainly
concentrates on how quickly pages load and how applications perform under slow
internet conditions. Testing aims to ensure the application functions reliably even
when network speeds are less than optimal. Developers subject their programs to
different bandwidth limitations to check the user experience at various connection

speeds (Yogiti 2023).

5. Device-Specific Features:

Mobile devices offer capabilities that set them apart from traditional web
applications on computers and laptops. Features such as built-in cameras, GPS sensors,
and accelerometers allow mobile apps to provide location-based services, augmented
reality experiences, and more. Due to these distinctive characteristics, it is important
for testers to conduct targeted testing on mobile specifically to validate that apps
perform as expected when utilizing these device-level technologies. Simply testing the
app’s functionality through a browser will not adequately verify. Web app testing does
not need to consider these device-specific features present in mobile devices (Unadkat

2021).

In wrapping up, there exist likenesses in the overall technique applied to
evaluating both web and mobile applications. However, the unique variances in
platform, user interface, performance, connectivity, and device-specific capabilities
demand customized testing tactics for every single to confirm ideal functionality and
user experience. The web and mobile environments have their own set of
characteristics that require focusing testing on the particular attributes of each. While
some tests can overlap between the two, ensuring that tests target the specific user
workflows and hardware/software configurations for each type of application is
important. A one-size-fits-all approach will not adequately verify that the application
operates as intended across the assorted settings encountered on different devices and

internet connections.

17

3.3.2 Best Practices in Mobile Application Testing

Mobile application testing plays an important role in the development process.
It is essential to thoroughly evaluate the functionality and usability of an app on mobile
devices before releasing it to users. This ensures any issues are identified and resolved.
Through rigorous testing, developers can verify all features work as intended across
various phones and tablets. It also allows them to identify ways to streamline
workflows and simplify complicated processes. A seamless experience is key to an

app’s success.

1. Mimic Real-Life Situations:

Test apps in realistic conditions. Deal with bad networks, different time zones,
and GPS points. What if the battery is low, or an SMS pops up? Testing these helps
your app run smoothly no matter what (Bharati, 2022).

2. Choose the Right Testing Device:
Select the best device for app checks. Look at what’s popular with your audience,

screen sizes, and operating systems. When you test on the appropriate gadgets, it helps

all users (Kumari, 2020).

3. Get to Know Your Users:
Collect data. Know your audience. Understand what they want and how they
will use the app. This knowledge guides app development and improves the user

experience (Solutions, 2023).

4. Function First, Experience Second:
Check that your app does what it’s supposed to do. That’s priority number one.

Then, see if it’s user-friendly. Test how usable it is in the early stages (Kumari, 2020).

5. Test on a Real Device Before Launch:
Initial tests can be done on emulators or simulators. But, make sure to do a final
review on a real device. This helps find any last-minute issues. You can check

everything thoroughly (Solutions, 2023).

18

34

6. Do Performance Tests Soon:
Spotting performance problems at the start of development is key to prevent
expensive changes later. By doing performance tests early, it’s easier to find and fix

performance issues (Ville-Veikko 2013).

7. Make Testing Automated:
Using automation tools can boost testing productivity. They quicken up
duplicate tests and give steady outcomes. Balancing both automated and manual

testing is vital to tackle all situations (Llp 2023).

This set of best practices gives a full-picture approach to testing mobile apps,
from real-time situation checks to usability and performance assessments. By sticking
to these tips, developers can improve their mobile apps and give users a top-notch

experience.

Selenium for Web Application Testing

Selenium is an open-source tool that’s widely used for automating web app tests.
It’s a toolbox that includes the Selenium IDE, Selenium RC, and Selenium WebDriver.
These can test web apps across different browsers, systems, and languages (Singh
2015). Because of extensive research, Selenium is seen as a cost-effective, efficient

option for testing web apps (Gjesr 2015).

Our review of the research on Selenium versus manual testing shows Selenium’s
clear benefits. Cost is reduced by automating repeat tasks. Quality of software gets a
boost from consistent, exact results. This research also discusses Selenium’s key
features like recording and playing back tests and the Selenium RC and WebDriver for

those with programming know-how (Singh 2015).

The review even considers case studies and compares Selenium with other
testing tools like UFT. This is intended to guide organizations in deciding the best
testing approach. Factors considered include budget, ability to reuse, language and

application support, and efficiency (Gjesr 2015).

19

In conclusion, Selenium is an impressive web application testing tool. It offers
cost-effectiveness, consistency, and efficiency. Summarizing the literature offers
insights into Selenium’s features and benefits as well as comparisons to help

organizations make informed choices about their testing strategies (Gjesr 2015).

3.4.1 Introduction to Selenium Automation Tool

Selenium is a widely popular open-source automation testing framework that is
commonly used for automating web applications. It provides a full set of tools that
enable automated testing across different browsers and platforms, increasing its
flexibility and ability to integrate with diverse development environments (Thooriqoh,
2021). Selenium allows testers to write automated tests in various programming
languages, reducing the time spent on manual testing. The tests can validate
functionality, measure performance, and ensure apps work across various browsers.
With its cross-browser compatibility, companies are able to deliver quality software
more quickly. While some see it as only for functional testing, many also leverage it
for other quality assurance tasks like smoke testing, integration testing, and more

(Thooriqoh, 2021).

One of the key abilities of Selenium is its power to engage with web components
on a web page, permitting activities like tapping catches, entering content into fields,
and approving anticipated results. This connection is made conceivable through
Selenium’s WebDriver, filling in as a basic intermediary between the test content and
the program, guaranteeing smooth correspondence and oversight over the web
application being tried. The WebDriver works as a translator between the testing code
and the program, enabling orders to be sent and reactions to be gotten. It guarantees
the test can effortlessly control highlights on the webpage, for example, clicking joins
or stacking pages, and validate the webpage acts as anticipated. This allows testers to
deliberately explore the application and confirm it works as planned (Thooriqoh,

2021).

Testing Approaches Supported by Selenium:
Selenium allows testers to use various testing techniques like functional testing,

regression testing, and browser compatibility testing. It enables running test scripts

20

simultaneously across different browsers to confirm consistent behavior regardless of
the browser environment. This helps validate that the application performs as expected
no matter if users access it with Chrome, Firefox, Safari, or another supported browser.
By empowering cross-browser testing, Selenium helps developers identify and fix any
issues that may affect users depending on which browser they use to access the site or
app. This capability is important for catching compatibility problems that could impact

the experience for some visitors (Thooriqoh, 2021).

Integration with Continuous Integration (CI) Tools:

Selenium works effortlessly with Continuous Integration tools such as Jenkins,
allowing for automated testing to be a fundamental part of the software development
process. This integration streamlines testing by providing swift responses to code
modifications and maintaining the application’s quality throughout each stage of its
lifespan. By blending automated checks into the software progress, issues can be
recognized rapidly so they may be addressed without delay. Bugs and errors are
exposed very early before they deteriorate into bigger troubles, saving valuable time
and resources. Overall, the combination of Selenium and integration tools like Jenkins
results in a smoother development workflow with testing embedded into the workflow

from the very beginning (Thooriqoh, 2021).

In wrapping up, Selenium stands apart as a powerful automation testing tool
owing to its wide-ranging functions, flexibility in scripting dialects, and smooth
integration with CI instruments. Its constant evolution and prevalent acceptance
throughout the business underscore its importance in guaranteeing efficient and high-
quality web application testing methods. Selenium’s extensive set of capabilities like
browser control, element location, JavaScript execution, and cross-browser
compatibility allows testers to automate both front-end and back-end tests. Its support
for various programming languages lets developers pick the language of their choice
to write easy to read and maintain test scripts. This compatibility with multiple
languages combined with the ability to integrate seamlessly with Continuous
Integration pipelines facilitates streamlined testing workflows. As more companies
recognize the value of test automation in deploying applications faster and the
advantages of using open source software, the Selenium project community continues

to grow in order to meet the changing needs of users (Thooriqoh, 2021).

21

3.4.2 Advantages and Limitations of Selenium in Web Testing

Your literature review provides a comprehensive overview of both the
advantages and limitations of using Selenium for web testing. The segmentation into
advantages and limitations, along with summaries for each, makes the content clear
and organized. The inclusion of specific sources adds credibility to the information

presented. Here’s the structured summary:
Advantages of Selenium:

1. Versatility: Selenium supports various programming languages, allowing
testers to write automated scripts in the language they are most familiar with (Li
2024).

2. Cross-browser testing: Selenium is known for enabling automated tests that
can be run against multiple browsers simultaneously, ensuring broad

compatibility and a seamless user experience (Li 2024).

3. Cost-Effective: Being an open-source tool, Selenium is cost-effective for testing

web applications, as there are no licensing fees (Li 2024).

4. Integration Capabilities: Selenium integrates seamlessly with Continuous

Integration (CI) tools like Jenkins (Li 2024).

5. Community Support: Selenium benefits from an active community of
developers and users, providing assistance on forums and messaging boards (Li

2024).
Limitations of Selenium:

1. High Test Maintenance: Selenium tests can become fragile due to strict

element identifiers, leading to high maintenance requirements (Reddy 2022).

2. Steep Learning Curve: Mastering Selenium requires a steep learning curve,

demanding considerable time spent developing coding abilities (Reddy 2022).

22

3. Limited Reporting Capabilities: Selenium lacks certain features for generating

detailed reports on test runs and results (Reddy 2022).

4. Lack of Reliable Technical Support: Selenium lacks reliable technical support,
and users must seek solutions through online documentation and communities

(Reddy 2022).

5. Total Cost of Ownership: While Selenium itself is open-source, the overall cost
can be high due to factors like maintaining tests, fixing bugs, scaling the

framework, and hiring skilled engineers (Reddy 2022).

3.5 Appium for Mobile Application Testing

Appium is a versatile and free automation tool specifically designed for mobile
app testing (Verma 2017). Serving as a bridge between test scripts and mobile
applications, Appium is compatible with various platforms, including real devices,
simulators, and emulators. Its extensive reach spans multiple app platforms such as
i0S, Android, and Tizen. Moreover, Appium is not limited to mobile platforms; it also
extends its functionality to web browsers like Chrome, Firefox, and Safari.
Additionally, it operates seamlessly on desktop environments like macOS and
Windows, and even extends support to TV platforms such as Roku tvOS, Android TV,
and Samsung. This wide compatibility makes Appium a powerful and flexible tool for

comprehensive mobile app testing.

3.5.1 Introduction to Appium Framework

Appium, a prominent open-source automation testing tool, simplifies the
automation of mobile apps across various platforms (Verma, 2017). Serving as a
bridge, it connects test scripts with mobile apps running on real devices, simulators, or
emulators. Appium’s versatility extends beyond mobile platforms, encompassing i0S,
Android, Tizen, popular web browsers (Chrome, Firefox, Safari), desktop systems like
macOS and Windows, and TV platforms including Roku tvOS, Android TV, and

Samsung.

23

Since its inception in 2011 as "iOS Auto," Appium has evolved significantly,
expanding its focus on Ul testing across diverse platforms. Known for its user-friendly
nature, Appium facilitates automation testing through a convenient CLI tool and
seamless collaboration with third-party plugins, allowing easy installation of drivers

and plugins from the Appium ecosystem (Verma, 2017).
Key Capabilities of Appium include:

1. Working on Multiple Platforms: Appium is adept at testing on various

platforms, including iOS, Android, Tizen, and web browsers (Knott, 2015).

2. Integration with Testing Frameworks: It seamlessly integrates with popular
testing frameworks like TestNG, JUnit, Pytest, and Cucumber, providing a well-
established testing setup (Knott, 2015).

3. Expansive Ecosystem: Appium’s adaptable architecture allows customization

and the creation of new drivers for different platforms (Knott, 2015).

4. Handling Native and Web Apps: Appium excels in automating both web and
native apps, offering a wide range of features for diverse testing scenarios

(Knott, 2015).

Appium 2.0, the latest version, prioritizes agility and efficiency, aiming to
simplify and expedite mobile testing. With a streamlined structure focusing on key
testing aspects and enhanced features in the Appium Inspector tool, testers can emulate

complex user tasks more effectively (Verma, 2017).

Appium operates seamlessly on both Android and iOS, leveraging the Mobile
JSON Wire/W3C Protocol. This protocol translates test commands into REST API
requests, which Appium client libraries use to communicate with connected devices

or simulators (Verma, 2017).

In summary, Appium stands out in mobile application testing due to its

versatility, compatibility across multiple platforms, strong community support, and

24

ongoing enhancements to meet evolving software testing needs in our digital landscape

(A et al., 2020).

3.5.2 Advantages and Limitations of Appium

Advantages of Appium:

1. Working on Many Platforms: Appium demonstrates versatility by testing on
various platforms, including iOS, Android, Tizen, and web browsers, ensuring

excellent cross-platform compatibility (K, 2023).

2. Works with Test Frameworks: Appium seamlessly integrates with popular test
frameworks such as TestNG, JUnit, Pytest, and Cucumber, providing testers

with a familiar testing environment (Johnson, 2024).

3. Strong and Adaptable System: Appium’s flexible structure allows easy
modifications and personalization. Users can create and share Appium drivers

for new platforms, enhancing the framework’s capabilities (K, 2023).

4. Backs Native and Web Apps: Appium excels in automating both native and
web applications, equipped with a comprehensive set of features to handle

various testing scenarios (Johnson, 2024).
Limitations of Appium:

1. Difficult Setup: Appium’s client-server model makes the setup challenging,
requiring programming skills and making automation with Appium more

complex (K, 2023).

2. Unstable Tests: Appium may lack precision in tests at times, leading to

inconsistent test results for the same setup (Johnson, 2024).

3. Slow Speed: The structure of Appium can slow down test run times due to

delays in starting the server and executing actions (K, 2023).

25

4. Issues Locating Elements: Appium may face challenges in finding elements
and automatically recognizing images, necessitating manual entry of element

positions (Johnson, 2024).

5. Limited Backing for Outdated Android Models: Appium might fall short in
supporting older Android versions, impacting test coverage on diverse devices

(Johnson, 2024).

3.6 Comparative Analysis

The chapter provides a comprehensive analysis of the research covered in
preceding chapters, aiming to create a holistic perspective. Conducting a comparative
study, the literature is scrutinized to identify areas that require further investigation
and underscore the importance of the conducted research. By evaluating key studies
side by side, the analysis seeks to identify subjects deserving additional scrutiny and
highlight the significance of the undertaken research effort. Despite the presence of
insightful research on the topic, certain aspects remain incompletely understood. This
analysis endeavours to bring attention to these gaps and emphasize the value of the

conducted research.

3.6.1 Previous Studies

The thesis explores a variety of research experiments on software testing, web
application testing techniques, mobile application testing strategies, and the use of
Selenium and Appium for web and mobile testing, respectively. Here is a concise

summary of the key findings from the research:

Web Application Testing Techniques:

The research delves into various testing methods in web application
development, emphasizing the importance of selecting appropriate techniques based
on specific requirements. It covers unit testing, integration testing, and performance

testing, highlighting the need for a judicious combination of methods for optimal

26

results. The studies underscore the significance of diverse testing approaches to
enhance product quality and provide users with a consistent and issue-free online

experience.

Mobile Application Testing Techniques:

In the realm of mobile application testing, numerous studies address challenges
unique to mobile apps, such as cross-platform compatibility, performance, usability,
and privacy concerns. The research suggests practical techniques, including thorough
testing on a diverse range of devices, defining performance benchmarks, conducting
user tests, and scanning app code for security vulnerabilities. These strategies aim to

ensure mobile apps meet user expectations and adhere to privacy standards.

Selenium for Web Application Testing:

Selenium, a popular open-source test automation tool for web applications, is
extensively studied. The research evaluates both the advantages and limitations of
using Selenium for testing websites. Selenium proves valuable in streamlining the
validation process by allowing testers to automate scripts, replay common actions, and
detect potential bugs. Best practices are outlined to optimize Selenium’s capabilities,
recognizing its effectiveness in enhancing the quality and efficiency of web application

testing.

Appium for Mobile Application Testing:

Appium, an open-source tool for automated mobile app testing, is examined in
various research efforts. The studies discuss the benefits of Appium, such as testing
multiple operating systems with one test suite and reusing test cases across platforms.
However, limitations are acknowledged, including challenges in testing specific app
features and occasional bugs. Recommendations are provided for effective Appium
implementation, emphasizing object identification and addressing device

synchronization issues.

Overall Perspective:
The research offers valuable insights into software testing methodologies, with

a focus on Selenium and Appium. While providing substantial knowledge, some gaps

27

remain, particularly in further exploring Appium’s application to mobile testing and
conducting comparative studies on different testing platforms. Addressing these areas
through additional research could enhance the understanding of evaluation strategies
in software testing. The review highlights the need for continued exploration and
expansion of knowledge in the domains of Selenium and Appium, as well as a broader

understanding of mobile app testing.

3.6.2 Identified Gaps

The literature review identifies several gaps and areas that require further
exploration in the realm of software testing, particularly in web and mobile application

testing. Here’s a detailed breakdown:

Appium for Mobile Apps:

Observation: There is a noticeable imbalance in the available information, with more
focus on Selenium and comparatively less on Appium.

Recommendation: The need for more studies and research efforts to comprehensively

understand the optimal usage of Appium for mobile application testing.

Testing Tools Comparisons:

Observation: Existing studies lack in-depth comparisons between testing tools,
specifically Selenium and Appium.

Recommendation: A call for more detailed comparisons that highlight the strengths,
weaknesses, and best use cases of both Selenium and Appium in various testing

scenarios.

Mobile Testing Advancements:

Observation: The current research landscape does not adequately address
advancements in mobile technologies, such as Al-driven testing, IoT application
strategies, and 5G performance testing.

Recommendation: Emphasizes the need for research to keep pace with evolving
mobile technologies, exploring areas like Al-driven testing, strategies for IoT

applications, and performance testing in 5G environments.

28

3.7

Security Testing in Mobile Apps:

Observation: Limited focus on security testing in mobile apps despite its crucial
importance.

Recommendation: Encourages more studies to explore the best practices for ensuring
security in mobile apps, identifying vulnerabilities, and implementing robust security

measures to protect user data and privacy.

Overall Call for More Research:

Summary: The literature review underscores the necessity for additional research and
real-world case studies to fill the identified gaps. The objective is to advance software
testing, especially in the context of web and mobile applications, utilizing tools like

Selenium and Appium.

Summary of Literature Reviewed
This comprehensive thesis delves into various aspects of software testing, with
a particular focus on web and mobile application testing. As a summary, the following

key points can be made:

Importance of Web and Mobile Testing:

. Emphasis on the significance of tailored testing approaches for web and mobile
applications, considering their unique challenges and requirements.

. Recognition of the need for specific testing techniques, tools, and best practices

to ensure effective testing of both web and mobile apps.

Web Application Testing Techniques:

. Overview of diverse web application testing techniques, including compatibility
testing, performance testing, usability testing, and security testing.

. Acknowledgment of the importance of employing these techniques to enhance

user experience and functionality in web applications.

29

Mobile Application Testing Techniques:

o Recognition of the complexities in mobile application testing, requiring
optimization for different devices and platforms.

o Highlighting strategies to address challenges related to performance, usability,

and security, ensuring the quality of mobile apps.

Selenium for Web and Mobile Apps:

. Examination of Selenium as a versatile tool for automated testing of web and
mobile apps, compatible with various browsers and programming languages.

o Awareness of Selenium’s limitations and insights into optimizing its usage for

effective web and mobile app testing.

Appium for Web and Mobile Apps:

. Exploration of Appium’s role in testing both web and mobile apps, emphasizing
its compatibility with different platforms and support for native and web apps.

. Evaluation of the strengths and limitations of Appium, contributing to the

improvement of the testing process.

Areas for Further Research:

. Identification of areas requiring more in-depth study, such as Appium’s specific
role in mobile app testing, detailed tool comparisons, emerging trends in mobile
app testing, and security issues.

o Emphasis on the potential impact of further research in promoting enhanced
software testing practices and ensuring the quality of web and mobile apps

through effective testing methods.

30

4. Practical part

4.1 Implementation of Selenium for Web App Testing Tools

4.1.1 Setting Up Selenium for Web Application Testing

Selenium is an open-source framework used for automating web applications,
the below step by step process guides us to setting up Selenium for web application
testing, focusing on the Selenium WebDriver, which is the component of Selenium

used for automating browser actions.

Variable name: JAVA_HOME
Variable value: CA\Program Files\Java\jdk-11
Browse Directory... Browse File... oK Cancel

Figure 1: JDK Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 1: Install Java Development Kit (JDK).
Selenium requires Java to run. Therefore, the first step is to ensure that the Java
Development Kit (JDK) installed on our machine. The JDK allows us to develop and

run Java programs, including Selenium tests.

31

file://C:/Prograrn

@] About Eclipse IDE O *

Eclipse IDE for Enterprise Java and Web Developers (includes Incubating components)

Version: 2023-12 (4.30.0)
Build id: 20231201-2043

(c) Copyright Eclipse contributors and others 2000, 2023. All rights reserved. Eclipse and the Eclipse
logo are trademarks of the Eclipse Foundation, Inc., https://www.eclipse.org/. The Eclipse logo
cannot be altered without Eclipses permission. Eclipse logos are provided for use under the Eclipse
logo and trademark guidelines, https://www.eclipse.org/logotm/. Oracle and Java are trademarks or
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

This product includes software developed by other open source projects including the Apache
Software Foundation, https://www.apache.org/.

A ARG <]

@' Installation Details

Figure 2: Eclipse IDE Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 2: Download and Install an IDE

An Integrated Development Environment (IDE) provides a convenient interface
for coding, debugging, and testing our Selenium scripts. Eclipse and IntelliJ IDEA are
popular choices among Java developers.
Steps for Eclipse:
1. Create a new Maven project in Eclipse.
2. Enter the GroupID and Artifactld, Click on Finish.

3. Double click on the pom.xml file and add the dependencies.

32

https://www.eclipse.org/
https://www.eclipse.org/logotrn/
https://www.apache.org/

[Programs - Selenumipomami - Ecipse I0E - B8 x
file Edit Source Navigate Search Project Bun Design Window Heip
=23 280 SR B0 R AU B OO R U eI .|
i Project Explorer X = 8 4 Selenium/pomxml x
Appium 1=<project A
v & Selenium 2 &
® src/mainvjava 3 x 0 maven.apache.org/xsd/maven-4.8.0.xsd"> »
® sic/mainresources 4 <modelVersion>4.8.8</mod: =
® scsestjava s <groupId>com.selenium</groupld> G
® sicpest/resources 6 <artifactId>Seleniumc/artifactl T
™ JRE System Library 7 e
= Maven Dependencies 8
& reports o-
@ sic 10
& target 11
@ test-output 12 >org.seleniumhq.selenium</groupId>
 pomami 13 tId>selenium-javac</artifactId>
14 v 0n>4.18.1¢/version>
15 Ki/dependency>
16
17 P t t
18 <dependency>
19 <groupld>org.testng</groupld>
20 tId>testng</artifactIds
21 on>7.9.8</version>
22 </dependency>
24
25¢ <dependency>
26 >com.aventstack</groupId>
27 tifactId>extentreports</artifactld>
28 <version>5.1.1¢/version>
29 </dependency>
3e
31 tt
32 <dependency>
33 <groupId>org.uncommons</groupId>
34 <artifactId>reportng</artifactId>
35 <version>1.1.4¢</version>
36 <scone>testc/scone> v
< > Overview Dependencies Dependency Hierarchy Effective POM pomaxmi
wirtable Insent 15:22:609 ¢
M O Type here to search " e C 3 e eQ/@oaw 24 O

Figure 3: Selenium WebDriver Dependencies.
[Source: This thesis specific diagram was developed by the author.]

Step 3: Install Selenium WebDriver
Selenium WebDriver is a collection of language-specific bindings to drive a

browser. We need to add it to our project as a dependency.

E Progranms - Selenium/pomxmi - Eclipse IDE - a ES
file Edit Sowce Navigate Search Project Run Design Window Help
O~ CES-DH-HNE Y T P S RIG-0-A-Q - B-O-dB A~ MRH-F-ODErD |t Q i@
It Project Explorer % = O 4 Selenium/pomaml % =0 =
% 7le b 102 ~ B
i Appium 103 -- https://mvn ry.com/a or| he. beans -- "
~ & Selenium 184 <dependency> 4
@ sre/mainjava 105 <groupld>org.apache.xmlbeans</groupld> "
 sre/mainiresources 186 <artifactId>xmlbeans</artifactId> =
B src/test/java 1e7 <version>5.2.@</version> ¢
B src/test/resources 188 ¢/dependency> -
0 JRE System Library [avase-1 108 '}:
& Maven Dependencies 118 e h o B
» & reports 111¢ <depend
o 112 <groupldrorg.apache. poi</groupids
& target 113 <artifactId>poi-ooxml-schemas</artifactlds
> 5 test-output 114 <version>4.1.2¢/version>
Bl pomami 115 </dependency>
116
117 mvnreposite m/artifact/io.github.bonigarcia/ve ermanage
118+ <depend
119 <groupId>io.github.bonigarcia</groupld>
128 <artifactId>webdrivermanager</artifactld>
121 n»5.6.4¢</version>
122 </dependency>
123
124 m ru.yande
125¢ «<depen; >
126 <groupId>ru.yandex.qatools.ashot</groupTd>
127 <artifactId>ashot</artifactId>
128 <version>1.5.4¢</version>
128 </dependency>
138
131 - mvnre com/a mons mmo
132 <depen: >
133 <groupld>commons-codec</groupIdy
134 <artifactId>commons-codec</artifactId>
135 <version»1.16.8</version>
136 </dependency>
137
138¢ -- &
< > Overview Dependencies Dependency Hierarchy |Effective POMM
‘Wiitable Insert 117:14: 3606 Building: (87%) -
B O Type here to search n @ C 3 e eQ/Bozn “_f]':;m [m]

Figure 4: Browser Dependencies.
[Source: This thesis specific diagram was developed by the author.]

33

http://moven.apache.org/xsd/imjv*n-4.e.e.xsd
http://aiavan
http://www.w3
http://maven.apache,orgyxsd/maven-4.,%3e.'�
https://arvnrepository.coai/irtifact/org.testng/testng
https://itvnrepository.eoai/artifact/org
https://aiwnrepo5itory.coiti/artifact/ora-apache-poi/poi-ooKml-ichemas
file:////tips

Step 4: Install Browser Driver
Selenium requires a driver to interface with the chosen browser. Chrome,
Firefox, Safari, and Edge all have their drivers. We need to add it to our project as a

dependency.

8] Programs - Selenium ase/TestBasejava - Eclipse IDE -8 %

ow Help

& (1) TestBasejava = s
© 1 package base;

o e

3*import java.io.FileInputStream;

1 &

15 public class TestBase {

public static WebDriver driver;
public static Properties config;
public static WebDriverWait wait;

B]

public TestBase() throws IOException {

config = new Properties();
FileInputStream fis = new FileInputStream("./src/main/java/configuration/config.properties”);
config.load(fis);

}

public static void initialization() {
String browserName = config.getProperty("browser”);

if (browserName.equalsIgnoreCase("Chrome")) {
WebDriverManager. chromedriver().setup();
driver = new ChromeDriver();

}

else if (browserName,equalsIgnoreCase("Firefox")) {
webDriverManager. firefoxdriver().setup();
driver = new FirefoxDriver();

else if (browserName.equalsIgnoreCase(“Edge")) {
WebDriverManager. edgedriver().setup();
driver = new EdgeDriver();

}

driver.manage().window() .maximize();
driver.manage().deleteAllCookies():

Witable Smart Insert 49:35:1376

B . Typehere tosearch n @ G e eD/ oz

2146
11-03-2024

(m]

Figure 5: Selenium Script Example.
[Source: This thesis specific diagram was developed by the author.]

Step 5: Finally, we can write our first Selenium test script.
After setting up, we can write our first Selenium test. This test will open a web

browser, navigate to a website.

4.1.1.1 Test Scenarios

To perform web application testing, a demo website known as “Sauce Labs” is
used and programming scripts are developed using a java language that is compatible
with Selenium, as part of a Selenium-based automation framework. These scripts
utilize the Page Object Model (POM) design pattern for web applications which
enhances better test maintenance and reduces code duplication, enabling them to

communicate with web browsers and carry out automated testing tasks via the

34

Selenium WebDriver API. The scripts are structured within a Maven project setup and
leverage the TestNG framework to control the testing process. Scripts are designed
using TestNG, which is a sophisticated testing framework featuring enhanced
annotations and organization of test methods. It also facilitates data-driven testing and
integrates with Maven to handle dependencies and execute tests during the build cycle.
Each of these classes is part of the larger test suite and contributes to a comprehensive
automated testing strategy for a web application. They demonstrate a clear structure
for testing different components of the application, ensuring that each part functions

correctly both individually and as part of the overall user journey.

1 B-0-QvQeBr@~® c QB HeED G
=o LoginPageTestjava i ProductPageTestjava /) ShoppingCartPageTestjava) CheckoutPageTestjava

1 package testcases;
«import java.io.IOException;
public class LoginPageTest extends TestBase {

LoginPage loginPage;
ProductPage productPage;

sBIONFQ sl

public LoginPageTest() throws IOException {
super();

@BeforeMethod

public void setup() throws IOException, InterruptedException {
initialization();
loginPage = new LoginPage();

}
#Test(priority = 1)

public void invalidLoginTest3() throws IOException {
productPage = loginPage.validateLogin("invalidgtest.com", "invalid");

}

@Test(priority = 2)

public void validLoginTest() throws IOException {
productPage = loginPage.validateLogin(config.getProperty(“username”), config.getProperty("password"));

public void teardown() {
driver.quit();

}

Writable Smart Insert 12:1:25
1825

~ e C d e B PRABDAEL | o U

Figure 6: LoginPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

1. LoginPageTest.java:

This is a test class extending TestBase, which means it uses common setup and
teardown methods for initializing and ending test cases. It contains two test methods:
invalidLoginTest() and validLoginTest(). The first method tests the login functionality
with invalid credentials, and the second tests it with valid credentials pulled from the
config.properties file. The @BeforeMethod annotation indicates that the setup()

method will run before each test method, initializing the browser and creating an

35

http://Ement.Tue.War.05.17.46.01.cn

instance of the LoginPage. The @AfterMethod annotation indicates that the
teardown() method will run after each test method, which in this case, quits the

browser, effectively closing the testing session.

1) CheckoutPageTestjava

3+import java.io.IOException;

cRIOOEY P

14 public class ProductPageTest extends TestBase {
LoginPage loginPage;
ProductPage productPage;
ShoppingCartPage shoppingCartPage;

public ProductPageTest() throws IOException {
super();

}

@BeforeMethod
public void setup() throws IOException, InterruptedException {
initialization();
loginPage = new LoginPage();
productPage = loginPage.validateLogin(config.g! perty (" "), config.g perty("password”));

}
@Test(priority=1)

public void validateProductSelectionTest() throws IOException, InterruptedException {
shoppingCartPage = productPage.validateProductSelection();

@AfterMethod
public void teardown() {
driver.quit();

Writable Smart Insert 1:1:0

& O Type heretosearch n @ C @3 e eQ/Bmwae u-‘o?:m =

Figure 7: ProductPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

2. ProductPageTest.java:

This class tests the product selection functionality on the product page. The
setup() method again initializes the browser and logs into the application using valid
credentials. The login is necessary because product selection requires an authenticated
user. The validateProductSelectionTest() method test whether product selection is

functioning correctly by using methods defined in the ProductPage class.

36

http://uuilPaoej.ua

@8] Programs - Selenium srctest/javatestcases/ShoppingCartPageTestjava - Eclipse IDE - a x
file Edit Source Refactor Mavigate Search Project Run Window Help

o~ 2 . 2P BT B0 R B @O A @ R B F IO q m|[#
s Project Explorer ER « | = B [IioginPageTestjava 1! ProductPageTestjava 1) ShoppingCartPageTest java <[] CheckoutPageTestjava =0 =
i Appium ~ [l 1 package testcases; =
~ 5 Selenium 2 L
v 8 sscmainjava s+import java.io.IOException; &
@ base 14 "
[TestBase java Run ALL
« & configuration 15 public class ShoppingCartPageTest extends TestBase { C
canfigproperties 16 LoginPage loginPage; =
© @ pages 17 ProductPage productPage; .
0l Checkoutbagejava 18 ShoppingCartPage shoppingCartPage;
4l LoginPagejava 19 CheckoutPage checkoutPage;
0 ProductPage jova
1| ShoopingCartPagejava public ShoppingCartPageTest() throws IOException {
- B testdata super();
TestDataxis:
“ @ utilties

0] Extentlistenersjava {@8eforeMethod
public void setup() throws IOException, InterruptedException {
inirialization();
loginPage = new LoginPage();
productPage = loginPage.validatelLogin(config.getProperty("username”), config.getProperty("password”));
shoppingCartPage = productPage.validateProductSelection();

@ ExtentManagerjova
2 TestUtiLjava
~ & grc/mainresources
3l testngami
- 8 e
“ 8 testcases
0 CheckoutPageTestjava
il LoginPageTestjava
| ProductPageTestjava
1] ShoppingCanPageTestjava 34 public void validateAddToCartTest() throws IOException, InterruptedException {

emallable-reporthtm 35 checkoutPage = shoppingCartPage.validateShoppingCart();
 cpestresouces 36
0 RE System Lirary =
W Maven Dependencies 38
- reports 39 A od
Extent_Tue_Mar_0! _CET_2024h) publl(void teardown() {
. Extent_Tue Mar 0517 46,01 CET 20240 41 driver.quit();
s 42 1
& target 43 }
« & testoutout
= Defaui e
& junitreports -
o 5
Whtabie Smartiact TR ;
M | O Type hereto search e 063 ¢ B eQ/Gmaw oo O

11-03-2024

Figure 8: ShoppingCartPageTest Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ShoppingCartPageTest.java:

Above Figure 8 is for testing the shopping cart page’s functionality, such as
adding products to the cart. The setup() method performs similar tasks as in the
previous classes, setting up the test environment and ensuring the user is logged in and
has selected a product. The validateAddToCartTest() method tests the addition of a
product to the shopping cart.

8] Programs Sclemum e rest i restensenll hockoutiage et jmm Feipae 105 =
Eile Edit Source Refactor Newigate Search Project Run Window Help
=R IR = 2 PHe HET RO R R B @ ME @R HmD e D[a m|@
L projoct Explarer BEaTliei~o 1w ava Java LD Snoppingc: 3 = : x =8|s
B Appim = L hackaga testcases; ogl:
s+import java.io.IOException; n:
1a
I Testsasesava Run ALL =
< it connauration 15 public class CheckoutPageTest extends TestBase { a
config properties 16 LoginPage loginPage; ,}"
8@ pages 17 ProductPage productPage; =
Tl ChkustPau jave s shoppingcartPage shoppingCarteage;
M LoginPage ava 19 CheckoutPage checkoutPage;
1 Productiage java 2
1 Smoppingt aminge g 21 public CheckoutPageTest() throws IOException {
v @ tendata 22 super();
23
- 2a
25, @BeforeMethad
PR —— 26 public void setup() throws I ion, Interrup p {
27 initiatization(
28 ToginPage = new LoginPage();
29 productpage = loginPage.validateLogin(config "), config.g P "password”));
za ShoppingCartPage = productPage.validateProgucTselection():
31 checkoutPage = shoppingCartPage.validateShoppingCart();
a2 T
33
3a= erest(prisricy = 1)
35 puhll.: vu)d validateSuccessfulOrderTest() throws I ion, It ien {
36 checkoutPage.validateorder();
a7 checkoutPage.validateAddress("Test”, "Test”, "Test");
38 P ge = ge.validateConfirm();
se ¥
aa
a1 @Aftertethor
az public void teardown() {
a3 driver.quit();
az b
as 3}
e junitreports v as -
Wiitable Smart Insert 1:1:0 0
= w25
B O Typehere to search ~ @ @ @ =] R @Mz O O

Figure 9: CheckoutPageTest Saenium Script.
[Source: This thesis specific diagram was developed by the author.]

4. CheckoutPageTest.java:

37

http://iimpinrwr.artiiiac-wst.jsva

The above Figure 9 is to test the checkout process, including order validation
and address confirmation. Like the other classes, it uses @BeforeMethod to set up the
preconditions necessary for the checkout tests, such as being logged in, having
products in the cart, and being on the checkout page. The
validateSuccessfulOrderTest() method tests the entire flow of a successful order

placement, including verifying order details and inputting address information.

38

4.1.1.2 TestCase Design

[Programs - Seteniumsc/mainjavajconfigurationconfigropertes - Edipse IDE - a8 x
Fle Edit Navigate Search Project Run Window Help
o~ =R M REEUF-O-Q-A- B - ®E SRR B~ Yo (e Q iE |
L Project Explorer ES £ =8 Gcomigpropsmies x [Tembaseiva Ul loginfagelsva U ProcuctPagejavs) ShoppingCanPacejavs Ul CheckowtPagedsva testngaml =e
B Appium lurl = https://wwu.saucedemo. com/
R 2
- Susername = standard_user

4password = secret_sauce
5
Gbrowser = Chrome

v # pages simplicit.wait = 18
[l CheckoutPagejava gexplicit.wait = 5
1) LoginPage java
4 ProductPagejava
i SheppingCartpage java

v B testdata
2 TestDataxsx

v i utilities
1 Extentlistenersjava
1 BxtentManager java
) Teswil java

~ O sic/main/resources

2! Probilems 4 Servers 49 Terminal ¥& Data Source Explorer T Properties B Console » 5 Progress HF Results of running suite Ju JUnit
No consoles to display at this time.

B src/test/resources

B IRE Syscem Library [JavasE-
B\ Maven Dependencies

& reports

@ src

@ target

& test-output
i pomaml

Writable Insert 9:18:146

_ 1734
O Type here tosearch n @ € 3 e 0/ Em a0, o B

Figure 10: Configuration File.
[Source: This thesis specific diagram was developed by the author.]

1. config.properties file:

This file contains configuration properties for the test suite. It includes website
url (domain name), credentials for logging into the web application (username and
password), specifies which web browser should be used (browser), and sets timeouts
for the Selenium WebDriver (implicit.wait and explicit.wait). These properties are

read at runtime and used to configure the Selenium environment.

39

[rograms - selenumisrc/mainvjava/base/TestBasejava - Ecipse IDE 6 X
File Edit Source Refactor Navigate Search Project Run Window Help
o 0« - PHEFUT 8v0 QR B G- OE T @R Db vo|o Q m(#
s Project Explorer % = i=0o configproperties [1) TestBasejava X [l LoginPagejava 1) ProductPagejava (i) ShoppingCartPagejava [i) CheckoutPagejava) testngami o
d I 1 package base; ~
v @ sr/mainfjava 3*import java.io.FileInputStream;
v @ base
2 TestBasejva public class TestBase {
« 8 configuration 16
config properties. public static WebDriver driver;
~ @ pages public static Properties config;
4 CheckoutPage java public static WebDriverWait wait;
3 LoginPage java
7 Productbage java 21 public TestBase() throws IOException {
3 ShoppingCartPage java 22
v i testdata config = new Properties();
TestDataxisx FileInputStream fis = new FileInputStream("./src/main/java/configuration/config.properties”);
v @ utilities 25 config.load(fis);
4 Extentuistenersjava 26 }
3 ExtentManagerjava 2
4) TestUtil java public static void initialization() {
« o sic/main/resources
£ testgaml String browserName = config.getProperty("browser”);
v B scftestjava
v @ testcases if (browserName.equalsIgnoreCase("Chrome")) {
3 CheckoutPageTestjava WebDriverManager . chromedriver().setup();
4 LoginPageTestjava driver = new ChromeDriver();
3 ProductPageTestjava
4 ShoppingCartPageTestjava
® sic/tesy/resources else if (browserName.equalsIgnoreCase("Firefox")) {
0 JRE System Library WebDriverManager. firefoxdriver().setup();
& Maven Dependencies driver = new FirefoxDriver();
& reports
@ sic
& target else if (browserName.equalsIgnoreCase("Edge”)) {
test-output WebDriverManager.edgedriver().setup();
= pomum! Ariver = new FdeaNrivar(): N
£l Problems # Servers §® Terminal 8 Data Source Explorer) Properties © Console x5 Progress 7 Results of running suite Jv JUnit vy wa
No consoles to display at ths time.
Viritable Smart Insert 1:1:0 0
B O Type here tosearch " e C @ e e/ Bmae ., B

Figure 11: TestBase Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

2. TestBase.java file:

Above Figure 11 class serves as the foundation for all the page-specific test
classes. It initializes the WebDriver, which is used for browser automation, and the
Properties object, which is used to load the configuration settings from the

config.properties file. The initialization() configures the WebDriver based on the

browser specified in the properties file.

Fle Lo Souce Retactor Nawgate Seweh Project Run Window Help
o - @iw| o om 52 PEeEIE L B O~ A A B O @S A BIRIP Bl w v olen Q im|EE
i Project Explorer % E® T =8 onfig properties [TestBasejava [* B 2 e & testngxmi =8
Apatum package pages;
hd sic/main/ava mport java.io.IOException;
« 0 vase
W TestBasejova public class LoginPege extends TestBase {
v 5 configuration 2
= contig properties // objectrepository:
~ i pages EFindBy(id = "user-name")
[0 CheckoutPagejava WebElement username;
9 Loginfogejava
8 Productiage,ava @FindBy(id = "password")
[0 ShoppingCartPage java WebElement password:
- B tesidato
TestData.xisx @FindBy(id = "login-button")
- W wtities WebElement loginben;
1 ExtentListenersjava
5 Ementstansger,ava // Initializing the Page Objects:
5 Tostu v public LoginPage() throws IOException {
« % grc/maln/resources PageFactory.initElements(driver, this);
. tesmgmi
S p——-.
v ## restcaces // Actions
B CreckoutPageTestjava public ProductPage validateLogin(String un, String pu) throws IoException {
£ LoginPageTest java username. sendKeys(un);
8 ProductPageTest java password . sendKeys (pu);
1 SneppinCanFageTastjav Toginbtn. click();
= srcrtesiyresources
= IRE Systen (1 return new ProductPage();
= Maven Dependencies 3
et
> et cupat
B pomami
&1 problems i Servers 4 Terminal B Data Source Explorer (T Properties | El Console » =5 Progress B} Resuits of running suite o JUnit cO-R-=0
Mo consoles 1o display at this time.
Writable Smart nsens ii1:0 3
= 174
BE o 1yoe nere o searen " @ @€ 3 e S0 A EBm A 500 B

Figure 12: LoginPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

40

3. LoginPage.java file:

The LoginPage class represents the login page of the web application. It uses
Page Factory for initializing web elements. The @FindBy annotations are used to
locate the username, password, and login button elements on the page. The
validateLogin() takes a username and password, inputs them into the respective fields,

and simulates a click on the login button, returning a new instance of the ProductPage.

[Programs - sesenumy:

javaipages/ProductPage java - Eclipse D - o X
File Edit Source Refactor Navigate Search Project Run Window Help
o B P He P -0~ %~ Q - F-O - AR oot Q |l
ity Project Explorer x B § = O 5 configproperties [/ TestBasejava [LoginPagejava 1) ProductPagejava < [ShoppingCantPagejava U] CheckoutPagejava [l testngaxml =o
5 Appium U 1 package pages; -
awimport java.io.IOException;
1
Ul TestBase java 11 public class ProductPage extends TestBase {
« & configuration 12
config properties 13 // ObjectRepository
« i pages 14 @FindBy(xpath = "//*[@id='inventory_container']/div/div[1]")
J] CheckoutPage.java 15 WebElement productl;
@l Login®age. 16
] PreductPagejava 17 @FindBy(xpath = “//*[@id='add-to-cart-sauce-labs-backpack']")
) ShoppingCanPage java 18 WebElement productlAddToCart;
& testdate 19
TestDataxis: 2@ @FindBy(xpath = "//*[@id='inventory_container']/div/div[2]")
~ i ulities 21 WebElement product2;
isteners jav 22
23+ @Findsy(xpath = "//*[@id='add-to-cart-sauce-labs-bike-1ight']")
24 WebElement product2AddToCart;
26 @FindBy(xpath = "//*[@id="inventory_container']/div/div[3]")
WebElement product3;
o ageTestjava 29 @FindBy(xpath = "//*[@id="add-to-cart-sauce-labs-bolt-t-shirt']")
|l LoginPageTestjava 38 WebElement product3AddToCart;
@1 ProductPageTestjeva 31
1l ShoppingCanPageTestjava 32 @FindBy(xpath = "//*[@id='inventory_container']/div/div[4]")
By ources 33 WebElement productd;
Ly brary 34
= Maven Dependencies 35 @FindBy(xpath = “//*[@id='add-to-cart-sauce-labs-fleece-jacket']")
& reponts 36 WebElement productdAddToCart;
> S 37
& target 38% @FindBy(xpath = “//*[@id='inventory_container']/div/div[5]")
& testoutpur 39 WebElement products;
% pomuml aa b
£ Problems # Servers J® Terminal B Data Source Explorer T Properties © Console x = Progress W Results of running suite o JUnit rH-=n0
No consoles to display at this time,
Wiitable Smart Insert 1:1:0
1734
B P Type heretosearch n @ G e eQ/3wae) | B

Figure 13: ProductPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

4. ProductPage.java:

Above Figure 13 corresponds to the product page of the web application. Similar
to the Login Page, it initializes elements like product listings and add-to-cart buttons
using the @FindBy annotations. These web elements are identified by their XPath
locators. Methods in this class are used to perform actions such as adding items to the

shopping cart.

41

http://PradiKtPs.jE.j3va

8] Programs - Selenium/src/main/java/pages/ShoppingCartPage java - Eclipse IDE - o x
File Edit Source Refactor Navigate Search Froject Run Window Help

O~ Qi B 3 AP AT -0 R QR Br@ O A @R B Grov|m Q w8

B Promeet e ¢ O B oo peopeics. MitcsiBoriave) [Isgifogejavel Ml Prodiifegejoal | B ShoppingCartPagejna X | CheckoutFagejrm) B iestngoani = o
i Appium I 1 package pages;
v & Selenium 2
~ ® sre/main/java 3+import java.io.IOException;
v @ base 18
1 TestBase java 11 public class ShoppingCartPage extends TestBase {
v & configuration 12
config properties 13 // ObjectRepository
~ i pages 14 @FindBy(xpath = "//*[@id="shopping_cart_container’']")
@ CheckeutPage java 15 WebElement viewCart;
i LoginPagejava 16
) ProductPage java 17 // Initializing the Page Objects:
3 ShoppingCartPage ava 18¢ public ShoppingCartPage() throws IOException {
~ @ testdata 18 PageFactory.initELements(driver, this);
TestDataxise 20 }
~ i@ utilities

D Extenlistenersjava
B ExtentManagesjava

/! Actions:

public CheckoutPage validateShoppingCart() throws IOException, InterruptedException {
viewCart.click();
return new CheckoutPage();

1 Testutiljava
v @ sr/mainresources
tesmguaml
v B sotestijava
v 8 testcases
1 CheckoutPageTestjava

D LoginPageTestjava
[PraductPageTestjava
0 ShoppingCanPageTestjava

B sic/test/resources

B JRE System Library

B\ Maven Dependencies

reports

@ src

& target

@ test-output

Bl pomum

[£] Problems # Servers # Terminal B Data Source Explorer T Properties O Console » = Progress W Results of running suite o JUnit A=A
No consoles to display at this time.
Wiritable Smart Insert 1:1:0

= 1734
B P Type here to search n @ G H @ eR/Bma | q

Figure 14: ShoppingCartPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

5. ShoppingCartPage.java file:

The ShoppingCartPage class manages the shopping cart page functionality. It
uses a @FindBy annotation to locate the shopping cart container. The
validateShoppingCart(), when invoked, will interact with the cart (e.g., view the cart

contents) and return an instance of the CheckoutPage.

42

8] Programs - Selenium/src/main/java/pages/CheckoutPage java - Eclipse IDE - a x
File Edit Source Refactor Navigate Search Project Run Window Help
o~ @ = culSRPHeFI I b -0 -~ Q- B SO A @RH - - Q im|fE
R Progect Explarer X el B i) Blitioagral Miisguieoriosal BlFodsihscive B Sexpmngteifagesam | B Checoufegejova % |B ietngnt =no
B Appium I 1 package pages; 2
« i selenium 2
~ @ sre/mainfjava 3+import java.io.IOException;
v i bate 18
(1) TestBase jave 11 public class CheckoutPage extends TestBase {
« & configuration 12
configproperties 13 /1 ObjectRepository
v # pages 14 @FindBy(xpath = "//*[@id="checkout']")
) CheckoutPage java 15 WebElement checkoutBtn;
i LoginPagejava 16
i ProductPagejava 17 @FindBy(id = "first-name")
1 ShoppingCartPage java 18 WebElement fname;
« @ testdata 19
TestDataxisx 26- @FindBy(id = "last-name")
@ uilties 1 WebElement lname;
i) Extentlisteners,ava
) ExtentManagerjava 23+ @FindBy(id = "postal-code")
[TestUtiljava 24 WebElement pcode;
* I src/main/resources 5
) testrg i 6 @Findsy(id = "continue")
v B srcftestjjava 7 WebElement continueBtn;
@ testcases 28
1) CheckoutPageTestjava o @FindBy(id = "finish")
1] LoginPageTestjava a WebElement finishBtn;
0 ProductPageTestjava 31
1 ShoppingCantPageTestjava 32 @FindBy(id = "back-to-products™)
B srcftestiresources 33 WebElement backHome;
4 JRE System Library 1 34
=\ Maven Dependencies 35 // Initializing the Page Objects
= reports 36- public CheckoutPage() throws IOException {
B s 37 PageFactory.initElements(driver, this);
£ target 38
> test-output 39
i pomoml aa i1 brtinne "
(£ Problems 4 Servers ## Terminal ¥ Data Source Explorer [Properties [Console » =3 Progress B Results of running suite I JUnit B>=n
Mo consoles to display at this time.
Witable Smart Insert 1:1:0 0
- 17:34
B O Typehere to search n @ € @ e R/ Pmw i n-na-sznu B

Figure 15: CheckoutPage Selenium Script.
[Source: This thesis specific diagram was developed by the author.]

6. CheckoutPage.java file:

Above Figure 15 depicts the checkout page. It has web elements for fields like
first name, last name, and postal code, which are essential for completing the checkout
process. Additionally, it contains buttons for continuing the checkout process,
finishing the order, and returning to the product page, all of which are annotated with

@FindBy.

43

http://Srarr.li
http://Mi.ni

8] Programs - Seleniu

in/resources/testng.mi - Eclipse IDE - o x
Navigate Search Project Run Window Help

H- I FRrO vl Gr @ ®O S @ R P il ool Q im|@

§ =0 3 configproperties 1 Logins [0 ProductPsgejva] ShoppingCartPsgejava) Checkoutsgejava 8 testngxml =0
1 ¢<?xml version="1.8" encoding="UTF-8"
2 <IDOCTYPE suite SYSTEM "http://testng.org/testng-1.8.dtd">

<suite name="Selenium">

ejov
ion <listeners>
configproperies 6 listener class-name="utilities.Extentlisteners” />
v @ pages 7 </listeners>
0 CheckoutPagejava 8
1 Loginagejava] <test name="Test Cases">
1 ProductPage java 10 <classes>
1 ShoppingCartPagejava 11 ="testcases. LoginPageTest">¢
~ B testdata ="testcases. ProductPageTest"><
TestDataudse ="testcases. ShoppingCartPageTes lass
~ i utiities ="testcases. CheckoutPageTest ">¢/class>

0 Extentlisteners,ava
1 Extentanagerjava

- .
=\ Maven Dependencies

Fepons.
src
& target
test-outpat
= o Design| [Source
! Problems 4 Servers J® Terminal ¥ Data Source Explorer T Properties O Console » =g Progress W Results of runaing suite Je Mnit *H-=8
No consoles to display at this time,
Writable SmartInsert 1:1:0 .
1734
Type here to search g LAl
B P Type here to seal n @ C * eR/Bm L, oo B

Figure 16: Selenium TestNG Xml file.
[Source: This thesis specific diagram was developed by the author.]

7. testng.xml file:

The testng.xml is a configuration file for the TestNG framework. It specifies
which classes contain test cases that should be executed. The file includes references
to listener classes that are used for reporting purpose and specifies the suite of tests to
run. Each <class> element within the <test> tag corresponds to a test class that contains
one or more test methods.

In Selenium automation framework, the above components work together to
automate the testing of a web application. The config.properties file holds the
environment setup. TestBase provides the common setup and teardown functionality
for the tests. Each page class represents a page within the web application,
encapsulating the elements and actions on that page. Finally, testng.xml is used to
manage and run the test suite, leveraging TestNG’s capabilities for grouping,

sequencing, and parallel execution of tests.

44

http://testng.org/testng-l

4.1.1.3 Results and Findings

1. Functionality Testing Findings:
Login Functionality:

The LoginPage class shows that functionality tests are written to validate user
authentication. Test findings include whether correct credentials allow access and

incorrect ones are denied.

Product Selection Functionality:
The ProductPage class indicates tests are performed for product selection and
adding items to the cart. Functionality findings cover the accuracy of product details,

the responsiveness of the add-to-cart action and updating of the cart count.

Shopping Cart Functionality:

Through the ShoppingCartPage class, functionality tests check the cart’s ability
to display selected items, update quantities, and remove items. The findings shows if
the shopping cart correctly calculates totals and retains items upon session refresh or

login/logout cycles.

Checkout Functionality:

CheckoutPage class shows that tests included form submission, input validation,
and navigation to a successful order completion. Test findings focused on form
validations, mandatory field checks, and the accuracy of the final summary before

order placement.

2. Compatibility Testing Findings:
Browser Compatibility:

The TestBase class initializes different web browsers based on the property file
configuration, suggesting that compatibility tests across Chrome, Firefox, and Edge
were performed. Findings include how consistently the web application functions

across these browsers.

45

3. Implicit and Explicit Waits:

The use of implicit and explicit waits convey testing for page load times and
element availability across environments and network conditions. Compatibility
findings include differences in load times and how well the application handles

dynamic content or AJAX-loaded elements across browsers.

v i e Sel Ji x - =} X
« C @Fie DyAutomation/Prof =S oe
™ Gmail & Drve [Gropbox [Reading
veporthEstant Tue e U5 1796 01 CET 2024 ami || x5, 2028 05461 PM
(1] a N N
= testcases.LaginPageTest @TestCase : validLoginTest
{esteases LoginPageTest @TestCase - validLoginTest 00000333 |- w1
o —— 3
Case : invalidLoginTest] STATUS TIMESTAME DFTAILS
s Pl TEST CASE.. VALIDLOGINTEST PASSED
ase : invalidLoginTest2
ase : invalidLoginTest3
testcases. @TestCase Test.
@TestCase lid;
181
M O Type hereto search n @ @ @ ¢ B eR/Bwae o, O

Figure 17: Selenium Extent Report.
[Source: This thesis specific diagram was developed by the author.]

4. Extent Test Report:

The above Figure 17 details the status of each test case executed. Tests from
LoginPageTest are listed, including validLoginTest and invalidLoginTests, all of
which passed. These tests validate both successful and unsuccessful login attempts.
Other tests like validateProductSelectionTest, validateAddToCartTest, and
validateSuccessfulOrderTest from ProductPageTest, ShoppingCartPageTest, and
CheckoutPageTest, respectively, also passed. These test the functionality of product
selection, view shoppingcart, and the checkout process. The timestamp and duration

for each test are logged, indicating performance metrics and test efficiency.

46

v [@ AwmomateSelenum JavaTest X 1= veportsiBxent Tue Mar05 17 % 4 f=] %

© @Fie DyAutomation/Programs/Selenium/reporis/bxtent_Tue Mar_05 17 46 01 CET_2024.html# ayw 0O

«
M Gmail & Diive yopbox [Reading [teaming [Universiy [MasterThesis [jobs [Testing Viebsites (] CharGeT 4, Bard [System iniegratian.

staned enced .
Mar 5, 2024 05:46:01 PM Mar 5, 2024 05:46:16 PM 7]

Seleriu

Mhesis

Crganization
11

@ -
= z g 18
88 O Typehere tosearch ~ @ € 3 & B2 S0 /AESEY | om

Figure 18: Selenium Extent Report Summary.
[Source: This thesis specific diagram was developed by the author.]

5. Summary of Extent Test Report:

The above Figure 18 summary snapshot depicts an overview of the test execution
results. It explains that all 7 tests have passed, with a graphical representation (a large
green circle) to quickly convey the success rate. Start and end times for the test suite
are shown, along with a duration, which can be important for tracking how long the

testing process takes.

47

v (@ Avtomate selenummaTest. X | = veporsiEdentTue Mar05 1 X @ TesiNG Report x o+ - 8 x

¢ @Fk DyAul able-repart html a v OO :

M Gmai & Dive [Dropbox [Rescing [Learning [Universty [Moster Thesis [Jobs [Testing Websites () ChatGPT 4, o [System Integration.

+ o) [Taclated Greape | Eschidd Gronpe |

testeases. LoginPags Testsinvalid Login Test]

testeases. LoginPageTest#invalidLoginTese2

testeases.LoginPage TestinvalidLogin Test?

testeases. LoginPageTestévalidLoginTest

B8 ° Type hereto search n @ C 3 @ E PR e

11-02-2024

Figure 19: Selenium TestNG Report.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Report Summary:

The above Figure 19 is a TestNG generated report, provides a tabular view of
the tests executed, including columns for the number of passed, skipped, and failed
tests. Below, there are details of each test method, along with their start time and
duration. The last section breaks down the test cases by their respective classes and

methods, showing individual results, which in this case are all green, indicating a pass.

All the above Results and Findings, Extent Test Report, Extent Test Report
Summary and TestNG Report Summary indicates that the test suite successfully
executed without any failures. This suggests both functional correctness of the web
application under test in different scenarios and compatibility across the different
environments and browsers are covered by execution of the required test scripts. These
reports are valuable for stakeholders to understand the robustness and reliability of the
application, and for the development and QA teams to identify and resolve any issues

early in the development cycle.

48

4.2 Implementation of Appium for Mobile App Testing Tools

4.2.1 Configuring Appium for Mobile App Testing

Appium, a trending tool in Mobile Automation Testing Technology, supports
automated testing for native, hybrid, and web applications. Its capabilities extend to
automation tests on simulators (i0S), emulators (Android), and physical devices (both

Android and i0S). Here are the steps for configuring Appium for mobile app testing.

C\Windows\system32\cmd.exe - O X

Microsoft Windows [Version 10.0.19045.4123]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Laptop>node -v
21.6.2

rs\Laptop>npm -v

10.4.0

C:\Users\Laptop>

Figure 20: Node.js and NPM Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 1: Install Node.js and NPM.
Appium is a server written in Node.js. Installing Node.js automatically comes
with npm (Node Package Manager), which is required to install Appium.
1. Download the Node.js installer from the official Node.js website.
2. Run the installer and install both Node.js and npm.
3. Verify the installation by opening a command prompt and run node -v and npm

-v. This displays the installed versions of Node.js and npm.

49

file://C:/Windows/system32/crnd.exe

C\Windows\system32\cmd.exe - "node” "C\Users\Laptop\AppData\Roaming\npm\\node_modules\appium\index,s” - O X

aptop>appium
me to Appium v2.5.1
pium home path: C
iver uiautomat

Appium RES

You can p
http
http
Available dri
- uiau ate 3.1 (automati
No plugins | veen installed.

Figure 21: Appium Installation.
[Source: This thesis specific diagram was developed by the author.]

Step 2: Install Appium
After the Node.js and npm installed.
I. Open a command prompt.
2. Run the command npm install -g appium to install Appium.

3. Verify the installation with appium, which will start the Appium server.

- My Application ~ Version control | OnePlus LE2101 app
Android MainActivity.kt Running Devices OnePlus LE2101 API 33

Live Edit disabled

Rl el 8123

ple.myapplication

® MYDEMO

Products

showBackground = true)

MyApplication2 app > src main > java > com > example > myapplication MainActivity kt GreetingPreview 4224 LF UTF-8 4 spaces

152

@ O Typeheretosearch n e Cd e » = feQs8wen ow, O

Figure 22: Android Studio Emulator.
[Source: This thesis specific diagram was developed by the author.]

50

file://C:/Windows/system32/cmcl.exe
file://C:/Users/Laptop/
file://C:/Users/Laptop/.appiutti/nade_madules/appium-uiautottiator2-driver/build/index.js
http://&.0.0.0:4723
http://192.168.78.226:1723/
http://127.0-0'
http://com.example.my

Step 3: Install Android Studio (for Android Testing)
To test Android applications, we need the Android SDK and emulators, which
are part of Android Studio.
1. Download Android Studio from the official Android Studio website.
2. Run the installer.
3. Set the ANDROID_HOME environment variable to your Android SDK
location.

4. Add the Android SDK platform-tools directory to PATH variable.

e/ TestBase java - Eclipse IDE - o *
ate Segrch Broject Bun Window Help
PAcHET Br0~Q Qv GO OO S @R b r oI oro | a m|#
=0 [reasasjma x =g
¢ § 1 package base; -
- 3#import java.io.FileInputStream; ‘:
14
15 public class TestBase {
& configuration 16 [
17 public static AppiumDriver driver; E
18 public static Properties config; "
19 public static WebDriverWait wait;
28
& 21 public TestBase() throws IOException {
B sic/lestresources 22
B JRE System Library 23 config = new Properties();
8 Maven Dependencies 24 FileInputStream is = new FileInputStream("./src/main/java/configuration/config.properties”);
reports 25 config.load(fis);
& s 2 }
& tanget 27
& test-output 28 public static void initialization() throws MalformedURLException{
% pomuani 29
& Selenium 38 UiAutomator20ptions options = new UiAutomator20ptions()
.setDeviceName("dcc35416")
2 .setAppPackage("com.saucelabs.mydemoapp.rn")
3 .setAppActivity(".MainActivity")
4 .setNoSign(true);
6 driver = new AndroidDriver(new URL("http://127..8.1:4723"), options);
8 1
39 }
< >
Writable Smart Insert 1:1:0 g
2153
B O Typeheretosearch n @ C A » 0eRABOED | o O

Figure 23: Appium Script Example.
[Source: This thesis specific diagram was developed by the author.]

Step 4: Writing and Running First Test
With everything set up, we can run our first mobile application test using
Appium. We need to create a test script in a language supported by Appium, such as

Java.

51

4.2.1.1 Test Scenarios

In the realm of mobile application testing, ensuring that an app functions
correctly across a range of devices and operating systems is paramount. Appium, an
open-source test automation framework, has become a cornerstone tool for testers
worldwide due to its flexibility in supporting both Android and iOS platforms. A series
of Java classes is designed for an Appium test suite to automate functionality and
compatibility testing of a mobile application. The TestBase class acts as the
foundation, setting up the Appium environment and ensuring tests run against the
specified device configurations. This setup is crucial for compatibility testing as it
defines the parameters for which devices and OS versions the tests will execute.
Subsequent classes, such as LoginPageTest, ProductPageTest, ShoppingCartPageTest,
and CheckoutPageTest, are structured following the Page Object Model (POM). This
model enhances test maintenance and reduces code duplication by encapsulating the

properties and behaviors of the application pages within dedicated classes.

Functionality testing is demonstrated through methods that mimic user
interactions—logging in with both valid and invalid credentials, selecting products,
adding items to a shopping cart, and executing the checkout process. Each test method
is annotated to indicate its role and execution order within the suite, leveraging
TestNG’s powerful testing capabilities such as setup and teardown methods, and
prioritization. The test suite’s architecture is tailored to validate the application’s
behavior under test rigorously. The goal is to uncover any functional discrepancies and
ensure the application’s seamless operation across different devices, thereby affirming
both its functional integrity and compatibility standing in a diverse mobile ecosystem.
Through Appium, testers can automate these processes, thus speeding up the release

cycles and ensuring a consistent user experience regardless of the end user’s device.

52

1 9-0-2-Q-B-@~'® @RI E Y|
=B 0 TestBasejava 1 LoginPage java 1) ProductPage. 1 ShoppingCar. 1) CheckoutPage. ¥ testngxmi 1 LoginPageTe. 1) ProductPageT. 4 ShoppingCar. 1) CheckoutPage. o
~ [l 1 package testcases;

3+import java.io.IOException;
13 public class LoginPageTest extends TestBase {

14 LoginPage loginPage;
5 ProductPage productPage;

cRIONFuasina %

public LoginPageTest() throws IOException {
super();

@BeforeMethod

public void setup() throws IOException, InterruptedException {
initialization();
loginPage = new LoginPage();

@Test(priority = 1)

public void invalidloginTest3() throws IOException, InterruptedException {
productPage = loginPage.validatelogin("invalidgtest.com”, "invalid");

}

@Test(priority = 2)

public void validLoginTest() throws IOException, InterruptedException {
productPage = loginPage.validatelogin(config.getProperty("username"), config.getProperty("password"));

}

@AfterMethod

public void teardown() {
3 driver.quit();

}
1}

Writable Smart Insert 1:1:0

- 230
@ O Type heretosearch ~ e C a3 e B2 eQ/Bowaw o0, B

Figure 24: LoginPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

1. LoginPageTest.java:

This class contains test methods for the login functionality. It extends TestBase,
which means it inherits setup and teardown methods along with any other common
functionality. The @BeforeMethod is used to set up preconditions for the tests, which
includes initializing the LoginPage object. There are two test methods defined,
invalidLoginTest() and validLoginTest(). The @ AfterMethod is used for cleanup after
tests are run, which in this case, involves quitting the driver, effectively ending the

session.

53

Ehowms Appium/src/test/java/testcases/ProductPageTest java - Eclipse IDE - o X
file Edit Source Refactor Navigate Search Project Bun Window Help
oy (>IN -t 2 PHe P T B-0-Q A B O OB 7> @ B ErPeCICrv |
& Project Explorer - ¥ § =0 OlestBasejava [loginPagejova [0 Productfage.. 1) ShoppingCar..) CheckoutPage.. & testogaml (1) LoginPageTe. i ProductPageT.. [ShoppingCar. 7 Checkoutfage.
~ i Appium ~ Il 1 package testcases; =
v ™ sre/main/java 2 ».
v @ base mport java.io.IOException; |
) TestBase java 1 'f
~ @ configuration Run ALL g
config.properties 14 public class geTest extends TestBase { =
v @ screens 15 LoginPage loginPage; ;
) CheckoutPage java 16 ProductPage productPage; =
i) LoginPagejova 17 ShoppingCartPage shoppingCartPage;
) ProductPagejava 18
1 ShoppingCartPagejava 19 public ProductPageTest() throws IOException {
& testdata 20 super();
TestDataxisx 2
v @ utilities
) ExtentListenersjava @BeforeMethod
D ExtentManagerjava public void setup() throws IOException, InterruptedException {
) TestUtiLjava initialization();
v src/main/resources loginPage = new inPage();
% testngxmi product! = loginPage.validatelogin(config.getProperty("username”), config.getProperty("password”));
v B srctestfiov
v @ testcases }
) CheckoutPageTestjava
i LoginPageTestjava @Test(priority=1)
) ProductPageTestjava Run | Debug
D) ShoppingCartPageTestiava public void validateProductSelectionTest() throws IOException, InterruptedException {
® sic/test/resources shoppingCartPage = productPage.validateProductSelection();
B JRE System Library }
. Maven Dependencies
& reports
@ src @AfterMethod
& target public void teardown() {
& test-output driver.quit();
pomami b3
~ & Selenium a1)
® sec/mainjava
® sec/mainfresources
® sic/test/java
 src/test/resources o
< >
Writable Smart Insert 1:1:0 0
- 2030
M O Type here tosearch ~ e C @ e B2 eQ/Bowav 0., B

Figure 25: ProductPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

2. ProductPageTest.java:

The above Figure 25 is used for testing interactions on a product page within the
app. It also extends TestBase. The setup() method initializes the login page and logs
in using valid credentials. This is a common pattern to ensure the test starts from a
user-logged-in state. The validateProductSelectionTest() method test the functionality

of selecting a product, verifying that the correct product page is loaded.

[Programs - Appum/src/estavanesteases/ShoppingCartPageTestjava - Echipse IDE - 0 x
file Edit Sowce Refactor Navigate Search Project Bun Window Help
e Q6w . PH LI $v0-U Q- B-G v @B A+ DR U YPvCDEvD v Q m|@
L Project Explorer % e % ¥ 1 =B ([TestBasejava (0 LoginPagejava 1 ProductPage. 4 ShoppingCar. 11 CheckoutPage. 4 testngaml (1) LoginPageTe. 4] ProductPageT. 4l ShoppingCar.. %) CheckoutPage. "0«
v i Appium ~ [1 package testcases; &
~ @ src/main/java 2 »
@ base 3+import java.io.IOException; -
2 TestBasejava 14 "
v @ configuration Run ALL 2
conig plopiiés 15 public class ShoppingCartPageTest extends TestBase { S
v @ screens 16 LoginPage loginPage; ;
B CheckoutPage jovs 17 ProductPage productPage; -
4 LoginPage java ShoppingCartPage shoppingCartPage;
5 ProductPage java CheckoutPage checkoutPage;
4 ShoppingCartPage java
v B testdata public ShoppingCartPageTest() throws IOException {
TestDataxisx super();
~ @ utilities
© Extentlistenersjava
o ExtentManagerjava @8eforeMethod
@ Testutiljava public void setup() throws ion, Inte ion {
~ % src/main/resources initialization();
¥ testngaxmi loginPage = new LoginPage();
« B srctestfova productPage = loginPage.validateLogin(config.getProperty(“username"), config.getProperty(“password"));
@ testeases ingCartPage = p ge.vali lection();
1 CheckoutPageTestjava shoppingCartPage = productPage.validateProductAdd();
i LoginPageTest java }
4 ProductPageTestjava
& ShoppingCartPageTestjava @Test(prioritysl)
® src/test/resources Run Deb
. RE System Library public void validateAddToCartTest() throws IOException, InterruptedException {
™ Maven Dependencies 36 checkoutPage = shoppingCartPage.validateShoppingCart();
o reports 37 }
o src 38
s target 39
@ test-output 4e @AfterMethod
& pomxmi a1 public void teardown() {
~ 54 Selenium driver.quit();
® se/mainvjava)
= src/main/resources a4}
® sic/test/java
® sic/test/resources >
< >
‘Writable Smart Insert 1:1:0 ¢
= 2030
M O Type here tosearch ~ @ C & e B2 eQA/BOED 00, B

54

http://�ui.lit.es

Figure 26: ShoppingCartPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ShoppingCartPageTest.java:

This class tests the shopping cart page’s functionalities. The setup() method
ensures the user is logged in and has a product selected before testing the cart. The
validateAddToCartTest() method check if adding a product to the cart works correctly.
The validateShoppingCart() method tests the items displayed in the cart.

Gv0 Ry Gvav ™ ~o 2
® B [TestBasejava (1) LoginPagejava) ProductPage. 1) ShoppingCar. J) CheckoutPage. % testngaml 1) LoginPageTe. 7. ProductPageT 4] ShoppingCar. 1) CheckoutPage.
~ [1 package testcases;

*import java.io.IOException;

15 public class CheckoutPageTest extends TestBase {
16 LoginPage loginPage;

1 ProductPage productPage;

18 ShoppingCartPage shoppingCartPage;

19 CheckoutPage checkoutPage;

SRH OO E s

public CheckoutPageTest() throws IOException {
super();

d setup() throws IOException, InterruptedException {

initialization();

loginPage = new LoginPage();

productPage = loginPage.validatelogin(config.getProperty("username”), config.getProperty("password”));
shoppingCartPage = productPage.validateProductSelection();

shoppingCartPage = productPage.validateProductAdd();

checkoutPage = shoppingCartPage.validateShoppingCart();

éTest(priority = 1)

public void validateSuccessfulOrderTest() throws IOException, InterruptedException {
checkoutPage.validateOrder();
checkoutPage.validateAddress("Test");
productPage = checkoutPage.validateConfirm();

}

public void teardown() {
driver.quit();

Writable Smart Insert 1:1:0

- 2031
@ O Typeheretosearch n e C a3 e a eR/Bmoav oo B

Figure 27: CheckoutPageTest Appium Script.
[Source: This thesis specific diagram was developed by the author.]

4. CheckoutPageTest.java:

The above Figure 27 class is for testing the checkout process of the application.
The setup() method logs in the user, selecting a product, and adding it to the cart. The
validateSuccessfulOrderTest() method goes through the full process of ordering,
including entering address details and confirming the order. As with the other test

classes, @AfterMethod is used for post-test cleanup.

55

4.2.1.2 TestCase Design

E%grami—)\upunhrq‘mi n/javajbase/TestBase java - Eclipse IDE - o *®
fie Edit Sowce Refactor Navigate Search Project Bun Window bHelp
(o] =1 " ZPHFHU T B0 R A GO M AR RO G| Q im|@
& Project Explorer X £ = 0 [0 TestBasejova % [iloginPagejava [ProductPage.. [ShoppingCar.. [Checkouttsge. [testnguml [f] LoginPageTe. [/l ProductPageT_. (1) ShoppingCar. 1) CheckowtPage... =a
v i Appium ~ 1 package base; =
v 8 s/mainfjava 2 =
~ B base 3¢import java.io.FileInputStream; e
i) TestBasejava 14 B
~ & configuration J15 public class TestBase { =
config properties 16 ?
~ B screens 17 public static AppiumDriver driver; -
[l CheckoutPagejava 18 public static Properties config; ?“
If) LoginPagejava 19 public static WebDriverWait wait;
@) ProductPage java 20
1f) ShoppingCantPage java 21 public TestBase() throws IOException {
~ B testdata 22
TestDatauxls: 23 config = new Properties();
~ # ulilities 24 FileInputStream fis = new FileInputStream("./src/main/java/configuration/config.properties”);
I Extentlistenersjava 25 config.load(fis);
[ExtentManager java 26 }
0 Testlriljava 27
~ [sre/main/resources 28 public static void initializatien() throws MalformedURLException{
tesmguam 29
~ B srcftestfjava 30 UiAutomator20ptions options = new UiAutomator2Options()
~ B testcases 31 .setDeviceName("dcc35416")
) CheckoutPageTestjava 32 .setAppPackage("com. saucelabs.mydemoapp.rn”)
) LoginPageTestjava 33 .setAppActivity (" MainActivity")
[ProductPageTestjava 34 .sethoSign(true);
0 ShoppingCanPageTestjava 35
B sic/lest/resources 36 driver = new AndroidDriver(new URL("http://127.8.0.1:4723"), optieons);
B IRE System Library 37
B\ Maven Dependencies 38 }
reports §32 }
sic
target
test-output
B pomam
~ & Selenium
™ sre/maingava
™ sre/main/resources
B src/est/java
B sro/test/resources E
»
Wiritable Smant Insert 7:1:7 0
B O Type heretosearch n e 03 = B e/ Goan ”if;m B

Figure 28: TestBase Appium Script.
[Source: This thesis specific diagram was developed by the author.]

1. TestBase.java:

The above Figure 28 class serve as the base class for all test classes in this
Appium project. It initializes the properties and the AppiumDriver. The initialization()
method sets up the Appium driver with specific options for UlAutomator2, device
name, app package, and activity. This method is called before each test to prepare the

testing environment.

56

http://127.8.6.1:4723

8 Programs - Appium/src/mainjavalscreens/LoginPage java - Eclipse IDE - o X
file Edit Source Refactor Mavigate Search Project Bun Window Help

o~ (=3 . ZPHrFEH TR0 -~ Q-G-GO ®E - PRI OD Dt Q ®|E
i& Project Explorer X 5 7% § =B [TesBasejwva D LoginPagejma % [ProductPage 0 ShoppingCar. [CheckoutPage.. [tengaml) LoginPageTe. 0 ProductPageT.. [ShoppingCar.. Bl CheckoutPage =8
+ ¥ Appium ~ [l 1 package screens; i
“ 8 sre/main/java "
v i base mport java.io.IOException;[] #
(i TestBase java "
+ & configuration 12 public class LoginPage extends TestBase { ;
<onfig.properties 3 -
i screens 14 // ObjectRepository: e
1] CheckoutPage java 15 @FindBy(xpath = "//android.widget.EditText[@content-desc="test-Username']") a,:
1] LoginPage java 6 WebElement username;
1) ProductPage java 17
1 ShoppingCartPagejova 18 @FindBy(xpath = "//android.widget.EditText[@content-desc="test-Password']")
~ @ testdata 13 WebElement password;
TestDataudsx 20
@ wilities 2 @FindBy(xpath = "//android.view.ViewGroup[@content-desc="test-LOGIN']")

(@ Extentlistenersjava
1 BxtenManagerjava
1) TestUtiljava
« @ src/main/resources
® testng.m
8 srcftestava
- testcases
1 CheckoutPageTestjava
1 LoginFageTestjava
1 ProductPageTestiava
1 SnoppingCanPageTestjava
® sec/testiresources
4, JRE System Library
 Maven Dependencies

WebElement loginbtn;

itializing the Page Objects:
ic LoginPage() throws IDException {
PageFactory.initElements(driver, this);

/7 Actions:
public ProductPage validatelogin(String un, String pw) throws IOException, InterruptedException {

Thread. sLeep(3088) ;
driver.findElement (AppiunBy.accessibilityld("open menu")).click();

driver. findElement (AppiunBy.accessibilityId("menu item log in")).click();
driver.findElement (AppiunBy.accessibilityId("Username input field")).sendKeys(un);

& repons driver. findElement (AppiunBy.accessibilityId("Password input field")).sendKeys(pw);

s driver.findElement (AppiunBy.xpath("//android.view.ViewGroup[@content-desc="Login button']")).click();

& target

&> test-output return new ProductPage();

poman! }
« 1 Selenium

® ste/mainjova

® src/mainfresources

® sccpesava

I src/test/resources .
< >

Writsble Smart Insent 1:1:0 g

B O Typeheretosearch n @ C A e e /Gmzm ”72272;“ L)

Figure 29: LoginPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

2. LoginPage.java:

The LoginPage class extends the TestBase and represents the login screen of the
mobile application. It uses Page Factory to initialize mobile elements. The
validateLogin() takes username and password arguments, enters them into the
respective fields, and then clicks the login button. This method is used to test the login

functionality.

57

[Programs - Appram/src/mainiava/screens/Productrage java - Ecipse 10E =
file Edit Source Refactor Navigate Search Project Bun Window Help
m Q. - P AL LT B0 vRhvQ~v GG SE v D R v Dow s v -
i Project Explorer E T B lesBasejove U Loginfagejava U ProductPage. x () ShoppingCar. [CheckowtPage.. ¥ testngxmi (1 LoginPageTe. 5 ProductpageT.. (1 ShoppingCar. 2 CheckoutPage . -
~ 5 Appium ~ o
~ @ sre/mainfjava public class ProductPage extends TestBase { ol
v i base &
0 TestBase java ObjectRepository ®
« & configuration @FindBy(xpath = "(//android.view.ViewGroup[@content-desc="test-Item'])[1]/android.view.ViewGroup")
contig properties WebElement productl; e
v @ screens rd
3 Checkoutagejava @FindBy(xpath = "(//android.view.ViewGroup[@content-desc="test-ADD TO CART'])[1]") T
I LoginPagejava 1 WebElement productAddToCart;
1) ProductPage java 2
2 ShoppingCartPage java 2 @FindBy(xpath = "//android.widget.TextView[@content-desc="test-Item title' and @text='Sauce Labs Bike Light']")
testdata 2 WebElement product2;
TestDataxisx 2
8 utlties 2 @FindBy(xpath = "//android.view.ViewGroup[@content-desc="test-BACK TO PRODUCTS']")
2 ExtentListenersjav 2 WebElement backToProducts;
1 ExtentManagerjava 2
£ Testutijava 2 Initializing the Page Objects
« @ sic/main/resources 28 public ProductPage() throws IOException {
X testngmi 29 PageFactory.initELements(driver, this);
v 8 stc/testfjava
v @ testeases 31
1) CheckoutbageTestjava 3 Actions
4 LoginPageTestjava public ShoppingCartPage validateProductSelection() throws IOException, InterruptedException {
4 ProductPageTestjava
@) ShoppingCartPageTestjava Thread.sleep(30@8);
® src/test/resources driver.findElement (AppiumBy.accessibilityId("store item")).click();
B JRE System Library
B Maven Dependencies return new ShoppingCartPage();
reports
ste
target public ShoppingCartPage validateProductAdd() throws IOException, InterruptedException {
test-output
pomm: Thread. sLeep(3000);
~ & Selenium driver.findElement (AppiumBy.accessibilityId("Add To Cart button")).click();
= src/mainfjave
= src/main/resources 6 return new ShoppingCartPage();
® schestfava a7
® sic/testresources v a8
>
Writable Smart Insert 1:1:0 2
- 2030
B O Type here tosearch n @ @ o B eQ/Boaw o0, B

Figure 30: ProductPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

3. ProductPage.java:

Similar to LoginPage, the above Figure 30 ProductPage class defines elements

and methods for the product page of the mobile app. It includes methods like
validateProductSelection() which handles the logic for selecting a product, and

validateProductAdd() which adds a product to the cart.

8] Programs - Appiumysrc/mainjava/sereens/ShoppingCartPage java - Eclipse IDE - o x

Eile Edit Source Refactor Navigale Search Project Run Window Help
= Qi eun R R L R - R I H R R - R k)
1) ProductPsge..) ShoppingCar— % [CheckoutPage...

Q :m|E
1] CheckoutPage... =o

1 testngxml U] LoginPageTe] 2 Sh c

71@ 8 S0 0TesBamjava [0 LoginPagejava
~ & 1 package screens;
2

[Project Explorer %
« & Appium
~ @ src/maindjava
v & base
1D TestBasejava
~ & configuration
[eonfigpraperties
8 screens
[0 CheckoutPage java
1 LoginPage java
[ProguctPage java
[ShoppingCanPage.java
v B testdata
TestData s
3

3+ import java.io.IOException;
11
public class ShoppingCartPage extends TestBase {
s
// ObjectRepository:
@FindBy(xpath = *//android.view.ViewGroup[@content-desc="test-Cart']/android.view.ViewGroup/android. nidget . InageView")
WebElement viewCart;

§AI 00Bw s

// Initializing the Page Objects:
public ShoppingCartPage() throws IOException {
PageFactory.initELements(driver, this);

- @
19 Exentlistenersjava
[0 BentManagerjava
2 TestUtil java
~ @ sre/mainfresources
& tesm.mi
~ B srcftest/java
~ i lesteases
D CreckoutPageTest java
¥ LoginPageTestjava
[0 ProductPageTestava
2 ShoppingCanPageTestjava
B src/testfresources
=4 JRE System Library (/v
= Maven Depentiencies
& reports
o s
& target
& test-output

// Actions:
public CheckoutPage validateShoppingCart() throws IOException, InterruptedException {

Thread.sleep(300@);
driver.findElement(AppiumBy.xpath("//android.view.ViewGroup[@content-desc="cart badge’]")).click();

return new CheckoutPage();

= src/maingjava

@ src/main/resources

& sec/testyjava

® srepestyrasources ~

Smart Insert 1:1:0 0

2030
FR/ABOED o B

| writable

e ¢ @ = B

Figure 31: ShoppingCartPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

E® P Type here to search I

58

4. ShoppingCartPage.java:
This class models the shopping cart page of the app. It features methods such as
validateShoppingCart(), which ensures that items added to the cart are displayed

correctly, and that the cart’s functionality works as expected.

&8 Programs - Appiumy/src/mainjava/screens/CheckoutPage java - Edfipse IDE o x
file Edit Sowce Refacor Mavigate Search Project Bun Window Help
(=} =] J ZPHeEH T S0 R AT B OIS AT @R HIOD G Q @|E
&, Project Explorer * = § = B TestBasejava U LoginPagejava 1) ProductPage. 1) ShoppingCar... 4 CheckoutPage.. * ¥ testngxml 1) LoginPageTs 0 - [ShoppingCar.) CheckoutPage.. -
v i Appium ~ [l 1 package screens; ~ 2
'main/jav: 2 Ll
v @ base 3+ import java.io.IOException; o
i) TestBase java 9 u
v & configuration 10 public class CheckoutPage extends TestBase {
configproperties 11 =
v @ screens 12 // ObjectRepository H
3 Checkoutfage java 13 @FindBy(xpath = "//android.view.ViewGroup[@content-desc="Proceed To Checkout button']") =
7 LoginPagejava 14 WebElement checkoutBtn;
5 ProductPage ava 15
5 ShappingCanPage java 16
v & testiata 17 @FindBy(xpath = "//android.widget.EditText[@content-desc="Full Name* input field']")
TestDataxis: 18 WebElement fname;
v ® uilliies 19
) Extentlistenersjava 20 @FindBy(xpath = "//android.widget.EditText[@content-desc="Address Line 1% input field']")
7 EstentManagerjava 21 WebElement 1name;
5 Testutiljava 22
~ @ sre/mainresources 23 @FindBy(xpath = "//android.widget.EditText[@content-desc="City* input field']")
® testngaxm 24 WebElement city;
~ B sre/testijava 25
v 8 tesicases 26= @FindBy(xpath = "//android.widget.EditText[@content-desc="Zip Code* input field']")
0 CheckoutPageTestjava 27 WebElement zip;

@FindBy(xpath = "//android.widget.EditText[@content-desc='Country® input field']")
WebElement country;

1 ProductPageTestjova
3 ShoppingCarntfageTest java
B src/test/resources

0 LoginPageTestjava 28
e

B IRE System Library 32 @FindBy(xpath = "//android.view.ViewGroup[@icontent-desc='To Payment button']")
B Maven Dependencies 33 WebElement continuebtn;
& reports 34
£ 35
trget 36
test-outpat 37 @Findey(xpath = "//android .widget.EditText[@content-desc="Card Number* input field']")
B pomumé 38 WebElement cardNo;
v & Selenium 39
® src/mainjava 49- @FindBy(xpath = "//android.widget.EditText[@content-desc='Expiration Date* input field']")
® src/mainjrescurces 41 WebElement exp;
B src/testjava 42
B srcestyresourees v 43 @FindBv(xpath = "//android.widget.EditText[@content-desc="Security Code* inout field'1") v
¢ »
Writable Smart Insert 1:1:0 g
B O Typeheretosearch ~ @ € 3 ¢ B eQ/Boaw oo B

Figure 32: CheckoutPage Appium Script.
[Source: This thesis specific diagram was developed by the author.]

5. CheckoutPage.java:

The CheckoutPage class models the checkout process in the app. It includes web
elements for input fields such as full name, address, city, etc., and buttons for
proceeding to checkout and payment. The validateSuccessfulOrderTest() method
included in this class tests the checkout functionality, ensuring that the order can be

successfully placed with the entered information.

59

EP':;'sms Appium/src/main/resaurces/testng.xm - Eclipse IDE - a x
file £ Sowee Navigate Segich Broject Bun Window belp
o FEICI B o &
x B [1 CheckoutPage. i testogxmi ¥ |] LoginPageTe... 9 ProductPageT 4] SheppingCer. 7] CheckoutPage... =0
1 <?xml versio " encoding="UTF- L
2 <IDOCTYPE suite SYSTEM “"http://testng.org/testng-1.8.dtd">
3 <suite name="dppium™> "
2 a8
5 e
3 er class-name="utilities.Extentlisteners” /> T
7 </1i; ers> s
8
9 <test name="Test Cases">
16 < s>
name="testcases.LoginPageTest"></\
2 name="testcases.ProductPageTest" >
3 stcases. ShoppingCartPageT
name="testcases.CheckoutPogeTest"></class>
18
PageTestjava
elestjava
ductFageTestjava
| oCanPageTestjava
L e
4 JRE System Library
= Maven Diependencies
reparts
 ic/test/resources i
< > % Design | S
Writable Smart Insert 1:1:0 v
2030
2 O Type heretosearch n @ ¢ @ e B2 FRABD A o, B

Figure 33: Appium TestNG Xml file.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Configuration:

This XML file is a TestNG suite configuration file. It lists which test classes are
included in the test suite and specifies a custom listener used for reporting test
execution results.

The above test suite is designed to test a mobile application’s Ul functionalities.
Firstly, starting with the initializing an Appium session, perform a series of actions
mimicking a user interacting with the application, such as logging in, selecting
products, adding them to the cart, and checking out. The Page Object Model is
implemented for ease of maintenance and readability, and TestNG is used to manage

the execution and reporting of the test cases.

4.2.1.3 Results and Findings

1. Functionality Testing:
Login Functionality (from LoginPageTest):

Tests were designed to validate both successful and unsuccessful login attempts.
Results indicate that the application correctly handles valid credentials, granting access

to the user, and appropriately denies access when incorrect details are entered. These

60

http://testng.org/testng'l
http://pOH1.Mll

tests ensure that authentication mechanisms in the mobile application are robust and

reliable.

Product Interaction (from ProductPageTest):

The functionality for selecting products was automated to verify if the
application allows users to navigate to the details of a product and if the UI elements
correspond to the expected product details. Findings focused on how the app handles
user input when selecting products and if the app responds with correct product

information.

Shopping Cart Functionality (from ShoppingCartPageTest):

Automated tests checked if products added to and viewed in the shopping cart,
simulating a critical component of the user’s purchasing journey. Results show if items
are accurately added to the cart and if any issues arise during this process, such as

incorrect quantities or descriptions.

Checkout Process (from CheckoutPageTest):

The checkout process, including the entry of address details and order
confirmation, was tested to ensure that the user could complete a purchase. Findings
from these tests highlight the app’s ability to capture user data correctly, navigate

through the steps of checkout, and successfully process an order.

2. Compatibility Testing:
Device and OS Variations:

By running the suite across various devices and OS versions, as indicated in the
TestBase class, we can evaluate how the application behaves under different
conditions. The findings reveal any device-specific issues or OS-related bugs, crucial
for ensuring that the app provides a consistent user experience on all supported

devices.

Screen Sizes and Resolutions:
Tests on devices with different screen sizes and resolutions assess UI elements’

visibility and interactivity, ensuring elements are not truncated and layouts do not

61

break. The results is important for ensuring the app’s Ul is responsive and adaptable

to a range of screen dimensions.

3. Orientation and Input Methods:

Automating tests for both portrait and landscape modes, and for different input
methods (like touch and swipe), will check the app’s fluidity in orientation changes
and input responsiveness. The test suite will identify any orientation-specific Ul issues

or input handling problems, which are essential for a seamless user experience.

repor - ®
. e a#w @
M Gmail & O erThesis [Jobs [Testing Websites [l System Integration.

lLoginTe A
PN - mumumioGTisTs passio |
cesstulor
2126

B O Typeheretosearch n @ € 4 FQ/ATOEC 0

Figure 34: Appium Extent Report.
[Source: This thesis specific diagram was developed by the author.]

4. Extent Test Report:

Above Figure 34 represents Extent Test report which provides details on
individual test cases such as ‘invalidLoginTest3’, ‘validLoginTest’,
‘validateProductSelectionTest’, ‘validateAddToCartTest’, and

‘validateSuccessfulOrderTest’. Each test case has a status (all passed), a timestamp,
and a duration. The detail "TEST CASE: INVALIDLOGINTEST3 PASSED"
confirms that the application correctly handles invalid login attempts, which is part of

functionality testing.

62

v 1% \epors\Exdent Wed Mar06 . X @) TestNG Report x |+

c @ File D/Automation/Programs/Appium/reports/Extent Wed Mar 06 22 07 17 CET 2024 html#

-
™ Gmoil & Drve [Oroppox (@ ChnGPT 4, Bora [Rezding [Leaming [University [Master Thesis

veportsExent Wed_Mas_06 22,07 17_CET_2024 b Mar 6, 2024 AT M

Startect — -
Lok Mar 6, 2024 10:07:17 PM Mar 6, 2024 10:09:51 PM 5

AppiumFinafThesis n Sarvothama

organiztizn =
a2
B P Typeheretosearch n @ G | eQ/Em v, 150 O

Figure 35: Appium Extent Report Summary.
[Source: This thesis specific diagram was developed by the author.]

5. Summary of Extent Test Report:

Above Figure 35 shows the summary of extent test report depicts the start and
end times, showing that the test suite took approximately 2 minutes and 34 seconds to
complete. It shows that all five tests passed without any failures, skips, or other issues,
which suggests that the mobile application functions correctly for the tested scenarios.
The timeline visually represents the tests execution over time, and since all tests appear

as a single color block, it indicates they were executed sequentially.

63

v 1= \repomsExtent Wed Mar 06 0 X @ TestNG Report x 4 [u] ®
@ @Fie DyAutomatior m/test-output/emailable-report.html a v O
M Gmal & Dive [B Drogbox (@) CharGPT 4, Bard [0 Reasing [Leaming 03 Unversity 03 Master Thesis £ sobs [Testing websites [System integration
Test | # Passed | # Skipped | # Retricd | # Failed | Time (ms) [Included Groups | Excluded Groups
Appium
Test Cases o o] o 153904
Class Method Start [Time (ms)
Appium
Test Cases — passed
tsstcases LoginPageTest invalidLoginTestd 1709759244390 | 9243
validLoginTest 1709739260424 | 9314
testc: i rtTest 1709759312860 | 3831
Test Cases
testeases.CheckontPageTestavalidateSuccessulOrderTest
sk
testeases. LoginPage Test#invalid LoginTest3
[e—
testeases. LoginPageTest#valid LoginTest
back
testeases. ProductPageTestévalidateProductSelection Test
tack o
testeases. ShoppingCartPageTa AddToCartTest
= = v LEE
= O Typeheretosearch n @ G @ COAEDED Gy U

Figure 36: Appium TestNG Report.
[Source: This thesis specific diagram was developed by the author.]

6. TestNG Report Summary:

Above Figure 36 represents the TestNG Report which summarizes the test
execution in a tabular format, showing the class name, test method, start time, and
execution time for each test. It is evident that the tests are focused on different
functionalities of the application: login functionality, product selection, cart
operations, and checkout process. The checkout process
(validateSuccessfulOrderTest) takes significantly longer than the other tests, which

might be expected due to the multiple steps involved in this operation.

Last but not least, the described Appium test suite automates critical paths of
user interaction within the mobile app, thoroughly testing its functionality. The tests
also ensured that the app performs consistently across a variety of devices and
operating systems, which is a fundamental aspect of compatibility testing. The results
and findings from these tests provide valuable insights into the app’s readiness for

release and help maintain high-quality standards for the end users.

64

file:///reports/Errerit

4.3 Case Studies in Web Application Testing

4.3.1 Case Study A: Functional Testing of a Web Application

1. Introduction

This case study focuses on the functional testing of "Sauce Labs" e-commerce
demo website. The primary goal is to verify that the application functions as intended,
from user interactions like user login, product selection, managing shopping carts and
to completing purchases. The testing framework used is Selenium WebDriver for
automating browser actions and TestNG for managing the test suite and reporting

results.

2. Testing Environment

Application Under Test (AUT): Sauce Labs E-commerce Platform

Testing Tools: Selenium WebDriver for browser automation and TestNG for test suite
management.

Browsers: Chrome, Firefox, and Safari

Test Cases: Coverage included user login, product selection, cart functionalities, and

the checkout process.

3. Methodology

Test Planning: The initial phase involved outlining the testing objectives, identifying
the key functionalities to be tested, and determining the metrics for success.

Test Case Design: Detailed test cases were developed to cover various user scenarios,
including both normal and edge cases. These test cases were designed to assert the
correct behaviour of the application’s functionalities, the responsiveness of the user
interface, and the security of the checkout process.

Test Automation: Utilizing Selenium WebDriver, automated test cases to simulate
user actions on the web application through different web browsers. This approach not
only expedited the testing process but also ensured a comprehensive coverage across
various user scenarios. TestNG was employed to orchestrate the execution of test
suites, enabling parallel execution, and grouping of tests for efficient test management.
Execution and Monitoring: The automated tests were executed across the specified

browsers to ensure cross-platform compatibility. TestNG generated detailed reports

65

after each test execution, providing insights into passed, failed, and skipped tests,

which facilitated a quick identification and resolution of defects.

4. Key Findings and Outcomes

User Login: The testing confirmed the reliability of the user login processes, with all
automated tests passing across the different browsers.

Shopping Cart and Checkout: Testing unveiled that there is no defect found in the
product selection and checkout workflow. And was able to perform successfully.
Cross-Browser Compatibility: Application performed well with all the browsers

such as Chrome, Firefox, and Edge browser.

5. Lessons Learned

The value of incorporating automation early in the testing cycle was evident, as
it significantly enhanced test coverage and efficiency. The case highlighted the
importance of thorough test case design to cover a wide range of user interactions and
scenarios. This testing reinforced the need for extensive cross-browser testing to

guarantee a uniform application experience for all users.

6. Conclusion

The functional testing of the demo web application, using Selenium WebDriver
and TestNG, played a pivotal role in ensuring the application met its functional
requirements. The approach allowed for efficient test execution, comprehensive
coverage, and facilitated the early detection and resolution of defects, ultimately
contributing to a robust and user-friendly e-commerce platform. This case study
exemplifies the critical importance of functional testing in the web application

development lifecycle, offering valuable insights for future testing strategies.

4.3.2 Case Study B: Compatibility Testing Across Various Browsers.

1. Introduction

Compatibility testing is critical in ensuring that web applications offer a
consistent user experience across different browsers, operating systems, and devices.
This case study describes the process of conducting compatibility testing for "Sauce

Labs" a fictional Sauce Labs e-commerce demo website. The focus was on verifying

66

that the website functions correctly and looks consistent across a variety of web
browsers. The testing utilized Selenium WebDriver for automating browser

interactions and TestNG for managing the test suite and reporting.

2. Testing Environment

Application Under Test (AUT): Sauce Labs E-commerce Demo Website

Testing Tools: Selenium WebDriver for browser automation; TestNG for test suite
management.

Browsers: Chrome, Firefox, and Safari

Test Cases: The suite included tests for key functionalities, including user login,

product selection navigation, shopping cart management, and the checkout process.

3. Methodology

Objective Setting: The primary goal was to identify and resolve compatibility issues
across the targeted browsers, ensuring a consistent and error-free user experience on
the Sauce Labs Demo website.

Test Planning: A detailed plan was created, specifying the browsers and their versions
to be tested, alongside the selection of test cases that would be automated to check for
compatibility issues.

Environment Setup: A range of browser versions and operating systems were set up
to mimic the environments used by the website’s audience. Selenium WebDriver was
configured to interact with these diverse setups.

Test Case Development: Test cases were designed to verify both the functional
behaviors and visual elements of the website across browsers. These included actions
like navigating through the website, performing searches, adding items to the shopping
cart, and completing purchases.

Automation with Selenium WebDriver: Selenium WebDriver scripts were created
for automating the test cases. The scripts simulated user actions on the Sauce Shop
website, ensuring a thorough assessment of compatibility across the targeted browsers.
Test Execution and Management with TestNG: TestNG was used to organize,
execute, and manage the test suites. It allowed for parallel execution of tests across

different browser environments, enhancing the efficiency of the testing process. The

67

process involved not only verifying functional correctness but also checking for layout
discrepancies, responsiveness, and performance issues.

Results Analysis and Reporting: After test execution, TestNG generated
comprehensive reports detailing the outcomes of the tests. These reports were analyzed
to identify any discrepancies in functionality or appearance across the different

browsers.

4. Key Findings and Outcomes

Functional Consistency: The tests confirmed that key functionalities like product
search, navigation, and the checkout process worked correctly across all targeted
browsers.

Visual Discrepancies: Minor visual inconsistencies were detected in Internet Explorer
and older versions of Edge, such as alignment issues and CSS styling differences.
These issues were documented for further review and resolution.

Cross-browser Compatibility: Overall, the Sauce Labs Demo website demonstrated
a high level of compatibility across the majority of browsers, with specific areas

identified for improvement to ensure a uniform user experience.

5. Lessons Learned

Early and continuous compatibility testing throughout the development cycle
can identify potential issues before they become problematic, saving time and
resources. Automating compatibility tests with Selenium WebDriver and TestNG
significantly increased test coverage and efficiency, allowing for frequent testing
across multiple environments. The detailed reports generated by TestNG were

invaluable in pinpointing specific issues, facilitating effective communication.

6. Conclusion

Compatibility testing of the Sauce Labs e-commerce demo website using
Selenium WebDriver and TestNG provided critical insights into the application’s
behavior and appearance across various browsers. This case study highlighted the
effectiveness of automated tools in ensuring that web applications deliver a consistent

and positive user experience, regardless of the user’s choice of browser. The lessons

68

learned from this process underscore the value of incorporating compatibility testing

early in the web development lifecycle.

69

4.4 Case Studies for Mobile App Testing

4.4.1 Case Study A: Functional Testing of Mobile Apllication

1. Introduction

Functional testing on mobile devices is essential to ensure that applications work
as intended across various devices with different screen sizes, resolutions, operating
systems, and hardware configurations. This case study focuses on the functional
testing of "My Demo App," a fictional Sauce Labs e-commerce demo mobile
application. The objective was to validate the app’s functionalities, such as user
registration, product browsing, cart management, and checkout processes, across a
variety of mobile devices. The testing utilized Appium for automating mobile

application interactions and TestNG for managing the test suite and results analysis.

2. Testing Environment

Application Under Test (AUT): Sauce Store Mobile E-commerce Demo Application
Testing Tools: Appium for mobile automation, TestNG for test suite management.
Platforms: Android and i0S

Test Cases: Tests were designed to cover user login, product selection, adding items

to the cart, and checkout process.

3. Methodology

Test Planning: A comprehensive test plan was outlined that defined the scope,
objectives, devices, and OS versions for testing. The plan prioritized critical user paths
and functionalities for the e-commerce app.

Environment Setup: The testing environment included the setup of Appium servers
and configuration of various real devices and emulators/simulators for both iOS and
Android platforms. This setup aimed to replicate the conditions under which end-users
would interact with the app.

Test Case Development: Test cases were meticulously designed to cover all critical
functionalities of the mobile app, including user login, product selection, adding items

to the cart, checkout processes, and payment transactions.

70

Automation with Appium: Appium scripts were developed to automate the execution
of test cases. These scripts utilized the WebDriver protocol to interact with the mobile
app’s Ul elements, simulating user actions across different devices and platforms.
Test Execution and Management with TestNG: TestNG was employed to organize
and execute the test suites, allowing for parallel testing across multiple devices and
generating detailed reports on the test outcomes. This approach enhanced the
efficiency and effectiveness of the testing process.

Results Analysis and Reporting: After the tests were executed, TestNG provided
comprehensive reports that detailed the successes and failures of the test cases. These

reports were crucial for identifying any functional issues that needed to be addressed.

4. Key Findings and Outcomes

Functional Consistency: The testing verified that core functionalities like navigation,
product selection, user authentication and product cart management worked
consistently across all tested devices.

UI Responsiveness: Some Ul elements displayed differently on various screen sizes,
necessitating adjustments to ensure a uniform user experience across devices.
Cross-platform Compatibility: The application exhibited high compatibility across

different operating systems.

5. Lessons Learned

Testing on a wide range of devices is crucial to ensure the app’s compatibility
and functionality across the diverse mobile ecosystem. Using Appium for automation
significantly increased the scope and speed of testing, allowing for thorough coverage
of functionalities across devices. Early and continuous functional testing helps in
identifying and resolving issues before they impact the user experience, underscoring

the value of integrating testing into the early stages of development.

6. Conclusion

Functional testing of the My Demo App mobile application using Appium and
TestNG provided invaluable insights into the app’s performance and functionality
across a variety of mobile devices. This case study demonstrated the effectiveness of

automated testing in ensuring that mobile applications meet the expected functional

71

requirements and deliver a consistent and satisfactory user experience. The learnings
from this testing process emphasize the importance of comprehensive functional

testing in the mobile app development lifecycle.

4.4.2 Case Study B: Compatibility Testing Across Various Mobile Devices

1. Introduction

Compatibility testing ensures that mobile applications deliver a consistent and
optimal user experience across a variety of devices, operating systems, and screen
sizes. This case study illustrates the process of conducting compatibility testing on
"My Demo App" a fictional mobile e-commerce application created by Sauce Labs for
demonstration purposes. The main tools utilized for this testing endeavour were
Appium, for automating interactions within the mobile application, and TestNG, for

organizing, executing, and managing the testing suite.

2. Testing Environment

Application Under Test (AUT): My Demo App Mobile E-commerce Demo
Application

Testing Tools: Appium for automation, TestNG for test suite management.

Devices and Platforms: A range of Android and iOS devices, including smartphones
and tablets with various screen sizes and OS versions.

Test Objectives: To validate the application’s functionality, usability, and UI

consistency across different devices and operating systems.

3. Methodology

Test Planning: The planning phase involved defining the scope of compatibility
testing, identifying target devices and operating systems, and determining key
application functionalities to test. This step was crucial for ensuring comprehensive
coverage.

Environment Configuration: Setting up Appium servers to facilitate communication
with a wide array of Android and iOS devices. Both emulators/simulators and real
devices were included to mimic user environments accurately.

Test Case Development: Test cases were meticulously designed to verify the

application’s behaviour under various conditions, focusing on user navigation,

72

transaction processes, display and layout across different screen sizes, and overall
performance.

Automation Strategy with Appium: Using Appium, the team automated the
execution of test cases on targeted devices. Scripts were carefully crafted to interact
with the application, simulating real-world user actions and workflows.

Execution and Management with TestNG: TestNG played a vital role in structuring
the automated tests, allowing for parallel execution across multiple devices and
generating detailed reports that highlighted successes, failures, and areas for
improvement.

Analysis and Optimization: Post-execution, the results were analysed to identify any
device-specific issues or inconsistencies. This analysis informed the optimization

efforts to enhance compatibility and performance across the tested devices.

4. Key Findings and Outcomes

Functional Consistency: The application demonstrated a high level of functional
consistency across all tested devices, with no significant issues affecting the core
transactional and navigational features.

UI and Layout Issues: Some minor Ul and layout discrepancies were noted on older
devices and those with smaller screens, necessitating adjustments to ensure a seamless
user experience.

Cross-Platform Reliability: The My Demo App application showed reliable
performance on both Android and iOS platforms, reinforcing the effectiveness of the

development and testing strategies in ensuring cross-platform compatibility.

5. Lessons Learned

The importance of testing across a broad spectrum of devices to capture a wide
range of user experiences and identify device-specific issues early in the development
cycle. Appium’s capability to automate tests across different platforms and devices
significantly enhanced testing efficiency and coverage, underscoring the value of
automation in compatibility testing. The necessity for strategic test planning that
incorporates a mix of devices, operating systems, and scenarios to ensure thorough

compatibility testing.

73

6. Conclusion

The compatibility testing of the My Demo App mobile application across various
mobile devices using Appium and TestNG provided critical insights into the
application’s performance and user experience. This case study highlighted the
essential role of comprehensive device coverage and the benefits of automation in
ensuring that mobile applications meet the diverse needs and expectations of users
across different devices and platforms. Through careful planning, execution, and
analysis helped to identify and address compatibility issues, paving the way for a more

robust and user-friendly mobile application.

74

5.1

5. Results and Discussion

The practical implementation of Selenium for web application testing and
Appium for mobile application testing yielded promising results. Selenium effectively
automated various tasks in the web application, demonstrating its accuracy in handling
user authentication, form submissions, and navigation flows. Any discrepancies
identified during testing were meticulously documented for further analysis. On the
other hand, Appium’s configuration for mobile application testing proved successful
in evaluating the software’s functionality across various devices and operating
systems. Test scenarios designed to assess functionality, compatibility, and usability
provided valuable insights into the mobile application’s behavior and overall

performance.

The case studies conducted in web and mobile application testing further
emphasized the significance of functionality, usability, and compatibility testing.
Functionality testing, a critical component in both web and mobile application testing,
plays a pivotal role in verifying the application’s operational capabilities. In web
application testing, functionality testing focuses on aspects such as form submissions,
user authentication, product selection, and cart checkout functionality processes to
ensure seamless user interactions. Similarly, in mobile application testing, it examines
the responsiveness of touch inputs, gestures, and the application’s behavior under
various network conditions. Usability testing on different mobile devices highlighted
user interface challenges, emphasizing the need for intuitive design. Compatibility
testing ensured consistent functionality across diverse operating systems, enhancing
user experience and accessibility. These case studies underscored the importance of
comprehensive testing strategies in ensuring the reliability and performance of both

web and mobile applications.

Analysis of testing results

Examining the results of tests can shed light on the efficiency of the testing
methods and tools utilized in the study. This is where we talk about the practical
application of Selenium for testing web applications and Appium for testing mobile

ones, along with conclusions from the case studies on both types of testing.

75

1. Selenium Testing Conclusions
Deploying Selenium for testing web applications delivered significant results.
Scenario tests which examined various aspects of the web application were carried
out effectively. The results from these tests underscored the precision of automation
for tasks such as user authentication, form submissions, and navigation flows. Any
anomalies detected throughout the testing process were meticulously logged for

future scrutiny.

2. Appium Testing Conclusions

Setting up Appium for mobile application tests emerged as a powerful tool for
scrutinizing the application’s functionality on multiple devices and operating systems.
Scenarios crafted to evaluate usability, compatibility, and functionality delivered
enlightening results. The findings from these tests emphasized the strength of Appium
in automating interactions with mobile apps, ensuring their uniform performance

across a wide array of mobile ecosystems.

3. Case Study Conclusions

The web testing case studies highlighted the importance of both functionality
compatibility and usability testing. Testing the app’s functionality verified that all its
features were functioning properly. With Selenium, repetitive actions were automated
in web apps like user login, product selection, shopping cart and order confirmation
functionality. This ensured that web functionalities were robust in various scenarios.
Using Appium, different user behaviors on mobile applications, like swiping, tapping,
and rotating the device, to evaluate responsiveness and confirm feature operation. The
outcome showed that automated functionality testing can rapidly identify faults,
enabling developers to efficiently address them as necessary. Compatibility testing is
done to guarantee that applications function consistently in various environments.
Selenium tests verified that the website provided a consistent user experience across
popular browsers such as Chrome, Firefox, and Edge. Appium’s flexibility played a
vital role in testing the mobile app on a range of Android and iOS devices, considering
different screen sizes, resolutions, and operating system versions. This stage
emphasized the significance of optimizing applications for a wide range of platforms

to improve accessibility and user satisfaction. Usability testing evaluated the user-

76

friendliness and interface design of the applications. By utilizing Selenium, tests to
assess the simplicity of navigating, the preciseness of directions, and the general user
interaction on the internet platform were implemented. Appium tests on mobile
devices focused on touch interface interactions and the app’s ability to adjust to various
screen orientations. These case studies underlined the necessity of thorough testing
approaches in guaranteeing the functionality, compatibility and usability of both web

& mobile applications.

4. Outcomes of Mobile Application Testing

Reflecting on mobile application testing, invaluable lessons were drawn from
case studies that emphasized functionality, usability and compatibility. These studies
unearthed key issues on user interaction and hurdles in navigation across various
mobile gadgets, accentuating the need for intuitively designed interfaces. By carrying
out compatibility tests on a range of operating systems, we ensured that our mobile
application delivered a consistent and glitch-free experience across diverse platforms,

thereby heightening its accessibility and user approval.

The correlation of the test results furnishes a full-fledged perception of how
Selenium and Appium perform in the sphere of web and mobile application testing.
Furthermore, it underscores the value of case studies in unravelling certain inherent
challenges experienced with web and mobile applications, such as functionality,
usability, and compatibility. These revelations foster a more profound knowledge of
software testing methodologies, aiding in the creation of superior web and mobile

applications that coincide with user desires and set industry benchmarks.

77

5.2 Comparison between web and mobile application testing
Examining both web and mobile apps is a crucial aspect of creating software,
posing distinct demands and obstacles. Based on pratical implementation and result
outcomes, this part offers a contrast between the processes of testing web and mobile
applications, underlining the distinct methods, tools, and factors involved and most

importantly the comparision of testing tools i.e used based on various criteria.

5.2.1 Testing Approaches

1. Examining Web Applications:

The scrutiny of web applications aims to verify the operational efficiency, user-
friendly aspects, and speed of these internet-based applications on a spectrum of
browsers and gadgets. Testing methods for web apps usually encompass checking their

functionality, assessing usability, and confirming compatibility.

2. Assessing Mobile Applications:

The assessment of mobile applications entails the investigation of operational
aspects, end-user experience, and compatibility on an array of gadgets and operating
systems. Techniques typically utilised for testing mobile apps comprise of
functionality checks, usability evaluation on distinct screen dimensions, and

compatibility checks across numerous platforms.

5.2.2 Tools and Techniques

1. Web Application Testing:

This is about how web application testing focuses on achieving the objectives of
functionality, usability and compatibility for web applications in different browsers
and devices. For instance, Selenium can be used to test web applications to ensure
functionality. Compatibility testing is carried out on various devices and browsers to

ensure web applications perform consistently.
2. Mobile Application Testing:

In this case, Appium tests native, hybrid, and mobile web applications accross

10S and Android platforms. Functionality testing with Appium created automated tests

78

that simulate user interactions with the application to ensure all features works as
intended. For usability testing, Appium can be leveraged to automate scenarios that
assess the app’s user interface and overall user experience, verifying that the
application is intuitive and user-friendly. Appium can also run concurrent tests on
multiple devices and emulators, significantly enhancing the efficiency and coverage
of the testing process. On the other hand mobile application has a lot of approaches
such as functionality checks for example usage of different screen sizes; reviewing
compatibility issues that would occur when all this done on multiple platforms in order

to ascertain its compatibility.

5.2.3 Considerations

1. Examining Web Applications:

Reviewing web applications calls for attention to issues like compatibility across
various browsers, responsiveness to diverse screen dimensions, seamless navigation
pathways, secure transactions via encryption methods, and ensuring impeccable

performance under different loading scenarios.

2. Testing Mobile Applications:

Checking mobile applications entails considerations pertaining to device
diversity across Android and iOS systems, designing user interfaces for touch-based
interactions on compact screens, fluctuations in network connectivity impacting app

functionality, and adherence to platform-specific functionalities.

When putting side by side the methods, tools, and primary considerations for
testing of web and mobile applications, it’s clear that while they have shared facets in
operational and user-friendliness testing, they diverge when it comes to unique
platform-related hurdles. For instance, the challenge of device variation in mobile
application examination, and the need for cross-browser harmony in web application
checks. Grasping these disparities is pivotal in shaping robust evaluation strategies
best suited for the unique needs of web and mobile apps, ensuring their quality and

enhancing user satisfaction.

79

Feature/Criteria | Selenium Appium

Tools Used Web Driver, Java, Eclipse Appium Server, Android Studio
(Simulator/Emulator), Java,
Eclipse

Automation Web browsers Native, hybrid, and mobile web

Targets apps

Initial Setup Relatively simple Is complex due to necessity of

Complexity configuring mobile device
simulators/emulators

Interactions Limited to browser Supports gestures (swiping,

interactions tapping, etc.) for mobile

interactions

Community Large community support Growing community support

Support

License Open Source Open Source

Code Usability Selenium Code Same code is used

Table 1: Comparison of Selenium and Appium Tools across various criteria.
[Source: This thesis specific table was developed by the author.]

From the above Table 1, The important thing is that the code used in Selenium
can also be used in Appium. This indicates a level of interoperability and code reuse
between the two test frameworks. This is beneficial for teams working on web and
mobile platforms, as it can reduce the learning curve and effort involved in
implementing automated tests across multiple environments. In general terms,
Selenium and Appium work differently in the field of automated testing. While
Selenium is better for testing web applications on different browsers, Appium is good
for testing mobile applications with its features to facilitate mobile-based user
interactions. The choice between Selenium and Appium depends on the specific
requirements of your project, including the target project and the complexity of the

interactions required for testing.

80

6. Conclusion

In exploring the realm of web and mobile app testing using the powerful tools
Selenium and Appium, noteworthy revelations have come to light. Appium has proven
to be a seamless solution for mobile automation, ensuring a smooth operation from
start to finish. The practical use of Selenium for web app testing and Appium for
mobile app testing yielded promising results, showcasing the commitment to product

quality.

The application testing phase demonstrated excellence, emphasizing the
paramount importance of delivering a top-notch product. Employing meticulous
testing strategies has become a cornerstone in identifying and rectifying any issues,

ultimately enhancing the overall user experience.

Our case studies, conducted in both web and mobile app testing, not only
affirmed the effectiveness of our testing tools but also underscored the significance of
a well-structured employee training program. The purpose of this program was to
emphasize the critical aspects of functionality, usability, and interaction, positioning
testing as more than just a tool for fixing bugs, but as an essential element in the

ongoing battle against software defects.

However, the comparison between web and mobile app testing unveiled
substantial differences. While web app testing delves into cross-browser compatibility
and responsive design, mobile app testing focuses on device fragmentation and touch
interactions. Recognizing these disparities is pivotal in crafting tailored test strategies

that cater to the unique needs of both web and mobile applications.

In summary, this research contributes valuable insights into the intricacies of
software testing methodologies. It underscores the crucial role of testing frameworks
in responsible software development, paving the way for solutions that align with

certified requirements and user expectations.

81

6.1 Summary of findings

The outcomes derived from implementing Selenium for web application testing
and Appium for mobile application testing present valuable insights into the expertise
of these automation tools in ensuring software quality. Selenium showcased
remarkable precision in automating tasks like user login, product selection, shopping
cart and order confirmation functionality within web applications. Conversely,
Appium’s configuration successfully evaluated the functionality of mobile

applications across a spectrum of devices and operating systems.

The conducted case studies in web application testing underscored the critical
role of functionality, usability and compatibilty testing. Automated testing expedited
the identification and resolution of functional issues, enhancing application reliability.
An intuitive and user-friendly interface significantly influences user satisfaction and
retention. Testing must prioritize ease of use to facilitate a seamless experience.
Ensuring consistent performance across various browsers and devices is critical for
reaching a wider audience and improving user engagement. In the realm of mobile
application testing, usability testing on different devices revealed variations in user
experiences, and compatibility testing across diverse operating systems ensured
consistent functionality. These findings highlight the essentiality of comprehensive
testing strategies in guaranteeing the reliability, performance, and user experience of

both web and mobile applications.

The analysis of testing results not only revealed the effectiveness of Selenium
and Appium in web and mobile application testing but also emphasized the pivotal
role of case studies in addressing specific challenges associated with these
applications. This deeper understanding contributes to the refinement of software
testing practices, facilitating the development of high-quality web and mobile

applications that align with user expectations and industry standards.

82

6.2 Implications for industry

Absolutely, let’s give it another shot with an even more human touch:
Discovering the in and out of using Selenium for web app testing and Appium

for mobile apps has real-world implications for the software development realm.

Here’s how these findings can shape the approaches of industry folks, making waves

in the world of web and mobile applications:

1. Raising the Quality Bar:

When it comes to quality assurance, Selenium and Appium play superhero roles.
Thorough testing, from functionality to usability and performance, helps catch and fix
issues early on. This means web and mobile apps can boast a consistent level of high

quality, meeting the standards users crave.

Selenium and Appium as the dynamic duo injecting a serious boost into testing
efficiency. With these automation marvels handling the repetitive grind and test
scenarios, companies can ditch the manual drudgery and fast-track the launch of web
and mobile apps. It’s like taking a shortcut to roll out top-notch applications at

lightning speed.

2. Quality Assurance Magic:

Selenium and Appium, the conjurers of quality assurance wonders. Through
meticulous testing—functional, usability, performance, and compatibility—
organizations can unveil and address issues early in the development dance. The
result? Consistently high-quality web and mobile applications that align perfectly with

user expectations.

3. Cost-Effective Wizardry:

Automation tools emerge as the wizards of cost-effectiveness, swooping in to
minimize manual testing efforts and curb the risk of human errors. With Selenium and
Appium in play, companies can cleverly optimize testing resources, broaden test
coverage, and slash overall development costs. It’s a budget-friendly journey without

compromising on quality.

83

6.3

4. Competing with Style:

It is not just a trend to embrace cutting-edge testing methods and tools, it’s a
strategic move that can help a company ahead of the competition. Crafting and
delivering stellar web and mobile apps isn’t just a checkbox, it’s the secret sauce that
sets a company apart from the competition. It builds a strong reputation, attracts users,
and provides a competitive advantage over competitors who might take a more relaxed

approach to testing. It is not just about keeping up, it is about leading the way.

These implications shout out the need for weaving modern testing tools—like
Selenium and Appium—into the software development fabric. It’s not just about
efficiency and quality; it’s about smart cost management and positioning companies

to be champions in delivering reliable applications users can’t get enough of.

Recommendations for future research

The study on web and mobile application testing using Selenium and Appium
has uncovered opportunities for advancing software testing practices. To pave the way
for future improvements and tackle emerging challenges, the following suggestions

for upcoming research are put forth:

1. AI Integration in Testing:

In the future, let’s explore making testing smarter by bringing in some cool Al
and machine learning techniques. Imagine Al helping us test things more efficiently,
predict potential issues, and spot anything unusual. It’s like having a tech-savvy

assistant making sure everything runs smoothly.

84

2. IoT Application Testing:

With the surge of Internet of Things (IoT) gadgets, there’s a need to master the
art of testing them right. Picture this: we delve into how these devices chat with each
other, ensuring their security and checking if they’re the best of pals. It’s about
ensuring all the nifty [oT wonders work seamlessly and securely — like orchestrating a

symphony of tech brilliance.

3. Enhanced Security Testing:

Considering the escalating concerns regarding data privacy and cybersecurity,
upcoming research should delve deeper into security testing methodologies for web
and mobile applications. Examining advanced security testing tools, techniques for
identifying vulnerabilities, and implementing robust security measures can reinforce

the protection of user data.

4. Performance Testing in 5G Environments:

As 5G technology becomes more prevalent, there is a need to investigate
performance testing strategies tailored to high-speed networks. Research on
optimizing application performance in 5G environments, load testing under ultra-low
latency conditions, and network performance monitoring can help developers adapt to

the evolving technological landscape.

5. User-Friendly Testing for All Gadgets:

With everyone using different devices and screens, we want to make sure our
apps work well on all of them. This means figuring out the best ways for people to use
our apps, no matter if they’re on a big computer screen or a tiny phone. It’s about

making our apps easy and enjoyable for everyone.

By addressing these recommendations in future research endeavours, the
software development industry can stay at the forefront of innovation, improve testing
practices, and deliver high-quality web and mobile applications meeting the evolving

needs of users in the digital world.

85

7. References

PARRINGTON, Norman and ROPER, Marc, 1989. Understanding Software Testing
[online]. Retrieved from:
http://books.google.ie/books?1d=8bJQAAAAMAAJ&q=software+testing&dq=softw
are+testing&hl=&cd=2&source=gbs_api.

CRAIG, Rick David and JASKIEL, Stefan P., 2002. Systematic Software Testing
[online]. Artech House. Retrieved from:
http://books.google.ie/books?id=2_gbZYZcZXgC&printsec=frontcover&dq=softwar
e+testing&hl=&cd=4&source=gbs_api

MYERS, Glenford J., SANDLER, Corey and BADGETT, Tom, 2011. The Art of
Software Testing [online]. John Wiley & Sons. Retrieved from:
http://books.google.ie/books?id=GjyEFPkMCwcC&printsec=frontcover&dq=softwa
re+testing&hl=&cd=9&source=gbs_api

Beizer, B. (1990). Software Testing Techniques (2nd ed.). Van Nostrand Reinhold.

Myers, G.J. (2011). The Art of Software Testing (3rd ed.). John Wiley & Sons.

Pressman, R. S. (2014). Software Engineering: A Practitioner’s Approach (8th ed.).
McGraw-Hill Education.

Smith, A., Brown, C., & Lee, D. (2019). "Enhancing Software Testing Practices for
Improved Quality Assurance.” Journal of Software Engineering, 25(2), 45-58.

Jones, E., & Johnson, L. (2020). "Innovations in Software Testing: Trends and

Challenges." International Journal of Software Engineering, 12(3), 112-125.

Smith, J. (2018). Software Testing Fundamentals. Publisher.

86

http://books.google.ie/books
http://books.google.ie/books

Johnson, A. (2019). Quality Assurance in Software Development. Journal of Software

Engineering.

Brown, C., & Lee, M. (2020). *User-Centric Testing Approaches. Conference

Proceedings.

Garcia, R., et al. (2017). Risk Management in Software Testing. International Journal

of Quality Assurance.

Adams, S. (2016). Efficient Testing Practices. Academic Press.

Roberts, L., & Patel, K. (2021). Customer-Centric Software Development. Journal of

User Experience.

RANA, Mousumi, 2022. A Complete Guide to Web App Testing. [online]. 16 May
2022. Retrieved from: https://www.headspin.io/blog/a-complete-guide-to-web-app-

testing

HAMILTON, Thomas, 2023. Web Application Testing: How to Test a Website?
Guru99 [online]. 9 December 2023. Retrieved from: https://www.guru99.com/web-

application-testing.html

VOGELS, Rebecca, 2023. Web application testing: 6-step guide how to test a website.
Usersnap Blog [online]. 17 October 2023. Retrieved from:
https://usersnap.com/blog/web-application-testing/

Haller, Klaus. "Mobile testing." ACM SIGSOFT Software Engineering Notes 38.6
(2013): 1-8.

I. Singh, B. Tarika, “Comparative Analysis of Open Source Automated Software
Testing Tools: Selenium, Sikuli and Watir” International Journal of Information &

Computation Technology, vol 4, pp. 1507-1518, 2015.

87

https://www.headspin.io/blog/a-complete-guide-to-web-app-
https://www.guru99.com/web-
https://usersnap.com/blog/web-application-testing/

Mabhajan , P., Shedge, H., & Patkar, U. (2016). Automation Testing In Software
Organization. International Journal of Computer Application Technology and

Research, 5.

SON, Hannah, 2024. Manual Testing vs Automated Testing: Key Differences -
TestRail. TestRail | The Quality OS for QA Teams [online]. 31 January 2024.

Retrieved from: https://www.testrail.com/blog/manual-vs-automated-testing/

Katalon, 2023. Manual Testing vs Automation Testing: A Full Comparison.
katalon.com [online]. 19 May 2023. Retrieved from: https://katalon.com/resources-

center/blog/manual-testing-vs-automation-testing

Manual Vs. Automated Testing | What’s The Deal?, 2024. [online]. Retrieved from:

https://selleo.com/blog/manual-vs-automated-testing

KOZIOKAS, Panagiotis T., TSELIKAS, Nikolaos D. and TSELIKIS, George S.,
2017. Usability Testing of Mobile Applications. Proceedings of the 21st Pan-Hellenic
Conference on Informatics [online]. 28 September 2017. DOI
10.1145/3139367.3139410. Retrieved from:
http://dx.doi.org/10.1145/3139367.3139410

BERIHUN, Natnael Gonfa, DONGMO, Cyrille and VAN DER POLL, John Andrew,
2023. The Applicability of Automated Testing Frameworks for Mobile Application
Testing: A Systematic Literature Review. Computers [online]. 3 May 2023. Retrieved
from: https://www.mdpi.com/2073-431X/12/5/97

REICHERT, Amy, 2023. Techniques for Testing Mobile Apps vs. Web Apps. Telerik
Blogs [online]. 23 March 2023. Retrieved from:
https://www.telerik.com/blogs/techniques-testing-mobile-apps-web-apps

UNADKAT, Jash, 2021. Difference between Mobile and Web Application Testing |

BrowserStack. BrowserStack [online]. 24 February 2021. Retrieved from:

88

https://www.testrail.com/blog/manual-vs-automated-testing/
http://katalon.com
https://katalon.com/resources-
https://selleo.com/blog/manual-vs-automated-testing
http://dx.doi.org/10.1145/3139367.3139410
https://www.mdpi.com/2073-43
https://www.telerik.com/blogs/techniques-testing-mobile-apps-web-apps

https://www.browserstack.com/guide/differences-between-mobile-application-

testing-and-web-application-testing

Yogiti, 2023. Difference between Web App and Mobile App Testing. [online]. 30
March 2023. Retrieved from: https://www.linkedin.com/pulse/difference-between-

web-app-mobile-testing-yogiti

BHARATI, Neha, 2022. Best Practices for Mobile App Testing | BrowserStack.
BrowserStack [online]. 13 June 2022. Retrieved from:

https://www.browserstack.com/guide/mobile-app-testing-best-practices

SOLUTIONS, Kms, 2023. Top 12 Best Practices for Mobile App Testing. KMS
Solutions [online]. 13 July 2023. Retrieved from: https://blog.kms-solutions.asia/best-

practices-for-mobile-app-testing

KUMARI, Tanya, no date. 9 Best Practices for Effective Mobile App Testing. Classic
Informatics: Top Web Development Company in India [online]. Retrieved from:

https://www.classicinformatics.com/blog/9-best-practices-for-mobile-app-testing

OCTOBER, Ville-Veikko Helppi, no date. 10 Best Practices for Mobile App Testing.
SmartBear.com [online]. Retrieved from: https://smartbear.com/blog/10-best-

practices-for-mobile-app-testing/

LLP, Attoinfotech, 2023. Best Practices for Mobile App Testing and Quality
Assurance. [online]. 29 August 2023. Retrieved from:

https://www .linkedin.com/pulse/best-practices-mobile-app-testing-quality-assurance

JOURNAL, Gjesr, 2015. A LITERATURE SURVEY ON DESIGN AND
ANALYSIS OF WEB AUTOMATION TESTING FRAMEWORK - SELENIUM.
www.academia.edu [online]. 14 March 2015. Retrieved from:
https://www.academia.edu/11425451/A_LITERATURE_SURVEY_ON_DESIGN_

AND_ANALYSIS_OF_WEB_AUTOMATION_TESTING_FRAMEWORK_SELE
NIUM

89

https://www.browserstackxom/guide/differences-between-mobile-application%5e
https://www.linkedin.com/pulse/difference-between-
https://www.browserstack.com/guide/mobile-app-testing-best-practices
https://blog.kms-solutions.asia/best-
https://www.classicinformatics.com/blog/9-best-practices-for-mobile-app-testing
http://SmartBear.com
https://smartbear.com/blog/10-best-
https://www.linkedin.com/pulse/best-practices-mobile-app-testing-quality-assurance
http://www.academia.edu
https://www.academia.edu/11425451/A_LITERATURE_SURVEY_ON_DESIGN_

SELENIUM FRAMEWORK FOR WEB AUTOMATION TESTING: A
SYSTEMATIC LITERATURE REVIEW, no date. CORE Reader [online]. Retrieved
from: https://core.ac.uk/reader/482657410

SELENIUM FRAMEWORK FOR WEB AUTOMATION TESTING: A
SYSTEMATIC LITERATURE REVIEW, no date. CORE Reader [online]. Retrieved
from: https://core.ac.uk/reader/482657410

DIVYANI SHIVKUMAR TALEY, 2020. Comprehensive Study of Software Testing
Techniques and Strategies: A Review. International Journal of Engineering Research
and [online]. 4 September 2020. Vol. V9, no. 08. DOI 10.17577/ijertv9is080373.
Retrieved from: http://dx.doi.org/10.17577/ijertv9is080373

GAMIDO, Heidilyn Veloso and GAMIDO, Marlon Viray, 2019. Comparative Review
of the Features of Automated Software Testing Tools. International Journal of
Electrical and Computer Engineering (IJECE) [online]. 1 October 2019. Vol. 9, no. 5,
p- 4473. DOI 10.11591/ijece.v9i5.pp4473-4478. Retrieved from:
http://dx.doi.org/10.11591/ijece.v9i5.pp4473-4478

B., Naga Sudheer, 2020. A Comparative Study on Automated Testing Tools. Journal
of Advanced Research in Dynamical and Control Systems [online]. 20 July 2020. Vol.
12, no. 7, p. 183-188. DOI 10.5373/jardcs/v12i7/20201998. Retrieved from:
http://dx.doi.org/10.5373/jardcs/v1217/20201998

LI, Turbo, 2024. Pros and Cons of Selenium In Automation Testing - A
Comprehensive Assessment. [online]. 29 January 2024. Retrieved from:

https://www .headspin.io/blog/pros-and-cons-of-selenium-in-automation-testing
10 Advantages and Disadvantages of Selenium, 2018. [online]. Retrieved from:

https://www.pavantestingtools.com/2018/05/10-advantages-and-disadvantages-
of.html

90

https://core.ac.uk/reader/482657410
https://core.ac.uk/reader/482657410
http://dx.doi.org/10.17577/ijertv9is080373
http://dx.doi.org/10
http://dx.doi.org/10.5373/jardcs/vl2i7/20201998
https://www.headspin.io/blog/pros-and-cons-of-selenium-in-automation-testing
https://www.pavantestingtools.com/2018/05/10-advantages-and-disadvantages-

REDDY, G C, 2022. Advantages and Drawbacks of Selenium. Software Testing
[online]. 28 July 2022. Retrieved from:
https://www.gcreddy.com/2022/07/advantages-and-drawbacks-of-selenium.html

VERMA, Nishant, 2017. Mobile Test Automation with Appium [online]. Packt
Publishing Ltd. Retrieved from:
http://books.google.ie/books?id=BHg5DwAAQBAIJ&printsec=frontcover&dq=appiu
m+mobile+testing&hl=&cd=1&source=gbs_api

KNOTT, Daniel, 2015. Hands-On Mobile App Testing [online]. Addison-Wesley
Professional. Retrieved from:
http://books.google.ie/books?1d=M8wkCQAAQBAJ&printsec=frontcover&dq=appi
um+mobile+testing&hl=&cd=3&source=gbs_api

A, Mohamed Abul Hissam, J, Karthikeyan, R, Nishanth and MAHESWARI, Latha,
2020. Research on Hybrid Automation Framework for Mobile Application Testing
Based on Page Object Model and Appium. International Journal of P2P Network
Trends and Technology [online]. 25 August 2020. Vol. 10, no. 4, p. 12—-15. DOI
10.14445/22492615/ijptt-v10i4p402. Retrieved from:
http://dx.doi.org/10.14445/22492615/ijptt-v10i4p402

Pros and Cons of Appium 2024, 2023. TrustRadius [online]. Retrieved from:

https://www trustradius.com/products/appium/reviews ?qs=pros-and-cons

K, Shamil P, 2023. A Step-by-Step Guide to Test Automation with Appium. [online].
4 August 2023. Retrieved from: https://www.headspin.io/blog/appium-automation-
testing-a-step-by-step-guide

JOHNSON, Elly, 2024. Pros and Cons of Appium - Reviews & General Overview
[2024] - Test Automation Tools. Test Automation Tools [online]. 15 February 2024.

Retrieved from: https://testautomationtools.dev/pros-and-cons-of-appium.

91

https://www.gcreddy.com/2022/07/advantages-and-drawbacks-of-selenium.html
http://books.google.ie/books
http://books.google.ie/books
http://dx.doi.org/10.14445/22492615/ijptt-vl0i4p402
https://www.trustradius.com/products/appium/reviews
https://www.headspin.io/blog/appium-automation-
https://testautomationtools.dev/pros-and-cons-of-appium

TULI, Varesh and TULI, Varesh, no date. Major Challenges in Web-Based
Application Testing. [online]. Retrieved from: https://www.c-
sharpcorner.com/UploadFile/face6d/major-challenges-in-web-based-application-

testing/

Web Application Testing (Major Challenges and Techniques), 2015.
www.academia.edu [online]. Retrieved from:
https://www.academia.edu/14183369/Web_Application_Testing_Major_Challenges_

and_Techniques_

TANDON, Anisha and MADAN, Mamta, 2014. Challenges in Testing of Web
Applications. ResearchGate [online]. 5 May 2014. Retrieved from:
https://www .researchgate.net/publication/337050953_Challenges_in_Testing_of_We
b_Applications

6 Common Challenges in Web App Testing and How to Overcome Them, no date.

TestDevLab Blog [online]. Retrieved from: https://www.testdevlab.com/blog/6-

common-challenges-in-web-app-testing-and-how-to-overcome-them

92

https://www.c-
http://sharpcorner.com/UploadFile/face6d/major-challenges-in-web-based-application-
http://www.academia.edu
https://www.academia.edu/14183369/Web_Application_Testing_Major_Challenges_
https://www.researchgate.net/publication/337050953_Challenges_in_Testing_of_We
https://www.testdevlab.com/blog/6-

8. List of Figures, Tables and Abbreviations

8.1 List of Figures

Figure 1: JDK Installation.cccccevveiviriiiniiiiiiiiiiiin e 31
Figure 2: Eclipse IDE Installation.ccccceeiiiiiiiiniiiiiiiic e 32
Figure 3: Selenium WebDriver Dependencies.ccccoviiiiiiiiiiniiniciiicccei 33
Figure 4: Browser Dependencies.c.cccovuiviiiiiiiiiiiiiiiciicieie e 33
Figure 5: Selenium Script Example.ccccccooiiiiiiiiiiii 34
Figure 6: LoginPageTest Selenium Script.ccccocviiiiiiiiiiiiiniiiiiiceiieie s 35
Figure 7: ProductPageTest Selenium SCript........ccccooviiiiniiiiiiniiinieie e 36
Figure 8: ShoppingCartPageTest Selenium Script.........ccccoevviiiiniiniiniininiiiieens 37
Figure 9: CheckoutPageTest Selenium SCIipt.........ccccccuiviiiiiiiriinicnieiiecceee e 37
Figure 10: Configuration File........cccccoociiiiiiiiiiiiiiiii s 39
Figure 11: TestBase Selenium SCript.ccocevuiiiiiiiiiiiiiiiiiic 40
Figure 12: LoginPage Selenium SCript.ccccceiviiiiiiiiiiiiiiiiiiiieicci e 40
Figure 13: ProductPage Selenium SCript.ccccoovviiiiiiiiiiiiiiiiiie i 41
Figure 14: ShoppingCartPage Selenium Script.........cccccoviiiininiiniiiiiiiciiecieie 42
Figure 15: CheckoutPage Selenium ScCript.........cccccoviiiiiniiiiiiiiiiniiii 43
Figure 16: Selenium TestNG Xml file.cccooiiiiiiiiiiiiii 44
Figure 17: Selenium Extent REpOrt.cccooouiiiiiiiiiiiiiiiii 46
Figure 18: Selenium Extent Report Summary.cccccoociiiiiiniiiiii s 47
Figure 19: Selenium TestNG RePOIT........coovviviiiiiiiiiiiiiiiiiiiiici 48
Figure 20: Node.js and NPM Installation...........ccccovviiiiiiiiiiiinniiniciic 49
Figure 21: Appium Installation.c..cocceeiiiiiiiiiiiiiiiiiii 50
Figure 22: Android Studio Emulator.........cccccocciiiiiiiiiiiniii 50
Figure 23: Appium Script Example.coccooviiiiiiiiiiiii 51
Figure 24: LoginPageTest Appium SCIIPL.oceiviiiiiiiiiiiiiiiiieiie e 53
Figure 25: ProductPageTest Appium SCIIPL......c.cooviiiiiiiiiiiiiniieiie e 54
Figure 26: ShoppingCartPageTest Appium SCIipt........cccovviiiiiiininnieniiiiiieieeiiens 55
Figure 27: CheckoutPageTest Appium SCIIPL........cccueviiviiiiiiiiniiiieiie e 55
Figure 28: TestBase Appium SCIipt.cocceeviiiiiiiiiiiiiiiciiecee e 56
Figure 29: LoginPage Appium SCIIPL.cccoevuiiiiiiiiiiiiiiiiiiieciie it 57
Figure 30: ProductPage Appium SCript.cccovuiiiiiiiiiiiiiiiiiiiiiee i 58

93

8.2

8.3

Figure 31: ShoppingCartPage Appium SCIiPt.......ccoveiiiiniiiiininenie e 58

Figure 32: CheckoutPage Appium SCIIPL........coviiiiiiiiiiiniiiinie e 59
Figure 33: Appium TestNG Xml file.ccooooiiiiiii 60
Figure 34: Appium Extent RepOrt.cccoouiiiiiiiiiiiiiiiii e 62
Figure 35: Appium Extent Report Summary.ccocoiiniiinininini 63
Figure 36: Appium TestNG RepOrt.......c.cocoiiiiiiiiiiiiiiiiie 64
List of Tables

Table 1: Comparison of Selenium and Appium Tools across various criteria.......... 80

List of Abbreviations

DevOps: Development and Operations
DevSecOps: Development, Security and Operations
SQL: Structured Query Language
GPS: Global Positioning System

TV: Television

JDK: Java Development Kit

NPM: Node Package Manager

I0OS: I-Phone Operating System

QA: Quality Assurance

3G: Third Generation

4G: Fourth Generation

5G: Fifth Generation

Wi-Fi: Wireless Fidelity

SMS: Short Message Service

IDE: Integrated Development Environment
RC: Remote Control

UFT: Unified Functional Testing

CI: Continuous Integration

CLI: Command Line Interface

UI: User Interface

TestNG: Test Next Generation

JSON: JavaScript Object Notation

94

W3C: World Wide Web Consortium
IoT: Internet of Things

Al Artificial intelligence

POM: Page Object Model

API: Application Programming Interface
REST: Representational State Transfer
XPath: XML Path Language

AJAX: Asynchronous JavaScript and XML
JS: JavaScript

SDK: Software Development Kit

OS: Operating System

AUT: Application Under Test

CSS: Cascading Style Sheets

95

