Image Analysis Using Machine Learning Models – Bc. Norbert Komiňák
Bc. Norbert Komiňák
Bachelor's thesis
Image Analysis Using Machine Learning Models
Image Analysis Using Machine Learning Models
Abstract:
Oblasť strojového videnia napreduje veľmi rýchlo a množstvo verejne dostupného výskumu, datasetov, nástrojov a pred-trénovaných modelov spoločne s ňou. Táto práca sa zaoberá výskumom dostupných modelov, ich kombinovaním do aplikácie a porovnaním s ich platenými náprotivkami. V práci najprv predstavíme základné pojmy a koncepty z oblastí strojového videnia a neurónových sietí. Potom vyberieme štyri …moreAbstract:
The computer vision field is advancing rapidly, and the amount of publicly available research, datasets, tools and pre-trained models with it. This thesis is concerned with the research of such models, their combined application and comparison with their paid counterparts. First, we introduce basic concepts in the computer vision and neural networks fields. Then four freely available models are picked …more
Language used: English
Date on which the thesis was submitted / produced: 25. 5. 2021
Identifier:
https://is.muni.cz/th/o7q0i/
Thesis defence
- Date of defence: 30. 6. 2021
- Supervisor: RNDr. Jaromír Plhák, Ph.D.
- Reader: Mgr. Ondřej Sotolář
Citation record
ISO 690-compliant citation record:
KOMIŇÁK, Norbert. \textit{Image Analysis Using Machine Learning Models} [online]. Brno, 2021 [cit. 2022-08-17]. Available from: https://theses.cz/id/exkqjo/. Bachelor's thesis. Masaryk University, Faculty of Informatics. Thesis supervisor RNDr. Jaromír Plhák, Ph.D.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Applied Informatics / Applied Informatics
Theses on a related topic
-
Modelling small-RNA binding using Convolutional Neural Networks
Eva Klimentová -
Segmentation of Dense Cell Populations using Convolutional Neural Networks
Filip Lux -
Automatic Recognition of User Interface States Using Convolutional Neural Networks
Klára Petrovičová -
Visualization of hidden layers in convolutional neural networks
Jakub Hruška -
Impact of Data Quality on Deep Learning Algorithms in Computer Vision
Vlastimil Martinek -
Pathological Image Analysis Using Attention Based Deep Learning Methods
Petr Kantek -
Lung Data Analysis With Deep Learning
Harikrishnan KESAVAN VIJAYAKUMAR -
Deep learning solution for in-line microscopy monitoring and particle size analysis
Martin Vagenknecht