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Abstract

This thesis deals with design and construction of electromagnetic positioning platform for
testing of nonlinear control and identification algorithms. The plaform is based on shaping
of the magnetic field using three electromagnets and positioning of a steel ball using this
magnetic field on a resistive touch panel which measures the ball position at each point.
The platform is meant mainly for demonstration of different nonlinear control algorithms.
Three of which are shown and tested in this thesis.

Abstrakt

Tato diplomova préica sa zaobera navrhom a konstrukciou elektromagnetickej, polohovacej
platformy, pre testovanie nelinearnych riadiacich a identifika¢nych algoritmov. Platforma je
zalozend na tvarovani magnetického pola v kazdom bode pomocou troch elektromagnetov a
polohuje ocelovi gulicku po dotykovom paneli ktory snima polohu tejto gulicky. Platforma
ma4 slazit hlavne pre demonstraciu réznych nelinearnych riadiacich algoritmov vo vyukovom
prostredi. Tri priklady takychto algoritmov si ukézané a overené v ramci tejto diplomovej
préace.

Keywords

nonlinear control, electromagnetism, positioning, SDRE, feedback linearization, PID, pa-
rameter estimation

Klicova slova

nelinearne riadenie, elektromagnetizmus, polohovanie, SDRE, spdtnovazobnd linearizacia,
PID, odhad parametrov

Reference

RAJCHL, Matej. Design of Electromagnetic Positioning Platform for Testing of Nonlinear
Control and Identification Algorithms. Brno, 2020. Master’s thesis. Brno University of
Technology, Faculty of Mechanical Engineering. Supervisor Ing. Martin Brablc, 56 pages



Rozsireny abstrakt

Nelinedrne riadenie je jednou z hlavnych odvetvi modernej tedrie riadenia. Hlavny rozvoj
tohoto odvetvia nastal prave vdaka rozvoju vypoctovej techniky zaciatkom 21. storocia.
Nové technolégie tiez priniesli modernizaciu klasickych riadiacich algoritmov pre nelinedrne
systémy.

Pre demonstraciu toho, ako tieto algoritmy funguji musi nelinearita v riadenom systéme
spltiat ur¢ité kritéria. Musi byt dostatoéne vyznamnd na to aby ovplyvnila spravanie sys-
tému, musi byt spojitd a idealne aj hladka. Nevhodné nelinearity su aj také, ktoré nemaju
determinsitické spravanie, alebo sa nedaji modelovat pomocou deterministického modelu
(typu obecny model trenia).

Taktiez systém na ktorom chceme dané riadenie demonstrovat by mal spliiat urcité
kritérida. Musi maf taky aktuacny zasah aby nebolo jednoduché ho uriadit iba s pouzitim
PID regulatoru (ak je akény zasah dost silny, tak aj linedrny reguldtor dokaze uriadif velké
mnozstvo nelinearnych systémov). Mal by mat viacero stupnov volnosti a aj viacero vstupov
aby sa dalo na nom demonstrovat nelinedrne stavové riadenie.

Tieto poziadavky viedli k motivacii za touto diplomovou pracou. Cielom bolo postavit
zariadenie, ktoré by spliialo poziadavky uvedené vyssie a sltzilo by pre demonstraéné a
edukativne ucely. Zaroven bolo ziaduce ukézat, ze zariadenie funguje na niektorych mod-
ernych algoritmoch nelinedrneho riadenia.

Finalna podoba zariadenia bola navrhnuta tak, ze pozostédva z troch elektromagnetov
smerujucich nahor, na nich pripevneného odporového dotykového panelu a ocelovej gulicky,
ktorej polohu snimame dotykovym panelom. Uéelom je pomocou elektromagnetov poloho-
vat gulicku v rovine.

Riadenou veli¢inou st prudy v troch cievkach, pricom pre kazdu cievku bol navrhnuty
vlastny napatim ovladany pridovy zdroj. Vystupom je poloha v dvoch osiach dotykového
panelu, pre ktory bol taktiez navrhnuty vlastny obvod, ktory prevadza digitdlne data na
analégovit hodnotu napétia. Celé zariadenie bolo navvrhnuté tak aby sa dalo pripojit k
beznym typom riadiaceho hardwaru. V pripade tejto prace sme pouzili kartu MF624 od
spolo¢nosti Humusoft.

Systém ma teda viacero vstupov (3 pozadované pridy) a viacero stupriov volnosti a tak
spliia predpoklady na zariadenie uvedené vyssie.

Pre analyzu spravania zariadenia a nasledné riadenie bol najskor zostaveny numericky
model. Tento model bol zostaveny na zdklade nameranych dat pri ovladani zariadenia z
PC. Najskor bola vybrana spravna struktira modelu a nasledne odhadnuté jeho parame-
tre. Po zostaveni tohoto modelu bolo analyzované jeho spravanie, riaditelnost, stabilita a
boli otestované tri algoritmy jeho riadenia - PID, Input-state feedback linearization, State-
dependent riccati equation. Bola porovnand ich stabilita a vypoctova naro¢nost.

Nasledne boli uvedené algoritmy pouzité pre riadenie vysledného zariadenia a kvalita
ich riadenia bola porovnand. Vysledné zariadenie splnilo svoj ucel a moze sa dalej rozvijat
v ramci budtcich bakalarskych a diplomovych prac.
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Chapter 1

Introduction

Nonlinear control is one of the main branches in control theory and until the beginning of
this century did not offer too much development. The biggest advancements came with
the increase of computational power of modern computers and most of the mathematical
theories could become the algorithms used in various applications and industries today.

The nonlinear control can be found in many different applications such as MagLev
trains, aerospace engineering, nonlinear hydraulic valves, crane control, variable reluctance
motors, electromagnetic manipulation, petrochemical process control and many others.

The common approach to nonlinear control is the use of some form of coordinate trans-
form, which usually leads to input-output Feedback Linearization (FBL) algorithms or
»,bang-bang” type of controller. These controllers were used in many industrial applica-
tion the latter one being the early MagLev trains and the former being used in spacecraft
control [4], [32]. The industry standard for nonlinear control are usually gain scheduling
algorithms, because of lower computational power of embedded electronics.

These algorithms evolved over the years and also new algorithms came to existence
derived from linear systems and applied to linearized systems via the Jacobian matrices or
systems of the state-dependent form.

In educational cases it is not simple to find many illustrative examples on which the
modern nonlinear control algorithms are necessary for precise control. Most of the educa-
tional models which can be bought from companies like Quanser offer just a limited range
of nonlinear ones and most of them can be controlled just using regular Proportional Inte-
gral Derivative (PID) controller, because their actuation is much stronger than needed for
the model which compensates for the nonlinearity using more controllability or stability.

This leads us towards the motivation behind this thesis. The requirement to have an
educational model which can demonstrate the modern nonlinear algorithms, in which the
nonlinearity is ,well-behaved“. This means that the nonlinearity is continuous, determin-
istic and can be well modelled. Also the model would have to have multiple degrees of
freedom and multiple-inputs to demonstrate nonlinear state-space controllers.

Main inspiration behind using the magnetic force as a nonlinear input to the model was
the magnetic levitation model with which we have lot of experience. We know it cannot
be controlled just by using the PID controller as proven in [27] and the magnetic force
is nonlinear and continuous and a model exists which describes the force very accurately.
Another advantage the magnetic force brings to the model is that it creates unstable node in
the state space of the system, which can be interesting in the field of parameter estimation
or adaptive control.



Chapter 2

State of the art

2.1 Similar devices

In this section an overview of similar devices to the one which will be described within this
thesis will be provided. By similar device we understand a laboratory or educational device
which uses magnetic field to position objects and requires a form of numerical control to
achieve this task. Into this category we could include many devices, which use electromag-
netic forces to exert motion such as motors, linear actuators or solenoid actuators, but those
do not fall into the educational category and therefore will not be a focus of this thesis.

2.1.1 Magnetic levitation

Very simple 1D example of magnetic manipulation is magnetic levitation model. One of
the basic laboratory models available is the one which is depicted on figure 2.1. The model
consists of a steel ball which levitates under a single electromagnet. The electromagnet
provides upwards force while the gravity pulls the ball down. The coil has a fast analog
current regulator on input and the ball position is measured with inductive position sensor.
The extended description of the device is available at [2]. The advantage of a single coil
design is that there is just one nonlinear term however this allows for only one degree of
freedom and limiting the other two can be problematic. Usually if the ball oscillates side
to side it is impossible to stop (or prevent) this oscillation.

2.1.2 mBot

One of the simpler 2D positioning devices available, is the so called mBot [1]. It is small
positioning platform for 2D horizontal manipulation of a small magnet. It is based on
single PCB design, which encompasses also the coils right into the PCB. This can be seen
on figure 2.2.

This model provides only control in open-loop without any form of feedback or position
sensing. The grid is designed to work the way that only one of the ,pixels* is active at
a time. So to make the magnet move the pixels need to switch in the correct order. The
position of the robot can be controlled with the user input via buttons. The logic and the
coil switching is controlled with Atmega328 microcontroller.



Figure 2.1: Magnetic levitation A model CE152 of magnetic levitation from company
Humusoft [27]

2.1.3 MagMan

A very similar device developed through several theses ([9][29][38]) at the Czech Technical
University in Prague. It consists of array of coils which control the position of a steel
ball on a plate. The device is depicted on figure 2.3. The total number of coils can be
adjusted. They come in blocks of 2x2 coils, have built in current controller for each coil
and ARM processor which communicates on communication bus with higher level control
system. The array itself can be viewed as array of intelligent actuators. The position of
the ball is sensed with resistive touch panel and also by RGB camera. The platform can
control the position of the ball in two directions but can also sense the downward force on
resistive touch display.
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Figure 2.2: mBot TopView(left) BottomView(right) [1]

Figure 2.3: MagMan [9]



2.2 Electromagnet magnetic field models

Modeling the magnetic field around the electromagnet is no simple task. Usually perfect
analytical solution does not exists because it is not possible to define or measure all of
geometrical parameters or imperfections of the electromagnet. Also the models usually
simplify or approximate some part of the dynamics and this creates approximate models.
The most precise models are based on measurement or FEM analysis, but these models are
usually not viable for real-time control. In literature there are various approaches described
and this section will provide the overview of available models and the difference between
them.

2.2.1 Induced dipole moment model

The force on magnetizable object inserted into the magnetic field can be expressed as force
on magnetic dipole [38]

F = (mV)B (2.1)

where m represents effective magnetic dipole moment and B represents magnetic flux
density. If the object is made from magnetically linear material and has spherical shape and
the magnetic field is created by a magnetic monopole located at the origin of the coordinate
system this equation expands to

Fopln g !
© 16w (22 + Y2 + 22)2
where k represents a constant encompassing geometrical and magnetic properties of the
manipulated object and q,, corresponds to the magnetic strength of a monopole based on
the current through the coil. Calculating the gradient the corresponding forces are derived
as (where ¢ represents the coil constant encompassing all the constant terms into a single
parameter)

(2.2)
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2.2.2 Magnetic coenergy model

Another approach to modelling a magnetic force is using a method which is based on the
virtual work [10]. This model is based on calculating the gradient of the coenergy of the
magnetic circuit. Coenergy of the coil is defined as

H
Woo = / / BdHd (2.6)
QJO

where B represents magnetic flux density, H represents magnetic field intensity and 2
represents the integration volume. After substituting for B and H in terms of geometry
and current [25] we obtain the following equation



L(z,y,2)i?

Weo = 5 (2.7)
where L(x,y, z) is the inductance of magnetic circuit and ¢ represents current through
the coil in time ¢. From standard definition of inductance [25] L(x,y, z) = g—; (where N is

number of turns of the electromagnet and R,, is the magnetic resistance of the magnetic
circuit) we can derive a specific magnetic force definition for our case

.2 1
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where k represents the constant terms defining geometry and magnetic properties, @

the current through the coil and x,vy, 2z represent distance from the coil in the Cartesian
coordinates.

2.3 Nonlinear control algorithms

The subject of nonlinear control deals with the analysis and the design of nonlinear control
systems, i.e. of control systems containing at least one nonlinear element. There are various
differences between classical linear control and more advanced nonlinear control, however
these are very well described by literature [33] [36], and will not be the focus of this section.
In this section a small vertical slice of algorithms used for nonlinear control will be presented,
with focus on describing the basic principles of algorithms used in later chapters.

2.3.1 Composite PID control

Composite PID control is the simplest step from classical linear control towards algorithms
used for nonlinear system control. This approach has been used by various sources for wide
range of applications [12] [7] [27] [37]. Main concept which is used is designing a controller
and adding a feed-forward compensator which can compensate for nonlinear dynamics.

The feed-forward compensator is usually some form of inverse model of the system. It
can be based on the physical equations, some form of black box or general model, fuzzy
models, neural networks etc.

For the purpose of this section let us assume that our control problem is a tracking
problem, where vector xq is a desired state-space trajectory we want to track and lets
assume equation 2.12 describes forward model of the system. Then we can specify the
inverse model as 2.13. Note that this model does not always have to be obtainable, but for
many systems it is possible to derive.

% = f(x) + g(x)u (2.12)
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Figure 2.4: Typical composite controller layout. A PID with feedforward compensator

u=g(x)"' (% - f(x)) (2.13)

Now if we derive equations for the system shown on figure 2.4 we obtain the following
x = f(x) +g(x)(uprp + upr) (2.14)

% = f(x) + g(x)(uprp + g(xa) " (Xa — f(xa))) (2.15)

Expanding and simplifying.

% = f(x) — g(x)g(xa) "' (f(xa) — %) + g(x)uprp (2.16)

So under the assumptions that the trajectory is reachable, the PID controller is tuned
and can stabilize the system along the said trajectory. We can approximate that x ~ xq
and system dynamics reduce to

0 :g(X)up[D (2.17)

We see that this approach does not fully compensate the nonlinear dynamics, but can
be further improved by modifying the PID output signal to account for g(x). Although this
is not usually done because other methods can be used to solve this problem (which are
described in later sections of this chapter). Also because of the imperfections of the model
or the inaccuracy of the model parameters the compensation is not perfect and the PID
controller does not have zero action.

This approach is widely used in industry and is one of the most simple approaches to
nonlinear control. However, it is not ideal and has a lot of limitations. One is that it
cannot compensate general nonlinearities and is difficult to apply to MIMO systems, also
the inverse model of the system does not have to be always obtainable.

2.3.2 Sliding mode control

A very simple approach to robust nonlinear control is so called sliding mode control (or
sliding control). This approach is based on the remark that it is much easier to control

10



first order systems (be they linear, nonlinear or uncertain), than it is to control complex
n't order system.

As described in [33], the method is based on defining so called sliding surfaces which
reduce the problem from tracking trajectory in n dimensional space to keeping a scalar
quantity at zero.

Consider single-input dynamic system of the form

2™ = f(x,u) (2.18)

and then we consider x4 a desired trajectory we want to track, with initial condition

x4(0) = z(0) (2.19)
then a sliding surface is defined as
d n—1
s(x,t) = (ﬁ + )" (x — xq) (2.20)

Using a simple variable transformation X = x — x4, we see that A\ is by definition
positive definite damping constant to keep the sliding surface stable. (e.g. if n=3, then
sliding surface will take a form 2.21)

s =1+ 207 + N\’ (2.21)

Now we can define control law such that it keeps our surface dynamics zero. There
are different approaches to this task. For example [33] suggests defining u., as equilibirum
state input and v and u_ as inputs which stabilize % (Figure 2.5 demonstates this).

chatiering

Figure 2.5: Stabilization around s. Demonstration of chattering around sliding surface
s [33]

Sliding mode approach offers very good performance and is relatively easy to implement,
on the other hand the price is very high actuation activity, which can inject a lot of noise to
the state measurements (or state observer through input) and can cause problems down the

11



road. Also if we have a system with non-zero phase dynamics this approach can become
problematic because of stability concerns. Another downside is that we need full-state
feedback and also full-state trajectory planner and keep the initial condition 2.19 satisfied
at all times. However we do require the full-state trajectory planner while using almost any
other nonlinear control algorithm, so this is may not be an issue.

2.3.3 Gain scheduling

There are many different notions which are referred to as gain scheduling (GS) by literature
[23]. From blending controller gains to switching whole controllers or model dynamics based
on the state or input of the system. In general, GS encompasses attenuation of nonlinear
dynamics in various ranges of operation. For the sake of this thesis an overview of classical
gain scheduling techniques will be provided, the reason being GS algorithm shares many
aspects with other nonlinear control algorithms and drawing a parallel between them can
be beneficial for understanding the other algorithms. Classical GS approach (as described
by [23]) is based on decomposing a design of a nonlinear controller into designing a number
of linear controllers instead. A typical GS approach follows these steps ([31]):

e Step 1: A family of approximate L'TT models of nonlinear plant is derived. these mod-
els can be either linearized around equilibrium points, dependent on LT parameter
or dependent on exogenous signals (e.g. states, inputs, arbitrary parameters).

e Step 2: LTI controllers are designed to achieve a specific stability and performance at
each operating point. In some cases an analytical solution, which incorporates chang-
ing parameter is possible, however in general this is not possible and the controllers
are designed empirically.

e Step 3: Controllers are implemented in such a way that their coefficients are scheduled
based on current scheduling parameter.

e Step 4: A local performance is observed and the controllers are fine-tuned to match
the desired performance or stability criteria.

Using a gain scheduling algorithm has many advantages. Most of the calculations can be
performed offline so the resulting controller can be easily implemented on less powerful
hardware (e.g. microcontroller). Robustness and stability can be verified locally at each
operating point of the GS controller and performance/stability can be fine-tuned depend-
ing on the requirements of the controlled process. Downsides of this approach is that it
requires a good nonlinear model of the plant (or enough time tuning on real plant), does
not guarantee stability or even controllability at any of the operating points during the
design and has to be tuned to achieve good performance.

Most of state-dependent control algorithms are usually referred to as GS algorithms,
because of their state-dependent format and controller changing behavior, so understanding
the basic GS is important.

2.3.4 Feedback linearization

Feedback Linearization (FBL) is a technique well known and successfully used in high
performance applications (helicopter and aircraft control, industrial robots, some medical
applications etc. [33][28][16]). However until recent years not a lot of publications described

12



using the FBL algorithm for MIMO applications. Main concept behind feedback lineariza-
tion is the transformation of the coordinate system to simplify dynamics of the system
from nonlinear to linear. Afterwards a linear controller is designed, the inverse transform of
the coordinates is applied and the nonlinear actuation is calculated to control the system.
Intuitively we try to find a way to cancel out the nonlinear terms of our system and design
the controller without them.

First let us assume a first-order SISO system

&= f(z) + g(z)u (2.22)

y = h(x) (2.23)

in which for simplicity we assume y = x. So the input-output feedback linearization
is equivalent to input-state feedback linearization. Based on [33] we can derive that our
linearizing feedback (in this case) has the form

w=g(a) " (— () +v) (2.24)

where v is the new linearized system input. If we substitute 2.24 into 2.22 we can derive
that our system has reduced to simple linear first order system

i=v (2.25)

This can be simply extended to SIMO systems or any n'' order system however that is
well documented in literature ([33]) and will not be described in this section.
Now assume a MIMO system in the general form

x = f(x,u) (2.26)

If the function ¢ can be written as a state dependent transformation of the form 2.27, where
F(x) and G(x)u are vector fields describing nonlinear dynamics of the system, then we can
describe the linearizing control law as 2.28. Where vector (v) represents new input to the
system.

x = F(x) + G(x)u (2.27)

u=Gx)"(~F(x)+V) (2.28)

Note that this approach assumes state-dependent matrix is square and invertible (det(G(x)) #
0). However we can get around these strict constraints by using Moore-Penrose pseudoin-
verse instead of matrix inverse, to get best approximate solution for systems where the
number of inputs does not equal to the number of states. [26] The obtained solution is best
least-squares or 2-norm (depending on whether the system is under- or over- determined)

So the linearizing feedback takes the following form

u=G(x)(—F(x) 4+ v) (2.29)
Substituting 2.29 into 2.27 we get a linear system

X =v (2.30)

Now we can design a linear controller (usually a state-space one) for this MIMO system
and get a resulting control law as 2.31 where (K) is a controller gain matrix.
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Figure 2.6: FBL Controller. A typical configuration of FBL MIMO controller

u=Gx)(-F(x) - Kx) (2.31)

A big advantage this approach brings to the table compared to gain scheduling is that
we need to tune only a single state space controller which can be used to control the whole
MIMO system. If we have a good model of the system the implementation is very easy,
especially if we have numerical computational tools such as MATLAB and Simulink. It is
computationally more expensive than approaches which use GS algorithm or sliding mode,
but the number of steps required to implement this algorithm is much smaller and can be
done very quickly. FBL has a few downsides as well. First thing to note is that vector v can
be in the null space of the G(x). Which means that some inputs of v would not translate
to u (controllability of the system cannot be increased just by coordinate change). Second
problem is that the system may become uncontrollable because of the varying rank of G(x).

2.3.5 State-dependent Riccati equation based control

The State-Dependent Riccati Equation (SDRE) is the basis for sub-optimal feedback con-
trol of nonlinear quadratic regulator (NQR) problem. The basic thought is to decompose
nonlinear function as a sum of standard state-dependent linear transformations and use
regular LQR control based on Riccati equation. This approach is intuitive and is very sim-
ilar to what classical gain-scheduling algorithm does, however the LQR is not calculated
beforehand and is recalculated at each time step. This leads to sub-optimal control, which
however can be tuned precisely to achieve desired performance and stability. Typical LQR
implementation (as described by [17]) for linear continuous state-space system described by
equation 2.32

x = Ax + Bu (2.32)

is such that we find optimal matrix gain K which minimizes the following cost function.
[ee]
J= / (xQxT + uRuT + 2xTNu)dt (2.33)
0

where u is defined as (2.33) and matrices Q,R,N provide user-defined weighing between
state and actuation.

u=-Kx (2.34)
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Optimal K is then found by solving the algebraic Riccatti equation of the form 2.35
and finding the feedback gain as 2.36

ATP +PA - (PB+N)RIBTP+NT)+ Q=0 (2.35)
K =R BTP + NT) (2.36)
Xd X
\ PLANT (—+—

\_
c
\ 4

A
L

ARE
Solver

A

Figure 2.7: SDRE SS Controller.

Considering state-depenent case (2.37) it is clear why the optimality does not hold.
Solving the Riccatti equation algebraically for non-constant matrices A,B (or possible for
non-constant Q and R) is very difficult. Some sources approximate solution using Taylor se-
ries ([6]), some linearize model at each timestep ([13]), and others ([31]) use the LTT solution
and recalculate at each time step. All of these approaches use some kind of approximation
of the solution and therefore the solution is sub-optimal.

x = A(x)x + B(x)u (2.37)

SDRE control is very easy to implement, is robust and can be tuned by varying the
matrices Q and R. However it comes with a cost of being very computationally demanding
on the hardware.

2.3.6 Implementation note

All of the above mentioned algorithms require knowledge of all the true states of the system.
To achieve this we use a full-state observer and in this section a short overview of the
techniques used in this thesis is provided.
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Obtaining the full-state estimation is done by using a full-state observer. In theory
there are various types of state observers, most popular being (deterministic) Luenberger
observer and (stochastic) Kalman filter. Most of practical applications use the Kalman
Filter (KF). In general KF algorithm is very simple and can be used efficiently for many
applications such as estimating states and parameters of the system, sensor bias etc [17].
Basic KF works only on L'TT systems, however through the years many variants have been
developed, which can be easily applied to nonlinear systems - in this thesis we use the
Extended Kalman Filter (EKF). This algorithm is exceptionally well described in other
sources [17][8] and therefore it will not be described here.

Another issue that all of the above mentioned algorithms face is the issue of trajectory
planning. All tracking problems require a trajectory to follow in the state-space. Planning of
this trajectory is no easy task and the final trajectory has to comply with several constraints.
The system must be able to perform such trajectory (i.e. the dynamics of the trajectory
must be slower or equal to the dynamics of the system), the trajectory has to be smooth to
avoid step changes in input (which is not usually possible) and it has to be differentiatable
as many times as the model requires (n*® order model requires at least n derivatives). To
solve this problem (within this thesis) n'® order IIR filters with numerically calculated
derivatives were used to obtain the desired state-space trajectory.

2.4 Parameter estimation

Parameter estimation is a process within the field of system identification, which deals in
finding the best parameters of a given system based on the model-data similarities and
correlations.

If the given system has the general form 2.38, where [ is vector of model parameters,
we can define a parameter estimation as finding ,,the best“ choice of S which will maximize
the likeness of mathematical model to the real-world construct we want to model.

x = f(x,u,p) (2.38)

In most of technical application we can generalize that the task of parameter estimation
is to approximate real function f(x,u, ) by using our measurements z, where z is usually
a discreetly measured signal in time containing our state measurements.

Note: Area of parameter estimation and system identification in general
is much wider than this simple definition, however it is out of the scope of
this thesis to describe the process in detail so this section focuses mainly on
procedures used practically in later chapters.

In general the parameters can have various relations to the states of the system, however
the simplest case is if the model is linear in parameters. We call a model linear in parameters
if we can exactly decompose the model into the form (2.39) where ¢ represents normalized
version of the vector function f which is scaled by parameter vector 5.

% =f(x,u, ) = BT¢(x,u)) (2.39)

Otherwise we call the model nonlinear in parameters. There are other things to con-
sider as dimensionality reduction and parameter correlations (described in [22]), which can
further increase the simplicity of our model.

e Static estimation
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If our model is linear in parameters the simplest way of solving the minimization
problem is to use ordinary least squares ([34]). However this approach requires to
measure all of the states at each time step (or we can measure one of the states and
calculate higher derivatives).

We define
Y = X3 (2.40)

where Y is matrix containing all of the zyx measurements at time k as

Y=|" (2.41)

and matrix X containing all of the results of the matrix function f* as

qb(zla ul);
X = (b(ZZ’:uz) (2.42)
¢(Zna.un)T
Now we can compute 3 as
g=XTX)'xTy (2.43)

Advantage of this approach is that it is really easy to implement in MATLAB (single-
line command), but on the other hand requires good measurement of states of the
system, which does not contain too much noise or bias.

Dynamic estimation

If our model is nonlinear in parameters or if our state measurement is very noisy we
can use dynamic estimation ([24]). This approach is based on using the actual inputs
to our system and numerically simulating the model equation (2.38). This gives us
response of our system with the current parameters to our input. We then try to find
the combination of parameters which minimizes the cost function (e.g. MSE between
the model response and measured data), by repeating the simulation over and over
with different sets of parameters.

The advantages of this approach is that we can modify our cost function to only

compare one of the states with the measurement (e.g. only position), so we do not

need to measure all the states and their derivatives. Also we can find the nonlinear

parameters as well as linear ones with this approach. The disadvantage is that it is

no longer a single-line calculation but it is an iterative process. Moreover we need to

simulate the system at each time step which can take longer time. MATLAB offers a
=

lot of optimization tools in the Optimization toolbox [5] and it is also what we used
for this thesis.
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2.5 Nonlinear system stability

Several methods have been developed throughout the years to analyze stability of linear
and nonlinear systems. For the purpose of this thesis only a basic one will be described,
however there exist more advanced and complete methods (e.g. Input-State Stability [3]).

To analyze the stability of nonlinear system we cannot use traditional linear stability
theorem. This theorem states that a linear system of the form 2.32 is stable if it satis-
fies exponential stability (matrix A has negative-real-part eigenvalues) and BIBO stability
(bounded input causes a bounded output response) [17].

A simplest step from linear to nonlinear systems is to analyze how nonlinear systems
behave around equilibrium points. One way to do this is to analyze the Jacobian matrix
around these points [33], other is to pertubate the input and observe the behavior of the
system [27]. To find the equilibrium points of the system we need to solve the equation

0= f(x,u) (2.44)

From equation 2.44 we obtain solutions as groups of vectors e = [Xe,Ue]. Now we
calculate jacobians at these equilibrium points.

6f1(8xe7ue) . 6fléx87ue)
J= Of (Xe, ue) Of(Xe, Ue) Of (xe, ue)] _ - Cel N (2.45)
0x1 0x2o 0Xn 8fm(xe,ue)‘7 ’ bfm(me,ue)
ox1 yrt Oxn

Now we can analyze how the system behaves around these equilibrium points similarly
to linear system. There are different options which are depicted on figure 2.8.

s ]
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eigenvalues O™
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0 Andronov-Hopf bifurcation A
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saddle = 4:|7
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° (complex eigenvalues, .
_._|_,_ 3 negative real part)
[
°@
B stable node
o (real negative eigenvalues)
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Figure 2.8: Equillibrium behavior A different behaviors of the system around equilibrium
based on the Jacobian eigenvalues in 7 — A plot (A is the determinant of the Jacobian, 7
is the trace of the Jacobian) [15]
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Note that for some systems there may be no solution to the equation 2.44 and so system
like that would have no equilibrium and therefore cannot be asymptotically stable. If such
solution exists, we can analyze how the system behaves around said points and for systems
with small number of states also visualize it by plotting the vector field f(x, u).
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Figure 2.9: Vector field A vector field view of the system stability.

2.6 Controllability

2.6.1 Typical approach

Controllability analysis, similar to stability analysis, is a concept which is very well devel-
oped for linear systems but much harder to achieve in nonlinear systems. In this subsection
a typical approach for linear systems will be presented, which will introduce concepts used
for nonlinear cases (in state-dependent form) in later chapters. Typical approach to control-
lability analysis in linear systems of the form 2.32 is to analyze the controllability matrix.
The controllability matrix for a linear n'" order system is defined as [§]

¢ =[B,AB,A%B, A" 'B] (2.46)

The system is said to be controllable if the rank of matrix € is n. This definition is
however not too intuitive and sometimes the results can be misleading since it only tells us
the system is controllable but not how controllable.

First the intuitive explanation to how this method works. The matrix € is constructed
in such a way which allows us to see how the system responds to impulse response. It
defines the propagation of input through the system up to the rank n. If the matrix € does
not have at least n linearly independent columns (does not have rank n) then some of the
states are unreachable from the input. However this is not always what is required of our
system. In some cases we do not need to reach any state of the system, we only require
the unstable dynamics to be controllable/stabilizable, this however is not possible just by
analyzing the € matrix.
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2.6.2 Popov-Belevitch-Hautus controllability test

A different approach to controllability is so called Popov-Belevitch-Hautus test [8]. This
test tells us that linear system of n*® order (2.32) is controllable if and only if

rank([(A — AI),B]) =n,VA € C (2.47)

Note that the condition 2.47 is true for all A values which are not eigenvalues. In other
words PBH test allows us to test if the system can stabilize a specific eigenvalues of A from
which we can determine if the system is stabilizable. It also allows us to determine in which
direction the B matrix is deficient to make the system stabilizable or controllable (the B
matrix needs to have a component in every eigenvector direction to satisfy the PBH test).

2.6.3 Controllability Gramian

One of the tools to specify the degrees of controllability (whether the system is well con-
trollable or not-so-well controllable) is controllability Gramian [8]. To analyze which states
are more or less controllable one must analyze the eigendecomposition of controllability
Gramian which is defined for linear system 2.32 as

t
We(t) = / ATBBTeA Tdr (2.48)
0

However as [8] states it is often impractical to compute the Gramian as 2.48 but instead
is computed as solution to the Lyapunov equation

AW, + W AT +BBT =0 (2.49)

This is often used but can become a bit computationally expensive. For many applica-
tions an approximate solution to the Gramian can be obtained very easily as

W, ~ W¢ = ¢eT (2.50)

And the eigendecomposition of W reduces to Singular Value Decomposition (SVD) of
€. From this we can obtain Gramian singular vectors. In combination with corresponding
singular values these specify an ellipsoid defined in the state-space. This ellipsoid specifies
how far can we get per a unit of energy, which tells us which states are more or less
controllable.

¢=UuxvT (2.51)

The columns of unitary matrix U give us the most controllable directions and matrix of
singular values X gives us a numerical value for how far can we get in the specified direction
per unit energy (as mentioned in the paragraph above).
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Chapter 3

Design of mechanical construction
and electronics

Based on the research done in chapter 2, a first specification of the device was drafted.
The device was to have three coils which would control position of steel ball. The ball
could move in two direction, whilst being heavy enough to prevent any slipping or loss
of contact with the platform. This means the system would have three actuation inputs
for two degrees of freedom making it over-determined, but in theory controllable for any
position in between the coils.

The position sensor would have to be chosen with regards to the fact that the ball
should be able to move freely above the coils. Also the sensor should not interfere with the
magnetic field of the coils or the coils should not interfere with the sensor measurement.

First component around which the whole design was built were the electromagnets. At
first we tested the E1AS-0211-24-100 which were after several tests replaced with larger
version E1AS-0511-24-100 ([30]). Parameters of the electromagnet can be seen in a table
below (3.1).

Parameter Value
Nominal voltage 24V
Power 6.5 W

Nominal resistance | 88
Max. holding force | 750 N
Diameter 50 mm
Height 27 mm

Table 3.1: Electromagnet parameters
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Figure 3.1: Construction design Top view(left) Side view(right)

3.1 Position sensor

To perform any kind of positional control a precise measurement of the ball position is
required. For one dimensional position measurement there are many different options (Ul-
trasonic, IR, resistive, laser,...), however in two dimensions (in a plane) the options are more
limited. Following sensors were considered:

e Resistive touch The resistive touch sensor consists of two separated resistive foils
which are deformed by touch and this causes a short between the two. By the change
of the resistance, we can measure where this connection occurred. It is very robust
and simple solution for a reasonable price, which can also be found in various sizes
of the touch panel (from 1 inch to 30 inch in diagonal), making it well suited for our
application. However the downside is that it requires some amount of contact force,
which means the ball would have to be heavy.

e Capacitive touch One of the most common touchscreen sensors is capacitve touch
sensor. The operating principle of such sensor is that an insulator (usually glass) is
coated with a thin layer of conductive coating (usually Iodium Tin Oxide). After a
grounded conductor (such as human body) touches the screen it distorts the electro-
static field of the screen causing a change in capacitance which can be measured and
located. The upside of using capacitive touch sensor compared to resistive is that it
does not require any contact force to work properly and as well as the resistive touch
sensor can be made in any size. But it is unsuitable for our application because the
detected object has to be grounded or at least tied to a different potential, which is
not a case of a free moving steel ball.

e Infrared touch A predecessor to the typical (resistive or capacitive) touchscreen
technology was infrared touch screen. The sensor consists of grid of infrared diodes
and photo-transistors. After interrupting the grid by and object we can locate which
photo-transistors are covered by the object. This allows us to localize where the object
is. Very robust solution, but offers very little resolution (usually 5 mm) and rather
slow sample time (usually 15 ms). This makes it unsuitable for our application.

e Camera One of the more advanced sensing options would be the implementation of
motion tracking with a camera. The steel ball would be coated in distinctive paint
and image processing algorithm could be implemented to track the ball position. This
is a relatively inexpensive solution which can provide good results, however it is also
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insufficient for our application because of the slow sampling rate of the camera (60
Hz), which could make the control very difficult.

After considering price and performance of the sensors, as well as suitability for our
application a resistive touch sensor came out as a best option. The contact force problem
would be solved by using a larger steel ball. Resistive touch panel from company Fujitsu
NC01152-T10 ([11]) of the ,Feather Touch“ line was chosen. This touch panel offers a lot
of operating freedom and requires only around 30g of contact force making it well suited
for our application.

3.2 Power electronics

3.2.1 Coil drivers

Main concern of the whole design was the uncertainty of the behavior of the system when
mutual interaction of magnetic fields occurs. To solve this problem a hardware current
controller on each of the coils was required and so a simple circuit was designed contain-
ing LM1875 audio power amplifier ([14]) and precise feedback amplifier MCP601 ([19]) to
control the current through each of the coils (figure 3.2).
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Figure 3.2: Coil driver

The transfer loop gain can be tuned by resistors R1 and R2. Resistors change the gain
of the MCP601 (the output voltage can go up to 10V). The final transfer loop gain from
input voltage to current is as follows
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Time constant of the control loop varies depending on parameters of the coil as well
as the power supply. The exact relationship is non trivial however the smaller the time
constant of the coil and the higher the voltage the power supply can deliver the faster the
response of the control loop.

The step response was measured on the finished device using the oscilloscope and a
current probe (the measurement can be seen on figure 3.3). From the measurement we can
approximate that the time constant of the current controller is 7. = 0.6ms, which means
that to any discrete controller, which is running with sample time 1 ms or higher, built on
top of this one, the change in the current would seem instantaneous.

Tout = (3.1)
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Figure 3.3: Step current response

3.3 Sensor signal processing

The selected NC01152-T101 ([11]) touch panel has a standard 4-wire interface for touch
panels. This interface provides analog measurements of the x and y positions on the panel,
based on the resistance along the x and y directions. To process this signal an IC from
Texas Instruments TSC2007 ([35]) was chosen to convert the resistance values into the
digital numerical form. The mentioned IC provides communication via the 12C interface
and offers up to 12 bits of resolution. This means that the precision in one direction is
slightly higher than in the other one (because of the rectangular shape of the touch panel).

To make sure the position signal could be interfaced with any standard hardware the 12C
bus could not be the output stage. Therefore a microcontroller was added (dsPIC33FJ128MC804
[20]), which reads the position value on the 12C bus and transmits it forward using the SPI
to the MCP4822 dual channel DAC ([21]) which converts it into two analog voltage values.
The whole signal chain is shown on figure 3.4. NOTE: Full schematics are located in
appendix A
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Figure 3.4: Block diagram - signal processing of touch panel signal

3.3.1 Power supply

To supply the coil drivers with power, both positive and negative voltage power rails were
required. For this purpose 2 standard switched-mode DC power supplies were chosen.
MEAN WELL LRS-75-48 and MEAN WELL RS-15-5 were used to create 48V and -5V

lines respectively.

Negative voltage power line was needed, because the LM1875 power op-amp is not a
This means that it cannot reach OV on the output with single ended
supply. To overcome this limitation a -5V line helps the op-amp to reach zero and also
helps demagnetize a magnetic circuit a little bit faster if needed. In the ,forward bias“
direction this line also powers a sensor board and a cooling fan which helps to cool the

rail-to-rail type.

device. The wiring diagram is shown on figure 3.5.
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Figure 3.5: Wiring diagram
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3.4 Final construction

The final construction was built incorporating all the designs from previous sections, how-
ever the quality of the final product was significantly affected by the current COVID-19
crisis. Therefore not all of the materials and procedures used would be used under regular
circumstances.

Figure 3.6: Top view of the device

The mechanical part of the construction consists of a box in which all of the components
were placed and secured with glue. The power electronics were stacked together using metal
standoffs with screws. The coils were glued to aluminum plate, which was placed on top of
all the power electronics. The touch panel was placed on top of the coils and secured with
double sided tape so it could be removed easily if need be. Most of the internal wiring was
done using screw terminals and breadboard jumper wires. All of the signal wires (inputs
and outputs), were connected to terminal blocks which can be interfaced with any control
hardware (in our case MF624 I/O card by company Humusoft). A cooling fan was added
to help circulate the air from the bottom of the box to the top for better cooling. The final
construction can be seen on figures 3.6 and 3.7.
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Figure 3.7: Perspective view of the device
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Chapter 4

Modelling and analysis in
simulations

After constructing the device a mathematical model was needed to perform control, state
estimation, analysis and test nonlinear control algorithms. This chapter is split into sections
which represent the steps of modelling and model validation for the device as well as analysis
of the control algorithms on numerical models. All of the following calculations and models
were done using MATLAB and Simulink software.

The coordinate system is defined as shown on figure 4.1. The x and y represent position
of the ball from the origin.The xg1, yo1 represents position of the first coil, xg2, yo2 position
of the second coil, xg3, yo3 position of the third coil. We can now define the state vector as
X = [x1, T2, 23, 24]7 where 11 =z, 10 = 2,23 =y, T4 = 1.

First step was made to compare how well the models described in section 2.2 fit the
data to a numerical model for a single coil. Then the model which fit the data better was
chosen and extended for all of the three coils. Then an analysis was performed for goodness
of fit, stability and controllability of the model and afterwards several control algorithms
were tested.

<

X B gai
[ ] coils

Figure 4.1: Coordinate system schematic
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4.1 Single solenoid model estimation

In the chapter 2.2 two different models for modelling of the solenoid force on a steel ball
were described. To compare them we will construct models of a single coil and compare
the two models for the force to see which fits our data better.

To construct the numerical models a data-based modelling approach was chosen mainly
because of many uncertainties in mechanical construction, e.g. the construction was not
precisely levelled, uncertainty of damping caused by the touch panel (the top foil deforms
under the ball as it moves), damping caused by interfering magnetic fields inside the steel
ball etc... A Sparse Identification of Nonlinear Dynamics (SINDy) algorithm was chosen to
identify the system (the algorithm is more deeply described in [8], in this section only the
implementation to our case will be described).

4.1.1 Optimization of linear parameters

Typical SINDy algorithm uses very simple form of static estimation of linear model param-
eters. We try to approximate the system of the form 4.1 as 4.2,

% — m — f(x, ) (4.1)

% = 0¢ (4.2)

where we specify 6(x,u) as 4.3 and £ represents matrix of linear parameters.

O(x,u) = [f1(x,u),02(x,u),...,0m(x,u)] (4.3)

where m represents number of nonlinear vector functions by which we want to represent
our system. This means we can define many partial functions (in theory infinitely many)
and then use only those which have nonzero parameter values associated with them.

More specifically for our case the following set of functions was chosen as seen in eq.
4.4. Assume all as element wise functions on all elements of specified vector element e.g.
Xo = [22(0), 22(1),. .., 22(k)].

These functions were selected after a longer process of trial and error. Much wider
range of functions was tested and afterwards the total set of functions was reduced to only
those which were significant to the data. So from a large set of functions we obtained this
relatively small subset of functions needed to represent the model.

One of the problems with this approach was that these functions became locally cor-
related (mainly because of small range of motion of the ball) and this produced multiple
yresults® that could represent the measured data. However after many simulations some
results became more frequent than others even if we varied the filtering of the data. So this
frequent subset was chosen.

G(X) u) = []—7 X27 X47 FX7 Fy] (44)

We specify the Fx and Fy as magnetic forces in the x and y directions. These forces
will be calculated based on equations 2.3, 2.4 and 2.9, 2.10, depending on which model we
would like to use. Note that the models defined in these equations expect the coil to be
placed in the origin so to connect the magnetic force model with our coordinate system we
need to shift the coil position in the model by the position vector [xg1,yo1] in this case.
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To obtain the model, first a series of measurements in the open loop of a behaviour of
the ball around the first coil with various input currents was performed. The ball was left
to oscillate around the coil from various initial conditions. The measured data can be seen

on figure 4.2 (in the XY plane is the data plotted in figure 4.3).
NOTE: All of the data measured in this thesis was sampled at 1 kHz.
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Figure 4.2: Measured data for single-coil estimation
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Figure 4.3: Measured data for single-coil estimation in XY plane

0.11

To compute the derivatives, the data was filtered with a simple two-way zero-phase
moving average finite impulse response filter with the window length of 15 elements. This
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distorts the original data, but considering how slow is the change in position compared to
the size of the window, the effects of the filter should be negligible. The derivatives were
computed numerically and vectors ,3,Z,j were obtained.

Now the matrix # can be computed. To obtain the matrix of linear parameters & we
would normally invert the matrix 6 in eq. 4.2 and multiply by it from the left, but since
the matrix is not square we need to use the Moore-Penrose pseudo inverse and so we obtain

the result as eq. 4.5.
£ =0TxT (4.5)

To obtain the final model, we need to consider the optimization of nonlinear parameters
which is described in the following section.

4.1.2 Optimization of nonlinear parameters

The problem with our definition of the magnetic force is that we expect to know the z
distance from the center of magnetic attractor. This distance cannot be precisely measured
and therefore must be a nonlinear parameter to be optimized. To increase tun-ability of the
model we added more parameters to each of the models to obtain the following expressions
for the magnetic force. In case of induced dipole model (equations 2.3 and 2.4):

‘(Pl)
7 Ccxr
F,=— 4.6
(p22? + p3y?® + pa)3 (4.6)
J(p1)
F,=— — (4.7)

(p2x? + p3y? + pa)?

and in case of magnetic coenergy model(equations 2.9 and 2.10):

i(p1)
7 Ccx
F,=— 4.8
(p2x? + p3y?® + p4)(3/2) (48)
'(Pl)
F,=— v (4.9)

(P22 + p3y? + pa)(3/2)
where pl...p4 represent set of nonlinear parameters different for each of the models.
Finally we need to offset the coil centers in these models obtaining final equations for our
magnetic forces in the x and y directions.
Induced dipole model:

iPDe(z — zo1)
(p2(2 — 201)? + p3(y — yo1)* + pa)?

iPe(y — yor)
(p2(x — 201)? + p3(y — yo1)? + p4)?

Magnetic coenergy model:

Jo— (4.11)

iPDe(x — zo1)
P 412
(p2(x — 01)? + p3(y — yo1)? + pa)(3/2) (4.12)

iPe(y — yor)
(p2(z — 201)% + p3(y — yo1)? + p4)(3/2)

Fy=— (4.13)
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Now we can combine these equations with our SINDy algorithm. And apply nonlinear
optimization to it. We then define the optimization problem of finding the parameters
which best fit our data as

arg min(% — 091%T)? (4.14)
pPER

where X represents computed second derivatives of measured data, p is vector of non-
linear parameters and 6(x, u, p) is defined as eq. 4.4.

This approach combines the static estimation with nonlinear optimization methods.
At each iteration of the nonlinear estimation algorithm a new set of linear parameters is
calculated. This means that at each iteration we have linear parameters which minimize
the cost function and we try to find the nonlinear paramters which minimize it further.

The implementation of a nonlinear optimization algorithm was done using the MATLAB
Optimization Toolbox from which an implementation of simplex algorithm was used - the
function fminsearch was used to find the best values of p.

4.1.3 Comparison between the models

A comparison between the models can be seen in figure 4.4. From this we can conclude
that with estimated parameters the models behave very similarly and it makes almost no
difference which one will be used. Also we can conclude that the models get less accurate
further away from the coil.
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Figure 4.4: Comparison of the single-coil models

However to quantify which model is better we need to look at the RMSE of the models
with the calculated derivatives from measurements (Table 4.1).

Even though the results are inconclusive, we will use the Induced dipole moment. One
reason being the smaller RMSE, but the main reason is that it consists of polynomial non-
linearity in denominator of the magnetic force equations (4.10,4.11). This is much simpler
to model and calculate, than using a non-integer denominator exponent.
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Model RMSE value [ms?]
Induced dipole 0.5965
Magnetic coenergy 0.6095

Table 4.1: RMSE of single-coil models

4.1.4 Properties of the chosen model

The parameters of the chosen model are listed in equations (4.15, 4.16) below.

~0.1965 ~0.0071
5.8860 0.0221
¢=| —0.3454 7.7397 (4.15)

—1.63-1079% 3.32.10°8
1.47-10797  —1.64-10"6

p = [1.1492,1.9370, 2.440, 0.0011]7 (4.16)

To visualize how the model behaves around the coil we plot the magnitude of the vector
X as a scalar value for every point in the zy plane at zero velocity of the ball (&,9 = 0).

17
7 1H1F
i
7y,

0.07

< [m] 0.04

Figure 4.5: Acceleration magnitude around a single coil

At the center point of the coil the acceleration is non zero even though the magnetic
force is. The acceleration at this point according to model is approx. 0.1996ms~2. This is
caused because the platform is not precisely leveled and gravitational force causes the ball
to roll ,,downhill“.

An interesting phenomenon appears, when we plot controllability of our velocities as a
magnitude vector at each point. We rewrite our system to state dependent form (eq. 2.37)
and approximate controllability Gramian at each point using the controllability matrix
as described by equation 2.50. Now if we perform an economy SVD we obtain the most
controllable directions in the state space which is four dimensional. But since we control
only the velocities and not positions in this system we separate these vector elements from
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each of the four vectors. Now we have a 2 by 4 matrix which contains the numerical
approximation of how controllable are velocities in the most controllable directions. We
calculate the Frobenius norm of this matrix to numerically approximate how controllable
is the system at each point. This is shown on figure 4.6.
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Figure 4.6: Controllability magnitude around a single coil

We see that in the x and y directions from the coil center the controllability is lower
than in the quadrants between them. This makes logical sense since the coil can only
pull the ball towards the center so it is not possible to control the normal velocity to the
direction of the pull. In theory the controllability should be lost at these points, but the
imperfections of the platform design such as the tilt of the platform cause these points to
remain controllable.

4.2 Numerical modelling of the device

The modelling of the complete device with all three coils was similar to the process described
in previous section (sec.4.3).

First a new data was measured, with all three active coils, then a new 6 matrix was
constructed and based this a new nonlinear optimization algorithm was performed.

The measured data in the xy plane can be seen in figure 4.7. The positions of the coils
are clearly visible. This demonstrates the behaviour of the system, the stable attractors
are at the center points of the coils whilst all the other points are unstable. This will
be demonstrated numerically later in this chapter. The unstable behaviour of the system
prevents from measuring more data in between the coils (which would be beneficial for our
estimation).

The new theta matrix is defined as:

9(X7 u) = [17 X27 X4, Fxla Fyla FX27 Fy2a Fx37 Fy3] (417)
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Figure 4.7: Measured data for parameter estimation

0.14

,Fys perform element wise functions of the following forces (same as in

., Fy3. These forces represent forces from three of the coils and
are defined as (also see fig. 4.1):

iPe(x — x01)

(p2(x — x01)2 + p3(y — yo1)? + p4)?3

iPe(y — yor)

(p2(x — 201)? + p3(y — yo1)? + pa)?

iPe(z — z02)

(p2(x — x02)? + p3(y — yo2)? + pa)?

iPe(y — yoo)

(p2(x — 202)? + p3(y — yo2)? + pa)?

iPe(z — xo3)

(p2(x — 203)? + p3(y — yo3)? + pa)?

iPe(y — yos)

(p2(x — 203)? + p3(y — yo1)? + pa)?

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

The parameter estimation algorithm was applied in the same manner as in the previous
section and the following sets of parameters were obtained.
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T —0.1059 —0.0283
7.4123 0.1703
0.1628 7.4990
—4.05-107° 2.8-107"
£=1416-107"7 —-3.94-107° (4.24)
—3.99-107° —3.1815-107"
-3.03-1007 —4.10-107°
—4.05-107% —1.0759-10~"
| —4.54-1077  —4.06-10"°
p = [1.2454, 5.4084, 5.0827,0.0036]" (4.25)

This resulted in the fitted data shown on figure 4.8. This figure represents just a section
not the whole signal, which is much longer (260 seconds).
Note that we assume that the current can be positive or negative in this context. How-
ever both of them cause a pulling force on the steel ball and to keep things simple we assume
that the current is semidefinetly positive and don’t account for the cases where this is not

true.
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Figure 4.8: Model data fit

Now we can plot a similar plot to the figure 4.5, but this time for the complete device
(all three of the coils).

4.2.1 Stability

To analyze stability we will use the approach of visualizing the vector field, because solving
for the equilibrium points with such a complicated system could prove to be difficult and
with the number of states it is still possible to visualize this with a vector field. We assume
zero velocities and for each point in the xy plane we plot the resulting acceleration vector.

We need to consider different cases. One with single coil active, with two coils active,
with three coils active, with no coils active and with different currents running through
each of the coils.
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Figure 4.9: Acceleration magnitude - 3 coils

First let us assume the case with no coils active. The resulting vector field is shown on
figure 4.10. We see that there are no equilibrium points present and in the whole plane the
ball accelerates in one direction due to gravitational pull on a slightly tilted platform (note
that the vectors in the figure are normalized and their length does not represent the true
length of the vectors).
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Figure 4.10: Vector field - 0 active coils

If we activate one of the coils a single attraction point occurs. The equilibrium point
is at the center of the active coil. If we then add another active coil two new equilibrium
points are formed. Two are stable at the centers of the coils and one is unstable in between
the coils (4.11).

Finally if we add the third active coil another equilibrium point appears. The three
attractive points are at the center of each coil and the fourth (unstable) is in between
the coils (4.12). By varying the current between the coils we can vary the strength of
the attractors as well as the position of the unstable equilibrium point. Thanks to this

37



w0
AR AN TN =
oo NN Y LA X Q
R R R VX N o ~
R A \ - ® -
R s i o 4 p
R e s o—
R il 3
- a -
S ' S
-~
: o)
wE R )
(e.0]
= - S
=] =i =]
)
o
)
=
w . w
S = =t
o Q o
;.rl.f?{J'.rirrln ———— - a
[ TI!III..Il.Tﬁ.. o —
NI _ /
T XS | SIS
e S A A A A g
) (o] 2] M~ w wn
2 8 5 8 8 S g 8 5 8 &8 2 °
o o o o o o o o o o o
[t &

0.12

0.1

A A A
0.08
b'e

P

R e e i)
S

B
oS

0.06
Vector field - 1 and 2 active coils Left

i

N

I

[,

0.04
phenomenon we can actually control the position of the ball by keeping in on a plateau

formed by the unstable equilibrium point.

Figure 4.11:

- different currents

- 3 active coils Left - same current, Right
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Please note that in this analysis we purposely omitted the effect of the velocities on

stability because this would make the problem four dimensional and hard to analyze. In-
current through the coil). So this would create somewhat of a concept for terminal velocity

momentum that the coil force would be too weak to stop it (assuming we have limits on the
at each point of the zy plane.

tuitively we can predict that if the ball is moving at certain velocity, it can gain enough

Figure 4.12: Vector field



4.2.2 Controllability

To analyze controllability we will use similar technique we used with the single coil con-
trollability analysis. We will obtain controllability Gramian at each point in space with
zero velocities using the controllability matrix calculated from state-dependent state space
model.

The state-dependent state-space equations were derived as

I
x “
% = A(x) 3:2 +B(x,u) |uy (4.26)
3 s
T4
where we assume y = x, uj = igpl),t@ = igpl),u;g = igpl) and matrices A(x) and B(x,u)

are defined as (see also eq. 4.18...4.23)

0 1 0 O

951 ¢ 0
_m & &31
A(x) 0 0 0 1 (4.27)
0 &2 %2 32
0 0 0
(£41Fe14+E51Fy1) (61 Fu2+ET1Fy2) (€81 Fu3+E91Fy3)
B(x,u) = %l r E (4.28)
((a2Fp1+E52F 1) (bo2Fna+E72Fy2) (€82 F23+£92Fy3)
Ul u2 u3

Note: These equations are practically the same as for the single coil case (for
single coil case uy and u3 are zero). This is why these were purposely omitted
in the previous section.

Now using these equations we can derive the controllability matrix and controllability
Gramian as defined by eq. 2.50. Now we compute the SVD of the controllability matrix at
each point and so we obtain the most controllable directions at each point. Similarly to what
we have done in previous section with the single coil we now separate the controllability of
velocities and norm the value to obtain the following figure 4.13.

We see that the most controllable spot is where the ball is in the center between the
coils and the least controllable spots are at the center points of the coils. The centers of
the coils form a triangle of low controllability areas and so the expected behavior is that
the control algorithms may become unstable in these areas.
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Figure 4.13: Controllability of the the completed device

4.3 Analysis of control algorithms using numerical model

In the following subsections, three nonlinear control algorithms will be tested on a numerical
model of the system and their final performance compared at the end. First the implemen-
tation of each algorithm is described and afterwards a series of tests will be performed. To
evaluate the performance of the algorithms two separate criteria will be compared.

First we will compare how much computational time they require to finish. To make
this comparison fair we will not be taking the absolute time of the computation because this
strongly depends on used hardware, ODE solver and other factors which are not determinis-
tic. Instead we will perform 10 simulations of the system following prescribed trajectory (all
of them will be tuned so they can follow the trajectory closely) using each of the algorithms
and then normalize the times using one of the algorithms and comparing proportionally
how much faster/slower were others.

Second we will compare their stability with respect to disturbances. A zero-mean Gaus-
sian noise will be inserted into the state vector of the system, to simulate real-world signal
noise. The variance of the noise will be increasing in the magnitude and the MSE between
the prescribed trajectory and the real one will be calculated. Lower the MSE with injected
noise the more stable the algorithm is. Note that the other form of disturbance can occur
and this is due to parameter uncertainty (our model used for control does not fully represent
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the system), however since not all of the algorithms are model based, comparison between
them using this type of disturbance would not be fair.

The trajectory on which we will be testing the algorithms is depicted in figure 4.14. The
trajectory was chosen to be Lipschitz continuous function so it can be differentiated many
times and also spans the space in both directions x and y continuously.

O . | | |
0.04 0.06 0.08 0.1 0.12
X[m]

Figure 4.14: Trajectory for testing of the nonlinear control algorithms

4.3.1 PID

First algorithm tested is the classical PID controller with coordinate transformation to
accommodate for the overdeterminity of the system. This is caused by controlling only
two states (positions x and y - the same two PID controllers will be used for the x and y
directions.) using three actuation inputs. The PID controllers create two virtual currents
u; and wu, which are then transformed into the real currents wi,up and uz. So given a
transformation matrix

(z—z01) (z—z02) (z—z03)
z—201)2+(y—yo1)? z—202)2+(y—yo2)? z—203)2+(y—yo3)?
T(x) = | Vg e e e Ve (1.29)

V(@=201)2+y—101)2  /(2=202)2+(y—v02)2  /(z—203)2+(y—y03)?

we can compute the u vector using the Moore-Penrose pseudo-inverse as
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The final PID block diagram can be seen in the diagram 4.15.
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Figure 4.15: PID block diagram

4.3.2 Input-State feedback linearization

The feedback linearization algorithm was implemented using the state dependent descrip-
tion of the system (eq. 4.26). At each time step a linearizing input vector is computed
using the following equation

u=BI(—AX)x+V) (4.31)

v is calculated using the standard LQR controller. To design this controller we need to
specify the remaining linearized system which is of the form eq. 4.32

o O O
S O =
S O O
oS O O

0
0
1

o O O
o O O

X +
00 0 O 0 0 1

where we label the new A matrix as Agpyr, and the new B matrix as Bpgr,.

We see that one of the biggest downsides of this algorithm will be the uncertainty of the
model. If the linearization is not precise this system will not be able to compensate for the
nonlinearity because the equation 4.31 would not cancel out the nonlinear dynamics and
the control may become unstable.

For the system described by 4.27 we design a typical LQR controller with constant K
matrix and the linear input v is then calculated as

0
(1) u (4.32)
0

v =—-Kx+ Ns (4.33)
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where s is a 4 by 1 vector containing the prescribed trajcetory at each point and N is
input scaling matrix calculated as

N = B'(ArpL — BreLK) (4.34)

This is the typical inverse of the dc gain of the closed-loop system (assuming the C to
by identity matrix).

4.3.3 State-dependent LQR controller

State-dependent LQR. controller is a SDRE based approach and was implemented precisely
as described in subsection 2.3.5. This algorithm was the simplest to implement.

At each time step we need to update our state dependent matrices A(x) and B(z)
defined by equations 4.27 and 4.28. Afterwards we can use the MATLAB function icare
(a bit faster than using the typical lgr) to solve for the gain matrix K. Afterwards a new
input scaling matrix N needs to be calculated which is done by

N=B/(A-B (4.35)
The system input u is then computed using the equation
u=Ns - Kx (4.36)

It is very simple to implement, however at each time step the ARE needs to be solved
and this is computationally complex task, so it is a trade-off between simplicity and com-
putational complexity.

4.3.4 Algorithm comparison

First all of the controllers were tuned to follow the trajectory as best as they can. The
trajectory goes over area with lower controllability. This causes some deviation from the
prescribed trajectory at this point. The resulting trajectories with their corresponding ac-
tuation can be seen in figure 4.16. We see that every algorithm performs different actuation
inputs to the system and all of them perform differently while following this trajectory.

Computational time was measured for each algorithm and afterwards noise was added
to the x vector (3 different values to each of the algorithms) in the ode solver (ode! was used
with a step of 0.001 s). The results are shown in table 4.2. The computational complexity
is normalized with respect to the PID algorithm which is the fastest.

Algorithm | Complexity MSE [m?]
02 =0.0001 | 02 =0.001 | o2 = 0.005
PID 1 1.54e-6 1.71e-5 1.25¢e-4
FBL 3.4 7.09e-7 4.82¢10 6.62e13
SDRE 15.6 5.50e-8 e.64e-6 8.35e-5

Table 4.2: Table of results

From these results we can conclude that the algorithms loose stability as the noise
level increases. The FBL algorithm becomes unstable with very low noise levels. The best
performing with respect to the MSE appears to be the SDRE algorithm which is however
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Figure 4.16: Trajectories and corresponding actuation in time Left column - PID,
Middle column - FBL, Right column - SDRE

very slow compared to the PID which still holds with decent results and is faster. The choice
of the best depends on the situation and on the available hardware. The PID controller
will have difficulties when the trajectory gets further away from the center (which is the
point around which is the PID tuned), whilst the other may not. All of the algorithms will
be further tested in the following chapter in practical experiments.

4.4 SDRE implementation to Simulink RealTime

The practical implementation of control algorithms will be performed on IO card MF624
from Humusoft company. This card has full Simulink support to run real-time applications
however the Simulink model must contain only blocks which can be compiled to C, which
means the Simulink coder must be able to build the used functions to C. However the
state-dependent LQR. controller requires ARE solver to work, which is not supported by
Simulink coder, which means it cannot be used. To overcome this issue a simple custom
ARE solver was required. Implementation was done using a method very similar to Schur
method described in [18].
The method is used to solve the continuous ARE of the form

ATP+PA-PBR'BTP+ Q=0 (4.37)
We compute the Z matrix as
A —-BR BT
-Q _AT
Now we would usually perform the Schur decomposition of the Z matrix, however this
is not possible because the Simulink Coder does not support the schur function which
performs it. However we only need to find the non-zero eigenvalues of the Z matrix and
order them to form quasi upper triangular matrix. This can be done with simple search and

Z = (4.38)
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order routine while using the eig function, which returns the eigenvalues and eigenvectors
of the Z matrix.

Now if we define the ordered (highest to the lowest eigenvalue) eigenvectors with non-
negative eigenvalues as U, then we can decompose this matrix as

U,
The solution to the CARE 4.37 is obtained as

U= [Ul} (4.39)

P = U,U;*! (4.40)

From this we can compute the feedback gain matrix as defined by eq. 2.36 and imple-
ment the state-dependent LQR algorithm to the Simulink real-time target.

45



Chapter 5

Experiments

In this chapter a series of experiments will be described as well as performed to compare
how the nonlinear algorithms described in previous chapter work on a real hardware. In the
first section we will define two trajectories and define evaluation criteria for performance.
In the second section the experiments will be performed and algorithms compared to each
other using the actual device.

NOTE: All of the algorithms use the Extedned Kalman Filter to obtain the best
estimate of all of the states of the system. The implementation of the EKF is done using
the standard simulink block Fxtended Kalman Filter and so the precise implementation is
not described here. The used covariance matrices Q and R can be seen in appendix B.1.

5.1 Definition of trajectories

Two types of trajectories will be used. One will be continuous very similar to the one used
in the the previous chapter with the numerical models. Other one will consist of random
stair signal in the x and y direction. The random stairs need to be filtered with at least
a first order filter so the signal is differentiatable and can be used in trajectory planner
(Trajectories have to be physically executable).The trajectories can be seen in figure 5.1.
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> = 0.04f
0.04 ¢
0.035 0.035
0.075 0.08 0.085 0.09 0.095 0.07 0.075 0.08 0.085 0.09
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Figure 5.1: Final trajectories Left - continuous, Right - Random Stairs

The final tests will be performed with longer time intervals betweem the tests to let the
device cool down. The temperature affects the behaviour of the system and so to make
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sure all of the tests have same conditions the device will have cool down period between the
tests. Each algorithm will be run for the duration of 30 seconds and afterwards a MSE value
will be calculated for each algorithm. Since all of the algorithms have a trajectory planner
present, this value represents also how stable the control loop is with specific algorithm.

5.2 Comparison

First all of the controllers were tuned to be able to follow the prescribed trajectories. The
final tuning constants and matrices can be seen in the appendix B. The resulting control
can be seen in figures 5.2 and 5.3.
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0.03 I I | 1 1
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Figure 5.2: Final algorithm comparison - (Continuous trajectory)
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Figure 5.3: Final algorithm comparison - (Stair trajectory)
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We can see the behavior of the algorithms on the detail of the stair signal for the «
position on figure 5.4. We can notice a steady state error which is not constant for all
trajectories, this is probably caused by various levels of controllability at different points of
the trajectory as well as different accuracies of the model at each point.

0.09

0.085

0.08

X[m]

0.075

0.07

/ =—Reference
0.065 - / —SDRE

14 16 18 20 22 24 26
t[s]

Figure 5.4: Final algorithm comparison - (Stair trajectory in time)

The final results can be seen in the table 5.1. The MSE between the reference trajectory
and the real trajectory signal was calculated as well as the mean value of the current through
the coil for the specific experiment (calculated as i =11 +19+ 2_3) This value shows us how
aggressive the controller was while trying to achieve the goal. We see that these results
do not fully agree with the ones obtained from our numerical models. From these results
we see that the FBL and SDRE algorithms have similar performance, whilst the SDRE is
little bit more aggressive, so it is possible that if the FBL controller was tuned differently
the resulting control might be superior.

Algorithm MSE [mm?] i[A]
Continuous | Stair | Continuous | Stair
SDRE 69.12 53.07 0.311 0.317
FBL 62.29 52.78 0.267 0.241
PID 114.68 99.63 0.279 2487

Table 5.1: Table of experimental results
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Chapter 6

Conclusion

As a main outcome of this thesis an electromagnetic positioning platform was constructed
and several nonlinear control algorithms were tested using this platform with positive re-
sults.

One of the main goals of this thesis was testing of several nonlinear control algorithms.
Three of them were tested, mainly the ones which are not commonly described by literature
(FBL, SDRE) with exception of classical PID for reference.

The algorithms were tested using the numerical model of the device (with estimated
parameters based on a real data) and also practically on a real device.

In simulations both the performance, computational complexity and stability were con-
sidered and the results can be seen in table 4.2. From these results we concluded that SDRE
is computationally most expensive but also provides best results with valid alternative the
PID controller, which provided very good results but is also computationally very cheap.
The FBL algorithm has shown poor performance in simulations compared to others.

However these results were not confirmed using the real device. On a real device the
FBL and SDRE algorithms performed similarly, with very promising results that the FBL
could work better. The results of these experiments are shown in table 5.1.

The performance of all of the algorithms was impaired by noisy measurements of the
positions, which although an Extended Kalman Filter was used was still significant. If a
better model was used the KF could probably have been tuned differently to reduce the
noise even more. The source of this noise is probably the long wiring leading from and
through the devices as well as the rapidly changing magnetic fields in proximity to these
wires. The overall resolution of the measurement could also be improved by using smaller
touch panel, which would limit the operating range but the current operating range is rather
small so this may not be an issue.

Another source of error was the inaccuracy of the model, which is the cause of the
steady-state error in the state-space algorithms. The state-space controllers are designed
to drive the states towards zero. The reference value shifts this zero to a different point in
the state-space. This is done by scaling the reference value by the DC gain of the system
which is calculated from the model. So if our model is inaccurate this causes a steady-state
error of the resulting control.

Several important points were made while analyzing the behaviour of the system model,
such as the controllability is not constant in the whole plane and the levels of controllability
change depending on where the ball is positioned. This fact lead to most control algorithms
losing stability or precision in regions with lower controllability, and this was confirmed by
both experiments and the model (figures 4.16 and 5.2). In further research this could lead
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to relation between the controller gains Q and R and the level of controllability in that
region. Which could be used while using the SDRE algorithm which recalculates the K
matrix at each point.

Some aspects of the work were affected by the current COVID-19 crisis which prevented
from usage of better construction techniques, so one of the points which could be improved
in the future is the final construction, which was not done using professional tools, however
serves well as a proof of concept and can be easily modified in the future thanks to the
modular design of all of the elements.

The platform opens the door for many interesting tasks in the future, such as model
predictive control, nonlinear boundary value problems, state-space path finding and many
other tasks which can be performed.

In conclusion an electromagnetic positioning platform was designed, analyzed and tested.
This lead to interesting results which will lead to further research in the future. Some of
the results were not conclusive, because are affected by human factor such as how well
the controllers are tuned, which depends strongly on personal preference and/or is hard
to judge. The final implementation was performed on a real-time 10 card and all of the
algorithms were proven to work properly on this hardware and further algorithms can be
tested in the future.

50



Bibliography

1]

[10]

[11]

2D actuator move micro robot in X/Y 2D space | Hackaday.io. Available at: https:
//hackaday.io/project/154496-2d-actuator-move-micro-robot-in-xy-2d-space.

CE 152 magnetickd levitace | Humusoft. Available at:
https://www.humusoft.cz/models/cel52/.

AGRACHEV, A. A., MORSE, A. S., SONTAG, E. D., SussMANN, H. J. and UTKIN,
V. I. Nonlinear and Optimal Control Theory. 2008, p. 347. DOI:
10.1007/978-3-540-77653-6.

AL MuTHAIRI, N. F. and ZRriBI, M. Sliding mode control of a magnetic levitation
system. Mathematical Problems in Engineering. jun 2004, vol. 2004, no. 2, p. 93-107.
DOI: 10.1155/S1024123X04310033. ISSN 1024123X.

ANGERMANN, A., Rau, M. B. M. and WOHLFARTH, U. MATLAB Optimization
Toolbox. 2008. Available at:
https://www.mathworks.com/products/optimization.htmlhttp:
//www.mathworks.com/products/optimization/.

BEELER, S. and Cox, D. State-Dependent Riccati Equation Regulation of Systems
with State and Control Nonlinearities. august 2004.

BRrABLC, M., SovA, V. and GREPL, R. Adaptive feedforward controller for a DC
motor drive based on inverse dynamic model with recursive least squares parameter
estimation. In: Proceedings of the 2016 17th International Conference on
Mechatronics - Mechatronika, ME 2016. 2017. ISBN 9788001058831. Available at:
https://ieeexplore.ieee.org/document/7827809.

BRUNTON, S. L. and KuTz, J. N. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

Fivip, J. Extension of the Control System for the Magnetic Manipulator with a
Non-Flat Surface. 2015. Dissertation. CVUT Praha. Available at:
http://hdl.handle.net/10467/61947.

Fu, W. N., ZHou, P., LIN, D., STANTON, S. and CENDES, Z. J. Magnetic force
computation in permanent magnets using a local energy coordinate derivative
method. In: IEEE Transactions on Magnetics. Mar 2004, vol. 40, 2 II, p. 683—686.
DOI: 10.1109/TMAG.2004.824774. ISSN 00189464.

Fuiirsu. Feather Touch 4-wire resistive touch panel designed for multi-touch
gesturing applications. Available at: http://us.fujitsu.com/components/.

51


https://hackaday.io/project/154496-2d-actuator-move-micro-robot-in-xy-2d-space
https://hackaday.io/project/154496-2d-actuator-move-micro-robot-in-xy-2d-space
https://www.humusoft.cz/models/ce152/
https://www.mathworks.com/products/optimization.html http://www.mathworks.com/products/optimization/
https://www.mathworks.com/products/optimization.html http://www.mathworks.com/products/optimization/
https://ieeexplore.ieee.org/document/7827809
http://hdl.handle.net/10467/61947
http://us.fujitsu.com/components/

[12] GRrEPL, R. Composite Controller for Electronic Automotive Throttle with

[13]

[14]

[15]

[21]

[22]

Self-tuning Friction Compensator. In: JABLONSKI, R. and BREZINA, T.,
ed. Mechatronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 73-78.
ISBN 978-3-642-23244-2.

GURTNER, M. and ZEMANEK, J. Ball in double hoop: demonstration model for
numerical optimal control. Available at:
http://github.com/aadcc/flying-ball-in-hoop.

INSTRUMENTS, T. LM1875 20W Audio Power Amplifier. 2004. Available at:
https://www.ti.com/1lit/ds/symlink/1m1875.pdf7ts=1590415581543.

IzuikevicH, E. Equilibrium. Scholarpedia. 2007, vol. 2, no. 10, p. 2014. DOI:
10.4249 /scholarpedia.2014. ISSN 1941-6016. Available at:

http://www.scholarpedia.org/article/Equilibrium.

JRIBI, R., MAALEJ, B. and DERBEL, N. Robust Adaptive Feedback Linearization
Control of Human Exoskeletons. In: 16th International Multi-Conference on Systems,
Signals and Devices, SSD 2019. Institute of Electrical and Electronics Engineers Inc.,
Mar 2019, p. 747-751. DOI: 10.1109/SSD.2019.8893163. ISBN 9781728118208.

KWAKERNAAK, H. and S1vaN, R. Linear optimal control systems. Wiley Interscience,
1972. Wiley-Interscience publication. ISBN 9780471511106. Available at:
https://books.google.sk/books?id=mf OpAQAAMAAJ.

LAUB, A. A Schur method for solving algebraic Riccati equations. IEEFE
Transactions on Automatic Control. 1979, vol. 24, no. 6, p. 913-921.

MicrocHIp. MCP601/1R/2/3/4. 2007. Available at:
http://wwl.microchip.com/downloads/en/DeviceDoc/21314g.pdf.

MICROCHIP TECHNOLOGY. dsPIC383FJ32MC302/30/4, dsPIC33FJ6/MCX02/X0/
AND dsPIC33FJ128MCX02/X04. 2007. Available at:
http://wwl.microchip.com/downloads/en/DeviceDoc/70291G.pdf.

MICROCHIP TECHNOLOGY. MCP4802/4812/4822. Microchip Technology, 2010.
Available at: http://wwl.microchip.com/downloads/en/devicedoc/20002249b.pdf.

NAJMAN, J., BRABLC, M., RAJCHL, M., BASTL, M., SPACIL, T. et al. Monte carlo
based detection of parameter correlation in simulation models. 2020. ISBN
9783030299927.

Naus, I. G. J. L. Gain scheduling Robust Design and Automated Tuning of
Automotive Controllers. 2009.

NELLES, O. Nonlinear system identification : from classical approaches to neural
networks and fuzzy models. Springer, 2001. 785 p. ISBN 3540673695.

ONG, C. Dynamic Simulation of Electric Machinery: Using MATLAB/SIMULINK.
Prentice Hall PTR, 1998. ISBN 9780137237852. Available at:
https://books.google.sk/books?id=_0OweAQAATAAJ.

52


http://github.com/aa4cc/flying-ball-in-hoop
https://www.ti.com/lit/ds/symlink/lm1875.pdf?ts=1590415581543
http://www.scholarpedia.org/article/Equilibrium
https://books.google.sk/books?id=mf0pAQAAMAAJ
http://ww1.microchip.com/downloads/en/DeviceDoc/21314g.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70291G.pdf
http://ww1.microchip.com/downloads/en/devicedoc/20002249b.pdf
https://books.google.sk/books?id=_OweAQAAIAAJ

[26] PENROSE, R. A generalized inverse for matrices. Mathematical Proceedings of the
Cambridge Philosophical Society. Cambridge University Press. 1955, vol. 51, no. 3,
p. 406-413. DOI: 10.1017/S0305004100030401.

[27] RAJCHL, M. and BRABLC, M. Inverse Model Approximation Using Iterative Method
and Neural Networks with Practical Application for Unstable Nonlinear System
Control. In: Proceedings of the 2018 18th International Conference on Mechatronics -

Mechatronika, ME 2018. 2019. ISBN 9788021455443. Available at:
https://ieeexplore.ieee.org/document/8624827.

[28] Ramos, O. E. A Comparison of Feedback Linearization and Sliding Mode Control
for a Nonlinear System. In: SHIRCON 2019 - 2019 IEEE Sciences and Humanities
International Research Conference. Institute of Electrical and Electronics Engineers
Inc., Nov 2019. DOI: 10.1109/SHIRCON48091.2019.9024871. ISBN 9781728138183.

[29] RICHTER, F. Extension of the platform for magnetic manipulation. 2017.
Dissertation. CVUT Praha.

[30] SELOS. Holding solenoids E1AS. 2015. Available at:
https://www.magnety.sk/sub/magnety.sk/images/E1ASY%20EN.pdf.

[31] SHAMMA, J. S. and CLOUTIER, J. R. Existence of SDRE stabilizing feedback. IEEE
Transactions on Automatic Control. mar 2003, vol. 48, no. 3, p. 513-517. DOL:
10.1109/TAC.2002.808473. ISSN 00189286.

[32] SHEEN, J.-J. and BisHop, R. H. Spacecraft nonlinear control. jan 1992.

[33] SLOTINE, J. and L1, W. Applied Nonlinear Control. Prentice Hall, 1991. ISBN
9780130408907. Available at: https://books.google.sk/books?id=cwpRAAAAMAAJ.

[34] TANGIRALA, A. Principles of System Identification: Theory and Practice. CRC
Press, 2018. ISBN 9781439896020. Available at:
https://books.google.sk/books?id=aUHOBQAAQBAJ.

[35] TEXAS INSTRUMENTS. T'SC2007. 2007. Available at:
https://www.ti.com/lit/ds/symlink/tsc2007.pdf7ts=1590666017723.

[36] UTkIN, V. I. Sliding mode control design principles and applications to electric
drives. IEEE Trans. Ind. Electron. 1993, p. 23-36.

[37] YaNg, J., SuN, R., Cur, J. and DING, X. Application of composite fuzzy-PID
algorithm to suspension system of maglev train. In: IECON Proceedings (Industrial
FElectronics Conference). 2004, vol. 3, p. 2502-2505. DOL:
10.1109/iecon.2004.1432194.

[38] ZEMANEK, J. Distributed manipulation by controlling force fields through arrays of
actuators. Dissertation.

53


https://ieeexplore.ieee.org/document/8624827
https://www.magnety.sk/sub/magnety.sk/images/E1AS%20EN.pdf
https://books.google.sk/books?id=cwpRAAAAMAAJ
https://books.google.sk/books?id=aUHOBQAAQBAJ
https://www.ti.com/lit/ds/symlink/tsc2007.pdf?ts=1590666017723

Appendix A

Electrical schematics

Figure A.1: Electrical schematic of the coil driver

54



€ LIMoId

0d1ene

oldsp

SW3-2zardon

N

]

Figure A.2: Electrical schematic of the signal processing board
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Appendix B

List of controller and Kalman gains
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