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Abstract 
This thesis deals with design and construction of electromagnetic positioning platform for 
testing of nonlinear control and identification algorithms. The plaform is based on shaping 
of the magnetic field using three electromagnets and positioning of a steel ball using this 
magnetic field on a resistive touch panel which measures the ball position at each point. 
The platform is meant mainly for demonstration of different nonlinear control algorithms. 
Three of which are shown and tested in this thesis. 

Abstrakt 
Táto diplomová práca sa zaoberá návrhom a konštrukciou elektromagnetickej, polohovacej 
platformy, pre testovanie nelineárnych riadiacich a identifikačných algoritmov. Platforma je 
založená na tvarovaní magnetického poľa v každom bode pomocou troch elektromagnetov a 
polohuje oceľovú guličku po dotykovom paneli ktorý sníma polohu tejto guličky. Platforma 
má slúžiť hlavne pre demonštráciu rôznych nelineárnych riadiacich algoritmov vo výukovom 
prostredí. Tri príklady takýchto algoritmov sú ukázané a overené v rámci tejto diplomovej 
práce. 
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Rozšířený abstrakt 
Nelineárne riadenie je jednou z hlavných odvetví modernej teorie riadenia. Hlavný rozvoj 
tohoto odvetvia nastal práve vďaka rozvoju výpočtovej techniky začiatkom 21. storočia. 
Nové technológie tiež priniesli modernizáciu klasických riadiacich algoritmov pre nelineárne 
systémy. 

Pre demonštráciu toho, ako tieto algoritmy fungujú musí nelinearita v riadenom systéme 
spĺňať určité kritériá. Musí byť dostatočne významná na to aby ovplyvnila správanie sys­
tému, musí byť spojitá a ideálne aj hladká. Nevhodné nelinearity sú aj také, ktoré nemajú 
determinsitické správanie, alebo sa nedajú modelovať pomocou deterministického modelu 
(typu obecný model trenia). 

Taktiež systém na ktorom chceme dané riadenie demonštrovať by mal spĺňať určité 
kritériá. Musí mať taký aktuačný zásah aby nebolo jednoduché ho uriadiť iba s použitím 
PID regulátoru (ak je akčný zásah dosť silný, tak aj lineárny regulátor dokáže uriadiť velké 
množstvo nelineárnych systémov). Mal by mať viacero stupňov volnosti a aj viacero vstupov 
aby sa dalo na ňom demonštrovať nelineárne stavové riadenie. 

Tieto požiadavky viedli k motivácii za touto diplomovou prácou. Cieľom bolo postaviť 
zariadenie, ktoré by spĺňalo požiadavky uvedené vyššie a slúžilo by pre demonštračné a 
edukatívne účely. Zároveň bolo žiaduce ukázať, že zariadenie funguje na niektorých mod­
erných algoritmoch nelineárneho riadenia. 

Finálna podoba zariadenia bola navrhnutá tak, že pozostáva z troch elektromagnetov 
smerujúcich nahor, na nich pripevneného odporového dotykového panelu a ocelověj guličky, 
ktorej polohu snímame dotykovým panelom. Účelom je pomocou elektromagnetov poloho-
vať guličku v rovine. 

Riadenou veličinou sú prúdy v troch cievkach, pričom pre každú cievku bol navrhnutý 
vlastný napätím ovládaný prúdový zdroj. Výstupom je poloha v dvoch osiach dotykového 
panelu, pre ktorý bol taktiež navrhnutý vlastný obvod, ktorý prevádza digitálne dáta na 
analógovú hodnotu napätia. Celé zariadenie bolo navvrhnuté tak aby sa dalo pripojiť k 
bežným typom riadiaceho hardwaru. V prípade tejto práce sme použili kartu MF624 od 
spoločnosti Humusoft. 

Systém má teda viacero vstupov (3 požadované prúdy) a viacero stupňov voľnosti a tak 
spĺňa predpoklady na zariadenie uvedené vyššie. 

Pre analýzu správania zariadenia a následné riadenie bol najskôr zostavený numerický 
model. Tento model bol zostavený na základe nameraných dát pri ovládaní zariadenia z 
P C . Najskôr bola vybraná správna š truktúra modelu a následne odhadnuté jeho parame­
tre. Po zostavení tohoto modelu bolo analyzované jeho správanie, riaditeľnosť, stabilita a 
boli otestované tri algoritmy jeho riadenia - PID, Input-state feedback linearization, State-
dependent riccati equation. Bola porovnaná ich stabilita a výpočtová náročnosť. 

Následne boli uvedené algoritmy použité pre riadenie výsledného zariadenia a kvalita 
ich riadenia bola porovnaná. Výsledné zariadenie splnilo svoj účel a môže sa dalej rozvíjať 
v rámci budúcich bakalárskych a diplomových prác. 
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Chapter 1 

Introduction 

Nonlinear control is one of the main branches in control theory and until the beginning of 
this century did not offer too much development. The biggest advancements came with 
the increase of computational power of modern computers and most of the mathematical 
theories could become the algorithms used in various applications and industries today. 

The nonlinear control can be found in many different applications such as MagLev 
trains, aerospace engineering, nonlinear hydraulic valves, crane control, variable reluctance 
motors, electromagnetic manipulation, petrochemical process control and many others. 

The common approach to nonlinear control is the use of some form of coordinate trans­
form, which usually leads to input-output Feedback Linearization (FBL) algorithms or 
„bang-bang" type of controller. These controllers were used in many industrial applica­
tion the latter one being the early MagLev trains and the former being used in spacecraft 
control [4], [32]. The industry standard for nonlinear control are usually gain scheduling 
algorithms, because of lower computational power of embedded electronics. 

These algorithms evolved over the years and also new algorithms came to existence 
derived from linear systems and applied to linearized systems via the Jacobian matrices or 
systems of the state-dependent form. 

In educational cases it is not simple to find many illustrative examples on which the 
modern nonlinear control algorithms are necessary for precise control. Most of the educa­
tional models which can be bought from companies like Quanser offer just a limited range 
of nonlinear ones and most of them can be controlled just using regular Proportional Inte­
gral Derivative (PID) controller, because their actuation is much stronger than needed for 
the model which compensates for the nonlinearity using more controllability or stability. 

This leads us towards the motivation behind this thesis. The requirement to have an 
educational model which can demonstrate the modern nonlinear algorithms, in which the 
nonlinearity is „well-behaved". This means that the nonlinearity is continuous, determin­
istic and can be well modelled. Also the model would have to have multiple degrees of 
freedom and multiple-inputs to demonstrate nonlinear state-space controllers. 

Main inspiration behind using the magnetic force as a nonlinear input to the model was 
the magnetic levitation model with which we have lot of experience. We know it cannot 
be controlled just by using the PID controller as proven in [27] and the magnetic force 
is nonlinear and continuous and a model exists which describes the force very accurately. 
Another advantage the magnetic force brings to the model is that it creates unstable node in 
the state space of the system, which can be interesting in the field of parameter estimation 
or adaptive control. 
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Chapter 2 

State of the art 

2.1 Similar devices 

In this section an overview of similar devices to the one which will be described within this 
thesis will be provided. By similar device we understand a laboratory or educational device 
which uses magnetic field to position objects and requires a form of numerical control to 
achieve this task. Into this category we could include many devices, which use electromag­
netic forces to exert motion such as motors, linear actuators or solenoid actuators, but those 
do not fall into the educational category and therefore will not be a focus of this thesis. 

2.1.1 Magnetic levitation 

Very simple ID example of magnetic manipulation is magnetic levitation model. One of 
the basic laboratory models available is the one which is depicted on figure 2.1. The model 
consists of a steel ball which levitates under a single electromagnet. The electromagnet 
provides upwards force while the gravity pulls the ball down. The coil has a fast analog 
current regulator on input and the ball position is measured with inductive position sensor. 
The extended description of the device is available at [2]. The advantage of a single coil 
design is that there is just one nonlinear term however this allows for only one degree of 
freedom and limiting the other two can be problematic. Usually if the ball oscillates side 
to side it is impossible to stop (or prevent) this oscillation. 

2.1.2 mBot 

One of the simpler 2D positioning devices available, is the so called mBot [1]. It is small 
positioning platform for 2D horizontal manipulation of a small magnet. It is based on 
single P C B design, which encompasses also the coils right into the P C B . This can be seen 
on figure 2.2. 

This model provides only control in open-loop without any form of feedback or position 
sensing. The grid is designed to work the way that only one of the „pixels" is active at 
a time. So to make the magnet move the pixels need to switch in the correct order. The 
position of the robot can be controlled with the user input via buttons. The logic and the 
coil switching is controlled with Atmega328 microcontroller. 
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Figure 2.1: Magnetic levitation A model CE152 of magnetic levitation from company 
Humusoft [27] 

2.1.3 M a g M a n 

A very similar device developed through several theses ([9] [29] [38]) at the Czech Technical 
University in Prague. It consists of array of coils which control the position of a steel 
ball on a plate. The device is depicted on figure 2.3. The total number of coils can be 
adjusted. They come in blocks of 2x2 coils, have built in current controller for each coil 
and A R M processor which communicates on communication bus with higher level control 
system. The array itself can be viewed as array of intelligent actuators. The position of 
the ball is sensed with resistive touch panel and also by R G B camera. The platform can 
control the position of the ball in two directions but can also sense the downward force on 
resistive touch display. 

G 



Figure 2.2: mBot TopView(left) BottomView(right) [1] 

Figure 2.3: MagMan [9] 
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2.2 Electromagnet magnetic field models 

Modeling the magnetic field around the electromagnet is no simple task. Usually perfect 
analytical solution does not exists because it is not possible to define or measure all of 
geometrical parameters or imperfections of the electromagnet. Also the models usually 
simplify or approximate some part of the dynamics and this creates approximate models. 
The most precise models are based on measurement or F E M analysis, but these models are 
usually not viable for real-time control. In literature there are various approaches described 
and this section will provide the overview of available models and the difference between 
them. 

2.2.1 Induced dipole moment model 

The force on magnetizable object inserted into the magnetic field can be expressed as force 
on magnetic dipole [38] 

F = (mV)B (2.1) 

where m represents effective magnetic dipole moment and B represents magnetic flux 
density. If the object is made from magnetically linear material and has spherical shape and 
the magnetic field is created by a magnetic monopole located at the origin of the coordinate 
system this equation expands to 

F = k-^V—9 \ =r= (2.2) 
167T2 (x2 + y2 + z2)2 K ' 

where k represents a constant encompassing geometrical and magnetic properties of the 
manipulated object and qm corresponds to the magnetic strength of a monopole based on 
the current through the coil. Calculating the gradient the corresponding forces are derived 
as (where c represents the coil constant encompassing all the constant terms into a single 
parameter) 

i2cx 
* * - ( x 2 + y 2 + z 2 ) 3 V-6) 

i2cy 
v ~ {x2 + y2 + z2Y 1 j 

i2cz 
F z = - ( X 2 + y2 + Z 2)3 ( 2 - 5 ) 

2.2.2 Magnetic coenergy model 

Another approach to modelling a magnetic force is using a method which is based on the 
virtual work [10]. This model is based on calculating the gradient of the coenergy of the 
magnetic circuit. Coenergy of the coil is defined as 

Wco= [ [ BdHcin (2.6) 
Jn Jo 

where B represents magnetic flux density, H represents magnetic field intensity and CI 
represents the integration volume. After substituting for B and H in terms of geometry 
and current [25] we obtain the following equation 
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Wco = (2.7) 

where L(x, y, z) is the inductance of magnetic circuit and i represents current through 
the coil in time t. From standard definition of inductance [25] L(x, y, z) = ̂ — (where iV is 
number of turns of the electromagnet and Rm is the magnetic resistance of the magnetic 
circuit) we can derive a specific magnetic force definition for our case 

F = ki2V (— £ - j (2.8) 
\(x2 + y2 + z2)1/2 J 

x = (x2 + y2 + z2f/2 ( ' } 

py = ( x 2 + y 2 + z 2 ) 3 / 2 ( 2 - 1 0 ) 

F = -kzi2 (2']']) 
z {x2 + y2 + z2f/2 1 ' ; 

where k represents the constant terms defining geometry and magnetic properties, i 
the current through the coil and x,y, z represent distance from the coil in the Cartesian 
coordinates. 

2.3 Nonlinear control algorithms 

The subject of nonlinear control deals with the analysis and the design of nonlinear control 
systems, i.e. of control systems containing at least one nonlinear element. There are various 
differences between classical linear control and more advanced nonlinear control, however 
these are very well described by literature [33] [36], and will not be the focus of this section. 
In this section a small vertical slice of algorithms used for nonlinear control will be presented, 
with focus on describing the basic principles of algorithms used in later chapters. 

2.3.1 Composite P I D control 

Composite PID control is the simplest step from classical linear control towards algorithms 
used for nonlinear system control. This approach has been used by various sources for wide 
range of applications [12] [7] [27] [37]. Main concept which is used is designing a controller 
and adding a feed-forward compensator which can compensate for nonlinear dynamics. 

The feed-forward compensator is usually some form of inverse model of the system. It 
can be based on the physical equations, some form of black box or general model, fuzzy 
models, neural networks etc. 

For the purpose of this section let us assume that our control problem is a tracking 
problem, where vector Xd is a desired state-space trajectory we want to track and lets 
assume equation 2.12 describes forward model of the system. Then we can specify the 
inverse model as 2.13. Note that this model does not always have to be obtainable, but for 
many systems it is possible to derive. 

x = / (x) + 5(x)u (2.12) 
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FEEDFORWARD 
COMPENSATOR 

e 
PID •w PID 

UPID 
P L A N T 

Figure 2.4: Typical composite controller layout. A PID with feedforward compensator 

u = ff(x)-1(x-/(x)) (2.13) 

Now if we derive equations for the system shown on figure 2.4 we obtain the following 

x = / ( x ) + S ( x ) ( u W D + u F F ) (2.14) 

x = / (x ) + g(x)(uPID + ^ ( x d ) - 1 ^ - /(x,,))) (2.15) 

Expanding and simplifying. 

x = / (x ) - ff(x)ff(xd)-1(/(xd) - x) + 5 ( x ) u P / D (2.16) 

So under the assumptions that the trajectory is reachable, the PID controller is tuned 
and can stabilize the system along the said trajectory. We can approximate that x ~ Xd 
and system dynamics reduce to 

0 = 5 ( x ) u P / D (2.17) 

We see that this approach does not fully compensate the nonlinear dynamics, but can 
be further improved by modifying the PID output signal to account for g(x). Although this 
is not usually done because other methods can be used to solve this problem (which are 
described in later sections of this chapter). Also because of the imperfections of the model 
or the inaccuracy of the model parameters the compensation is not perfect and the PID 
controller does not have zero action. 

This approach is widely used in industry and is one of the most simple approaches to 
nonlinear control. However, it is not ideal and has a lot of limitations. One is that it 
cannot compensate general nonlinearities and is difficult to apply to M I M O systems, also 
the inverse model of the system does not have to be always obtainable. 

2.3.2 Sliding mode control 

A very simple approach to robust nonlinear control is so called sliding mode control (or 
sliding control). This approach is based on the remark that it is much easier to control 
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first order systems (be they linear, nonlinear or uncertain), than it is to control complex 
n th o r d e r system. 

As described in [33], the method is based on defining so called sliding surfaces which 
reduce the problem from tracking trajectory in n dimensional space to keeping a scalar 
quantity at zero. 

Consider single-input dynamic system of the form 

x W = /(x ,u) (2.18) 

and then we consider X d a desired trajectory we want to track, with initial condition 

xd(0) = x(0) (2.19) 

then a sliding surface is defined as 

S (x , t ) = ( | + A ) " - 1 ( x - x d ) (2.20) 

Using a simple variable transformation x = x — x^, we see that A is by definition 
positive definite damping constant to keep the sliding surface stable, (e.g. if n=3, then 
sliding surface will take a form 2.21) 

s='i + 2\i + \2x (2.21) 

Now we can define control law such that it keeps our surface dynamics zero. There 
are different approaches to this task. For example [33] suggests defining ueq as equilibirum 
state input and u+ and U- as inputs which stabilize % (Figure 2.5 demonstates this). 

chattering 

x 

Figure 2.5: Stabilization around s. Demonstration of chattering around sliding surface 
s [33] 

Sliding mode approach offers very good performance and is relatively easy to implement, 
on the other hand the price is very high actuation activity, which can inject a lot of noise to 
the state measurements (or state observer through input) and can cause problems down the 
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road. Also if we have a system with non-zero phase dynamics this approach can become 
problematic because of stability concerns. Another downside is that we need full-state 
feedback and also full-state trajectory planner and keep the initial condition 2.19 satisfied 
at all times. However we do require the full-state trajectory planner while using almost any 
other nonlinear control algorithm, so this is may not be an issue. 

2.3.3 Gain scheduling 

There are many different notions which are referred to as gain scheduling (GS) by literature 
[23]. From blending controller gains to switching whole controllers or model dynamics based 
on the state or input of the system. In general, GS encompasses attenuation of nonlinear 
dynamics in various ranges of operation. For the sake of this thesis an overview of classical 
gain scheduling techniques will be provided, the reason being GS algorithm shares many 
aspects with other nonlinear control algorithms and drawing a parallel between them can 
be beneficial for understanding the other algorithms. Classical GS approach (as described 
by [23]) is based on decomposing a design of a nonlinear controller into designing a number 
of linear controllers instead. A typical GS approach follows these steps ([31]): 

• Step 1: A family of approximate LTI models of nonlinear plant is derived, these mod­
els can be either linearized around equilibrium points, dependent on LTI parameter 
or dependent on exogenous signals (e.g. states, inputs, arbitrary parameters). 

• Step 2: LTI controllers are designed to achieve a specific stability and performance at 
each operating point. In some cases an analytical solution, which incorporates chang­
ing parameter is possible, however in general this is not possible and the controllers 
are designed empirically. 

• Step 3: Controllers are implemented in such a way that their coefficients are scheduled 
based on current scheduling parameter. 

• Step 4: A local performance is observed and the controllers are fine-tuned to match 
the desired performance or stability criteria. 

Using a gain scheduling algorithm has many advantages. Most of the calculations can be 
performed offline so the resulting controller can be easily implemented on less powerful 
hardware (e.g. microcontroller). Robustness and stability can be verified locally at each 
operating point of the GS controller and performance/stability can be fine-tuned depend­
ing on the requirements of the controlled process. Downsides of this approach is that it 
requires a good nonlinear model of the plant (or enough time tuning on real plant), does 
not guarantee stability or even controllability at any of the operating points during the 
design and has to be tuned to achieve good performance. 

Most of state-dependent control algorithms are usually referred to as GS algorithms, 
because of their state-dependent format and controller changing behavior, so understanding 
the basic GS is important. 

2.3.4 Feedback linearization 

Feedback Linearization (FBL) is a technique well known and successfully used in high 
performance applications (helicopter and aircraft control, industrial robots, some medical 
applications etc. [33] [28] [16]). However until recent years not a lot of publications described 
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using the F B L algorithm for M I M O applications. Main concept behind feedback lineariza­
tion is the transformation of the coordinate system to simplify dynamics of the system 
from nonlinear to linear. Afterwards a linear controller is designed, the inverse transform of 
the coordinates is applied and the nonlinear actuation is calculated to control the system. 
Intuitively we try to find a way to cancel out the nonlinear terms of our system and design 
the controller without them. 

First let us assume a first-order SISO system 

x = f(x)+g(x)u (2.22) 

y = h(x) (2.23) 

in which for simplicity we assume y = x. So the input-output feedback linearization 
is equivalent to input-state feedback linearization. Based on [33] we can derive that our 
linearizing feedback (in this case) has the form 

u = g(x)-\-f(x)+v) (2.24) 

where v is the new linearized system input. If we substitute 2.24 into 2.22 we can derive 
that our system has reduced to simple linear first order system 

x = v (2.25) 

This can be simply extended to SIMO systems or any n t h order system however that is 
well documented in literature ([33]) and will not be described in this section. 

Now assume a M I M O system in the general form 

x = f(x,u) (2.26) 

If the function <f> can be written as a state dependent transformation of the form 2.27, where 
.F(x) and G(x)u are vector fields describing nonlinear dynamics of the system, then we can 
describe the linearizing control law as 2.28. Where vector (v) represents new input to the 
system. 

x = F(x) + G(x)u (2.27) 

u = G ( x ) - 1 ( - J P ( x ) + v ) (2.28) 
Note that this approach assumes state-dependent matrix is square and invertible (det(G(x)) ^ 

0). However we can get around these strict constraints by using Moore-Penrose pseudoin-
verse instead of matrix inverse, to get best approximate solution for systems where the 
number of inputs does not equal to the number of states. [26] The obtained solution is best 
least-squares or 2-norm (depending on whether the system is under- or over- determined) 

So the linearizing feedback takes the following form 

u = G ( x ) t ( - F ( x ) + v) (2.29) 

Substituting 2.29 into 2.27 we get a linear system 

x = v (2.30) 

Now we can design a linear controller (usually a state-space one) for this M I M O system 
and get a resulting control law as 2.31 where (K) is a controller gain matrix. 

13 



V 

Feedback 
Linearization u 

P L A N T 
X 

Figure 2.6: F B L Controller. A typical configuration of F B L M I M O controller 

u = G(x) t(-F(x) - Kx) (2.31) 

A big advantage this approach brings to the table compared to gain scheduling is that 
we need to tune only a single state space controller which can be used to control the whole 
M I M O system. If we have a good model of the system the implementation is very easy, 
especially if we have numerical computational tools such as M A T L A B and Simulink. It is 
computationally more expensive than approaches which use GS algorithm or sliding mode, 
but the number of steps required to implement this algorithm is much smaller and can be 
done very quickly. F B L has a few downsides as well. First thing to note is that vector v can 
be in the null space of the G{x). Which means that some inputs of v would not translate 
to u (controllability of the system cannot be increased just by coordinate change). Second 
problem is that the system may become uncontrollable because of the varying rank of G{x). 

2.3.5 State-dependent Riccati equation based control 

The State-Dependent Riccati Equation (SDRE) is the basis for sub-optimal feedback con­
trol of nonlinear quadratic regulator (NQR) problem. The basic thought is to decompose 
nonlinear function as a sum of standard state-dependent linear transformations and use 
regular L Q R control based on Riccati equation. This approach is intuitive and is very sim­
ilar to what classical gain-scheduling algorithm does, however the L Q R is not calculated 
beforehand and is recalculated at each time step. This leads to sub-optimal control, which 
however can be tuned precisely to achieve desired performance and stability. Typical L Q R 
implementation (as described by [17]) for linear continuous state-space system described by 
equation 2.32 

is such that we find optimal matrix gain K which minimizes the following cost function. 

where u is defined as (2.33) and matrices Q ,R ,N provide user-defined weighing between 
state and actuation. 

x = Ax + Bu (2.32) 

(2.33) 

u = - K x (2.34) 
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Optimal K is then found by solving the algebraic Riccatti equation of the form 2.35 
and finding the feedback gain as 2.36 

A'A'P + P A - (PB + N ) R 1 ( B T P + N 1 ) + Q = 0 (2.35) 

K = R - X ( B T P + N T ) (2.36) 

Figure 2.7: S D R E SS Controller. 

Considering state-depenent case (2.37) it is clear why the optimality does not hold. 
Solving the Riccatti equation algebraically for non-constant matrices A , B (or possible for 
non-constant Q and R) is very difficult. Some sources approximate solution using Taylor se­
ries ([6]), some linearize model at each timestep ([13]), and others ([31]) use the LTI solution 
and recalculate at each time step. A l l of these approaches use some kind of approximation 
of the solution and therefore the solution is sub-optimal. 

x = A(x)x + B(x)u (2.37) 

S D R E control is very easy to implement, is robust and can be tuned by varying the 
matrices Q and R . However it comes with a cost of being very computationally demanding 
on the hardware. 

2.3.6 Implementation note 

A l l of the above mentioned algorithms require knowledge of all the true states of the system. 
To achieve this we use a full-state observer and in this section a short overview of the 
techniques used in this thesis is provided. 
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Obtaining the full-state estimation is done by using a full-state observer. In theory 
there are various types of state observers, most popular being (deterministic) Luenberger 
observer and (stochastic) Kalman filter. Most of practical applications use the Kalman 
Filter (KF) . In general K F algorithm is very simple and can be used efficiently for many 
applications such as estimating states and parameters of the system, sensor bias etc [17]. 
Basic K F works only on LTI systems, however through the years many variants have been 
developed, which can be easily applied to nonlinear systems - in this thesis we use the 
Extended Kalman Filter ( E K F ) . This algorithm is exceptionally well described in other 
sources [17] [8] and therefore it will not be described here. 

Another issue that all of the above mentioned algorithms face is the issue of trajectory 
planning. A l l tracking problems require a trajectory to follow in the state-space. Planning of 
this trajectory is no easy task and the final trajectory has to comply with several constraints. 
The system must be able to perform such trajectory (i.e. the dynamics of the trajectory 
must be slower or equal to the dynamics of the system), the trajectory has to be smooth to 
avoid step changes in input (which is not usually possible) and it has to be differentiatable 
as many times as the model requires ( n t h order model requires at least n derivatives). To 
solve this problem (within this thesis) n t h order IIR filters with numerically calculated 
derivatives were used to obtain the desired state-space trajectory. 

2.4 Parameter estimation 

Parameter estimation is a process within the field of system identification, which deals in 
finding the best parameters of a given system based on the model-data similarities and 
correlations. 

If the given system has the general form 2.38, where (3 is vector of model parameters, 
we can define a parameter estimation as finding „the best" choice of (3 which will maximize 
the likeness of mathematical model to the real-world construct we want to model. 

In most of technical application we can generalize that the task of parameter estimation 
is to approximate real function /(x, u, (3) by using our measurements z, where z is usually 
a discreetly measured signal in time containing our state measurements. 

Note: Area of parameter estimation and system identification in general 
is much wider than this simple definition, however it is out of the scope of 
this thesis to describe the process in detail so this section focuses mainly on 
procedures used practically in later chapters. 

In general the parameters can have various relations to the states of the system, however 
the simplest case is if the model is linear in parameters. We call a model linear in parameters 
if we can exactly decompose the model into the form (2.39) where <fi represents normalized 
version of the vector function f which is scaled by parameter vector f3. 

Otherwise we call the model nonlinear in parameters. There are other things to con­
sider as dimensionality reduction and parameter correlations (described in [22]), which can 
further increase the simplicity of our model. 

• Static estimation 

x = /(x,u,/3) (2.38) 

(2.39) 
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If our model is linear in parameters the simplest way of solving the minimization 
problem is to use ordinary least squares ([34]). However this approach requires to 
measure all of the states at each time step (or we can measure one of the states and 
calculate higher derivatives). 

We define 

Y = X/3 (2.40) 

where Y is matrix containing all of the z'^ measurements at time k as 

(2.41) 

and matrix X containing all of the results of the matrix function / * as 

0 ( z i , u i ) T 

(j)(z2, u 2 ) T 

X = 

_0(z n, u n ) T 

Now we can compute j3 as 

13 = ( X T X ) - 1 X T Y (2.43) 

Advantage of this approach is that it is really easy to implement in M A T L A B (single-
line command), but on the other hand requires good measurement of states of the 
system, which does not contain too much noise or bias. 

• Dynamic estimation 

If our model is nonlinear in parameters or if our state measurement is very noisy we 
can use dynamic estimation ([24]). This approach is based on using the actual inputs 
to our system and numerically simulating the model equation (2.38). This gives us 
response of our system with the current parameters to our input. We then try to find 
the combination of parameters which minimizes the cost function (e.g. M S E between 
the model response and measured data), by repeating the simulation over and over 
with different sets of parameters. 

The advantages of this approach is that we can modify our cost function to only 
compare one of the states with the measurement (e.g. only position), so we do not 
need to measure all the states and their derivatives. Also we can find the nonlinear 
parameters as well as linear ones with this approach. The disadvantage is that it is 
no longer a single-line calculation but it is an iterative process. Moreover we need to 
simulate the system at each time step which can take longer time. M A T L A B offers a 
lot of optimization tools in the Optimization toolbox [5] and it is also what we used 
for this thesis. 

(2.42) 
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2.5 Nonlinear system stability 

Several methods have been developed throughout the years to analyze stability of linear 
and nonlinear systems. For the purpose of this thesis only a basic one will be described, 
however there exist more advanced and complete methods (e.g. Input-State Stability [3]). 

To analyze the stability of nonlinear system we cannot use traditional linear stability 
theorem. This theorem states that a linear system of the form 2.32 is stable if it satis­
fies exponential stability (matrix A has negative-real-part eigenvalues) and BIBO stability 
(bounded input causes a bounded output response) [17]. 

A simplest step from linear to nonlinear systems is to analyze how nonlinear systems 
behave around equilibrium points. One way to do this is to analyze the Jacobian matrix 
around these points [33], other is to pertubate the input and observe the behavior of the 
system [27]. To find the equilibrium points of the system we need to solve the equation 

U = f(x,u) (2.44) 

From equation 2.44 we obtain solutions as groups of vectors e = [x e ,u e ] . Now we 
calculate jacobians at these equilibrium points. 

<9f(xe,ue) <9f(xe,u£ 

9xi (?X2 
<9f(Xe,U £ 

<9xn 

d f i ( x e , u e ) d f i ( x e , u e ) 

dxi ' " " " ' d x n 

d f m ( x e , U e ) 

dxi 

dfm(Xe,Ue) 

d x n 

(2.45) 

Now we can analyze how the system behaves around these equilibrium points similarly 
to linear system. There are different options which are depicted on figure 2.8. 

T 

0 

0 

Figure 2.8: Equilibrium behavior A different behaviors of the system around equilibrium 
based on the Jacobian eigenvalues in r — A plot (A is the determinant of the Jacobian, r 
is the trace of the Jacobian) [15] 
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Note that for some systems there may be no solution to the equation 2.44 and so system 
like that would have no equilibrium and therefore cannot be asymptotically stable. If such 
solution exists, we can analyze how the system behaves around said points and for systems 
with small number of states also visualize it by plotting the vector field f(x, u). 
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Figure 2.9: Vector field A vector field view of the system stability. 

2.6 Controllability 

2.6.1 Typical approach 

Controllability analysis, similar to stability analysis, is a concept which is very well devel­
oped for linear systems but much harder to achieve in nonlinear systems. In this subsection 
a typical approach for linear systems will be presented, which will introduce concepts used 
for nonlinear cases (in state-dependent form) in later chapters. Typical approach to control­
lability analysis in linear systems of the form 2.32 is to analyze the controllability matrix. 
The controllability matrix for a linear n t h order system is defined as [8] 

£ = [B, A B , A 2 B , A n _ 1 B ] (2.46) 

The system is said to be controllable if the rank of matrix <t is n. This definition is 
however not too intuitive and sometimes the results can be misleading since it only tells us 
the system is controllable but not how controllable. 

First the intuitive explanation to how this method works. The matrix <t is constructed 
in such a way which allows us to see how the system responds to impulse response. It 
defines the propagation of input through the system up to the rank n. If the matrix <t does 
not have at least n linearly independent columns (does not have rank n) then some of the 
states are unreachable from the input. However this is not always what is required of our 
system. In some cases we do not need to reach any state of the system, we only require 
the unstable dynamics to be controllable/stabilizable, this however is not possible just by 
analyzing the <£ matrix. 
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2.6.2 Popov-Belevitch-Hautus controllability test 

A different approach to controllability is so called Popov-Belevitch-Hautus test [8]. This 
test tells us that linear system of n t h order (2.32) is controllable if and only if 

ranfc([(A-AI),B]) = n , V A G C (2.47) 

Note that the condition 2.47 is true for all A values which are not eigenvalues. In other 
words P B H test allows us to test if the system can stabilize a specific eigenvalues of A from 
which we can determine if the system is stabilizable. It also allows us to determine in which 
direction the B matrix is deficient to make the system stabilizable or controllable (the B 
matrix needs to have a component in every eigenvector direction to satisfy the P B H test). 

2.6.3 Controllability Gramian 

One of the tools to specify the degrees of controllability (whether the system is well con­
trollable or not-so-well controllable) is controllability Gramian [8]. To analyze which states 
are more or less controllable one must analyze the eigendecomposition of controllability 
Gramian which is defined for linear system 2.32 as 

W c ( t ) = / e A r B B T e A T r d r (2.48) 
Jo 

However as [8] states it is often impractical to compute the Gramian as 2.48 but instead 
is computed as solution to the Lyapunov equation 

A W C + W C A T + B B T = 0 (2.49) 

This is often used but can become a bit computationally expensive. For many applica­
tions an approximate solution to the Gramian can be obtained very easily as 

W c w = £l>:T (2.50) 

And the eigendecomposition of W ° reduces to Singular Value Decomposition (SVD) of 
£. From this we can obtain Gramian singular vectors. In combination with corresponding 
singular values these specify an ellipsoid defined in the state-space. This ellipsoid specifies 
how far can we get per a unit of energy, which tells us which states are more or less 
controllable. 

£ = U X ! V T (2.51) 

The columns of unitary matrix U give us the most controllable directions and matrix of 
singular values XI gives us a numerical value for how far can we get in the specified direction 
per unit energy (as mentioned in the paragraph above). 
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Chapter 3 

Design of mechanical construction 
and electronics 

Based on the research done in chapter 2, a first specification of the device was drafted. 
The device was to have three coils which would control position of steel ball. The ball 
could move in two direction, whilst being heavy enough to prevent any slipping or loss 
of contact with the platform. This means the system would have three actuation inputs 
for two degrees of freedom making it over-determined, but in theory controllable for any 
position in between the coils. 

The position sensor would have to be chosen with regards to the fact that the ball 
should be able to move freely above the coils. Also the sensor should not interfere with the 
magnetic field of the coils or the coils should not interfere with the sensor measurement. 

First component around which the whole design was built were the electromagnets. At 
first we tested the E1AS-0211-24-100 which were after several tests replaced with larger 
version E1AS-0511-24-100 ([30]). Parameters of the electromagnet can be seen in a table 
below (3.1). 

Parameter 
Nominal voltage 

Power 
Nominal resistance 
Max. holding force 

Diameter 
Height 

Value 
24 V 

6.5 W 
88 tt 
750 N 
50 mm 
27 mm 

Table 3.1: Electromagnet parameters 
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Figure 3.1: Construction design Top view(left) Side view(right) 

3.1 Position sensor 

To perform any kind of positional control a precise measurement of the ball position is 
required. For one dimensional position measurement there are many different options (Ul­
trasonic,IR, resistive, laser,...), however in two dimensions (in a plane) the options are more 
limited. Following sensors were considered: 

• Resistive touch The resistive touch sensor consists of two separated resistive foils 
which are deformed by touch and this causes a short between the two. By the change 
of the resistance, we can measure where this connection occurred. It is very robust 
and simple solution for a reasonable price, which can also be found in various sizes 
of the touch panel (from 1 inch to 30 inch in diagonal), making it well suited for our 
application. However the downside is that it requires some amount of contact force, 
which means the ball would have to be heavy. 

• Capacitive touch One of the most common touchscreen sensors is capacitve touch 
sensor. The operating principle of such sensor is that an insulator (usually glass) is 
coated with a thin layer of conductive coating (usually Iodium Tin Oxide). After a 
grounded conductor (such as human body) touches the screen it distorts the electro­
static field of the screen causing a change in capacitance which can be measured and 
located. The upside of using capacitive touch sensor compared to resistive is that it 
does not require any contact force to work properly and as well as the resistive touch 
sensor can be made in any size. But it is unsuitable for our application because the 
detected object has to be grounded or at least tied to a different potential, which is 
not a case of a free moving steel ball. 

• Infrared touch A predecessor to the typical (resistive or capacitive) touchscreen 
technology was infrared touch screen. The sensor consists of grid of infrared diodes 
and photo-transistors. After interrupting the grid by and object we can locate which 
photo-transistors are covered by the object. This allows us to localize where the object 
is. Very robust solution, but offers very little resolution (usually 5 mm) and rather 
slow sample time (usually 15 ms). This makes it unsuitable for our application. 

• Camera One of the more advanced sensing options would be the implementation of 
motion tracking with a camera. The steel ball would be coated in distinctive paint 
and image processing algorithm could be implemented to track the ball position. This 
is a relatively inexpensive solution which can provide good results, however it is also 
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insufficient for our application because of the slow sampling rate of the camera (60 
Hz), which could make the control very difficult. 

After considering price and performance of the sensors, as well as suitability for our 
application a resistive touch sensor came out as a best option. The contact force problem 
would be solved by using a larger steel ball. Resistive touch panel from company Fujitsu 
NC01152-T10 ([11]) of the „Feather Touch" line was chosen. This touch panel offers a lot 
of operating freedom and requires only around 30g of contact force making it well suited 
for our application. 

3.2 Power electronics 

3.2.1 Coi l drivers 

Main concern of the whole design was the uncertainty of the behavior of the system when 
mutual interaction of magnetic fields occurs. To solve this problem a hardware current 
controller on each of the coils was required and so a simple circuit was designed contain­
ing LM1875 audio power amplifier ([14]) and precise feedback amplifier MCP601 ([19]) to 
control the current through each of the coils (figure 3.2). 

<COIL+ I 

| C O I L + > — ^ 0 ^ 2 - 1 

| C O I L - > ^ 0 ^ 2 - 2 

<COIL-

£ND _pND 

Figure 3.2: Coil driver 

The transfer loop gain can be tuned by resistors R l and R2. Resistors change the gain 
of the MCP601 (the output voltage can go up to 10V). The final transfer loop gain from 
input voltage to current is as follows 
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Time constant of the control loop varies depending on parameters of the coil as well 
as the power supply. The exact relationship is non trivial however the smaller the time 
constant of the coil and the higher the voltage the power supply can deliver the faster the 
response of the control loop. 

The step response was measured on the finished device using the oscilloscope and a 
current probe (the measurement can be seen on figure 3.3). From the measurement we can 
approximate that the time constant of the current controller is r c = 0.6ms, which means 
that to any discrete controller, which is running with sample time 1 ms or higher, built on 
top of this one, the change in the current would seem instantaneous. 

Figure 3.3: Step current response 

3.3 Sensor signal processing 

The selected NC01152-T101 ([11]) touch panel has a standard 4-wire interface for touch 
panels. This interface provides analog measurements of the x and y positions on the panel, 
based on the resistance along the x and y directions. To process this signal an IC from 
Texas Instruments TSC2007 ([35]) was chosen to convert the resistance values into the 
digital numerical form. The mentioned IC provides communication via the I2C interface 
and offers up to 12 bits of resolution. This means that the precision in one direction is 
slightly higher than in the other one (because of the rectangular shape of the touch panel). 

To make sure the position signal could be interfaced with any standard hardware the I2C 
bus could not be the output stage. Therefore a microcontroller was added (dsPIC33FJ128MC804 
[20]), which reads the position value on the I2C bus and transmits it forward using the SPI 
to the MCP4822 dual channel D A C ([21]) which converts it into two analog voltage values. 
The whole signal chain is shown on figure 3.4. N O T E : Full schematics are located in 
appendix A 
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NC01152-T101 A/D 
TCS2007 

I2C 
dsPIC33 

SPI 
MCP4822 

D/A 
TCS2007 w dsPIC33 W MCP4822 

Touch Panel 

Figure 3.4: Block diagram - signal processing of touch panel signal 

3.3.1 Power supply 

To supply the coil drivers with power, both positive and negative voltage power rails were 
required. For this purpose 2 standard switched-mode D C power supplies were chosen. 
M E A N W E L L LRS-75-48 and M E A N W E L L RS-15-5 were used to create 48V and -5V 
lines respectively. 

Negative voltage power line was needed, because the LM1875 power op-amp is not a 
rail-to-rail type. This means that it cannot reach OV on the output with single ended 
supply. To overcome this limitation a -5V line helps the op-amp to reach zero and also 
helps demagnetize a magnetic circuit a little bit faster if needed. In the „forward bias" 
direction this line also powers a sensor board and a cooling fan which helps to cool the 
device. The wiring diagram is shown on figure 3.5. 

M 

GND COIL DRIVER 

- GND COIL DRIVER 

GND COIL DRIVER 

+ SENSOR 
GND B 0 A R D 

Figure 3.5: Wiring diagram 
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3.4 Final construction 

The final construction was built incorporating all the designs from previous sections, how­
ever the quality of the final product was significantly affected by the current COVID-19 
crisis. Therefore not all of the materials and procedures used would be used under regular 
circumstances. 

Figure 3.6: Top view of the device 

The mechanical part of the construction consists of a box in which all of the components 
were placed and secured with glue. The power electronics were stacked together using metal 
standoffs with screws. The coils were glued to aluminum plate, which was placed on top of 
all the power electronics. The touch panel was placed on top of the coils and secured with 
double sided tape so it could be removed easily if need be. Most of the internal wiring was 
done using screw terminals and breadboard jumper wires. A l l of the signal wires (inputs 
and outputs), were connected to terminal blocks which can be interfaced with any control 
hardware (in our case MF624 I /O card by company Humusoft). A cooling fan was added 
to help circulate the air from the bottom of the box to the top for better cooling. The final 
construction can be seen on figures 3.6 and 3.7. 
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Figure 3.7: Perspective view of the device 
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Chapter 4 

Modell ing and analysis in 
simulations 

After constructing the device a mathematical model was needed to perform control, state 
estimation, analysis and test nonlinear control algorithms. This chapter is split into sections 
which represent the steps of modelling and model validation for the device as well as analysis 
of the control algorithms on numerical models. A l l of the following calculations and models 
were done using M A T L A B and Simulink software. 

The coordinate system is defined as shown on figure 4.1. The x and y represent position 
of the ball from the origin.The xoi, yoi represents position of the first coil, xo2> U02 position 
of the second coil, £03 > V03 position of the third coil. We can now define the state vector as 
x = [x\, X2, £3, where x\ = x, £2 = x,x% = y, £4 = y. 

First step was made to compare how well the models described in section 2.2 fit the 
data to a numerical model for a single coil. Then the model which fit the data better was 
chosen and extended for all of the three coils. Then an analysis was performed for goodness 
of fit, stability and controllability of the model and afterwards several control algorithms 
were tested. 

Figure 4.1: Coordinate system schematic 
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4.1 Single solenoid model estimation 

In the chapter 2.2 two different models for modelling of the solenoid force on a steel ball 
were described. To compare them we will construct models of a single coil and compare 
the two models for the force to see which fits our data better. 

To construct the numerical models a data-based modelling approach was chosen mainly 
because of many uncertainties in mechanical construction, e.g. the construction was not 
precisely levelled, uncertainty of damping caused by the touch panel (the top foil deforms 
under the ball as it moves), damping caused by interfering magnetic fields inside the steel 
ball etc... A Sparse Identification of Nonlinear Dynamics (SINDy) algorithm was chosen to 
identify the system (the algorithm is more deeply described in [8], in this section only the 
implementation to our case will be described). 

4.1.1 Optimization of linear parameters 

Typical SINDy algorithm uses very simple form of static estimation of linear model param­
eters. We try to approximate the system of the form 4.1 as 4.2, 

x f(x,u) (4.1) 

x = 0£ (4.2) 

where we specify 0(x, u) as 4.3 and £ represents matrix of linear parameters. 

0(x, u) = [0i(x, u), 02(x, u ) , . . . , 0m(x, u)] (4.3) 

where m represents number of nonlinear vector functions by which we want to represent 
our system. This means we can define many partial functions (in theory infinitely many) 
and then use only those which have nonzero parameter values associated with them. 

More specifically for our case the following set of functions was chosen as seen in eq. 
4.4. Assume all as element wise functions on all elements of specified vector element e.g. 
X2 = [ x 2 ( 0 ) , x 2 ( l ) , . . . , x 2 ( £ ; ) ] T 

These functions were selected after a longer process of trial and error. Much wider 
range of functions was tested and afterwards the total set of functions was reduced to only 
those which were significant to the data. So from a large set of functions we obtained this 
relatively small subset of functions needed to represent the model. 

One of the problems with this approach was that these functions became locally cor­
related (mainly because of small range of motion of the ball) and this produced multiple 
„results" that could represent the measured data. However after many simulations some 
results became more frequent than others even if we varied the filtering of the data. So this 
frequent subset was chosen. 

0(x,u) = [ l , X 2 , X 4 , F x , F y ] (4.4) 

We specify the F x and F y as magnetic forces in the x and y directions. These forces 
will be calculated based on equations 2.3, 2.4 and 2.9, 2.10, depending on which model we 
would like to use. Note that the models defined in these equations expect the coil to be 
placed in the origin so to connect the magnetic force model with our coordinate system we 
need to shift the coil position in the model by the position vector [xoi)2/oi] hi this case. 
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To obtain the model, first a series of measurements in the open loop of a behaviour of 
the ball around the first coil with various input currents was performed. The ball was left 
to oscillate around the coil from various initial conditions. The measured data can be seen 
on figure 1.2 (in the X Y plane is the data plotted in figure 4.3). 

N O T E : A l l of the data measured in this thesis was sampled at 1 kHz. 

t[s] 

0.08 

H 
0.06 

0.05 ' 0 
t[s] 

0.4 -

0.2 -

0 150 

trsi 

Figure 4.2: Measured data for single-coil estimation 

Figure 4.3: Measured data for single-coil estimation in X Y plane 

To compute the derivatives, the data was filtered with a simple two-way zero-phase 
moving average finite impulse response filter with the window length of 15 elements. This 
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distorts the original data, but considering how slow is the change in position compared to 
the size of the window, the effects of the filter should be negligible. The derivatives were 
computed numerically and vectors x,y,x,y were obtained. 

Now the matrix 9 can be computed. To obtain the matrix of linear parameters £ we 
would normally invert the matrix 9 in eq. 4.2 and multiply by it from the left, but since 
the matrix is not square we need to use the Moore-Penrose pseudo inverse and so we obtain 
the result as eq. 4.5. 

£ = 9^T (4.5) 

To obtain the final model, we need to consider the optimization of nonlinear parameters 
which is described in the following section. 

4.1.2 Optimization of nonlinear parameters 

The problem with our definition of the magnetic force is that we expect to know the z 
distance from the center of magnetic attractor. This distance cannot be precisely measured 
and therefore must be a nonlinear parameter to be optimized. To increase tun-ability of the 
model we added more parameters to each of the models to obtain the following expressions 
for the magnetic force. In case of induced dipole model (equations 2.3 and 2.4): 

F - i(pi)cx 
(p2x2 + p3y2 + pA)3 

and in case of magnetic coenergy model(equations 2.9 and 2.10): 

F - i(pi)cx ^ 
(p2x2 + p3y2 +p 4 ) ( 3/2) 

i^cy , . p = z (a q\ 
( p 2 * 2 + p 3 y 2 + P4)(3/2) K ' > 

where p\...pA represent set of nonlinear parameters different for each of the models. 
Finally we need to offset the coil centers in these models obtaining final equations for our 
magnetic forces in the x and y directions. 

Induced dipole model: 

px = i{pi)c{x - XQl)  
(p2(x - x01)2 + p3(y - y01)2 + pA)3 

j(pi)c(y - y01) 

(p2(x - x01)2 +ps(y - yoi)2 +pa 

Magnetic coenergy model: 

F = - ^ mi ( 4 i i ) 

F x = i ^ c ( x - x p i )  

(p2(x - x01)2 + p3(y - y01)2 + p 4 ) ( 3/2) 

p = i(pi)c{y-y0i)  
V (P2(x-x01)2+p3(y-y01)2+Pi)(3/2) 
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Now we can combine these equations with our SINDy algorithm. And apply nonlinear 
optimization to it. We then define the optimization problem of finding the parameters 
which best fit our data as 

argmin(x - 6'6' tx T) 2 (4.14) 

where x represents computed second derivatives of measured data, p is vector of non­
linear parameters and 0(x, u, p) is defined as eq. 4.4. 

This approach combines the static estimation with nonlinear optimization methods. 
At each iteration of the nonlinear estimation algorithm a new set of linear parameters is 
calculated. This means that at each iteration we have linear parameters which minimize 
the cost function and we try to find the nonlinear paramters which minimize it further. 

The implementation of a nonlinear optimization algorithm was done using the MATLAB 
Optimization Toolbox from which an implementation of simplex algorithm was used - the 
function fminsearch was used to find the best values of p. 

4.1.3 Comparison between the models 

A comparison between the models can be seen in figure 4.4. From this we can conclude 
that with estimated parameters the models behave very similarly and it makes almost no 
difference which one will be used. Also we can conclude that the models get less accurate 
further away from the coil. 

Measured acceleration x 
Induced dipo o mode 
Magnetic coonorgy model 

- Measured acceleration x 
- Induced dipole mode 

Magnetic coenergy model 

63 64 65 66 67 68 
t [s ] 

69 70 71 72 

Figure 4.4: Comparison of the single-coil models 

However to quantify which model is better we need to look at the R M S E of the models 
with the calculated derivatives from measurements (Table 4.1). 

Even though the results are inconclusive, we will use the Induced dipole moment. One 
reason being the smaller R M S E , but the main reason is that it consists of polynomial non-
linearity in denominator of the magnetic force equations (4.10,4.11). This is much simpler 
to model and calculate, than using a non-integer denominator exponent. 
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Model R M S E value [ms" 2] 
Induced dipóle 

Magnetic coenergy 
0.5965 
0.6095 

Table 4.1: R M S E of single-coil models 

4.1.4 Properties of the chosen model 

The parameters of the chosen model are listed in equations (4.15, 4.16) below. 

-0.1965 
5.8860 

-0.3454 
-1.63 • 10" 0 6 

1.47- 10" 0 7 

-0.0071 
0.0221 
7.7397 

3.32 • 10" 8 

-1.64- 10" 6 

p = [1.1492,1.9370, 2.440, 0.001lfJ 

(4.15) 

(4.16) 

To visualize how the model behaves around the coil we plot the magnitude of the vector 
3c as a scalar value for every point in the xy plane at zero velocity of the ball (x, y = 0). 

Figure 4.5: Acceleration magnitude around a single coil 

At the center point of the coil the acceleration is non zero even though the magnetic 
force is. The acceleration at this point according to model is approx. 0.1996m,s - 2. This is 
caused because the platform is not precisely leveled and gravitational force causes the ball 
to roll „downhill". 

A n interesting phenomenon appears, when we plot controllability of our velocities as a 
magnitude vector at each point. We rewrite our system to state dependent form (eq. 2.37) 
and approximate controllability Gramian at each point using the controllability matrix 
as described by equation 2.50. Now if we perform an economy SVD we obtain the most 
controllable directions in the state space which is four dimensional. But since we control 
only the velocities and not positions in this system we separate these vector elements from 
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each of the four vectors. Now we have a 2 by 4 matrix which contains the numerical 
approximation of how controllable are velocities in the most controllable directions. We 
calculate the Frobenius norm of this matrix to numerically approximate how controllable 
is the system at each point. This is shown on figure 4.6. 

Figure 4.6: Controllability magnitude around a single coil 

We see that in the x and y directions from the coil center the controllability is lower 
than in the quadrants between them. This makes logical sense since the coil can only 
pull the ball towards the center so it is not possible to control the normal velocity to the 
direction of the pull. In theory the controllability should be lost at these points, but the 
imperfections of the platform design such as the tilt of the platform cause these points to 
remain controllable. 

4.2 Numerical modelling of the device 

The modelling of the complete device with all three coils was similar to the process described 
in previous section (sec.4.3). 

First a new data was measured, with all three active coils, then a new 9 matrix was 
constructed and based this a new nonlinear optimization algorithm was performed. 

The measured data in the xy plane can be seen in figure 4.7. The positions of the coils 
are clearly visible. This demonstrates the behaviour of the system, the stable attractors 
are at the center points of the coils whilst all the other points are unstable. This will 
be demonstrated numerically later in this chapter. The unstable behaviour of the system 
prevents from measuring more data in between the coils (which would be beneficial for our 
estimation). 

The new theta matrix is defined as: 

0(x, u) = [1, X 2 , X 4 , F x l , F y i , F x 2 , F y 2 , F x 3 , F y 3 ] (4.17) 
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Figure 4.7: Measured data for parameter estimation 

where F x i , . . . ,F y 3 perform element wise functions of the following forces (same as in 
the previous section) F x \ , F y 3 . These forces represent forces from three of the coils and 
are defined as (also see fig. 4.1): 

F x i = i ( p i ) c ( x - XQl)  

(p2(x - x 0 i ) 2 +P3(y ~ Vol)2 + P 4 ) 3 

F 1 = i{pi)c(y-yoi) ( 4 i g ) 

y (p2(x - x o i ) 2 + ps(y - yoi)2 + P 4 ) 3 

Fx2 = —-,—-, To—"—7—~—vj (4.20) 
(p2(x - x02)z +ps{y - yo2)z +Pa)6 

F _ iipi)<y - ^ 0 2 ) U 9 U 

(p2(x - x02)z + ps{y - yo2)z + P±) 

px3 = i{pi)c{x - x 0 3 )  

(p2(x - X 0 3 ) 2 +pz{y - 2/03)2 +P4) 3 

F 3 =

 i(pi)c(y - ^ 3 ) ( 4 _ 2 3 ) 

The parameter estimation algorithm was applied in the same manner as in the previous 
section and the following sets of parameters were obtained. 
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-0.1059 -0.0283 
7.4123 0.1703 
0.1628 7.4990 

-4.05 • 10" -5 2.8 • 10" 7 

4.16 • 1 0 - 7 -3.94 • 10" 5 

-3.99 • 10" -5 -3.1815 • 10" 7 

-3.03 • 10" -7 -4.10 • 10" 5 

-4.05 • 10" -5 -1.0759 • 10" 7 

-4.54 • 10" -7 -4.06 • 10" 5 

(4.24) 

p = [1.2454, 5.4084, 5.0827, 0.0036]T (4.25) 

This resulted in the fitted data shown on figure 4.8. This figure represents just a section 
not the whole signal, which is much longer (260 seconds). 

Note that we assume that the current can be positive or negative in this context. How­
ever both of them cause a pulling force on the steel ball and to keep things simple we assume 
that the current is semidefinetly positive and don't account for the cases where this is not 
true. 

-Measured 
-Model 

150 155 160 165 170 175 180 185 190 195 

t[s] 

150 155 185 190 

Figure 4.8: Model data fit 

Now we can plot a similar plot to the figure 4.5, but this time for the complete device 
(all three of the coils). 

4.2.1 Stability 

To analyze stability we will use the approach of visualizing the vector field, because solving 
for the equilibrium points with such a complicated system could prove to be difficult and 
with the number of states it is still possible to visualize this with a vector field. We assume 
zero velocities and for each point in the xy plane we plot the resulting acceleration vector. 

We need to consider different cases. One with single coil active, with two coils active, 
with three coils active, with no coils active and with different currents running through 
each of the coils. 
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Figure 4.9: Acceleration magnitude - 3 coils 

First let us assume the case with no coils active. The resulting vector field is shown on 
figure 4.10. We see that there are no equilibrium points present and in the whole plane the 
ball accelerates in one direction due to gravitational pull on a slightly tilted platform (note 
that the vectors in the figure are normalized and their length does not represent the true 
length of the vectors). 

0.04 0.06 0.08 0.1 0.12 

x[m] 

Figure 4.10: Vector field - 0 active coils 

If we activate one of the coils a single attraction point occurs. The equilibrium point 
is at the center of the active coil. If we then add another active coil two new equilibrium 
points are formed. Two are stable at the centers of the coils and one is unstable in between 
the coils (4.11). 

Finally if we add the third active coil another equilibrium point appears. The three 
attractive points are at the center of each coil and the fourth (unstable) is in between 
the coils (4.12). By varying the current between the coils we can vary the strength of 
the attractors as well as the position of the unstable equilibrium point. Thanks to this 
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Figure 4.11: Vector field - 1 and 2 active coils Left - 1 active coil, Right - 2 active coils 

phenomenon we can actually control the position of the ball by keeping in on a plateau 
formed by the unstable equilibrium point. 

Figure 4.12: Vector field - 3 active coils Left - same current, Right - different currents 

Please note that in this analysis we purposely omitted the effect of the velocities on 
stability because this would make the problem four dimensional and hard to analyze. In­
tuitively we can predict that if the ball is moving at certain velocity, it can gain enough 
momentum that the coil force would be too weak to stop it (assuming we have limits on the 
current through the coil). So this would create somewhat of a concept for terminal velocity 
at each point of the xy plane. 
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4.2.2 Controllability 

To analyze controllability we will use similar technique we used with the single coil con­
trollability analysis. We will obtain controllability Gramian at each point in space with 
zero velocities using the controllability matrix calculated from state-dependent state space 
model. 

The state-dependent state-space equations were derived as 

x A(x) 

X\ 
x2 

x3 

X/[ 

+ B(x, u) 11,2 

U3 

(4.26) 

where we assume y = x, u\ : (P l ) ,ll2 

are defined as (see also eq. 4.18...4.23) 

A(x) 

2 — .•(Pi) 
l2 U3 = 

,-(Pl) 

0 1 0 0 
i l l 
Xl 

0 
0 0 0 l 
0 2̂2 « 1 2 

x-.i 3̂2 

and matrices A(x) and B(x, u) 

(4.27) 

B(x,u) 

0 0 0 
(UiFxl+$51Fyl) « 6 1 ^ 2 + ^ 7 1 ^ 2 ) ( $ 8 1 ^ 3 + ^ 9 1 ^ 3 ) 

M l « 2 M 3 

0 0 0 
( ? 4 2 ^ i + C 5 2 F s / i ) « 6 2 ( $ 8 2 ^ 3 + ^ 9 2 ^ 3 ) 

M l « 2 M 3 

(4.28) 

Note: These equations are practically the same as for the single coil case (for 
single coil case U2 and us are zero). This is why these were purposely omitted 
in the previous section. 

Now using these equations we can derive the controllability matrix and controllability 
Gramian as defined by eq. 2.50. Now we compute the S V D of the controllability matrix at 
each point and so we obtain the most controllable directions at each point. Similarly to what 
we have done in previous section with the single coil we now separate the controllability of 
velocities and norm the value to obtain the following figure 4.13. 

We see that the most controllable spot is where the ball is in the center between the 
coils and the least controllable spots are at the center points of the coils. The centers of 
the coils form a triangle of low controllability areas and so the expected behavior is that 
the control algorithms may become unstable in these 
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Figure 4.13: Controllability of the the completed device 

4.3 Analysis of control algorithms using numerical model 

In the following subsections, three nonlinear control algorithms will be tested on a numerical 
model of the system and their final performance compared at the end. First the implemen­
tation of each algorithm is described and afterwards a series of tests will be performed. To 
evaluate the performance of the algorithms two separate criteria will be compared. 

First we will compare how much computational time they require to finish. To make 
this comparison fair we will not be taking the absolute time of the computation because this 
strongly depends on used hardware, O D E solver and other factors which are not determinis­
tic. Instead we will perform 10 simulations of the system following prescribed trajectory (all 
of them will be tuned so they can follow the trajectory closely) using each of the algorithms 
and then normalize the times using one of the algorithms and comparing proportionally 
how much faster/slower were others. 

Second we will compare their stability with respect to disturbances. A zero-mean Gaus­
sian noise will be inserted into the state vector of the system, to simulate real-world signal 
noise. The variance of the noise will be increasing in the magnitude and the M S E between 
the prescribed trajectory and the real one will be calculated. Lower the M S E with injected 
noise the more stable the algorithm is. Note that the other form of disturbance can occur 
and this is due to parameter uncertainty (our model used for control does not fully represent 
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the system), however since not all of the algorithms are model based, comparison between 
them using this type of disturbance would not be fair. 

The trajectory on which we will be testing the algorithms is depicted in figure 4.14. The 
trajectory was chosen to be Lipschitz continuous function so it can be differentiated many 
times and also spans the space in both directions x and y continuously. 

0.04 0.06 0.08 0.1 0.12 
x[m] 

Figure 4.14: Trajectory for testing of the nonlinear control algorithms 

4.3.1 P I D 

First algorithm tested is the classical PID controller with coordinate transformation to 
accommodate for the overdeterminity of the system. This is caused by controlling only 
two states (positions x and y - the same two PID controllers will be used for the x and y 
directions.) using three actuation inputs. The PID controllers create two virtual currents 
ux and uy which are then transformed into the real currents ui,U2 and 113. So given a 
transformation matrix 

T(x) 
(x-XQl) (x-x

02
) (X-X0z) 

sj (x-x
0
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2

 + (y-y
0
i)
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(4.29) 

we can compute the u vector using the Moore-Penrose pseudo-inverse as 
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Ul 

U3 

(4.30) 

The final PID block diagram can be seen in the diagram 4.15. 

Figure 4.15: PID block diagram 

4.3.2 Input-State feedback linearization 

The feedback linearization algorithm was implemented using the state dependent descrip­
tion of the system (eq. 4.26). At each time step a linearizing input vector is computed 
using the following equation 

u = B f ( -A(x)x +v) (4.31) 

v is calculated using the standard L Q R controller. To design this controller we need to 
specify the remaining linearized system which is of the form eq. 4.32 

"0 1 0 0" "0 0 0 0" 
0 0 0 0 x + 0 1 0 0 x + 
0 0 0 1 

x + 
0 0 0 0 

0 0 0 0_ 0 0 0 1_ 

(4.32) 

where we label the new A matrix as A f b l and the new B matrix as B f b l -

We see that one of the biggest downsides of this algorithm will be the uncertainty of the 
model. If the linearization is not precise this system will not be able to compensate for the 
nonlinearity because the equation 4.31 would not cancel out the nonlinear dynamics and 
the control may become unstable. 

For the system described by 4.27 we design a typical L Q R controller with constant K 
matrix and the linear input v is then calculated as 

v = - K x + Ns (4.33) 
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where s is a 4 by 1 vector containing the prescribed trajcetory at each point and N is 
input scaling matrix calculated as 

N = B t ( A F B L - B F B L K ) (4.34) 

This is the typical inverse of the dc gain of the closed-loop system (assuming the C to 
by identity matrix). 

4.3.3 State-dependent L Q R controller 

State-dependent L Q R controller is a S D R E based approach and was implemented precisely 
as described in subsection 2.3.5. This algorithm was the simplest to implement. 

At each time step we need to update our state dependent matrices A(x) and B(x) 
defined by equations 4.27 and 4.28. Afterwards we can use the M A T L A B function icare 
(a bit faster than using the typical Iqr) to solve for the gain matrix K. Afterwards a new 
input scaling matrix N needs to be calculated which is done by 

N = B f ( A - B (4.35) 

The system input u is then computed using the equation 

u = Ns - K x (4.36) 

It is very simple to implement, however at each time step the A R E needs to be solved 
and this is computationally complex task, so it is a trade-off between simplicity and com­
putational complexity. 

4.3.4 Algorithm comparison 

First all of the controllers were tuned to follow the trajectory as best as they can. The 
trajectory goes over area with lower controllability. This causes some deviation from the 
prescribed trajectory at this point. The resulting trajectories with their corresponding ac­
tuation can be seen in figure 4.16. We see that every algorithm performs different actuation 
inputs to the system and all of them perform differently while following this trajectory. 

Computational time was measured for each algorithm and afterwards noise was added 
to the x vector (3 different values to each of the algorithms) in the ode solver (odel was used 
with a step of 0.001 s). The results are shown in table 4.2. The computational complexity 
is normalized with respect to the PID algorithm which is the fastest. 

Algorithm Complexity 
a2 = 0.0001 

M S E [m2] 
a2 = 0.001 a2 = 0.005 

PID 1 1.54e-6 1.71e-5 1.25e-4 
F B L 3.4 7.09e-7 4.82el0 6.62el3 

S D R E 15.6 5.50e-8 e.64e-6 8.35e-5 

Table 4.2: Table of results 

From these results we can conclude that the algorithms loose stability as the noise 
level increases. The F B L algorithm becomes unstable with very low noise levels. The best 
performing with respect to the M S E appears to be the S D R E algorithm which is however 

43 



0.07 

0.06 

0.05 

ii0.04 

0.03 

0.02 

-1= 

0.01 
0.07 0.075 0.08 0.085 O.C 

0.07 

0.06 

0.05 

ii0.04 

0.03 

0.02 

0.01 
0.07 0.075 0.08 0.085 0.09 0.095 x[m] 

0.07 

0.06 

0.05 

ii0.04 

0.03 

0.02 

0.01 
0.07 0.075 0.08 0.085 0.09 0.095 x[m] 

Figure 4.16: Trajectories and corresponding actuation in time Left column - PID, 
Middle column - F B L , Right column - S D R E 

very slow compared to the PID which still holds with decent results and is faster. The choice 
of the best depends on the situation and on the available hardware. The PID controller 
will have difficulties when the trajectory gets further away from the center (which is the 
point around which is the PID tuned), whilst the other may not. A l l of the algorithms will 
be further tested in the following chapter in practical experiments. 

4.4 S D R E implementation to Simulink RealTime 

The practical implementation of control algorithms will be performed on IO card MF624 
from Humusoft company. This card has full Simulink support to run real-time applications 
however the Simulink model must contain only blocks which can be compiled to C, which 
means the Simulink coder must be able to build the used functions to C. However the 
state-dependent L Q R controller requires A R E solver to work, which is not supported by 
Simulink coder, which means it cannot be used. To overcome this issue a simple custom 
A R E solver was required. Implementation was done using a method very similar to Schur 
method described in [18]. 

The method is used to solve the continuous A R E of the form 

A T P + P A - P B R _ 1 B T P + Q = 0 (4.37) 

We compute the Z matrix as 

A - B R - ^ T " 1 

-Q — A T 
(4.38) 

Now we would usually perform the Schur decomposition of the Z matrix, however this 
is not possible because the Simulink Coder does not support the schur function which 
performs it. However we only need to find the non-zero eigenvalues of the Z matrix and 
order them to form quasi upper triangular matrix. This can be done with simple search and 
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order routine while using the eig function, which returns the eigenvalues and eigenvectors 
of the Z matrix. 

Now if we define the ordered (highest to the lowest eigenvalue) eigenvectors with non-
negative eigenvalues as U , then we can decompose this matrix as 

U U i 
u 2 

(4.39) 

The solution to the C A R E 4.37 is obtained as 

U a U r 1 (4.40) 

From this we can compute the feedback gain matrix as defined by eq. 2.36 and imple­
ment the state-dependent L Q R algorithm to the Simulink real-time target. 
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Chapter 5 

Experiments 

In this chapter a series of experiments will be described as well as performed to compare 
how the nonlinear algorithms described in previous chapter work on a real hardware. In the 
first section we will define two trajectories and define evaluation criteria for performance. 
In the second section the experiments will be performed and algorithms compared to each 
other using the actual device. 

N O T E : A l l of the algorithms use the Extedned Kalman Filter to obtain the best 
estimate of all of the states of the system. The implementation of the E K F is done using 
the standard simulink block Extended Kalman Filter and so the precise implementation is 
not described here. The used covariance matrices Q and R can be seen in appendix B . l . 

5.1 Definition of trajectories 

Two types of trajectories will be used. One will be continuous very similar to the one used 
in the the previous chapter with the numerical models. Other one will consist of random 
stair signal in the x and y direction. The random stairs need to be filtered with at least 
a first order filter so the signal is differentiatable and can be used in trajectory planner 
(Trajectories have to be physically executable).The trajectories can be seen in figure 5.1. 

0.075 0.08 0.085 0.09 0.095 0.07 0.075 0.08 0.085 0.09 
x[m] x[m] 

Figure 5.1: Final trajectories Left - continuous, Right - Random Stairs 

The final tests will be performed with longer time intervals betweem the tests to let the 
device cool down. The temperature affects the behaviour of the system and so to make 
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sure all of the tests have same conditions the device will have cool down period between the 
tests. Each algorithm will be run for the duration of 30 seconds and afterwards a M S E value 
will be calculated for each algorithm. Since all of the algorithms have a trajectory planner 
present, this value represents also how stable the control loop is with specific algorithm. 

5.2 Comparison 

First all of the controllers were tuned to be able to follow the prescribed trajectories. The 
final tuning constants and matrices can be seen in the appendix B . The resulting control 
can be seen in figures 5.2 and 5.3. 
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Figure 5.2: Final algorithm comparison - (Continuous trajectory) 
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Figure 5.3: Final algorithm comparison - (Stair trajectory) 
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We can see the behavior of the algorithms on the detail of the stair signal for the x 
position on figure 5.4. We can notice a steady state error which is not constant for all 
trajectories, this is probably caused by various levels of controllability at different points of 
the trajectory as well as different accuracies of the model at each point. 

Figure 5.4: Final algorithm comparison - (Stair trajectory in time) 

The final results can be seen in the table 5.1. The M S E between the reference trajectory 
and the real trajectory signal was calculated as well as the mean value of the current through 
the coil for the specific experiment (calculated as i = i\ + ii + is). This value shows us how 
aggressive the controller was while trying to achieve the goal. We see that these results 
do not fully agree with the ones obtained from our numerical models. From these results 
we see that the F B L and S D R E algorithms have similar performance, whilst the S D R E is 
little bit more aggressive, so it is possible that if the F B L controller was tuned differently 
the resulting control might be superior. 

Algorithm M S E [mm2] i[A] 
Continuous Stair Continuous Stair 

S D R E 69.12 53.07 0.311 0.317 
F B L 62.29 52.78 0.267 0.241 
PID 114.68 99.63 0.279 2487 

Table 5.1: Table of experimental results 
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Chapter 6 

Conclusion 

As a main outcome of this thesis an electromagnetic positioning platform was constructed 
and several nonlinear control algorithms were tested using this platform with positive re­
sults. 

One of the main goals of this thesis was testing of several nonlinear control algorithms. 
Three of them were tested, mainly the ones which are not commonly described by literature 
(FBL, SDRE) with exception of classical PID for reference. 

The algorithms were tested using the numerical model of the device (with estimated 
parameters based on a real data) and also practically on a real device. 

In simulations both the performance, computational complexity and stability were con­
sidered and the results can be seen in table 4.2. From these results we concluded that S D R E 
is computationally most expensive but also provides best results with valid alternative the 
PID controller, which provided very good results but is also computationally very cheap. 
The F B L algorithm has shown poor performance in simulations compared to others. 

However these results were not confirmed using the real device. On a real device the 
F B L and S D R E algorithms performed similarly, with very promising results that the F B L 
could work better. The results of these experiments are shown in table 5.1. 

The performance of all of the algorithms was impaired by noisy measurements of the 
positions, which although an Extended Kalman Filter was used was still significant. If a 
better model was used the K F could probably have been tuned differently to reduce the 
noise even more. The source of this noise is probably the long wiring leading from and 
through the devices as well as the rapidly changing magnetic fields in proximity to these 
wires. The overall resolution of the measurement could also be improved by using smaller 
touch panel, which would limit the operating range but the current operating range is rather 
small so this may not be an issue. 

Another source of error was the inaccuracy of the model, which is the cause of the 
steady-state error in the state-space algorithms. The state-space controllers are designed 
to drive the states towards zero. The reference value shifts this zero to a different point in 
the state-space. This is done by scaling the reference value by the D C gain of the system 
which is calculated from the model. So if our model is inaccurate this causes a steady-state 
error of the resulting control. 

Several important points were made while analyzing the behaviour of the system model, 
such as the controllability is not constant in the whole plane and the levels of controllability 
change depending on where the ball is positioned. This fact lead to most control algorithms 
losing stability or precision in regions with lower controllability, and this was confirmed by 
both experiments and the model (figures 4.16 and 5.2). In further research this could lead 
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to relation between the controller gains Q and R and the level of controllability in that 
region. Which could be used while using the S D R E algorithm which recalculates the K 
matrix at each point. 

Some aspects of the work were affected by the current COVID-19 crisis which prevented 
from usage of better construction techniques, so one of the points which could be improved 
in the future is the final construction, which was not done using professional tools, however 
serves well as a proof of concept and can be easily modified in the future thanks to the 
modular design of all of the elements. 

The platform opens the door for many interesting tasks in the future, such as model 
predictive control, nonlinear boundary value problems, state-space path finding and many 
other tasks which can be performed. 

In conclusion an electromagnetic positioning platform was designed, analyzed and tested. 
This lead to interesting results which will lead to further research in the future. Some of 
the results were not conclusive, because are affected by human factor such as how well 
the controllers are tuned, which depends strongly on personal preference and/or is hard 
to judge. The final implementation was performed on a real-time 10 card and all of the 
algorithms were proven to work properly on this hardware and further algorithms can be 
tested in the future. 
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Appendix A 

Electrical schematics 

Figure A . l : Electrical schematic of the coil driver 
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Figure A.2: Electrical schematic of the signal processing board 
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Appendix B 

List of controller and Ka iman gains 

Kaiman filter 

S D R E 

Q 

F B L 

Q 

P I D 

"0.1 0 0 0 "1 0 0 0" 
0 0.01 0 0 

R = 
0 1 0 0 

0 0 0.1 0 
R = 

0 0 1 0 
_ 0 0 0 0.01_ 0 0 0 1_ 

"2410 0 0 0" "0.01 0 0 0 
0 82 0 0 

, R = 
0 0.01 0 0 

, R = 
0 0 2410 0 

, R = 
0 0 0.01 0 

0 0 0 82_ 0 0 0 0.01_ 

"3500 0 0 0" "0.01 0 0 0 
0 40 0 0 

, R = 
0 0.01 0 0 

, R = 0 0 3500 0 , R = 0 0 0.01 0 
0 0 0 40_ 0 0 0 0.01_ 

P = 92.4, D 8.32 

(B.l) 

(B.2) 

(B.3) 

(B.4) 
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