
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

Game Development Using HTML5

Viktoriia Pukha

© 2018 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Viktoriia Pukha

InformaƟcs

Thesis Ɵtle

Game development using HTML5

ObjecƟves of thesis
The work is dedicated to the development of a 2D game using HTML5. The main goal is to introduce the
process of web game developmentwith HTML5, Javascript, and Phaser framework. The subgoal is to design
and implementaƟon of a plaƞorm game with selected technologies.

Methodology

The work consists of a brief analysis of technologies that can be used during 2D game development. Com-
parison of the main frameworks is introduced.

ImplementaƟon part describes a process of web game development, using technologies that were de-
scribed in theoreƟcal part. JavaScript and Phaser framework is used to create a plaƞorm game.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

The proposed extent of the thesis
30-40 pages

Keywords
HTML5 JavaScript Phaser canvas web game 2D

Recommended informaƟon sources
Dr. Stephen Gose Phaser.js Game Design Workbook: Game development guide using Phaser JavaScript

Game Framework, 2017
Geary, David M.Core HTML5 canvas : graphics, animaƟon, and game development, 2012, ISBN

978-0-13-276161-1
Jacob Seidelin HTML5 Games CREATING FUN WITH HTML5, CSS3, AND WEBGL , Second EdiƟon, 2014,

ISBN 978-1-118-85545-4
Patrick Carey New PerspecƟves on HTML5 and CSS3, 7th EdiƟon, Comprehensive, 2016, ISBN:

978-1-305-50393-9
Rex van der Spuy FoundaƟon Game Design with HTML5 and JavaScript, 2012, ISBN-13 (electronic):

978-1-4302-4717-3

Expected date of thesis defence
2017/18 SS – FEM

The Bachelor Thesis Supervisor
Ing. MarƟn Havránek, Ph.D.

Supervising department
Department of InformaƟon Technologies

Electronic approval: 9. 1. 2018

Ing. Jiří Vaněk, Ph.D.
Head of department

Electronic approval: 12. 1. 2018

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 04. 03. 2018

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Game Development

Using HTML5" by myself and I have used only the sources mentioned at the end of the

thesis. As the author of the bachelor thesis, I declare that the thesis does not break

copyrights of any their person.

In Prague on 14.03.2018 ___________________________

 Viktoriia Pukha

Acknowledgement

I would like to thank Ing. Martin Havranek, Ph.D. for his advices, consultations and

support during my work on this thesis. In addition, I would like to thank my family for

reviewing my work, and support me.

 6

Game Development Using HTML5

Abstract

The goal of this work is to introduce the process of a 2D web game creation using such

technologies as HTML5, JavaScript, Phaser framework. The subgoal is to implement a

platform game. The work consists of a brief description of HTML5, its main drawing API.

Existing technologies which can be helpful during development are analysed within the

comparison of most popular frameworks. The practical part dedicated to game

implementation. It starts with working environment, assets, resources preparations. The

outcome of the practical part is a platformer game, implemented with the help of Phaser

framework.

Keywords: HTML5, JavaScript, Phaser, canvas, web, game, 2D

 7

Tvorba her s využitím HTML5

Abstrakt

Cílem této práce je představit proces vytváření 2D webových her pomocí

technologií HTML5, JavaScript a Phaser frameworku. Sekundárnim cílem je

naimplementovat platformovou hru. Práce se skládá ze stručného popisu HTML5, jeho

hlavnímu API výkreslovani. Stávající technologie, které mohou být užitečné během

vývoje, jsou analyzovány v rámci porovnání nejpopulárnějších frameworku. Praktická část

je věnovaná implementací her. Začíná uvodem do pracovního prostředí, pouzitymi

prostředky, přípravou zdrojů. Výsledkem praktické části je platformova hra, realizovaná s

pomocí Phaser frameworku.

Klíčová slova: HTML5, JavaScript, Phaser, canvas, web, hra, 2D

 8

Table of content

1	 Introduction .. 10	

2	 Objectives and Methodology ... 11	
2.1	 Objectives ... 11	
2.2	 Methodology .. 11	
2.3	 Similar Solutions .. 11	

3	 Literature Review ... 13	
3.1	 HTML5 ... 13	

3.1.1	 Drawing API ... 14	
3.1.1.1	 The Document Object Model and Canvas ... 14	

3.1.1.2	 WebGL .. 15	

3.1.1.3	 SVG ... 16	
3.2	 Game engines analysis ... 16	

3.2.1	 Construct2 – visual game maker ... 18	
3.2.2	 JavaScript game engines ... 20	
3.2.3	 PhaserJS .. 24	

3.3	 Browser debugging tools .. 25	
3.3.1	 Chrome Developer Tools .. 25	

4	 Practical Part .. 29	
4.1	 Development Environment Setup .. 29	

4.1.1	 Browser ... 29	
4.1.2	 Web server .. 29	
4.1.3	 Web development IDE .. 31	
4.1.4	 Other tools ... 31	

4.2	 Game description .. 31	
4.3	 Layout Design .. 32	
4.4	 Assets preparation .. 32	

4.4.1	 Tilemap drawing ... 32	
4.4.2	 Sprites ... 40	

4.5	 Implementation ... 41	
4.5.1	 Files structure .. 41	
4.5.2	 Physics .. 42	
4.5.3	 Player character ... 43	
4.5.4	 Debug .. 44	

5	 Results and Discussion ... 46	
5.1	 Future development .. 46	

 9

6	 Conclusion ... 47	

7	 References ... 48	

List of pictures
Figure 1. Drawing a line using canvas. .. 15	
Figure 2. Drawing a line using SVG. ... 16	
Figure 3. HTML and JavaScript game engine rating. ... 17	
Figure 4. Event system. .. 20	
Figure 5. Phaser states. ... 24	
Figure 6. Google.com in developer tools view. ... 25	
Figure 7. Chrome Network. ... 26	
Figure 8. Chrome console. ... 26	
Figure 9. Chrome extension. .. 27	
Figure 10. Safari Developer Tools. .. 27	
Figure 11. Browser & Platform Market Share. .. 29	
Figure 12. Running web server. ... 30	
Figure 13. Game Layout. ... 32	
Figure 14. New map creation with Tiled ... 33	
Figure 15. Tiled map drawing. ... 33	
Figure 16. CSV file of a map. .. 33	
Figure 17. Map creation environment. ... 34	
Figure 18. Layer's options panel. ... 34	
Figure 19. Tiles. ... 34	
Figure 20. New tileset adding. ... 35	
Figure 21. Tileset added. .. 35	
Figure 22. One tile is selected. .. 36	
Figure 23. Group of tiles are selected. ... 36	
Figure 24. Background Layer .. 37	
Figure 25. Obstacles level .. 37	
Figure 26. Object Layer ... 38	
Figure 27. Result of drawing ... 39	
Figure 28. Player sprite sheet ... 40	
Figure 29. Enemies sprite sheet ... 41	
Figure 30. Project folder. ... 41	
Figure 31. Debug mode on. .. 45	

List of tables
Table 1. Licenses comparison. ... 19	
Table 2. Frameworks comparison (22.12.2017) .. 23	

 10

1 Introduction

During last few years HTML5 and JavaScript actively getting a popularity among the

game developers. The reason of that is very simple – the potential of HTML and JavaScript

in game production. HTML5 is considered to be a powerful game platform. HTML5

games use the technology that allows them to run immediately, without different

extensions installation. It is not required Flash1, and it means that HTML5 enables a cross-

platform functionality.

Using just HTML5, CSS2 , and JavaScript3 it is possible to draw lines, figures on the

screen, to handle animation, to respond on user action. That technologies make possible to

run video and to produce audio content. It supports forms that validate input and provide a

feedback to users. HTML5 shows a great graphics, 2D as well as 3D.

Browsers and JavaScript are constantly getting more powerful and fully featured.

There was a time when building any type of game required Flash. But with this out of the

way, the stage is set for powerful HTML5.

1 Adobe Flash is a multimedia software platform that used for production of desktop and mobile applications,
games, video, animations. It displays graphics, text, allows streaming audio and video. Flash can capture
mouse, keyboard, camera, microphone input.
2 Cascading Style Sheets – is a stylesheet language, describes how HTML elements to be displayed on
screen.
3 Scripting language, run in web browser to create dynamic content.

 11

2 Objectives and Methodology

In this chapter, the objectives and methodologies are introduced.

2.1 Objectives

The work is dedicated to development of 2D game using HTML5. The main goal is

to introduce the process of web game development with HTML5. The approach I used in

this thesis is to explain HTML5, JavaScript concepts in the context of game development.

The subgoal is to design and implementation of a platform game with selected

technologies.

The main technologies for the web game development using HTML5 will be

introduced. The task is to build a game, in a way to provide understanding of how we can

use HTML5, JavaScript to develop a game.

2.2 Methodology

The work consists of brief analysis of technologies that can be used during 2D game

development. Comparison of the main game engines is introduced. Implementation part

starts from the setup of the working environment, mainly a web server, asserts preparation.

At the beginning of that part I introduce software, that is needed, and where to find and

download it. Implementation part describes a process of web game development, using

technologies that were described in theoretical part. Phaser framework is used to create a

platformer game.

2.3 Similar Solutions

There are few bachelors’ works that have a deal with a development in HTML5. “Use of

technologies HTML5 and CSS3”, by Ruben Claudio Guarachi Torres, the work is

dedicated to HTML5 and CSS3 for presenting a web content. The author focuses on

functionalities of the technologies for a web site developing, mainly on responsiveness,

validation process. He introduces canvas element, audio and video content. Another

bachelor solution is “Programming HTML5 games using the MelonJS framework”,by

David Salcer. The author explains the process of game creation, using of MelounJS. The

work is mainly dedicated to MelounJS framework. “HTML5 hra”, written by Petr

 12

Nemecek, who’s goal was to implement an action arcade game. The work is focused only

on the development process, using just HTML5 Canvas technology.

 13

3 Literature Review

This chapter focused on overview of technologies that needed for a game development.

The main game engines visual and scripting described, their comparison are introduced.

3.1 HTML5

HTML5 (HyperText Markup Language 5) – the language for structuring and presentation

of the contents on the World Wide Web. HTML5, the latest version of the HTML standard,

provides us with many new features for improved interactivity and media support. These

new features (such as canvas, audio, and video) have made it possible to make fairly rich

and interactive applications for the browser without requiring third-party plug-ins such as

Flash. (1) HTML5 was completed only in 2014, the previous fourth version was published

in 1999. From year 2013 web browser started to support the standard of HTML5. The

purpose of HTML5 development was to improve the level of multimedia technology

support. In the World Wide Web for a long time and to this day are used standards:

HTML4, XHTML14 and XHTML1.1. HTML5 was created as

a single markup language that could combine syntactic norms of HTML and XHTML.

HTML5 improves, expands and makes rational markup documents. It adds a single API5

for complex web applications.

In HTML5 there many new elements that allow a programmer to reduce a number of lines

of code. It allows to avoid of writing some elements using JavaScript, as a result its

increases the total number of devices that view all the content presented on the page. For

example, the elements <video>, <audio> and <canvas>, as well as the possibility of using

SVG6 and mathematical formulas, now requires a few lines of code, instead of 10 as it was

before HTML5. These innovations are designed to simplify the creation and management

of graphics and multimedia objects in the network without the need of using third-party

APIs and plug-ins. Other new elements, such as <section>, <article>, <header> and <nav>,

are designed to enrich the semantic content of the document. Newest attributes were

introduced for the same purpose, although a number of elements and attributes were

removed. Some elements, such as <a>, <menu> and <cite>, were changed, redefined or

4 The Extensible HyperText Markup Language -
5 Application Programming Interface
6 Scalable Vector Graphics

 14

standardized. API and DOM7 have become the main parts of the HTML5 specification.

HTML5 also defines some features for error handling, so syntactic errors must be viewed

the same by all browsers, that are compatible with HTML5.

The structure of an HTML5 file is very similar to that of files in previous versions of

HTML except that it has a much simpler DOCTYPE tag at the beginning of the file. (2)

Listing below provides a basic skeleton for a HTML5 file. Executing this code involves

saving it as an HTML file and then opening the file in a web browser.

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>The HTML5</title>

 <meta name="description" content="The HTML5">

 <meta name="author" content="Viktoriia Pukha">

 <link rel="stylesheet" href="css/styles.css?v=1.0">

 <!--[if lt IE 9]>

 <script
src="https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.js
"></script>

 <![endif]-->

</head>

<body>

 <script src="js/scripts.js"></script>

</body>

</html>

3.1.1 Drawing API

One of the main feature of the HTML5 specification is the new drawing APIs: Canvas,

SVG, WebGL. They provide bitmapped, vector, 3D drawing capabilities respectively.

3.1.1.1 The Document Object Model and Canvas

The Document Object Model (DOM) is a programming API for HTML and XML

documents. It defines the logical structure of documents and the way a document is

7 Document Object Model – represents all the objects on an HTML page.

 15

accessed and manipulated. (3) The DOM allows the content to be updated after it is

rendered in the web browser. The DOM is accessible through JavaScript.

The most important element in HTML5 game programming is the new canvas element.

The <canvas> element itself has no drawing abilities, using a script actually draw the

graphics. The canvas element itself is accessible through the DOM in a web browser via

the Canvas 2D context, but the individual graphical elements created on Canvas are not

accessible to the DOM. (4) Canvas works in immediate mode, it does not have its own

objects, it has only instructions on what to draw on a frame.

There are two DOM objects for a work with canvas: the window – that is the top level of

the DOM and the document – that contains all HTML tags that are on the HTML page.

The simple canvas element that represents a line is written below.

<canvas id="mycanvas" width="200" height="100"></canvas>

To find canvas element in the DOM, getElementById() is used. The canvas element has a

DOM method called getContext, used to obtain the rendering context and its drawing

functions. This function takes one parameter, the type of context2D.

var canvas = document.getElementById("mycanvas");
var ctx = c.getContext("2D");
ctx.moveTo(0,0);
ctx.lineTo(200,100);
ctx.stroke();

The result:

Figure 1. Drawing a line using canvas. Source: own processing

3.1.1.2 WebGL

WebGL (Web Graphics Library) is a JavaScript API for 3D drawing that enables the

developer to assess graphics hardware and control minute details of the rendering pipeline.

(5) It is run in browsers through a <canvas> element after getting a context from defined

 16

element. All calls are done through JavaScript. WebGL is widely supported in modern

browsers.

3.1.1.3 SVG

SVG (Scalable Vector Graphics) is a mature W3C specification for drawing static or

animated graphics. (5) HTML5 allows embedding SVG using <svg> </svg>, the ability to

inline SVG without use of an object. The basic syntax is:

<svg xmlns="http://www.w3.org/2000/svg"> </svg>

Vector graphics use groupings of mathematics formulas to draw primitives such as arcs,

lines, paths, and rectangles to create graphics that contain the same quality when rendered

at any scale. This is a marked benefit over images whose discernible quality degrades

when they are displayed at a scale larger than that for which they were designed.

To draw a line:

<svg id="svgline" height="200" xmlns="http://www.w3.org/2000/svg">
<line x1="0" y1="0" x2="200" y2="100" style="stroke:rgb(10, 10, 10);stroke-
width:2"/>

The result:

Figure 2. Drawing a line using SVG. Source: own processing

The difference between SVG and canvas approach of drawing is that SVG represents

drawing in XML files instead of drawing in code. “XML is not the more concise

representation of data, so a file may contain many repeated sections. This can be addressed

by compressing the file, which can greatly reduce its size. As with the canvas element,

interaction can be scripted using JavaScript. (5)”

3.2 Game engines analysis

Game engines could be arranged in two main groups: a visual game maker, and a scripting

one. Most of developers are probably going to lean toward using a game engine or building

from scratch, but there is also the alternative of using a visual game maker like Construct2.

 17

Using a game maker means not actually write in JavaScript, instead, to create code-like

events in the editor. It’s a trade of ease-of-use and quickness to prototype or develop vs

customization and control over the end result. There are plenty JavaScript frameworks as

well as HTML engines that make a game development process much easier and interactive.

But without analysis of each of it, it is impossible to choose the right one. Examples of

visual game engines are Construct2, GameMake. Scripting frameworks: phaser, MelounJS,

pixi.js, Three.js, Panda.js, etc.

Every engine has something different to offer to developers. HTML5GameEngine.com is a

web site that provide the long list of HTML5 and JavaScript game engines from the most

popular to the less. Each engine is tied to important information about it: popularity, user

ratings, latest release, and details, that provide users review.

The popularity and sample game information is grabbed from a spider that crawls the web

in search of HTML5 games. Once it grabs games, it dissects them and categorizes by the

game engine used to build them. (6)

Figure 3. HTML and JavaScript game engine rating. Source: (6)

 18

3.2.1 Construct2 – visual game maker

Construct2 is an HTML5-based game editor with a lot of features, enough for people

beginning to work with game development to make their first 2D game. (7)

It designed specifically for 2D games. Construct2 has a drug and drop nature, it is not

required programming background.

The main features of this engine are:

• Multiplatform development. Games can be published to desktop computers, to

many mobile devices, and also to a web site using HTML5, even to publish it on

Nintendo’s Wii U.

• Easy use for non-programmers. It relies on event system, without coding

experience.

• Built-in physics. It provides an approximate simulation of physical system, like

collision detection, or fluid dynamics, etc.

• Instant preview allows or preview a game at any time, no need to wait for

compiling.

• Interactive development which enables testing during creation process.

• Can be extended. Many plugins are available from third-party developers.

Concstruct2 is covered by proprietary license8. There are 3 license plans are available

on the official web site. A trial version is also available.

 Personal Licenses Business

Organizations

Education

Organizations

Price per

year

2 271,49 CZK From 3 306,69

CZK

919,99 CZK

8 Proprietary software is computer software that has restriction on copying and using it. A
publisher retains intellectual property rights.

 19

Who can

buy

For individuals and
hobbyists who want to
create games.

For business of all

sizes and types. But

the price varies

depending on

business size. If the

revenue of the

company is more

than $50 000 the

price is 8 886,39

CZK

For all types of
educational
institutes and
organizations. But
not for students.
Only teachers and
administrators can
purchase the plan

Commercial

use

Limited. The revenue
from the game should not
exceed $5000

Unlimited. Not permitted.

Table 1. Licenses comparison. Source: (8)

Constract2 is that is a desktop app, so it need to be installed and it has systems

requirements are provided below:

Minimum system requirements
Windows XP Service Pack 3 or newer
512 MB RAM
1 GHz Processor
A HTML5 compatible browser
The latest version of your graphics card drivers (9)

Constact2 provides visual game creation. It is possible even to draw characters in the

software and test it, so user can immediately decide is the character is suitable for a game

or not. Construct2 runs everything in the event sheet once per tick9. Events consist of

conditions, depends on certain criteria the event’s actions are run.

9 Most monitors update their display 60 times per second, so Construct2 event sheet usually run 60 times per
second.

 20

Figure 4. Event system. Source: (7)

Figure 4 shows, when any bullet collides with any enemy, the actions on its right-hand side

will be executed. In this case, it will subtract the enemy's health, destroy the bullet

object, and create a new object for a damage effect. The next event, number 13, is

what happens when an enemy's health drops below zero; the actions will destroy the

enemy and add points to the score variable. (7)

Summary. The advantages and disadvantages of the Constract2, depend on the needs and

expectations of a user. For those who has no programming experience this engine is a good

choice. Disadvantage of that could be if users want to learn how to code during

development, in that case this engine is not for them. Another disadvantage is a price, the

free edition is very limited in used. Mainly debugger tab is not available as well as event

breakpoints, it is not permitted to make Windows, Mac, Linux apps, limited quantity of

sound effects. There are plenty examples and good documentation in form of manual and

tutorials is available on the official web site10.

3.2.2 JavaScript game engines

 The popularity of JavaScript has led to a creation of many frameworks. Along with all of

the new technologies that were created to make our life easier, a higher degree of

confusion for many people appeared in choosing the best one. The one that will suite an

application the best.

10 https://www.scirra.com/manual/1/construct-2

 21

To choose frameworks that can be used for game development, the comparison method

was used. The following criterias was selected, based on the initial state of the game and it

future development plans.

The criterias are:

• Well documented. Tutorials, examples, manuals;

• Developer Support.

• 3rd party integration

• Maintained. Last release, the frequencies of updates;

There are 6 most popular JavaScript frameworks were selected for comparison. The

information was taken from the official web sites, and forums, communities, as well as

from own processing. The results are summarized in the table below.

 Documentation Support Integration Last

Release

EaselJS Well

documented.

Five official

tutorials. Seven

community

tutorials. Few

examples and

articles.

No developer

supports.

TweenJS for a work

with tweening and

animation.

SoundJS for a work

with audio.

PreloadJS for a

managing and

coordination of the

loading assets and

data.

Supports tools like Zoe

and Adobe Animate.

18.09.2017

Phaser Well

documented.

Online tutorials

and examples

on the official

web site.

Support services

includes:

• Pre-project

planning.

• Checking Phaser

is suitable for

your specific

• Tiled

• TexturePacker

• ShoeBox

• Audiosprite

• http-server

• uglify-js

• Phaser generator

21.12.2017

 22

requirements.

• Help writing

technical

specifications

and technical

checking

proposals.

• Talking with

development

team about the

best practices.

• Help fixing

gnarly bugs.

• Helping with on-

device testing.

• Creating custom

builds.

• Integration with

3rd party

systems.

• CocoonJS

PixiJS Great

documentation,

tutorials, dev

forum, FAQ

and blow. Three

published

books.

Game Dev forum. Rendering engine that

uses WebGL with

canvas fallback.

Allows WebGL filters

and provide a scene

graph. It is not a full

game engine, it is just

rendering engine.

30.11.2017

LycheeJS Live demos.

Guide contains

tutorials,

troubleshooting

No developer

supports.

Peer-cloud, the

software automation

pipeline and all

running software bots.

20.12.2017

 23

help, concept

explanations,

hints and tricks.

Poor number of

examples.

Project management

wizard, graphical

editor, build tool for

packaging, testing tool.

MelonJS Blog, tutorials,

forum.

No developer

support.

• Tiled

• TexturePacker

• Shoebox

• PhysicEditor

• BitmapFont

Generator

• Cordova/PhoneGag

• CocoonJS

• Ejecta

3.12.2017

ThreeJS Forum, plenty

examples, Slack

No developer

support

Has its own visual

editor. Supports

physically based

rendering, allows real

life quality material

and lighting.

Poor garbage collector,

causing issue with the

performance of a

project.

18.12.2017

Table 2. Frameworks comparison (22.12.2017)

For the Practical part Phaser.js framework was selected. It is very well documented, there

are a lot of examples on the official web site, API documentation, tutorials. Phaser has a

large community, from chart rooms, forums to weekly newsletters.

Developers of Phaser offer premium technical support services to companies. All support

is private and confidential. Support is charged on an hourly basis and can be purchase

online.

 24

There are a lot of 3rd party tools that can be integrated to Phaser projects:

1. TexturePacker to pack individual sprites into one single spritesheet.

2. ShoeBox contains many tools, such as spritesheet and bitmap font generators.

3. Audiosprite ot generate audio sprites.

4. Uglify.js to concatenate and minify JavaScript code.

Phaser is an open sourse project, it is actively developing and available on GitHub.

3.2.3 PhaserJS

Phaser is a free game framework that works via HTML and JavaScript. It offers Canvas

and WebGL rendering across desktop and mobile web browsers. JavaScript or TypeScript

can be used for development.

The core concept in Phaser is a state. A state is implemented using a JavaScript object and

allows to split game code into logical chunks.

Figure 5. Phaser states. Source: own processing

• Preload – The game starts with this function. All resources are preloaded. We are

using it to load a map, sprite sheets, audio, etc.

• Create - After preloading all assets, we can now setup the initial state of the game.

We create objects from the map, assign assets, create layers.

• Update – Called to update the game state, at a set interval (usually 60 times per

second. All updates to the game are done here. Checking collisions between player

and layers.

• Render - Coming after Update, here is where the latest state of the game is drawn

to the screen. For example, debug.

 25

3.3 Browser debugging tools

The most important tool during web development is a browser, which implements most of

the specifications and has many debugging tools. Google Chrome, Mozilla Firefox Apple

Safari, and Opera have outstanding HTML5 compliance and debugging tools.

3.3.1 Chrome Developer Tools

Chrome Developer Tools allows to inspect the DOM dynamically, view resource loading

times and run arbitrary JavaScript. On the picture below there is a console window for

Google.com. It shows a nested view of the DOM with styles for document elements, when

the Elements tab selected. Hovering over an element tag will highlight it in the browser

window. This is really useful when trying to figure out which element is the one that is off

by several pixels.

Figure 6. Google.com in developer tools view. Source: own processing

The other two tabs in the Developer Tools console that are incredibly useful for the game

developers are the Network and JavaScript Console tabs. The Network tab, shown in

Figure 7, allows to track on an asset-by-asset basis what exactly is slowing a web page

from showing in Waves quickly. The first time you run it on a new site, you can decide to

activate it just for this session or forever. Resource tracking does a bit of over- head to

page loading times, so it is best to use it sparingly.

 26

Figure 7. Chrome Network. Source: own processing

The last tab I’ll highlight in this section is the JavaScript Console tab, as shown in Figure

8. It enables also use it to inspect the DOM programmatically or run arbitrary JavaScript.

Figure 8. Chrome console. Source: own processing

Chrome Extensions

The functionality of Google Chrome can be enhanced and extended with extensions. A full

list can be found at https://chrome.google.com/extensions. The installation is very easy,

only by clicking the Install button from Chrome Extensions page, as shown on the picture

below.

 27

Figure 9. Chrome extension. Source: own processing

Two useful plugins for developers are JSONView and YSlow. JSONView allows you to

view JSON data formatted to increase readability. YSlow analyzes web pages and gives

tips on how to improve performance.

Safari Developer Tools

Apple’s Safari developer tools are very similar to Google Chrome. They are hidden to the

end user, by default. They can be enabled by selecting Preferences in title bar and

navigating to the Advanced tab. As shown in Figure 10, “Show Develop menu in menu

bar” is checked.

Figure 10. Safari Developer Tools. Source: own processing

Firebug

Firebug is an extension for Mozilla Firefox that allows developers to debug a website’s

HTML, CSS, and JavaScript. Although originally designed for Firefox, Firebug also has a

 28

“Lite” version that will run in Google Chrome and complements the tools already present

in that browser. The core components and tabs are very similar to Chrome and Safari. As

in Chrome, there are add-ons for Firefox and Firebug to expose more developer

capabilities, such as DOM manipulation and introspection for several programming

languages, such as PHP and Python.

 29

4 Practical Part

In this chapter, the development process is described. Starting from an environment setup,

and follows with a survey about a game genre selection, implementation and finishing with

testing of the application. The practical part of the thesis provides a full how-to manual to

implement a platform game.

4.1 Development Environment Setup

4.1.1 Browser

To make a web game first of all a browser that supports HTML5 (e.g. Chrome, Firefox) is

needed. According to the Browser & Platform Market Share by November 2017. This

report was generated 11/30/2017 based on the past month's traffic to all websites that use

W3Counter's free web stat. (11)

Figure 11. Browser & Platform Market Share. Source: (11)

To test any web application, strong debugging tools are required. Taking into consideration

browser debugging tool, I choose Google Chrome version 63.0.3239.84.

4.1.2 Web server

 To test an application, we need to use a web server. There are a lot of alternatives to

choose a how-to setup a web server. I chose a simple NodeJS http-server. The web server

runs on the http-server npm package. It is a simple zero-configuration http server for

serving static files to the browser. The server is started from the command line and doesn’t

require a server.js file. First of all, NodeJS must to be downloaded from https://nodejs.org

 30

and installed using all the default options. The next step I instated the http-server package

form npm.

npm install -g http-server

After installation completed I started a web server form a directory containing my game

static files.

cd Desctop/czuB/game

The next step is to start the server

http-server

After successful run the following message will appear:
Starting up http-server, serving ./
Available on:
 http://127.0.0.1:8080
 http://192.168.0.100:8080
Hit CTRL-C to stop the server

The game is started on localhost:8080

After successful running a server, to test it, open browser using the address where the web

server is running.

In terminal, we will get the following:
[Sat Dec 30 2017 15:06:16 GMT+0100 (CET)] "GET /" "Mozilla/5.0 (Macintosh; Intel Mac
OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84
Safari/537.36"

After opening a link in the browser, the following window will appear. The server is

running in empty folder, if there are some files, the file tree will be displayed.

Figure 12. Running web server. Source: own processing

 31

4.1.3 Web development IDE11

It is needed a simple plaintext editor to edit HTML code, it depends on the skills and user

creativity. For more comfortable work, especially for a work with JavaScript it is better to

find some powerful IDE that suits all the user requirement. My choice is Visual Studio

Code. It is a powerful code editor, that runs on desktop. It is available for Windows, Mac

and Linux. It comes with built-in support for JavaScript. Visual Studio goes with syntax

highlighting and autocomplete with IntelliSense. IntelliSense is a general term for a variety

of code editing features including: code completion, parameter info, quick info, and

member lists. IntelliSense features are sometimes called by other names such as "code

completion", "content assist", and "code hinting." (12)

4.1.4 Other tools

Before game implementation, we will need the following tools:

- For a map creation Tiled map editor, is available from www.mapeditor.org

- Phaser CE available form https://phaser.io/download/stable

- Phaser Documentation, https://phaser.io/docs/2.6.2/index

4.2 Game description

One player plays a game. Player navigate its environment by jumping and running on

platforms, while avoiding obstacles. The task is to collect as many coins as possible,

avoiding and killing enemies. Player collect a coin by collide with it. Player kills enemy by

jumping on it. If the player intersects with enemy, player will lose one life. If there is only

the last one life, and player collides with enemy, the game is over. User can start to play

the game again.

Game objects:

- A player – movements are controlled by arrow keys

- Obstacles – stones which player cannot go through

- Coins – that should be collected by player

- Enemies – that need to be killed by player

11 An integrated development environment (IDE) is a software application that provides comprehensive
facilities to computer programmers for software development. An IDE normally consists of a source code
editor, build automation tools and a debugger. (2)

 32

4.3 Layout Design

The game layout is very simple. There are 3 screens:

1. The Welcome screen. There is a logo, and a play button, that start a game. In future

it will be extend with settings.

2. Loading bar. There is a waiting time, before all assets are loaded.

3. The game environment.

Figure 13. Game Layout. Source: own processing

4.4 Assets preparation

Game assets is everything that can go into a game, including images, sound effect, sprites,

music.

The required assents are: a map, where the player will move, tiles, images, sprites, audio.

All of the assets, used in game are free, can be used under creative common 12license.

4.4.1 Tilemap drawing

One of the advantages of using Phaser framework for game creation is the integration with

a Tilemap. It allows to create levels using tiles and grid overlay. A tile is an image, which

like a puzzle piece for building a larger image. Usually, tiles are rectangular or isometric.

A map is consisting from tiles. It is more efficiency in checking of collisions, for example,

it is no need to detect it on a pixel side but using a quick formula to find which tile to

access. There few free resources on the internet, where tiles can be downloaded. I choose

https://opengameart.org, there are plenty tiles and sprites can be found for a game.

12 it is free to share – copy and redistribute the material in any medium or format, adapt – remix, transform,
and build upon the material for any purpose, even commercially. (13)

 33

For a creation of a map, I choose Tiled Map Editor, it is free, well documented, available

for Windows, Linux and Mac OS X. The installation is very intuitive, I installed it with

default options.

To create a new map, open Tiled and select File, New. A new window appeared, allows to

input the following parameters: Orientation: Orthogonal, Map size: Width: 64 tiles (1024

px), Height: 64 tiles, Tile size: Width: 16px Height: 16px.

Figure 14. New map creation with Tiled. Source: own processing

The map can be saved in JSON, JS or TMX formats, but for using map in Phaser JSON or

CSV format must to be chosen. After drawing the map will be like on the picture below:

Figure 15. Tiled map drawing. Source: own
processing

Figure 16. CSV file of a map. Source: own
processing

 I chose JSON format, I am more familiar with it. There is no much difference in proposed

export formats. The only difference when using a CSV format, additional parameters

during map loading in Phaser must be provided: tileWidth and tileHeight. After saving a

map, new working layout will appear. On the top right part “The Layer 1” has already

created.

 34

Figure 17. Map creation environment. Source: own processing

Below the layers area some options are available: create a new layer, raise layer, lower

layer, duplicate, remove and show/hide all layers.

Figure 18. Layer's options panel. Source: own processing

The next step is to add some tiles on the map.

Figure 19. Tiles. Source: own processing

 35

After creating a new tileset, the pop-up window as shown on the figure 20 will appear.

Parameters that need to be set:

• Name - will be used during uploading a tile in Phaser

• Type: Based on Tileset Image – a set with a fixed size of tiles, allows to select

margin and spacing between the tiles; Collection of Images – type of tileset, each

tile refers to its own image, useful when the tiles size is not the same.

• Source of file – needed to be in the project assets folder.

• Embeded in map – tileset can be embedded in a map file or saved externally,

possible to change later.

• Use transparent color – transparent background color of the tile.

• Width 16px, height: 16px – correspond to a real tile size

• Margin around and spacing between tiles.

Figure 20. New tileset adding. Source: own processing

After adding a new tileset, it will appear in the left bottom part of the working area.

Figure 21. Tileset added. Source: own processing

 36

The next step is the work with layers. There two main types of layers:

• Tiled Layer – used for everything that does not need custom properties.

Background and collisions will be placed on a tile layer.

• Object Layer – stores many kinds of information, it has individual custom

properties. This layer will be used in storing enemies and golds objects.

The lowest layer is a Background. To start drawing firstly the layer must be selected,

secondly a tile, one or a group of them.

Using stamp brush we can start drawing on the map, using bucket fill we

can fill everything with a selected tiles.

Figure 22. One tile is selected. Source: own
processing

Figure 23. Group of tiles are selected. Source: own
processing

 37

My background layer is presented on the picture below:

Figure 24. Background Layer. Source: own processing

The same principle is used to draw other tiled layers. Decor Layer – contains just some

decorations on the map, like a grass, a moon, etc. Obstacle layer is a layer that will collide

with a player. The layer represents walls that cannot be crossed.

Figure 25. Obstacles level. Source: own processing

 38

The next step is to add objects to the map. The objects are: golds and enemies. Player will

collide with that objects, as a result some conditions will be met, and certain actions will be

run.

Two layers need to be created: Enemy and Gold. I am selecting the Enemy layer on which

enemies will be added. I am using “Rectangle Insert” button to add objects. Select Objects

tab, as on the figure below, all objects that added on the Enemy layer are listed. For a later

work with enemy objects, it is needed to give a name to all of them.

Figure 26. Object Layer. Source: own processing

 39

The result of drawing of all layers are presented on the picture below:

Figure 27. Result of drawing. Source: own processing

The tilemap is exportes to JSON file. Each layer is represented in an array, where the

numbers in “data” array are the IDs of each tile in a tileset. Numeration of IDs is started in

the left upper corner from number 0.

"layers":[
 {
 "data":[39, 39, 39, 55, 55, 55, 55, 55, 55, 55, 55, 39, 40, 40, 40, 40,
40, 39, 55, 55, 55, 55, 55, 55, 55, 39, 40, 40, 40, 56, 56, 39, 39, 39, 39, 39,
39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 56, 56, 56, 40, 40, 40, 40, 39,
40, 40, 40, 40, 40, 40, 55, 56, 39, 55, 39, 55, 56, 39, 40, 39, 39, 39, 39, 39,
39, 39, 39, 40, 39, 55, 55, 56, 39, 40, 40, 40, 40, 40, 39, 40, 40, 40, 40, 55],
 "height":64,
 "name":"Background",
 "opacity":1,
 "type":"tilelayer",
 "visible":true,
 "width":64,
 "x":0,
 "y":0
 }

 40

The tileset is represented like:
"tilesets":[
 {
 "columns":16,
 "firstgid":1,
 "image":"platformertiles (1).png",
 "imageheight":96,
 "imagewidth":256,
 "margin":0,
 "name":"tile",
 "spacing":0,
 "tilecount":96,
 "tileheight":16,
 "tilewidth":16,
 "transparentcolor":"#ff00ff"
 }

4.4.2 Sprites

To animate characters in a HTML5, we need a sprite. Sprite is drawn on a canvas and

animated through JavaScript. Animation can be achieved by rendering an area of a single

image on a certain interval. A sprite sheet consists of many frames in one picture. The

following sprite sheet, will be used for a player character in a game:

Figure 28. Player sprite sheet. Source: https://opengameart.org/

The size of the image is 192 × 192. The frame size is 50×50. I will use only two columns

of frames, the second column will be used when player will run to the left, the last column

for running to the right. The focus will be made on the IDs of each sprite. For example, for

animation of the left running I will take sprites with IDs 1,5,9,12.

Another sprite sheet is needed to add some animation for enemies. I will use only first

three sprites to implement the effect of running.

 41

Figure 29. Enemies sprite sheet. Source: https://opengameart.org/

4.5 Implementation

This chapter is mainly focused on coding of a platformer game using HTML5, JavaScript,

Phaser framework.

4.5.1 Files structure

The project folder consists of the following files:

Figure 30. Project folder. Source: own processing

Lets take a look of index.html. All JavaScript files must be attached to it.

<script type="text/javascript" src="phaser.min.js"></script>
 <script type="text/javascript" src="boot.js"></script>
 <script type="text/javascript" src="preload.js"></script>
 <script type="text/javascript" src="game.js"></script>
 <script type="text/javascript" src="gameover.js"></script>
 <script type="text/javascript" src="main.js"></script>

One of the main feature of a game development in Phaser is a state controlling. States

provide a possibility to separate a code on logical blocks. In the way that a game will

change from one state to another. During writing a code I separate every independent

block, like main block, menu, game to different states. I saved each state in a separate file:

boot, preload, game, gaveover. It is not a requirement, but an advice to keep code more

organized. All states are stored in main.js. States declaration is made by game.state.add():

 42

the first argument is the name of the state, while the second is the name of the function to

call inside such state.

game.state.add('Boot', Boot);
game.state.add('Preload', Preload);
game.state.add('Game', Game);
game.state.add('GameOver', GameOver);
game.state.start('Boot');

So, the first runs state “Boot”, that loads the first screen, the welcoming, and the button

“Start”, that starts the preloaded state. Preload state – loads all the assets.

4.5.2 Physics

There are 3 main physics engines in Phaser:

1. Arcade - bounded rectangles, without rotation. We draw a rectangle around our

sprite and that will be our bounding box.

2. Ninja - bounded rectangles with rotation. The main difference with Arcade is that

we can rotate our rectangles and place them in an angle. For example, if we want to

create an up or down slope in our game level.

3. P2 - full-body physics with constraints, polygon support. This is the most advanced

physics engine and is used for the more advanced/gravity-like games such as Angry

Birds.

In the game I user Arcade physics type, as it is a platformer game type.

Set a physics for a whole game:
 game.physics.startSystem(Phaser.Physics.ARCADE);

For every entity, a type of physics need to be specified. To enable physics the following

code can be applicable:
 enemies.physicsBodyType = Phaser.Physics.ARCADE;
 game.physics.enable(player, Phaser.Physics.ARCADE);
To add gravity to game to make objects fall down.
 game.physics.arcade.gravity.y = 300;

 43

4.5.3 Player character

The tasks of the player are:

• to walk on game environment

• to jump

• to collect coins, by colliding with them

• to kill enemies, by jumping on them

To control a player walk, arrow keys were selected. Phaser has a built-in Keyboard

manager and one of the benefits of using that is this handy little function:

cursors = game.input.keyboard.createCursorKeys();

This populates the cursors object with four properties: up, down, left, right, that are all

instances of Phaser.Key objects. Then all we need to do is poll these in our update loop:

if (cursors.up.isDown)
 {
 canJump = player.body.onFloor();

 if (canJump) {
 jumpAudio.play();
 player.body.velocity.y = -500;
 }
 }

 if (cursors.left.isDown)
 {
 player.body.velocity.x = -250;
 player.animations.play('left');

 }
 else if (cursors.right.isDown)
 {
 player.body.velocity.x = 250;
 player.animations.play('right');
 }

The player increase score, while collecting coins. That solved with collision between

player and Object Layer “Gold”. Under update function we add:

 game.physics.arcade.overlap(player, coins, this.collectCoin, null, this);

 44

The method “collectCoin” calls, after the collision between player and coins was detected.

Audio effect is played, collided coin removed from the screen, added one more score,

updated string with a new score.

collectCoin: function (player, coin) {
 coinsAudio.play();
 coin.kill();
 score += 1;
 scoreText.text = scoreString + score;}

The same concept works with enemies. But another function is called “livesMinus”. The

player also can kill the enemy buy jumping on it, its mean that we need to find on which

part of the rectangle player and enemy collided. So, if we find out that player jumped on

enemy, the enemy object will be removed from the screen.

 if(enemy.body.touching.up && player.body.touching.down){
 enemy.kill();
 }
Another situation is when player accidentally collide with the enemy, so the enemy hints

the player. In that case, lives of the player will decreased by one, and if there is only 1 live

and the enemy hinted the player, so the game is over state is starts.

 if (lives > 1){
 enemy.kill();
 enemyAudio.play();
 lives -= 1;
 livesText.text = livesString + lives;

 }

 else if (lives == 1){
 lives -= 1;
 player.kill();
 this.newGame();
 }
 }
 }
The methos newGame() just starts a gameOver state

 this.state.start('GameOver');

4.5.4 Debug

Phaser has debug constructor, a collection of methods for displaying debug information

about game objects. To debug the game that is running in Canvas mode, need to invoke all

of the Debug methods from the game render function. They are drawn directly onto the

 45

game canvas itself, so calling any debug methods outside of render they are likely to be

overwritten by the game itself.

render: function() {
 game.debug.body(player);
 game.debug.bodyInfo(player, 16, 500);
 }

The result of the debug of the player object is shown on the picture below:

Figure 31. Debug mode on. Source: own processing

 46

5 Results and Discussion

The result of this Bachelor Thesis is a platformer game. The application is uploaded on

GitHub https://github.com/vpukha/Platformer-game , so everyone can use it, and not only

for playing, but also for improving. The application is fully working, according to the

requirement that highlighted before in this work. Of course, there are a lot of thing that

could be added, to make the game more exciting. In this chapter, I would like to provide

some point about the future development of the application.

5.1 Future development

The first point is to extend the game world. On this stage, there is only one level of the

game, so the idea is to add more levels, 5 or more. The possibility to go to the upper level

will be available, after some tasks will be done. The level can be completed on gold, silver

or bronze medals, depends on time that was spent on a task.

The next idea is to make the game available on smartphones. It means two tasks: to make

the application responsive to mobile view, and to provide some input controls, so the user

can play just touching the screen.

The third thing to implement is a multiplayer. It is mean to add server-client architecture.

The client is written in JavaScript with Phaser and runs in browser of the player. The

server that could be used is Node.js and Express module. The Socket.io will provide

communication between client and server.

 47

6 Conclusion

During my Bachelor Thesis work I have described the main technologies needed for a 2D

game development. In my thesis, I found new features of HMTL5, compared to its

previous versions, that makes the process of game creation easier for programmers. The

main drawing APIs are: Canvas, SVG, WebGL. The work follows with description of

game engines. I divided all game engines into two main groups: the visual and the scripting

one. The most popular visual game engine Construct2 is very useful for people who just

start programming. The engine is very easy in use, but it costs money, depends on team

numbers, profitability of the product, etc. I compared 6 JavaScript frameworks according

to criterias that fit my needs in creation of a game in my practical part. After the

comparison, I chose Phaser framework I found that it is actively maintained, supports

third-party tools like Tiled, Texture Packer, and others, it is easy to deploy, and it provides

a developer support services. Speaking about the functionality it has built in three physics

engines: Arcade, Ninja, P2. So, basically there is no need to think about coding a physics,

but to focus on other things, like logic and behavior of the game process.

In my practical part, I described, the process of game implementation using JavaScript

technologies, mainly using Phaser framework. I found it very interactive to use framework

in creating a HTML5 game. First of all, because of built-in functions, that works perfectly.

Of course, it is not a problem to make the same game without any framework, using just

JavaScript, the only difference will be in lines number of code, and also a time that is spent

on creation.

The output of a bachelor thesis is a platformer game. The technologies that were used in

development are HTML5, JavaScript and Phaser framework. Tiled Map Editor was

selected to draw a map of a gaming environment. The Google Chrome browser with its

Developer Tools were used during development for testing and debugging the application.

 48

7 References

(1) SHANKAR, Aditya Ravi. Pro HTML5 Games. New York : Springer Science Business

Media New York. 978-1-4302-4711-1.

(2) MacDonald, Matthew. HTML5: The Missing Manual. First Edition. Sebastopol :

O’Reilly Media, Inc., 2011. ISBN: 978-1-449-30239-9.

(3) JONATHAN Robie, Texcel Research. What is the Document Object Model? Level 1

Document Object Model Specification . [Online] 07 20, 1989. [Cited: 12 20, 2017.]

https://www.w3.org/TR/WD-DOM/introduction.html.

(4) FULTON Steve, FULTON Jeff. HTML5 Canvas. Second Edition. Sebastopol :

O’Reilly Media, 2013. 978-1-449-33498-7.

(5) WILLIAMS, James L. Learning HTML5 game programming. First Edition. Boston :

Pearson Education, 2011. ISBN 978-0-321-76736-3.

(6) Clay.io. HTML5 Game Engines. [Online] [Cited: 01 05, 2018.]

http://html5gameengine.com/.

(7) SUBAGIO, Aryadi. Learning Construct 2. First edition. Birmingham, UK: Pack

Publishing, 2015. ISBN: 978-1-78439-767-8.

(8) Scirra Ltd. Choose Your Plan. Construct. [Online] [Cited: 01 05, 2018.]

https://www.construct.net/cz/make-games/buy-construct-

3?utm_source=scirra&utm_medium=homepage&utm_campaign=homepage&utm_content

=topbuynow.

(9) Scirra Ltd. Construct 2 System Requirements. Construct. [Online] 01 16, 2018.

https://www.scirra.com/manual/6/system-requirements.

(10) GOSE, Stephen. Phaser.js Game Design Workbook. Independently Published, 2016.

ISBN: 978-1520154558.

(11) Awio Web Services LLC. Browser and Platform Market Share. W3Counter. [Online]

12 01, 2017. [Cited: 12 20, 2017.] https://www.w3counter.com/globalstats.php.

(12) Microsoft Corporation. IntelliSense. Microsoft Corporation. [Online] [Cited: 12 20,

2017.] https://code.visualstudio.com/docs/editor/intellisense.

(13) CC by 3.0. Attribution 3.0 Unported. [Online] [Cited: 01 23, 2018.]

https://creativecommons.org/licenses/by/3.0/.

