
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONTINUOUS INTEGRATION AND AUTOMATED
CODE REVIEW IN OPEN SOURCE PROJECTS
PRŮBĚŽNÁ INTEGRACE A AUTOMATIZOVANÁ KONTROLA KÓDU V PROJEKTECH

S OTEVŘENÝM ZDROJOVÝM KÓDEM

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

ADRIÁN TÓTH

Ing. LENKA TUROŇOVÁ

BRNO 2018

Bachelor's Thesis Specification/21007/2017/xtotha01

Brno Un ivers i ty of Techno logy - Faculty of In fo rmat ion Techno logy

Department of Intelligent Systems Academic year 2017/2018

Bachelor's Thesis Specification
For: Tóth Adrián
Branch of study: Information Technology

_ . C o n t i n u o u s I n t e g r a t i o n a n d A u t o m a t e d C o d e R e v i e w in O p e n
S o u r c e P r o j e c t s

Category: Software analysis and testing

Instructions for project work:
1. Study the theoretical background behind continuous integration and automated code

review. Conduct research on the solutions used in popular open source projects.
2. Analyze the implementation of the code review robot used in ManagelQ. Based on

this research, propose enhancements to the implementat ion.
3. Implement the enhancements within ManagelQ.
4. Evaluate the enhanced developer experience achieved by implemented

enhancements. Discuss the development with project maintainers.

Basic references:
• Manageiq. https://github.com/ManageIQ/miq_bot, 2008. [Online; accessed

2017-11-02].
• Market place, https://github.com/marketplace, 2017. [Online; accessed

2017-11-02].
• Martin Fowler. Continuous integration, https://martinfowler.com/articles

/cont inuouslntegrat ion.html, 2006. [Online; accessed 2017-11-02].
• ThoughtWorks. Continuous integration, https://www.thoughtworks.com/continuous-

integration, 2017. [Online; accessed 2017-11-02].

Requirements for the first semester:
Item 1 and 2.

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: Turoňová L e n k a , I ng . , DITS FIT BUT

Beginning of work: November 1, 2017

Date of delivery: May 16, 2018
HYSOKÉ U Č E N Í TECHNICKÉ V B R N Ě

Fakulta informačnlch.technologlí —
Ústav inteligentních syst|mý==^-'
612 66 BmiřSeíeJffififlVaX------—

Petr Hanáček
Associate Professor and Head of Department

https://github.com/ManageIQ/miq_bot
https://github.com/marketplace
https://martinfowler.com/articles
https://www.thoughtworks.com/continuous-
http://www.fit.vutbr.cz/info/szz/

Abstract
Due to an increase of the open source projects popularity a new software methodology
has been adapted which is still evolving with the time. This bachelor's thesis deals with
this adapted agile software methodology more precisely with continuous integration and
its improvements in a real practical deployment. Furthermore, the thesis also deals with
automation of the code review process especially with the static code analysis. This thesis
aims to describe and explain how the continuous integration and automated code review
affect and enhance the modern open source projects. According to the research, a modern
type of code analysis with other enhancements was proposed and integrated.

Abstrakt
Kvůli zvýšení popularity projektů s otevřeným zdrojovým kódem se adaptovala nová soft­
warová metodologie, která se stále vyvíjí. Tato bakalářská práce se zabývá touto adap­
tovanou agilní softwarovou metodologií, přesněji její průběžnou integrací a vylepšením ve
skutečném praktickém nasazení. Kromě toho se práce zabývá také automatizací procesu
kontroly kódu zejména jeho statickou analýzou. Cílem práce je popsat a vysvětlit, jak
průběžná integrace a automatizovaná kontrola kódu ovlivňují a zlepšují moderní projekty
s otevřeným zdrojovým kódem. Vzhledem k výzkumu byl navrhnut a integrován moderní
typ kódové analýzy s dalšími vylepšeními.

Keywords
continuous integration, build script, automated code review, ManagelQ, bot, Ruby, pronto,
GitHub, Travis CI

Klíčová slova
průběžná integrace, build skript, automatizovaná kontrola kódu, ManagelQ, bot, Ruby,
pronto, GitHub, Travis C l

Reference
T O T H , Adrián. Continuous Integration and Automated Code Review in Open Source
Projects. Brno, 2018. Bachelor's thesis. Brno University of Technology, Faculty of In­
formation Technology. Supervisor Ing. Lenka Turoňová

Rozšířený abstrakt

Popularita a používání průběžné integrace spolu s automatizovanou kontrolou kódu v mo­
derních projektech s otevřeným zdrojovým kódem se neustále zvyšuje. Tato bakalářská
práce se snaží o vysvětlení základů a poukázání na praktické příklady. Součást práce tvoří
implementační část, která obsahuje popis navrhnutých a naimplementovaných vylepšení do
ManagelQ bota, které byly založené na základě informací jako například: osvědčené pos­
tupy, rozhovory s vývojáři bota, atd. Vylepšení integrované do bota byly v závěru práce
přehodnocené s vývojáři bota, kteří jsou zodpovední za jeho údržbu. Tato bakalářská práce
byla vypracována ve spolupráci s firmou Red Hat, Inc.

Řešení této práce tvoří části jako průběžná integrace, automatizovaná kontrola kódu
a implementace s příslušným detailním popisem. Průběžná integrace sehrává klíčovou roli v
procesu softwarového vývoje. Tato praktika by měla splňovat následující požadavky: využí­
vaní verzovacího systému, obsahovat unit testy a jejich automatizování, mechanizmus na
zpětnou vazbu a build skript. Tyto nutné požadavky tvoří základ celého procesu, ve kterém
skupina vývojářů jednoduše a rychle integruje změnu do plně fungujícího produktu. Au­
tomatizace tohoto procesu se nazývá integration build, což značí průběh integrace změny
od jejího vytvoření až k jejímu plnému nasazení do softwarového produktu. V průběhu
procesu nasazování vytvořené změny dochází ke kontrole dané změny mnoha nástroji a
následně i testy. K přerušení procesu může dojít v mnoha případech, při kterých je nutné
informovat vývojáře nejen o aktuálním průběhu procesu, ale i o tom, co způsobilo přerušení.
Kvůli tomuto se vyžaduje mechanizmus na zpětnou vazbu, která je dostupná pro všechny
vývojáře. Na základě možných přerušení procesu byla navrhnuta různá doporučení, jak se
j im vyhnout co nejvíce efektivním způsobem.

Automatizovaná kontrola kódu tvoří důležitou součást průběžné integrace, která odhaluje
množství chyb způsobené nepozorností vývojářů. Z toho důvodu, že automatizovaná kon­
trola kódu odhalí množství chyb, ale zdaleka ne všechny, je brán důležitý zřetel na manuální
kontrolu kódu. Kontrola kódu se dá automatizovat na základě pravidel, které definují chyby,
čímž dochází k omezení kontroly na základě konečné množiny pravidel. Tyto fakty svědčí o
tom, že manuální a automatizovaná kontrola kódu se navzájem doplňují a obě jsou součástí
průběžné integrace.

Implementaci této práce tvoří návrh a vylepšení ManagelQ bota. Na základě obsažených
nedostatků bota byla navrhnuta a následně naimplementována tato vylepšení. Vylepšení
jsou tvořena: chybějícími příkazy bota, integrací služby Gitter za účelem upozornění vývo­
jářů, integrací aplikačního programovacího rozhraní GitHub Status, přidáním odstraňování
zpráv o neslučitelném stavu pull requestu, dále integrací Pronta a vytvořením nového for­
mátovacího způsobu pro bota. Součástí řešení je i vytvoření unit testů k dané implementaci.
Některé implementace si vyžadovaly dodatečné vylepšení nástrojů, které byly integrovány
do bota z důvodu chybějících utilit nebo chybné funkcionality. Tato vylepšení byla po je­
jich dokončení přidána do bota pomocí pull requestu, ze kterých byly některé přidány a
zbývající ponechány ve stádiu kontroly kódu.

Cílem této práce bylo seznámit čtenáře se základy průběžné integrace a automatizo­
vanou kontrolou kódu. Na základě těchto informací se podařilo navrhnout a implementovat
spolu s unit testy nové vylepšení do ManagelQ bota. Tyto výsledky implementace byly
následně prodiskutovány s vývojáři, kteří jsou zodpovědní za jeho údržbu.

Continuous Integration and Automated Code Re­
view in Open Source Projects

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Lenka Turohova (FIT B U T) and Ing. David Halasz (Red Hat, Inc.).
The supplementary information was provided by members of the ManagelQ developer team.
A l l the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

Adrian Töth
16.05.2018

Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisors David Halasz and
Lenka Turohova for the continuous support on my bachelor's thesis, for the given motivation
and immense knowledge. Secondly, my extensive sincere thanks goes to the whole ManagelQ
developers team that gave me a lot of advices and help. Finally I would like to thank my
family and friends for their support.

Contents

1 In t roduc t ion 3

2 Cont inuous Integrat ion 4
2.1 Continuous Integration 4
2.2 Demands of Continuous Integration 5
2.3 Stages of Continuous Integration 6
2.4 Continuous Integration Server 7

2.4.1 Polling 8
2.5 Build Script 8
2.6 Research about the Builds of Continuous Integration 10
2.7 Best Practices of Continuous Integration 12

2.7.1 Maintain a Central Code Repository 13
2.7.2 Commit Code Frequently 13
2.7.3 Do Not Commit a Broken Code 13
2.7.4 Fix Broken Builds Immediately 14
2.7.5 Keep the Build Fast 14
2.7.6 Everyone Can See What Is Happening 15
2.7.7 Automate Deployment 15

3 A u t o m a t e d C o d e R e v i e w 17
3.1 Code Review 17
3.2 Principle of Code Review 18
3.3 Types of Code Review 19
3.4 Automated Code Review 19
3.5 Automated Code Review in Continuous Integration 20

4 Implementa t ion 21
4.1 ManagelQ Bot 21
4.2 Pronto 22

4.2.1 Issues 22
4.2.2 Integration 22
4.2.3 Enhancements 24

4.3 Pul l Request Review Request Commands 25
4.3.1 Issues 25
4.3.2 Integration 26

4.4 Unassign Command 27
4.5 GitHub Status A P I 27

4.5.1 Integration 28

1

4.6 Branch Status Notification via Gitter 28
4.6.1 Issues 28
4.6.2 Integration 29

4.7 Unmergeable Comments 29

4.8 Automated Review Request of Codeowners 29

5 Conc lus ion 31

B i b l i o g r a p h y 33

A C D Content 37
A . l Bachelor's Thesis 37
A.2 Bachelor's Thesis - Implementation 37
A.3 Bachelor's Thesis - Setup Guide 37

2

Chapter 1

Introduction

Nowadays, continuous integration (CI) is more often used in larger projects, where mul­
tiple developers work on one and the same software product. This process ensures fast
software development, called eXtreme Programming (XP), known as agile software devel­
opment methodology. The methodology is mainly used to accelerate the development,
nevertheless, development of software may be disrupted in various other ways. Moreover,
although this type of software development has many disadvantages, it is still much more
often used on larger projects. The progress of the development may be reached with a con­
tinuous integration which guarantees less disorders and failures. You may also notice that
the continuous integration is a part of the following open-source projects e.g. Facebook,
Twitter, Mozilla. These projects use one of many famous continuous integration service
Travis CI. Excluding Travis CI, there are plenty of other continuous integration services
you may heard about, such as Jenkins, TeamCity, C i r c l e d , GitLab CI, Codeship and so on.

The software development process requires many code checking tools used after every
single change in the source code. After any type of code modification, there is a possibility
to add, fix, derange or deteriorate any parts of the software product. These tools provide an
automated code review and they offer a quick feedback, by which they try to prevent these
code impairments. Feedback about his adjustment is sent to the developer, who has made
the change in the code. The automated process that provides the code review does not oc­
cupy itself with executing a huge amount of tests. Above mentioned process is conducted via
continuous integration server, which compiles the code, runs scripts and tests. The results
are aggregated and the feedback is given to the developer who has made this code change.
Continuous integration server is invoked every single time after any change is fetched in
the source code and it had to execute the stated acts that are predefined. In next chap­
ters, we describe in detail how does this workflow works and what steps are required to run.

The essence of this thesis are the basics of continuous integration and the fundamentals
of it. This thesis attempts to explain how the fundamentals of continuous integration and
automated code review do work. It describes how it is integrated to the software devel­
opment, and how it works on an extensive project nowadays. Examples will be based on
open-source project e.g. ManagelQ, which is a cloud manager founded by Red Hat, Inc.
The development process of the ManagelQ rests in agility and stability of the progress.
These main factors of the development process could not be reached without a quick feed­
back to the developers working on project about their changes that are submitted to the
software product. This bachelor's thesis has been developed in collaboration with Red Hat,
Inc.

3

Chapter 2

Continuous Integration

In the face of the fact that continuous integration and automated code review are used in
a lot of projects, it is still an unknown part of software development. Despite CI rising as
a big success story in automated software engineering, it has received almost no attention
from the research community [27]. There are only a few researches describing this part
of development and how is it deployed, managed and used. Development analysts are
not giving an adequate attention to this part of software development. They are usually
describing it as a common part of development in a software development process. This
part is concerned by extreme programming due to fast code change deployment. This
development technique is very adaptive and still more and more open source projects use
it. There are many developers relying on this type of software development which helps
them rapidly. This chapter will give you a detailed view of the modern in-use software
development methodology which is still evolving.

2.1 Continuous Integration

Continuous integration (CI) has a key role in the software development process consisting
of a few certain unavoidable steps which will be described later in upcoming sections. CI is
believed to be an effective way to integrate the source code faster and certify the result of
such cooperation, hence an important component of modern software parallel development
environments []. Everything begins at the moment, when one developer who has made
changes in a source code of the software product is trying to commit them into the software
product. The process of continuous integration has begun at this point and lasts until
feedback is sent back to the developer. These stages of continuous integrations are proceed
every time after the CI server has detected a change in a version control repository. This
automation has a lot of benefits which are necessary to keep the software product without
any kind of defects. Many of them are detected in time and reported back to the developer
as a corrupted source code. Not a few developers may think that the continuous integration
is only about compiling a source code and launching tests. In the next sections, we will
present the steps of the continuous integration and describe these individual phases in detail.

To imagine the process, there is an illustration about the components and their con­
nections within the process of continuous integration in Figure 2.1. The image illustrates
situation when Developer 1 commits changes to the version control repository. The CI
server detects this change and provides a feedback about the change back to the Devel-

4

oper 1. The Developer 1 can review informations regarding the change that he made in the
given feedback, e.g. tests results.

Developer 3

Figure 2.1: Components of continuous integration system [32].

2.2 Demands of Continuous Integration

The minimal requirements for a good software development of a project, where multiple
developers work on the same project are a version control repository and a continuous inte­
gration server. The version control system guarantees a software configuration management
which is required for the continuous integration. The meaning of the version control system
is very important. You cannot manage changes that developers had made in the source code
without a version control system. The version control system has a very positive impact on
the developing project. The system offers a history of changes which may be highly useful
if a rollback is desired. Besides the history of changes, this system may save more other
information about the source code, e.g. who did the change, when was the change created,
etc. In addition, the version control system represents a primary source for the project
source codes. This type of project setup is much more often used these days in comparison
to the past. Nearly every project has its own version control system, which is provided by
a repository hosting service.

A CI server has a huge advantage and this is the reason why, it is highly recommended.
It depends on the developer, how does he deploy the CI server. Wi th the CI server, he
does not have to bother with such many scripts for the automation. Nevertheless, as the
developer decides how the CI server will be established, the system must contain these
features. To facilitate the process of continuous integration, the system must support
services as polling version control system, retention of build history, launching predefined
steps such as scripts and tests. Furthermore, the system should offer an opportunity to
send a feedback back to the developers. This server executes a series of actions or steps
taken in order to achieve a particular end of CI. The next section will determine and state

5

these fundamental steps of the continuous integration scenario and describe and illustrate
them in detail.

2.3 Stages of Continuous Integration

The stages of CI insure code inspection and code integration. Before we begin, we need
to clarify certain concepts which will be used later. To understand these steps, we need to
understand what is the difference between a bu i ld , a pr ivate b u i l d and an integrat ion
bu i ld .

Def in i t ion 1 A build may refer to a set of activities performed to generate, test, inspect,
and deploy software [32].

Def in i t ion 2 A private build define a process in which a software developer runs the build
on his local machine to ensure that the changes he made work before he commits them into
a version control repository.

Def in i t ion 3 An integration build is the act of combining software components (programs
and files) into a software system [32].

Figure 2.2 mentions the above stated Definition 3, which depicts the result of combi­
nation of individual parts (components) of the software into a single software system. The
transformation process that integrate these software components together into a one unified
entity is called as an integration build.

Now, as we know what are these concepts, we will illustrate the basic stages of continuous
integration. To describe it properly, imagine that we have a group of developers working
on the same project using a version control system where the source code of the software
product is held, and they use a continuous integration service. The stages of continuous
integration are the following:

1. The change
One developer who wish to make a change, adjustment, improvement or to create a
new feature in the software product has to clone the remote version control repository
to his local computer to download the source code of the software product. At this
point, developer has a local version control repository in which he will do the changes
he would like to. After a change is made, the change is only in the local repository and
the developer would like to commit it into the remote repository. Before publishing
the change, he has to run a private build. The developer has to publish the change he
made which is a request for an approval of the change ready to merge into a specific
branch on the remote repository. These not merged changes are published on the

Figure 2.2 Integration build.

(i

remote version of the control repository.
By committing changes to the version control repository, a continuous integration
server is invoked. The continuous integration server polles the version control repos­
itory when a change is detected, after this poll a reaction occurs.

2. The react ion
When a change is detected it invokes a continuous integration server to execute a few
tasks. The tasks are predefined in a build script, which has to integrate the change
within the rest of the source code of the software product. The script provides source
code compilation, database integration, testing and code inspection. The execution
of the script is referred to as an integration build.
This stage of continuous integration usually includes also code verification. It finds
defects or errors made by developer, e.g a compilation fail, tests failures etc. The errors
are detected by tests which should have high code coverage. A number of errors in
this stage can be reduced by launching a private build, which may be less complex
compared to launching the build script. Passing this stage depends on success of the
build script which must be success on 100%.

3. The feedback
The continuous integration server generates a feedback associated to the results of
the build which is assigned to this change and it might be sent to the author of the
change. There is log information generated every time, by passing the reaction stage,
and it is held and assigned to the change. Feedback is given to the developer in a
certain predefined form, e.g. email with failures only. The log file is saved on the
continuous integration server where there is an overview about the builds and their
stats.

4. The wai t ing
This stage is the end of the process. It stands for continuous polling of the version
control repository waiting for a new change. Detecting a change will cause launching
the stages from the beginning.

2.4 Continuous Integration Server

If the software development proceeds to use continuous integration in the workflow, it might
have a configured CI server. The principal sense of a continuous integration server is to get
rid of a manual integration build. The configuration of the CI server depends on source
code verification requirements and on a type of polling. The CI server can also provide
an additional automation for necessary essentials for the development such as integration,
deployment, etc.

The continuous integration system is based on automation that is conducted by CI
server. Automation is an act, when manual tasks are united and executed together in order
to simplify the execution of manual tasks. Nowadays, in software development automations
can be found in different parts of software development. It helps to accelerate the develop­
ment process. In a CI system, there are different types of builds and mechanisms used for
the automation.

7

2.4.1 P o l l i n g

We can distinguish several types of build mechanisms such as on-demand, scheduled, poll for
change and event-driven mechanism [2]. The simplest automated mechanism, on-demand
mechanism, can be done by a single script and it helps to get rid of tasks repetition executed
by the developer. The on-demand mechanism is a user-driven process in which someone
manually initiates an integration build [32]. Scheduled mechanism is a planned event ac­
complished by a CI server in predefined time. In the situation, where multiple developers
are frequently working on a product during the day, the best choice for a build should be
to plan it in night. The scheduled type is used particularly when an advanced build of the
software product is needed to be done. Scheduled processes are driven by time, for instance,
so that it runs on an hourly basis, regardless of whether or not a change has occurred [32].

Poll for change mechanism and event-driven mechanism differ only in a way of invoking.
Poll for change mechanism uses a periodic time for a change polling and the event-driven
mechanism is time independent mechanism, which is invoked by a version control reposi­
tory. In a poll for change mechanism, a process wakes up in regular intervals and checks
for changes to the version control repository, if changes are detected an integration build
is ran [32]. The event-driven mechanism is triggered by the version control repository. If
change was detected by the version control repository then it initializes the build script.
Only in these two mechanisms, there is a polling service which is sectionalized into two
different types.

There are two types of polling - time dependent polling and change dependent polling.
The CI server with time dependent polling is configured to check the version control repos­
itory for a new change in predefined periodic time intervals, e.g., every 10 minutes. Con­
trariwise, the CI server with change dependent polling is invoked with every single action
which is a change in a version control repository via an informative message about the
current action sent to the CI server. This message including event stats is triggered on a
specified event in the version control repository which must support this feature.

Time dependent polling is mostly used in general due to inadequacies such as missing
event triggering in the version control repository. Due to this fundamental feature some
of CI servers has to have periodic polling on time. The main disadvantage is the time
taken by downloading the actual source code from the repository. After the download is
complete, the changes are still unknown, and so a comparison must be done between the
latest and the last source code for the purpose of obtaining the new changes. Change
dependent polling downloads only the real change towards the actual source code status
made in the repository. If the version control system can support this feature, the source
code synchronization is much more faster and efficiently done.

2.5 Bu i ld Script

Instigation of CI system begin with a change in the version control system results in build
script execution. Transforming sources into a system and simultaneously providing a review
about the transformation is an intricate process, also known as continuous integration,
delivery and deployment. A CI system uses a build script allowing build automation,
which includes every predestined statement to execute. This automation had a magnificent

8

impact on software development. To get rid of constantly repeated actions for the purpose
to accelerate the software development, a build script was created. The principal script
consists of a set of subscripts, which divide the automation into segments that are bound
to themselves according to the execution order. Segments are shown in order in Figure 2.3.
It shows the logical parts of a build script. Script performs a build also called as a software
build which is not just about the source code compilation and tests launch. These various
smoothly executed parts construct a functional unit of the software product. A working
function unit congregation leads to working software deployment considered as the final
step of CI. The script warrants simplification, because of the developers adjust the source
code, and they are able to gain instant feedback about their work. As Martin Fowler said
"Get everything you need into source control get it so that you can build the whole system
with a single command." [25].

K

Build Script

Clean

Compile
Source Code

Integrate
Database

Run
Tests

>

Run
Inspections

> f
Deploy

Software

Figure 2.3: The logical processes of a build script [32].

The main goal of continuous integration is to provide a rapid feedback []. Developers
would like to have as fast feedback as possible. To guarantee this quality, there are different
types of build scripts provided on different kinds of requests. Build scripts are divided by
the role as lightweight and heavyweight scripts. Lightweight scripts are much faster than
heavyweight scripts. They are used on principle of speed. To ensure this behaviour, at first
the lightweight scripts are initiated because they can easily spot the basic vulnerabilities
and then more advanced tests, inspections, and others are launched by heavyweight scripts
which leads to an integration build. Martin Fowler marked the lightweight script which
does the first build, as a "commit build" [25]. These scripts endeavour for quickness, error
detection and software integration, besides that, they also provide a feedback about the
results of the whole process to the developer.

A script is required due to build automation to provide a "press to build" functionality
which is executed many times without any interaction. The script has its logical parts
shown on Figure 2.3. The transformation process in the first part starts with a clean build,

9

which is nothing more than just clean code compilation. The database integration and the
tests execution may be executed differently because of the tests are dependent from the
database. Not every test depends on the database, due to this, we can divide them and we
may run the database independent earlier then the dependent. If there is an error detectable
by database independent than it is caught earlier what is more effective according to the
time. After this phase, code inspection is launched for further deficiencies. The last stage
of the build script is triggered after every previous stages ended successfully. Outcome of
this - is, that the build is an observable result with a log that reflects the build pipeline
which forms the basis for the feedback generated for the developers.

2.6 Research about the Builds of Continuous Integration

Continuous integration is a practice, not a tool [15]. Martin Fowler on first of May 2006
stated the basics of CI and the best practices of CI in his article in which he remitted on
still popularizing usage of CI. In addition to this article, there was a research provided by a
group of scientists about the CI on a project provided for the most part from GitHub. Their
research is an empirical study about the usage, costs and benefits of CI which are concisely
shown in abundant diagrams. The observation of CI and its usage pointed out the signifi­
cant essential role of CI in open source projects. On the basis of the informations obtained
from the researches about the CI, we can make a judgment that this practice will be more
and more used in the open source projects. Thanks to automation and standardization, CI
helps to effectively prevent errors when deploying applications into operation [33].

Continuous Integration is also referred to as a "cure for human error in deployment" [33]
because of error prevention which is rapidly reduced by using this practice. The job of a
developer includes a project build repetition which may be also reduced in the sense of tasks
rate reduction applied on developer. These processes leverage extensive automation and
encourage constant code sharing to fix defects early [22]. Many of errors, bugs, defects and
vulnerabilities are reduced but not every of them is detected by using a CI, nevertheless the
manual software integration is excluded because of CI comprises it as the last step of the
software deployment. The impact of the CI usage in software engineering will have extreme
influence on the future of IT, more precisely in agile teams using extreme programming
technique or any other agile technique. The usage of CI is very adaptive and versatile and
it will be more and more used in forthcoming open source projects or any another projects
which may not be open source only.

In general, if any group of developers would like to use a CI practice, they should ful­
fill few standards and take heed to these standards. In order for developers to benefit
from use CI in practice, they should change their typical day-to-day software development
habits [34]. Usage of CI is a beneficial sideline when a developer commits frequently, daily,
often, probably few times per day. Farthest, the project should be hosted somewhere on any
kind of version control repository which represents a main source for the source code of the
product. Besides these two sole development requirements, the expectations are that the
developers should not try to commit a broken code. It is avoidable by initiating a private
build on their local machine, which decreases the fail chance of the build launched by the
CI server.

10

By using CI practice, the risks as software corruption and integration problems are
reduced appreciably and any kind of bugs are uncovered quickly. The integration may take
unpredictable long time but the use of the CI practice resolves this problem by integrating
the software frequently which may result in a few small kind of integration issues. Some
other software methodologies integrate their work once after a long time which brings their
software to face an incredibly huge integration problem. Martin Fowler pointed this problem
in his article: "I was told that this project had been in development for a couple of years
and was currently integrating, and had been integrating for several months." [25]. Several
articles describe this long time integration as a Big Bang Integration []. As we can see
on Figure 2.4 the risk of the software integration is markedly reduced by using a daily
(continuous) integration which is used in a CI practice.

developed
verified

code

Big Bang Daily

risk

code

time time

Figure 2.4: Comparison of integration builds [16].

"Not integrating continuously is expensive. If you don't follow a continuous
approach, you'll have longer periods between integrations. This makes it expo­
nentially more difficult to find and fix problems. Such integration problems can
easily knock a project off-schedule, or cause it to fail altogether."

- Thought Works® [35]

Prevention against any type of error in a CI is solved via integration build performed
on a CI server. Predicting the result of build has drawn the interest of academia and in­
dustry [20]. In term of build result analysis and prediction, most existing studies focused
mainly on a large software project developed and maintained by big companies [20]. Travis
CI community has created a Travis Torrent 1 [29] for the purpose of providing a huge amount
of information about the builds for full-stack research on continuous integration which is
still a developed prototype. Alongside the Travis Torrent, the GitHub company has pro­
vided information about the data inside of their version control system in a project called
"The GHTorrent project »2 1! Based on these given informations as an open dataset,

l rrhe name of TravisTorrent was chosen to resemble the close proximity to the GHTorrent project [!)].
2The name signifies a torrent of data coming from GitHub [•'!].

11

a few analyses were conducted on them resolving the CI practice in a real life developed
projects. The best practices were established on the results of the empirical studies of these
obtained data sets provided by many of associations.

Studies about the CI were facing against difficult analysis due to inaccessibility of the
project's data such as projects of private companies. Due to this, the observations are
related to projects mainly hosted on GitHub and predominantly using Travis CI. Informa­
tions received from these observations are impressive and they point to the popularizing
usage of the CI or promoting CI adoption in projects nowadays. Continuous integration is
emerging as one of the biggest success stories in automated software engineering [27].

The most interesting question is that how many projects are using the CI at all? In
year 2016, an empirical study stated 40% [] of the projects, observed by them, are using
CI practice. Despite of this result, they noted that the number is still growing and it will
be still growing more intensively. While CI is widely used in practice nowadays, we predict
that in the future, CI adoption rates will increase even further [27]. The results are shown
in the Table 2.1.

Projects Uses CI? Percentage Number of Projects
Yes
No

40.27%
59.37%

13,910
20,634

Table 2.1: Usage of CI in projects [27].

The adoption of the CI to the project may depend on many factors which include, for
example, familiarity developers with the CI which is the main factor. The median time for
CI adoption is one year [27]. The basic reason of putting the CI into the development is
due to bugs and error reduction, but there is still a possibility of a bug or error incursion
into production. As Martin Folwer said "Continuous Integrations does not get rid of bugs,
but it does make them dramatically easier to find and remove." [25].

2.7 Best Practices of Continuous Integration

The continuous integration practice has become very exploited and its usage has increased
considerably the overall agility and efficiency in the development process. It helps stake­
holders, testers and product owners to work together seamlessly eliminating bottlenecks
and achieve faster time to market [12]. This section describes fundamental practices which
can lead to dramatical decrease of the costs on the project by using this approach to the
CI practices. The costs reduction may be approximately 40% less as the Ade Miller's
study [11] has shown. The influence may be avowedly known while using these practices.
The effort of maintaining the CI system and the usage of the fundamental practices for
CI has a magnificent impact on the project. Project investment into a CI usually leads to
costs reduction, agility growth and error reduction in the development process. Some of the
scientific studies report a different number of the CI practices but the general idea of these
practices is same in each of them. Studies investigate more likely GitHub projects due to
the free available informations, from GitHub projects in the GHTorrent and TravisTorrent
projects, and on this basis, they established these practices.

12

2.7.1 M a i n t a i n a C e n t r a l C o d e R e p o s i t o r y

As a fundamental requirement for the CI is a version control system where a principal
repository is held. Software development project involves multiple developers constantly
working and pushing code files that need to be orchestrated together to build a product [12].
Maintaining a system like this includes a lot of advantages as a source code backup, a
reference on the primary mainline of the code with the latest content and a much more
others. However, it is mainly used as a source for latest and clean source code of the
developed project. This is a basic part of the setup for every project developed by a group
of people who would like to share a code in the most common way in the development
life. Nowadays, it is a often used practice nearly for everybody working on some software
product in the development and alongside CI practice is necessarily used.

2.7.2 C o m m i t C o d e F r e q u e n t l y

The continuous integration approach requires to commit at least once per day into the
baseline. The CI is based on frequent integrations where the integration is initialized by
a new commit. The fact that the commit starts the whole process which may be halted
at testing part not necessitate but recommend to update the local copy of the mainline
to resolve possible conflicts which may halt the process too. After the update, the newly
added changes are ready to be checked by a local build which prevent the fail of testing
part of integration. The daily commits will result in frequent integrations that keep the
mainline in stable state and good condition. Because of there are many commits, one rule
applies to them which should be kept. A commit should have a characteristic attribute of
atomicity which divides the code in two parts as before adjustment and after adjustment.
It means, that the commit forms a logically comprehensive unit of changes. The frequent
commits better the collaboration because of source code sharing between developers and
oftentimes run an integration builds of the mainline on the integration machine that checks
the mainline status.

2.7.3 D o N o t C o m m i t a B r o k e n C o d e

Broken code is a code that contains any type of failure when it is included in a CI build [].
As a prevention against committing a broken code to the shared code repository there is an
opportunity to run a private build on a developer's machine before each commit. A private
build detects the simplest mistakes such as a syntactic error or any other error forgotten
in the code which are easy to detect. To reduce the plain error inside of the committing
code, developer may use a code linter, if a developer uses an I D E 3 , it may has a build in
linter. Code linting is a process of running a program which provides a code analysis for
potential errors. Some of these basic errors are not detected by the linter so this is the
reason why a developer should launch a private build before every single change he would
like to commit. A private build may include a simple test set to detect these potential errors
and defects in a created change. To commit a non broken code stands for to run a private
build on a developer's local machine before committing his changes. This circumvention
may accelerate the change integration.

integrated Development Environment

13

2.7.4 F i x B r o k e n B u i l d s I m m e d i a t e l y

A n error consequences may beget a broken build as a result of the CI failure. Outcome
of this action is an feedback which is sent to the developer as a fix requisition. Developer
responsible for this problem should fix it as fast as possible irrespective of the build time
cost. Fixing a broken build should be the top priority of the project []. As Martin
Fowler quoted Kent Beck in his article "Nobody has a higher priority task than fixing the
build." [25]. The meaning of this build fixing is not to stop the actual tasks given to the
developers, instead of this, it means to get couple of versed project members to fix the
build. CI is effective while the build of the mainline, the principal branch of the project,
has a successful termination result. Keeping an operational code in the repository forms the
basis of CI which signifies a development on a stable based code. Effectiveness of the CI,
while the code is stopped at build and not progressing to the integration into the software
product, is low. To keep a mainline without broken build is almost always an unfeasible or
nearly impossible task due to the human factor. The core idea of this part, how to ensure
a mainline without broken builds, is to prioritize the urgent fixes and realize them if needed.

Some of the build fix solutions involve dropping the last commit - last change reversion.
To avoid broken builds and enhance the solution mentioned before a new practice has been
introduced - the pending head. Usage of pending head is a prevention for broken builds of
the mainline. A pending head is a way how to indirectly commit a change into the mainline
for the reason of a build make. The result success of the build decides about passing the
commit into the mainline.

2.7.5 K e e p t he B u i l d Fas t

The stumbling block of the CI practice is the duration time of build. Because the build and
test steps must be performed frequently, it is essential that these processes are streamlined
to minimize the time spent on these steps [22]. Build time may be inappropriately long,
which is unacceptable for the developers and can lead to the disfunction of CI. Every
minute you reduce off the build time is a minute saved for each developer every time they
commit []. The most crucial and meaningful solution for reduction of the build duration
is to use inside of the build a pipeline. Build is executed by a build script which can be
divided into parts which were described in Section 2.5. According to the reduction of the
build time, tests take a long enough part of the build time too. A CI practice laboriously
relies on the unit test which runs approximately equal to core components which makes
them very fast. They are the first line of defense in ensuring quality []. Vice versa, the
API ' 1 and functional tests are greater time consumers due to their complexity. Graph in
Figure 2.5 depicts the dependence of these two factors. A solution of this situation lies in a
well chosen pipeline of the deployment, more precisely, how to run multiple builds in phases
properly. When possible, running different sections of the test suite in parallel can help
to move the build through the pipeline faster [22]. A useful consideration of using many
of unit tests with high code coverage which have minimal maintenance may also lead the
build to time reduction.

4Application programming interface

14

Comprehensivness
of testing

Figure 2.5: Dependence between length and complexity of the build and comprehensiveness
of tests [8].

2.7.6 E v e r y o n e C a n See W h a t Is H a p p e n i n g

Continuous Integration is all about communication [25]. Using a CI practice means to share
all the gathered informations with the project members. Anybody from the team members
should see the informations about the adjustment in the code that somebody had created.
But it is not just about others' work it is about the project state and the changes which
have been made inside of it and about the new ones which will be integrated into it.

The fundamental part of the CI is the granted feedback about the result of the build
realized by the CI server. Feedback is a summary of the log generated during build. These
informations about the build status should be easy to obtain for anybody ensuring the
development speed and quality. Developers must know the status of their adjustment after
being handed over to the build. The news in the feedback are very important, especially
at some build break. Information obtained from the feedback serves to fine-tune the made
adjustment by the creator. Every single build result is assigned to the belonging commit
(adjustment) which was made. These informations should be retained for the case if some­
body would like to look at a build passing in the past - build passing before the current
state. Developers should easily gain these informations and they should be notified if any
kind of build broke arises on their work.

2.7.7 A u t o m a t e D e p l o y m e n t

Automating deployment helps to reduce waste [15]. Automated deployment is nearly ad­
herent to release automation. A n essential part of releasing a software product is deploying
it, first on development environments, then on Q A 5 and U A T 6 environments, and finally
on the real production environment, either on the developing organization's premises, on
a customer's premises or on the cloud []. The usage of the CI required multiple develop­
ment environments. Consequently, that you have to move the binaries between multiple
environments which follows to create scripts if no manual work is wanted. This allows

5 Quality Assurance
6 User Acceptance Testing

15

to deploy application across various heterogeneous environments used in the development
process including the final production environment automatedly. In these days, there is an
interest in virtualization which allows to create the expected environments easy and simple
by putting together these virtualized environments.

If the application meets all standards and criteria it is deployable. You have to pay
special attention to the deployment. There always was, is and still will be a chance of a
failure, due to this fact a failure of application deployment requires a rollback. This rollback
provides a certain decrease of difficulties about the deployment. Automated deployment,
tied into good CI discipline, is essential to make this work [25].

16

Chapter 3

Automated Code Review

Development has adopted code review practice a long time ago. As software engineers
collaboratively develop software, they need to understand, analyze, and validate past and
present program modifications made by other developers in order to detect inconsistent,
potential defects, manage the impact of the changes on structural anti-patterns, and avoid
validation failures due to the lack of test coverage [37]. Nowadays, it is an ordinary well-
known practice which influences the overall code quality. Reviewing the source code is a
complement to other quality mechanisms, such as compiling, integrating and testing [21].
This practice rests in idea of revising others work by others which points to collaboration
on the same code by multiple people, especially co-workers. Today, this practice has been
influenced by a lot of development practices and habits which lead to the use of code review
in a development progress. A n idea has arisen to automate this process which should speed
it up due to its time costs. The practice has been successfully automated but it is not
fine-tuned already. There are many suggestions how to improve the code review quality
and speed which cause code review more effective. The next sections describe code review,
its types and how it is deployed in today's software development.

3.1 Code Review

Code review is a substantial part of the development which improves the source code quality
markedly. The importance of the code review lies in the code enhancement that is significant
towards not reviewed code. Code quality is made by imperfection reduction. Analysis of
the code by someone else than the author who has a different type of view on the code may
result in an imperfection detection. The reviewer, who is not the author of the code, can
be a person or a software. This reviewer type division involves two types of code reviewing
- the automated code review and the non automated review which is done by a developer.
Human is irreplaceable by a machine but machines do not make mistakes. This is the
reason why the development process includes both types of code review. Automated code
review functionality is supported in many of IDEs which informs the developer about the
vulnerability in real time. This feature may involve static code analyzing tools which provide
an extremely fast feedback. Rigby and Bird (2013) find that current software inspection
practices tend to converge on Modern Code Review (MCR) [31]. The non automated code
review also known as manual code review is done by a person via some code review tool.
The person is usually a project member who has to known at least the fundamentals about
the code which he has to review. Review ends with a code criticism which should be taken

17

by an author positively because of it enhances his code not degrades it. Software code
review is a well-established software quality practice [31]. Code review can improve the
quality of software products by identifying weaknesses in changes early in the development
cycle (Fagan 1999; Shull et al. 2002) [31].

3.2 Principle of Code Review

The resulting work of a person normally involves deficiencies and faults because of the im­
perfection of people. The amount of imperfections depends on the skills and the experiences
of an individual but they are still not removed completely. To catch the rests of non-caught
vulnerabilities require to examine the work, the source code in case of development, by
collaborators or project members. The examination of the work result is called in the de­
velopment as a code review. To understand what is a code review or source code review
there are different type of definitions.

Def in i t ion 4 Source code review is an act of consciously examining source code intended
to find bugs at an early stage of software development [23].

Def in i t ion 5 Source code review is an offline task aimed at finding the bugs in a code
without compiling or executing the code [23].

Usage of this practice is reflected on the quality of the source code which is rationally
premeditated due to different types of reviewers view. Code review explicitly addresses the
quality of contributions before they are integrated into project's code base []. A research
article stated that a large portion of faults has been found by only one reviewer []. As
many of reviewers are participate on a review, many deficiencies of the code are annihilated.

Patch Set

Reviewer(s)

Figure 3.1: Code review process [36].

Code review always starts with a request for a review of some patch which is a modifi­
cation of the actual source code. This patch is reviewed by somebody who has knowledge
about this field or it is related to his field. The reviewer may approve this patch which leads
to a merge of the patch into the actual source code in the repository - the project code base,
or he may request for a fix from the author. This request for a fix does not mean that the

18

patch is impaired, it will enhance the patch instead of patch degradation. After a fix re­
quest, the process is repeated until an approval. This process in non-automated, also called
manual, because it is done by a person or a group of people. In an agile development, a
thought has arisen which tried to automate this process. The impact of continuous integra­
tion on code review process is not yet properly understood given that they are interleaving
steps in the software quality management [28].

3.3 Types of Code Review

There are many of code review types depending on the aspect, view and the review provider.
Code review is divided into two basic types such as manual or automated. The reason of
this division rests in the reviewer type. The reviewer may be a person who has to review
the whole code or a software which processes the code according to the predefined set of
rules.

The manual code review is a code examination of others work provided by a person.
This type of review was described in Section 3.2 and shown in Figure 3.1 what constitutes
the basis of this practice. The difference from automated code review is the fact, that the
manual code review includes a human person who has to give the review judgment - the
approval or a request for a change.

To automate this practice, it is necessary to have a definition of project-specific rules.
The automated code review is based on a predefined set of rules and best practices which
are checked by a software whether the conditions are met or not. Matching these rules
is provided via software which includes static analysis tools for this operation. As man­
ual code review includes at least one person, the automated code review includes a static
analysis tool which represents the person and performs his job in the code review. Static
analysis tools for automated code review are the most effective [18]. This automation is
only refinement of manual code review due to its duration.

Nowadays developments usually use both approaches. The major purpose is to catch
as many deficiencies as possible to reduce the insufficiency of the software product and
increase its overall quality. Manual review is such a pain that reviewers regularly suffer
from the "get done, go home" phenomenon - starting strong and ending with a sputter [18].
This factor may be circumvented with automated code review but it has its deficiency too
because it is limited by the number of rules. It cannot catch defects which are not defined
the set of rules. These two fundamental reasons lead the development to adopt both types
of code review.

3.4 Automated Code Review

Automation cannot be achieved without any static analysis tool. A static analysis tool
is included in a software which provides a static analysis which is performed without any
compilation or any execution of the analyzed source code. Static code analysis finds a wide
range of issues such as code style, code best practices, security, complexity, compatibility
etc [13]. The terminology includes an expression defined for a static code analysis which is
named as a code inspection. The software which provides the static analysis of the source

19

code with the adequate tool mentioned before is called as a linter. Also the usage of this
software has created a notion "linting" which is a process of running this software that
analyses the source code. There are many linter types which variety depends on the lan­
guage of the source code it has to analyses for the deficiencies. These widgets are often used
in a CI practice due to error uncover before applying the modification and adjustments into
the source code.

Automated code review is a process in which a software checks the source code for
compliance and observance predefined via rules and for insufficiencies which could lead
to potential errors. These rules represent a specific patterns which have to be adhered.
Keeping the rules leads to better code quality and orientation of developers in the code due
to one coding style which was chosen to be abode. This type of code review is an analytical
solution for code checking which does not include source code compilation. The result of
this process involves a list of violations and contravention of standards and principles which
have not been complied with. The source code after solving these detected inaccuracies is
faultless and without any potential error and also in one coding style. Due to the fact that
this type of code review forces developers to use only one approach to coding guideline which
helps to make the code readability much more better unlike mixing multiple coding styles
together as a result of collaboration. In agile software development with manual code review,
this practice has a considerable demand on the review speed in the development process.
Because of this, oftentimes the development chooses a selection of both review types usage
in the development considering that these types complement each other. Nowadays, there
are plenty of these application providing static code analysis which have their utilization
nearly in every project.

3.5 Automated Code Review in Continuous Integration

This type of code review is oftentimes used besides a CI practice in which it has an appre­
ciable impact. Many times the detected offenses break a build initialization in a CI pipeline.
The build is useless if any of critical defect is included in the source code because of the time
costs of the process which will even though find this defect. Automated code review is fast
enough to be used beforehand build initialization to decrease a chance of worthless build
execution. Besides the usefulness of automated compilation and testing software projects
can greatly benefit of the execution of automated static code analysis tools within CI [17].

20

Chapter 4

Implementation

The fundamentals of the implementation part of this thesis were established on deficiencies
and issues related to the ManagelQ Bot [10]. A list of missing needs of the bot were created
by the developers and more important of them were chosen to be implemented. The goal
of the tasks was to reduce these deficiencies and issues by implementing and adding them
into the currently working bot. Besides of the implementations of bot's missing features
there were a plenty of problems and issues as a side effect which had to be resolved as fast
as possible. The implementations of the bot's missing needs were added via pull request to
the ManagelQ Bot repository which had to be checked before merging by the maintainers
of the repository. The pull request checking - the pull request review, was a little bit slowly
because of the maintainer's busyness. The result of these features may help developers with
a little increase of the team agility and simplifying some of their needs targeted to the bot.
I hope and believe that these added features will help developers in their daily work. Some
of the features are added already, but some of them are still not added yet because they
are waiting for their pull request merge or approval.

4.1 ManagelQ Bot

The ManagelQ bot is the ManagelQ team's helper to automate various developer prob­
lems []. The automation of these manually provided tasks by developers increased the
team agility because of time saving for major tasks. In addition, this bot reacts on spe­
cific commands used by the project members on which he performs a desired action. The
bot's core is based on Sidekiq 1 which is a simple background processing for Ruby. Due
to the fact that the bot is not using GitHub's Webhooks2 it is configured to use a polling
method instead. The polling method rests in a specific content downloading repetitively
via GitHub's R E S T A P I v3 3 over H T T P S . The downloaded content contains JSON data
from which are the necessary informations extracted and on their basis an action or mul­
tiple actions are performed. Some of the bot's actions results in a GitHub actions such
as posting a comment, adding a label or milestone that are using H T T P requests via the
mentioned R E S T A P I v3. These actions are used to facilitate the manual tasks resulting
in a complete elimination of them from the developer's tasks.

x h t t p s : //github.com/mperham/sidekiq
2 h t t p s : //developer.github.com/webhooks
3 h t t p s : //developer.github.com/v3

21

http://github.com/webhooks
http://github.com/v3

4.2 Pronto

Pronto is a tool that provides an automated code review of new changes in a git branch [].
It is typically used in continuous integration as a way to provide feedback on a pull/merge
request [24].

The Pronto [6] integration was necessary due to the unification of the output of multiple
static code review services. Pronto provides a quick automated code review by analysis of
the relevant changes with the related static analysis tool to the source code. The main
advantage is that it has its own formatters which are very useful. If the output is desired to
be formatted for GitHub, BitBucket, GitLab or any other supported format than the built
in formatter provide this expected feature. The format type - pull request, pull request
review, etc., is also supported. The result of formatters is configurable via configuration file
which defines the desired format of the produced message. Henceforth, Pronto is able to
run multiple different static code analyzing tools such as RuboCop, Y A M L - L i n t , H A M L -
Lint, etc., which are united under Pronto. They are united because of only one output is
expected with a summary of the analysis results.

To unite these various tools, Pronto had encapsulated every single tool into a Pronto plu-
gin - a Pronto runner. This runner represents a middle layer between the Pronto application
and the tool - the static code analyzing tool. The encapsulation facilitates the unification
of these tools at the end of the source code analysis process. The Pronto runner provides
an automated code review for a specific programming language by the corresponding linter.
This linter union was a great simplification of running all expected linters together.

4.2.1 Issues

During the integration process, a few problems were discovered which had to be resolved.
The main issue of this integration was a pattern matching of the Pronto output with the
original output of the code reviewing part. This integration required to create exactly the
same hash'1 from the Pronto result as the original hash was because of further usage in the
bot - compatibility with the original structure of the results. Furthermore, a bug has been
found during the testing of Pronto. A Pronto runner does not include an offense about a
syntax error. This type of offense was detected by linter but the encapsulation of this linter
into the runner caused that this offense was threw away.

4.2.2 I n t e g r a t i o n

The integration process of Pronto involves implementation of Pronto result converter, unit
tests, bug fixes and enhancements with some of them being designed after review of the pull
request by the developers. To integrate Pronto without changing the original behavior of
the bot required to launch Pronto with the authentic linters and convert the Pronto result
to match the original hash pattern of the offenses. Before the Pronto analysis a temporary
folder is created where the examined repository is copied whose content is located in a
subdirectory repos of the bot. After that, a repository object is created based on the actual
temporary folder content which is fetched. The last stage of this part rests in gathering the
patches which are passed to the Pronto runners. The execution of Pronto runners results

4 A Hash is a dictionary-like collection of unique keys and their values also called associative array.
5 https: //github.com/ManageIQ/miq_bot/pull/406

22

in the expected output - an array of pronto-message objects. A n object which has type
of pronto-message contains every information about one patch of line including the linter
result describing this line. A n example of a single pronto-message is shown in Figure 4.1.

#<Pronto::Message:0x000056452d8dcef8
@commit_sha=" Id4e09dc52421b8adeab39f37728aca95a4fc462",
@level=: warning,
@line=
#<struct Pronto::Git::Line
line=
<Rugged: :Diff: :Line:47427558500720
{line origin: :addition, content: "puts 'Hello' \n">,

patch=
#<struct Pronto::Git::Patch
patch=#<Rugged::Patch:47427542553580>,
repo=
#<Pronto::Git::Repository:0x000056452b969698
@repo=
< Rugged: depository :47427542010600
{path: "/tmp/d20180323-13013-llkcejq/.git/"}>>>,

hunk=
<Rugged: :Diff: :Hunk:47427558501220
{header: "@@ -0,0 +1 @@\n", count: 1}>>,

@msg="Layout/TrailingWhitespace: Trailing whitespace detected.",
@path= "space.rb",
@runner=Pronto::Rubocop>

Figure 4.1: Example of Pronto::Message object.

After obtaining the pronto result in a form of an array of pronto-message objects the
creation of the identical hash which has to match the pattern of the original hash can begin.
Originally the linters were run sequentially while their results were appended into an array
which is shown in Figure 4.2. The result was a hash including structures about the detected
offenses belonging to the specific files sorted by linters. This type of liters lauching is via
Pronto much more easier because of the developers have to specify only the gem in the
gemfile and there is no need to change a large amount of source code. A Gemfile describes
the gem dependencies required to execute associated Ruby code []. Expected linters have
to be specified only in a gemfile by using the corresponding gems for the Pronto runners
responsible for the linters.

unmerged results = []
unmerged results << Linter::Rubocop.new(branch).run
unmerged results << Linter: :Haml.new(branch).run
unmerged results << Linter: :Yaml.new(branch).run
unmerged results. t ap (&: compact!)

Figure 4.2: Example of linters launch.

The example shown in Figure 4.2 is a function body which was completely replaced.
In order to maintain the same functionality, a converter was created which replaced this
function body. This changed function works on the principle of retrieving the pronto result
which is converted to the same structure as the original was. The pronto result is obtained
via a function which creates a temporary folder in which the branch content is copied,
fetched, analyzed and the patches describing the changes are passed to the pronto which
runs the pronto runners resulting in an array of pronto-messages. This array is iterated
over and its content of pronto-message objects from which are the necessary informations

23

extracted, is mapped to the structure describing the original one. The informations describ­
ing the linter and the platform were not added to the results as it originally was because
they were not applicable. The method of linters launching shown in Figure 4.2 was com­
pletely redesigned and simplified. The result of pronto integration is a linter unification
that guarantees triggering of different linters which have to be specified only in the gemfile.

Except the pronto integration, a bug was detected and it had to be fixed via a pull
request6 into the pronto runner for RuboCop. After code analysis by this RuboCop runner,
the runner does not return a detected offense in the source code describing the syntactical
error. The syntactical error was detected by the RuboCop as an offense, see Figure 4.3, but
it was not mapped to the final result of its runner.

#<RuboCop::Cop::Offense:0x00007fc750319218
@ cop name=" Lint / Syntax",
@location=
#<Parser::Source::Range /tmp/d20180324-16231-lbppist/syntax.rb 101...101>,

@message=
"Lint/Syntax: unexpected token $end\n(Using Ruby 2.3 parser; conn" \
"gure using 'TargetRubyVersion' parameter, under 'AllCops')",

@severity=#<RuboCop::Cop::Severity:0x00007fc7503191f0 @name=:error>,
@status=:unsupported>

Figure 4.3: Example of offense related to syntactical error.

The fact that the error is not reflected in the result was solved via additional inspection
of the offenses. Firstly, the offenses are selected by the patch line where the line number
of the added patch is matched with the line number of the offense. If they match then the
offense is selected. This was the reason why the Pronto runner for RuboCop dropped the
offense about the syntactical error. At selection the number of the offense line was excluded
in the line numbers of the patch. Due to a syntactical error, the offense's line number was
a number given by a Ruby parser which was not adequate to the number of added lines in
the patch. These offenses are added additionally at checking the offenses secondly looking
only for the syntactical errors. If there is any syntactical offense, it is detected in the second
phase of offense mapping by the cop name which includes information about the syntax
error, and it is added to the result as an offense detected on the last patch line.

4.2.3 E n h a n c e m e n t s

By using an automated build practice as an part of continuous information approach, the
added source code must have its unit tests. The unit tests had been replaced with the
newer one covering the actual source code which is added. The unit tests are checking the
conversion from an array of pronto-messages to a hash describing the offenses which was
originally used. Some of the informations such as a Ruby platform, a Ruby version, a Ruby
engine, etc. were not used from this hash and they were removed. Moreover, due to the
wicked results of the offenses because of infringed convention for naming pronto runners
the relative runner was fixed 7.

After submitting changes as an pull request, the developers had made a pull request
review whose result is multiple enhancements and suggested improvements. These advices

6 h t t p s : //github.com/prontolabs/pronto-rubocop/pull/35
7 h t t p s : //github.com/pauliusm/pronto-yamllint/pull/2

24

were helpful and lead the source code to better quality with many of enhancements which
were suggested. First suggestion was that the developers have decided to delete unneces­
sary position information about the offense. The developers have stated that the offense
informations such as a column number and a length are useless and they should be removed.
Secondly, there were some of irregularities in the unit tests covering the added source code
which were changed as desired. Also, besides of removing the useless position informations,
a huge amount of code was requested to remove. Before the pronto integration, there were
linter specific classes which provided the linter launching and its output parsing which were
sequentially executed as it is shown in Figure 4.2. The Pronto integration necessitated
them to be removed due to their reimbursement because of simplicity of the Pronto usage.

To have an united process of launching the linters via Pronto, in a new pull request8,
the worker responsible for the process of launching linters over the pull requests and posting
a comment with the related offenses to them was completely reconstructed. The function
connected to the launching of the pronto runners is used in two places. The first place
is inside the pronto-message parser in the CodeAnalysisMixin module which bypass the
hash to the CodeAnalysator worker and due to this fact it had to be kept as it was. The
CodeAnalysator was to run weekly. It checks every branch, store those results in the
database, and then at sprint and demos the developers can report on the general direction
of quality. The second place is inside the new worker which posts the formatted output
of the linters to the pull request. This new worker does not required the pronto-messages
parsing, instead of this it required to build a universal formatter of the pronto-messages.
The reconstruction of this worker lead to simplifying the old process and a large amount
of code deletion. The whole pull request checking process is now located inside this worker
where is also the output formatter.

4.3 P u l l Request Review Request Commands

The ManagelQ bot does not support commands allowing project members to request for
a pull request review or to remove a request for a pull request review. A n issue9 has been
created describing the bot's restriction. The commands were based on the suggestion from
the developers and discussion in the issue mentioned before. These commands allow the
developers of the project to perform actions which are not allow to do due to the privilege
restriction. The bot was designed to react on direct messages and perform a desired action.
Messages has a predefined pattern which has to be kept, otherwise it will be ignored or
it could led to warning message posting under the command message. The bot has the
corresponding privileges making the action performing without any problem admitting the
developers whose do not have the requested rights to the repository to perform the desired
action via bot.

4.3.1 Issues

By implementing the request for a pull request review command an error was detected
in the current version of the Octokit gem. Because of an obsolete version of the gem a
NoMethodError exception was raised on the call of request_pull_request_review function
which should create a review request of specified users in a pull request. This problem was

8 h t t p s : //github.com/ManageIQ/miq_bot/pull/424
9 h t t p s : //github.com/ManageIQ/miq_bot/issues/337

25

solved by updating the Octokit gem from 4.6.0 to 4.7.0, but the review of the pull request
required an update to the latest version 4.8.0.

Another NoMethodError exception had to be solved while implementing the remove
request for a pull request review. This error was caused by a deficiency in the Octokit gem.
Octokit did not have an expected implementation of this command which was described in
GitHub's R E S T A P I v3. Octokit does not include the implementation for review request
deletion despite the fact that it should because it is a Ruby toolkit for the GitHub A P I .
Based on the R E S T A P I v3 description this missing feature had to be implemented into
the Octokit gem in order to add the desired command to the bot.

The code review of the pull request 1 0 implementing the Octokit's missing method re­
quired many changes and suggestions. Firstly, the specified pay load that the endpoint
takes, was remaked and the function name was set to desired. Secondly, the major problem
was a V C R cassette1 1 generation necessary for the specs (unit tests) to pass on the Travis
CI service. The V C R cassette generation without any guide led to unexpected errors. By
following the suggestions given by the reviewer the errors were circumvent, but at the end
the main problem which hampered the V C R cassette generation was discovered. The V C R
cassette required to create a repository, add collaborators, pull request creation, request for
a pull request review of these added collaborators and test the deletion of the pull request
review request. The problem was detected at requesting these testing collaborators for a
review. They could not be requested for a pull request review until they do not confirm the
repository invitation. Finally, after the problem detection, the reviewer of this pull request
answered in the code review that the V C R cassette generation will be done by a maintainer
of repository.

A n unexpected problem has been generated by reckless merge of a pull request whose
dependence was not merged before. Without fixing this problem an unexpected behav­
ior could cause undesirable problems. A new pull request 1 2 was created in order to fix
the defects made by the reckless merge. The missing dependence caused a not caught
NoMethodError exception. A temporary fix for this was done by catching this exception
and executing a provisional informative solution which was created for this command until
the dependence merge. The temporary solution performs an action which posts an infor­
mative message as a comment to the pull request. Besides fixing the missing dependence
new errors were found and fixed which were solved easily because of the errors rested in a
wrong class method call.

4.3.2 I n t e g r a t i o n

The pull request 1 3 implementing the request for a pull request review as an add_reviewer
command was inspired by an assign which works nearly on the same basis. If the comment's
content in the pull request matches the requested type of form for the command then the
bot parses the message. If the command matches the pattern for add_reviewer command
and the user is in the assignees list then the requested task is performed if the comment

1 0 https: //github.com/octokit/octokit.rb/pull/990
11A record of HTTP interactions which is used for further use of future tests.
1 2 https: //github.com/ManageIQ/miq_bot/pull/416
1 3 https: //github.com/ManageIQ/miq_bot/pull/408

26

was posted to the pull request. Later, this command was enhanced by supporting multiple
users listed after the command in a next following pull request1 4.

Command remove_reviewer performing the reverse action of the command add_reviewer
was added too via a pull request 1 5 ' 1 6 . Firstly, the Octokit's missing feature had to imple­
ment and create equivalent test for the implementation. Secondly, after the Octokit en­
hancement, this command was designed and implemented. It works exactly as add_reviewer
but vice versa (negotiated behavior). The command execution provides in order actions as
user checking, downloading the list of requested reviewers of the pull request and checking
if the user who is going to be removed from the review requests, is included in that list.

4.4 Unassign Command

The unassign command was one of the bot's missing commands too such as commands
for removing a reviewer(s) or adding a reviewer(s). The behavior of this command is
the opposite of assign command which was already implemented. A n issue 1 7 was already
open for this missing command describing the deficiency of the bot which was not solved
approximately for three year until now. This command was designed in the same way as
the assign command excluding the main core of the command which provides the expected
functionality - the opposite functionality. This command was added into the bot via a
pull request 1 8. The implementation is divided into sections which sequentially parse the
command value (listed user after the command), validate the users by checking if the user
is in the assignees list of the pull request. If there is any invalid user then a message is
posted to the pull request with detailed description. Otherwise, the command is executed
resulting in a specified user removal.

4.5 G i t H u b Status A P I

GitHub includes a flexible application programming interface for statuses. The status A P I
allows external services to mark commits with an error, failure, pending, or success state,
which is then reflected in pull requests involving those commits [7]. Statuses let you know
if your commits meet the conditions set for the repository you are contributing to [1]. The
latest commit state is reflected in UI, e.g., summary in pull request footer which informs the
developers about the latest commit - everything is fine or something went wrong. Except
for the commit status, there is a specific payload with additional information. The status
can contain besides the commit state these following optional informations such as a context
to differentiate this status from others, a link to more details about this status and a short
human-readable description of this status. As an example, one common use is for continuous
integration services to mark commits as passing or failing builds using status [7].

1 4 h t t p s : //github.com/ManageIQ/miq_bot/pull/419
1 5 h t t p s : //github.com/ManageIQ/miq_bot/pull/411
1 6 h t t p s : //github.com/ManageIQ/miq_bot/pull/420
l r h t t p s : //github.com/ManageIQ/miq_bot/issues/134
1 8 h t t p s : //github.com/ManageIQ/miq_bot/pull/422

27

4.5.1 I n t e g r a t i o n

The implementation required to use the Octokit [] which is a Ruby toolkit for the GitHub
A P I . The commit state is determined based on existence of offenses. If there is any of­
fense then the commit state will be error otherwise success. This state is delegated as an
optional parameter via function into GithubService module which is bot's interface to the
GitHub A P I . A new function was added to the module where is the decision about the
commit marking provided. The behavior of the add_comments function had to be changed
in order to get the U R L of each added comment to the pull request. Because of the fact
that the comment may be divided into subcomments which are posted gradually, the U R L
of the status is set to the first one. Henceforth, the requirements for commit marking are
established and passed to the Octokit's function create_status which is the ending point of
this process. After this, as the result, the commit status is viewable in the GitHub's web
interface. This feature was added to the ManagelQ bot via pull request1 9.

Delegating the commit state was solved with an optional parameter because of correct
source code placement. The placement was decided with respect to separation of logically
equally functioning units of the source code. The only problem of this integration was
caused by obtaining the comment's U R L which contains the description about the offenses.
The function that has already been implemented for adding comments to the pull request
does not return a Sawyer:.-Resource which describes the added comment and also includes
the necessary informations such as the required U R L .

4.6 Branch Status Notification via Gitter

Gitter is a chat and a networking platform that helps to manage, grow and connect com­
munities through messaging, content and discovery []. The fact that the developers had
many times no idea that the branch they are operating on is broken, led to time consuming
search for a failure that could easily take hours. Consequently, a thought of informing the
developers via Gitter when the branch has gone broken had arisen. Many times, I had an
opportunity to notice how the developers got upset after the update that broke their code.

The project is divided into parts - repositories, while every part has its own room on
Gitter, where the developers of the repository reside. To avoid notifying incorrect project
members, there is possibility to notify a specified repository room that corresponds to a
concrete project repository. This is a great way how to notify the attributable developers
about the repository branch state.

4.6.1 Issues

Issue of implementation of this feature was located in the Travis client for Ruby. To acquire
the latest two build states of a specified repository, it is necessary to download them. The
client supports only the download of the latest build or download of every single build that
pass as an enumerable object. The latest two builds required the download of every build,
what was not as fast as desired. Nevertheless it was an enumerable object, from which the
latest builds were selected, and so it could be transformed to lazy enumerator. The speed of
the selection of the latest two builds that matches the conditions was increased by seconds.

1 9 h t t p s : //github.com/ManageIQ/miq_bot/pull/412

28

The acceleration of downloading was enhanced by this enumerator transformation, due to
the unwanted builds such as builds of a non master branch not being downloaded.

4.6.2 I n t e g r a t i o n

A new self recurring Sidekiq worker was created for this implementation 2 0. It is automat­
ically performed every ten minutes. This worker performs three basic actions - a build
change status check, a corresponding message creation and a message posting, for every
single branch specified in the bot's configuration file. Checking the change of build status
is done using the latest two downloaded builds of the branch via Travis client 2 1 . From
these two builds, the branch status is determined based on their states. If there is change
between the states in the following order - latest build and the build before the latest build,
is failed and passed then it is determined as a broken branch. Otherwise, if the states are
passed and failed then it is determined as a fixed branch. Provided that the states are
equal, no action is performed because it means that the branch is still broken or already
fixed. After the state is determined, a message is formed on its basis, which is ready to
be send. The Gitter A P I client was used for sending that was available in a Ruby gem
ruby-gitter22. The client requires a Gitter token that is generated from a GitHub account,
to establish a connection with the Gitter room and to post the created message.

4.7 Unmergeable Comments

Project's pull requests suffer from the huge amount of the leftover useless comments describ­
ing the unmergeable status of the pull request that make the pull request review difficult.
The bot does not clean the pull requests from his comments after removing the notifying
unmergeable status - only the unmergeable label of the pull request. The pull request2 3

review demanded in a Gitter room related to the bot helped to improve the implementa­
tion. A discussed dilemma connected to the method of comments selection lead to more
efficient comment selection. The message contains a hidden tag for message marking, which
indicates that the message includes the unmergeable status content.

Removing these forgotten comments of the pull requests was achieved by downloading
every comment of the associated pull requests. After that, the ID acquisition was done
by selecting the comments containing the hidden tag at the beginning of the comment's
content while their author's username is the same as in the configuration file - the bot's
name. The IDs were passed to the Octokit's function, which consequently deleted these
unnecessary comments from the pull requests whose status was changed from unmergeable
to mergeable.

4.8 Automated Review Request of Codeowners

The fact that the project's pull requests have to be mergeable, even though the count of
requested reviewers is not fulfilled. The GitHub allows a feature called protected branch
where is a possibility to set an automated request for a pull request review of the users

2 0 h t t p s : //github.com/ManageIQ/miq_bot/pull/413
2 1 h t t p s : //github.com/travis-ci/travis.rb
2 2 h t t p s : //github.com/kristenmills/ruby-gitter
2 3 h t t p s : //github.com/ManageIQ/miq_bot/pull/415

29

specified in a codeowners file. There was a problem that the minimal required number of
the users that have to make the review was one. The review expectation has hampered
development because they have to wait for at least one review. To overcome this problem,
if anybody with the necessary rights to the repository will manually request a pull request
review, then it will not be mirrored in the result and the pull request is mergeable even
though it is not reviewed. This leads to a proposal of this manual request for a pull request
review automation via adding a new command in the bot.

s Require pull request reviews before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull request with The required
number of approving reviews and no changes requested before it can be merged into master.

Required approving reviews: 1 »•

s Dismiss stale pull request approvals when new commits are pushed
New reviewable commits pushed to a branch will dismiss pull request review approvals.

• Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

Figure 4.4: Pul l request reviews settings

The example in Figure 4.4 shows the pull request reviews settings. The subsettings of
"Require pull request reviews before merging" may not be set without "Required approving
reviews" whose minimal value is one. The developers would like to be in possession with
this helpful supplement of the development provided by the GitHub. Solution, how to solve
this problem resulted in a proposition, which will enhance the bot - addition of a new fea­
ture to the bot which will keep the pull request mergeable.

During the implementation process of this task, GitHub unexpectedly adapted this fea­
ture as it was expected. Codeowners were requested for a pull request review automatically
if the repository dispose of the codeowners file. These automated review requests were
optional and they leave the pull request mergeable. The pull request2'1 containing the un­
accomplished implementation of that task was on the basis of premature refurbishment
closed.

https: //github.com/ManageIQ/miq_bot/pull/417

30

Chapter 5

Conclusion

The aim of this thesis was to explain and bring a reader closer to the theoretical and techni­
cal background of the continuous integration and automated code review practices. Besides
that, the thesis has another aim, which was successfully fulfilled - enhance the ManagelQ
bot with new useful features that will make the development process easier. The enhance­
ments of the bot were proposed on the basis of the continuous integration and automated
code review analysis, and the bot's problems and deficiencies that were discussed with the
bot's maintainers. Some of the proposed enhancements were successfully integrated into
the bot, but some of them are currently under code review by the maintainers.

A requested concise summarization of the implemented enhancements to the ManagelQ
bot was provided by the bot maintainer Jason Frey - the principal architect of the ManagelQ
project. The summary contains a detailed description of each added enhancement, including
the pros and cons for each of them.

"The Pronto integration is a huge benefit to the functionality of the miq_J)ot.
Previously, miq_bot had custom integrations for a handful of linters, but main­
taining that list is overwhelming. Moving to pronto opens up dozens of new
linters, while moving the maintenance burden to the pronto community. More
linters should improve the PR reviews across the ManagelQ community by lim­
iting some of the human review burden.

The Pronto formatter is also a very useful feature, as it takes the results of
the various linters and combines them into a single presentation. The single
presentation is useful when compared to per-line comments, because it allows
the author to be notified in one place and with one email. Additionally, as the
author pushes new changes, it removes old comments. The PR author can then
incrementally make changes, which eases their workflow.

The various bot commands (request reviewer, remove reviewer and unassign) are
extremely useful because they enable parts of GitHub's interface to users without
those users needing explicit permission. Being able to change PR review has
been one of the more requested features, and now users can do this directly with­
out asking someone else to change it for them. Although we have yet been unable
to get the remove reviewer functionality into the dependent library, octokit, the
miq_bot framework allowed for having a temporary workaround.

The GitHub status API brings a very useful feature to PR reviewers, because,

31

at a glance, they can see if there are still issues with PRs, even if all of the tests
have passed. Previously, a PR could look mergeable, but still have problems, and
it was the burden of the PR reviewer to double-check. With the status API, the
PR will be marked as not mergeable, which removes that extra double-checking
burden from the reviewer, and should make their final reviews faster.

The branch status notification via Gitter turned out to be a feature that was not
as useful as first thought, because most of the benefits are already a part of Gitter
itself. Many Gitter users don't like the Gitter feature as it produces too many
comments, which are distracting. However, the work for the bot feature was not
useless, because in order to implement the feature, the deeper feature of having
the bot communicate with Gitter was required. That underlying bot- Gitter bridge
can be used for many other future features on the bot.

The removal of 'old' comments saying the PR is unmergeable is very useful. The
old comments confuse users and PR readers because it appears that the PR is
still unmergeable, even though it is later made mergeable. This removal feature
eliminates that confusion."

- Jason Frey

This bachelor's thesis has been developed in collaboration with Red Hat, Inc. Thanks
to this thesis, I have learned a lot about the method of how the open source projects
are developed, how a group of developers works collaboratively worldwide and how open
source projects are enhanced by random contributors. I have acquired a lot of experience
about how to develop a software product together with others and how to contribute to
other open source projects. Moreover, I have acquired a new, modern, dynamic, open source
programming language with a focus on simplicity and productivity - the Ruby programming
language. Also, I have managed to bring the vision that I had set at the beginning of my
thesis - to work on something what will be generally useful and helpful for the future uses.

32

Bibliography

[1] About statuses. [Online; Accessed: 2018-04-10].
Retrieved from: h t tps : / /he lp .g i thub .com/ar t ic les /about - s ta tuses /

[2] gemfile. [Online; Accessed: 2018-04-07].
Retrieved from: http:/ /bundler. io/man/gemf i le .5 .h tml

[3] The GHTorrent project. [Online; Accessed: 2018-02-10].
Retrieved from: h t tp : / / gh to r r en t .o rg /

[4] Gitter. [Online; Accessed: 2018-04-12].
Retrieved from: h t t p s : / / g i t t e r . i m /

[5] Octokit. [Online; Accessed: 2018-04-10].
Retrieved from: h t tp s : / / g i t hub . com/oc tok i t / oc tok i t . r b

[6] Pronto. [Online; Accessed: 2018-02-13].
Retrieved from: ht tps : / /g i thub.com/prontolabs/pronto

[7] Statuses. [Online; Accessed: 2018-04-10].
Retrieved from: ht tps : / /developer .gi thub.com/v3/repos/s ta tuses/

[8] Deployment Automation. [Online; Accessed: 2018-02-23].
Retrieved from: h t tp : / /e lec t r ic -c loud.com/wiki /d isplay/ re leasemanagement /
Deployment+Automation

[9] TravisTorrent. [Online; Accessed: 2018-02-10].
Retrieved from: h t t p s : / / t r a v i s t o r r e n t . t e s t r o o t s . o r g /

[10] ManagelQ Bot. 2008. [Online; Accessed: 2017-11-02].
Retrieved from: https://github.com/ManageIQ/miq_bot

[11] Ade Miller: A Hundred Days of Continuous Integration. Aug 2008.
doi:10.1109/Agile.2008.8. [Online; Accessed: 2018-02-14].
Retrieved from: http:/ / ieeexplore. ieee.org/document/4599493/

[12] Anuradha Ishwaran: 8 Best Practices of Continuous Integration To Supercharge Your
Software Development Team. 2016. [Online; Accessed: 2018-02-14].
Retrieved from: h t tp : / /www.tothenew.com/blog/8-best-practices-of-
continuous-integrat ion-to-supercharge-your-software-development-team/

[13] Codacy: Automate Your Code Reviews with Static Code Analysis. Feb 2016. [Online;
Accessed: 2018-03-17].

33

http://github.com/articles/about-
http://bundler.io/man/gemf
http://ghtorrent.org/
https://gitter.im/
https://github.com/octokit/octokit.rb
https://github.com/prontolabs/pronto
https://developer.github.com/v3/repos/statuses/
https://travistorrent.testroots.org/
https://github.com/ManageIQ/miq_bot
http://ieeexplore.ieee.org/document/4599493/
http://www.tothenew.com/blog/8-best-practices-of-

Retrieved from: h t tps : / /blog.codacy.com/automate-your-code-reviews-with-
stat ic-code-analysis-7d8ab0c81b03

[14] Dan Radigan: Continuous integration, explained. [Online; Accessed: 2018-02-23].
Retrieved from: h t tps :
/ /www.atlassian.com/continuous-delivery/cont i n u o u s - i n t e g r a t i o n - i n t r o

[15] Darryl Bowler: Ten Best Practices for Continuous Integration. 2012. [Online;
Accessed: 2018-02-05].
Retrieved from: h t tp : / / b logs . co l l ab .ne t / devopsc i / t en -bes t -p r ac t i c e s - fo r -
cont inuous- in tegra t ion

[16] Eero Laukkanen: Continuous Integration, Delivery and Deployment. 2015. [Online;
Accessed: 2018-02-10].
Retrieved from: h t tps : / /mycourses .aa l to . f i /p luginf i le .php/161735/
mod_f o lde r / content /0/T-76.5613_04-Continuous°/o20integrat ion 0 /o20del iveryy,
20and°/o20deployment_2015.pdf

[17] Fiorella Zampetti; Simone Scalabrino; Rocco Oliveto; et al.: How Open Source
Projects Use Static Code Analysis Tools in Continuous Integration Pipelines. In MSR
2017 Uth. May 2017. pp. 334-344. doi:10.1109/MSR.2017.2. [Online; Accessed:
2018-03-18].
Retrieved from: http:/ / ieeexplore. ieee.org/document/7962383/

[18] Gary McGraw: Automated Code Review Tools for Security. Computer, vol. 41, no. 12.
Dec 2008: pp. 108-111. ISSN 0018-9162. doi:10.1109/MC.2008.514. [Online;
Accessed: 2018-03-09].
Retrieved from: http:/ / ieeexplore. ieee.org/document/4712512/

[19] Georgios Gousios; Diomidis Spinellis: GHTorrent: GitHub's Data from a Firehose.
June 2012. doi:10.1109/MSR.2012.6224294. [Online; Accessed: 2018-02-10].
Retrieved from: http:/ / ieeexplore.ieee.org/document/6224294/

[20] Jing Xia ; Yanhui L i : Could We Predict the Result of a Continuous Integration Build?
An Empirical Study. 2017. doi:10.1109/QRS-C.2017.59. [Online; Accessed:
2018-02-10].
Retrieved from: http:/ / ieeexplore. ieee.org/document/8004336/

[21] Jun-Suk Oh; Ho-Jin Choi: A reflective practice of automated and manual code
reviews for a studio project. In ICIS 2005 J^th. 2005. pp. 37-42.
doi:10.1109/ICIS.2005.17. [Online; Accessed: 2018-03-09].
Retrieved from: http:/ / ieeexplore. ieee.org/document/1515372/

[22] Justin Ellingwood: An Introduction to Continuous Integration, Delivery, and
Deployment. 2017. [Online; Accessed: 2017-11-03].
Retrieved from: h t tps : / /www.digitalocean.com/community/tutorials/an-
in t roduct ion - to -con t inuous- in tegra t ion-del ivery-and-deployment

[23] K . R. Chandrika; J . Amudha; Sithu D. Sudarsan: Recognizing eye tracking traits for
source code review. In ETFA 2017 22nd. Sept 2017. pp. 1-8.
doi:10.1109/ETFA.2017.8247637. [Online; Accessed: 2018-03-03].
Retrieved from: http:/ / ieeexplore. ieee.org/document/8247637/

34

http://codacy.com/automate-your-code-reviews-with-
http://www.atlassian.com/continuous-delivery/cont
http://aalto.fi/pluginfile.php/
http://ieeexplore.ieee.org/document/7962383/
http://ieeexplore.ieee.org/document/4712512/
http://ieeexplore.ieee.org/document/6224294/
http://ieeexplore.ieee.org/document/8004336/
http://ieeexplore.ieee.org/document/1515372/
http://www.digitalocean.com/
http://ieeexplore.ieee.org/document/8247637/

[24] Kevin Jalbert: Create your own Pronto Runner. May 2017. [Online; Accessed:
2018-04-01].
Retrieved from: h t tps : / /kevinja lber t .com/create-your-own-pronto-runner /

[25] Martin Fowler; Matthew Foemmel: Continuous integration. 2006. [Online; Accessed:
2017-11-02].
Retrieved from:
h t tps : / /mart infowler .com/ar t ic les /cont inuousIntegra t ion .h tml

[26] Martin Host; Conny Johansson: Evaluation of code review methods through
interviews and experimentation. Journal of Systems and Software, vol. 52, no. 2.
2000: pp. 113 - 120. ISSN 0164-1212. doi:10.1016/S0164-1212(99)00137-5. [Online;
Accessed: 2018-03-03].
Retrieved from:
h t tp : / /www.sciencedirect .com/science/art icle/pii /S0164121299001375

[27] Michael Hilton; Timothy Tunnell; K a i Huang; et al.: Usage, Costs, and Benefits of
Continuous Integration in Open-Source Projects. 2016. doi:10.1145/2970276.2970358.
[Online; Accessed: 2017-10-30].
Retrieved from: h t tps : //dl.acm.org/citation.cfm?doid=2970276.2970358

[28] Mohammad Masudur Rahman; Chanchal K . Roy: Impact of Continuous Integration
on Code Reviews. In MSR 2011 Uth. May 2017. pp. 499-502.
doi:10.1109/MSR.2017.39. [Online; Accessed: 2018-03-10].
Retrieved from: http:/ / ieeexplore. ieee.org/document/7962406/

[29] Moritz Beller; Georgios Gousios; Andy Zaidman: Travis Torrent: Synthesizing Travis
CI and GitHub for Full-Stack Research on Continuous Integration. 2017.
doi:10.1109/MSR.2017.24. [Online; Accessed: 2018-02-10].
Retrieved from: http:/ / ieeexplore. ieee.org/document/7962393/

[30] Oleksii Kononenko; Olga Baysal; Michael W. Godfrey: Code Review Quality: How
Developers See It. In ICSE 2016 38th. May 2016. pp. 1028-1038.
doi:10.1145/2884781.2884840. [Online; Accessed: 2018-03-03].
Retrieved from: http:/ / ieeexplore. ieee.org/document/7886977/

[31] Patanamon Thongtanunam; Shane Mcintosh; Ahmed E . Hassan; et al.: Review
participation in modern code review. Empirical Software Engineering, vol. 22, no. 2.
Apr 2017: pp. 768-817. ISSN 1573-7616. doi:10.1007/sl0664-016-9452-6. [Online;
Accessed: 2018-03-03].
Retrieved from: ht tps: / /doi .org/10.1007/sl0664-016-9452-6

[32] Paul M . Duvall; Steve Matyas; Andrew Glover: Continuous Integration - Improving
Software Quality and Reducing Risk. Pearson Education, Inc.. 2007. ISBN
0-321-33638-0.

[33] Pavel Ducho: Continuous Integration - Cure for Human Error in Deployment. 2016.
[Online; Accessed: 2017-11-03].
Retrieved from: h t tp : / /www.web-integrat ion. info/en/blog/continuous-
i n t e g r a t i o n - cure- f or-human-error-in-deployment/

35

http://jalbert.com/
http://infowler.com/
http://www.sciencedirect.com/science/article/pii/S0164121299001375
http://acm.org/citation
http://ieeexplore.ieee.org/document/7962406/
http://ieeexplore.ieee.org/document/7962393/
http://ieeexplore.ieee.org/document/7886977/
https://doi.org/10.1007/sl0664-016-9452-6
http://www.web-integration.info/

[34] Saba Hamdan; Suad Alramouni: A Quality Framework for Software Continuous
Integration. 2015. [Online; Accessed: 2018-02-03].
Retrieved from:
h t tps : / /www.sciencedirect .com/science/art icle/pii/S2351978915002504

[35] Thought Works: Continuous integration. 2017. [Online; Accessed: 2017-11-02].
Retrieved from: h t tps : //www.thought works, com/cont inuous- integrat ion

[36] Yuki Ueda; Akinori Ihara; Toshiki Hirao; et al.: How is IF Statement Fixed Through
Code Review? A Case Study of Qt Project. In ISSREW 2017. Oct 2017. pp. 207-213.
doi:10.1109/ISSREW.2017.32. [Online; Accessed: 2018-03-03].
Retrieved from: http:/ / ieeexplore. ieee.org/document/8109285/

[37] Zhiyuan Chen: Helping Mobile Software Code Reviewers: A Study of Bug Repair and
Refactoring Patterns. In MOBILESoft 2016. May 2016. pp. 34-35.
doi:10.1109/MobileSoft.2016.026. [Online; Accessed: 2018-03-10].
Retrieved from: http:/ / ieeexplore.ieee.org/document/7832964/

36

http://www.sciencedirect.com/science/art
http://www.thought
http://ieeexplore.ieee.org/document/8109285/
http://ieeexplore.ieee.org/document/7832964/

Appendix A

C D Content

The attached C D contains:

• "Bachelor's Thesis" directory described in Section A . l

• "Bachelor's Thesis - Implementation" directory described in Section A.2

• "Bachelor's Thesis - Setup Guide" directory described in Section A .3

A . l Bachelor's Thesis

The source code files1 of this bachelor's thesis are located inside of "Bachelor's Thesis"
directory which includes the following subdirectories:

• "PDF" - P D F version of thesis, presentation and assignment.

• "presentation" - presentation source code files.

• "thesis" - thesis source code files.

A.2 Bachelor's Thesis - Implementation

The "Bachelor's Thesis - Implementation" directory includes the implementation source
codes. This directory is a Git directory which contains the ManagelQ Bot's source codes
along with the branches which includes the source codes related to the pull requests which
are mentioned in footnotes of Chapter 4.

A.3 Bachelor's Thesis - Setup Guide

The setup guide2 for the bot is written in a markdown format and it is located inside of
"Bachelor's Thesis - Setup Guide" directory. This directory also includes a P D F and DT£]X
version of these markdown files located in subdirectories named by the version type. The
starting point of the setup guide can be found in the main file of the guide - "README"
file.

x h t t p s : //github.com/europ/VUTBR-FIT-BT
2 h t t p s : //github.com/europ/VUTBR-FIT-BT-IMPL

37

