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ABSTRAKT 
Diplomová práce se zabývá studiem signální dráhy produkce butanolu bakterií rodu 
Clostridium. V první části pojednává o modelování signálních drah pomocí metod 
systémové biologie. Navazuje popisem zisku dat pro tvorbu a úpravu modelů 
signálních drah s hlavním zaměřením na techniky pro zjištění genové exprese, 
produkce a fenotypu. Třetí sekcí je získání základního modelu signální dráhy 
zapojené do produkce butanolu u solventogenních klostridií. Posledním bodem 
a zároveň hlavním cílem je vytvoření dynamického modelu signální dráhy produkce 
butanolu kmene Clostridium beijerinckii NRRL B-598, jeho vyhodnocení pomocí 
statické a dynamické analýzy a srovnání s biologickými daty.  

KLÍČOVÁ SLOVA 
signální dráhy; dynamický model; klostridie; butanol  

 

 

 

 

ABSTRACT 
The diploma thesis is dedicated to studying signaling pathway for butanol 
production in Clostridium bacteria. The first part addresses the signaling pathways 
modeling by means of systems biology. The thesis follows the description of the data 
acquisition for signaling pathways modeling and modifying with the main focus on 
techniques for the detection of gene expression, products and phenotype. The third 
section is to obtain a basic model of a signaling pathway involved in butanol 
production in solventogenic clostridia. The final point and main goal is to create a 
dynamic model of butanol production signaling pathway in the Clostridium 
beijerinckii NRRL B-598 strain, its evaluation by static and dynamic analysis and 
comparison with biological data. 
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signaling pathways; dynamic model; clostridium; butanol 
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INTRODUCTION 
The production of biofuels as a renewable resource is becoming a popular topic, 
especially due to limited natural resources and efforts to protect the environment. 
The use of butanol-producing bacteria (i.e. solventogenic) seems to be an ideal 
solution, as they are undemanding and under certain conditions may be able to 
produce large amounts of gas. Solventogenic clostridia can be fed with waste 
materials and, with the successful genetic mutation, could be able to produce a very 
high amount of butanol.  

The understanding and the possibility of subsequent mutation of the cell 
processes leading to butanol production requires a detailed knowledge of signaling 
pathway influenced to the production of this liquid, therefore the aim of the thesis 
is to describe the signaling pathway involved in butanol production in the promising 
solventogenic strain C. beijerinckii NRRL B-598. 

The first three parts of the diploma thesis will be focused on the literary 
research of data acquisition and signaling pathways modeling. Section 1 will be 
aimed on biological networks, graph theory and systems biology. Part two will 
describe signaling pathways, mathematical models, tools, databases, data formats 
and data analysis using for modeling of signaling pathways. Data acquisition for 
signaling pathway modeling with the main focus on lab techniques for the detection 
of gene expression, such as RNA-Seq, microarray and blotting will be described in 
the third section as well as the detection of gene products and phenotype. 

Last part of the thesis will give a preview of butanol-producing clostridia, 
especially signaling pathway for butanol production will be depicted: a comparison 
of signaling pathway of C. acetobutylicum and C. beijerinckii, five pathways of 
C. acetobutylicum and a genome-scale model of C. beijerinckii. General pathways 
description will be followed up by the main point of the thesis – signaling pathway 
for butanol production in Clostridium beijerinckii NRRL B-598, the creation of the 
dynamic model, its simulation, static and dynamic analysis as well as the comparison 
of the model with biological data and its statistical evaluation. 
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1 BIOLOGICAL NETWORKS 
Living organisms, also labelled as biological systems, are complex and organized 
units made of molecules. Molecules are highly connected and therefore organisms 
reach immense complexity due to small set of molecules [1]. 

If we want to understand these systems and their connectivity, we need more 
than to study organisms in laboratory experiments. For this reason, virtual models 
of systems are made based on mathematical relationships, especially graph theory, 
which will be described in the subchapter below.  

Models of biological systems are represented as networks [2] composed of 
nodes and edges (see Fig. 1). Nodes represent molecules, genes, proteins or other 
units and edges represent relation between nodes. Depending on the model part of 
the system, we can divide networks into several types – signaling pathways, 
interactions of proteins or drugs, metabolic networks, etc. [3].  

Biological networks have certain properties that distinguish them from random 
networks. Particularly precise interaction and regulation thousands of 
molecules [2]. The number of possible interactions is given by combinatorial 
explosion, so we are not able to deduce the behaviour of the whole system from 
the individual parts. This property results from the non-linearity of the system [4]. 
Non-linear systems do not have the superposition principle, so the behaviour of the 
system is not given by the sum of the partial properties, which will appear as an 
emergent property.  

The concept of emergence was first explained at 1843 by John Stuart Mill 
and says that whole system is more that only individual parts. For example, cardiac 
cells form the heart that pumps blood into the body, but the cell itself is unable to do 
this function [5]. 

Node 

Hub 

 Edge 

Fig. 1: Network example containing nodes, hubs and edges 
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Most networks, mainly constructed from biological data, share features 
described as scale-free behaviour [5] described in certain properties [1]: (1) Power 
law: most nodes have few connections with hubs (vital nodes) being highly 
interconnected (see Fig. 1). (2) self-similarity: an individual part of the network is 
similar to any other part. (3) small-world behaviour: two nodes can be connected 
via small number of other nodes and most of two nodes connected to the other node 
are also connected. (4) robustness: networks show a high degree of robustness – 
most nodes can be removed or disturbed with only local changes and any damage 
to network behaviour, but remove or damage of a hub can destroy the entire 
network [6, 7].  

1.1 Graph theory 

Graph theory is the study of graphs leaning on mathematic. Graphs are representing 
elements defined as an ordered pair G = (V, E) where G is graph, V is a set of vertices 
or nodes and E is a set of edges [8]. For given elements equation 1.1 applies [9]:  

Probably the first task in graph theory called Seven Bridges of Königsberg 
comes from Leonhard Euler. He proved in 1736 that it is not possible to find a way 
across all seven bridges so that everyone could only cross once because bridges do 
not form a Euler graph, which means that the path cannot be drawn in one 
stroke [8].  

Depending on the type of edges, graphs are divided into several types [10]: 

1. Undirected graphs: relation between u and v takes forms of disordered pair 
e = {u, v}. They represent symmetrical relations between nodes and express 
bilateral relations. An example of this graph is in the Fig. 2, L. 

2. Directed graphs: relation u and v takes forms of ordered pair e = (u, v). 
An edge (u, v) in directed graph begins in u node and ends in v node. The 
reverse edge (v, u) is different from (u, v). These graphs represent 
unidirectional, unsymmetrical relations between nodes and express 
unilateral relations. An example of this graph is in the Fig. 2, M. 

3. Mixed graphs contain oriented and non-oriented edges. They are almost 
unused and replaced by directed graphs so that non-oriented edges are 
replaced by a pair of oppositely oriented edges (see Fig. 2, M). An example of 
this graph is in the Fig. 2, R. 

𝐸 ⊆ 𝑉 × 𝑉 𝑜𝑟 𝐸 ⊆ {{𝑢, 𝑣}|𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣} (1.1) 



9 

 

Another division of graphs is based on the number of edges between nodes. 
Simple graphs have one edge connecting two nodes (see Fig. 2, L). Multigraphs have 
more than one edges between two nodes (see Fig. 2, M). Pseudographs contain 
a loop (a node is connected to itself). 

Subgraph Gc, where Gc = (Vc, Ec) is a subset of graph G, where G = (V, E) if Vc � V 
and Ec � E [8, 9]. Statistically significant subgraphs are called motifs [11]. Motifs can 
be found in biological networks as a small subnet containing about three to five 
nodes [10].  

Biological networks are usually presented as simple graphs. Nodes often 
contain loops and edges are weighted (indicate specific parameters related to the 
network). Directed graphs include networks: gene regulatory, metabolic, signaling 
pathway. Protein networks are usually undirected [2].  

Isomorphism [9] is a sign for graphs that have the same number of edges 
and nodes. Graphs G and H are isomorphic if there is an isomorphism between them: 
G ≃ H. The isomorphism of graphs G and H is a bijective (i.e. mutually unambiguous) 
representation f: V(G) → V(H), for which is true that every pair of nodes u, v � V(G) 
is connected by an edge in G just when the pair f(u), f(v) is connected by an edge 
in H [8]. 

Graphs can be described by specific features such as sequence, trail, path 
and circle [8, 10]. The sequence denotes such a consecution of nodes where there is 
an edge between two adjacent peaks. The stroke is a sequence in which edges are 
not repeated. Specific cases are the Eulerian path (the path is a sequence in which 
nodes are not repeated) and the Hamiltonian path (the path going through all 
nodes). The circle is a path that begins and ends at the same node.  

Node properties are described by neighborhood and degree [8, 9]. As 
neighborbood are named two nodes connected by an edge. Degree of the node is 
the size of its neighborhood (see Fig. 3). In case of directed graphs, we can divide 
input degree (number of edges entering the node) and output degree (number 
of edges exiting the node). 

L                 M               R 

Fig. 2: Types of graphs according to type of edges. 

L: undirected simple graph; M: directed multigraph; R: mixed simple graph 



10 

 

Implementation of a graph into a computer is possible by two basic ways: 
adjacency matrix and adjacency list [8]. Adjacency matrix is a 2D array g[][] of size 
V×V where V is the number of nodes in graph. g[i][j] = 1 indicates an edge between 
nodes i and j. Adjacency list is a 2D array h[][] and degree array d[]. List of neighbors 
i is given by elements h[i][0], h[i][1], …, h[i][d[i] – 1]. 

Graph search is a graph analysis method used mainly in analysing all nodes. 
For example, finding the shortest path in robotics, route-planning or game-playing. 
There are two basic algorithms: Breadth First Search (BFS) and Depth First Search 
(DFS) [10]. Next algorithm of graph search is the Dijkstra’s algorithm [8]. 

BFS uses the data structure FIFO (first in, first out). The basis is an initialization 
(inserting first element into a vector), next elements are sorted to the end of a vector. 
The first selected item is that one at the beginning of the vector and the shortest 
distance of all nodes from the currently selected node is calculated. The vector 
contains all nodes in graph in the beginning of searching and therefore has the same 
length as number of nodes in searched graph. 

DFS algorithm passes all nodes sequentially, from the current to the 
neighboring element. Each node must be passed only once, for which auxiliary 
variables are used. It must be created a stack – a set of nodes that cannot be accessed 
immidiately. For example, if a node has two neighbors, one of them is stored in the 
stack and used later when the current node does not have a neighbor. 

Dijkstra’s algorithm is similar to BFS, but more complex and faster. It is often 
used to search for train or bus connections or in GPS navigation. Instead of BFS, 
Dijkstra’s algorithm stores information about the shortest sequence length 
moreover. It chooses from the vector a node with the smallest distance because it is 
no better possible to reach this node. At the end of processing, these distance 
variables indicate the shortest distances from beginning to the other nodes. 

A graph is an abstract concept. For illustration, there are several graph 
representation methods: diagram (see Fig. 3), definition (mathematical notation), 
matrices, lists and data structures [10]. The first two methods are computationally 
demanding, time-consuming and for large amounts of data are not effective, 
therefore they will not be discussed in detail. 

Fig. 3: Undirected graph depicting the degree of nodes [10] 
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Matrix representation is based on two basic relationships in the graph. The first 
one is the relationship between an edge and its end node called the relationship 
of incidence [10]. Incidence matrix I is a type {-1, 0, 1}n×m if it is true that °V° = n 
and °E° = m. The equation 1.2 applies [12]:  

𝐼𝑣,𝑒 =  {
−1, 𝑒 =  (𝑣,∙)
     1, 𝑒 =  (∙, v)
      0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.2) 

The second one is the node adjacency describing adjacency matrix graph. 
Adjacency matrix A is a type {0, 1}n×m if it is true that °V° = n and 1.3 applies [10]: 

𝐴𝑢,𝑣 = 1 ↔ {𝑢, 𝑣} ∈ 𝐸 (1.3) 

There are also distance matrices – edges are rated, instead 1 is given weight.  

List representation is given by a list of neighbors [9]. This representation is 
advantageous mainly for sparse graphs for which applies: °V° = n, °E° = m and 
m ≪ n2 [13]. Nodes are arranged into the array of size n and in the i-th element 
of this array is the pointer to linked list of nodes that are adjacent to the node I.  

Graph representation as a data structure is used for the largest graphs [10]. 
The most used is representation using arrays. Structure of the graph is stored in two 
arrays. The first array has the same number of elements as the number of nodes in 
the graph. Each node corresponds to one array element. It holds an index value from 
which begins the list of nodes (neighbors of this node) in the second array. 

1.2 Systems biology 

Systems biology (SB) is a scientific field connecting several disciplines such as 
mathematics, biology, physics, engineering, informatics, medicine and chemistry. 
Subject of the SB studies are interactions in systems, not components description. 

SB is based on holism, which means that it views the system as a complex 
and studies emergent properties. By contrast, bioinformatics is based on 
reductionism, which means that it studies individual components or individual 
interactions. Although these fields look at the system differently, they are usually 
focusing on similar themes as DNA, RNA, function of the organism, etc. 

Fig. 4 shows two main approaches in SB. The first one – top-down approach 
studies system as a whole and decomposes it into smaller parts. It is usually used 
for understanding the system’s behaviour, but does not describe the basic elements 
in detail. Bottom-up approach studies basic elements and compose it to larger units. 
It is mainly used to describe parts of the system. 
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We can divide several levels of view on the biological system [15]:  

1. Structure of the system: basic organization of the system. 
The structure consists of elements of the network (genes, mRNA, 
proteins, metabolites, …), interaction between elements and associated 
parameters. Includes gene, metabolic, signal transduction networks 
and physical structures. 

2. Dynamics of the system: behaviour of the system with known 
structure. Includes analysis as steady-state, flux balance (FBA), 
metabolic control; furthermore intracellular versus extracellular view, 
behavior in extreme conditions (temperature, pressure, starvation, …). 

3. Control of the system: targeted changes to the structure or behaviour 
of the system. Includes drug design and genetic modification. 

4. Methods to design and modify the system: e.g. “Signaling Pathway for 
Butanol Production in Solventogenic Clostridium Bacteria”. 

The historical development of the SB is illustrated in the Fig. 5. As will be 
mentioned, a boom in systems biology started about 2000 [16], mainly based on the 
development of powerful computers, genome sequencing and analysis. 

 

Fig. 4: Life's complexity pyramid. Top-down and bottom-up approach. [14] 
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Discipline was firstly proposed at 1998 in an article „Systems Biology: new 
opportunities arising from genomics, proteomics and beyond“ [17] written by an 
American biologist Leroy Hood. He defined it as the science that studies all 
components and their interactions in biological systems. The greatest progress in 
the field of systems biology started from 2000, but interest in this science is still 
growing as the Fig. 6 shows.  

Fig. 6: Number of articles in PubMed containing phrase "systems biology"  
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Fig. 5: Historical development of SB 
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2 SIGNALING PATHWAYS 
Signaling pathways (SP) are made by a group of molecules that cooperate to control 
a specific cell function (examples are given in the next paragraph). The first receives 
one molecule signal in a pathway and passes the information to the next molecule. 
This process is repeated until the last molecule has this information and the specific 
function is carried out [18]. 

There are many types of signaling pathways. The most significant include [19]: 
the Akt SP playing a key role in the mediation of protein synthesis, metabolism, 
proliferation and cell cycle progression. The AMPK SP is used in the cellular 
response to low levels of available ATP (adenosine triphosphate). The apoptosis SP 
is a process for cell death. The MAPK SP – the mitogen-activated protein kinase 
pathways are important for the response to extracellular stimuli such as heat 
and stress. Signaling pathway for butanol production is a specific kind of the 
pathway that some organisms have (namely solventogenic bacteria) and will be 
resolved in the following text.  

2.1 Mathematical models 

Mathematical model of the signaling pathway is a simplified description of a real 
object designed for a better understanding of this object. It describes dynamics 
and structure of the system. Thanks to these models, it is possible to simulate 
situations that would be difficult or impossible to implement in real. They allow 
systemic description of process in a system and determination of regulatory process 
of a pathway of interest. 

There are two approaches of modeling pathways: qualitative and quantitative 
methods [20]. Qualitative modeling is aimed at the structural organization and is 
mainly applied to the reconstruction of the pathways. Quantitative modeling should 
describe concentration and location of each component. 

2.1.1 Qualitative methods 
Qualitative models are created primarily for large networks that provide 
an overview of the dynamics. From these networks, we get information about 
the system state. S. Kaufmann and R. Thomas are considered as the pioneers of using 
logical models in biology. Their approach allows the fact that different signal 
intensities may exert different effects on target [20], which corresponds to basic 
approach of SB – non-linearity of the system. 
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There are several basic methodologies for qualitative modeling: interaction 
graphs, Boolean/logical networks, logic-based ordinary differential equations 
(ODE) and Petri nets. Interaction graphs allow the identification of important 
properties such as significant paths or feedback loops [21], but they are very simple, 
so they will not be further explored. Other methods are described below.  

Boolean models are used mainly for large-scale signaling networks [22] 
to study the basic input-output behaviour of the system and to analyse its dynamic 
properties. Their components (usually nodes) have only two discrete states: 1 (“on” 
or “activated”) and 0 (“off” or “inactivated”). This restriction to two states is a crude 
simplification of a system but regulatory interactions are often of sigmoidal shape: 
a regulator R has no or only little effect to a target T until R reaches a threshold T. 
After T is reached, B quickly rates its activation/synthesis rate. It means for B that A 
is inactive (or absent) when A < T and A is active when A > T [21]. Time is discretized 
and the state at time t+1 is a function of the component at time t as described in the 
equation 2.1 [22]: 

where i is the node represented by binary state Vi, i = 1, 2, …, N in time t; 
V1(t), …, VN(t) is node activity pattern; kin(i) are other interactive nodes to the node 
i; Jji is the interaction strength from j to i; sgn(x) is the unitary step function; Ti is the 
activation threshold of i [23]. In more general approaches of logic models, variables 
can have any number of discrete or continuous variables (fuzzy logic models). 

Logic-based ODE [21] are the intermediate step between qualitative and 
quantitative models. They are transformed from Boolean networks and ODE models 
and allow studies on qualitative and dynamic features of a network, where time 
and states are continuous. As can be seen in the Fig. 7, logic-based ODE models are 
formatted based on the logical models (such as Boolean ones) and interaction 
graphs. Piecewise-linear differential equations or hybrid modeling is a method to 
form a continuous model and was firstly described in 1973 by Glass and Kauffman. 
It is a step function based on a sigmoidal shape of regulatory interactions. Logic-
based ODE derived from multivariate polynomial interpolation transform logical 
models into systems of continuous differential equations that are derived from 
Boolean models without any more knowledge. Boolean variables and functions are 
replaced by continuous elements: Boolean xi � {0,1} is replaced to 𝑥̅i � [0,1] which 
represents the normalized continuous variable of the i-th node. Discrete function Bi 
is replaced into continuous 𝐵̅𝑖𝐵. Alternativelly to the piecewise-linear differential 
equation’s sigmoid shape, polynomial interpolation uses the Hill function.  

𝜎𝑖(𝑡 + 1) = 𝑠𝑔𝑛 ∑ (𝐽𝑗𝑖𝜎𝑗(𝑡) – T𝑖)
𝑘𝑖𝑛(𝑖)

𝑗=1

 (2.1) 
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Hill function takes the form described in 2.2: 

where n is the Hill coefficient defining the steepness of the function; k is the 
activation level of a node x. 

The relationship between modeling methods and the transition from the 
qualitative model to the quantitative is shown in the Fig. 7. Every Boolean/logical 
model is based on the interaction graph because it was created based on it and every 
logical-based ODE was also created from Boolean (logical) model. The most 
important thing is the retaining of systems and network properties when moving 
from simple to more complex model.  

Petri nets [21] are an alternative to logical modeling. They are used mainly for 
large-scale networks. Petri nets are directed bipartite graphs made of nodes, places 
(usually nodes) and transitions (represent reactions or edges). Each transition has 
a certain number of input and output elements. The dynamic of the network is 
described by tokens: each place holds zero or a positive number of tokens. 
Transition can take place when all inputs of a transition carry certain number 
of tokens (or more). Input tokens are consumed and new tokens are generated in 
the output. 

2.1.2 Quantitative methods 
Quantitative models are exploited to large-scale networks behaviour prediction. 
They are often used as well for many analysis because they can show, for example, 
elements that are critically important and which ones are important less [23] or 
which edge is the most important to dissemination of information. Models are 
usually written in a form of mathematical equations. 

 

ℎ(𝑥) =  
𝑥𝑛

𝑥𝑛 + 𝑘𝑛 (2.2) 

Fig. 7: Modeling: from qualitative information to quantitative model [21] 
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The simplest models describe just the dependence of one element to another 
and they can be expressed by an algebraic equation described in 2.3:   

where A1 and An denote the monomer and n-mer; K is the constant [24]. 

Deterministic temporal dynamics is used for more complex problems and it is 
described by ordinary differential equations (ODE) (see Fig. 8). ODE are the most 
common type of models used for cells signaling. An expansion of the ODE are partial 
differential equations (PDE) used mainly to model spatially heterogeneous 
dynamics [24]. Both models are derived from the Michaelis-Menten equation 
(see the equation 2.4): 

where E is an enzyme; S is a substrate; k are rate constants; ES is an enzyme-
substrate complex and P is a product of the enzymatic reaction [25]. 

2.2 Tools  

Signaling pathways, as well as other large-scale networks, are complex 
and extensive models and it would be difficult or impossible to describe all parts of 
them without computer science. Therefore, many tools are created to facilitate 
network research. In addition, there are situations that cannot be implemented in 
real but can be made in silico (i.e. using computer model of living organism).  

 

𝐴𝑛 + 𝐴1 
𝑘𝑜𝑛→ 

𝑘𝑜𝑓𝑓
←     𝐴𝑛+1            𝐾 =  

𝑘𝑜𝑓𝑓
𝑘𝑜𝑛

 (2.3) 

𝐸 + 𝑆 
𝑘1→

𝑘−1
←    𝐸𝑆 

𝑘2
→   𝐸 + 𝑃 (2.4) 

Fig. 8: ODE model of a simple network [24] 
Left (A): a simple network; middle (B): ODE model with Michaelis-Menten  

expressions; right (C): simulation 
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There are many tools for visualisation and analysis of networks that differ in 
availability, functions or graphic user interface. Here is an example of freely 
available tools suitable for visualization and analysing signaling pathways that will 
be described in more details: Cell Collective, Cytoscape, Gephi, GINsim, SQUAD, 
VisANT, PathVisio and Reactome. 

Cell Collective [26] is a web-based platform created by T. Helikar’s team 
at Omaha’s University of Nebraska. The tool enables to create and use large-scale 
models based on the qualitative mathematical framework. The possibility to 
simulate and analyse models in real-time including loss/gain simulation of function; 
what-if testing is the next advantage. The Cell Collective is free for academic use tool 
accessible at cellcollective.org. The user registers first and then just logs-in from any 
computer because created networks will always be stored on a selected profile. 
In addition, platform allows to share networks with other users and therefore 
collaborate on projects from different locations. The user or collaborating group can, 
in addition to creating their own model, use already proposed models from 
a growing database and customize it. 

Cytoscape [27] is a software for visualizing interaction networks and pathways 
and integrating them with gene expression and other data. The tool was originally 
made only for private use in biological research, but now it is an open source 
platform for complex networks available from cytoscape.org. Plugins are usually 
free to download at Cytoscape App Store where they are divided into categories such 
as data visualisation, graph analysis, pathway database, etc. 

Gephi (The Open Graph Viz Platform) [28] is an open source software using 
a 3D render engine to display large-scale networks in real-time. Software is created 
for visualization and analysis the dynamics of networks, provides access to network 
data and allows for spatializing, filtering, navigating, manipulating and clustering. 
Gephi is available from gephi.org.  

GINsim – Gene interaction Network simulation [29] is a tool made for genetic 
regulatory networks focused on qualitative models based on a discrete, logical 
formalism available at ginsim.org. The GINsim allows to model the net as 
asynchronous, multivalued logical functions and simulate/analyse the qualitative 
dynamical behaviour or explore an already created network from an extensive 
database. 

SQUAD [30] was created at Swiss Instutite of Bioinformatic for the dynamic 
simulation of signaling networks (see omictools.com/squad-tool). It is based on the 
standardized qualitative dynamical systems. At first it converts the network into 
a discrete dynamical system, identify steady states by using of binary decision 
algorithm and at last the SQUAD creates a continuous dynamical system.  



19 

 

The tool allows to make a simulation on continuous systems and the network 
perturbation, which makes it possible to get closer to lab experiments 
(e.g. activating receptors or knocking out specific components). 

VisANT [31] (available from visant.bu.edu) is a tool for integrating interaction 
data with multi-tiered architecture. A software offers an interface for a large range 
of published datasets and it is integrated with standard databases such as GenBank, 
KEGG and SwissProt. A Java-based tool is suitable for many applications, 
e.g. pathways study, gene regulation, systems biology, mining a visualizing data 
in context of sequence, pathway and structure. Data can be analysed, combined 
and overlaid using built-in functions. VisANT 4.0 (last version) provides functions 
to analyse networks of diseases, therapies, genes and drugs [32]. 

PathVisio [33] (available from www.pathvisio.org) is a pathway analysing 
and drawing tool that can be combined with other tools to computational 
augmentation of pathways, visual compilation of biological knowledge 
and interpretation of high-throughput expression datasets. A tool provides a basic 
set for pathway drawing, analysis and visualization, additional features (pathway 
building and analysis, data integration, etc.) are available in plugin repository [34]. 

Reactome [35] is a curated and peer-reviewed pathway database (available at 
reactome.org) allowing visualization, interpretation and analysis of biological 
pathways. A database is divided into four parts: pathway browser for visualization 
and interaction Reactome pathways; data analyser merges expression analysis and 
pathway identifier mapping; ReactomeFIViz is created to find pathways 
and network patterns related to diseases and documentation. Whereas pathway 
analysis is only one section of Reactome, which is primarily a database, Reactome is 
also described in the following subchapter Databases. 

2.3 Databases 

Specialist databases are used to store acquired data and share them with other 
professionals. Examples of large, freely available databases created and controlled 
by experts are: Reactome, KEGG, WikiPathways, UniProt, BioModels, RegulonDB. 

Reactome [35] is a database of signaling pathways, metabolic molecules 
and their relations. It is designed as a graphical map of pathways and processes 
containing detailed information about components and relations by clicking 
through on the selected part of the network. Reactome pages cross-reference to over 
100 different bioinformatics resources, including Ensembl, UniProt, ChEBI, KEGG 
and PubMed. Data are downloadable in data formats: Neo4j GraphDB, MySQL, 
BioPAX, SBML and PSI-MITAB. 
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KEGG (an encyclopedia of genes and genomes) [36] is still growing integrated 
database resource of sequenced genomes available at www.kegg.jp. The primary 
objective of the project is to assign functional meanings of genes and genomes at the 
molecular and higher levels. In this time, KEGG consists seventeen databases divided 
into four categories: systems, genomic, chemical and health. The KEGG Orthology 
(KO) database in the genomic category contains knowledge of molecular-level 
functions and it is organized with the concept of functional orthologs; each KO is 
defined as a functional ortholog of genes and proteins. Genome and Genes databases 
are also part of the genomic category and are derived from RefSeq, GenBank and 
NCBI Taxonomy databases. 

WikiPathways [37] was established by biology community to contribute to 
pathway information (see wikipathways.org). It was developed as an open 
and collaborative platform. The WikiPathways is focused on genes, proteins 
and metabolic pathways. Data are encoded in GPML format, created with PathVisio 
tool and it is linked to other databases (Reactome, KEGG and Pathway Commons). 

UniProt (the Universal Protein Resource) [38] is a large dataset of protein 
sequences and associated annotation (available at uniprot.org). The knowledgebase 
contains more than 60 million sequences. A database is divided into four main parts: 
UniProtKB – a database of proteins; UniRef – clustered sets of sequences; 
UniParc – non-redundant database of publicly available protein sequences; 
Proteomes – protein sets from fully sequenced genomes. In addition to these 
sections, there are another three (auxiliary) sections: annotation systems, 
supporting data and help. The section UniProtKB also offers tools for analysis and 
clarifying of biological data, including: BLAST – the basic local alignment search tool 
searches local similarities between sequences; Align – aligning protein sequences 
with the Clustal Omega program; Retrieve/ID mapping tool; Peptide search [39]. 

BioModels [40] is a dataset of mathematical models representing biological 
and biomedical systems and processes. Literature-based mechanistic models are 
stored in standard formats and in a high-quality. Models can be mooted in every 
modeling formats or approaches they are encoded, such as ODE, logical, agent-
based, etc. It is also possible to load models of any formats such as SBML, CellML, 
MATEMATICA, etc. 

RegulonDB [41] is a database of Escherichia coli K-12 gene regulation available 
at regulondb.ccg.unam.mx. E. coli is the best-characterized organism (including 
pathways, interactions, regulation, etc.) and so it is often used for studies in systems 
biology, whether the bacteria or other organisms with similar features. A database 
currently collects 232 interactions with RNAs affecting 192 genes, 189 GENSOR 
units (elementary genetic sensory-response units) and 304 transcription factors. 
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2.4 Data formats 

Standardized data formats are indispensable for proposing, storaging and sharing 
of all signaling pathways in silico because they convert readable data into bits 
and thus allow them to be written to the computer. The most used formats in SB are 
XML, SBML, GML KGML and SIF. 

XML (the eXtensible Markup Language) is a simple, flexible text format used for 
web-based applications in many domains. It is the basis for many other data formats 
such as SBML. 

SBML (the Systems Biology Markup Language) is a standard XML-based format 
that allows the storage of arbitrarily complex stuctures of biological models. SBML 
code is divided into tags: body (information about the model), function and unit 
definitions, compartments and species types, parameters, rules, reactions, etc.  

GML (the Graph Modeling Language) [42] is a text format supporting network 
data, used for example in Gephi, Cytoscape, etc. A GML file consists of a hierarchical 
key-value list. 

KGML (KEGG Markup Language)  [43] is a format of KEGG graphic objects, 
especially manually drawn and updated pathway maps. Pathways are represented 
as nodes and edges where nodes specify graph objects and edges represent relation 
(in protein networks) and reaction (for chemical networks) elements. It also allows 
facilities to computational analysis and protein/chemical networks modeling. 

SIF (Simple Interaction File) [44] is a simple format that only specifies nodes 
and their interactions. SIF is especially used to import interactions when creating 
the network for the first time, because it is an easy to create this format in a text 
editor or spreadsheet. When is a network done, it is usually saved in another format 
(GML, XML, …). 

2.5 Data analysis 

Signaling pathway analysis is used to determine model properties. There are many 
parameters that can be monitored depending on the goal of the study. The basic 
division of data analysis is into static and dynamic, depending on whether network 
properties or model dynamicity are evaluated. 

2.5.1 Static analysis 
There are many tools for enumeration individual parameters (see chapter 2.2). 
Below is a description of the most significant elements of the static analysis. 
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All-pairs shortest path is a parameter specifying the shortest distance between 
every pair of nodes; as example can be finding the quickest way from one place to 
another one. Floyd Warshall’s Algorithm (and its modifications) is usually used 
method to compute the shortest path in a weighted directed graph [45]. Result of 
the analysis is a matrix M containing n × n values, where n is number of nodes in 
the network.  

Average shortest path (ASP) is an average value of all-pairs shortest path 
calculated according to equation 2.5: 

where N is number of nodes in the graph G (V, E), i and j are nodes in the graph G, 
dij is a distance between nodes i, j [46]. ASP can be similarly calculated for each node 
in the matrix M, which is referred to as average shortest path length (ASPL); the 
result is an average shortest path for every node – n values. 

Network diameter (ND) is the longest length of all shortest paths and hence, 
a highest value in the matrix M (result of the all-pairs shortest path). The value also 
represents the linear size of a network: 1D lattice if ND ~ n; 2D lattice if ND ~ n1/2; 
3D lattice if ND ~ n1/3 and random network if ND ~ ln(n) or if ND is smaller than 
ln (n) [47]. For example, ND of World Wide Web is 93.  

Connectivity distribution (degree distribution) of the node is the number of 
edges attached to the node, or the number of nodes the node is connected to. 
Enumeration of the parameter is shown in green in the Fig. 9. This parameter is 
significant for searching hubs, i.e. single nodes with a high degree. Connectivity 
distribution is also used to evaluate whether a model matches a random graph 
(e.g. Bernoulli’s random network: each node is connected with a certain probability, 
and connectivity has a binomial distribution) or a real network where most nodes 
have small degree, but a small number of nodes have high degree [6, 7]. 

Connectivity in degree is a subset of connectivity distribution indicating 
number of edges entering the node (see Fig. 9, red). 

Connectivity out degree is a subset of connectivity distribution, unlike in 
previous parameter, specifies number of edges exiting the node (see Fig. 9, blue). 

𝐴𝑆𝑃 =  
2

𝑁(𝑁 + 1) ∑ 𝑑𝑖𝑗
𝑖≤𝑗;𝑖,𝑗∈𝐺

 (2.5) 

Fig. 9: Connectivity distribution (green), c. in degree (red), c. out degree (blue) 

2, 2, 0 

2, 1, 1 
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2, 1, 1 

2, 2, 0 
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Closeness centrality (CC) [48] is an average distance from one node to other 
nodes, describes how fast information is able to flow from a given node to other 
nodes. It is calculated as the normalized inverse of the sum of the topological inverse 
(see the equation 2.6) or simplified as the inverse the farness. 

where i, j are nodes, i ≠ j; N is number of nodes; dij is the shortest path between nodes 
i and j; ∑ 𝑑(𝑖, 𝑗)𝑗  is the farness.  

Feedback loops (FL) are used in many branches such as software development, 
social sciences, biology, mechanical and electronic engineering. It is a path starts and 
ends at the same point; e.g. node A sends an information to the node B, node B sends 
an answer to the node A. FL can be divided into negative and positive feedback. 
Negative regulation in the example with nodes A and B causes a decrease in 
production of the node A, positive regulation increase in production of the node A. 

Clustering coefficient [49] is used to determine the interconnection of the 
network. It can be divided into global (description of the entire graph) and local 
(enumeration for each node). Local clustering coefficient quantifies the degree to 
which nodes tend to associate and being cliques (i.e. complete subgraphs where 
every two nodes are adjacent). In other words, the coefficient indicates the 
probability that any two nodes that have a common neighbor are also connected. 

Eccentricity [50] is a node centrality index indicating the maximum distance 
between node u and all other nodes. High eccentricity value of the node u assumes 
that all other nodes are in proximity and the node u could be easily influenced by 
other nodes or influence other nodes. Low values indicate that at least one node is 
remote from the individual node u and could mean a marginal role in the network. 

Stress [50] is a parameter identifying node’s relevance to hold communicating 
nodes together. It is measured as the number of shortest paths passing through 
node u. Usually high stress score indicates the significance of u to maintain 
the connection of the passing through nodes. 

Betweenness centrality (B) [51] is a network property describing shortest 
path between pair of nodes passing through the node u. Applies the equation 2.7: 

 𝐵𝑢 =
1

(𝑛 − 1)(𝑛 − 2) ∑
S𝑠𝑡(𝑢)
𝑆𝑠𝑡𝑠≠𝑢≠𝑡∈𝑉

 (2.7) 

where n is total number of nodes, u is computed node, Sst is number of shortest paths 
from s to t and Sst(u) is number of shortest paths from s to t passing through u. B is 
normalized by the number of node pairs. 

𝐶𝐶(𝑖) =  
𝑁 − 1

∑ 𝑑(𝑖, 𝑗)𝑗
 (2.6) 
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2.5.2 Dynamic analysis 
The testing evaluates model changes over time which is an important aid in 
examining the particular system, as it is not necessary to perform laboratory 
experiments that may be costly or impossible to realize. The method is also an ideal 
solution for model fitting. Comparing the course of the model (called simulation) 
with the behaviour of a living organism allows modifying model parameters to 
achieve the highest match. 

Dynamic analysis studies model behaviour under certain conditions, not the 
model structure or setting of individual elements in the network. For example, 
it examines the response of the system to structural changes such as knockout or 
overexpression of a defined gene.  

Using model simulation are studied parameters such as concentration, states of 
individual molecules, stages in processes, activity level, etc.; these variables can take 
place either in time (for continuous models) or in steps (for discrete models). 

Continuous models are made up of quantitative methods, mainly using 
differential equations (see subchapter 2.1.2); every variable is defined at every 
moment and time changes are continuous [24]. Models are used mainly to simulate 
long time phenomenon, typically much longer than individual elements life or 
course [53], for example the reaction of the environment to the particular substance 
or the long-term evolution of the genetically modified species.  

Discrete models describing step simulations, i.e. with abstracted time, are 
made up of qualitative methods – described by interaction graphs, Boolean/logical 
models, etc. (see subchapter 2.1.1); variables are described only at given steps or 
points, not at any moment.  They are usually used to observe behaviour of individual 
cells, because define object as a set of points or states and the conditions under 
which they get into these states; conditions can be modified during the simulation 
due to behaviour of surrounding points or states [53]. 
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3 DATA ACQUISITION FOR SIGNALING 
PATHWAYS MODELING  

To construct a model of signaling pathways, we need to know all nodes involved in 
the process and the relationships between these nodes.  

The first option how to get information of interest is to search the databases. 
There are many databases of genes (for example GenBank, GeneCards, KEGG Genes), 
interaction between genes (Biostars, BioGrid, etc.) and already created models.  

The next way of data acquisition is the use of experimental methods. The 
organism or part of it is studied in the laboratory using molecular biology 
techniques. The most commonly used are techniques for the detection of gene 
expression to detect genes and determine their activity during the life cycle and the 
detection of gene products and the phenotype to evaluate the behaviour of the cell. 

3.1 Detection of gene expression 

Gene expression is the process of performing a product from the information saved 
in a gene. For example, expression of protein-coding gene causes the formation of a 
specific protein, which can cause further processes in the organism.  

Lab techniques for gene expression study can be divided according to omics 
they use into: transcriptomics (RNA-Seq, microarray), proteomics (blotting) and 
metabolomics. All listed techniques belongs to hybridization methods (a target gene 
detection technique that uses pairing of singe-chain nucleid acids) [54, 55].  

3.1.1 RNA-Seq 
Whole transcriptome sequencing, RNA-Seq, is the most advanced technique for the 
detection of gene expression [55]. 

The sequencing process includes five major steps (see Fig. 10) [54, 55, 56]: (1) 
Total RNA isolation (2) Ribo-depletion (3) Reverse transcription into cDNA  
(4) Sequencing of the cDNA (5) Data analysis.  

The last step, data analysis, is divided into four points: (I) Removal of 
sequencing adapters and residual contamination; (II) Mapping on the reference 
genome or de novo (synthesis of complex molecules from simple ones; translated: 
from the beginning) assembly of transcripts if the reference genome is not available; 
(III) Evaluation of the expression by creating the count table; (IV) Normalization of 
the count table.  
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Normalization of the count table can be done in several ways, depending on the 
type of data and the following use: negative binomial distribution, reads Per 
Kilobase per Million mapped reads (RPKM), fragments Per Kilobase per Million 
mapped reads (FPKM), Transcripts Per Kilobase per Million mapped reads (TPM). 

In a comparison to microarray (below), RNA-Seq has better results in detecting 
low abundance of transcripts, differentiating biologically critical isoforms and in the 
identification of genetic variants [55], which, besides, allows the analysis of  
non-model organisms whose genome is non-available [54]. Method detects 
a broader dynamic range and so the detection of more differentially expressed 
genes with higher fold-change [55]. Moreover, RNA-Seq is an easier method, as there 
is no need for processed such as cross-hybridization and non-specific hybridization. 
Disadvantage of RNA-Seq is the need for data processing. Next obstacle was the 
price, but the cost has now fallen to acceptable value [57]. 

3.1.2 Microarray 
The technique is based on applying a sample to the plate – array. The array consists 
of thousands of features or spots to which is the sample attached. According to the 
type of sample that microarray analyses, it is divided into two types: DNA 
microarray or chip (features are short oligonucleotides) and protein microarray 
(features are immobilized antibodies for which are analysed proteins antigens).  

Fig. 10: Illustration of the RNA-Seq detection [56] 
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DNA microarray was invented in 1990s for large-scale studies of gene 
expression [55]. It used to be the most used technique for the detection of gene 
expression, but for the reasons outlined above, nowadays it is more often replaced 
by RNA-Seq. Chips for the DNA detection of commonly analysed species are 
commercially produced, but for non-model organisms it is usually necessary to 
create own chip. The preparation of the microarray is possible by applying drops to 
the substrate or in situ (in the original place of the sample) synthesis of 
oligonucleotides. The next step of the analysis is to hybridize the sample to chip, 
wash and scan the chip. The result of the analysis is the qualitative information 
(which genes are expressed) and the quantitative information (the extent of gene 
expression). 

3.1.3 Blotting 
Blotting techniques are biochemical methods based on the transfer of the studied 
fragments from the electrophoresis gel to a nitrocellulose or nylon membrane. 
Studied fragments create blots, from which the method name is derived. Sir Edwin 
Southern invented the technique in 1975 for the analysis of DNA fragments. The 
method is called Southern blot [58]. Later, methods for RNA and protein analysis 
were developed and are named Northern blot (for RNA) and Western blot 
(for proteins) [59].  

Blotting methods consist usually of four steps [59]: electrophoretic separation 
of DNA/RNA/protein fragments, transfer to and immobilisation on paper support, 
binding of analytical probe to the target molecule on paper and visualisation of 
bound probe. 

3.2 Detection of gene products and phenotype 

Gene products, RNA or proteins are the result of the individual gene activity – gene 
expression. Function of all products in the cell, together with the environmental 
effect, is referred to as phenotype, which indicates the resulting behaviour of the 
organism as a whole. Laboratory techniques such as HPLC and FC are used to 
evaluate these parameters and are described below. 

3.2.1 HPLC 
High-performance liquid chromatography (HPLC) [60] serves to separation, 
identification and quantification of the active compounds. A method sorts cells 
based on the molecular composition and structure.  
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As the first step of the chromatography, analysed sample is inserted into the 
column, where stationary and mobile phases are. The stationary phase, usually 
consisting of solid molecules, is fixed in the column. The mobile phase (gas or liquid) 
together with the analysed sample flow through the column and interacts with the 
stationary phase based on its size, chemical and physical properties. This slows 
down some molecules more than others, therefore the elements elute (arrive to the 
end of the column – to the detector) at a retention time (specific time typical for each 
group of molecules).  

3.2.2 Flow cytometry 
Flow cytometry (FC) is a high-throughput analysis method for sorting and 
discriminating individual cells or separating subpopulations. The multiparametric 
technique is based on passing the molecules one by one through laser beams, which 
measure scattered lights and fluorescence emissions. The FC process is shown 
in the Fig. 11. 

Analysing cells are excited by laser light source, which they emit as a light of 
a certain wavelengths based on their size and shape. Forward scatter (FSC) 
measures cell size as well as distinguishes the living cells from the dead ones. Side 
scatter (SSC) detects cell’s shape or granularity. Since the light intensity of the SSC 
is weak, a photomultiplier (PMT) is used to amplify the signal. 

FC allows to analyse 32 parameters simultaneously and sort up to 100 thousand 
cells per second [62]. A technique is used in many fields, such as immunology, 
molecular biology, hematology, plants and bacterial research. 

 
Fig. 11: Flow cytometer scheme [61] 
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4 SIGNALING PAHWAYS IN CLOSTRIDIA 

4.1 Solventogenic clostridia 

The clostridium genus is formed by anaerobic, sporadic bacteria occurring primarily 
in the soil. Morphologically, clostridium is rod-shape G+ (gram-positive) bacterium 
having a shape of bowling pin or a bottle in their endospore stage. More than 100 
species of clostridia are described, many of which have effect on the human 
(or animal) organism. Positive effects have, for example, C. leptum, C. coccoides. 
Negative effects, as well as serious diseases, cause e.g. C. botulinum, C. difficile, 
C. perfringens, C. tetani [63]. Further, for this thesis the most important, there are 
species with acetone-butanol-ethanol (ABE) fermentation – solventogenic species. 
These are: C. acetobutylicum, C. beijerinckii, C. saccharoperbutylacetonicum [64]. 
Clostridia life cycle is shown in the Fig. 12. 

Fig. 12: Life cycle of solventogenic clostridia at six time points [65] 

ABE fermentation is a biological process in which acetone, butanol and ethanol 
are produced. It was found in the early 20th century by Dr. Ch. Weizmann [64]. 
Butanol is a quarternary alcohol which can be used as a solvent, disinfectant, or as 
a biofuel. Its use as a biofuel or dopant in fuel has recently been often discussed, 
mainly in the attempt to use an alternative fuel from renewable sources and the 
reduction of oil reserves. 

Clostridium acetobutylicum is a model organism of solventogenic clostridia 
containing 94 strains. It was firstly successfully isolated and used for the large-scale 
solvents production [66]. Genus research for butanol production has lasted over 
a hundred years [67]. C. acetobutylicum is sensitive to rifampicin, able to produce 
riboflavin and hydrolyse gelatine – unlike most other solventogenic species [66]. 
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Clostridium beijerinckii is the genus utilizing a widest range of solvent 
production substrates and seems to be the most robust in terms of viability in a wide 
range of environmental conditions [65]. Therefore, C. beijerinckii appears to be the 
most suitable candidate for the large-scale butanol production in comparison to 
other solventogenic species [68] and its strain NRRL B-598 will be discussed in 
detail below. 

Clostridium saccharoperbutylacetonicum [66] cells are in the form of 
straight, short and long rods with rounded ends and peritrichous flagella for 
movement. They usually occur singly or in pairs. During the life cycle, a species 
accumulate granule towards the end of growth and under adverse conditions, 
sporulation occurs. Endospores are oval, approximately the same size as the  
rod-shape. 

4.2 Butanol production – general signaling pathways 

Signaling pathways, as mentioned above, are cooperating molecules that control 
a specific cell function (e.g. butanol production), which can be described by 
mathematical models. Butanol production usually consist of two phases: 
acidogenesis and solventogenesis [65]; in solventogenic clostridia it is controlled 
especially by Sol operon. Sol operon is formed by a small open reading frame (ORF) 
and four genes [69]: ctfA, ctfB, adc (these genes are equal for all described clostridia) 
and ald/bld/aad/adhE (different for each species) – see the Fig. 11.  

Butanol production in bacteria, especially the effort to increase production, is 
a widely-studied area, so therefore exist many already created pathways. Most 
important models for this study are: a comparing model of two best described 
species, five already created pathways of the C. acetobutylicum and a genome-scale 
network of the C. beijerinckii. Pathways are described below. 

 

C. saccharoperbutylacetonicum 

C. acetobutylicum 

Fig. 13: Sol operon genes 

C. beijerinckii  ald ctfA ctfB adc 

bld ctfA ctfB adc 

ctfA ctfB adc aad/adhE 
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A comparing model of C. acetobutylicum and C. beijerinckii [70] is shown in 
the Fig. 12 (its most important part for this study, the whole model is due to the large 
size available at [70] and in the attachment under the name ‘comparison SP of 
beijerinckii and acetobutylicum‘). The picture shows the metabolic pathway of 
butanol production with contribution of acetyl-CoA (acetyl coenzyme A) and other 
metabolites, starting with pyruvate – a basic cell metabolite and final product of 
glycolysis. Genes that affect pro production of these metabolites are shown in red 
(C. acetobutylicum) and green (C. beijerinckii). 

Already created cellular overview of C. acetobutylicum ATCC 824 pathways is 
stored in BioCyc Database Collection [71], shown in the Fig. 13 and available at 
https://biocyc.org/overviewsWeb/celOv.shtml?orgid=CACE272562&pnids=PWY-
6594, where is it possible to work interactively with pathways – display only 
selected pathways, genes, metabolites, etc. 

A pathway of butanol production called Superpathway of Clostridium 
acetobutylicum solventogenic fermentation, part of a cellular overview (coloured in 
green in the Fig. 13), is shown in the Fig. 14 and included in the attachment as  
‘C. acetobutylicum ATCC 824 - Superpathway of Clostridium acetobutylicum 
solventogenic fermentation’.  

Fig. 14: SP of C. acetobutylicum (red) and C. beijerinckii (green) [70] 
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 Fig. 15: C. acetobutylicum ATCC 824 pathways - an overview [71] 

 

Fig. 16: C. acetobutylicum ATCC 824: solventogenic superpathway [71] 
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Butanoate metabolism pathway of C. acetobutylicum ATCC 824, shown in 
the  Fig. 15 and included in the attachment as ‘C. acetobutylicum ATCC 824 - 
Butanoate metabolism’, is available also in the KEGG database [72]. Green elements 
are described in detail, white elements do not contain more information yet. Butanol 
and genes ctfA (2.8.3.8) and adhE (1.2.1.10) are highlighted in red in the picture; 
genes ctfB and adc are not described in detail now. 

Two-component system of C. acetobutylicum ATCC 824 is a pathway available 
from KEGG database [73] and it is included in the attachment as ‘C. acetobutylicum 
ATCC 824 – two-component system’. Part of the pathway containing the Sol operon is 
in the database’s section Other families and is showed in the Fig. 16.  

 

Fig. 18: Two-component system of C. acetobutylicum ATCC 824  

section Other families, part containing Sol operon [73] 

Fig. 17: Butanoate metabolism pathway of C. acetobutylicum ATCC 824 [72] 

ctfA 
adhE 
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BioModels contains two genome-scale models of C. acetobutylicum ATCC 824 
(iCac802 and iJL432) and a genome-scale network of C. beijerinckii NCIMB 8052 
(iCB925). All of them are divided into three networks: all, base and kinetic. 

iCac802 network was first published at 2008 by Senger and Papoutsakis [74], 
contains 4 148 nodes and 14 438 edges, 422 intracellular metabolites involved in 
522 reaction and 80 membrane transport reactions. Semi-automated reverse 
engineering algorithm, thermodynamic analysis and systematic gene knock-out 
simulations were used to propose the net. iCac802 is available in the attachment as 
‘Genome-scale metabolic network of Clostridium acetobutylicum – Senger’. 

iLJ432 was reconstructed from annotated genomic sequence at 2008 by 
scientists Lee, Yun, Feist, Palsson and Lee [75]. It contains 1 605 nodes, 4 333 edges, 
502 reactions and 479 metabolites. The network was used as the basis for an in silico 
model used to predict metabolic fluxes during the acidogenic phase. Single gene 
deletions were used to predict essential genes. Whole network is available in the 
attachment (‘Genome-scale metabolic network of Clostridium acetobutylicum – Lee’). 

iCB925, the first metabolic genome-scale model of C. beijerinckii presented at 
2011 by Milne et. al. [76] is shown in the Fig. 17 and available in the attachment as 
‘Genome-scale metabolic network of Clostridium beijerinckii’. The network was built 
by semi-automated procedure using databases KEGG, BioCyc and The SEED. 
Containing 3 133 nodes, 9 087 edges, 925 genes, 938 reactions, 881 metabolites 
and 67 membrane transport reactions is iCB925 the largest genome-scale model for 
the clostridium species [76]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Genome-scale network of C. beijerinckii NCIMB 8052 [76] 
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5 BUTANOL PRODUCTION IN THE STRAIN 
C. BEIJERINCKII NRRL B-598 

C. beijerinckii NRRL B-598 was reidentified from the C. pasteurianum genus in 2017 
based on the genome statistics similarity [77] (see phylogenetic tree in the Fig. 20). 
The complete genome was first sequenced in 2014 [78], then it was refined 
and version 3 is now available in NCBI Reference Sequence under the name 
NZ_CP011966.3 (https://www.ncbi.nlm.nih.gov/nuccore/CP011966.3/).  

Fig. 20: Phylogenetic position of C. pasteurianum/beijerinckii NRRL B-598 [77] 

The non-type strain is able to produce butanol before the start of the 
sporulation up to maximum of 7.6 g/l, maximum production of acetone is about 
3.9 g/l [57]. Ethanol production is negligible, we assume that due to the lack of the 
gene aad that ethanol-producing clostridia have. 

5.1 Proposed signaling pathway  

Data gain is based on the information obtained from laboratory using RNA-Seq, 
HPLC and FC as well as database and text mining. KEGG’s tool BlastKOALA was used 
to compare gene identity and function. The pathway was proposed used the Cell 
Collective as it is an ideal tool for our purpose as it allows to propose a dynamic 
model and conditions between nodes, perform simulations and analysis, share 
and publish the model.  

The model is shown in the Fig. 21 and available on the Cell Collective website 
under the name ‘Signaling Pathway for Butanol Production in Clostridium beijerinckii 
NRRL B-598’, version 1.1 (see bit.ly/2UWiQbJ). 
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Fig. 21: Signaling pathway for butanol production in C. beijerinckii NRRL B-598 

Signaling pathway is proposed as a dynamic model, thus allowing the 
approximation of cell’s behaviour during butanol production. The pathway contains 
the dynamic part such as states and conditions and the static part. 

Static part of the dynamic model consists of 66 nodes (elements – genes, 
proteins and metabolites) and 139 edges (connection between nodes).  

Nodes are divided into internal (grey, e.g. butanal) and external (orange, 
e.g. aad). Internal ones contain both entering and exiting edges and they 
approximate “internal elements” of the cell (genes and proteins, eventually final 
metabolites) whose amount cannot be influenced directly, but only by their 
mutation or using indirect interactions with another substance. External ones 
contain only exiting edges and opposite to internal nodes can be changed in the 
activity level during the simulation. External components approximate usually 
elements whose amount is possible to change directly in a living organism, for 
example by injecting the element as a solution. External nodes are also made up of 
several elements that cannot be influenced directly, but the possibility of changing 
their activity level is necessary for the correctness of the model, such as the node 
aad – gene, which the strain does not contain, but is assumed to be crucial for 
ethanol production, since all other ethanol producing clostridia strains contain this 
gene. 
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Edges are divided into: activation (green, e.g. sigH → sigF) and inactivation (red, 
e.g. spo0A+p → hbd). Conditions are also illustrated as edges (grey; e.g. ethanol is 
activated only when aad is active). Activating edges increase the activity of the node 
that they target. If more of these edges target to the one node, it occurs to the 
increases proportionally to all inputs. Inactivating nodes, on the other hand, reduce 
the activity level of the targeting node. In case of both types of edges (activation and 
inactivation) targeting to one node, by default each entering edge has the same 
weight – activation and inactivation numbers are summed but it is possible to set 
the dominance of each inactivation edge; so that if the node from which the edge is 
active, the edge will inactivate the target node. 

5.2 Simulation 

Cell Collective tool allows model simulation in the Simulation panel. The first step is 
setting the properties such as simulation speed, sliding window and visibility of 
selected components for observing the course over time; initial state of internal 
components (active or inactive) and activity level of external components. The 
values used for the simulation shown in the Fig. 22 are described in the Tab. 1 and 
stored in the Cell Collective Simulation panel in the window External components: 
Environment under the name ‘MyEnv’. Due to the fact the dynamic model is discrete, 
i.e. time is abstracted, the simulation results are in steps (1 step = 1 model’s change) 
and approximate the time in hours (1 step = 1 hour). 

Fig. 22: Model simulation of seven metabolites 
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Tab. 1: Activity level of external components in individual steps 
Activity [%] 
Step [-] 

aad glucose NAD(P)H NADH phosphorylation PTS sigA spoIIE 

0 - 22 0 100 50 50 100 100 100 75 

23 - 47 0 0 50 50 100 100 100 75 

Since the aim of the work is to propose a dynamic model corresponding 
to biological data, I focused the simulation on the study of seven metabolites, 
the results of which obtained using laboratory measurement are available [57]. 
These metabolites can be considered as target products of the strain, so if 
the simulation process corresponds to biological data, we can assume 
the correctness of the model. 

External components are nodes whose activity level can be changed. They 
approximate the biological elements the amount of which can be easily influenced, 
e.g. by adding them to the solution. External components activity levels (see Tab. 1) 
have been set based on the biological data matching (will be described in detail in 
the subchapter 5.4).  

The activity level of the aad gene was set to 0 % throughout the simulation since 
the strain NRRL B-598 does not contain this gene, as mentioned above. The glucose 
value was reduced from 100 % to 0 % in the middle of the simulation, thereby 
approximating glucose consumption as an energy source during metabolic 
processes. NAD(P)H and NADH are secondary sources of energy, and their activity 
was half throughout the simulation, corresponding to their partial involvement 
in metabolic processes. Phosphorylation is an essential part of many processes 
in the cell as well as the butanol production process, as its known from laboratory 
experiments. Therefore, phosphorylation’s activity was set to 100 % throughout 
the simulation. PTS is a set of genes responsible for glucose utilization to usable 
components, without which glucose would not be usable at all. For this reason, PTS 
activity level was set to maximum during the whole simulation. SigA is a sigma factor 
belonging to the sigma 70 family, which contributes significantly to both 
the activation of the transcription factor spo0A and the cascade of events leading to 
the sporulation, which are fundamental processes of the entire network. Therefore, 
SigA is considered as an essential part of the process and its value was set to 100 %. 
The SpoIIE sporulation factor is responsible for the activation or inactivation of 
other sporulation factors such as SigF and SpoIIAB. Since it causes many events 
depending on the environments, it is not possible to experimentally determine its 
activity at each case. The SpoIIE activity level was therefore set based on the 
comparison of simulation results with biological data to 75 %. 
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The simulation course can be seen in the Cell Collective’s Simulation panel. The 
activity level of each node is shown in colour in the network. The red colour 
indicates inactivity, green represents activity and the transition over states shows 
the colour transition from green over yellow and orange to red. The exact activity 
level value in every step is written in the Internal components table and after the 
simulation is possible to download values for each node in each step in XLSX format. 

5.3 Static analysis 

Static analysis was performed using Cell Collective’s Network analysis panel, 
Cytoscape and its plugin CentiScaPe. To verify the properties of the model, 
I calculated thirteen parameters: all-pairs shortest path, average shortest path, 
average shortest path length, network diameter, connectivity distribution, 
connectivity in degree, connectivity out degree, closeness centrality, feedback loops, 
clustering coefficient, eccentricity, stress and betweenness centrality.  

All-pairs shortest path is a matrix M of n × n values (n = 66) containing 
the distances between all pairs of nodes that are in the pathway. Using the matrix, 
I have determined network parameters such as ASP, ASPL and ND. Matrix M is 
available in the attachment under the name ‘allPairsShortestPath’.  

ASP – average value of the M is 4.5, which means that from one selected node to 
another information spreads over 4.5 nodes on average. The lower value, the faster 
information flow across the network and thus response to surrounding changes. The 
resulting ASP value is 14.6 % of all nodes, so responses to changes in environment 
are fast, although some delay occurs. This fact can be observed even during the 
simulation (see Fig. 22) – the response to glucose reduction occurred with a slight 
delay. The ASP suggests that cell’s part responsible for controlling the butanol and 
other solvents production are well connected and capable of rapid communication. 

ASPL specifies how much the node is connected or how fast the information will 
flow if we affect that node. Based on the ASPL results, I identified nodes that are best 
to modify to get a quick response. I searched for nodes with the lowest ASPL, except 
for zero values. The zero length indicates that the node has no output edge and 
cannot directly spread information. There are 4 zero nodes in the analysed network: 
acids acetic, butyric and lactic and proteins spoIIA+p and spoIIAB+p.  These acids 
are the final products of the network, so they do not have an output edge. spoIIA+p 
and spoIIAB+p are auxiliary nodes in a transcriptional regulators subset that serve 
to create certain conditions and completeness of the subnet, but do not directly 
affect the butanol production. The lowest non-zero values are achieved by acetyl-p, 
butyryl-p and lactate followed by sporulation with the second highest value.  
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These nodes I classify as the most ideal for the direct influence in order to spread 
information as quickly as possible. The highest values are achieved by elements ack, 
pta and pfk which means that it is not appropriate to modify these elements directly 
if is required an immediate network response. ASP values for each node are stored 
in the attachment under the name ‚static analysis (Cytoscape)‘. 

Network diameter – maximum value in the matrix M and the longest distance 
between two nodes of all shortest paths is 11 between sigK and pfk. This means that 
if one of these nodes (sigK/pfk) starts the flow of information, the last change occurs 
at the second node (pfk/sigK). So, for studying whether the information has passed 
through the entire network, we will use this pair of nodes. If the information is 
reflected on the observed node, we know that all other nodes have already recorded 
the information. ND parameter also represents the linear size of a network: 
ND ~ n1/2, so the network approximates a 2D lattice [47].  

Connectivity distribution or degree distribution is shown in the Fig.  23. Most 
nodes (18) have connectivity distribution 3. The highest degree (25) reaches node 
spo0A+p, the second largest degree (22) has a sporulation. Whereas most nodes 
have low degree number and a small number of nodes have much more higher 
degree, we can conclude that the model approximates the real network [6, 7]. 
spo0A+p and sporulation are hubs (nodes with high degree) and thus they are very 
important for the network in means of topology - a network collision occurs when 
the hub is removed. Connectivity distribution together with connectivity in degree 
and connectivity out degree values are stored in the attachment under the name 
‘connectivityDistribution’. 

Fig.  23: Connectivity distribution 
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Closeness centrality values are displayed (sorted by size) in the Fig. 24 and in 
the attachment (‘closenessCentrality’). The highest CC reach nodes: AbrB, acids 
acetic, lactic and butyric, spoIIAA+p, spoIIAB+p, butyril, acetyl and lactate. This 
implies that listed nodes are closest to all other nodes, or most associated with all 
nodes. On the contrary, the most remote from all other elements are the nodes with 
the lowest CC, which are NADH, pfk, 3-hydroxybutyryl-CoA, crt, ack and pta. It means 
that if we pass the information to one of the high CC nodes, the information will be 
spread to many other nodes or even to the entire network. On the other hand, if we 
insert the information to low CC nodes, they only pass the information to the small 
neighborhood. Therefore, if we want to influence as much network as possible in the 
signaling pathway for butanol production, we must primarily target to nodes AbrB, 
acetic acids, lactic and butyric, spoIIAA+p, spoIIAB+p, butyril, acetyl and/or lactate. 

Feedback loops are given as a path starting and ending at the same point. FL are 
very important as they serve to regulate processes in the cell and, in particular, to 
maintain homeostasis. The more FL network contains, the better response to 
environmental changes and adaptation. In this dynamic model is 825 FL, the 
shortest one contains one node (butyrate inactivate itself), longest loops consist of 
14 nodes (e.g. spo0A+p → ctfA → acetoacetate → acetone → acetate → acetyl-CoA → 
acetoacetyl-CoA → 3-hydroxybutyryl-CoA → crotonoyl-CoA → butyryl-CoA → 
butanal → butanol → cell membrane → sporulation → spo0A+p). The network 
contains a large amount of FL, so it is capable of high-quality processes regulation 
and homeostasis maintenance. Based on it, we can assess that the network (and so 
living bacterium) can easily cope with changes in the environment without damage 
risk. All FL are stored in the attachment under the name ‘feedbackLoops’. 

Fig. 24: Closeness centrality values of all nodes 
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Next results of static analysis (clustering coefficient, eccentricity, stress and 
betweenness centrality) are stored in the attachment under the name ‚static analysis 
(Cytoscape)‘ and will be described in detail in the following paragraphs. 

Clustering coefficient describes the network interconnection and quantifies 
nodes tend to associate. The highest coefficient reach glucose, spoIIA+p and sigA 
with the value of 0.5. It means that average connection of listed node’s neighbors is 
50 % and these nodes are very highly interconnected and thus can easily influence 
the broad surroundings. A total of 22 nodes have a coefficient value higher than 0.09, 
so they are highly interconnected [79]. This implies that the network is medium 
interconnected - less than half of the nodes have a high clustering coefficient value, 
the remaining nodes medium or low. 

Eccentricity interprets nodes influence to other elements or conversely other 
elements influence to the node. In contrast with clustering coefficient, which is 
calculated by number of edges, eccentricity is evaluated based on the distances 
between nodes. Highest eccentricity (11) reach genes Rnf and pfk followed by ack, 
crt, fba, ferredotoxin, 3-hydroxybutyril-CoA, pta, pgi, pyk, NADH and pta, with the 
value 10. These nodes can be easily functionally reached by other elements or they 
can reach other elements. 

Stress is a parameter describing the relevance of nodes in meaning of holding 
communicating nodes together. The most relevant nodes (for communication flow) 
are spo0A+p, sporulation and cell membrane with stress values higher than one 
thousand. Removal or non-functionality of listed nodes would have a significant 
negative impact on the spread of the information across the network, or even 
information could not pass through the network to the target element.  spo0A+p, 
sporulation and cell membrane are crucial for the cell's life processes, so it is 
appropriate that they are also of great importance in the transmission of 
information. 

Betweenness centrality is generally in range 0-1; high result indicates 
the importance of the single node. Betweenness centrality values in this analysis are 
not higher than 0.5, which indicates that individual nodes are equal in the 
importance on the flow of information through them and removing of any node will 
have the same impact on the whole network. The highest values reach nodes 
spo0A+p, sporulation and cell membrane, same results as stress. Centralities stress 
and betweenness are similar, except that stress is enumerated as the absolute value 
of the shortest paths, and betweenness measures the fraction of the shortest paths 
passing through the node. This is confirmed by the previous statement that nodes 
spo0A+p, sporulation and cell membrane are very significant in the network. 
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5.4 Evaluating a model match with biological data 

To evaluate the model approximation with real bacterium organism, I used 
biological data measured in the laboratory by HPLC, RNA-Seq and FC in previous 
studies of C. beijerinckii NRRL B-598 [57, 65] and compared them with model 
simulation and analysis results. 

5.4.1 HLPC 
Since the obtained laboratory data by HPLC was measured as the concentration of 
metabolites over time and model gives the result as an activity level of nodes over 
steps, I converted the measured data to a reaction rate (activity – production or 
consumption of each metabolite) over time using Matlab tool and the equation 5.1: 

where 𝑣𝑋 is the reaction rate of metabolite X, 𝑐𝑋 is the concetration of metabolite X, 
t is time. Result of the conversion is shown in the Fig. 25.  

Fig. 25:  Reaction rate of seven metabolites over time 

To compare the simulation with measured data, I evaluated the similarity of 
a total seven metabolites at 10 time/step points. Part of the comparison values is in 
the Tab. 2, all values are in the attachment (‘statistics-simulationVShplc’). I used the 
Spearman’s correlation coefficient for the statistics since the model is discrete (gives 
the results as activity level over steps) and measured data are continuous. For the 
enumeration, I used the Matlab’s function corr (x, y, ‘Type’, ‘Spearman’).  

𝑣𝑋 =  
𝑑𝑐𝑋
𝑑𝑡  

[𝑔𝑙−1ℎ−1] (5.1) 



44 

 

Tab. 2: Reaction rate and acivity level of selected metabolies; the statistics 

Time [h] 
Step[-] 

butanol acetone ethanol 

production 
rate [gl-1h-1] 

activity 
level [%] 

production 
rate [gl-1h-1] 

activity 
level [%] 

production 
rate [gl-1h-1] 

activity 
level [%] 

0 0 0 0 0 0 0 

4 0 25.0 0 0 0 0 

6 0.27 50.0 0 33.3 0 0 

8 0.29 50.0 0 37.5 0 0 

13 0.28 53.8 0.07 46.2 0 0 

18 0.23 50.0 0.16 44.4 0 0 

23 0.22 47.8 0.19 43.5 0.04 0 

27 0.26 48.1 0.22 44.4 0.01 0 

32 0.18 40.6 0.10 37.5 0.01 0 

47 0.06 27.7 0.02 25.5 0 0 

Correlation 0.766 

I evaluated the model match with biological data with a correlation result 0.766 
(see the Tab. 2), which is a strong correlation and satisfactory value. Although the 
biological material shows considerable variability in minor environmental changes 
and moreover I compared different variables, I can conclude that the model 
approximates real data very well, that confirms statistical evaluation and visual 
comparison of model simulation (Fig. 22) with biological data (Fig. 25).  

The course of glucose in both graphs shows much higher values than the other 
metabolites and in both cases the element reaches its maximum value in a short 
period of time and then gradually decreases. Butanol reaches the highest values of 
all final products in both graphs, while maintaining a constant production/activity 
value with a slight decline after reaching its maximum. Ethanol shows the lowest 
result values of all metabolites; its activity level is zero at all and a minimal 
production rate appears in biological data. Acetone in both graphs reaches its 
maximum gradually and begins to decrease slightly in about half time/steps. 

5.4.2 Flow cytometry 
I used FC analysis to evaluate the match of sporulation level during butanol 
production. In the laboratory, the ratio of functional cells (live and active) and non-
functional cells (dead and inactive) was measured. Since sporulation is an indicator 
of non-function or non-activity of cells, I compared the activity level of the node 
sporulation with percentage of non-functional cells labelled as D+I. Comparison 
values and the Spearman’s correlation coefficient are shown in the Tab. 3. 
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Tab. 3: Percentage of D + I cells and sporulation activity level; the statistics 

Time [h]/Step [-] 3.5 6 8.5 10 13 18 23 28 33 48 

Activity level [%] 0 17 25 30 36 33 42 43 44 48 

D+I [%] 35 39 38 19 27 43 43 71 86 96 

Correlation 0.748 

The Spearman’s correlation coefficient 0.748 shows a strong correlation, which 
means that the model approximates the sporulation process in the cell very well. 
The match is important as sporulation is one of the basic processes in the organism 
and is also undesirable in requiring an increase in butanol production. Based on the 
fact the model simulates the cellular sporulation process very well, as demonstrated 
by statistical results, it will be possible to use the model for sporulation process 
research as well as for simulations of sporulation avoidance experiments. 

5.4.3 Heatmaps 
In the next step, I compared heatmaps with activity level of each gene. Heatmap is 
the visualization of a Z score of average gene expression; Z score is usually used to 
evaluate transcriptional profiles of selected genes. Data gain for heatmaps creation 
is described in detail in [57]. An example of heatmaps (yellow-red colour; darker 
colour higher score) with comparing activity levels is shown in the Tab. 4, all values 
are in the attachment under the name ‘statistics-activityLevelVSheatmaps’. For the 
statistic evaluation, I used the Spearman’s correlation coefficient and compared 
activity level of all genes (except of external components, because activity level of 
these genes is set manually and is unchangeable) with Z score rounded to 10-1. 

Tab. 4: Z score and activity level of selected genes; the statistics 
 T1 T2 T3 T4 T5 T6 

ack 
0,828252987 1,237426906 0,61034103 -0,974220126 -0,931794267 -0,77000653 

75 % 83 % 60 % 50 % 44 % 54 % 

adc 
-1,334784427 -0,688612299 -0,515395775 1,010499308 0,383632513 1,14466068 

0 % 0 % 0 % 29 % 28 % 33 % 

bdhAB 
-1,003536706 -0,935988255 -0,31599902 1,571984718 0,73688719 -0,053347927 

0 % 0 % 0 % 29 % 28 % 33 % 

buk1 
1,280172095 0,772047446 0,617985961 -0,873194648 -0,953744004 -0,843266851 

75 % 83 % 60 % 50 % 44 % 54 % 

crt 
1,765916846 0,382813544 -0,093950876 -0,230672099 -0,980138831 -0,843968584 

75 % 83 % 60 % 50 % 44 % 54 % 

hbd 
1,741042477 0,383128059 -0,031886845 -0,212199399 -0,874543452 -1,00554084 

75 % 83 % 60 % 50 % 44 % 54 % 

pta 
0,834070132 1,320637311 0,468314356 -1,009997215 -0,906280133 -0,70674445 

75 % 83 % 60 % 50 % 44 % 54 % 

Correlation 0.430 
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The correlation coefficient shows the medium correlation with the result 0.430 
(see the Tab. 4). The outcome is relatively satisfactory with respect to comparison 
different values and moreover variable biological data. Improving the results would 
be achieved by involving all 5 000 genes that the cell contains; now the pathway 
consists of only genes involved in butanol production, but these genes are certainly 
influenced by other genes, proteins, metabolites etc. that are not directly involved 
in the solvent utilization.  

5.5 Dynamic analysis 

I conducted a series of simulations to determine network behaviour under different 
conditions with the main aiming to increase the butanol production.  Based on 
changes in parameter settings such as different value of activity level of external 
components, I evaluated the significance of individual nodes and the resulting 
influence of changes on the butanol production. 

The first, I examined changes in butanol production at different values of 
external components activity. Results of simulations are shown in the Fig. 26, 
individual experiments values are described in the Tab. 5. 

 

 

Fig. 26: Individual simulations with different external components activity level 
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Tab. 5: External components activity level during individual simulations 
Activity [%] 

Simulation 
aad glucose NAD(P)H NADH phosphorylation PTS sigA spoIIE 

S 1 0 0 50 50 100 100 100 75 
S 2 0 100 50 50 0 100 100 75 
S 3 0 100 0 0 100 100 100 75 
S 4 0 0 0 0 0 0 100 75 
S 5 0 100 100 100 100 100 100 100 
S 6 0 50 50 50 100 100 100 75 

To evaluate the similarity of butanol production during dynamic analysis 
and model simulation, I enumerated the relative error (RE) using the equation 4.1: 

where 𝛿𝑋 is relative error, ∆𝑋 is absolute error, 𝑋 is conventionally true value 
(activity level of butanol during simulation), 𝑋𝑀 is measured value (activity level of 
butanol during analysis). Finally, I averaged the RE values in each step to the total 
RE, results are in the Tab. 6. 

Tab. 6: RE values of butanol production during simulation and dynamic analysis 
Simulation S 1 S 2 S 3 S 4 S 5 S 6 
Error [%] 44.7 25.4 25.2 44.7 33.0 21.6 

The highest butanol production shows the analysis S 5, where I tested an 
increase in solvent production at higher level of all external components (except of 
aad, a gene that does not contains the clostridium strain, but is needed in the 
network for proper ethanol function), the result follows from premises – butanol 
production has increased by nearly 20 % compared to simulation. On the contrary, 
the decrease in butanol production and the highest RE (i.e. lowest match) occurred 
in analyses S 1 and S 4, in the first case I inactivated glucose, in the second one all 
external components except sigA and spoIIE (genes that cannot be inactivated only 
by reducing the addition of a certain substance against other components) which 
suggests that glucose is the most important for butanol production, which was 
expected as it serves as an energy source for the cell. If glucose is not present, 
minimal butanol production occurs by conversion from acidogenic substances.  

The best simulation-to-analysis match (the lowest RE) shows S 6, where glucose 
activity was 50 % instead of reducing from 100 to 0 during simulation. The second 
best match show S 2 and S 3, in which I firstly inactivated phosphorylation and then 
NAD(P)H with NADH. From these analysis follows that phosphorylation and 
NAD(P)H with NADH are not crucial for butanol utilization and the constant glucose 
value instead of its loss due to energy consumption has no major influence.

𝛿𝑋 =
∆𝑋
𝑋
  ×  100 [%],∆𝑋= 𝑋𝑀 − 𝑋  (4.1) 
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6 CONCLUSION 
The diploma thesis Signaling Pathway for Butanol Production in Solventogenic 
Clostridia is focused on elaborating five points: literary research on the signaling 
pathways using systems biology methods, description of data gain for SP modeling 
with focus on lab techniques for the detection of gene expression, creation of a basic 
signaling pathway model involved in the production of butanol in solventogenic 
clostridia and the main parts – creation of the signaling pathway for butanol 
production in C. beijerinckii NRRL B-598, its static and dynamic analysis, comparing 
the model with biological data and results discussion. 

The first three chapters are focused on the theoretical research. Chapter 1 
describes basic information about biological networks, graph theory and systems 
biology. Graph theory is a mathematical discipline dealing with the properties of 
graphs. Systems biology is characterized by the study of a whole system as 
interconnected and cooperating elements. The second chapter focuses on signaling 
pathways, where mathematical models as well as tools for working with SP, 
databases and data formats have been described. Chapter 3 describes data 
acquisition for signaling pathways modeling with the main focus on lab techniques 
for the detection of gene expression, gene products and phosphorylation. 

Chapter 4 gives a preview of clostridium bacteria with focus on butanol-
producing species. The section is devoted to general signaling pathways involved in 
butanol production obtained from public databases. Specifically, a comparison of 
C. acetobutylicum and C. beijerinckii signaling pathways, five pathways of 
C. acetobutylicum and a genome-scale model of C. beijerinckii are included.  

The chapter 5 contains the main points of the thesis – creation, simulation, static 
and dynamic analysis of the C. beijerinckii’s NRRL B-598 signaling pathway involved 
in butanol production. Model is available in the Cell Collective tool under the name  
‘Signaling Pathway for Butanol Production in Clostridium beijerinckii NRRL B-598’, 
version 1.1. The thesis also deals with the compassion of the model with biological 
data (HPLC, FC and heatmaps). Spearman’s correlation coefficient shows strong 
similarity (HPLC and FC) demonstrating very good approximation of model with 
biological data, allowing future experiments can be replaced by computer 
simulations with the results of reducing cost and time as well as the ability to 
implement studies with real samples impossible.  Middle correlation (heatmaps) 
shows satisfactory results with some deviations that could be eliminated by 
averaging more biological data and involving all 5 000 genes the strain contains.
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