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INTRODUCTION

United Nations Economic Commission for Europe in document Intelligent Transport
Systems (ITS) for sustainable mobility [6, page 18] claims that:

Intelligent Transport Systems play an important role in shaping the future ways
of mobility and the transport sector. We expect that through the use of ITS applica-
tions, transport will become more efficient, safer and greener. The huge potentials
and benefits, however, can only be reaped if ITS solutions are put in place — inter-
nationally harmonized as much as possible.

Also, in my opinion, it will be possible to use Intelligent Transport Systems for
tasks which will increase comfort and safety of drivers and pedestrians. For example,
it will be possible to navigate vehicles and control lights in a way that will improve
permeability of the traffic network. Another improvement for the drivers could be
automatic warning about collisions on the road ahead of the drivers. Or in an ideal
case, it would be possible to predict precisely where vehicles are heading and prevent
congestion before it will even happen. Another task where the traffic surveillance
system can be beneficial is estimation of demographic statistics. There is for example
a recent paper by Gebru et al. [9] tackling the demographic data acquisition using
fine-grained recognition of vehicles.

However, for all these tasks and Intelligent Transportation Systems in general, it is
necessary to have a high amount of statistical data about the traffic flow on roads.
Also, in order to be the system deployable on a large scale, it is useful that the system
is cheap and it does not require any sensor settings on a per-sensor basis.

Such cheap sensor can be a camera. Therefore, my focus in this Ph.D. thesis is on
enabling acquisition of complex statistical data from traffic surveillance cameras in a
fully automatic manner. In particular, I address the problems of automatic speed mea-
surement of vehicles from camera and fine-grained recognition of vehicles. Methods
for acquisition of other traffic flow statistics are addressed in paper [Soc14], which is
based on my Master’s thesis.

1.1 PROBLEM DEFINITION

The primary goal of this Ph.D. thesis is to push the state of the art in two areas of
research: fine-grained recognition of vehicles and automatic speed measurement of
vehicles. Both these algorithms are focused mainly on traffic surveillance cameras.
The fine-grained recognition of vehicles is a task where the method is expected to
determine the exact model of a given vehicle in an image. The differentiation should
be done up to model years of the vehicles as they may differ in vehicle geometry. The
goal regarding the fine-grained recognition of vehicles in this thesis is to develop a
method which will be able to recognize vehicles on images taken by a surveillance



Figure 1.1: An example of calibration for speed measurement obtained by a fully automatic algo-
rithm proposed in the thesis. The calibration is represented by an orthogonal regular
grid with T m sides.

camera. The requirement of applicability with surveillance cameras has several impli-
cations. First, it is necessary to handle low resolution images with significant video
compression. Also, the method should be able to recognize images of vehicles taken
from an arbitrary viewpoint.

The other area of addressed research is automatic speed measurement from a single
monocular surveillance camera. For the speed measurement, it is necessary to be able
to measure time and distances on the road. The time measurement in video sequences
with known framerate is relatively direct. However, the measurement of real world
distances on the road plane is more challenging, considering the fact that it should
be done in a fully automatic manner. For the distance measurement, it is necessary
to calibrate the camera (i.e. estimate intrinsic and extrinsic camera parameters) and
also estimate the scale of the scene (or distance from camera to the road plane). With
all these information available, it possible to measure distances on the road plane. See
Figure 1.1 for an example of the full (including scale) calibration.

1.2 CORE CONTRIBUTIONS

My contributions to fine-grained recognition of vehicles include improving classifica-
tion accuracy of Convolutional Neural Networks [16] using automatically constructed
3D bounding boxes constructed around vehicles [DSH14] using traffic surveillance
data. The results show that the proposed method consistently improves classification
accuracy by up to 12 percentage points with different CNNs [15, 25, 11, 8]. The clas-



sification error was also reduced by up to 50 %. The contributions were presented in
the following papers:

e BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition —
CVPR?, 2016 [SHH16]. The first paper dealing with the fine-grained recognition
using the 3D bounding boxes. The method was applied both on fine-grained
classification and verification with consistent improvement in both tasks.

® BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in
Traffic Surveillance — TEEE T-ITS?, 2018 [SSH18]. Extended journal version of the
previous paper. The classification results were further improved and complex
and in-depth analysis of the method is presented. Also, we propose a method
for 3D bounding box estimation in situations where it is not possible to construct
the precise 3D bounding box from the surveillance data.

My contributions to the speed measurement are based on the proposed algorithm
for precise traffic surveillance camera calibration. The experimental results show that
our method achieves 1.10 km/h speed measurement mean error while outperforming
both state-of-the-art method and manual calibration in the speed measurement task.
The contributions are described in these papers:

® Comprehensive Dataset for Automatic Single Camera Visual Speed Measurement —
IEEE T-ITS3, 2018, under review [S]5" 18]. Survey and dataset paper for speed
measurement. The dataset BrnoCompSpeed is by far the largest dataset for
speed measurement from video with precise ground truth. The dataset contains
more than 18 hours of videos from various viewpoints and varying traffic inten-
sity. The dataset also contains more than 20,000 of vehicles with precise ground
truth speed. The paper is currently under review with last status “Accept as
Regular Paper after Minor Revision” while the reviewers requested only very
subtle changes in the text of the paper.

e Traffic Surveillance Camera Calibration by 3D Model Bounding Box Alignment for Ac-
curate Vehicle Speed Measurement — CVIU4, 2017 [SJH17]. Paper with proposed
method for traffic camera calibration for speed measurement. The method is
based on vanishing point detection and alignment of 3D models of several com-
mon vehicle types to estimate the scene scale. The method was evaluated on
the BrnoCompSpeed dataset and the final mean speed measurement error is
1.10km/h.

All these papers present my contribution to the state of the art in Intelligent Trans-
portation Systems and Computer Vision in two important areas (automatic speed
measurement and fine-grained recognition of vehicles). Furthermore, results or our
ongoing research showed that the 3D bounding boxes improve performance even for
vehicle re-identification task [SSJH18].

* IEEE Conference on Computer Vision and Pattern Recognition

? IEEE Transactions on Intelligent Transportation Systems — IF: 3.724
3 IEEE Transactions on Intelligent Transportation Systems — IF: 3.724
4 Computer Vision and Image Understanding — IF: 2.498
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BOXCARS: IMPROVING FINE-GRAINED RECOGNITION OF
VEHICLES USING 3D BOUNDING BOXES IN TRAFFIC
SURVEILLANCE

Figure 2.1: Example of automatically obtained 3D bounding box used for fine-grained vehicle
classification. left: vehicle with 2D bounding box annotation, center left: estimated
contour, center right: estimated directions to vanishing points, right: 3D bounding
box automatically obtained from surveillance video (green) and our estimated 3D
bounding box (red).

2.1 INTRODUCTION

Fine-grained recognition of vehicles is interesting, both from the application point
of view (surveillance, data retrieval, etc.) and from the point of view of general fine-
grained recognition research applicable in other fields. For example, Gebru et al. [9]
proposed an estimation of demographic statistics based on fine-grained recognition
of vehicles. In this article, we are presenting methodology which considerably in-
creases the performance of multiple state-of-the-art CNN architectures in the task of
fine-grained vehicle recognition. We target the traffic surveillance context, namely im-
ages of vehicles taken from an arbitrary viewpoint — we do not limit ourselves to
frontal /rear viewpoints. As the images are obtained from surveillance cameras, they
have challenging properties — they are often small and taken from very general view-
points (high elevation). We also construct the training and testing sets from images
from different cameras as it is common for surveillance applications that it is not
known a priori under which viewpoint the camera will be observing the road.

We propose an orthogonal approach to these methods and use CNNs with a mod-
ified input to achieve better image normalization and data augmentation (therefore,
our approach can be combined with other methods). We use 3D bounding boxes
around vehicles to normalize vehicle image (see Figure 2.3 for examples). This work
is based on our previous conference paper [SHH16]; it pushes the performance further
and we mainly propose a new method on how to build the 3D bounding box without
any prior knowledge (see Figure 2.1). Our input modifications are able to significantly
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Figure 2.2: 3D bounding box and its unpacked version.

increase the classification accuracy (up to 12 percentage points, classification error is
reduced by up to 50 %).

2.2 PROPOSED METHODOLOGY FOR FINE-GRAINED RECOGNITION OF VEHICLES

In agreement with recent progress in the Convolutional Neural Networks [28, 15, 2],
we use CNN for both classification and verification (determining whether a pair of ve-
hicles has the same type). However, we propose to use several data normalization and
augmentation techniques to significantly boost the classification performance (up to
50 % error reduction compared to base net). We utilize information about 3D bound-
ing boxes obtained from traffic surveillance camera [DSH14]. Finally, in order to in-
crease the applicability of our method to scenarios where the 3D bounding box is not
known, we propose an algorithm for bounding box estimation both at training and
test time.

2.2.1 Image Normalization by Unpacking the 3D Bounding Box

We based our work on 3D bounding boxes proposed by [DSH14] (Fig. 2.3) which
can be automatically obtained for each vehicle seen by a surveillance camera. These
boxes allow us to identify the side, roof, and front (or rear) side of vehicles in ad-
dition to other information about the vehicles. We use these localized segments to
normalize the image of the observed vehicles (considerably boosting the recognition
performance).

The normalization is done by unpacking the image into a plane. The plane contains
rectified versions of the front/rear (F), side (S), and roof (R). These parts are adjacent
to each other (Fig. 2.2) and they are organized into the final matrix U:

U_<1(: I;) (2.1)

The unpacking itself is done by obtaining homography between points b; (Fig. 2.2)
and perspective warping parts of the original image. The left top submatrix is filled
with zeros. This unpacked version of the vehicle is used instead of the original image
to feed the net. The unpacking is beneficial as it localizes parts of the vehicles, nor-
malizes their position in the image and it does all that without the necessity of using
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Figure 2.3: Examples of data normalization and auxiliary data fed to nets. Left to right: vehicle
with 2D bounding box, computed 3D bounding box, vectors encoding viewpoints
on the vehicle (View), unpacked image of the vehicle (Unpack), and rasterized 3D
bounding box fed to the net (Rast).

e

Figure 2.4: Examples of proposed data augmentation techniques. Left most image contains the
original cropped image of the vehicle and other images contains augmented versions
of the image (Top — Color, Bottom — ImageDrop).

DPM or other algorithms for part localization. Later in the text, we will refer to this
normalization method as Unpack.

2.2.2  Extended Input to the Neural Nets

It it possible to infer additional information about the vehicle from the 3D bounding
box and we found out that these data slightly improve the classification and verifica-
tion performance. One piece of this auxiliary information is the encoded viewpoint
(direction from which the vehicle is observed). We also add a rasterized 3D bounding
box as an additional input to the CNNs. Compared to our previously proposed auxil-
iary data fed to the net [SHH16], we handle frontal and rear vehicle sides differently.

View. The viewpoint is extracted from the orientation of the 3D bounding box —
Fig. 2.3. We encode the viewpoint as three 2D vectors v;, where i € {f,s, v} (fron-
t/rear, side, roof) and pass them to the net. Vectors v; are connecting the center of the
bounding box with the centers of the box’s faces. Therefore, it can be computed as
vy = ?Ci Point C. is the center of the bounding box and it can be obtained as the
intersection of diagonals l<)2—b4) and ‘t<?‘b3> Points C; for i € {f, s, v} denote the centers
of each face, again computed as intersections of face diagonals. In contrast to our pre-
vious approach [SHH16], which did not take the direction of the vehicle into account;
instead, we encode the information about the vehicle direction (d = 1 for vehicles
going to camera, d = 0 for vehicles going from the camera), in order to determine
which side of the bounding box is the frontal one. The vectors are normalized to have
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a unit size; storing them with a different normalization (e.g. the front one normalized,
the other in the proper ratio) did not improve the results.

Rast. Another way of encoding the viewpoint and also the relative dimensions of
vehicles is to rasterize the 3D bounding box and use it as an additional input to the
net. The rasterization is done separately for all sides, each filled by one color. The
final rasterized bounding box is then a four-channel image containing each visible
face rasterized in a different channel. Formally, point p of the rasterized bounding
box T is obtained as

(1,0,0,0) p € //bpobibgbsandd =1
(0,1,0,0) p € L/bpobibsgbs andd =0
T, =4 (0,0,1,0) p € [7b1bsbsbg (2.2)
(0,0,0,1) p € [Tbobibabs
(0,0,0,0) otherwise

where /7bybbsbs denotes the quadrilateral defined by points by, by, bs and bs in
Figure 2.2.

Finally, the 3D rasterized bounding box is cropped by the 2D bounding box of
the vehicle. For an example, see Figure 2.3, showing rasterized bounding boxes for
different vehicles taken from different viewpoints.

2.2.3 Additional Training Data Augmentation

In order to increase the diversity of the training data, we propose additional data
augmentation techniques. The first one (denoted as Color) deals with the fact that
for fine-grained recognition of vehicles (and some other objects), their color is irrel-
evant. The other method (ImageDrop) deals with some potentially missing parts of
the vehicle. Examples of the data augmentation are shown in Figure 2.4. Both these
augmentation techniques are done only with predefined probability during training,
otherwise they are not modified. During testing, we do not modify the images at all.

Color. In order to increase training samples color variability, we propose to ran-
domly alternate the color of the image. The alternation is done in the HSV color space
by adding the same random values to each pixel in the image (each HSV channel is
processed separately).

ImageDrop. Inspired by Zeiler et al. [32], who evaluated the influence of covering
a part of the input image on the probability of the ground truth class, we take this a
step further and in order to deal with missing parts on the vehicles, we take a ran-
dom rectangle in the image and fill it with random noise, effectively dropping any
information contained in that part of the image.

2.2.4 Estimation of 3D Bounding Box from a Single Image

As the results (Section 2.4) show, the most important part of the proposed algorithm
is Unpack followed by Color and ImageDrop. However, the 3D bounding box is
required for unpacking the vehicles and we acknowledge that there may be scenarios



Figure 2.5: Estimation of 3D bounding box. Left to right: image with vehicle 2D bounding box,
output of contour object detector [30], our constructed contour, estimated directions
towards vanishing points, ground truth (green) and estimated (red) 3D bounding
box.

when such information is not available. For these cases, we propose a method on how
to estimate the 3D bounding box for both training and test time when only limited
information is available.

As proposed by [DSH14], the vehicle’s contour and vanishing points are required
for the bounding box construction. Therefore, it is necessary to estimate the contour
and vanishing points for the vehicle. For estimating the vehicle contour, we use Fully
Convolutional Encoder-Decoder network designed by Yang et al. [30] for general ob-
ject contour detection and masks with probabilities of vehicles contours for each im-
age pixel. To obtain the final contour, we search for global maxima along line segments
from 2D bounding box centers to edge points of the 2D bounding box (see Figure 2.5
for examples).

We found out that the exact position of the vanishing point is not required for 3D
bounding box construction, but the directions to the vanishing points are much more
important. Therefore, we use regression to obtain the directions towards the vanishing
points and then assume that the vanishing points are in infinity.

Following the work by Rothe et al. [21], we formulated the regression of the direc-
tion towards the vanishing points as a classification task into bins corresponding to
angles and we used ResNet50 [11] with three classification outputs. We found this ap-
proach more robust than a direct regression. We added three separate fully connected
layers with softmax activation (one for each vanishing point) after the last average
pooling in the ResNetso. Each of these layers generates probabilities for each vanish-
ing point belonging to the specific direction bin (represented as angles). We quantized
the angle space by bins of 3° from —90° to 90° (60 bins per vanishing point in total).

As the training data for the regression we used BoxCars116k dataset (Section 2.3)
with the test samples omitted. The direction to vanishing points were obtained by
method [DSH14, DHJS15]; however, the quality of the ground truth bounding boxes
was manually verified during annotation of the dataset and imprecise samples were
removed by the annotators. To construct the lines on which the vanishing points are,
we use the center of the 2D bounding box. Even though there is bias in the direction
of the training data (some bins have very low number of samples), it is highly unlikely
that for example, the first vanishing point direction will be close to horizontal.

With all this estimated information it is then possible to construct the 3D bound-
ing box in both training and test time. It is important to note that by using this 3D
bounding box estimation, it is possible to use this method outside the scope of traffic
surveillance. It is only necessary to train the regressor of vanishing points directions.
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Figure 2.6: Collate of random samples from the BoxCars116k dataset.

For the training of such a regressor, it is possible to use either the directions them-
selves or viewpoints on the vehicle and focal lengths of the images.

Using this estimated bounding box, it is possible to unpack the vehicle image in
test time without any additional information required. This enables the usage of the
method when the traffic surveillance data are not available. The results in Section 2.4.3
show that by using this estimated 3D bounding boxes, our method still significantly
outperforms other convolutional neural networks without input modification.

2.3 BOXCARSI16K DATASET

We collected and annotated a new dataset BoxCars116k. The dataset is focused on
images taken from surveillance cameras as it is meant to be useful for traffic surveil-
lance applications. We do not restrict that the vehicles are taken from the frontal side
(Fig. 2.6). We used surveillance cameras mounted near streets and tracked passing
vehicles. The cameras were placed on various locations around Brno, Czech Republic
and recorded the passing traffic from an arbitrary (reasonable) surveillance viewpoint.
Each correctly detected vehicle (by Faster-RCNN [20] trained on COD2ok dataset [13])
is captured in multiple images, as it passes by the camera; therefore, we have more
visual information about each vehicle.

2.3.1 Dataset Acquisition

The dataset is formed by two parts. The first part consists of data from BoxCars21k
dataset [SHH16] which were cleaned up and some imprecise annotations were then
corrected (e.g. missing model years for some uncommon vehicle types).

We also collected other data from videos relevant to our previous work [DSH14,
DHJS15, SJST 18]. We detected all vehicles, tracked them and for each track collected
images of the respective vehicle. We downsampled the framerate to ~ 12.5 FPS to
avoid collecting multiple and almost identical images of the same vehicle.

The new dataset was annotated by multiple human annotators with an interest in
vehicles and sufficient knowledge about vehicle types and models. The annotators
were assigned to clean up the processed data from invalid detections and assign exact
vehicle type (make, model, submodel, year) for each obtained track. While preparing
the dataset for annotation, 3D bounding boxes were constructed for each detected
vehicle using the method proposed by [DSH14]. Invalid detections were then distin-
guished by the annotators based on these constructed 3D bounding boxes. In the
cases when all 3D bounding boxes were not constructed precisely, the whole track
was invalidated.



Vehicle type annotation reliability is guaranteed by providing multiple annotations
for each valid track (~ 4 annotations per vehicle). The annotation of a vehicle type
is considered as correct in the case of at least three identical annotations. Uncertain
cases were authoritatively annotated by the authors.

The tracks in BoxCars21k dataset consist of exactly 3 images per track. In the new
part of the dataset, we collect an arbitrary number of images per track (usually more
than 3).

2.3.2 Dataset Statistics

The dataset contains 27496 vehicles (116 286 images) of 45 different makes with 693
fine-grained classes (make & model & submodel & model year) collected from 137
different cameras with a large variation of viewpoints. The dataset also includes in-
formation about the 3D bounding box [DSH14] for each vehicle and an image with a
foreground mask extracted by background subtraction [27, 36]. The dataset has been
made publicly available® for future reference and evaluation.

Compared to “web-based” datasets, the new BoxCars116k dataset contains images of
vehicles relevant to traffic surveillance which have specific viewpoints (high elevation),
usually small images, etc. Compared to other fine-grained surveillance datasets, our
dataset provides data with a high variation of viewpoints.

2.3.3 Training & Test Splits

Our task is to provide a dataset for fine-grained recognition in traffic surveillance with-
out any viewpoint constraint. Therefore, we have constructed the splits for training
and evaluation in a way which reflects the fact that it is not usually known beforehand
from which viewpoints the vehicles will be seen by the surveillance camera.

Thus, for the construction of the splits, we randomly selected cameras and used all
tracks from these cameras for training and vehicles from the rest of the cameras for
testing. In this way, we are testing the classification algorithms on images of vehicles
from previously unseen cameras (viewpoints). This splits selection process implies
that some of the vehicles from the test set may be taken under slightly different view-
points from the ones that are in the training set.

We constructed two splits. In the first one (hard), we are interested in recognizing
the precise type, including the model year. In the other one (medium), we omit the
difference in model years and all vehicles of the same subtype (and potentially differ-
ent model years) are present in the same class. We selected only types which have at
least 15 tracks in the training set and at least one track in the testing set. The hard
split contains 107 fine-grained classes with 11653 tracks (51 691 images) for training
and 11 125 tracks (39 149 images) for testing.

*https://medusa.fit.vutbr.cz/traffic
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2.4 EXPERIMENTS

We thoroughly evaluated our proposed algorithm on the BoxCars116k dataset. First,
we evaluated how these methods improved classification accuracy with different nets,
compared them to the state of the art, and analyzed how using approximate 3D bound-
ing boxes influence the achieved accuracy. Then, we searched for the main source of
improvements, analyzed improvements of different modifications separately, and also
evaluated the usability of features from the trained nets for the task of vehicle type
identity verification.

In order to show that our modifications improve the accuracy independently on the
used nets, we use several of them:

e AlexNet [15]

VGG16, VGG19 [25]

ResNet50, ResNet101, ResNet152 [11]

CNNs with Compact Bilinear Pooling layer [8] in combination with VGG nets
denoted as VGG16+CBL and VGG19+CBL.

As there are several options how to use the proposed modifications of input data
and add additional auxiliary data, we define several labels which we will use:

e ALL - All five proposed modifications (Unpack, Color, ImageDrop, View, Rast).

¢ IMAGE - Modifications working only on the image level (Unpack, Color, Im-
ageDrop).

* CVPR16 - Modifications as proposed in our previous CVPR paper [SHH16]
(Unpack, View, Rast — however, the View and Rast modifications differ from
those ones used in this paper as the original modifications do not distinguish
between the frontal and rear side of vehicles).

2.4.1  Improvements for Different CNNs

The first experiment which was done was evaluation how our modifications have
improved classification accuracy for different CNNS.

All the nets were fine-tuned from models pre-trained on ImageNet [22] for approx-
imately 15 epochs which was sufficient for the nets to converge. We used the same
batch size (except for ResNet151, where we had to use a smaller batch size because
of GPU memory limitations), the same initial learning rate and learning rate decay
and the same hyperparameters for every net (initial learning rate 2.5 - 1073, weight
decay 5- 10~4, quadratic learning rate decay, loss is averaged over 100 iterations). We
also used standard data augmentation techniques as a horizontal flip and randomly
moving bounding box [25]. As ResNets do not use fully connected layers, we only use
IMAGE modifications for them.

For each net and modification we evaluate the accuracy improvement of the modi-
fication in percentage points and also evaluate the classification error reduction.
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Table 2.1: Summary statistics of improvements by our proposed modifications for different
CNNs. The improvements over baseline CNNs are reported as single sample accura-
cy/track accuracy in percentage points. We also present classification error reduction
in the same format.

modif. improvement [ppl error reduction [%]
mean best mean best
§ ALL 7.49/6.29  11.84/10.99 26.83/34.50 36.71/50.32
% IMAGE  7.19/6.15 12.09/11.63 27.38/36.21  35.23/49.55
& CVPR16 2.99/3.18 5.22/5.65 10.86/17.71 19.76/32.25
o ALL 7.00/5.83  11.14/10.85 25.59/33.52  33.40/48.76
E IMAGE  6.74/5.81 11.02/10.53 26.12/35.95 33.04/47.33

CVPR16  2.12/2.44 3.56/3.92 7.93/14.57  12.68/24.10

The summary results for both medium and hard splits are shown in Table 2.1. As
we have correspondences between the samples in the dataset and know which sam-
ples are from the same track, we are able to use mean probability across track samples
and merge the classification for the whole track. Therefore, we always report the re-
sults in the form of single sample accuracy/whole track accuracy. As expected, the results
for whole tracks are much better than for single samples. For the traffic surveillance
scenario, we consider to be more important the whole track accuracy as it is rather
common to have a full track of observations of the same vehicle.

There are several things which should be noted about the results. The most impor-
tant one is that our modifications significantly improve classification accuracy (up to
+12 percentage points) and reduce classification error (up to 50 % error reduction).
Another important fact is that our new modifications push the accuracy much further
compared to the original method [SHH16].

The table also shows that the difference between ALL modifications and IMAGE
modifications is negligible and therefore it is reasonable to only use the IMAGE mod-
ifications. This also results in CNNs which just use the Unpack modification during
test time as the other image modifications (Color, ImageDrop) are used only during
fine-tuning of CNNs.

Moreover, the evaluation shows that the results are almost identical for the hard
and medium split; therefore, we will only report additional results on the hard split,
as it is the main goal to distinguish also the model years. The names for the splits
were chosen to be consistent with the original version of dataset [SHIH16] and the
small difference between medium and hard split accuracies is caused mainly by the
size of the new dataset.

2.4.2  Comparison with the State of the Art
In order to examine the performance of our method, we also evaluated other state-of-

the-art methods for fine-grained recognition. We used three different algorithms for
general fine-grained recognition with a published code. We always first used the code

12



Table 2.2: Comparison of different vehicle fine-grained recognition methods. Accuracy is re-
ported as single image accuracy/whole track accuracy. Processing speed was mea-
sured on a machine with GTX1080 and CUDNN. * FPS reported by authors.

method accuracy [%]  speed [FPS]
AlexNet [15] 66.65/77.75 963
VGGa16 [25] 77.26/86.71 173
VGGaig [25] 76.74/86.06 146
Resnetso [11] 75.48/84.61 155
Resnet101 [11] 76.46/85.31 95
Resnet152 [11] 77.68/86.20 66
BCNN (VGG-M) [17] 64.83/72.22 87*
BCNN (VGG16) [17] 69.64/78.56 10*
CBL (VGGa16) [8] 70.38/80.11 165
CBL (VGGa19) [8] 70.69/80.26 141
PCM (AlexNet) [24] 63.24/73.94 15
PCM (VGG19) [24] 75.99/85.24 4
AlexNet + ALL (ours) 77.79/88.60 580
VGG16 + ALL (ours) 84.13/92.27 154
VGGi9 + ALL (ours) 84.12/92.00 133
VGG16+CBL + ALL (ours) 75.06/83.42 146
VGG19+CBL + ALL (ours) 75.62/83.76 126
Resnetso + IMAGE (ours) 82.27/90.79 151
Resnetio1 + IMAGE (ours) 83.41/91.59 93
Resnet152 + IMAGE (ours) 83.74/91.71 65

to reproduce the results in respective papers to ensure that we are using the published
work correctly. All of the methods use CNNs and the used net influences the accuracy;
therefore, the results should be compared with respective base CNNs.

It was impossible to evaluate methods focused only on fine-grained recognition of
vehicles as they are usually limited to frontal/rear viewpoint or require 3D models
of vehicles for all the types. In the following text we define labels for each evaluated
state-of-the-art method and describe details for the method separately.

BCNN. Lin et al. [17] proposed to use Bilinear CNN. We used VGG-M and VGG16
networks in a symmetric setup (details in the original paper), and trained the nets for
30 epochs (the nets converged around the 20t epoch). We also used image flipping to
augment the training set.

CBL. We modified compatible nets with Compact BiLinear Pooling proposed by
[8] which followed the work of [17] and reduced the number of output features of
the bilinear layers. We used the Caffe implementation of the layer provided by the
authors and used 8 192 features. We trained the net using the same hyper-parameters,
protocol, and data augmentation as described in Section 2.4.1.

13



Table 2.3: Comparison of classification accuracy (percent) on the hard split with standard nets
without any modifications, IMAGE modifications using 3D bounding box from surveil-
lance data, and IMAGE modifications using estimated 3D BB (Section 2.2.4).

net no modification GT 3D BB  estimated 3D BB
AlexNet 66.65/77.75 77.67/88.28 74.81/87.30
VGG16 77.26/86.71  83.79/92.23 80.60/90.59
VGGig 76.74/86.06  83.91/92.17 81.43/91.57
VGG16+CBL 70.38/80.11  75.04/83.16 72.83/82.92
VGG19+CBL 70.69/80.26 75.47/83.56 73.09/83.09
ResNets50 75.48/84.61  82.27/90.79 79.60/90.40
ResNet101 76.46/85.31 83.41/91.59 80.20/90.42
ResNet152 77.68/86.20 83.74/91.71 80.87/90.93

PCM. Simon et al. [24] propose Part Constellation Models and use neural activa-
tions (see the paper for additional details) to get the parts of the model. We used
AlexNet (BVLC Caffe reference version) and VGG1g9 as base nets for the method. We
used the same hyper-parameters as the authors with the exception of fine-tuning num-
ber of iterations which was increased, and the C parameter of used linear SVM was
cross-validated on the training data.

The results of all comparisons can be found in Table 2.2. As the table shows, our
method significantly outperforms both standard CNNs [15, 25, 11] and methods for
fine-grained recognition [17, 24, 8]. The results for fine-grained recognition methods
should be compared with the same used base network as for different networks, they
provide different results. Our best accuracy (84 %) is better by a large margin com-
pared to all other variants (both standard CNN and fine-grained methods).

In order to provide approximate information about the processing efficiency, we
measured how many images different methods are able to process per second (ref-
erenced as FPS). The measurement was done with GTX1080 and CUDNN whenever
possible. In the case of BCNN we reported the numbers as reported by the authors,
as we were forced to save some intermediate data to disk because we were not able
to fit all the data to memory (~200 GB). The results are also shown in Table 2.2; they
show that our input modification decreased the processing speed; however, the speed
penalty is small and the method is still usable for real-time processing.

2.4.3 Influence of Using Estimated 3D Bounding Boxes instead of the Surveillance Ones

We also evaluated how the results will be influenced when, instead of using the 3D
bounding boxes obtained from the surveillance data (long-time observation of video
[DSH14, DHJS15]), the estimated 3D bounding boxes (Section 2.2.4) would be used
instead.

The classification results are shown in Table 2.3; they show that the proposed modi-
fications still significantly improve the accuracy even if only the estimated 3D bound-
ing box — the less accurate one — is used. This result is fairly important as it enables
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to transfer this method to different (non-surveillance) scenarios. The only additional
data which is then required is a reliable training set of directions towards the vanish-
ing points (or viewpoints and focal length) from the vehicles (or other rigid objects).

2.5 CONCLUSION

This article presents and sums up multiple algorithmic modifications suitable for
CNN-based fine-grained recognition of vehicles. Some of the modifications were origi-
nally proposed in a conference paper [SHH16], while others are results of the ongoing
research. We also propose a method for obtaining the 3D bounding boxes necessary
for the image unpacking (which has the largest impact on performance improvement)
without observing a surveillance video, but only working with the individual input
image. This considerably increases the application potential of the proposed method-
ology (and the performance for such estimated 3D boxes is only somewhat lower than
when “proper” bounding boxes are used). We focused on a thorough evaluation of the
methods: we coupled them with multiple state-of-the-art CNN architectures [25, 11],
and measured the contribution/influence of individual modifications.

Our method significantly improves the classification accuracy (up to +12 percentage
points) and reduces the classification error (up to 50 % error reduction) compared to
the base CNNs. Also, our method outperforms other state-of-the-art methods [17, 24,
8] by 9 percentage points in single image accuracy and by 7 percentage points in
whole track accuracy.

We collected, processed, and annotated a dataset BoxCarsi16k targeted to fine-
grained recognition of vehicles in the surveillance domain. Contrary to a majority
of existing vehicle recognition datasets, the viewpoints are greatly varying and corre-
spond to surveillance scenarios; the existing datasets are mostly collected from web
images and the vehicles are typically captured from eye-level positions. This dataset
has been made publicly available for future research and evaluation.
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TRAFFIC SURVEILLANCE CAMERA CALIBRATION BY 3D
MODEL BOUNDING BOX ALIGNMENT FOR ACCURATE
VEHICLE SPEED MEASUREMENT

3.1 INTRODUCTION

Surveillance systems pose specific requirements on camera calibration. Their cameras
are typically placed in hardly accessible locations and the optics is focused to larger
distances, making the common pattern-based calibration approaches (such as classi-
cal [33]) unusable. That is why many solutions place markers to the observed scene
and/or measure existing geometric features [26, 3, 31, 19]. These approaches are la-
borious and inconvenient both in terms of camera setup (manually clicking on the
measured features in the image) and in terms of physically visiting the scene and
measuring the distances.

In our paper, we focus on precise and at the same time fully automatic traffic surveil-
lance camera calibration including scene scale for speed measurement. The proposed
speed measurement method needs to be able to deal with significant viewpoint vari-
ation, different zoom factors, various roads and densities of traffic. If the method
should be applicable for large-scale deployment, it needs to run fully automatically
without the necessity to stop the traffic on the road for its installation or for perform-
ing calibration measurements.

Our solution uses camera calibration obtained from two detected vanishing points
and it is built on our previous work [DSH14, DHJS15]. However, this calibration pro-
cedure only allows to reconstruct the rotation matrix and intrinsic parameters from
the vanishing points, and it is still necessary to obtain the scene scale. We propose to
detect vehicles on the road by Faster-RCNN [20], classify them into a few common
fine-grained types by a CNN [15] and use bounding boxes of 3D models for the known
classes to align the detected vehicles. The vanishing point-based calibration allows for
full reconstruction of the viewpoint on the vehicle and the only free parameter in
the alignment is therefore the scene scale. Figure 3.1 shows an example of the 3D
model and the aligned images. Our experiments show that our method (mean speed
measurement error 1.10km/h) significantly outperforms existing automatic camera
calibration method by Dubska et al. [DSH14] (error reduction by 86 % — mean error
7.98km/h) and also calibration obtained from manual measurements on the road
(error reduction by 19 % — mean error 1.35km/h). This is important because in the
previous approaches, the automation always compromised the accuracy, forcing the
system developer to trade off between them. Our work shows that manual calibration
(though laborious, thorough, and carried out according to state-of-the-art approaches)
is inferior to the fully automatic approach based on computer vision methods.
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Figure 3.1: Example of detected vehicles and 3D model bounding box aligned to the vehicle
detection bounding box.

3.2 TRAFFIC CAMERA MODEL

The main goal of camera calibration in the application of speed measurement is to be
able to measure distances on the road plane between two arbitrary points in meters
(or different length units), therefore we only focus on a camera model which enables
to measure distance between two points on the road plane.

For convenience and better comparison of the methods, we adopt the traffic camera
model and notation proposed in previous papers [DSH14, DH]S15]; however, to make
the paper self-contained, we briefly describe the model and notation. For intrinsic
parameters of our camera model, we assume to have zero pixel skew and principal
point ¢ in the center of the image. The method also assumes the road section to be
flat and straight; the experiments reported in the previous work and our experiments
as well show that this requirement is not very strict, because most roads that are not
sharply curved locally meet this assumption for practical purposes.

Homogeneous 2D image coordinates are referenced by bold small letters p =
px, Py, 17, points on the image plane p = [‘px,py,ﬂT in 3D, where f is the focal
length, are denoted by small bold letters with overline. Finally, other 3D points (on
the road plane) are denoted by bold capital letters P = [Py, Py, Pt

Figure 3.2 shows the camera model and its notation. For convenience, we assume
that the origin of the image coordinate system is at the center of the image; therefore,
the principal point ¢ has 2D homogeneous coordinates [0, 0, 1T (3D coordinates of the
center of camera projection are [0,0,0]T). As it is shown, the road plane is denoted
by p. We encode vanishing points in the following way. The first one (in the direction
of vehicles” flow) is referenced as u; the second vanishing point (whose direction is
perpendicular to the first one and which is parallel to the road plane) is denoted by v;
and the third one (direction perpendicular to the road plane) is w.

Using the first two vanishing points u, v and the principal point ¢, it is possible
to compute focal length f, the third vanishing point w, the road plane normalized
normal vector n, and the road plane p. However, the road plane is computed only up
to scale (as it is not possible to recover the distance to the road plane only from the
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Figure 3.2: Camera model and coordinates. Points denoted by small letters represent points in
image space while points in the world space on the road plane p are represented by
capital letters. The representation stays the same for both finite and ideal points.

vanishing points) and therefore, we add arbitrary value 5 = 1 as the constant term in
Equation (3.6).

f = V-ul v (3.1)
u = [ux,uy,f]T (3-2)
Vo= vy flT (3.3)
W = uxv (3-4)
w
n = T (3-5)
N
p = [nT,é] (.6)

With known road plane p, it is possible to compute 3D coordinates P = [Py, Py, P,T
of an arbitrary point p = [px,py, 11T by projecting it to the road plane using the
following equations:

P = [pxpyfl’ (3-7)
5
————P (3.8)
Pl

It is possible to measure distances on the road plane directly with 3D coordinates
P; however, as the road plane is shifted to a predefined distance by the constant term,
the distance |P; — P;|| between points Py and P, is not directly expressed in meters
(or other real-world units of distance). Therefore, it is necessary to introduce another
calibration parameter referenced as the scene scale A, which converts the distance
|[IP1 — P, from pseudo-units on the road plane to meters by scaling the distance to
APy =Py

Using the assumption of the principal point in the center of the image and zero
pixel skew, it is necessary for the calibration method to compute two vanishing points
(u and v in our case) together with the scene scale A, yielding 5 degrees of freedom.
Methods to convert these camera parameters to the standard intrinsic and extrinsic
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camera model K [R T] were discussed before in several papers [34, 7, 35], therefore
we refer to them.

3.3 CAMERA CALIBRATION AND VEHICLE TRACKING

We adopted the calibration method by [DSH14], which gives the image coordinates
of the vanishing points and scene scale information. We improved the method with a
more precise detection of the vanishing points, and we infer the scene scale by using
3D models of frequently passing cars.

Our method measures the speed of passing cars detected by Faster-RCNN [20] and
tracked by a combination of background subtraction and Kalman filter [14] assisted
by the detector. This method, more sophisticated than the previous method [DSH14],
gives less false positives and a comparable recall rate. In the case of very dense flow
when vehicles overlap each other in the camera image (which does occur rarely even
in real conditions), our method would miss some of the cars as we target free-flow
conditions. In the following text, we describe in detail the components of the method
and evaluate it in Section 3.4.

3.3.1 Vanishing Point Estimation from Edgelets

We adopted the algorithm proposed by [DH]S15] (based on detection of two orthogo-
nal vanishing points) for the detection of the first vanishing point and propose to use
a similar algorithm for detecting the second vanishing point. However, we improved
the detection of the second vanishing point by using edgelets instead of image gradi-
ents used in the previous paper [DH]S15]. This change, although subtle, improves the
calibration and speed measurement considerably, as the results in Section 3.4.3 show.

We start with the detection of vanishing points from which the camera rotation
with respect to the road can be estimated. The first vanishing point u is estimated
from the movement of the vehicles by a form of cascaded Hough Transform [DHJS15]
of lines formed by tracking points of interest on the moving vehicles. This is a more
stable approach than finding closest point to the lines in an algebraic way, because
it is more robust to tracking noise and it is not influenced by vehicles that change
lane (and therefore vanishing point of their movement is different from the rest of the
vehicles). Similarly to [DHJS15], we use the Min-eigenvalue point detector [23] and
the KLT tracker [29].

For detecting the second vanishing point v, we use edges on passing vehicles as
many lines formed by the edges coincide with v. This step heavily relies on correct
estimation of the orientation of the edges. The angle can be easily computed from
gradients, but angles close to krmt/2 are almost impossible to accurately recover on
small neighborhoods. We estimate edge orientation from a larger neighborhood by
analysis of the shape of image gradient magnitude (edgelets). The detection process
is shown in Figure 3.3.

Edgelets are detected by the following algorithm. Given an image I, first, we find
seed points s; as local maxima of gradient magnitude of the image E = || VI||, keeping
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Figure 3.3: Visualization of edgelet detection. From left to right — Seed points s; as local max-
ima of image gradient (foreground mask was used to filter interesting areas); Patches
gatherded around the seed points from which is computed the edge orientation; De-
tail of an edgelet and its orientation superimposed on the gradient image; Top 25 %
of edgelets detected in the image.

only the strong ones with mag:utudes above a threshold. From ¢ x 9 neighborhood of
each seed point s; = [xi,yi, 1], matrix X; is formed:

wi(my —xi)  wi(ng —yi)
X, — Wz(m:z —Xi) w2 (le: —Yi) (3:9)
wi(mg —xi)  wi(nk —yi)

where [my,ny, 1]T are coordinates of the neighboring pixels (k = 1...81) and wy is
their gradient magnitude from E, i.e. for 9 x 9 neighborhood, the size of X; is 81 x 2.
Then, from (3.10), singular vectors and values of X; can be computed as:

WiZ2W] = SVD (xiTxi), (3.10)
where
Wi = [aj,a;] (3.11)
A0
y. = . (3.12)
' ( 0 A > ’

Vectors a; and a, represent the eigenvectors of X;, while Ay and A, denote the cor-
responding eigenvalues. Edge orientation is then the first singular column vector
d; = a; from (3.11) and the edge quality is the ratio of singular values q; = %
from (3.12). Each edgelet is then represented as a triplet &; = (si,dy, qi).

We gather the edgelets from the input video, keeping only the strong ones which do
not coincide with already estimated u, and accumulate them to the Diamond Space
accumulator [5]. The position of the global maximum in the accumulator is taken as
the second vanishing point v. It should be noted that in this step, additional filtering
can be applied — e.g. mask the Diamond Space to find only plausible solutions (i.e.
avoid imaginary focal length from Equation (3.1)), or to find solutions within a certain
range of focal lengths or horizon inclinations (when known in advance). This may
improve the robustness of the second vanishing point estimation.
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3.3.2  Vehicle Detection and Tracking

During the speed measurement, passing cars are detected in each frame by the Faster-
RCNN (FRCN) detector [20] but any detector can be used as well (e.g. ACE, LDCF
[4]). We trained the detector on COD20K dataset [13] containing approximately 20k
car instances for training from views of surveillance nature. The detection rate of
the detector is 96 % with 0.02 false positive detections per image on the test part of
COD20K dataset. The detector yields a coarse information about locations of cars in
the image (bounding boxes are not precisely aligned). We use a simple heuristic to
remove detections that would lead to imprecise tracking and ultimately to wrong
speed estimation — those that are slightly occluded by other detections and that are
farther from the camera. Therefore we track only cars that are fully visible.

For the tracking, we use a simple background model that builds a background refer-
ence image by moving average. In the foreground image, compact blobs are detected
and the FRCN detections are used to group those blobs that correspond to one car.
From each group of blobs, the convex hull and its 2D bounding box are extracted.
Finally, we track the 2D bounding box of the convex hull using Kalman filter to get
the movement of the car.

For each tracked car, we extract a reference point for speed measurement. The con-
vex hull is used to construct the 3D bounding box [DSH14] and we take the center of
the bottom-front edge — the reference point located in the ground/road plane. Each
track is represented by a sequence of bounding boxes and reference points both con-
structed from the convex hull. Our method inherits all the advantages and limitations
of the similar approaches based on extraction of the vehicle’s foreground mask. We
rely on the extractor to do its job properly, and we can take advantage of works deal-
ing with different issues related to for example lighting and weather (for example
contour extractors such as [30], or semantic segmentation methods such as [18]).

3.3.3 Scale Inference using 3D Model Bounding Box Alignment

The previous state-of-the-art automatic method for scale inference in traffic surveil-
lance by [DSH14] used three-dimensional bounding boxes built around the vehicle
and mean dimensions of vehicles to compute the scale. However, this approach has
two main drawbacks. The obvious one is in the usage of mean dimensions of ve-
hicles. However, the more important one is not that much obvious: the constructed
bounding box is too tight around the vehicle and the tightness is largely influenced
by the particular viewpoint direction. This causes systematic errors in the calibration
depending on the camera location with respect to the road, leading to high sensitivity
to viewpoint change.

We propose to use a different approach to the scale inference, overcoming the men-
tioned imprecisions. We use fine-grained types of the vehicles (i.e. make, model, vari-
ant, model year) and for a few (two in our experiments) common types we obtained
3D models which are rendered to the image and we align them to the real observed
vehicles in order to obtain the proper scale.

As it is necessary to know the precise vehicle classes (up to model year) for our scale
inference method, we used BoxCars dataset with such images [SHH16] and we also
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Figure 3.4: Examples of used 3D models (showing only edges) render under the same viewpoint
as the corresponding real vehicle on the road. The left image show model which we
will refer as Combi and the other two images show 3D model Sedan. Both the models
are for Skoda Octavia mk1 which is common on the observed streets.

Figure 3.5: Development of IoU (yellow boxes) metric for different scales (left to right), vehicle
types and viewpoints (top to bottom). The left two images show larger rendered
vehicle, the middle one show the best match, and the right two images show smaller
rendered vehicle. The rendered vehicle is shown only in a form of edges with yellow
rectangle as bounding box of the rendered model and blue rectangle denotes the
detected vehicle bounding box.

collected some other training data from videos related to papers by [DSH14, DHJS15].
The classification of vehicles is done only into a few most common fine-grained vehicle
types on roads in the area plus one class for all the others vehicles. The full training
dataset contained ~23 k tracks and ~92k images of vehicles. We used a CNN [15] for
the classification itself. The classification accuracy on the validation set (~7 k of images)
was 0.97. As only single instances of vehicles are classified by the CNN, we use mean
probability over all of the detections belonging to one vehicle track to improve the
recognition rates.

For each vehicle, we also build a 3D bounding box around it [DSH14] to obtain the
center b of the vehicle’s base in image coordinates. To obtain the viewpoint vector ¢,
we first compute the rotation matrix R which has columns equal to normalized u, ¥,
and W and then it is possible to compute the 3D viewpoint vector as ¢ = —R'b. The
minus sign is necessary as we need the viewpoint vector going from the vehicle to the
camera, not the opposite one.

Once the viewpoint vector to the vehicle, the vehicle’s class, and its position on the
screen are determined, we render the appropriate 3D model given the parameters.
The only open variable is the scale of the vehicle to be rendered (i.e. the distance be-
tween the vehicle and the camera). Examples of the two used 3D models are shown
in Figure 3.4. Therefore, we render images of the vehicle in multiple different scales
and match the bounding boxes of the rendered vehicles with the bounding box de-
tected in the video by using the Intersection-over-Union (IoU) metric. Examples of
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such matches can be found in Figure 3.5. The figure also shows in red two interesting
points related to the vehicle: points on the base of the 3D models representing front
f and rear r of the vehicle. Finally, for all vehicle instances i and scales j, these points
are projected on the road plane, yielding Fi; and Ry; and they are used to compute
the scale Ay (Eq. (3.13), where 1, is the real world length of the type t;). For all
considered combinations of i and j, the IoU matching metric my; is computed.

le,

A [Fij — Ryl 61

To obtain the final camera’s scale A*, all the scales Ay are taken into account together
with metrics my;. We consider only cases with my; larger then a predefined threshold
(we used 0.85 in our experiments) to eliminate poor matches. Finally, we compute A*
according to Equation (3.14). The probability p (?\ | (?\ij,mij)) is computed by kernel
density estimation with a discretized space.

A* = argmaxy p (Al (Aij, M ) (3.14)

In order to further improve the scale inference, we use several training videos
from BrnoCompSpeed dataset [S]ST18]. We train the scale-correcting linear regres-
sion Afeg = aA™ + 3, using the manually obtained scales as the ground truth. Even
though this step is not necessary, it improves the scale acquisition furthermore by
correcting the imprecise geometry of the obtained 3D models.

We also experimented with an alignment metric based on matching of edges on the
rendered and detected vehicles (based on distance transform). However, the speed
measurement did not improve further. The biggest problem with this method is that
most of the edges on the vehicles are blurry and therefore not detected at all. However,
the vehicle detector [20] is able to detect the vehicles properly and in most cases
accurately. Also, the proposed algorithm using just the bounding boxes is much more
efficient in terms of storage (it is possible to store just the bounding boxes, not the
images) and computation.

3.3.4 Speed Measurement of Tracked Cars

The speed measurement itself is done by following the methodology proposed by
[SJ5118]. Given a tracked car with reference points p; and timestamps t; for each of
the reference point, where i = 1...N, the speed v is calculated from Equation (3.15)
by projecting the reference points p; to the ground plane P; (see Equation (3.8)).

: AregllPisr —Pif|
_ Te 1+T i
v ige..c.ill\zliI—I'c ( i+t —t (3.15)

The speed is computed as the median value of speeds between consecutive time
positions. However, for stability of the measurement, it is better not to use the next
frame, but the time position several video frames apart. This is controlled by constant
7 and for all our experiments, we use T = 5 (the time difference is usually 0.2s).
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Figure 3.6: An example of manually measured distances between markers on the road plane.
Other examples can be found in the original BrnoCompSpeed publication [S]S* 18].
Blue lines denote the lane dividing lines, lines perpendicular to the vehicles direction
are shown in yellow. Finally, measured distances between two points towards the first
(second) vanishing point are shown by red (green) color.

3.4 EXPERIMENTS AND RESULTS

To evaluate our proposed methods for camera calibration and scene scale inference,
we use a very recent dataset BrnoCompSpeed [S]S™ 18] which contains over 20k ve-
hicles with precise ground truth speed from multiple locations. The dataset also con-
tains markers on the road with known dimensions between them. For an example of
such road markers, see Figure 3.6. The ground truth distances can be used for either
calibration or evaluation of distance measurement on the road plane. It is also pos-
sible to evaluate the accuracy of vanishing points estimation by using the markings
[SJ5118]. In the following text we will refer to various methods for camera calibration
which are defined as:

e ITS15 - Automatic camera calibration method as described by Dub-
ské et al. [DHJS15].

¢ Edgelets — Camera calibration method proposed in this paper, Section 3.3.1.

* ManualCalib — We use known distances (Figure 3.6) on the road for manual
calibration of the camera. In agreement with the previous papers [1, 10, 12]
we use intersection lanes dividing lines (blue dashed lines in Figure 3.6) for
estimation of the first vanishing point u. As there are usually more than just two
lane dividing lines, we use least squares minimization to obtain the intersection
of multiple lines. Formally, given lines 1; with normalized normal vectors, we
compute vanishing point u by solving Au = —b in a least squares manner,
where rows of A contain transposed normal vectors of the lines and rows of b
contain constant terms of the lines.

The second vanishing point v can be obtained in the same manner (as the in-
tersection of yellow dashed lines in Figure 3.6, since they are perpendicular to
the vehicle flow on the road). However, we found out that it is more accurate
and robust to use the intersection only as a first guess and then use measured
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distances on the road to optimize the vanishing point position using Equation
(3.16).

v* = argmin > AP —Py-d, (3.16)
(p1,p2,d)ED>

where set D, contains image endpoints and distances measured on the road to-
wards the second vanishing point (green line segments in Figure 3.6) and scale
A is computed for the given vanishing points u, v by Equation (3.17). It should
be noted that the computation of 3D coordinates P; of image point p; depends
on the vanishing points (see Equation (3.8) for details). The optimization itself
is done by grid search (we loop over discretized feasible positions of v corre-
sponding to reasonable focal lengths and evaluate the optimization objective
(3.16)).
The usage of standard manual methods based on calibration patterns (e.g
checkerboards) proposed by [33] is impractical as it would require a large
checkerboard (more than 10 m?) placed on the road.

We also define method names for different approaches for scale inference:

¢ BMVC14 - Scale inference method proposed by [DSH14].

e BBScale + reg — Our method for scale calibration using bounding box matching
(Section 3.3.3) with scale correction regression.

® ManualScale — Scale computed from manually measured distances between
markers towards the first vanishing point on the road. The scale is computed
as the mean value of Equation (3.17) from a set of endpoints and distances
(pi,1,Pi,2,di) towards the first vanishing point (red line segments in Figure 3.6).

dq
A=E| —-——"— .
[HPH —Pi> J (3-17)

® SpeedScale — Scale is computed from the ground truth speed measurements
and it minimizes the speed measurement error for given camera calibration. It
can be understood as the lower error bound for the given camera calibration
method. The scale is computed as the mean value of Equation (3.18) where set
M contains pairs of ground truth speed ¥; and measured speed v;. It is assumed
that scale A = 1 was used for computation of speeds v;.

Vi
A=E {VJ (3.18)

If not stated otherwise, the evaluation was done on BrnoCompSpeed — Split C
(contains more than 10k of vehicle tracks for evaluation), because our method requires
parameter tuning for the scale correction regression and split C provides sufficient
amount of data for training and testing. For each metric, we report mean, median,
and 99 percentile error for both absolute units (err = |# — r|) and relative units (err =
|t —1|/% - 100%), where  denotes the ground truth measurement, and r represents the
measured value.
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Table 3.1: Errors of distance measurement ratios (see Section 3.4.1 for details). The first row for
each calibration method contains absolute errors; the relative errors in percents are in
the second row.

system mean median 99 %
Edgelets (ours) 0.09 0.04 0.49
645 338 39.08

ITS15 0.18 0.05 1.36
1174 5-25 61.03

ManualCalib 0.02 0.01 0.15
1.80 1.26 10.98

3.4.1 Evaluation of VP Estimation — Camera Calibration Error

To evaluate the camera calibration itself (the obtained vanishing points), we follow the
evaluation metric proposed with the BrnoCompSpeed dataset [SJ5* 18]. The evalua-
tion measures the difference between ratios of distances between markings towards
the first vanishing point (red lines in Figure 3.6) and the distances between markers
towards the second vanishing point (green lines in Figure 3.6). As the ratio does not
depend on scale, this metric considers only the camera calibration in the form of two
detected vanishing points.

Since we do not require any parameter tuning for the camera calibration method,
we report the results on all videos in the BrnoCompSpeed dataset (including extra ses-
siono). The results (reported in Table 3.1) show that our automatic calibration method
Edgelets outperforms calibration method ITS15 almost twice in mean error. It should
be noted that the same distances that were used to obtain the manual calibration
were evaluated by the calibration error metric based on distance ratios; this gives the
manual calibration an unfair advantage in the comparison.

The significant improvement of our method is caused by more precise acquisition
of v; position of u stays the same for our method as for the ITS15 calibration method.
The important role of vanishing points is given by two reasons. The first one is that the
vanishing points are directly used for estimating the focal length; the second one is
that they are used for computation of the viewpoint on the vehicle for scale estimation.
Therefore, if the viewpoint is computed imprecisely, the alignment of the rendered 3D
model is also imprecise.

3.4.2 Evaluation of Distance Measurement in the Road Plane

The next step is to evaluate the camera calibration together with the obtained scale.
We use manual annotations of distances on the road plane which are going towards
the first or the second vanishing point, respectively (red and green in Figure 3.6).
First, we evaluated the distance measurement only towards the first vanishing point
as it is the direction in which the vehicles are going and it is more important for speed
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Table 3.2: Distance measurement errors on the road plane for different calibrations. Only dis-
tances towards the first vanishing point (red in Figure 3.6) were used for this evalua-
tion. The first row for each calibration method contains absolute errors in meters; the
relative errors in percents are in the second row.

system mean median 99%
Edgelets + BBScale + reg (ours) 0-26 017 1.08
2.33 2,06 549
ITS15 + BMVCi4 1.23 081 540
9.62 10.65  21.07
Edgelets + ManualScale (ours) 010 0:06 0-57
0.98 0.62 4.46
ITS15 + ManualScale 0-25 0-14 154
2.11 1.66 8.07
ManualCalib + ManualScale 010 0.08 032
1.08 0.65 3.59

Table 3.3: Distance measurement errors on the road plane for different calibrations. Each segment
of the table represents a different level of supervision in the calibration. The first row
for each calibration method contains absolute errors in meters and the relative errors
in percents are in the second row.

system mean median 99%
Edgelets + BBScale + reg (ours) 0-34 0.18 2.29
3.47 228 3049
ITS15 + BMVCi14 1.17 0.72 5.82
9.79 9.00 55,89
Edgelets + ManualScale (ours) 0.24 0.10 2.60
2.66 1.00  34.75
ITS15 + ManualScale 0.57 0.20 5.43
5.84 2,07 52.19
ManualCalib + ManualScale 0.07 0.04 030
084 0.50 347

measurement. The results are shown in Table 3.2 for different combinations of calibra-
tions and scale estimations. The table shows several things. First, our fully automatic
method for camera calibration (Edgelets) and scale inference (BBScale + reg) signifi-
cantly outperforms the previous automatic method ITS15 + BMVC14. Second, when
we use our automatically computed calibration and scale obtained with manual an-
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notations, we achieve almost the same results as ManualCalib + ManualScale, which
required much more manual effort than our automatic system.

When we evaluated the same metric with all the distances, the results are similar
(see Table 3.3). Again, our method significantly outperforms the previous automatic
method. Considering the calibrations with manually obtained scale, our system has a
slightly higher error then the manual calibration. However, this is caused by the fact
that the manual calibration is optimized directly to the evaluation metric by Equa-
tion (3.16) and thus gets an unfair and unrealistic advantage.

To summarize the distance measurement results: our method significantly outper-
forms previous automatic state-of-the-art for speed measurement — the mean error for
distance measurement in the direction of vehicles” flow (which is important for speed
measurement) was reduced by 79 % (1.23 m to 0.26 m).

3.4.3 Evaluation of Speed Measurement

The most important part of the evaluation is the speed measurement itself. We used
the same vehicle detection and tracking system in all experiments so that the results
for different calibrations and scales are directly comparable.

We show both quantitative results in the form of Table 3.4. The table is divided into
several parts where we compare similar levels of supervision.

The first level of supervision is fully automatic; in the second level, known ground
truth dimensions on the road plane are used. In the third and final level of supervi-
sion, we use known ground truth speeds to form the lower error bound for different
calibration methods.

Regarding the first level of supervision, our system Edgelets + BBScale + reg sig-
nificantly outperforms the previous automatic method ITS15 + BMVC14 and we re-
duce the mean speed measurement error by 86 % (7.98 km/h to 1.10km/h) . Another
important fact is that our fully automatic method for camera calibration and scale
inference also outperforms manual calibration and scale inference (1.35km/h mean
error) while the error is reduced by 19 % (1.35 km/h to 1.10km/h). This improvement
is important as in the previous approaches, the automation always compromised the
accuracy, forcing the system developer to trade off between them. Our work shows
that our proposed fully automatic method based on computer vision is superior to
manual calibration.

When it comes to the second and the third level of supervision, the results follow the
same trend with our calibration outperforming all of them (manual and automatic).
The fact that manual calibration is better on the calibration metric (Section 3.4.1) and
distance measurement (Section 3.4.2), while our method outperforms the manual cal-
ibration at the speed measurement task, is caused by the fact that the manual cali-
bration uses the same data which are then used for the evaluation of the calibration
metric and distance measurement. The achieved accuracy is very close to meeting the
standards for speed measurements accuracy required for enforcement (typically 3 %
in many European countries). The accuracy is definitely comparable to measurements
achievable by radars [SJST 18], while being considerably cheaper, more flexible, and
passive.
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Table 3.4: Evaluation of speed measurement errors; all the systems are different only in the cal-
ibration and scale inference, with the same tracking of vehicles. Each segment repre-
sents one level of supervision in the calibration (automatic, known ground truth dis-
tances on road, known ground truth speeds). The first row for each calibration method
contains absolute errors in km/h; the relative errors in percents are in the second row.

system mean median 99 %
Edgelets + BBScale + reg (ours) 1.10 0-97 3.05
1.39 1.22 4.13

ITS15 + BMVC14 7:98 8.18 18.58
10.15 11.45 19.22

Edgelets + ManualScale (ours) 104 0.83 3-48
1.31 1.04 461

ITS15 + ManualScale 1.44 1.17 5.43
1.76 1.50  6.16

ManualCalib + ManualScale 135 0.95 4.84
1.64 118 5.40

Edgelets + SpeedScale (ours) 0.52 0.35 2.57
0.66 0.44 3.71

ITS15 + SpeedScale 0.80 0.57  3.70
0.99 0.72 4.68

ManualCalib + SpeedScale 0.56 038 273
0.71 0.48 3.63

3.5 CONCLUSIONS

We propose a fully automatic method for traffic surveillance camera calibration. It
does not have any constraints on camera placement and does not require any manual
input whatsoever. The results show that our system decreases the mean speed mea-
surement error by 86% (7.98km/h to 1.10km/h) compared to previous automatic
state-of-the-art method and by 19 % (1.35km/h to 1.10km/h) compared to manual
calibration method. This improvement is important as in the previous approaches,
the automation always compromised the accuracy, forcing the system developer to
trade off between them. Our work shows that our proposed fully automatic method
based on computer vision algorithms is superior to the manual calibration. This re-
sult can be important beyond the field of traffic surveillance, since different forms
of manual camera calibration are often considered the “ground truth”, but our work
shows that automatic calibration from statistics of repeated inaccurate measurements
can be more precise, despite requiring no user input. Our method removes the neces-
sity of per-camera setting or calibration, but it still requires some human annotations
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per coarse geographic region (e.g. European Union or the USA) and per time period
when the car models get vastly replaced (e.g. per decade).

In the experiments, we also showed that our method is able to calibrate real world
traffic surveillance cameras and our proposed method for vehicle detection and track-
ing significantly reduces the number of false positives compared to the previous
method. In future work, we would like to simplify the system and remove the neces-
sity to render the vehicles by approximation of the bounding box size by a function
parametrized by viewpoint and image location.
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CONCLUSIONS

This thesis presents contributions to the state of the art in Intelligent Transportation
Systems and Computer Vision. Specifically, the work is focused on two tasks — au-
tomatic speed measurement of vehicles from videos and fine-grained recognition of
vehicles from images and videos. The papers with core contributions of the thesis
were published at top conferences and journals (CVPR, CVIU, IEEE T-ITS).

The first addressed problem is fine-grained recognition of vehicles. In the first pa-
per [SHH16], an image normalization method exploiting automatically extracted 3D
bounding boxes around vehicles is proposed. The results show that the method sig-
nificantly improves classification and verification accuracy. The biggest improvements
are for images of vehicles taken from viewpoints unseen during training, therefore the
results show that the proposed images normalization improves generalization to un-
seen viewpoints. Further improvements and analysis of the approach were published
in my second paper [SSH18] dealing with the problem. The improved approach elim-
inates the necessity to know the vanishing points a priori — it is possible to construct
the 3D bounding boxes of the vehicles from a single image. The results show that
the proposed method consistently improves classification accuracy by up to 12 per-
centage points with different CNNs [15, 25, 11, 8]. The classification error was also
reduced by up to 50 %.

Currently, we are exploring using the 3D bounding boxes for vehicle re-
identification and as the results show [SS]H18], normalization of vehicles by the
proposed “unpacking” of vehicles by their 3D bounding box improve even the re-
identification performance. Therefore, the applicability of the image normalization by
the 3D bounding boxes goes beyond fine-grained classification of vehicles.

The other addressed problem is automatic speed measurement of vehicles. First, we
had to collect a large dataset with precise ground truth speed measurements [S151 18]
as there was no dataset with large number of vehicles with precise ground truth
speeds. The dataset contains over 20000 vehicles with ground truth speed measure-
ments acquired from two synchronized LIDAR optical gates. Furthermore, we pro-
posed a method for fully automatic traffic surveillance camera calibration enabling
precise speed measurement of vehicles. The approach is based on vanishing point
estimation and 3D model alignment of several common fine-grained models. Thus,
instead of using artificial calibration patterns or measurements on the road plane, we
use the recognized vehicles with known 3D models as “calibration objects”. The exper-
imental results show that the method achieves 1.10km/h mean speed measurement
error while outperforming both state-of-the-art methods and manual calibration in
the speed measurement task. This is important because in the previous approaches,
the automation always compromised the accuracy, forcing the system developer to
trade off between them.

Currently, we are working on fully automatic camera calibration method applicable
outside the scope of road surveillance. For example, the method targets calibration of
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a camera on a parking lot or a square. The approach is based on detected keypoints
on fine-grained recognized vehicles and a priori known 3D position of the keypoints
within the vehicles” 3D models.
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Publications containing the core of the thesis
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[SSH18]
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ference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE
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